WorldWideScience

Sample records for actin-based symmetry breaking

  1. In silico reconstitution of actin-based symmetry breaking and motility.

    Directory of Open Access Journals (Sweden)

    Mark J Dayel

    2009-09-01

    Full Text Available Eukaryotic cells assemble viscoelastic networks of crosslinked actin filaments to control their shape, mechanical properties, and motility. One important class of actin network is nucleated by the Arp2/3 complex and drives both membrane protrusion at the leading edge of motile cells and intracellular motility of pathogens such as Listeria monocytogenes. These networks can be reconstituted in vitro from purified components to drive the motility of spherical micron-sized beads. An Elastic Gel model has been successful in explaining how these networks break symmetry, but how they produce directed motile force has been less clear. We have combined numerical simulations with in vitro experiments to reconstitute the behavior of these motile actin networks in silico using an Accumulative Particle-Spring (APS model that builds on the Elastic Gel model, and demonstrates simple intuitive mechanisms for both symmetry breaking and sustained motility. The APS model explains observed transitions between smooth and pulsatile motion as well as subtle variations in network architecture caused by differences in geometry and conditions. Our findings also explain sideways symmetry breaking and motility of elongated beads, and show that elastic recoil, though important for symmetry breaking and pulsatile motion, is not necessary for smooth directional motility. The APS model demonstrates how a small number of viscoelastic network parameters and construction rules suffice to recapture the complex behavior of motile actin networks. The fact that the model not only mirrors our in vitro observations, but also makes novel predictions that we confirm by experiment, suggests that the model captures much of the essence of actin-based motility in this system.

  2. Spontaneous symmetry breaking for geometrical trajectories of actin-based motility in three dimensions

    Science.gov (United States)

    Wen, Fu-Lai; Leung, Kwan-tai; Chen, Hsuan-Yi

    2016-07-01

    Actin-based motility is important for many cellular processes. In this article we extend our previous studies of an actin-propelled circular disk in two dimensions to an actin-propelled spherical bead in three dimensions. We find that for an achiral load the couplings between the motion of the load and the actin network induce a series of bifurcations, starting with a transition from rest to moving state, followed by a transition from straight to planar curves, and finally a further transition from motion in a plane to one with torsion. To address the intriguing, experimentally observed chiral motility of the bacterium Listeria monocytogenes, we also study the motility of a spherical load with a built-in chirality. For such a chiral load, stable circular trajectories are no longer found in numerical simulations. Instead, helical trajectories with handedness that depends on the chirality of the load are found. Our results reveal the relation between the symmetry of actin network and the trajectories of actin-propelled loads.

  3. Symmetries, Symmetry Breaking, Gauge Symmetries

    CERN Document Server

    Strocchi, Franco

    2015-01-01

    The concepts of symmetry, symmetry breaking and gauge symmetries are discussed, their operational meaning being displayed by the observables {\\em and} the (physical) states. For infinitely extended systems the states fall into physically disjoint {\\em phases} characterized by their behavior at infinity or boundary conditions, encoded in the ground state, which provide the cause of symmetry breaking without contradicting Curie Principle. Global gauge symmetries, not seen by the observables, are nevertheless displayed by detectable properties of the states (superselected quantum numbers and parastatistics). Local gauge symmetries are not seen also by the physical states; they appear only in non-positive representations of field algebras. Their role at the Lagrangian level is merely to ensure the validity on the physical states of local Gauss laws, obeyed by the currents which generate the corresponding global gauge symmetries; they are responsible for most distinctive physical properties of gauge quantum field ...

  4. Breaking Symmetries

    Directory of Open Access Journals (Sweden)

    Kirstin Peters

    2010-11-01

    Full Text Available A well-known result by Palamidessi tells us that πmix (the π-calculus with mixed choice is more expressive than πsep (its subset with only separate choice. The proof of this result argues with their different expressive power concerning leader election in symmetric networks. Later on, Gorla offered an arguably simpler proof that, instead of leader election in symmetric networks, employed the reducibility of incestual processes (mixed choices that include both enabled senders and receivers for the same channel when running two copies in parallel. In both proofs, the role of breaking (initial symmetries is more or less apparent. In this paper, we shed more light on this role by re-proving the above result - based on a proper formalization of what it means to break symmetries without referring to another layer of the distinguishing problem domain of leader election. Both Palamidessi and Gorla rephrased their results by stating that there is no uniform and reasonable encoding from πmix into πsep. We indicate how the respective proofs can be adapted and exhibit the consequences of varying notions of uniformity and reasonableness. In each case, the ability to break initial symmetries turns out to be essential.

  5. Breaking Symmetries

    CERN Document Server

    Peters, Kirstin

    2010-01-01

    A well-known result by Palamidessi tells us that {\\pi}mix (the {\\pi}-calculus with mixed choice) is more expressive than {\\pi}sep (its subset with only separate choice). The proof of this result argues with their different expressive power concerning leader election in symmetric networks. Later on, Gorla of- fered an arguably simpler proof that, instead of leader election in symmetric networks, employed the reducibility of "incestual" processes (mixed choices that include both enabled senders and receivers for the same channel) when running two copies in parallel. In both proofs, the role of breaking (ini- tial) symmetries is more or less apparent. In this paper, we shed more light on this role by re-proving the above result-based on a proper formalization of what it means to break symmetries-without referring to another layer of the distinguishing problem domain of leader election. Both Palamidessi and Gorla rephrased their results by stating that there is no uniform and reason- able encoding from {\\pi}mix i...

  6. Breaking Symmetries

    CERN Document Server

    Peters, Kirstin; 10.4204/EPTCS.41.10

    2010-01-01

    A well-known result by Palamidessi tells us that \\pimix (the \\pi-calculus with mixed choice) is more expressive than \\pisep (its subset with only separate choice). The proof of this result argues with their different expressive power concerning leader election in symmetric networks. Later on, Gorla offered an arguably simpler proof that, instead of leader election in symmetric networks, employed the reducibility of incestual processes (mixed choices that include both enabled senders and receivers for the same channel) when running two copies in parallel. In both proofs, the role of breaking (initial) symmetries is more or less apparent. In this paper, we shed more light on this role by re-proving the above result - based on a proper formalization of what it means to break symmetries without referring to another layer of the distinguishing problem domain of leader election. Both Palamidessi and Gorla rephrased their results by stating that there is no uniform and reasonable encoding from \\pimix into \\pisep. We...

  7. Superconductivity and symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Sarasua, L.G., E-mail: sarasua@fisica.edu.uy [Instituto de Fisica, Facultad de Ciencias, Universidad de la Republica, Montevideo (Uruguay)

    2012-02-15

    In the present work we consider the relation between superconductivity and spontaneous gauge symmetry breaking (SGBS). We show that ODLRO does not require in principle SBGS, even in the presence of particle number fluctuations, by examining exact solutions of a fermionic pairing model. The criteria become equivalent if a symmetry breaking field is allowed, which can be attributed to the interaction with the environment. However, superconducting states without SBGS are not forbidden.

  8. Electroweak symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Chanowitz, M.S.

    1990-09-01

    The Higgs mechanism is reviewed in its most general form, requiring the existence of a new symmetry-breaking force and associated particles, which need not however be Higgs bosons. The first lecture reviews the essential elements of the Higgs mechanism, which suffice to establish low energy theorems for the scattering of longitudinally polarized W and Z gauge bosons. An upper bound on the scale of the symmetry-breaking physics then follows from the low energy theorems and partial wave unitarity. The second lecture reviews particular models, with and without Higgs bosons, paying special attention to how the general features discussed in lecture 1 are realized in each model. The third lecture focuses on the experimental signals of strong WW scattering that can be observed at the SSC above 1 TeV in the WW subenergy, which will allow direct measurement of the strength of the symmetry-breaking force. 52 refs., 10 figs.

  9. Symmetry and symmetry breaking in particle physics

    OpenAIRE

    Tsou, ST

    1998-01-01

    Symmetry, in particular gauge symmetry, is a fundamental principle in theoretical physics. It is intimately connected to the geometry of fibre bundles. A refinement to the gauge principle, known as ``spontaneous symmetry breaking'', leads to one of the most successful theories in modern particle physics. In this short talk, I shall try to give a taste of this beautiful and exciting concept.

  10. Bootstrap Dynamical Symmetry Breaking

    Directory of Open Access Journals (Sweden)

    Wei-Shu Hou

    2013-01-01

    Full Text Available Despite the emergence of a 125 GeV Higgs-like particle at the LHC, we explore the possibility of dynamical electroweak symmetry breaking by strong Yukawa coupling of very heavy new chiral quarks Q . Taking the 125 GeV object to be a dilaton with suppressed couplings, we note that the Goldstone bosons G exist as longitudinal modes V L of the weak bosons and would couple to Q with Yukawa coupling λ Q . With m Q ≳ 700  GeV from LHC, the strong λ Q ≳ 4 could lead to deeply bound Q Q ¯ states. We postulate that the leading “collapsed state,” the color-singlet (heavy isotriplet, pseudoscalar Q Q ¯ meson π 1 , is G itself, and a gap equation without Higgs is constructed. Dynamical symmetry breaking is affected via strong λ Q , generating m Q while self-consistently justifying treating G as massless in the loop, hence, “bootstrap,” Solving such a gap equation, we find that m Q should be several TeV, or λ Q ≳ 4 π , and would become much heavier if there is a light Higgs boson. For such heavy chiral quarks, we find analogy with the π − N system, by which we conjecture the possible annihilation phenomena of Q Q ¯ → n V L with high multiplicity, the search of which might be aided by Yukawa-bound Q Q ¯ resonances.

  11. Symmetry breaking. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Strocchi, F. [Scuola Normale Superiore, Classe di Scienze, Pisa (Italy)

    2008-07-01

    This new edition of Prof. Strocchi's well received primer on rigorous aspects of symmetry breaking presents a more detailed and thorough discussion of the mechanism of symmetry breaking in classical field theory in relation with the Noether theorem. Moreover, the link between symmetry breaking without massless Goldstone bosons in Coulomb systems and in gauge theories is made more explicit in terms of the delocalized Coulomb dynamics. Furthermore, the chapter on the Higgs mechanism has been significantly expanded with a non-perturbative treatment of the Higgs phenomenon, at the basis of the standard model of particle physics, in the local and in the Coulomb gauges. Last but not least, a subject index has been added and a number of misprints have been corrected. From the reviews of the first edition: The notion of spontaneous symmetry breaking has proven extremely valuable, the problem is that most derivations are perturbative and heuristic. Yet mathematically precise versions do exist, but are not widely known. It is precisely the aim of his book to correct this unbalance. - It is remarkable to see how much material can actually be presented in a rigorous way (incidentally, many of the results presented are due to Strocchi himself), yet this is largely ignored, the original heuristic derivations being, as a rule, more popular. - At each step he strongly emphasizes the physical meaning and motivation of the various notions introduced, a book that fills a conspicuous gap in the literature, and does it rather well. It could also be a good basis for a graduate course in mathematical physics. It can be recommended to physicists as well and, of course, for physics/mathematics libraries. J.-P. Antoine, Physicalia 28/2, 2006 Strocchi's main emphasis is on the fact that the loss of symmetric behaviour requires both the non-symmetric ground states and the infinite extension of the system. It is written in a pleasant style at a level suitable for graduate students in

  12. Symmetry, Symmetry Breaking and Topology

    Directory of Open Access Journals (Sweden)

    Siddhartha Sen

    2010-07-01

    Full Text Available The ground state of a system with symmetry can be described by a group G. This symmetry group G can be discrete or continuous. Thus for a crystal G is a finite group while for the vacuum state of a grand unified theory G is a continuous Lie group. The ground state symmetry described by G can change spontaneously from G to one of its subgroups H as the external parameters of the system are modified. Such a macroscopic change of the ground state symmetry of a system from G to H correspond to a “phase transition”. Such phase transitions have been extensively studied within a framework due to Landau. A vast range of systems can be described using Landau’s approach, however there are also systems where the framework does not work. Recently there has been growing interest in looking at such non-Landau type of phase transitions. For instance there are several “quantum phase transitions” that are not of the Landau type. In this short review we first describe a refined version of Landau’s approach in which topological ideas are used together with group theory. The combined use of group theory and topological arguments allows us to determine selection rule which forbid transitions from G to certain of its subgroups. We end by making a few brief remarks about non-Landau type of phase transition.

  13. Chiral symmetry and chiral-symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Peskin, M.E.

    1982-12-01

    These lectures concern the dynamics of fermions in strong interaction with gauge fields. Systems of fermions coupled by gauge forces have a very rich structure of global symmetries, which are called chiral symmetries. These lectures will focus on the realization of chiral symmetries and the causes and consequences of thier spontaneous breaking. A brief introduction to the basic formalism and concepts of chiral symmetry breaking is given, then some explicit calculations of chiral symmetry breaking in gauge theories are given, treating first parity-invariant and then chiral models. These calculations are meant to be illustrative rather than accurate; they make use of unjustified mathematical approximations which serve to make the physics more clear. Some formal constraints on chiral symmetry breaking are discussed which illuminate and extend the results of our more explicit analysis. Finally, a brief review of the phenomenological theory of chiral symmetry breaking is presented, and some applications of this theory to problems in weak-interaction physics are discussed. (WHK)

  14. Symmetry Breaking by Nonstationay Optimisation

    NARCIS (Netherlands)

    Prestwich, S.; Hnich, B.; Rossi, R.; Tarim, S.A.

    2008-01-01

    We describe a new partial symmetry breaking method that can be used to break arbitrary variable/value symmetries in combination with depth first search, static value ordering and dynamic variable ordering. The main novelty of the method is a new dominance detection technique based on local search in

  15. Symmetry Breaking by Nonstationay Optimisation

    NARCIS (Netherlands)

    Prestwich, S.; Hnich, B.; Rossi, R.; Tarim, S.A.

    2008-01-01

    We describe a new partial symmetry breaking method that can be used to break arbitrary variable/value symmetries in combination with depth first search, static value ordering and dynamic variable ordering. The main novelty of the method is a new dominance detection technique based on local search in

  16. Dynamical (Super)Symmetry Breaking

    CERN Document Server

    Murayama, H

    2001-01-01

    Dynamical Symmetry Breaking (DSB) is a concept theorists rely on very often in the discussions of strong dynamics, model building, and hierarchy problems. In this talk, I will discuss why this is such a permeating concept among theorists and how they are used in understanding physics. I also briefly review recent progress in using dynamical symmetry breaking to construct models of supersymmetry breaking and fermion masses.

  17. Hole localization and symmetry breaking

    NARCIS (Netherlands)

    Broer, R; Nieuwpoort, W.C.

    1999-01-01

    A brief overview is presented of some theoretical work on the symmetry breaking of electronic wavefunctions that followed the early work on Bagus and Schaefer who observed that a considerable lower SCF energy could be obtained for an ionized state of the O2 molecule with a 1s hole if the symmetry re

  18. Strong coupling electroweak symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Barklow, T.L. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Burdman, G. [Univ. of Wisconsin, Madison, WI (United States). Dept. of Physics; Chivukula, R.S. [Boston Univ., MA (United States). Dept. of Physics

    1997-04-01

    The authors review models of electroweak symmetry breaking due to new strong interactions at the TeV energy scale and discuss the prospects for their experimental tests. They emphasize the direct observation of the new interactions through high-energy scattering of vector bosons. They also discuss indirect probes of the new interactions and exotic particles predicted by specific theoretical models.

  19. A model of intrinsic symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Li [Research Center for Quantum Manipulation, Department of Physics, Fudan University, Shanghai 200433 (China); Li, Sheng [Department of Physics, Zhejiang Normal University, Zhejiang 310004 (China); George, Thomas F., E-mail: tfgeorge@umsl.edu [Office of the Chancellor and Center for Nanoscience, Department of Chemistry and Biochemistry, University of Missouri-St. Louis, St. Louis, MO 63121 (United States); Department of Physics and Astronomy, University of Missouri-St. Louis, St. Louis, MO 63121 (United States); Sun, Xin, E-mail: xin_sun@fudan.edu.cn [Research Center for Quantum Manipulation, Department of Physics, Fudan University, Shanghai 200433 (China)

    2013-11-01

    Different from the symmetry breaking associated with a phase transition, which occurs when the controlling parameter is manipulated across a critical point, the symmetry breaking presented in this Letter does not need parameter manipulation. Instead, the system itself suddenly undergoes symmetry breaking at a certain time during its evolution, which is intrinsic symmetry breaking. Through a polymer model, it is revealed that the origin of the intrinsic symmetry breaking is nonlinearity, which produces instability at the instance when the evolution crosses an inflexion point, where this instability breaks the original symmetry.

  20. Explaining quantum spontaneous symmetry breaking

    Science.gov (United States)

    Liu, Chuang; Emch, Gérard G.

    Two accounts of quantum symmetry breaking (SSB) in the algebraic approach are compared: the representational and the decompositional account. The latter account is argued to be superior for understanding quantum SSB. Two exactly solvable models are given as applications of our account: the Weiss-Heisenberg model for ferromagnetism and the BCS model for superconductivity. Finally, the decompositional account is shown to be more conducive to the causal explanation of quantum SSB.

  1. Models of electroweak symmetry breaking

    CERN Document Server

    Pomarol, Alex

    2015-01-01

    This chapter present models of electroweak symmetry breaking arising from strongly interacting sectors, including both Higgsless models and mechanisms involving a composite Higgs. These scenarios have also been investigated in the framework of five-dimensional warped models that, according to the AdS/CFT correspondence, have a four-dimensional holographic interpretation in terms of strongly coupled field theories. We explore the implications of these models at the LHC.

  2. Big break for charge symmetry

    CERN Document Server

    Miller, G A

    2003-01-01

    Two new experiments have detected charge-symmetry breaking, the mechanism responsible for protons and neutrons having different masses. Symmetry is a crucial concept in the theories that describe the subatomic world because it has an intimate connection with the laws of conservation. The theory of the strong interaction between quarks - quantum chromodynamics - is approximately invariant under what is called charge symmetry. In other words, if we swap an up quark for a down quark, then the strong interaction will look almost the same. This symmetry is related to the concept of sup i sospin sup , and is not the same as charge conjugation (in which a particle is replaced by its antiparticle). Charge symmetry is broken by the competition between two different effects. The first is the small difference in mass between up and down quarks, which is about 200 times less than the mass of the proton. The second is their different electric charges. The up quark has a charge of +2/3 in units of the proton charge, while ...

  3. Symmetry Breaking for Answer Set Programming

    CERN Document Server

    Drescher, Christian

    2010-01-01

    In the context of answer set programming, this work investigates symmetry detection and symmetry breaking to eliminate symmetric parts of the search space and, thereby, simplify the solution process. We contribute a reduction of symmetry detection to a graph automorphism problem which allows to extract symmetries of a logic program from the symmetries of the constructed coloured graph. We also propose an encoding of symmetry-breaking constraints in terms of permutation cycles and use only generators in this process which implicitly represent symmetries and always with exponential compression. These ideas are formulated as preprocessing and implemented in a completely automated flow that first detects symmetries from a given answer set program, adds symmetry-breaking constraints, and can be applied to any existing answer set solver. We demonstrate computational impact on benchmarks versus direct application of the solver. Furthermore, we explore symmetry breaking for answer set programming in two domains: firs...

  4. History of electroweak symmetry breaking

    CERN Document Server

    Kibble, T W B

    2015-01-01

    In this talk, I recall the history of the development of the unified electroweak theory, incorporating the symmetry-breaking Higgs mechanism, as I saw it from my standpoint as a member of Abdus Salam's group at Imperial College. I start by describing the state of physics in the years after the Second World War, explain how the goal of a unified gauge theory of weak and electromagnetic interactions emerged, the obstacles encountered, in particular the Goldstone theorem, and how they were overcome, followed by a brief account of more recent history, culminating in the historic discovery of the Higgs boson in 2012.

  5. Renormalizable theories with symmetry breaking

    CERN Document Server

    Becchi, Carlo M

    2016-01-01

    The description of symmetry breaking proposed by K. Symanzik within the framework of renormalizable theories is generalized from the geometrical point of view. For an arbitrary compact Lie group, a soft breaking of arbitrary covariance, and an arbitrary field multiplet, the expected integrated Ward identities are shown to hold to all orders of renormalized perturbation theory provided the Lagrangian is suitably chosen. The corresponding local Ward identity which provides the Lagrangian version of current algebra through the coupling to an external, classical, Yang-Mills field, is then proved to hold up to the classical Adler-Bardeen anomaly whose general form is written down. The BPHZ renormalization scheme is used throughout in such a way that the algebraic structure analyzed in the present context may serve as an introduction to the study of fully quantized gauge theories.

  6. Introduction to Electroweak Symmetry Breaking

    Energy Technology Data Exchange (ETDEWEB)

    Dawson,S.

    2008-10-02

    The Standard Model (SM) is the backbone of elementary particle physics-not only does it provide a consistent framework for studying the interactions of quark and leptons, but it also gives predictions which have been extensively tested experimentally. In these notes, I review the electroweak sector of the Standard Model, discuss the calculation of electroweak radiative corrections to observables, and summarize the status of SM Higgs boson searches. Despite the impressive experimental successes, however, the electroweak theory is not completely satisfactory and the mechanism of electroweak symmetry breaking is untested. I will discuss the logic behind the oft-repeated statement: 'There must be new physics at the TeV scale'. These lectures reflect my strongly held belief that upcoming results from the LHC will fundamentally change our understanding of electroweak symmetry breaking. In these lectures, I review the status of the electroweak sector of the Standard Model, with an emphasis on the importance of radiative corrections and searches for the Standard Model Higgs boson. A discussion of the special role of the TeV energy scale in electroweak physics is included.

  7. Chiral symmetry breaking and monopoles

    CERN Document Server

    Di Giacomo, Adriano; Pucci, Fabrizio

    2015-01-01

    To understand the relation between the chiral symmetry breaking and monopoles, the chiral condensate which is the order parameter of the chiral symmetry breaking is calculated in the $\\overline{\\mbox{MS}}$ scheme at 2 [GeV]. First, we add one pair of monopoles, varying the monopole charges $m_{c}$ from zero to four, to SU(3) quenched configurations by a monopole creation operator. The low-lying eigenvalues of the Overlap Dirac operator are computed from the gauge links of the normal configurations and the configurations with additional monopoles. Next, we compare the distributions of the nearest-neighbor spacing of the low-lying eigenvalues with the prediction of the random matrix theory. The low-lying eigenvalues not depending on the scale parameter $\\Sigma$ are compared to the prediction of the random matrix theory. The results show the consistency with the random matrix theory. Thus, the additional monopoles do not affect the low-lying eigenvalues. Moreover, we discover that the additional monopoles increa...

  8. Electroweak symmetry breaking via QCD.

    Science.gov (United States)

    Kubo, Jisuke; Lim, Kher Sham; Lindner, Manfred

    2014-08-29

    We propose a new mechanism to generate the electroweak scale within the framework of QCD, which is extended to include conformally invariant scalar degrees of freedom belonging to a larger irreducible representation of SU(3)c. The electroweak symmetry breaking is triggered dynamically via the Higgs portal by the condensation of the colored scalar field around 1 TeV. The mass of the colored boson is restricted to be 350  GeV≲mS≲3  TeV, with the upper bound obtained from perturbative renormalization group evolution. This implies that the colored boson can be produced at the LHC. If the colored boson is electrically charged, the branching fraction of the Higgs boson decaying into two photons can slightly increase, and moreover, it can be produced at future linear colliders. Our idea of nonperturbative electroweak scale generation can serve as a new starting point for more realistic model building in solving the hierarchy problem.

  9. Charge-symmetry-breaking nucleon form factors

    CERN Document Server

    Kubis, Bastian

    2009-01-01

    A quantitative understanding of charge-symmetry breaking is an increasingly important ingredient for the extraction of the nucleon's strange vector form factors. We review the theoretical understanding of the charge-symmetry-breaking form factors, both for single nucleons and for Helium-4.

  10. Dynamical gauge symmetry breaking on the lattice

    Energy Technology Data Exchange (ETDEWEB)

    Farakos, K.; Koutsoumbas, G.; Zoupanos, G. (National Research Centre for the Physical Sciences Democritos, Athens (Greece))

    1990-10-11

    We study, using lattice techniques, the dynamical symmetry breaking of a three-dimensional theory that mimics the electroweak sector of the standard model. We show that in the strong coupling limit of a QCD-like theory the fermion condensates which are produced induce dynamical symmetry breaking of the sector corresponding to the electroweak gauge group. (orig.).

  11. Symmetry Breaking for Black-Scholes Equations

    Institute of Scientific and Technical Information of China (English)

    YANG Xuan-Liu; ZHANG Shun-Li; QU Chang-Zheng

    2007-01-01

    Black-Scholes equation is used to model stock option pricing. In this paper, optimal systems with one to four parameters of Lie point symmetries for Black-Scholes equation and its extension are obtained. Their symmetry breaking interaction associated with the optimal systems is also studied. As a result, symmetry reductions and corresponding solutions for the resulting equations are obtained.

  12. Particle production from symmetry breaking after inflation

    CERN Document Server

    García-Bellido, J; Garcia-Bellido, Juan; Morales, Ester Ruiz

    2002-01-01

    Recent studies suggest that the process of symmetry breaking after inflation typically occurs very fast, within a single oscillation of the symmetry-breaking field, due to the spinodal growth of its long-wave modes, otherwise known as `tachyonic preheating'. In this letter we show how this sudden transition from the false to the true vacuum can induce a significant production of particles, bosons and fermions, coupled to the symmetry-breaking field. We find that this new mechanism of particle production in the early Universe may have interesting consequences for the origin of dark matter and the generation of the observed baryon asymmetry through leptogenesis.

  13. Phil Anderson and Gauge Symmetry Breaking

    Science.gov (United States)

    Witten, Edward

    In this article, I describe the celebrated paper that Phil Anderson wrote in 1962 with early contributions to the idea of gauge symmetry breaking in particle physics. To set the stage, I describe the work of Julian Schwinger to which Anderson was responding, and also some of Anderson's own work on superconductivity that provided part of the context. After describing Anderson's work I describe the later work of others, leading to the modern understanding of gauge symmetry breaking in weak interactions...

  14. Symmetry Breaking and Second Order Phase Transitions

    Institute of Scientific and Technical Information of China (English)

    ZhangFengshou; R.M.Lynden-Bell

    2003-01-01

    In an earlier paper we showed that symmetry breaking could be induced in the triiodide ion by varying the solvent. Experiments and simulations suggest that protic solvents which can form hydrogen bonds with a negative ion cause symmetry breaking of the ion, so that the charge becomes concentrated at one end of the ion and the corresponding bond elongates. We suggested that one could draw an analogy between the mean field Ising model with free energy,

  15. Is soft breaking of BRST symmetry consistent?

    CERN Document Server

    Lavrov, Peter; Reshetnyak, Alexander

    2011-01-01

    A definition of soft breaking of BRST symmetry in the field-antifield formalism is proposed, valid for general gauge theories and arbitrary gauge fixing. The Ward identities for the generating functionals of Green's functions are derived, and their gauge dependence is investigated. We present a generalization of the Gribov-Zwanziger action to a one-parameter linear gauge. It is argued that gauge theories with a soft breaking of BRST symmetry are inconsistent.

  16. Symmetry Breaking in Neuroevolution: A Technical Report

    CERN Document Server

    Urfalioglu, Onay

    2011-01-01

    Artificial Neural Networks (ANN) comprise important symmetry properties, which can influence the performance of Monte Carlo methods in Neuroevolution. The problem of the symmetries is also known as the competing conventions problem or simply as the permutation problem. In the literature, symmetries are mainly addressed in Genetic Algoritm based approaches. However, investigations in this direction based on other Evolutionary Algorithms (EA) are rare or missing. Furthermore, there are different and contradictionary reports on the efficacy of symmetry breaking. By using a novel viewpoint, we offer a possible explanation for this issue. As a result, we show that a strategy which is invariant to the global optimum can only be successfull on certain problems, whereas it must fail to improve the global convergence on others. We introduce the \\emph{Minimum Global Optimum Proximity} principle as a generalized and adaptive strategy to symmetry breaking, which depends on the location of the global optimum. We apply the...

  17. Symmetry breaking around a wormhole

    Science.gov (United States)

    Choudhury, A. L.

    1996-11-01

    We have modified the extended version Coule and Maeda's version (D. H. Coule and Kei-ichi Maeda, Class.Quant.Grav.7,995(1990)) of the Gidding-Strominger model (S. B. Giddings and A. Strominger, Nucl.Phys. B307, 854(l988)) of the euclidean gravitational field interacting with axion. The new model has R-symmetry in contrast to the previous model. At the lowest perturbation case the model retains a wormhole solution. We assume that the scalar expands adiabatically and satisfies ideal gas law in a crude first approximation. Under the Higg's mechanism the symmetry can be broken at the tree approximation. This mechanism, we hope, can be used to introduce the degeneracy of quark masses.

  18. Workshop on electroweak symmetry breaking: proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Hinchliffe, I. (ed.)

    1984-10-01

    A theoretical workshop on electroweak symmetry breaking at the Superconducting Supercollider was held at Lawrence Berkeley Laboratory, June 4-22, 1984. The purpose of the workshop was to focus theoretical attention on the ways in which experimentation at the SSC could reveal manifestations of the phenomenon responsible for electroweak symmetry breaking. This issue represents, at present, the most compelling scientific argument for the need to explore the energy region to be made accessible by the SSC, and a major aim of the workshop was to involve a broad cross section of particle theorists in the ongoing process of sharpening the requirements for both accelerator and detector design that will ensure detection and identification of meaningful signals, whatever form the electroweak symmetry breaking phenomenon should actually take. Separate entries were prepared for the data base for the papers presented.

  19. Effective dissipation: breaking time-reversal symmetry

    CERN Document Server

    Brown, Aidan I

    2016-01-01

    At molecular scales, fluctuations play a significant role and prevent biomolecular processes from always proceeding in a preferred direction, raising the question of how limited amounts of free energy can be dissipated to obtain directed progress. We examine the system and process characteristics that efficiently break time-reversal symmetry at fixed energy loss; in particular for a simple model of a molecular machine, an intermediate energy barrier produces unusually high asymmetry for a given dissipation. Such insight into symmetry-breaking factors that produce particularly high time asymmetry suggests generalizations to a broader class of systems.

  20. Dynamical Symmetry Breaking in Warped Compactifications

    CERN Document Server

    Rius, N

    2001-01-01

    We study dynamical electroweak symmetry breaking in the Randall-Sundrum scenario. We show that one extra dimension is enough to give the correct pattern of electroweak symmetry breaking in a simple model with gauge bosons and the right-handed top quark in the bulk. The top quark mass is also in agreement with experiment. Furthermore, we propose an extended scenario with all Standard Model gauge bosons and fermions propagating in the bulk, which naturally accommodates the fermion mass hierarchies. No new fields or interactions beyond the observed in the Standard Model are required.

  1. Insight into Phenomena of Symmetry Breaking Bifurcation

    Institute of Scientific and Technical Information of China (English)

    FANG Tong; ZHANG Ying

    2008-01-01

    @@ We show that symmetry-breaking (SB) bifurcation is just a transition of different forms of symmetry, while still preserving system's symmetry. SB bifurcation always associates with a periodic saddle-node bifurcation, identifiable by a zero maximum of the top Lyapunov exponent of the system. In addition, we show a significant phase portrait of a newly born periodic saddle and its stable and unstable invariant manifolds, together with their neighbouring flow pattern of Poincaré mapping points just after the periodic saddle-node bifurcation, thus gaining an insight into the mechanism of SB bifurcation.

  2. Geometrical hierarchy and spontaneous symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Farakos, K.; Koutsoumbas, G.; Surridge, M.; Zoupanos, G.

    1987-06-04

    A four-dimensional gauge theory, where Higgs fields and the corresponding potential appear naturally, is obtained by dimensionally reducing a pure gauge theory over a compact coset space S/R. We show, using an explicit example, that a hierarchy of the scales in the coset space can change the spontaneous symmetry breaking of the four-dimensional gauge theory.

  3. Dimensional reduction and dynamical symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Forgacs, P.; Zoupanos, G.

    1984-11-22

    We present a model in which the electroweak gauge group is broken according to a dynamical scenario based on the chiral symmetry breaking of high colour representations. The dynamical scenario requires also the existence of elementary Higgs fields, which in the present scheme come from the dimensional reduction of a pure gauge theory.

  4. Dimensional reduction and dynamical symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Forgacs, P.; Zoupanos, G. (European Organization for Nuclear Research, Geneva (Switzerland))

    1984-11-22

    We present a model in which the electroweak gauge group is broken according to a dynamical scenario based on the chiral symmetry breaking of high colour representations. The dynamical scenario also requires the existence of elementary Higgs fields, which in the present scheme come from the dimensional reduction of a pure gauge theory.

  5. Dynamical Symmetry Breaking in RN Quantum Gravity

    Directory of Open Access Journals (Sweden)

    A. T. Kotvytskiy

    2011-01-01

    Full Text Available We show that in the RN gravitation model, there is no dynamical symmetry breaking effect in the formalism of the Schwinger-Dyson equation (in flat background space-time. A general formula for the second variation of the gravitational action is obtained from the quantum corrections hμν (in arbitrary background metrics.

  6. A gravity term from spontaneous symmetry breaking

    CERN Document Server

    Moise, Mihai

    2014-01-01

    In this model, the gravity term in the Lagrangean comes from spontaneous symmetry breaking of an additional scalar quadruplet field $\\Upsilon$. The resulting gravitational field is approximate to one of the models of coframe gravity with parameters $\\rho_1 + 4 \\rho_2 = 0$, $\\rho_3 = 0$. This article includes an exact solution of coframe gravity with model parameters $\\rho_1 \

  7. Collective neutrino oscillations and spontaneous symmetry breaking

    Science.gov (United States)

    Duan, Huaiyu

    2015-08-01

    Neutrino oscillations in a hot and dense astrophysical environment such as a core-collapse supernova pose a challenging, seven-dimensional flavor transport problem. To make the problem even more difficult (and interesting), neutrinos can experience collective oscillations through nonlinear refraction in the dense neutrino medium in this environment. Significant progress has been made in the last decade towards the understanding of collective neutrino oscillations in various simplified neutrino gas models with imposed symmetries and reduced dimensions. However, a series of recent studies seem to have "reset" this progress by showing that these models may not be compatible with collective neutrino oscillations because the latter can break the symmetries spontaneously if they are not imposed. We review some of the key concepts of collective neutrino oscillations by using a few simple toy models. We also elucidate the breaking of spatial and directional symmetries in these models because of collective oscillations.

  8. Collective neutrino oscillations and spontaneous symmetry breaking

    CERN Document Server

    Duan, Huaiyu

    2015-01-01

    Neutrino oscillations in a hot and dense astrophysical environment such as a core-collapse supernova pose a challenging, seven-dimensional flavor transport problem. To make the problem even more difficult (and interesting), neutrinos can experience collective oscillations through nonlinear refraction in the dense neutrino medium in this environment. Significant progress has been made in the last decade towards the understanding of collective neutrino oscillations in various simplified neutrino gas models with imposed symmetries and reduced dimensions. However, a series of recent studies seem to have "reset" this progress by showing that these models may not be compatible with collective neutrino oscillations because the latter can break the symmetries spontaneously if they are not imposed. We review some of the key concepts of collective neutrino oscillations by using a few simple toy models. We also elucidate the breaking of spatial and directional symmetries in these models because of collective oscillation...

  9. Symmetry-breaking oscillations in membrane optomechanics

    Science.gov (United States)

    Wurl, C.; Alvermann, A.; Fehske, H.

    2016-12-01

    We study the classical dynamics of a membrane inside a cavity in the situation where this optomechanical system possesses a reflection symmetry. Symmetry breaking occurs through supercritical and subcritical pitchfork bifurcations of the static fixed-point solutions. Both bifurcations can be observed through variation of the laser-cavity detuning, which gives rise to a boomerang-like fixed-point pattern with hysteresis. The symmetry-breaking fixed points evolve into self-sustained oscillations when the laser intensity is increased. In addition to the analysis of the accompanying Hopf bifurcations we describe these oscillations at finite amplitudes with an ansatz that fully accounts for the frequency shift relative to the natural membrane frequency. We complete our study by following the route to chaos for the membrane dynamics.

  10. Magnetic rotation and chiral symmetry breaking

    Indian Academy of Sciences (India)

    Ashok Kumar Jain; Amita

    2001-08-01

    The deformed mean field of nuclei exhibits various geometrical and dynamical symmetries which manifest themselves as various types of rotational and decay patterns. Most of the symmetry operations considered so far have been defined for a situation wherein the angular momentum coincides with one of the principal axes and the principal axis cranking may be invoked. New possibilities arise with the observation of rotational features in weakly deformed nuclei and now interpreted as magnetic rotational bands. More than 120 MR bands have now been identified by filtering the existing data. We present a brief overview of these bands. The total angular momentum vector in such bands is tilted away from the principal axes. Such a situation gives rise to several new possibilities including breaking of chiral symmetry as discussed recently by Frauendorf. We present the outcome of such symmetries and their possible experimental verification. Some possible examples of chiral bands are presented.

  11. Cascading Multicriticality in Nonrelativistic Spontaneous Symmetry Breaking

    CERN Document Server

    Griffin, Tom; Horava, Petr; Yan, Ziqi

    2015-01-01

    Without Lorentz invariance, spontaneous global symmetry breaking can lead to multicritical Nambu-Goldstone modes with a higher-order low-energy dispersion $\\omega\\sim k^n$ ($n=2,3,\\ldots$), whose naturalness is protected by polynomial shift symmetries. Here we investigate the role of infrared divergences and the nonrelativistic generalization of the Coleman-Hohenberg-Mermin-Wagner (CHMW) theorem. We find novel cascading phenomena with large hierarchies between the scales at which the value of $n$ changes, leading to an evasion of the "no-go" consequences of the relativistic CHMW theorem.

  12. Phenomenology of symmetry breaking from extra dimensions

    CERN Document Server

    Alfaro, J; Gavela-Legazpi, Maria Belen; Rigolin, S; Salvatori, M

    2007-01-01

    Motivated by the electroweak hierarchy problem, we study the symmetry breaking pattern induced by a background magnetic flux living on extra dimensions, with the four-dimensional scalar fields being gauge boson components in full space. For SU(N) and two compact, toroidal, extra dimensions, we determine analytically the possible field configurations of stable vacua and their symmetries. From the four-dimensional point of view, the system responds dynamically to the magnetic background by an infinite chain of vacuum expectation values so as to reach a stable vacuum. The equivalence between flux compactification and constant boundary conditions - either Scherk-Schwarz or twisted - is established.

  13. Spontaneous chiral symmetry breaking in the Tayler instability

    CERN Document Server

    Del Sordo, Fabio; Brandenburg, Axel; Mitra, Dhrubaditya

    2011-01-01

    The chiral symmetry breaking properties of the Tayler instability are discussed. Effective amplitude equations are determined in one case. This model has three free parameters that are determined numerically. Comparison with chiral symmetry breaking in biochemistry is made.

  14. Analysis of chiral symmetry breaking mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Xin-Heng, Guo [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Tao, Huang [Academia Sinica, Beijing, BJ (China). Inst. of High Energy Physics; Chuang, Wang

    1997-07-01

    The renormalization group invariant quark condensate {mu} is determinate both from the consistent equation for quark condensate in the chiral limit and from the Schwinger-Dyson (SD) equation improved by the intermediate range QCD force singular like {delta} (q) which is associated with the gluon condensate. The solutions of {mu} in these two equations are consistent. We also obtain the critical strong coupling constant {alpha}c above which chiral symmetry breaks in two approaches. The nonperturbative kernel of the SD equation makes {alpha}c smaller and {mu} bigger. An intuitive picture of the condensation above {alpha}c is discussed. In addition, with the help of the Slavnov-Taylor-Ward (STW) identity we derive the equations for the nonperturbative quark propagator from SD equation in the presence of the intermediate-range force is also responsible for dynamical chiral symmetry breaking. (author) 32 refs., 2 figs.

  15. Symmetry breaking in non conservative systems

    CERN Document Server

    Martínez-Pérez, N E

    2016-01-01

    We apply Noether's theorem to show how the invariances of conservative systems are broken for nonconservative systems, in the variational formulation of Galley. This formulation considers a conservative action, extended by the inclusion of a time reversed sector and a nonconservative generalized potential. We assume that this potential is invariant under the symmetries of the initial conservative system. The breaking occurs because the time reversed sector requires inverse symmetry transformations, under which the nonconservative potential is not invariant. The resulting violation of the conservation laws is consistent with the equations of motion. We generalize this formulation for fermionic and sypersymmetric systems. In the case of a supersymmetric oscillator, the effect of damping is that the bosonic and fermionic components become different frequencies. Considering that initially the nonconservative action is invariant under supersymmetry, and that the breaking is associated to an instability, this resul...

  16. Dynamics of Symmetry Breaking and Tachyonic Preheating

    CERN Document Server

    Felder, G; Greene, P B; Kofman, L A; Linde, Andrei D; Tkachev, Igor I; Felder, Gary; Garcia-Bellido, Juan; Greene, Patrick B.; Kofman, Lev; Linde, Andrei; Tkachev, Igor

    2001-01-01

    We reconsider the old problem of the dynamics of spontaneous symmetry breaking using 3d lattice simulations, and develop a theory of tachyonic preheating, which occurs due to the spinodal instability of the scalar field. Tachyonic preheating is so efficient that symmetry breaking typically completes within a single oscillation of the field distribution as it rolls towards the minimum of its effective potential. As an application of this theory we consider preheating in the hybrid inflation scenario, including SUSY-motivated F-term and D-term inflationary models. We show that preheating in hybrid inflation is typically tachyonic and the stage of oscillations of a homogeneous component of the scalar fields driving inflation ends after a single oscillation. Our results may also be relevant for the theory of the formation of disoriented chiral condensates in heavy ion collisions.

  17. Dynamical symmetry breaking in quantum field theories

    CERN Document Server

    Miransky, Vladimir A

    1993-01-01

    The phenomenon of dynamical symmetry breaking (DSB) in quantum field theory is discussed in a detailed and comprehensive way. The deep connection between this phenomenon in condensed matter physics and particle physics is emphasized. The realizations of DSB in such realistic theories as quantum chromodynamics and electroweak theory are considered. Issues intimately connected with DSB such as critical phenomenona and effective lagrangian approach are also discussed.

  18. Enhanced breaking of heavy quark spin symmetry

    Directory of Open Access Journals (Sweden)

    Feng-Kun Guo

    2014-11-01

    Full Text Available Heavy quark spin symmetry is useful to make predictions on ratios of decay or production rates of systems involving heavy quarks. The breaking of spin symmetry is generally of the order of O(ΛQCD/mQ, with ΛQCD the scale of QCD and mQ the heavy quark mass. In this paper, we will show that a small S- and D-wave mixing in the wave function of the heavy quarkonium could induce a large breaking in the ratios of partial decay widths. As an example, we consider the decays of the ϒ(10860 into the χbJω (J=0,1,2, which were recently measured by the Belle Collaboration. These decays exhibit a huge breaking of the spin symmetry relation were the ϒ(10860 a pure 5S bottomonium state. We propose that this could be a consequence of a mixing of the S-wave and D-wave components in the ϒ(10860. Prediction on the ratio Γ(ϒ(10860→χb0ω/Γ(ϒ(10860→χb2ω is presented assuming that the decay of the D-wave component is dominated by the coupled-channel effects.

  19. Higgsless approach to electroweak symmetry breaking

    CERN Document Server

    Grojean, Christophe

    2007-01-01

    Higgsless models are an attempt to achieve a breaking of the electroweak symmetry via boundary conditions at the end-points of a fifth dimension compactified on an interval, as an alternative to the usual Higgs mechanism. There is no physical Higgs scalar in the spectrum and the perturbative unitarity violation scale is delayed via the exchange of massive spin-1 KK resonances. The correct mass spectrum is reproduced in a model in warped space, which inherits a custodial symmetry from a left–right gauge symmetry in the bulk. Phenomenological challenges as well as collider signatures are presented. From the AdS/CFT perspective, this model appears as a weakly coupled dual to walking technicolour models.

  20. Golden Probe of Electroweak Symmetry Breaking

    Science.gov (United States)

    Chen, Yi; Lykken, Joe; Spiropulu, Maria; Stolarski, Daniel; Vega-Morales, Roberto

    2016-12-01

    The ratio of the Higgs couplings to W W and Z Z pairs, λW Z, is a fundamental parameter in electroweak symmetry breaking as well as a measure of the (approximate) custodial symmetry possessed by the gauge boson mass matrix. We show that Higgs decays to four leptons are sensitive, via tree level or one-loop interference effects, to both the magnitude and, in particular, overall sign of λW Z. Determining this sign requires interference effects, as it is nearly impossible to measure with rate information. Furthermore, simply determining the sign effectively establishes the custodial representation of the Higgs boson. We find that h →4 ℓ (4 ℓ≡2 e 2 μ , 4 e , 4 μ ) decays have excellent prospects of directly establishing the overall sign at a high luminosity 13 TeV LHC. We also examine the ultimate LHC sensitivity in h →4 ℓ to the magnitude of λW Z. Our results are independent of other measurements of the Higgs boson couplings and, in particular, largely free of assumptions about the top quark Yukawa couplings which also enter at one loop. This makes h →4 ℓ a unique and independent probe of electroweak symmetry breaking and custodial symmetry.

  1. Symmetry Breaking in MILP Formulations for Unit Commitment Problems

    KAUST Repository

    Lima, Ricardo

    2015-12-11

    This paper addresses the study of symmetry in Unit Commitment (UC) problems solved by Mixed Integer Linear Programming (MILP) formulations, and using Linear Programming based Branch & Bound MILP solvers. We propose three sets of symmetry breaking constraints for UC MILP formulations exhibiting symmetry, and its impact on three UC MILP models are studied. The case studies involve the solution of 24 instances by three widely used models in the literature, with and without symmetry breaking constraints. The results show that problems that could not be solved to optimality within hours can be solved with a relatively small computational burden if the symmetry breaking constraints are assumed. The proposed symmetry breaking constraints are also compared with the symmetry breaking methods included in two MILP solvers, and the symmetry breaking constraints derived in this work have a distinct advantage over the methods in the MILP solvers.

  2. Spontaneous spherical symmetry breaking in atomic confinement

    CERN Document Server

    Sveshnikov, K

    2016-01-01

    The effect of spontaneous breaking of initial SO(3) symmetry is shown to be possible for an H-like atom in the ground state, when it is confined in a spherical box under general boundary conditions of "not going out" through the box surface (i.e. third kind or Robin's ones), for a wide range of physically reasonable values of system parameters. The reason is that such boundary conditions could yield a large magnitude of electronic wavefunction in some sector of the box boundary, what in turn promotes atomic displacement from the box center towards this part of the boundary, and so the underlying SO(3) symmetry spontaneously breaks. The emerging Goldstone modes, coinciding with rotations around the box center, restore the symmetry by spreading the atom over a spherical shell localized at some distances from the box center. Atomic confinement inside the cavity proceeds dynamically -- due to the boundary condition the deformation of electronic wavefunction near the boundary works as a spring, that returns the at...

  3. Thick brane solitons breaking $Z_2$ symmetry

    CERN Document Server

    Peyravi, Marzieh; Lobo, Francisco S N

    2015-01-01

    New soliton solutions for thick branes in 4 + 1 dimensions are considered in this article. In particular, brane models based on the sine-Gordon (SG), $\\varphi^{4}$ and $\\varphi^{6}$ scalar fields are investigated; in some cases $Z_{2}$ symmetry is broken. Besides, these soliton solutions are responsible for supporting and stabilizing the thick branes. In these models, the origin of the symmetry breaking resides in the fact that the modified scalar field potential may have non-degenerate vacuua and these non-degenerate vacuua determine the cosmological constant on both sides of the brane. At last, in order to explore the particle motion in the neighborhood of the brane, the geodesic equations along the fifth dimension are studied.

  4. Spontaneous spherical symmetry breaking in atomic confinement

    Science.gov (United States)

    Sveshnikov, Konstantin; Tolokonnikov, Andrey

    2017-07-01

    The effect of spontaneous breaking of initial SO(3) symmetry is shown to be possible for an H-like atom in the ground state, when it is confined in a spherical box under general boundary conditions of "not going out" through the box surface (i.e. third kind or Robin's ones), for a wide range of physically reasonable values of system parameters. The most novel and nontrivial result, which has not been reported previously, is that such an effect takes place not only for attractive, but also for repulsive interactions of atomic electrons with the cavity environment. Moreover, in the limit of a large box size R ≫ aB the regime of an atom, soaring over a plane with boundary condition of "not going out", is reproduced, rather than a spherically symmetric configuration, which would be expected on the basis of the initial SO(3) symmetry of the problem.

  5. Chiral symmetry breaking in continuum QCD

    Science.gov (United States)

    Mitter, Mario; Pawlowski, Jan M.; Strodthoff, Nils

    2015-03-01

    We present a quantitative analysis of chiral symmetry breaking in two-flavor continuum QCD in the quenched limit. The theory is set up at perturbative momenta, where asymptotic freedom leads to precise results. The evolution of QCD towards the hadronic phase is achieved by means of dynamical hadronization in the nonperturbative functional renormalization group approach. We use a vertex expansion scheme based on gauge-invariant operators and discuss its convergence properties and the remaining systematic errors. In particular, we present results for the quark propagator, the full tensor structure and momentum dependence of the quark-gluon vertex, and the four-Fermi scatterings.

  6. Electroweak symmetry breaking beyond the Standard Model

    Indian Academy of Sciences (India)

    Gautam Bhattacharyya

    2012-10-01

    In this paper, two key issues related to electroweak symmetry breaking are addressed. First, how fine-tuned different models are that trigger this phenomenon? Second, even if a light Higgs boson exists, does it have to be necessarily elementary? After a brief introduction, the fine-tuning aspects of the MSSM, NMSSM, generalized NMSSM and GMSB scenarios shall be reviewed, then the little Higgs, composite Higgs and the Higgsless models shall be compared. Finally, a broad overview will be given on where we stand at the end of 2011.

  7. Spontaneous symmetry breaking in a classical particle

    CERN Document Server

    Sánchez, L A; Sanchez, Luis Alberto; Mahecha, Jorge

    2003-01-01

    Due to the fact that only matter fields have phase, frequently is believed that the gauge principle can induce gauge fields only in quantum systems. But this is not necessary. This paper, of pedagogical scope, presents a classical system constituted by a particle in a classical potential, which is used as a model to illustrate the gauge principle and the spontaneous symmetry breaking. Those concepts appear in the study of second order phase transitions. Ferroelectricity, ferromagnetism, superconductivity, plasmons in a free electron gas, and the mass of vector bosons in the gauge field Yang-Mills theories, are some of the phenomena in which these transitions occur.

  8. Cosmology of biased discrete symmetry breaking

    Science.gov (United States)

    Gelmini, Graciela B.; Gleiser, Marcelo; Kolb, Edward W.

    1988-01-01

    The cosmological consequences of spontaneous breaking of an approximate discrete symmetry are studied. The breaking leads to formation of proto-domains of false and true vacuum separated by domain walls of thickness determined by the mass scale of the model. The cosmological evolution of the walls is extremely sensitive to the magnitude of the biasing; several scenarios are possible, depending on the interplay between the surface tension on the walls and the volume pressure from the biasing. Walls may disappear almost immediately after they form, or may live long enough to dominate the energy density of the Universe and cause power-law inflation. Limits are obtained on the biasing that characterizes each possible scenario.

  9. Can spontaneous symmetry breaking occur in potential with one minimum?

    CERN Document Server

    Acus, A

    2000-01-01

    Spontaneous symmetry breaking occurs when the symmetry that a physical system possesses, is not preserved for the ground state of the system. Although the procedure of symmetry breaking is quite clear from the mathematical point of view, the physical interpretation of the phenomenon is worth to be better understood. In this note we present a simple and instructive example of the symmetry breaking in a mechanical system. It demonstrates that the spontaneous symmetry breaking can occur for the spatially extended solutions in a potential characterised by a single minimum.

  10. Inverse Symmetry Breaking and the Exact Renormalization Group

    CERN Document Server

    Pietroni, M; Tetradis, N

    1997-01-01

    We discuss the question of inverse symmetry breaking at non-zero temperature using the exact renormalization group. We study a two-scalar theory and concentrate on the nature of the phase transition during which the symmetry is broken. We also examine the persistence of symmetry breaking at temperatures higher than the critical one.

  11. Chiral symmetry breaking, instantons, and monopoles

    CERN Document Server

    Di Giacomo, Adriano

    2015-01-01

    The purpose of this study is to show that monopoles induce the chiral symmetry breaking. In order to indicate the evidence, we add one pair of monopoles with magnetic charges to the quenched SU(3) configurations by a monopole creation operator, and investigate the propaties of the chiral symmetry breaking using the Overlap fermion. We show that instantons are created by the monopoles. The pseudoscalar meson mass and decay constant are computed from the correlation functions, and the renormalization constant $Z_{S}$ is determined by the non perturbative method. The renormalization group invariant chiral condensate in $\\overline{\\mbox{MS}}$-scheme at 2 [GeV] is evaluated by the Gell-Mann-Oakes-Renner formula, and the random matrix theory. Finally, we estimate the renormalization group invariant quark masses $\\bar{m} = (m_{u} + m_{d})/2$, and $m_{s}$ in $\\overline{\\mbox{MS}}$-scheme at 2 [GeV]. The preliminary results indicate that the chiral condensate decreases and the quark masses become slightly heavy by inc...

  12. Review of Rotational Symmetry Breaking in Baby Skyrme Models

    CERN Document Server

    Karliner, Marek

    2009-01-01

    We discuss one of the most interesting phenomena exhibited by baby skyrmions -- breaking of rotational symmetry. The topics we will deal with here include the appearance of rotational symmetry breaking in the static solutions of baby Skyrme models, both in flat as well as in curved spaces, the zero-temperature crystalline structure of baby skyrmions, and finally, the appearance of spontaneous breaking of rotational symmetry in rotating baby skyrmions.

  13. Soft breaking of BRST symmetry and gauge dependence

    CERN Document Server

    Lavrov, P M; Reshetnyak, A A

    2012-01-01

    We continue investigation of soft breaking of BRST symmetry in the Batalin-Vilkovisky (BV) formalism beyond regularizations like dimensional ones used in our previous paper. We generalize a definition of soft breaking of BRST symmetry valid for general gauge theories and arbitrary gauge fixing. The gauge dependence of generating functionals of Green's functions is investigated. It is proved that such introduction of a soft breaking of BRST symmetry into gauge theories leads to inconsistency of the conventional BV formalism.

  14. Information Content of Spontaneous Symmetry Breaking

    CERN Document Server

    Gleiser, Marcelo

    2012-01-01

    We propose a measure of order in the context of nonequilibrium field theory and argue that this measure, which we call relative configurational entropy (RCE), may be used to quantify the emergence of coherent low-entropy configurations, such as time-dependent or time-independent topological and nontopological spatially-extended structures. As an illustration, we investigate the nonequilibrium dynamics of spontaneous symmetry-breaking in three spatial dimensions. In particular, we focus on a model where a real scalar field, prepared initially in a symmetric thermal state, is quenched to a broken-symmetric state. For a certain range of initial temperatures, spatially-localized, long-lived structures known as oscillons emerge in synchrony and remain until the field reaches equilibrium again. We show that the RCE correlates with the number-density of oscillons, thus offering a quantitative measure of the emergence of nonperturbative spatiotemporal patterns that can be generalized to a variety of physical systems.

  15. Symmetry breaking: The standard model and superstrings

    Energy Technology Data Exchange (ETDEWEB)

    Gaillard, M.K.

    1988-08-31

    The outstanding unresolved issue of the highly successful standard model is the origin of electroweak symmetry breaking and of the mechanism that determines its scale, namely the vacuum expectation value (vev)v that is fixed by experiment at the value v = 4m//sub w//sup 2///g/sup 2/ = (..sqrt..2G/sub F/)/sup /minus/1/ approx. = 1/4 TeV. In this talk I will discuss aspects of two approaches to this problem. One approach is straightforward and down to earth: the search for experimental signatures, as discussed previously by Pierre Darriulat. This approach covers the energy scales accessible to future and present laboratory experiments: roughly (10/sup /minus/9/ /minus/ 10/sup 3/)GeV. The second approach involves theoretical speculations, such as technicolor and supersymmetry, that attempt to explain the TeV scale. 23 refs., 5 figs.

  16. Biased discrete symmetry breaking and Fermi balls

    CERN Document Server

    MacPherson, A L; Macpherson, Alick L; Campbell, Bruce A

    1994-01-01

    The spontaneous breaking of an approximate discrete symmetry is considered, with the resulting protodomains of true and false vacuum being separated by domain walls. Given a strong, symmetric Yukawa coupling of the real scalar field to a generic fermion, the domain walls accumulate a gas of fermions, which modify the domain wall dynamics. The splitting of the degeneracy of the ground states results in the false vacuum protodomain structures eventually being fragmented into tiny false vacuum bags with a Fermi gas shell (Fermi balls), that may be cosmologically stable due to the Fermi gas pressure and wall curvature forces, acting on the domain walls. As fermions inhabiting the domain walls do not undergo number density freeze out, stable Fermi balls exist only if a fermion anti-fermion asymmetry occurs. Fermi balls formed with a new Dirac fermion that possesses no standard model gauge charges provide a novel cold dark matter candidate.

  17. Discrete Symmetry Breaking in Fractional Chern Insulators

    Science.gov (United States)

    Kumar, Akshay; Roy, Rahul; Sondhi, S. L.

    2014-03-01

    We study the interplay between quantum hall ordering and spontaneous translational symmetry breaking in a multiple Chern number (C > 1) band at partial filling. We begin with non-interacting fermions in a family of square lattice models with flat C=2 bands and a wide band gap, and add nearest neighbor density-density repulsive interactions. By means of Hartree-Fock theory supplemented by numerical exact diagonalization for a small system at 1/2 filling, we find that the system generically develops charge density wave order with two degenerate ground states. We note that this physics is especially transparent in the limit in which the C=2 band describes two decoupled C=1 bands. We discuss the nature of domain walls in this phase and note the close analogy to the quantum Hall Ising ferromagnet in the multivalley problem. Finally we discuss generalizations to other fillings and higher Chern numbers.

  18. Symmetry breaking at magnetic surfaces and interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Z. Q.

    1998-11-20

    Examples represented of how symmetry breaking enters into consideration of the physical properties of magnetic surfaces and ultrathin films. The role of magnetic anisotropy is discussed to understand: (i) the existence of two-dimensional (2D) magnetic long-ranged order at finite temperature, (ii) magnetization scaling behavior at the Curie transition, (iii) the 2D spin reorientation transition, and (iv) step-induced magnetic behavior. Experimental examples cited include ultrathin magnetic Fe and Co overlayer and wedge structures grown onto single crystal substrates that are either flat or curved to produce vicinal surfaces with a continuous gradient in the step density. Also included is an example of an atomically flat manganite intergrowth that appears as a stacking fault in a bulk single crystal of a naturally layered structure.

  19. Time-symmetry breaking in turbulence

    CERN Document Server

    Jucha, Jennifer; Pumir, Alain; Bodenschatz, Eberhard

    2014-01-01

    In three-dimensional turbulent flows, the flux of energy from large to small scales breaks time symmetry. We show here that this irreversibility can be quantified by following the relative motion of several Lagrangian tracers. We find by analytical calculation, numerical analysis and experimental observation that the existence of the energy flux implies that, at short times, two particles separate temporally slower forwards than backwards, and the difference between forward and backward dispersion grows as $t^3$. We also find the geometric deformation of material volumes, surrogated by four points spanning an initially regular tetrahedron, to show sensitivity to the time-reversal with an effect growing linearly in $t$. We associate this with the structure of the strain rate in the flow.

  20. Spontaneous Planar Chiral Symmetry Breaking in Cells

    Science.gov (United States)

    Hadidjojo, Jeremy; Lubensky, David

    Recent progress in animal development has highlighted the central role played by planar cell polarity (PCP) in epithelial tissue morphogenesis. Through PCP, cells have the ability to collectively polarize in the plane of the epithelium by localizing morphogenetic proteins along a certain axis. This allows direction-dependent modulation of tissue mechanical properties that can translate into the formation of complex, non-rotationally invariant shapes. Recent experimental observations[1] show that cells, in addition to being planar-polarized, can also spontaneously develop planar chirality, perhaps in the effort of making yet more complex shapes that are reflection non-invariant. In this talk we will present our work in characterizing general mechanisms that can lead to spontaneous chiral symmetry breaking in cells. We decompose interfacial concentration of polarity proteins in a hexagonal cell packing into irreducible representations. We find that in the case of polar concentration distributions, a chiral state can only be reached from a secondary instability after the cells are polarized. However in the case of nematic distributions, we show that a finite-amplitude (subcritical, or ``first-order'') nematic transition can send the system from disorder directly to a chiral state. In addition, we find that perturbing the system by stretching the hexagonal packing enables direct (supercritical, or ``second-order'') chiral transition in the nematic case. Finally, we do a Landau expansion to study competition between stretch-induced chirality and the tendency towards a non-chiral state in packings that have retained the full 6-fold symmetry.

  1. Breaking temporal symmetries for emission and absorption

    Science.gov (United States)

    Hadad, Yakir; Soric, Jason C.; Alu, Andrea

    2016-01-01

    Time-reversal symmetries impose stringent constraints on emission and absorption. Antennas, from radiofrequencies to optics, are bound to transmit and receive signals equally well from the same direction, making a directive antenna prone to receive echoes and reflections. Similarly, in thermodynamics Kirchhoff’s law dictates that the absorptivity and emissivity are bound to be equal in reciprocal systems at equilibrium, e(ω,θ)=a(ω,θ), with important consequences for thermal management and energy applications. This bound requires that a good absorber emits a portion of the absorbed energy back to the source, limiting its overall efficiency. Recent works have shown that weak time modulation or mechanical motion in suitably designed structures may largely break reciprocity and time-reversal symmetry. Here we show theoretically and experimentally that a spatiotemporally modulated device can be designed to have drastically different emission and absorption properties. The proposed concept may provide significant advances for compact and efficient radiofrequency communication systems, as well as for energy harvesting and thermal management when translated to infrared frequencies. PMID:26984502

  2. Golden Probe of Electroweak Symmetry Breaking

    CERN Document Server

    Chen, Yi; Spiropulu, Maria; Stolarski, Daniel; Vega-Morales, Roberto

    2016-01-01

    The ratio of the Higgs couplings to $WW$ and $ZZ$ pairs, $\\lambda_{WZ}$, is a fundamental parameter in electroweak symmetry breaking as well as a measure of the (approximate) custodial symmetry possessed by the gauge boson mass matrix. We show that Higgs decays to four leptons are sensitive, via tree level/1-loop interference effects, to both the magnitude and, in particular, overall sign of $\\lambda_{WZ}$. Determining this sign requires interference effects, as it is nearly impossible to measure with rate information. Furthermore, simply determining the sign effectively establishes the custodial representation of the Higgs boson. We find that $h\\to4\\ell$ ($4\\ell \\equiv 2e2\\mu, 4e, 4\\mu$) decays have excellent prospects of directly establishing the overall sign at a high luminosity 13 TeV LHC. We also examine the ultimate LHC sensitivity in $h\\to4\\ell$ to the magnitude of $\\lambda_{WZ}$. Our results are independent of other measurements of the Higgs boson couplings and, in particular, largely free of assumpti...

  3. Identical Wells, Symmetry Breaking, and the Near-Unitary Limit

    Science.gov (United States)

    Harshman, N. L.

    2017-03-01

    Energy level splitting from the unitary limit of contact interactions to the near unitary limit for a few identical atoms in an effectively one-dimensional well can be understood as an example of symmetry breaking. At the unitary limit in addition to particle permutation symmetry there is a larger symmetry corresponding to exchanging the N! possible orderings of N particles. In the near unitary limit, this larger symmetry is broken, and different shapes of traps break the symmetry to different degrees. This brief note exploits these symmetries to present a useful, geometric analogy with graph theory and build an algebraic framework for calculating energy splitting in the near unitary limit.

  4. Spontaneous Breaking of Spatial and Spin Symmetry in Spinor Condensates

    DEFF Research Database (Denmark)

    Scherer, M.; Lücke, B.; Gebreyesus, G.;

    2010-01-01

    Parametric amplification of quantum fluctuations constitutes a fundamental mechanism for spontaneous symmetry breaking. In our experiments, a spinor condensate acts as a parametric amplifier of spin modes, resulting in a twofold spontaneous breaking of spatial and spin symmetry in the amplified...

  5. Symmetry breaking and cosmic acceleration in scalar field models

    CERN Document Server

    Sadjadi, M Mohseni; Sepangi, H R

    2015-01-01

    We study the possible role of symmetry breaking in the onset of the acceleration of the Universe in a scalar field dark energy model. We propose a new scenario in which acceleration of the Universe is driven by a positive potential produced by means of symmetry breaking.

  6. Effects of symmetry breaking in finite quantum systems

    Energy Technology Data Exchange (ETDEWEB)

    Birman, J.L. [Department of Physics, City College, City University of New York, New York, NY 10031 (United States); Nazmitdinov, R.G. [Departament de Fisica, Universitat de les Illes Balears, Palma de Mallorca 07122 (Spain); Bogolubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna 141980 (Russian Federation); Yukalov, V.I., E-mail: yukalov@theor.jinr.ru [Bogolubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna 141980 (Russian Federation)

    2013-05-15

    The review considers the peculiarities of symmetry breaking and symmetry transformations and the related physical effects in finite quantum systems. Some types of symmetry in finite systems can be broken only asymptotically. However, with a sufficiently large number of particles, crossover transitions become sharp, so that symmetry breaking happens similarly to that in macroscopic systems. This concerns, in particular, global gauge symmetry breaking, related to Bose–Einstein condensation and superconductivity, or isotropy breaking, related to the generation of quantum vortices, and the stratification in multicomponent mixtures. A special type of symmetry transformation, characteristic only for finite systems, is the change of shape symmetry. These phenomena are illustrated by the examples of several typical mesoscopic systems, such as trapped atoms, quantum dots, atomic nuclei, and metallic grains. The specific features of the review are: (i) the emphasis on the peculiarities of the symmetry breaking in finite mesoscopic systems; (ii) the analysis of common properties of physically different finite quantum systems; (iii) the manifestations of symmetry breaking in the spectra of collective excitations in finite quantum systems. The analysis of these features allows for the better understanding of the intimate relation between the type of symmetry and other physical properties of quantum systems. This also makes it possible to predict new effects by employing the analogies between finite quantum systems of different physical nature.

  7. The breaking of quantum double symmetries by defect condensation

    Science.gov (United States)

    Bais, F. A.; Mathy, C. J. M.

    2007-03-01

    In this paper, we study the phenomenon of Hopf or more specifically quantum double symmetry breaking. We devise a criterion for this type of symmetry breaking which is more general than the one originally proposed in F.A. Bais, B.J. Schroers, J.K. Slingerland [Broken quantum symmetry and confinement phases in planar physics, Phys. Rev. Lett. 89 (2002) 181601]; Hopf symmetry breaking and confinement in (2+1)-dimensional gauge theory, JHEP 05 (2003) 068], and therefore extends the number of possible breaking patterns that can be described consistently. We start by recalling why the extended symmetry notion of quantum double algebras is an optimal tool when analyzing a wide variety of two-dimensional physical systems including quantum fluids, crystals and liquid crystals. The power of this approach stems from the fact that one may characterize both ordinary and topological modes as representations of a single (generally nonabelian) Hopf symmetry. In principle a full classification of defect mediated as well as ordinary symmetry breaking patterns and subsequent confinement phenomena can be given. The formalism applies equally well to systems exhibiting global, local, internal and/or external (i.e. spatial) symmetries. The subtle differences in interpretation for the various situations are pointed out. We show that the Hopf symmetry breaking formalism reproduces the known results for ordinary (electric) condensates, and we derive formulae for defect (magnetic) condensates which also involve the phenomenon of symmetry restoration. These results are applied in two papers which will be published in parallel [C.J.M. Mathy, F.A. Bais, Nematic phases and the breaking of double symmetries, arXiv:cond-mat/0602109, 2006; F.A. Bais, C.J.M. Mathy, Defect mediated melting and the breaking of quantum double symmetries, arXiv:cond-mat/0602101, 2006].

  8. Lorentz symmetry breaking effects on relativistic EPR correlations

    Energy Technology Data Exchange (ETDEWEB)

    Belich, H. [Universidade Federal do Espirito Santo, Departamento de Fisica e Quimica, Vitoria, ES (Brazil); Furtado, C.; Bakke, K. [Universidade Federal da Paraiba, Departamento de Fisica, Caixa Postal 5008, Joao Pessoa, PB (Brazil)

    2015-09-15

    Lorentz symmetry breaking effects on relativistic EPR (Einstein-Podolsky-Rosen) correlations are discussed. From the modified Maxwell theory coupled to gravity, we establish a possible scenario of the Lorentz symmetry violation and write an effective metric for the Minkowski spacetime. Then we obtain the Wigner rotation angle via the Fermi-Walker transport of spinors and consider the WKB (Wentzel-Kramers-Brillouin) approximation in order to study the influence of Lorentz symmetry breaking effects on the relativistic EPR correlations. (orig.)

  9. A Molecular Model for Chiral Symmetry Breaking

    Science.gov (United States)

    Latinwo, Folarin; Stillinger, Frank; Debenedetti, Pablo

    In this work, we present a new class of molecular models for chiral phenomena in condensed matter systems. A key feature of these models is the ability of the four-site (tetramer) ``molecules'' to inter-convert between two distinct chiral forms (enantiomers). Given this feature, we use analytical theory and computer simulations to investigate the emergent chiral properties (including symmetry breaking) over a range of conditions. In particular, we consider the single-molecule level and condensed-phase behavior of our model system. Interestingly, we find that our liquid-phase predictions are in excellent agreement with recent experimental reports on chiral self-sorting in isotropic liquids. From this perspective, our model demonstrates accurate predictive capabilities, as well as a platform for understanding the microscopic origins of a variety of chiral phenomena. In a broader context, we anticipate that this class of models will be relevant to chirality-dominated areas such as the pharmaceutical industry and pre-biotic geochemistry.

  10. Parametric Symmetry Breaking in a Nonlinear Resonator

    Science.gov (United States)

    Leuch, Anina; Papariello, Luca; Zilberberg, Oded; Degen, Christian L.; Chitra, R.; Eichler, Alexander

    2016-11-01

    Much of the physical world around us can be described in terms of harmonic oscillators in thermodynamic equilibrium. At the same time, the far-from-equilibrium behavior of oscillators is important in many aspects of modern physics. Here, we investigate a resonating system subject to a fundamental interplay between intrinsic nonlinearities and a combination of several driving forces. We have constructed a controllable and robust realization of such a system using a macroscopic doubly clamped string. We experimentally observe a hitherto unseen double hysteresis in both the amplitude and the phase of the resonator's response function and present a theoretical model that is in excellent agreement with the experiment. Our work unveils that the double hysteresis is a manifestation of an out-of-equilibrium symmetry breaking between parametric phase states. Such a fundamental phenomenon, in the most ubiquitous building block of nature, paves the way for the investigation of new dynamical phases of matter in parametrically driven many-body systems and motivates applications ranging from ultrasensitive force detection to low-energy computing memory units.

  11. Dynamical Electroweak Symmetry Breaking from Extra Dimensions

    CERN Document Server

    Hashimoto, M; Yamawaki, K; Hashimoto, Michio; Tanabashi, Masaharu; Yamawaki, Koichi

    2003-01-01

    We study the dynamical electroweak symmetry breaking (DEWSB) in the $D (=6,8,...)$-dimensional bulk with compactified extra dimensions. We identify the critical binding strength for triggering the DEWSB, based on the ladder Schwinger-Dyson equation. In the top mode standard model with extra dimensions, where the standard model gauge bosons and the third generation of quarks and leptons are put in the bulk, we analyze the most attractive channel (MAC) by using renormalization group equations (RGEs) of (dimensionless) bulk gauge couplings and determine the effective cutoff where the MAC coupling exceeds the critical value. We then find that the top-condensation can take place for D=8. Combining RGEs of top-Yukawa and Higgs-quartic couplings with compositeness conditions, we predict the top mass, $m_t=173-180$ GeV, and the Higgs mass, $m_H=181-211$ GeV, for D=8, where we took the universal compactification scale $1/R = 1-100$ TeV.

  12. Dynamical Electroweak Symmetry Breaking from Extra Dimensions

    Science.gov (United States)

    Hashimoto, Michio; Tanabashi, Masaharu; Yamawaki, Koichi

    2003-08-01

    We study the dynamical electroweak symmetry breaking (DEWSB) in the D(= 6, 8, ⋯)-dimensional bulk with compactified extra dimensions. We identify the critical binding strength for triggering the DEWSB, based on the ladder Schwinger-Dyson equation. In the top mode standard model with extra dimensions, where the standard model gauge bosons and the third generation of quarks and leptons are put in the bulk, we analyze the most attractive channel (MAC) by using renormalization group equations (RGEs) of (dimensionless) bulk gauge couplings and determine the effective cutoff where the MAC coupling exceeds the critical value. We then find that the top-condensation can take place for D = 8. Combining RGEs of top-Yukawa and Higgs-quartic couplings with compositeness conditions, we predict the top mass, mt = 173 - 180 GeV, and the Higgs mass, mH = 181 - 211 GeV, for D = 8, where we took the universal compactification scale 1/R = 1 - 100 TeV.

  13. Warped electroweak breaking without custodial symmetry

    Science.gov (United States)

    Cabrer, Joan A.; von Gersdorff, Gero; Quirós, Mariano

    2011-03-01

    We propose an alternative to the introduction of an extra gauge (custodial) symmetry to suppress the contribution of KK modes to the T parameter in warped theories of electroweak breaking. The mechanism is based on a general class of warped 5D metrics and a Higgs propagating in the bulk. The metrics are nearly AdS in the UV region but depart from AdS in the IR region, towards where KK fluctuations are mainly localized, and have a singularity outside the slice between the UV and IR branes. This gravitational background is generated by a bulk stabilizing scalar field which triggers a natural solution to the hierarchy problem. Depending on the model parameters, gauge-boson KK modes can be consistent with present bounds on EWPT for mKK≳1 TeV at 95% CL. The model contains a light Higgs mode which unitarizes the four-dimensional theory. The reduction in the precision observables can be traced back to a large wave function renormalization for this mode.

  14. Warped Electroweak Breaking Without Custodial Symmetry

    CERN Document Server

    Cabrer, Joan A; Quiros, Mariano

    2010-01-01

    We propose an alternative to the introduction of an extra gauge (custodial) symmetry to suppress the contribution of KK modes to the T parameter in warped theories of electroweak breaking. The mechanism is based on a general class of warped 5D metrics and a Higgs propagating in the bulk. The metrics are nearly AdS in the UV region but depart from AdS in the IR region, towards where KK fluctuations are mainly localized, and have a singularity outside the slice between the UV and IR branes. This gravitational background is generated by a bulk stabilizing scalar field which triggers a natural solution to the hierarchy problem. Depending on the model parameters, gauge-boson KK modes can be consistent with present bounds on EWPT for m > 1 TeV at 95% CL. The model contains a light Higgs mode which unitarizes the four-dimensional theory. The reduction in the precision observables can be traced back to a large wave function renormalization for this mode.

  15. Explicit symmetry breaking in electrodynamic systems and electromagnetic radiation

    CERN Document Server

    Sinha, Dhiraj

    2016-01-01

    This book is an introduction to the concept of symmetries in electromagnetism and explicit symmetry breaking. It begins with a brief background on the origin of the concept of symmetry and its meaning in fields such as architecture, mathematics and physics. Despite the extensive developments of symmetry in these fields, it has yet to be applied to the context of classical electromagnetism and related engineering applications. This book unravels the beauty and excitement of this area to scientists and engineers.

  16. Spontaneous symmetry breaking, self-trapping, and Josephson oscillations

    CERN Document Server

    2013-01-01

    This volume collects a a number of contributions on spontaneous symmetry breaking. Current studies in this general field are going ahead at a full speed. The book present review chapters which give an overview on the major break throughs of recent years. It covers a number of different physical settings which are introduced when a nonlinearity is added to the underlying symmetric problems and its strength exceeds a certain critical value. The corresponding loss of symmetry, called spontaneous symmetry breaking, alias self-trapping into asymmetric states is extensively discussed in this book.

  17. Fermion mass generation and electroweak symmetry breaking from colour forces

    Energy Technology Data Exchange (ETDEWEB)

    Zoupanos, G. (European Organization for Nuclear Research, Geneva (Switzerland))

    1983-09-29

    The colour gauge group is extended to SU(3) x SU(3) and is subsequently broken to diagonal SU(3)sub(c). Under the diagonal SU(3)sub(c) the fundamental fermionic constituents of the larger strong group become ordinary quarks plus new quarks with exotic quantum numbers. Chiral symmetry breaking in the exotic quark sector may occur at much larger mass scales than ordinary chiral symmetry breaking, and could produce dynamical breaking of electroweak gauge symmetry and radiative masses for the light fermions.

  18. Symmetry Breaking In Curved Spacetime (de Sitter Space)

    CERN Document Server

    Kaiser, A

    1998-01-01

    Symmetry breaking has a central role in particle physics. Flat (Minkowski) space is a useful abstraction in most cases, but to study the real world, one must at some point consider nonzero spacetime curvature. Inflationary models in cosmology are an example where spacetime curvature and symmetry breaking together form the basis of the evolution of physics. In the first part of the thesis we examine symmetry breaking in a particular quantum state in de Sitter space, the vacuum state associated with the “ static” system. In the second part, we develop a framework for the effective potential method in de Sitter space, and check that it stays correct in the low curvature limit.

  19. New Physics at the LHC: Strong vs Weak symmetry breaking

    CERN Document Server

    Contino, Roberto

    2009-01-01

    What kind of New Physics, if any, we expect to discover at the LHC? I will try to address this formidable question by re-formulating it as follows: is the breaking of the electroweak symmetry strong or weak ?

  20. BIFURCATION-THEORY APPLIED TO CHIRAL SYMMETRY-BREAKING

    NARCIS (Netherlands)

    ATKINSON, D

    1990-01-01

    Chiral symmetry breaking in quantum electrodynamics and quantum chromodynamics is considered as a problem in bifurcation theory. Inequalities and positivity play key roles, as they do in much of the work of Andre Martin.

  1. Catalysis of Dynamical Chiral Symmetry Breaking by Chiral Chemical Potential

    CERN Document Server

    Braguta, V V

    2016-01-01

    In this paper we study the properties of media with chiral imbalance parameterized by chiral chemical potential. It is shown that depending on the strength of interaction between constituents in the media the chiral chemical potential either creates or enhances dynamical chiral symmetry breaking. Thus the chiral chemical potential plays a role of the catalyst of dynamical chiral symmetry breaking. Physically this effect results from the appearance of the Fermi surface and additional fermion states on this surface which take part in dynamical chiral symmetry breaking. An interesting conclusion which can be drawn is that at sufficiently small temperature chiral plasma is unstable with respect to condensation of Cooper pairs and dynamical chiral symmetry breaking even for vanishingly small interactions between constituents.

  2. Symmetry breaking and the geometry of reduced density matrices

    Science.gov (United States)

    Zauner, V.; Draxler, D.; Vanderstraeten, L.; Haegeman, J.; Verstraete, F.

    2016-11-01

    The concept of symmetry breaking and the emergence of corresponding local order parameters constitute the pillars of modern day many body physics. We demonstrate that the existence of symmetry breaking is a consequence of the geometric structure of the convex set of reduced density matrices of all possible many body wavefunctions. The surfaces of these convex bodies exhibit non-analyticities, which signal the emergence of symmetry breaking and of an associated order parameter and also show different characteristics for different types of phase transitions. We illustrate this with three paradigmatic examples of many body systems exhibiting symmetry breaking: the quantum Ising model, the classical q-state Potts model in two-dimensions at finite temperature and the ideal Bose gas in three-dimensions at finite temperature. This state based viewpoint on phase transitions provides a unique novel tool for studying exotic many body phenomena in quantum and classical systems.

  3. Electroweak symmetry breaking and Higgs physics. Basic concepts

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Bock, G.; Noriega-Papaqui, R.; Pedraza, I. [Benemerita Univ. Auton. de Puebla, Pue (Mexico). Inst. de Fisica ' ' LRT' ' ; Mondragon, M. [Universidad Nacional Autonoma de Mexico, Mexico City (Mexico). Inst. de Fisica; Muehlleitner, M. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)]|[Laboratoire d' Annecy-le-Vieux Physique Theorique, LAPTH, Annecy-le-Vieux (France); Spira, M. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Zerwas, P.M. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2005-09-01

    We present an introduction to the basic concepts of electroweak symmetry breaking and Higgs physics within the Standard Model and its supersymmetric extensions. A brief overview will also be given on alternative mechanisms of symmetry breaking. In addition to the theoretical basis, the present experimental status of Higgs physics and implications for future experiments at the LHC and e{sup +}e{sup -} linear colliders are discussed. (orig.)

  4. Supersolid formation in a quantum gas breaking continuous translational symmetry

    OpenAIRE

    Léonard, Julian; Morales, Andrea; Zupancic, Philip; Esslinger, Tilman; Donner, Tobias

    2016-01-01

    The concept of a supersolid state is paradoxical. It combines the crystallization of a many-body system with dissipationless flow of the atoms it is built of. This quantum phase requires the breaking of two continuous symmetries, the phase invariance of a superfluid and the continuous translational invariance to form the crystal,. Proposed for helium almost 50 years ago, experimental verification of supersolidity remains elusive. A variant with only discrete translational symmetry breaking on...

  5. Concepts of electroweak symmetry breaking and Higgs physics

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Bock, M. [Benemerita Univ., Puebla (Mexico). Inst. de Fisica; Mondragon, M. [Universidad Nacional Autonoma de Mexico, Mexico City (Mexico). Inst. de Fisica; Muehlleitner, M. [Laboratoire d' Annecy-Le-Vieux de Physique Theorique, 74 (France)]|[CERN - European Organization for Nuclear Research, Geneva (Switzerland). Theory Div.; Spira, M. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Zerwas, P.M. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)]|[RWTH Aachen (Germany). Inst. Theor. Physik E]|[Univ. Paris- Sud, Orsay (France). Laboratoire de Physique Theorique

    2007-12-15

    We present an introduction to the basic concepts of electroweak symmetry breaking and Higgs physics within the Standard Model and its supersymmetric extensions. A brief overview will also be given on alternative mechanisms of electroweak symmetry breaking. In addition to the theoretical basis, the present experimental status of Higgs physics and prospects at the Tevatron, the LHC and e{sup +}e{sup -} linear colliders are discussed. (orig.)

  6. Comments on the spontaneous symmetry breaking in supersymmetric theories

    Energy Technology Data Exchange (ETDEWEB)

    Girardi, G.; Sorba, P.; Stora, R. (Grenoble-1 Univ., 74 - Annecy (France). Lab. de Physique des Particules)

    1984-08-30

    The role of the complex extension of the symmetry group in supersymmetric theories is revisited. We prove, in particular, that if symmetry breaking occurs at an extremum of the superpotential, then supersymmetry will be preserved if and only if the complex stabilizer of the vacuum is the complexified of its maximal compact part.

  7. Symmetry Breaking of Vibrating Interfaces a Mechanism for Morphogenesis

    CERN Document Server

    García, N

    2000-01-01

    We show that very small-amplitude oscillations of a highly symmetric, spheric or cylindrical, interface (thin membrane) between two fluids can result in inhomogeneous instability and breaking of the interface symmetry: the frequency of the breathing vibration selects the spatial symmetry. This mechanism may govern morphogenesis.

  8. Symmetries and Exact Solutions of the Breaking Soliton Equation

    Institute of Scientific and Technical Information of China (English)

    陈美; 刘希强

    2011-01-01

    With the aid of the classical Lie group method and nonclassical Lie group method, we derive the classical Lie point symmetry and the nonclassical Lie point symmetry of (2+1)-dimensional breaking soliton (BS) equation. Using the symmetries, we find six classical similarity reductions and two nonclassical similarity reductions of the BS equation. Varieties of exact solutions of the BS equation are obtained by solving the reduced equations.

  9. New Mechanism of Flavor Symmetry Breaking from Supersymmetric Strong Dynamics

    CERN Document Server

    Carone, C D; Moroi, T; Carone, Christopher D.; Hall, Lawrence J.; Moroi, Takeo

    1997-01-01

    We present a class of supersymmetric models in which flavor symmetries are broken dynamically, by a set of composite flavon fields. The strong dynamics that is responsible for confinement in the flavor sector also drives flavor symmetry breaking vacuum expectation values, as a consequence of a quantum-deformed moduli space. Yukawa couplings result as a power series in the ratio of the confinement to Planck scale, and the fermion mass hierarchy depends on the differing number of preons in different flavor symmetry-breaking operators. We present viable non-Abelian and Abelian flavor models that incorporate this mechanism.

  10. Symmetry-Break in Voronoi Tessellations

    Directory of Open Access Journals (Sweden)

    Valerio Lucarini

    2009-08-01

    Full Text Available We analyse in a common framework the properties of the Voronoi tessellations resulting from regular 2D and 3D crystals and those of tessellations generated by Poisson distributions of points, thus joining on symmetry breaking processes and the approach to uniform random distributions of seeds. We perturb crystalline structures in 2D and 3D with a spatial Gaussian noise whose adimensional strength is α and analyse the statistical properties of the cells of the resulting Voronoi tessellations using an ensemble approach. In 2D we consider triangular, square and hexagonal regular lattices, resulting into hexagonal, square and triangular tessellations, respectively. In 3D we consider the simple cubic (SC, body-centred cubic (BCC, and face-centred cubic (FCC crystals, whose corresponding Voronoi cells are the cube, the truncated octahedron, and the rhombic dodecahedron, respectively. In 2D, for all values α>0, hexagons constitute the most common class of cells. Noise destroys the triangular and square tessellations, which are structurally unstable, as their topological properties are discontinuous in α=0. On the contrary, the honeycomb hexagonal tessellation is topologically stable and, experimentally, all Voronoi cells are hexagonal for small but finite noise with α<0.12. Basically, the same happens in the 3D case, where only the tessellation of the BCC crystal is topologically stable even against noise of small but finite intensity. In both 2D and 3D cases, already for a moderate amount of Gaussian noise (α>0.5, memory of the specific initial unperturbed state is lost, because the statistical properties of the three perturbed regular tessellations are indistinguishable. When α>2, results converge to those of Poisson-Voronoi tessellations. In 2D, while the isoperimetric ratio increases with noise for the perturbed hexagonal tessellation, for the perturbed triangular and square tessellations it is optimised for specific value of noise intensity

  11. Perturbation treatment of symmetry breaking within random matrix theory

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, J.X. de [Max-Planck-Institut fuer Physik komplexer Systeme, Noethnitzer Strasse 38, D-01187 Dresden (Germany); Instituto de Fisica, Universidade de Sao Paulo, C.P. 66318, 05315-970 Sao Paulo, S.P. (Brazil); Hussein, M.S. [Max-Planck-Institut fuer Physik komplexer Systeme, Noethnitzer Strasse 38, D-01187 Dresden (Germany); Instituto de Fisica, Universidade de Sao Paulo, C.P. 66318, 05315-970 Sao Paulo, S.P. (Brazil)], E-mail: mhussein@mpipks-dresden.mpg.de; Pato, M.P.; Sargeant, A.J. [Instituto de Fisica, Universidade de Sao Paulo, C.P. 66318, 05315-970 Sao Paulo, S.P. (Brazil)

    2008-07-07

    We discuss the applicability, within the random matrix theory, of perturbative treatment of symmetry breaking to the experimental data on the flip symmetry breaking in quartz crystal. We found that the values of the parameter that measures this breaking are different for the spacing distribution as compared to those for the spectral rigidity. We consider both two-fold and three-fold symmetries. The latter was found to account better for the spectral rigidity than the former. Both cases, however, underestimate the experimental spectral rigidity at large L. This discrepancy can be resolved if an appropriate number of eigenfrequencies is considered to be missing in the sample. Our findings are relevant for symmetry violation studies in general.

  12. Symmetry breaking of solitons in two-dimensional complex potentials

    CERN Document Server

    Yang, Jianke

    2014-01-01

    Symmetry breaking is reported for continuous families of solitons in the nonlinear Schr\\"odinger equation with a two-dimensional complex potential. This symmetry-breaking bifurcation is forbidden in generic complex potentials. However, for a special class of partially parity-time-symmetric potentials, such symmetry breaking is allowed. At the bifurcation point, two branches of asymmetric solitons bifurcate out from the base branch of symmetry-unbroken solitons. Stability of these solitons near the bifurcation point are also studied, and two novel stability properties for the bifurcated asymmetric solitons are revealed. One is that at the bifurcation point, zero and simple imaginary linear-stability eigenvalues of asymmetric solitons can move directly into the complex plane and create oscillatory instability. The other is that the two bifurcated asymmetric solitons, even though having identical powers and being related to each other by spatial mirror reflection, can possess different types of unstable eigenval...

  13. Spontaneous symmetry breaking in 5D conformally invariant gravity

    CERN Document Server

    Moon, Taeyoon

    2016-01-01

    We explore the possibility of the spontaneous symmetry breaking in 5D conformally invariant gravity, whose action consists of a scalar field nonminimally coupled to the curvature with its potential. Performing dimensional reduction via ADM decomposition, we find that the model allows an exact solution giving rise to the 4D Minkowski vacuum. Exploiting the conformal invariance with Gaussian warp factor, we show that it also admits a solution which implement the spontaneous breaking of conformal symmetry. We investigate its stability by performing the tensor perturbation and find the resulting system is described by the conformal quantum mechanics. Possible applications to the spontaneous symmetry breaking of time-translational symmetry along the dynamical fifth direction and the brane-world scenario are discussed.

  14. Single photon induced symmetry breaking of H2 dissociation

    Energy Technology Data Exchange (ETDEWEB)

    Martin, F.; Fernandez, J.; Havermeier, T.; Foucar, L.; Weber, Th; Kreidi, K.; Schoffler, M.; Schmidt, L.; Jahnke, T.; Landers, A.L.; Jagutzki, O.; Czasch, A.; Benis, E.; Osipov, T.; Belkacem, A.; Prior,M.H.; Schmidt-Bocking, H.; Cocke, C.L.; Dorner, R.

    2006-12-06

    H{sub 2}, the smallest and most abundant molecule in the universe, has a perfectly symmetric ground state. What does it take to break this symmetry? Here we show that the inversion symmetry can be broken by absorption of a linearly polarized photon, which itself has inversion symmetry. In particular, the emission of a photoelectron with subsequent dissociation of the remaining H{sub 2}{sup +} fragment shows no symmetry with respect to the ionic H+ and neutral H atomic fragments. This result is the consequence of the entanglement between symmetric and antisymmetric H{sub 2}{sup +} states resulting from autoionization. The mechanisms behind this symmetry breaking are general for all molecules.

  15. Fermion Determinant with Dynamical Chiral Symmetry Breaking

    Institute of Scientific and Technical Information of China (English)

    LU Qin; YANG Hua; WANG Qing

    2002-01-01

    One-loop fermion determinant is discussed for the case in which the dynamical chiral symmetry breakingcaused by momentum-dependent fermion self-energy ∑(p2) takes place. The obtained series generalizes the heat kernelexpansion for hard fermion mass.

  16. Rotational symmetry breaking in baby Skyrme models

    CERN Document Server

    Hen, Itay

    2007-01-01

    We consider multisolitons with charges 1 =< B =< 5 in the baby Skyrme model for the one-parametric family of potentials U=\\mu^2 (1-\\phi_3)^s with 0symmetry is exhibited only in the small s region; above a certain critical value of s, this symmetry is broken and a strong repulsion between the constituent one-Skyrmions becomes apparent. We also compute the spatial energy distributions of these solutions.

  17. Radiatively induced breaking of conformal symmetry in a superpotential

    Science.gov (United States)

    Arbuzov, A. B.; Cirilo-Lombardo, D. J.

    2016-07-01

    Radiatively induced symmetry breaking is considered for a toy model with one scalar and one fermion field unified in a superfield. It is shown that the classical quartic self-interaction of the superfield possesses a quantum infrared singularity. Application of the Coleman-Weinberg mechanism for effective potential leads to the appearance of condensates and masses for both scalar and fermion components. That induces a spontaneous breaking of the initial classical symmetries: the supersymmetry and the conformal one. The energy scales for the scalar and fermion condensates appear to be of the same order, while the renormalization scale is many orders of magnitude higher. A possibility to relate the considered toy model to conformal symmetry breaking in the Standard Model is discussed.

  18. Radiatively Induced Breaking of Conformal Symmetry in a Superpotential

    CERN Document Server

    Arbuzov, A B

    2015-01-01

    Radiatively induced symmetry breaking is considered for a toy model with one scalar and one fermion field unified in a superfield. It is shown that the classical quartic self-interaction of the superfield possesses a quantum infrared singularity. Application of the Coleman-Weinberg mechanism for effective potential leads to the appearance of condensates and masses for both scalar and fermion components. That induces a spontaneous breaking of the initial classical symmetries: the supersymmetry and the conformal one. The energy scales for the scalar and fermion condensates appear to be of the same order, while the renormalization scale is many orders of magnitude higher. A possibility to relate the considered toy model to conformal symmetry breaking in the Standard Model is discussed.

  19. Matter Representations and Gauge Symmetry Breaking via Compactified Space

    CERN Document Server

    Hatanaka, H

    1999-01-01

    We study dynamical gauge symmetry breaking via compactified space in the framework of SU($N$) gauge theory on $M^{d-1}\\times S^1$ ($d=4,5,6$) space-time. Especially, we study in detail the gauge symmetry breaking in SU(2) and SU(3) gauge theories when the models contain both fundamental and adjoint matters. As the result, we find that any pattern of gauge symmetry breaking is realized by selecting appropriate set of numbers $(\\Nf,\\Nad)$ in these cases. It is achieved without tuning boundary conditions of matter fields. As the by-product, in some cases we get effective potential which has no curvature at the minimum thus leading to massless Higgs scalars, irrespectively of the size of compactified space.

  20. Radiatively induced breaking of conformal symmetry in a superpotential

    Energy Technology Data Exchange (ETDEWEB)

    Arbuzov, A.B. [Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Department of Higher Mathematics, Dubna State University, 141982 Dubna (Russian Federation); Cirilo-Lombardo, D.J., E-mail: diego777jcl@gmail.com [Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); National Institute of Plasma Physics (INFIP-CONICET), Department of Physics, FCEyN, Universidad de Buenos Aires, Buenos Aires 1428 (Argentina)

    2016-07-10

    Radiatively induced symmetry breaking is considered for a toy model with one scalar and one fermion field unified in a superfield. It is shown that the classical quartic self-interaction of the superfield possesses a quantum infrared singularity. Application of the Coleman–Weinberg mechanism for effective potential leads to the appearance of condensates and masses for both scalar and fermion components. That induces a spontaneous breaking of the initial classical symmetries: the supersymmetry and the conformal one. The energy scales for the scalar and fermion condensates appear to be of the same order, while the renormalization scale is many orders of magnitude higher. A possibility to relate the considered toy model to conformal symmetry breaking in the Standard Model is discussed.

  1. Massive photons from Super and Lorentz symmetry breaking

    CERN Document Server

    Bonetti, Luca; Helayël-Neto, José A; Spallicci, Alessandro D A M

    2016-01-01

    In the context of Standard Model Extensions (SMEs), we analyse four general classes of Super Symmetry (SuSy) and Lorentz Symmetry (LoSy) breaking, leading to {observable} imprints at our energy scales. The photon dispersion relations show a non-Maxwellian behaviour for the CPT (Charge-Parity-Time reversal symmetry) odd and even sectors. The group velocities exhibit also a directional dependence with respect to the breaking background vector (odd CPT) or tensor (even CPT). In the former sector, the group velocity may decay following an inverse squared frequency behaviour. Thus, we extract a massive and gauge invariant Carroll-Field-Jackiw photon term in the Lagrangian and show that the mass is proportional to the breaking vector. The latter is estimated by ground measurements and leads to a photon mass upper limit of $10^{-19}$ eV or $2 \\times 10^{-55}$ kg and thereby to a potentially measurable delay at low radio frequencies.

  2. Insulators and metals with topological order and discrete symmetry breaking

    Science.gov (United States)

    Chatterjee, Shubhayu; Sachdev, Subir

    2017-05-01

    Numerous experiments have reported discrete symmetry breaking in the high-temperature pseudogap phase of the hole-doped cuprates, including breaking of one or more of lattice rotation, inversion, and time-reversal symmetries. In the absence of translational symmetry breaking or topological order, these conventional order parameters cannot explain the gap in the charged fermion excitation spectrum in the antinodal region. Zhao et al. [L. Zhao, D. H. Torchinsky, H. Chu, V. Ivanov, R. Lifshitz, R. Flint, T. Qi, G. Cao, and D. Hsieh, Nat. Phys. 12, 32 (2016), 10.1038/nphys3517] and Jeong et al. [J. Jeong, Y. Sidis, A. Louat, V. Brouet, and P. Bourges, Nat. Commun. 8, 15119 (2017), 10.1038/ncomms15119] have also reported inversion and time-reversal symmetry breaking in insulating Sr2IrO4 similar to that in the metallic cuprates, but coexisting with Néel order. We extend an earlier theory of topological order in insulators and metals, in which the topological order combines naturally with the breaking of these conventional discrete symmetries. We find translationally invariant states with topological order coexisting with both Ising-nematic order and spontaneous charge currents. The link between the discrete broken symmetries and the topological-order-induced pseudogap explains why the broken symmetries do not survive in the confining phases without a pseudogap at large doping. Our theory also connects to the O(3) nonlinear sigma model and CP1 descriptions of quantum fluctuations of the Néel order. In this framework, the optimal doping criticality of the cuprates is primarily associated with the loss of topological order.

  3. Gedanken Worlds without Higgs: QCD-Induced Electroweak Symmetry Breaking

    Energy Technology Data Exchange (ETDEWEB)

    Quigg, Chris; /Fermilab /Karlsruhe U., TTP; Shrock, Robert; /YITP, Stony Brook

    2009-01-01

    To illuminate how electroweak symmetry breaking shapes the physical world, we investigate toy models in which no Higgs fields or other constructs are introduced to induce spontaneous symmetry breaking. Two models incorporate the standard SU(3){sub c} {circle_times} SU(2){sub L} {circle_times} U(1){sub Y} gauge symmetry and fermion content similar to that of the standard model. The first class--like the standard electroweak theory--contains no bare mass terms, so the spontaneous breaking of chiral symmetry within quantum chromodynamics is the only source of electroweak symmetry breaking. The second class adds bare fermion masses sufficiently small that QCD remains the dominant source of electroweak symmetry breaking and the model can serve as a well-behaved low-energy effective field theory to energies somewhat above the hadronic scale. A third class of models is based on the left-right-symmetric SU(3){sub c} {circle_times} SU(2){sub L} {circle_times} SU(2){sub R} {circle_times} U(1)B?L gauge group. In a fourth class of models, built on SU(4){sub PS} {circle_times} SU(2){sub L} {circle_times} SU(2){sub R} gauge symmetry, lepton number is treated as a fourth color. Many interesting characteristics of the models stem from the fact that the effective strength of the weak interactions is much closer to that of the residual strong interactions than in the real world. The Higgs-free models not only provide informative contrasts to the real world, but also lead us to consider intriguing issues in the application of field theory to the real world.

  4. Spontaneous symmetry breaking in the composite-vector-boson model

    Energy Technology Data Exchange (ETDEWEB)

    Garavaglia, T.

    1986-11-15

    Spontaneous symmetry breaking is discussed in the Abelian, QED-like, composite-vector-boson model. When the auxiliary vector field has a nonzero vacuum expectation value, a global symmetry, Lorentz invariance, is broken. It is shown that the regularization of the saddle-point conditions for the quantum fluctuation generating functional is consistent only with a spacelike vacuum expectation value for the auxiliary vector field.

  5. Symmetry-Breaking Plasmonic Metasurfaces for Broadband Light Bending

    DEFF Research Database (Denmark)

    Ni, Xingjie; Emani, Naresh K.; Kildishev, Alexander V.;

    2012-01-01

    We experimentally demonstrate unparalleled wave-front control in a broadband, optical wavelength range from 1.0 μm to 1.9 μm, using a thin plasmonic layer (metasurface) consisting of a nanoantenna array that breaks the symmetry along the interface.......We experimentally demonstrate unparalleled wave-front control in a broadband, optical wavelength range from 1.0 μm to 1.9 μm, using a thin plasmonic layer (metasurface) consisting of a nanoantenna array that breaks the symmetry along the interface....

  6. Comment on "Electromagnetic Radiation under Explicit Symmetry Breaking"

    CERN Document Server

    Simovski, C; Belov, P; Krasnok, A

    2015-01-01

    Recently published paper [PRL 114, 147701 (2015)] contains several misleading statements and misinterpretations of known facts. The main massage of the paper [PRL 114, 147701 (2015)] is as follows: "We have shown that explicit symmetry breaking in the structural configuration of charges leads to symmetry breaking of the electric field which results in electromagnetic radiation due to non-conservative current within a localized region of space and time" seems to transcend mere empiricism, touching the theoretical foundations of electromagnetism. Moreover, basic mistakes are numerous in this article and its main claim is wrong. Below we prove it citing the paper and arguing against it.

  7. Spontaneous breaking of nilpotent symmetry in boundary BLG theory

    CERN Document Server

    Upadhyay, Sudhaker

    2015-01-01

    We exploit boundary term to preserve the supersymmetric gauge invariance of Bagger--Lambert--Gustavsson (BLG) theory. The fermionic rigid BRST and anti-BRST symmetries are studied in linear and non-linear gauges. Remarkably, for Delbourgo-Jarvis-Baulieu-Thierry-Mieg (DJBTM) type gauge the spontaneous breaking of BRST symmetry occurs in the BLG theory. The responsible guy for such spontaneous breaking is ghost-anti-ghost condensation. Further, we discuss the ghost-anti-ghost condensates in the modified maximally Abelian (MMA) gauge in the BLG theory.

  8. Topological conditions for discrete symmetry breaking and phase transitions

    Energy Technology Data Exchange (ETDEWEB)

    Baroni, Fabrizio; Casetti, Lapo [Dipartimento di Fisica, Universita di Firenze, via G. Sansone 1, I-50019 Sesto Fiorentino (Finland) (Italy)

    2006-01-20

    In the framework of a recently proposed topological approach to phase transitions, some sufficient conditions ensuring the presence of the spontaneous breaking of a Z{sub 2} symmetry and of a symmetry-breaking phase transition are introduced and discussed. A very simple model, which we refer to as the hypercubic model, is introduced and solved. The main purpose of this model is that of illustrating the content of the sufficient conditions, but it is interesting also in itself due to its simplicity. Then some mean-field models already known in the literature are discussed in the light of the sufficient conditions introduced here.

  9. Spontaneous symmetry breaking in correlated wave functions

    Science.gov (United States)

    Kaneko, Ryui; Tocchio, Luca F.; Valentí, Roser; Becca, Federico; Gros, Claudius

    2016-03-01

    We show that Jastrow-Slater wave functions, in which a density-density Jastrow factor is applied onto an uncorrelated fermionic state, may possess long-range order even when all symmetries are preserved in the wave function. This fact is mainly related to the presence of a sufficiently strong Jastrow term (also including the case of full Gutzwiller projection, suitable for describing spin models). Selected examples are reported, including the spawning of Néel order and dimerization in spin systems, and the stabilization of charge and orbital order in itinerant electronic systems.

  10. Dynamical symmetry breaking with hypercolour and high colour representations

    Energy Technology Data Exchange (ETDEWEB)

    Zoupanos, G.

    1985-03-01

    A model is presented in which the electroweak gauge group is spontaneously broken according to a dynamical scenario based on the existence of high colour representations. An unattractive feature of this scenario was the necessity to introduce elementary Higgs fields in order to obtain the spontaneous symmetry breaking of part of the theory. In the present model, this breaking can also be understood dynamically with the introduction of hypercolour interactions.

  11. Replica symmetry breaking for anisotropic magnets with quenched disorder

    Science.gov (United States)

    Kogan, E.; Kaveh, M.

    2017-01-01

    We study critical behaviour of a magnet with cubic anisotropy and quenched scalar disorder which is taken into account by replica method. We derive to first order in ε approximation the renormalization group equations taking into account possible replica symmetry breaking. We study the stability of the replica symmetric fixed points with respect to perturbations without (in general case) replica symmetry. However, we find that if a fixed point is stable with respect to replica symmetric deviations, it is also stable with respect to deviations without replica symmetry.

  12. Phenomenology of symmetry breaking from extra dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Alfaro, Jorge [Facultad de Fisica, Pontificia Universidad Catolica de Chile, Casilla 306, Santiago 22 (Chile); Broncano, Alicia [Max Planck Institute for Physics, Foehringer Ring 6, 80805 Munich (Germany); Belen Gavela, Maria [Departamento de Fisica Teorica and Instituto de Fisica Teorica, Universidad Autonoma de Madrid, Cantoblanco, E-28049 Madrid (Spain); Rigolin, Stefano [Departamento de Fisica Teorica and Instituto de Fisica Teorica, Universidad Autonoma de Madrid, Cantoblanco, E-28049 Madrid (Spain); Salvatori, Matteo [Departamento de Fisica Teorica and Instituto de Fisica Teorica, Universidad Autonoma de Madrid, Cantoblanco, E-28049 Madrid (Spain)

    2007-01-15

    Motivated by the electroweak hierarchy problem, we consider theories with two extra dimensions in which the four-dimensional scalar fields are components of gauge boson in full space. We explore the Nielsen-Olesen instability for SU(N) on a torus, in the presence of a magnetic background. A field theory approach is developed, computing explicitly the minimum of the complete effective potential, including tri-linear and quartic couplings and determining the symmetries of the stable vacua. We also develop appropriate gauge-fixing terms when both Kaluza-Klein and Landau levels are present and interacting, discussing the interplay between the possible six and four dimensional choices. The equivalence between coordinate dependent and constant Scherk-Schwarz boundary conditions - associated to either continuous or discrete Wilson lines - is analyzed.

  13. Comment on "Electromagnetic potential vectors and spontaneous symmetry breaking"

    CERN Document Server

    Dvoeglazov, V V

    1993-01-01

    The appearance of terms, which are analogous to ones required for symmetry breaking, in Lagrangian of Ref.~\\cite{Shebalin} is shown to be caused by gauge invariance of quantum electrodynamics (QED) and by inaccuracy of the author in a choice of canonical variables. These terms in the Lagrangian (18) of~\\cite{Shebalin} do not have physical meaning.

  14. Quantum electroweak symmetry breaking through loop quadratic contributions

    Directory of Open Access Journals (Sweden)

    Dong Bai

    2015-06-01

    Full Text Available Based on two postulations that (i the Higgs boson has a large bare mass mH≫mh≃125 GeV at the characteristic energy scale Mc which defines the Standard Model (SM in the ultraviolet region, and (ii quadratic contributions of Feynman loop diagrams in quantum field theories are physically meaningful, we show that the SM electroweak symmetry breaking is induced by the quadratic contributions from loop effects. As the quadratic running of Higgs mass parameter leads to an additive renormalization, which distinguishes from the logarithmic running with a multiplicative renormalization, the symmetry breaking occurs once the sliding energy scale μ moves from Mc down to a transition scale μ=ΛEW at which the additive renormalized Higgs mass parameter mH2(Mc/μ gets to change the sign. With the input of current experimental data, this symmetry breaking energy scale is found to be ΛEW≃760 GeV, which provides another basic energy scale for the SM besides Mc. Studying such a symmetry breaking mechanism could play an important role in understanding both the hierarchy problem and naturalness problem. It also provides a possible way to explore the experimental implications of the quadratic contributions as ΛEW lies within the probing reach of the LHC and the future Great Collider.

  15. Chiral symmetry breaking with the Curtis-Pennington vertex

    NARCIS (Netherlands)

    Atkinson, D.; Gusynin, V. P.; Maris, P.

    1992-01-01

    Published in: Phys. Lett. B 303 (1993) 157-162 citations recorded in [Science Citation Index] Abstract: We study chiral symmetry breaking in quenched QED$_4$, using a vertex Ansatz recently proposed by Curtis and Pennington. Bifurcation analysis is employed to establish the existence of a critical c

  16. Spontaneous Symmetry Breaking in Quantum Systems. A review for Scholarpedia

    CERN Document Server

    Strocchi, F

    2012-01-01

    The mechanism of spontaneous symmetry breaking in quantum systems is briefly reviewed, rectifying part of the standard wisdom on logical and mathematical grounds. The crucial role of the localization properties of the time evolution for the conclusion of the Goldstone theorem is emphasized.

  17. Radiative breaking of conformal symmetry in the Standard Model

    Science.gov (United States)

    Arbuzov, A. B.; Nazmitdinov, R. G.; Pavlov, A. E.; Pervushin, V. N.; Zakharov, A. F.

    2016-02-01

    Radiative mechanism of conformal symmetry breaking in a comformal-invariant version of the Standard Model is considered. The Coleman-Weinberg mechanism of dimensional transmutation in this system gives rise to finite vacuum expectation values and, consequently, masses of scalar and spinor fields. A natural bootstrap between the energy scales of the top quark and Higgs boson is suggested.

  18. Enantioselective Symmetry Breaking Directed by the Order of Process Steps

    NARCIS (Netherlands)

    Noorduin, Wim L.; Meekes, Hugo; Enckevort, Willem J.P. van; Kaptein, Bernard; Kellogg, Richard M.; Vlieg, Elias

    2010-01-01

    Going forward in reverse: The configuration of the product of grinding-induced symmetry breaking can be controlled simply by the order in which the different reaction-mixture components are combined. The underlying mechanism is based on a subtle balance between enantioselective crystal growth and di

  19. Competitive forms of symmetry breaking in linear antiferromagnetic systems

    NARCIS (Netherlands)

    Caspers, W.J.; Magnus, W.

    1985-01-01

    Two different forms of symmetry breaking are considered for linear antiferromagnetic systems (S = 1/2 ). Their relative stability is examined by considering small fluctuations in the harmonic oscillator approximation. Imaginary frequencies correspond with an unstable phase, and the ground state repr

  20. Curvature-induced symmetry breaking in nonlinear Schrodinger models

    DEFF Research Database (Denmark)

    Gaididei, Yuri Borisovich; Mingaleev, S. F.; Christiansen, Peter Leth

    2000-01-01

    We consider a curved chain of nonlinear oscillators and show that the interplay of curvature and nonlinearity leads to a symmetry breaking when an asymmetric stationary state becomes energetically more favorable than a symmetric stationary state. We show that the energy of localized states decrea...

  1. Spontaneous symmetry breaking in spinor Bose-Einstein condensates

    DEFF Research Database (Denmark)

    Scherer, Manuel; Lücke, Bernd; Peise, Jan;

    2013-01-01

    We present an analytical model for the theoretical analysis of spin dynamics and spontaneous symmetry breaking in a spinor Bose-Einstein condensate (BEC). This allows for an excellent intuitive understanding of the processes and provides good quantitative agreement with the experimental results...

  2. Nonlocal regularization of abelian models with spontaneous symmetry breaking

    OpenAIRE

    Clayton, M. A.

    2001-01-01

    We demonstrate how nonlocal regularization is applied to gauge invariant models with spontaneous symmetry breaking. Motivated by the ability to find a nonlocal BRST invariance that leads to the decoupling of longitudinal gauge bosons from physical amplitudes, we show that the original formulation of the method leads to a nontrivial relationship between the nonlocal form factors that can appear in the model.

  3. The symmetry breaking phenomenon in anharmonic oscillator model

    CERN Document Server

    Mastine, Antonio Carlos; Natti, Erica Regina Takano

    2010-01-01

    In this article a non-perturbative time-dependent technique is used to treat the initial value problem, in Quantum Mechanics context, for a non-equilibrium self-interacting fermionic system in the presence of an external magnetic field. Particularly, in mean-field regime, we study the dynamical symmetry breaking phenomenon, identifying the physical processes associated.

  4. Dynamical Symmetry Breaking with Vector Bosons

    CERN Document Server

    Cynolter, G; Pócsik, G

    2004-01-01

    In the standard model of electroweak interactions the Higgs doublet is replaced by a complex vector doublet and a real vector singlet. The gauge symmetry is broken dynamically by a mixed condensate of the doublet and singlet vector fields. Gauge fields get their usual standard model masses by condensation. The new vector matter fields become massive by their gauge invariant selfcouplings and expected to have masses of few hundred GeV. Fermions are assigned to the gauge group in the usual manner. Fermion masses are coming from a gauge invariant fermion-vector field interaction by a mixed condensat, the Kobayashi-Maskawa description is unchanged. Perturbative unitarity estimates show that the model is valid up to 2-3 TeV. It is shown that from the new matter fields a large number of spin-one particle pairs is expected at future high energy e^{+}e^{-} linear colliders of 500-1500 GeV. The inclusive production cross section of new particle pairs is presented for hadron colliders, while at the Tevatron the new par...

  5. Symmetry Breaking Patterns for the Little Higgs from Strong Dynamics

    CERN Document Server

    Batra, Puneet

    2007-01-01

    We show how the symmetry breaking pattern of the simplest little Higgs model, and that of the smallest moose model that incorporates an approximate custodial SU(2), can be realized through the condensation of strongly coupled fermions. In each case a custodial SU(2) symmetry of the new strong dynamics limits the sizes of corrections to precision electroweak observables. In the case of the simplest little Higgs, there are no new light states beyond those present in the original model. However, our realization of the symmetry breaking pattern of the moose model predicts an additional scalar field with mass of order a TeV or higher that has exactly the same quantum numbers as the Standard Model Higgs and which decays primarily to third generation quarks.

  6. $\\mathcal{PT}$-Symmetry-Breaking Chaos in Optomechanics

    CERN Document Server

    Lü, Xin-You; Ma, Jin-Yong; Wu, Ying

    2015-01-01

    We demonstrate a $\\mathcal{PT}$-symmetry-breaking chaos in optomechanical system (OMS), which features an ultralow driving threshold. In principle, this chaos will emerge once a driving laser is applied to the cavity mode and lasts for a period of time. The driving strength is inversely proportional to the starting time of chaos. This originally comes from the dynamical enhancement of nonlinearity by field localization in $\\mathcal{PT}$-symmetry-breaking phase ($\\mathcal{PT}$BP). Moreover, this chaos is switchable by tuning the system parameters so that a $\\mathcal{PT}$-symmetry phase transition occurs. This work may fundamentally broaden the regimes of cavity optomechanics and nonlinear optics. It offers the prospect of exploring ultralow-power-laser triggered chaos and its potential applications in secret communication.

  7. Spontaneous symmetry breaking in thermalization and anti-thermalization

    CERN Document Server

    Liao, Jie-Qiao; Wang, X G; Liu, X F; Sun, C P

    2009-01-01

    The phenomenon of spontaneous symmetry breaking is investigated in the dynamic thermalization of a degenerate quantum system. A three-level system interacting with a heat bath is carefully studied to this end. It is shown that the three-level system with degenerate ground states might have different behaviors depending on the details of the interaction with the heat bath when the temperature approaches zero. If we introduce an external field to break the degeneracy of the ground states and let it approach zero after letting the temperature approach zero, then two possibilities will arise: the steady state is a definite one of the degenerate states independent of the initial state, or the steady state is dependent on the initial state in a complicated way. The first possibility corresponds to a spontaneous symmetry breaking of the system and the second one implies that the heat bath could not totally erase the initial information in certain cases.

  8. Lorentz symmetry breaking as a quantum field theory regulator

    CERN Document Server

    Visser, Matt

    2009-01-01

    Perturbative expansions of relativistic quantum field theories typically contain ultraviolet divergences requiring regularization and renormalization. Many different regularization techniques have been developed over the years, but most regularizations require severe mutilation of the logical foundations of the theory. In contrast, breaking Lorentz invariance, while it is certainly a radical step, at least does not damage the logical foundations of the theory. We shall explore the features of a Lorentz symmetry breaking regulator in a simple polynomial scalar field theory, and discuss its implications. We shall quantify just "how much" Lorentz symmetry breaking is required to fully regulate the theory and render it finite. This scalar field theory provides a simple way of understanding many of the key features of Horava's recent article [arXiv:0901.3775 [hep-th

  9. Time-reversal symmetry breaking in quantum billiards

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, Florian

    2009-01-26

    The present doctoral thesis describes experimentally measured properties of the resonance spectra of flat microwave billiards with partially broken timereversal invariance induced by an embedded magnetized ferrite. A vector network analyzer determines the complex scattering matrix elements. The data is interpreted in terms of the scattering formalism developed in nuclear physics. At low excitation frequencies the scattering matrix displays isolated resonances. At these the effect of the ferrite on isolated resonances (singlets) and pairs of nearly degenerate resonances (doublets) is investigated. The hallmark of time-reversal symmetry breaking is the violation of reciprocity, i.e. of the symmetry of the scattering matrix. One finds that reciprocity holds in singlets; it is violated in doublets. This is modeled by an effective Hamiltonian of the resonator. A comparison of the model to the data yields time-reversal symmetry breaking matrix elements in the order of the level spacing. Their dependence on the magnetization of the ferrite is understood in terms of its magnetic properties. At higher excitation frequencies the resonances overlap and the scattering matrix elements fluctuate irregularly (Ericson fluctuations). They are analyzed in terms of correlation functions. The data are compared to three models based on random matrix theory. The model by Verbaarschot, Weidenmueller and Zirnbauer describes time-reversal invariant scattering processes. The one by Fyodorov, Savin and Sommers achieves the same for systems with complete time-reversal symmetry breaking. An extended model has been developed that accounts for partial breaking of time-reversal invariance. This extended model is in general agreement with the data, while the applicability of the other two models is limited. The cross-correlation function between forward and backward reactions determines the time-reversal symmetry breaking matrix elements of the Hamiltonian to up to 0.3 mean level spacings. Finally

  10. Effective photon mass by Super and Lorentz symmetry breaking

    Science.gov (United States)

    Bonetti, Luca; dos Santos Filho, Luís R.; Helayël-Neto, José A.; Spallicci, Alessandro D. A. M.

    2017-01-01

    In the context of Standard Model Extensions (SMEs), we analyse four general classes of Super Symmetry (SuSy) and Lorentz Symmetry (LoSy) breaking, leading to observable imprints at our energy scales. The photon dispersion relations show a non-Maxwellian behaviour for the CPT (Charge-Parity-Time reversal symmetry) odd and even sectors. The group velocities exhibit also a directional dependence with respect to the breaking background vector (odd CPT) or tensor (even CPT). In the former sector, the group velocity may decay following an inverse squared frequency behaviour. Thus, we extract a massive Carroll-Field-Jackiw photon term in the Lagrangian and show that the effective mass is proportional to the breaking vector and moderately dependent on the direction of observation. The breaking vector absolute value is estimated by ground measurements and leads to a photon mass upper limit of 10-19 eV or 2 ×10-55 kg, and thereby to a potentially measurable delay at low radio frequencies.

  11. Effective photon mass by Super and Lorentz symmetry breaking

    Directory of Open Access Journals (Sweden)

    Luca Bonetti

    2017-01-01

    Full Text Available In the context of Standard Model Extensions (SMEs, we analyse four general classes of Super Symmetry (SuSy and Lorentz Symmetry (LoSy breaking, leading to observable imprints at our energy scales. The photon dispersion relations show a non-Maxwellian behaviour for the CPT (Charge-Parity-Time reversal symmetry odd and even sectors. The group velocities exhibit also a directional dependence with respect to the breaking background vector (odd CPT or tensor (even CPT. In the former sector, the group velocity may decay following an inverse squared frequency behaviour. Thus, we extract a massive Carroll–Field–Jackiw photon term in the Lagrangian and show that the effective mass is proportional to the breaking vector and moderately dependent on the direction of observation. The breaking vector absolute value is estimated by ground measurements and leads to a photon mass upper limit of 10−19 eV or 2×10−55 kg, and thereby to a potentially measurable delay at low radio frequencies.

  12. 3D toroidal physics: Testing the boundaries of symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Spong, Donald A., E-mail: spongda@ornl.gov [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6169 (United States)

    2015-05-15

    Toroidal symmetry is an important concept for plasma confinement; it allows the existence of nested flux surface MHD equilibria and conserved invariants for particle motion. However, perfect symmetry is unachievable in realistic toroidal plasma devices. For example, tokamaks have toroidal ripple due to discrete field coils, optimized stellarators do not achieve exact quasi-symmetry, the plasma itself continually seeks lower energy states through helical 3D deformations, and reactors will likely have non-uniform distributions of ferritic steel near the plasma. Also, some level of designed-in 3D magnetic field structure is now anticipated for most concepts in order to provide the plasma control needed for a stable, steady-state fusion reactor. Such planned 3D field structures can take many forms, ranging from tokamaks with weak 3D edge localized mode suppression fields to stellarators with more dominant 3D field structures. This motivates the development of physics models that are applicable across the full range of 3D devices. Ultimately, the questions of how much symmetry breaking can be tolerated and how to optimize its design must be addressed for all fusion concepts. A closely coupled program of simulation, experimental validation, and design optimization is required to determine what forms and amplitudes of 3D shaping and symmetry breaking will be compatible with the requirements of future fusion reactors.

  13. Charge symmetry breaking in n p --> d pi^0

    CERN Document Server

    Opper, A K; Hutcheon, D A; Abegg, R; Davis, C A; Finlay, R W; Green, P W; Greeniaus, L G; Jordan, D V; Niskanen, J A; O'Rielly, G V; Porcelli, T A; Reitzner, S D; Walden, P L; Yen, S

    2003-01-01

    The forward--backward asymmetry in n p --> d pi^0, which must be zero in the center-of-mass system if charge symmetry is respected, has been measured to be [17.2 +/- 8 (stat) +/- 5.5 (sys)] * 10^{-4}, at an incident neutron energy of 279.5 MeV. This charge symmetry breaking observable was extracted by fitting the data with GEANT-based simulations and is compared to recent chiral effective field theory calculations, with implications regarding the value of the u d quark mass difference.

  14. Density driven symmetry breaking and Butterfly effect in holographic superconductors

    CERN Document Server

    Kim, Youngman; Sin, Sang-Jin

    2009-01-01

    We study the density driven symmetry breaking in holographic superconductors by considering positive mass squared case. We show that with small values of positive $m^2$, scalar condensation still forms. As $m^2$ increases, however, the phase space folds due to the non-linearity of the equation of motion, and two nearby points in phase space can represent symmetry broken and unbroken configurations respectively, leading to an analogue of the butterfly effect. We also calculate the specific heat and electrical conductivity for various $m^2$ and compare them with experimentally observed numbers in condensed matter systems.

  15. Spontaneous R-symmetry breaking from the renormalization group flow

    CERN Document Server

    Amariti, Antonio

    2012-01-01

    We propose a mechanism of R-symmetry breaking in four-dimensional DSB models based on the RG properties of the coupling constants. By constraining the UV sector, we generate new hierarchies amongst the couplings that allow a spontaneously broken R-symmetry in models with pure chiral fields of R-charges R = 0 and R = 2 only. The result is obtained by a combination of one- and two-loop effects, both at the origin of field space and in the region dominated by leading log potentials.

  16. SU(3) flavour symmetry breaking and charmed states

    CERN Document Server

    Horsley, R; Nakamura, Y; Perlt, H; Pleiter, D; Rakow, P E L; Schierholz, G; Schiller, A; Stüben, H; Zanotti, J M

    2013-01-01

    By extending the SU(3) flavour symmetry breaking expansion from up, down and strange sea quark masses to partially quenched valence quark masses we propose a method to determine charmed quark hadron masses including possible QCD isospin breaking effects. Initial results for some open charmed pseudoscalar meson states and singly and doubly charmed baryon states are encouraging and demonstrate the potential of the procedure. Essential for the method is the determination of the scale using singlet quantities, and to this end we also give here a preliminary estimation of the recently introduced Wilson flow scales.

  17. Symmetry Breaking on Density in Escaping Ants: Experiment and Alarm Pheromone Model

    OpenAIRE

    Geng Li; Di Huan; Bertrand Roehner; Yijuan Xu; Ling Zeng; Zengru Di; Zhangang Han

    2014-01-01

    International audience; The symmetry breaking observed in nature is fascinating. This symmetry breaking is observed in both human crowds and ant colonies. In such cases, when escaping from a closed space with two symmetrically located exits, one exit is used more often than the other. Group size and density have been reported as having no significant impact on symmetry breaking, and the alignment rule has been used to model symmetry breaking. Density usually plays important roles in collectiv...

  18. Spontaneous breaking of Lorentz symmetry for canonical gravity

    CERN Document Server

    Gielen, Steffen

    2012-01-01

    In the Ashtekar-Barbero formulation of canonical general relativity based on an SU(2) connection, Lorentz covariance is a subtle issue which has been the focus of some debate. Here we present a Lorentz covariant formulation generalising the notion of a foliation of spacetime to a field of local observers which specify a time direction only locally. This field spontaneously breaks the local SO(3,1) symmetry down to a subgroup SO(3); we show that the apparent symmetry breaking to SO(3) is not in conflict with Lorentz covariance. We give a geometric picture of our construction as Cartan geometrodynamics and outline further applications of the formalism of local observers, motivating the idea that observer space, instead of spacetime, should serve as the fundamental arena for gravitational physics.

  19. Curling Liquid Crystal Microswimmers: A Cascade of Spontaneous Symmetry Breaking

    Science.gov (United States)

    Krüger, Carsten; Klös, Gunnar; Bahr, Christian; Maass, Corinna C.

    2016-07-01

    We report curling self-propulsion in aqueous emulsions of common mesogenic compounds. Nematic liquid crystal droplets self-propel in a surfactant solution with concentrations above the critical micelle concentration while undergoing micellar solubilization [Herminghaus et al., Soft Matter 10, 7008 (2014)]. We analyzed trajectories both in a Hele-Shaw geometry and in a 3D setup at variable buoyancy. The coupling between the nematic director field and the convective flow inside the droplet leads to a second symmetry breaking which gives rise to curling motion in 2D. This is demonstrated through a reversible transition to nonhelical persistent swimming by heating to the isotropic phase. Furthermore, autochemotaxis can spontaneously break the inversion symmetry, leading to helical trajectories in 3D.

  20. Stochastic recruitment leads to symmetry breaking in foraging populations

    Science.gov (United States)

    Biancalani, Tommaso; Dyson, Louise; McKane, Alan

    2014-03-01

    When an ant colony is faced with two identical equidistant food sources, the foraging ants are found to concentrate more on one source than the other. Analogous symmetry-breaking behaviours have been reported in various population systems, (such as queueing or stock market trading) suggesting the existence of a simple universal mechanism. Past studies have neglected the effect of demographic noise and required rather complicated models to qualitatively reproduce this behaviour. I will show how including the effects of demographic noise leads to a radically different conclusion. The symmetry-breaking arises solely due to the process of recruitment and ceases to occur for large population sizes. The latter fact provides a testable prediction for a real system.

  1. Breaking discrete symmetries in the effective field theory of inflation

    Energy Technology Data Exchange (ETDEWEB)

    Cannone, Dario [Dipartimento di Fisica e Astronomia “G. Galilei”, Università degli Studi di Padova,Padova, I-35131 (Italy); INFN, Sezione di Padova,Padova, I-35131 (Italy); Gong, Jinn-Ouk [Asia Pacific Center for Theoretical Physics,Pohang, 790-784 (Korea, Republic of); Department of Physics,Postech, Pohang, 790-784 (Korea, Republic of); Tasinato, Gianmassimo [Department of Physics, Swansea University,Swansea, SA2 8PP (United Kingdom)

    2015-08-03

    We study the phenomenon of discrete symmetry breaking during the inflationary epoch, using a model-independent approach based on the effective field theory of inflation. We work in a context where both time reparameterization symmetry and spatial diffeomorphism invariance can be broken during inflation. We determine the leading derivative operators in the quadratic action for fluctuations that break parity and time-reversal. Within suitable approximations, we study their consequences for the dynamics of linearized fluctuations. Both in the scalar and tensor sectors, we show that such operators can lead to new direction-dependent phases for the modes involved. They do not affect the power spectra, but can have consequences for higher correlation functions. Moreover, a small quadrupole contribution to the sound speed can be generated.

  2. Dynamical electroweak symmetry breaking with color-sextet quarks

    Energy Technology Data Exchange (ETDEWEB)

    Fukazawa, Kenji; Muta, Taizo; Saito, Juichi; Watanabe, Isamu; Yonezawa, Minoru (Hiroshima Univ. (Japan). Dept. of Physics); Inoue, Masato

    1991-01-01

    Massive quarks belonging to a sextet representation of the color SU(3) of quantum chromodynamics are assumed to exist and to trigger the dynamical breaking of the electroweak SU(2) x U(1) symmetry. Quantum numbers are assigned to the color-sextet quarks and their masses are estimated together with the mass of the top quark by using the mass formulae for the weak-boson masses. Phenomenological implication of the model is discussed. (author).

  3. Spontaneous symmetry breaking in synchronously pumped fiber ring cavities

    CERN Document Server

    Schmidberger, Michael J; Biancalana, Fabio; Russell, Philip St J; Joly, Nicolas Y

    2013-01-01

    We introduce a new equation that describes the spatio-temporal evolution of arbitrary pulses propagating in a fiber-ring cavity. This model is a significant extension of the traditionally used Lugiato-Lefever model. We demonstrate spontaneous symmetry breaking as well as multistability regimes in a synchronously pumped fiber-ring cavity. The equation can be applied to virtually any type of waveguide-based ring cavity.

  4. Gauge symmetry breaking in gravity and auxiliary effective action

    Science.gov (United States)

    Akhavan, Amin

    2017-02-01

    In the context of the covariant symmetry breaking in gravity, we study the quantum aspect of Chamseddine-Mukhanov model by making use of path integral method. Utilizing one of the gauge fixing constraints, we remove the specific ghost degree of freedom. In continuation, we define an auxiliary effective action. Introducing an auxiliary field, we will have a new dynamic field in addition to the fundamental field.

  5. Replica symmetry breaking in cold atoms and spin glasses

    Science.gov (United States)

    Rotondo, P.; Tesio, E.; Caracciolo, S.

    2015-01-01

    We consider a system composed by N atoms trapped within a multimode cavity, whose theoretical description is captured by a disordered multimode Dicke model. We show that in the resonant, zero-field limit the system exactly realizes the Sherrington-Kirkpatrick model. Upon a redefinition of the temperature, the same dynamics is realized in the dispersive, strong-field limit. This regime also gives access to spin-glass observables which can be used to detect replica symmetry breaking.

  6. Noncritical quadrature squeezing through spontaneous polarization symmetry breaking

    CERN Document Server

    Garcia-Ferrer, Ferran V; de Valcárcel, Germán J; Roldán, Eugenio

    2010-01-01

    We discuss the possibility of generating noncritical quadrature squeezing by spontaneous polarization symmetry breaking. We consider first type-II frequency-degenerate optical parametric oscillators, but discard them for a number of reasons. Then we propose a four-wave mixing cavity in which the polarization of the output mode is always linear but has an arbitrary orientation. We show that in such a cavity complete noise suppression in a quadrature of the output field occurs, irrespective of the parameter values.

  7. Symmetry-breaking instability in a prototypical driven granular gas.

    Science.gov (United States)

    Khain, Evgeniy; Meerson, Baruch

    2002-08-01

    Symmetry-breaking instability of a laterally uniform granular cluster (strip state) in a prototypical driven granular gas is investigated. The system consists of smooth hard disks in a two-dimensional box, colliding inelastically with each other and driven, at zero gravity, by a "thermal" wall. The limit of nearly elastic particle collisions is considered, and granular hydrodynamics with the Jenkins-Richman constitutive relations is employed. The hydrodynamic problem is completely described by two scaled parameters and the aspect ratio of the box. Marginal stability analysis predicts a spontaneous symmetry-breaking instability of the strip state, similar to that predicted recently for a different set of constitutive relations. If the system is big enough, the marginal stability curve becomes independent of the details of the boundary condition at the driving wall. In this regime, the density perturbation is exponentially localized at the elastic wall opposite the thermal wall. The short- and long-wavelength asymptotics of the marginal stability curves are obtained analytically in the dilute limit. The physics of the symmetry-breaking instability is discussed.

  8. Frustrated topological symmetry breaking: Geometrical frustration and anyon condensation

    Science.gov (United States)

    Schulz, Marc D.; Burnell, Fiona J.

    2016-10-01

    We study the phase diagram of a topological string-net-type lattice model in the presence of geometrically frustrated interactions. These interactions drive several phase transitions that reduce the topological order, leading to a rich phase diagram including both Abelian (Z2) and non-Abelian (Ising×Ising¯ ) topologically ordered phases, as well as phases with broken translational symmetry. Interestingly, one of these phases simultaneously exhibits (Abelian) topological order and long-ranged order due to translational symmetry breaking, with nontrivial interactions between excitations in the topological order and defects in the long-ranged order. We introduce a variety of effective models, valid along certain lines in the phase diagram, which can be used to characterize both topological and symmetry-breaking order in these phases and in many cases allow us to characterize the phase transitions that separate them. We use exact diagonalization and high-order series expansion to study areas of the phase diagram where these models break down and to approximate the location of the phase boundaries.

  9. Matter Mass Generation and Theta Vacuum Dynamical Spontaneous Symmetry Breaking

    CERN Document Server

    Roh, H S

    2001-01-01

    This work proposes a stringent concept of matter mass generation and Theta vacuum in the context of local gauge theory for the strong force under the constraint of the flat universe. The matter mass is generated as the consequence of dynamical spontaneous symmetry breaking (DSSB) of gauge symmetry and discrete symmetries, which is motivated by the parameter Theta representing the surface term. Matter mass generation introduces the typical features of constituent particle mass, dual Meissner effect, and hyperfine structure. The Theta term plays important roles on the DSSB of the gauge group and on the quantization of the matter and vacuum space. The Theta vacuum exhibits the intrinsic principal number and intrinsic angular momentum for intrinsic space quantization in analogy with the extrinsic principal number and extrinsic angular momentum for extrinsic space quantization.

  10. Quasiaverages, symmetry breaking and irreducible Green functions method

    Directory of Open Access Journals (Sweden)

    A.L.Kuzemsky

    2010-01-01

    Full Text Available The development and applications of the method of quasiaverages to quantum statistical physics and to quantum solid state theory and, in particular, to quantum theory of magnetism, were considered. It was shown that the role of symmetry (and the breaking of symmetries in combination with the degeneracy of the system was reanalyzed and essentially clarified within the framework of the method of quasiaverages. The problem of finding the ferromagnetic, antiferromagnetic and superconducting "symmetry broken" solutions of the correlated lattice fermion models was discussed within the irreducible Green functions method. A unified scheme for the construction of generalized mean fields (elastic scattering corrections and self-energy (inelastic scattering in terms of the equations of motion and Dyson equation was generalized in order to include the "source fields". This approach complements previous studies of microscopic theory of antiferromagnetism and clarifies the concepts of Neel sublattices for localized and itinerant antiferromagnetism and "spin-aligning fields" of correlated lattice fermions.

  11. Symmetry breaking, subgroup embeddings and the Weyl group

    CERN Document Server

    George, Damien P; Thompson, Jayne E; Volkas, Raymond R

    2013-01-01

    We present a systematic approach to writing adjoint Higgs vacuum expectation values (vevs), which break a symmetry G to differently embedded isomorphic copies of a subgroup belonging to the chain $G \\supset H_1 \\supset ... \\supset H_l $, as linear combinations of each other. Given an adjoint Higgs vacuum expectation value h breaking G \\rightarrow H, a full complement of vevs breaking G to different embeddings of the subgroup H can be generated through the Weyl group orbit of h. An explicit formula for recovering each vev is given. We focus on the case when H stabilizes the highest weight of the lowest dimensional fundamental representation, where the formula is exceedingly simple. We also discuss cases when the Higgs field is not in the adjoint representation and apply these techniques to current research problems, especially in domain-wall brane model building.

  12. EXECUTIVE SUMMARY OF THE SNOWMASS 2001 WORKING GROUP : ELECTROWEAK SYMMETRY BREAKING.

    Energy Technology Data Exchange (ETDEWEB)

    CARENA,M.; GERDES,D.W.; HABER,H.E.; TURCOT,A.S.; ZERWAS,P.M.

    2001-06-30

    In this summary report of the 2001 Snowmass Electroweak Symmetry Breaking Working Group, the main candidates for theories of electroweak symmetry breaking are surveyed, and the criteria for distinguishing among the different approaches are discussed. The potential for observing electroweak symmetry breaking phenomena at the upgraded Tevatron and the LHC is described. We emphasize the importance of a high-luminosity e{sup +}e{sup -} linear collider for precision measurements to clarify the underlying electroweak symmetry breaking dynamics. Finally, we note the possible roles of the {mu}{sup +} {mu}{sup -} collider and VLHC for further elucidating the physics of electroweak symmetry breaking.

  13. Electroweak Symmetry Breaking via UV Insensitive Anomaly Mediation

    Energy Technology Data Exchange (ETDEWEB)

    Kitano, Ryuichiro; Kribs, Graham D.; Murayama, Hitoshi

    2004-02-19

    Anomaly mediation solves the supersymmetric flavor and CP problems. This is because the superconformal anomaly dictates that supersymmetry breaking is transmitted through nearly flavor-blind infrared physics that is highly predictive and UV insensitive. Slepton mass squareds, however, are predicted to be negative. This can be solved by adding D-terms for U(1)_Y and U(1)_{B-L} while retaining the UV insensitivity. In this paper we consider electroweak symmetry breaking via UV insensitive anomaly mediation in several models. For the MSSM we find a stable vacuum when tanbeta< 1, but in this region the top Yukawa coupling blows up only slightly above the supersymmetry breaking scale. For the NMSSM, we find a stable electroweak breaking vacuum but with a chargino that is too light. Replacing the cubic singlet term in the NMSSM superpotential with a term linear in the singlet wefind a stable vacuum and viable spectrum. Most of the parameter region with correct vacua requires a large superpotential coupling, precisely what is expected in the"Fat Higgs'" model in which the superpotential is generated dynamically. We have therefore found the first viable UV complete, UV insensitive supersymmetry breaking model that solves the flavor and CP problems automatically: the Fat Higgs model with UV insensitive anomaly mediation. Moreover, the cosmological gravitino problem is naturally solved, opening up the possibility of realistic thermal leptogenesis.

  14. Quantum phase transitions with parity-symmetry breaking and hysteresis

    Science.gov (United States)

    Trenkwalder, A.; Spagnolli, G.; Semeghini, G.; Coop, S.; Landini, M.; Castilho, P.; Pezzè, L.; Modugno, G.; Inguscio, M.; Smerzi, A.; Fattori, M.

    2016-09-01

    Symmetry-breaking quantum phase transitions play a key role in several condensed matter, cosmology and nuclear physics theoretical models. Its observation in real systems is often hampered by finite temperatures and limited control of the system parameters. In this work we report, for the first time, the experimental observation of the full quantum phase diagram across a transition where the spatial parity symmetry is broken. Our system consists of an ultracold gas with tunable attractive interactions trapped in a spatially symmetric double-well potential. At a critical value of the interaction strength, we observe a continuous quantum phase transition where the gas spontaneously localizes in one well or the other, thus breaking the underlying symmetry of the system. Furthermore, we show the robustness of the asymmetric state against controlled energy mismatch between the two wells. This is the result of hysteresis associated with an additional discontinuous quantum phase transition that we fully characterize. Our results pave the way to the study of quantum critical phenomena at finite temperature, the investigation of macroscopic quantum tunnelling of the order parameter in the hysteretic regime and the production of strongly quantum entangled states at critical points.

  15. Inhomogeneous chiral symmetry breaking in dense neutron-star matter

    Energy Technology Data Exchange (ETDEWEB)

    Buballa, Michael; Carignano, Stefano [Technische Universitaet Darmstadt, Theoriezentrum, Institut fuer Kernphysik, Darmstadt (Germany)

    2016-03-15

    An increasing number of model results suggests that chiral symmetry is broken inhomogeneously in a certain window at intermediate densities in the QCD phase diagram. This could have significant effects on the properties of compact stars, possibly leading to new astrophysical signatures. In this contribution we discuss this idea by reviewing recent results on inhomogeneous chiral symmetry breaking under an astrophysics-oriented perspective. After introducing two commonly studied spatial modulations of the chiral condensate, the chiral density wave and the real kink crystal, we focus on their properties and their effect on the equation of state of quark matter. We also describe how these crystalline phases are affected by different elements which are required for a realistic description of a compact star, such as charge neutrality, the presence of magnetic fields, vector interactions and the interplay with color superconductivity. Finally, we discuss possible signatures of inhomogeneous chiral symmetry breaking in the core of compact stars, considering the cases of mass-radius relations and neutrino emissivity explicitly. (orig.)

  16. Symmetry breaking and singularity structure in Bose-Einstein condensates

    Science.gov (United States)

    Commeford, K. A.; Garcia-March, M. A.; Ferrando, A.; Carr, Lincoln D.

    2012-08-01

    We determine the trajectories of vortex singularities that arise after a single vortex is broken by a discretely symmetric impulse in the context of Bose-Einstein condensates in a harmonic trap. The dynamics of these singularities are analyzed to determine the form of the imprinted motion. We find that the symmetry-breaking process introduces two effective forces: a repulsive harmonic force that causes the daughter trajectories to be ejected from the parent singularity and a Magnus force that introduces a torque about the axis of symmetry. For the analytical noninteracting case we find that the parent singularity is reconstructed from the daughter singularities after one period of the trapping frequency. The interactions between singularities in the weakly interacting system do not allow the parent vortex to be reconstructed. Analytic trajectories were compared to the actual minima of the wave function, showing less than 0.5% error for an impulse strength of v=0.00005. We show that these solutions are valid within the impulse regime for various impulse strengths using numerical integration of the Gross-Pitaevskii equation. We also show that the actual duration of the symmetry-breaking potential does not significantly change the dynamics of the system as long as the strength is below v=0.0005.

  17. Non-equilibrium evolution of a "Tsunami" Dynamical Symmetry Breaking

    CERN Document Server

    Boyanovsky, D; Holman, R; Kumar, S P; Pisarski, R D; Boyanovsky, Daniel; Vega, Hector J. de; Holman, Richard; Pisarski, Robert D.

    1998-01-01

    We propose to study the non-equilibrium features of heavy-ion collisions by following the evolution of an initial state with a large number of quanta with a distribution around a momentum |\\vec k_0| corresponding to a thin spherical shell in momentum space, a `tsunami'. An O(N); ({\\vec \\Phi}^2)^2 model field theory in the large N limit is used as a framework to study the non-perturbative aspects of the non-equilibrium dynamics including a resummation of the effects of the medium (the initial particle distribution). In a theory where the symmetry is spontaneously broken in the absence of the medium, when the initial number of particles per correlation volume is chosen to be larger than a critical value the medium effects can restore the symmetry of the initial state. We show that if one begins with such a symmetry-restored, non-thermal, initial state, non-perturbative effects automatically induce spinodal instabilities leading to a dynamical breaking of the symmetry. As a result there is explosive particle pro...

  18. Crucial role of neutrinos in the electroweak symmetry breaking

    Science.gov (United States)

    Smetana, Adam

    2013-12-01

    Not only the top-quark condensate appears to be the natural significant source of dynamical electroweak symmetry breaking. Provided the seesaw scenario, the neutrinos can have their Dirac masses large enough so that their condensates contribute significantly to the electroweak scale as well. We address the question of a phenomenological feasibility of the top-quark and neutrino condensation conspiracy against the electroweak symmetry within the simplifying two-composite-Higgs-doublet model. Mandatory is to reproduce the masses of electroweak gauge bosons, the top-quark mass and the recently observed scalar mass of 125 GeV, and to satisfy the upper limits on absolute value of active neutrino masses. To accomplish that, the number of right-handed neutrinos participating on the seesaw mechanism turns out to be rather large, O(100-1000).

  19. Crucial role of neutrinos in the electroweak symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Smetana, Adam [Institute of Experimental and Applied Physics, Czech Technical University in Prague, Horská 3a/22, 128 00 Prague 2 (Czech Republic)

    2013-12-30

    Not only the top-quark condensate appears to be the natural significant source of dynamical electroweak symmetry breaking. Provided the seesaw scenario, the neutrinos can have their Dirac masses large enough so that their condensates contribute significantly to the electroweak scale as well. We address the question of a phenomenological feasibility of the top-quark and neutrino condensation conspiracy against the electroweak symmetry within the simplifying two-composite-Higgs-doublet model. Mandatory is to reproduce the masses of electroweak gauge bosons, the top-quark mass and the recently observed scalar mass of 125 GeV, and to satisfy the upper limits on absolute value of active neutrino masses. To accomplish that, the number of right-handed neutrinos participating on the seesaw mechanism turns out to be rather large, O(100–1000)

  20. Matter inflation with A{sub 4} flavour symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Antusch, Stefan [Department of Physics, University of Basel, Klingelbergstrasse 82, Basel, CH-4056 Switzerland (Switzerland); Nolde, David, E-mail: stefan.antusch@unibas.ch, E-mail: david.nolde@unibas.ch [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, München, D-80805 Germany (Germany)

    2013-10-01

    We discuss model building in tribrid inflation, which is a framework for realising inflation in the matter sector of supersymmetric particle physics models. The inflaton is a D-flat combination of matter fields, and inflation ends by a phase transition in which some Higgs field obtains a vacuum expectation value. We first describe the general procedure for implementing tribrid inflation in realistic models of particle physics that can be applied to a wide variety of BSM particle physics models around the GUT scale. We then demonstrate how the procedure works for an explicit lepton flavour model based on an A{sub 4} family symmetry. The model is both predictive and phenomenologically viable, and illustrates how tribrid inflation connects cosmological and particle physics parameters. In particular, it predicts a relation between the neutrino Yukawa coupling and the running of the spectral index α{sub s}. We also show how topological defects from the flavour symmetry breaking can be avoided automatically.

  1. Gauge Invariance and Symmetry Breaking by Topology and Energy Gap

    Directory of Open Access Journals (Sweden)

    Franco Strocchi

    2015-10-01

    Full Text Available For the description of observables and states of a quantum system, it may be convenient to use a canonical Weyl algebra of which only a subalgebra A, with a non-trivial center Z, describes observables, the other Weyl operators playing the role of intertwiners between inequivalent representations of A. In particular, this gives rise to a gauge symmetry described by the action of Z. A distinguished case is when the center of the observables arises from the fundamental group of the manifold of the positions of the quantum system. Symmetries that do not commute with the topological invariants represented by elements of Z are then spontaneously broken in each irreducible representation of the observable algebra, compatibly with an energy gap; such a breaking exhibits a mechanism radically different from Goldstone and Higgs mechanisms. This is clearly displayed by the quantum particle on a circle, the Bloch electron and the two body problem.

  2. Matter inflation with A_4 flavour symmetry breaking

    CERN Document Server

    Antusch, Stefan

    2013-01-01

    We discuss model building in tribrid inflation, which is a framework for realising inflation in the matter sector of supersymmetric particle physics models. The inflaton is a D-flat combination of matter fields, and inflation ends by a phase transition in which some Higgs field obtains a vacuum expectation value. We first describe the general procedure for implementing tribrid inflation in realistic models of particle physics that can be applied to a wide variety of BSM particle physics models around the GUT scale. We then demonstrate how the procedure works for an explicit lepton flavour model based on an A_4 family symmetry. The model is both predictive and phenomenologically viable, and illustrates how tribrid inflation connects cosmological and particle physics parameters. In particular, it predicts a relation between the neutrino Yukawa coupling and the running of the spectral index alpha_s. We also show how topological defects from the flavour symmetry breaking can be avoided automatically.

  3. Orbital engineering in symmetry-breaking polar heterostructures.

    Science.gov (United States)

    Disa, Ankit S; Kumah, Divine P; Malashevich, Andrei; Chen, Hanghui; Arena, Dario A; Specht, Eliot D; Ismail-Beigi, Sohrab; Walker, F J; Ahn, Charles H

    2015-01-16

    We experimentally demonstrate a novel approach to substantially modify orbital occupations and symmetries in electronically correlated oxides. In contrast to methods using strain or confinement, this orbital tuning is achieved by exploiting charge transfer and inversion symmetry breaking using atomically layered heterostructures. We illustrate the technique in the LaTiO_{3}-LaNiO_{3}-LaAlO_{3} system; a combination of x-ray absorption spectroscopy and ab initio theory reveals electron transfer and concomitant polar fields, resulting in a ∼50% change in the occupation of Ni d orbitals. This change is sufficiently large to remove the orbital degeneracy of bulk LaNiO_{3} and creates an electronic configuration approaching a single-band Fermi surface. Furthermore, we theoretically show that such three-component heterostructuring is robust and tunable by choice of insulator in the heterostructure, providing a general method for engineering orbital configurations and designing novel electronic systems.

  4. Polarity Formation in Molecular Crystals as a Symmetry Breaking Effect

    Directory of Open Access Journals (Sweden)

    Luigi Cannavacciuolo

    2016-03-01

    Full Text Available The transition of molecular crystals into a polar state is modeled by a one-dimensional Ising Hamiltonian in multipole expansion and a suitable order parameter. Two symmetry breakings are necessary for the transition: the translational and the spin flip invariance—the former being broken by geometric constraints, the latter by the interaction of the first non-zero multipole with the next order multipole. Two different behaviors of the thermal average of the order parameter as a function of position are found. The free energy per lattice site converges to a finite value in the thermodynamic limit showing the consistency of the model in a macroscopic representation.

  5. Evanescent Wave-Assisted Symmetry Breaking of Gold Dipolar Nanoantennas

    Science.gov (United States)

    Yang, Jhen-Hong; Chen, Kuo-Ping

    2016-09-01

    Symmetry-breaking and scattering cancellation were observed in the dark-mode resonance of dipolar gold nanoantennas (NAs) on glass substrates coupled with oblique incidence and total internal reflection. With the assistance of evanescent waves, the coupling efficiency was twice as strong when the incidence angle was larger than the critical angle. The Hamiltonian equation and absorption spectra were used to analyze the hybridization model of symmetric dipolar gold NAs. The antibonding mode could be coupled successfully by both transverse-magnetic (TM) and transverse-electric (TE) polarizations to NAs when the dimers orientation is parallel to the propagation direction of evanescent waves.

  6. Catalysis of dynamical symmetry breaking by a magnetic field

    CERN Document Server

    Miransky, V A

    1995-01-01

    A constant magnetic field in 3+1 and 2+1 dimensions is a strong catalyst of dynamical chiral symmetry breaking, leading to the generation of a fermion mass even at the weakest attractive interaction between fermions. The essence of this effect is the dimensional reduction D/rightarrow D-2 in the dynamics of fermion pairing in a magnetic field. The effect is illustrated in the Nambu-Jona-Lasinio model and QED. Possible applications of this effect and its extension to inhomogeneous field configurations are discussed.

  7. Introduction to weak interaction theories with dynamical symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Lane, K.D.; Peskin, M.E.

    1980-07-01

    A straightforward introduction to theories of the weak interactions with dynamical symmetry breaking-theories of technicolor or hypercolor is presented. The intent is to inform experimentalists, but also to goad theorists. The motivation for considering theories of this type is described. The structure that such a theory must possess, including new gauge interactions at mass scales of 1-100 TeV is then outlined. Despite their reliance on phenomena at such enormous energies, these theories contain new phenomena observable at currently accessible energies. Three such effects which are especially likely to be observed are described.

  8. From Running Gluon Mass to Chiral Symmetry Breaking

    CERN Document Server

    Oliveira, Orlando; Dudal, D; Frederico, T; de Paula, W; Vandersickel, N

    2011-01-01

    The gluon propagator is one of the fundamental Green's functions of QCD. It is an essential ingredient in, for example, the modeling of the Schwinger-Dyson equation used to describe hadronic phenomenology. From the Landau gauge gluon propagator, computed with lattice QCD methods, we discuss its interpretation as a massive propagator and measure the gluon mass as a function of the momenta. Special attention is given to the mass at infrared scales. In the last part of the talk, the gluon mass and chiral symmetry breaking are related via an effective model for QCD.

  9. Construction of a ferritin dimer by breaking its symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, B; Uenuma, M; Uraoka, Y; Yamashita, I [Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192 (Japan); CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan)

    2010-11-05

    Ferritin has a mono-dispersed structure and biomineralization properties that allow it to form various kinds of nanoparticles and play an important role in modern nanotechnology. Independent nanoparticles synthesized in ferritin are valuable, but moreover a pair of nanoparticles can bring new properties different from those of the independent nanoparticles. In this study, by breaking ferritin's symmetry, we successfully produced ferritin dimers which provide real protein frameworks for nanoparticle dimer formation. Identical nickel hydro-oxide nanoparticle dimers were produced by simply biomineralizing ferritin dimers. The method presented here can produce multi-functional ferritin dimers with different kinds of nanoparticles.

  10. Mass varying neutrinos, symmetry breaking, and cosmic acceleration

    Science.gov (United States)

    Sadjadi, H. Mohseni; Anari, V.

    2017-06-01

    We introduce a new proposal for the onset of cosmic acceleration based on mass varying neutrinos. When massive neutrinos become nonrelativistic, the Z2 symmetry breaks, and the quintessence potential becomes positive from its initially zero value. This positive potential behaves like a cosmological constant at the present era and drives the Universe's acceleration during the slow roll evolution of the quintessence. In contrast to Λ CDM model, the dark energy in our model is dynamical, and the acceleration is not persistent. Contrary to some of the previous models of dark energy with mass varying neutrinos, we do not use the adiabaticity condition, which leads to instability.

  11. Cosmological constraints on spontaneous R-symmetry breaking models

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, Yuta; Kobayashi, Tatsuo [Kyoto Univ. (Japan). Dept. of Physics; Kamada, Kohei [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Ookouchi, Yutaka [Kyoto Univ. (Japan). Dept. of Physics; Kyoto Univ. (Japan). The Hakubi Center for Advanced Research and Dept. of Physics

    2012-11-15

    We study general constraints on spontaneous R-symmetry breaking models coming from the cosmological effects of the pseudo Nambu-Goldstone bosons, R-axions. They are substantially produced in the early Universe and may cause several cosmological problems. We focus on relatively long-lived R-axions and find that in a wide range of parameter space, models are severely constrained. In particular, R-axions with mass less than 1 MeV are generally ruled out for relatively high reheating temperature, T{sub R}>10 GeV.

  12. Quantum transport enhancement by time-reversal symmetry breaking.

    Science.gov (United States)

    Zimborás, Zoltán; Faccin, Mauro; Kádár, Zoltán; Whitfield, James D; Lanyon, Ben P; Biamonte, Jacob

    2013-01-01

    Quantum mechanics still provides new unexpected effects when considering the transport of energy and information. Models of continuous time quantum walks, which implicitly use time-reversal symmetric Hamiltonians, have been intensely used to investigate the effectiveness of transport. Here we show how breaking time-reversal symmetry of the unitary dynamics in this model can enable directional control, enhancement, and suppression of quantum transport. Examples ranging from exciton transport to complex networks are presented. This opens new prospects for more efficient methods to transport energy and information.

  13. Examining a possible cascade effect in chiral symmetry breaking

    CERN Document Server

    Fariborz, Amir H

    2016-01-01

    We examine a toy model and a cascade effect for confinement and chiral symmetry breaking which consists in several phase transitions corresponding to the formation of bound states and chiral condensates with different number of fermions for a strong group. We analyze two examples: regular QCD where we calculate the "four quark" vacuum condensate and a preon composite model based on QCD at higher scales. In this context we also determine the number of flavors at which the second chiral and confinement phase transitions occur and discuss the consequences.

  14. Charge symmetry breaking in mirror nuclei from quarks

    CERN Document Server

    Tsushima, K; Thomas, A W

    1999-01-01

    The binding energy differences of the valence proton and neutron of the mirror nuclei, $^{15}$O -- $^{15}$N, $^{17}$F -- $^{17}$O, $^{39}$Ca -- $^{39}$K and $^{41}$Sc -- $^{41}$Ca, are calculated using the quark-meson coupling (QMC) model. The calculation involves nuclear structure and shell effects explicitly. It is shown that binding energy differences of a few hundred keV arise from the strong interaction, even after subtracting all electromagnetic corrections. The origin of these differences may be ascribed to the charge symmetry breaking effects set in the strong interaction through the u and d current quark mass difference.

  15. Orientational glass: Full replica symmetry breaking in generalized spin glass-like models without reflection symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Tareyeva, E.E. [Institute for High Pressure Physics, Russian Academy of Sciences, 142190 Troitsk (Russian Federation); Schelkacheva, T.I., E-mail: tanschelk@gmail.com [Institute for High Pressure Physics, Russian Academy of Sciences, 142190 Troitsk (Russian Federation); Chtchelkatchev, N.M. [Institute for High Pressure Physics, Russian Academy of Sciences, 142190 Troitsk (Russian Federation); L.D. Landau Institute for Theoretical Physics, Russian Academy of Sciences, 117940 Moscow (Russian Federation); Department of Theoretical Physics, Moscow Institute of Physics and Technology, 141700 Moscow (Russian Federation)

    2013-02-15

    We investigate near the point of glass transition the expansion of the free energy corresponding to the generalized Sherrington–Kirkpatrick model with arbitrary diagonal operators U{sup -hat} standing instead of Ising spins. We focus on the case when U{sup -hat} is an operator with broken reflection symmetry. Such a consideration is important for understanding the behavior of spin glass-like phases in a number of real physical systems, mainly in orientational glasses in mixed molecular crystals which present just the case. We build explicitly a full replica symmetry breaking (FRSB) solution of the equations for the orientational glass order parameters when the nonsymmetric part of U{sup -hat} is small. This particular result presents a counterexample in the context of usually adopted conjecture of the absence of FRSB solution in systems with no reflection symmetry.

  16. Orientational glass: Full replica symmetry breaking in generalized spin glass-like models without reflection symmetry

    Science.gov (United States)

    Tareyeva, E. E.; Schelkacheva, T. I.; Chtchelkatchev, N. M.

    2013-02-01

    We investigate near the point of glass transition the expansion of the free energy corresponding to the generalized Sherrington-Kirkpatrick model with arbitrary diagonal operators Uˆ standing instead of Ising spins. We focus on the case when Uˆ is an operator with broken reflection symmetry. Such a consideration is important for understanding the behavior of spin glass-like phases in a number of real physical systems, mainly in orientational glasses in mixed molecular crystals which present just the case. We build explicitly a full replica symmetry breaking (FRSB) solution of the equations for the orientational glass order parameters when the nonsymmetric part of Uˆ is small. This particular result presents a counterexample in the context of usually adopted conjecture of the absence of FRSB solution in systems with no reflection symmetry.

  17. Spontaneous Symmetry Breaking as a Basis of Particle Mass

    Energy Technology Data Exchange (ETDEWEB)

    Quigg, Chris; /Fermilab /CERN

    2007-04-01

    Electroweak theory joins electromagnetism with the weak force in a single quantum field theory, ascribing the two fundamental interactions--so different in their manifestations--to a common symmetry principle. How the electroweak gauge symmetry is hidden is one of the most urgent and challenging questions facing particle physics. The provisional answer incorporated in the ''standard model'' of particle physics was formulated in the 1960s by Higgs, by Brout & Englert, and by Guralnik, Hagen, & Kibble: The agent of electroweak symmetry breaking is an elementary scalar field whose self-interactions select a vacuum state in which the full electroweak symmetry is hidden, leaving a residual phase symmetry of electromagnetism. By analogy with the Meissner effect of the superconducting phase transition, the Higgs mechanism, as it is commonly known, confers masses on the weak force carriers W{sup {+-}} and Z. It also opens the door to masses for the quarks and leptons, and shapes the world around us. It is a good story--though an incomplete story--and we do not know how much of the story is true. Experiments that explore the Fermi scale (the energy regime around 1 TeV) during the next decade will put the electroweak theory to decisive test, and may uncover new elements needed to construct a more satisfying completion of the electroweak theory. The aim of this article is to set the stage by reporting what we know and what we need to know, and to set some ''Big Questions'' that will guide our explorations.

  18. Spontaneous symmetry breaking and masses numerical results in DFR noncommutative space-time

    CERN Document Server

    Neves, M J

    2015-01-01

    With the elements of the Doplicher, Fredenhagen and Roberts (DFR) noncommutative formalism, we have constructed the standard electroweak model. To accomplish this task we have begun with the WM-product basis group of symmetry. We have introduced the spontaneous symmetry breaking and the hypercharge in DFR framework. The electroweak symmetry breaking was analyzed and the masses of the new bosons were computed.

  19. The origin of a primordial genome through spontaneous symmetry breaking.

    Science.gov (United States)

    Takeuchi, Nobuto; Hogeweg, Paulien; Kaneko, Kunihiko

    2017-08-15

    The heredity of a cell is provided by a small number of non-catalytic templates-the genome. How did genomes originate? Here, we demonstrate the possibility that genome-like molecules arise from symmetry breaking between complementary strands of self-replicating molecules. Our model assumes a population of protocells, each containing a population of self-replicating catalytic molecules. The protocells evolve towards maximising the catalytic activities of the molecules to increase their growth rates. Conversely, the molecules evolve towards minimising their catalytic activities to increase their intracellular relative fitness. These conflicting tendencies induce the symmetry breaking, whereby one strand of the molecules remains catalytic and increases its copy number (enzyme-like molecules), whereas the other becomes non-catalytic and decreases its copy number (genome-like molecules). This asymmetry increases the equilibrium cellular fitness by decreasing mutation pressure and increasing intracellular genetic drift. These results implicate conflicting multilevel evolution as a key cause of the origin of genetic complexity.Early molecules of life likely served both as templates and catalysts, raising the question of how functionally distinct genomes and enzymes arose. Here, the authors show that conflict between evolution at the molecular and cellular levels can drive functional differentiation of the two strands of self-replicating molecules and lead to copy number differences between the two.

  20. Tachyonic Instability and Dynamics of Spontaneous Symmetry Breaking

    CERN Document Server

    Felder, G; Linde, Andrei D; Felder, Gary; Kofman, Lev; Linde, Andrei

    2001-01-01

    Spontaneous symmetry breaking usually occurs due to the tachyonic (spinodal) instability of a scalar field near the top of its effective potential at $\\phi = 0$. Naively, one might expect the field $\\phi$ to fall from the top of the effective potential and then experience a long stage of oscillations with amplitude O(v) near the minimum of the effective potential at $\\phi = v$ until it gives its energy to particles produced during these oscillations. However, it was recently found that the tachyonic instability rapidly converts most of the potential energy V(0) into the energy of colliding classical waves of the scalar field. This conversion, which was called "tachyonic preheating," is so efficient that symmetry breaking typically completes within a single oscillation of the field distribution as it rolls towards the minimum of its effective potential. In this paper we give a detailed description of tachyonic preheating and show that the dynamics of this process crucially depend on the shape of the effective ...

  1. Spontaneous Chiral Symmetry Breaking as Condensation of Dynamical Chirality

    CERN Document Server

    Alexandru, Andrei

    2012-01-01

    The occurrence of spontaneous chiral symmetry breaking (SChSB) is equivalent to sufficient abundance of Dirac near-zeromodes. However, dynamical mechanism leading to breakdown of chiral symmetry should be naturally reflected in chiral properties of the modes. Here we offer such connection, presenting evidence that SChSB in QCD proceeds via the appearance of modes exhibiting dynamical tendency for local chiral polarization. These modes form a band of finite width Lambda_ch (chiral polarization scale) around the surface of otherwise anti--polarized Dirac sea, and condense. Lambda_ch characterizes the dynamics of the breaking phenomenon and can be converted to a quark mass scale, thus offering conceptual means to determine which quarks of nature are governed by broken chiral dynamics. It is proposed that, within the context of SU(3) gauge theories with fundamental Dirac quarks, mode condensation is equivalent to chiral polarization, making Lambda_ch an "order parameter" of SChSB. Several uses of these features, ...

  2. Cosmological signature change in Cartan Gravity with dynamical symmetry breaking

    CERN Document Server

    Magueijo, Joao; Westman, Hans; Zlosnik, T G

    2013-01-01

    We investigate the possibility for classical metric signature change in a straightforward generalization of the first order formulation of gravity, dubbed "Cartan gravity". The mathematical structure of this theory mimics the electroweak theory in that the basic ingredients are an $SO(1,4)$ Yang-Mills gauge field $A^{ab}_{\\phantom{ab}\\mu}$ and a symmetry breaking Higgs field $V^{a}$, with no metric or affine structure of spacetime presupposed. However, these structures can be recovered, with the predictions of General Relativity exactly reproduced, whenever the Higgs field breaking the symmetry to $SO(1,3)$ is forced to have a constant (positive) norm $V^aV_a$. This restriction is usually imposed "by hand", but in analogy with the electroweak theory we promote the gravitational Higgs field $V^a$ to a genuine dynamical field, subject to non-trivial equations of motion. Even though we limit ourselves to actions polynomial in these variables, we discover a rich phenomenology. Most notably we derive classical cos...

  3. Spontaneous breaking of time-reversal symmetry in topological insulators

    Energy Technology Data Exchange (ETDEWEB)

    Karnaukhov, Igor N., E-mail: karnaui@yahoo.com

    2017-06-21

    Highlights: • Proposed a new approach for description of phase transitions in topological insulators. • Considered the mechanism of spontaneous breaking of time-reversal symmetry in topological insulators. • The Haldane model can be implemented in real compounds of the condensed matter physics. - Abstract: The system of spinless fermions on a hexagonal lattice is studied. We have considered tight-binding model with the hopping integrals between the nearest-neighbor and next-nearest-neighbor lattice sites, that depend on the direction of the link. The links are divided on three types depending on the direction, the hopping integrals are defined by different phases along the links. The energy of the system depends on the phase differences, the solutions for the phases, that correspond to the minimums of the energy, lead to a topological insulator state with the nontrivial Chern numbers. We have analyzed distinct topological states and phase transitions, the behavior of the chiral gapless edge modes, have defined the Chern numbers. The band structure of topological insulator (TI) is calculated, the ground-state phase diagram in the parameter space is obtained. We propose a novel mechanism of realization of TI, when the TI state is result of spontaneous breaking of time-reversal symmetry due to nontrivial stable solutions for the phases that determine the hopping integrals along the links and show that the Haldane model can be implemented in real compounds of the condensed matter physics.

  4. 3D toroidal physics: testing the boundaries of symmetry breaking

    Science.gov (United States)

    Spong, Don

    2014-10-01

    Toroidal symmetry is an important concept for plasma confinement; it allows the existence of nested flux surface MHD equilibria and conserved invariants for particle motion. However, perfect symmetry is unachievable in realistic toroidal plasma devices. For example, tokamaks have toroidal ripple due to discrete field coils, optimized stellarators do not achieve exact quasi-symmetry, the plasma itself continually seeks lower energy states through helical 3D deformations, and reactors will likely have non-uniform distributions of ferritic steel near the plasma. Also, some level of designed-in 3D magnetic field structure is now anticipated for most concepts in order to lead to a stable, steady-state fusion reactor. Such planned 3D field structures can take many forms, ranging from tokamaks with weak 3D ELM-suppression fields to stellarators with more dominant 3D field structures. There is considerable interest in the development of unified physics models for the full range of 3D effects. Ultimately, the questions of how much symmetry breaking can be tolerated and how to optimize its design must be addressed for all fusion concepts. Fortunately, significant progress is underway in theory, computation and plasma diagnostics on many issues such as magnetic surface quality, plasma screening vs. amplification of 3D perturbations, 3D transport, influence on edge pedestal structures, MHD stability effects, modification of fast ion-driven instabilities, prediction of energetic particle heat loads on plasma-facing materials, effects of 3D fields on turbulence, and magnetic coil design. A closely coupled program of simulation, experimental validation, and design optimization is required to determine what forms and amplitudes of 3D shaping and symmetry breaking will be compatible with future fusion reactors. The development of models to address 3D physics and progress in these areas will be described. This work is supported both by the US Department of Energy under Contract DE

  5. Supersymmetry in a sector of Higgsless electroweak symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Knochel, Alexander Karl

    2009-05-11

    In this thesis we have investigated phenomenological implications which arise for cosmology and collider physics when the electroweak symmetry breaking sector of warped higgsless models is extended to include warped supersymmetry with conserved R parity. The goal was to find the simplest supersymmetric extension of these models which still has a realistic light spectrum including a viable dark matter candidate. To accomplish this, we have used the same mechanism which is already at work for symmetry breaking in the electroweak sector to break supersymmetry as well, namely symmetry breaking by boundary conditions. While supersymmetry in five dimensions contains four supercharges and is therefore directly related to 4D N=2 supersymmetry, half of them are broken by the background leaving us with ordinary N=1 theory in the massless sector after Kaluza-Klein expansion. We thus use boundary conditions to model the effects of a breaking mechanism for the remaining two supercharges. The simplest viable scenario to investigate is a supersymmetric bulk and IR brane without supersymmetry on the UV brane. Even though parts of the light spectrum are effectively projected out by this mechanism, we retain the rich phenomenology of complete N=2 supermultiplets in the Kaluza-Klein sector. While the light supersymmetric spectrum consists of electroweak gauginos which get their O(100 GeV) masses from IR brane electroweak symmetry breaking, the light gluinos and squarks are projected out on the UV brane. The neutralinos, as mass eigenstates of the neutral bino-wino sector, are automatically the lightest gauginos, making them LSP dark matter candidates with a relic density that can be brought to agreement withWMAP measurements without extensive tuning of parameters. For chargino masses close to the experimental lower bounds at around m{sub {chi}{sup +}}{approx}100.. 110 GeV, the dark matter relic density points to LSP masses of around m{sub {chi}}{approx}90 GeV. At the LHC, the

  6. Spontaneous symmetry breaking in vortex systems with two repulsive lengthscales

    Science.gov (United States)

    Curran, P. J.; Desoky, W. M.; Milos̆ević, M. V.; Chaves, A.; Laloë, J.-B.; Moodera, J. S.; Bending, S. J.

    2015-01-01

    Scanning Hall probe microscopy (SHPM) has been used to study vortex structures in thin epitaxial films of the superconductor MgB2. Unusual vortex patterns observed in MgB2 single crystals have previously been attributed to a competition between short-range repulsive and long-range attractive vortex-vortex interactions in this two band superconductor; the type 1.5 superconductivity scenario. Our films have much higher levels of disorder than bulk single crystals and therefore both superconducting condensates are expected to be pushed deep into the type 2 regime with purely repulsive vortex interactions. We observe broken symmetry vortex patterns at low fields in all samples after field-cooling from above Tc. These are consistent with those seen in systems with competing repulsions on disparate length scales, and remarkably similar structures are reproduced in dirty two band Ginzburg-Landau calculations, where the simulation parameters have been defined by experimental observations. This suggests that in our dirty MgB2 films, the symmetry of the vortex structures is broken by the presence of vortex repulsions with two different lengthscales, originating from the two distinct superconducting condensates. This represents an entirely new mechanism for spontaneous symmetry breaking in systems of superconducting vortices, with important implications for pinning phenomena and high current density applications. PMID:26492969

  7. Evolution of the genetic code through progressive symmetry breaking.

    Science.gov (United States)

    Lenstra, Reijer

    2014-04-21

    Evolution of the genetic code in an early RNA world is dependent on the steadily improving specificity of the coevolving protein synthesis machinery for codons, anticodons, tRNAs and amino acids. In the beginning, there is RNA but the machinery does not distinguish yet between the codons, which therefore all encode the same information. Synonymous codons are equivalent under a symmetry group that exchanges (permutes) the codons without affecting the code. The initial group changes any codon into any other by permuting the order of the bases in the triplet as well as by replacing the four RNA bases with each other at every codon position. This group preserves the differences between codons, known as Hamming distances, with a 1-distance corresponding to a single point mutation. Stepwise breaking of the group into subgroups divides the 64 codons into progressively smaller subsets - blocks of equivalent codons under the smaller symmetry groups, with each block able to encode a different message. This formalism prescribes how the evolving machinery increasingly differentiates between codons. The model indicates that primitive ribosomes first identified a unique mRNA reading frame to break the group permuting the order of the bases and subsequently enforced increasingly stringent codon-anticodon basepairing rules to break the subgroups permuting the four bases at each codon position. The modern basepairing rules evolve in five steps and at each step the number of codon blocks doubles. The fourth step generates 16 codon blocks corresponding with the 16 family boxes of the standard code and the last step splits these boxes into 32 blocks of commonly two, but rarely one or three, synonymous codons. The evolving codes transmit at most one message per codon block and as the number of messages increases so does the specificity of the code and of protein synthesis. The selective advantage conferred by better functioning proteins drives the symmetry breaking process. Over time

  8. Dynamical symmetry breaking in chiral gauge theories with direct-product gauge groups

    Science.gov (United States)

    Shi, Yan-Liang; Shrock, Robert

    2016-09-01

    We analyze patterns of dynamical symmetry breaking in strongly coupled chiral gauge theories with direct-product gauge groups G . If the gauge coupling for a factor group Gi⊂G becomes sufficiently strong, it can produce bilinear fermion condensates that break the Gi symmetry itself and/or break other gauge symmetries Gj⊂G . Our comparative study of a number of strongly coupled direct-product chiral gauge theories elucidates how the patterns of symmetry breaking depend on the structure of G and on the relative sizes of the gauge couplings corresponding to factor groups in the direct product.

  9. Dynamical Symmetry Breaking in Chiral Gauge Theories with Direct-Product Gauge Groups

    CERN Document Server

    Shi, Yan-Liang

    2016-01-01

    We analyze patterns of dynamical symmetry breaking in strongly coupled chiral gauge theories with direct-product gauge groups $G$. If the gauge coupling for a factor group $G_i \\subset G$ becomes sufficiently strong, it can produce bilinear fermion condensates that break the $G_i$ symmetry itself and/or break other gauge symmetries $G_j \\subset G$. Our comparative study of a number of strongly coupled direct-product chiral gauge theories elucidates how the patterns of symmetry breaking depend on the structure of $G$ and on the relative sizes of the gauge couplings corresponding to factor groups in the direct product.

  10. Dynamical electroweak symmetry breaking due to strong Yukawa interactions

    Science.gov (United States)

    Beneš, Petr; Brauner, Tomáš; Smetana, Adam

    2009-11-01

    We present a new mechanism for electroweak symmetry breaking (EWSB) based on a strong Yukawa dynamics. We consider an SU(2)L × U(1)Y gauge invariant model endowed with the usual Standard Model fermion multiplets and with two massive scalar doublets. We show that, unlike in the Standard Model, EWSB is possible even with vanishing vacuum expectation values of the scalars. Such EWSB is achieved dynamically by means of the (presumably strong) Yukawa couplings and manifests itself by the emergence of fermion and gauge boson masses and scalar mass splittings, which are expressed in a closed form in terms of the fermion and scalar proper self-energies. The 'would-be' Nambu-Goldstone bosons are shown to be composites of both the fermions and the scalars. We demonstrate that the simplest version of the model is compatible with basic experimental constraints.

  11. Dynamics of the universe and spontaneous symmetry breaking

    Science.gov (United States)

    Kazanas, D.

    1980-01-01

    It is shown that the presence of a phase transition early in the history of the universe, associated with spontaneous symmetry breaking (believed to take place at very high temperatures at which the various fundamental interactions unify), significantly modifies its dynamics and evolution. This is due to the energy 'pumping' during the phase transition from the vacuum to the substance, rather than the gravitating effects of the vacuum. The expansion law of the universe then differs substantially from the relation considered so far for the very early time expansion. In particular it is shown that under certain conditions this expansion law is exponential. It is further argued that under reasonable assumptions for the mass of the associated Higgs boson this expansion stage could last long enough to potentially account for the observed isotropy of the universe.

  12. Chiral symmetry breaking as open string tachyon condensation

    CERN Document Server

    Casero, R; Paredes, A; Casero, Roberto; Kiritsis, Elias; Paredes, Angel

    2007-01-01

    We consider a general framework to study holographically the dynamics of fundamental quarks in a confining gauge theory. Flavors are introduced by placing a set of (coincident) branes and antibranes on a background dual to a confining color theory. The spectrum contains an open string tachyon and its condensation describes the U(N_f)_L x U(N_f)_R -> U(N_f)_V symmetry breaking. By studying worldvolume gauge transformations of the flavor brane action, we obtain the QCD global anomalies and an IR condition that allows to fix the quark condensate in terms of the quark mass. We find the expected N_f^2 Goldstone bosons (for m_q=0), the Gell-Mann-Oakes-Renner relation (for m_q small) and the \\eta' mass. Remarkably, the linear confinement behavior for the masses of highly excited spin-1 mesons, m_n^2 ~ n is naturally reproduced.

  13. Nontrivial Critical Fixed Point for Replica-Symmetry-Breaking Transitions

    Science.gov (United States)

    Charbonneau, Patrick; Yaida, Sho

    2017-05-01

    The transformation of the free-energy landscape from smooth to hierarchical is one of the richest features of mean-field disordered systems. A well-studied example is the de Almeida-Thouless transition for spin glasses in a magnetic field, and a similar phenomenon—the Gardner transition—has recently been predicted for structural glasses. The existence of these replica-symmetry-breaking phase transitions has, however, long been questioned below their upper critical dimension, du=6 . Here, we obtain evidence for the existence of these transitions in d

  14. Inertial blob-hole symmetry breaking in magnetised plasma filaments

    CERN Document Server

    Kendl, Alexander

    2015-01-01

    Symmetry breaking between the propagation velocities of magnetised plasma filaments with large positive (blob) and negative (hole) amplitudes, as implied by a dimensional analysis scaling, is studied with global ("full-n") non-Boussinesq gyrofluid computations, which include finite inertia effects through nonlinear polarisation. Interchange blobs on a flat density background have higher inertia and propagate more slowly than holes. In the presence of a large enough density gradient, the effect is reversed: blobs accelerate down the gradient and holes are slowed in their propagation up the gradient. Drift wave blobs spread their initial vorticity rapidly into a fully developed turbulent state, whereas primary holes can remain coherent for many eddy turnover times. The results bear implications for plasma edge zonal flow evolution and tokamak scrape-off-layer transport.

  15. Structural topography-mediated high temperature wetting symmetry breaking

    CERN Document Server

    Li, Jing; Liu, Yahua; Hao, Chonglei; Li, Minfei; Chaudhury, Manoj K; Yao, Shuhuai

    2015-01-01

    Directed motion of liquid droplets is of considerable importance in various industrial processes. Despite extensive advances in this field of research, our understanding and the ability to control droplet dynamics at high temperature remain limited, in part due to the emergence of complex wetting states intertwined by the phase change process at the triple-phase interfaces. Here we show that two concurrent wetting states (Leidenfrost and contact boiling) can be manifested in a single droplet above its boiling point rectified by the presence of asymmetric textures. The breaking of the wetting symmetry at high temperature subsequently leads to the preferential motion towards the region with higher heat transfer coefficient. We demonstrate experimentally and analytically that the droplet vectoring is intricately dependent on the interplay between the structural topography and its imposed thermal state. Our fundamental understanding and the ability to control the droplet dynamics at high temperature represent an ...

  16. Dynamics of the universe and spontaneous symmetry breaking

    Science.gov (United States)

    Kazanas, D.

    1980-01-01

    It is shown that the presence of a phase transition early in the history of the universe, associated with spontaneous symmetry breaking (believed to take place at very high temperatures at which the various fundamental interactions unify), significantly modifies its dynamics and evolution. This is due to the energy 'pumping' during the phase transition from the vacuum to the substance, rather than the gravitating effects of the vacuum. The expansion law of the universe then differs substantially from the relation considered so far for the very early time expansion. In particular it is shown that under certain conditions this expansion law is exponential. It is further argued that under reasonable assumptions for the mass of the associated Higgs boson this expansion stage could last long enough to potentially account for the observed isotropy of the universe.

  17. Spontaneous chiral symmetry breaking of Hall magnetohydrodynamic turbulence.

    Science.gov (United States)

    Meyrand, Romain; Galtier, Sébastien

    2012-11-01

    Hall magnetohydrodynamics (MHD) is investigated through three-dimensional direct numerical simulations. We show that the Hall effect induces a spontaneous chiral symmetry breaking of the turbulent dynamics. The normalized magnetic polarization is introduced to separate the right- (R) and left-handed (L) fluctuations. A classical k(-7/3) spectrum is found at small scales for R magnetic fluctuations which corresponds to the electron MHD prediction. A spectrum compatible with k(-11/3) is obtained at large-scales for the L magnetic fluctuations; we call this regime the ion MHD. These results are explained heuristically by rewriting the Hall MHD equations in a succinct vortex dynamical form. Applications to solar wind turbulence are discussed.

  18. Further Study of BRST-Symmetry Breaking on the Lattice

    CERN Document Server

    Cucchieri, Attilio

    2016-01-01

    We evaluate the so-called Bose-ghost propagator Q(p^2) for SU(2) gauge theory in minimal Landau gauge, considering lattice volumes up to 120^4 and physical lattice extents up to 13.5 f. In particular, we investigate discretization effects, as well as the infinite-volume and continuum limits. We recall that a nonzero value for this quantity provides direct evidence of BRST-symmetry breaking, related to the restriction of the functional measure to the first Gribov region. Our results show that the prediction (from cluster decomposition) for Q(p^2) in terms of gluon and ghost propagators is better satisfied as the continuum limit is approached.

  19. Interacting line-node semimetal and spontaneous symmetry breaking

    CERN Document Server

    Roy, Bitan

    2016-01-01

    The effects of short-range electronic interactions in a three dimensional line-node semimetal that supports linearly dispersing quasiparticles around an isolated closed loop in the Brillouin zone are discussed. Due to vanishing density of states various orderings in the bulk of the system, such as the antiferromagnet and charge-density-wave, set in for sufficiently strong onsite ($U$) and nearest-neighbor ($V$) repulsions, respectively. While onset of these two orderings from the semimetallic phase takes place through continuous quantum phase transitions, a first order transition separates two ordered phases. By contrast, topologically protected drumhead shaped surface states can undergo charge or spin orderings, depending on relative strength of $U$ and $V$, even when they are sufficiently weak. Such surface orderings as well as weak long range Coulomb interaction can be conducive to spontaneous symmetry breaking in the bulk for weaker interactions. We also discuss possible superconducting phases and interna...

  20. Curvature-induced symmetry breaking determines elastic surface patterns

    Science.gov (United States)

    Stoop, Norbert; Lagrange, Romain; Terwagne, Denis; Reis, Pedro M.; Dunkel, Jörn

    2015-03-01

    Symmetry-breaking transitions associated with the buckling and folding of curved multilayered surfaces—which are common to a wide range of systems and processes such as embryogenesis, tissue differentiation and structure formation in heterogeneous thin films or on planetary surfaces—have been characterized experimentally. Yet owing to the nonlinearity of the underlying stretching and bending forces, the transitions cannot be reliably predicted by current theoretical models. Here, we report a generalized Swift-Hohenberg theory that describes wrinkling morphology and pattern selection in curved elastic bilayer materials. By testing the theory against experiments on spherically shaped surfaces, we find quantitative agreement with analytical predictions for the critical curves separating labyrinth, hybrid and hexagonal phases. Furthermore, a comparison to earlier experiments suggests that the theory is universally applicable to macroscopic and microscopic systems. Our approach builds on general differential-geometry principles and can thus be extended to arbitrarily shaped surfaces.

  1. Wetting of crossed fibers: multiple steady states and symmetry breaking

    CERN Document Server

    Sauret, Alban; Duprat, Camille; Stone, Howard A

    2014-01-01

    We investigate the wetting properties of the simplest element of an array of random fibers: two rigid fibers crossing with an inclination angle and in contact with a droplet of a perfectly wetting liquid. We show experimentally that the liquid adopts different morphologies when the inclination angle is increased: a column shape, a mixed morphology state where a drop lies at the end of a column, or a drop centered at the node. An analytical model is provided that predicts the wetting length as well as the presence of a non-symmetric state in the mixed morphology regime. The model also highlights a symmetry breaking at the transition between the column state and the mixed morphology. The possibility to tune the morphology of the liquid could have important implications for drying processes.

  2. Two alternatives of spontaneous chiral symmetry breaking in QCD

    CERN Document Server

    Stern, J

    1998-01-01

    Considering QCD in an Euclidean box, the mechanism of spontaneous breaking of chiral symmetry (SB$\\chi$S) is analyzed in terms of average properties of lowest eigenstates of the Dirac operator. A formal analogy between the pion decay constant and conductivity in disordered systems is established. It follows that SB$\\chi$S results from a subtle balance between the density of Euclidean quark states and their mobility. SB$\\chi$S can be realized either with $ =0$, provided the low density of states is compensated by a high mobility, or with a non-vanishing condensate, provided the mobility is suppressed. It is conjectured that the first case corresponds to extended whereas the latter case to (weakly) localized quark states.

  3. Curvature-induced symmetry breaking determines elastic surface patterns.

    Science.gov (United States)

    Stoop, Norbert; Lagrange, Romain; Terwagne, Denis; Reis, Pedro M; Dunkel, Jörn

    2015-03-01

    Symmetry-breaking transitions associated with the buckling and folding of curved multilayered surfaces-which are common to a wide range of systems and processes such as embryogenesis, tissue differentiation and structure formation in heterogeneous thin films or on planetary surfaces-have been characterized experimentally. Yet owing to the nonlinearity of the underlying stretching and bending forces, the transitions cannot be reliably predicted by current theoretical models. Here, we report a generalized Swift-Hohenberg theory that describes wrinkling morphology and pattern selection in curved elastic bilayer materials. By testing the theory against experiments on spherically shaped surfaces, we find quantitative agreement with analytical predictions for the critical curves separating labyrinth, hybrid and hexagonal phases. Furthermore, a comparison to earlier experiments suggests that the theory is universally applicable to macroscopic and microscopic systems. Our approach builds on general differential-geometry principles and can thus be extended to arbitrarily shaped surfaces.

  4. Electroweak symmetry breaking and bottom-top Yukawa unification

    CERN Document Server

    Carena, M S; Olechowski, M; Wagner, C E M

    1994-01-01

    The condition of unification of gauge couplings in the minimal supersymmetric standard model provides successful predictions for the weak mixing angle as a function of the strong gauge coupling and the supersymmetric threshold scale. In addition, in some scenarios, e.g.\\ in the minimal SO(10) model, the tau lepton and the bottom and top quark Yukawa couplings unify at the grand unification scale. The condition of Yukawa unification leads naturally to large values of $\\tan\\beta$, implying a proper top quark--bottom quark mass hierarchy. In this work, we investigate the feasibility of unification of the Yukawa couplings, in the framework of the minimal supersymmetric standard model with (assumed) universal mass parameters at the unification scale and with radiative breaking of the electroweak symmetry. We show that strong correlations between the parameters $\\mu_0$ and $M_{1/2}$ appear within this scheme. These correlations have relevant implications for the sparticle spectrum, which presents several characteri...

  5. Emergent spontaneous symmetry breaking and emergent symmetry restoration in rippling gravitational background

    Energy Technology Data Exchange (ETDEWEB)

    Kurkov, Maxim A. [Universidade Federal do ABC, CMCC, Santo Andre, SP (Brazil)

    2016-06-15

    We study effects of a rippling gravitational background on a scalar field with a double well potential, focusing on the analogy with the well known dynamics of the Kapitza's pendulum. The ripples are rendered as infinitesimal but rapidly oscillating perturbations of the scale factor. We find that the resulting dynamics crucially depends on a value of the parameter ξ in the ξRφ{sup 2} vertex. For the time-dependent perturbations of a proper form the resulting effective action is generally covariant, and at a high enough frequency at ξ < 0 and at ξ > 1/6 the effective potential has a single minimum at zero, thereby restoring spontaneously broken symmetry of the ground state. On the other side, at 0 < ξ < 1/6 spontaneous symmetry breaking emerges even when it is absent in the unperturbed case. (orig.)

  6. Flavour symmetry breaking in the kaon parton distribution amplitude

    Directory of Open Access Journals (Sweden)

    Chao Shi

    2014-11-01

    Full Text Available We compute the kaon's valence-quark (twist-two parton distribution amplitude (PDA by projecting its Poincaré-covariant Bethe–Salpeter wave-function onto the light-front. At a scale ζ=2 GeV, the PDA is a broad, concave and asymmetric function, whose peak is shifted 12–16% away from its position in QCD's conformal limit. These features are a clear expression of SU(3-flavour-symmetry breaking. They show that the heavier quark in the kaon carries more of the bound-state's momentum than the lighter quark and also that emergent phenomena in QCD modulate the magnitude of flavour-symmetry breaking: it is markedly smaller than one might expect based on the difference between light-quark current masses. Our results add to a body of evidence which indicates that at any energy scale accessible with existing or foreseeable facilities, a reliable guide to the interpretation of experiment requires the use of such nonperturbatively broadened PDAs in leading-order, leading-twist formulae for hard exclusive processes instead of the asymptotic PDA associated with QCD's conformal limit. We illustrate this via the ratio of kaon and pion electromagnetic form factors: using our nonperturbative PDAs in the appropriate formulae, FK/Fπ=1.23 at spacelike-Q2=17 GeV2, which compares satisfactorily with the value of 0.92(5 inferred in e+e− annihilation at s=17 GeV2.

  7. Second order optical nonlinearity in silicon by symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Cazzanelli, Massimo, E-mail: massimo.cazzanelli@unitn.it [Laboratorio IdEA, Dipartimento di Fisica, Università di Trento, via Sommarive, 14 Povo (Trento) (Italy); Schilling, Joerg, E-mail: joerg.schilling@physik.uni-halle.de [Centre for Innovation Competence SiLi-nano, Martin-Luther-University Halle-Wittenberg, Karl-Freiherr-von-Fritsch Str. 3, 06120 Halle (Germany)

    2016-03-15

    Although silicon does not possess a dipolar bulk second order nonlinear susceptibility due to its centro-symmetric crystal structure, in recent years several attempts were undertaken to create such a property in silicon. This review presents the different sources of a second order susceptibility (χ{sup (2)}) in silicon and the connected second order nonlinear effects which were investigated up to now. After an introduction, a theoretical overview discusses the second order nonlinearity in general and distinguishes between the dipolar contribution—which is usually dominating in non-centrosymmetric structures—and the quadrupolar contribution, which even exists in centro-symmetric materials. Afterwards, the classic work on second harmonic generation from silicon surfaces in reflection measurements is reviewed. Due to the abrupt symmetry breaking at surfaces and interfaces locally a dipolar second order susceptibility appears, resulting in, e.g., second harmonic generation. Since the bulk contribution is usually small, the study of this second harmonic signal allows a sensitive observation of the surface/interface conditions. The impact of covering films, strain, electric fields, and defect states at the interfaces was already investigated in this way. With the advent of silicon photonics and the search for ever faster electrooptic modulators, the interest turned to the creation of a dipolar bulk χ{sup (2)} in silicon. These efforts have been focussing on several experiments applying an inhomogeneous strain to the silicon lattice to break its centro-symmetry. Recent results suggesting the impact of electric fields which are exerted from fixed charges in adjacent covering layers are also included. After a subsequent summary on “competing” concepts using not Si but Si-related materials, the paper will end with some final conclusions, suggesting possible future research direction in this dynamically developing field.

  8. Symmetry breaking and convergent extension in early chordate development.

    Science.gov (United States)

    Schiffmann, Yoram

    2006-10-01

    The initiation of axis, polarity, cell differentiation, and gastrulation in the very early chordate development is due to the breaking of radial symmetry. It is believed that this occurs by an external signal. We suggest instead spontaneous symmetry breaking through the agency of the Turing-Child field. Increased size or decreased diffusivity, both brought about by mitotic activity, cause the spontaneous loss of stability of the homogeneous state and the evolution of the metabolic pattern during development. The polar metabolic pattern is the cause of polar gene expression, polar morphogenesis (gastrulation), and polar mitotic activity. The Turing-Child theory explains not only the spontaneous formation of the invagination in gastrulation but also the coherent cell movement observed in convergence and extension during gastrulation and neurulation. The theory is demonstrated with respect to experimental observations on the early development of fish, amphibian, and the chick. The theory can explain a multitude of experimental details. For example, it explains the splayed polar progression of reduction in the fish blastoderm. Reduction starts on that side of the blastoderm margin, which will initiate invagination several hours later. It progresses toward the blastoderm center and somewhat laterally from this future "dorsal lip". This is precisely as predicted by a Turing-Child system in a circle. And for a fish like zebrafish with a blastoderm that is slightly oval, reduction is observed to progress along the long axis of the ellipse, which is what Turing-Child theory predicts. In general the shape and the chemical nature of the experimental patterns are the same as predicted by the Turing couple (cAMP, ATP). Embryological polarity and convergent extension are based on polar eigenfunction and saddle-shaped eigenfunction, respectively.

  9. Signatures of time reversal symmetry breaking in multiband superconductors

    Science.gov (United States)

    Maiti, Saurabh

    Multiband superconductors serve as natural host to several possible gound states that compete with each other. At the boundaries of such competing phases, the system usually compromises and settles for `mixed' phases that can show intriguing properties like co-existence of magnetism and superconductiivty or even co-existence of different superconducting phases. The latter is particularly interesting as it can lead to non-magnetic ground states that spontaneously break Time-Reversal symmetry. While the experimental verification of such states has proved to been challenging, the theoretical investigations have provided exciting new insights into the nature of the ground state and its excitations all of which have experimental consequences of some sort. These include extrinsic properties like spontaneous currents around impurity sites, and intrinsic properties in the form of collective excitations. These collective modes bear a unique signature and should provide clear evidence for time reversal symmetry broken state. While the results are general, in light of recent Raman scattering experiments, its direct relevance to extremely hole doped Ba(1-x)K(FeAs)2 will be presented where a strong competition of s-wave and d-wave ground state is expected.

  10. Irreversibility and the breaking of resonance-antiresonance symmetry

    Science.gov (United States)

    Ordonez, Gonzalo; Hatano, Naomichi

    2017-10-01

    We consider open quantum systems modeled as discrete lattices. Using a simple model of a single-site coupled to two leads as an example, we show that the time evolution of these systems can be analyzed in terms of an explicitly time-reversal symmetric resolution of unity. This resolution of unity includes both resonant states, which decay in the future, and anti-resonant states, which decay in the past. We show that a time-reversal invariant state contains both resonant and anti-resonant components with equal weights. However, this symmetry is automatically broken as the system evolves in time, with the resonant component becoming much larger than the anti-resonant component for t > 0 (and vice versa for t < 0). We argue that irreversibility is a manifestation of this symmetry breaking. We also compare our present approach with the subdynamics approach developed by Prof. Prigogine and collaborators. Finally, we suggest an extension of our present approach from the level of wave functions to the level of density matrices.

  11. Weyl semimetal from spontaneous inversion symmetry breaking in pyrochlore oxides

    Science.gov (United States)

    Bzdušek, Tomáš; Rüegg, Andreas; Sigrist, Manfred

    2015-04-01

    We study the electronic properties of strongly spin-orbit coupled electrons on the elastic pyrochlore lattice. Akin to the Peierls transition in one-dimensional systems, the coupling of the lattice to the electronic degrees of freedom can stabilize a spontaneous deformation of the crystal. This deformation corresponds to a breathing mode, which breaks the inversion symmetry. We find that for intermediate values of the staggered strain, the inversion-symmetry broken phase realizes a topological Weyl semimetal. In the temperature-elasticity phase diagram, the Weyl semimetal shows a reentrant phase behavior: it can be reached from a symmetric phase realized both at higher and at lower temperatures. The symmetric phase is a Dirac semimetal, which is protected by the nonsymmorphic space group of the pyrochlore lattice. Beyond a critical value of the staggered strain, the symmetry-broken phase is a fully gapped trivial insulator. The surface states of the Weyl semimetal form open Fermi arcs and we observe that their connectivity depends on the termination of the crystal. In particular, for the {111 } films, the semiclassical closed electronic orbits of the surface states in a magnetic field cross the bulk either twice, four, six, or twelve times. We demonstrate how one can tune the number of bulk crossings through a Lifshitz-like transition of the Fermi arcs, which we call Weyl-Lifshitz transition, by applying a surface potential. Our results offer a route to a topological Weyl semimetal in nonmagnetic materials and might be relevant for pyrochlore oxides with heavy transition-metal ions such as alloys of iridates.

  12. WHY COLOR-FLAVOR LOCKING IS JUST LIKE CHIRAL SYMMETRY BREAKING

    Energy Technology Data Exchange (ETDEWEB)

    PISARSKI,R.D.; RISCHKE,D.H.

    2000-05-10

    The authors review how a classification into representations of color and flavor can be used to understand the possible patterns of symmetry breaking for color superconductivity in dense quark matter. In particular, the authors show how for three flavors, color-flavor locking is precisely analogous to the usual pattern of chiral symmetry breaking in the QCD vacuum.

  13. Symmetry breaking on density in escaping ants: experiment and alarm pheromone model.

    Directory of Open Access Journals (Sweden)

    Geng Li

    Full Text Available The symmetry breaking observed in nature is fascinating. This symmetry breaking is observed in both human crowds and ant colonies. In such cases, when escaping from a closed space with two symmetrically located exits, one exit is used more often than the other. Group size and density have been reported as having no significant impact on symmetry breaking, and the alignment rule has been used to model symmetry breaking. Density usually plays important roles in collective behavior. However, density is not well-studied in symmetry breaking, which forms the major basis of this paper. The experiment described in this paper on an ant colony displays an increase then decrease of symmetry breaking versus ant density. This result suggests that a Vicsek-like model with an alignment rule may not be the correct model for escaping ants. Based on biological facts that ants use pheromones to communicate, rather than seeing how other individuals move, we propose a simple yet effective alarm pheromone model. The model results agree well with the experimental outcomes. As a measure, this paper redefines symmetry breaking as the collective asymmetry by deducing the random fluctuations. This research indicates that ants deposit and respond to the alarm pheromone, and the accumulation of this biased information sharing leads to symmetry breaking, which suggests true fundamental rules of collective escape behavior in ants.

  14. Symmetry breaking on density in escaping ants: experiment and alarm pheromone model.

    Science.gov (United States)

    Li, Geng; Huan, Di; Roehner, Bertrand; Xu, Yijuan; Zeng, Ling; Di, Zengru; Han, Zhangang

    2014-01-01

    The symmetry breaking observed in nature is fascinating. This symmetry breaking is observed in both human crowds and ant colonies. In such cases, when escaping from a closed space with two symmetrically located exits, one exit is used more often than the other. Group size and density have been reported as having no significant impact on symmetry breaking, and the alignment rule has been used to model symmetry breaking. Density usually plays important roles in collective behavior. However, density is not well-studied in symmetry breaking, which forms the major basis of this paper. The experiment described in this paper on an ant colony displays an increase then decrease of symmetry breaking versus ant density. This result suggests that a Vicsek-like model with an alignment rule may not be the correct model for escaping ants. Based on biological facts that ants use pheromones to communicate, rather than seeing how other individuals move, we propose a simple yet effective alarm pheromone model. The model results agree well with the experimental outcomes. As a measure, this paper redefines symmetry breaking as the collective asymmetry by deducing the random fluctuations. This research indicates that ants deposit and respond to the alarm pheromone, and the accumulation of this biased information sharing leads to symmetry breaking, which suggests true fundamental rules of collective escape behavior in ants.

  15. Generalized holographic electroweak symmetry breaking models and the possibility of negative S^

    Science.gov (United States)

    Round, Mark

    2011-07-01

    Within an AdS/CFT inspired model of electroweak symmetry breaking, the effects of various boundary terms and modifications to the background are studied. The effect on the S^ precision parameter is discussed, with particular attention to its sign and whether the theory is unitary when S^<0. Connections between the various possible AdS slice models of symmetry breaking are discussed.

  16. Generalised Holographic Electroweak Symmetry Breaking Models and the Possibility of Negative S

    CERN Document Server

    Round, Mark

    2011-01-01

    Within an AdS/CFT inspired model of electroweak symmetry breaking the effects of various boundary terms and modifications to the background are studied. The effect on the S precision parameter is discussed with particular attention to its sign and whether the theory is unitary when S. Connections between the various possible AdS slice models of symmetry breaking are discussed.

  17. Spontaneous symmetry breaking and masses numerical results in Doplicher-Fredenhagen-Roberts noncommutative space-time

    Science.gov (United States)

    Neves, M. J.; Abreu, Everton M. C.

    2016-04-01

    With the elements of the Doplicher-Fredenhagen-Roberts (DFR) noncommutative formalism, we have constructed a standard electroweak model. We have introduced the spontaneous symmetry breaking and the hypercharge in DFR framework. The electroweak symmetry breaking was analyzed and the masses of the new bosons were computed.

  18. Dicke superradiance, Bose-Einstein condensation of photons and spontaneous symmetry breaking

    CERN Document Server

    Vyas, Vivek M; Srinivasan, V

    2016-01-01

    It is shown that the phenomenon of Dicke superradiance essentially occurs due to spontaneous symmetry breaking. Two generalised versions of the Dicke model are studied, and compared with a model that describes photonic Bose-Einstein condensate, which was experimentally realised. In all the models, it is seen that, the occurrence of spontaneous symmetry breaking is responsible for coherent radiation emission.

  19. Radiative symmetry breaking from interacting UV fixed points arXiv

    CERN Document Server

    Abel, Steven

    It is shown that the addition of positive mass-squared terms to asymptotically safe gauge-Yukawa theories with perturbative UV fixed points leads to calculable radiative symmetry breaking in the IR. This phenomenon, and the multiplicative running of the operators that lies behind it, is akin to the radiative symmetry breaking that occurs in the Supersymmetric Standard Model.

  20. Spin-rotation symmetry breaking in the superconducting state of CuxBi2Se3

    Science.gov (United States)

    Matano, K.; Kriener, M.; Segawa, K.; Ando, Y.; Zheng, Guo-Qing

    2016-09-01

    Spontaneous symmetry breaking is an important concept for understanding physics ranging from the elementary particles to states of matter. For example, the superconducting state breaks global gauge symmetry, and unconventional superconductors can break further symmetries. In particular, spin-rotational symmetry is expected to be broken in spin-triplet superconductors. However, experimental evidence for such symmetry breaking has not been conclusively obtained so far in any candidate compounds. Here, using 77Se nuclear magnetic resonance measurements, we show that spin-rotation symmetry is spontaneously broken in the hexagonal plane of the electron-doped topological insulator Cu0.3Bi2Se3 below the superconducting transition temperature Tc = 3.4 K. Our results not only establish spin-triplet superconductivity in this compound, but may also serve to lay a foundation for the research of topological superconductivity.

  1. Extended ensemble theory, spontaneous symmetry breaking, and phase transitions

    Science.gov (United States)

    Xiao, Ming-wen

    2006-09-01

    In this paper, as a personal review, we suppose a possible extension of Gibbs ensemble theory so that it can provide a reasonable description of phase transitions and spontaneous symmetry breaking. The extension is founded on three hypotheses, and can be regarded as a microscopic edition of the Landau phenomenological theory of phase transitions. Within its framework, the stable state of a system is determined by the evolution of order parameter with temperature according to such a principle that the entropy of the system will reach its minimum in this state. The evolution of order parameter can cause a change in representation of the system Hamiltonian; different phases will realize different representations, respectively; a phase transition amounts to a representation transformation. Physically, it turns out that phase transitions originate from the automatic interference among matter waves as the temperature is cooled down. Typical quantum many-body systems are studied with this extended ensemble theory. We regain the Bardeen Cooper Schrieffer solution for the weak-coupling superconductivity, and prove that it is stable. We find that negative-temperature and laser phases arise from the same mechanism as phase transitions, and that they are unstable. For the ideal Bose gas, we demonstrate that it will produce Bose Einstein condensation (BEC) in the thermodynamic limit, which confirms exactly Einstein's deep physical insight. In contrast, there is no BEC either within the phonon gas in a black body or within the ideal photon gas in a solid body. We prove that it is not admissible to quantize the Dirac field by using Bose Einstein statistics. We show that a structural phase transition belongs physically to the BEC happening in configuration space, and that a double-well anharmonic system will undergo a structural phase transition at a finite temperature. For the O(N)-symmetric vector model, we demonstrate that it will yield spontaneous symmetry breaking and produce

  2. Wavelength selection and symmetry breaking in orbital wave ripples

    Science.gov (United States)

    Nienhuis, Jaap H.; Perron, J. Taylor; Kao, Justin C. T.; Myrow, Paul M.

    2014-10-01

    Sand ripples formed by waves have a uniform wavelength while at equilibrium and develop defects while adjusting to changes in the flow. These patterns arise from the interaction of the flow with the bed topography, but the specific mechanisms have not been fully explained. We use numerical flow models and laboratory wave tank experiments to explore the origins of these patterns. The wavelength of "orbital" wave ripples (λ) is directly proportional to the oscillating flow's orbital diameter (d), with many experimental and field studies finding λ/d ≈ 0.65. We demonstrate a coupling that selects this ratio: the maximum length of the flow separation zone downstream of a ripple crest equals λ when λ/d ≈ 0.65. We show that this condition maximizes the growth rate of ripples. Ripples adjusting to changed flow conditions develop defects that break the bed's symmetry. When d is shortened sufficiently, two new incipient crests appear in every trough, but only one grows into a full-sized crest. Experiments have shown that the same side (right or left) wins in every trough. We find that this occurs because incipient secondary crests slow the flow and encourage the growth of crests on the next flank. Experiments have also shown that when d is lengthened, ripple crests become increasingly sinuous and eventually break up. We find that this occurs because crests migrate preferentially toward the nearest adjacent crest, amplifying any initial sinuosity. Our results reveal the mechanisms that form common wave ripple patterns and highlight interactions among unsteady flows, sediment transport, and bed topography.

  3. Translational symmetry breaking in field theories and the cosmological constant

    Science.gov (United States)

    Evans, Nick; Morris, Tim R.; Scott, Marc

    2016-01-01

    We argue, at a very basic effective field theory level, that higher dimension operators in scalar theories that break symmetries at scales close to their ultraviolet completion cutoff include terms that favor the breaking of translation (Lorentz) invariance, potentially resulting in striped, checkerboard or general crystal-like phases. Such descriptions can be thought of as the effective low energy description of QCD-like gauge theories near their strong coupling scale where terms involving higher dimension operators are generated. Our low energy theory consists of scalar fields describing operators such as q ¯q and q ¯F(2 n )q . Such scalars can have kinetic mixing terms that generate effective momentum dependent contributions to the mass matrix. We show that these can destabilize the translationally invariant vacuum. It is possible that in some real gauge theory such operators could become sufficiently dominant to realize such phases, and it would be interesting to look for them in lattice simulations. We present a holographic model of the same phenomena which includes renormalization group running. A key phenomenological motive to look at such states is recent work that shows that the nonlinear response in R2 gravity to such short-range fluctuations can mimic a cosmological constant. Intriguingly in a cosmology with such a Starobinsky inflation term, to generate the observed value of the present day acceleration would require stripes at the electroweak scale. Unfortunately, low energy phenomenological constraints on Lorentz violation in the electron-photon system appear to strongly rule out any such possibility outside of a disconnected dark sector.

  4. Dynamical Symmetry Breaking of Maximally Generalized Yang-Mills Model and Its Restoration at Finite Temperatures

    Institute of Scientific and Technical Information of China (English)

    WANG Dian-Fu

    2008-01-01

    In terms of the Nambu-Jona-Lasinio mechanism, dynamical breaking of gauge symmetry for the maximally generalized Yang-Mills model is investigated. The gauge symmetry behavior at finite temperature is also investigated and it is shown that the gauge symmetry broken dynamically at zero temperature can be restored at finite temperatures.

  5. Chiral symmetry breaking as open string tachyon condensation

    Energy Technology Data Exchange (ETDEWEB)

    Casero, Roberto [CPHT, Ecole Polytechnique, UMR du CNRS 7644, 91128 Palaiseau (France); Kiritsis, Elias [CPHT, Ecole Polytechnique, UMR du CNRS 7644, 91128 Palaiseau (France); Department of Physics, University of Crete, 71003 Heraklion (Greece); Paredes, Angel [CPHT, Ecole Polytechnique, UMR du CNRS 7644, 91128 Palaiseau (France)], E-mail: paredes@cpht.polytechnique.fr

    2007-12-24

    We consider a general framework to study holographically the dynamics of fundamental quarks in a confining gauge theory. Flavors are introduced by placing a set of (coincident) branes and antibranes on a background dual to a confining color theory. The spectrum contains an open string tachyon and its condensation describes the U(N{sub f}){sub L}xU(N{sub f}){sub R}{yields}U(N{sub f}){sub V} symmetry breaking. By studying worldvolume gauge transformations of the flavor brane action, we obtain the QCD global anomalies and an IR condition that allows to fix the quark condensate in terms of the quark mass. We find the expected N{sub f}{sup 2} Goldstone bosons (for m{sub q}=0), the Gell-Mann-Oakes-Renner relation (for m{sub q} small) and the {eta}{sup '} mass. Remarkably, the linear confinement behavior for the masses of highly excited spin-1 mesons, m{sub n}{sup 2}{approx}n is naturally reproduced.

  6. Spontaneous Electro-Weak Symmetry Breaking and Cold Dark Matter

    Institute of Scientific and Technical Information of China (English)

    ZHU Shou-Hua

    2007-01-01

    In the standard model, the weak gauge bosons and fermions obtain mass after spontaneous electro-weak symmetry breaking, which is realized by one fundamental scalar field, namely the Higgs field. We study the simplest scalar cold dark matter model in which the scalar cold dark matter also obtains mass by interaction with the weakdoublet Higgs field, in the same way as those of weak gauge bosons and fermions. Our study shows that the correct cold dark matter relic abundance within 3σ uncertainty (0.093 <Ωdmh2 < 0.129) and experimentally allowed Higgs boson mass (114.4 ≤ mh ≤ 208 GeV) constrain the scalar dark matter mass within 48 ≤ ms ≤ 78 GeV.This result is in excellent agreement with the result of de Boer et al. (50 ~ 100 GeV). Such a kind of dark matter annihilation can account for the observed gamma rays excess (10σ) at EGRET for energies above 1 GeV in comparison with the expectations from conventional Galactic models. We also investigate other phenomenological consequences of this model. For example, the Higgs boson decays dominantly into scalar cold dark matter if its mass lies within 48 ~ 64 GeV.

  7. Charge symmetry breaking in the A=4 hypernuclei

    CERN Document Server

    Gazda, Daniel

    2016-01-01

    Charge symmetry breaking (CSB) in the $\\Lambda$-nucleon strong interaction generates a charge dependence of $\\Lambda$ separation energies in mirror hypernuclei, which in the case of the $A=4$ mirror hypernuclei $0^+$ ground states is sizable, $\\Delta B^{J=0}_{\\Lambda}\\equiv B^{J=0}_{\\Lambda} (_{\\Lambda}^4{\\rm He})-B^{J=0}_{\\Lambda}(_{\\Lambda}^4{\\rm H})=230\\pm 90$~keV, and of opposite sign to that induced by the Coulomb repulsion in light hypernuclei. Recent {\\it ab initio} calculations of the (\\lamb{4}{H}, \\lamb{4}{He}) mirror hypernuclei $0^+_{\\rm g.s.}$ and $1^+_{\\rm exc}$ levels have demonstrated that a $\\Lambda - \\Sigma^0$ mixing CSB model due to Dalitz and von Hippel (1964) is capable of reproducing this large value of $\\Delta B^{J=0}_{\\Lambda}$. These calculations are discussed here with emphasis placed on the leading-order $\\chi$EFT hyperon-nucleon strong-interaction Bonn-J\\"{u}lich model used and the no-core shell-model calculational scheme applied. The role of one-pion exchange in producing sizable C...

  8. Dynamical chiral symmetry breaking in unquenched QED3

    Science.gov (United States)

    Fischer, C. S.; Alkofer, R.; Dahm, T.; Maris, P.

    2004-10-01

    We investigate dynamical chiral symmetry breaking in unquenched QED3 using the coupled set of Dyson-Schwinger equations for the fermion and photon propagators. For the fermion-photon interaction we employ an ansatz which satisfies its Ward-Green-Takahashi identity. We present self-consistent analytical solutions in the infrared as well as numerical results for all momenta. In Landau gauge, we find a phase transition at a critical number of flavors of Ncritf≈4. In the chirally symmetric phase the infrared behavior of the propagators is described by power laws with interrelated exponents. For Nf=1 and Nf=2 we find small values for the chiral condensate in accordance with bounds from recent lattice calculations. We investigate the Dyson-Schwinger equations in other linear covariant gauges as well. A comparison of their solutions to the accordingly transformed Landau gauge solutions shows that the quenched solutions are approximately gauge covariant, but reveals a significant amount of violation of gauge covariance for the unquenched solutions.

  9. Spontaneous symmetry breaking in a split potential box

    CERN Document Server

    Shamriz, Elad; Malomed, Boris A

    2016-01-01

    We report results of the analysis of the spontaneous symmetry breaking (SSB) in the basic (actually, simplest) model which is capable to produce the SSB phenomenology in the one-dimensional setting. It is based on the Gross-Pitaevskii - nonlinear Schroedinger equation with the cubic self-attractive term and a double-well-potential built as an infinitely deep potential box split by a narrow (delta-functional) barrier. The barrier's strength, epsilon, is the single free parameter of the scaled form of the model. It may be implemented in atomic Bose-Einstein condensates and nonlinear optics. The SSB bifurcation of the symmetric ground state (GS) is predicted analytically in two limit cases, viz., for deep or weak splitting of the potential box by the barrier. For the generic case, a variational approximation (VA) is elaborated. The analytical findings are presented along with systematic numerical results. Stability of stationary states is studied through the calculation of eigenvalues for small perturbations, an...

  10. Perversions driven spontaneous symmetry breaking in heterogeneous elastic ribbons

    Science.gov (United States)

    Liu, Shuangping; Yao, Zhenwei; Olvera de La Cruz, Monica

    2015-03-01

    Perversion structures in an otherwise uniform helical structure are associated with several important concepts in fundamental physics and materials science, including the spontaneous symmetry breaking and the elastic buckling. They also have strong connections with biological motifs (e.g., bacteria shapes and plant tendrils) and have potential applications in micro-muscles and soft robotics. In this work, using a three-dimensional elastomeric bi-stripe model, we investigate the properties of perversions that are independent of the specific ribbon shapes. Several intrinsic features of perversions are revealed, including the spontaneous condensation of energy as well as the distinct energy transfer modes within the perversion region. These properties of perversions associated with the storage of elastic energies can be exploited in the design of actuator devices. We thank the financial support from the U.S. Department of Commerce, National Institute of Standards and Technology, the Office of the Director of Defense Research and Engineering (DDR&E) and the Air Force Office of Scientific Research.

  11. Sea quark transverse momentum distributions and dynamical chiral symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Schweitzer, Peter [Univ. of Connecticut, Storrs, CT (United States); Strikman, Mark [Penn State Univ., State College, PA (United States); Weiss, Christian [JLAB Newport News, VA (United States)

    2014-01-01

    Recent theoretical studies have provided new insight into the intrinsic transverse momentum distributions of valence and sea quarks in the nucleon at a low scale. The valence quark transverse momentum distributions (q - qbar) are governed by the nucleon's inverse hadronic size R{sup -1} ~ 0.2 GeV and drop steeply at large p{sub T}. The sea quark distributions (qbar) are in large part generated by non-perturbative chiral-symmetry breaking interactions and extend up to the scale rho{sup -1} ~ 0.6 GeV. These findings have many implications for modeling the initial conditions of perturbative QCD evolution of TMD distributions (starting scale, shape of p{sub T}. distributions, coordinate-space correlation functions). The qualitative difference between valence and sea quark intrinsic p{sub T}. distributions could be observed experimentally, by comparing the transverse momentum distributions of selected hadrons in semi-inclusive deep-inelastic scattering, or those of dileptons produced in pp and pbar-p scattering.

  12. Parafermionic phases with symmetry breaking and topological order

    Science.gov (United States)

    Alexandradinata, A.; Regnault, N.; Fang, Chen; Gilbert, Matthew J.; Bernevig, B. Andrei

    2016-09-01

    Parafermions are the simplest generalizations of Majorana fermions that realize topological order. We propose a less restrictive notion of topological order in one-dimensional open chains, which generalizes the seminal work by Fendley [J. Stat. Mech. (2012) P11020, 10.1088/1742-5468/2012/11/P11020]. The first essential property is that the ground states are mutually indistinguishable by local, symmetric probes, and the second is a generalized notion of zero edge modes which cyclically permute the ground states. These two properties are shown to be topologically robust, and applicable to a wider family of topologically ordered Hamiltonians than has been previously considered. As an application of these edge modes, we formulate a notion of twisted boundary conditions on a closed chain, which guarantees that the closed-chain ground state is topological, i.e., it originates from the topological manifold of the open chain. Finally, we generalize these ideas to describe symmetry-breaking phases with a parafermionic order parameter. These exotic phases are condensates of parafermion multiplets, which generalize Cooper pairing in superconductors. The stability of these condensates is investigated on both open and closed chains.

  13. Conformal symmetry vs. chiral symmetry breaking in the SU(3) sextet model

    CERN Document Server

    Drach, Vincent; Hietanen, Ari; Pica, Claudio; Sannino, Francesco

    2015-01-01

    We present new results for the SU(3) "sextet model" with two flavors transforming according to the two-index symmetric representation of the gauge group. The simulations are performed using unimproved Wilson fermions. We measure the meson and baryon spectrum of the theory for multiple bare quark masses at two different lattice spacings. To address the pressing issue of whether the model is inside or below the conformal window, we compare the spectrum to the expectations for a theory with spontaneous chiral symmetry breaking and to those of an IR conformal theory. Regardless of the answer (conformal or chirally broken), the theory is a cornerstone in our understanding of near-conformal and composite dynamics, ranging from Technicolor models to unparticle physics. It is also interesting for the composite dynamics of vector-like singlets with respect to the Standard Model interactions.

  14. Particle-Hole Symmetry Breaking in the Pseudogap State of Bi2201

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, M.; /SIMES, Stanford /Stanford U., Geballe Lab. /LBNL, ALS; He, R.-H.; /aff SIMES, Stanford /Stanford U., Geballe Lab.; Tanaka, K.; /aff SIMES, Stanford /Stanford U., Geballe Lab. /LBNL, ALS /Osaka U.; Testaud, J.P.; /SIMES, Stanford /Stanford U., Geballe Lab. /LBNL, ALS; Meevasana1, W.; Moore, R.G.; Lu, D.H.; /SIMES, Stanford /Stanford U., Geballe Lab.; Yao, H.; /SIMES, Stanford; Yoshida, Y.; Eisaki, H.; /AIST, Tsukuba; Devereaux, T.P.; /SIMES, Stanford /Stanford U., Geballe Lab.; Hussain, Z.; /LBNL, ALS; Shen, Z.-X.; /SIMES, Stanford /Stanford U., Geballe Lab.

    2011-08-19

    In conventional superconductors, a gap exists in the energy absorption spectrum only below the transition temperature (T{sub c}), corresponding to the energy price to pay for breaking a Cooper pair of electrons. In high-T{sub c} cuprate superconductors above T{sub c}, an energy gap called the pseudogap exists, and is controversially attributed either to pre-formed superconducting pairs, which would exhibit particle-hole symmetry, or to competing phases which would typically break it. Scanning tunnelling microscopy (STM) studies suggest that the pseudogap stems from lattice translational symmetry breaking and is associated with a different characteristic spectrum for adding or removing electrons (particle-hole asymmetry). However, no signature of either spatial or energy symmetry breaking of the pseudogap has previously been observed by angle-resolved photoemission spectroscopy (ARPES). Here we report ARPES data from Bi2201 which reveals both particle-hole symmetry breaking and dramatic spectral broadening indicative of spatial symmetry breaking without long range order, upon crossing through T* into the pseudogap state. This symmetry breaking is found in the dominant region of the momentum space for the pseudogap, around the so-called anti-node near the Brillouin zone boundary. Our finding supports the STM conclusion that the pseudogap state is a broken-symmetry state that is distinct from homogeneous superconductivity.

  15. Radiative Effects and Electroweak Symmetry Breaking in a Supersymmetric Preon Model

    Science.gov (United States)

    Kim, Jongbae

    We construct the low energy effective theory of composite quarks, leptons, and Higgs bosons for a supersymmetric preon model and study the effects of renormalization-group based radiative corrections. The study on the evolution of scalar masses for avoiding color and charge breakings leads us to conclude that Yukawa couplings are bounded from above. The implementation of electroweak symmetry breaking requires that only the purely dynamical symmetry breaking should be needed for the model, but the combined scheme of dynamical and radiative symmetry breaking as well as the purely radiative symmetry breaking scheme be disfavored. Our analysis of (mb)/(m_τ ) including radiative effects shows that, should a discrepancy be found between the observed and the theoretical value of (mb)/(m_τ ) after experimental determination of supersymmetric particle masses, it would imply that the complete quark-lepton universality in the supersymmetric preon model does not hold either for the Yukawa couplings, or for the condensates, or for both.

  16. Symmetries and their breakings at microscopic and cosmic scales

    Science.gov (United States)

    Huo, Ran

    We organize several research projects in the author's Ph.D. career which are distinct in nature into this thesis, in the view of symmetry fulfillments and breakings. Some broken gauge symmetry may give a massive neutral gauge boson Z', and this Z' may be the mediator between the SM and the dark matter sector, forming the dark portal. We consider the scenario of a leptophobic light Z' vector boson as the mediator, and study the prospect of searching for it at the 8 TeV Large Hadron Collider (LHC). To improve the reach in the low mass region, we perform a detailed study of the processes that the Z' is produced in association with jet, photon, W+/- and Z 0. We show that in the region where the mass of Z' is between 80 and 400 GeV, the constraint from associated production can be comparable or even stronger than the known monojet and dijet constraints. We study an extension of the Minimal Supersymmetric Standard Model with a gauge group SU(2)1 ⊗ SU(2) 2 breaking to SU(2)L. The extra wino has an enhanced gauge coupling to the SM-like Higgs boson and, if light, has a relevant impact on the weak scale phenomenology. Compared with the MSSM case, the low energy Higgs quartic coupling is modified both by extra D-term corrections and by a modification of its renormalization group evolution from high energies. At low values of tan beta, the latter effect may be dominant. This leads to interesting regions of parameter space in which the model can accommodate a 125 GeV Higgs with relatively light third generation squarks and an increased h → gammagamma decay branching ratio, while still satisfying the constraints from electroweak precision data and Higgs vacuum stability. We also study some toy model towards electroweak baryogenesis, which in the wino-higgsino case can be fulfilled as the above gauge extension of the MSSM model. The fermionic component have a mixing through vector like mass terms, through which the Higgs diphoton decay branching ratio can be tuned, and

  17. Symmetry breaking and a dynamical property of a dipolar Bose–Einstein condensate in a double-well potential

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuan-Sheng, E-mail: joiningnow@126.com; Li, Zhen-Yu; Zhou, Zhu-Wen; Diao, Xin-Feng

    2014-01-03

    Highlights: •We investigate the symmetry breaking of a dipolar Bose–Einstein condensate. •The anisotropy of dipolar interaction affects the ground state structure. •Tuning the scattering length can realize the symmetry breaking phenomena. •Increasing the barrier height can realize the symmetry breaking phenomena.

  18. A theoretical study of symmetry-breaking organic overlayers on single- and bi-layer graphene

    Science.gov (United States)

    Morales-Cifuentes, Josue; Einstein, T. L.

    2013-03-01

    An ``overlayer'' of molecules that breaks the AB symmetry of graphene can produce (modify) a band gap in single- (bi-) layer graphene.[2] Since the triangular shaped trimesic acid (TMA) molecule forms two familiar symmetry breaking configurations, we are motivated to model TMA physisorption on graphene surfaces in conjunction with experiments by Groce et al. at UMD. Using VASP, with ab initio van der Waals density functionals (vdW-DF), we simulate adsorption of TMA onto a graphene surface in several symmetry-breaking arrangements in order to predict/understand the effect of TMA adsorption on experimental observables. Supported by NSF-MRSEC Grant DMR 05-20471.

  19. A Generalized Yang-Mills Model and Dynamical Breaking of Gauge Symmetry

    Institute of Scientific and Technical Information of China (English)

    WANG Dian-Fu; SONG He-Shan

    2005-01-01

    A generalized Yang-Mills model, which contains, besides the vector part Vμ, also a scalar part S, is constructed and the dynamical breaking of gauge symmetry in the model is also discussed. It is shown, in terms of Nambu-Jona-Lasinio (NJL) mechanism, that the gauge symmetry breaking can be realized dynamically in the generalized Yang-Mills model. The combination of the generalized Yang-Mills model and the NJL mechanism provides a way to overcome the difficulties related to the Higgs field and the Higgs mechanism in the usual spontaneous symmetry breaking theory.

  20. Chiral Symmetry Breaking in Micro-Ring Optical Cavity By Engineered Dissipation

    CERN Document Server

    Shu, Fang-Jie; Zou, Xu-Bo; Yang, Lan

    2016-01-01

    We propose a method to break the chiral symmetry of light in traveling wave resonators by coupling the optical modes to a lossy channel. Through the engineered dissipation, an indirect dissipative coupling between two oppositely propagating modes can be realized. Combining with reactive coupling, it can break the chiral symmetry of the resonator, allowing light propagating only in one direction. The chiral symmetry breaking is numerically verified by the simulation of an electromagnetic field in a micro-ring cavity, with proper refractive index distributions. This work provokes us to emphasize the dissipation engineering in photonics, and the generalized idea can also be applied to other systems.

  1. Symmetry breakings and topological solitons in mercury based d-wave superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Onbasli, Ulker [Department of Physics, University of Marmara, Ridvan Pasa Cad. 3. Sok. 85/12, Goztepe, Istanbul (Turkey)], E-mail: phonon@doruk.net.tr; Ozdemir, Zeynep Gueven [Department of Physics, Yildiz Technical University, Davutpasa Mah. Davutpasa Caddesi 34220 Esenler, Istanbul (Turkey)], E-mail: zguvenozdemir@yahoo.com; Aslan, Ozden [Anatuerkler Educational Consultancy and Trading Company, Orhan Veli Kanik Cad., Guener Is Mer., 6/1, Kavacik, 34810 Beykoz, Istanbul (Turkey)

    2009-11-30

    This study is devoted to examine high temperature superconductors by the concept of symmetry breakings. The global gauge symmetry is broken at Meissner transition temperature, T{sub c}, in high temperature d-wave superconductors. In addition to this symmetry breaking, the time reversal symmetry breaking phenomenon becomes observable on paramagnetic Meissner effect at paramagnetic Meissner effect temperature, T{sub PME}. Furthermore, the concept of symmetry breakings has been discussed by the phenomenon of critical quantum chaos in the mercury cuprates which is one of the best examples to understand the chaotic transitions. From this point of view, T{sub c} and T{sub PME} have been suggested as chaotic transition points. Moreover, T{sub PME} is predicted as the breaking point of electroweak symmetry as well. Furthermore, we have also proposed that the double helix quantum wave occurs in the quantum primitive cell of cuprates due to the breaking of the room temperature symmetry of the system at T{sub c}. When time period of the wave is taken infinite, the double helix quantum wave can be considered as a topological soliton of the coherent system.

  2. Symmetry breaking indication for supergravity inflation in light of the Planck 2015

    Energy Technology Data Exchange (ETDEWEB)

    Li, Tianjun [State Key Laboratory of Theoretical Physics, and Kavli Institute for Theoretical Physics China (KITPC), Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190 (China); School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Li, Zhijin [George P. and Cynthia W. Mitchell Institute for Fundamental Physics and Astronomy, Texas A& M University, College Station, TX 77843 (United States); Nanopoulos, Dimitri V. [George P. and Cynthia W. Mitchell Institute for Fundamental Physics and Astronomy, Texas A& M University, College Station, TX 77843 (United States); Astroparticle Physics Group, Houston Advanced Research Center (HARC), Mitchell Campus, Woodlands, TX 77381 (United States); Academy of Athens, Division of Natural Sciences, 28 Panepistimiou Avenue, Athens 10679 (Greece)

    2015-09-01

    Supergravity (SUGRA) theories with exact global U(1) symmetry or shift symmetry in Kähler potential provide natural frameworks for inflation. However, quadratic inflation is disfavoured by the new results on primordial tensor fluctuations from the Planck Collaboration. To be consistent with the new Planck data, we point out that the explicit symmetry breaking is needed, and study these two SUGRA inflation in detail. For SUGRA inflation with global U(1) symmetry, the symmetry breaking term leads to a trigonometric modulation on inflaton potential. Coefficient of the U(1) symmetry breaking term is of order 10{sup −2}, which is sufficient large to improve the inflationary predictions while its higher order corrections are negligible. Such models predict sizeable tensor fluctuations and highly agree with the Planck results. In particular, the model with a linear U(1) symmetry breaking term predicts the tensor-to-scalar ratio around r∼0.01 and running spectral index α{sub s}∼−0.004, which comfortably fit with the Planck observations. For SUGRA inflation with breaking shift symmetry, the inflaton potential is modulated by an exponential factor. The modulated linear and quadratic models are consistent with the Planck observations. In both types of models the tensor-to-scalar ratio can be of order 10{sup −2}, which will be tested by the near future observations.

  3. Notes on soft breaking of BRST symmetry in the Batalin-Vilkovisky formalism

    CERN Document Server

    Radchenko, Olga V

    2012-01-01

    We have proved the nilpotency of the operators which describe the gauge dependence of the generating functionals of Green's functions for the gauge theories with the soft breaking of BRST symmetry in the Batalin-Vilkovisky formalism.

  4. Symmetry Breaking of Counter-Propagating Light in a Nonlinear Resonator

    Science.gov (United States)

    Del Bino, Leonardo; Silver, Jonathan M.; Stebbings, Sarah L.; Del'Haye, Pascal

    2017-01-01

    Spontaneous symmetry breaking is a concept of fundamental importance in many areas of physics, underpinning such diverse phenomena as ferromagnetism, superconductivity, superfluidity and the Higgs mechanism. Here we demonstrate nonreciprocity and spontaneous symmetry breaking between counter-propagating light in dielectric microresonators. The symmetry breaking corresponds to a resonance frequency splitting that allows only one of two counter-propagating (but otherwise identical) states of light to circulate in the resonator. Equivalently, this effect can be seen as the collapse of standing waves and transition to travelling waves within the resonator. We present theoretical calculations to show that the symmetry breaking is induced by Kerr-nonlinearity-mediated interaction between the counter-propagating light. Our findings pave the way for a variety of applications including optically controllable circulators and isolators, all-optical switching, nonlinear-enhanced rotation sensing, optical flip-flops for photonic memories as well as exceptionally sensitive power and refractive index sensors. PMID:28220865

  5. Symmetry Breaking of Counter-Propagating Light in a Nonlinear Resonator

    CERN Document Server

    Del Bino, Leonardo; Stebbings, Sarah L; Del'Haye, Pascal

    2016-01-01

    Light is generally expected to travel through isotropic media independent of its direction. This makes it challenging to develop non-reciprocal optical elements like optical diodes or circulators, which currently rely on magneto-optical effects and birefringent materials. Here we present measurements of non-reciprocal transmission and spontaneous symmetry breaking between counter-propagating light in dielectric microresonators. The symmetry breaking corresponds to a resonance frequency splitting that allows only one of two counter-propagating (but otherwise identical) light waves to circulate in the resonator. Equivalently, the symmetry breaking can be seen as the collapse of standing waves and transition to travelling waves within the resonator. We present theoretical calculations to show that the symmetry breaking is induced by Kerr-nonlinearity-mediated interaction between the counter-propagating light. This effect is expected to take place in any dielectric ring-resonator and might constitute one of the m...

  6. A scenario for symmetry breaking in Caffarelli-Kohn-Nirenberg inequalities

    CERN Document Server

    Dolbeault, Jean

    2012-01-01

    The purpose of this paper is to explain the phenomenon of symmetry breaking for optimal functions in functional inequalities by the numerical computations of some well chosen solutions of the corresponding Euler-Lagrange equations. For many of those inequalities it was believed that the only source of symmetry breaking would be the instability of the symmetric optimizer in the class of all admissible functions. But recently, it was shown by an indirect argument that for some Caffarelli-Kohn-Nirenberg inequalities this conjecture was not true. In order to understand this new symmetry breaking mechanism we have computed the branch of minimal solutions for a simple problem. A reparametrization of this branch allows us to build a scenario for the new phenomenon of symmetry breaking. The computations have been performed using Freefem++.

  7. Gauge-Invariant Formalism with Dirac-mode Expansion for Confinement and Chiral Symmetry Breaking

    CERN Document Server

    Gongyo, Shinya; Suganuma, Hideo

    2012-01-01

    We develop a manifestly gauge-covariant expansion of the QCD operator such as the Wilson loop, using the eigen-mode of the QCD Dirac operator $\\Slash D=\\gamma^\\mu D^\\mu$. With this method, we perform a direct analysis of the correlation between confinement and chiral symmetry breaking in lattice QCD Monte Carlo calculation on $6^4$ at $\\beta$=5.6. As a remarkable fact, the confinement force is almost unchanged even after removing the low-lying Dirac modes, which are responsible to chiral symmetry breaking. This indicates that one-to-one correspondence does not hold for between confinement and chiral symmetry breaking in QCD. In this analysis, we carefully amputate only the "essence of chiral symmetry breaking" by cutting off the low-lying Dirac modes, and can artificially realize the "confined but chiral restored situation" in QCD.

  8. Topological symmetry breaking of self-interacting fractional Klein-Gordon field theories on toroidal spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Lim, S C [Faculty of Engineering, Multimedia University, Jalan Multimedia, Cyberjaya, 63100, Selangor Darul Ehsan (Malaysia); Teo, L P [Faculty of Information Technology, Multimedia University, Jalan Multimedia, Cyberjaya, 63100, Selangor Darul Ehsan (Malaysia)], E-mail: sclim@mmu.edu.my, E-mail: lpteo@mmu.edu.my

    2008-04-11

    Quartic self-interacting fractional Klein-Gordon scalar massive and massless field theories on toroidal spacetime are studied. The effective potential and topologically generated mass are determined using zeta-function regularization technique. Renormalization of these quantities are derived. Conditions for symmetry breaking are obtained analytically. Simulations are carried out to illustrate regions or values of compactified dimensions where symmetry-breaking mechanisms appear.

  9. Symmetry breaking and coarsening of clusters in a prototypical driven granular gas.

    Science.gov (United States)

    Livne, Eli; Meerson, Baruch; Sasorov, Pavel V

    2002-11-01

    Granular hydrodynamics predicts symmetry-breaking instability in a two-dimensional ensemble of nearly elastically colliding smooth hard disks driven, at zero gravity, by a rapidly vibrating sidewall. Supercritical and subcritical symmetry-breaking bifurcations of the stripe state are identified, and the supercritical bifurcation curve is computed. The cluster dynamics proceed as a coarsening process mediated by the gas phase. Well above the bifurcation point the final steady state, selected by coarsening, represents a single strongly localized densely packed "droplet."

  10. Symmetry breaking and coarsening of clusters in a prototypical driven granular gas

    OpenAIRE

    Livne, Eli; Meerson, Baruch; Sasorov, Pavel V.

    2002-01-01

    Granular hydrodynamics predicts symmetry-breaking instability in a two-dimensional (2D) ensemble of nearly elastically colliding smooth hard spheres driven, at zero gravity, by a rapidly vibrating sidewall. Super- and subcritical symmetry-breaking bifurcations of the simple clustered state are identified, and the supercritical bifurcation curve is computed. The cluster dynamics proceed as a coarsening process mediated by the gas phase. Far above the bifurcation point the final steady state, s...

  11. Aspects of Chiral Symmetry Breaking in Lattice QCD

    Science.gov (United States)

    Horkel, Derek P.

    In this thesis we describe two studies concerting lattice quantum chromodynamics (LQCD): first, an analysis of the phase structure of Wilson and twisted-mass fermions with isospin breaking effects, second a computational study measuring non-perturbative Greens functions. We open with a brief overview of the formalism of QCD and LQCD, focusing on the aspects necessary for understanding how a lattice computation is performed and how discretization effects can be understood. Our work in Wilson and twisted-mass fermions investigates an increasingly relevant regime where lattice simulations are performed with quarks at or near their physical masses and both the mass difference of the up and down quarks and their differing electric charges are included. Our computation of a non-perturbative Greens functions on the lattice serves as a first attempt to validate recent work by Dine et. al. [24] in which they calculate Greens functions which vanish in perturbation theory, yet have a contribution from the one instanton background. In chapter 2, we determine the phase diagram and pion spectrum for Wilson and twisted-mass fermions in the presence of non-degeneracy between the up and down quark and discretization errors, using Wilson and twisted-mass chiral perturbation theory. We find that the CP-violating phase of the continuum theory (which occurs for sufficiently large non-degeneracy) is continuously connected to the Aoki phase of the lattice theory with degenerate quarks. We show that discretization effects can, in some cases, push simulations with physical masses closer to either the CP-violating phase or another phase not present in the continuum, so that at sufficiently large lattice spacings physical-point simulations could lie in one of these phases. In chapter 3, we extend the work in chapter 2 to include the effects of electromagnetism, so that it is applicable to recent simulations incorporating all sources of isospin breaking. For Wilson fermions, we find that the

  12. From physics to biology by extending criticality and symmetry breakings.

    Science.gov (United States)

    Longo, G; Montévil, M

    2011-08-01

    Symmetries play a major role in physics, in particular since the work by E. Noether and H. Weyl in the first half of last century. Herein, we briefly review their role by recalling how symmetry changes allow to conceptually move from classical to relativistic and quantum physics. We then introduce our ongoing theoretical analysis in biology and show that symmetries play a radically different role in this discipline, when compared to those in current physics. By this comparison, we stress that symmetries must be understood in relation to conservation and stability properties, as represented in the theories. We posit that the dynamics of biological organisms, in their various levels of organization, are not "just" processes, but permanent (extended, in our terminology) critical transitions and, thus, symmetry changes. Within the limits of a relative structural stability (or interval of viability), variability is at the core of these transitions.

  13. Field sources in a Lorentz-symmetry breaking scenario with a single background vector

    Energy Technology Data Exchange (ETDEWEB)

    Borges, L.H.C. [Universidade Federal do ABC, Centro de Ciencias Naturais e Humanas, Santo Andre, SP (Brazil); Barone, F.A. [IFQ, Universidade Federal de Itajuba, Av. BPS 1303, Pinheirinho, Caixa Postal 50, Itajuba, MG (Brazil); Helayel-Neto, J.A. [Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, RJ (Brazil)

    2014-06-15

    This paper is devoted to an investigation of the interactions between stationary sources of the electromagnetic field, in a model which exhibits explicit Lorentz-symmetry breaking due to the presence of a single background vector. We focus on physical phenomena that emerge from this kind of breaking and which have no counterpart in Maxwell electrodynamics. (orig.)

  14. Anomalous breaking of anisotropic scaling symmetry in the quantum lifshitz model

    NARCIS (Netherlands)

    Baggio, M.; de Boer, J.; Holsheimer, K.

    2012-01-01

    In this note we investigate the anomalous breaking of anisotropic scaling symmetry (t, x) → (λ z t, λ x) in a non-relativistic field theory with dynamical exponent z = 2. On general grounds, one can show that there exist two possible "central charges" which characterize the breaking of scale invaria

  15. Nuclear charge symmetry breaking and the /sup 3/H-/sup 3/He binding energy difference

    Energy Technology Data Exchange (ETDEWEB)

    Brandenburg, R.A.; Chulick, G.S.; Kim, Y.E.; Klepacki, D.J.; Machleidt, R.; Picklesimer, A.; Thaler, R.M.

    1988-02-01

    We study the /sup 3/H- /sup 3/He binding energy difference, taking into account the Coulomb interaction and charge symmetry breaking of the nuclear force consistent with recent NN experimental data. Realistic interactions are generated which describe the charge symmetry violations reflected in the different nucleon-nucleon scattering lengths. The influence of nuclear charge symmetry breaking on the perturbative Coulomb contribution to the /sup 3/He binding energy is discussed. It is shown that the experimental mass difference can be explained by these and theoretical estimates of other known effects.

  16. Nuclear charge symmetry breaking and the 3H-3He binding energy difference

    Science.gov (United States)

    Brandenburg, R. A.; Chulick, G. S.; Kim, Y. E.; Klepacki, D. J.; Machleidt, R.; Picklesimer, A.; Thaler, R. M.

    1988-02-01

    We study the 3H- 3He binding energy difference, taking into account the Coulomb interaction and charge symmetry breaking of the nuclear force consistent with recent NN experimental data. Realistic interactions are generated which describe the charge symmetry violations reflected in the different nucleon-nucleon scattering lengths. The influence of nuclear charge symmetry breaking on the perturbative Coulomb contribution to the 3He binding energy is discussed. It is shown that the experimental mass difference can be explained by these and theoretical estimates of other known effects.

  17. Spontaneous versus explicit replica symmetry breaking in the theory of disordered systems

    Science.gov (United States)

    Mouhanna, D.; Tarjus, G.

    2010-05-01

    We investigate the relation between spontaneous and explicit replica symmetry breaking in the theory of disordered systems. On general ground, we prove the equivalence between the replicon operator associated with the stability of the replica-symmetric solution in the standard replica scheme and the operator signaling a breakdown of the solution with analytic field dependence in a scheme in which replica symmetry is explicitly broken by applied sources. This opens the possibility to study, via the recently developed functional renormalization group, unresolved questions related to spontaneous replica symmetry breaking and spin-glass behavior in finite-dimensional disordered systems.

  18. Traces of Lorentz symmetry breaking in a hydrogen atom at ground state

    Science.gov (United States)

    Borges, L. H. C.; Barone, F. A.

    2016-02-01

    Some traces of a specific Lorentz symmetry breaking scenario in the ground state of the hydrogen atom are investigated. We use standard Rayleigh-Schrödinger perturbation theory in order to obtain the corrections to the ground state energy and the wave function. It is shown that an induced four-pole moment arises, due to the Lorentz symmetry breaking. The model considered is the one studied in Borges et al. (Eur Phys J C 74:2937, 2014), where the Lorentz symmetry is broken in the electromagnetic sector.

  19. Traces of Lorentz symmetry breaking in a Hydrogen atom at ground state

    CERN Document Server

    Borges, Luiz Henrique de Campos

    2016-01-01

    Some traces of a specific Lorentz symmetry breaking scenario in the ground state of the Hydrogen atom are investigated. It is used standard Rayleigh-Schr\\"odinger perturbation theory in order to obtain the corrections to the the ground state energy and wave function. It is shown that an induced four-pole moment arises, due to the Lorentz symmetry breaking. The model considered is the one studied in reference Eur. Phys. J. C {\\bf 74}, 2937 (2014), where the Lorentz symmetry is broken in the electromagnetic sector.

  20. The Effective Kahler Potential, Metastable Vacua and R-Symmetry Breaking in O'Raifeartaigh Models

    CERN Document Server

    Benjamin, Shermane; Kain, Ben

    2010-01-01

    Much has been learned about metastable vacua and R-symmetry breaking in O'Raifeartaigh models. Such work has largely been done from the perspective of the superpotential and by including Coleman-Weinberg corrections to the scalar potential. Instead, we consider these ideas from the perspective of the one loop effective Kahler potential. We translate known ideas to this framework and construct convenient formulas for computing individual terms in the expanded effective Kahler potential. We do so for arbitrary R-charge assignments and allow for small R-symmetry violating terms so that both spontaneous and explicit R-symmetry breaking is allowed in our analysis.

  1. Traces of Lorentz symmetry breaking in a hydrogen atom at ground state

    Energy Technology Data Exchange (ETDEWEB)

    Borges, L.H.C. [Universidade Federal do ABC, Centro de Ciencias Naturais e Humanas, Santo Andre, SP (Brazil); Barone, F.A. [IFQ-Universidade Federal de Itajuba, Itajuba, MG (Brazil)

    2016-02-15

    Some traces of a specific Lorentz symmetry breaking scenario in the ground state of the hydrogen atom are investigated. We use standard Rayleigh-Schroedinger perturbation theory in order to obtain the corrections to the ground state energy and the wave function. It is shown that an induced four-pole moment arises, due to the Lorentz symmetry breaking. The model considered is the one studied in Borges et al. (Eur Phys J C 74:2937, 2014), where the Lorentz symmetry is broken in the electromagnetic sector. (orig.)

  2. Interacting spins in a cavity: Finite-size effects and symmetry-breaking dynamics

    DEFF Research Database (Denmark)

    Gammelmark, Søren; Mølmer, Klaus

    2012-01-01

    , and for small chains, we find significant and nontrivial finite-size effects. Below the first-order phase transition, even quite large spin chains of 30–40 spins give rise to a mean photon number and number fluctuations significantly above the mean-field vacuum result. Near the second-order phase critical point......-transition the random character of the measurement process causes a measurement-induced symmetry breaking in the system. This symmetry breaking occurs on the time scale needed for an observer to gather sufficient information to distinguish between the two possible (mean-field) symmetry-broken states....

  3. Explicit chiral symmetry breaking in Gross-Neveu type models

    Energy Technology Data Exchange (ETDEWEB)

    Boehmer, Christian

    2011-07-25

    This thesis is devoted to the study of a 1+1-dimensional, fermionic quantum field theory with Lagrangian L= anti {psi}i{gamma}{sup {mu}}{partial_derivative}{sub {mu}}{psi}-m{sub 0} anti {psi}{psi}+(g{sup 2})/(2)(anti {psi}{psi}){sup 2}+(G{sup 2})/(2)(anti {psi}i{gamma}{sub 5}{psi}){sup 2} in the limit of an infinite number of flavors, using semiclassical methods. The main goal of the present work was to see what changes if we allow for explicit chiral symmetry breaking, either by a bare mass term, or a splitting of the scalar and pseudo-scalar coupling constants, or both. In the first case, this becomes the massive NJL{sub 2} model. In the 2nd and 3rd cases we are dealing with a model largely unexplored so far. The first half of this thesis deals with the massive NJL{sub 2} model. Before attacking the phase diagram, it was necessary to determine the baryons of the model. We have carried out full numerical Hartree-Fock calculations including the Dirac sea. The most important result is the first complete phase diagram of the massive NJL{sub 2} model in ({mu},T,{gamma}) space, where {gamma} arises from m{sub 0} through mass renormalization. In the 2nd half of the thesis we have studied a generalization of the massless NJL{sub 2} model with two different (scalar and pseudoscalar) coupling constants, first in the massless version. Renormalization of the 2 coupling constants leads to the usual dynamical mass by dynamical transmutation, but in addition to a novel {xi} parameter interpreted as chiral quenching parameter. As far as baryon structure is concerned, the most interesting result is the fact that the new baryons interpolate between the kink of the GN model and the massless baryon of the NJL{sub 2} model, always carrying fractional baryon number 1/2. The phase diagram of the massless model with 2 coupling constants has again been determined numerically. At zero temperature we have also investigated the massive, generalized GN model with 3 parameters. It is well

  4. On The Complexity and Completeness of Static Constraints for Breaking Row and Column Symmetry

    CERN Document Server

    Katsirelos, George; Walsh, Toby

    2010-01-01

    We consider a common type of symmetry where we have a matrix of decision variables with interchangeable rows and columns. A simple and efficient method to deal with such row and column symmetry is to post symmetry breaking constraints like DOUBLELEX and SNAKELEX. We provide a number of positive and negative results on posting such symmetry breaking constraints. On the positive side, we prove that we can compute in polynomial time a unique representative of an equivalence class in a matrix model with row and column symmetry if the number of rows (or of columns) is bounded and in a number of other special cases. On the negative side, we show that whilst DOUBLELEX and SNAKELEX are often effective in practice, they can leave a large number of symmetric solutions in the worst case. In addition, we prove that propagating DOUBLELEX completely is NP-hard. Finally we consider how to break row, column and value symmetry, correcting a result in the literature about the safeness of combining different symmetry breaking c...

  5. Supersymmetry and R-symmetry Breaking in Meta-stable Vacua at Finite Temperature and Density

    CERN Document Server

    Arai, Masato; Sasaki, Shin

    2014-01-01

    We study a meta-stable supersymmetry-breaking vacuum in a generalized O'Raifeartaigh model at finite temperature and chemical potentials. Fields in the generalized O'Raifeartaigh model possess different R-charges to realize R-symmetry breaking. Accordingly, at finite density and temperature, the chemical potentials have to be introduced in a non-uniform way. Based on the formulation elaborated in our previous work we study the one-loop thermal effective potential including the chemical potentials in the generalized O'Raifeartaigh model. We perform the numerical analysis and find that the R-symmetry breaking vacua, which exist at zero temperature and zero chemical potential, are destabilized for some parameter regions. In addition, we find that there are parameter regions where new R-symmetry breaking vacua are realized even at high temperature by the finite density effects.

  6. Spontaneous symmetry breaking in the $S_3$-symmetric scalar sector

    CERN Document Server

    Emmanuel-Costa, D.; Osland, P.; Rebelo, M.N.

    2016-01-01

    We present a detailed study of the vacua of the $S_3$-symmetric three-Higgs-doublet potential, specifying the region of parameters where these minimisation solutions occur. We work with a CP conserving scalar potential and analyse the possible real and complex vacua with emphasis on the cases in which the CP symmetry can be spontaneously broken. Results are presented both in the reducible-representation framework of Derman, and in the irreducible-representation framework. Mappings between these are given. Some of these implementations can in principle accommodate dark matter and for that purpose it is important to identify the residual symmetries of the potential after spontaneous symmetry breakdown. We are also concerned with constraints from vacuum stability.

  7. Topological Insulators and Nematic Phases from Spontaneous Symmetry Breaking in

    Energy Technology Data Exchange (ETDEWEB)

    Sun, K.

    2010-05-26

    We investigate the stability of a quadratic band-crossing point (QBCP) in 2D fermionic systems. At the non-interacting level, we show that a QBCP exists and is topologically stable for a Berry flux {-+}2{pi}, if the point symmetry group has either fourfold or sixfold rotational symmetries. This putative topologically stable free-fermion QBCP is marginally unstable to arbitrarily weak shortrange repulsive interactions. We consider both spinless and spin-1/2 fermions. Four possible ordered states result: a quantum anomalous Hall phase, a quantum spin Hall phase, a nematic phase, and a nematic-spin-nematic phase.

  8. Chiral and herringbone symmetry breaking in water-surface monolayers

    DEFF Research Database (Denmark)

    Peterson, I.R.; Kenn, R.M.; Goudot, A.

    1996-01-01

    We report the observation from monolayers of eicosanoic acid in the L(2)' phase of three distinct out-of-plane first-order diffraction peaks, indicating molecular tilt in a nonsymmetry direction and hence the absence of mirror symmetry. At lower pressures the molecules tilt in the direction of th...

  9. Thawing model and symmetry breaking in a coupled quintessence model

    CERN Document Server

    Honardoost, M; Sepangi, H R

    2015-01-01

    We consider the thawing model in the framework of coupled quintessence scenario. The effective potential has $Z_2$ symmetry which is broken spontaneously when dark matter density becomes less than a critical value leading the quintessence equation of state parameter to deviate from -1. Conditions required for this procedure are obtained and analytical solution for the equation of state parameter is derived.

  10. Observation of parity-time symmetry breaking transitions in a dissipative Floquet system of ultracold atoms

    CERN Document Server

    Li, Jiaming; Liu, Ji; de Melo, Leonardo; Joglekar, Yogesh N; Luo, Le

    2016-01-01

    Open physical systems with balanced loss and gain exhibit a transition, absent in their solitary counterparts, which engenders modes that exponentially decay or grow with time and thus spontaneously breaks the parity-time PT symmetry. This PT-symmetry breaking is induced by modulating the strength or the temporal profile of the loss and gain, but also occurs in a pure dissipative system without gain. It has been observed that, in classical systems with mechanical, electrical, and electromagnetic setups with static loss and gain, the PT-symmetry breaking transition leads to extraordinary behavior and functionalities. However, its observation in a quantum system is yet to be realized. Here we report on the first quantum simulation of PT-symmetry breaking transitions using ultracold Li-6 atoms. We simulate static and Floquet dissipative Hamiltonians by generating state-dependent atom loss in a noninteracting Fermi gas, and observe the PT-symmetry breaking transitions by tracking the atom number for each state. W...

  11. Axion dark matter in the post-inflationary Peccei-Quinn symmetry breaking scenario

    Energy Technology Data Exchange (ETDEWEB)

    Ringwald, Andreas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Saikawa, Ken' ichi [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Tokyo Institute of Technology (Japan). Dept. of Physics

    2015-12-15

    We consider extensions of the Standard Model in which a spontaneously broken global chiral Peccei-Quinn (PQ) symmetry arises as an accidental symmetry of an exact Z{sub N} symmetry. For N=9 or 10, this symmetry can protect the axion - the Nambu-Goldstone boson arising from the spontaneous breaking of the accidental PQ symmetry - against semi-classical gravity effects, thus suppressing gravitational corrections to the effective potential, while it can at the same time provide for the small explicit symmetry breaking term needed to make models with domain wall number N{sub DW}>1, such as the popular Dine-Fischler-Srednicki-Zhitnitsky (DFSZ) model (N{sub DW}=6), cosmologically viable even in the case where spontaneous PQ symmetry breaking occurred after inflation. We find that N=10 DFSZ axions with mass m{sub A}∼3.5-4.2 meV can account for cold dark matter and simultaneously explain the hints for anomalous cooling of white dwarfs. The proposed helioscope International Axion Observatory - being sensitive to solar DFSZ axions with mass above a few meV - will decisively test this scenario.

  12. Quantum structure of T-dualized models with symmetry breaking

    CERN Document Server

    Casteill, P Y

    2000-01-01

    We study the principal sigma-models defined on any group manifold GL x GR/GD with breaking of GR, and their T-dual transforms. For abritary breaking we can express the torsion and Ricci tensor of the dual model in terms of the frame geometry of the initial principal model. Using these results, we give necessary and sufficient conditions for the dual model to be torsionless and prove that the one-loop renormalizability of a given principal model is inherited by its dual partner, who shares the same beta-functions. These results are shown to hold also if the principal model is endowed with torsion. As an application we compute the beta-functions for the full Bianchi family and show that for some choices of the breaking parameters the dilaton anomaly is absent: for these choices the dual torsion vanishes. For the dualized Bianchi V model (which is torsionless for any breaking), we take advantage of its simpler structure, to study its two-loops renormalizability.

  13. Spontaneous Breaking of Lorentz Symmetry with an antisymmetric tensor

    CERN Document Server

    Hernaski, Carlos A

    2016-01-01

    Spontaneous violation of Lorentz symmetry by the vacuum condensation of an antisymmetric $2$-tensor is considered. The coset construction for nonlinear realization of spacetime symmetries is employed to build the most general low-energy effective action for the Goldstone modes interacting with photons. We analyze the model within the context of the Standard-Model Extension and noncommutative QED. Experimental bounds for some parameters of the model are discussed, and we readdress the subtle issues of stability and causality in Lorentz non-invariant scenarios. Besides the two photon polarizations, just one Goldstone mode must be dynamical to set a sensible low-energy effective model, and the enhancement of the stability by accounting interaction terms points to a protection against observational Lorentz violation.

  14. Effect of symmetry breaking on level curvature distributions

    CERN Document Server

    Hussein, M S; Pato, M P

    2002-01-01

    An exact general formalism is derived that expresses the eigenvector and the eigenvalue dynamics as a set of coupled equations of motion in terms of the matrix elements dynamics. Combined with an appropriate model Hamiltonian, these equations are used to investigate the effect of the presence of a discrete symmetry in the level curvature distribution. It is shown that this distribution exhibits a nontrivial behavior that explains the recent data regarding frequencies of acoustic vibrations of quartz block.

  15. Breaking of forward-backward symmetry in driven systems

    DEFF Research Database (Denmark)

    Szolnoki, Attila; Szabó, György

    1993-01-01

    The dynamical pair approximation was modified to study the stationary states in a two-dimensional repulsive-lattice-gas model driven far from equilibrium by the application of an external field. This approximation distinguishes between the forward, backward, and transverse directions with respect...... to the electric field. In the present driven system, the forward-backward symmetry is broken at the level of the pair approximation. The difference between the forward and backward directions is confirmed by Monte Carlo simulations....

  16. Dynamical Electroweak Symmetry Breaking in String Models with D-branes

    CERN Document Server

    Kitazawa, Noriaki

    2009-01-01

    The possibility of dynamical electroweak symmetry breaking by strong coupling gauge interaction in models with D-branes in String Theory is examined. Instead of elementary scalar Higgs doublet fields, the gauge symmetry with strong coupling (technicolor) is introduced. As the first step of this direction, a toy model, which is not fully realistic, is concretely analyzed in some detail. The model consists of D-branes and anti-D-branes at orbifold singularities in (T^2 x T^2 x T^2)/Z_3 which preserves supersymmetry. Supersymmetry is broken through the brane supersymmetry breaking. It is pointed out that the problem of large S parameter in dynamical electroweak symmetry breaking scenario may be solved by natural existence of kinetic term mixings between hypercharge U(1) gauge boson and massive anomalous U(1) gauge bosons. The problems to be solved toward constructing more realistic models are clarified in the analysis.

  17. Some Relations for Quark Confinement and Chiral Symmetry Breaking in QCD

    CERN Document Server

    Suganuma, Hideo; Redlich, Krzysztof; Sasaki, Chihiro

    2016-01-01

    We analytically study the relation between quark confinement and spontaneous chiral-symmetry breaking in QCD. In terms of the Dirac eigenmodes, we derive some formulae for the Polyakov loop, its fluctuations, and the string tension from the Wilson loop. We also investigate the Polyakov loop in terms of the eigenmodes of the Wilson, the clover and the domain wall fermion kernels, respectively. For the confinement quantities, the low-lying Dirac/fermion eigenmodes are found to give negligible contribution, while they are essential for chiral symmetry breaking. These relations indicate no direct one-to-one correspondence between confinement and chiral symmetry breaking in QCD, which seems to be natural because confinement is realized independently of the quark mass.

  18. Exit from accelerated regimes by symmetry breaking in a universe filled with fermionic and bosonic sources

    CERN Document Server

    Ribas, Marlos O; Devecchi, Fernando P; Kremer, Gilberto M

    2014-01-01

    In this work we investigate a universe filled with a fermionic field and a complex scalar field, exchanging energy through a Yukawa potential; the model encodes a symmetry breaking mechanism (on the bosonic sector). In a first case, when the mechanism is not included, the cosmological model furnishes a pure accelerated regime. In a second case, when including the symmetry breaking mechanism, we verify that the fermion and one of the bosons, of Higgs type, become massive, while the other boson is massless. Besides, the mechanism shows to be responsible for a transition from an accelerated to a decelerated regime, which certifies the importance, in cosmological terms, of its role. After symmetry breaking, the total pressure of the fields change its sign from negative to positive corresponding to the accelerated-decelerated transition. For large times the universe becomes a dust (pressureless) dominated Universe.

  19. SU(3) centre vortices underpin confinement and dynamical chiral symmetry breaking

    CERN Document Server

    O'Malley, Elyse-Ann; Leinweber, Derek; Moran, Peter

    2011-01-01

    The mass function of the nonperturbative quark propagator in SU(3) gauge theory shows only a weak dependence on the vortex content of the gauge configurations. Of particular note is the survival of dynamical mass generation on vortex-free configurations having a vanishing string tension. This admits the possibility that mass generation associated with dynamical chiral symmetry breaking persists without confinement. In this presentation, we examine the low-lying ground-state hadron spectrum of the pi, rho, N and Delta and discover that while dynamical mass generation persists in the vortex-free theory, it is not connected to dynamical chiral symmetry breaking. In this way, centre vortices in SU(3) gauge theory are intimately linked to both confinement and dynamical chiral symmetry breaking. We conclude that centre vortices are the essential underlying feature of the QCD vacuum.

  20. Maximally Generalized Yang-Mills Model and Dynamical Breaking of Gauge Symmetry

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A maximally generalized Yang-Mills model, which contains, besides the vector part Vμ, also an axial-vector part Aμ, a scalar part S, a pseudoscalar part P, and a tensor part Tμv, is constructed and the dynamical breaking of gauge symmetry in the model is also discussed. It is shown, in terms of the Nambu-Jona-Lasinio mechanism, that the gauge symmetry breaking can be realized dynamically in the maximally generalized Yang-Mills model. The combination of the maximally generalized Yang-Mills model and the NJL mechanism provides a way to overcome the difficulties related to the Higgs field and the Higgs mechanism in the usual spontaneous symmetry breaking theory.

  1. PT-symmetry breaking with divergent potentials: lattice and continuum cases

    CERN Document Server

    Joglekar, Yogesh N; Saxena, Avadh

    2014-01-01

    We investigate the parity- and time-reversal ($\\mathcal{PT}$)-symmetry breaking in lattice models in the presence of long-ranged, non-hermitian, $\\mathcal{PT}$-symmetric potentials that remain finite or become divergent in the continuum limit. By scaling analysis of the fragile $\\mathcal{PT}$ threshold for an open finite lattice, we show that continuum loss-gain potentials $V_\\alpha(x)\\propto i |x|^\\alpha \\mathrm{sign}(x)$ have a positive $\\mathcal{PT}$-breaking threshold for $\\alpha>-2$, and a zero threshold for $\\alpha\\leq -2$. When $\\alpha<0$ localized states with complex (conjugate) energies in the continuum energy-band occur at higher loss-gain strengths. We investigate the signatures of $\\mathcal{PT}$-symmetry breaking in coupled waveguides, and show that the emergence of localized states dramatically shortens the relevant time-scale in the $\\mathcal{PT}$-symmetry broken region.

  2. A new dynamics of electroweak symmetry breaking with classically scale invariance

    CERN Document Server

    Haba, Naoyuki; Kitazawa, Noriaki; Yamaguchi, Yuya

    2015-01-01

    We propose a new dynamics of the electroweak symmetry breaking in a classically scale invariant version of the standard model. The scale invariance is broken by the condensations of additional fermions under a strong coupling dynamics. The electroweak symmetry breaking is triggered by negative mass squared of the elementary Higgs doublet, which is dynamically generated through the bosonic seesaw mechanism. We introduce a real pseudo-scalar singlet field interacting with additional fermions and Higgs doublet in order to avoid massless Nambu-Goldstone bosons from the chiral symmetry breaking in a strong coupling sector. We investigate the mass spectra and decay rates of these pseudo-Nambu-Goldstone bosons, and show they can decay fast enough without cosmological problems. We further evaluate the energy dependences of the couplings between elementary fields perturbatively, and find that our model is the first one which realizes the flatland scenario with the dimensional transmutation by the strong coupling dynam...

  3. A new dynamics of electroweak symmetry breaking with classically scale invariance

    Directory of Open Access Journals (Sweden)

    Naoyuki Haba

    2016-04-01

    Full Text Available We propose a new dynamics of the electroweak symmetry breaking in a classically scale invariant version of the standard model. The scale invariance is broken by the condensations of additional fermions under a strong coupling dynamics. The electroweak symmetry breaking is triggered by negative mass squared of the elementary Higgs doublet, which is dynamically generated through the bosonic seesaw mechanism. We introduce a real pseudo-scalar singlet field interacting with additional fermions and Higgs doublet in order to avoid massless Nambu–Goldstone bosons from the chiral symmetry breaking in a strong coupling sector. We investigate the mass spectra and decay rates of these pseudo-Nambu–Goldstone bosons, and show they can decay fast enough without cosmological problems. We further show that our model can make the electroweak vacuum stable.

  4. Spontaneous Symmetry Breaking and Nambu–Goldstone Bosons in Quantum Many-Body Systems

    Directory of Open Access Journals (Sweden)

    Tomáš Brauner

    2010-04-01

    Full Text Available Spontaneous symmetry breaking is a general principle that constitutes the underlying concept of a vast number of physical phenomena ranging from ferromagnetism and superconductivity in condensed matter physics to the Higgs mechanism in the standard model of elementary particles. I focus on manifestations of spontaneously broken symmetries in systems that are not Lorentz invariant, which include both nonrelativistic systems as well as relativistic systems at nonzero density, providing a self-contained review of the properties of spontaneously broken symmetries specific to such theories. Topics covered include: (i Introduction to the mathematics of spontaneous symmetry breaking and the Goldstone theorem. (ii Minimization of Higgs-type potentials for higher-dimensional representations. (iii Counting rules for Nambu–Goldstone bosons and their dispersion relations. (iv Construction of effective Lagrangians. Specific examples in both relativistic and nonrelativistic physics are worked out in detail.

  5. Effective Field Theory of Emergent Symmetry Breaking in Deformed Atomic Nuclei

    CERN Document Server

    Papenbrock, T

    2015-01-01

    Spontaneous symmetry breaking in non-relativistic quantum systems has previously been addressed in the framework of effective field theory. Low-lying excitations are constructed from Nambu-Goldstone modes using symmetry arguments only. We extend that approach to finite systems. The approach is very general. To be specific, however, we consider atomic nuclei with intrinsically deformed ground states. The emergent symmetry breaking in such systems requires the introduction of additional degrees of freedom on top of the Nambu-Goldstone modes. Symmetry arguments suffice to construct the low-lying states of the system. In deformed nuclei these are vibrational modes each of which serves as band head of a rotational band.

  6. Symmetry breaking in MAST plasma turbulence due to toroidal flow shear

    Science.gov (United States)

    Fox, M. F. J.; van Wyk, F.; Field, A. R.; Ghim, Y.-c.; Parra, F. I.; Schekochihin, A. A.; the MAST Team

    2017-03-01

    The flow shear associated with the differential toroidal rotation of tokamak plasmas breaks an underlying symmetry of the turbulent fluctuations imposed by the up–down symmetry of the magnetic equilibrium. Using experimental beam-emission-spectroscopy measurements and gyrokinetic simulations, this symmetry breaking in ion-scale turbulence in MAST is shown to manifest itself as a tilt of the spatial correlation function and a finite skew in the distribution of the fluctuating density field. The tilt is a statistical expression of the ‘shearing’ of the turbulent structures by the mean flow. The skewness of the distribution is related to the emergence of long-lived density structures in sheared, near-marginal plasma turbulence. The extent to which these effects are pronounced is argued (with the aid of the simulations) to depend on the distance from the nonlinear stability threshold. Away from the threshold, the symmetry is effectively restored.

  7. Symmetry breaking in MAST plasma turbulence due to toroidal flow shear

    CERN Document Server

    Fox, M F J; Field, A R; Ghim, Y -c; Parra, F I; Schekochihin, A A

    2016-01-01

    The flow shear associated with the differential toroidal rotation of tokamak plasmas breaks an underlying symmetry of the turbulent fluctuations imposed by the up-down symmetry of the magnetic equilibrium. Using experimental Beam-Emission-Spectroscopy (BES) measurements and gyrokinetic simulations, this symmetry breaking in ion-scale turbulence in MAST is shown to manifest itself as a tilt of the spatial correlation function and a finite skew in the distribution of the fluctuating density field. The tilt is a statistical expression of the "shearing" of the turbulent structures by the mean flow. The skewness of the distribution is related to the emergence of long-lived density structures in sheared, near-marginal plasma turbulence. The extent to which these effects are pronounced is argued (with the aid of the simulations) to depend on the distance from the nonlinear stability threshold. Away from the threshold, the symmetry is effectively restored.

  8. Unified model of fermion masses with Wilson line flavor symmetry breaking

    CERN Document Server

    Seidl, Gerhart

    2008-01-01

    We present a supersymmetric SU(5) GUT model with a discrete non-Abelian flavor symmetry that is broken by Wilson lines. The model is formulated in 4+3 dimensions compactified on a manifold S^3/Z_n. Symmetry breaking by Wilson lines is topological and allows to realize the necessary flavor symmetry breaking without a vacuum alignment mechanism. The model predicts the hierarchical pattern of charged fermion masses and quark mixing angles. Small normal hierarchical neutrino masses are generated by the type-I seesaw mechanism. The non-Abelian flavor symmetry predicts to leading order exact maximal atmospheric mixing while the solar angle emerges from quark-lepton complementarity. The resulting leptonic mixing matrix is in excellent agreement with current data and could be tested in future neutrino oscillation experiments.

  9. Uniform trace formulae for SU(2) and SO(3) symmetry breaking

    CERN Document Server

    Brack, M; Tanaka, K

    1999-01-01

    We develop uniform approximations for the trace formula for non-integrable systems in which SU(2) symmetry is broken by a non-linear term of the Hamiltonian. As specific examples, we investigate Hénon-Heiles type potentials. Our formalism can also be applied to the breaking of SO(3) symmetry in a three-dimensional cavity with axially-symmetric quadrupole deformation.

  10. Electroweak symmetry breaking and beyond the Standard Model physics – A review

    Indian Academy of Sciences (India)

    Gautam Bhattacharyya

    2009-01-01

    In this talk, I shall first discuss the Standard Model Higgs mechanism and then highlight some of its deficiencies making a case for the need to go beyond the Standard Model (BSM). The BSM tour will be guided by symmetry arguments. I shall pick up four specific BSM scenarios, namely, supersymmetry, little Higgs, gauge-Higgs unification, and the Higgsless approach. The discussion will be confined mainly on their electroweak symmetry breaking aspects.

  11. Mirror Symmetry Breaking by Chirality Synchronisation in Liquids and Liquid Crystals of Achiral Molecules.

    Science.gov (United States)

    Tschierske, Carsten; Ungar, Goran

    2016-01-04

    Spontaneous mirror symmetry breaking is an efficient way to obtain homogeneously chiral agents, pharmaceutical ingredients and materials. It is also in the focus of the discussion around the emergence of uniform chirality in biological systems. Tremendous progress has been made by symmetry breaking during crystallisation from supercooled melts or supersaturates solutions and by self-assembly on solid surfaces and in other highly ordered structures. However, recent observations of spontaneous mirror symmetry breaking in liquids and liquid crystals indicate that it is not limited to the well-ordered solid state. Herein, progress in the understanding of a new dynamic mode of symmetry breaking, based on chirality synchronisation of transiently chiral molecules in isotropic liquids and in bicontinuous cubic, columnar, smectic and nematic liquid crystalline phases is discussed. This process leads to spontaneous deracemisation in the liquid state under thermodynamic control, giving rise to long-term stable symmetry-broken fluids, even at high temperatures. These fluids form conglomerates that are capable of extraordinary strong chirality amplification, eventually leading to homochirality and providing a new view on the discussion of emergence of uniform chirality in prebiotic systems.

  12. The Szilard engine revisited: Entropy, macroscopic randomness, and symmetry breaking phase transitions

    Science.gov (United States)

    Parrondo, Juan M. R.

    2001-09-01

    The role of symmetry breaking phase transitions in the Szilard engine is analyzed. It is shown that symmetry breaking is the only necessary ingredient for the engine to work. To support this idea, we show that the Ising model behaves exactly as the Szilard engine. We design a purely macroscopic Maxwell demon from an Ising model, demonstrating that a demon can operate with information about the macrostate of the system. We finally discuss some aspects of the definition of entropy and how thermodynamics should be modified to account for the variations of entropy in second-order phase transitions.

  13. Dynamical chiral symmetry breaking and weak nonperturbative renormalization group equation in gauge theory

    CERN Document Server

    Aoki, Ken-Ichi; Sato, Daisuke

    2016-01-01

    We analyze the dynamical chiral symmetry breaking in gauge theory with the nonperturbative renormalization group equation (NPRGE), which is a first order nonlinear partial differential equation (PDE). In case that the spontaneous chiral symmetry breaking occurs, the NPRGE encounters some non-analytic singularities at the finite critical scale even though the initial function is continuous and smooth. Therefore there is no usual solution of the PDE beyond the critical scale. In this paper, we newly introduce the notion of a weak solution which is the global solution of the weak NPRGE. We show how to evaluate the physical quantities with the weak solution.

  14. Effective dissipation: Breaking time-reversal symmetry in driven microscopic energy transmission

    Science.gov (United States)

    Brown, Aidan I.; Sivak, David A.

    2016-09-01

    At molecular scales, fluctuations play a significant role and prevent biomolecular processes from always proceeding in a preferred direction, raising the question of how limited amounts of free energy can be dissipated to obtain directed progress. We examine the system and process characteristics that efficiently break time-reversal symmetry at fixed energy loss; in particular for a simple model of a molecular machine, an intermediate energy barrier produces unusually high asymmetry for a given dissipation. We relate the symmetry-breaking factors found in this model to recent observations of biomolecular machines.

  15. Excited-state symmetry breaking of linear quadrupolar chromophores: A transient absorption study

    Science.gov (United States)

    Dozova, Nadia; Ventelon, Lionel; Clermont, Guillaume; Blanchard-Desce, Mireille; Plaza, Pascal

    2016-11-01

    The photophysical properties of two highly symmetrical quadrupolar chromophores were studied by both steady-state and transient absorption spectroscopy. Their excited-state behavior is dominated by the solvent-induced Stokes shift of the stimulated-emission band. The origin of this shift is attributed to symmetry breaking that confers a non-vanishing dipole moment to the excited state of both compounds. This dipole moment is large and constant in DMSO, whereas symmetry breaking appears significantly slower and leading to smaller excited-state dipole in toluene. Time-dependant increase of the excited-state dipole moment induced by weak solvation is proposed to explain the results in toluene.

  16. Mass Formulas Derived by Symmetry Breaking and Prediction of Masses on Heavy Flavor Hadrons

    CERN Document Server

    Chang, Yi-Fang

    2008-01-01

    The base is the Lagrangian of symmetry and its dynamical breaking or Higgs breaking. When the soliton-like solutions of the scalar field equations are substituted into the spinor field equations, in the approximation of non-relativity we derive the Morse-type potential, whose energy spectrum is the GMO mass formula and its modified accurate mass formula. According to the symmetry of s-c quarks, the heavy flavor hadrons which made of u,d and c quarks may be classified by SU(3) octet and decuplet. Then some simple mass formulas are obtained, from this we predict some masses of unknown hadrons.

  17. Semiclassical treatment of symmetry breaking and bifurcations in a non-integrable potential

    Science.gov (United States)

    Koliesnik, M. V.; Krivenko-Emetov, Ya D.; Magner, A. G.; Arita, K.; Brack, M.

    2015-11-01

    We have derived an analytical trace formula for the level density of the Hénon-Heiles potential using the improved stationary phase method, based on extensions of Gutzwiller's semiclassical path integral approach. This trace formula has the correct limit to the standard Gutzwiller trace formula for the isolated periodic orbits far from all (critical) symmetry-breaking points. It continuously joins all critical points at which an enhancement of the semiclassical amplitudes occurs. We found a good agreement between the semiclassical and the quantum oscillating level densities for the gross shell structures and for the energy shell corrections, solving the symmetry breaking problem at small energies.

  18. Spontaneous breaking of discrete symmetries in QCD on a small volume

    CERN Document Server

    Lucini, Biagio; Pica, Claudio

    2007-01-01

    In a compact space with non-trivial cycles, for sufficiently small values of the compact dimensions, charge conjugation (C), spatial reflection (P) and time reversal (T) are spontaneously broken in QCD. The order parameter for the symmetry breaking is the trace of the Wilson line wrapping around the compact dimension, which acquires an imaginary part in the broken phase. We show that a physical signature for the symmetry breaking is a persistent baryonic current wrapping in the compact directions. The existence of such a current is derived analytically at first order in perturbation theory and confirmed in the non-perturbative regime by lattice simulations.

  19. Semiclassical treatment of symmetry breaking and bifurcations in a non-integrable potential

    CERN Document Server

    Koliesnik, M V; Magner, A G; Arita, K; Brack, M

    2014-01-01

    We have derived an analytical trace formula for the level density of the H\\'enon-Heiles potential using the improved stationary phase method, based on extensions of Gutzwiller's semiclassical path integral approach. This trace formula has the correct limit to the standard Gutzwiller trace formula for the isolated periodic orbits far from all (critical) symmetry-breaking points. It continuously joins all critical points at which an enhancement of the semiclassical amplitudes occurs. We found a good agreement between the semi- classical and the quantum oscillating level densities for the gross shell structures and for the energy shell corrections, solving the symmetry breaking problem at small energies.

  20. Random symmetry breaking and freezing in chaotic networks.

    Science.gov (United States)

    Peleg, Y; Kinzel, W; Kanter, I

    2012-09-01

    Parameter space of a driven damped oscillator in a double well potential presents either a chaotic trajectory with sign oscillating amplitude or a nonchaotic trajectory with a fixed sign amplitude. A network of such delay coupled damped oscillators is shown to present chaotic dynamics while the sign amplitude of each damped oscillator is randomly frozen. This phenomenon of random broken global symmetry of the network simultaneous with random freezing of each degree of freedom is accompanied by the existence of exponentially many randomly frozen chaotic attractors with the size of the network. Results are exemplified by a network of modified Duffing oscillators with infinite range pseudoinverse delayed interactions.

  1. Symmetry and symmetry breaking in quantum mechanics; Symetrie et brisure de symetrie en mechanique quantique

    Energy Technology Data Exchange (ETDEWEB)

    Chomaz, Philippe [Grand Accelerateur National d`Ions Lourds (GANIL), 14 - Caen (France)

    1998-12-31

    In the world of infinitely small, the world of atoms, nuclei and particles, the quantum mechanics enforces its laws. The discovery of Quanta, this unbelievable castration of the Possible in grains of matter and radiation, in discrete energy levels compels us of thinking the Single to comprehend the Universal. Quantum Numbers, magic Numbers and Numbers sign the wave. The matter is vibration. To describe the music of the world one needs keys, measures, notes, rules and partition: one needs quantum mechanics. The particles reduce themselves not in material points as the scholars of the past centuries thought, but they must be conceived throughout the space, in the accomplishment of shapes of volumes. When Einstein asked himself whether God plays dice, there was no doubt among its contemporaries that if He exists He is a geometer. In a Nature reduced to Geometry, the symmetries assume their role in servicing the Harmony. The symmetries allow ordering the energy levels to make them understandable. They impose there geometrical rules to the matter waves, giving them properties which sometimes astonish us. Hidden symmetries, internal symmetries and newly conceived symmetries have to be adopted subsequently to the observation of some order in this world of Quanta. In turn, the symmetries provide new observables which open new spaces of observation 17 refs., 16 figs.

  2. Loop suppressed electroweak symmetry breaking and naturally heavy superpartners

    CERN Document Server

    Dermisek, Radovan

    2016-01-01

    A model is presented in which O(10 TeV) stop masses, typically required by the Higgs boson mass in supersymmetric models, do not originate from soft supersymmetry breaking terms that would drive the Higgs mass squared parameter to large negative values but rather from the mixing with vectorlike partners. Their contribution to the Higgs mass squared parameter is reduced to threshold corrections and thus it is one loop suppressed compared to usual scenarios. New fermion and scalar partners of the top quark with O(10 TeV) masses are predicted.

  3. Graphene symmetry-breaking with molecular adsorbates: modeling and experiment

    Science.gov (United States)

    Groce, M. A.; Hawkins, M. K.; Wang, Y. L.; Cullen, W. G.; Einstein, T. L.

    2012-02-01

    Graphene's structure and electronic properties provide a framework for understanding molecule-substrate interactions and developing techniques for band gap engineering. Controlled deposition of molecular adsorbates can create superlattices which break the degeneracy of graphene's two-atom unit cell, opening a band gap. We simulate scanning tunneling microscopy and spectroscopy measurements for a variety of organic molecule/graphene systems, including pyridine, trimesic acid, and isonicotinic acid, based on density functional theory calculations using VASP. We also compare our simulations to ultra-high vacuum STM and STS results.

  4. Symmetry Breaking and Adaptation The Genetic Code of Retroviral Env Proteins

    CERN Document Server

    Vera, S

    1996-01-01

    Although several synonymous codons can encode the same aminoacid, this symmetry is generally broken in natural genetic systems. In this article, we show that the symmetry breaking can result from selective pressures due to the violation of the synonym symmetry by mutation and recombination. We conjecture that this enhances the probability to produce mutants that are well-adapted to the current environment. Evidence is found in the codon frequencies of the HIV resistant to the current immunological attack, are found with a greater frequency than their less mutable synonyms.

  5. Spontaneous Time Symmetry Breaking in System with Mixed Strategy Nash Equilibrium: Evidences in Experimental Economics Data

    Science.gov (United States)

    Wang, Zhijian; Xu, Bin; Zhejiang Collaboration

    2011-03-01

    In social science, laboratory experiment with human subjects' interaction is a standard test-bed for studying social processes in micro level. Usually, as in physics, the processes near equilibrium are suggested as stochastic processes with time-reversal symmetry (TRS). To the best of our knowledge, near equilibrium, the breaking time symmetry, as well as the existence of robust time anti-symmetry processes, has not been reported clearly in experimental economics till now. By employing Markov transition method to analysis the data from human subject 2x2 Games with wide parameters and mixed Nash equilibrium, we study the time symmetry of the social interaction process near Nash equilibrium. We find that, the time symmetry is broken, and there exists a robust time anti-symmetry processes. We also report the weight of the time anti-symmetry processes in the total processes of each the games. Evidences in laboratory marketing experiments, at the same time, are provided as one-dimension cases. In these cases, time anti-symmetry cycles can also be captured. The proposition of time anti-symmetry processes is small, but the cycles are distinguishable.

  6. UNIVERSALITY OF PHASE TRANSITION DYNAMICS: TOPOLOGICAL DEFECTS FROM SYMMETRY BREAKING

    Energy Technology Data Exchange (ETDEWEB)

    Zurek, Wojciech H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Del Campo, Adolfo [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-02-13

    In the course of a non-equilibrium continuous phase transition, the dynamics ceases to be adiabatic in the vicinity of the critical point as a result of the critical slowing down (the divergence of the relaxation time in the neighborhood of the critical point). This enforces a local choice of the broken symmetry and can lead to the formation of topological defects. The Kibble-Zurek mechanism (KZM) was developed to describe the associated nonequilibrium dynamics and to estimate the density of defects as a function of the quench rate through the transition. During recent years, several new experiments investigating formation of defects in phase transitions induced by a quench both in classical and quantum mechanical systems were carried out. At the same time, some established results were called into question. We review and analyze the Kibble-Zurek mechanism focusing in particular on this surge of activity, and suggest possible directions for further progress.

  7. Chiral-symmetry breaking and confinement in Minkowski space

    Energy Technology Data Exchange (ETDEWEB)

    Biernat, Elmer P. [Unibersidade de Lisboa, 104-001, Lisboa, Portugal; Pena, M. T. [Universidade de Lisboa, 1049-001, Lisboa, Portugal; Ribiero, J. E. [Universidade de Lisboa, 1049-001 Lisboa, Portugal; Stadler, Alfred [Universidade de Évora, 7000-671 Évora, Portugal; Universidade de Lisboa, 1049-001 Lisboa, Portugal; Gross, Franz [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-01-01

    We present a model for the quark-antiquark interaction formulated in Minkowski space using the Covariant Spectator Theory. The quark propagators are dressed with the same kernel that describes the interaction between different quarks. By applying the axial-vector Ward-Takahashi identity we show that our model satisfies the Adler-zero constraint imposed by chiral symmetry. For this model, our Minkowski-space results of the dressed quark mass function are compared to lattice QCD data obtained in Euclidean space. The mass function is then used in the calculation of the electromagnetic pion form factor in relativistic impulse approximation, and the results are presented and compared with the experimental data from JLab.

  8. Chiral-symmetry breaking and confinement in Minkowski space

    Energy Technology Data Exchange (ETDEWEB)

    Biernat, Elmar P. [Centro de Física Teórica de Partículas (CFTP), Instituto Superior Técnico (IST), Universidade de Lisboa, 1049-001 Lisboa (Portugal); Peña, M. T. [Centro de Física Teórica de Partículas (CFTP), Instituto Superior Técnico (IST), Universidade de Lisboa, 1049-001 Lisboa (Portugal); Departamento de Física, Instituto Superior Técnico (IST), Universidadede Lisboa, 1049-001 Lisboa (Portugal); Ribeiro, J. E. [Centro de Física das Interações Fundamentais (CFIF), Instituto Superior Técnico (IST), Universidade de Lisboa, 1049-001 Lisboa (Portugal); Stadler, Alfred [Departamento de Física, Universidade de Évora, 7000-671 Évora (Portugal); Centro de Física Teórica de Partículas (CFTP), Instituto Superior Técnico (IST), Universidade de Lisboa, 1049-001 Lisboa (Portugal); Gross, Franz [Thomas Jefferson National Accelerator Facility (JLab), Newport News, Virginia 23606 (United States)

    2016-01-22

    We present a model for the quark-antiquark interaction formulated in Minkowski space using the Covariant Spectator Theory. The quark propagators are dressed with the same kernel that describes the interaction between different quarks. By applying the axial-vector Ward-Takahashi identity we show that our model satisfies the Adler-zero constraint imposed by chiral symmetry. For this model, our Minkowski-space results of the dressed quark mass function are compared to lattice QCD data obtained in Euclidean space. The mass function is then used in the calculation of the electromagnetic pion form factor in relativistic impulse approximation, and the results are presented and compared with the experimental data from JLab.

  9. Spontaneous Symmetry Breaking in Metal Adsorbed Graphene Sheets

    CERN Document Server

    Jalbout, A F

    2012-01-01

    Graphene has received a great deal of attention and this has more recently extended to boron nitride sheets (BNS) with a similar structure. Both have hexagonal lattices and it is only the alternation of atoms in boron nitride, which changes the symmetry structure. This difference can for example be seen in the mean field equations, which for the corners of the Brillouin Zone are Dirac equations. For the case of graphene (equal atoms) we have the equation for massless particles, while for Boron Nitride has a finite gap and is more near a Dirac equation with mass near this gap.. Carbon structures in general and in particular also graphene can adsorb electron donors, such as alkaline atoms or molecules with a dipole moment. Typically these atoms and the dipoles can only attach in the sense to donate electron density. Some results for small sheet like structures are available.

  10. Chiral-symmetry breaking and confinement in Minkowski space

    CERN Document Server

    Biernat, Elmar P; Ribeiro, J E; Stadler, Alfred; Gross, Franz

    2014-01-01

    We present a model for the quark-antiquark interaction formulated in Minkowski space using the Covariant Spectator Theory. The quark propagators are dressed with the same kernel that describes the interaction between different quarks. By applying the axial-vector Ward-Takahashi identity we show that our model satisfies the Adler-zero constraint imposed by chiral symmetry. For this model, our Minkowski-space results of the dressed quark mass function are compared to lattice QCD data obtained in Euclidean space. The mass function is then used in the calculation of the electromagnetic pion form factor in relativistic impulse approximation, and the results are presented and compared with the experimental data from JLab.

  11. Optical waveguide arrays: quantum effects and PT symmetry breaking

    CERN Document Server

    Joglekar, Yogesh N; Scott, Derek D; Vemuri, Gautam

    2013-01-01

    Over the last two decades, advances in fabrication have led to significant progress in creating patterned heterostructures that support either carriers, such as electrons or holes, with specific band structure or electromagnetic waves with a given mode structure and dispersion. In this article, we review the properties of light in coupled optical waveguides that support specific energy spectra, with or without the effects of disorder, that are well-described by a Hermitian tight-binding model. We show that with a judicious choice of the initial wave packet, this system displays the characteristics of a quantum particle, including transverse photonic transport and localization, and that of a classical particle. We extend the analysis to non-Hermitian, parity and time-reversal ($\\mathcal{PT}$) symmetric Hamiltonians which physically represent waveguide arrays with spatially separated, balanced absorption or amplification. We show that coupled waveguides are an ideal candidate to simulate $\\mathcal{PT}$-symmetri...

  12. Breaking Instance-Independent Symmetries In Exact Graph Coloring

    CERN Document Server

    Aloul, F A; Ramani, A; Sakallah, K A; 10.1613/jair.1637

    2011-01-01

    Code optimization and high level synthesis can be posed as constraint satisfaction and optimization problems, such as graph coloring used in register allocation. Graph coloring is also used to model more traditional CSPs relevant to AI, such as planning, time-tabling and scheduling. Provably optimal solutions may be desirable for commercial and defense applications. Additionally, for applications such as register allocation and code optimization, naturally-occurring instances of graph coloring are often small and can be solved optimally. A recent wave of improvements in algorithms for Boolean satisfiability (SAT) and 0-1 Integer Linear Programming (ILP) suggests generic problem-reduction methods, rather than problem-specific heuristics, because (1) heuristics may be upset by new constraints, (2) heuristics tend to ignore structure, and (3) many relevant problems are provably inapproximable. Problem reductions often lead to highly symmetric SAT instances, and symmetries are known to slow down SAT solvers. In t...

  13. Symmetry-breaking in drop bouncing on curved surfaces

    CERN Document Server

    Liu, Yahua; Li, Jing; Yeomans, Julia M; Wang, Zuankai

    2015-01-01

    The impact of liquid drops on solid surfaces is ubiquitous in nature, and of practical importance in many industrial processes. A drop hitting a flat surface retains a circular symmetry throughout the impact process. Here we show that a drop impinging on Echevaria leaves exhibits asymmetric bouncing dynamics with distinct spreading and retraction along two perpendicular directions. This is a direct consequence of the cylindrical leaves which have a convex/concave architecture of size comparable to the drop. Systematic experimental investigations on mimetic surfaces and lattice Boltzmann simulations reveal that this novel phenomenon results from an asymmetric momentum and mass distribution that allows for preferential fluid pumping around the drop rim. The asymmetry of the bouncing leads to ~40% reduction in contact time.

  14. Probing symmetry and symmetry breaking in resonant soft-x-ray fluorescence spectra of molecules

    Energy Technology Data Exchange (ETDEWEB)

    Glans, P.; Gunnelin, K.; Guo, J. [Uppsala Univ. (Sweden)] [and others

    1997-04-01

    Conventional non-resonant soft X-ray emission brings about information about electronic structure through its symmetry and polarization selectivity, the character of which is governed by simple dipole rules. For centro-symmetric molecules with the emitting atom at the inversion center these rules lead to selective emission through the required parity change. For the more common classes of molecules which have lower symmetry or for systems with degenerate core orbitals (delocalized over identical sites), it is merely the local symmetry selectivity that provides a probe of the local atomic orbital contribution to the molecular orbital. For instance, in X-ray spectra of first row species the intensities essentially map the p-density at each particular atomic site, and, in a molecular orbital picture, the contribution of the local p-type atomic orbitals in the LCAO description of the molecular orbitals. The situation is different for resonant X-ray fluorescence spectra. Here strict parity and symmetry selectivity gives rise to a strong frequency dependence for all molecules with an element of symmetry. In addition to symmetry selectivity the strong frequency dependence of resonant X-ray emission is caused by the interplay between the shape of a narrow X-ray excitation energy function and the lifetime and vibrational broadenings of the resonantly excited core states. This interplay leads to various observable effects, such as linear dispersion, resonance narrowing and emission line (Stokes) doubling. Also from the point of view of polarization selectivity, the resonantly excited X-ray spectra are much more informative than the corresponding non-resonant spectra. Examples are presented for nitrogen, oxygen, and carbon dioxide molecules.

  15. Matrix Elements of Random Operators and Discrete Symmetry Breaking in Nuclei

    CERN Document Server

    Hussein, M S

    2000-01-01

    It is shown that several effects are responsible for deviations of the intensity distributions from the Porter-Thomas law. Among these are genuine symmetry breaking, such as isospin; the nature of the transition operator; truncation of the Hilbert space in shell model calculations and missing transitions

  16. Up and down cascade in a dynamo model: spontaneous symmetry breaking.

    Science.gov (United States)

    Blanter, E M; Narteau, C; Shnirman, M G; Le Mouël, J L

    1999-05-01

    A multiscale turbulent model of dynamo is proposed. A secondary magnetic field is generated from a primary field by a flow made of turbulent helical vortices (cyclones) of different ranges, and amplified by an up and down cascade mechanism. The model displays symmetry breakings of different ranges although the system construction is completely symmetric. Large-scale symmetry breakings for symmetric conditions of the system evolution are investigated for all kinds of cascades: pure direct cascade, pure inverse cascade, and up and down cascade. It is shown that long lived symmetry breakings of high scales can be obtained only in the case of the up and down cascade. The symmetry breakings find expression in intervals of constant polarity of the secondary field (called chrons of the geomagnetic field). Long intervals of constant polarity with quick reversals are obtained in the model; conditions for such a behavior are investigated. Strong variations of the generated magnetic field during intervals of constant polarity are also observed in the model. Possible applications of the model to geodynamo modeling and various directions of future investigation are briefly discussed.

  17. Explicit versus Dynamical Chiral Symmetry Breaking and Mass Matrix of Quarks and Leptons

    Science.gov (United States)

    Handa, O.; Ishida, S.; Sekiguchi, M.

    1992-02-01

    By recourse to an analogy between strong and weak interactions, quark mass-matrices consisting of the two parts are proposed, which represent, respectively, dynamical chiral symmetry breaking and explicit one due to small preon mass. The sum rules among quark masses and mixing-matrix elements derived from it seem consistent with present experiments.

  18. Aspects of semilocal BPS vortex in systems with Lorentz symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Villalobos, C.H.C.; Silva, J.M.H. da; Hott, M.B. [UNESP, Univ Estadual Paulista, Departamento de Fisica e Quimica, Guaratingueta, SP (Brazil); Belich, H. [Universidade Federal do Espi rito Santo (UFES), Departamento de Fisica e Quimica, Vitoria, ES (Brazil)

    2014-03-15

    The existence is shown of a static self-dual semilocal vortex configuration for the Maxwell-Higgs system with a Lorentz-violating CPT-even term. The dependence of the vorticity upper limit on the Lorentz-symmetry-breaking term is also investigated. (orig.)

  19. Strong coupling of gold dipolar nanoantennas by symmetry-breaking in evanescent wave

    Science.gov (United States)

    Yang, Jhen-Hong; Chen, Kuo-Ping

    2016-09-01

    Observing the resonance wavelengths of nanoantennas (NAs) with changing incident angles in TM and TE polarization. Extinction cross section shows the dark and bright coupling modes at resonance wavelength of NAs with symmetry breaking oblique incidence. The plasmonic enhancement is stronger under evanescent wave in total internal reflection.

  20. Casimir effect as a source of chiral symmetry breaking in QCD

    Energy Technology Data Exchange (ETDEWEB)

    Floratos, E. (Crete Univ., Iraklion (Greece). Physics Dept.; European Organization for Nuclear Research, Geneva (Switzerland)); Papantonopoulos, E. (Ethnikon Metsovion Polytechneion, Athens (Greece). Physics Dept.); Zoupanos, G. (European Organization for Nuclear Research, Geneva (Switzerland))

    1985-02-21

    The vacuum of QCD, defined on a space-time topology T/sup 3/ x R, breaks chiral symmetry. The physical mechanism responsible is the formation of fermionic condensates due to Casimir forces. Representations of coloured fermions, which possess asymptotic freedom, stabilize the formation of these condensates through their gauge interactions. Estimates of ratios of the order parameters are given for various representations.

  1. Eta' Mass and Chiral Symmetry Breaking at Large Nc and Nf

    CERN Document Server

    Girlanda, L; Talavera, P

    2001-01-01

    We propose a method for implementing the large-Nc, large-Nf limit of QCD at the effective Lagrangian level. Depending on the value of the ratio Nf/Nc, different patterns of chiral symmetry breaking can arise, leading in particular to different behaviors of the eta-prime mass in the combined large-N limit.

  2. Origin of Symmetry Breaking and Confinement in Conducting Polymers with Ring Structures

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A model to describe the main features of conjugated polymers with ring structures, such as polythiophene and polypyrrole, is constructed. It is shown that the origin of the symmetry breaking and confinement of a soliton and anti-soliton pair is branch hopping in the polymer rings.

  3. Comments on the Chiral Symmetry Breaking in Soft Wall Holographic QCD

    DEFF Research Database (Denmark)

    Bechi, Jacopo

    2009-01-01

    In this paper we describe qualitatively some aspects of the holographic QCD. Inspired by a successfull 4D description, we try to separate the Confinement and the Chiral Symmetry Breaking dynamics. We also discuss the realization of the baryons as skyrmions in Soft Wall Holographic QCD, and the is......, and the issue of the Vector Meson Dominance....

  4. Symmetry breaking of decaying magnetohydrodynamic Taylor-Green flows and consequences for universality.

    Science.gov (United States)

    Dallas, V; Alexakis, A

    2013-12-01

    We investigate the evolution and stability of a decaying magnetohydrodynamic Taylor-Green flow, using pseudospectral simulations with resolutions up to 2048(3). The chosen flow has been shown to result in a steep total energy spectrum with power law behavior k(-2). We study the symmetry breaking of this flow by exciting perturbations of different amplitudes. It is shown that for any finite amplitude perturbation there is a high enough Reynolds number for which the perturbation will grow enough at the peak of dissipation rate resulting in a nonlinear feedback into the flow and subsequently break the Taylor-Green symmetries. In particular, we show that symmetry breaking at large scales occurs if the amplitude of the perturbation is σ(crit)∼Re(-1) and at small scales occurs if σ(crit)∼Re(-3/2). This symmetry breaking modifies the scaling laws of the energy spectra at the peak of dissipation rate away from the k(-2) scaling and towards the classical k(-5/3) and k(-3/2) power laws.

  5. Effects of translational symmetry breaking induced by the boundaries in a driven diffusive system

    DEFF Research Database (Denmark)

    Andersen, Jørgen Vitting; Leung, Kwan-tai

    1991-01-01

    We study the effects of the boundary conditions in a driven diffusive lattice-gas model which is known to display kinetic phase transitions. We find, in the case of attractive interaction, that a boundary-condition-induced symmetry breaking of the translational invariance, along the direction of ...

  6. Large-radius Holstein polaron and the problem of spontaneous symmetry breaking

    OpenAIRE

    Lakhno, V.D.

    2014-01-01

    A translation-invariant solution is found for a large-radius Holstein polaron whose energy in the strong coupling limit is lower than that obtained by Holstein. The wave function corresponding to this solution is delocalized. A conclusion is made about the absence of a spontaneous symmetry breaking in the quantum system discussed.

  7. Charge symmetry breaking in $\\Lambda$ hypernuclei: updated HYP 2015 progress report

    CERN Document Server

    Gal, Avraham

    2016-01-01

    Ongoing progress in understanding and evaluating charge symmetry breaking in $\\Lambda$ hypernuclei is discussed in connection to recent measurements of the $_{\\Lambda}^{4}{\\rm H}(0^+_{\\rm g.s.})$ binding energy at MAMI [A1 Collaboration: PRL 114 (2015) 232501] and of the $_{\\Lambda}^{4}{\\rm He}(1^+_{\\rm exc})$ excitation energy at J-PARC [E13 Collaboration: PRL 115 (2015) 222501].

  8. Symmetry-breaking intramolecular charge transfer in the excited state of meso-linked BODIPY dyads

    KAUST Repository

    Whited, Matthew T.

    2012-01-01

    We report the synthesis and characterization of symmetric BODIPY dyads where the chromophores are attached at the meso position, using either a phenylene bridge or direct linkage. Both molecules undergo symmetry-breaking intramolecular charge transfer in the excited state, and the directly linked dyad serves as a visible-light-absorbing analogue of 9,9′-bianthryl.

  9. Further Investigation on Chiral Symmetry Breaking in a Uniform External Magnetic Field

    CERN Document Server

    Jasinski, P

    2004-01-01

    We study chiral symmetry breaking in QED when a uniform external magnetic field is present. We calculate higher order corrections to the dynamically generated fermion mass and find them to be small. In so doing we correct an error in the literature regarding the matrix structure of the fermion self-energy.

  10. Evidence for discrete chiral symmetry breaking in $N = 1$ supersymmetric Yang-Mills theory

    CERN Document Server

    Kirchner, R; Montvay, István; Spanderen, K; Westphalen, J

    1999-01-01

    In a numerical Monte Carlo simulation of SU(2) Yang-Mills theory with dynamical gauginos we find evidence for two degenerate ground states at the supersymmetry point corresponding to zero gaugino mass. This is consistent with the expected pattern of spontaneous discrete chiral symmetry breaking $Z_4 \\to Z_2$ caused by gaugino condensation.

  11. Evidence for discrete chiral symmetry breaking in N=1 supersymmetric Yang-Mills theory

    Science.gov (United States)

    Desy-Münster Collaboration; Kirchner, R.; Montvay, I.; Westphalen, J.; Luckmann, S.; Spanderen, K.

    1999-01-01

    In a numerical Monte Carlo simulation of SU(2) Yang-Mills theory with dynamical gauginos we find evidence for two degenerate ground states at the supersymmetry point corresponding to zero gaugino mass. This is consistent with the expected pattern of spontaneous discrete chiral symmetry breaking Z4-->Z2 caused by gaugino condensation.

  12. Supersolid formation in a quantum gas breaking a continuous translational symmetry

    Science.gov (United States)

    Léonard, Julian; Morales, Andrea; Zupancic, Philip; Esslinger, Tilman; Donner, Tobias

    2017-03-01

    The concept of a supersolid state combines the crystallization of a many-body system with dissipationless flow of the atoms from which it is built. This quantum phase requires the breaking of two continuous symmetries: the phase invariance of a superfluid and the continuous translational invariance to form the crystal. Despite having been proposed for helium almost 50 years ago, experimental verification of supersolidity remains elusive. A variant with only discrete translational symmetry breaking on a preimposed lattice structure—the ‘lattice supersolid’—has been realized, based on self-organization of a Bose–Einstein condensate. However, lattice supersolids do not feature the continuous ground-state degeneracy that characterizes the supersolid state as originally proposed. Here we report the realization of a supersolid with continuous translational symmetry breaking along one direction in a quantum gas. The continuous symmetry that is broken emerges from two discrete spatial symmetries by symmetrically coupling a Bose–Einstein condensate to the modes of two optical cavities. We establish the phase coherence of the supersolid and find a high ground-state degeneracy by measuring the crystal position over many realizations through the light fields that leak from the cavities. These light fields are also used to monitor the position fluctuations in real time. Our concept provides a route to creating and studying glassy many-body systems with controllably lifted ground-state degeneracies, such as supersolids in the presence of disorder.

  13. Symmetry Breaking in the Hidden-Order Phase of URu2Si2

    Science.gov (United States)

    Shibauchi, Takasada

    2013-03-01

    In the heavy fermion compound URu2Si2, the hidden-order transition occurs at 17.5 K, whose nature has posed a long-standing mystery. A second-order phase transition is characterized by spontaneous symmetry breaking, and thus the nature of the hidden order cannot be determined without understanding which symmetry is being broken. Our magnetic torque measurements in small pure crystals reveal the emergence of an in-plane anisotropy of the magnetic susceptibility below the transition temperature, indicating the spontaneous breaking of four-fold rotational symmetry of the tetragonal URu2Si2. In addition, our recent observation of cyclotron resonance allows the full determination of the electron-mass structure of the main Fermi-surface sheets, which implies an anomalous in-plane mass anisotropy consistent with the rotational symmetry breaking. These results impose strong constraints on the symmetry of the hidden order parameter. This work has been done in collaboration with R. Okazaki, S. Tonegawa, K. Hashimoto, K. Ikada, Y. H. Lin, H. Shishido, H. J. Shi, Y. Haga, T. D. Matsuda, E. Yamamoto, Y. Onuki, H. Ikeda, and Y. Matsuda.

  14. Mirror-symmetry breakings in human sperm rheotaxis

    Science.gov (United States)

    Stoop, Norbert; Bukatin, Anton; Kukhtevich, Igor; Dunkel, Joern; Kantsler, Vasily

    Rheotaxis, the directed response to fluid velocity gradients, has been shown to facilitate stable upstream-swimming of mammalian sperm cells along solid surfaces, suggesting a robust mechanism for long-distance navigation during fertilization. However, the dynamics by which a human sperm orients itself w.r.t. ambient flows is poorly understood. Here, we combine microfluidic experiments with mathematical modeling and 3D flagellar beat reconstruction to quantify the response of individual sperm cells in time-varying flow fields. Single-cell tracking reveals two kinematically distinct swimming states that entail opposite turning behaviors under flow reversal. We constrain an effective 2D model for the turning dynamics through systematic large-scale parameter scans, and find good quantitative agreement with experiments. We present comprehensive 3D data demonstrating the rolling dynamics of freely swimming sperm cells around their longitudinal axis. Contrary to current beliefs, this analysis uncovers ambidextrous flagellar waveforms and shows that the cell's turning direction is is not defined by the rolling direction. Instead, the different rheotactic turning behaviors are linked to a broken mirror-symmetry in the midpiece section, likely arising from a buckling instability.

  15. Laser-induced spatial symmetry breaking in quantum and classical mechanics.

    Science.gov (United States)

    Franco, Ignacio; Brumer, Paul

    2006-07-28

    Phase-controllable transport in laser-irradiated spatially symmetric systems is shown to arise both quantum mechanically and classically from a common field-driven interference mechanism. Specifically, the quantum-to-classical transition for symmetry breaking in a quartic oscillator driven by an omega+2omega field is studied. For this, a double perturbation theory in the oscillator anharmonicity and external field strength, that admits an analytic classical limit, is carried out in the Heisenberg picture. The interferences responsible for the symmetry breaking are shown to survive in the classical limit and are the origins of classical control. Differences between reflection symmetry that plays a key role in the analysis, and parity that does not, are discussed.

  16. Inversion symmetry breaking of atomic bound states in strong and short laser fields

    CERN Document Server

    Stooß, Veit; Ott, Christian; Blättermann, Alexander; Ding, Thomas; Pfeifer, Thomas

    2015-01-01

    In any atomic species, the spherically symmetric potential originating from the charged nucleus results in fundamental symmetry properties governing the structure of atomic states and transition rules between them. If atoms are exposed to external electric fields, these properties are modified giving rise to energy shifts such as the AC Stark-effect in varying fields and, contrary to this in a constant (DC) electric field for high enough field strengths, the breaking of the atomic symmetry which causes fundamental changes in the atom's properties. This has already been observed for atomic Rydberg states with high principal quantum numbers. Here, we report on the observation of symmetry breaking effects in Helium atoms for states with principal quantum number n=2 utilizing strong visible laser fields. These findings were enabled by temporally resolving the dynamics better than the sub-optical cycle of the applied laser field, utilizing the method of attosecond transient absorption spectroscopy (ATAS). We ident...

  17. Symmetry Breaking, Unification, and Theories Beyond the Standard Model

    Energy Technology Data Exchange (ETDEWEB)

    Nomura, Yasunori

    2009-07-31

    A model was constructed in which the supersymmetric fine-tuning problem is solved without extending the Higgs sector at the weak scale. We have demonstrated that the model can avoid all the phenomenological constraints, while avoiding excessive fine-tuning. We have also studied implications of the model on dark matter physics and collider physics. I have proposed in an extremely simple construction for models of gauge mediation. We found that the {mu} problem can be simply and elegantly solved in a class of models where the Higgs fields couple directly to the supersymmetry breaking sector. We proposed a new way of addressing the flavor problem of supersymmetric theories. We have proposed a new framework of constructing theories of grand unification. We constructed a simple and elegant model of dark matter which explains excess flux of electrons/positrons. We constructed a model of dark energy in which evolving quintessence-type dark energy is naturally obtained. We studied if we can find evidence of the multiverse.

  18. Neutrino-induced Electroweak Symmetry Breaking in Supersymmetric SO(10) Unification

    CERN Document Server

    Inoue, K; Yoshioka, K; Inoue, Kenzo; Kojima, Kentaro; Yoshioka, Koichi

    2006-01-01

    The radiative electroweak symmetry breaking, the unification of third-generation Yukawa couplings, and flavor-changing rare decay are investigated in two types of supersymmetric SO(10) scenarios taking into account of the effects of neutrino physics, i.e. the observed large generation mixing and tiny mass scale. The first scenario is minimal, including right-handed neutrinos at intermediate scale with the unification of third-generation Yukawa couplings. Another is the case that the large mixing of atmospheric neutrinos originates from the charged-lepton sector. Under the SO(10)-motivated boundary conditions for supersymmetry-breaking parameters, typical low-energy particle spectrum is discussed and the parameter space is identified which satisfies the conditions for successful radiative electroweak symmetry breaking and the experimental mass bounds of superparticles. In particular, the predictions of the bottom quark mass and the b \\to s gamma branching ratio are fully analyzed. In both two scenarios, new ty...

  19. More on cosmological constraints on spontaneous R-symmetry breaking models

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, Yuta; Kobayashi, Tatsuo [Kyoto Univ. (Japan). Dept. of Physics; Kamada, Kohei [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Ecole Polytechnique Federale de Lausanne (Switzerland). Inst. de Theorie des Phenomenes Physiques; Ookouchi, Yutaka [Kyushu Univ., Fukuoka (Japan). Faculty of Arts and Science

    2013-10-15

    We study the spontaneous R-symmetry breaking model and investigate the cosmological constraints on this model due to the pseudo Nambu-Goldstone boson, R-axion. We consider the R-axion which has relatively heavy mass in order to complement our previous work. In this regime, model parameters, R-axions mass and R-symmetry breaking scale, are constrained by Big Bang Nucleosynthesis and overproduction of the gravitino produced from R-axion decay and thermal plasma. We find that the allowed parameter space is very small for high reheating temperature. For low reheating temperature, the U(1){sub R} breaking scale f{sub a} is constrained as f{sub a}<10{sup 12-14} GeV regardless of the value of R-axion mass.

  20. More on cosmological constraints on spontaneous R-symmetry breaking models

    CERN Document Server

    Hamada, Yuta; Kobayashi, Tatsuo; Ookouchi, Yutaka

    2014-01-01

    We study the spontaneous R-symmetry breaking model and investigate the cosmological constraints on this model due to the pseudo Nambu-Goldstone boson, R-axion. We consider the R-axion which has relatively heavy mass in order to complement our previous work. In this regime, model parameters, R-axions mass and R-symmetry breaking scale, are constrained by Big Bang Nucleosynthesis and overproduction of the gravitino produced from R-axion decay and thermal plasma. We find that the allowed parameter space is very small for high reheating temperature. For low reheating temperature, the $U(1)_R$ breaking scale $f_a$ is constrained as $f_a<10^{12-14}\\GeV$ regardless of the value of R-axion mass.

  1. More on cosmological constraints on spontaneous R-symmetry breaking models

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, Yuta; Kobayashi, Tatsuo [Department of Physics, Kyoto University, Kyoto, 606-8502 (Japan); Kamada, Kohei [Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, Hamburg, D-22607 (Germany); Ookouchi, Yutaka, E-mail: hamada@gauge.scphys.kyoto-u.ac.jp, E-mail: kohei.kamada@epfl.ch, E-mail: kobayash@gauge.scphys.kyoto-u.ac.jp, E-mail: yutaka.ookouchi@artsci.kyushu-u.ac.jp [Faculty of Arts and Science, Kyushu University, Fukuoka, 819–0395 (Japan)

    2014-01-01

    We study the spontaneous R-symmetry breaking model and investigate the cosmological constraints on this model due to the pseudo Nambu-Goldstone boson, R-axion. We consider the R-axion which has relatively heavy mass in order to complement our previous work. In this regime, model parameters, R-axions mass and R-symmetry breaking scale, are constrained by Big Bang Nucleosynthesis and overproduction of the gravitino produced from R-axion decay and thermal plasma. We find that the allowed parameter space is very small for high reheating temperature. For low reheating temperature, the U(1){sub R} breaking scale f{sub a} is constrained as f{sub a} < 10{sup 12−14} GeV regardless of the value of R-axion mass.

  2. Simplified R-Symmetry Breaking and Low-Scale Gauge Mediation

    CERN Document Server

    Evans, Jason L; Sudano, Matthew; Yanagida, Tsutomu T

    2011-01-01

    We argue that some of the difficulties in constructing realistic models of low-scale gauge mediation are artifacts of the narrow set of models that have been studied. In particular, much attention has been payed to the scenario in which the Goldstino superfield in an O'Raifeartaigh model is responsible for both supersymmetry breaking and R-symmetry breaking. In such models, the competing problems of generating sufficiently massive gauginos while preserving an acceptably light gravitino can be quite challenging. We show that by sharing the burdens of breaking supersymmetry and R-symmetry with a second field, these problems are easily solved even within the O'Raifeartaigh framework. We present explicit models realizing minimal gauge mediation with a gravitino mass in the eV range that are both calculable and falsifiable.

  3. Simplified R-symmetry breaking and low-scale gauge mediation

    Science.gov (United States)

    Evans, Jason L.; Ibe, Masahiro; Sudano, Matthew; Yanagida, Tsutomu T.

    2012-03-01

    We argue that some of the difficulties in constructing realistic models of lowscale gauge mediation are artifacts of the narrow set of models that have been studied. In particular, much attention has been payed to the scenario in which the Goldstino superfield in an O'Raifeartaigh model is responsible for both supersymmetry breaking and R-symmetry breaking. In such models, the competing problems of generating sufficiently massive gauginos while preserving an acceptably light gravitino can be quite challenging. We show that by sharing the burdens of breaking supersymmetry and R-symmetry with a second field, these problems are easily solved even within the O'Raifeartaigh framework. We present explicit models realizing minimal gauge mediation with a gravitino mass in the eV range that are both calculable and falsifiable.

  4. Confinement/deconfinement transition from symmetry breaking in gauge/gravity duality

    Science.gov (United States)

    Čubrović, Mihailo

    2016-10-01

    We study the confinement/deconfinement transition in a strongly coupled system triggered by an independent symmetry-breaking quantum phase transition in gauge/gravity duality. The gravity dual is an Einstein-scalar-dilaton system with AdS near-boundary behavior and soft wall interior at zero scalar condensate. We study the cases of neutral and charged condensate separately. In the former case the condensation breaks the discrete {Z}_2 symmetry while a charged condensate breaks the continuous U(1) symmetry. After the condensation of the order parameter, the non-zero vacuum expectation value of the scalar couples to the dilaton, changing the soft wall geometry into a non-confining and anisotropically scale-invariant infrared metric. In other words, the formation of long-range order is immediately followed by the deconfinement transition and the two critical points coincide. The confined phase has a scale — the confinement scale (energy gap) which vanishes in the deconfined case. Therefore, the breaking of the symmetry of the scalar ( {Z}_2 or U(1)) in turn restores the scaling symmetry in the system and neither phase has a higher overall symmetry than the other. When the scalar is charged the phase transition is continuous which goes against the Ginzburg-Landau theory where such transitions generically only occur discontinuously. This phenomenon has some commonalities with the scenario of deconfined criticality. The mechanism we have found has applications mainly in effective field theories such as quantum magnetic systems. We briefly discuss these applications and the relation to real-world systems.

  5. 750 GeV messenger of dark conformal symmetry breaking

    Science.gov (United States)

    Davoudiasl, Hooman; Zhang, Cen

    2016-03-01

    The tentative hints for a diphoton resonance at a mass of ˜750 GeV from the ATLAS and CMS experiments at the LHC may be interpreted as first contact with a "dark" sector with a spontaneously broken conformal symmetry. The implied TeV scale of the dark sector may be motivated by the interaction strength required to accommodate a viable thermal relic dark matter (DM) candidate. We model the conformal dynamics using a Randall-Sundrum-type five-dimensional geometry whose IR boundary is identified with the dynamics of the composite dark sector, while the Standard Model (SM) matter content resides on the UV boundary, corresponding to "elementary" fields. We allow the gauge fields to reside in the five-dimensional bulk, which can be minimally chosen to be S U (3 )c×U (1 )Y. The "dark" radion is identified as the putative 750 GeV resonance. Heavy vectorlike fermions, often invoked to explain the diphoton excess, are not explicitly present in our model and are not predicted to appear in the spectrum of TeV scale states. Our minimal setup favors scalar DM of O (TeV ) mass. A generic expectation in this scenario, suggested by DM considerations, is the appearance of vector bosons at ˜ few TeV, corresponding to the gluon and hypercharge Kaluza-Klein (KK) modes that couple to UV boundary states with strengths that are suppressed uniformly compared to their SM values. Our analysis suggests that these KK modes could be within the reach of the LHC in the coming years.

  6. Coleman-Weinberg symmetry breaking in $SU(8)$ induced by a third rank antisymmetric tensor scalar field

    CERN Document Server

    Adler, Stephen L

    2016-01-01

    We study $SU(8)$ symmetry breaking induced by minimizing the Coleman-Weinberg effective potential for a third rank antisymmetric tensor scalar field in the 56 representation. Instead of breaking $SU(8) \\supset SU(3) \\times SU(5)$, we find that the stable minimum of the potential breaks the original symmetry according to $SU(8) \\supset SU(3) \\times Sp(4)$. Using both numerical and analytical methods, we present results for the potential minimum, the corresponding Goldstone boson structure and BEH mechanism, and the group-theoretic classification of the residual states after symmetry breaking.

  7. Coleman-Weinberg symmetry breaking in SU(8) induced by a third rank antisymmetric tensor scalar field

    Science.gov (United States)

    Adler, Stephen L.

    2016-08-01

    We study SU(8) symmetry breaking induced by minimizing the Coleman-Weinberg effective potential for a third rank antisymmetric tensor scalar field in the 56 representation. Instead of breaking {SU}(8)\\supset {SU}(3)× {SU}(5), we find that the stable minimum of the potential breaks the original symmetry according to {SU}(8)\\supset {SU}(3)× {Sp}(4). Using both numerical and analytical methods, we present results for the potential minimum, the corresponding Goldstone boson structure and BEH mechanism, and the group-theoretic classification of the residual states after symmetry breaking.

  8. Gauge fermions with flat bands and anomalous transport via chiral modes from breaking gauge symmetry

    CERN Document Server

    Luo, Xi

    2016-01-01

    The dispersionless longitudinal photon in Maxwell theory is thought of as a redundant degree of freedom due to the gauge symmetry. We find that when there exist exactly flat bands with zero energy in a condensed matter system, the fermion field may locally transform as a gauge field and the system possesses a gauge symmetry. As the longitudinal photon, the redundant degrees of freedom from the flat bands must be gauged away from the physical states. As an example, we study spinless fermions on a generalized Lieb lattice in three dimensions. The flat band of the longitudinal fermion induces a gauge symmetry. An external magnetic field breaks this gauge symmetry and emerges a bunch of non-topologically chiral modes. Combining these emergent chiral modes with the chiral anomaly mode which is of an opposite chirality, rich anomalous electric transport phenomena exhibit and are expected to be observed in Pd$_3$Bi$_2$S$_2$ and Ag$_3$Se$_2$Au.

  9. Electrochemiluminescence Tuned by Electron-Hole Recombination from Symmetry-Breaking in Wurtzite ZnSe.

    Science.gov (United States)

    Liu, Suli; Zhang, Qinghua; Zhang, Long; Gu, Lin; Zou, Guizheng; Bao, Jianchun; Dai, Zhihui

    2016-02-03

    The research of highly active electrochemiluminescence (ECL) materials with low toxicity and good solubility remains a substantial challenge. In this work, we present a synthesis method to prepare soluble wurtzite (WZ) ZnSe nanocrystals (NCs), which exhibit good ECL properties. Using high-angle annular-dark-field imaging together with electron hologram methods, we observe that the WZ ZnSe NCs exhibit an unusual symmetry-breaking phenomenon, where the translational symmetry of the polarized Zn-Se bond is broken. The formation of a symmetry-breaking region leads to an accumulation of charge. The good ECL response originates from the increased efficiency of electron-hole recombination by the excess charge redistribution in WZ ZnSe NCs. This study of the relationship between ECL behavior and the architecture of NCs suggests that careful control over the NC structures of semiconductors can tailor their charge distribution via symmetry breaking, which opens new avenues for the design of novel classes of agents for optoelectronic applications.

  10. Simulation of Vortex-Antivortex Pair Production in a Phase Transition with Explicit Symmetry Breaking

    CERN Document Server

    Digal, S; Srivastava, A M; Digal, Sanatan; Sengupta, Supratim; Srivastava, Ajit M.

    1998-01-01

    We carry out numerical simulation of the formation of U(1) global vortices in a first order phase transition in 2+1 dimensions in the presence of small explicit symmetry breaking. Bubbles of broken symmetry phase are randomly nucleated, which grow and coalesce. Vortices are formed at junctions of bubbles via standard Kibble mechanism as well as due to a new mechanism, recently proposed by us, where defect-antidefect pairs can be produced due to field oscillations. We find that, due to explicit symmetry breaking, vortex production is completely dominated by this new mechanism, which account for the production of about 80% of the vortices and antivortices, remaining 20% being produced via the Kibble mechanism. We study the dependence of the effectiveness of the new mechanism on the magnitude of explicit symmetry breaking, as well as on the nucleation rate of bubbles. We also study the effect of damping on this mechanism and show that damping suppresses this mode of vortex production.

  11. Confinement/deconfinement transition from symmetry breaking in gauge/gravity duality

    CERN Document Server

    Čubrović, Mihailo

    2016-01-01

    We study the confinement/deconfinement transition in a strongly coupled system triggered by an independent symmetry-breaking quantum phase transition in gauge/gravity duality. The gravity dual is an Einstein-scalar-dilaton system with AdS near-boundary behavior and soft wall interior at zero scalar condensate. We study the cases of neutral and charged condensate separately. In the former case the condensation breaks the discrete $\\mathbb{Z}_2$ symmetry while a charged condensate breaks the continuous $U(1)$ symmetry. After the condensation of the order parameter, the non-zero vacuum expectation value of the scalar couples to the dilaton, changing the soft wall geometry into a non-confining and anisotropically scale-invariant infrared metric. In other words, the formation of long-range order is immediately followed by the deconfinement transition and the two critical points coincide. The confined phase has a scale -- the confinement scale (energy gap) which vanishes in the deconfined case. Therefore, the break...

  12. Independent particle model of spontaneous symmetry breaking in planar π-electron systems

    Science.gov (United States)

    Thiamová, G.; Paldus, J.

    2008-03-01

    The singlet stability of symmetry adapted (SA), restricted Hartree-Fock (RHF) solutions, and the implied symmetry breaking for several planar, π-electron systems, is investigated using the semiempirical Pariser-Parr-Pople Hamiltonian in the whole range of the coupling constant. We focus here on highly symmetric cyclic polyenes C10H10 and C14H14 and their various distorted analogues of lower symmetry, in particular on the perimeter models of naphthalene and anthracene (p-naphthalene and p-anthracene) modeling the so-called [n]-annulenes. Relying on earlier results for general systems with conjugated double-bonds, we explore the character and properties of both the SA and broken-symmetry (BS) RHF solutions for these systems and relate their behavior to those of highly symmetric cyclic polyenes and corresponding polyacenes. In this way we are able to provide a better understanding of the spontaneous symmetry breaking in these systems at the Hartree-Fock level of approximation.

  13. Breaking inversion symmetry induces excitonic peak in optical absorption of topological semimetal

    Science.gov (United States)

    Dadsetani, Mehrdad; Ebrahimian, Ali

    2017-01-01

    In this work we present ab initio study on linear optical properties of Dirac and Weyl semimetals and tried to find the consequences of inversion symmetry breaking in the optical properties of topological semimetal. The real and imaginary part of dielectric function in addition to energy loss spectra of topological semimetal with and without inversion symmetry have been calculated within Random phase approximation (RPA) then the electron-hole interaction is included by solving the Bethe-Salpeter Equation (BSE) for the electron-hole Green's function. We find that the lack of inversion symmetry and spin-orbit interaction increases the density of states at Fermi level, giving rise to excitonic peak in optical absorption of topological semimetal. It is remarkable that the excitonic effects in high energy range of the spectrum are stronger than in the lower one. To explore the breaking of inversion symmetry related optical properties, we have investigated the optical properties of Dirac semimetals Na3Bi and BaPt and compared them to corresponding ones in Weyl semimetals NbP and Na3Bi0.75Sb0.25. Our calculations show that NbP, which lacks inversion symmetry, has high energy exciton at 10 and 10.8 eV. In contrast with Na3Bi, electron-hole interactions give rise to several weak peaks at different energy in the optical absorption of Na3Bi0.75Sb0.25 while its red shift is less pronounced.

  14. Supersymmetry Breaking in Disordered Systems and Relation to Functional Renormalization and Replica-Symmetry Breaking

    OpenAIRE

    Wiese, Kay Joerg

    2004-01-01

    In this article, we study an elastic manifold in quenched disorder in the limit of zero temperature. Naively it is equivalent to a free theory with elasticity in Fourier-space proportional to k^4 instead of k^2, i.e. a model without disorder in two space-dimensions less. This phenomenon, called dimensional reduction, is most elegantly obtained using supersymmetry. However, scaling arguments suggest, and functional renormalization shows that dimensional reduction breaks down beyond the Larkin ...

  15. Polar Kerr effect studies of time reversal symmetry breaking states in heavy fermion superconductors

    Science.gov (United States)

    Schemm, E. R.; Levenson-Falk, E. M.; Kapitulnik, A.

    2017-04-01

    The connection between chiral superconductivity and topological order has emerged as an active direction in research as more instances of both have been identified in condensed matter systems. With the notable exception of 3He-B, all of the known or suspected chiral - that is to say time-reversal symmetry-breaking (TRSB) - superfluids arise in heavy fermion superconductors, although the vast majority of heavy fermion superconductors preserve time-reversal symmetry. Here we review recent experimental efforts to identify TRSB states in heavy fermion systems via measurement of polar Kerr effect, which is a direct consequence of TRSB.

  16. Replica symmetry breaking transition of the weakly anisotropic Heisenberg spin glass in magnetic fields.

    Science.gov (United States)

    Imagawa, Daisuke; Kawamura, Hikaru

    2004-02-20

    The spin and the chirality orderings of the three-dimensional Heisenberg spin glass with the weak random anisotropy are studied under applied magnetic fields by equilibrium Monte Carlo simulations. A replica symmetry breaking transition occurs in the chiral sector accompanied by the simultaneous spin-glass order. The ordering behavior differs significantly from that of the Ising spin glass, despite the similarity in the global symmetry. Our observation is consistent with the spin-chirality decoupling-recoupling scenario of a spin-glass transition.

  17. Chiral symmetry breaking, color superconductivity and equation of state at high density a variational approach

    CERN Document Server

    Mishra, H; Mishra, Hiranmaya; Parikh, Jitendra C.

    2001-01-01

    We discuss in this note simultaneous existence of chiral symmetry breakingand color superconductivity at finite temperature and density in aNambu-Jona-Lasinio type model. The methodology involves an explicitconstruction of a variational ground state and minimisation of thethermodynamic potential. There appears to be a phase at finite densities withboth quark antiquark as well as diquark condensates for the "ground" state.Chiral symmetry breaking phase appear to catalyse the threshold for the diquarkcondensates to appear. We also compute the equation of state in this model.

  18. Spontaneous symmetry breaking in a non-conserving two-species driven model

    Energy Technology Data Exchange (ETDEWEB)

    Levine, E [Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, 76100 (Israel); Willmann, R D [Institut fuer Festkoerperforschung, Forschungszentrum Juelich, 52425 Juelich (Germany)

    2004-03-12

    A two-species particle model on an open chain with dynamics which is non-conserving in the bulk is introduced. The dynamical rules which define the model obey a symmetry between the two species. The model exhibits a rich behaviour which includes spontaneous symmetry breaking and localized shocks. The phase diagram in several regions of parameter space is calculated within the mean-field approximation, and compared with Monte Carlo simulations. In the limit where fluctuations in the number of particles in the system are taken to be zero, an exact solution is obtained. We present and analyse a physical picture which serves to explain the different phases of the model.

  19. Globally baryon symmetric cosmology, GUT spontaneous symmetry breaking, and the structure of the universe

    Science.gov (United States)

    Stecker, F. W.; Brown, R. W.

    1979-01-01

    Grand unified theories (GUT) such as SU(5), with spontaneous symmetry breaking, can lead more naturally to a globally baryon symmetric big bang cosmology with a domain structure than to a totally asymmetric cosmology. The symmetry is broken at random in causally independent domains, favoring neither a baryon nor an antibaryon excess on a universal scale. Because of the additional freedom in the high-energy physics allowed by such GUT gauge theories, new observational tests may be possible. Arguments in favor of this cosmology and various observational tests are discussed.

  20. Spectra of massive QCD Dirac Operators from Random Matrix Theory all three chiral symmetry breaking patterns

    CERN Document Server

    Akemann, G

    2001-01-01

    The microscopic spectral eigenvalue correlations of QCD Dirac operators in the presence of dynamical fermions are calculated within the framework of Random Matrix Theory (RMT). Our approach treats the low--energy correlation functions of all three chiral symmetry breaking patterns (labeled by the Dyson index $\\beta=1,2$ and 4) on the same footing, offering a unifying description of massive QCD Dirac spectra. RMT universality is explicitly proven for all three symmetry classes and the results are compared to the available lattice data for $\\beta=4$.

  1. Nonreciprocity in giant Goos-H\\"anchen shift due to symmetry breaking

    CERN Document Server

    Kumari, Madhuri

    2011-01-01

    We study giant Goos-H\\"anchen (GH) shift in reflection from a near-symmetric coupled waveguide structure. We show that broken spatial symmetry can lead to GH shift with different signs for illumination from the opposite ends, a direct consequence of the nonreciprocity relations considered earlier (Opt. Lett. 27,1205 (2002)). Symmetry breaking by adding a few nm thick bio-layer to one of the guides is enough to observe the nonreciprocity. This may have far reaching implications for efficient biosensing.

  2. Measurement of Wave Chaotic Eigenfunctions in the Time-Reversal Symmetry-Breaking Crossover Regime

    CERN Document Server

    Chung, S H; Wu, D H; Bridgewater, A; Anlage, S M; Chung, Seok-Hwan; Gokirmak, Ali; Wu, Dong-Ho; Anlage, Steven M.

    1999-01-01

    We present experimental results on eigenfunctions of a wave chaotic system in the continuous crossover regime between time-reversal symmetric and time-reversal symmetry-broken states. The statistical properties of the eigenfunctions of a two-dimensional microwave resonator are analyzed as a function of an experimentally determined time-reversal symmetry breaking parameter. We test four theories of eigenfunction statistics in the crossover regime. We also find a universal correlation between the one-point and two-point statistical parameters for the crossover eigenfunctions.

  3. Tunable symmetry breaking and helical edge transport in a graphene quantum spin Hall state.

    Science.gov (United States)

    Young, A F; Sanchez-Yamagishi, J D; Hunt, B; Choi, S H; Watanabe, K; Taniguchi, T; Ashoori, R C; Jarillo-Herrero, P

    2014-01-23

    Low-dimensional electronic systems have traditionally been obtained by electrostatically confining electrons, either in heterostructures or in intrinsically nanoscale materials such as single molecules, nanowires and graphene. Recently, a new method has emerged with the recognition that symmetry-protected topological (SPT) phases, which occur in systems with an energy gap to quasiparticle excitations (such as insulators or superconductors), can host robust surface states that remain gapless as long as the relevant global symmetry remains unbroken. The nature of the charge carriers in SPT surface states is intimately tied to the symmetry of the bulk, resulting in one- and two-dimensional electronic systems with novel properties. For example, time reversal symmetry endows the massless charge carriers on the surface of a three-dimensional topological insulator with helicity, fixing the orientation of their spin relative to their momentum. Weakly breaking this symmetry generates a gap on the surface, resulting in charge carriers with finite effective mass and exotic spin textures. Analogous manipulations have yet to be demonstrated in two-dimensional topological insulators, where the primary example of a SPT phase is the quantum spin Hall state. Here we demonstrate experimentally that charge-neutral monolayer graphene has a quantum spin Hall state when it is subjected to a very large magnetic field angled with respect to the graphene plane. In contrast to time-reversal-symmetric systems, this state is protected by a symmetry of planar spin rotations that emerges as electron spins in a half-filled Landau level are polarized by the large magnetic field. The properties of the resulting helical edge states can be modulated by balancing the applied field against an intrinsic antiferromagnetic instability, which tends to spontaneously break the spin-rotation symmetry. In the resulting canted antiferromagnetic state, we observe transport signatures of gapped edge states

  4. Cutoff effects of Wilson fermions in the absence of spontaneous chiral symmetry breaking

    CERN Document Server

    Della Morte, M; Luz, Magdalena; Morte, Michele Della

    2006-01-01

    We simulate two dimensional QED with two degenerate Wilson fermions and plaquette gauge action. As a consequence of the Mermin-Wagner theorem, in the continuum limit chiral symmetry is realized a la Wigner. This property affects also the size of the cutoff effects. That can be understood in view of the fact that the leading lattice artifacts are described, in the continuum Symanzik effective theory, by chirality breaking terms. In particular, vacuum expectation values of non-chirality-breaking operators are expected to be O(a) improved in the chiral limit. We provide a numerical confirmation of this expectation by performing a scaling test.

  5. B-L assisted anomaly mediation and the radiative B-L symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, Tatsuru [Theory Division, KEK, Oho 1-1, Tsukuba, Ibaraki 305-0801 (Japan)], E-mail: tatsuru@post.kek.jp; Kubo, Takayuki [Theory Division, KEK, Oho 1-1, Tsukuba, Ibaraki 305-0801 (Japan); Graduate University for Advanced Studies, Oho 1-1, Tsukuba, Ibaraki 305-0801 (Japan)], E-mail: kubotaka@post.kek.jp

    2008-10-30

    Anomaly mediated supersymmetry breaking implemented in the minimal supersymmetric standard model (MSSM) is known to suffer from the tachyonic slepton problem leading to breakdown of electric charge conservation. We show however that when MSSM is extended to explain small neutrino masses by gauging the B-L symmetry, the slepton masses can be positive due to the Z{sup '} mediation contributions. We obtain various soft supersymmetry breaking mass spectra, which are different from those obtained in the conventional anomaly mediation scenario. Then there would be a distinct signature of this scenario at the LHC.

  6. Ultra-large distance modification of gravity from Lorentz symmetry breaking at the Planck scale

    CERN Document Server

    Gorbunov, D S

    2005-01-01

    We present an extension of the Randall--Sundrum model in which, due to spontaneous Lorentz symmetry breaking, graviton mixes with bulk vector fields and becomes quasilocalized. The masses of KK modes comprising the four-dimensional graviton are naturally exponentially small. This allows to push the Lorentz breaking scale to as high as a few tenth of the Planck mass. The model does not contain ghosts or tachyons and does not exhibit the van Dam--Veltman--Zakharov discontinuity. The gravitational attraction between static point masses becomes gradually weaker with increasing of separation and gets replaced by repulsion (antigravity) at exponentially large distances.

  7. On Laplace-Runge-Lenz Vector as Symmetry Breaking order parameter in Kepler Orbit and Goldstone Boson

    CERN Document Server

    Amiri, Manouchehr

    2014-01-01

    We introduce a type of symmetry breaking and associated order parameter in connection with Laplace-Runge-Lenz vector of Kepler orbit through an extended spatial dimension and Ensemble view. By implementation of a small extra spatial dimension and embedded infinitesimal toral manifold, it has been shown that emerging of LRL vector under SO(4)symmetry is in analogy with a variety of explicit and spontaneous symmetry breaking situations and related Goldstone bosons such as phonons and spin waves. A theorem introduced to generalize this concept of breaking symmetry. The diffeomorphism of circular orbit(geodesic)to elliptic one proved to be equivalent with a covariant derivative and related parallel displacement in this extended four dimensional spatial space.Respect to ensemble definition this diffeomorphism breaks the O(2) symmetry of initial orbit and Hamiltonian to Z2 resulting in broken generators in quotient space and associated Goldstone boson as perturbing Hamiltonian term leading to a perpetual circular m...

  8. Local symmetry breaking and spin–phonon coupling in SmCrO{sub 3} orthochromite

    Energy Technology Data Exchange (ETDEWEB)

    El Amrani, M. [GREMAN CNRS UMR 7347, Université F. Rabelais, IUT de Blois, 15 rue de la Chocolatrie 41029 Blois cedex (France); Zaghrioui, M., E-mail: zaghrioui@univ-tours.fr [GREMAN CNRS UMR 7347, Université F. Rabelais, IUT de Blois, 15 rue de la Chocolatrie 41029 Blois cedex (France); Ta Phuoc, V.; Gervais, F. [GREMAN CNRS UMR 7347, Université F. Rabelais, IUT de Blois, 15 rue de la Chocolatrie 41029 Blois cedex (France); Massa, Néstor E. [Laboratorio Nacional de Investigacion y Servicios en Espectroscopia Optica-Centro CEQUINOR, Universidad Nacional de La Plata, C. C. 962, 1900 La Plata (Argentina)

    2014-06-01

    Raman scattering and infrared reflectivity performed on polycrystalline SmCrO{sub 3} support strong influence of the antiferromagnetic order on phonon modes. Both measurements show softening of some modes below T{sub N}. Such a behavior is explained by spin–phonon coupling in this compound. Furthermore, temperature dependence of the infrared spectra has demonstrated important changes compared to the Raman spectra, suggesting strong structural modifications due to the cation displacements rather to those of the oxygen ions. Our results reveal that polar distortions originating in local symmetry breaking, i.e. local non-centrosymmetry, resulting in Cr off-centring. - Highlights: • We investigated Raman and infrared phonon modes of SmCrO{sub 3} versus temperature. • Results reveal strong influence of the antiferromagnetic order on phonon modes. • Temperature dependence of the infrared spectra shows strong structural modifications suggesting local symmetry breaking.

  9. Nonlinear modes and symmetry breaking in rotating double-well potentials

    CERN Document Server

    Li, Yongyao; Malomed, Boris A

    2012-01-01

    We study modes trapped in a rotating ring carrying the self-focusing (SF) or defocusing (SDF) cubic nonlinearity and double-well potential $\\cos^{2}\\theta $, where $\\theta $ is the angular coordinate. The model, based on the nonlinear Schr\\"{o}dinger (NLS) equation in the rotating reference frame, describes the light propagation in a twisted pipe waveguide, as well as in other optical settings, and also a Bose-Einstein condensate (BEC)trapped in a torus and dragged by the rotating potential. In the SF and SDF regimes, five and four trapped modes of different symmetries are found, respectively. The shapes and stability of the modes, and transitions between them are studied in the first rotational Brillouin zone. In the SF regime, two symmetry-breaking transitions are found, of subcritical and supercritical types. In the SDF regime, an antisymmetry-breaking transition occurs. Ground-states are identified in both the SF and SDF systems.

  10. Spontaneous chiral-symmetry breaking of lattice QCD with massless dynamical quarks

    Institute of Scientific and Technical Information of China (English)

    LUO XiangQian

    2007-01-01

    One of the most challenging issues in QCD is the investigation of spontaneous chiral-symmetry breaking,which is characterized by the non-vanishing chiral condensate when the bare fermion mass is zero.In standard methods of the lattice gauge theory,one has to perform expensive simulations at multiple bare quark masses,and employ some modeled functions to extrapolate the data to the chiral limit.This paper applies the probability distribution function method to computing the chiral condensate in lattice QCD with massless dynamical quarks,without any ambiguous mass extrapolation.The results for staggered quarks indicate that this might be a promising and efficient method for investigating the spontaneous chiral-symmetry breaking in lattice QCD,which deserves further investigation.

  11. Spontaneous chiral-symmetry breaking of lattice QCD with massless dynamical quarks

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    One of the most challenging issues in QCD is the investigation of spontaneous chiral-symmetry breaking, which is characterized by the non-vanishing chiral condensate when the bare fermion mass is zero. In standard methods of the lattice gauge theory, one has to perform expensive simulations at multiple bare quark masses, and employ some modeled functions to extrapolate the data to the chiral limit. This paper applies the probability distribution function method to computing the chiral condensate in lattice QCD with massless dynamical quarks, without any ambiguous mass extrapolation. The results for staggered quarks indicate that this might be a promising and efficient method for investigating the spontaneous chiral-symmetry breaking in lattice QCD, which deserves further investigation.

  12. Noncritical generation of nonclassical frequency combs via spontaneous rotational symmetry breaking

    CERN Document Server

    Navarrete-Benlloch, Carlos; de Valcárcel, Germán J

    2016-01-01

    Synchronously pumped optical parametric oscillators (SPOPOs) are optical cavities containing a nonlinear crystal capable of down-converting a frequency comb to lower frequencies. These have received a lot of attention lately, because their intrinsic multimode nature makes them compact sources of quantum correlated light with promising applications in modern quantum information technologies. In this work we show that SPOPOs are also capable of accessing the challenging but interesting regime where spontaneous symmetry breaking plays a crucial role in the quantum properties of the emitted light, difficult to access with any other nonlinear optical cavity. Apart from opening the possibility of studying experimentally this elusive regime of dissipative phase transitions, our predictions will have a practical impact, since we show that spontaneous symmetry breaking provides a specific spatiotemporal mode with perfect squeezing for any value of the system parameters, turning SPOPOs into robust sources of highly non...

  13. Tangent Bifurcation of Band Edge Plane Waves, Dynamical Symmetry Breaking and Vibrational Localization

    CERN Document Server

    Flach, S

    1995-01-01

    We study tangent bifurcation of band edge plane waves in nonlinear Hamiltonian lattices. The lattice is translationally invariant. We argue for the breaking of permutational symmetry by the new bifurcated periodic orbits. The case of two coupled oscillators is considered as an example for the perturbation analysis, where the symmetry breaking can be traced using Poincare maps. Next we consider a lattice and derive the dependence of the bifurcation energy on the parameters of the Hamiltonian function in the limit of large system sizes. A necessary condition for the occurence of the bifurcation is the repelling of the band edge plane wave's frequency from the linear spectrum with increasing energy. We conclude that the bifurcated orbits will consequently exponentially localize in the configurational space.

  14. Spontaneous mirror-symmetry breaking induces inverse energy cascade in 3D active fluids

    CERN Document Server

    Słomka, Jonasz

    2016-01-01

    Classical turbulence theory assumes that energy transport in a 3D turbulent flow proceeds through a Richardson cascade whereby larger vortices successively decay into smaller ones. By contrast, an additional inverse cascade characterized by vortex-mergers exists in 2D fluids and gases, with profound implications for meteorological flows and fluid mixing. The possibility of a helicity-driven inverse cascade in 3D fluids had been rejected in the 1970s based on equilibrium-thermodynamic arguments. Recently, however, it was proposed that certain symmetry breaking processes could potentially trigger a 3D inverse cascade, but no physical system exhibiting this phenomenon has been identified to date. Here, we present direct analytical and numerical evidence for the existence of a robust inverse energy cascade in an experimentally validated 3D active fluid model, describing microbial suspension flows that spontaneously break mirror-symmetry. We show analytically that self-organized scale selection, a generic feature ...

  15. Conditions for the emergence of gauge bosons from spontaneous Lorentz symmetry breaking

    CERN Document Server

    Escobar, C A

    2015-01-01

    The emergence of gauge particles (e.g., photons and gravitons) as Goldstone bosons arising from spontaneous symmetry breaking is an interesting hypothesis which would provide a dynamical setting for the gauge principle. We investigate this proposal in the framework of a general $% SO(N)$ non-abelian Nambu model (NANM), effectively providing spontaneous Lorentz symmetry breaking in terms of the corresponding Goldstone bosons. Using a non-perturbative Hamiltonian analysis, we prove that the $SO(N)$ Yang--Mills theory is equivalent to the corresponding NANM, after current conservation together with the Gauss laws are imposed as initial conditions for the latter. This equivalence is independent of any gauge fixing in the YM theory. A substantial conceptual and practical improvement in the analysis arises by choosing a particular parametrization that solves the non-linear constraint defining the NANM. This choice allows us to show that the relation between the NANM canonical variables and the corresponding ones of...

  16. Twisted spectral triple for the Standard Model and spontaneous breaking of the Grand Symmetry

    CERN Document Server

    Devastato, Agostino

    2014-01-01

    Grand symmetry models in noncommutative geometry have been introduced to explain how to generate minimally (i.e. without adding new fermions) an extra scalar field beyond the standard model, which both stabilizes the electroweak vacuum and makes the computation of the mass of the Higgs compatible with its experimental value. In this paper, we use Connes-Moscovici twisted spectral triples to cure a technical problem of the grand symmetry, that is the appearance together with the extra scalar field of unbounded vectorial terms. The twist makes these terms bounded, and also permits to understand the breaking to the standard model as a dynamical process induced by the spectral action. This is a spontaneous breaking from a pre-geometric Pati-Salam model to the almost-commutative geometry of the standard model, with two Higgs-like fields: scalar and vector.

  17. Flavor symmetry breaking and scaling for improved staggered actions in quenched QCD

    CERN Document Server

    Cheng, M; Jung, C; Karsch, F; Mawhinney, R D; Petreczky, P; Petrov, K V

    2006-01-01

    We present a study of the flavor symmetry breaking in the pion spectrum for various improved staggered fermion actions. To study the effects of link fattening and tadpole improvement, we use three different variants of the p4 action - p4fat3, p4fat7, and p4fat7tad. These are compared to Asqtad and also to naive staggered. To study the pattern of symmetry breaking, we measure all 15 meson masses in the 4-flavor staggered theory. The measurements are done on a quenched gauge background, generated using a one-loop improved Symanzik action with $\\beta=10/g^2 = 7.40, 7.75,$ and 8.00, corresponding to lattice spacings of approximately a = .31 fm., .21 fm., and .14 fm. We also study how the lattice scale set by the $\\rho$ mass on each of these ensembles compares to one set by the static quark potential.

  18. Symmetry Breaking of Frequency Comb in Varying Normal Dispersion Fiber Ring Cavity

    CERN Document Server

    Afzal, Muhammad Imran; Lee, Yong Tak

    2016-01-01

    We build on a previously reported frequency comb of mode spacing 0.136 nm in a fiber ring cavity of varying normal dispersion [1], to generate, for the first time, a frequency comb of mode spacing 0.144 nm centered at 978.544 nm to demonstrate the symmetry-breaking. By controlling the birefringence of the optical cavity through fiber stretching and polarization control, the spacing of the comb lines increases from 0.136 nm to 0.144 nm, and this small change in mode spacing generates very different spectral symmetry-breaking in the frequency comb relative to the frequency comb of mode spacing 0.136 nm. Interestingly, non-uniform depletion of primary modes is also observed. The experimental results are an important contribution in the continuing effort of understanding the dynamics of frequency combs involving large number of modes, nontrivial nonlinear waves and deterministic chaos.

  19. Magnetism and local symmetry breaking in a Mott insulator with strong spin orbit interactions

    Science.gov (United States)

    Lu, L.; Song, M.; Liu, W.; Reyes, A. P.; Kuhns, P.; Lee, H. O.; Fisher, I. R.; Mitrović, V. F.

    2017-01-01

    Study of the combined effects of strong electronic correlations with spin-orbit coupling (SOC) represents a central issue in quantum materials research. Predicting emergent properties represents a huge theoretical problem since the presence of SOC implies that the spin is not a good quantum number. Existing theories propose the emergence of a multitude of exotic quantum phases, distinguishable by either local point symmetry breaking or local spin expectation values, even in materials with simple cubic crystal structure such as Ba2NaOsO6. Experimental tests of these theories by local probes are highly sought for. Our local measurements designed to concurrently probe spin and orbital/lattice degrees of freedom of Ba2NaOsO6 provide such tests. Here we show that a canted ferromagnetic phase which is preceded by local point symmetry breaking is stabilized at low temperatures, as predicted by quantum theories involving multipolar spin interactions. PMID:28181502

  20. Dynamical Electroweak Symmetry Breaking with a Heavy Fermion in Light of Recent LHC Results

    Directory of Open Access Journals (Sweden)

    Pham Q. Hung

    2013-01-01

    Full Text Available The recent announcement of a discovery of a possible Higgs-like particle—its spin and parity are yet to be determined—at the LHC with a mass of 126 GeV necessitates a fresh look at the nature of the electroweak symmetry breaking, in particular if this newly-discovered particle will turn out to have the quantum numbers of a Standard Model Higgs boson. Even if it were a 0+ scalar with the properties expected for a SM Higgs boson, there is still the quintessential hierarchy problem that one has to deal with and which, by itself, suggests a new physics energy scale around 1 TeV. This paper presents a minireview of one possible scenario: the formation of a fermion-antifermion condensate coming from a very heavy fourth generation, carrying the quantum number of the SM Higgs field, and thus breaking the electroweak symmetry.

  1. CERN LHC sensitivity to the resonance spectrum of a minimal strongly interacting electroweak symmetry breaking sector

    CERN Document Server

    Dobado, A; Peláez, J R; Ruiz-Morales, Ester

    2000-01-01

    We present a unified analysis of the two main production processes of vector boson pairs at the CERN LHC, VV-fusion and qq annihilation, in a minimal strongly interacting electroweak symmetry breaking sector. Using a unitarized electroweak chiral Lagrangian formalism and modeling the final V/sub L/V/sub L/ strong rescattering effects by a form factor, we describe qq annihilation processes in terms of the two chiral parameters that govern elastic V/sub L/V/sub L/ scattering. Depending on the values of these two chiral parameters, the unitarized amplitudes may present resonant enhancements in different angular momentum-isospin channels. Scanning this two parameter space, we generate the general resonance spectrum of a minimal strongly interacting electroweak symmetry breaking sector and determine the regions that can be probed at the CERN LHC. (47 refs).

  2. Spontaneous symmetry breaking in the O(4) scalar model on a lattice

    CERN Document Server

    Demchik, Vadim; Skalozub, Vladimir

    2014-01-01

    The spontaneous symmetry breaking in the four component scalar $\\lambda \\phi^4$ model (O(4) model) is investigated on a lattice dependently on the value of the coupling constant $\\lambda$. A general approach for dealing with this phenomenon is developed. In the spherical coordinates in the internal space of the scalar field, the Goldstone modes are integrated out by the saddle point method that reduces the functional integral of the model to the effective one component theory convenient for lattice investigations. The partition function of the model is calculated analytically up to the one-loop order. Monte Carlo simulations are performed with a QCDGPU software package on a HGPU cluster. It is shown that for $\\lambda < 10^{-5}$ the scalar field condensate does not create. For larger values of coupling symmetry breaking happens. Qualitatively, this is similar to that of observed already in the O(1) model.

  3. Role of center vortices in chiral symmetry breaking in SU(3) gauge theory

    OpenAIRE

    2011-01-01

    We study the behavior of the AsqTad quark propagator in Landau gauge on SU(3) Yang-Mills gauge configurations under the removal of center vortices. In SU(2) gauge theory, center vortices have been observed to generate chiral symmetry breaking and dominate the infrared behavior of the quark propagator. In contrast, we report a weak dependence on the vortex content of the gauge configurations, including the survival of dynamical mass generation on configurations with vanishing string tension.

  4. Symmetry-breaking on-off intermittency under modulation: Robustness of supersensitivity, resonance and information gain

    OpenAIRE

    Hu, Bambi; Zhou, Changsong

    2000-01-01

    Nonlinear dynamical systems possessing an invariant subspace in the phase space and chaotic or stochastic motion within the subspace often display on-off intermittency close to the threshold of stability of the subspace. In a class of symmetric systems, the intermittency is symmetry-breaking [Ying-Cheng Lai, Phys. Rev. E {\\bf 53}. R4267 (1996)]. We report interesting and practically important universal behavior of robustness of supersensitivity, resonance and information gain in this class of...

  5. Spatial Symmetry Breaking in the Belousov-Zhabotinsky Reaction with Light-Induced Remote Communication

    Energy Technology Data Exchange (ETDEWEB)

    Hildebrand, M.; Skodt, H.; Showalter, K.

    2001-08-20

    Domains containing spiral waves form on a stationary background in a photosensitive Belousov-Zhabotinsky reaction with light-induced alternating nonlocal feedback. Complex behavior of colliding and splitting wave fragments is found with feedback radii comparable to the spiral wavelength. A linear stability analysis of the uniform stationary states in an Oregonator model reveals a spatial symmetry breaking instability. Numerical simulations show behavior in agreement with that found experimentally and also predict a variety of other new patterns.

  6. Instanton-dyon Ensemble with two Dynamical Quarks: the Chiral Symmetry Breaking

    CERN Document Server

    Larsen, Rasmus

    2015-01-01

    This is the second paper of the series aimed at understanding of the ensemble of the instanton-dyons, now with two flavors of light dynamical quarks. The partition function is appended by the fermionic factor, $(det T)^{N_f}$ and Dirac eigenvalue spectra at small values are derived from the numerical simulation of 64 dyons. Those spectra show clear chiral symmetry breaking pattern at high dyon density. Within current accuracy, the confinement and chiral transitions occur at very similar densities.

  7. Symmetry breaking: a tool to unveil the topology of chaotic scattering with three degrees of freedom

    Science.gov (United States)

    Jung, Christof; Zapfe, W. P. Karel; Merlo, Olivier; Seligman, T. H.

    2010-12-01

    We shall use symmetry breaking as a tool to attack the problem of identifying the topology of chaotic scatteruing with more then two degrees of freedom. specifically we discuss the structure of the homoclinic/heteroclinic tangle and the connection between the chaotic invariant set, the scattering functions and the singularities in the cross section for a class of scattering systems with one open and two closed degrees of freedom.

  8. Measurement As Spontaneous Symmetry Breaking, Non-locality and Non-Boolean Holism

    CERN Document Server

    Ghose, Partha

    2010-01-01

    It is shown that having degenerate ground states over the domain of the wavefunction of a system is a sufficient condition for a quantum system to act as a measuring apparatus for the system. Measurements are then instances of spontaneous symmetry breaking to one of these ground states, induced by environmental perturbations. Together with non-Boolean holism this constitutes an optimal formulation of quantum mechanics that does not imply non-locality.

  9. 300 nm bandwidth adiabatic SOI polarization splitter-rotators exploiting continuous symmetry breaking.

    Science.gov (United States)

    Socci, Luciano; Sorianello, Vito; Romagnoli, Marco

    2015-07-27

    Adiabatic polarization splitter-rotators are investigated exploiting continuous symmetry breaking thereby achieving significant device size and losses reduction in a single mask fabrication process for both SOI channel and ridge waveguides. A crosstalk lower than -25 dB is expected over 300nm bandwidth, making the device suitable for full grid CWDM and diplexer/triplexer FTTH applications at 1310, 1490 and 1550nm.

  10. Modeling outer-sphere disorder in the symmetry breaking of PPV.

    Science.gov (United States)

    Liu, L Angela; Yaron, David J

    2009-04-21

    Disorder plays an important role in the photophysics of conjugated polymers such as poly(para-phenylene vinylene) (PPV). The dipole moments measured by electroabsorption spectroscopy for a centrosymmetric system such as PPV provide a direct quantitative measure of disorder-induced symmetry breaking. Although inner-sphere (structural) disorder is present, outer-sphere (environmental) disorder dominates the symmetry breaking in PPV. This paper develops and compares six models of outer-sphere disorder that differ in their representation of the electrostatic environment of PPV in glassy solvents. The most detailed model is an all-atom description of the solvent glass and this model forms the basis for comparison of the less detailed models. Four models are constructed in which multipoles are placed at points on a lattice. These lattice models differ in the degree to which they include correlation between the lattice spacings and the orientations of the multipoles. A simple model that assigns random Gaussian-distributed electrostatic potentials to each atom in the PPV molecule is also considered. Comparison of electronic structure calculations of PPV in these electrostatic environments using the all-atom model as a benchmark reveals that dipole and quadrupole lattices provide reasonable models of organic glassy solvents. Including orientational correlation among the solvent molecules decreases the effects of outer-sphere disorder, whereas including correlation in the lattice spacings increases the effects. Both the dipole and quadrupole moments of the solvent molecules can have significant effects on the symmetry breaking and these effects are additive. This additivity provides a convenient means for predicting the effects of various glassy solvents based on their multipole moments. The results presented here suggest that electrostatic disorder can account for the observed symmetry breaking in organic glasses. Furthermore, the lattice models are in general agreement

  11. Benchmarking Density Functional Theory Approaches for the Description of Symmetry-Breaking in Long Polymethine Dyes

    KAUST Repository

    Gieseking, Rebecca L.

    2016-04-25

    Long polymethines are well-known experimentally to symmetry-break, which dramatically modifies their linear and nonlinear optical properties. Computational modeling could be very useful to provide insight into the symmetry-breaking process, which is not readily available experimentally; however, accurately predicting the crossover point from symmetric to symmetry-broken structures has proven challenging. Here, we benchmark the accuracy of several DFT approaches relative to CCSD(T) geometries. In particular, we compare analogous hybrid and long-range corrected (LRC) functionals to clearly show the influence of the functional exchange term. Although both hybrid and LRC functionals can be tuned to reproduce the CCSD(T) geometries, the LRC functionals are better performing at reproducing the geometry evolution with chain length and provide a finite upper limit for the gas-phase crossover point; these methods also provide good agreement with the experimental crossover points for more complex polymethines in polar solvents. Using an approach based on LRC functionals, a reduction in the crossover length is found with increasing medium dielectric constant, which is related to localization of the excess charge on the end groups. Symmetry-breaking is associated with the appearance of an imaginary frequency of b2 symmetry involving a large change in the degree of bond-length alternation. Examination of the IR spectra show that short, isolated streptocyanines have a mode at ~1200 cm-1 involving a large change in bond-length alternation; as the polymethine length or the medium dielectric increases, the frequency of this mode decreases before becoming imaginary at the crossover point.

  12. Intrinsic Axial Flows in CSDX and Dynamical Symmetry Breaking in ITG Turbulence

    Science.gov (United States)

    Li, Jiacong; Diamond, P. H.; Hong, R.; Thakur, S. C.; Xu, X. Q.; Tynan, G. R.

    2016-10-01

    Toroidal plasma rotation can enhance confinement when combined with weak magnetic shear. Also, external rotation drive in future fusion devices (e.g. ITER) will be weak. Together, these two considerations drive us to study intrinsic rotations with weak magnetic shear. In particular, a global transition is triggered in CSDX when magnetic field B exceeds a critical strength threshold. At the transition an ion feature emerges in the core turbulence. Recent studies show that a dynamical symmetry breaking mechanism in drift wave turbulence can drive intrinsic axial flows in CSDX, as well as enhance intrinsic rotations in tokamaks. Here, we focus on what happens when ion features emerge in CSDX, and how ion temperature gradient (ITG) driven turbulence drives intrinsic rotations with weak magnetic shear. The effect of dynamical symmetry breaking in ITG turbulence depends on the stability regime. In a marginally stable regime, dynamical symmetry breaking results in an augmented turbulence viscosity (chi-phi). However, when ITG is far from the stability boundary, a negative increment in turbulent viscosity is induced. This material is based upon work supported by the U.S. Department of Energy, Office of Fusion Energy Sciences, under Award No. DE-FG02-04ER54738.

  13. Chiral Symmetry Breaking and External Fields in the Kuperstein-Sonnenschein Model

    CERN Document Server

    Alam, M Sohaib; Kundu, Arnab

    2012-01-01

    A novel holographic model of chiral symmetry breaking has been proposed by Kuperstein and Sonnenschein by embedding non-supersymmetric probe D7 and anti-D7 branes in the Klebanov-Witten background. We study the dynamics of the probe flavours in this model in the presence of finite temperature and a constant electromagnetic field. In keeping with the weakly coupled field theory intuition, we find the magnetic field promotes spontaneous breaking of chiral symmetry whereas the electric field restores it. The former effect is universally known as the "magnetic catalysis" in chiral symmetry breaking. In the presence of an electric field such a condensation is inhibited and a current flows. Thus we are faced with a steady-state situation rather than a system in equilibrium. We conjecture a definition of thermodynamic free energy for this steady-state phase and using this proposal we study the detailed phase structure when both electric and magnetic fields are present in two representative configurations: mutually p...

  14. Weyl gauge-vector and complex dilaton scalar for conformal symmetry and its breaking

    Science.gov (United States)

    Ohanian, Hans C.

    2016-03-01

    Instead of the scalar "dilaton" field that is usually adopted to construct conformally invariant Lagrangians for gravitation, we here propose a hybrid construction, involving both a complex dilaton scalar and a Weyl gauge-vector, in accord with Weyl's original concept of a non-Riemannian conformal geometry with a transport law for length and time intervals, for which this gauge vector is required. Such a hybrid construction permits us to avoid the wrong sign of the dilaton kinetic term (the ghost problem) that afflicts the usual construction. The introduction of a Weyl gauge-vector and its interaction with the dilaton also has the collateral benefit of providing an explicit mechanism for spontaneous breaking of the conformal symmetry, whereby the dilaton and the Weyl gauge-vector acquire masses somewhat smaller than {m}_{P} by the Coleman-Weinberg mechanism. Conformal symmetry breaking is assumed to precede inflation, which occurs later by a separate GUT or electroweak symmetry breaking, as in inflationary models based on the Higgs boson.

  15. Suppression of martensitic transformation in Fe50Mn23Ga27 by local symmetry breaking

    Science.gov (United States)

    Ma, Tianyu; Liu, Xiaolian; Yan, Mi; Wu, Chen; Ren, Shuai; Li, Huiying; Fang, Minxia; Qiu, Zhiyong; Ren, Xiaobing

    2015-05-01

    Defects-induced local symmetry breaking has led to unusual properties in nonferromagnetic ferroelastic materials upon suppressing their martensitic transformation. Thus, it is of interest to discover additional properties by local symmetry breaking in one important class of the ferroelastic materials, i.e., the ferromagnetic shape memory alloys. In this letter, it is found that local symmetry breaking including both tetragonal nano-inclusions and anti-phase boundaries (APBs), suppresses martensitic transformation of a body-centered-cubic Fe50Mn23Ga27 alloy, however, does not affect the magnetic ordering. Large electrical resistivity is retained to the low temperature ferromagnetic state, behaving like a half-metal ferromagnet. Lower ordering degree at APBs and local stress fields generated by the lattice expansion of tetragonal nanoparticles hinder the formation of long-range-ordered martensites. The half-metal-like conducting behavior upon suppressing martensitic transformation extends the regime of ferromagnetic shape memory materials and may lead to potential applications in spintronic devices.

  16. Vacuum stability and radiative electroweak symmetry breaking in an SO(10) dark matter model

    Science.gov (United States)

    Mambrini, Yann; Nagata, Natsumi; Olive, Keith A.; Zheng, Jiaming

    2016-06-01

    Vacuum stability in the Standard Model is problematic as the Higgs quartic self-coupling runs negative at a renormalization scale of about 1010 GeV . We consider a nonsupersymmetric SO(10) grand unification model for which gauge coupling unification is made possible through an intermediate scale gauge group, Gint=SU (3 )C⊗SU (2 )L⊗SU (2 )R⊗U (1 )B -L . Gint is broken by the vacuum expectation value of a 126 of SO(10) which not only provides for neutrino masses through the seesaw mechanism but also preserves a discrete Z2 that can account for the stability of a dark matter candidate, here taken to be the Standard Model singlet component of a bosonic 16 . We show that in addition to these features the model insures the positivity of the Higgs quartic coupling through its interactions to the dark matter multiplet and 126 . We also show that the Higgs mass squared runs negative, triggering electroweak symmetry breaking. Thus, the vacuum stability is achieved along with radiative electroweak symmetry breaking and captures two more important elements of supersymmetric models without low-energy supersymmetry. The conditions for perturbativity of quartic couplings and for radiative electroweak symmetry breaking lead to tight upper and lower limits on the dark matter mass, respectively, and this dark matter mass region (1.35-2 TeV) can be probed in future direct detection experiments.

  17. Dynamical instability induced by the zero mode under symmetry breaking external perturbation

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, J., E-mail: phyco-sevenface@asagi.waseda.jp; Nakamura, Y., E-mail: nakamura@aoni.waseda.jp; Yamanaka, Y., E-mail: yamanaka@waseda.jp

    2014-08-15

    A complex eigenvalue in the Bogoliubov–de Gennes equations for a stationary Bose-Einstein condensate in the ultracold atomic system indicates the dynamical instability of the system. We also have the modes with zero eigenvalues for the condensate, called the zero modes, which originate from the spontaneous breakdown of symmetries. Although the zero modes are suppressed in many theoretical analyses, we take account of them in this paper and argue that a zero mode can change into one with a pure imaginary eigenvalue by applying a symmetry breaking external perturbation potential. This emergence of a pure imaginary mode adds a new type of scenario of dynamical instability to that characterized by the complex eigenvalue of the usual excitation modes. For illustration, we deal with two one-dimensional homogeneous Bose–Einstein condensate systems with a single dark soliton under a respective perturbation potential, breaking the invariance under translation, to derive pure imaginary modes. - Highlights: • Zero modes are important but ignored in many theories for the cold atomic system. • We discuss the zero mode under symmetry breaking potential in this system. • We consider the zero mode of translational invariance for a single dark soliton. • We show that it turns into an anomalous or pure imaginary mode.

  18. A new Perspective on the Scalar meson Puzzle, from Spontaneous Chiral Symmetry Breaking Beyond BCS

    CERN Document Server

    Bicudo, P J A

    1998-01-01

    We introduce coupled channels of Bethe-Salpeter mesons both in the mass gap equation for chiral symmetry breaking and in the boundstate equation for mesons. Consistency is insured by the Ward Identities for axial currents, which preserve the Goldstone boson nature of the pion. We find that the coupling of channels yields the widths of resonances and contributes to mass splittings, but it does not shift globally the hadron spectrum. We find that coupled channels reduce the breaking of chiral symmetry. This reduction is constrained by the coupling of a scalar meson to a pair of pseudoscalar mesons. The light and wide $\\sigma-f_0(600)$, the narrow $f_0(980)$ and the relatively heavy $f_0(1370)$ are studied in order to comply with the spontaneous breaking of chiral symmetry. Exact calculations are performed in a particular model. In this model we find that the $f_0(980)$ is the best candidate for the groundstate quark antiquark meson . In particular its width is naturally small. In this case the coupled channels ...

  19. Weyl-invariant Higher Curvature Gravity Theories in n Dimensions and Mass Generation by Symmetry Breaking

    CERN Document Server

    Dengiz, Suat

    2014-01-01

    Weyl-invariant extensions of three-dimensional New Massive Gravity, generic n-dimensional Quadratic Curvature Gravity theories and three-dimensional Born-Infeld gravity theory are analyzed in details. As required by Weyl-invariance, the actions of these gauge theories do not contain any dimensionful parameter hence the local symmetry is spontaneously broken in (Anti) de Sitter vacua in complete analogy with the Standard Model Higgs mechanism. In flat vacuum, symmetry breaking mechanism is more complicated: The dimensionful parameters come from dimensional transmutation in the quantum field theory; therefore, the conformal symmetry is radiatively broken (at two loop level in 3-dimensions and at one-loop level in 4-dimensions) \\`{a} la Coleman-Weinberg mechanism. In the broken phases, save for New Massive Gravity, the theories generically propagate with a unitary (tachyon and ghost-free) massless tensor, massive (or massless) vector and massless scalar particles for the particular intervals of the dimensionless...

  20. External Fields and Chiral Symmetry Breaking in the Sakai-Sugimoto Model

    CERN Document Server

    Johnson, Clifford V

    2008-01-01

    Using the Sakai-Sugimoto model we study the effect of an external magnetic field on the dynamics of fundamental flavours in both the confined and deconfined phases of a large N_c gauge theory. We find that an external magnetic field promotes chiral symmetry breaking, consistent with the ``magnetic catalysis'' observed in the field theory literature, and seen in other studies using holographic duals. The external field increases the separation between the deconfinement temperature and the chiral symmetry restoring temperature. In the deconfined phase we investigate the temperature-magnetic field phase diagram and observe, for example, there exists a maximum critical temperature (at which symmetry is restored) for very large magnetic field. We find that this and certain other phenomena persist for the Sakai-Sugimoto type models with probe branes of diverse dimensions. We comment briefly on the dynamics in the presence of an external electric field.

  1. Gauge Symmetry Breaking Patterns in an SU(5) Grand Gauge-Higgs Unification

    CERN Document Server

    Kojima, Kentaro; Yamashita, Toshifumi

    2016-01-01

    We study gauge symmetry breaking patterns of the five-dimensional $SU(5)$ grand gauge-Higgs unification compactified on an orbifold $S^1/{\\mathbb Z}_2$ with the Hosotani mechanism in the framework of the diagonal embedding method. We find matter contents that lead to the $SU(3)\\times SU(2)\\times U(1)$ gauge symmetry on the global minimum of the effective potential and also present examples of matter content for which each regular subgroup of $SU(5)$ is realized as vacuum configuration. The finite temperature phase transitions for the models with the gauge symmetry of the standard model at zero temperature and also for supersymmetric models are studied. We show in a certain model with supersymmetry that the vacuum of the standard model selected dynamically before the inflation continues to stay there up to the present.

  2. Phase transition from the symmetry breaking of charged Klein–Gordon fields

    Energy Technology Data Exchange (ETDEWEB)

    Matos, T.; Castellanos, E. [Departamento de Física, Centro de Investigación y de Estudios Avanzados del IPN, A.P. 14-740, 07000 México D.F. (Mexico)

    2014-01-14

    We analyze the phase transition associated with the U(1) symmetry breaking of the complex Klein–Gordon (KG) equation with a Mexican–hat scalar field potential up to one loop in perturbations immersed in a thermal bath. We show that the KG equation reduces to a Gross–Pitaevskii like–equation (GP), which also contains the entire information of the phase transition. Indeed, the thermal bath contributions, together with the corresponding U(1) local symmetry, allow us to interpret the resulting GP equation as a charged and finite temperature version of the system. Finally, we obtain the hydrodynamics and consequently, the corresponding thermodynamics, and show that breakdown of the U(1) local symmetry of the KG field into the new version of the GP equation corresponds, under certain circumstances, to a phase transition of the gas into a condensate, superfluid, and/or superconductor.

  3. Symmetry breaking of localized discrete matter waves induced by spin–orbit coupling

    Energy Technology Data Exchange (ETDEWEB)

    Salerno, M. [Dipartimento di Fisica “E.R. Caianiello”, CNISM and INFN–Gruppo Collegato di Salerno, Universitá di Salerno, Via Giovanni Paolo II, 84084 Fisciano (Italy); Abdullaev, F.Kh., E-mail: fatkhulla@yahoo.com [Department of Physics, Kulliyyah of Science, International Islamic University of Malaysia, 25200 Kuantan, Pahang (Malaysia)

    2015-10-02

    We study localized nonlinear excitations of a dilute Bose–Einstein condensate (BEC) with spin–orbit coupling in a deep optical lattice (OL). For this we introduce a tight-binding model that includes the spin–orbit coupling (SOC) at the discrete level in the form of a generalized discrete nonlinear Schrödinger equation. Existence and stability of discrete solitons of different symmetry types is demonstrated. Quite interestingly, we find three distinctive regions in which discrete solitons undergo spontaneously symmetry breaking, passing from on-site to inter-site and to asymmetric, simply by varying the interatomic interactions. Existence ranges of discrete solitons with inter-site symmetry depend on SOC and shrink to zero as the SOC parameter is increased. Asymmetric discrete solitons appear as novel excitations specific of the SOC. Possible experimental implementation of these results is briefly discussed.

  4. Transport of parallel momentum induced by current-symmetry breaking in toroidal plasmas.

    Science.gov (United States)

    Camenen, Y; Peeters, A G; Angioni, C; Casson, F J; Hornsby, W A; Snodin, A P; Strintzi, D

    2009-03-27

    The symmetry of a physical system strongly impacts on its properties. In toroidal plasmas, the symmetry along a magnetic field line usually constrains the radial flux of parallel momentum to zero in the absence of background flows. By breaking the up-down symmetry of the toroidal currents, this constraint can be relaxed. The parallel asymmetry in the magnetic configuration then leads to an incomplete cancellation of the turbulent momentum flux across a flux surface. The magnitude of the subsequent toroidal rotation increases with the up-down asymmetry and its sign depends on the direction of the toroidal magnetic field and plasma current. Such a mechanism offers new insights in the interpretation and control of the intrinsic toroidal rotation in present day experiments.

  5. Conformal symmetry and its breaking in two dimensional Nearly Anti-de-Sitter space

    CERN Document Server

    Maldacena, Juan; Yang, Zhenbin

    2016-01-01

    We study a two dimensional dilaton gravity system, recently examined by Almheiri and Polchinski, which describes near extremal black holes, or more generally, nearly $AdS_2$ spacetimes. The asymptotic symmetries of $AdS_2$ are all the time reparametrizations of the boundary. These symmetries are spontaneously broken by the $AdS_2$ geometry and they are explicitly broken by the small deformation away from $AdS_2$. This pattern of spontaneous plus explicit symmetry breaking governs the gravitational backreaction of the system. It determines several gravitational properties such as the linear in temperature dependence of the near extremal entropy as well as the gravitational corrections to correlation functions. These corrections include the ones determining the growth of out of time order correlators that is indicative of chaos. These gravitational aspects can be described in terms of a Schwarzian derivative effective action for a reparametrization.

  6. Direct Visualization of Excited-State Symmetry Breaking Using Ultrafast Time-Resolved Infrared Spectroscopy.

    Science.gov (United States)

    Dereka, Bogdan; Rosspeintner, Arnulf; Li, Zhiquan; Liska, Robert; Vauthey, Eric

    2016-04-01

    Most symmetric quadrupolar molecules designed for two-photon absorption behave as dipolar molecules in the S1 electronic excited state. This is usually explained by a breakup of the symmetry in the excited state. However, the origin of this process and its dynamics are still not fully understood. Here, excited-state symmetry breaking in a quadrupolar molecule with a D-π-A-π-D motif, where D and A are electron donating and accepting units, is observed in real time using ultrafast transient infrared absorption spectroscopy. The nature of the relaxed S1 state was found to strongly depend on the solvent polarity: (1) in nonpolar solvents, it is symmetric and quadrupolar; (2) in weakly polar media, the quadrupolar state observed directly after excitation transforms to a symmetry broken S1 state with one arm bearing more excitation than the other; and (3) in highly polar solvents, the excited state evolves further to a purely dipolar S1 state with the excitation localized entirely on one arm. The time scales associated with the transitions between these states coincide with those of solvation dynamics, indicating that symmetry breaking is governed by solvent fluctuations.

  7. Conformal symmetry breaking and degeneracy of high-lying unflavored mesons

    CERN Document Server

    Kirchbach, Mariana; Compean, Cliffor; Raya, Alfredo

    2012-01-01

    We show that though conformal symmetry can be broken by the dilaton, such can happen without breaking the conformal degeneracy patterns in the spectra. We departure from S^1XS^3 slicing of AdS_5 noticing that the inverse radius, R, of S^3 relates to the temperature of the deconfinement phase transition and has to satisfy, \\hbar c/R >> \\Lambda_{QCD}. We then focus on the eigenvalue problem of the S^3 conformal Laplacian, given by 1/R^2 (K^2+1), with K^2 standing for the Casimir invariant of the so(4) algebra. Such a spectrum is characterized by a (K+1)^2 fold degeneracy of its levels, with K\\in [0,\\infty). We then break the conformal S^3 metric as, d\\tilde{s}^2=e^{-b\\chi} ((1+b^2) d\\chi^2 +\\sin^2\\chi (d\\theta ^2 +\\sin^2\\theta d\\varphi ^2)), and attribute the symmetry breaking scale, b\\hbar^2c^2/R^2, to the dilaton. We show that such a metric deformation is equivalent to a breaking of the conformal curvature of S^3 by a term proportional to b\\cot \\chi, and that the perturbed conformal Laplacian is equivalent to...

  8. Symmetry breaking in mass-recruiting ants: extent of foraging biases depends on resource quality.

    Science.gov (United States)

    Price, R I'Anson; Grüter, C; Hughes, W O H; Evison, S E F

    2016-01-01

    The communication involved in the foraging behaviour of social insects is integral to their success. Many ant species use trail pheromones to make decisions about where to forage. The strong positive feedback caused by the trail pheromone is thought to create a decision between two or more options. When the two options are of identical quality, this is known as symmetry breaking, and is important because it helps colonies to monopolise food sources in a competitive environment. Symmetry breaking is thought to increase with the quantity of pheromone deposited by ants, but empirical studies exploring the factors affecting symmetry breaking are limited. Here, we tested if (i) greater disparity between two food sources increased the degree to which a higher quality food source is favoured and (ii) if the quality of identical food sources would affect the degree of symmetry breaking that occurs. Using the mass-recruiting Pharaoh ant, Monomorium pharaonis, we carried out binary choice tests to investigate how food quality affects the choice and distribution of colony foraging decisions. We found that colonies could coordinate foraging to exploit food sources of greater quality, and a greater contrast in quality between the food sources created a stronger collective decision. Contrary to prediction, we found that symmetry breaking decreased as the quality of two identical food sources increased. We discuss how stochastic effects might lead to relatively strong differences in the amount of pheromone on alternative routes when food source quality is low. Pheromones used by social insects should guide a colony via positive feedback to distribute colony members at resources in the most adaptive way given the current environment. This study shows that when food resources are of equal quality, Pharaoh ant foragers distribute themselves more evenly if the two food sources are both of high quality compared to if both are of low quality. The results highlight the way in which

  9. Detecting and identifying two-dimensional symmetry-protected topological, symmetry-breaking, and intrinsic topological phases with modular matrices via tensor-network methods

    Science.gov (United States)

    Huang, Ching-Yu; Wei, Tzu-Chieh

    2016-04-01

    Symmetry-protected topological (SPT) phases exhibit nontrivial order if symmetry is respected but are adiabatically connected to the trivial product phase if symmetry is not respected. However, unlike the symmetry-breaking phase, there is no local order parameter for SPT phases. Here we employ a tensor-network method to compute the topological invariants characterized by the simulated modular S and T matrices to study transitions in a few families of two-dimensional (2D) wave functions which are ZN (N =2 and3 ) symmetric. We find that in addition to the topologically ordered phases, the modular matrices can be used to identify nontrivial SPT phases and detect transitions between different SPT phases as well as between symmetric and symmetry-breaking phases. Therefore modular matrices can be used to characterize various types of gapped phases in a unifying way.

  10. Strain-induced nonsymmorphic symmetry breaking and removal of Dirac semimetallic nodal line in an orthoperovskite iridate

    Science.gov (United States)

    Liu, Jian; Kriegner, D.; Horak, L.; Puggioni, D.; Rayan Serrao, C.; Chen, R.; Yi, D.; Frontera, C.; Holy, V.; Vishwanath, A.; Rondinelli, J. M.; Marti, X.; Ramesh, R.

    2016-02-01

    By using a combination of heteroepitaxial growth, structure refinement based on synchrotron x-ray diffraction, and first-principles calculations, we show that the symmetry-protected Dirac line nodes in the topological semimetallic perovskite SrIrO3 can be lifted simply by applying epitaxial constraints. In particular, the Dirac gap opens without breaking the P b n m mirror symmetry. In virtue of a symmetry-breaking analysis, we demonstrate that the original symmetry protection is related to the n -glide operation, which can be selectively broken by different heteroepitaxial structures. This symmetry protection renders the nodal line a nonsymmorphic Dirac semimetallic state. The results highlight the vital role of crystal symmetry in spin-orbit-coupled correlated oxides and provide a foundation for experimental realization of topological insulators in iridate-based heterostructures.

  11. The pseudo-conformal universe: scale invariance from spontaneous breaking of conformal symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Hinterbichler, Kurt; Khoury, Justin, E-mail: kurthi@physics.upenn.edu, E-mail: jkhoury@sas.upenn.edu [Center for Particle Cosmology, Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104 (United States)

    2012-04-01

    We present a novel theory of the very early universe which addresses the traditional horizon and flatness problems of big bang cosmology and predicts a scale invariant spectrum of perturbations. Unlike inflation, this scenario requires no exponential accelerated expansion of space-time. Instead, the early universe is described by a conformal field theory minimally coupled to gravity. The conformal fields develop a time-dependent expectation value which breaks the flat space so(4,2) conformal symmetry down to so(4,1), the symmetries of de Sitter, giving perturbations a scale invariant spectrum. The solution is an attractor, at least in the case of a single time-dependent field. Meanwhile, the metric background remains approximately flat but slowly contracts, which makes the universe increasingly flat, homogeneous and isotropic, akin to the smoothing mechanism of ekpyrotic cosmology. Our scenario is very general, requiring only a conformal field theory capable of developing the appropriate time-dependent expectation values, and encompasses existing incarnations of this idea, specifically the U(1) model of Rubakov and the Galileon Genesis scenario. Its essential features depend only on the symmetry breaking pattern and not on the details of the underlying lagrangian. It makes generic observational predictions that make it potentially distinguishable from standard inflation, in particular significant non-gaussianities and the absence of primordial gravitational waves.

  12. Spontaneous chiral symmetry breaking in QCD:a finite-size scaling study on the lattice

    CERN Document Server

    Giusti, Leonardo; Giusti, Leonardo; Necco, Silvia

    2007-01-01

    Spontaneous chiral symmetry breaking in QCD with massless quarks at infinite volume can be seen in a finite box by studying, for instance, the dependence of the chiral condensate from the volume and the quark mass. We perform a feasibility study of this program by computing the quark condensate on the lattice in the quenched approximation of QCD at small quark masses. We carry out simulations in various topological sectors of the theory at several volumes, quark masses and lattice spacings by employing fermions with an exact chiral symmetry, and we focus on observables which are infrared stable and free from mass-dependent ultraviolet divergences. The numerical calculation is carried out with an exact variance-reduction technique, which is designed to be particularly efficient when spontaneous symmetry breaking is at work in generating a few very small low-lying eigenvalues of the Dirac operator. The finite-size scaling behaviour of the condensate in the topological sectors considered agrees, within our stati...

  13. Kinetic mixing and symmetry breaking dependent interactions of the dark photon

    Directory of Open Access Journals (Sweden)

    Biswajoy Brahmachari

    2014-10-01

    Full Text Available We examine spontaneous symmetry breaking of a renormalisable U(1×U(1 gauge theory coupled to fermions when kinetic mixing is present. We do not assume that the kinetic mixing parameter is small. A rotation plus scaling is used to remove the mixing and put the gauge kinetic terms in the canonical form. Fermion currents are also rotated in a non-orthogonal way by this basis transformation. Through suitable redefinitions the interaction is cast into a diagonal form. This framework, where mixing is absent, is used for subsequent analysis. The symmetry breaking determines the fermionic current which couples to the massless gauge boson. The strength of this coupling as well as the couplings of the massive gauge boson are extracted. This formulation is used to consider a gauged model for dark matter by identifying the massless gauge boson with the photon and the massive state to its dark counterpart. Matching the coupling of the residual symmetry with that of the photon sets a lower bound on the kinetic mixing parameter. We present analytical formulae of the couplings of the dark photon in this model and indicate some physics consequences.

  14. An Investigation of the $K_{F}$-type Lorentz-Symmetry Breaking Gauge Models in $N=1$-Supersymmetric Scenario

    CERN Document Server

    Belich, H; Helayël-Neto, J A; Leal, F J L; Spalenza, W

    2010-01-01

    In this work, we present two possible venues to accomodate the $K_{F}$-type Lorentz-symmetry violating Electrodynamics in an $N=1$-supersymmetric framework. A chiral and a vector superfield are chosen to describe the background that signals Lorentz-symmetry breaking. In each case, the $\\ K_{\\mu \

  15. Relativistic scalar particle subject to a confining potential and Lorentz symmetry breaking effects in the cosmic string spacetime

    CERN Document Server

    Belich, H

    2015-01-01

    The behaviour of a relativistic scalar particle subject to a scalar potential under the effects of the violation of the Lorentz symmetry in the cosmic string spacetime is discussed. It is considered two possible scenarios of the Lorentz symmetry breaking in the CPT-even gauge sector of the Standard Model Extension defined by a tensor $\\left(K_{F}\\right)_{\\mu\

  16. Mixed Mediation of Supersymmetry Breaking in Models with Anomalous U(1) Gauge Symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Kiwoon, E-mail: kchoi@kaist.ac.kr [Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of)

    2010-11-01

    There can be various built-in sources of supersymmetry breaking in models with anomalous U(1) gauge symmetry, e.g. the U(1) D-term, the F-components of the modulus superfield required for the Green-Schwarz anomaly cancellation mechanism and the chiral matter superfields required to cancel the Fayet-Iliopoulos term, and finally the supergravity auxiliary component which can be parameterized by the F-component of chiral compensator. The relative strength between these supersymmetry breaking sources depends crucially on the characteristics of D-flat direction and also on how the D-flat direction is stabilized at a vacuum with nearly vanishing cosmological constant. We examine the possible pattern of the mediation of supersymmetry breaking in models with anomalous U(1) gauge symmetry, and find that various different mixed mediation scenarios can be realized, including the mirage mediation which corresponds to a mixed modulus-anomaly mediation, D-term domination giving a split sparticle spectrum, and also a mixed gauge-D-term mediation scenario.

  17. Symmetry breaking patterns of the 3-3-1 model at finite temperature

    Energy Technology Data Exchange (ETDEWEB)

    Borges, J.S. [Universidade do Estado do Rio de Janeiro, Departamento de Fisica de Altas Energias, Rio de Janeiro, RJ (Brazil); Ramos, Rudnei O. [Universidade do Estado do Rio de Janeiro, Departamento de Fisica Teorica, Rio de Janeiro, RJ (Brazil)

    2016-06-15

    We consider the minimal version of an extension of the standard electroweak model based on the SU(3){sub c} x SU(3){sub L} x U(1){sub X} gauge symmetry (the 3-3-1 model). We analyze the most general potential constructed from three scalars in the triplet representation of SU(3){sub L}, whose neutral components develop nonzero vacuum expectation values, giving mass for all the model's massive particles. For different choices of parameters, we obtain the particle spectrum for the two symmetry breaking scales: one where the SU(3){sub L} x U(1){sub X} group is broken down to SU(2){sub L} x U(1){sub Y} and a lower scale similar to the standard model one. Within the considerations used, we show that the model encodes two first-order phase transitions, respecting the pattern of symmetry restoration. The last transition, corresponding to the standard electroweak one, is found to be very weak first-order, most likely turning second-order or a crossover in practice. However, the first transition in this model can be strongly first-order, which might happen at a temperature not too high above the second one. We determine the respective critical temperatures for symmetry restoration for the model. (orig.)

  18. Finite size effects and symmetry breaking in the evolution of networks of competing Boolean nodes

    Energy Technology Data Exchange (ETDEWEB)

    Liu, M; Bassler, K E, E-mail: bassler@uh.edu [Department of Physics, University of Houston, 617 Science and Research 1, Houston, TX 77204-5005 (United States)

    2011-01-28

    Finite size effects on the evolutionary dynamics of Boolean networks are analyzed. In the model considered, Boolean networks evolve via a competition between nodes that punishes those in the majority. Previous studies have found that large networks evolve to a statistical steady state that is both critical and highly canalized, and that the evolution of canalization, which is a form of robustness found in genetic regulatory networks, is associated with a particular symmetry of the evolutionary dynamics. Here, it is found that finite size networks evolve in a fundamentally different way than infinitely large networks do. The symmetry of the evolutionary dynamics of infinitely large networks that selects for canalizing Boolean functions is broken in the evolutionary dynamics of finite size networks. In finite size networks, there is an additional selection for input-inverting Boolean functions that output a value opposite to the majority of input values. The reason for the symmetry breaking in the evolutionary dynamics is found to be due to the need for nodes in finite size networks to behave differently in order to cooperate so that the system collectively performs as efficiently as possible. The results suggest that both finite size effects and symmetry are fundamental for understanding the evolution of real-world complex networks, including genetic regulatory networks.

  19. Criteria for the absence of quantum fluctuations after spontaneous symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Beekman, Aron J., E-mail: beekman.aronjonathan@nims.go.jp

    2015-10-15

    The lowest-energy state of a macroscopic system in which symmetry is spontaneously broken, is a very stable wavepacket centered around a spontaneously chosen, classical direction in symmetry space. However, for a Heisenberg ferromagnet the quantum groundstate is exactly the classical groundstate, there are no quantum fluctuations. This coincides with seven exceptional properties of the ferromagnet, including spontaneous time-reversal symmetry breaking, a reduced number of Nambu–Goldstone modes and the absence of a thin spectrum (Anderson tower of states). Recent discoveries of other non-relativistic systems with fewer Nambu–Goldstone modes suggest these specialties apply there as well. I establish precise criteria for the absence of quantum fluctuations and all the other features. In particular, it is not sufficient that the order parameter operator commutes with the Hamiltonian. It leads to a measurably larger coherence time of superpositions in small but macroscopic systems. - Highlights: • Precise criteria for absence of quantum fluctuations in symmetry-broken states are established. • It is not sufficient that the order parameter commutes with the Hamiltonian. • Clarifies relation between quantum fluctuations and type-B Nambu–Goldstone modes. • Testable through absence of fundamental limit on maximum coherence time of macroscopic superpositions.

  20. Polar Kerr effect studies of time reversal symmetry breaking states in heavy fermion superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Schemm, E.R., E-mail: eschemm@alumni.stanford.edu [Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA 94305 (United States); Levenson-Falk, E.M. [Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA 94305 (United States); Department of Physics, Stanford University, Stanford, CA 94305 (United States); Kapitulnik, A. [Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA 94305 (United States); Department of Physics, Stanford University, Stanford, CA 94305 (United States); Department of Applied Physics, Stanford University, Stanford, CA 94305 (United States); Stanford Institute of Energy and Materials Science, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States)

    2017-04-15

    Highlights: • Polar Kerr effect (PKE) probes broken time-reversal symmetry (TRS) in superconductors. • Absence of PKE below Tc in CeCoIn{sub 5} is consistent with dx2-y2 order parameter symmetry. • PKE in the B phase of the multiphase superconductor UPt3 agrees with an E2u model. • Data on URu2Si2 show broken TRS and additional structure in the superconducting state. - Abstract: The connection between chiral superconductivity and topological order has emerged as an active direction in research as more instances of both have been identified in condensed matter systems. With the notable exception of {sup 3}He-B, all of the known or suspected chiral – that is to say time-reversal symmetry-breaking (TRSB) – superfluids arise in heavy fermion superconductors, although the vast majority of heavy fermion superconductors preserve time-reversal symmetry. Here we review recent experimental efforts to identify TRSB states in heavy fermion systems via measurement of polar Kerr effect, which is a direct consequence of TRSB.

  1. The Pseudo-Conformal Universe: Scale Invariance from Spontaneous Breaking of Conformal Symmetry

    CERN Document Server

    Hinterbichler, Kurt

    2011-01-01

    We present a novel theory of the very early universe which addresses the traditional horizon and flatness problems of big bang cosmology and predicts a scale invariant spectrum of perturbations. Unlike inflation, this scenario requires no exponential superluminal expansion of space-time. Instead, the early universe is described by a conformal field theory minimally coupled to gravity. The conformal fields develop a time-dependent expectation value which breaks the flat space so(4,2) conformal symmetry down to so(4,1), the symmetries of de Sitter, giving perturbations a scale invariant spectrum. The solution is an attractor, at least in the case of a single time-dependent field. Meanwhile, the metric background remains approximately flat but slowly contracts, which makes the universe increasingly flat, homogeneous and isotropic, akin to the smoothing mechanism of ekpyrotic cosmology. Our scenario is very general, requiring only a conformal field theory capable of developing the appropriate time-dependent expec...

  2. Shape Transitions and Chiral Symmetry Breaking in the Energy Landscape of the Mitotic Chromosome

    CERN Document Server

    Zhang, Bin

    2015-01-01

    We derive an unbiased information theoretic energy landscape for chromosomes at metaphase using a maximum entropy approach that accurately reproduces the details of the experimentally measured pair-wise contact probabilities between genomic loci. Dynamical simulations using this landscape lead to cylindrical, helically twisted structures reflecting liquid crystalline order. These structures are similar to those arising from a generic ideal homogenized chromosome energy landscape. The helical twist can be either right or left handed so chiral symmetry is broken spontaneously. The ideal chromosome landscape when augmented by interactions like those leading to topologically associating domain (TAD) formation in the interphase chromosome reproduces these behaviors. The phase diagram of this landscape shows the helical fiber order and the cylindrical shape persist at temperatures above the onset of chiral symmetry breaking which is limited by the TAD interaction strength.

  3. Isospin-symmetry-breaking effects in A∼70 nuclei within beyond-mean-field approach

    Energy Technology Data Exchange (ETDEWEB)

    Petrovici, A.; Andrei, O. [National Institute for Physics and Nuclear Engineering, R-077125 Bucharest (Romania)

    2015-02-24

    Particular isospin-symmetry-breaking probes including Coulomb energy differences (CED), mirror energy differences (MED), and triplet energy differences (TED) manifest anomalies in the A∼70 isovector triplets of nuclei. The structure of proton-rich nuclei in the A∼70 mass region suggests shape coexistence and competition between pairing correlations in different channels. Recent results concerning the interplay between isospin-mixing and shape-coexistence effects on exotic phenomena in A∼70 nuclei obtained within the beyond-mean-field complex Excited Vampir variational model with symmetry projection before variation using a realistic effective interaction in a relatively large model space are presented. Excited Vampir predictions concerning the Gamow-Teller β decay to the odd-odd N=Z {sup 66}As and {sup 70}Br nuclei correlated with the pair structure analysis in the T=1 and T=0 channel of the involved wave functions are discussed.

  4. A symmetry breaking mechanism for selecting the speed of relativistic solitons

    Energy Technology Data Exchange (ETDEWEB)

    Cadoni, Mariano [Dipartimento di Fisica, Universita di Cagliari and INFN, Sezione di Cagliari, Cittadella Universitaria, 09042 Monserrato (Italy); De Leo, Roberto [Dipartimento di Fisica, Universita di Cagliari and INFN, Sezione di Cagliari, Cittadella Universitaria, 09042 Monserrato (Italy); Gaeta, Giuseppe [Dipartimento di Matematica, Universita di Milano, via Saldini 50, 20133 Milan (Italy)

    2007-07-20

    We propose a mechanism for fixing the velocity of relativistic solitons based on the breaking of the Lorentz symmetry of the sine-Gordon (SG) model. The proposal is first elaborated for a molecular chain model as the simple pendulum limit of a double pendulums chain. It is then generalized to a full class of two-dimensional field theories of the sine-Gordon type. From a phenomenological point of view, the mechanism allows one to select the speed of a SG soliton just by tuning elastic couplings constants and kinematical parameters. From a fundamental, field-theoretical point of view we show that the characterizing features of relativistic SG solitons (existence of conserved topological charges and stability) may be still preserved even if the Lorentz symmetry is broken and a soliton of a given speed is selected.

  5. Is the Higgs boson associated with Coleman-Weinberg dynamical symmetry breaking?

    Energy Technology Data Exchange (ETDEWEB)

    Hill, Christopher T. [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States)

    2014-04-01

    The Higgs mechanism may be a quantum phenomenon, i.e., a Coleman-Weinberg potential generated by the explicit breaking of scale symmetry in Feynman loops. We review the relationship of scale symmetry, trace anomalies, and emphasize the role of the renormalization group in determining Coleman- Weinberg potentials. We propose a simple phenomenological model with "maximal visibility" at the LHC containing a "dormant" Higgs doublet (no VEV, coupled to standard model gauge interactions $SU(2)\\times U(1)$) with a mass of $\\sim 380$ GeV. We discuss the LHC phenomenology and UV challenges of such a model. We also give a schematic model in which new heavy fermions, with masses $\\sim 230$ GeV, can drive a Coleman-Weinberg potential at two-loops. The role of the "improved stress tensor" is emphasized, and we propose a non-gravitational term, analogous to the $\\theta$-term in QCD, which generates it from a scalar action.

  6. Bilayer graphene under pressure: Electron-hole symmetry breaking, valley Hall effect, and Landau levels

    Science.gov (United States)

    Munoz, F.; Collado, H. P. Ojeda; Usaj, Gonzalo; Sofo, Jorge O.; Balseiro, C. A.

    2016-06-01

    The electronic structure of bilayer graphene under pressure develops very interesting features with an enhancement of the trigonal warping and a splitting of the parabolic touching bands at the K point of the reciprocal space into four Dirac cones, one at K and three along the T symmetry lines. As pressure is increased, these cones separate in reciprocal space and in energy, breaking the electron-hole symmetry. Due to their energy separation, their opposite Berry curvature can be observed in valley Hall effect experiments and in the structure of the Landau levels. Based on the electronic structure obtained by density functional theory, we develop a low energy Hamiltonian that describes the effects of pressure on measurable quantities such as the Hall conductivity and the Landau levels of the system.

  7. Chiral Symmetry Breaking for Domain Wall Fermions in Quenched Lattice QCD

    CERN Document Server

    Wu, L

    2001-01-01

    The domain wall fermion formulation exhibits full chiral symmetry for finite lattice spacing except for the effects of mixing between the domain walls. Close to the continuum limit these symmetry breaking effects should be described by a single residual mass. We determine this mass from the conservation law obeyed by the conserved axial current in quenched simulations with beta=5.7 and 6.0 and domain wall separations varying between 12 and 48 on 8^3x32 and 16^3x32 lattices. Using the resulting values for the residual mass we perform two complete and independent calculations of the pion decay constant. Good agreement is found between these two methods and with experiment.

  8. Shape Transitions and Chiral Symmetry Breaking in the Energy Landscape of the Mitotic Chromosome

    Science.gov (United States)

    Zhang, Bin; Wolynes, Peter G.

    2016-06-01

    We derive an unbiased information theoretic energy landscape for chromosomes at metaphase using a maximum entropy approach that accurately reproduces the details of the experimentally measured pairwise contact probabilities between genomic loci. Dynamical simulations using this landscape lead to cylindrical, helically twisted structures reflecting liquid crystalline order. These structures are similar to those arising from a generic ideal homogenized chromosome energy landscape. The helical twist can be either right or left handed so chiral symmetry is broken spontaneously. The ideal chromosome landscape when augmented by interactions like those leading to topologically associating domain formation in the interphase chromosome reproduces these behaviors. The phase diagram of this landscape shows that the helical fiber order and the cylindrical shape persist at temperatures above the onset of chiral symmetry breaking, which is limited by the topologically associating domain interaction strength.

  9. Account of Nonpolynomial SU(3)-Breaking Effects By Use of Quantum Groups As Flavor Symmetries

    CERN Document Server

    Gavrilik, A M

    1998-01-01

    Using instead of ordinary flavour symmetries SU(n_f) their corresponding quantum (q-deformed) analogs yields new baryon mass sum rules of extreme accuracy. We show, in the 3-flavour case, that such approach accounts for highly nonlinear (nonpolynomial) SU(3)-breaking effects both in the octet and decuplet baryon masses. A version of this approach is considered that involves q-covariant ingredients in the mass operator. The resulting new 'q-deformed' mass relation (q-MR) is simpler than previously derived q-MRs, but requires, for its empirical validity, a fitting to fix the value of the deformation parameter q. Well-known Gell-Mann--Okubo (GMO) octet mass sum rule is found to result not only from usual SU(3), but also from some exotic symmetry corresponding to the q=-1 (i.e., singular) limit of the q-algebra U_q(su_3).

  10. Spontaneous symmetry breaking, and strings defects in hypercomplex gauge field theories

    CERN Document Server

    Cartas-Fuentevilla, R

    2015-01-01

    Inspired by the appearance of split-complex structures in the dimensional reduction of string theory, and in the theories emerging as byproducts, we study the hyper-complex formulation of Abelian gauge field theories, by incorporating a new complex unit to the usual complex one. The hypercomplex version of the traditional Mexican hat potential associated with the $U(1)$ gauge field theory, corresponds to a {\\it hybrid} potential with two real components, and with $U(1)\\times SO(1,1)$ as symmetry group. Each component corresponds to a deformation of the hat potential, with the appearance of a new degenerate vacuum. Hypercomplex electrodynamics will show novel properties, such as the spontaneous symmetry breaking scenarios with running masses for the vectorial and scalar Higgs fields, and the Aharonov-Bohm type strings defects as exact solutions; these topological defects may be detected only by quantum interference of charged particles through gauge invariant loop integrals. In a particular limit, the {\\it hyp...

  11. Dual-Band Perfect Absorption by Breaking the Symmetry of Metamaterial Structure

    Science.gov (United States)

    Hai, Le Dinh; Qui, Vu Dinh; Dinh, Tiep Hong; Hai, Pham; Giang, Trinh Thị; Cuong, Tran Manh; Tung, Bui Son; Lam, Vu Dinh

    2017-02-01

    Since the first proposal of Landy et al. (Phys Rev Lett 100:207402, 2008), the metamaterial perfect absorber (MPA) has rapidly become one of the most crucial research trends. Recently, dual-band, multi-band and broadband MPA have been highly desirable in electronic applications. In this paper, we demonstrate and evaluate a MPA structure which can generate dual-band absorption operating at the microwave frequency by breaking the symmetry of structure. There is an agreement between simulation and experimental results. The results can be explained by using the equivalent LC circuit and the electric field distribution of this structure. In addition, various structures with different symmetry configurations were studied to gain greater insight into the absorption.

  12. Partial Breaking of Three-Fold Symmetry via Percolation of a Domain Wall

    CERN Document Server

    Bhattacharya, Soumyadeep

    2016-01-01

    We show that suppression of vortex strings splits the order-disorder transition in the three-state Potts ferromagnet on a simple cubic lattice and opens up an intermediate phase characterized by partial breaking of the three-fold symmetry and long-range order. In contrast, suppression of vortices in the same model on a square lattice results in an intermediate phase with enhanced U(1) symmetry and quasi-long-range order. We show that the difference between the two phases originates from distinct patterns of domain wall proliferation. A domain wall, separating the two most populous spin states, percolates on its own in the former phase but remains at a percolation threshold in the latter.

  13. Electroweak symmetry breaking through bosonic seesaw mechanism in a classically conformal extension of the Standard Model

    CERN Document Server

    Haba, Naoyuki; Okada, Nobuchika; Yamaguchi, Yuya

    2015-01-01

    We suggest the so-called bosonic seesaw mechanism in the context of a classically conformal $U(1)_{B-L}$ extension of the Standard Model with two Higgs doublet fields. The $U(1)_{B-L}$ symmetry is radiatively broken via the Coleman-Weinberg mechanism, which also generates the mass terms for the two Higgs doublets through quartic Higgs couplings. Their masses are all positive but, nevertheless, the electroweak symmetry breaking is realized by the bosonic seesaw mechanism. We analyze the renormalization group evolutions for all model couplings, and find that a large hierarchy among the quartic Higgs couplings, which is crucial for the bosonic seesaw mechanism to work, is dramatically reduced toward high energies. Therefore, the bosonic seesaw is naturally realized with only a mild hierarchy, if some fundamental theory, which provides the origin of the classically conformal invariance, completes our model at some high energy, for example, the Planck scale. The requirements for the perturbativity of the running c...

  14. A framework towards understanding mesoscopic phenomena: Emergent unpredictability, symmetry breaking and dynamics across scales

    Science.gov (United States)

    Qian, Hong; Ao, Ping; Tu, Yuhai; Wang, Jin

    2016-11-01

    By integrating four lines of thoughts: symmetry breaking originally advanced by Anderson, bifurcation from nonlinear dynamical systems, Landau's phenomenological theory of phase transition, and the mechanism of emergent rare events first studied by Kramers, we introduce a possible framework for understanding mesoscopic dynamics that links (i) fast microscopic (lower level) motions, (ii) movements within each basin-of-attraction at the mid-level, and (iii) higher-level rare transitions between neighboring basins, which have slow rates that decrease exponentially with the size of the system. In this mesoscopic framework, the fast dynamics is represented by a rapidly varying stochastic process and the mid-level by a nonlinear dynamics. Multiple attractors arise as emergent properties of the nonlinear systems. The interplay between the stochastic element and nonlinearity, the essence of Kramers' theory, leads to successive jump-like transitions among different basins. We argue each transition is a dynamic symmetry breaking, with the potential of exhibiting Thom-Zeeman catastrophe as well as phase transition with the breakdown of ergodicity (e.g., cell differentiation). The slow-time dynamics of the nonlinear mesoscopic system is not deterministic, rather it is a discrete stochastic jump process. The existence of these discrete states and the Markov transitions among them are both emergent phenomena. This emergent stochastic jump dynamics then serves as the stochastic element for the nonlinear dynamics of a higher level aggregates on an even larger spatial and slower time scales (e.g., evolution). This description captures the hierarchical structure outlined by Anderson and illustrates two distinct types of limit of a mesoscopic dynamics: A long-time ensemble thermodynamics in terms of time t → ∞ followed by the size of the system N → ∞ , and a short-time trajectory steady state with N → ∞ followed by t → ∞ . With these limits, symmetry breaking and cusp

  15. The effective Kaehler potential, metastable vacua and R-symmetry breaking in O'Raifeartaigh models

    Energy Technology Data Exchange (ETDEWEB)

    Benjamin, Shermane; Freund, Christopher [Department of Physics and Astronomy, Rowan University, 201 Mullica Hill Road, Glassboro, NJ 08028 (United States); Kain, Ben, E-mail: kain@rowan.ed [Department of Physics and Astronomy, Rowan University, 201 Mullica Hill Road, Glassboro, NJ 08028 (United States)

    2011-01-21

    Much has been learned about metastable vacua and R-symmetry breaking in O'Raifeartaigh models. Such work has largely been done from the perspective of the superpotential and by including Coleman-Weinberg corrections to the scalar potential. Instead, we consider these ideas from the perspective of the one loop effective Kaehler potential. We translate known ideas to this framework and construct convenient formulas for computing individual terms in the expanded effective Kaehler potential. We do so for arbitrary R-charge assignments and allow for small R-symmetry violating terms so that both spontaneous and explicit R-symmetry breaking is allowed in our analysis.

  16. Symmetry Breaking and Adaptation Evidence from a Toy Model of a Virus

    CERN Document Server

    Mora, J; Waelbroeck, H

    1997-01-01

    We argue that the phenomenon of symmetry breaking in genetics can enhance the adaptability of a species to changes in the environment. In the case of a virus, the claim is that the codon bias in the neutralization epitope improves the virus' ability to generate mutants that evade the induced immune response. We support our claim with a simple ``toy model'' of a viral epitope evolving in competition with the immune system. The effective selective advantage of a higher mutability leads to a dominance of codons that favour non-synonymous mutations. The results in this paper suggest the possibility of emergence of an algorithmic language in more complicated systems.

  17. Relativistic Hydrodynamics of Color-Flavor Locking Phase with Spontaneous Symmetry Breaking

    Institute of Scientific and Technical Information of China (English)

    ZHANG Sun; WANG Fan

    2004-01-01

    We study the hydrodynamics of color-flavor locking phase of three flavors of light quarks in high density QCD with spontaneous symmetry breaking. The basic hydrodynamic equations are presented based on the Poisson bracket method and the Goldstone phonon and the thermo phonon are compared. The dissipative equations are constructed in the frame of the first-order theory and all the transport coefficients are also defined, which could be looked on as the general case including the Landau's theory and the Eckart's theory

  18. Techniques of replica symmetry breaking and the storage problem of the McCulloch-Pitts neuron

    Science.gov (United States)

    Györgyi, G.

    2001-02-01

    In this article we review the framework for spontaneous replica symmetry breaking. Subsequently that is applied to the example of the statistical mechanical description of the storage properties of a McCulloch-Pitts neuron, i.e., simple perceptron. It is shown that in the neuron problem, the general formula that is at the core of all problems admitting Parisi's replica symmetry breaking ansatz with a one-component order parameter appears. The details of Parisi's method are reviewed extensively, with regard to the wide range of systems where the method may be applied. Parisi's partial differential equation and related differential equations are discussed, and the Green function technique is introduced for the calculation of replica averages, the key to determining the averages of physical quantities. The Green function of the Fokker-Planck equation due to Sompolinsky turns out to play the role of the statistical mechanical Green function in the graph rules for replica correlators. The subsequently obtained graph rules involve only tree graphs, as appropriate for a mean-field-like model. The lowest order Ward-Takahashi identity is recovered analytically and shown to lead to the Goldstone modes in continuous replica symmetry breaking phases. The need for a replica symmetry breaking theory in the storage problem of the neuron has arisen due to the thermodynamical instability of formerly given solutions. Variational forms for the neuron's free energy are derived in terms of the order parameter function x( q), for different prior distribution of synapses. Analytically in the high temperature limit and numerically in generic cases various phases are identified, among them is one similar to the Parisi phase in long-range interaction spin glasses. Extensive quantities like the error per pattern change slightly with respect to the known unstable solutions, but there is a significant difference in the distribution of non-extensive quantities like the synaptic overlaps and the

  19. Classical running and symmetry breaking in models with two extra dimensions

    CERN Document Server

    Papineau, C

    2007-01-01

    We consider a codimension two scalar theory with brane-localised Higgs type potential. The six-dimensional field has Dirichlet boundary condition on the bounds of the transverse compact space. The regularisation of the brane singularity yields renormalisation group evolution for the localised couplings at the classical level. In particular, a tachyonic mass term grows at large distances and hits a Landau pole. We exhibit a peculiar value of the bare coupling such that the running mass parameter becomes large precisely at the compactification scale, and the effective four-dimensional zero mode is massless. Above the critical coupling, spontaneous symmetry breaking occurs and there is a very light state.

  20. Chiral-glass transition and replica symmetry breaking of a three-dimensional heisenberg spin glass

    Science.gov (United States)

    Hukushima; Kawamura

    2000-02-01

    Extensive equilibrium Monte Carlo simulations are performed for a three-dimensional Heisenberg spin glass with the nearest-neighbor Gaussian coupling to investigate its spin-glass and chiral-glass orderings. The occurrence of a finite-temperature chiral-glass transition without the conventional spin-glass order is established. Critical exponents characterizing the transition are different from those of the standard Ising spin glass. The calculated overlap distribution suggests the appearance of a peculiar type of replica-symmetry breaking in the chiral-glass ordered state.

  1. Spontaneous breaking of Lorentz symmetry in (2+1)-dimensional QED

    CERN Document Server

    Janssen, Lukas

    2016-01-01

    The phase diagram of quantum electrodynamics in three space-time dimensions as a function of fermion flavor number $N$ exhibits two well-known phases: at large $N > N_c^{conf}$ the system is in a conformal state with anomalous exponents, while for small $N N_c^{\\chi SB}$. There is therefore an intermediate range of values of $N$ at which a third phase is stabilized. We demonstrate that this phase is characterized by spontaneous breaking of Lorentz symmetry, in which a composite vector boson field acquires a vacuum expectation value with the fermions and the photon remaining massless.

  2. Chiral symmetry breaking in three-dimensional quantum electrodynamics as fixed point annihilation

    CERN Document Server

    Herbut, Igor F

    2016-01-01

    Spontaneous chiral symmetry breaking in three dimensional ($d=3$) quantum electrodynamics is understood as annihilation of an infrared-stable fixed point that describes the large-N conformal phase by another unstable fixed point at a critical number of fermions $N=N_c$. We discuss the root of universality of $N_c$ in this picture, together with some features of the phase boundary in the $(d,N)$ plane. In particular, it is shown that as $d\\rightarrow 4$, $N_c\\rightarrow 0$ with a constant slope, our best estimate of which suggests that $N_c = 2.89$ in $d=3$.

  3. Shock wave evolution and discontinuity propagation for relativistic superfluid hydrodynamics with spontaneous symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Sun, E-mail: szhang@pmo.ac.cn [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China); Key Laboratory of Dark Matter and Space Astronomy, Chinese Academy of Sciences, Nanjing 210008 (China); Joint Center for Particle, Nuclear Physics and Cosmology (J-CPNPC), PMO-NJU, Nanjing 210008 (China)

    2014-02-05

    In this Letter, we have studied the shock wave and discontinuity propagation for relativistic superfluid with spontaneous U(1) symmetry breaking in the framework of hydrodynamics. General features of shock waves are provided, the propagation of discontinuity and the sound modes of shock waves are also presented. The first sound and the second sound are identified as the propagation of discontinuity, and the results are in agreement with earlier theoretical studies. Moreover, a differential equation, called the growth equation, is obtained to describe the decay and growth of the discontinuity propagating along its normal trajectory. The solution is in an integral form and special cases of diverging waves are also discussed.

  4. Density profiles of Ar adsorbed in slits of CO2: Spontaneous symmetry breaking revisited

    Science.gov (United States)

    Szybisz, Leszek; Sartarelli, Salvador A.

    2008-03-01

    A recently reported symmetry breaking of density profiles of fluid argon confined by two parallel solid walls of carbon dioxide is studied. The calculations are performed in the framework of a nonlocal density functional theory. It is shown that the existence of such asymmetrical solutions is restricted to a special choice for the adsorption potential, where the attraction of the solid-fluid interaction is reduced by the introduction of a hard-wall repulsion. The behavior as a function of the slit's width is also discussed. All the results are placed in the context of the current knowledge on this matter.

  5. Charge Symmetry Breaking in the Nucleon and Parity Violating Elastic Electron-Proton Scattering

    CERN Document Server

    Miller, Gerald A

    2014-01-01

    The basic facts of charge symmetry breaking (CSB) phenomena are reviewed. The relevance of CSB to parity-violating electron-proton scattering experiments that seek to extract strange elastic form factors is discussed. Experimentalists have stated and written that the current uncertainty in our knowledge of CSB limits the ability to push further on the strange form factors. I discuss recent calculations using relativistic chiral perturbation theory and realistic values of strong coupling constants which show that the uncertainties due to lack of knowledge of CSB are at least ten times smaller than present experimental uncertainties. Estimates of CSB effects are made for the JLab Qweak and Mainz P2 experiments.

  6. Symmetry breaking effect on determination of polarized and unpolarized parton distributions

    CERN Document Server

    Arbabifar, F; Khanpour, H; Tehrani, S Atashbar

    2012-01-01

    We perform a new extraction for unpolarized and polarized parton distribution functions considering a flavor decompositions for sea quarks and applying very recent deep inelastic scattering (DIS) and semi inclusive deep inelastic scattering (SIDIS) data in the fixed flavor number scheme (FFNS) framework. In the new symmetry breaking scenario the light quark and antiquark densities are extracted separately and new parametrization forms are determined for them. The heavy flavors contribution, including charm and bottom quarks, are also taken to be account for unpolarized distributions.

  7. Effect of vertical-strain-induced symmetry breaking on transport properties of zigzag graphene nanoribbons

    Science.gov (United States)

    Zou, Dongqing; Zhao, Wenkai; Fang, Changfeng; Cui, Bin; Liu, Desheng

    2017-02-01

    Using density functional theory combined with nonequilibrium Green's function formalism, we investigate the transport properties of zigzag graphene nanoribbons (ZGNRs) under vertical strain. Our calculations show that localized state induced by vertical strain will inhibit the electronic transport of the systems at zero bias, but at nonzero bias, the localized state can enhance the electronic transport behavior if ZGNRs are symmetry with respect to the mid-plane between two edges. This is because the localized state produces an asymmetry electron density distribution which break the current suppression. These findings may be useful for the application of strain-induced ZGNR based molecular devices.

  8. Imaging dynamical chiral-symmetry breaking: pion wave function on the light front.

    Science.gov (United States)

    Chang, Lei; Cloët, I C; Cobos-Martinez, J J; Roberts, C D; Schmidt, S M; Tandy, P C

    2013-03-29

    We project onto the light front the pion's Poincaré-covariant Bethe-Salpeter wave function obtained using two different approximations to the kernels of quantum chromodynamics' Dyson-Schwinger equations. At an hadronic scale, both computed results are concave and significantly broader than the asymptotic distribution amplitude, φ(π)(asy)(x)=6x(1-x); e.g., the integral of φ(π)(x)/φ(π)(asy)(x) is 1.8 using the simplest kernel and 1.5 with the more sophisticated kernel. Independent of the kernels, the emergent phenomenon of dynamical chiral-symmetry breaking is responsible for hardening the amplitude.

  9. Pairing state with a time-reversal symmetry breaking in FeAs-based superconductors.

    Science.gov (United States)

    Lee, Wei-Cheng; Zhang, Shou-Cheng; Wu, Congjun

    2009-05-29

    We investigate the competition between the extended s+/--wave and dx2-y2-wave pairing order parameters in the iron-based superconductors. Because of the frustrating pairing interactions among the electron and the hole Fermi pockets, a time-reversal symmetry breaking s+id pairing state could be favored. We analyze this pairing state within the Ginzburg-Landau theory and explore the experimental consequences. In such a state, spatial inhomogeneity induces a supercurrent near a nonmagnetic impurity and the corners of a square sample. The resonance mode between the s+/-- and dx2-y2-wave order parameters can be detected through the B1g Raman spectroscopy.

  10. Breaking symmetry in propagation of radially and azimuthally polarized high power laser pulses in underdense plasma

    Science.gov (United States)

    Pathak, Naveen; Zhidkov, Alexei; Nakanii, Nobuhiko; Masuda, Shinichi; Hosokai, Tomonao; Kodama, Ryosuke

    2016-03-01

    Propagation of relativistically intense azimuthally or radially polarized laser pulses (RPP) is demonstrated, via 3D particle-in-cell simulations, to be unstable in uniform underdense plasma. Strong breaking of the pulse symmetry occurs for RPP with power exceeding the critical one for self-focusing in transversely uniform plasma with an increment, Γ, close to the well-known Rayleigh-Taylor-like instability depending on the acceleration, α, and the modulated density gradient length, L, as Γ≈(α/L) 1 /2 . In deeper plasma channels, the instability vanishes. Electron self-injection in the pulse wake and resulting acceleration is explored.

  11. Spontaneously Symmetry-Breaking States in the Attractive SU(N) Hubbard Model

    Science.gov (United States)

    Koga, Akihisa; Yanatori, Hiromasa

    2017-03-01

    We investigate spontaneously symmetry-breaking states in the attractive SU(N) Hubbard model at half filling. Combining dynamical mean-field theory with the continuous-time quantum Monte Carlo method, we obtain finite-temperature phase diagrams for the superfluid state. When N > 2, a second-order phase transition occurs in the weak coupling region, while a first-order phase transition with hysteresis appears in the strong coupling region. We also discuss the stability of the density wave state and clarify the component dependence of the maximum critical temperature.

  12. Symmetry breaking and uniqueness for the incompressible Navier-Stokes equations

    Energy Technology Data Exchange (ETDEWEB)

    Dascaliuc, Radu; Thomann, Enrique; Waymire, Edward C., E-mail: waymire@math.oregonstate.edu [Department of Mathematics, Oregon State University, Corvallis, Oregon 97331 (United States); Michalowski, Nicholas [Department of Mathematics, New Mexico State University, Las Cruces, New Mexico 88003 (United States)

    2015-07-15

    The present article establishes connections between the structure of the deterministic Navier-Stokes equations and the structure of (similarity) equations that govern self-similar solutions as expected values of certain naturally associated stochastic cascades. A principle result is that explosion criteria for the stochastic cascades involved in the probabilistic representations of solutions to the respective equations coincide. While the uniqueness problem itself remains unresolved, these connections provide interesting problems and possible methods for investigating symmetry breaking and the uniqueness problem for Navier-Stokes equations. In particular, new branching Markov chains, including a dilogarithmic branching random walk on the multiplicative group (0, ∞), naturally arise as a result of this investigation.

  13. Spontaneous symmetry breaking and strong deformations in metal adsorbed graphene sheets

    Science.gov (United States)

    Jalbout, A. F.; Ortiz, Y. P.; Seligman, T. H.

    2013-03-01

    We study the adsorption of Li to graphene flakes simulated as aromatic molecules. Surprisingly the out of plane deformation is much stronger for the double adsorption from both sides to the same ring than for a single adsorption, although a symmetric solution seems possible. We thus have an interesting case of spontaneous symmetry breaking. While we cannot rule out a Jahn Teller deformation with certainty, this explanation seems unlikely and other options are discussed. We find a similar behavior for boron-nitrogen sheets, and also for other light alkalines as adsorbants.

  14. Spontaneous Symmetry Breaking and Strong Deformations in Metal Adsorbed Graphene Sheets

    CERN Document Server

    Jalbout, A F; Seligman, T H

    2013-01-01

    We study the adsorption of Li to graphene flakes described as aromatic molecules. Surprisingly the out of plane deformation is much stronger for the double adsorption from both sides to the same ring than for a single adsorption, although a symmetric solution seems possible. We thus have an interesting case of spontaneous symmetry breaking. While we cannot rule out a Jahn Teller deformation with certainty, this explanation seems unlikely and other options are discussed. We find a similar behavior for Boron-Nitrogen sheets, and also for other light alkalines.

  15. Macroscopic anisotropy and symmetry breaking in the pyrochlore antiferromagnet Gd2Ti2O7

    Science.gov (United States)

    Hassan, A. K.; Lévy, L. P.; Darie, C.; Strobel, P.

    2003-06-01

    In the Heisenberg antiferromagnet Gd2Ti2O7, the exchange interactions are geometrically frustrated by the pyrochlore lattice structure. This ESR study reveals a strong temperature dependent anisotropy with respect to a [111] body diagonal below a temperature TA=80 K, despite the spin only nature of the Gd3+ ion. Anisotropy and symmetry breaking can nevertheless appear through the superexchange interaction. In the presence of anisotropic exchanges, short range planar correlations restricted to specific Kagomé planes are sufficient to explain the two ESR modes studied in this work.

  16. Recent progress in understanding gauge topology, confinement and chiral symmetry breaking

    Science.gov (United States)

    Larsen, Rasmus; Shuryak, Edward

    2016-12-01

    A model of interacting instanton-dyons as the dominant degrees of freedom was used to discuss confinement and chiral symmetry breaking in SU(2). The case without fermions and with two flavors of fermions was discussed. Numerical results show that within this model, both with and without fermions, confinement is induced by the repulsion between dyons of same type, as the density of dyons increase at lower temperature. With fermions, the result of confinement at lower temperature, combined with the increased density made the effective distance between fermionic zero-modes smaller, thus inducing a non-zero chiral condensate, obtained by fitting to a eigenvalue density formula from random matrix theory.

  17. Inflation and reheating in theories with spontaneous scale invariance symmetry breaking

    Science.gov (United States)

    Rinaldi, Massimiliano; Vanzo, Luciano

    2016-07-01

    We study a scale-invariant model of quadratic gravity with a nonminimally coupled scalar field. We focus on cosmological solutions and find that scale invariance is spontaneously broken and a mass scale naturally emerges. Before the symmetry breaking, the Universe undergoes an inflationary expansion with nearly the same observational predictions of Starobinsky's model. At the end of inflation, the Hubble parameter and the scalar field converge to a stable fixed point through damped oscillations and the usual Einstein-Hilbert action is recovered. The oscillations around the fixed point can reheat the Universe in various ways, and we study in detail some of these possibilities.

  18. Off-shell behavior of relativistic NN effective interactions and charge symmetry breaking

    Science.gov (United States)

    Gersten, A.; Thomas, A. W.; Weyrauch, M.

    1990-04-01

    We examine in detail the suggestion of Iqbal et al. for calculating the class-four charge symmetry breaking amplitude in n-p scattering. By simplifying to a model problem, we show explicitly that the approximation scheme is unreliable if a phenomenological, effective nucleon-nucleon T matrix is used. Our results have wider implications for observables calculated in relativistic impulse approximation calculations. They reinforce the observation made in the literature that the procedure of fitting only positive energy matrix elements can lead to an NN interaction whose off-shell behavior is incorrect.

  19. Break of the symmetry in a two-lid driven cavity

    Science.gov (United States)

    Lemee, Thomas; Labrosse, Gerard; Kasperski, Guillaume; Narayanan, Ranga; Univ. Paris-Sud, Laboratory F. A. S. T Team; Univ. Paris-Sud, Department of Physic Team; Univ. Florida, Department of Chemical Eng. Team

    2011-11-01

    The lid driven cavity has applications in crystal growth as well as in the coating industry. We study the problem of a driven cavity with two parallel walls moving at the same speed and in the same direction. Time marching calculations using Chebyshev-spectral method were done with different aspect ratios. As the Reynolds number increases, the onset of the instability is characterized by the break of the symmetry which is described and explained. The critical Reynolds number depends on the aspect ratio. This dependence is explained. Support from NSF OISE 0968313, the Partner University Fund.

  20. Inflation and reheating in theories with spontaneous scale invariance symmetry breaking

    CERN Document Server

    Rinaldi, Massimiliano

    2015-01-01

    We study a scale-invariant model of quadratic gravity with a non-minimally coupled scalar field. We focus on cosmological solutions and find that scale invariance is spontaneously broken and a mass scale naturally emerges. Before the symmetry breaking, the Universe undergoes an inflationary expansion with the same characteristics of Starobinsky's model. At the end of inflation, the Hubble parameter and the scalar field converge to a stable fixed point through damped oscillations that are responsible for the reheating of the Universe via parametric amplification of other matter fields.

  1. Symmetry breaking of ionic semiconductors under pressure: the case of InAs

    Energy Technology Data Exchange (ETDEWEB)

    Libotte, H; Gaspard, J P [Condensed Matter Physics Laboratory, University of Liege, B5, B-4000 Sart-Tilman (Belgium); Aquilanti, G; Pascarelli, S; Crichton, W A; Le Bihan, T [European Synchrotron Radiation Facility, F-38043 Grenoble (France)

    2009-12-02

    The NaCl-to-Cmcm phase transition and the Cmcm structure of InAs under high pressure are studied by x-ray diffraction. The lattice parameters and fractional coordinates are given as a function of pressure. We propose a mechanism responsible for this type of symmetry breaking under pressure. We show that the ppsigma interactions do not play a major role in the stabilization of the NaCl structure. Consequently the NaCl-to-Cmcm transition occurs only in compounds with a large charge transfer. General conclusions on the behavior of III-V semiconductors under pressure are drawn.

  2. Symmetry-breaking for a restricted n-body problem in the Maxwell-ring configuration

    Science.gov (United States)

    Calleja, Renato; Doedel, Eusebius; García-Azpeitia, Carlos

    2016-11-01

    We investigate the motion of a massless body interacting with the Maxwell relative equilibrium, which consists of n bodies of equal mass at the vertices of a regular polygon that rotates around a central mass. The massless body has three equilibrium ℤn-orbits from which families of Lyapunov orbits emerge. Numerical continuation of these families using a boundary value formulation is used to construct the bifurcation diagram for the case n = 7, also including some secondary and tertiary bifurcating families. We observe symmetry-breaking bifurcations in this system, as well as certain period-doubling bifurcations.

  3. Stability of a Class of Coupled Rigid-elastic Systems With Symmetry-breaking

    Institute of Scientific and Technical Information of China (English)

    程耀; 黄克累; 陆启韶

    1994-01-01

    In this paper, the Poisson structures and Casimir functions, which play an important role in stability analysis of stationary motions, are given for a class of coupled rigid-elastic systems with symmetry-breaking. As a practical example, the specific Casimir function is given for a rigid-elastic coupled body with a fixed point subjected to gravitational force. At last, a set of sufficient conditions for stability of stationary motions of a rigid-elastic body in a circular orbit are given by the energy-Casimir method.

  4. Singular Mapping for a $PT$-Symmetric Sinusoidal Optical Lattice at the Symmetry-Breaking Threshold

    CERN Document Server

    Jones, H F

    2014-01-01

    A popular $PT$-symmetric optical potential (variation of the refractive index) that supports a variety of interesting and unusual phenomena is the imaginary exponential, the limiting case of the potential $V_0[\\cos(2\\pi x/a)+i\\lambda\\sin(2\\pi x/a)]$ as $\\lambda \\to 1$, the symmetry-breaking point. For $\\lambda<1$, when the spectrum is entirely real, there is a well-known mapping by a similarity transformation to an equivalent Hermitian potential. However, as $\\lambda \\to 1$, the spectrum, while remaining real, contains Jordan blocks in which eigenvalues and the corresponding eigenfunctions coincide. In this limit the similarity transformation becomes singular. Nonetheless, we show that the mapping from the original potential to its Hermitian counterpart can still be implemented; however, the inverse mapping breaks down. We also illuminate the role of Jordan associated functions in the original problem, showing that they map onto eigenfunctions in the associated Hermitian problem.

  5. Translational Symmetry Breaking in Higgs & Gauge Theory, and the Cosmological Constant

    CERN Document Server

    Evans, Nick; Scott, Marc

    2016-01-01

    We argue, at a very basic effective field theory level, that higher dimension operators in scalar theories that break symmetries at scales close to their ultraviolet completion cutoff, include terms that favour the breaking of translation (Lorentz) invariance, potentially resulting in striped, chequered board or general crystal-like phases. Such descriptions can be thought of as the effective low energy description of QCD-like gauge theories near their strong coupling scale where terms involving higher dimension operators are generated. Our low energy theory consists of scalar fields describing operators such as $\\bar{q} q$ and $\\bar{q} F^{(2n)} q$. Such scalars can have kinetic mixing terms that generate effective momentum dependent contributions to the mass matrix. We show that these can destabilize the translationally invariant vacuum. It is possible that in some real gauge theory such operators could become sufficiently dominant to realize such phases and it would be interesting to look for them in lattic...

  6. THE STUDY OF SIMPLE HIGH ORDER SYMMETRY-BREAKING BIFURCATION POINT%简单高阶对称破坏分歧点的研究

    Institute of Scientific and Technical Information of China (English)

    王贺元; 丁素珍

    2005-01-01

    In this paper,the bifurcation problem g(x, λ) = 0 with symmetry con-dition is studied. An extended system is introduced for computing the simple high order symmetry-breaking bifurcation point. Numerical example is given. Key words Bifurcation problem, Symmetry-breaking bifurcation point, High order Singularities

  7. Symmetry Breaking by Surface Blocking: Synthesis of Bimorphic Silver Nanoparticles, Nanoscale Fishes and Apples

    Science.gov (United States)

    Cathcart, Nicole; Kitaev, Vladimir

    2016-01-01

    A powerful approach to augment the diversity of well-defined metal nanoparticle (MNP) morphologies, essential for MNP advanced applications, is symmetry breaking combined with seeded growth. Utilizing this approach enabled the formation of bimorphic silver nanoparticles (bi-AgNPs) consisting of two shapes linked by one regrowth point. Bi-AgNPs were formed by using an adsorbing polymer, poly(acrylic acid), PAA, to block the surface of a decahedral AgNP seed and restricting growth of new silver to a single nucleation point. First, we have realized 2-D growth of platelets attached to decahedra producing nanoscale shapes reminiscent of apples, fishes, mushrooms and kites. 1-D bimorphic growth of rods (with chloride) and 3-D bimorphic growth of cubes and bipyramids (with bromide) were achieved by using halides to induce preferential (100) stabilization over (111) of platelets. Furthermore, the universality of the formation of bimorphic nanoparticles was demonstrated by using different seeds. Bi-AgNPs exhibit strong SERS enhancement due to regular cavities at the necks. Overall, the reported approach to symmetry breaking and bimorphic nanoparticle growth offers a powerful methodology for nanoscale shape design. PMID:27605125

  8. Tadpole-Induced Electroweak Symmetry Breaking and pNGB Higgs Models

    CERN Document Server

    Harnik, Roni; Kearney, John

    2016-01-01

    We investigate induced electroweak symmetry breaking (EWSB) in models in which the Higgs is a pseudo-Nambu-Goldstone boson (pNGB). In pNGB Higgs models, Higgs properties and precision electroweak measurements imply a hierarchy between the EWSB and global symmetry-breaking scales, $v_H \\ll f_H$. When the pNGB potential is generated radiatively, this hierarchy requires fine-tuning to a degree of at least $\\sim v_H^2/f_H^2$. We show that if Higgs EWSB is induced by a tadpole arising from an auxiliary sector at scale $f_\\Sigma \\ll v_H$, this tuning is significantly ameliorated or can even be removed. We present explicit examples both in Twin Higgs models and in Composite Higgs models based on $SO(5)/SO(4)$. For the Twin case, the result is a fully natural model with $f_H \\sim 1$ TeV and the lightest colored top partners at 2 TeV. These models also have an appealing mechanism to generate the scales of the auxiliary sector and Higgs EWSB directly from the scale $f_H$, with a natural hierarchy $f_\\Sigma \\ll v_H \\ll ...

  9. Mass textures and wolfenstein parameters from breaking the flavour permutational symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Mondragon, A; Rivera, T. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico,Mexico D.F. (Mexico); Rodriguez Jauregui, E. [Deutsches Elekronen-Synchrotron, Theory Group, Hamburg (Germany)

    2001-12-01

    We will give an overview of recent progress in the phenomenological study of quark mass matrices, quark flavour mixings and CP-violation with emphasis on the possibility of an underlying discrete, flavour permutational symmetry and its breaking, from which realistic models of mass generation could be built. The quark mixing angles and CP-violating phase, as well as the Wolfenstein parameters are given in terms of four quark mass ratios and only two parameters (Z{sup 1}/2, {phi}) characterizing the symmetry breaking pattern. Excellent agreement with all current experimental data is found. [Spanish] Daremos una visita panoramica del progreso reciente en el estudio fenomenologico de las matrices de masas y de mezclas del sabor de los quarks y la violacion de PC, con enfasis en la posibilidad de que, subyacentes al problema, se halle una simetria discreta, permutacional del sabor y su rompimiento a partir de las cuales se puedan construir modelos realistas de la generacion de las masas. Los angulos de mezcla de los quarks y la fase que viola CP, asi como los parametros de Wolfenstein se dan en terminos de cuatro razones de masas de los quarks y solamente dos parametros (Z{sup 1}/2, {phi}) que caracterizan el patron del rompimiento de la simetria. Los resultados se encuentran en excelente acuerdo con todos los datos experimentales mas recientes.

  10. Heat-induced symmetry breaking in ant (Hymenoptera: Formicidae) escape behavior.

    Science.gov (United States)

    Chung, Yuan-Kai; Lin, Chung-Chi

    2017-01-01

    The collective egress of social insects is important in dangerous situations such as natural disasters or enemy attacks. Some studies have described the phenomenon of symmetry breaking in ants, with two exits induced by a repellent. However, whether symmetry breaking occurs under high temperature conditions, which are a common abiotic stress, remains unknown. In our study, we deposited a group of Polyrhachis dives ants on a heated platform and counted the number of escaping ants with two identical exits. We discovered that ants asymmetrically escaped through two exits when the temperature of the heated platform was >32.75°C. The degree of asymmetry increased linearly with the temperature of the platform. Furthermore, the higher the temperature of heated platform was, the more ants escaped from the heated platform. However, the number of escaping ants decreased for 3 min when the temperature was higher than the critical thermal limit (39.46°C), which is the threshold for ants to endure high temperature without a loss of performance. Moreover, the ants tended to form small groups to escape from the thermal stress. A preparatory formation of ant grouping was observed before they reached the exit, indicating that the ants actively clustered rather than accidentally gathered at the exits to escape. We suggest that a combination of individual and grouping ants may help to optimize the likelihood of survival during evacuation.

  11. The complex Langevin analysis of spontaneous symmetry breaking induced by complex fermion determinant

    CERN Document Server

    Ito, Yuta

    2016-01-01

    In many interesting physical systems, the determinant which appears from integrating out fermions becomes complex, and its phase plays a crucial role in the determination of the vacuum. An example of this is QCD at low temperature and high density, where various exotic fermion condensates are conjectured to form. Another example is the Euclidean version of the type IIB matrix model for 10d superstring theory, where spontaneous breaking of the SO(10) rotational symmetry down to SO(4) is expected to occur. When one applies the complex Langevin method to these systems, one encounters the singular-drift problem associated with the appearance of nearly zero eigenvalues of the Dirac operator. Here we propose to avoid this problem by deforming the action with a fermion bilinear term. The results for the original system are obtained by extrapolations with respect to the deformation parameter. We demonstrate the power of this approach by applying it to a simple matrix model, in which spontaneous symmetry breaking from...

  12. Spatial control of plasma membrane domains: ROP GTPase-based symmetry breaking

    Science.gov (United States)

    Yang, Zhenbiao; Lavagi, Irene

    2013-01-01

    Breaking of the cell membrane symmetry to form polarized or localized domains/regions of the plasma membrane (PM) is a fundamental cellular process that occurs in essentially all cellular organisms, and is required for a wide variety of cellular functions/behaviors including cell morphogenesis, cell division and cell differentiation. In plants, the development of localized or polarized PM domains has been linked to a vast array of cellular and developmental processes such as polar cell expansion, asymmetric cell division, cell morphogenesis, the polarization of auxin transporters (and thus auxin polar transport), secondary cell wall patterning, cell type specification, and tissue pattern formation. Rho GTPases from plants (ROPs) are known to be involved in many of these processes. Here, we review the current knowledge on ROP involvement in breaking symmetry and propose that ROP-based self-organizing signaling may provide a common mechanism for the spatial control of PM domains required in various cellular and developmental processes in plants. PMID:23177207

  13. Symmetry Breaking by Surface Blocking: Synthesis of Bimorphic Silver Nanoparticles, Nanoscale Fishes and Apples

    Science.gov (United States)

    Cathcart, Nicole; Kitaev, Vladimir

    2016-09-01

    A powerful approach to augment the diversity of well-defined metal nanoparticle (MNP) morphologies, essential for MNP advanced applications, is symmetry breaking combined with seeded growth. Utilizing this approach enabled the formation of bimorphic silver nanoparticles (bi-AgNPs) consisting of two shapes linked by one regrowth point. Bi-AgNPs were formed by using an adsorbing polymer, poly(acrylic acid), PAA, to block the surface of a decahedral AgNP seed and restricting growth of new silver to a single nucleation point. First, we have realized 2-D growth of platelets attached to decahedra producing nanoscale shapes reminiscent of apples, fishes, mushrooms and kites. 1-D bimorphic growth of rods (with chloride) and 3-D bimorphic growth of cubes and bipyramids (with bromide) were achieved by using halides to induce preferential (100) stabilization over (111) of platelets. Furthermore, the universality of the formation of bimorphic nanoparticles was demonstrated by using different seeds. Bi-AgNPs exhibit strong SERS enhancement due to regular cavities at the necks. Overall, the reported approach to symmetry breaking and bimorphic nanoparticle growth offers a powerful methodology for nanoscale shape design.

  14. Conditions for the emergence of gauge bosons from spontaneous Lorentz symmetry breaking

    Science.gov (United States)

    Escobar, C. A.; Urrutia, L. F.

    2015-07-01

    The emergence of gauge particles (e.g., photons and gravitons) as Goldstone bosons arising from spontaneous symmetry breaking is an interesting hypothesis which would provide a dynamical setting for the gauge principle. We investigate this proposal in the framework of a general SO (N ) non-Abelian Nambu model (NANM), effectively providing spontaneous Lorentz symmetry breaking in terms of the corresponding Goldstone bosons. Using a nonperturbative Hamiltonian analysis, we prove that the SO (N ) Yang-Mills (YM) theory is equivalent to the corresponding NANM, after both current conservation and the Gauss laws are imposed as initial conditions for the latter. This equivalence is independent of any gauge fixing in the YM theory. A substantial conceptual and practical improvement in the analysis arises by choosing a particular parametrization that solves the nonlinear constraint defining the NANM. This choice allows us to show that the relation between the NANM canonical variables and the corresponding ones of the YM theory, Aia and Eb j , is given by a canonical transformation. In terms of the latter variables, the NANM Hamiltonian has the same form as the YM Hamiltonian, except that the Gauss laws do not arise as first-class constraints. The dynamics of the NANM further guarantees that it is sufficient to impose them only as initial conditions, in order to recover the full equivalence. It is interesting to observe that this particular parametrization exhibits the NANM as a regular theory, thus providing a substantial simplification in the calculations.

  15. A computational investigation of attrition-enhanced chiral symmetry breaking in conglomerate crystals

    Science.gov (United States)

    Ricci, Francesco; Stillinger, Frank H.; Debenedetti, Pablo G.

    2013-11-01

    Attrition-enhanced chiral symmetry breaking in crystals, also known as Viedma ripening, is a remarkable phenomenon from a variety of perspectives. By providing a direct route to solid-phase homochirality in a controllable manner, it is of inherent interest to those who study chiral symmetry-breaking/amplification mechanisms. When applied to intrinsically chiral molecules, Viedma ripening may have implications for the origin of biological homochirality, as well as applications in chiral drug resolution. Despite an abundance of research, the mechanistic details underlying this phenomenon have not been unambiguously elucidated. We employ a Monte Carlo algorithm to study this driven system, in order to gain further insights into the mechanisms capable of reproducing key experimental signatures. We provide a comprehensive numerical investigation of how the model parameters (attrition rate, liquid-phase racemization kinetics, and the relative rates of growth and dissolution kinetics) impact the system's overall behavior. It is shown that size-dependent crystal solubility alone is insufficient to reproduce most of the experimental signatures of Viedma ripening, and that some form of a solid-phase chiral feedback mechanism must be invoked in order to reproduce experimentally observed behavior. In this work, such feedback mechanisms can take the form of agglomeration, or of artificial modification of the size dependent growth kinetics.

  16. Type Ia Supernovae: Can Coriolis Force Break the Symmetry of the Gravitational Confined Detonation Explosion Mechanism?

    Science.gov (United States)

    García-Senz, D.; Cabezón, R. M.; Domínguez, I.; Thielemann, F. K.

    2016-03-01

    Currently the number of models aimed at explaining the phenomena of type Ia supernovae is high and distinguishing between them is a must. In this work we explore the influence of rotation on the evolution of the nuclear flame that drives the explosion in the so-called gravitational confined detonation models. Assuming that the flame starts in a pointlike region slightly above the center of the white dwarf (WD) and adding a moderate amount of angular velocity to the star we follow the evolution of the deflagration using a smoothed particle hydrodynamics code. We find that the results are very dependent on the angle between the rotational axis and the line connecting the initial bubble of burned material with the center of the WD at the moment of ignition. The impact of rotation is larger for angles close to 90° because the Coriolis force on a floating element of fluid is maximum and its principal effect is to break the symmetry of the deflagration. Such symmetry breaking weakens the convergence of the nuclear flame at the antipodes of the initial ignition volume, changing the environmental conditions around the convergence region with respect to non-rotating models. These changes seem to disfavor the emergence of a detonation in the compressed volume at the antipodes and may compromise the viability of the so-called gravitational confined detonation mechanism.

  17. TYPE Ia SUPERNOVAE: CAN CORIOLIS FORCE BREAK THE SYMMETRY OF THE GRAVITATIONAL CONFINED DETONATION EXPLOSION MECHANISM?

    Energy Technology Data Exchange (ETDEWEB)

    García-Senz, D. [Departament de Física, UPC, Comte d’Urgell 187, E-08036 Barcelona (Spain); Cabezón, R. M.; Thielemann, F. K. [Departement Physik, Universität Basel. Klingelbergstrasse, 82, 4056 Basel (Switzerland); Domínguez, I., E-mail: domingo.garcia@upc.edu, E-mail: ruben.cabezon@unibas.ch [Departamento de Física, Teórica y del Cosmos, Universidad de Granada, E-18071 Granada (Spain)

    2016-03-10

    Currently the number of models aimed at explaining the phenomena of type Ia supernovae is high and distinguishing between them is a must. In this work we explore the influence of rotation on the evolution of the nuclear flame that drives the explosion in the so-called gravitational confined detonation models. Assuming that the flame starts in a pointlike region slightly above the center of the white dwarf (WD) and adding a moderate amount of angular velocity to the star we follow the evolution of the deflagration using a smoothed particle hydrodynamics code. We find that the results are very dependent on the angle between the rotational axis and the line connecting the initial bubble of burned material with the center of the WD at the moment of ignition. The impact of rotation is larger for angles close to 90° because the Coriolis force on a floating element of fluid is maximum and its principal effect is to break the symmetry of the deflagration. Such symmetry breaking weakens the convergence of the nuclear flame at the antipodes of the initial ignition volume, changing the environmental conditions around the convergence region with respect to non-rotating models. These changes seem to disfavor the emergence of a detonation in the compressed volume at the antipodes and may compromise the viability of the so-called gravitational confined detonation mechanism.

  18. A hot electron-hole pair breaks the symmetry of a semiconductor quantum dot.

    Science.gov (United States)

    Trinh, M Tuan; Sfeir, Matthew Y; Choi, Joshua J; Owen, Jonathan S; Zhu, Xiaoyang

    2013-01-01

    The best-understood property of semiconductor quantum dots (QDs) is the size-dependent optical transition energies due to the quantization of charge carriers near the band edges. In contrast, much less is known about the nature of hot electron-hole pairs resulting from optical excitation significantly above the bandgap. Here, we show a transient Stark effect imposed by a hot electron-hole pair on optical transitions in PbSe QDs. The hot electron-hole pair does not behave as an exciton, but more bulk-like as independent carriers, resulting in a transient and varying dipole moment which breaks the symmetry of the QD. As a result, we observe redistribution of optical transition strength to dipole forbidden transitions and the broadening of dipole-allowed transitions during the picosecond lifetime of the hot carriers. The magnitude of symmetry breaking scales with the amount of excess energy of the hot carriers, diminishes as the hot carriers cool down and disappears as the hot electron-hole pair becomes an exciton. Such a transient Stark effect should be of general significance to the understanding of QD photophysics above the bandgap.

  19. Strange Baryon Electromagnetic Form Factors and SU(3) Flavor Symmetry Breaking

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Huey-Wen; Orginos, Konstantinos

    2009-01-01

    We study the nucleon, Sigma and cascade octet baryon electromagnetic form factors and the effects of SU(3) flavor symmetry breaking from 2+1-flavor lattice calculations. We find that electric and magnetic radii are similar; the maximum discrepancy is about 10\\%. In the pion-mass region we explore, both the quark-component and full-baryon moments have small SU(3) symmetry breaking. We extrapolate the charge radii and the magnetic moments using three-flavor heavy-baryon chiral perturbation theory (HBXPT). The systematic errors due to chiral and continuum extrapolations remain significant, giving rise to charge radii for $p$ and $\\Sigma^-$ that are 3--4 standard deviations away from the known experimental ones. Within these systematics the predicted $\\Sigma^+$ and $\\Xi^-$ radii are 0.67(5) and 0.306(15)~fm$^2$ respectively. When the next-to-next-to-leading order of HBXPT is included, the extrapolated magnetic moments are less than 3 standard deviations away from PDG values, and the d

  20. Tadpole-Induced Electroweak Symmetry Breaking and pNGB Higgs Models

    Energy Technology Data Exchange (ETDEWEB)

    Harnik, Roni [Fermilab; Howe, Kiel [Fermilab; Kearney, John [Fermilab

    2016-03-11

    We investigate induced electroweak symmetry breaking (EWSB) in models in which the Higgs is a pseudo-Nambu-Goldstone boson (pNGB). In pNGB Higgs models, Higgs properties and precision electroweak measurements imply a hierarchy between the EWSB and global symmetry-breaking scales, $v_H \\ll f_H$. When the pNGB potential is generated radiatively, this hierarchy requires fine-tuning to a degree of at least $\\sim v_H^2/f_H^2$. We show that if Higgs EWSB is induced by a tadpole arising from an auxiliary sector at scale $f_\\Sigma \\ll v_H$, this tuning is significantly ameliorated or can even be removed. We present explicit examples both in Twin Higgs models and in Composite Higgs models based on $SO(5)/SO(4)$. For the Twin case, the result is a fully natural model with $f_H \\sim 1$ TeV and the lightest colored top partners at 2 TeV. These models also have an appealing mechanism to generate the scales of the auxiliary sector and Higgs EWSB directly from the scale $f_H$, with a natural hierarchy $f_\\Sigma \\ll v_H \\ll f_H \\sim{\\rm TeV}$. The framework predicts modified Higgs coupling as well as new Higgs and vector states at LHC13.