WorldWideScience

Sample records for actin-based symmetry breaking

  1. In silico reconstitution of actin-based symmetry breaking and motility.

    Directory of Open Access Journals (Sweden)

    Mark J Dayel

    2009-09-01

    Full Text Available Eukaryotic cells assemble viscoelastic networks of crosslinked actin filaments to control their shape, mechanical properties, and motility. One important class of actin network is nucleated by the Arp2/3 complex and drives both membrane protrusion at the leading edge of motile cells and intracellular motility of pathogens such as Listeria monocytogenes. These networks can be reconstituted in vitro from purified components to drive the motility of spherical micron-sized beads. An Elastic Gel model has been successful in explaining how these networks break symmetry, but how they produce directed motile force has been less clear. We have combined numerical simulations with in vitro experiments to reconstitute the behavior of these motile actin networks in silico using an Accumulative Particle-Spring (APS model that builds on the Elastic Gel model, and demonstrates simple intuitive mechanisms for both symmetry breaking and sustained motility. The APS model explains observed transitions between smooth and pulsatile motion as well as subtle variations in network architecture caused by differences in geometry and conditions. Our findings also explain sideways symmetry breaking and motility of elongated beads, and show that elastic recoil, though important for symmetry breaking and pulsatile motion, is not necessary for smooth directional motility. The APS model demonstrates how a small number of viscoelastic network parameters and construction rules suffice to recapture the complex behavior of motile actin networks. The fact that the model not only mirrors our in vitro observations, but also makes novel predictions that we confirm by experiment, suggests that the model captures much of the essence of actin-based motility in this system.

  2. Symmetries, Symmetry Breaking, Gauge Symmetries

    CERN Document Server

    Strocchi, Franco

    2015-01-01

    The concepts of symmetry, symmetry breaking and gauge symmetries are discussed, their operational meaning being displayed by the observables {\\em and} the (physical) states. For infinitely extended systems the states fall into physically disjoint {\\em phases} characterized by their behavior at infinity or boundary conditions, encoded in the ground state, which provide the cause of symmetry breaking without contradicting Curie Principle. Global gauge symmetries, not seen by the observables, are nevertheless displayed by detectable properties of the states (superselected quantum numbers and parastatistics). Local gauge symmetries are not seen also by the physical states; they appear only in non-positive representations of field algebras. Their role at the Lagrangian level is merely to ensure the validity on the physical states of local Gauss laws, obeyed by the currents which generate the corresponding global gauge symmetries; they are responsible for most distinctive physical properties of gauge quantum field ...

  3. Symmetries and Symmetry Breaking

    CERN Document Server

    Van Oers, W T H

    2003-01-01

    In understanding the world of matter, the introduction of symmetry principles following experimentation or using the predictive power of symmetry principles to guide experimentation is most profound. The conservation of energy, linear momentum, angular momentum, charge, and CPT involve fundamental symmetries. All other conservation laws are valid within a restricted subspace of the four interactions: the strong, the electromagnetic, the weak, and the gravitational interaction. In this paper comments are made regarding parity violation in hadronic systems, charge symmetry breaking in two nucleon and few nucleon systems, and time-reversal-invariance in hadronic systems.

  4. Breaking Symmetries

    CERN Document Server

    Peters, Kirstin

    2010-01-01

    A well-known result by Palamidessi tells us that {\\pi}mix (the {\\pi}-calculus with mixed choice) is more expressive than {\\pi}sep (its subset with only separate choice). The proof of this result argues with their different expressive power concerning leader election in symmetric networks. Later on, Gorla of- fered an arguably simpler proof that, instead of leader election in symmetric networks, employed the reducibility of "incestual" processes (mixed choices that include both enabled senders and receivers for the same channel) when running two copies in parallel. In both proofs, the role of breaking (ini- tial) symmetries is more or less apparent. In this paper, we shed more light on this role by re-proving the above result-based on a proper formalization of what it means to break symmetries-without referring to another layer of the distinguishing problem domain of leader election. Both Palamidessi and Gorla rephrased their results by stating that there is no uniform and reason- able encoding from {\\pi}mix i...

  5. Electroweak symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Chanowitz, M.S.

    1990-09-01

    The Higgs mechanism is reviewed in its most general form, requiring the existence of a new symmetry-breaking force and associated particles, which need not however be Higgs bosons. The first lecture reviews the essential elements of the Higgs mechanism, which suffice to establish low energy theorems for the scattering of longitudinally polarized W and Z gauge bosons. An upper bound on the scale of the symmetry-breaking physics then follows from the low energy theorems and partial wave unitarity. The second lecture reviews particular models, with and without Higgs bosons, paying special attention to how the general features discussed in lecture 1 are realized in each model. The third lecture focuses on the experimental signals of strong WW scattering that can be observed at the SSC above 1 TeV in the WW subenergy, which will allow direct measurement of the strength of the symmetry-breaking force. 52 refs., 10 figs.

  6. Bootstrap Dynamical Symmetry Breaking

    Directory of Open Access Journals (Sweden)

    Wei-Shu Hou

    2013-01-01

    Full Text Available Despite the emergence of a 125 GeV Higgs-like particle at the LHC, we explore the possibility of dynamical electroweak symmetry breaking by strong Yukawa coupling of very heavy new chiral quarks Q . Taking the 125 GeV object to be a dilaton with suppressed couplings, we note that the Goldstone bosons G exist as longitudinal modes V L of the weak bosons and would couple to Q with Yukawa coupling λ Q . With m Q ≳ 700  GeV from LHC, the strong λ Q ≳ 4 could lead to deeply bound Q Q ¯ states. We postulate that the leading “collapsed state,” the color-singlet (heavy isotriplet, pseudoscalar Q Q ¯ meson π 1 , is G itself, and a gap equation without Higgs is constructed. Dynamical symmetry breaking is affected via strong λ Q , generating m Q while self-consistently justifying treating G as massless in the loop, hence, “bootstrap,” Solving such a gap equation, we find that m Q should be several TeV, or λ Q ≳ 4 π , and would become much heavier if there is a light Higgs boson. For such heavy chiral quarks, we find analogy with the π − N system, by which we conjecture the possible annihilation phenomena of Q Q ¯ → n V L with high multiplicity, the search of which might be aided by Yukawa-bound Q Q ¯ resonances.

  7. Symmetry, Symmetry Breaking and Topology

    Directory of Open Access Journals (Sweden)

    Siddhartha Sen

    2010-07-01

    Full Text Available The ground state of a system with symmetry can be described by a group G. This symmetry group G can be discrete or continuous. Thus for a crystal G is a finite group while for the vacuum state of a grand unified theory G is a continuous Lie group. The ground state symmetry described by G can change spontaneously from G to one of its subgroups H as the external parameters of the system are modified. Such a macroscopic change of the ground state symmetry of a system from G to H correspond to a “phase transition”. Such phase transitions have been extensively studied within a framework due to Landau. A vast range of systems can be described using Landau’s approach, however there are also systems where the framework does not work. Recently there has been growing interest in looking at such non-Landau type of phase transitions. For instance there are several “quantum phase transitions” that are not of the Landau type. In this short review we first describe a refined version of Landau’s approach in which topological ideas are used together with group theory. The combined use of group theory and topological arguments allows us to determine selection rule which forbid transitions from G to certain of its subgroups. We end by making a few brief remarks about non-Landau type of phase transition.

  8. Chiral symmetry and chiral-symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Peskin, M.E.

    1982-12-01

    These lectures concern the dynamics of fermions in strong interaction with gauge fields. Systems of fermions coupled by gauge forces have a very rich structure of global symmetries, which are called chiral symmetries. These lectures will focus on the realization of chiral symmetries and the causes and consequences of thier spontaneous breaking. A brief introduction to the basic formalism and concepts of chiral symmetry breaking is given, then some explicit calculations of chiral symmetry breaking in gauge theories are given, treating first parity-invariant and then chiral models. These calculations are meant to be illustrative rather than accurate; they make use of unjustified mathematical approximations which serve to make the physics more clear. Some formal constraints on chiral symmetry breaking are discussed which illuminate and extend the results of our more explicit analysis. Finally, a brief review of the phenomenological theory of chiral symmetry breaking is presented, and some applications of this theory to problems in weak-interaction physics are discussed. (WHK)

  9. Sequential flavor symmetry breaking

    International Nuclear Information System (INIS)

    The gauge sector of the standard model exhibits a flavor symmetry that allows for independent unitary transformations of the fermion multiplets. In the standard model the flavor symmetry is broken by the Yukawa couplings to the Higgs boson, and the resulting fermion masses and mixing angles show a pronounced hierarchy. In this work we connect the observed hierarchy to a sequence of intermediate effective theories, where the flavor symmetries are broken in a stepwise fashion by vacuum expectation values of suitably constructed spurion fields. We identify the possible scenarios in the quark sector and discuss some implications of this approach.

  10. Symmetry breaking in molecular ferroelectrics.

    Science.gov (United States)

    Shi, Ping-Ping; Tang, Yuan-Yuan; Li, Peng-Fei; Liao, Wei-Qiang; Wang, Zhong-Xia; Ye, Qiong; Xiong, Ren-Gen

    2016-07-11

    Ferroelectrics are inseparable from symmetry breaking. Accompanying the paraelectric-to-ferroelectric phase transition, the paraelectric phase adopting one of the 32 crystallographic point groups is broken into subgroups belonging to one of the 10 ferroelectric point groups, i.e. C1, C2, C1h, C2v, C4, C4v, C3, C3v, C6 and C6v. The symmetry breaking is captured by the order parameter known as spontaneous polarization, whose switching under an external electric field results in a typical ferroelectric hysteresis loop. In addition, the responses of spontaneous polarization to other external excitations are related to a number of physical effects such as second-harmonic generation, piezoelectricity, pyroelectricity and dielectric properties. Based on these, this review summarizes recent developments in molecular ferroelectrics since 2011 and focuses on the relationship between symmetry breaking and ferroelectricity, offering ideas for exploring high-performance molecular ferroelectrics. PMID:27051889

  11. Strong coupling electroweak symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Barklow, T.L. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Burdman, G. [Univ. of Wisconsin, Madison, WI (United States). Dept. of Physics; Chivukula, R.S. [Boston Univ., MA (United States). Dept. of Physics

    1997-04-01

    The authors review models of electroweak symmetry breaking due to new strong interactions at the TeV energy scale and discuss the prospects for their experimental tests. They emphasize the direct observation of the new interactions through high-energy scattering of vector bosons. They also discuss indirect probes of the new interactions and exotic particles predicted by specific theoretical models.

  12. A model of intrinsic symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Li [Research Center for Quantum Manipulation, Department of Physics, Fudan University, Shanghai 200433 (China); Li, Sheng [Department of Physics, Zhejiang Normal University, Zhejiang 310004 (China); George, Thomas F., E-mail: tfgeorge@umsl.edu [Office of the Chancellor and Center for Nanoscience, Department of Chemistry and Biochemistry, University of Missouri-St. Louis, St. Louis, MO 63121 (United States); Department of Physics and Astronomy, University of Missouri-St. Louis, St. Louis, MO 63121 (United States); Sun, Xin, E-mail: xin_sun@fudan.edu.cn [Research Center for Quantum Manipulation, Department of Physics, Fudan University, Shanghai 200433 (China)

    2013-11-01

    Different from the symmetry breaking associated with a phase transition, which occurs when the controlling parameter is manipulated across a critical point, the symmetry breaking presented in this Letter does not need parameter manipulation. Instead, the system itself suddenly undergoes symmetry breaking at a certain time during its evolution, which is intrinsic symmetry breaking. Through a polymer model, it is revealed that the origin of the intrinsic symmetry breaking is nonlinearity, which produces instability at the instance when the evolution crosses an inflexion point, where this instability breaks the original symmetry.

  13. Electroweak symmetry breaking at photon colliders

    International Nuclear Information System (INIS)

    The electroweak-symmetry-breaking sector of the standard model can be weakly-coupled or can be strongly-coupled, which is characterized by some kinds of strong interaction among the Goldstone bosons of the electroweak-symmetry-breaking sector. In this paper, we summarize an investigation of probing the strong electroweak-symmetry-breaking effects at photon colliders. ((orig.))

  14. Symmetry Breaking in Finite Volume

    Institute of Scientific and Technical Information of China (English)

    LIU Chuan

    2000-01-01

    Spontaneous symmetry breaking is a cooperative phenomenon for systems with infinitely many degrees of freedom and it plays an essential role in quantum field theories. Lattice O(N) model is studied within the Hamiltonian approach using an adiabatic approximation. It is shown that the low-lying spectrum of the system in the broken phase can be understood by using the adiabatic, or Born-Oppenheimer approximation, which turns out to become an expansion in the inverse power of volume. In the infinite volume limit, the symmetry is broken while in the finite volume the slow rotation of the zero-momentum mode restores the symmetry and gives rise to the rotator spectrum, which has been observed in realistic Monte Carlo simulations.

  15. Big break for charge symmetry

    CERN Document Server

    Miller, G A

    2003-01-01

    Two new experiments have detected charge-symmetry breaking, the mechanism responsible for protons and neutrons having different masses. Symmetry is a crucial concept in the theories that describe the subatomic world because it has an intimate connection with the laws of conservation. The theory of the strong interaction between quarks - quantum chromodynamics - is approximately invariant under what is called charge symmetry. In other words, if we swap an up quark for a down quark, then the strong interaction will look almost the same. This symmetry is related to the concept of sup i sospin sup , and is not the same as charge conjugation (in which a particle is replaced by its antiparticle). Charge symmetry is broken by the competition between two different effects. The first is the small difference in mass between up and down quarks, which is about 200 times less than the mass of the proton. The second is their different electric charges. The up quark has a charge of +2/3 in units of the proton charge, while ...

  16. History of electroweak symmetry breaking

    CERN Document Server

    Kibble, T W B

    2015-01-01

    In this talk, I recall the history of the development of the unified electroweak theory, incorporating the symmetry-breaking Higgs mechanism, as I saw it from my standpoint as a member of Abdus Salam's group at Imperial College. I start by describing the state of physics in the years after the Second World War, explain how the goal of a unified gauge theory of weak and electromagnetic interactions emerged, the obstacles encountered, in particular the Goldstone theorem, and how they were overcome, followed by a brief account of more recent history, culminating in the historic discovery of the Higgs boson in 2012.

  17. Spontaneous Breaking of Flavor Symmetry

    CERN Document Server

    Törnqvist, N A

    1996-01-01

    It is shown that part of the quark masses of the standard model can be generated spontaneously within the strong interactions of QCD. After the breaking of U(Nf) x U(Nf) symmetry by the vacuum, also the resulting flavor symmetric, degenerate meson mass spectrum is shown to be unstable with respect to quantum loops, for rather general models. For a C-degenerate meson spectrum the stable mass spectrum obeys the Okubo-Zweig-Iizuka rule and the approximateequal spacing rule.

  18. Renormalizable theories with symmetry breaking

    CERN Document Server

    Becchi, Carlo M

    2016-01-01

    The description of symmetry breaking proposed by K. Symanzik within the framework of renormalizable theories is generalized from the geometrical point of view. For an arbitrary compact Lie group, a soft breaking of arbitrary covariance, and an arbitrary field multiplet, the expected integrated Ward identities are shown to hold to all orders of renormalized perturbation theory provided the Lagrangian is suitably chosen. The corresponding local Ward identity which provides the Lagrangian version of current algebra through the coupling to an external, classical, Yang-Mills field, is then proved to hold up to the classical Adler-Bardeen anomaly whose general form is written down. The BPHZ renormalization scheme is used throughout in such a way that the algebraic structure analyzed in the present context may serve as an introduction to the study of fully quantized gauge theories.

  19. Introduction to Electroweak Symmetry Breaking

    Energy Technology Data Exchange (ETDEWEB)

    Dawson,S.

    2008-10-02

    The Standard Model (SM) is the backbone of elementary particle physics-not only does it provide a consistent framework for studying the interactions of quark and leptons, but it also gives predictions which have been extensively tested experimentally. In these notes, I review the electroweak sector of the Standard Model, discuss the calculation of electroweak radiative corrections to observables, and summarize the status of SM Higgs boson searches. Despite the impressive experimental successes, however, the electroweak theory is not completely satisfactory and the mechanism of electroweak symmetry breaking is untested. I will discuss the logic behind the oft-repeated statement: 'There must be new physics at the TeV scale'. These lectures reflect my strongly held belief that upcoming results from the LHC will fundamentally change our understanding of electroweak symmetry breaking. In these lectures, I review the status of the electroweak sector of the Standard Model, with an emphasis on the importance of radiative corrections and searches for the Standard Model Higgs boson. A discussion of the special role of the TeV energy scale in electroweak physics is included.

  20. Chiral symmetry breaking and monopoles

    CERN Document Server

    Di Giacomo, Adriano; Pucci, Fabrizio

    2015-01-01

    To understand the relation between the chiral symmetry breaking and monopoles, the chiral condensate which is the order parameter of the chiral symmetry breaking is calculated in the $\\overline{\\mbox{MS}}$ scheme at 2 [GeV]. First, we add one pair of monopoles, varying the monopole charges $m_{c}$ from zero to four, to SU(3) quenched configurations by a monopole creation operator. The low-lying eigenvalues of the Overlap Dirac operator are computed from the gauge links of the normal configurations and the configurations with additional monopoles. Next, we compare the distributions of the nearest-neighbor spacing of the low-lying eigenvalues with the prediction of the random matrix theory. The low-lying eigenvalues not depending on the scale parameter $\\Sigma$ are compared to the prediction of the random matrix theory. The results show the consistency with the random matrix theory. Thus, the additional monopoles do not affect the low-lying eigenvalues. Moreover, we discover that the additional monopoles increa...

  1. Mutual information and spontaneous symmetry breaking

    OpenAIRE

    Hamma, A.; Giampaolo, S. M.; Illuminati, F.

    2015-01-01

    We show that the metastable, symmetry-breaking ground states of quantum many-body Hamiltonians have vanishing quantum mutual information between macroscopically separated regions, and are thus the most classical ones among all possible quantum ground states. This statement is obvious only when the symmetry-breaking ground states are simple product states, e.g. at the factorization point. On the other hand, symmetry-breaking states are in general entangled along the entire ordered phase, and t...

  2. Yet another symmetry breaking to be discovered

    Science.gov (United States)

    Yoshimura, M.

    2016-07-01

    The discovery of spontaneous symmetry breaking in particle physics was the greatest contribution in Nambu's achievements. There is another class of symmetries that exist in low-energy nature, yet is doomed to be broken at high energy, due to a lack of protection of the gauge symmetry. I shall review our approach to searching for this class of symmetry breaking, the lepton number violation linked to the generation of the matter-antimatter asymmetry in our universe.

  3. Four Top Production and Electroweak Symmetry Breaking

    OpenAIRE

    Cheung, Kingman

    1995-01-01

    With the recent discovery of a heavy top quark $(m_t \\approx 175 - 200$ GeV), the top quark opens an window to electroweak symmetry breaking. We propose the study of four-top, $t\\bar t t\\bar t$, production at hadronic supercolliders as a probe to electroweak symmetry breaking.

  4. Electroweak Symmetry Breaking and the Higgs Boson

    CERN Document Server

    Pich, Antonio

    2015-01-01

    The first LHC run has confirmed the Standard Model as the correct theory at the electroweak scale, and the existence of a Higgs-like particle associated with the spontaneous breaking of the electroweak gauge symmetry. These lectures overview the present knowledge on the Higgs boson and discuss alternative scenarios of electroweak symmetry breaking which are already being constrained by the experimental data.

  5. Charge-symmetry-breaking nucleon form factors

    CERN Document Server

    Kubis, Bastian

    2009-01-01

    A quantitative understanding of charge-symmetry breaking is an increasingly important ingredient for the extraction of the nucleon's strange vector form factors. We review the theoretical understanding of the charge-symmetry-breaking form factors, both for single nucleons and for Helium-4.

  6. Search for primordial symmetry breakings in CMB

    Science.gov (United States)

    Shiraishi, Maresuke

    2016-06-01

    There are possibilities to violate symmetries (e.g. parity and rotational invariance) in the primordial cosmological fluctuations. Such symmetry breakings can imprint very rich signatures in late-time phenomena, which may be possible to observe. Especially, Cosmic Microwave Background (CMB) will change its face drastically, corresponding to the symmetry-breaking types, since the harmonic-space representation is very sensitive to the statistical, spin and angular dependences of cosmological perturbations. Here, we discuss (1) general responses of CMB to the symmetry breakings, (2) some theoretical models creating interesting CMB signatures, and (3) aspects of the estimation from observational data.

  7. Symmetry and symmetry breaking in quantum mechanics

    International Nuclear Information System (INIS)

    In the world of infinitely small, the world of atoms, nuclei and particles, the quantum mechanics enforces its laws. The discovery of Quanta, this unbelievable castration of the Possible in grains of matter and radiation, in discrete energy levels compels us of thinking the Single to comprehend the Universal. Quantum Numbers, magic Numbers and Numbers sign the wave. The matter is vibration. To describe the music of the world one needs keys, measures, notes, rules and partition: one needs quantum mechanics. The particles reduce themselves not in material points as the scholars of the past centuries thought, but they must be conceived throughout the space, in the accomplishment of shapes of volumes. When Einstein asked himself whether God plays dice, there was no doubt among its contemporaries that if He exists He is a geometer. In a Nature reduced to Geometry, the symmetries assume their role in servicing the Harmony. The symmetries allow ordering the energy levels to make them understandable. They impose there geometrical rules to the matter waves, giving them properties which sometimes astonish us. Hidden symmetries, internal symmetries and newly conceived symmetries have to be adopted subsequently to the observation of some order in this world of Quanta. In turn, the symmetries provide new observables which open new spaces of observation

  8. Symmetry Breaking for Black-Scholes Equations

    Institute of Scientific and Technical Information of China (English)

    YANG Xuan-Liu; ZHANG Shun-Li; QU Chang-Zheng

    2007-01-01

    Black-Scholes equation is used to model stock option pricing. In this paper, optimal systems with one to four parameters of Lie point symmetries for Black-Scholes equation and its extension are obtained. Their symmetry breaking interaction associated with the optimal systems is also studied. As a result, symmetry reductions and corresponding solutions for the resulting equations are obtained.

  9. Symmetry Breaking for Black-Scholes Equations

    Science.gov (United States)

    Yang, Xuan-Liu; Zhang, Shun-Li; Qu, Chang-Zheng

    2007-06-01

    Black-Scholes equation is used to model stock option pricing. In this paper, optimal systems with one to four parameters of Lie point symmetries for Black-Scholes equation and its extension are obtained. Their symmetry breaking interaction associated with the optimal systems is also studied. As a result, symmetry reductions and corresponding solutions for the resulting equations are obtained.

  10. Symmetry Breaking for Black-Scholes Equations

    International Nuclear Information System (INIS)

    Black-Scholes equation is used to model stock option pricing. In this paper, optimal systems with one to four parameters of Lie point symmetries for Black-Scholes equation and its extension are obtained. Their symmetry breaking interaction associated with the optimal systems is also studied. As a result, symmetry reductions and corresponding solutions for the resulting equations are obtained.

  11. Spontaneous chiral symmetry breaking in metamaterials

    Science.gov (United States)

    Liu, Mingkai; Powell, David A.; Shadrivov, Ilya V.; Lapine, Mikhail; Kivshar, Yuri S.

    2014-07-01

    Spontaneous chiral symmetry breaking underpins a variety of areas such as subatomic physics and biochemistry, and leads to an impressive range of fundamental phenomena. Here we show that this prominent effect is now available in artificial electromagnetic systems, enabled by the advent of magnetoelastic metamaterials where a mechanical degree of freedom leads to a rich variety of strong nonlinear effects such as bistability and self-oscillations. We report spontaneous symmetry breaking in torsional chiral magnetoelastic structures where two or more meta-molecules with opposite handedness are electromagnetically coupled, modifying the system stability. Importantly, we show that chiral symmetry breaking can be found in the stationary response of the system, and the effect is successfully demonstrated in a microwave pump-probe experiment. Such symmetry breaking can lead to a giant nonlinear polarization change, energy localization and mode splitting, which provides a new possibility for creating an artificial phase transition in metamaterials, analogous to that in ferrimagnetic domains.

  12. Chimera Death: Symmetry Breaking in Dynamical Networks

    OpenAIRE

    Zakharova, Anna; Kapeller, Marie; Schöll, Eckehard

    2014-01-01

    For a network of generic oscillators with nonlocal topology and symmetry-breaking coupling we establish novel partially coherent inhomogeneous spatial patterns, which combine the features of chimera states (coexisting incongruous coherent and incoherent domains) and oscillation death (oscillation suppression), which we call chimera death. We show that due to the interplay of nonlocality and breaking of rotational symmetry by the coupling two distinct scenarios from oscillatory behavior to a s...

  13. Enhanced breaking of heavy quark spin symmetry

    CERN Document Server

    Guo, Feng-Kun; Shen, Cheng-Ping

    2014-01-01

    Heavy quark spin symmetry is useful to make predictions on ratios of decay or production rates of systems involving heavy quarks. The breaking of spin symmetry is generally of the order of $O({\\Lambda_{\\rm QCD}/m_Q})$, with $\\Lambda_{\\rm QCD}$ the scale of QCD and $m_Q$ the heavy quark mass. In this paper, we propose a new mechanism to enhance the spin symmetry breaking. Taking the decays of the $\\Upsilon(10860)$ into the $\\chi_{bJ}\\omega\\, (J=0,1,2)$ as an example, we show that a small $S$- and $D$-wave mixing can induce a significant breaking of the spin symmetry relations for the ratios of the branching fractions of these decays, owing to an enhancement of the decays of the $D$-wave component due to nearby coupled channels.

  14. Workshop on electroweak symmetry breaking: proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Hinchliffe, I. (ed.)

    1984-10-01

    A theoretical workshop on electroweak symmetry breaking at the Superconducting Supercollider was held at Lawrence Berkeley Laboratory, June 4-22, 1984. The purpose of the workshop was to focus theoretical attention on the ways in which experimentation at the SSC could reveal manifestations of the phenomenon responsible for electroweak symmetry breaking. This issue represents, at present, the most compelling scientific argument for the need to explore the energy region to be made accessible by the SSC, and a major aim of the workshop was to involve a broad cross section of particle theorists in the ongoing process of sharpening the requirements for both accelerator and detector design that will ensure detection and identification of meaningful signals, whatever form the electroweak symmetry breaking phenomenon should actually take. Separate entries were prepared for the data base for the papers presented.

  15. Effective dissipation: breaking time-reversal symmetry

    CERN Document Server

    Brown, Aidan I

    2016-01-01

    At molecular scales, fluctuations play a significant role and prevent biomolecular processes from always proceeding in a preferred direction, raising the question of how limited amounts of free energy can be dissipated to obtain directed progress. We examine the system and process characteristics that efficiently break time-reversal symmetry at fixed energy loss; in particular for a simple model of a molecular machine, an intermediate energy barrier produces unusually high asymmetry for a given dissipation. Such insight into symmetry-breaking factors that produce particularly high time asymmetry suggests generalizations to a broader class of systems.

  16. Chiral Symmetry Breaking from Center Vortices

    CERN Document Server

    Höllwieser, Roman; Schweigler, Thomas; Heller, Urs M

    2014-01-01

    We analyze the creation of near-zero modes from would-be zero modes of various topological charge contributions from classical center vortices in SU(2) lattice gauge theory. We show that colorful spherical vortex and instanton configurations have very similar Dirac eigenmodes and also vortex intersections are able to give rise to a finite density of near-zero modes, leading to chiral symmetry breaking via the Banks-Casher formula. We discuss the influence of the magnetic vortex fluxes on quarks and how center vortices may break chiral symmetry.

  17. Insight into Phenomena of Symmetry Breaking Bifurcation

    Institute of Scientific and Technical Information of China (English)

    FANG Tong; ZHANG Ying

    2008-01-01

    @@ We show that symmetry-breaking (SB) bifurcation is just a transition of different forms of symmetry, while still preserving system's symmetry. SB bifurcation always associates with a periodic saddle-node bifurcation, identifiable by a zero maximum of the top Lyapunov exponent of the system. In addition, we show a significant phase portrait of a newly born periodic saddle and its stable and unstable invariant manifolds, together with their neighbouring flow pattern of Poincaré mapping points just after the periodic saddle-node bifurcation, thus gaining an insight into the mechanism of SB bifurcation.

  18. Implications of Local Chiral Symmetry Breaking

    CERN Document Server

    La, H S

    2003-01-01

    The spontaneous symmetry breaking of a local chiral symmetry to its diagonal vector symmetry naturally realizes a complete geometrical structure more general than that of Yang-Mills (YM) theory, rather similar to that of gravity. A good example is the Quantum Chromodynamics (QCD) with respect to the Chiral Color model. Also, a new anomaly-free particle content for a Chiral Color model is introduced: the Chiral Color can be realized without introducing whole new generations of quarks and leptons, but by simply enlarging each generation with new exotic fermions.

  19. Dynamical Symmetry Breaking in RN Quantum Gravity

    Directory of Open Access Journals (Sweden)

    A. T. Kotvytskiy

    2011-01-01

    Full Text Available We show that in the RN gravitation model, there is no dynamical symmetry breaking effect in the formalism of the Schwinger-Dyson equation (in flat background space-time. A general formula for the second variation of the gravitational action is obtained from the quantum corrections hμν (in arbitrary background metrics.

  20. Physical implications of dynamical symmetry breaking

    International Nuclear Information System (INIS)

    Some model-independent physical implications of a class of hypercolorbased theories of dynamical symmetry-breaking are described and discussed. The role which e+e- colliders can play, in distinguishing between such theories and the canonical methodology, is underlined

  1. Collective neutrino oscillations and spontaneous symmetry breaking

    Science.gov (United States)

    Duan, Huaiyu

    2015-08-01

    Neutrino oscillations in a hot and dense astrophysical environment such as a core-collapse supernova pose a challenging, seven-dimensional flavor transport problem. To make the problem even more difficult (and interesting), neutrinos can experience collective oscillations through nonlinear refraction in the dense neutrino medium in this environment. Significant progress has been made in the last decade towards the understanding of collective neutrino oscillations in various simplified neutrino gas models with imposed symmetries and reduced dimensions. However, a series of recent studies seem to have "reset" this progress by showing that these models may not be compatible with collective neutrino oscillations because the latter can break the symmetries spontaneously if they are not imposed. We review some of the key concepts of collective neutrino oscillations by using a few simple toy models. We also elucidate the breaking of spatial and directional symmetries in these models because of collective oscillations.

  2. Collective neutrino oscillations and spontaneous symmetry breaking

    CERN Document Server

    Duan, Huaiyu

    2015-01-01

    Neutrino oscillations in a hot and dense astrophysical environment such as a core-collapse supernova pose a challenging, seven-dimensional flavor transport problem. To make the problem even more difficult (and interesting), neutrinos can experience collective oscillations through nonlinear refraction in the dense neutrino medium in this environment. Significant progress has been made in the last decade towards the understanding of collective neutrino oscillations in various simplified neutrino gas models with imposed symmetries and reduced dimensions. However, a series of recent studies seem to have "reset" this progress by showing that these models may not be compatible with collective neutrino oscillations because the latter can break the symmetries spontaneously if they are not imposed. We review some of the key concepts of collective neutrino oscillations by using a few simple toy models. We also elucidate the breaking of spatial and directional symmetries in these models because of collective oscillation...

  3. Magnetic rotation and chiral symmetry breaking

    Indian Academy of Sciences (India)

    Ashok Kumar Jain; Amita

    2001-08-01

    The deformed mean field of nuclei exhibits various geometrical and dynamical symmetries which manifest themselves as various types of rotational and decay patterns. Most of the symmetry operations considered so far have been defined for a situation wherein the angular momentum coincides with one of the principal axes and the principal axis cranking may be invoked. New possibilities arise with the observation of rotational features in weakly deformed nuclei and now interpreted as magnetic rotational bands. More than 120 MR bands have now been identified by filtering the existing data. We present a brief overview of these bands. The total angular momentum vector in such bands is tilted away from the principal axes. Such a situation gives rise to several new possibilities including breaking of chiral symmetry as discussed recently by Frauendorf. We present the outcome of such symmetries and their possible experimental verification. Some possible examples of chiral bands are presented.

  4. Cascading Multicriticality in Nonrelativistic Spontaneous Symmetry Breaking

    CERN Document Server

    Griffin, Tom; Horava, Petr; Yan, Ziqi

    2015-01-01

    Without Lorentz invariance, spontaneous global symmetry breaking can lead to multicritical Nambu-Goldstone modes with a higher-order low-energy dispersion $\\omega\\sim k^n$ ($n=2,3,\\ldots$), whose naturalness is protected by polynomial shift symmetries. Here we investigate the role of infrared divergences and the nonrelativistic generalization of the Coleman-Hohenberg-Mermin-Wagner (CHMW) theorem. We find novel cascading phenomena with large hierarchies between the scales at which the value of $n$ changes, leading to an evasion of the "no-go" consequences of the relativistic CHMW theorem.

  5. Dynamics of Symmetry Breaking and Tachyonic Preheating

    CERN Document Server

    Felder, G; Greene, P B; Kofman, L A; Linde, Andrei D; Tkachev, Igor I; Felder, Gary; Garcia-Bellido, Juan; Greene, Patrick B.; Kofman, Lev; Linde, Andrei; Tkachev, Igor

    2001-01-01

    We reconsider the old problem of the dynamics of spontaneous symmetry breaking using 3d lattice simulations, and develop a theory of tachyonic preheating, which occurs due to the spinodal instability of the scalar field. Tachyonic preheating is so efficient that symmetry breaking typically completes within a single oscillation of the field distribution as it rolls towards the minimum of its effective potential. As an application of this theory we consider preheating in the hybrid inflation scenario, including SUSY-motivated F-term and D-term inflationary models. We show that preheating in hybrid inflation is typically tachyonic and the stage of oscillations of a homogeneous component of the scalar fields driving inflation ends after a single oscillation. Our results may also be relevant for the theory of the formation of disoriented chiral condensates in heavy ion collisions.

  6. Electroweak symmetry breaking: Higgs/whatever

    International Nuclear Information System (INIS)

    In the first of these two lectures the Higgs mechanism is reviewed in its most general form, which does not necessarily require the existence of Higgs bosons. The general consequences of the hypothesis that electroweak symmetry breaking is due to the Higgs mechanism are deduced just from gauge invariance and unitarity. In the second lecture the general properties are illustrated with three specific models: the Weinberg-Salam model, its minimal supersymmetric extension, and technicolor. The second lecture concludes with a discussion of the experiment signals for strong WW scattering, whose presence or absence will allow us to determine whether the symmetry breaking sector lies above or below 1 TeV. 57 refs

  7. Symmetry breaking in non conservative systems

    CERN Document Server

    Martínez-Pérez, N E

    2016-01-01

    We apply Noether's theorem to show how the invariances of conservative systems are broken for nonconservative systems, in the variational formulation of Galley. This formulation considers a conservative action, extended by the inclusion of a time reversed sector and a nonconservative generalized potential. We assume that this potential is invariant under the symmetries of the initial conservative system. The breaking occurs because the time reversed sector requires inverse symmetry transformations, under which the nonconservative potential is not invariant. The resulting violation of the conservation laws is consistent with the equations of motion. We generalize this formulation for fermionic and sypersymmetric systems. In the case of a supersymmetric oscillator, the effect of damping is that the bosonic and fermionic components become different frequencies. Considering that initially the nonconservative action is invariant under supersymmetry, and that the breaking is associated to an instability, this resul...

  8. Spontaneous symmetry breaking in loop quantum gravity

    Energy Technology Data Exchange (ETDEWEB)

    Helesfai, G [Institute for Theoretical Physics, Eoetvoes University, Pazmany Peter setany 1/A, H-1117 Budapest (Hungary)], E-mail: heles@manna.elte.hu

    2008-12-07

    In this paper we investigate the question of how spontaneous symmetry breaking works in the framework of loop quantum gravity and compare it to the results obtained in the case of the Proca field, where we were able to quantize the theory in loop quantum gravity without introducing a Higgs field. We obtained that the Hamiltonian of the two systems is very similar, the only difference is an extra scalar field in the case of spontaneous symmetry breaking. This field can be identified as the field that carries the mass of the vector field. In the quantum regime this becomes a well-defined operator, which turns out to be a self-adjoint operator with continuous spectrum. To calculate the spectrum we used a new representation in the case of scalar fields, which in addition enabled us to rewrite the constraint equations to a finite system of linear partial differential equations. This made it possible to solve part of the constraints explicitly.

  9. Electroweak Symmetry Breaking Beyond the Standard Model

    OpenAIRE

    Bhattacharyya, Gautam

    2012-01-01

    In this talk, I shall address two key issues related to electroweak symmetry breaking. First, how fine-tuned different models are that trigger this phenomenon? Second, even if a light Higgs boson exists, does it have to be necessarily elementary? After a brief introduction, I shall first review the fine-tuning aspects of the MSSM, NMSSM, generalized NMSSM and GMSB scenarios. I shall then compare and contrast the little Higgs, composite Higgs and the Higgsless models. Finally, I shall summariz...

  10. Phenomenological approach to symmetry breaking pattern of democratic mass matrix

    CERN Document Server

    Harada, J

    2002-01-01

    We investigate the symmetry breaking pattern of the democratic mass matrix model, which leads to the small flavor mixing in quark sector and bi-large mixing in lepton sector. We present the symmetry breaking matrices in quark sector which are determined by alternative ways instead of conventional ansatz. These matrices might be useful for understanding the origin of democratic symmetry and its breaking.

  11. A strict QCD inequality and mechanisms for chiral symmetry breaking

    International Nuclear Information System (INIS)

    A strict QCD inequality allows one to discuss mechanisms proposed for breaking the chiral symmetry in QCD. ''Order parameters'' are identified such that if sufficiently many gauge field configurations contribute to them, spontaneous chiral symmetry breaking follows. As an application the role of instantons is discussed in chiral symmetry breaking in QCD. (orig.)

  12. Medium effect on charge symmetry breaking

    International Nuclear Information System (INIS)

    We examine the nuclear medium effect on charge symmetry breaking (CSB) caused by isospin mixing of two neutral vector mesons interacting with nucleons in the nuclear medium. Isospin mixing is assumed to occur through the transition between isoscalar and isovector mesons. We use a quantum hadrodynamic nuclear model in the mean-field approximation for the meson fields involved. We find that (i) charge symmetry is gradually restored in nuclear matter in β equilibrium as the nucleon density increases; (ii) when the system departs from β equilibrium, CSB is much enhanced because the isospin mixing depends strongly on the nucleon isovector density; (iii) this leads to the symmetry energy coefficient of 32MeV, of which more than 50 percent arises from the mesonic mean fields; (iv) the Nolen-Schiffer anomaly regarding the masses of neighboring mirror nuclei can be resolved by considering these aspects of CSB in nuclear medium. copyright 1997 The American Physical Society

  13. Higgsless approach to electroweak symmetry breaking

    CERN Document Server

    Grojean, Christophe

    2007-01-01

    Higgsless models are an attempt to achieve a breaking of the electroweak symmetry via boundary conditions at the end-points of a fifth dimension compactified on an interval, as an alternative to the usual Higgs mechanism. There is no physical Higgs scalar in the spectrum and the perturbative unitarity violation scale is delayed via the exchange of massive spin-1 KK resonances. The correct mass spectrum is reproduced in a model in warped space, which inherits a custodial symmetry from a left–right gauge symmetry in the bulk. Phenomenological challenges as well as collider signatures are presented. From the AdS/CFT perspective, this model appears as a weakly coupled dual to walking technicolour models.

  14. Spontaneous spherical symmetry breaking in atomic confinement

    CERN Document Server

    Sveshnikov, K

    2016-01-01

    The effect of spontaneous breaking of initial SO(3) symmetry is shown to be possible for an H-like atom in the ground state, when it is confined in a spherical box under general boundary conditions of "not going out" through the box surface (i.e. third kind or Robin's ones), for a wide range of physically reasonable values of system parameters. The reason is that such boundary conditions could yield a large magnitude of electronic wavefunction in some sector of the box boundary, what in turn promotes atomic displacement from the box center towards this part of the boundary, and so the underlying SO(3) symmetry spontaneously breaks. The emerging Goldstone modes, coinciding with rotations around the box center, restore the symmetry by spreading the atom over a spherical shell localized at some distances from the box center. Atomic confinement inside the cavity proceeds dynamically -- due to the boundary condition the deformation of electronic wavefunction near the boundary works as a spring, that returns the at...

  15. Symmetry Breaking in MILP Formulations for Unit Commitment Problems

    KAUST Repository

    Lima, Ricardo M.

    2015-12-11

    This paper addresses the study of symmetry in Unit Commitment (UC) problems solved by Mixed Integer Linear Programming (MILP) formulations, and using Linear Programming based Branch & Bound MILP solvers. We propose three sets of symmetry breaking constraints for UC MILP formulations exhibiting symmetry, and its impact on three UC MILP models are studied. The case studies involve the solution of 24 instances by three widely used models in the literature, with and without symmetry breaking constraints. The results show that problems that could not be solved to optimality within hours can be solved with a relatively small computational burden if the symmetry breaking constraints are assumed. The proposed symmetry breaking constraints are also compared with the symmetry breaking methods included in two MILP solvers, and the symmetry breaking constraints derived in this work have a distinct advantage over the methods in the MILP solvers.

  16. Thick brane solitons breaking $Z_2$ symmetry

    CERN Document Server

    Peyravi, Marzieh; Lobo, Francisco S N

    2015-01-01

    New soliton solutions for thick branes in 4 + 1 dimensions are considered in this article. In particular, brane models based on the sine-Gordon (SG), $\\varphi^{4}$ and $\\varphi^{6}$ scalar fields are investigated; in some cases $Z_{2}$ symmetry is broken. Besides, these soliton solutions are responsible for supporting and stabilizing the thick branes. In these models, the origin of the symmetry breaking resides in the fact that the modified scalar field potential may have non-degenerate vacuua and these non-degenerate vacuua determine the cosmological constant on both sides of the brane. At last, in order to explore the particle motion in the neighborhood of the brane, the geodesic equations along the fifth dimension are studied.

  17. Symmetry Breaking And The Nilpotent Dirac Equation

    Science.gov (United States)

    Rowlands, Peter

    2004-08-01

    A multivariate 4-vector representation for space-time and a quaternion representation for mass and the electric, strong and weak charges leads to a nilpotent form of the Dirac equation, which packages the entire physical information available about a fermion state. The nilpotent state vector breaks the symmetry between the strong, electric and weak interactions, by associating their respective charges with vector, scalar and pseudoscalar operators, leading directly to the SU(3) × SU(2)L × U(1) symmetry, and to particle structures and mass-generating states. In addition, the nilpotent Dirac equation has just three solutions for spherically-symmetric distance-dependent potentials, and these correspond once again to those that would be expected for the three interactions: linear for the strong interaction; inverse linear for the electromagnetic; and a harmonic oscillator-type solution, which can be equated with the dipolar annihilation and creation mechanisms of the weak interaction.

  18. Electroweak symmetry breaking beyond the Standard Model

    Indian Academy of Sciences (India)

    Gautam Bhattacharyya

    2012-10-01

    In this paper, two key issues related to electroweak symmetry breaking are addressed. First, how fine-tuned different models are that trigger this phenomenon? Second, even if a light Higgs boson exists, does it have to be necessarily elementary? After a brief introduction, the fine-tuning aspects of the MSSM, NMSSM, generalized NMSSM and GMSB scenarios shall be reviewed, then the little Higgs, composite Higgs and the Higgsless models shall be compared. Finally, a broad overview will be given on where we stand at the end of 2011.

  19. Extraordinary transmission caused by symmetry breaking

    CERN Document Server

    Hu, Dan; Liu, Ming; Zhang, Yan

    2011-01-01

    The terahertz transmission properties of H-shaped annular apertures arrays (AAAs) are investigated experimentally and numerically. It is found the only odd order resonances mode are observed in the symmetrical structures but both odd and even order resonances can be shown in the asymmetrical structures. Breaking the symmetry in H- shaped AAAs by gradual displacing from H-shaped to U-shaped AAAs allows an intensity modulation depth of 99% of the second order resonance. Simulation results verify the experimental conclusion well. This result provides a tremendous opportunities for terahertz wavelength tunable filters, sensing, and near-field imaging.

  20. Spontaneous symmetry breaking in a classical particle

    CERN Document Server

    Sánchez, L A; Sanchez, Luis Alberto; Mahecha, Jorge

    2003-01-01

    Due to the fact that only matter fields have phase, frequently is believed that the gauge principle can induce gauge fields only in quantum systems. But this is not necessary. This paper, of pedagogical scope, presents a classical system constituted by a particle in a classical potential, which is used as a model to illustrate the gauge principle and the spontaneous symmetry breaking. Those concepts appear in the study of second order phase transitions. Ferroelectricity, ferromagnetism, superconductivity, plasmons in a free electron gas, and the mass of vector bosons in the gauge field Yang-Mills theories, are some of the phenomena in which these transitions occur.

  1. Cosmology of biased discrete symmetry breaking

    Science.gov (United States)

    Gelmini, Graciela B.; Gleiser, Marcelo; Kolb, Edward W.

    1988-01-01

    The cosmological consequences of spontaneous breaking of an approximate discrete symmetry are studied. The breaking leads to formation of proto-domains of false and true vacuum separated by domain walls of thickness determined by the mass scale of the model. The cosmological evolution of the walls is extremely sensitive to the magnitude of the biasing; several scenarios are possible, depending on the interplay between the surface tension on the walls and the volume pressure from the biasing. Walls may disappear almost immediately after they form, or may live long enough to dominate the energy density of the Universe and cause power-law inflation. Limits are obtained on the biasing that characterizes each possible scenario.

  2. Hyperscaling violation and electroweak symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Elander, Daniel, E-mail: pelander@purdue.edu [Department of Physics, Purdue University, 525 Northwestern Avenue, West Lafayette, IN 47907-2036 (United States); Lawrance, Robert; Piai, Maurizio [Department of Physics, College of Science, Swansea University, Singleton Park, Swansea, Wales (United Kingdom)

    2015-08-15

    We consider a class of simplified models of dynamical electroweak symmetry breaking built in terms of their five-dimensional weakly-coupled gravity duals, in the spirit of bottom-up holography. The sigma-model consists of two abelian gauge bosons and one real, non-charged scalar field coupled to gravity in five dimensions. The scalar potential is a simple exponential function of the scalar field. The background metric resulting from solving the classical equations of motion exhibits hyperscaling violation, at least at asymptotically large values of the radial direction. We study the spectrum of scalar composite states of the putative dual field theory by fluctuating the sigma-model scalars and gravity, and discuss in which cases we find a parametrically light scalar state in the spectrum. We model the spontaneous breaking of the (weakly coupled) gauge symmetry to the diagonal subgroup by the choice of IR boundary conditions. We compute the mass spectrum of spin-1 states, and the precision electroweak parameter S as a function of the hyperscaling coefficient. We find a general bound on the mass of the lightest spin-1 resonance, by requiring that the indirect bounds on the precision parameters be satisfied, that implies that precision electroweak physics excludes the possibility of a techni-rho meson with mass lighter than several TeV.

  3. Hyperscaling violation and electroweak symmetry breaking

    International Nuclear Information System (INIS)

    We consider a class of simplified models of dynamical electroweak symmetry breaking built in terms of their five-dimensional weakly-coupled gravity duals, in the spirit of bottom-up holography. The sigma-model consists of two abelian gauge bosons and one real, non-charged scalar field coupled to gravity in five dimensions. The scalar potential is a simple exponential function of the scalar field. The background metric resulting from solving the classical equations of motion exhibits hyperscaling violation, at least at asymptotically large values of the radial direction. We study the spectrum of scalar composite states of the putative dual field theory by fluctuating the sigma-model scalars and gravity, and discuss in which cases we find a parametrically light scalar state in the spectrum. We model the spontaneous breaking of the (weakly coupled) gauge symmetry to the diagonal subgroup by the choice of IR boundary conditions. We compute the mass spectrum of spin-1 states, and the precision electroweak parameter S as a function of the hyperscaling coefficient. We find a general bound on the mass of the lightest spin-1 resonance, by requiring that the indirect bounds on the precision parameters be satisfied, that implies that precision electroweak physics excludes the possibility of a techni-rho meson with mass lighter than several TeV

  4. On chiral symmetry breaking, topology and confinement

    Energy Technology Data Exchange (ETDEWEB)

    Shuryak, Edward

    2014-08-15

    We start with the relation between the chiral symmetry breaking and gauge field topology. New lattice results further enhance the notion of Zero Mode Zone, a very narrow strip of states with quasizero Dirac eigenvalues. Then we move to the issue of “origin of mass” and Brown–Rho scaling: a number of empirical facts contradicts to the idea that masses of quarks and such hadrons as ρ,N decrease near T{sub c}. We argue that while at T=0 the main contribution to the effective quark mass is chirally odd m{sub χ/}, near T{sub c} it rotates to chirally-even component m{sub χ}, because “infinite clusters” of topological solitons gets split into finite ones. Recent progress in understanding of topology require introduction of nonzero holonomy 〈A{sub 0}〉≠0, which splits instantons into N{sub c} (anti)selfdual “instanton–dyons”. Qualitative progress, as well as first numerical studies of the dyon ensemble are reported. New connections between chiral symmetry breaking and confinement are recently understood, since instanton–dyons generate holonomy potential with a minimum at confining value, if the ensemble is dense enough.

  5. Symmetry breaking: The standard model and superstrings

    Energy Technology Data Exchange (ETDEWEB)

    Gaillard, M.K.

    1988-08-31

    The outstanding unresolved issue of the highly successful standard model is the origin of electroweak symmetry breaking and of the mechanism that determines its scale, namely the vacuum expectation value (vev)v that is fixed by experiment at the value v = 4m//sub w//sup 2///g/sup 2/ = (..sqrt..2G/sub F/)/sup /minus/1/ approx. = 1/4 TeV. In this talk I will discuss aspects of two approaches to this problem. One approach is straightforward and down to earth: the search for experimental signatures, as discussed previously by Pierre Darriulat. This approach covers the energy scales accessible to future and present laboratory experiments: roughly (10/sup /minus/9/ /minus/ 10/sup 3/)GeV. The second approach involves theoretical speculations, such as technicolor and supersymmetry, that attempt to explain the TeV scale. 23 refs., 5 figs.

  6. A (critical) overview of electroweak symmetry breaking

    International Nuclear Information System (INIS)

    This presentation discusses the following points: The standard Higgs, big vs. little hierarchy; Electroweak Symmetry Breaking in supersymmetry and little hierarchy of Minimal Supersymmetric Standard Model (MSSM): Buried Higgs, Bigger quartic (D-terms, Next-to-Minimal Supersymmetric Standard Model (NMSSM), fat Higgs,..); Strong dynamics and related models: Technicolor, Monopole condensate, Warped extra dimensions, Realistic RS, Higgs-less, Composite Higgs, Little Higgs. In summary, we do not understand how Higgs is light and still no trace of new physics. In Supersymmetry (SUSY) it calls for extension of MSSM. In strong dynamics models: electroweak penguin (EWP) usually issue (Warped extra dimension - composite Higgs, Higgs-less, Little Higgs, Technicolor, monopole condensation,..). None of them is fully convincing but LHC should settle these

  7. Cosmic acceleration from Abelian symmetry breaking

    International Nuclear Information System (INIS)

    We discuss a consistent theory for a self-interacting vector field, breaking an Abelian symmetry in such a way to obtain an interesting behavior for its longitudinal polarization. In an appropriate decoupling limit, the dynamics of the longitudinal mode is controlled by Galileon interactions. The full theory away from the decoupling limit does not propagate ghost modes, and can be investigated in regimes where non-linearities become important. When coupled to gravity, this theory provides a candidate for dark energy, since it admits de Sitter cosmological solutions characterized by a technically natural value for the Hubble parameter. We also consider the homogeneous evolution when, besides the vector, additional matter in the form of perfect fluids is included. We find that the vector can have an important role in characterizing the universe expansion

  8. Information Content of Spontaneous Symmetry Breaking

    CERN Document Server

    Gleiser, Marcelo

    2012-01-01

    We propose a measure of order in the context of nonequilibrium field theory and argue that this measure, which we call relative configurational entropy (RCE), may be used to quantify the emergence of coherent low-entropy configurations, such as time-dependent or time-independent topological and nontopological spatially-extended structures. As an illustration, we investigate the nonequilibrium dynamics of spontaneous symmetry-breaking in three spatial dimensions. In particular, we focus on a model where a real scalar field, prepared initially in a symmetric thermal state, is quenched to a broken-symmetric state. For a certain range of initial temperatures, spatially-localized, long-lived structures known as oscillons emerge in synchrony and remain until the field reaches equilibrium again. We show that the RCE correlates with the number-density of oscillons, thus offering a quantitative measure of the emergence of nonperturbative spatiotemporal patterns that can be generalized to a variety of physical systems.

  9. Hadron physics and dynamical chiral symmetry breaking

    CERN Document Server

    Chang, Lei; Wilson, David J

    2012-01-01

    Physics is an experimental science; and a constructive feedback between theory and extant and forthcoming experiments is necessary if an understanding of nonperturbative QCD is to be achieved. The Dyson-Schwinger equations connect confinement with dynamical chiral symmetry breaking, both with the observable properties of hadrons, and hence can plausibly provide a means of elucidating the empirical content of strong QCD. We illustrate these points via comments on: in-hadron condensates; dressed-quark anomalous chromo- and electro-magnetic moments; the self-limiting magnitudes of such moments and pion-loop contributions to the gap equation; deep inelastic scattering; the spectra of mesons and baryons; the critical role played by hadron-hadron interactions in producing these spectra; and nucleon elastic and transition form factors.

  10. Black Holes and Abelian Symmetry Breaking

    CERN Document Server

    Chagoya, Javier; Tasinato, Gianmassimo

    2016-01-01

    Black hole configurations offer insights on the non-linear aspects of gravitational theories, and can suggest testable predictions for modifications of General Relativity. In this work, we examine exact black hole configurations in vector-tensor theories, originally proposed to explain dark energy by breaking the Abelian symmetry with a non-minimal coupling of the vector to gravity. We are able to evade the no-go theorems by Bekenstein on the existence of regular black holes in vector-tensor theories with Proca mass terms, and exhibit regular black hole solutions with a profile for the longitudinal vector polarization, characterised by an additional charge. We analytically find the most general static, spherically symmetric black hole solutions with and without a cosmological constant, and study in some detail their features, such as how the geometry depends on the vector charges. We also include angular momentum, and find solutions describing slowly-rotating black holes. Finally, we extend some of these solu...

  11. Time-symmetry breaking in turbulence

    CERN Document Server

    Jucha, Jennifer; Pumir, Alain; Bodenschatz, Eberhard

    2014-01-01

    In three-dimensional turbulent flows, the flux of energy from large to small scales breaks time symmetry. We show here that this irreversibility can be quantified by following the relative motion of several Lagrangian tracers. We find by analytical calculation, numerical analysis and experimental observation that the existence of the energy flux implies that, at short times, two particles separate temporally slower forwards than backwards, and the difference between forward and backward dispersion grows as $t^3$. We also find the geometric deformation of material volumes, surrogated by four points spanning an initially regular tetrahedron, to show sensitivity to the time-reversal with an effect growing linearly in $t$. We associate this with the structure of the strain rate in the flow.

  12. Breaking temporal symmetries for emission and absorption

    Science.gov (United States)

    Hadad, Yakir; Soric, Jason C.; Alu, Andrea

    2016-01-01

    Time-reversal symmetries impose stringent constraints on emission and absorption. Antennas, from radiofrequencies to optics, are bound to transmit and receive signals equally well from the same direction, making a directive antenna prone to receive echoes and reflections. Similarly, in thermodynamics Kirchhoff’s law dictates that the absorptivity and emissivity are bound to be equal in reciprocal systems at equilibrium, e(ω,θ)=a(ω,θ), with important consequences for thermal management and energy applications. This bound requires that a good absorber emits a portion of the absorbed energy back to the source, limiting its overall efficiency. Recent works have shown that weak time modulation or mechanical motion in suitably designed structures may largely break reciprocity and time-reversal symmetry. Here we show theoretically and experimentally that a spatiotemporally modulated device can be designed to have drastically different emission and absorption properties. The proposed concept may provide significant advances for compact and efficient radiofrequency communication systems, as well as for energy harvesting and thermal management when translated to infrared frequencies. PMID:26984502

  13. Isospin symmetry breaking in sd shell nuclei

    International Nuclear Information System (INIS)

    In the thesis, we develop a microscopic approach to describe the isospin-symmetry breaking effects in sd-shell nuclei. The work is performed within the nuclear shell model. A realistic isospin-conserving Hamiltonian is perfected by a charge-dependent part consisting of the Coulomb interaction and Yukawa-type meson exchange potentials to model charge-dependent forces of nuclear origin. The extended database of the experimental isobaric mass multiplet equation coefficients was compiled during the thesis work and has been used in a fit of the Hamiltonian parameters. The constructed Hamiltonian provides an accurate theoretical description of the isospin mixing nuclear states. A specific behaviour of the IMME (Isobaric Multiplet Mass Equation) coefficients have been revealed. We present two important applications: (i) calculations of isospin-forbidden proton emission amplitudes, which is often of interest for nuclear astrophysics, and (ii) calculation on corrections to nuclear Fermi beta decay, which is crucial for the tests of fundamental symmetries of the weak interaction. (author)

  14. Breaking of electroweak symmetry: origin and effects

    International Nuclear Information System (INIS)

    The Higgs boson appears as the corner stone of high energy physics, it might be the cause of the excess of matter that led to the formation of the structures of the universe and it seems that it drives the breaking of the electroweak symmetry. Moreover, when the stability at low energies of the Higgs boson is assured by an extra space dimension, it appears that this extra dimension can explain most issues in the flavor physics that are not understood by the standard model. The first chapter presents the main tools of effective field theories, the role of experimental data in the construction of theories valid beyond the standard model is discussed. The second chapter focuses on the electroweak baryogenesis that allows the testing of new physics via the electroweak phase transition. We detail the calculation of a Higgs potential at finite temperature. We follow the dynamics of the phase transition including nucleation an supercooling. Finally we investigate the prospects of gravity wave detection to see the effects of a strong electroweak phase transition. The 2 last chapters are dedicated to the physics of extra-dimension. The properties of the dynamics of scalar, vector fields with a 1/2 spin plunged in a 5 d. Anti de Sitter geometry are reviewed. We present a model of lepton masses and mixings based on the A4 non-Abelian discrete symmetry. It is shown that this model does not contradict the tests of electroweak precision. (A.C.)

  15. Breaking temporal symmetries for emission and absorption.

    Science.gov (United States)

    Hadad, Yakir; Soric, Jason C; Alu, Andrea

    2016-03-29

    Time-reversal symmetries impose stringent constraints on emission and absorption. Antennas, from radiofrequencies to optics, are bound to transmit and receive signals equally well from the same direction, making a directive antenna prone to receive echoes and reflections. Similarly, in thermodynamics Kirchhoff's law dictates that the absorptivity and emissivity are bound to be equal in reciprocal systems at equilibrium, e(ω, θ)=a(ω, θ), with important consequences for thermal management and energy applications. This bound requires that a good absorber emits a portion of the absorbed energy back to the source, limiting its overall efficiency. Recent works have shown that weak time modulation or mechanical motion in suitably designed structures may largely break reciprocity and time-reversal symmetry. Here we show theoretically and experimentally that a spatiotemporally modulated device can be designed to have drastically different emission and absorption properties. The proposed concept may provide significant advances for compact and efficient radiofrequency communication systems, as well as for energy harvesting and thermal management when translated to infrared frequencies. PMID:26984502

  16. Breaking temporal symmetries for emission and absorption

    Science.gov (United States)

    Hadad, Yakir; Soric, Jason C.; Alu, Andrea

    2016-03-01

    Time-reversal symmetries impose stringent constraints on emission and absorption. Antennas, from radiofrequencies to optics, are bound to transmit and receive signals equally well from the same direction, making a directive antenna prone to receive echoes and reflections. Similarly, in thermodynamics Kirchhoff's law dictates that the absorptivity and emissivity are bound to be equal in reciprocal systems at equilibrium, e(ω,θ)=a(ω,θ), with important consequences for thermal management and energy applications. This bound requires that a good absorber emits a portion of the absorbed energy back to the source, limiting its overall efficiency. Recent works have shown that weak time modulation or mechanical motion in suitably designed structures may largely break reciprocity and time-reversal symmetry. Here we show theoretically and experimentally that a spatiotemporally modulated device can be designed to have drastically different emission and absorption properties. The proposed concept may provide significant advances for compact and efficient radiofrequency communication systems, as well as for energy harvesting and thermal management when translated to infrared frequencies.

  17. Golden Probe of Electroweak Symmetry Breaking

    CERN Document Server

    Chen, Yi; Spiropulu, Maria; Stolarski, Daniel; Vega-Morales, Roberto

    2016-01-01

    The ratio of the Higgs couplings to $WW$ and $ZZ$ pairs, $\\lambda_{WZ}$, is a fundamental parameter in electroweak symmetry breaking as well as a measure of the (approximate) custodial symmetry possessed by the gauge boson mass matrix. We show that Higgs decays to four leptons are sensitive, via tree level/1-loop interference effects, to both the magnitude and, in particular, overall sign of $\\lambda_{WZ}$. Determining this sign requires interference effects, as it is nearly impossible to measure with rate information. Furthermore, simply determining the sign effectively establishes the custodial representation of the Higgs boson. We find that $h\\to4\\ell$ ($4\\ell \\equiv 2e2\\mu, 4e, 4\\mu$) decays have excellent prospects of directly establishing the overall sign at a high luminosity 13 TeV LHC. We also examine the ultimate LHC sensitivity in $h\\to4\\ell$ to the magnitude of $\\lambda_{WZ}$. Our results are independent of other measurements of the Higgs boson couplings and, in particular, largely free of assumpti...

  18. Spontaneous Planar Chiral Symmetry Breaking in Cells

    Science.gov (United States)

    Hadidjojo, Jeremy; Lubensky, David

    Recent progress in animal development has highlighted the central role played by planar cell polarity (PCP) in epithelial tissue morphogenesis. Through PCP, cells have the ability to collectively polarize in the plane of the epithelium by localizing morphogenetic proteins along a certain axis. This allows direction-dependent modulation of tissue mechanical properties that can translate into the formation of complex, non-rotationally invariant shapes. Recent experimental observations[1] show that cells, in addition to being planar-polarized, can also spontaneously develop planar chirality, perhaps in the effort of making yet more complex shapes that are reflection non-invariant. In this talk we will present our work in characterizing general mechanisms that can lead to spontaneous chiral symmetry breaking in cells. We decompose interfacial concentration of polarity proteins in a hexagonal cell packing into irreducible representations. We find that in the case of polar concentration distributions, a chiral state can only be reached from a secondary instability after the cells are polarized. However in the case of nematic distributions, we show that a finite-amplitude (subcritical, or ``first-order'') nematic transition can send the system from disorder directly to a chiral state. In addition, we find that perturbing the system by stretching the hexagonal packing enables direct (supercritical, or ``second-order'') chiral transition in the nematic case. Finally, we do a Landau expansion to study competition between stretch-induced chirality and the tendency towards a non-chiral state in packings that have retained the full 6-fold symmetry.

  19. Spontaneous Breaking of Spatial and Spin Symmetry in Spinor Condensates

    DEFF Research Database (Denmark)

    Scherer, M.; Lücke, B.; Gebreyesus, G.;

    2010-01-01

    Parametric amplification of quantum fluctuations constitutes a fundamental mechanism for spontaneous symmetry breaking. In our experiments, a spinor condensate acts as a parametric amplifier of spin modes, resulting in a twofold spontaneous breaking of spatial and spin symmetry in the amplified...

  20. Salam-Weinberg symmetry breaking with superheavy Higgs particles

    International Nuclear Information System (INIS)

    We discuss here the possibility of the breaking of the Salam-Weinberg symmetry by Higgs particles which are superheavy. The symmetry-breaking is associated with a nonzero vacuum expectation value of fermion condensates. This mechanism, if operative in nature, will imply the absence of Higgs particles at the weak scale. (author)

  1. Dark Matter and Dark Energy from Gravitational Symmetry Breaking

    CERN Document Server

    Fuzfa, A

    2010-01-01

    We build a mechanism of gravitational symmetry breaking (GSB) of a global U(1) symmetry based on the relaxation of the equivalence principle due to the mass variation of pseudo Nambu-Goldstone dark matter (DM) particles. This GSB process is described by the modified cosmological convergence mechanism of the Abnormally Weighting Energy (AWE) Hypothesis previously introduced by the authors. Several remarkable constraints from the Hubble diagram of far-away supernovae are derived, notably on the explicit and gravitational symmetry breaking energy scales of the model. We then briefly present some consequences on neutrino masses when this mechanism is applied to the particular case of the breaking of lepton number symmetry.

  2. Lorentz symmetry breaking effects on relativistic EPR correlations

    Energy Technology Data Exchange (ETDEWEB)

    Belich, H. [Universidade Federal do Espirito Santo, Departamento de Fisica e Quimica, Vitoria, ES (Brazil); Furtado, C.; Bakke, K. [Universidade Federal da Paraiba, Departamento de Fisica, Caixa Postal 5008, Joao Pessoa, PB (Brazil)

    2015-09-15

    Lorentz symmetry breaking effects on relativistic EPR (Einstein-Podolsky-Rosen) correlations are discussed. From the modified Maxwell theory coupled to gravity, we establish a possible scenario of the Lorentz symmetry violation and write an effective metric for the Minkowski spacetime. Then we obtain the Wigner rotation angle via the Fermi-Walker transport of spinors and consider the WKB (Wentzel-Kramers-Brillouin) approximation in order to study the influence of Lorentz symmetry breaking effects on the relativistic EPR correlations. (orig.)

  3. Charge symmetry breaking in $\\Lambda$ hypernuclei revisited

    CERN Document Server

    Gal, Avraham

    2015-01-01

    The large charge symmetry breaking (CSB) implied by the $\\Lambda$ binding energy difference $\\Delta B^{4}_{\\Lambda}(0^+_{\\rm g.s.})\\equiv B_{\\Lambda}(_{\\Lambda}^4$He)$-$$B_{\\Lambda}(_{\\Lambda}^4$H) = 0.35$\\pm$0.06 MeV of the $A=4$ mirror hypernuclei ground states, determined from emulsion studies, has defied theoretical attempts to reproduce it in terms of CSB in hyperon masses and in hyperon-nucleon interactions, including one pion exchange arising from $\\Lambda-\\Sigma^0$ mixing. Using a schematic strong-interaction $\\Lambda N\\leftrightarrow\\Sigma N$ coupling model developed by Akaishi and collaborators for $s$-shell $\\Lambda$ hypernuclei, we revisit the evaluation of CSB in the $A=4$ $\\Lambda$ hypernuclei and extend it to $p$-shell mirror $\\Lambda$ hypernuclei. The model yields values of $\\Delta B^{4}_{\\Lambda} (0^+_{\\rm g.s.})\\sim 0.25$ MeV. Smaller size and mostly negative $p$-shell binding energy differences are calculated for the $A=7-10$ mirror hypernuclei, in rough agreement with the few available dat...

  4. Black holes and Abelian symmetry breaking

    Science.gov (United States)

    Chagoya, Javier; Niz, Gustavo; Tasinato, Gianmassimo

    2016-09-01

    Black hole configurations offer insights on the nonlinear aspects of gravitational theories, and can suggest testable predictions for modifications of General Relativity. In this work, we examine exact black hole configurations in vector–tensor theories, originally proposed to explain dark energy by breaking the Abelian symmetry with a non-minimal coupling of the vector to gravity. We are able to evade the no-go theorems by Bekenstein on the existence of regular black holes in vector–tensor theories with Proca mass terms, and exhibit regular black hole solutions with a profile for the longitudinal vector polarisation, characterised by an additional charge. We analytically find the most general static, spherically symmetric black hole solutions with and without a cosmological constant, and study in some detail their features, such as how the geometry depends on the vector charges. We also include angular momentum, and find solutions describing slowly-rotating black holes. Finally, we extend some of these solutions to higher dimensions.

  5. Chiral symmetry breaking in QCD Lite

    CERN Document Server

    Engel, Georg P; Lottini, Stefano; Sommer, Rainer

    2014-01-01

    A distinctive feature of the presence of spontaneous chiral symmetry breaking in QCD is the condensation of low modes of the Dirac operator near the origin. The rate of condensation must be equal to the slope of (Mpi^2 Fpi^2)/2 with respect to the quark mass m in the chiral limit, where Mpi and Fpi are the mass and the decay constant of the Nambu-Goldstone bosons. We compute the spectral density of the (Hermitian) Dirac operator, the quark mass, the pseudoscalar meson mass and decay constant by numerical simulations of lattice QCD with two light degenerate Wilson quarks. We use CLS lattices at three values of the lattice spacing in the range 0.05-0.08 fm, and for several quark masses corresponding to pseudoscalar mesons masses down to 190 MeV. Thanks to this coverage of parameters space, we can extrapolate all quantities to the chiral and continuum limits with confidence. The results show that the low quark modes do condense in the continuum as expected by the Banks-Casher mechanism, and the rate of condensat...

  6. Warped electroweak breaking without custodial symmetry

    Science.gov (United States)

    Cabrer, Joan A.; von Gersdorff, Gero; Quirós, Mariano

    2011-03-01

    We propose an alternative to the introduction of an extra gauge (custodial) symmetry to suppress the contribution of KK modes to the T parameter in warped theories of electroweak breaking. The mechanism is based on a general class of warped 5D metrics and a Higgs propagating in the bulk. The metrics are nearly AdS in the UV region but depart from AdS in the IR region, towards where KK fluctuations are mainly localized, and have a singularity outside the slice between the UV and IR branes. This gravitational background is generated by a bulk stabilizing scalar field which triggers a natural solution to the hierarchy problem. Depending on the model parameters, gauge-boson KK modes can be consistent with present bounds on EWPT for mKK≳1 TeV at 95% CL. The model contains a light Higgs mode which unitarizes the four-dimensional theory. The reduction in the precision observables can be traced back to a large wave function renormalization for this mode.

  7. Warped Electroweak Breaking Without Custodial Symmetry

    CERN Document Server

    Cabrer, Joan A; Quiros, Mariano

    2010-01-01

    We propose an alternative to the introduction of an extra gauge (custodial) symmetry to suppress the contribution of KK modes to the T parameter in warped theories of electroweak breaking. The mechanism is based on a general class of warped 5D metrics and a Higgs propagating in the bulk. The metrics are nearly AdS in the UV region but depart from AdS in the IR region, towards where KK fluctuations are mainly localized, and have a singularity outside the slice between the UV and IR branes. This gravitational background is generated by a bulk stabilizing scalar field which triggers a natural solution to the hierarchy problem. Depending on the model parameters, gauge-boson KK modes can be consistent with present bounds on EWPT for m > 1 TeV at 95% CL. The model contains a light Higgs mode which unitarizes the four-dimensional theory. The reduction in the precision observables can be traced back to a large wave function renormalization for this mode.

  8. Is Electroweak Symmetry Breaking Still Natural in the MSSM?

    CERN Document Server

    Dutta, Bhaskar

    2016-01-01

    The absence of any signal of supersymmetry (SUSY) at the LHC has raised the SUSY particle mass scale compared to $Z$ boson mass $M_Z$. We investigate the naturalness of the electroweak symmetry breaking after considering radiative symmetry breaking along with 125 GeV Higgs mass. We find that the important quantity to measure the naturalness of the hierarchy between the SUSY scale and $M_Z$ is the separation between the radiative symmetry breaking scale, i.e., where $m_{H_u}^2+\\mu^2$ turns negative for large $\\tan\\beta$ case ($\\mu$ is the Higgsino mass and $m_{H_u}$ is the SUSY breaking up-type Higgs boson mass) and the average stop mass. Using this measure, one can show that the electroweak symmetry breaking can be natural even if $\\mu$ is large contrary to the prevailing claim that $\\mu$ is needed to be small to maintain the naturalness.

  9. Relativistic dissipative hydrodynamics with spontaneous symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Pujol, C.; Davesne, D. [IPN - Lyon, 43 Bd du 11 Novembre 1918, F-69622 Villeurbanne Cedex (France)

    2002-07-01

    In this paper we consider dissipative hydrodynamic equations for systems with continuous broken symmetries. We first present the case of superfluidity, in which the symmetry U(1) is broken and then generalize to the chiral symmetry SU(2){sub L} x SU(2){sub R}. New transport coefficients are introduced and the consequences of their existence are discussed. (authors)

  10. Relativistic dissipative hydrodynamics with spontaneous symmetry breaking

    CERN Document Server

    Pujol, C

    2003-01-01

    In this paper we consider dissipative hydrodynamic equations for systems with continuous broken symmetries. We first present the case of superfluidity, in which the symmetry U(1) is broken and then generalize to the chiral symmetry $SU(2)_L \\times SU(2)_R$. New transport coefficients are introduced and the consequences of their existence are discussed.

  11. Spontaneous symmetry breaking, self-trapping, and Josephson oscillations

    CERN Document Server

    2013-01-01

    This volume collects a a number of contributions on spontaneous symmetry breaking. Current studies in this general field are going ahead at a full speed. The book present review chapters which give an overview on the major break throughs of recent years. It covers a number of different physical settings which are introduced when a nonlinearity is added to the underlying symmetric problems and its strength exceeds a certain critical value. The corresponding loss of symmetry, called spontaneous symmetry breaking, alias self-trapping into asymmetric states is extensively discussed in this book.

  12. Catalysis of Dynamical Chiral Symmetry Breaking by Chiral Chemical Potential

    CERN Document Server

    Braguta, V V

    2016-01-01

    In this paper we study the properties of media with chiral imbalance parameterized by chiral chemical potential. It is shown that depending on the strength of interaction between constituents in the media the chiral chemical potential either creates or enhances dynamical chiral symmetry breaking. Thus the chiral chemical potential plays a role of the catalyst of dynamical chiral symmetry breaking. Physically this effect results from the appearance of the Fermi surface and additional fermion states on this surface which take part in dynamical chiral symmetry breaking. An interesting conclusion which can be drawn is that at sufficiently small temperature chiral plasma is unstable with respect to condensation of Cooper pairs and dynamical chiral symmetry breaking even for vanishingly small interactions between constituents.

  13. Electroweak symmetry breaking in light of LHC results

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, John [Physics Department, King' s College London (United Kingdom); Theory Division, CERN (Switzerland)

    2012-07-01

    The prospects for various proposed models of electroweak symmetry breaking are assessed in light of LHC results, and key experimental tests are discussed. Models discussed include the Standard Model, its supersymmetric extensions, and composite models with relatively light scalar bosons.

  14. Concepts of electroweak symmetry breaking and Higgs physics

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Bock, M. [Benemerita Univ., Puebla (Mexico). Inst. de Fisica; Mondragon, M. [Universidad Nacional Autonoma de Mexico, Mexico City (Mexico). Inst. de Fisica; Muehlleitner, M. [Laboratoire d' Annecy-Le-Vieux de Physique Theorique, 74 (France)]|[CERN - European Organization for Nuclear Research, Geneva (Switzerland). Theory Div.; Spira, M. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Zerwas, P.M. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)]|[RWTH Aachen (Germany). Inst. Theor. Physik E]|[Univ. Paris- Sud, Orsay (France). Laboratoire de Physique Theorique

    2007-12-15

    We present an introduction to the basic concepts of electroweak symmetry breaking and Higgs physics within the Standard Model and its supersymmetric extensions. A brief overview will also be given on alternative mechanisms of electroweak symmetry breaking. In addition to the theoretical basis, the present experimental status of Higgs physics and prospects at the Tevatron, the LHC and e{sup +}e{sup -} linear colliders are discussed. (orig.)

  15. Impact of symmetry breaking in networks of globally coupled oscillators

    OpenAIRE

    Premalatha, K.; Chandrasekar, V. K.; Senthilvelan, M.; Lakshmanan, M.

    2015-01-01

    We analyze the consequences of symmetry breaking in the coupling in a network of globally coupled identical Stuart-Landau oscillators. We observe that symmetry breaking leads to increased disorderliness in the dynamical behavior of oscillatory states and consequently results in a rich variety of dynamical states. Depending on the strength of the nonisochronicity parameter, we find various dynamical states such as amplitude chimera, amplitude cluster, frequency chimera and frequency cluster st...

  16. Concepts of electroweak symmetry breaking and Higgs physics

    International Nuclear Information System (INIS)

    We present an introduction to the basic concepts of electroweak symmetry breaking and Higgs physics within the Standard Model and its supersymmetric extensions. A brief overview will also be given on alternative mechanisms of electroweak symmetry breaking. In addition to the theoretical basis, the present experimental status of Higgs physics and prospects at the Tevatron, the LHC and e+e- linear colliders are discussed. (orig.)

  17. Spontaneous disordering and symmetry breaking in complex plasmas

    CERN Document Server

    Zhdanov, Sergey K; Morfill, Gregor E

    2010-01-01

    Spontaneous symmetry breaking is an essential feature of modern science. We demonstrate that it also plays an important role in the physics of complex plasmas. Complex plasmas can serve as a powerful tool for observing and studying discrete types of symmetry and disordering at the kinetic level that numerous many-body systems exhibit.

  18. Symmetry Breaking of Vibrating Interfaces a Mechanism for Morphogenesis

    CERN Document Server

    García, N

    2000-01-01

    We show that very small-amplitude oscillations of a highly symmetric, spheric or cylindrical, interface (thin membrane) between two fluids can result in inhomogeneous instability and breaking of the interface symmetry: the frequency of the breathing vibration selects the spatial symmetry. This mechanism may govern morphogenesis.

  19. Personal recollections on chiral symmetry breaking

    Science.gov (United States)

    Kobayashi, Makoto

    2016-07-01

    The author's work on the mass of pseudoscalar mesons is briefly reviewed. The emergence of the study of CP violation in the renormalizable gauge theory from consideration of chiral symmetry in the quark model is discussed.

  20. Mirror symmetry breaking at the molecular level.

    OpenAIRE

    Avetisov, V; Goldanskii, V.

    1996-01-01

    Reasoning from two basic principles of molecular physics, P invariance of electromagnetic interaction and the second law of thermodynamics, one would conclude that mirror symmetry retained in the world of chiral molecules. This inference is fully consistent with what is observed in inorganic nature. However, in the bioorganic world, the reverse is true. Mirror symmetry there is definitely broken. Is it possible to account for this phenomenon without going beyond conventional concepts of the k...

  1. New Mechanism of Flavor Symmetry Breaking from Supersymmetric Strong Dynamics

    CERN Document Server

    Carone, C D; Moroi, T; Carone, Christopher D.; Hall, Lawrence J.; Moroi, Takeo

    1997-01-01

    We present a class of supersymmetric models in which flavor symmetries are broken dynamically, by a set of composite flavon fields. The strong dynamics that is responsible for confinement in the flavor sector also drives flavor symmetry breaking vacuum expectation values, as a consequence of a quantum-deformed moduli space. Yukawa couplings result as a power series in the ratio of the confinement to Planck scale, and the fermion mass hierarchy depends on the differing number of preons in different flavor symmetry-breaking operators. We present viable non-Abelian and Abelian flavor models that incorporate this mechanism.

  2. Effect of symmetry breaking on transition strength distributions

    International Nuclear Information System (INIS)

    The quantum numbers of over 100 states in 30P have been determined from the ground state to 8 MeV. Previous measurements had provided complete spectroscopy in 26Al. For these N=Z=odd nuclei, states of isospin T=0 and T=1 coexist at all energies. These spectra provide a unique opportunity to test the effect of symmetry breaking (of the approximate symmetry isospin) on the level statistics and on the transition strength distributions. The level statistics are strongly affected by the small symmetry breaking and the transition strength distributions differ from the Porter-Thomas distribution

  3. Symmetry-Break in Voronoi Tessellations

    Directory of Open Access Journals (Sweden)

    Valerio Lucarini

    2009-08-01

    Full Text Available We analyse in a common framework the properties of the Voronoi tessellations resulting from regular 2D and 3D crystals and those of tessellations generated by Poisson distributions of points, thus joining on symmetry breaking processes and the approach to uniform random distributions of seeds. We perturb crystalline structures in 2D and 3D with a spatial Gaussian noise whose adimensional strength is α and analyse the statistical properties of the cells of the resulting Voronoi tessellations using an ensemble approach. In 2D we consider triangular, square and hexagonal regular lattices, resulting into hexagonal, square and triangular tessellations, respectively. In 3D we consider the simple cubic (SC, body-centred cubic (BCC, and face-centred cubic (FCC crystals, whose corresponding Voronoi cells are the cube, the truncated octahedron, and the rhombic dodecahedron, respectively. In 2D, for all values α>0, hexagons constitute the most common class of cells. Noise destroys the triangular and square tessellations, which are structurally unstable, as their topological properties are discontinuous in α=0. On the contrary, the honeycomb hexagonal tessellation is topologically stable and, experimentally, all Voronoi cells are hexagonal for small but finite noise with α<0.12. Basically, the same happens in the 3D case, where only the tessellation of the BCC crystal is topologically stable even against noise of small but finite intensity. In both 2D and 3D cases, already for a moderate amount of Gaussian noise (α>0.5, memory of the specific initial unperturbed state is lost, because the statistical properties of the three perturbed regular tessellations are indistinguishable. When α>2, results converge to those of Poisson-Voronoi tessellations. In 2D, while the isoperimetric ratio increases with noise for the perturbed hexagonal tessellation, for the perturbed triangular and square tessellations it is optimised for specific value of noise intensity

  4. Spontaneous symmetry breaking in 5D conformally invariant gravity

    CERN Document Server

    Moon, Taeyoon

    2016-01-01

    We explore the possibility of the spontaneous symmetry breaking in 5D conformally invariant gravity, whose action consists of a scalar field nonminimally coupled to the curvature with its potential. Performing dimensional reduction via ADM decomposition, we find that the model allows an exact solution giving rise to the 4D Minkowski vacuum. Exploiting the conformal invariance with Gaussian warp factor, we show that it also admits a solution which implement the spontaneous breaking of conformal symmetry. We investigate its stability by performing the tensor perturbation and find the resulting system is described by the conformal quantum mechanics. Possible applications to the spontaneous symmetry breaking of time-translational symmetry along the dynamical fifth direction and the brane-world scenario are discussed.

  5. Experimental demonstration of decoherence-induced spontaneous symmetry breaking

    International Nuclear Information System (INIS)

    We experimentally investigate the variations of exchange-symmetry properties of the four Bell states in an exchange-symmetric pure dephasing process with a two-photon system generated from spontaneous parametric down-conversion (SPDC). Experiment results show that under such an exchange-symmetric local-noise Hamiltonian, the exchange-symmetry property remains unchanged for two of the three symmetric Bell states, i.e., the states |Φ>±=(1/√(2))(|00>±|11>). For the antisymmetric Bell state |Ψ>-=(1/√(2))(|01>-|10>), the exchange-symmetry property increases and achieves a maximum value of 0.5 at the asymptotic limit. However, for the third exchange-symmetric Bell state |Ψ>+=(1/√(2))(|01>+|10>), the exchange-symmetry property breaks, surviving with a probability of 0.5 at the asymptotic limit, which provides some evidence supporting such decoherence-induced spontaneous-symmetry-breaking phenomena.

  6. Spontaneous breaking of spatial symmetries in collective neutrino oscillations

    CERN Document Server

    Duan, Huaiyu

    2014-01-01

    A dense neutrino medium can experience collective oscillations or self-induced flavor transformation through nonlinear neutrino-neutrino refraction. To make the problem of collective neutrino oscillations more tractable, all previous studies on this subject have assumed some spatial symmetry or symmetries in the neutrino medium (e.g., translation symmetries in the early universe and spherical symmetry in core-collapse supernovae). We point out that the collective oscillation modes studied in such models are very special. Using a simple toy model we show that spatial symmetries can be broken spontaneously in collective neutrino oscillations. We also show that the spatial-symmetry-breaking (SSB) modes of neutrino oscillations can exist for both neutrino mass hierarchies and even in the regimes where collective neutrino oscillations were previously thought to be suppressed. This finding calls for study of collective neutrino oscillations in multi-dimensional models.

  7. Rotational symmetry breaking in baby Skyrme models

    CERN Document Server

    Hen, Itay

    2007-01-01

    We consider multisolitons with charges 1 =< B =< 5 in the baby Skyrme model for the one-parametric family of potentials U=\\mu^2 (1-\\phi_3)^s with 0symmetry is exhibited only in the small s region; above a certain critical value of s, this symmetry is broken and a strong repulsion between the constituent one-Skyrmions becomes apparent. We also compute the spatial energy distributions of these solutions.

  8. Radiatively induced breaking of conformal symmetry in a superpotential

    Science.gov (United States)

    Arbuzov, A. B.; Cirilo-Lombardo, D. J.

    2016-07-01

    Radiatively induced symmetry breaking is considered for a toy model with one scalar and one fermion field unified in a superfield. It is shown that the classical quartic self-interaction of the superfield possesses a quantum infrared singularity. Application of the Coleman-Weinberg mechanism for effective potential leads to the appearance of condensates and masses for both scalar and fermion components. That induces a spontaneous breaking of the initial classical symmetries: the supersymmetry and the conformal one. The energy scales for the scalar and fermion condensates appear to be of the same order, while the renormalization scale is many orders of magnitude higher. A possibility to relate the considered toy model to conformal symmetry breaking in the Standard Model is discussed.

  9. Radiatively Induced Breaking of Conformal Symmetry in a Superpotential

    CERN Document Server

    Arbuzov, A B

    2015-01-01

    Radiatively induced symmetry breaking is considered for a toy model with one scalar and one fermion field unified in a superfield. It is shown that the classical quartic self-interaction of the superfield possesses a quantum infrared singularity. Application of the Coleman-Weinberg mechanism for effective potential leads to the appearance of condensates and masses for both scalar and fermion components. That induces a spontaneous breaking of the initial classical symmetries: the supersymmetry and the conformal one. The energy scales for the scalar and fermion condensates appear to be of the same order, while the renormalization scale is many orders of magnitude higher. A possibility to relate the considered toy model to conformal symmetry breaking in the Standard Model is discussed.

  10. Matter Representations and Gauge Symmetry Breaking via Compactified Space

    CERN Document Server

    Hatanaka, H

    1999-01-01

    We study dynamical gauge symmetry breaking via compactified space in the framework of SU($N$) gauge theory on $M^{d-1}\\times S^1$ ($d=4,5,6$) space-time. Especially, we study in detail the gauge symmetry breaking in SU(2) and SU(3) gauge theories when the models contain both fundamental and adjoint matters. As the result, we find that any pattern of gauge symmetry breaking is realized by selecting appropriate set of numbers $(\\Nf,\\Nad)$ in these cases. It is achieved without tuning boundary conditions of matter fields. As the by-product, in some cases we get effective potential which has no curvature at the minimum thus leading to massless Higgs scalars, irrespectively of the size of compactified space.

  11. Massive photons from Super and Lorentz symmetry breaking

    CERN Document Server

    Bonetti, Luca; Helayël-Neto, José A; Spallicci, Alessandro D A M

    2016-01-01

    In the context of Standard Model Extensions (SMEs), we analyse four general classes of Super Symmetry (SuSy) and Lorentz Symmetry (LoSy) breaking, leading to {observable} imprints at our energy scales. The photon dispersion relations show a non-Maxwellian behaviour for the CPT (Charge-Parity-Time reversal symmetry) odd and even sectors. The group velocities exhibit also a directional dependence with respect to the breaking background vector (odd CPT) or tensor (even CPT). In the former sector, the group velocity may decay following an inverse squared frequency behaviour. Thus, we extract a massive and gauge invariant Carroll-Field-Jackiw photon term in the Lagrangian and show that the mass is proportional to the breaking vector. The latter is estimated by ground measurements and leads to a photon mass upper limit of $10^{-19}$ eV or $2 \\times 10^{-55}$ kg and thereby to a potentially measurable delay at low radio frequencies.

  12. Symmetry breaking and restoration in Lifshitz type theories

    Energy Technology Data Exchange (ETDEWEB)

    Farakos, K., E-mail: kfarakos@central.ntua.gr [Department of Physics, National Technical University of Athens, Zografou Campus, 15780 Athens (Greece); Metaxas, D., E-mail: metaxas@central.ntua.gr [Department of Physics, National Technical University of Athens, Zografou Campus, 15780 Athens (Greece)

    2012-02-07

    We consider the one-loop effective potential at zero and finite temperature in scalar field theories with anisotropic space-time scaling. For z=2, there is a symmetry breaking term induced at one loop at zero temperature and we find symmetry restoration through a first-order phase transition at high temperature. For z=3, we considered at first the case with a positive mass term at tree level and found no symmetry breaking effects induced at one loop, and then we study the case with a negative mass term at tree level where we cannot conclude about symmetry restoration effects at high temperature because of the imaginary parts that appear in the effective potential for small values of the scalar field.

  13. Symmetry breaking and restoration in Lifshitz type theories

    Science.gov (United States)

    Farakos, K.; Metaxas, D.

    2012-02-01

    We consider the one-loop effective potential at zero and finite temperature in scalar field theories with anisotropic space-time scaling. For z = 2, there is a symmetry breaking term induced at one loop at zero temperature and we find symmetry restoration through a first-order phase transition at high temperature. For z = 3, we considered at first the case with a positive mass term at tree level and found no symmetry breaking effects induced at one loop, and then we study the case with a negative mass term at tree level where we cannot conclude about symmetry restoration effects at high temperature because of the imaginary parts that appear in the effective potential for small values of the scalar field.

  14. Symmetry breaking and restoration in Lifshitz type theories

    CERN Document Server

    Farakos, K

    2011-01-01

    We consider the one-loop effective potential at zero and finite temperature in scalar field theories with anisotropic space-time scaling. For $z=2$, there is a symmetry breaking term induced at one-loop at zero temperature and we find symmetry restoration through a first-order phase transition at high temperature. For $z=3$, we considered at first the case with a positive mass term at tree level and found no symmetry breaking effects induced at one-loop, and then we study the case with a negative mass term at tree level where we cannot conclude about symmetry restoration effects at high temperature because of the imaginary parts that appear in the effective potential for small values of the scalar field.

  15. Gedanken Worlds without Higgs: QCD-Induced Electroweak Symmetry Breaking

    Energy Technology Data Exchange (ETDEWEB)

    Quigg, Chris; /Fermilab /Karlsruhe U., TTP; Shrock, Robert; /YITP, Stony Brook

    2009-01-01

    To illuminate how electroweak symmetry breaking shapes the physical world, we investigate toy models in which no Higgs fields or other constructs are introduced to induce spontaneous symmetry breaking. Two models incorporate the standard SU(3){sub c} {circle_times} SU(2){sub L} {circle_times} U(1){sub Y} gauge symmetry and fermion content similar to that of the standard model. The first class--like the standard electroweak theory--contains no bare mass terms, so the spontaneous breaking of chiral symmetry within quantum chromodynamics is the only source of electroweak symmetry breaking. The second class adds bare fermion masses sufficiently small that QCD remains the dominant source of electroweak symmetry breaking and the model can serve as a well-behaved low-energy effective field theory to energies somewhat above the hadronic scale. A third class of models is based on the left-right-symmetric SU(3){sub c} {circle_times} SU(2){sub L} {circle_times} SU(2){sub R} {circle_times} U(1)B?L gauge group. In a fourth class of models, built on SU(4){sub PS} {circle_times} SU(2){sub L} {circle_times} SU(2){sub R} gauge symmetry, lepton number is treated as a fourth color. Many interesting characteristics of the models stem from the fact that the effective strength of the weak interactions is much closer to that of the residual strong interactions than in the real world. The Higgs-free models not only provide informative contrasts to the real world, but also lead us to consider intriguing issues in the application of field theory to the real world.

  16. Symmetry breaking effects on spin and electronic transport in graphene

    OpenAIRE

    Asmar, Mahmoud M; Ulloa, Sergio E.

    2015-01-01

    The decoration of graphene samples with adatoms or nanoparticles leads to the enhancement of spin-orbit interactions as well as to the introduction of symmetry-breaking effects that could have drastic effects on spin and electronic transport phenomena. We present an analysis based on symmetry considerations and examine the impact on the scattering matrix for graphene systems containing defects that enhance spin-orbit interactions, while conserving the electronic total angular momentum. We sho...

  17. Higgs mechanism without spontaneous symmetry breaking and quark confinement

    CERN Document Server

    Kondo, Kei-Ichi

    2016-01-01

    We propose a novel description for the Higgs mechanism by which a gauge boson acquires the mass in a manifestly gauge-invariant way. In the Higgs mechanism, we do not assume spontaneous breakdown of gauge symmetry signaled by a non-vanishing vacuum expectation value of the scalar field. The spontaneous symmetry breaking is sufficient but not necessary for the Higgs mechanism to work. This enables us to discuss the confinement-Higgs complementarity from a new perspective.

  18. Spontaneous symmetry breaking in correlated wave functions

    Science.gov (United States)

    Kaneko, Ryui; Tocchio, Luca F.; Valentí, Roser; Becca, Federico; Gros, Claudius

    2016-03-01

    We show that Jastrow-Slater wave functions, in which a density-density Jastrow factor is applied onto an uncorrelated fermionic state, may possess long-range order even when all symmetries are preserved in the wave function. This fact is mainly related to the presence of a sufficiently strong Jastrow term (also including the case of full Gutzwiller projection, suitable for describing spin models). Selected examples are reported, including the spawning of Néel order and dimerization in spin systems, and the stabilization of charge and orbital order in itinerant electronic systems.

  19. Symmetry-Breaking Plasmonic Metasurfaces for Broadband Light Bending

    DEFF Research Database (Denmark)

    Ni, Xingjie; Emani, Naresh K.; Kildishev, Alexander V.;

    2012-01-01

    We experimentally demonstrate unparalleled wave-front control in a broadband, optical wavelength range from 1.0 μm to 1.9 μm, using a thin plasmonic layer (metasurface) consisting of a nanoantenna array that breaks the symmetry along the interface.......We experimentally demonstrate unparalleled wave-front control in a broadband, optical wavelength range from 1.0 μm to 1.9 μm, using a thin plasmonic layer (metasurface) consisting of a nanoantenna array that breaks the symmetry along the interface....

  20. Finding strongly interacting symmetry breaking at the SSC

    Energy Technology Data Exchange (ETDEWEB)

    Golden, M.

    1989-02-01

    Pairs of gauge bosons, W and Z, are a probe of the electroweak symmetry-breaking sector, since the numbers of two gauge boson events are much larger in strongly coupled models than weak. The doubly charged channels W/sup +/W/sup +/ and W/sup /minus//W/sup/minus// are cleanest, since they do not suffer from q/bar q/ or gg fusion backgrounds. The like-charged gauge boson events are observable only if the symmetry breaking sector is strongly interacting. 19 refs., 4 figs., 2 tabs.

  1. Modular Ground State for SU(8) Symmetry Breaking

    CERN Document Server

    Adler, Stephen L

    2015-01-01

    We elaborate on our recent proposal of a modular ground state structure for the first stage of $SU(8)$ symmetry breaking by a scalar in the 56 representation. We review the arguments for $U(1)$ generator modularity 15, and show that this can lead to a vanishing mass for the $U(1)$ gauge boson, as needed for the symmetry breaking pattern $SU(8) \\supset SU(3) \\times SU(5) \\times U(1)$. We then give a simplified form for the modulo 5 ground state obeying clustering, that we have conjectured to lead from broken $SU(8)$ to the flipped $SU(5)$ model. Generalizations of these results are also given.

  2. Relating spontaneous and explicit symmetry breaking in the presence of the Higgs mechanism

    CERN Document Server

    Pedro, Leonardo

    2016-01-01

    One common way to define spontaneous symmetry breaking involves necessarily explicit symmetry breaking. We add explicit symmetry breaking terms to the Higgs potential, so that the spontaneous breaking of a global symmetry in multi-Higgs-doublet models is a particular case of explicit symmetry breaking. Then we show that it is possible to study the Higgs potential without assuming that the local gauge $SU(2)_L$ symmetry is spontaneously broken or not (it is known that gauge symmetries may not be possible to break spontaneously). We also discuss the physical spectrum of multi-Higgs-doublet models and the related custodial symmetry. We review background symmetries: these are symmetries that despite already explicitly broken, can still be spontaneously broken. We show that the CP background symmetry is not spontaneously broken, based on this fact: we explain in part a recent conjecture relating spontaneous and explicit breaking of the charge-parity (CP) symmetry; we also relate explicit and spontaneous geometric ...

  3. Spontaneous Parity-Time Symmetry Breaking in Moving Media

    CERN Document Server

    Silveirinha, M G

    2014-01-01

    Optical instabilities in moving media are linked to a spontaneous parity-time symmetry breaking of the system. It is shown that in general the time evolution of the electromagnetic waves in moving media is determined by a non-Hermitian parity-time symmetric operator. For lossless systems the frequency spectrum of the time evolution operator may be complex valued, and has a mirror symmetry with respect to the real-frequency axis. The possibility of optical amplification of a light pulse in the broken parity-time symmetry regime is demonstrated.

  4. Parity-Time Symmetry Breaking in Coupled Nanobeam Cavities

    CERN Document Server

    Zhang, Senlin; Zhang, Yuguang; He, Sailing

    2015-01-01

    The parity-time symmetry (PT symmetry) breaking phenomenon is investigated in a coupled nanobeam cavity system. An exceptional point is observed during the tuning of the relation of the gain/loss and coupling strength of the closely placed nanobeam pairs. The PT symmetry concept can be applied to realize unidirectional light propagation and single mode operation lasers, which may allow for a new way to harness the optical signal in photonic integrated circuits. Otherwise, operating at this particular exceptional point, sensitivity of tiny perturbation detection can be enhanced greatly compared with conventional sensors.

  5. Relativistic symmetry breaking in light kaonic nuclei

    CERN Document Server

    Yang, Rong-Yao; Xiang, Qian-Fei; Zhang, Dong-Rui; Wei, Si-Na

    2014-01-01

    As the experimental data from kaonic atoms and $K^{-}N$ scatterings imply that the $K^{-}$-nucleon interaction is strongly attractive at saturation density, there is a possibility to form $K^{-}$-nuclear bound states or kaonic nuclei. In this work, we investigate the ground-state properties of the light kaonic nuclei with the relativistic mean field theory. It is found that the strong attraction between $K^{-}$ and nucleons reshapes the scalar and vector meson fields, leading to the remarkable enhancement of the nuclear density in the interior of light kaonic nuclei and the manifest shift of the single-nucleon energy spectra and magic numbers therein. As a consequence, the pseudospin symmetry is shown to be violated together with enlarged spin-orbit splittings in these kaonic nuclei.

  6. Radiative breaking of conformal symmetry in the Standard Model

    Science.gov (United States)

    Arbuzov, A. B.; Nazmitdinov, R. G.; Pavlov, A. E.; Pervushin, V. N.; Zakharov, A. F.

    2016-02-01

    Radiative mechanism of conformal symmetry breaking in a comformal-invariant version of the Standard Model is considered. The Coleman-Weinberg mechanism of dimensional transmutation in this system gives rise to finite vacuum expectation values and, consequently, masses of scalar and spinor fields. A natural bootstrap between the energy scales of the top quark and Higgs boson is suggested.

  7. Chiral symmetry breaking with the Curtis-Pennington vertex

    NARCIS (Netherlands)

    Atkinson, D.; Gusynin, V. P.; Maris, P.

    1992-01-01

    Published in: Phys. Lett. B 303 (1993) 157-162 citations recorded in [Science Citation Index] Abstract: We study chiral symmetry breaking in quenched QED$_4$, using a vertex Ansatz recently proposed by Curtis and Pennington. Bifurcation analysis is employed to establish the existence of a critical c

  8. Quantum electroweak symmetry breaking through loop quadratic contributions

    Directory of Open Access Journals (Sweden)

    Dong Bai

    2015-06-01

    Full Text Available Based on two postulations that (i the Higgs boson has a large bare mass mH≫mh≃125 GeV at the characteristic energy scale Mc which defines the Standard Model (SM in the ultraviolet region, and (ii quadratic contributions of Feynman loop diagrams in quantum field theories are physically meaningful, we show that the SM electroweak symmetry breaking is induced by the quadratic contributions from loop effects. As the quadratic running of Higgs mass parameter leads to an additive renormalization, which distinguishes from the logarithmic running with a multiplicative renormalization, the symmetry breaking occurs once the sliding energy scale μ moves from Mc down to a transition scale μ=ΛEW at which the additive renormalized Higgs mass parameter mH2(Mc/μ gets to change the sign. With the input of current experimental data, this symmetry breaking energy scale is found to be ΛEW≃760 GeV, which provides another basic energy scale for the SM besides Mc. Studying such a symmetry breaking mechanism could play an important role in understanding both the hierarchy problem and naturalness problem. It also provides a possible way to explore the experimental implications of the quadratic contributions as ΛEW lies within the probing reach of the LHC and the future Great Collider.

  9. Comment on "Electromagnetic potential vectors and spontaneous symmetry breaking"

    CERN Document Server

    Dvoeglazov, V V

    1993-01-01

    The appearance of terms, which are analogous to ones required for symmetry breaking, in Lagrangian of Ref.~\\cite{Shebalin} is shown to be caused by gauge invariance of quantum electrodynamics (QED) and by inaccuracy of the author in a choice of canonical variables. These terms in the Lagrangian (18) of~\\cite{Shebalin} do not have physical meaning.

  10. Ads/CFT correspondence and symmetry breaking

    International Nuclear Information System (INIS)

    We study, using the dual AdS description, the vacua of field theories where some of the gauge symmetry is broken by expectation values of scalar fields. In such vacua, operators built out of the scalar fields acquire expectation values, and we show how to calculate them from the behavior of perturbations to the AdS background near the boundary. Specific examples include the N = 4 SYM theory, and theories on D3-branes placed on orbifolds and conifolds. We also clarify some subtleties of the AdS/CFT correspondence that arise in this analysis. In particular, we explain how scalar fields in AdS space of sufficiently negative mass-squared can be associated with CFT operators of two possible dimensions. All dimensions are bounded from below by (d-2)/2; this is the unitarity bound for scalar operators in d-dimensional field theory. We further argue that the generating functional for correlators in the theory with one choice of operator dimension is a Legendre transform of the generating functional in the theory with the other choice

  11. Spontaneous Symmetry Breaking in General Relativity. Brane World Concept

    CERN Document Server

    Meierovich, Boris E

    2009-01-01

    Gravitational properties of a hedge-hog type topological defect in two extra dimensions are considered in General Relativity employing a vector as the order parameter. The developed macroscopic theory of phase transitions with spontaneous symmetry breaking is applied to the analysis of possible "thick" brane structures. The previous considerations were done using the order parameter in the form of a multiplet in a target space of scalar fields. The difference of these two approaches is analyzed and demonstrated in detail. There are two different symmetries of regular solutions of Einstein equations for a hedgehog type vector order parameter. Both solutions are analyzed in parallel analytically and numerically. Regular configurations in cases of vector order parameter have one more free parameter in comparison with the scalar multiplet solutions. It is shown that the existence of a negative cosmological constant is sufficient for the spontaneous symmetry breaking of the initially plain bulk. Regular configurat...

  12. Inhomogeneous chiral symmetry breaking in dense neutron-star matter

    CERN Document Server

    Buballa, Michael

    2015-01-01

    An increasing number of model results suggests that chiral symmetry is broken inhomogeneously in a certain window at intermediate densities in the QCD phase diagram. This could have significant effects on the properties of compact stars, possibly leading to new astrophysical signatures. In this contribution we discuss this idea by reviewing recent results on inhomogeneous chiral symmetry breaking under an astrophysics-oriented perspective. After introducing two commonly studied spatial modulations of the chiral condensate, the chiral density wave and the real kink crystal, we focus on their properties and their effect on the equation of state of quark matter. We also describe how these crystalline phases are affected by different elements which are required for a realistic description of a compact star, such as charge neutrality, the presence of magnetic fields, vector interactions and the interplay with color-superconductivity. Finally, we discuss possible signatures of inhomogeneous chiral symmetry breaking...

  13. Lorentz symmetry breaking as a quantum field theory regulator

    CERN Document Server

    Visser, Matt

    2009-01-01

    Perturbative expansions of relativistic quantum field theories typically contain ultraviolet divergences requiring regularization and renormalization. Many different regularization techniques have been developed over the years, but most regularizations require severe mutilation of the logical foundations of the theory. In contrast, breaking Lorentz invariance, while it is certainly a radical step, at least does not damage the logical foundations of the theory. We shall explore the features of a Lorentz symmetry breaking regulator in a simple polynomial scalar field theory, and discuss its implications. We shall quantify just "how much" Lorentz symmetry breaking is required to fully regulate the theory and render it finite. This scalar field theory provides a simple way of understanding many of the key features of Horava's recent article [arXiv:0901.3775 [hep-th

  14. New aspects of scale and discrete flavor symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Kher Sham

    2014-11-05

    The Standard Model (SM) of particle physics is complete with the discovery of the Higgs particle. However the SM cannot be a complete theory of nature as it does not explain the origin of neutrino mass, dark matter (DM), dark energy, matter-antimatter asymmetry and smallness of the strong CP parameter. From theoretical point of view we do not understand the origin of the scale separation between the electroweak (EW) and the Planck scale, and also the flavor puzzle. In this work we tackle the hierarchy problem with scale symmetry and the flavor puzzle with discrete flavor symmetries, charting new symmetry groups and their breaking, while investigating their implied phenomenologies along the way. In the first part we provide two novel mechanisms to explain the origin of the EW scale generated by quantum effects from an anomalous breaking of a classical scale invariant extension of the SM. For the first model we utilize a direct scale transmission from condensation of a scalar, charged under a high representation of QCD, to trigger EW symmetry breaking (EWSB) dynamically. In the second model, we use the indirect scale transmission approach to generate the EW scale transmitted by a singlet scalar mediator which couples to the SM and a strongly coupled hidden sector. Chiral symmetry in the dark fermion sector is broken spontaneously due to nonperturbative effects of the running coupling in the hidden sector, triggering indirectly EWSB due to dimensional transmutation and providing stable DM candidates in the form of dark pions. In the last part of this work we focus on charting new discrete flavor symmetry groups to obtain experimentally acceptable leptonic and quark mixing patterns. The interesting new discrete groups that we have found are classified mathematically and provide a new starting point for model building in discrete flavor symmetry.

  15. Time-reversal symmetry breaking in quantum billiards

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, Florian

    2009-01-26

    The present doctoral thesis describes experimentally measured properties of the resonance spectra of flat microwave billiards with partially broken timereversal invariance induced by an embedded magnetized ferrite. A vector network analyzer determines the complex scattering matrix elements. The data is interpreted in terms of the scattering formalism developed in nuclear physics. At low excitation frequencies the scattering matrix displays isolated resonances. At these the effect of the ferrite on isolated resonances (singlets) and pairs of nearly degenerate resonances (doublets) is investigated. The hallmark of time-reversal symmetry breaking is the violation of reciprocity, i.e. of the symmetry of the scattering matrix. One finds that reciprocity holds in singlets; it is violated in doublets. This is modeled by an effective Hamiltonian of the resonator. A comparison of the model to the data yields time-reversal symmetry breaking matrix elements in the order of the level spacing. Their dependence on the magnetization of the ferrite is understood in terms of its magnetic properties. At higher excitation frequencies the resonances overlap and the scattering matrix elements fluctuate irregularly (Ericson fluctuations). They are analyzed in terms of correlation functions. The data are compared to three models based on random matrix theory. The model by Verbaarschot, Weidenmueller and Zirnbauer describes time-reversal invariant scattering processes. The one by Fyodorov, Savin and Sommers achieves the same for systems with complete time-reversal symmetry breaking. An extended model has been developed that accounts for partial breaking of time-reversal invariance. This extended model is in general agreement with the data, while the applicability of the other two models is limited. The cross-correlation function between forward and backward reactions determines the time-reversal symmetry breaking matrix elements of the Hamiltonian to up to 0.3 mean level spacings. Finally

  16. Mapping chiral symmetry breaking in the excited baryon spectrum

    CERN Document Server

    Bicudo, Pedro; Llanes-Estrada, Felipe J; Van Cauteren, Tim

    2016-01-01

    We study the conjectured "Insensitivity to Chiral Symmetry Breaking" in the highly excited light baryon spectrum. While the experimental spectrum is being measured at JLab and CBELSA/TAPS, this insensitivity remains to be computed theoretically in detail. As the only existing option to have both confinement, highly excited states and chiral symmetry, we adopt the truncated Coulomb gauge formulation of QCD, considering a linearly confining Coulomb term. Adopting a systematic and numerically intensive variational treatment up to 12 harmonic oscillator shells we are able to access several angular and radial excitations. We compute both the excited spectra of $I=1/2$ and $I=3/2$ baryons, up to large spin $J=13/2$, and study in detail the proposed chiral multiplets. While the static-light and light-light spectra clearly show chiral symmetry restoration high in the spectrum, the realization of chiral symmetry is more complicated in the baryon spectrum than earlier expected.

  17. Lorentz Symmetry Breaking and its consequences on Thermodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Costa-Soares, T.; Sales, J.A. de; Otoya, V.J. Vasques [Instituto Federal de Educacao, Ciencia e Tecnologia do Sudeste de Minas Gerais (IF Sudeste MG), MG (Brazil)

    2011-07-01

    Full text: In this work, we study the effects of Lorentz Symmetry Breaking on thermodynamics properties of ideal gases. We start from a dispersion relation obtained from the Carroll-Field-Jackiw model to Electrodynamics with Lorentz and CPT violation term. With this, we compute the thermodynamics quantities for a Boltzmann, Bose-Einstein and Fermi-Dirac distributions. Two regimes are analyzed: the non-relativistic and the relativistic one. In the first case we show that the topological mass induced by the Chern-Simons term behaves as a chemical potential. For the Bose-Einstein condensates with these Lorentz breaking, the critical values as particle number, and temperature, are modified. These results are the same that were obtained by Colladay et al, whose perform the non-relativistic limit directly in the Hamiltonian for a Lorentz symmetry violating theory and used this to study the Bose-Einstein condensate to obtain a bound for the background field which perform the breaking. The original contribution of these work is in the relativistic regime, where we show that a new phase transition for a Bose -Einstein gas, can be induced by the Lorentz Symmetry Breaking parameters. Some applications in cosmology and astrophysics are commented. (author)

  18. 3D toroidal physics: Testing the boundaries of symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Spong, Donald A., E-mail: spongda@ornl.gov [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6169 (United States)

    2015-05-15

    Toroidal symmetry is an important concept for plasma confinement; it allows the existence of nested flux surface MHD equilibria and conserved invariants for particle motion. However, perfect symmetry is unachievable in realistic toroidal plasma devices. For example, tokamaks have toroidal ripple due to discrete field coils, optimized stellarators do not achieve exact quasi-symmetry, the plasma itself continually seeks lower energy states through helical 3D deformations, and reactors will likely have non-uniform distributions of ferritic steel near the plasma. Also, some level of designed-in 3D magnetic field structure is now anticipated for most concepts in order to provide the plasma control needed for a stable, steady-state fusion reactor. Such planned 3D field structures can take many forms, ranging from tokamaks with weak 3D edge localized mode suppression fields to stellarators with more dominant 3D field structures. This motivates the development of physics models that are applicable across the full range of 3D devices. Ultimately, the questions of how much symmetry breaking can be tolerated and how to optimize its design must be addressed for all fusion concepts. A closely coupled program of simulation, experimental validation, and design optimization is required to determine what forms and amplitudes of 3D shaping and symmetry breaking will be compatible with the requirements of future fusion reactors.

  19. Mode conversion by symmetry breaking of propagating spin waves.

    Energy Technology Data Exchange (ETDEWEB)

    Clausen, P.; Vogt, K.; Schultheiss, H.; Schafer, S.; Obry, B.; Wolf, G.; Pirro, P.; Leven, B.; Hillebrands, B. (Materials Science Division); (Technische Universitat Kaiserslautern); (Grad. School of Excellence Mater. Sci. in Mainz); (Univ. Albama)

    2011-10-01

    We study spin-wave transport in a microstructured Ni{sub 81}Fe{sub 19} waveguide exhibiting broken translational symmetry. We observe the conversion of a beam profile composed of symmetric spin-wave width modes with odd numbers of antinodes n = 1, 3,... into a mixed set of symmetric and asymmetric modes. Due to the spatial homogeneity of the exciting field along the used microstrip antenna, quantized spin-wave modes with an even number n of antinodes across the stripe's width cannot be directly excited. We show that a break in translational symmetry may result in a partial conversion of even spin-wave waveguide modes.

  20. SU(3) flavour symmetry breaking and charmed states

    Energy Technology Data Exchange (ETDEWEB)

    Horsley, R. [Edinburgh Univ. (United Kingdom). School of Physics and Astronomy; Najjar, J. [Regensburg Univ. (Germany). Institut fuer Theoretische Physik; Nakamura, Y. [RIKEN Advanced Institute for Computational Science, Hyogo (Japan); Perlt, H.; Schiller, A. [Leipzig Univ. (Germany). Inst. fuer Theoretische Physik; Pleiter, D. [Forschungszentrum Juelich GmbH (Germany). Juelich Supercomputing Centre (JSC); Regensburg Univ. (Germany). Institut fuer Theoretische Physik; Rakow, P.E.L. [Liverpool Univ. (United Kingdom). Theoretical Physics Div.; Schierholz, G. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Stueben, H. [Hamburg Univ. (Germany). Regionales Rechenzentrum; Zanotti, J.M. [Adelaide Univ. (Australia). CSSM, School of Chemistry and Physics; Collaboration: QCDSF-UKQCD Collaborations

    2013-11-15

    By extending the SU(3) flavour symmetry breaking expansion from up, down and strange sea quark masses to partially quenched valence quark masses we propose a method to determine charmed quark hadron masses including possible QCD isospin breaking effects. Initial results for some open charmed pseudoscalar meson states and singly and doubly charmed baryon states are encouraging and demonstrate the potential of the procedure. Essential for the method is the determination of the scale using singlet quantities, and to this end we also give here a preliminary estimation of the recently introduced Wilson flow scales.

  1. Breaking discrete symmetries in the effective field theory of inflation

    Energy Technology Data Exchange (ETDEWEB)

    Cannone, Dario [Dipartimento di Fisica e Astronomia “G. Galilei”, Università degli Studi di Padova,Padova, I-35131 (Italy); INFN, Sezione di Padova,Padova, I-35131 (Italy); Gong, Jinn-Ouk [Asia Pacific Center for Theoretical Physics,Pohang, 790-784 (Korea, Republic of); Department of Physics,Postech, Pohang, 790-784 (Korea, Republic of); Tasinato, Gianmassimo [Department of Physics, Swansea University,Swansea, SA2 8PP (United Kingdom)

    2015-08-03

    We study the phenomenon of discrete symmetry breaking during the inflationary epoch, using a model-independent approach based on the effective field theory of inflation. We work in a context where both time reparameterization symmetry and spatial diffeomorphism invariance can be broken during inflation. We determine the leading derivative operators in the quadratic action for fluctuations that break parity and time-reversal. Within suitable approximations, we study their consequences for the dynamics of linearized fluctuations. Both in the scalar and tensor sectors, we show that such operators can lead to new direction-dependent phases for the modes involved. They do not affect the power spectra, but can have consequences for higher correlation functions. Moreover, a small quadrupole contribution to the sound speed can be generated.

  2. Electroweak symmetry breaking after LEP1 and LEP2

    CERN Document Server

    Barbieri, Riccardo; Rattazzi, Riccardo; Strumia, Alessandro; Barbieri, Riccardo; Pomarol, Alex; Rattazzi, Riccardo; Strumia, Alessandro

    2004-01-01

    In a generic 'universal' theory of electroweak symmetry breaking, non fine-tuned heavy new physics affects the low-energy data through four parameters, which include and properly extend the generally insufficient S and T. Only by adding the LEP2 data to the global electroweak fit, can all these four form factors be determined and deviations from the SM be strongly constrained. Several of the recently proposed models (little Higgs, gauge bosons in extra dimensions or Higgsless models in 5D) are recognized to be 'universal' in a straightforward way after a proper definition of the effective vector boson fields. Among various applications, we show that proposed Higgsless models in 5D, when calculable, do not provide a viable description of electroweak symmetry breaking in their full range of parameters.

  3. Spontaneous symmetry breaking and Goldstone theorem for composite states revisited

    CERN Document Server

    Fariborz, Amir H

    2016-01-01

    We discuss the well-known phenomenon of spontaneous symmetry breaking for a linear sigma model for scalar and pseudoscalar mesons based on the meson composite structure and the normalization of the quantum states. To test our formulation and validate our approach we give another proof of the Goldstone theorem and derive the corresponding mass eigenstates of the theory. We briefly describe the possible wave function of a meson that leads to the adequate mass eigenstates.

  4. Symmetry-breaking instability in a prototypical driven granular gas.

    Science.gov (United States)

    Khain, Evgeniy; Meerson, Baruch

    2002-08-01

    Symmetry-breaking instability of a laterally uniform granular cluster (strip state) in a prototypical driven granular gas is investigated. The system consists of smooth hard disks in a two-dimensional box, colliding inelastically with each other and driven, at zero gravity, by a "thermal" wall. The limit of nearly elastic particle collisions is considered, and granular hydrodynamics with the Jenkins-Richman constitutive relations is employed. The hydrodynamic problem is completely described by two scaled parameters and the aspect ratio of the box. Marginal stability analysis predicts a spontaneous symmetry-breaking instability of the strip state, similar to that predicted recently for a different set of constitutive relations. If the system is big enough, the marginal stability curve becomes independent of the details of the boundary condition at the driving wall. In this regime, the density perturbation is exponentially localized at the elastic wall opposite the thermal wall. The short- and long-wavelength asymptotics of the marginal stability curves are obtained analytically in the dilute limit. The physics of the symmetry-breaking instability is discussed.

  5. Frustrated topological symmetry breaking: Geometrical frustration and anyon condensation

    Science.gov (United States)

    Schulz, Marc D.; Burnell, Fiona J.

    2016-10-01

    We study the phase diagram of a topological string-net-type lattice model in the presence of geometrically frustrated interactions. These interactions drive several phase transitions that reduce the topological order, leading to a rich phase diagram including both Abelian (Z2) and non-Abelian (Ising×Ising¯ ) topologically ordered phases, as well as phases with broken translational symmetry. Interestingly, one of these phases simultaneously exhibits (Abelian) topological order and long-ranged order due to translational symmetry breaking, with nontrivial interactions between excitations in the topological order and defects in the long-ranged order. We introduce a variety of effective models, valid along certain lines in the phase diagram, which can be used to characterize both topological and symmetry-breaking order in these phases and in many cases allow us to characterize the phase transitions that separate them. We use exact diagonalization and high-order series expansion to study areas of the phase diagram where these models break down and to approximate the location of the phase boundaries.

  6. Matter Mass Generation and Theta Vacuum Dynamical Spontaneous Symmetry Breaking

    CERN Document Server

    Roh, H S

    2001-01-01

    This work proposes a stringent concept of matter mass generation and Theta vacuum in the context of local gauge theory for the strong force under the constraint of the flat universe. The matter mass is generated as the consequence of dynamical spontaneous symmetry breaking (DSSB) of gauge symmetry and discrete symmetries, which is motivated by the parameter Theta representing the surface term. Matter mass generation introduces the typical features of constituent particle mass, dual Meissner effect, and hyperfine structure. The Theta term plays important roles on the DSSB of the gauge group and on the quantization of the matter and vacuum space. The Theta vacuum exhibits the intrinsic principal number and intrinsic angular momentum for intrinsic space quantization in analogy with the extrinsic principal number and extrinsic angular momentum for extrinsic space quantization.

  7. Effects of rotational symmetry breaking in polymer-coated nanopores

    Energy Technology Data Exchange (ETDEWEB)

    Osmanović, D.; Hoogenboom, B. W.; Ford, I. J. [London Centre for Nanotechnology (LCN) and Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Kerr-Winter, M.; Eccleston, R. C. [Centre for Mathematics, Physics and Engineering in the Life Sciences and Experimental Biology, University College London, Gower Street, London WC1E 6BT (United Kingdom)

    2015-01-21

    The statistical theory of polymers tethered around the inner surface of a cylindrical channel has traditionally employed the assumption that the equilibrium density of the polymers is independent of the azimuthal coordinate. However, simulations have shown that this rotational symmetry can be broken when there are attractive interactions between the polymers. We investigate the phases that emerge in these circumstances, and we quantify the effect of the symmetry assumption on the phase behavior of the system. In the absence of this assumption, one can observe large differences in the equilibrium densities between the rotationally symmetric case and the non-rotationally symmetric case. A simple analytical model is developed that illustrates the driving thermodynamic forces responsible for this symmetry breaking. Our results have implications for the current understanding of the behavior of polymers in cylindrical nanopores.

  8. Effects of rotational symmetry breaking in polymer-coated nanopores

    International Nuclear Information System (INIS)

    The statistical theory of polymers tethered around the inner surface of a cylindrical channel has traditionally employed the assumption that the equilibrium density of the polymers is independent of the azimuthal coordinate. However, simulations have shown that this rotational symmetry can be broken when there are attractive interactions between the polymers. We investigate the phases that emerge in these circumstances, and we quantify the effect of the symmetry assumption on the phase behavior of the system. In the absence of this assumption, one can observe large differences in the equilibrium densities between the rotationally symmetric case and the non-rotationally symmetric case. A simple analytical model is developed that illustrates the driving thermodynamic forces responsible for this symmetry breaking. Our results have implications for the current understanding of the behavior of polymers in cylindrical nanopores

  9. Quasiaverages, symmetry breaking and irreducible Green functions method

    Directory of Open Access Journals (Sweden)

    A.L.Kuzemsky

    2010-01-01

    Full Text Available The development and applications of the method of quasiaverages to quantum statistical physics and to quantum solid state theory and, in particular, to quantum theory of magnetism, were considered. It was shown that the role of symmetry (and the breaking of symmetries in combination with the degeneracy of the system was reanalyzed and essentially clarified within the framework of the method of quasiaverages. The problem of finding the ferromagnetic, antiferromagnetic and superconducting "symmetry broken" solutions of the correlated lattice fermion models was discussed within the irreducible Green functions method. A unified scheme for the construction of generalized mean fields (elastic scattering corrections and self-energy (inelastic scattering in terms of the equations of motion and Dyson equation was generalized in order to include the "source fields". This approach complements previous studies of microscopic theory of antiferromagnetism and clarifies the concepts of Neel sublattices for localized and itinerant antiferromagnetism and "spin-aligning fields" of correlated lattice fermions.

  10. Domain Walls and Vortices in Chiral Symmetry Breaking

    CERN Document Server

    Eto, Minoru; Nitta, Muneto

    2013-01-01

    We study domain walls and vortices in chiral symmetry breaking in QCD with N flavors in the chiral limit. If the axial anomaly was absent, there exist stable Abelian axial vortices winding around the spontaneously broken U(1)_A symmetry and non-Abelian axial vortices winding around both the U(1)_A and non-Abelian SU(N) chiral symmetries. In the presence of the axial anomaly term, metastable domain walls are present and Abelian axial vortices must be attached by N domain walls, forming domain wall junctions. We show that a domain wall junction decays into N non-Abelian vortices attached by domain walls, implying its metastability. We also show that domain walls decay through the quantum tunneling by creating a hole bounded by a closed non-Abelian vortex.

  11. Executive summary of the Snowmass 2001 working group (P1) ''Electroweak Symmetry Breaking''

    International Nuclear Information System (INIS)

    In this summary report of the 2001 Snowmass Electroweak Symmetry Breaking Working Group, the main candidates for theories of electroweak symmetry breaking are surveyed, and the criteria for distinguishing among the different approaches are discussed. The potential for observing electroweak symmetry breaking phenomena at the upgraded Tevatron and the LHC is described. We emphasize the importance of a high-luminosity e+e- linear collider for precision measurements to clarify the underlying electroweak symmetry breaking dynamics. Finally, we note the possible roles of the μ+μ- collider and VLHC for further elucidating the physics of electroweak symmetry breaking. (orig.)

  12. EXECUTIVE SUMMARY OF THE SNOWMASS 2001 WORKING GROUP : ELECTROWEAK SYMMETRY BREAKING.

    Energy Technology Data Exchange (ETDEWEB)

    CARENA,M.; GERDES,D.W.; HABER,H.E.; TURCOT,A.S.; ZERWAS,P.M.

    2001-06-30

    In this summary report of the 2001 Snowmass Electroweak Symmetry Breaking Working Group, the main candidates for theories of electroweak symmetry breaking are surveyed, and the criteria for distinguishing among the different approaches are discussed. The potential for observing electroweak symmetry breaking phenomena at the upgraded Tevatron and the LHC is described. We emphasize the importance of a high-luminosity e{sup +}e{sup -} linear collider for precision measurements to clarify the underlying electroweak symmetry breaking dynamics. Finally, we note the possible roles of the {mu}{sup +} {mu}{sup -} collider and VLHC for further elucidating the physics of electroweak symmetry breaking.

  13. Electroweak symmetry breaking without the μ2 term

    Science.gov (United States)

    Goertz, Florian

    2016-07-01

    We demonstrate that from a low-energy perspective a viable breaking of the electroweak symmetry, as present in nature, can be achieved without the (negative sign) μ2 mass term in the Higgs potential, thereby avoiding completely the appearance of relevant operators, featuring coefficients with a positive mass dimension, in the theory. We show that such a setup is self-consistent and not ruled out by Higgs physics. In particular, we point out that it is the lightness of the Higgs boson that allows for the electroweak symmetry to be broken dynamically via operators of D ≥4 , consistent with the power expansion. Beyond that, we entertain how this scenario might even be preferred phenomenologically compared to the ordinary mechanism of electroweak symmetry breaking, as realized in the Standard Model, and argue that it can be fully tested at the LHC. In the Appendix, we classify UV completions that could lead to such a setup, considering also the option of generating all scales dynamically.

  14. Quantum phase transitions with parity-symmetry breaking and hysteresis

    Science.gov (United States)

    Trenkwalder, A.; Spagnolli, G.; Semeghini, G.; Coop, S.; Landini, M.; Castilho, P.; Pezzè, L.; Modugno, G.; Inguscio, M.; Smerzi, A.; Fattori, M.

    2016-09-01

    Symmetry-breaking quantum phase transitions play a key role in several condensed matter, cosmology and nuclear physics theoretical models. Its observation in real systems is often hampered by finite temperatures and limited control of the system parameters. In this work we report, for the first time, the experimental observation of the full quantum phase diagram across a transition where the spatial parity symmetry is broken. Our system consists of an ultracold gas with tunable attractive interactions trapped in a spatially symmetric double-well potential. At a critical value of the interaction strength, we observe a continuous quantum phase transition where the gas spontaneously localizes in one well or the other, thus breaking the underlying symmetry of the system. Furthermore, we show the robustness of the asymmetric state against controlled energy mismatch between the two wells. This is the result of hysteresis associated with an additional discontinuous quantum phase transition that we fully characterize. Our results pave the way to the study of quantum critical phenomena at finite temperature, the investigation of macroscopic quantum tunnelling of the order parameter in the hysteretic regime and the production of strongly quantum entangled states at critical points.

  15. Spontaneous Symmetry Breaking in Presence of Electric and Magnetic Charges

    Science.gov (United States)

    Pushpa; Bisht, P. S.; Negi, O. P. S.

    2011-06-01

    Starting with the definition of quaternion gauge theory, we have undertaken the study of SU(2) e × SU(2) m × U(1) e × U(1) m in terms of the simultaneous existence of electric and magnetic charges along with their Yang-Mills counterparts. As such, we have developed the gauge theory in terms of four coupling constants associated with four-gauge symmetry SU(2) e × SU(2) m × U(1) e × U(1) m . Accordingly, we have made an attempt to obtain the abelian and non-Abelian gauge structures for the particles carrying simultaneously the electric and magnetic charges (namely dyons). Starting from the Lagrangian density of two SU(2)× U(1) gauge theories responsible for the existence of electric and magnetic charges, we have discussed the consistent theory of spontaneous symmetry breaking and Higgs mechanism in order to generate the masses. From the symmetry breaking, we have generated the two electromagnetic fields, the two massive vector W ± and Z 0 bosons fields and the Higgs scalar fields.

  16. Spontaneous Symmetry Breaking in Presence of Electric and Magnetic Charges

    CERN Document Server

    Pushpa,; Negi, O P S

    2010-01-01

    Starting with the definition of quaternion gauge theory, we have undertaken the study of SU(2)_{e}\\times SU(2)_{m}\\times U(1)_{e}\\times U(1)_{m} in terms of the simultaneous existence of electric and magnetic charges along with their Yang - Mills counterparts. As such, we have developed the gauge theory in terms of four coupling constants associated with four - gauge symmetry SU(2)_{e}\\times SU(2)_{m}\\times U(1)_{e}\\times U(1)_{m}. Accordingly, we have made an attempt to obtain the abelian and non - Abelian gauge structures for the particles carrying simultaneously the electric and magnetic charges (namely dyons). Starting from the Lagrangian density of two SU(2)\\times U(1) gauge theories responsible for the existence of electric and magnetic charges, we have discussed the consistent theory of spontaneous symmetry breaking and Higgs mechanism in order to generate the masses. From the symmetry breaking, we have generated the two electromagnetic fields, the two massive vector W^{\\pm} and Z^{0} bosons fields and...

  17. Inhomogeneous chiral symmetry breaking in dense neutron-star matter

    International Nuclear Information System (INIS)

    An increasing number of model results suggests that chiral symmetry is broken inhomogeneously in a certain window at intermediate densities in the QCD phase diagram. This could have significant effects on the properties of compact stars, possibly leading to new astrophysical signatures. In this contribution we discuss this idea by reviewing recent results on inhomogeneous chiral symmetry breaking under an astrophysics-oriented perspective. After introducing two commonly studied spatial modulations of the chiral condensate, the chiral density wave and the real kink crystal, we focus on their properties and their effect on the equation of state of quark matter. We also describe how these crystalline phases are affected by different elements which are required for a realistic description of a compact star, such as charge neutrality, the presence of magnetic fields, vector interactions and the interplay with color superconductivity. Finally, we discuss possible signatures of inhomogeneous chiral symmetry breaking in the core of compact stars, considering the cases of mass-radius relations and neutrino emissivity explicitly. (orig.)

  18. Inhomogeneous chiral symmetry breaking in dense neutron-star matter

    Energy Technology Data Exchange (ETDEWEB)

    Buballa, Michael; Carignano, Stefano [Technische Universitaet Darmstadt, Theoriezentrum, Institut fuer Kernphysik, Darmstadt (Germany)

    2016-03-15

    An increasing number of model results suggests that chiral symmetry is broken inhomogeneously in a certain window at intermediate densities in the QCD phase diagram. This could have significant effects on the properties of compact stars, possibly leading to new astrophysical signatures. In this contribution we discuss this idea by reviewing recent results on inhomogeneous chiral symmetry breaking under an astrophysics-oriented perspective. After introducing two commonly studied spatial modulations of the chiral condensate, the chiral density wave and the real kink crystal, we focus on their properties and their effect on the equation of state of quark matter. We also describe how these crystalline phases are affected by different elements which are required for a realistic description of a compact star, such as charge neutrality, the presence of magnetic fields, vector interactions and the interplay with color superconductivity. Finally, we discuss possible signatures of inhomogeneous chiral symmetry breaking in the core of compact stars, considering the cases of mass-radius relations and neutrino emissivity explicitly. (orig.)

  19. Gauge Invariance and Symmetry Breaking by Topology and Energy Gap

    Directory of Open Access Journals (Sweden)

    Franco Strocchi

    2015-10-01

    Full Text Available For the description of observables and states of a quantum system, it may be convenient to use a canonical Weyl algebra of which only a subalgebra A, with a non-trivial center Z, describes observables, the other Weyl operators playing the role of intertwiners between inequivalent representations of A. In particular, this gives rise to a gauge symmetry described by the action of Z. A distinguished case is when the center of the observables arises from the fundamental group of the manifold of the positions of the quantum system. Symmetries that do not commute with the topological invariants represented by elements of Z are then spontaneously broken in each irreducible representation of the observable algebra, compatibly with an energy gap; such a breaking exhibits a mechanism radically different from Goldstone and Higgs mechanisms. This is clearly displayed by the quantum particle on a circle, the Bloch electron and the two body problem.

  20. Matter inflation with A_4 flavour symmetry breaking

    CERN Document Server

    Antusch, Stefan

    2013-01-01

    We discuss model building in tribrid inflation, which is a framework for realising inflation in the matter sector of supersymmetric particle physics models. The inflaton is a D-flat combination of matter fields, and inflation ends by a phase transition in which some Higgs field obtains a vacuum expectation value. We first describe the general procedure for implementing tribrid inflation in realistic models of particle physics that can be applied to a wide variety of BSM particle physics models around the GUT scale. We then demonstrate how the procedure works for an explicit lepton flavour model based on an A_4 family symmetry. The model is both predictive and phenomenologically viable, and illustrates how tribrid inflation connects cosmological and particle physics parameters. In particular, it predicts a relation between the neutrino Yukawa coupling and the running of the spectral index alpha_s. We also show how topological defects from the flavour symmetry breaking can be avoided automatically.

  1. Orbital engineering in symmetry-breaking polar heterostructures.

    Science.gov (United States)

    Disa, Ankit S; Kumah, Divine P; Malashevich, Andrei; Chen, Hanghui; Arena, Dario A; Specht, Eliot D; Ismail-Beigi, Sohrab; Walker, F J; Ahn, Charles H

    2015-01-16

    We experimentally demonstrate a novel approach to substantially modify orbital occupations and symmetries in electronically correlated oxides. In contrast to methods using strain or confinement, this orbital tuning is achieved by exploiting charge transfer and inversion symmetry breaking using atomically layered heterostructures. We illustrate the technique in the LaTiO_{3}-LaNiO_{3}-LaAlO_{3} system; a combination of x-ray absorption spectroscopy and ab initio theory reveals electron transfer and concomitant polar fields, resulting in a ∼50% change in the occupation of Ni d orbitals. This change is sufficiently large to remove the orbital degeneracy of bulk LaNiO_{3} and creates an electronic configuration approaching a single-band Fermi surface. Furthermore, we theoretically show that such three-component heterostructuring is robust and tunable by choice of insulator in the heterostructure, providing a general method for engineering orbital configurations and designing novel electronic systems.

  2. Matter inflation with A4 flavour symmetry breaking

    International Nuclear Information System (INIS)

    We discuss model building in tribrid inflation, which is a framework for realising inflation in the matter sector of supersymmetric particle physics models. The inflaton is a D-flat combination of matter fields, and inflation ends by a phase transition in which some Higgs field obtains a vacuum expectation value. We first describe the general procedure for implementing tribrid inflation in realistic models of particle physics that can be applied to a wide variety of BSM particle physics models around the GUT scale. We then demonstrate how the procedure works for an explicit lepton flavour model based on an A4 family symmetry. The model is both predictive and phenomenologically viable, and illustrates how tribrid inflation connects cosmological and particle physics parameters. In particular, it predicts a relation between the neutrino Yukawa coupling and the running of the spectral index αs. We also show how topological defects from the flavour symmetry breaking can be avoided automatically

  3. Crucial role of neutrinos in the electroweak symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Smetana, Adam [Institute of Experimental and Applied Physics, Czech Technical University in Prague, Horská 3a/22, 128 00 Prague 2 (Czech Republic)

    2013-12-30

    Not only the top-quark condensate appears to be the natural significant source of dynamical electroweak symmetry breaking. Provided the seesaw scenario, the neutrinos can have their Dirac masses large enough so that their condensates contribute significantly to the electroweak scale as well. We address the question of a phenomenological feasibility of the top-quark and neutrino condensation conspiracy against the electroweak symmetry within the simplifying two-composite-Higgs-doublet model. Mandatory is to reproduce the masses of electroweak gauge bosons, the top-quark mass and the recently observed scalar mass of 125 GeV, and to satisfy the upper limits on absolute value of active neutrino masses. To accomplish that, the number of right-handed neutrinos participating on the seesaw mechanism turns out to be rather large, O(100–1000)

  4. Baryon and chiral symmetry breaking in holographic QCD

    CERN Document Server

    Gorsky, Alexander; Krikun, Alexander

    2015-01-01

    We study the relationship between chiral symmetry breaking and baryons in holographic QCD. We construct a soliton with unit baryon charge in the presence of a nonzero mean value of the scalar bifundamental field, which is dual to the chiral condensate. We obtain a relation between the chiral condensate and the mass of the baryon and find in a clear-cut way that at large values of the condensate the holographic soliton is no longer located on the IR wall. Instead it is split into two halves, which are symmetrically located on the left and right flavor branes. On the other hand we find that the local value of the quark condensate is suppressed in the core of the soliton, which is evidence for a partial chiral symmetry restoration inside the baryon.

  5. Revolving D-branes and spontaneous gauge-symmetry breaking

    International Nuclear Information System (INIS)

    We propose a new mechanism of spontaneous gauge-symmetry breaking in the world-volume theory of revolving D-branes around a fixed point of orbifolds. In this paper, we consider a simple model of the T6/Z3 orbifold on which we put D3-branes, D7-branes, and their anti-branes. The configuration breaks supersymmetry, but the Ramond–Ramond tadpole cancellation conditions are satisfied. A set of three D3-branes at an orbifold fixed point can separate from the point, but, when they move perpendicular to the anti-D7-branes put on the fixed point, they are pulled back due to an attractive interaction between the D3- and anti-D7-branes. In order to stabilize the separation of the D3-branes at nonzero distance, we consider revolution of the D3-branes around the fixed point. Then the gauge symmetry on the D3-branes is spontaneously broken, and the rank of the gauge group is reduced. The distance can be set at will by appropriately choosing the angular momentum of the revolving D3-branes, which should be determined by the initial condition of the cosmological evolution of the D-brane configurations. The distance corresponds to the vacuum expectation values of brane moduli fields in the world-volume theory and, if it is written as M/Ms2 in terms of the string scale Ms, the scale of gauge-symmetry breaking is given by M. Angular momentum conservation of revolving D3-branes assures the stability of the scale M against Ms

  6. Curvature-induced symmetry breaking in nonlinear Schrodinger models

    DEFF Research Database (Denmark)

    Gaididei, Yuri Borisovich; Mingaleev, S. F.; Christiansen, Peter Leth

    2000-01-01

    We consider a curved chain of nonlinear oscillators and show that the interplay of curvature and nonlinearity leads to a symmetry breaking when an asymmetric stationary state becomes energetically more favorable than a symmetric stationary state. We show that the energy of localized states...... decreases with increasing curvature, i.e., bending is a trap for nonlinear excitations. A violation of the Vakhitov-Kolokolov stability criterion is found in the case where the instability is due to the softening of the Peierls internal mode....

  7. Examining a possible cascade effect in chiral symmetry breaking

    CERN Document Server

    Fariborz, Amir H

    2016-01-01

    We examine a toy model and a cascade effect for confinement and chiral symmetry breaking which consists in several phase transitions corresponding to the formation of bound states and chiral condensates with different number of fermions for a strong group. We analyze two examples: regular QCD where we calculate the "four quark" vacuum condensate and a preon composite model based on QCD at higher scales. In this context we also determine the number of flavors at which the second chiral and confinement phase transitions occur and discuss the consequences.

  8. Charge symmetry breaking in mirror nuclei from quarks

    CERN Document Server

    Tsushima, K; Thomas, A W

    1999-01-01

    The binding energy differences of the valence proton and neutron of the mirror nuclei, $^{15}$O -- $^{15}$N, $^{17}$F -- $^{17}$O, $^{39}$Ca -- $^{39}$K and $^{41}$Sc -- $^{41}$Ca, are calculated using the quark-meson coupling (QMC) model. The calculation involves nuclear structure and shell effects explicitly. It is shown that binding energy differences of a few hundred keV arise from the strong interaction, even after subtracting all electromagnetic corrections. The origin of these differences may be ascribed to the charge symmetry breaking effects set in the strong interaction through the u and d current quark mass difference.

  9. Introduction to weak interaction theories with dynamical symmetry breaking

    International Nuclear Information System (INIS)

    A straightforward introduction to theories of the weak interactions with dynamical symmetry breaking-theories of technicolor or hypercolor is presented. The intent is to inform experimentalists, but also to goad theorists. The motivation for considering theories of this type is described. The structure that such a theory must possess, including new gauge interactions at mass scales of 1-100 TeV is then outlined. Despite their reliance on phenomena at such enormous energies, these theories contain new phenomena observable at currently accessible energies. Three such effects which are especially likely to be observed are described

  10. Evanescent Wave-Assisted Symmetry Breaking of Gold Dipolar Nanoantennas.

    Science.gov (United States)

    Yang, Jhen-Hong; Chen, Kuo-Ping

    2016-01-01

    Symmetry-breaking and scattering cancellation were observed in the dark-mode resonance of dipolar gold nanoantennas (NAs) on glass substrates coupled with oblique incidence and total internal reflection. With the assistance of evanescent waves, the coupling efficiency was twice as strong when the incidence angle was larger than the critical angle. The Hamiltonian equation and absorption spectra were used to analyze the hybridization model of symmetric dipolar gold NAs. The antibonding mode could be coupled successfully by both transverse-magnetic (TM) and transverse-electric (TE) polarizations to NAs when the dimers orientation is parallel to the propagation direction of evanescent waves. PMID:27581766

  11. Symmetry-breaking transitions in networks of nonlinear circuit elements

    Energy Technology Data Exchange (ETDEWEB)

    Heinrich, Martin; Dahms, Thomas; Flunkert, Valentin; Schoell, Eckehard [Institut fuer Theoretische Physik, Technische Universitaet Berlin, 10623 Berlin (Germany); Teitsworth, Stephen W, E-mail: schoell@physik.tu-berlin.d [Department of Physics, Duke University, PO Box 90305, Durham, NC 27708-0305 (United States)

    2010-11-15

    We investigate a nonlinear circuit consisting of N tunnel diodes in series, which shows close similarities to a semiconductor superlattice or to a neural network. Each tunnel diode is modeled by a three-variable FitzHugh-Nagumo-like system. The tunnel diodes are coupled globally through a load resistor. We find complex bifurcation scenarios with symmetry-breaking transitions that generate multiple fixed points off the synchronization manifold. We show that multiply degenerate zero-eigenvalue bifurcations occur, which lead to multistable current branches, and that these bifurcations are also degenerate with a Hopf bifurcation. These predicted scenarios of multiple branches and degenerate bifurcations are also found experimentally.

  12. Minimal but non-minimal inflation and electroweak symmetry breaking

    CERN Document Server

    Marzola, Luca

    2016-01-01

    We consider the most minimal scale invariant extension of the standard model that allows for successful radiative electroweak symmetry breaking and inflation. The framework involves an extra scalar singlet, that plays the r\\^ole of the inflaton, and is compatibile with current experimental bounds owing to the non-minimal coupling of the latter to gravity. This inflationary scenario predicts a very low tensor-to-scalar ratio $r \\approx 10^{-3}$, typical of Higgs-inflation models, but in contrast yields a scalar spectral index $n_s \\simeq 0.97$ which departs from the Starobinsky limit. We briefly discuss the collider phenomenology of the framework.

  13. Stochastic model of nanomechanical electron shuttles and symmetry breaking

    Science.gov (United States)

    Zhao, Mo; Blick, Robert H.

    2016-06-01

    Nanomechanical electron shuttles can work as ratchets for radio-frequency rectification. We develop a full stochastic model of coupled shuttles, where the mechanical motion of nanopillars and the incoherent electronic tunneling are modeled by a Markov chain. In particular, the interaction of their randomness is taken into account, so that a linear master equation is constructed. Numerical solutions from our fast approximate method and analytical derivation reveal the symmetry breaking, which results in the direct current observed in earlier measurements [Phys. Rev. Lett. 105, 067204 (2010), 10.1103/PhysRevLett.105.067204]. Additionally, the method can facilitate device simulation of more complex designs such as shuttle arrays.

  14. Evanescent Wave-Assisted Symmetry Breaking of Gold Dipolar Nanoantennas

    Science.gov (United States)

    Yang, Jhen-Hong; Chen, Kuo-Ping

    2016-09-01

    Symmetry-breaking and scattering cancellation were observed in the dark-mode resonance of dipolar gold nanoantennas (NAs) on glass substrates coupled with oblique incidence and total internal reflection. With the assistance of evanescent waves, the coupling efficiency was twice as strong when the incidence angle was larger than the critical angle. The Hamiltonian equation and absorption spectra were used to analyze the hybridization model of symmetric dipolar gold NAs. The antibonding mode could be coupled successfully by both transverse-magnetic (TM) and transverse-electric (TE) polarizations to NAs when the dimers orientation is parallel to the propagation direction of evanescent waves.

  15. The Scalar Mesons, Symmetry Breaking, Three Colors and Confinement

    CERN Document Server

    Törnqvist, N A

    2006-01-01

    The same, well known, det(Sigma)+det(Sigma)* term, which 't Hooft showed is generated by instantons in QCD and which resolves the U(1) problem giving mass in, particular, to the eta' is argued to be the dominant term in the spontaneous chiral symmetry breaking. It generates not one, but three classical minima along the axial U(1) circle which connect to color through Fermi-Dirac statistics. The term also contributes, in a similar way as the diquark model of Jaffe, to an inverted scalar mass spectrum for the light scalars, and suggests a simple confinement mechanism.

  16. Spontaneous Symmetry Breaking as a Basis of Particle Mass

    Energy Technology Data Exchange (ETDEWEB)

    Quigg, Chris; /Fermilab /CERN

    2007-04-01

    Electroweak theory joins electromagnetism with the weak force in a single quantum field theory, ascribing the two fundamental interactions--so different in their manifestations--to a common symmetry principle. How the electroweak gauge symmetry is hidden is one of the most urgent and challenging questions facing particle physics. The provisional answer incorporated in the ''standard model'' of particle physics was formulated in the 1960s by Higgs, by Brout & Englert, and by Guralnik, Hagen, & Kibble: The agent of electroweak symmetry breaking is an elementary scalar field whose self-interactions select a vacuum state in which the full electroweak symmetry is hidden, leaving a residual phase symmetry of electromagnetism. By analogy with the Meissner effect of the superconducting phase transition, the Higgs mechanism, as it is commonly known, confers masses on the weak force carriers W{sup {+-}} and Z. It also opens the door to masses for the quarks and leptons, and shapes the world around us. It is a good story--though an incomplete story--and we do not know how much of the story is true. Experiments that explore the Fermi scale (the energy regime around 1 TeV) during the next decade will put the electroweak theory to decisive test, and may uncover new elements needed to construct a more satisfying completion of the electroweak theory. The aim of this article is to set the stage by reporting what we know and what we need to know, and to set some ''Big Questions'' that will guide our explorations.

  17. Tachyonic Instability and Dynamics of Spontaneous Symmetry Breaking

    CERN Document Server

    Felder, G; Linde, Andrei D; Felder, Gary; Kofman, Lev; Linde, Andrei

    2001-01-01

    Spontaneous symmetry breaking usually occurs due to the tachyonic (spinodal) instability of a scalar field near the top of its effective potential at $\\phi = 0$. Naively, one might expect the field $\\phi$ to fall from the top of the effective potential and then experience a long stage of oscillations with amplitude O(v) near the minimum of the effective potential at $\\phi = v$ until it gives its energy to particles produced during these oscillations. However, it was recently found that the tachyonic instability rapidly converts most of the potential energy V(0) into the energy of colliding classical waves of the scalar field. This conversion, which was called "tachyonic preheating," is so efficient that symmetry breaking typically completes within a single oscillation of the field distribution as it rolls towards the minimum of its effective potential. In this paper we give a detailed description of tachyonic preheating and show that the dynamics of this process crucially depend on the shape of the effective ...

  18. Intrinsic transverse momentum and dynamical chiral symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Christian Weiss, Peter Schweitzer, Mark Strikman

    2013-01-01

    We study the effect of QCD vacuum structure on the intrinsic transverse momentum distribution of partons in the nucleon at a low scale. The dynamical breaking of chiral symmetry is caused by non-perturbative interactions at distances of the order rho ~ 0.2 - 0.3 fm, much smaller than the typical nucleon size R ~ 1 fm, resulting in a two-scale picture of nucleon structure. Using an effective dynamical model based on chiral constituent quark degrees of freedom and the 1/N_c expansion (chiral quark-soliton model), we calculate the transverse momentum distribution of quarks and antiquarks at a low scale. The distribution of valence quarks is localized at p_T ~ 1/R. The distribution of flavor-singlet unpolarized sea quarks exhibits a power-like tail extending up to the chiral-symmetry-breaking scale 1/{rho}. A similar tail is present in the flavor-nonsinglet polarized sea. These features are model-independent and represent the imprint of the QCD vacuum on the nucleon's partonic structure. At the level of the nucleon's light-cone wave function, we show that sea quarks partly exist in correlated pairs of transverse size {rho} << R, analogous to short-range NN correlations in nuclei. We discuss the implications of our findings for the transverse momentum distributions in hard scattering processes (semi-inclusive DIS, Drell-Yan pair production) and possible experimental tests of the non-perturbative parton correlations induced by QCD vacuum structure.

  19. Cosmological signature change in Cartan Gravity with dynamical symmetry breaking

    CERN Document Server

    Magueijo, Joao; Westman, Hans; Zlosnik, T G

    2013-01-01

    We investigate the possibility for classical metric signature change in a straightforward generalization of the first order formulation of gravity, dubbed "Cartan gravity". The mathematical structure of this theory mimics the electroweak theory in that the basic ingredients are an $SO(1,4)$ Yang-Mills gauge field $A^{ab}_{\\phantom{ab}\\mu}$ and a symmetry breaking Higgs field $V^{a}$, with no metric or affine structure of spacetime presupposed. However, these structures can be recovered, with the predictions of General Relativity exactly reproduced, whenever the Higgs field breaking the symmetry to $SO(1,3)$ is forced to have a constant (positive) norm $V^aV_a$. This restriction is usually imposed "by hand", but in analogy with the electroweak theory we promote the gravitational Higgs field $V^a$ to a genuine dynamical field, subject to non-trivial equations of motion. Even though we limit ourselves to actions polynomial in these variables, we discover a rich phenomenology. Most notably we derive classical cos...

  20. Bending-induced Symmetry Breaking of Lithiation in Germanium Nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Meng; Yang, Hui; Perea, Daniel E.; Zhang, Jiguang; Zhang, Sulin; Wang, Chong M.

    2014-08-01

    From signal transduction of living cells to oxidation and corrosion of metals, mechanical stress intimately couples with chemical reactions, regulating these biological and physiochemical processes. The coupled effect is particularly evident in electrochemical lithiation/delithiation cycling of high-capacity electrodes, such as silicon (Si), where on one hand lithiation-generated stress mediates lithiation kinetics, and on the other electrochemical reaction rate regulates stress generation and mechanical failure of the electrodes. Here we report for the first time the evidence on the controlled lithiation in germanium nanowires (GeNWs) through external bending. Contrary to the symmetric core-shell lithiation in free-standing GeNWs, we show bending GeNWs breaks the lithiation symmetry, speeding up lithaition at the tensile side while slowing down at the compressive side of the GeNWs. The bending-induced symmetry breaking of lithiation in GeNWs is further corroborated by chemomechanical modeling. In the light of the coupled effect between lithiation kinetics and mechanical stress in the electrochemical cycling, our findings shed light on strain/stress engineering of durable high-rate electrodes and energy harvesting through mechanical motion.

  1. Bending-induced symmetry breaking of lithiation in germanium nanowires.

    Science.gov (United States)

    Gu, Meng; Yang, Hui; Perea, Daniel E; Zhang, Ji-Guang; Zhang, Sulin; Wang, Chong-Min

    2014-08-13

    From signal transduction of living cells to oxidation and corrosion of metals, mechanical stress intimately couples with chemical reactions, regulating these biological and physiochemical processes. The coupled effect is particularly evident in the electrochemical lithiation/delithiation cycling of high-capacity electrodes, such as silicon (Si), where on the one hand lithiation-generated stress mediates lithiation kinetics and on the other the electrochemical reaction rate regulates stress generation and mechanical failure of the electrodes. Here we report for the first time the evidence on the controlled lithiation in germanium nanowires (GeNWs) through external bending. Contrary to the symmetric core-shell lithiation in free-standing GeNWs, we show bending the GeNWs breaks the lithiation symmetry, speeding up lithaition at the tensile side while slowing down at the compressive side of the GeNWs. The bending-induced symmetry breaking of lithiation in GeNWs is further corroborated by chemomechanical modeling. In the light of the coupled effect between lithiation kinetics and mechanical stress in the electrochemical cycling, our findings shed light on strain/stress engineering of durable high-rate electrodes and energy harvesting through mechanical motion. PMID:25025296

  2. Parity-time symmetry breaking in magnetic systems

    Science.gov (United States)

    Galda, Alexey; Vinokur, Valerii M.

    2016-07-01

    The understanding of out-of-equilibrium physics, especially dynamic instabilities and dynamic phase transitions, is one of the major challenges of contemporary science, spanning the broadest wealth of research areas that range from quantum optics to living organisms. Focusing on nonequilibrium dynamics of an open dissipative spin system, we introduce a non-Hermitian Hamiltonian approach, in which non-Hermiticity reflects dissipation and deviation from equilibrium. The imaginary part of the proposed spin Hamiltonian describes the effects of Gilbert damping and applied Slonczewski spin-transfer torque. In the classical limit, our approach reproduces Landau-Lifshitz-Gilbert-Slonczewski dynamics of a large macrospin. We reveal the spin-transfer torque-driven parity-time symmetry-breaking phase transition corresponding to a transition from precessional to exponentially damped spin dynamics. Micromagnetic simulations for nanoscale ferromagnetic disks demonstrate the predicted effect. Our findings can pave the way to a general quantitative description of out-of-equilibrium phase transitions driven by spontaneous parity-time symmetry breaking.

  3. Supersymmetry in a sector of Higgsless electroweak symmetry breaking

    International Nuclear Information System (INIS)

    In this thesis we have investigated phenomenological implications which arise for cosmology and collider physics when the electroweak symmetry breaking sector of warped higgsless models is extended to include warped supersymmetry with conserved R parity. The goal was to find the simplest supersymmetric extension of these models which still has a realistic light spectrum including a viable dark matter candidate. To accomplish this, we have used the same mechanism which is already at work for symmetry breaking in the electroweak sector to break supersymmetry as well, namely symmetry breaking by boundary conditions. While supersymmetry in five dimensions contains four supercharges and is therefore directly related to 4D N=2 supersymmetry, half of them are broken by the background leaving us with ordinary N=1 theory in the massless sector after Kaluza-Klein expansion. We thus use boundary conditions to model the effects of a breaking mechanism for the remaining two supercharges. The simplest viable scenario to investigate is a supersymmetric bulk and IR brane without supersymmetry on the UV brane. Even though parts of the light spectrum are effectively projected out by this mechanism, we retain the rich phenomenology of complete N=2 supermultiplets in the Kaluza-Klein sector. While the light supersymmetric spectrum consists of electroweak gauginos which get their O(100 GeV) masses from IR brane electroweak symmetry breaking, the light gluinos and squarks are projected out on the UV brane. The neutralinos, as mass eigenstates of the neutral bino-wino sector, are automatically the lightest gauginos, making them LSP dark matter candidates with a relic density that can be brought to agreement withWMAP measurements without extensive tuning of parameters. For chargino masses close to the experimental lower bounds at around mχ+∼100.. 110 GeV, the dark matter relic density points to LSP masses of around mχ∼90 GeV. At the LHC, the standard particle content of our model

  4. Supersymmetry in a sector of Higgsless electroweak symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Knochel, Alexander Karl

    2009-05-11

    In this thesis we have investigated phenomenological implications which arise for cosmology and collider physics when the electroweak symmetry breaking sector of warped higgsless models is extended to include warped supersymmetry with conserved R parity. The goal was to find the simplest supersymmetric extension of these models which still has a realistic light spectrum including a viable dark matter candidate. To accomplish this, we have used the same mechanism which is already at work for symmetry breaking in the electroweak sector to break supersymmetry as well, namely symmetry breaking by boundary conditions. While supersymmetry in five dimensions contains four supercharges and is therefore directly related to 4D N=2 supersymmetry, half of them are broken by the background leaving us with ordinary N=1 theory in the massless sector after Kaluza-Klein expansion. We thus use boundary conditions to model the effects of a breaking mechanism for the remaining two supercharges. The simplest viable scenario to investigate is a supersymmetric bulk and IR brane without supersymmetry on the UV brane. Even though parts of the light spectrum are effectively projected out by this mechanism, we retain the rich phenomenology of complete N=2 supermultiplets in the Kaluza-Klein sector. While the light supersymmetric spectrum consists of electroweak gauginos which get their O(100 GeV) masses from IR brane electroweak symmetry breaking, the light gluinos and squarks are projected out on the UV brane. The neutralinos, as mass eigenstates of the neutral bino-wino sector, are automatically the lightest gauginos, making them LSP dark matter candidates with a relic density that can be brought to agreement withWMAP measurements without extensive tuning of parameters. For chargino masses close to the experimental lower bounds at around m{sub {chi}{sup +}}{approx}100.. 110 GeV, the dark matter relic density points to LSP masses of around m{sub {chi}}{approx}90 GeV. At the LHC, the

  5. 3D toroidal physics: testing the boundaries of symmetry breaking

    Science.gov (United States)

    Spong, Don

    2014-10-01

    Toroidal symmetry is an important concept for plasma confinement; it allows the existence of nested flux surface MHD equilibria and conserved invariants for particle motion. However, perfect symmetry is unachievable in realistic toroidal plasma devices. For example, tokamaks have toroidal ripple due to discrete field coils, optimized stellarators do not achieve exact quasi-symmetry, the plasma itself continually seeks lower energy states through helical 3D deformations, and reactors will likely have non-uniform distributions of ferritic steel near the plasma. Also, some level of designed-in 3D magnetic field structure is now anticipated for most concepts in order to lead to a stable, steady-state fusion reactor. Such planned 3D field structures can take many forms, ranging from tokamaks with weak 3D ELM-suppression fields to stellarators with more dominant 3D field structures. There is considerable interest in the development of unified physics models for the full range of 3D effects. Ultimately, the questions of how much symmetry breaking can be tolerated and how to optimize its design must be addressed for all fusion concepts. Fortunately, significant progress is underway in theory, computation and plasma diagnostics on many issues such as magnetic surface quality, plasma screening vs. amplification of 3D perturbations, 3D transport, influence on edge pedestal structures, MHD stability effects, modification of fast ion-driven instabilities, prediction of energetic particle heat loads on plasma-facing materials, effects of 3D fields on turbulence, and magnetic coil design. A closely coupled program of simulation, experimental validation, and design optimization is required to determine what forms and amplitudes of 3D shaping and symmetry breaking will be compatible with future fusion reactors. The development of models to address 3D physics and progress in these areas will be described. This work is supported both by the US Department of Energy under Contract DE

  6. Geomagnetic Reversals Caused by Breaking Mirror Symmetry of Core Dynamics

    CERN Document Server

    Petrelis, F; Dormy, E; Valet, J P

    2008-01-01

    The Earth's magnetic field can be geometrically described by a strong axial dipole and higher degree terms, which belong to the dipolar (even) or quadrupolar (odd) family depending on their symmetry with respect to the equatorial plane. It is established that the field has frequently (and maybe always) reversed its polarity. It has been suggested by Merrill and Mc Fadden \\cite{Merrill} that reversals occur because the fluid flow in the outer core breaks the equatorial symmetry. This results in a coupling between the dipolar and quadrupolar families. Field reversals have now been reported in several numerical simulations of dynamos and very recently for the first time in a laboratory experiment involving a Von Karman swirling flow of liquid sodium (VKS) \\cite{Berhanu}. In this experiment, reversals are observed when the velocities of the two counter rotating disks driving the flow are different, thus when a symmetry is broken. Here, we show how the interaction between the dipolar and quadrupolar modes, that re...

  7. Spontaneous symmetry breaking in vortex systems with two repulsive lengthscales

    Science.gov (United States)

    Curran, P. J.; Desoky, W. M.; Milos̆ević, M. V.; Chaves, A.; Laloë, J.-B.; Moodera, J. S.; Bending, S. J.

    2015-01-01

    Scanning Hall probe microscopy (SHPM) has been used to study vortex structures in thin epitaxial films of the superconductor MgB2. Unusual vortex patterns observed in MgB2 single crystals have previously been attributed to a competition between short-range repulsive and long-range attractive vortex-vortex interactions in this two band superconductor; the type 1.5 superconductivity scenario. Our films have much higher levels of disorder than bulk single crystals and therefore both superconducting condensates are expected to be pushed deep into the type 2 regime with purely repulsive vortex interactions. We observe broken symmetry vortex patterns at low fields in all samples after field-cooling from above Tc. These are consistent with those seen in systems with competing repulsions on disparate length scales, and remarkably similar structures are reproduced in dirty two band Ginzburg-Landau calculations, where the simulation parameters have been defined by experimental observations. This suggests that in our dirty MgB2 films, the symmetry of the vortex structures is broken by the presence of vortex repulsions with two different lengthscales, originating from the two distinct superconducting condensates. This represents an entirely new mechanism for spontaneous symmetry breaking in systems of superconducting vortices, with important implications for pinning phenomena and high current density applications. PMID:26492969

  8. Stock market speculation: Spontaneous symmetry breaking of economic valuation

    Science.gov (United States)

    Sornette, Didier

    2000-09-01

    Firm foundation theory estimates a security's firm fundamental value based on four determinants: expected growth rate, expected dividend payout, the market interest rate and the degree of risk. In contrast, other views of decision-making in the stock market, using alternatives such as human psychology and behavior, bounded rationality, agent-based modeling and evolutionary game theory, expound that speculative and crowd behavior of investors may play a major role in shaping market prices. Here, we propose that the two views refer to two classes of companies connected through a "phase transition". Our theory is based on (1) the identification of the fundamental parity symmetry of prices (p→-p), which results from the relative direction of payment flux compared to commodity flux and (2) the observation that a company's risk-adjusted growth rate discounted by the market interest rate behaves as a control parameter for the observable price. We find a critical value of this control parameter at which a spontaneous symmetry-breaking of prices occurs, leading to a spontaneous valuation in absence of earnings, similarly to the emergence of a spontaneous magnetization in Ising models in absence of a magnetic field. The low growth rate phase is described by the firm foundation theory while the large growth rate phase is the regime of speculation and crowd behavior. In practice, while large "finite-time horizon" effects round off the predicted singularities, our symmetry-breaking speculation theory accounts for the apparent over-pricing and the high volatility of fast growing companies on the stock markets.

  9. Dynamical symmetry breaking in chiral gauge theories with direct-product gauge groups

    Science.gov (United States)

    Shi, Yan-Liang; Shrock, Robert

    2016-09-01

    We analyze patterns of dynamical symmetry breaking in strongly coupled chiral gauge theories with direct-product gauge groups G . If the gauge coupling for a factor group Gi⊂G becomes sufficiently strong, it can produce bilinear fermion condensates that break the Gi symmetry itself and/or break other gauge symmetries Gj⊂G . Our comparative study of a number of strongly coupled direct-product chiral gauge theories elucidates how the patterns of symmetry breaking depend on the structure of G and on the relative sizes of the gauge couplings corresponding to factor groups in the direct product.

  10. Dynamical Symmetry Breaking in Chiral Gauge Theories with Direct-Product Gauge Groups

    CERN Document Server

    Shi, Yan-Liang

    2016-01-01

    We analyze patterns of dynamical symmetry breaking in strongly coupled chiral gauge theories with direct-product gauge groups $G$. If the gauge coupling for a factor group $G_i \\subset G$ becomes sufficiently strong, it can produce bilinear fermion condensates that break the $G_i$ symmetry itself and/or break other gauge symmetries $G_j \\subset G$. Our comparative study of a number of strongly coupled direct-product chiral gauge theories elucidates how the patterns of symmetry breaking depend on the structure of $G$ and on the relative sizes of the gauge couplings corresponding to factor groups in the direct product.

  11. Inertial blob-hole symmetry breaking in magnetised plasma filaments

    CERN Document Server

    Kendl, Alexander

    2015-01-01

    Symmetry breaking between the propagation velocities of magnetised plasma filaments with large positive (blob) and negative (hole) amplitudes, as implied by a dimensional analysis scaling, is studied with global ("full-n") non-Boussinesq gyrofluid computations, which include finite inertia effects through nonlinear polarisation. Interchange blobs on a flat density background have higher inertia and propagate more slowly than holes. In the presence of a large enough density gradient, the effect is reversed: blobs accelerate down the gradient and holes are slowed in their propagation up the gradient. Drift wave blobs spread their initial vorticity rapidly into a fully developed turbulent state, whereas primary holes can remain coherent for many eddy turnover times. The results bear implications for plasma edge zonal flow evolution and tokamak scrape-off-layer transport.

  12. Dynamics of the universe and spontaneous symmetry breaking

    Science.gov (United States)

    Kazanas, D.

    1980-01-01

    It is shown that the presence of a phase transition early in the history of the universe, associated with spontaneous symmetry breaking (believed to take place at very high temperatures at which the various fundamental interactions unify), significantly modifies its dynamics and evolution. This is due to the energy 'pumping' during the phase transition from the vacuum to the substance, rather than the gravitating effects of the vacuum. The expansion law of the universe then differs substantially from the relation considered so far for the very early time expansion. In particular it is shown that under certain conditions this expansion law is exponential. It is further argued that under reasonable assumptions for the mass of the associated Higgs boson this expansion stage could last long enough to potentially account for the observed isotropy of the universe.

  13. Lorentz Symmetry Breaking in $\\mathcal{N} =2$ Superspace

    CERN Document Server

    Faizal, Mir

    2015-01-01

    In this paper, we will study the deformation of a three dimensional theory with $\\mathcal{N} =2$ supersymmetry. This theory will be deformed by the presence of a constant vector field. This deformation will break the Lorentz symmetry. So, we will analyse this theory using $\\mathcal{N} =2$ aether superspace. The $\\mathcal{N} =2$ aether superspace will be obtained from a deformation of the usual $\\mathcal{N} =2$ superspace. This will be done by deforming the generators of the three dimensional $\\mathcal{N} =2$ supersymmetry. After analysing this deformed superalgebra, we will derive an explicit expression for the superspace propagators in this deformed superspace. Finally, we will use these propagators for performing perturbative calculations.

  14. Spontaneous chiral symmetry breaking of Hall magnetohydrodynamic turbulence.

    Science.gov (United States)

    Meyrand, Romain; Galtier, Sébastien

    2012-11-01

    Hall magnetohydrodynamics (MHD) is investigated through three-dimensional direct numerical simulations. We show that the Hall effect induces a spontaneous chiral symmetry breaking of the turbulent dynamics. The normalized magnetic polarization is introduced to separate the right- (R) and left-handed (L) fluctuations. A classical k(-7/3) spectrum is found at small scales for R magnetic fluctuations which corresponds to the electron MHD prediction. A spectrum compatible with k(-11/3) is obtained at large-scales for the L magnetic fluctuations; we call this regime the ion MHD. These results are explained heuristically by rewriting the Hall MHD equations in a succinct vortex dynamical form. Applications to solar wind turbulence are discussed.

  15. Spontaneous symmetry breaking in spinor Bose-Einstein condensates

    DEFF Research Database (Denmark)

    Scherer, Manuel; Lücke, Bernd; Peise, Jan;

    2013-01-01

    We present an analytical model for the theoretical analysis of spin dynamics and spontaneous symmetry breaking in a spinor Bose-Einstein condensate (BEC). This allows for an excellent intuitive understanding of the processes and provides good quantitative agreement with the experimental results...... of Scherer et al. [ Phys. Rev. Lett. 105 135302 (2010)]. It is shown that the dynamics of a spinor BEC initially prepared in an unstable Zeeman state mF=0 (|0〉) can be understood by approximating the effective trapping potential for the state |±1〉 with a cylindrical box potential. The resonances....... In addition, a detailed account of the experimental methods for the preparation and analysis of spinor quantum gases is given....

  16. Micropropulsion and microrheology in complex fluids via symmetry breaking

    CERN Document Server

    Pak, On Shun; Brandt, Luca; Lauga, Eric; 10.1063/1.4758811

    2013-01-01

    Many biological fluids have polymeric microstructures and display non-Newtonian rheology. We take advantage of such nonlinear fluid behavior and combine it with geometrical symmetry-breaking to design a novel small-scale propeller able to move only in complex fluids. Its propulsion characteristics are explored numerically in an Oldroyd-B fluid for finite Deborah numbers while the small Deborah number limit is investigated analytically using a second-order fluid model. We then derive expressions relating the propulsion speed to the rheological properties of the complex fluid, allowing thus to infer the normal stress coefficients in the fluid from the locomotion of the propeller. Our simple mechanism can therefore be used either as a non-Newtonian micro-propeller or as a micro-rheometer.

  17. Jumps, somersaults, and symmetry breaking in Leidenfrost drops

    Science.gov (United States)

    Chen, Simeng; Bertola, Volfango

    2016-08-01

    When a droplet of water impacts a heated surface, the drop may be observed to bounce. Recently is has been found that small quantities (˜100 ppm) of polymer additives such as polyethylene oxide can significantly increase the maximum bouncing height of drops. This effect has been explained in terms of the reduction of energy dissipation caused by polymer additives during the drop retraction and rebound, resulting in higher mechanical energy available for bouncing. Here we demonstrate, by comparing three types of fluids (Newtonian, shear-thinning, and viscoelastic), that the total kinetic energy carried by low-viscosity Newtonian drops during retraction is partly transformed into rotational kinetic energy rather than dissipated when compared with high-viscosity or non-Newtonian drops. We also show that non-Newtonian effects play little role in the energy distribution during drop impact, while the main effect is due to the symmetry break observed during the retraction of low-viscosity drops.

  18. Structural topography-mediated high temperature wetting symmetry breaking

    CERN Document Server

    Li, Jing; Liu, Yahua; Hao, Chonglei; Li, Minfei; Chaudhury, Manoj K; Yao, Shuhuai

    2015-01-01

    Directed motion of liquid droplets is of considerable importance in various industrial processes. Despite extensive advances in this field of research, our understanding and the ability to control droplet dynamics at high temperature remain limited, in part due to the emergence of complex wetting states intertwined by the phase change process at the triple-phase interfaces. Here we show that two concurrent wetting states (Leidenfrost and contact boiling) can be manifested in a single droplet above its boiling point rectified by the presence of asymmetric textures. The breaking of the wetting symmetry at high temperature subsequently leads to the preferential motion towards the region with higher heat transfer coefficient. We demonstrate experimentally and analytically that the droplet vectoring is intricately dependent on the interplay between the structural topography and its imposed thermal state. Our fundamental understanding and the ability to control the droplet dynamics at high temperature represent an ...

  19. Probing SU(2) symmetry breaking in the nucleon sea

    Science.gov (United States)

    Arash, Firooz; Tomio, Lauro

    1997-02-01

    Investigation of invariant cross-sections for production of K*- and overlineK*0, in the fragmentation region of the proton, in p - p and γ - p reactions, gives a direct and unambiguous probe to the symmetry breaking of the nucleon sea. Based on existing data, we clearly found a large asymmetry of the sea. Our result is in excellent agreement with NA51 measurement, signaling lack of any nuclear effect. The measurement can be carried out in a single experimental set up. The ratio K*-/overlineK*0 is equivalent to u/d, with easy access to the x-dependence of the asymmetry. The observed asymmetry from available experimental data is used to improve the valon-recombination model.

  20. Wetting of crossed fibers: multiple steady states and symmetry breaking

    CERN Document Server

    Sauret, Alban; Duprat, Camille; Stone, Howard A

    2014-01-01

    We investigate the wetting properties of the simplest element of an array of random fibers: two rigid fibers crossing with an inclination angle and in contact with a droplet of a perfectly wetting liquid. We show experimentally that the liquid adopts different morphologies when the inclination angle is increased: a column shape, a mixed morphology state where a drop lies at the end of a column, or a drop centered at the node. An analytical model is provided that predicts the wetting length as well as the presence of a non-symmetric state in the mixed morphology regime. The model also highlights a symmetry breaking at the transition between the column state and the mixed morphology. The possibility to tune the morphology of the liquid could have important implications for drying processes.

  1. Spontaneous chiral symmetry breaking of Hall magnetohydrodynamic turbulence.

    Science.gov (United States)

    Meyrand, Romain; Galtier, Sébastien

    2012-11-01

    Hall magnetohydrodynamics (MHD) is investigated through three-dimensional direct numerical simulations. We show that the Hall effect induces a spontaneous chiral symmetry breaking of the turbulent dynamics. The normalized magnetic polarization is introduced to separate the right- (R) and left-handed (L) fluctuations. A classical k(-7/3) spectrum is found at small scales for R magnetic fluctuations which corresponds to the electron MHD prediction. A spectrum compatible with k(-11/3) is obtained at large-scales for the L magnetic fluctuations; we call this regime the ion MHD. These results are explained heuristically by rewriting the Hall MHD equations in a succinct vortex dynamical form. Applications to solar wind turbulence are discussed. PMID:23215387

  2. Chiral symmetry breaking in lattice QED model with fermion brane

    CERN Document Server

    Shintani, E

    2012-01-01

    We propose a novel approach of spontaneous chiral symmetry breaking at near zero temperature in 4 dimensional QED model with 3+1 dimensional fermion brane using Hybrid Monte Carlo simulation. We consider an anisotropic QED coupling in non-compact QED action with the manifest gauge invariant interaction and fermi-velocity which is less than speed of light. This model allows for the scaling study at low temperature and strong coupling region with reduced computational cost. We compute the chiral condensate and its susceptibility with different coupling constant, velocity parameter and flavor number, and therefore obtain a compatible behavior with gap equation in broken phase. We also discuss about the comparison of Graphene model.

  3. D-term inflation after spontaneous symmetry breaking

    International Nuclear Information System (INIS)

    We show that one-loop quantum corrections to the potential energy density in supersymmetric hybrid inflation, outside the inflationary valley, cannot be neglected. A method is presented to calculate these one-loop corrections and they are applied to the case of D-term hybrid inflation, where a significant amount of inflation is shown to occur after spontaneous symmetry breaking. Taking this into account improves the agreement with WMAP measurements. A gauge coupling of up to 0.3 is still consistent with the CMB density perturbation. The spectral index is predicted in between 0.98 and 1.00 and the cosmic string contribution to the CMB anisotropy is sufficiently reduced

  4. Interacting line-node semimetal and spontaneous symmetry breaking

    CERN Document Server

    Roy, Bitan

    2016-01-01

    The effects of short-range electronic interactions in a three dimensional line-node semimetal that supports linearly dispersing quasiparticles around an isolated closed loop in the Brillouin zone are discussed. Due to vanishing density of states various orderings in the bulk of the system, such as the antiferromagnet and charge-density-wave, set in for sufficiently strong onsite ($U$) and nearest-neighbor ($V$) repulsions, respectively. While onset of these two orderings from the semimetallic phase takes place through continuous quantum phase transitions, a first order transition separates two ordered phases. By contrast, topologically protected drumhead shaped surface states can undergo charge or spin orderings, depending on relative strength of $U$ and $V$, even when they are sufficiently weak. Such surface orderings as well as weak long range Coulomb interaction can be conducive to spontaneous symmetry breaking in the bulk for weaker interactions. We also discuss possible superconducting phases and interna...

  5. Symmetry breaking and convergent extension in early chordate development.

    Science.gov (United States)

    Schiffmann, Yoram

    2006-10-01

    The initiation of axis, polarity, cell differentiation, and gastrulation in the very early chordate development is due to the breaking of radial symmetry. It is believed that this occurs by an external signal. We suggest instead spontaneous symmetry breaking through the agency of the Turing-Child field. Increased size or decreased diffusivity, both brought about by mitotic activity, cause the spontaneous loss of stability of the homogeneous state and the evolution of the metabolic pattern during development. The polar metabolic pattern is the cause of polar gene expression, polar morphogenesis (gastrulation), and polar mitotic activity. The Turing-Child theory explains not only the spontaneous formation of the invagination in gastrulation but also the coherent cell movement observed in convergence and extension during gastrulation and neurulation. The theory is demonstrated with respect to experimental observations on the early development of fish, amphibian, and the chick. The theory can explain a multitude of experimental details. For example, it explains the splayed polar progression of reduction in the fish blastoderm. Reduction starts on that side of the blastoderm margin, which will initiate invagination several hours later. It progresses toward the blastoderm center and somewhat laterally from this future "dorsal lip". This is precisely as predicted by a Turing-Child system in a circle. And for a fish like zebrafish with a blastoderm that is slightly oval, reduction is observed to progress along the long axis of the ellipse, which is what Turing-Child theory predicts. In general the shape and the chemical nature of the experimental patterns are the same as predicted by the Turing couple (cAMP, ATP). Embryological polarity and convergent extension are based on polar eigenfunction and saddle-shaped eigenfunction, respectively.

  6. Emergent spontaneous symmetry breaking and emergent symmetry restoration in rippling gravitational background

    Energy Technology Data Exchange (ETDEWEB)

    Kurkov, Maxim A. [Universidade Federal do ABC, CMCC, Santo Andre, SP (Brazil)

    2016-06-15

    We study effects of a rippling gravitational background on a scalar field with a double well potential, focusing on the analogy with the well known dynamics of the Kapitza's pendulum. The ripples are rendered as infinitesimal but rapidly oscillating perturbations of the scale factor. We find that the resulting dynamics crucially depends on a value of the parameter ξ in the ξRφ{sup 2} vertex. For the time-dependent perturbations of a proper form the resulting effective action is generally covariant, and at a high enough frequency at ξ < 0 and at ξ > 1/6 the effective potential has a single minimum at zero, thereby restoring spontaneously broken symmetry of the ground state. On the other side, at 0 < ξ < 1/6 spontaneous symmetry breaking emerges even when it is absent in the unperturbed case. (orig.)

  7. Signatures of time reversal symmetry breaking in multiband superconductors

    Science.gov (United States)

    Maiti, Saurabh

    Multiband superconductors serve as natural host to several possible gound states that compete with each other. At the boundaries of such competing phases, the system usually compromises and settles for `mixed' phases that can show intriguing properties like co-existence of magnetism and superconductiivty or even co-existence of different superconducting phases. The latter is particularly interesting as it can lead to non-magnetic ground states that spontaneously break Time-Reversal symmetry. While the experimental verification of such states has proved to been challenging, the theoretical investigations have provided exciting new insights into the nature of the ground state and its excitations all of which have experimental consequences of some sort. These include extrinsic properties like spontaneous currents around impurity sites, and intrinsic properties in the form of collective excitations. These collective modes bear a unique signature and should provide clear evidence for time reversal symmetry broken state. While the results are general, in light of recent Raman scattering experiments, its direct relevance to extremely hole doped Ba(1-x)K(FeAs)2 will be presented where a strong competition of s-wave and d-wave ground state is expected.

  8. Weyl geometric gravity and "breaking" of electroweak symmetry

    CERN Document Server

    Scholz, Erhard

    2011-01-01

    A Weyl geometric scale covariant approach to gravity due to Omote, Dirac, and Utiyama (1971ff) is reconsidered. It can be extended to the electroweak sector of elementary particle fields, taking into account their basic scaling freedom. Already Cheng (1988) indicated that electroweak symmetry breaking, usually attributed to the Higgs field with a boson expected at $0.1 - 1 \\,TeV$, may be due to a coupling between Weyl geometric gravity and electroweak interactions. Weyl geometry seems to be well suited for treating questions of elementary particle physics, which relate to scale invariance and its "breaking". This setting suggests the existence of a scalar field boson at the surprisingly low energy of $\\sim 1\\, eV$. That may appear unlikely; but, as a payoff, the naturalness problem of the standard Higgs field seems to become immaterial. Moreover, the acquirement of mass arises as a result of coupling to gravity in agreement with the understanding of mass as the gravitational charge of fields. Finally, the pot...

  9. Breaking time reversal symmetry in a circuit topological insulator

    Science.gov (United States)

    Owens, Clai; Jia, Ningyuan; Sommer, Ariel; Schuster, David; Simon, Jonathan

    2014-05-01

    Materials exhibiting knotted band-structures provide a unique window on interplay between topology and quantum mechanics under well-controlled conditions. The main difficulty is engineering a strong background gauge field for the electrically neutral ``particles'' that comprise such materials. In cold atom systems, the leading candidates include Raman couplings, lattice modulation, and optical flux lattices; however no scalable approach has yet been demonstrated. Meta-materials have seen substantial success, both in coupled optical waveguides, and circuit networks. Here we describe progress towards time reversal breaking in a circuit, to split up- and down- spin Chern bands. This work is essential for studies of fractional quantum hall physics, where spin-flip collisions effectively reverse the magnetic field and destroy the many-body state. We present the design of a 1D transmission line that breaks time reversal symmetry via periodic capacitance modulation. We extend this approach to a 2D geometry, realizing a Floquet topological insulator with an isolated ground Chern-band. These tools are compatible with circuit quantum electrodynamics techniques, and thus provide an exciting route to studies of topologically ordered phases of matter.

  10. Spontaneous breaking of Lorentz symmetry for canonical gravity

    Energy Technology Data Exchange (ETDEWEB)

    Gielen, Steffen [Max-Planck-Institut fuer Gravitationsphysik (Albert-Einstein-Institut), Golm (Germany); Perimeter Institute for Theoretical Physics, Waterloo, Ontario (Canada); Wise, Derek [Institut fuer Theoretische Physik III, Universitaet Erlangen-Nuernberg, Erlangen (Germany)

    2012-07-01

    In Hamiltonian formulations of general relativity, in particular Ashtekar variables which serve as the classical starting point for loop quantum gravity, Lorentz covariance is a subtle issue which has been the focus of some debate, while at the same time being crucial with regard to possible experimental tests. After reviewing the sources of difficulty, we present a Lorentz covariant formulation in which which we generalise the notion of a foliation of spacetime usually used in the Hamiltonian formalism to a field of ''local observers'' which specify a time direction only locally. This field spontaneously breaks the local SO(3,1) symmetry down to a subgroup SO(3), in a way similar to systems in condensed matter and particle physics. The formalism is analogous to that in MacDowell-Mansouri gravity, where SO(4,1) is spontaneously broken to SO(3,1). We show that the apparent breaking of SO(3,1) to SO(3) is not in conflict with Lorentz covariance. We close by outlining other possible applications of the formalism of local observer, especially with regard to phenomenology of quantum gravity.

  11. Dicke superradiance, Bose-Einstein condensation of photons and spontaneous symmetry breaking

    CERN Document Server

    Vyas, Vivek M; Srinivasan, V

    2016-01-01

    It is shown that the phenomenon of Dicke superradiance essentially occurs due to spontaneous symmetry breaking. Two generalised versions of the Dicke model are studied, and compared with a model that describes photonic Bose-Einstein condensate, which was experimentally realised. In all the models, it is seen that, the occurrence of spontaneous symmetry breaking is responsible for coherent radiation emission.

  12. Symmetry breaking on density in escaping ants: experiment and alarm pheromone model.

    Directory of Open Access Journals (Sweden)

    Geng Li

    Full Text Available The symmetry breaking observed in nature is fascinating. This symmetry breaking is observed in both human crowds and ant colonies. In such cases, when escaping from a closed space with two symmetrically located exits, one exit is used more often than the other. Group size and density have been reported as having no significant impact on symmetry breaking, and the alignment rule has been used to model symmetry breaking. Density usually plays important roles in collective behavior. However, density is not well-studied in symmetry breaking, which forms the major basis of this paper. The experiment described in this paper on an ant colony displays an increase then decrease of symmetry breaking versus ant density. This result suggests that a Vicsek-like model with an alignment rule may not be the correct model for escaping ants. Based on biological facts that ants use pheromones to communicate, rather than seeing how other individuals move, we propose a simple yet effective alarm pheromone model. The model results agree well with the experimental outcomes. As a measure, this paper redefines symmetry breaking as the collective asymmetry by deducing the random fluctuations. This research indicates that ants deposit and respond to the alarm pheromone, and the accumulation of this biased information sharing leads to symmetry breaking, which suggests true fundamental rules of collective escape behavior in ants.

  13. Spin-rotation symmetry breaking in the superconducting state of CuxBi2Se3

    Science.gov (United States)

    Matano, K.; Kriener, M.; Segawa, K.; Ando, Y.; Zheng, Guo-Qing

    2016-09-01

    Spontaneous symmetry breaking is an important concept for understanding physics ranging from the elementary particles to states of matter. For example, the superconducting state breaks global gauge symmetry, and unconventional superconductors can break further symmetries. In particular, spin-rotational symmetry is expected to be broken in spin-triplet superconductors. However, experimental evidence for such symmetry breaking has not been conclusively obtained so far in any candidate compounds. Here, using 77Se nuclear magnetic resonance measurements, we show that spin-rotation symmetry is spontaneously broken in the hexagonal plane of the electron-doped topological insulator Cu0.3Bi2Se3 below the superconducting transition temperature Tc = 3.4 K. Our results not only establish spin-triplet superconductivity in this compound, but may also serve to lay a foundation for the research of topological superconductivity.

  14. Dynamical Symmetry Breaking of Maximally Generalized Yang-Mills Model and Its Restoration at Finite Temperatures

    Institute of Scientific and Technical Information of China (English)

    WANG Dian-Fu

    2008-01-01

    In terms of the Nambu-Jona-Lasinio mechanism, dynamical breaking of gauge symmetry for the maximally generalized Yang-Mills model is investigated. The gauge symmetry behavior at finite temperature is also investigated and it is shown that the gauge symmetry broken dynamically at zero temperature can be restored at finite temperatures.

  15. Spontaneous symmetry breaking in a split potential box

    CERN Document Server

    Shamriz, Elad; Malomed, Boris A

    2016-01-01

    We report results of the analysis of the spontaneous symmetry breaking (SSB) in the basic (actually, simplest) model which is capable to produce the SSB phenomenology in the one-dimensional setting. It is based on the Gross-Pitaevskii - nonlinear Schroedinger equation with the cubic self-attractive term and a double-well-potential built as an infinitely deep potential box split by a narrow (delta-functional) barrier. The barrier's strength, epsilon, is the single free parameter of the scaled form of the model. It may be implemented in atomic Bose-Einstein condensates and nonlinear optics. The SSB bifurcation of the symmetric ground state (GS) is predicted analytically in two limit cases, viz., for deep or weak splitting of the potential box by the barrier. For the generic case, a variational approximation (VA) is elaborated. The analytical findings are presented along with systematic numerical results. Stability of stationary states is studied through the calculation of eigenvalues for small perturbations, an...

  16. Spontaneous Electro-Weak Symmetry Breaking and Cold Dark Matter

    Institute of Scientific and Technical Information of China (English)

    ZHU Shou-Hua

    2007-01-01

    In the standard model, the weak gauge bosons and fermions obtain mass after spontaneous electro-weak symmetry breaking, which is realized by one fundamental scalar field, namely the Higgs field. We study the simplest scalar cold dark matter model in which the scalar cold dark matter also obtains mass by interaction with the weakdoublet Higgs field, in the same way as those of weak gauge bosons and fermions. Our study shows that the correct cold dark matter relic abundance within 3σ uncertainty (0.093 <Ωdmh2 < 0.129) and experimentally allowed Higgs boson mass (114.4 ≤ mh ≤ 208 GeV) constrain the scalar dark matter mass within 48 ≤ ms ≤ 78 GeV.This result is in excellent agreement with the result of de Boer et al. (50 ~ 100 GeV). Such a kind of dark matter annihilation can account for the observed gamma rays excess (10σ) at EGRET for energies above 1 GeV in comparison with the expectations from conventional Galactic models. We also investigate other phenomenological consequences of this model. For example, the Higgs boson decays dominantly into scalar cold dark matter if its mass lies within 48 ~ 64 GeV.

  17. Sea quark transverse momentum distributions and dynamical chiral symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Schweitzer, Peter [Univ. of Connecticut, Storrs, CT (United States); Strikman, Mark [Penn State Univ., State College, PA (United States); Weiss, Christian [JLAB Newport News, VA (United States)

    2014-01-01

    Recent theoretical studies have provided new insight into the intrinsic transverse momentum distributions of valence and sea quarks in the nucleon at a low scale. The valence quark transverse momentum distributions (q - qbar) are governed by the nucleon's inverse hadronic size R{sup -1} ~ 0.2 GeV and drop steeply at large p{sub T}. The sea quark distributions (qbar) are in large part generated by non-perturbative chiral-symmetry breaking interactions and extend up to the scale rho{sup -1} ~ 0.6 GeV. These findings have many implications for modeling the initial conditions of perturbative QCD evolution of TMD distributions (starting scale, shape of p{sub T}. distributions, coordinate-space correlation functions). The qualitative difference between valence and sea quark intrinsic p{sub T}. distributions could be observed experimentally, by comparing the transverse momentum distributions of selected hadrons in semi-inclusive deep-inelastic scattering, or those of dileptons produced in pp and pbar-p scattering.

  18. A pedagogical review of electroweak symmetry breaking scenarios

    International Nuclear Information System (INIS)

    We review different avenues of electroweak symmetry breaking explored over the years. This constitutes a timely exercise as the world's largest and the highest energy particle accelerator, namely, the Large Hadron Collider (LHC) at CERN near Geneva, has started running whose primary mission is to find the Higgs or some phenomena that mimic the effects of the Higgs, i.e. to unravel the mysteries of electroweak phase transition. In the beginning, we discuss the Standard Model Higgs mechanism. After that we review the Higgs sector of the minimal supersymmetric Standard Model. Then we take up three relatively recent ideas: little Higgs, gauge-Higgs unification and Higgsless scenarios. For the latter three cases, we first present the basic ideas and restrict our illustration to some instructive toy models to provide an intuitive feel of the underlying dynamics, and then discuss, for each of the three cases, how more realistic scenarios are constructed and how to decipher their experimental signatures. Wherever possible, we provide pedagogical details, which beginners might find useful.

  19. Charge symmetry breaking in the A=4 hypernuclei

    CERN Document Server

    Gazda, Daniel

    2016-01-01

    Charge symmetry breaking (CSB) in the $\\Lambda$-nucleon strong interaction generates a charge dependence of $\\Lambda$ separation energies in mirror hypernuclei, which in the case of the $A=4$ mirror hypernuclei $0^+$ ground states is sizable, $\\Delta B^{J=0}_{\\Lambda}\\equiv B^{J=0}_{\\Lambda} (_{\\Lambda}^4{\\rm He})-B^{J=0}_{\\Lambda}(_{\\Lambda}^4{\\rm H})=230\\pm 90$~keV, and of opposite sign to that induced by the Coulomb repulsion in light hypernuclei. Recent {\\it ab initio} calculations of the (\\lamb{4}{H}, \\lamb{4}{He}) mirror hypernuclei $0^+_{\\rm g.s.}$ and $1^+_{\\rm exc}$ levels have demonstrated that a $\\Lambda - \\Sigma^0$ mixing CSB model due to Dalitz and von Hippel (1964) is capable of reproducing this large value of $\\Delta B^{J=0}_{\\Lambda}$. These calculations are discussed here with emphasis placed on the leading-order $\\chi$EFT hyperon-nucleon strong-interaction Bonn-J\\"{u}lich model used and the no-core shell-model calculational scheme applied. The role of one-pion exchange in producing sizable C...

  20. Particle-Hole Symmetry Breaking in the Pseudogap State of Bi2201

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, M.; /SIMES, Stanford /Stanford U., Geballe Lab. /LBNL, ALS; He, R.-H.; /aff SIMES, Stanford /Stanford U., Geballe Lab.; Tanaka, K.; /aff SIMES, Stanford /Stanford U., Geballe Lab. /LBNL, ALS /Osaka U.; Testaud, J.P.; /SIMES, Stanford /Stanford U., Geballe Lab. /LBNL, ALS; Meevasana1, W.; Moore, R.G.; Lu, D.H.; /SIMES, Stanford /Stanford U., Geballe Lab.; Yao, H.; /SIMES, Stanford; Yoshida, Y.; Eisaki, H.; /AIST, Tsukuba; Devereaux, T.P.; /SIMES, Stanford /Stanford U., Geballe Lab.; Hussain, Z.; /LBNL, ALS; Shen, Z.-X.; /SIMES, Stanford /Stanford U., Geballe Lab.

    2011-08-19

    In conventional superconductors, a gap exists in the energy absorption spectrum only below the transition temperature (T{sub c}), corresponding to the energy price to pay for breaking a Cooper pair of electrons. In high-T{sub c} cuprate superconductors above T{sub c}, an energy gap called the pseudogap exists, and is controversially attributed either to pre-formed superconducting pairs, which would exhibit particle-hole symmetry, or to competing phases which would typically break it. Scanning tunnelling microscopy (STM) studies suggest that the pseudogap stems from lattice translational symmetry breaking and is associated with a different characteristic spectrum for adding or removing electrons (particle-hole asymmetry). However, no signature of either spatial or energy symmetry breaking of the pseudogap has previously been observed by angle-resolved photoemission spectroscopy (ARPES). Here we report ARPES data from Bi2201 which reveals both particle-hole symmetry breaking and dramatic spectral broadening indicative of spatial symmetry breaking without long range order, upon crossing through T* into the pseudogap state. This symmetry breaking is found in the dominant region of the momentum space for the pseudogap, around the so-called anti-node near the Brillouin zone boundary. Our finding supports the STM conclusion that the pseudogap state is a broken-symmetry state that is distinct from homogeneous superconductivity.

  1. Radiative Effects and Electroweak Symmetry Breaking in a Supersymmetric Preon Model

    Science.gov (United States)

    Kim, Jongbae

    We construct the low energy effective theory of composite quarks, leptons, and Higgs bosons for a supersymmetric preon model and study the effects of renormalization-group based radiative corrections. The study on the evolution of scalar masses for avoiding color and charge breakings leads us to conclude that Yukawa couplings are bounded from above. The implementation of electroweak symmetry breaking requires that only the purely dynamical symmetry breaking should be needed for the model, but the combined scheme of dynamical and radiative symmetry breaking as well as the purely radiative symmetry breaking scheme be disfavored. Our analysis of (mb)/(m_τ ) including radiative effects shows that, should a discrepancy be found between the observed and the theoretical value of (mb)/(m_τ ) after experimental determination of supersymmetric particle masses, it would imply that the complete quark-lepton universality in the supersymmetric preon model does not hold either for the Yukawa couplings, or for the condensates, or for both.

  2. Spontaneous symmetry breaking in a split potential box

    Science.gov (United States)

    Shamriz, Elad; Dror, Nir; Malomed, Boris A.

    2016-08-01

    We report results of an analysis of the spontaneous symmetry breaking (SSB) in a basic (actually, simplest) model that is capable of producing the SSB phenomenology in a one-dimensional setting. It is based on the Gross-Pitaevskii-nonlinear Schrödinger equation with the cubic self-attractive term and a double-well potential built as an infinitely deep potential box split by a narrow (δ functional) barrier. The barrier's strength ɛ is the single free parameter of the scaled form of the model. It may be implemented in atomic Bose-Einstein condensates and nonlinear optics. The SSB bifurcation of the symmetric ground state (g.s.) is predicted analytically in two limit cases, viz., for deep or weak splitting of the potential box by the barrier (ɛ ≫1 or ɛ ≪1 , respectively). For the generic case, a variational approximation (VA) is elaborated. The analytical findings are presented along with systematic numerical results. The stability of stationary states is studied through the calculation of eigenvalues for small perturbations and by means of direct simulations. The g.s. always undergoes the SSB bifurcation of the supercritical type, as predicted by the VA at moderate values of ɛ , although the VA fails at small ɛ , due to inapplicability of the underlying ansatz in that case. However, the latter case is correctly treated by the approximation based on a soliton ansatz. On top of the g.s., the first and second excited states are studied too. The antisymmetric mode (the first excited state) is destabilized at a critical value of its norm. The second excited state undergoes SSB bifurcation, like the g.s., but, unlike it, the bifurcation produces an unstable asymmetric mode. All unstable modes tend to spontaneously reshape into the asymmetric g.s.

  3. Symmetry breaking and a dynamical property of a dipolar Bose–Einstein condensate in a double-well potential

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuan-Sheng, E-mail: joiningnow@126.com; Li, Zhen-Yu; Zhou, Zhu-Wen; Diao, Xin-Feng

    2014-01-03

    Highlights: •We investigate the symmetry breaking of a dipolar Bose–Einstein condensate. •The anisotropy of dipolar interaction affects the ground state structure. •Tuning the scattering length can realize the symmetry breaking phenomena. •Increasing the barrier height can realize the symmetry breaking phenomena.

  4. A Generalized Yang-Mills Model and Dynamical Breaking of Gauge Symmetry

    Institute of Scientific and Technical Information of China (English)

    WANG Dian-Fu; SONG He-Shan

    2005-01-01

    A generalized Yang-Mills model, which contains, besides the vector part Vμ, also a scalar part S, is constructed and the dynamical breaking of gauge symmetry in the model is also discussed. It is shown, in terms of Nambu-Jona-Lasinio (NJL) mechanism, that the gauge symmetry breaking can be realized dynamically in the generalized Yang-Mills model. The combination of the generalized Yang-Mills model and the NJL mechanism provides a way to overcome the difficulties related to the Higgs field and the Higgs mechanism in the usual spontaneous symmetry breaking theory.

  5. A theoretical study of symmetry-breaking organic overlayers on single- and bi-layer graphene

    Science.gov (United States)

    Morales-Cifuentes, Josue; Einstein, T. L.

    2013-03-01

    An ``overlayer'' of molecules that breaks the AB symmetry of graphene can produce (modify) a band gap in single- (bi-) layer graphene.[2] Since the triangular shaped trimesic acid (TMA) molecule forms two familiar symmetry breaking configurations, we are motivated to model TMA physisorption on graphene surfaces in conjunction with experiments by Groce et al. at UMD. Using VASP, with ab initio van der Waals density functionals (vdW-DF), we simulate adsorption of TMA onto a graphene surface in several symmetry-breaking arrangements in order to predict/understand the effect of TMA adsorption on experimental observables. Supported by NSF-MRSEC Grant DMR 05-20471.

  6. Dynamical breaking of shift-symmetry and super-Planckian inflation

    CERN Document Server

    Mazumdar, Anupam; Yamaguchi, Masahide

    2014-01-01

    Shift-symmetry is essential to protect the flatness of the potential, even beyond the super-Planckian vacuum expectation value (VEV) for an inflaton field. The breaking of the shift-symmetry can yield potentials suitable for super-Planckian excursion of the inflaton. The aim of this paper is to illustrate that it is indeed possible to break the shift-symmetry dynamically within 4 dimensional supergravity prior to a long phase of inflation. The potential obtained for the inflaton would be akin to a natural inflationary scenario with the breaking scale M larger than the 4 dimensional Planck mass.

  7. Multicritical Symmetry Breaking and Naturalness of Slow Nambu-Goldstone Bosons

    CERN Document Server

    Griffin, Tom; Horava, Petr; Yan, Ziqi

    2013-01-01

    We investigate spontaneous global symmetry breaking in the absence of Lorentz invariance, and study technical Naturalness of Nambu-Goldstone (NG) modes whose dispersion relation exhibits a hierarchy of multicritical phenomena with Lifshitz scaling and dynamical exponents $z>1$. For example, we find NG modes with a technically natural quadratic dispersion relation which do not break time reversal symmetry and are associated with a single broken symmetry generator, not a pair. The mechanism is protected by an enhanced `polynomial shift' symmetry in the free-field limit.

  8. Symmetry breaking indication for supergravity inflation in light of the Planck 2015

    Energy Technology Data Exchange (ETDEWEB)

    Li, Tianjun [State Key Laboratory of Theoretical Physics, and Kavli Institute for Theoretical Physics China (KITPC), Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190 (China); School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Li, Zhijin [George P. and Cynthia W. Mitchell Institute for Fundamental Physics and Astronomy, Texas A& M University, College Station, TX 77843 (United States); Nanopoulos, Dimitri V. [George P. and Cynthia W. Mitchell Institute for Fundamental Physics and Astronomy, Texas A& M University, College Station, TX 77843 (United States); Astroparticle Physics Group, Houston Advanced Research Center (HARC), Mitchell Campus, Woodlands, TX 77381 (United States); Academy of Athens, Division of Natural Sciences, 28 Panepistimiou Avenue, Athens 10679 (Greece)

    2015-09-01

    Supergravity (SUGRA) theories with exact global U(1) symmetry or shift symmetry in Kähler potential provide natural frameworks for inflation. However, quadratic inflation is disfavoured by the new results on primordial tensor fluctuations from the Planck Collaboration. To be consistent with the new Planck data, we point out that the explicit symmetry breaking is needed, and study these two SUGRA inflation in detail. For SUGRA inflation with global U(1) symmetry, the symmetry breaking term leads to a trigonometric modulation on inflaton potential. Coefficient of the U(1) symmetry breaking term is of order 10{sup −2}, which is sufficient large to improve the inflationary predictions while its higher order corrections are negligible. Such models predict sizeable tensor fluctuations and highly agree with the Planck results. In particular, the model with a linear U(1) symmetry breaking term predicts the tensor-to-scalar ratio around r∼0.01 and running spectral index α{sub s}∼−0.004, which comfortably fit with the Planck observations. For SUGRA inflation with breaking shift symmetry, the inflaton potential is modulated by an exponential factor. The modulated linear and quadratic models are consistent with the Planck observations. In both types of models the tensor-to-scalar ratio can be of order 10{sup −2}, which will be tested by the near future observations.

  9. Symmetry breaking indication for supergravity inflation in light of the Planck 2015

    International Nuclear Information System (INIS)

    Supergravity (SUGRA) theories with exact global U(1) symmetry or shift symmetry in Kähler potential provide natural frameworks for inflation. However, quadratic inflation is disfavoured by the new results on primordial tensor fluctuations from the Planck Collaboration. To be consistent with the new Planck data, we point out that the explicit symmetry breaking is needed, and study these two SUGRA inflation in detail. For SUGRA inflation with global U(1) symmetry, the symmetry breaking term leads to a trigonometric modulation on inflaton potential. Coefficient of the U(1) symmetry breaking term is of order 10−2, which is sufficient large to improve the inflationary predictions while its higher order corrections are negligible. Such models predict sizeable tensor fluctuations and highly agree with the Planck results. In particular, the model with a linear U(1) symmetry breaking term predicts the tensor-to-scalar ratio around r∼0.01 and running spectral index αs∼−0.004, which comfortably fit with the Planck observations. For SUGRA inflation with breaking shift symmetry, the inflaton potential is modulated by an exponential factor. The modulated linear and quadratic models are consistent with the Planck observations. In both types of models the tensor-to-scalar ratio can be of order 10−2, which will be tested by the near future observations

  10. Symmetry Breaking of Counter-Propagating Light in a Nonlinear Resonator

    CERN Document Server

    Del Bino, Leonardo; Stebbings, Sarah L; Del'Haye, Pascal

    2016-01-01

    Light is generally expected to travel through isotropic media independent of its direction. This makes it challenging to develop non-reciprocal optical elements like optical diodes or circulators, which currently rely on magneto-optical effects and birefringent materials. Here we present measurements of non-reciprocal transmission and spontaneous symmetry breaking between counter-propagating light in dielectric microresonators. The symmetry breaking corresponds to a resonance frequency splitting that allows only one of two counter-propagating (but otherwise identical) light waves to circulate in the resonator. Equivalently, the symmetry breaking can be seen as the collapse of standing waves and transition to travelling waves within the resonator. We present theoretical calculations to show that the symmetry breaking is induced by Kerr-nonlinearity-mediated interaction between the counter-propagating light. This effect is expected to take place in any dielectric ring-resonator and might constitute one of the m...

  11. Quantum chaos and breaking of all anti-unitary symmetries in Rydberg excitons.

    Science.gov (United States)

    Aßmann, Marc; Thewes, Johannes; Fröhlich, Dietmar; Bayer, Manfred

    2016-07-01

    Symmetries are the underlying principles of fundamental interactions in nature. Chaos in a quantum system may emerge from breaking these symmetries. Compared to vacuum, crystals are attractive for studying quantum chaos, as they not only break spatial isotropy, but also lead to novel quasiparticles with modified interactions. Here we study yellow Rydberg excitons in cuprous oxide which couple strongly to the vacuum light field and interact significantly with crystal phonons, leading to inversion symmetry breaking. In a magnetic field, time-reversal symmetry is also broken and the exciton states show a complex splitting pattern, resulting in quadratic level repulsion for small splittings. In contrast to atomic chaotic systems in a magnetic field, which show only a linear level repulsion, this is a signature of a system where all anti-unitary symmetries are broken simultaneously. This behaviour can otherwise be found only for the electro-weak interaction or engineered billiards. PMID:27064527

  12. Mechanism for Time Reparametrization Symmetry Breaking in Spinor Gravity Coupled to Long-Range Spinor Particles

    OpenAIRE

    Konishi, Eiji

    2016-01-01

    We propose a mechanism for time reparametrization symmetry breaking in canonical gravity. We consider a model of spinor gravity, based on Sen's reformulation of canonical gravity as a spin system, with one additional long-range self-interacting massive spinor particle that is coupled to spinor gravity. The symmetry breaking is identified with the origin of the quantum mechanical non-unitary evolution. A part of our approach to deriving non-unitary time-dependent processes of wave functions fo...

  13. Topological symmetry breaking of self-interacting fractional Klein-Gordon field theories on toroidal spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Lim, S C [Faculty of Engineering, Multimedia University, Jalan Multimedia, Cyberjaya, 63100, Selangor Darul Ehsan (Malaysia); Teo, L P [Faculty of Information Technology, Multimedia University, Jalan Multimedia, Cyberjaya, 63100, Selangor Darul Ehsan (Malaysia)], E-mail: sclim@mmu.edu.my, E-mail: lpteo@mmu.edu.my

    2008-04-11

    Quartic self-interacting fractional Klein-Gordon scalar massive and massless field theories on toroidal spacetime are studied. The effective potential and topologically generated mass are determined using zeta-function regularization technique. Renormalization of these quantities are derived. Conditions for symmetry breaking are obtained analytically. Simulations are carried out to illustrate regions or values of compactified dimensions where symmetry-breaking mechanisms appear.

  14. Chiral symmetry of heavy-light scalar mesons with UA(1) symmetry breaking

    Science.gov (United States)

    Dmitrašinović, V.

    2012-07-01

    In a previous paper, based on a calculation in the nonrelativistic quark model, we advanced the hypothesis that the Ds(2317), D0(2308) mesons are predominantly four-quark states lowered in mass by the flavor-dependent Kobayashi-Kubo-Maskawa ’t Hooft UA(1) symmetry breaking effective interaction. Here we show similar results and conclusions in a relativistic effective chiral model calculation, based on three-light-quark (i.e., two q plus one q¯) local interpolators. To this end we classify the four-quark (three light plus one heavy quark) local interpolators according to their chiral transformation properties and then construct chiral invariant interactions. We evaluate the diagonal matrix elements of the Kobayashi-Kubo-Maskawa ’t Hooft interaction between different interpolating fields and show that the lowest-lying one is always the (antisymmetric) SU(3)F antitriplet belonging to the chiral (3, 3) multiplet. We predict bottom-strange Bs0 and the bottom-nonstrange B0 scalar mesons with equal masses at 5720 MeV, the strange meson being some 100 MeV lower than in most of the quark potential models. We also predict the JP=1+ bottom-nonstrange B1 and the bottom-strange Bs1 meson masses as 5732 MeV and 5765 MeV, respectively, using the Bardeen-Hill-Nowak-Rho-Zahed scalar-vector mass relation.

  15. Coherent States and Spontaneous Symmetry Breaking in Light Front Scalar Field Theory

    Energy Technology Data Exchange (ETDEWEB)

    Vary, J.P.; /Iowa State U. /LLNL, Livermore /SLAC; Chakrabarti, D.; /Florida U.; Harindranath, A.; /Saha Inst.; Lloyd, R.; /Arkansas State U.; Martinovic, L.; /Bratislava,; Spence, J.R.; /Iowa State U.

    2005-12-14

    Recently developed nuclear many-body techniques provide novel results when applied to constituent quark models and to light-front scalar field theory. We show how spontaneous symmetry breaking arises and is consistent with a coherent state ansatz in a variational treatment. The kink and the kink-antikink topological features are identified and the onset of symmetry restoration is demonstrated.

  16. Field sources in a Lorentz-symmetry breaking scenario with a single background vector

    Energy Technology Data Exchange (ETDEWEB)

    Borges, L.H.C. [Universidade Federal do ABC, Centro de Ciencias Naturais e Humanas, Santo Andre, SP (Brazil); Barone, F.A. [IFQ, Universidade Federal de Itajuba, Av. BPS 1303, Pinheirinho, Caixa Postal 50, Itajuba, MG (Brazil); Helayel-Neto, J.A. [Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, RJ (Brazil)

    2014-06-15

    This paper is devoted to an investigation of the interactions between stationary sources of the electromagnetic field, in a model which exhibits explicit Lorentz-symmetry breaking due to the presence of a single background vector. We focus on physical phenomena that emerge from this kind of breaking and which have no counterpart in Maxwell electrodynamics. (orig.)

  17. D7-anti-D7 bilayer: holographic dynamical symmetry breaking

    OpenAIRE

    Grignani, Gianluca; Kim, Namshik; Semenoff, Gordon W.

    2012-01-01

    We consider a holographic model of dynamical symmetry breaking in 2+1-dimenisons, where a parallel D7-anti-D7 brane pair fuse into a single object, corresponding to the U(1)XU(1)->U(1) symmetry breaking pattern. We show that the current-current correlation functions can be computed analytically and exhibit the low momentum structure that is expected when global symmetries are spontaneously broken. We also find that these correlation functions have poles attributable to infinite towers of vect...

  18. Traces of Lorentz symmetry breaking in a hydrogen atom at ground state

    Science.gov (United States)

    Borges, L. H. C.; Barone, F. A.

    2016-02-01

    Some traces of a specific Lorentz symmetry breaking scenario in the ground state of the hydrogen atom are investigated. We use standard Rayleigh-Schrödinger perturbation theory in order to obtain the corrections to the ground state energy and the wave function. It is shown that an induced four-pole moment arises, due to the Lorentz symmetry breaking. The model considered is the one studied in Borges et al. (Eur Phys J C 74:2937, 2014), where the Lorentz symmetry is broken in the electromagnetic sector.

  19. Traces of Lorentz symmetry breaking in a hydrogen atom at ground state

    International Nuclear Information System (INIS)

    Some traces of a specific Lorentz symmetry breaking scenario in the ground state of the hydrogen atom are investigated. We use standard Rayleigh-Schroedinger perturbation theory in order to obtain the corrections to the ground state energy and the wave function. It is shown that an induced four-pole moment arises, due to the Lorentz symmetry breaking. The model considered is the one studied in Borges et al. (Eur Phys J C 74:2937, 2014), where the Lorentz symmetry is broken in the electromagnetic sector. (orig.)

  20. The Effective Kahler Potential, Metastable Vacua and R-Symmetry Breaking in O'Raifeartaigh Models

    CERN Document Server

    Benjamin, Shermane; Kain, Ben

    2010-01-01

    Much has been learned about metastable vacua and R-symmetry breaking in O'Raifeartaigh models. Such work has largely been done from the perspective of the superpotential and by including Coleman-Weinberg corrections to the scalar potential. Instead, we consider these ideas from the perspective of the one loop effective Kahler potential. We translate known ideas to this framework and construct convenient formulas for computing individual terms in the expanded effective Kahler potential. We do so for arbitrary R-charge assignments and allow for small R-symmetry violating terms so that both spontaneous and explicit R-symmetry breaking is allowed in our analysis.

  1. Traces of Lorentz symmetry breaking in a hydrogen atom at ground state

    Energy Technology Data Exchange (ETDEWEB)

    Borges, L.H.C. [Universidade Federal do ABC, Centro de Ciencias Naturais e Humanas, Santo Andre, SP (Brazil); Barone, F.A. [IFQ-Universidade Federal de Itajuba, Itajuba, MG (Brazil)

    2016-02-15

    Some traces of a specific Lorentz symmetry breaking scenario in the ground state of the hydrogen atom are investigated. We use standard Rayleigh-Schroedinger perturbation theory in order to obtain the corrections to the ground state energy and the wave function. It is shown that an induced four-pole moment arises, due to the Lorentz symmetry breaking. The model considered is the one studied in Borges et al. (Eur Phys J C 74:2937, 2014), where the Lorentz symmetry is broken in the electromagnetic sector. (orig.)

  2. Explicit chiral symmetry breaking in Gross-Neveu type models

    Energy Technology Data Exchange (ETDEWEB)

    Boehmer, Christian

    2011-07-25

    This thesis is devoted to the study of a 1+1-dimensional, fermionic quantum field theory with Lagrangian L= anti {psi}i{gamma}{sup {mu}}{partial_derivative}{sub {mu}}{psi}-m{sub 0} anti {psi}{psi}+(g{sup 2})/(2)(anti {psi}{psi}){sup 2}+(G{sup 2})/(2)(anti {psi}i{gamma}{sub 5}{psi}){sup 2} in the limit of an infinite number of flavors, using semiclassical methods. The main goal of the present work was to see what changes if we allow for explicit chiral symmetry breaking, either by a bare mass term, or a splitting of the scalar and pseudo-scalar coupling constants, or both. In the first case, this becomes the massive NJL{sub 2} model. In the 2nd and 3rd cases we are dealing with a model largely unexplored so far. The first half of this thesis deals with the massive NJL{sub 2} model. Before attacking the phase diagram, it was necessary to determine the baryons of the model. We have carried out full numerical Hartree-Fock calculations including the Dirac sea. The most important result is the first complete phase diagram of the massive NJL{sub 2} model in ({mu},T,{gamma}) space, where {gamma} arises from m{sub 0} through mass renormalization. In the 2nd half of the thesis we have studied a generalization of the massless NJL{sub 2} model with two different (scalar and pseudoscalar) coupling constants, first in the massless version. Renormalization of the 2 coupling constants leads to the usual dynamical mass by dynamical transmutation, but in addition to a novel {xi} parameter interpreted as chiral quenching parameter. As far as baryon structure is concerned, the most interesting result is the fact that the new baryons interpolate between the kink of the GN model and the massless baryon of the NJL{sub 2} model, always carrying fractional baryon number 1/2. The phase diagram of the massless model with 2 coupling constants has again been determined numerically. At zero temperature we have also investigated the massive, generalized GN model with 3 parameters. It is well

  3. Suppression and restoration of disorder-induced light localization mediated by PT-symmetry breaking

    CERN Document Server

    Kartashov, Yaroslav V; Konotop, Vladimir V; Vysloukh, Victor A; Huang, Guoxiang; Torner, Lluis

    2016-01-01

    We uncover that the breaking point of the PT-symmetry in optical waveguide arrays has a dramatic impact on light localization induced by the off-diagonal disorder. Specifically, when the gain/loss control parameter approaches a critical value at which PT-symmetry breaking occurs, a fast growth of the coupling between neighboring waveguides causes diffraction to dominate to an extent that light localization is strongly suppressed and statistically averaged width of the output pattern substantially increases. Beyond the symmetry-breaking point localization is gradually restored, although in this regime the power of localized modes grows upon propagation. The strength of localization monotonically increases with disorder at both, broken and unbroken PT-symmetry.

  4. On The Complexity and Completeness of Static Constraints for Breaking Row and Column Symmetry

    CERN Document Server

    Katsirelos, George; Walsh, Toby

    2010-01-01

    We consider a common type of symmetry where we have a matrix of decision variables with interchangeable rows and columns. A simple and efficient method to deal with such row and column symmetry is to post symmetry breaking constraints like DOUBLELEX and SNAKELEX. We provide a number of positive and negative results on posting such symmetry breaking constraints. On the positive side, we prove that we can compute in polynomial time a unique representative of an equivalence class in a matrix model with row and column symmetry if the number of rows (or of columns) is bounded and in a number of other special cases. On the negative side, we show that whilst DOUBLELEX and SNAKELEX are often effective in practice, they can leave a large number of symmetric solutions in the worst case. In addition, we prove that propagating DOUBLELEX completely is NP-hard. Finally we consider how to break row, column and value symmetry, correcting a result in the literature about the safeness of combining different symmetry breaking c...

  5. Infra-red fixed point structure characterising SUSY SU(5) symmetry breaking

    CERN Document Server

    Allanach, Benjamin C; Philipsen, O

    1996-01-01

    We analyze the one-loop renormalisation group equations for the parameters of the Higgs potential of a supersymmetric SU(5) model with first step of symmetry breaking involving an adjoint Higgs. In particular, we investigate the running of the parameters that decide the first step of symmetry breaking in an attempt to establish which symmetry-breaking scenarios would be most likely if the model is the effective low-energy description of some more fundamental theory. An infra-red fixed point is identified analytically. It is located at the boundary between the region of Higgs parameter space corresponding to unbroken SU(5) and the region corresponding to the breaking of SU(5) to the Standard Model, and we elaborate on its implications. We also observe that certain forms of the Higgs potential discussed at tree level in the literature are not renormalisation group invariant.

  6. Supersymmetry and R-symmetry Breaking in Meta-stable Vacua at Finite Temperature and Density

    CERN Document Server

    Arai, Masato; Sasaki, Shin

    2014-01-01

    We study a meta-stable supersymmetry-breaking vacuum in a generalized O'Raifeartaigh model at finite temperature and chemical potentials. Fields in the generalized O'Raifeartaigh model possess different R-charges to realize R-symmetry breaking. Accordingly, at finite density and temperature, the chemical potentials have to be introduced in a non-uniform way. Based on the formulation elaborated in our previous work we study the one-loop thermal effective potential including the chemical potentials in the generalized O'Raifeartaigh model. We perform the numerical analysis and find that the R-symmetry breaking vacua, which exist at zero temperature and zero chemical potential, are destabilized for some parameter regions. In addition, we find that there are parameter regions where new R-symmetry breaking vacua are realized even at high temperature by the finite density effects.

  7. A UV-complete Composite Higgs model for Electroweak Symmetry Breaking: Minimal Conformal Technicolor

    Science.gov (United States)

    Tacchi, Ruggero Altair

    The Large Hadron Collider is currently collecting data. One of the main goals of the experiment is to find evidence of the mechanism responsible for the breaking of the electroweak symmetry. There are many different models attempting to explain this breaking and traditionally most of them involve the use of supersymmetry near the scale of the breaking. This work is focused on exploring a viable model that is not based on a weakly coupled low scale supersymmetry sector to explain the electroweak symmetry breaking. We build a model based on a new strong interaction, in the fashion of theories commonly called "technicolor", name that is reminiscent of one of the first attempts of explaining the electroweak symmetry breaking using a strong interaction similar to the one whose charges are called colors. We explicitly study the minimal model of conformal technicolor, an SU(2) gauge theory near a strongly coupled conformal fixed point, with conformal symmetry softly broken by technifermion mass terms. Conformal symmetry breaking triggers chiral symmetry breaking in the pattern SU(4) → Sp (4), which gives rise to a pseudo-Nambu-Goldstone boson that can act as a composite Higgs boson. There is an additional composite pseudoscalar A with mass larger than mh and suppressed direct production at LHC. We discuss the electroweak fit in this model in detail. A good fit requires fine tuning at the 10% level. We construct a complete, realistic, and natural UV completion of the model, that explains the origin of quark and lepton masses and mixing angles. We embed conformal technicolor in a supersymmetric theory, with supersymmetry broken at a high scale. The effective theory below the supersymmetry breaking scale is minimal conformal technicolor with an additional light technicolor gaugino that might give rise to an additional pseudo Nambu-Goldstone boson that is observable at the LHC.

  8. Emergent p-Wave Kondo Coupling in Multi-Orbital Bands with Mirror Symmetry Breaking

    Science.gov (United States)

    Rhim, Jun Won; Han, Jung Hoon

    2013-10-01

    Kondo effect in the periodic Anderson model is examined for situations where the conduction bands are of multi-orbital character and subject to mirror-symmetry-breaking electric field. Taking p-orbital-based model for analysis, we find that a new hybridization channel opens up between p-orbital electrons and the local moments, leading to Kondo-coupled phases with nematic, or two-fold symmetry, although the microscopic Hamiltonian has the full square symmetry. The reduced symmetry in the band structure should be readily observable in spectroscopic or transport measurements for heavy fermion system in a multilayer environment such as successfully grown recently.

  9. Topological Insulators and Nematic Phases from Spontaneous Symmetry Breaking in

    Energy Technology Data Exchange (ETDEWEB)

    Sun, K.

    2010-05-26

    We investigate the stability of a quadratic band-crossing point (QBCP) in 2D fermionic systems. At the non-interacting level, we show that a QBCP exists and is topologically stable for a Berry flux {-+}2{pi}, if the point symmetry group has either fourfold or sixfold rotational symmetries. This putative topologically stable free-fermion QBCP is marginally unstable to arbitrarily weak shortrange repulsive interactions. We consider both spinless and spin-1/2 fermions. Four possible ordered states result: a quantum anomalous Hall phase, a quantum spin Hall phase, a nematic phase, and a nematic-spin-nematic phase.

  10. Chiral and herringbone symmetry breaking in water-surface monolayers

    DEFF Research Database (Denmark)

    Peterson, I.R.; Kenn, R.M.; Goudot, A.;

    1996-01-01

    We report the observation from monolayers of eicosanoic acid in the L(2)' phase of three distinct out-of-plane first-order diffraction peaks, indicating molecular tilt in a nonsymmetry direction and hence the absence of mirror symmetry. At lower pressures the molecules tilt in the direction of th...

  11. Magnetic catalysis of chiral symmetry breaking and the Pauli problem

    OpenAIRE

    Ng, Y. Jack

    1998-01-01

    The non-perturbative Schwinger-Dyson equation is used to show that chiral symmetry is dynamically broken in QED at weak gauge couplings when an external uniform magnetic field is present. A complete analysis of this phenomenon may shed light on the Pauli problem, namely, why $\\alpha$ = 1/137.

  12. Superfluidity and Space-Time Translation Symmetry Breaking

    OpenAIRE

    Wilczek, Frank

    2013-01-01

    I present a simple model that exhibits a temporal analogue of superconducting crystalline (LOFF) ordering. I sketch designs for minimally dissipative AC circuits, all based on time translation symmetry ($\\tau$) invariant dynamics, exploiting weak links (Josephson effects). These systems violate $\\tau$ spontaneously. I also discuss effective theories of that phenomenon, and space-time generalizations.

  13. Observation of parity-time symmetry breaking transitions in a dissipative Floquet system of ultracold atoms

    CERN Document Server

    Li, Jiaming; Liu, Ji; de Melo, Leonardo; Joglekar, Yogesh N; Luo, Le

    2016-01-01

    Open physical systems with balanced loss and gain exhibit a transition, absent in their solitary counterparts, which engenders modes that exponentially decay or grow with time and thus spontaneously breaks the parity-time PT symmetry. This PT-symmetry breaking is induced by modulating the strength or the temporal profile of the loss and gain, but also occurs in a pure dissipative system without gain. It has been observed that, in classical systems with mechanical, electrical, and electromagnetic setups with static loss and gain, the PT-symmetry breaking transition leads to extraordinary behavior and functionalities. However, its observation in a quantum system is yet to be realized. Here we report on the first quantum simulation of PT-symmetry breaking transitions using ultracold Li-6 atoms. We simulate static and Floquet dissipative Hamiltonians by generating state-dependent atom loss in a noninteracting Fermi gas, and observe the PT-symmetry breaking transitions by tracking the atom number for each state. W...

  14. Accion dark matter in the post-inflationary Peccei-Quinn symmetry breaking scenario

    CERN Document Server

    Ringwald, Andreas

    2015-01-01

    We consider extensions of the Standard Model in which a spontaneously broken global chiral Peccei-Quinn (PQ) symmetry arises as an accidental symmetry of an exact $Z_N$ symmetry. For $N = 9$ or $10$, this symmetry can protect the accion - the Nambu-Goldstone boson arising from the spontaneous breaking of the accidental PQ symmetry - against semi-classical gravity effects, thus providing a proper solution of the strong CP problem, while it can at the same time provide for the small explicit symmetry breaking term needed to make models with domain wall number $N_{\\rm DW}>1$, such as the popular DFSZ model ($N_{\\rm DW}=6$), cosmologically viable even in the case where spontaneous PQ symmetry breaking occurred after inflation. We find that $N=10$ DFSZ accions with mass $m_A \\approx 3.5$-$4.2\\,\\mathrm{meV}$ can account for cold dark matter and simultaneously explain the hints for anomalous cooling of white dwarfs. The proposed helioscope IAXO - being sensitive to solar DFSZ accions with mass above a few meV - will...

  15. Quantum structure of T-dualized models with symmetry breaking

    CERN Document Server

    Casteill, P Y

    2000-01-01

    We study the principal sigma-models defined on any group manifold GL x GR/GD with breaking of GR, and their T-dual transforms. For abritary breaking we can express the torsion and Ricci tensor of the dual model in terms of the frame geometry of the initial principal model. Using these results, we give necessary and sufficient conditions for the dual model to be torsionless and prove that the one-loop renormalizability of a given principal model is inherited by its dual partner, who shares the same beta-functions. These results are shown to hold also if the principal model is endowed with torsion. As an application we compute the beta-functions for the full Bianchi family and show that for some choices of the breaking parameters the dilaton anomaly is absent: for these choices the dual torsion vanishes. For the dualized Bianchi V model (which is torsionless for any breaking), we take advantage of its simpler structure, to study its two-loops renormalizability.

  16. Spontaneous Breaking of Lorentz Symmetry with an antisymmetric tensor

    CERN Document Server

    Hernaski, Carlos A

    2016-01-01

    Spontaneous violation of Lorentz symmetry by the vacuum condensation of an antisymmetric $2$-tensor is considered. The coset construction for nonlinear realization of spacetime symmetries is employed to build the most general low-energy effective action for the Goldstone modes interacting with photons. We analyze the model within the context of the Standard-Model Extension and noncommutative QED. Experimental bounds for some parameters of the model are discussed, and we readdress the subtle issues of stability and causality in Lorentz non-invariant scenarios. Besides the two photon polarizations, just one Goldstone mode must be dynamical to set a sensible low-energy effective model, and the enhancement of the stability by accounting interaction terms points to a protection against observational Lorentz violation.

  17. Breaking of forward-backward symmetry in driven systems

    DEFF Research Database (Denmark)

    Szolnoki, Attila; Szabó, György

    1993-01-01

    The dynamical pair approximation was modified to study the stationary states in a two-dimensional repulsive-lattice-gas model driven far from equilibrium by the application of an external field. This approximation distinguishes between the forward, backward, and transverse directions with respect...... to the electric field. In the present driven system, the forward-backward symmetry is broken at the level of the pair approximation. The difference between the forward and backward directions is confirmed by Monte Carlo simulations....

  18. Maximally Generalized Yang-Mills Model and Dynamical Breaking of Gauge Symmetry

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A maximally generalized Yang-Mills model, which contains, besides the vector part Vμ, also an axial-vector part Aμ, a scalar part S, a pseudoscalar part P, and a tensor part Tμv, is constructed and the dynamical breaking of gauge symmetry in the model is also discussed. It is shown, in terms of the Nambu-Jona-Lasinio mechanism, that the gauge symmetry breaking can be realized dynamically in the maximally generalized Yang-Mills model. The combination of the maximally generalized Yang-Mills model and the NJL mechanism provides a way to overcome the difficulties related to the Higgs field and the Higgs mechanism in the usual spontaneous symmetry breaking theory.

  19. PT-symmetry breaking with divergent potentials: lattice and continuum cases

    CERN Document Server

    Joglekar, Yogesh N; Saxena, Avadh

    2014-01-01

    We investigate the parity- and time-reversal ($\\mathcal{PT}$)-symmetry breaking in lattice models in the presence of long-ranged, non-hermitian, $\\mathcal{PT}$-symmetric potentials that remain finite or become divergent in the continuum limit. By scaling analysis of the fragile $\\mathcal{PT}$ threshold for an open finite lattice, we show that continuum loss-gain potentials $V_\\alpha(x)\\propto i |x|^\\alpha \\mathrm{sign}(x)$ have a positive $\\mathcal{PT}$-breaking threshold for $\\alpha>-2$, and a zero threshold for $\\alpha\\leq -2$. When $\\alpha<0$ localized states with complex (conjugate) energies in the continuum energy-band occur at higher loss-gain strengths. We investigate the signatures of $\\mathcal{PT}$-symmetry breaking in coupled waveguides, and show that the emergence of localized states dramatically shortens the relevant time-scale in the $\\mathcal{PT}$-symmetry broken region.

  20. A new dynamics of electroweak symmetry breaking with classically scale invariance

    CERN Document Server

    Haba, Naoyuki; Kitazawa, Noriaki; Yamaguchi, Yuya

    2015-01-01

    We propose a new dynamics of the electroweak symmetry breaking in a classically scale invariant version of the standard model. The scale invariance is broken by the condensations of additional fermions under a strong coupling dynamics. The electroweak symmetry breaking is triggered by negative mass squared of the elementary Higgs doublet, which is dynamically generated through the bosonic seesaw mechanism. We introduce a real pseudo-scalar singlet field interacting with additional fermions and Higgs doublet in order to avoid massless Nambu-Goldstone bosons from the chiral symmetry breaking in a strong coupling sector. We investigate the mass spectra and decay rates of these pseudo-Nambu-Goldstone bosons, and show they can decay fast enough without cosmological problems. We further evaluate the energy dependences of the couplings between elementary fields perturbatively, and find that our model is the first one which realizes the flatland scenario with the dimensional transmutation by the strong coupling dynam...

  1. A new dynamics of electroweak symmetry breaking with classically scale invariance

    Directory of Open Access Journals (Sweden)

    Naoyuki Haba

    2016-04-01

    Full Text Available We propose a new dynamics of the electroweak symmetry breaking in a classically scale invariant version of the standard model. The scale invariance is broken by the condensations of additional fermions under a strong coupling dynamics. The electroweak symmetry breaking is triggered by negative mass squared of the elementary Higgs doublet, which is dynamically generated through the bosonic seesaw mechanism. We introduce a real pseudo-scalar singlet field interacting with additional fermions and Higgs doublet in order to avoid massless Nambu–Goldstone bosons from the chiral symmetry breaking in a strong coupling sector. We investigate the mass spectra and decay rates of these pseudo-Nambu–Goldstone bosons, and show they can decay fast enough without cosmological problems. We further show that our model can make the electroweak vacuum stable.

  2. Symmetry breaking in MAST plasma turbulence due to toroidal flow shear

    CERN Document Server

    Fox, M F J; Field, A R; Ghim, Y -c; Parra, F I; Schekochihin, A A

    2016-01-01

    The flow shear associated with the differential toroidal rotation of tokamak plasmas breaks an underlying symmetry of the turbulent fluctuations imposed by the up-down symmetry of the magnetic equilibrium. Using experimental Beam-Emission-Spectroscopy (BES) measurements and gyrokinetic simulations, this symmetry breaking in ion-scale turbulence in MAST is shown to manifest itself as a tilt of the spatial correlation function and a finite skew in the distribution of the fluctuating density field. The tilt is a statistical expression of the "shearing" of the turbulent structures by the mean flow. The skewness of the distribution is related to the emergence of long-lived density structures in sheared, near-marginal plasma turbulence. The extent to which these effects are pronounced is argued (with the aid of the simulations) to depend on the distance from the nonlinear stability threshold. Away from the threshold, the symmetry is effectively restored.

  3. Unified model of fermion masses with Wilson line flavor symmetry breaking

    CERN Document Server

    Seidl, Gerhart

    2008-01-01

    We present a supersymmetric SU(5) GUT model with a discrete non-Abelian flavor symmetry that is broken by Wilson lines. The model is formulated in 4+3 dimensions compactified on a manifold S^3/Z_n. Symmetry breaking by Wilson lines is topological and allows to realize the necessary flavor symmetry breaking without a vacuum alignment mechanism. The model predicts the hierarchical pattern of charged fermion masses and quark mixing angles. Small normal hierarchical neutrino masses are generated by the type-I seesaw mechanism. The non-Abelian flavor symmetry predicts to leading order exact maximal atmospheric mixing while the solar angle emerges from quark-lepton complementarity. The resulting leptonic mixing matrix is in excellent agreement with current data and could be tested in future neutrino oscillation experiments.

  4. Chiral symmetry breaking in d=3 NJL model in external gravitational and magnetic fields

    CERN Document Server

    Gitman, D M

    1996-01-01

    The phase structure of d=3 Nambu-Jona-Lasinio model in curved spacetime with magnetic field is investigated in the leading order of the 1/N-expansion and in linear curvature approximation (an external magnetic field is treated exactly). The possibility of the chiral symmetry breaking under the combined action of the external gravitational and magnetic fields is shown explicitly. At some circumstances the chiral symmetry may be restored due to the compensation of the magnetic field by the gravitational field.

  5. Chiral symmetry breaking in d=3 NJL model in external gravitational and magnetic fields

    OpenAIRE

    Gitman, D. M.; Odintsov, S. D.; Shil'nov, Yu. I.

    1996-01-01

    The phase structure of $d=3$ Nambu-Jona-Lasinio model in curved spacetime with magnetic field is investigated in the leading order of the $1/N$-expansion and in linear curvature approximation (an external magnetic field is treated exactly). The possibility of the chiral symmetry breaking under the combined action of the external gravitational and magnetic fields is shown explicitly. At some circumstances the chiral symmetry may be restored due to the compensation of the magnetic field by the ...

  6. Uniform trace formulae for SU(2) and SO(3) symmetry breaking

    CERN Document Server

    Brack, M; Tanaka, K

    1999-01-01

    We develop uniform approximations for the trace formula for non-integrable systems in which SU(2) symmetry is broken by a non-linear term of the Hamiltonian. As specific examples, we investigate Hénon-Heiles type potentials. Our formalism can also be applied to the breaking of SO(3) symmetry in a three-dimensional cavity with axially-symmetric quadrupole deformation.

  7. Electroweak symmetry breaking and beyond the Standard Model physics – A review

    Indian Academy of Sciences (India)

    Gautam Bhattacharyya

    2009-01-01

    In this talk, I shall first discuss the Standard Model Higgs mechanism and then highlight some of its deficiencies making a case for the need to go beyond the Standard Model (BSM). The BSM tour will be guided by symmetry arguments. I shall pick up four specific BSM scenarios, namely, supersymmetry, little Higgs, gauge-Higgs unification, and the Higgsless approach. The discussion will be confined mainly on their electroweak symmetry breaking aspects.

  8. Symmetry breaking and restoration for interacting scalar and gauge fields in Lifshitz type theories

    Science.gov (United States)

    Farakos, K.; Metaxas, D.

    2012-05-01

    We consider the one-loop effective potential at zero and finite temperature in field theories with anisotropic space-time scaling, with critical exponent z = 2, including both scalar and gauge fields. Depending on the relative strength of the coupling constants for the gauge and scalar interactions, we find that there is a symmetry breaking term induced at one loop at zero temperature and we find symmetry restoration through a first-order phase transition at high temperature.

  9. Symmetry breaking and restoration for interacting scalar and gauge fields in Lifshitz type theories

    CERN Document Server

    Farakos, K

    2011-01-01

    We consider the one-loop effective potential at zero and finite temperature in field theories with anisotropic space-time scaling, with critical exponent $z=2$, including both scalar and gauge fields. Depending on the relative strength of the coupling constants for the gauge and scalar interactions, we find that there is a symmetry breaking term induced at one-loop at zero temperature and we find symmetry restoration through a first-order phase transition at high temperature.

  10. Symmetry breaking and restoration for interacting scalar and gauge fields in Lifshitz type theories

    Energy Technology Data Exchange (ETDEWEB)

    Farakos, K., E-mail: kfarakos@central.ntua.gr [Department of Physics, National Technical University of Athens, Zografou Campus, 15780 Athens (Greece); Metaxas, D., E-mail: metaxas@central.ntua.gr [Department of Physics, National Technical University of Athens, Zografou Campus, 15780 Athens (Greece)

    2012-05-01

    We consider the one-loop effective potential at zero and finite temperature in field theories with anisotropic space-time scaling, with critical exponent z=2, including both scalar and gauge fields. Depending on the relative strength of the coupling constants for the gauge and scalar interactions, we find that there is a symmetry breaking term induced at one loop at zero temperature and we find symmetry restoration through a first-order phase transition at high temperature.

  11. Mirror Symmetry Breaking by Chirality Synchronisation in Liquids and Liquid Crystals of Achiral Molecules.

    Science.gov (United States)

    Tschierske, Carsten; Ungar, Goran

    2016-01-01

    Spontaneous mirror symmetry breaking is an efficient way to obtain homogeneously chiral agents, pharmaceutical ingredients and materials. It is also in the focus of the discussion around the emergence of uniform chirality in biological systems. Tremendous progress has been made by symmetry breaking during crystallisation from supercooled melts or supersaturates solutions and by self-assembly on solid surfaces and in other highly ordered structures. However, recent observations of spontaneous mirror symmetry breaking in liquids and liquid crystals indicate that it is not limited to the well-ordered solid state. Herein, progress in the understanding of a new dynamic mode of symmetry breaking, based on chirality synchronisation of transiently chiral molecules in isotropic liquids and in bicontinuous cubic, columnar, smectic and nematic liquid crystalline phases is discussed. This process leads to spontaneous deracemisation in the liquid state under thermodynamic control, giving rise to long-term stable symmetry-broken fluids, even at high temperatures. These fluids form conglomerates that are capable of extraordinary strong chirality amplification, eventually leading to homochirality and providing a new view on the discussion of emergence of uniform chirality in prebiotic systems. PMID:26416335

  12. Natural electroweak symmetry breaking in generalised mirror matter models

    CERN Document Server

    Foot, R

    2007-01-01

    It has recently been pointed out that the mirror or twin Higgs model is more technically natural than the standard model, thus alleviating the ``little'' hierarchy problem. In this paper we generalise the analysis to models with an arbitrary number of isomorphic standard model sectors, and demonstrate that technical naturalness increases with the number of additional sectors. We consider two kinds of models. The first has $N$ standard model sectors symmetric under arbitrary permutations thereof. The second has $p$ left-chiral standard model sectors and $p$ right-chiral or mirror standard model sectors, with $p$-fold permutation symmetries within both and a discrete parity transformation interchanging left and right.

  13. Dynamical chiral symmetry breaking and weak nonperturbative renormalization group equation in gauge theory

    CERN Document Server

    Aoki, Ken-Ichi; Sato, Daisuke

    2016-01-01

    We analyze the dynamical chiral symmetry breaking in gauge theory with the nonperturbative renormalization group equation (NPRGE), which is a first order nonlinear partial differential equation (PDE). In case that the spontaneous chiral symmetry breaking occurs, the NPRGE encounters some non-analytic singularities at the finite critical scale even though the initial function is continuous and smooth. Therefore there is no usual solution of the PDE beyond the critical scale. In this paper, we newly introduce the notion of a weak solution which is the global solution of the weak NPRGE. We show how to evaluate the physical quantities with the weak solution.

  14. Symmetry break in ferromagnetic electrocrystallization: the interplay between dipolar interactions and Laplacian growth

    Science.gov (United States)

    Alves, S. G.; Braga, F. L.; Martins, M. L.

    2007-10-01

    Electrochemical ferromagnetic deposits grown under a planar magnetic field exhibit a striking morphological symmetry breaking. The present paper demonstrate through two-dimensional off-lattice simulations of an extended diffusion-limited aggregation (DLA) model that the competition between magnetic dipolar interactions and electric forces can impose locally the experimentally observed angle selection in a two-dimensional extended DLA model. The long-range correlations in the orientation of dipoles interacting with the applied and dipolar fields preserve this order over a macroscopic scale. Hence, the magnetic dipolar interactions alone cannot impose the field-induced symmetry breaking observed in ferromagnetic electrochemical deposition (ECD).

  15. Electroweak symmetry breaking and new physics at the TeV scale

    CERN Document Server

    Haber, Howard E; Siegrist, James L; Barklow, Timothy L

    1997-01-01

    This is an expanded version of the report by the Electroweak Symmetry Breaking and Beyond the Standard Model Working Group which was contributed to Particle Physics - Perspectives and Opportunities, a report of the Division of Particles and Fields Committee for Long Term Planning. One of the Working Group&s primary goals was to study the phenomenology of electroweak symmetry breaking and attempt to quantify the "physics reach" of present and future colliders. Their investigations encompassed the Standard Model - with one doublet of Higgs scalars - and approaches to physics beyond the Standard

  16. Semiclassical treatment of symmetry breaking and bifurcations in a non-integrable potential

    Science.gov (United States)

    Koliesnik, M. V.; Krivenko-Emetov, Ya D.; Magner, A. G.; Arita, K.; Brack, M.

    2015-11-01

    We have derived an analytical trace formula for the level density of the Hénon-Heiles potential using the improved stationary phase method, based on extensions of Gutzwiller's semiclassical path integral approach. This trace formula has the correct limit to the standard Gutzwiller trace formula for the isolated periodic orbits far from all (critical) symmetry-breaking points. It continuously joins all critical points at which an enhancement of the semiclassical amplitudes occurs. We found a good agreement between the semiclassical and the quantum oscillating level densities for the gross shell structures and for the energy shell corrections, solving the symmetry breaking problem at small energies.

  17. Mass Formulas Derived by Symmetry Breaking and Prediction of Masses on Heavy Flavor Hadrons

    CERN Document Server

    Chang, Yi-Fang

    2008-01-01

    The base is the Lagrangian of symmetry and its dynamical breaking or Higgs breaking. When the soliton-like solutions of the scalar field equations are substituted into the spinor field equations, in the approximation of non-relativity we derive the Morse-type potential, whose energy spectrum is the GMO mass formula and its modified accurate mass formula. According to the symmetry of s-c quarks, the heavy flavor hadrons which made of u,d and c quarks may be classified by SU(3) octet and decuplet. Then some simple mass formulas are obtained, from this we predict some masses of unknown hadrons.

  18. Semiclassical treatment of symmetry breaking and bifurcations in a non-integrable potential

    CERN Document Server

    Koliesnik, M V; Magner, A G; Arita, K; Brack, M

    2014-01-01

    We have derived an analytical trace formula for the level density of the H\\'enon-Heiles potential using the improved stationary phase method, based on extensions of Gutzwiller's semiclassical path integral approach. This trace formula has the correct limit to the standard Gutzwiller trace formula for the isolated periodic orbits far from all (critical) symmetry-breaking points. It continuously joins all critical points at which an enhancement of the semiclassical amplitudes occurs. We found a good agreement between the semi- classical and the quantum oscillating level densities for the gross shell structures and for the energy shell corrections, solving the symmetry breaking problem at small energies.

  19. Axion dark matter in the post-inflationary Peccei-Quinn symmetry breaking scenario

    Science.gov (United States)

    Ringwald, Andreas; Saikawa, Ken'ichi

    2016-04-01

    We consider extensions of the Standard Model in which a spontaneously broken global chiral Peccei-Quinn (PQ) symmetry arises as an accidental symmetry of an exact ZN symmetry. For N =9 or 10, this symmetry can protect the accion—the Nambu-Goldstone boson arising from the spontaneous breaking of the accidental PQ symmetry—against semiclassical gravity effects, thus suppressing gravitational corrections to the effective potential, while it can at the same time provide for the small explicit symmetry breaking term needed to make models with domain wall number NDW>1 , such as the popular Dine-Fischler-Srednicki-Zhitnitsky (DFSZ) model (NDW=6 ), cosmologically viable even in the case where spontaneous PQ symmetry breaking occurred after inflation. We find that N =10 DFSZ accions with mass mA≈3.5 - 4.2 meV can account for cold dark matter and simultaneously explain the hints for anomalous cooling of white dwarfs. The proposed helioscope International Axion Observatory—being sensitive to solar DFSZ accions with mass above a few meV—will decisively test this scenario.

  20. Strong-interaction isospin-symmetry breaking within the density functional theory

    OpenAIRE

    Baczyk, Pawel; Dobaczewski, Jacek; Konieczka, Maciej; Satula, Wojciech

    2015-01-01

    The conventional Skyrme interaction is generalized by adding zerorange charge-symmetry-breaking and charge-independence-breaking terms, and the corresponding energy density functional is derived. It is shown that the extended model accounts for experimental values of mirror and triplet displacement energies (MDEs and TDEs) in sd-shell isospin triplets with, on average, ∼ 100 keV precision using only two additional adjustable coupling constants. Moreover, the model is able to...

  1. Loop suppressed electroweak symmetry breaking and naturally heavy superpartners

    CERN Document Server

    Dermisek, Radovan

    2016-01-01

    A model is presented in which O(10 TeV) stop masses, typically required by the Higgs boson mass in supersymmetric models, do not originate from soft supersymmetry breaking terms that would drive the Higgs mass squared parameter to large negative values but rather from the mixing with vectorlike partners. Their contribution to the Higgs mass squared parameter is reduced to threshold corrections and thus it is one loop suppressed compared to usual scenarios. New fermion and scalar partners of the top quark with O(10 TeV) masses are predicted.

  2. Graphene symmetry-breaking with molecular adsorbates: modeling and experiment

    Science.gov (United States)

    Groce, M. A.; Hawkins, M. K.; Wang, Y. L.; Cullen, W. G.; Einstein, T. L.

    2012-02-01

    Graphene's structure and electronic properties provide a framework for understanding molecule-substrate interactions and developing techniques for band gap engineering. Controlled deposition of molecular adsorbates can create superlattices which break the degeneracy of graphene's two-atom unit cell, opening a band gap. We simulate scanning tunneling microscopy and spectroscopy measurements for a variety of organic molecule/graphene systems, including pyridine, trimesic acid, and isonicotinic acid, based on density functional theory calculations using VASP. We also compare our simulations to ultra-high vacuum STM and STS results.

  3. Symmetry and symmetry breaking in quantum mechanics; Symetrie et brisure de symetrie en mechanique quantique

    Energy Technology Data Exchange (ETDEWEB)

    Chomaz, Philippe [Grand Accelerateur National d`Ions Lourds (GANIL), 14 - Caen (France)

    1998-12-31

    In the world of infinitely small, the world of atoms, nuclei and particles, the quantum mechanics enforces its laws. The discovery of Quanta, this unbelievable castration of the Possible in grains of matter and radiation, in discrete energy levels compels us of thinking the Single to comprehend the Universal. Quantum Numbers, magic Numbers and Numbers sign the wave. The matter is vibration. To describe the music of the world one needs keys, measures, notes, rules and partition: one needs quantum mechanics. The particles reduce themselves not in material points as the scholars of the past centuries thought, but they must be conceived throughout the space, in the accomplishment of shapes of volumes. When Einstein asked himself whether God plays dice, there was no doubt among its contemporaries that if He exists He is a geometer. In a Nature reduced to Geometry, the symmetries assume their role in servicing the Harmony. The symmetries allow ordering the energy levels to make them understandable. They impose there geometrical rules to the matter waves, giving them properties which sometimes astonish us. Hidden symmetries, internal symmetries and newly conceived symmetries have to be adopted subsequently to the observation of some order in this world of Quanta. In turn, the symmetries provide new observables which open new spaces of observation 17 refs., 16 figs.

  4. Symmetry Breaking and Adaptation The Genetic Code of Retroviral Env Proteins

    CERN Document Server

    Vera, S

    1996-01-01

    Although several synonymous codons can encode the same aminoacid, this symmetry is generally broken in natural genetic systems. In this article, we show that the symmetry breaking can result from selective pressures due to the violation of the synonym symmetry by mutation and recombination. We conjecture that this enhances the probability to produce mutants that are well-adapted to the current environment. Evidence is found in the codon frequencies of the HIV resistant to the current immunological attack, are found with a greater frequency than their less mutable synonyms.

  5. Dark Matter and Neutrino Masses from Global $U(1)_{B-L}$ Symmetry Breaking

    CERN Document Server

    Lindner, Manfred; Schwetz, Thomas

    2011-01-01

    We present a scenario were neutrino masses and Dark Matter are related due to a global $U(1)_{B-L}$ symmetry. Specifically we consider neutrino mass generation via the Zee{Babu two-loop mecha- nism, augmented by a scalar singlet whose VEV breaks the global $U(1)_{B-L}$ symmetry. In order to obtain a Dark Matter candidate we introduce two Standard Model singlet fermions. They form a pseudo-Dirac particle and are stable because of a remnant $Z_2$ symmetry. Hence, in this model the stability of Dark Matter follows from the global $U(1)_{B-L}$ symmetry. We discuss the Dark Matter phenomenology of the model, and compare it to similar models based on gauged $U(1)_{B-L}$. We argue that in contrast to the gauged versions, the model based on the global symmetry does not suffer from sever constraints from Z' searches.

  6. Chiral-symmetry breaking and confinement in Minkowski space

    International Nuclear Information System (INIS)

    We present a model for the quark-antiquark interaction formulated in Minkowski space using the Covariant Spectator Theory. The quark propagators are dressed with the same kernel that describes the interaction between different quarks. By applying the axial-vector Ward-Takahashi identity we show that our model satisfies the Adler-zero constraint imposed by chiral symmetry. For this model, our Minkowski-space results of the dressed quark mass function are compared to lattice QCD data obtained in Euclidean space. The mass function is then used in the calculation of the electromagnetic pion form factor in relativistic impulse approximation, and the results are presented and compared with the experimental data from JLab

  7. Symmetry-breaking in drop bouncing on curved surfaces

    CERN Document Server

    Liu, Yahua; Li, Jing; Yeomans, Julia M; Wang, Zuankai

    2015-01-01

    The impact of liquid drops on solid surfaces is ubiquitous in nature, and of practical importance in many industrial processes. A drop hitting a flat surface retains a circular symmetry throughout the impact process. Here we show that a drop impinging on Echevaria leaves exhibits asymmetric bouncing dynamics with distinct spreading and retraction along two perpendicular directions. This is a direct consequence of the cylindrical leaves which have a convex/concave architecture of size comparable to the drop. Systematic experimental investigations on mimetic surfaces and lattice Boltzmann simulations reveal that this novel phenomenon results from an asymmetric momentum and mass distribution that allows for preferential fluid pumping around the drop rim. The asymmetry of the bouncing leads to ~40% reduction in contact time.

  8. Chiral-symmetry breaking and confinement in Minkowski space

    CERN Document Server

    Biernat, Elmar P; Ribeiro, J E; Stadler, Alfred; Gross, Franz

    2014-01-01

    We present a model for the quark-antiquark interaction formulated in Minkowski space using the Covariant Spectator Theory. The quark propagators are dressed with the same kernel that describes the interaction between different quarks. By applying the axial-vector Ward-Takahashi identity we show that our model satisfies the Adler-zero constraint imposed by chiral symmetry. For this model, our Minkowski-space results of the dressed quark mass function are compared to lattice QCD data obtained in Euclidean space. The mass function is then used in the calculation of the electromagnetic pion form factor in relativistic impulse approximation, and the results are presented and compared with the experimental data from JLab.

  9. Chiral-symmetry breaking and confinement in Minkowski space

    Energy Technology Data Exchange (ETDEWEB)

    Biernat, Elmar P. [Centro de Física Teórica de Partículas (CFTP), Instituto Superior Técnico (IST), Universidade de Lisboa, 1049-001 Lisboa (Portugal); Peña, M. T. [Centro de Física Teórica de Partículas (CFTP), Instituto Superior Técnico (IST), Universidade de Lisboa, 1049-001 Lisboa (Portugal); Departamento de Física, Instituto Superior Técnico (IST), Universidadede Lisboa, 1049-001 Lisboa (Portugal); Ribeiro, J. E. [Centro de Física das Interações Fundamentais (CFIF), Instituto Superior Técnico (IST), Universidade de Lisboa, 1049-001 Lisboa (Portugal); Stadler, Alfred [Departamento de Física, Universidade de Évora, 7000-671 Évora (Portugal); Centro de Física Teórica de Partículas (CFTP), Instituto Superior Técnico (IST), Universidade de Lisboa, 1049-001 Lisboa (Portugal); Gross, Franz [Thomas Jefferson National Accelerator Facility (JLab), Newport News, Virginia 23606 (United States)

    2016-01-22

    We present a model for the quark-antiquark interaction formulated in Minkowski space using the Covariant Spectator Theory. The quark propagators are dressed with the same kernel that describes the interaction between different quarks. By applying the axial-vector Ward-Takahashi identity we show that our model satisfies the Adler-zero constraint imposed by chiral symmetry. For this model, our Minkowski-space results of the dressed quark mass function are compared to lattice QCD data obtained in Euclidean space. The mass function is then used in the calculation of the electromagnetic pion form factor in relativistic impulse approximation, and the results are presented and compared with the experimental data from JLab.

  10. Spontaneous Symmetry Breaking in Metal Adsorbed Graphene Sheets

    CERN Document Server

    Jalbout, A F

    2012-01-01

    Graphene has received a great deal of attention and this has more recently extended to boron nitride sheets (BNS) with a similar structure. Both have hexagonal lattices and it is only the alternation of atoms in boron nitride, which changes the symmetry structure. This difference can for example be seen in the mean field equations, which for the corners of the Brillouin Zone are Dirac equations. For the case of graphene (equal atoms) we have the equation for massless particles, while for Boron Nitride has a finite gap and is more near a Dirac equation with mass near this gap.. Carbon structures in general and in particular also graphene can adsorb electron donors, such as alkaline atoms or molecules with a dipole moment. Typically these atoms and the dipoles can only attach in the sense to donate electron density. Some results for small sheet like structures are available.

  11. Chiral-symmetry breaking and confinement in Minkowski space

    Science.gov (United States)

    Biernat, Elmar P.; Peña, M. T.; Ribeiro, J. E.; Stadler, Alfred; Gross, Franz

    2016-01-01

    We present a model for the quark-antiquark interaction formulated in Minkowski space using the Covariant Spectator Theory. The quark propagators are dressed with the same kernel that describes the interaction between different quarks. By applying the axial-vector Ward-Takahashi identity we show that our model satisfies the Adler-zero constraint imposed by chiral symmetry. For this model, our Minkowski-space results of the dressed quark mass function are compared to lattice QCD data obtained in Euclidean space. The mass function is then used in the calculation of the electromagnetic pion form factor in relativistic impulse approximation, and the results are presented and compared with the experimental data from JLab.

  12. UNIVERSALITY OF PHASE TRANSITION DYNAMICS: TOPOLOGICAL DEFECTS FROM SYMMETRY BREAKING

    Energy Technology Data Exchange (ETDEWEB)

    Zurek, Wojciech H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Del Campo, Adolfo [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-02-13

    In the course of a non-equilibrium continuous phase transition, the dynamics ceases to be adiabatic in the vicinity of the critical point as a result of the critical slowing down (the divergence of the relaxation time in the neighborhood of the critical point). This enforces a local choice of the broken symmetry and can lead to the formation of topological defects. The Kibble-Zurek mechanism (KZM) was developed to describe the associated nonequilibrium dynamics and to estimate the density of defects as a function of the quench rate through the transition. During recent years, several new experiments investigating formation of defects in phase transitions induced by a quench both in classical and quantum mechanical systems were carried out. At the same time, some established results were called into question. We review and analyze the Kibble-Zurek mechanism focusing in particular on this surge of activity, and suggest possible directions for further progress.

  13. Color Rendering Plasmonic Aluminum Substrates with Angular Symmetry Breaking.

    Science.gov (United States)

    Duempelmann, Luc; Casari, Daniele; Luu-Dinh, Angélique; Gallinet, Benjamin; Novotny, Lukas

    2015-12-22

    We fabricate and characterize large-area plasmonic substrates that feature asymmetric periodic nanostructures made of aluminum. Strong coupling between localized and propagating plasmon resonances leads to characteristic Fano line shapes with tunable spectral positions and widths. Distinctive colors spanning the entire visible spectrum are generated by tuning the system parameters, such as the period and the length of the aluminum structures. Moreover, the asymmetry of the aluminum structures gives rise to a strong symmetry broken color rendering effect, for which colors are observed only from one side of the surface normal. Using a combination of immersed laser interference lithography and nanoimprint lithography, our color rendering structures can be fabricated on areas many inches in size. We foresee applications in anticounterfeiting, photovoltaics, sensing, displays, and optical security. PMID:26498131

  14. Breaking Instance-Independent Symmetries In Exact Graph Coloring

    CERN Document Server

    Aloul, F A; Ramani, A; Sakallah, K A; 10.1613/jair.1637

    2011-01-01

    Code optimization and high level synthesis can be posed as constraint satisfaction and optimization problems, such as graph coloring used in register allocation. Graph coloring is also used to model more traditional CSPs relevant to AI, such as planning, time-tabling and scheduling. Provably optimal solutions may be desirable for commercial and defense applications. Additionally, for applications such as register allocation and code optimization, naturally-occurring instances of graph coloring are often small and can be solved optimally. A recent wave of improvements in algorithms for Boolean satisfiability (SAT) and 0-1 Integer Linear Programming (ILP) suggests generic problem-reduction methods, rather than problem-specific heuristics, because (1) heuristics may be upset by new constraints, (2) heuristics tend to ignore structure, and (3) many relevant problems are provably inapproximable. Problem reductions often lead to highly symmetric SAT instances, and symmetries are known to slow down SAT solvers. In t...

  15. Spontaneous Time Symmetry Breaking in System with Mixed Strategy Nash Equilibrium: Evidences in Experimental Economics Data

    Science.gov (United States)

    Wang, Zhijian; Xu, Bin; Zhejiang Collaboration

    2011-03-01

    In social science, laboratory experiment with human subjects' interaction is a standard test-bed for studying social processes in micro level. Usually, as in physics, the processes near equilibrium are suggested as stochastic processes with time-reversal symmetry (TRS). To the best of our knowledge, near equilibrium, the breaking time symmetry, as well as the existence of robust time anti-symmetry processes, has not been reported clearly in experimental economics till now. By employing Markov transition method to analysis the data from human subject 2x2 Games with wide parameters and mixed Nash equilibrium, we study the time symmetry of the social interaction process near Nash equilibrium. We find that, the time symmetry is broken, and there exists a robust time anti-symmetry processes. We also report the weight of the time anti-symmetry processes in the total processes of each the games. Evidences in laboratory marketing experiments, at the same time, are provided as one-dimension cases. In these cases, time anti-symmetry cycles can also be captured. The proposition of time anti-symmetry processes is small, but the cycles are distinguishable.

  16. Universality and Symmetry Breaking in Conformally Reduced Quantum Gravity

    CERN Document Server

    Bonanno, Alfio

    2012-01-01

    The scaling properties of quantum gravity are discussed by employing a class of proper-time regulators in the functional flow equation for the conformal factor within the formalism of the background field method. Renormalization group trajectories obtained by projecting the flow on a flat topology are more stable than those obtained from a projection on a spherical topology. In the latter case the ultraviolet flow can be characterized by a Hopf bifurcation with an ultraviolet attractive limiting cycle. Although the possibility of determining the infrared flow for an extended theory space can be severely hampered due to the conformal factor instability, we present a robust numerical approach to study the flow structure around the non-gaussian fixed point as an inverse-problem strategy. In particular it is shown the possibility of having a spontaneous breaking of the diffeomorphism invariance can be realized with non-local functionals of the volume operator.

  17. PT Symmetry Breaking and Nonlinear Optical Isolation in Coupled Microcavities

    CERN Document Server

    Zhou, Xin

    2016-01-01

    We perform a theoretical study of nonlinear optical isolator devices based on coupled microcavities with gain and loss. Using coupled-mode theory, we derive a correspondence between the boundary of asymptotic stability in the nonlinear regime, where gain saturation is present, and the PT-breaking transition in the underlying linear system. For zero detuning and weak input intensity, the onset of optical isolation can be rigorously derived, and corresponds precisely to the PT transition point. When the couplings to the external ports are unequal, the isolation ratio exhibits an abrupt jump at the transition point, determined by the ratio of the couplings. This could be exploited to realize an actively controlled nonlinear optical isolator, in which strong optical isolation can be switched on or off using tiny variations in the inter-resonator separation.

  18. Probing symmetry and symmetry breaking in resonant soft-x-ray fluorescence spectra of molecules

    Energy Technology Data Exchange (ETDEWEB)

    Glans, P.; Gunnelin, K.; Guo, J. [Uppsala Univ. (Sweden)] [and others

    1997-04-01

    Conventional non-resonant soft X-ray emission brings about information about electronic structure through its symmetry and polarization selectivity, the character of which is governed by simple dipole rules. For centro-symmetric molecules with the emitting atom at the inversion center these rules lead to selective emission through the required parity change. For the more common classes of molecules which have lower symmetry or for systems with degenerate core orbitals (delocalized over identical sites), it is merely the local symmetry selectivity that provides a probe of the local atomic orbital contribution to the molecular orbital. For instance, in X-ray spectra of first row species the intensities essentially map the p-density at each particular atomic site, and, in a molecular orbital picture, the contribution of the local p-type atomic orbitals in the LCAO description of the molecular orbitals. The situation is different for resonant X-ray fluorescence spectra. Here strict parity and symmetry selectivity gives rise to a strong frequency dependence for all molecules with an element of symmetry. In addition to symmetry selectivity the strong frequency dependence of resonant X-ray emission is caused by the interplay between the shape of a narrow X-ray excitation energy function and the lifetime and vibrational broadenings of the resonantly excited core states. This interplay leads to various observable effects, such as linear dispersion, resonance narrowing and emission line (Stokes) doubling. Also from the point of view of polarization selectivity, the resonantly excited X-ray spectra are much more informative than the corresponding non-resonant spectra. Examples are presented for nitrogen, oxygen, and carbon dioxide molecules.

  19. Origin of Symmetry Breaking and Confinement in Conducting Polymers with Ring Structures

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A model to describe the main features of conjugated polymers with ring structures, such as polythiophene and polypyrrole, is constructed. It is shown that the origin of the symmetry breaking and confinement of a soliton and anti-soliton pair is branch hopping in the polymer rings.

  20. Explicit versus Dynamical Chiral Symmetry Breaking and Mass Matrix of Quarks and Leptons

    Science.gov (United States)

    Handa, O.; Ishida, S.; Sekiguchi, M.

    1992-02-01

    By recourse to an analogy between strong and weak interactions, quark mass-matrices consisting of the two parts are proposed, which represent, respectively, dynamical chiral symmetry breaking and explicit one due to small preon mass. The sum rules among quark masses and mixing-matrix elements derived from it seem consistent with present experiments.

  1. Symmetry breaking of decaying magnetohydrodynamic Taylor-Green flows and consequences for universality.

    Science.gov (United States)

    Dallas, V; Alexakis, A

    2013-12-01

    We investigate the evolution and stability of a decaying magnetohydrodynamic Taylor-Green flow, using pseudospectral simulations with resolutions up to 2048(3). The chosen flow has been shown to result in a steep total energy spectrum with power law behavior k(-2). We study the symmetry breaking of this flow by exciting perturbations of different amplitudes. It is shown that for any finite amplitude perturbation there is a high enough Reynolds number for which the perturbation will grow enough at the peak of dissipation rate resulting in a nonlinear feedback into the flow and subsequently break the Taylor-Green symmetries. In particular, we show that symmetry breaking at large scales occurs if the amplitude of the perturbation is σ(crit)∼Re(-1) and at small scales occurs if σ(crit)∼Re(-3/2). This symmetry breaking modifies the scaling laws of the energy spectra at the peak of dissipation rate away from the k(-2) scaling and towards the classical k(-5/3) and k(-3/2) power laws.

  2. Comments on the Chiral Symmetry Breaking in Soft Wall Holographic QCD

    DEFF Research Database (Denmark)

    Bechi, Jacopo

    2009-01-01

    In this paper we describe qualitatively some aspects of the holographic QCD. Inspired by a successfull 4D description, we try to separate the Confinement and the Chiral Symmetry Breaking dynamics. We also discuss the realization of the baryons as skyrmions in Soft Wall Holographic QCD, and the...

  3. Probing electroweak symmetry breaking at the SSC [Superconducting Super Collider]: A no-lose corollary

    International Nuclear Information System (INIS)

    Low energy theorems are derived for scattering of longitudinally polarized W and Z's, providing the basis for an estimate of the observable signal at the SSC if electroweak symmetry breaking is due to new physics at the TeV scale

  4. Charge symmetry breaking in $\\Lambda$ hypernuclei: updated HYP 2015 progress report

    CERN Document Server

    Gal, Avraham

    2016-01-01

    Ongoing progress in understanding and evaluating charge symmetry breaking in $\\Lambda$ hypernuclei is discussed in connection to recent measurements of the $_{\\Lambda}^{4}{\\rm H}(0^+_{\\rm g.s.})$ binding energy at MAMI [A1 Collaboration: PRL 114 (2015) 232501] and of the $_{\\Lambda}^{4}{\\rm He}(1^+_{\\rm exc})$ excitation energy at J-PARC [E13 Collaboration: PRL 115 (2015) 222501].

  5. Spontaneous Symmetry Breaking in SO(3) Gauge Theory to Discrete Subgroups

    CERN Document Server

    Etesi, Gábor

    2016-01-01

    A systematical description of possible symmetry breakings in the SO(3) gauge theory and an algorithmical method to construct SU(2) or SO(3) invariant Higgs potentials in an arbitrary irreducible representation is given. We close our paper with the explicit construction of the Lagrangian of the simplest SO(3) theory violated to its subgroup A_4.

  6. Symmetry-breaking intramolecular charge transfer in the excited state of meso-linked BODIPY dyads

    KAUST Repository

    Whited, Matthew T.

    2012-01-01

    We report the synthesis and characterization of symmetric BODIPY dyads where the chromophores are attached at the meso position, using either a phenylene bridge or direct linkage. Both molecules undergo symmetry-breaking intramolecular charge transfer in the excited state, and the directly linked dyad serves as a visible-light-absorbing analogue of 9,9′-bianthryl.

  7. Pseudo-magnetic catalysis of the time-reversal symmetry breaking in graphene

    OpenAIRE

    Herbut, Igor F.

    2008-01-01

    Finite flux of the (time-reversal-symmetric) pseudo-magnetic field, which represents the effect of wrinkling of the graphene sheet for example, is shown to be a catalyst for spontaneous breaking of the time-reversal symmetry of Dirac fermions in two dimensions. Possible experimental consequences of this effect for graphene are discussed.

  8. Symmetry Breaking in the Hidden-Order Phase of URu2Si2

    Science.gov (United States)

    Shibauchi, Takasada

    2013-03-01

    In the heavy fermion compound URu2Si2, the hidden-order transition occurs at 17.5 K, whose nature has posed a long-standing mystery. A second-order phase transition is characterized by spontaneous symmetry breaking, and thus the nature of the hidden order cannot be determined without understanding which symmetry is being broken. Our magnetic torque measurements in small pure crystals reveal the emergence of an in-plane anisotropy of the magnetic susceptibility below the transition temperature, indicating the spontaneous breaking of four-fold rotational symmetry of the tetragonal URu2Si2. In addition, our recent observation of cyclotron resonance allows the full determination of the electron-mass structure of the main Fermi-surface sheets, which implies an anomalous in-plane mass anisotropy consistent with the rotational symmetry breaking. These results impose strong constraints on the symmetry of the hidden order parameter. This work has been done in collaboration with R. Okazaki, S. Tonegawa, K. Hashimoto, K. Ikada, Y. H. Lin, H. Shishido, H. J. Shi, Y. Haga, T. D. Matsuda, E. Yamamoto, Y. Onuki, H. Ikeda, and Y. Matsuda.

  9. Mirror-symmetry breakings in human sperm rheotaxis

    Science.gov (United States)

    Stoop, Norbert; Bukatin, Anton; Kukhtevich, Igor; Dunkel, Joern; Kantsler, Vasily

    Rheotaxis, the directed response to fluid velocity gradients, has been shown to facilitate stable upstream-swimming of mammalian sperm cells along solid surfaces, suggesting a robust mechanism for long-distance navigation during fertilization. However, the dynamics by which a human sperm orients itself w.r.t. ambient flows is poorly understood. Here, we combine microfluidic experiments with mathematical modeling and 3D flagellar beat reconstruction to quantify the response of individual sperm cells in time-varying flow fields. Single-cell tracking reveals two kinematically distinct swimming states that entail opposite turning behaviors under flow reversal. We constrain an effective 2D model for the turning dynamics through systematic large-scale parameter scans, and find good quantitative agreement with experiments. We present comprehensive 3D data demonstrating the rolling dynamics of freely swimming sperm cells around their longitudinal axis. Contrary to current beliefs, this analysis uncovers ambidextrous flagellar waveforms and shows that the cell's turning direction is is not defined by the rolling direction. Instead, the different rheotactic turning behaviors are linked to a broken mirror-symmetry in the midpiece section, likely arising from a buckling instability.

  10. Inversion symmetry breaking of atomic bound states in strong and short laser fields

    CERN Document Server

    Stooß, Veit; Ott, Christian; Blättermann, Alexander; Ding, Thomas; Pfeifer, Thomas

    2015-01-01

    In any atomic species, the spherically symmetric potential originating from the charged nucleus results in fundamental symmetry properties governing the structure of atomic states and transition rules between them. If atoms are exposed to external electric fields, these properties are modified giving rise to energy shifts such as the AC Stark-effect in varying fields and, contrary to this in a constant (DC) electric field for high enough field strengths, the breaking of the atomic symmetry which causes fundamental changes in the atom's properties. This has already been observed for atomic Rydberg states with high principal quantum numbers. Here, we report on the observation of symmetry breaking effects in Helium atoms for states with principal quantum number n=2 utilizing strong visible laser fields. These findings were enabled by temporally resolving the dynamics better than the sub-optical cycle of the applied laser field, utilizing the method of attosecond transient absorption spectroscopy (ATAS). We ident...

  11. $SU(3)_{F}$ Gauge Family Model and New Symmetry Breaking Scale From FCNC Processes

    CERN Document Server

    Bao, Shou-Shan; Wu, Yue-Liang

    2015-01-01

    Based on the $SU(3)_{F}$ gauge family symmetry model which was proposed to explain the observed mass and mixing pattern of neutrinos, we investigate the symmetry breaking, the mixing pattern in quark and lepton sectors, and the contribution of the new gauge bosons to some flavor changing neutral currents (FCNC) processes at low energy. With the current data of the mass differences in the neutral pseudo-scalar $P^{0}-\\bar{P}^{0}$ systems, we find that the $SU(3)_{F}$ symmetry breaking scale can be as low as 300TeV and the mass of the lightest gauge boson be about $100$TeV. Other FCNC processes, such as the lepton flavor number violation process $\\mu^{-}\\rightarrow e^{-}e^{+}e^{-}$ and the semi-leptonic rare decay $K\\rightarrow \\pi \\bar{\

  12. Radiative Symmetry Breaking in Supersymmetric $B-L$ Models with Inverse Seesaw

    CERN Document Server

    Khalil, Shaaban

    2016-01-01

    We study the radiative symmetry breaking of B-L in supersymmetric models with inverse seesaw mechanism. We show that for a wide region of parameter space the radiative corrections can drive the squared mass of the extra Higgs boson from positive initial values at the GUT scale to negative values at the TeV scale, leading to the spontaneous breaking of the B-L symmetry. We also emphasize that in this class of models, unlike the supersymmetric B-L models with type I seesaw, the right-handed sneutrino cannot get a non-zero vacuum expectation value. Therefore, B-L can be radiatively broken while R-parity remains an exact symmetry.

  13. Electroweak symmetry breaking in the light of LHC

    International Nuclear Information System (INIS)

    The extra-dimensional extensions of the Standard Model (SM) of particles are now in a very active epoch of development. The motivations of introducing extra dimensions are based on one hand on string theories that require the existence of new dimensions to be consistent. On the other hand such theories can potentially explain the hierarchy problem, number of fermion generations, proton stability and other enigmas of the Standard Model. The common feature of these models is that they provide a new neutral weakly interacting particle - perfect candidate to the Dark Matter (DM). Its stability is preserved by the so-called KK parity which prohibits the decays of the the lightest Kaluza-Klein particle (LKP) into SM particles. The geometry of the underlying space determines the particle spectrum of the model, thus the mass and the spin of the DM candidate, which in turn plays the key role in the phenomenological studies We present a model with two universal extra dimensions compactified on a real projective plane. This particular geometry is chosen because chiral fermions can be defined on such orbifold and the stability of the neutral dark matter candidate arise naturally from the intrinsic geometrical properties of the space without adding any new symmetries ad hoc. We present the particle spectrum at loop order up to the second level in Kaluza-Klein expansion. The particularity of the spectrum is that the mass splittings within each KK level are highly degenerated providing a very interesting potential signatures in the LHC. We study the dark matter phenomenology in our model and constrain the parameter space by comparing our results with WMAP (Wilkinson Microwave Anisotropy Probe) data and direct detection experiments. Using the obtained bounds we focus on the collider phenomenology of our model. (author)

  14. 750 GeV messenger of dark conformal symmetry breaking

    Science.gov (United States)

    Davoudiasl, Hooman; Zhang, Cen

    2016-03-01

    The tentative hints for a diphoton resonance at a mass of ˜750 GeV from the ATLAS and CMS experiments at the LHC may be interpreted as first contact with a "dark" sector with a spontaneously broken conformal symmetry. The implied TeV scale of the dark sector may be motivated by the interaction strength required to accommodate a viable thermal relic dark matter (DM) candidate. We model the conformal dynamics using a Randall-Sundrum-type five-dimensional geometry whose IR boundary is identified with the dynamics of the composite dark sector, while the Standard Model (SM) matter content resides on the UV boundary, corresponding to "elementary" fields. We allow the gauge fields to reside in the five-dimensional bulk, which can be minimally chosen to be S U (3 )c×U (1 )Y. The "dark" radion is identified as the putative 750 GeV resonance. Heavy vectorlike fermions, often invoked to explain the diphoton excess, are not explicitly present in our model and are not predicted to appear in the spectrum of TeV scale states. Our minimal setup favors scalar DM of O (TeV ) mass. A generic expectation in this scenario, suggested by DM considerations, is the appearance of vector bosons at ˜ few TeV, corresponding to the gluon and hypercharge Kaluza-Klein (KK) modes that couple to UV boundary states with strengths that are suppressed uniformly compared to their SM values. Our analysis suggests that these KK modes could be within the reach of the LHC in the coming years.

  15. A study of symmetry breaking in a relativistic Bose gas using the contraction algorithm

    CERN Document Server

    Alexandru, Andrei; Bedaque, Paulo; Ridgway, Gregory W; Warrington, Neill C

    2016-01-01

    A relativistic Bose gas at finite density suffers from a sign problem that makes direct numerical simulations not feasible. One possible solution to the sign problem is to re-express the path integral in terms of Lefschetz thimbles. Using this approach we study the relativistic Bose gas both in the symmetric phase (low-density) and the spontaneously broken phase (high-density). In the high-density phase we break explicitly the symmetry and determine the dependence of the order parameter on the breaking. We study the relative contributions of the dominant and sub-dominant thimbles in this phase. We find that the sub-dominant thimble only contributes substantially when the explicit symmetry breaking is small, a regime that is dominated by finite volume effects. In the regime relevant for the thermodynamic limit, this contribution is negligible.

  16. Simplified R-Symmetry Breaking and Low-Scale Gauge Mediation

    CERN Document Server

    Evans, Jason L; Sudano, Matthew; Yanagida, Tsutomu T

    2011-01-01

    We argue that some of the difficulties in constructing realistic models of low-scale gauge mediation are artifacts of the narrow set of models that have been studied. In particular, much attention has been payed to the scenario in which the Goldstino superfield in an O'Raifeartaigh model is responsible for both supersymmetry breaking and R-symmetry breaking. In such models, the competing problems of generating sufficiently massive gauginos while preserving an acceptably light gravitino can be quite challenging. We show that by sharing the burdens of breaking supersymmetry and R-symmetry with a second field, these problems are easily solved even within the O'Raifeartaigh framework. We present explicit models realizing minimal gauge mediation with a gravitino mass in the eV range that are both calculable and falsifiable.

  17. Simplified R-symmetry breaking and low-scale gauge mediation

    Science.gov (United States)

    Evans, Jason L.; Ibe, Masahiro; Sudano, Matthew; Yanagida, Tsutomu T.

    2012-03-01

    We argue that some of the difficulties in constructing realistic models of lowscale gauge mediation are artifacts of the narrow set of models that have been studied. In particular, much attention has been payed to the scenario in which the Goldstino superfield in an O'Raifeartaigh model is responsible for both supersymmetry breaking and R-symmetry breaking. In such models, the competing problems of generating sufficiently massive gauginos while preserving an acceptably light gravitino can be quite challenging. We show that by sharing the burdens of breaking supersymmetry and R-symmetry with a second field, these problems are easily solved even within the O'Raifeartaigh framework. We present explicit models realizing minimal gauge mediation with a gravitino mass in the eV range that are both calculable and falsifiable.

  18. More on cosmological constraints on spontaneous R-symmetry breaking models

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, Yuta; Kobayashi, Tatsuo [Kyoto Univ. (Japan). Dept. of Physics; Kamada, Kohei [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Ecole Polytechnique Federale de Lausanne (Switzerland). Inst. de Theorie des Phenomenes Physiques; Ookouchi, Yutaka [Kyushu Univ., Fukuoka (Japan). Faculty of Arts and Science

    2013-10-15

    We study the spontaneous R-symmetry breaking model and investigate the cosmological constraints on this model due to the pseudo Nambu-Goldstone boson, R-axion. We consider the R-axion which has relatively heavy mass in order to complement our previous work. In this regime, model parameters, R-axions mass and R-symmetry breaking scale, are constrained by Big Bang Nucleosynthesis and overproduction of the gravitino produced from R-axion decay and thermal plasma. We find that the allowed parameter space is very small for high reheating temperature. For low reheating temperature, the U(1){sub R} breaking scale f{sub a} is constrained as f{sub a}<10{sup 12-14} GeV regardless of the value of R-axion mass.

  19. Coleman-Weinberg symmetry breaking in $SU(8)$ induced by a third rank antisymmetric tensor scalar field

    CERN Document Server

    Adler, Stephen L

    2016-01-01

    We study $SU(8)$ symmetry breaking induced by minimizing the Coleman-Weinberg effective potential for a third rank antisymmetric tensor scalar field in the 56 representation. Instead of breaking $SU(8) \\supset SU(3) \\times SU(5)$, we find that the stable minimum of the potential breaks the original symmetry according to $SU(8) \\supset SU(3) \\times Sp(4)$. Using both numerical and analytical methods, we present results for the potential minimum, the corresponding Goldstone boson structure and BEH mechanism, and the group-theoretic classification of the residual states after symmetry breaking.

  20. Coleman-Weinberg symmetry breaking in SU(8) induced by a third rank antisymmetric tensor scalar field

    Science.gov (United States)

    Adler, Stephen L.

    2016-08-01

    We study SU(8) symmetry breaking induced by minimizing the Coleman-Weinberg effective potential for a third rank antisymmetric tensor scalar field in the 56 representation. Instead of breaking {SU}(8)\\supset {SU}(3)× {SU}(5), we find that the stable minimum of the potential breaks the original symmetry according to {SU}(8)\\supset {SU}(3)× {Sp}(4). Using both numerical and analytical methods, we present results for the potential minimum, the corresponding Goldstone boson structure and BEH mechanism, and the group-theoretic classification of the residual states after symmetry breaking.

  1. On Laplace-Runge-Lenz Vector as Symmetry Breaking order parameter in Kepler Orbit and Goldstone Boson

    OpenAIRE

    Amiri, Manouchehr

    2014-01-01

    We introduce a type of symmetry breaking and associated order parameter in connection with Laplace-Runge-Lenz vector of Kepler orbit through an extended spatial dimension and Ensemble view. By implementation of a small extra spatial dimension and embedded infinitesimal toral manifold, it has been shown that emerging of LRL vector under SO(4)symmetry is in analogy with a variety of explicit and spontaneous symmetry breaking situations and related Goldstone bosons such as phonons and spin waves...

  2. The flight of the bumblebee: vacuum solutions of a gravity model with vector-induced spontaneous Lorentz symmetry breaking

    OpenAIRE

    Bertolami, O.; Paramos, J.

    2005-01-01

    We study the vacuum solutions of a gravity model where Lorentz symmetry is spontaneously broken once a vector field acquires a vacuum expectation value. Results are presented for the purely radial Lorentz symmetry breaking (LSB), radial/temporal LSB and axial/temporal LSB. The purely radial LSB result corresponds to new black hole solutions. When possible, Parametrized Post-Newtonian (PPN) parameters are computed and observational boundaries used to constrain the Lorentz symmetry breaking scale.

  3. Determination of time-reversal symmetry breaking lengths in an InGaAs interferometer array

    International Nuclear Information System (INIS)

    Quantum interference oscillations due to the Aharonov–Bohm phase were measured in a ring interferometer array fabricated on a two-dimensional electron system in an InGaAs/InAlAs heterostructure. Coexisting oscillations with magnetic flux periodicity h/e and h/2e were observed and their amplitudes compared as function of applied magnetic field. The h/2e oscillations originate in time-reversed trajectories with the ring interferometers operating in Sagnac-type mode, while the h/e oscillations result from Mach–Zehnder operation. The h/2e oscillations require time-reversal symmetry and hence can be used to quantify time-reversal symmetry breaking, more particularly the fundamental mesoscopic dephasing length associated with time-reversal symmetry breaking under applied magnetic field, an effective magnetic length. The oscillation amplitudes were investigated over magnetic fields spanning 2.2 T, using Fourier transforms over short segments of 40 mT. As the magnetic field increased, the h/2e oscillation amplitude decreased due to time-reversal symmetry breaking by the local magnetic flux in the interferometer arms. A dephasing model for quantum-coherent arrays was used to experimentally quantify effective magnetic lengths. The data was then compared with analytical expressions for diffusive, ballistic and confined systems. (paper)

  4. Confinement/deconfinement transition from symmetry breaking in gauge/gravity duality

    CERN Document Server

    Čubrović, Mihailo

    2016-01-01

    We study the confinement/deconfinement transition in a strongly coupled system triggered by an independent symmetry-breaking quantum phase transition in gauge/gravity duality. The gravity dual is an Einstein-scalar-dilaton system with AdS near-boundary behavior and soft wall interior at zero scalar condensate. We study the cases of neutral and charged condensate separately. In the former case the condensation breaks the discrete $\\mathbb{Z}_2$ symmetry while a charged condensate breaks the continuous $U(1)$ symmetry. After the condensation of the order parameter, the non-zero vacuum expectation value of the scalar couples to the dilaton, changing the soft wall geometry into a non-confining and anisotropically scale-invariant infrared metric. In other words, the formation of long-range order is immediately followed by the deconfinement transition and the two critical points coincide. The confined phase has a scale -- the confinement scale (energy gap) which vanishes in the deconfined case. Therefore, the break...

  5. Lattice QCD analysis for relation between quark confinement and chiral symmetry breaking

    Science.gov (United States)

    Doi, Takahiro M.; Suganuma, Hideo; Iritani, Takumi

    2016-01-01

    The Polyakov loop and the Dirac modes are connected via a simple analytical relation on the temporally odd-number lattice, where the temporal lattice size is odd with the normal (nontwisted) periodic boundary condition. Using this relation, we investigate the relation between quark confinement and chiral symmetry breaking in QCD. In this paper, we discuss the properties of this analytical relation and numerically investigate each Dirac-mode contribution to the Polyakov loop in both confinement and deconfinement phases at the quenched level. This relation indicates that low-lying Dirac modes have little contribution to the Polyakov loop, and we numerically confirmed this fact. From our analysis, it is suggested that there is no direct one-to-one corresponding between quark confinement and chiral symmetry breaking in QCD. Also, in the confinement phase, we numerically find that there is a new "positive/negative symmetry" in the Dirac-mode matrix elements of link-variable operator which appear in the relation and the Polyakov loop becomes zero because of this symmetry. In the deconfinement phase, this symmetry is broken and the Polyakov loop is non-zero.

  6. Consequences of breaking time reversal symmetry in LaSb: a resistivity plateau and extreme magnetoresistance

    Science.gov (United States)

    Tafti, Fazel; Gibson, Quinn; Kushwaha, Satya; Haldolaarachchige, Neel; Cava, Robert; Cava Lab Team

    Time reversal symmetry protects the metallic surface modes of topological insulators (TIs). The transport signature of robust metallic surface modes of TIs is a plateau that arrests the exponential divergence of the insulating bulk with decreasing temperature. This universal behavior is observed in all TI candidates ranging from Bi2Te2Se to SmB6. Recently, several topological semimetals (TSMs) have been found that exhibit extreme magnetoresistance (XMR) and TI universal resistivity behavior revealed only when breaking TRS, a regime where TIs theoretically cease to exist. Amongst these new materials, TaAs and NbP are nominated for Weyl semimetal due to their lack of inversion symmetry, Cd3As2 is nominated for Dirac semimetal due to linear band crossing, and WTe2 is nominated for resonant compensated semimetal due to perfect electron-hole symmetry. Here we introduce LaSb, a simple rock-salt structure material without broken inversion symmetry, without perfect linear band crossing, and without perfect electron-hole symmetry. Yet LaSb portrays all the exotic field induced behaviors of the aforementioned semimetals. It shows the universal TI resistivity with a plateau at 15 K, revealed by a magnetic field, ultrahigh mobility of carriers, quantum oscillations with 2D Fermi surface, and XMR of about one million percent. Due to its dramatic simplicity, LaSb is the ideal model system to formulate a theoretical understanding of the exotic consequences of breaking TRS in TSMs.

  7. Emergent p-wave Kondo Coupling in Multi-Orbital Bands with Mirror Symmetry Breaking

    OpenAIRE

    Rhim, Jun Won; Han, Jung Hoon

    2013-01-01

    We examine Kondo effect in the periodic Anderson model for which the conduction band is of multi-orbital character and subject to mirror symmetry breaking field imposed externally. Taking p-orbital-based toy model for analysis, we find the Kondo pairing symmetry of p-wave character emerges self-consistently over some regions of parameter space and filling factor even though only the on-site Kondo hybridization is assumed in the microscopic Hamiltonian. The band structure in the Kondo-hybridiz...

  8. Measurement of Wave Chaotic Eigenfunctions in the Time-Reversal Symmetry-Breaking Crossover Regime

    CERN Document Server

    Chung, S H; Wu, D H; Bridgewater, A; Anlage, S M; Chung, Seok-Hwan; Gokirmak, Ali; Wu, Dong-Ho; Anlage, Steven M.

    1999-01-01

    We present experimental results on eigenfunctions of a wave chaotic system in the continuous crossover regime between time-reversal symmetric and time-reversal symmetry-broken states. The statistical properties of the eigenfunctions of a two-dimensional microwave resonator are analyzed as a function of an experimentally determined time-reversal symmetry breaking parameter. We test four theories of eigenfunction statistics in the crossover regime. We also find a universal correlation between the one-point and two-point statistical parameters for the crossover eigenfunctions.

  9. Cutoff effects of Wilson fermions in the absence of spontaneous chiral symmetry breaking

    CERN Document Server

    Della Morte, M; Luz, Magdalena; Morte, Michele Della

    2006-01-01

    We simulate two dimensional QED with two degenerate Wilson fermions and plaquette gauge action. As a consequence of the Mermin-Wagner theorem, in the continuum limit chiral symmetry is realized a la Wigner. This property affects also the size of the cutoff effects. That can be understood in view of the fact that the leading lattice artifacts are described, in the continuum Symanzik effective theory, by chirality breaking terms. In particular, vacuum expectation values of non-chirality-breaking operators are expected to be O(a) improved in the chiral limit. We provide a numerical confirmation of this expectation by performing a scaling test.

  10. Re-examination of Electroweak Symmetry Breaking in Supersymmetry and Implications for Light Superpartners

    CERN Document Server

    Kane, G L; Nelson, B D; Wang, L T; Nelson, Brent D.; Wang, Lian-Tao

    2003-01-01

    We examine arguments that could avoid light superpartners as an implication of supersymmetric radiative electroweak symmetry breaking. We argue that, from the point of view of string theory and standard approaches to generating the mu-term, cancellations among parameters are not a generic feature. While the coefficients relating the Z-mass to parameters in the soft supersymmetry breaking Lagrangian can be made smaller, these same mechanisms lead to lighter superpartner masses at the electroweak scale. Consequently we strengthen the implication that gluinos, neutralinos, and charginos are light and likely to be produced at the Fermilab Tevatron and a linear collider.

  11. Ultra-large distance modification of gravity from Lorentz symmetry breaking at the Planck scale

    CERN Document Server

    Gorbunov, D S

    2005-01-01

    We present an extension of the Randall--Sundrum model in which, due to spontaneous Lorentz symmetry breaking, graviton mixes with bulk vector fields and becomes quasilocalized. The masses of KK modes comprising the four-dimensional graviton are naturally exponentially small. This allows to push the Lorentz breaking scale to as high as a few tenth of the Planck mass. The model does not contain ghosts or tachyons and does not exhibit the van Dam--Veltman--Zakharov discontinuity. The gravitational attraction between static point masses becomes gradually weaker with increasing of separation and gets replaced by repulsion (antigravity) at exponentially large distances.

  12. Ultra-large distance modification of gravity from Lorentz symmetry breaking at the Planck scale

    Energy Technology Data Exchange (ETDEWEB)

    Gorbunov, Dmitry S. [Institute for Nuclear Research of the Russian Academy of Sciences, 60th October Anniversary prospect, 7a, 117312 Moscow (Russian Federation); Sibiryakov, Sergei M. [Institute for Nuclear Research of the Russian Academy of Sciences, 60th October Anniversary prospect, 7a, 117312 Moscow (Russian Federation)

    2005-09-15

    We present an extension of the Randall-Sundrum model in which, due to spontaneous Lorentz symmetry breaking, graviton mixes with bulk vector fields and becomes quasilocalized. The masses of KK modes comprising the four-dimensional graviton are naturally exponentially small. This allows to push the Lorentz breaking scale to as high as a few tenth of the Planck mass. The model does not contain ghosts or tachyons and does not exhibit the van Dam-Veltman-Zakharov discontinuity. The gravitational attraction between static point masses becomes gradually weaker with increasing of separation and gets replaced by repulsion (antigravity) at exponentially large distances.

  13. On Laplace-Runge-Lenz Vector as Symmetry Breaking order parameter in Kepler Orbit and Goldstone Boson

    CERN Document Server

    Amiri, Manouchehr

    2014-01-01

    We introduce a type of symmetry breaking and associated order parameter in connection with Laplace-Runge-Lenz vector of Kepler orbit through an extended spatial dimension and Ensemble view. By implementation of a small extra spatial dimension and embedded infinitesimal toral manifold, it has been shown that emerging of LRL vector under SO(4)symmetry is in analogy with a variety of explicit and spontaneous symmetry breaking situations and related Goldstone bosons such as phonons and spin waves. A theorem introduced to generalize this concept of breaking symmetry. The diffeomorphism of circular orbit(geodesic)to elliptic one proved to be equivalent with a covariant derivative and related parallel displacement in this extended four dimensional spatial space.Respect to ensemble definition this diffeomorphism breaks the O(2) symmetry of initial orbit and Hamiltonian to Z2 resulting in broken generators in quotient space and associated Goldstone boson as perturbing Hamiltonian term leading to a perpetual circular m...

  14. Dynamical Electroweak Symmetry Breaking with a Heavy Fermion in Light of Recent LHC Results

    Directory of Open Access Journals (Sweden)

    Pham Q. Hung

    2013-01-01

    Full Text Available The recent announcement of a discovery of a possible Higgs-like particle—its spin and parity are yet to be determined—at the LHC with a mass of 126 GeV necessitates a fresh look at the nature of the electroweak symmetry breaking, in particular if this newly-discovered particle will turn out to have the quantum numbers of a Standard Model Higgs boson. Even if it were a 0+ scalar with the properties expected for a SM Higgs boson, there is still the quintessential hierarchy problem that one has to deal with and which, by itself, suggests a new physics energy scale around 1 TeV. This paper presents a minireview of one possible scenario: the formation of a fermion-antifermion condensate coming from a very heavy fourth generation, carrying the quantum number of the SM Higgs field, and thus breaking the electroweak symmetry.

  15. Fermion condensates and Lorentz symmetry breaking in strongly-coupled large N gauge theories

    CERN Document Server

    Tomboulis, E T

    2012-01-01

    The possibility of Lorentz symmetry breaking (LSB) has attracted considerable attention in recent years. Spontaneous LSB, in particular, offers the attractive prospect of the graviton as a Nambu-Golstone boson. Here we consider the question of spontaneous LSB in lattice gauge theories via formation of fermion condensates in the strong coupling and large N limits. We employ naive massless fermions in a fermionic hopping expansion in the presence of sources coupled to various condensate operators of interest. The expansion is resumed in the large N limit in two equivalent ways: (i) direct resummation of all leading N graphs; and (ii) construction of the corresponding large N effective action for composite operators. When sources are turned off a variety of fermionic condensates is found to persist. These include the chiral symmetry breaking condensates, thus recovering previous results; but also some LSB condensates, in particular, axial vector and rank-2 tensor condensates. Furthermore, in the presence of inte...

  16. The Tayler instability at low magnetic Prandtl numbers: between chiral symmetry breaking and helicity oscillations

    CERN Document Server

    Weber, Norbert; Stefani, Frank; Weier, Tom

    2015-01-01

    The Tayler instability is a kink-type, current driven instability that plays an important role in plasma physics but might also be relevant in liquid metal applications with high electrical currents. In the framework of the Tayler-Spruit dynamo model of stellar magnetic field generation, the question of spontaneous helical (chiral) symmetry breaking during the saturation of the Tayler instability has received considerable interest. Focusing on fluids with low magnetic Prandtl numbers, for which the quasistatic approximation can be applied, we utilize an integro-differential equation approach in order to investigate the saturation mechanism of the Tayler instability. Both the exponential growth phase and the saturated phase are analyzed in terms of the action of the alpha and beta effects of mean-field magnetohydrodynamics. In the exponential growth phase we always find a spontaneous chiral symmetry breaking which, however, disappears in the saturated phase. For higher degrees of supercriticality, we observe h...

  17. Symmetry Breaking of Frequency Comb in Varying Normal Dispersion Fiber Ring Cavity

    CERN Document Server

    Afzal, Muhammad Imran; Lee, Yong Tak

    2016-01-01

    We build on a previously reported frequency comb of mode spacing 0.136 nm in a fiber ring cavity of varying normal dispersion [1], to generate, for the first time, a frequency comb of mode spacing 0.144 nm centered at 978.544 nm to demonstrate the symmetry-breaking. By controlling the birefringence of the optical cavity through fiber stretching and polarization control, the spacing of the comb lines increases from 0.136 nm to 0.144 nm, and this small change in mode spacing generates very different spectral symmetry-breaking in the frequency comb relative to the frequency comb of mode spacing 0.136 nm. Interestingly, non-uniform depletion of primary modes is also observed. The experimental results are an important contribution in the continuing effort of understanding the dynamics of frequency combs involving large number of modes, nontrivial nonlinear waves and deterministic chaos.

  18. Spontaneous chiral-symmetry breaking of lattice QCD with massless dynamical quarks

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    One of the most challenging issues in QCD is the investigation of spontaneous chiral-symmetry breaking, which is characterized by the non-vanishing chiral condensate when the bare fermion mass is zero. In standard methods of the lattice gauge theory, one has to perform expensive simulations at multiple bare quark masses, and employ some modeled functions to extrapolate the data to the chiral limit. This paper applies the probability distribution function method to computing the chiral condensate in lattice QCD with massless dynamical quarks, without any ambiguous mass extrapolation. The results for staggered quarks indicate that this might be a promising and efficient method for investigating the spontaneous chiral-symmetry breaking in lattice QCD, which deserves further investigation.

  19. Conditions for the emergence of gauge bosons from spontaneous Lorentz symmetry breaking

    CERN Document Server

    Escobar, C A

    2015-01-01

    The emergence of gauge particles (e.g., photons and gravitons) as Goldstone bosons arising from spontaneous symmetry breaking is an interesting hypothesis which would provide a dynamical setting for the gauge principle. We investigate this proposal in the framework of a general $% SO(N)$ non-abelian Nambu model (NANM), effectively providing spontaneous Lorentz symmetry breaking in terms of the corresponding Goldstone bosons. Using a non-perturbative Hamiltonian analysis, we prove that the $SO(N)$ Yang--Mills theory is equivalent to the corresponding NANM, after current conservation together with the Gauss laws are imposed as initial conditions for the latter. This equivalence is independent of any gauge fixing in the YM theory. A substantial conceptual and practical improvement in the analysis arises by choosing a particular parametrization that solves the non-linear constraint defining the NANM. This choice allows us to show that the relation between the NANM canonical variables and the corresponding ones of...

  20. Local symmetry breaking and spin–phonon coupling in SmCrO{sub 3} orthochromite

    Energy Technology Data Exchange (ETDEWEB)

    El Amrani, M. [GREMAN CNRS UMR 7347, Université F. Rabelais, IUT de Blois, 15 rue de la Chocolatrie 41029 Blois cedex (France); Zaghrioui, M., E-mail: zaghrioui@univ-tours.fr [GREMAN CNRS UMR 7347, Université F. Rabelais, IUT de Blois, 15 rue de la Chocolatrie 41029 Blois cedex (France); Ta Phuoc, V.; Gervais, F. [GREMAN CNRS UMR 7347, Université F. Rabelais, IUT de Blois, 15 rue de la Chocolatrie 41029 Blois cedex (France); Massa, Néstor E. [Laboratorio Nacional de Investigacion y Servicios en Espectroscopia Optica-Centro CEQUINOR, Universidad Nacional de La Plata, C. C. 962, 1900 La Plata (Argentina)

    2014-06-01

    Raman scattering and infrared reflectivity performed on polycrystalline SmCrO{sub 3} support strong influence of the antiferromagnetic order on phonon modes. Both measurements show softening of some modes below T{sub N}. Such a behavior is explained by spin–phonon coupling in this compound. Furthermore, temperature dependence of the infrared spectra has demonstrated important changes compared to the Raman spectra, suggesting strong structural modifications due to the cation displacements rather to those of the oxygen ions. Our results reveal that polar distortions originating in local symmetry breaking, i.e. local non-centrosymmetry, resulting in Cr off-centring. - Highlights: • We investigated Raman and infrared phonon modes of SmCrO{sub 3} versus temperature. • Results reveal strong influence of the antiferromagnetic order on phonon modes. • Temperature dependence of the infrared spectra shows strong structural modifications suggesting local symmetry breaking.

  1. Synthetic Turing protocells: vesicle self-reproduction through symmetry-breaking instabilities.

    Science.gov (United States)

    Macía, Javier; Solé, Ricard V

    2007-10-29

    The reproduction of a living cell requires a repeatable set of chemical events to be properly coordinated. Such events define a replication cycle, coupling the growth and shape change of the cell membrane with internal metabolic reactions. Although the logic of such process is determined by potentially simple physico-chemical laws, modelling of a full, self-maintained cell cycle is not trivial. Here we present a novel approach to the problem that makes use of so-called symmetry breaking instabilities as the engine of cell growth and division. It is shown that the process occurs as a consequence of the breaking of spatial symmetry and provides a reliable mechanism of vesicle growth and reproduction. Our model opens the possibility of a synthetic protocell lacking information but displaying self-reproduction under a very simple set of chemical reactions. PMID:17510018

  2. Nonlinearity in cytoplasm viscosity can generate an essential symmetry breaking in cellular behaviors.

    Science.gov (United States)

    Tachikawa, Masashi; Mochizuki, Atsushi

    2015-01-01

    The cytoplasms of ameboid cells are nonlinearly viscous. The cell controls this viscosity by modulating the amount, localization and interactions of bio-polymers. Here we investigated how the nonlinearity infers the cellular behaviors and whether nonlinearity-specific behaviors exist. We modeled the developed plasmodium of the slime mold Physarum polycephalum as a network of branching tubes and examined the linear and nonlinear viscous cytoplasm flows in the tubes. We found that the nonlinearity in the cytoplasm׳s viscosity induces a novel type of symmetry breaking in the protoplasmic flow. We also show that symmetry breaking can play an important role in adaptive behaviors, namely, connection of behavioral modes implemented on different time scales and transportation of molecular signals from the front to the rear of the cell during cellular locomotion. PMID:25261729

  3. CERN LHC sensitivity to the resonance spectrum of a minimal strongly interacting electroweak symmetry breaking sector

    CERN Document Server

    Dobado, A; Peláez, J R; Ruiz-Morales, Ester

    2000-01-01

    We present a unified analysis of the two main production processes of vector boson pairs at the CERN LHC, VV-fusion and qq annihilation, in a minimal strongly interacting electroweak symmetry breaking sector. Using a unitarized electroweak chiral Lagrangian formalism and modeling the final V/sub L/V/sub L/ strong rescattering effects by a form factor, we describe qq annihilation processes in terms of the two chiral parameters that govern elastic V/sub L/V/sub L/ scattering. Depending on the values of these two chiral parameters, the unitarized amplitudes may present resonant enhancements in different angular momentum-isospin channels. Scanning this two parameter space, we generate the general resonance spectrum of a minimal strongly interacting electroweak symmetry breaking sector and determine the regions that can be probed at the CERN LHC. (47 refs).

  4. Patterns of chiral symmetry breaking and a candidate for a C-theorem in four dimensions

    CERN Document Server

    Levinsen, J

    2002-01-01

    We test a candidate for a four-dimensional C-function. This is done by considering all asymptotically free, vectorlike gauge theories with N_f flavors and fermions in arbitrary representations of any simple Lie group. Assuming spontaneous breaking of chiral symmetry in the infrared limit and that the value of the C-function in this limit is determined by the number of Goldstone bosons, we find that only in the case of a theory with two colors and fermions in one single pseudo-real representation of SU(2) the C-theorem seems to be violated. Conversely, this might also be a sign of new constraints, restricting the number of flavors consistent with spontaneous chiral symmetry breaking. For all other groups and representations we find that this candidate C-function decreases along the renormalization group flow.

  5. Spontaneous symmetry breaking in the O(4) scalar model on a lattice

    CERN Document Server

    Demchik, Vadim; Skalozub, Vladimir

    2014-01-01

    The spontaneous symmetry breaking in the four component scalar $\\lambda \\phi^4$ model (O(4) model) is investigated on a lattice dependently on the value of the coupling constant $\\lambda$. A general approach for dealing with this phenomenon is developed. In the spherical coordinates in the internal space of the scalar field, the Goldstone modes are integrated out by the saddle point method that reduces the functional integral of the model to the effective one component theory convenient for lattice investigations. The partition function of the model is calculated analytically up to the one-loop order. Monte Carlo simulations are performed with a QCDGPU software package on a HGPU cluster. It is shown that for $\\lambda < 10^{-5}$ the scalar field condensate does not create. For larger values of coupling symmetry breaking happens. Qualitatively, this is similar to that of observed already in the O(1) model.

  6. Symmetry Breaking, Central Charges and the AdS_2/CFT_1 Correspondence

    OpenAIRE

    Cadoni, Mariano; Mignemi, Salvatore

    2000-01-01

    When two-dimensional Anti-de Sitter space (AdS_2) is endowed with a non-constant dilaton the origin of the central charge in the Virasoro algebra generating the asymptotic symmetries of AdS_2 can be traced back to the breaking of the SL(2,R) isometry group of AdS_2. We use this fact to clarify some controversial results appeared in the literature about the value of the central charge in these models.

  7. Synthetic Turing protocells: vesicle self-reproduction through symmetry-breaking instabilities

    OpenAIRE

    Macía, Javier; Solé, Ricard V.

    2006-01-01

    The reproduction of a living cell requires a repeatable set of chemical events to be properly coordinated. Such events define a replication cycle, coupling the growth and shape change of the cell membrane with internal metabolic reactions. Although the logic of such process is determined by potentially simple physico-chemical laws, the modeling of a full, self-maintained cell cycle is not trivial. Here we present a novel approach to the problem which makes use of so called symmetry breaking i...

  8. Spatial Symmetry Breaking in the Belousov-Zhabotinsky Reaction with Light-Induced Remote Communication

    Energy Technology Data Exchange (ETDEWEB)

    Hildebrand, M.; Skodt, H.; Showalter, K.

    2001-08-20

    Domains containing spiral waves form on a stationary background in a photosensitive Belousov-Zhabotinsky reaction with light-induced alternating nonlocal feedback. Complex behavior of colliding and splitting wave fragments is found with feedback radii comparable to the spiral wavelength. A linear stability analysis of the uniform stationary states in an Oregonator model reveals a spatial symmetry breaking instability. Numerical simulations show behavior in agreement with that found experimentally and also predict a variety of other new patterns.

  9. Symmetry-breaking in the response of the parametrically excited pendulum model

    International Nuclear Information System (INIS)

    A planar pendulum is considered which is parametrically excited by a periodic vertical force. The amplitude and frequency of the excitation are used as control parameters. The downward, hanging and the upward, inverted positions correspond to equilibrium positions if we only consider the variation in angle measured from the downward position. For moderate levels of forcing, there are zones that exist in the space of control parameters, where the downward hanging position is unstable and initial conditions that are close to the hanging position lead to steady state oscillations of period-2. To review this situation, this paper describes the development of these oscillations as the amplitude of forcing is varied. In the largest zone, a symmetry-breaking occurs which brings about a pair of asymmetric oscillations. This break in symmetry of the period-2 solution can lead to either an increase or decrease in the amplitude of the forthcoming swing and reference to the experimental significance of this angle change is noted in this paper. Typically, further increases of the parameter produce a cascade of period doubling bifurcations, before most oscillating solutions eventually lose their stability so that the system must experience a rotation. As a result, symmetry-breaking becomes an effective precursor to escape from the local potential well around the hanging position. Here we compare this behaviour with that in other resonance zones. The change of geometric structure when the symmetry-breaking bifurcation occurs is examined and graphically represented as a 'pinched' cylinder-like shape, compared with the Moebius strip that has been associated with the period-doubling bifurcation. The paper also refers to practical problems, where the introduction of nonlinearity means that potentially all frequencies below the main zone of the control space lead to dangerous effects and in some scenarios disastrous outcomes

  10. Recent progress for Linear Collider SM/BSM Higgs/electroweak symmetry breaking calculations

    Energy Technology Data Exchange (ETDEWEB)

    Reuter, Juergen [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Theory Group

    2012-01-15

    In this paper I review the calculations (and partially simulations and theoretical studies) that have been made and published during the last two to three years focusing on the electroweak symmetry breaking sector and the Higgs boson(s) within the Standard Model and models beyond the Standard Model (BSM) at or relevant for either the International Linear Collider (ILC) or the Compact Linear Collider (CLIC), commonly abbreviated as Linear Collider (LC). (orig.)

  11. Symmetry breaking: a tool to unveil the topology of chaotic scattering with three degrees of freedom

    Science.gov (United States)

    Jung, Christof; Zapfe, W. P. Karel; Merlo, Olivier; Seligman, T. H.

    2010-12-01

    We shall use symmetry breaking as a tool to attack the problem of identifying the topology of chaotic scatteruing with more then two degrees of freedom. specifically we discuss the structure of the homoclinic/heteroclinic tangle and the connection between the chaotic invariant set, the scattering functions and the singularities in the cross section for a class of scattering systems with one open and two closed degrees of freedom.

  12. Breaking the symmetry. The first steps of a new way of thinking

    OpenAIRE

    Sardella, Ignazio A.

    2010-01-01

    The concept of Spontaneous Symmetry Breaking (SSB) represents a real breakthrough for present description of fundamental interactions by means of gauge theories. Although the underlying ideas were ancient, their formalization required a long time, due to epistemological obstacles and technical difficulties. In this paper, the main steps of SSB evolution are briefly outlined, from the introduction of the order parameter in the Thirties to the birth of the many-body theory at the end of the Fif...

  13. $SU(n)$ symmetry breaking by rank three and rank two antisymmetric tensor scalars

    CERN Document Server

    Adler, Stephen L

    2015-01-01

    We study $SU(n)$ symmetry breaking by rank three and rank two antisymmetric tensor fields. Using tensor analysis, we derive branching rules for the adjoint and antisymmetric tensor representations, and explain why for general $SU(n)$ one finds the same $U(1)$ generator mismatch that we noted earlier in special cases. We then compute the masses of the various scalar fields in the branching expansion, in terms of parameters of the general renormalizable potential for the antisymmetric tensor fields.

  14. Inversion-symmetry-breaking-activated shear Raman bands in $T'$-MoTe$_2$

    OpenAIRE

    Chen, Shao-Yu; Goldstein, Thomas; Ramasubramaniam, Ashwin; Yan, Jun

    2016-01-01

    Type-II Weyl fermion nodes, located at the touching points between electron and hole pockets, have been recently predicted to occur in distorted octahedral ($T'$) transition metal dichalcogenide semimetals, contingent upon the condition that the layered crystal has the noncentrosymmetric orthorhombic ($T'_{or}$) stacking. Here, we report on the emergence of two shear Raman bands activated by inversion symmetry breaking in $T'$-MoTe$_2$ due to sample cooling. Polarization and crystal orientati...

  15. Benchmarking Density Functional Theory Approaches for the Description of Symmetry-Breaking in Long Polymethine Dyes

    KAUST Repository

    Gieseking, Rebecca L.

    2016-04-25

    Long polymethines are well-known experimentally to symmetry-break, which dramatically modifies their linear and nonlinear optical properties. Computational modeling could be very useful to provide insight into the symmetry-breaking process, which is not readily available experimentally; however, accurately predicting the crossover point from symmetric to symmetry-broken structures has proven challenging. Here, we benchmark the accuracy of several DFT approaches relative to CCSD(T) geometries. In particular, we compare analogous hybrid and long-range corrected (LRC) functionals to clearly show the influence of the functional exchange term. Although both hybrid and LRC functionals can be tuned to reproduce the CCSD(T) geometries, the LRC functionals are better performing at reproducing the geometry evolution with chain length and provide a finite upper limit for the gas-phase crossover point; these methods also provide good agreement with the experimental crossover points for more complex polymethines in polar solvents. Using an approach based on LRC functionals, a reduction in the crossover length is found with increasing medium dielectric constant, which is related to localization of the excess charge on the end groups. Symmetry-breaking is associated with the appearance of an imaginary frequency of b2 symmetry involving a large change in the degree of bond-length alternation. Examination of the IR spectra show that short, isolated streptocyanines have a mode at ~1200 cm-1 involving a large change in bond-length alternation; as the polymethine length or the medium dielectric increases, the frequency of this mode decreases before becoming imaginary at the crossover point.

  16. Weyl gauge-vector and complex dilaton scalar for conformal symmetry and its breaking

    Science.gov (United States)

    Ohanian, Hans C.

    2016-03-01

    Instead of the scalar "dilaton" field that is usually adopted to construct conformally invariant Lagrangians for gravitation, we here propose a hybrid construction, involving both a complex dilaton scalar and a Weyl gauge-vector, in accord with Weyl's original concept of a non-Riemannian conformal geometry with a transport law for length and time intervals, for which this gauge vector is required. Such a hybrid construction permits us to avoid the wrong sign of the dilaton kinetic term (the ghost problem) that afflicts the usual construction. The introduction of a Weyl gauge-vector and its interaction with the dilaton also has the collateral benefit of providing an explicit mechanism for spontaneous breaking of the conformal symmetry, whereby the dilaton and the Weyl gauge-vector acquire masses somewhat smaller than {m}_{P} by the Coleman-Weinberg mechanism. Conformal symmetry breaking is assumed to precede inflation, which occurs later by a separate GUT or electroweak symmetry breaking, as in inflationary models based on the Higgs boson.

  17. Vacuum stability and radiative electroweak symmetry breaking in an SO(10) dark matter model

    Science.gov (United States)

    Mambrini, Yann; Nagata, Natsumi; Olive, Keith A.; Zheng, Jiaming

    2016-06-01

    Vacuum stability in the Standard Model is problematic as the Higgs quartic self-coupling runs negative at a renormalization scale of about 1010 GeV . We consider a nonsupersymmetric SO(10) grand unification model for which gauge coupling unification is made possible through an intermediate scale gauge group, Gint=SU (3 )C⊗SU (2 )L⊗SU (2 )R⊗U (1 )B -L . Gint is broken by the vacuum expectation value of a 126 of SO(10) which not only provides for neutrino masses through the seesaw mechanism but also preserves a discrete Z2 that can account for the stability of a dark matter candidate, here taken to be the Standard Model singlet component of a bosonic 16 . We show that in addition to these features the model insures the positivity of the Higgs quartic coupling through its interactions to the dark matter multiplet and 126 . We also show that the Higgs mass squared runs negative, triggering electroweak symmetry breaking. Thus, the vacuum stability is achieved along with radiative electroweak symmetry breaking and captures two more important elements of supersymmetric models without low-energy supersymmetry. The conditions for perturbativity of quartic couplings and for radiative electroweak symmetry breaking lead to tight upper and lower limits on the dark matter mass, respectively, and this dark matter mass region (1.35-2 TeV) can be probed in future direct detection experiments.

  18. Chiral Symmetry Breaking and External Fields in the Kuperstein-Sonnenschein Model

    CERN Document Server

    Alam, M Sohaib; Kundu, Arnab

    2012-01-01

    A novel holographic model of chiral symmetry breaking has been proposed by Kuperstein and Sonnenschein by embedding non-supersymmetric probe D7 and anti-D7 branes in the Klebanov-Witten background. We study the dynamics of the probe flavours in this model in the presence of finite temperature and a constant electromagnetic field. In keeping with the weakly coupled field theory intuition, we find the magnetic field promotes spontaneous breaking of chiral symmetry whereas the electric field restores it. The former effect is universally known as the "magnetic catalysis" in chiral symmetry breaking. In the presence of an electric field such a condensation is inhibited and a current flows. Thus we are faced with a steady-state situation rather than a system in equilibrium. We conjecture a definition of thermodynamic free energy for this steady-state phase and using this proposal we study the detailed phase structure when both electric and magnetic fields are present in two representative configurations: mutually p...

  19. Dynamical instability induced by the zero mode under symmetry breaking external perturbation

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, J., E-mail: phyco-sevenface@asagi.waseda.jp; Nakamura, Y., E-mail: nakamura@aoni.waseda.jp; Yamanaka, Y., E-mail: yamanaka@waseda.jp

    2014-08-15

    A complex eigenvalue in the Bogoliubov–de Gennes equations for a stationary Bose-Einstein condensate in the ultracold atomic system indicates the dynamical instability of the system. We also have the modes with zero eigenvalues for the condensate, called the zero modes, which originate from the spontaneous breakdown of symmetries. Although the zero modes are suppressed in many theoretical analyses, we take account of them in this paper and argue that a zero mode can change into one with a pure imaginary eigenvalue by applying a symmetry breaking external perturbation potential. This emergence of a pure imaginary mode adds a new type of scenario of dynamical instability to that characterized by the complex eigenvalue of the usual excitation modes. For illustration, we deal with two one-dimensional homogeneous Bose–Einstein condensate systems with a single dark soliton under a respective perturbation potential, breaking the invariance under translation, to derive pure imaginary modes. - Highlights: • Zero modes are important but ignored in many theories for the cold atomic system. • We discuss the zero mode under symmetry breaking potential in this system. • We consider the zero mode of translational invariance for a single dark soliton. • We show that it turns into an anomalous or pure imaginary mode.

  20. A new Perspective on the Scalar meson Puzzle, from Spontaneous Chiral Symmetry Breaking Beyond BCS

    CERN Document Server

    Bicudo, P J A

    1998-01-01

    We introduce coupled channels of Bethe-Salpeter mesons both in the mass gap equation for chiral symmetry breaking and in the boundstate equation for mesons. Consistency is insured by the Ward Identities for axial currents, which preserve the Goldstone boson nature of the pion. We find that the coupling of channels yields the widths of resonances and contributes to mass splittings, but it does not shift globally the hadron spectrum. We find that coupled channels reduce the breaking of chiral symmetry. This reduction is constrained by the coupling of a scalar meson to a pair of pseudoscalar mesons. The light and wide $\\sigma-f_0(600)$, the narrow $f_0(980)$ and the relatively heavy $f_0(1370)$ are studied in order to comply with the spontaneous breaking of chiral symmetry. Exact calculations are performed in a particular model. In this model we find that the $f_0(980)$ is the best candidate for the groundstate quark antiquark meson . In particular its width is naturally small. In this case the coupled channels ...

  1. Weyl-invariant Higher Curvature Gravity Theories in n Dimensions and Mass Generation by Symmetry Breaking

    CERN Document Server

    Dengiz, Suat

    2014-01-01

    Weyl-invariant extensions of three-dimensional New Massive Gravity, generic n-dimensional Quadratic Curvature Gravity theories and three-dimensional Born-Infeld gravity theory are analyzed in details. As required by Weyl-invariance, the actions of these gauge theories do not contain any dimensionful parameter hence the local symmetry is spontaneously broken in (Anti) de Sitter vacua in complete analogy with the Standard Model Higgs mechanism. In flat vacuum, symmetry breaking mechanism is more complicated: The dimensionful parameters come from dimensional transmutation in the quantum field theory; therefore, the conformal symmetry is radiatively broken (at two loop level in 3-dimensions and at one-loop level in 4-dimensions) \\`{a} la Coleman-Weinberg mechanism. In the broken phases, save for New Massive Gravity, the theories generically propagate with a unitary (tachyon and ghost-free) massless tensor, massive (or massless) vector and massless scalar particles for the particular intervals of the dimensionless...

  2. Conformal symmetry and its breaking in two dimensional Nearly Anti-de-Sitter space

    CERN Document Server

    Maldacena, Juan; Yang, Zhenbin

    2016-01-01

    We study a two dimensional dilaton gravity system, recently examined by Almheiri and Polchinski, which describes near extremal black holes, or more generally, nearly $AdS_2$ spacetimes. The asymptotic symmetries of $AdS_2$ are all the time reparametrizations of the boundary. These symmetries are spontaneously broken by the $AdS_2$ geometry and they are explicitly broken by the small deformation away from $AdS_2$. This pattern of spontaneous plus explicit symmetry breaking governs the gravitational backreaction of the system. It determines several gravitational properties such as the linear in temperature dependence of the near extremal entropy as well as the gravitational corrections to correlation functions. These corrections include the ones determining the growth of out of time order correlators that is indicative of chaos. These gravitational aspects can be described in terms of a Schwarzian derivative effective action for a reparametrization.

  3. Symmetry breaking of localized discrete matter waves induced by spin–orbit coupling

    International Nuclear Information System (INIS)

    We study localized nonlinear excitations of a dilute Bose–Einstein condensate (BEC) with spin–orbit coupling in a deep optical lattice (OL). For this we introduce a tight-binding model that includes the spin–orbit coupling (SOC) at the discrete level in the form of a generalized discrete nonlinear Schrödinger equation. Existence and stability of discrete solitons of different symmetry types is demonstrated. Quite interestingly, we find three distinctive regions in which discrete solitons undergo spontaneously symmetry breaking, passing from on-site to inter-site and to asymmetric, simply by varying the interatomic interactions. Existence ranges of discrete solitons with inter-site symmetry depend on SOC and shrink to zero as the SOC parameter is increased. Asymmetric discrete solitons appear as novel excitations specific of the SOC. Possible experimental implementation of these results is briefly discussed

  4. Symmetry breaking induced excitations of dark plasmonic modes in multilayer graphene ribbons.

    Science.gov (United States)

    Dai, Y Y; Chen, A; Xia, Y Y; Han, D Z; Liu, X H; Shi, L; Zi, J

    2016-09-01

    Multilayer graphene can support multiple plasmon bands. If structured into graphene ribbons, they can support multiple localized plasmonic modes with interesting optical properties. However, not all such plasmonic modes can be excited directly due to the constrains of the structural symmetry. We show by numerical simulations that by breaking the symmetry all plasmonic modes can be excited. We discuss the general principles and properties of two-layer graphene ribbons and then extend to multilayer graphene ribbons. In multilayer graphene ribbons with different ribbon widths, a tunable broadband absorption can be attained due to the excitations of all plasmonic modes. Our results suggest that these symmetry-broken multilayer graphene ribbons could offer more degrees of freedom in designing photonic devices. PMID:27607610

  5. Phase transition from the symmetry breaking of charged Klein–Gordon fields

    Energy Technology Data Exchange (ETDEWEB)

    Matos, T.; Castellanos, E. [Departamento de Física, Centro de Investigación y de Estudios Avanzados del IPN, A.P. 14-740, 07000 México D.F. (Mexico)

    2014-01-14

    We analyze the phase transition associated with the U(1) symmetry breaking of the complex Klein–Gordon (KG) equation with a Mexican–hat scalar field potential up to one loop in perturbations immersed in a thermal bath. We show that the KG equation reduces to a Gross–Pitaevskii like–equation (GP), which also contains the entire information of the phase transition. Indeed, the thermal bath contributions, together with the corresponding U(1) local symmetry, allow us to interpret the resulting GP equation as a charged and finite temperature version of the system. Finally, we obtain the hydrodynamics and consequently, the corresponding thermodynamics, and show that breakdown of the U(1) local symmetry of the KG field into the new version of the GP equation corresponds, under certain circumstances, to a phase transition of the gas into a condensate, superfluid, and/or superconductor.

  6. Symmetry breaking of localized discrete matter waves induced by spin–orbit coupling

    Energy Technology Data Exchange (ETDEWEB)

    Salerno, M. [Dipartimento di Fisica “E.R. Caianiello”, CNISM and INFN–Gruppo Collegato di Salerno, Universitá di Salerno, Via Giovanni Paolo II, 84084 Fisciano (Italy); Abdullaev, F.Kh., E-mail: fatkhulla@yahoo.com [Department of Physics, Kulliyyah of Science, International Islamic University of Malaysia, 25200 Kuantan, Pahang (Malaysia)

    2015-10-02

    We study localized nonlinear excitations of a dilute Bose–Einstein condensate (BEC) with spin–orbit coupling in a deep optical lattice (OL). For this we introduce a tight-binding model that includes the spin–orbit coupling (SOC) at the discrete level in the form of a generalized discrete nonlinear Schrödinger equation. Existence and stability of discrete solitons of different symmetry types is demonstrated. Quite interestingly, we find three distinctive regions in which discrete solitons undergo spontaneously symmetry breaking, passing from on-site to inter-site and to asymmetric, simply by varying the interatomic interactions. Existence ranges of discrete solitons with inter-site symmetry depend on SOC and shrink to zero as the SOC parameter is increased. Asymmetric discrete solitons appear as novel excitations specific of the SOC. Possible experimental implementation of these results is briefly discussed.

  7. Gauge Symmetry Breaking Patterns in an SU(5) Grand Gauge-Higgs Unification

    CERN Document Server

    Kojima, Kentaro; Yamashita, Toshifumi

    2016-01-01

    We study gauge symmetry breaking patterns of the five-dimensional $SU(5)$ grand gauge-Higgs unification compactified on an orbifold $S^1/{\\mathbb Z}_2$ with the Hosotani mechanism in the framework of the diagonal embedding method. We find matter contents that lead to the $SU(3)\\times SU(2)\\times U(1)$ gauge symmetry on the global minimum of the effective potential and also present examples of matter content for which each regular subgroup of $SU(5)$ is realized as vacuum configuration. The finite temperature phase transitions for the models with the gauge symmetry of the standard model at zero temperature and also for supersymmetric models are studied. We show in a certain model with supersymmetry that the vacuum of the standard model selected dynamically before the inflation continues to stay there up to the present.

  8. Lattice QCD analysis for relation between quark confinement and chiral symmetry breaking

    International Nuclear Information System (INIS)

    The Polyakov loop and the Dirac modes are connected via a simple analytical relation on the temporally odd-number lattice, where the temporal lattice size is odd with the normal (nontwisted) periodic boundary condition. Using this relation, we investigate the relation between quark confinement and chiral symmetry breaking in QCD. In this paper, we discuss the properties of this analytical relation and numerically investigate each Dirac-mode contribution to the Polyakov loop in both confinement and deconfinement phases at the quenched level. This relation indicates that low-lying Dirac modes have little contribution to the Polyakov loop, and we numerically confirmed this fact. From our analysis, it is suggested that there is no direct one-to-one corresponding between quark confinement and chiral symmetry breaking in QCD. Also, in the confinement phase, we numerically find that there is a new “positive/negative symmetry” in the Dirac-mode matrix elements of link-variable operator which appear in the relation and the Polyakov loop becomes zero because of this symmetry. In the deconfinement phase, this symmetry is broken and the Polyakov loop is non-zero

  9. Lattice QCD analysis for relation between quark confinement and chiral symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Doi, Takahiro M.; Suganuma, Hideo [Department of Physics, Graduate School of Science, Kyoto University, Kitashirakawa-oiwake, Sakyo, Kyoto 606-8502 (Japan); Iritani, Takumi [Yukawa Institute for Theoretical Physics, Kyoto University, Kitashirakawa-Oiwake, Sakyo, Kyoto 606-8502 (Japan)

    2016-01-22

    The Polyakov loop and the Dirac modes are connected via a simple analytical relation on the temporally odd-number lattice, where the temporal lattice size is odd with the normal (nontwisted) periodic boundary condition. Using this relation, we investigate the relation between quark confinement and chiral symmetry breaking in QCD. In this paper, we discuss the properties of this analytical relation and numerically investigate each Dirac-mode contribution to the Polyakov loop in both confinement and deconfinement phases at the quenched level. This relation indicates that low-lying Dirac modes have little contribution to the Polyakov loop, and we numerically confirmed this fact. From our analysis, it is suggested that there is no direct one-to-one corresponding between quark confinement and chiral symmetry breaking in QCD. Also, in the confinement phase, we numerically find that there is a new “positive/negative symmetry” in the Dirac-mode matrix elements of link-variable operator which appear in the relation and the Polyakov loop becomes zero because of this symmetry. In the deconfinement phase, this symmetry is broken and the Polyakov loop is non-zero.

  10. Direct Visualization of Excited-State Symmetry Breaking Using Ultrafast Time-Resolved Infrared Spectroscopy.

    Science.gov (United States)

    Dereka, Bogdan; Rosspeintner, Arnulf; Li, Zhiquan; Liska, Robert; Vauthey, Eric

    2016-04-01

    Most symmetric quadrupolar molecules designed for two-photon absorption behave as dipolar molecules in the S1 electronic excited state. This is usually explained by a breakup of the symmetry in the excited state. However, the origin of this process and its dynamics are still not fully understood. Here, excited-state symmetry breaking in a quadrupolar molecule with a D-π-A-π-D motif, where D and A are electron donating and accepting units, is observed in real time using ultrafast transient infrared absorption spectroscopy. The nature of the relaxed S1 state was found to strongly depend on the solvent polarity: (1) in nonpolar solvents, it is symmetric and quadrupolar; (2) in weakly polar media, the quadrupolar state observed directly after excitation transforms to a symmetry broken S1 state with one arm bearing more excitation than the other; and (3) in highly polar solvents, the excited state evolves further to a purely dipolar S1 state with the excitation localized entirely on one arm. The time scales associated with the transitions between these states coincide with those of solvation dynamics, indicating that symmetry breaking is governed by solvent fluctuations.

  11. Conformal symmetry breaking and degeneracy of high-lying unflavored mesons

    CERN Document Server

    Kirchbach, Mariana; Compean, Cliffor; Raya, Alfredo

    2012-01-01

    We show that though conformal symmetry can be broken by the dilaton, such can happen without breaking the conformal degeneracy patterns in the spectra. We departure from S^1XS^3 slicing of AdS_5 noticing that the inverse radius, R, of S^3 relates to the temperature of the deconfinement phase transition and has to satisfy, \\hbar c/R >> \\Lambda_{QCD}. We then focus on the eigenvalue problem of the S^3 conformal Laplacian, given by 1/R^2 (K^2+1), with K^2 standing for the Casimir invariant of the so(4) algebra. Such a spectrum is characterized by a (K+1)^2 fold degeneracy of its levels, with K\\in [0,\\infty). We then break the conformal S^3 metric as, d\\tilde{s}^2=e^{-b\\chi} ((1+b^2) d\\chi^2 +\\sin^2\\chi (d\\theta ^2 +\\sin^2\\theta d\\varphi ^2)), and attribute the symmetry breaking scale, b\\hbar^2c^2/R^2, to the dilaton. We show that such a metric deformation is equivalent to a breaking of the conformal curvature of S^3 by a term proportional to b\\cot \\chi, and that the perturbed conformal Laplacian is equivalent to...

  12. Detecting and identifying two-dimensional symmetry-protected topological, symmetry-breaking, and intrinsic topological phases with modular matrices via tensor-network methods

    Science.gov (United States)

    Huang, Ching-Yu; Wei, Tzu-Chieh

    2016-04-01

    Symmetry-protected topological (SPT) phases exhibit nontrivial order if symmetry is respected but are adiabatically connected to the trivial product phase if symmetry is not respected. However, unlike the symmetry-breaking phase, there is no local order parameter for SPT phases. Here we employ a tensor-network method to compute the topological invariants characterized by the simulated modular S and T matrices to study transitions in a few families of two-dimensional (2D) wave functions which are ZN (N =2 and3 ) symmetric. We find that in addition to the topologically ordered phases, the modular matrices can be used to identify nontrivial SPT phases and detect transitions between different SPT phases as well as between symmetric and symmetry-breaking phases. Therefore modular matrices can be used to characterize various types of gapped phases in a unifying way.

  13. Maximal breaking of symmetry at critical angle and closed form expression for angular deviations of the Snell law

    OpenAIRE

    Araújo, Manoel P.; Carvalho, Silvânia A.; De Leo, Stefano

    2014-01-01

    A detailed analysis of the propagation of laser gaussian beams at critical angles shows in which conditions it is possible to maximize the breaking of symmetry in the angular distribution and for which values of the laser wavelength and beam waist is possible to find an analytic formula for angular deviations of the Snell law. For propagation throughout $N$ dielectric blocks and for a full breaking of symmetry, overcoming the well known problem of the infinity at critical angle, a closed expr...

  14. Strain-induced nonsymmorphic symmetry breaking and removal of Dirac semimetallic nodal line in an orthoperovskite iridate

    Science.gov (United States)

    Liu, Jian; Kriegner, D.; Horak, L.; Puggioni, D.; Rayan Serrao, C.; Chen, R.; Yi, D.; Frontera, C.; Holy, V.; Vishwanath, A.; Rondinelli, J. M.; Marti, X.; Ramesh, R.

    2016-02-01

    By using a combination of heteroepitaxial growth, structure refinement based on synchrotron x-ray diffraction, and first-principles calculations, we show that the symmetry-protected Dirac line nodes in the topological semimetallic perovskite SrIrO3 can be lifted simply by applying epitaxial constraints. In particular, the Dirac gap opens without breaking the P b n m mirror symmetry. In virtue of a symmetry-breaking analysis, we demonstrate that the original symmetry protection is related to the n -glide operation, which can be selectively broken by different heteroepitaxial structures. This symmetry protection renders the nodal line a nonsymmorphic Dirac semimetallic state. The results highlight the vital role of crystal symmetry in spin-orbit-coupled correlated oxides and provide a foundation for experimental realization of topological insulators in iridate-based heterostructures.

  15. Fifty years of elementary particle physics. Focusing on the 'symmetry breaking'

    International Nuclear Information System (INIS)

    The theoretical evolution of particle physics is reviewed as titled focusing on the contributions by Nambu at first and then by Kobayashi and Maskawa on the occasion they were awarded the Nobel Prizes. The development of Nambu's theory, started by the inspiration from BCS theory, is illustrated. The birth of the spontaneous breaking of symmetry, the structure of vacuum, its meaning and application to particle physics are outlined. The origin of particle mass is explained referring to the Nambu-Goldstone particle and Nambu-Lasinio model. His further contributions to the development of QCD, i.e., the introductions of the color degree of freedom and the quark confinement mechanism analogous to Meissner effect into QCD as well as his proposal of the string model of strong interactions are mentioned. Then the breaking of the CP symmetry predicted by Kobayashi and Maskawa is taken up. Their prediction of the existence of at least three families of quarks in nature, which was to be verified later by B Factory experiments at KEK and SLAC, is explained. It is illustrated that the observed unitarity triangle is really closed as required from their theory. Finally, the origin of the matter existing in the universe is discussed on the basis of symmetry considerations. (S. Funahashi)

  16. Spontaneous chiral symmetry breaking in QCD:a finite-size scaling study on the lattice

    CERN Document Server

    Giusti, Leonardo; Giusti, Leonardo; Necco, Silvia

    2007-01-01

    Spontaneous chiral symmetry breaking in QCD with massless quarks at infinite volume can be seen in a finite box by studying, for instance, the dependence of the chiral condensate from the volume and the quark mass. We perform a feasibility study of this program by computing the quark condensate on the lattice in the quenched approximation of QCD at small quark masses. We carry out simulations in various topological sectors of the theory at several volumes, quark masses and lattice spacings by employing fermions with an exact chiral symmetry, and we focus on observables which are infrared stable and free from mass-dependent ultraviolet divergences. The numerical calculation is carried out with an exact variance-reduction technique, which is designed to be particularly efficient when spontaneous symmetry breaking is at work in generating a few very small low-lying eigenvalues of the Dirac operator. The finite-size scaling behaviour of the condensate in the topological sectors considered agrees, within our stati...

  17. Kinetic mixing and symmetry breaking dependent interactions of the dark photon

    Directory of Open Access Journals (Sweden)

    Biswajoy Brahmachari

    2014-10-01

    Full Text Available We examine spontaneous symmetry breaking of a renormalisable U(1×U(1 gauge theory coupled to fermions when kinetic mixing is present. We do not assume that the kinetic mixing parameter is small. A rotation plus scaling is used to remove the mixing and put the gauge kinetic terms in the canonical form. Fermion currents are also rotated in a non-orthogonal way by this basis transformation. Through suitable redefinitions the interaction is cast into a diagonal form. This framework, where mixing is absent, is used for subsequent analysis. The symmetry breaking determines the fermionic current which couples to the massless gauge boson. The strength of this coupling as well as the couplings of the massive gauge boson are extracted. This formulation is used to consider a gauged model for dark matter by identifying the massless gauge boson with the photon and the massive state to its dark counterpart. Matching the coupling of the residual symmetry with that of the photon sets a lower bound on the kinetic mixing parameter. We present analytical formulae of the couplings of the dark photon in this model and indicate some physics consequences.

  18. Vector Precoding for Gaussian MIMO Broadcast Channels: Impact of Replica Symmetry Breaking

    CERN Document Server

    Zaidel, Benjamin; Moustakas, Aris; de Miguel, Rodrigo

    2010-01-01

    The so-called "replica method" of statistical physics is employed for the large system analysis of vector precoding for the Gaussian multiple-input multiple-output (MIMO) broadcast channel. The transmitter is assumed to comprise a linear front-end combined with nonlinear precoding, that minimizes the front-end imposed transmit energy penalty. Focusing on discrete complex input alphabets, the energy penalty is minimized by relaxing the input alphabet to a larger alphabet set prior to precoding. For the common discrete-lattice relaxation, the problem is found to violate the assumption of replica symmetry and a replica symmetry breaking ansatz is taken. The limiting empirical distribution of the precoder's output, as well as the limiting energy penalty, are derived while harnessing to one-step replica symmetry breaking. Corresponding results based on the more commonly used replica symmetric ansatz are also obtained for completeness. Particularizing to a "zero-forcing" (ZF) linear front-end, and non-cooperative u...

  19. The pseudo-conformal universe: scale invariance from spontaneous breaking of conformal symmetry

    International Nuclear Information System (INIS)

    We present a novel theory of the very early universe which addresses the traditional horizon and flatness problems of big bang cosmology and predicts a scale invariant spectrum of perturbations. Unlike inflation, this scenario requires no exponential accelerated expansion of space-time. Instead, the early universe is described by a conformal field theory minimally coupled to gravity. The conformal fields develop a time-dependent expectation value which breaks the flat space so(4,2) conformal symmetry down to so(4,1), the symmetries of de Sitter, giving perturbations a scale invariant spectrum. The solution is an attractor, at least in the case of a single time-dependent field. Meanwhile, the metric background remains approximately flat but slowly contracts, which makes the universe increasingly flat, homogeneous and isotropic, akin to the smoothing mechanism of ekpyrotic cosmology. Our scenario is very general, requiring only a conformal field theory capable of developing the appropriate time-dependent expectation values, and encompasses existing incarnations of this idea, specifically the U(1) model of Rubakov and the Galileon Genesis scenario. Its essential features depend only on the symmetry breaking pattern and not on the details of the underlying lagrangian. It makes generic observational predictions that make it potentially distinguishable from standard inflation, in particular significant non-gaussianities and the absence of primordial gravitational waves

  20. Relativistic scalar particle subject to a confining potential and Lorentz symmetry breaking effects in the cosmic string spacetime

    CERN Document Server

    Belich, H

    2015-01-01

    The behaviour of a relativistic scalar particle subject to a scalar potential under the effects of the violation of the Lorentz symmetry in the cosmic string spacetime is discussed. It is considered two possible scenarios of the Lorentz symmetry breaking in the CPT-even gauge sector of the Standard Model Extension defined by a tensor $\\left(K_{F}\\right)_{\\mu\

  1. The standard model coupling constants according to LEP data and the scale of left-right symmetry breaking

    International Nuclear Information System (INIS)

    The SO(10) and SU(2)R symmetry breaking scales are calculated in the grand unification scheme based on the SO(10) group with intermediate left-right symmetry, with account of new LEP data on the standard model coupling constants. The results obtained agree to the experiment on search for proton instability. (author). 9 refs, 2 figs

  2. Chiral symmetry breaking with a confining propagator and dynamically massive gluons

    CERN Document Server

    Natale, A A; Machado, F A

    2011-01-01

    Chiral symmetry breaking in QCD is studied introducing a confining effective propagator, as proposed recently by Cornwall, and considering the effect of dynamically massive gluons. The effective confining propagator has the form $1/(k^2+m^2)^2$ and we study the bifurcation equation finding limits on the parameter $m$ below which a satisfactory fermion mass solution is generated. Since the coupling constant and gluon propagator are damped in the infrared, due to the presence of a dynamical gluon mass, the major part of the chiral breaking is only due to the confining propagator and related to the low momentum region of the gap equation. We study the asymptotic behavior of the gap equation containing this confinement effect and massive gluon exchange, and find that the symmetry breaking can be approximated by an effective four-fermion interaction generated by the confining propagator. We compute some QCD chiral parameters as a function of $m$, finding values compatible with the experimental data. We find a simp...

  3. Mixed Mediation of Supersymmetry Breaking in Models with Anomalous U(1) Gauge Symmetry

    International Nuclear Information System (INIS)

    There can be various built-in sources of supersymmetry breaking in models with anomalous U(1) gauge symmetry, e.g. the U(1) D-term, the F-components of the modulus superfield required for the Green-Schwarz anomaly cancellation mechanism and the chiral matter superfields required to cancel the Fayet-Iliopoulos term, and finally the supergravity auxiliary component which can be parameterized by the F-component of chiral compensator. The relative strength between these supersymmetry breaking sources depends crucially on the characteristics of D-flat direction and also on how the D-flat direction is stabilized at a vacuum with nearly vanishing cosmological constant. We examine the possible pattern of the mediation of supersymmetry breaking in models with anomalous U(1) gauge symmetry, and find that various different mixed mediation scenarios can be realized, including the mirage mediation which corresponds to a mixed modulus-anomaly mediation, D-term domination giving a split sparticle spectrum, and also a mixed gauge-D-term mediation scenario.

  4. Symmetry breaking patterns of the 3-3-1 model at finite temperature

    Energy Technology Data Exchange (ETDEWEB)

    Borges, J.S. [Universidade do Estado do Rio de Janeiro, Departamento de Fisica de Altas Energias, Rio de Janeiro, RJ (Brazil); Ramos, Rudnei O. [Universidade do Estado do Rio de Janeiro, Departamento de Fisica Teorica, Rio de Janeiro, RJ (Brazil)

    2016-06-15

    We consider the minimal version of an extension of the standard electroweak model based on the SU(3){sub c} x SU(3){sub L} x U(1){sub X} gauge symmetry (the 3-3-1 model). We analyze the most general potential constructed from three scalars in the triplet representation of SU(3){sub L}, whose neutral components develop nonzero vacuum expectation values, giving mass for all the model's massive particles. For different choices of parameters, we obtain the particle spectrum for the two symmetry breaking scales: one where the SU(3){sub L} x U(1){sub X} group is broken down to SU(2){sub L} x U(1){sub Y} and a lower scale similar to the standard model one. Within the considerations used, we show that the model encodes two first-order phase transitions, respecting the pattern of symmetry restoration. The last transition, corresponding to the standard electroweak one, is found to be very weak first-order, most likely turning second-order or a crossover in practice. However, the first transition in this model can be strongly first-order, which might happen at a temperature not too high above the second one. We determine the respective critical temperatures for symmetry restoration for the model. (orig.)

  5. Criteria for the absence of quantum fluctuations after spontaneous symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Beekman, Aron J., E-mail: beekman.aronjonathan@nims.go.jp

    2015-10-15

    The lowest-energy state of a macroscopic system in which symmetry is spontaneously broken, is a very stable wavepacket centered around a spontaneously chosen, classical direction in symmetry space. However, for a Heisenberg ferromagnet the quantum groundstate is exactly the classical groundstate, there are no quantum fluctuations. This coincides with seven exceptional properties of the ferromagnet, including spontaneous time-reversal symmetry breaking, a reduced number of Nambu–Goldstone modes and the absence of a thin spectrum (Anderson tower of states). Recent discoveries of other non-relativistic systems with fewer Nambu–Goldstone modes suggest these specialties apply there as well. I establish precise criteria for the absence of quantum fluctuations and all the other features. In particular, it is not sufficient that the order parameter operator commutes with the Hamiltonian. It leads to a measurably larger coherence time of superpositions in small but macroscopic systems. - Highlights: • Precise criteria for absence of quantum fluctuations in symmetry-broken states are established. • It is not sufficient that the order parameter commutes with the Hamiltonian. • Clarifies relation between quantum fluctuations and type-B Nambu–Goldstone modes. • Testable through absence of fundamental limit on maximum coherence time of macroscopic superpositions.

  6. Symmetry breaking patterns of the 3-3-1 model at finite temperature

    CERN Document Server

    Borges, J Sá

    2016-01-01

    We consider the minimal version of an extension of the standard electroweak model based on the $SU(3)_c \\times SU(3)_L \\times U(1)_X$ gauge symmetry (the 3-3-1 model). We analyze the most general potential constructed from three scalars in the triplet representation of $SU(3)_L$, whose neutral components develop nonzero vacuum expectation values, giving mass for all the model massive particles. {}For a convenient choice of parameters, we obtain the particle spectrum for the two symmetry breaking scales: one where the $SU(3)_L \\times U(1)_X$ group is broken down to $SU(2)_L\\times U(1)_Y$ and a lower scale similar to the standard model one. Within the approximations used, we show that the model encodes two first-order phase transitions, respecting the pattern of symmetry restoration. The last transition, corresponding to the standard electroweak one, is found to be very weak first-order, most likely turning second-order or a crossover in practice. We determine the respective critical temperatures for symmetry r...

  7. Shape Transitions and Chiral Symmetry Breaking in the Energy Landscape of the Mitotic Chromosome.

    Science.gov (United States)

    Zhang, Bin; Wolynes, Peter G

    2016-06-17

    We derive an unbiased information theoretic energy landscape for chromosomes at metaphase using a maximum entropy approach that accurately reproduces the details of the experimentally measured pairwise contact probabilities between genomic loci. Dynamical simulations using this landscape lead to cylindrical, helically twisted structures reflecting liquid crystalline order. These structures are similar to those arising from a generic ideal homogenized chromosome energy landscape. The helical twist can be either right or left handed so chiral symmetry is broken spontaneously. The ideal chromosome landscape when augmented by interactions like those leading to topologically associating domain formation in the interphase chromosome reproduces these behaviors. The phase diagram of this landscape shows that the helical fiber order and the cylindrical shape persist at temperatures above the onset of chiral symmetry breaking, which is limited by the topologically associating domain interaction strength.

  8. A symmetry breaking mechanism for selecting the speed of relativistic solitons

    Energy Technology Data Exchange (ETDEWEB)

    Cadoni, Mariano [Dipartimento di Fisica, Universita di Cagliari and INFN, Sezione di Cagliari, Cittadella Universitaria, 09042 Monserrato (Italy); De Leo, Roberto [Dipartimento di Fisica, Universita di Cagliari and INFN, Sezione di Cagliari, Cittadella Universitaria, 09042 Monserrato (Italy); Gaeta, Giuseppe [Dipartimento di Matematica, Universita di Milano, via Saldini 50, 20133 Milan (Italy)

    2007-07-20

    We propose a mechanism for fixing the velocity of relativistic solitons based on the breaking of the Lorentz symmetry of the sine-Gordon (SG) model. The proposal is first elaborated for a molecular chain model as the simple pendulum limit of a double pendulums chain. It is then generalized to a full class of two-dimensional field theories of the sine-Gordon type. From a phenomenological point of view, the mechanism allows one to select the speed of a SG soliton just by tuning elastic couplings constants and kinematical parameters. From a fundamental, field-theoretical point of view we show that the characterizing features of relativistic SG solitons (existence of conserved topological charges and stability) may be still preserved even if the Lorentz symmetry is broken and a soliton of a given speed is selected.

  9. The Pseudo-Conformal Universe: Scale Invariance from Spontaneous Breaking of Conformal Symmetry

    CERN Document Server

    Hinterbichler, Kurt

    2011-01-01

    We present a novel theory of the very early universe which addresses the traditional horizon and flatness problems of big bang cosmology and predicts a scale invariant spectrum of perturbations. Unlike inflation, this scenario requires no exponential superluminal expansion of space-time. Instead, the early universe is described by a conformal field theory minimally coupled to gravity. The conformal fields develop a time-dependent expectation value which breaks the flat space so(4,2) conformal symmetry down to so(4,1), the symmetries of de Sitter, giving perturbations a scale invariant spectrum. The solution is an attractor, at least in the case of a single time-dependent field. Meanwhile, the metric background remains approximately flat but slowly contracts, which makes the universe increasingly flat, homogeneous and isotropic, akin to the smoothing mechanism of ekpyrotic cosmology. Our scenario is very general, requiring only a conformal field theory capable of developing the appropriate time-dependent expec...

  10. Account of Nonpolynomial SU(3)-Breaking Effects By Use of Quantum Groups As Flavor Symmetries

    CERN Document Server

    Gavrilik, A M

    1998-01-01

    Using instead of ordinary flavour symmetries SU(n_f) their corresponding quantum (q-deformed) analogs yields new baryon mass sum rules of extreme accuracy. We show, in the 3-flavour case, that such approach accounts for highly nonlinear (nonpolynomial) SU(3)-breaking effects both in the octet and decuplet baryon masses. A version of this approach is considered that involves q-covariant ingredients in the mass operator. The resulting new 'q-deformed' mass relation (q-MR) is simpler than previously derived q-MRs, but requires, for its empirical validity, a fitting to fix the value of the deformation parameter q. Well-known Gell-Mann--Okubo (GMO) octet mass sum rule is found to result not only from usual SU(3), but also from some exotic symmetry corresponding to the q=-1 (i.e., singular) limit of the q-algebra U_q(su_3).

  11. Optical analogue of spontaneous symmetry breaking induced by tachyon condensation in amplifying plasmonic arrays

    CERN Document Server

    Marini, A; Roy, S; Longhi, S; Biancalana, F

    2013-01-01

    We study analytically and numerically an optical analogue of tachyon condensation in amplifying plasmonic arrays. Optical propagation is modeled through coupled-mode equations, which in the continuous limit can be converted into a nonlinear one-dimensional Dirac-like equation for fermionic particles with imaginary mass, i.e. fermionic tachyons. We demonstrate that the vacuum state is unstable and acquires an expectation value with broken chiral symmetry, corresponding to the homogeneous nonlinear stationary solution of the system. The quantum field theory analogue of this process is the condensation of unstable fermionic tachyons into massive particles. This paves the way for using amplifying plasmonic arrays as a classical laboratory for spontaneous symmetry breaking effects in quantum field theory.

  12. Bilayer graphene under pressure: Electron-hole symmetry breaking, valley Hall effect, and Landau levels

    Science.gov (United States)

    Munoz, F.; Collado, H. P. Ojeda; Usaj, Gonzalo; Sofo, Jorge O.; Balseiro, C. A.

    2016-06-01

    The electronic structure of bilayer graphene under pressure develops very interesting features with an enhancement of the trigonal warping and a splitting of the parabolic touching bands at the K point of the reciprocal space into four Dirac cones, one at K and three along the T symmetry lines. As pressure is increased, these cones separate in reciprocal space and in energy, breaking the electron-hole symmetry. Due to their energy separation, their opposite Berry curvature can be observed in valley Hall effect experiments and in the structure of the Landau levels. Based on the electronic structure obtained by density functional theory, we develop a low energy Hamiltonian that describes the effects of pressure on measurable quantities such as the Hall conductivity and the Landau levels of the system.

  13. Shape Transitions and Chiral Symmetry Breaking in the Energy Landscape of the Mitotic Chromosome

    Science.gov (United States)

    Zhang, Bin; Wolynes, Peter G.

    2016-06-01

    We derive an unbiased information theoretic energy landscape for chromosomes at metaphase using a maximum entropy approach that accurately reproduces the details of the experimentally measured pairwise contact probabilities between genomic loci. Dynamical simulations using this landscape lead to cylindrical, helically twisted structures reflecting liquid crystalline order. These structures are similar to those arising from a generic ideal homogenized chromosome energy landscape. The helical twist can be either right or left handed so chiral symmetry is broken spontaneously. The ideal chromosome landscape when augmented by interactions like those leading to topologically associating domain formation in the interphase chromosome reproduces these behaviors. The phase diagram of this landscape shows that the helical fiber order and the cylindrical shape persist at temperatures above the onset of chiral symmetry breaking, which is limited by the topologically associating domain interaction strength.

  14. Isospin-symmetry-breaking effects in A∼70 nuclei within beyond-mean-field approach

    Energy Technology Data Exchange (ETDEWEB)

    Petrovici, A.; Andrei, O. [National Institute for Physics and Nuclear Engineering, R-077125 Bucharest (Romania)

    2015-02-24

    Particular isospin-symmetry-breaking probes including Coulomb energy differences (CED), mirror energy differences (MED), and triplet energy differences (TED) manifest anomalies in the A∼70 isovector triplets of nuclei. The structure of proton-rich nuclei in the A∼70 mass region suggests shape coexistence and competition between pairing correlations in different channels. Recent results concerning the interplay between isospin-mixing and shape-coexistence effects on exotic phenomena in A∼70 nuclei obtained within the beyond-mean-field complex Excited Vampir variational model with symmetry projection before variation using a realistic effective interaction in a relatively large model space are presented. Excited Vampir predictions concerning the Gamow-Teller β decay to the odd-odd N=Z {sup 66}As and {sup 70}Br nuclei correlated with the pair structure analysis in the T=1 and T=0 channel of the involved wave functions are discussed.

  15. Anti-phase synchronization and symmetry-breaking bifurcation of impulsively coupled oscillators

    Science.gov (United States)

    Jiang, Haibo; Liu, Yang; Zhang, Liping; Yu, Jianjiang

    2016-10-01

    This paper studies the synchronization in two mechanical oscillators coupled by impacts which can be considered as a class of state-dependent impulsively coupled oscillators. The two identical oscillators are harmonically excited in a counter phase, and the synchronous (anti-phase synchronization) and the asynchronous motions are considered. One- and two-parameter bifurcations of the system have been studied by varying the amplitude and the frequency of external excitation. Numerical simulations show that the system could exhibit complex phenomena, including symmetry and asymmetry periodic solutions, quasi-periodic solutions and chaotic solutions. In particular, the regimes in anti-phase synchronization are identified, and it is found that the symmetry-breaking bifurcation plays an important role in the transition from synchronous to asynchronous motion.

  16. Spontaneous symmetry breaking, and strings defects in hypercomplex gauge field theories

    CERN Document Server

    Cartas-Fuentevilla, R

    2015-01-01

    Inspired by the appearance of split-complex structures in the dimensional reduction of string theory, and in the theories emerging as byproducts, we study the hyper-complex formulation of Abelian gauge field theories, by incorporating a new complex unit to the usual complex one. The hypercomplex version of the traditional Mexican hat potential associated with the $U(1)$ gauge field theory, corresponds to a {\\it hybrid} potential with two real components, and with $U(1)\\times SO(1,1)$ as symmetry group. Each component corresponds to a deformation of the hat potential, with the appearance of a new degenerate vacuum. Hypercomplex electrodynamics will show novel properties, such as the spontaneous symmetry breaking scenarios with running masses for the vectorial and scalar Higgs fields, and the Aharonov-Bohm type strings defects as exact solutions; these topological defects may be detected only by quantum interference of charged particles through gauge invariant loop integrals. In a particular limit, the {\\it hyp...

  17. Electroweak symmetry breaking through bosonic seesaw mechanism in a classically conformal extension of the Standard Model

    CERN Document Server

    Haba, Naoyuki; Okada, Nobuchika; Yamaguchi, Yuya

    2015-01-01

    We suggest the so-called bosonic seesaw mechanism in the context of a classically conformal $U(1)_{B-L}$ extension of the Standard Model with two Higgs doublet fields. The $U(1)_{B-L}$ symmetry is radiatively broken via the Coleman-Weinberg mechanism, which also generates the mass terms for the two Higgs doublets through quartic Higgs couplings. Their masses are all positive but, nevertheless, the electroweak symmetry breaking is realized by the bosonic seesaw mechanism. We analyze the renormalization group evolutions for all model couplings, and find that a large hierarchy among the quartic Higgs couplings, which is crucial for the bosonic seesaw mechanism to work, is dramatically reduced toward high energies. Therefore, the bosonic seesaw is naturally realized with only a mild hierarchy, if some fundamental theory, which provides the origin of the classically conformal invariance, completes our model at some high energy, for example, the Planck scale. The requirements for the perturbativity of the running c...

  18. Chiral-Symmetry Breaking in Pseudo Quantum Electrodynamics at Finite Temperature

    CERN Document Server

    Nascimento, Leandro O; Peña, Francisco; Smith, C Morais; Marino, E C

    2015-01-01

    We use the Schwinger-Dyson equations in the presence of a thermal bath, in order to study chiral symmetry breaking in a system of massless Dirac fermions interacting through pseudo quantum electrodynamics (PQED3), in (2+1) dimensions. We show that there is a critical temperature $T_c$, below which chiral symmetry is broken, and a corresponding mass gap is dynamically generated, provided the coupling is above a certain, temperature dependent, critical value $\\alpha_c$. The ratio between the energy gap and the critical temperature for this model is estimated to be $2 \\pi$. These results are confirmed by analytical and numerical investigations of the Schwinger-Dyson equation for the electron. In addition, we calculate the first finite-temperature corrections to the static Coulomb interaction. The relevance of this result in the realm of condensed matter systems, like graphene, is briefly discussed.

  19. Partial Breaking of Three-Fold Symmetry via Percolation of a Domain Wall

    CERN Document Server

    Bhattacharya, Soumyadeep

    2016-01-01

    We show that suppression of vortex strings splits the order-disorder transition in the three-state Potts ferromagnet on a simple cubic lattice and opens up an intermediate phase characterized by partial breaking of the three-fold symmetry and long-range order. In contrast, suppression of vortices in the same model on a square lattice results in an intermediate phase with enhanced U(1) symmetry and quasi-long-range order. We show that the difference between the two phases originates from distinct patterns of domain wall proliferation. A domain wall, separating the two most populous spin states, percolates on its own in the former phase but remains at a percolation threshold in the latter.

  20. Is the Higgs boson associated with Coleman-Weinberg dynamical symmetry breaking?

    Energy Technology Data Exchange (ETDEWEB)

    Hill, Christopher T. [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States)

    2014-04-01

    The Higgs mechanism may be a quantum phenomenon, i.e., a Coleman-Weinberg potential generated by the explicit breaking of scale symmetry in Feynman loops. We review the relationship of scale symmetry, trace anomalies, and emphasize the role of the renormalization group in determining Coleman- Weinberg potentials. We propose a simple phenomenological model with "maximal visibility" at the LHC containing a "dormant" Higgs doublet (no VEV, coupled to standard model gauge interactions $SU(2)\\times U(1)$) with a mass of $\\sim 380$ GeV. We discuss the LHC phenomenology and UV challenges of such a model. We also give a schematic model in which new heavy fermions, with masses $\\sim 230$ GeV, can drive a Coleman-Weinberg potential at two-loops. The role of the "improved stress tensor" is emphasized, and we propose a non-gravitational term, analogous to the $\\theta$-term in QCD, which generates it from a scalar action.

  1. Shape Transitions and Chiral Symmetry Breaking in the Energy Landscape of the Mitotic Chromosome

    CERN Document Server

    Zhang, Bin

    2015-01-01

    We derive an unbiased information theoretic energy landscape for chromosomes at metaphase using a maximum entropy approach that accurately reproduces the details of the experimentally measured pair-wise contact probabilities between genomic loci. Dynamical simulations using this landscape lead to cylindrical, helically twisted structures reflecting liquid crystalline order. These structures are similar to those arising from a generic ideal homogenized chromosome energy landscape. The helical twist can be either right or left handed so chiral symmetry is broken spontaneously. The ideal chromosome landscape when augmented by interactions like those leading to topologically associating domain (TAD) formation in the interphase chromosome reproduces these behaviors. The phase diagram of this landscape shows the helical fiber order and the cylindrical shape persist at temperatures above the onset of chiral symmetry breaking which is limited by the TAD interaction strength.

  2. The effective Kaehler potential, metastable vacua and R-symmetry breaking in O'Raifeartaigh models

    Energy Technology Data Exchange (ETDEWEB)

    Benjamin, Shermane; Freund, Christopher [Department of Physics and Astronomy, Rowan University, 201 Mullica Hill Road, Glassboro, NJ 08028 (United States); Kain, Ben, E-mail: kain@rowan.ed [Department of Physics and Astronomy, Rowan University, 201 Mullica Hill Road, Glassboro, NJ 08028 (United States)

    2011-01-21

    Much has been learned about metastable vacua and R-symmetry breaking in O'Raifeartaigh models. Such work has largely been done from the perspective of the superpotential and by including Coleman-Weinberg corrections to the scalar potential. Instead, we consider these ideas from the perspective of the one loop effective Kaehler potential. We translate known ideas to this framework and construct convenient formulas for computing individual terms in the expanded effective Kaehler potential. We do so for arbitrary R-charge assignments and allow for small R-symmetry violating terms so that both spontaneous and explicit R-symmetry breaking is allowed in our analysis.

  3. Dynamical chiral symmetry breaking and confinement : its interrelation and effects on the hadron mass spectrum

    International Nuclear Information System (INIS)

    Within the framework of this thesis, the interrelation between the two characteristic phenomena of quantum chromodynamics (QCD), i.e., dynamical chiral symmetry breaking and confinement, is investigated. To this end, we apply lattice gauge field theory techniques and adopt a method to artificially restore the dynamically broken chiral symmetry. The low-mode part of the Dirac eigenspectrum is tied to the dynamical breaking of the chiral symmetry according to the Banks--Casher relation. Utilizing two-flavor dynamical lattice gauge field configurations, we construct valence quark propagators that exclude a variable sized part of the low-mode Dirac spectrum, with the aim of using these as an input for meson and baryon interpolating fields. Subsequently, we explore the behavior of ground and excited states of the low-mode truncated hadrons using the variational analysis method. We look for the existence of confined hadron states and extract effective masses where applicable. Moreover, we explore the evolution of the quark wavefunction renormalization function and the renormalization point invariant mass function of the quark propagator under Dirac low-mode truncation in a gauge fixed setting. Motivated by the necessity of fixing the gauge in the aforementioned study of the quark propagator, we also developed a flexible high performance code for lattice gauge fixing, accelerated by graphic processing units (GPUs) using NVIDIA CUDA (Compute Unified Device Architecture). Lastly, more related but unpublished work on the topic is presented. This includes a study of the locality violation of low-mode truncated Dirac operators, a discussion of the possible extension of the low-mode truncation method to the sea quark sector based on a reweighting scheme, as well as the presentation of an alternative way to restore the dynamically broken chiral symmetry. (author)

  4. Shock wave evolution and discontinuity propagation for relativistic superfluid hydrodynamics with spontaneous symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Sun, E-mail: szhang@pmo.ac.cn [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China); Key Laboratory of Dark Matter and Space Astronomy, Chinese Academy of Sciences, Nanjing 210008 (China); Joint Center for Particle, Nuclear Physics and Cosmology (J-CPNPC), PMO-NJU, Nanjing 210008 (China)

    2014-02-05

    In this Letter, we have studied the shock wave and discontinuity propagation for relativistic superfluid with spontaneous U(1) symmetry breaking in the framework of hydrodynamics. General features of shock waves are provided, the propagation of discontinuity and the sound modes of shock waves are also presented. The first sound and the second sound are identified as the propagation of discontinuity, and the results are in agreement with earlier theoretical studies. Moreover, a differential equation, called the growth equation, is obtained to describe the decay and growth of the discontinuity propagating along its normal trajectory. The solution is in an integral form and special cases of diverging waves are also discussed.

  5. Imaging dynamical chiral symmetry breaking: pion wave function on the light front

    CERN Document Server

    Chang, Lei; Cobos-Martinez, J J; Roberts, C D; Schmidt, S M; Tandy, P C

    2013-01-01

    We project onto the light-front the pion's Poincare'-covariant Bethe-Salpeter wave-function, obtained using two different approximations to the kernels of QCD's Dyson-Schwinger equations. At an hadronic scale both computed results are concave and significantly broader than the asymptotic distribution amplitude, \\phi_\\pi^{asy}(x)=6 x(1-x); e.g., the integral of \\phi_\\pi(x)/\\phi_\\pi^{asy}(x) is 1.8 using the simplest kernel and 1.5 with the more sophisticated kernel. Independent of the kernels, the emergent phenomenon of dynamical chiral symmetry breaking is responsible for hardening the amplitude.

  6. Charge Symmetry Breaking in the Nucleon and Parity Violating Elastic Electron-Proton Scattering

    CERN Document Server

    Miller, Gerald A

    2014-01-01

    The basic facts of charge symmetry breaking (CSB) phenomena are reviewed. The relevance of CSB to parity-violating electron-proton scattering experiments that seek to extract strange elastic form factors is discussed. Experimentalists have stated and written that the current uncertainty in our knowledge of CSB limits the ability to push further on the strange form factors. I discuss recent calculations using relativistic chiral perturbation theory and realistic values of strong coupling constants which show that the uncertainties due to lack of knowledge of CSB are at least ten times smaller than present experimental uncertainties. Estimates of CSB effects are made for the JLab Qweak and Mainz P2 experiments.

  7. Symmetry breaking and coarsening in spatially distributed evolutionary processes including sexual reproduction and disruptive selection

    CERN Document Server

    Sayama, H; Bar-Yam, Y; Sayama, Hiroki; Kaufman, Les; Bar-Yam, Yaneer

    2000-01-01

    Sexual reproduction presents significant challenges to formal treatment of evolutionary processes. A starting point for systematic treatments of ecological and evolutionary phenomena has been provided by the gene centered view of evolution. The gene centered view can be formalized as a dynamic mean field approximation applied to genes in reproduction / selection dynamics. We show that spatial distributions of organisms with local mating neighborhoods in the presence of disruptive selection give rise to symmetry breaking and spontaneous pattern formation in the genetic composition of local populations. Global dynamics follows conventional coarsening of systems with nonconserved order parameters. The results have significant implications for ecology of genetic diversity and species formation.

  8. Breaking symmetry in propagation of radially and azimuthally polarized high power laser pulses in underdense plasma

    Science.gov (United States)

    Pathak, Naveen; Zhidkov, Alexei; Nakanii, Nobuhiko; Masuda, Shinichi; Hosokai, Tomonao; Kodama, Ryosuke

    2016-03-01

    Propagation of relativistically intense azimuthally or radially polarized laser pulses (RPP) is demonstrated, via 3D particle-in-cell simulations, to be unstable in uniform underdense plasma. Strong breaking of the pulse symmetry occurs for RPP with power exceeding the critical one for self-focusing in transversely uniform plasma with an increment, Γ, close to the well-known Rayleigh-Taylor-like instability depending on the acceleration, α, and the modulated density gradient length, L, as Γ≈(α/L) 1 /2 . In deeper plasma channels, the instability vanishes. Electron self-injection in the pulse wake and resulting acceleration is explored.

  9. Pairing state with a time-reversal symmetry breaking in FeAs-based superconductors.

    Science.gov (United States)

    Lee, Wei-Cheng; Zhang, Shou-Cheng; Wu, Congjun

    2009-05-29

    We investigate the competition between the extended s+/--wave and dx2-y2-wave pairing order parameters in the iron-based superconductors. Because of the frustrating pairing interactions among the electron and the hole Fermi pockets, a time-reversal symmetry breaking s+id pairing state could be favored. We analyze this pairing state within the Ginzburg-Landau theory and explore the experimental consequences. In such a state, spatial inhomogeneity induces a supercurrent near a nonmagnetic impurity and the corners of a square sample. The resonance mode between the s+/-- and dx2-y2-wave order parameters can be detected through the B1g Raman spectroscopy.

  10. Charge independence, charge symmetry breaking in the S-wave nucleon-nucleon interaction, and renormalization

    Energy Technology Data Exchange (ETDEWEB)

    Alvaro Calle Cordon,Manuel Pavon Valderrama,Enrique Ruiz Arriola

    2012-02-01

    We study the interplay between charge symmetry breaking and renormalization in the NN system for S-waves. We find a set of universality relations which disentangle explicitly the known long distance dynamics from low energy parameters and extend them to the Coulomb case. We analyze within such an approach the One-Boson-Exchange potential and the theoretical conditions which allow to relate the proton-neutron, proton-proton and neutron-neutron scattering observables without the introduction of extra new parameters and providing good phenomenological success.

  11. Symmetry breaking effect on determination of polarized and unpolarized parton distributions

    CERN Document Server

    Arbabifar, F; Khanpour, H; Tehrani, S Atashbar

    2012-01-01

    We perform a new extraction for unpolarized and polarized parton distribution functions considering a flavor decompositions for sea quarks and applying very recent deep inelastic scattering (DIS) and semi inclusive deep inelastic scattering (SIDIS) data in the fixed flavor number scheme (FFNS) framework. In the new symmetry breaking scenario the light quark and antiquark densities are extracted separately and new parametrization forms are determined for them. The heavy flavors contribution, including charm and bottom quarks, are also taken to be account for unpolarized distributions.

  12. Charge symmetry breaking in pn {yields} d {pi}{sup 0}

    Energy Technology Data Exchange (ETDEWEB)

    Filin, Arseniy [Institute for Theoretical and Experimental Physics, 117218, B. Cheremushkinskaya 25, Moscow (Russian Federation); Helmholtz-Institut fuer Strahlen- und Kernphysik (Theorie), Universitaet Bonn, D-53115 Bonn (Germany); Baru, Vadim [Institut fuer Kernphysik (Theorie), Juelich Center for Hadron Physics, Forschungszentrum Juelich, D-52425 Juelich (Germany); Institute for Theoretical and Experimental Physics, 117218, B. Cheremushkinskaya 25, Moscow (Russian Federation); Epelbaum, Evgeny [Institut fuer Kernphysik (Theorie), Juelich Center for Hadron Physics, Forschungszentrum Juelich, D-52425 Juelich (Germany); Helmholtz-Institut fuer Strahlen- und Kernphysik (Theorie), Universitaet Bonn, D-53115 Bonn (Germany); Bethe Center for Theoretical Physics, Universitaet Bonn, D-53115 Bonn (Germany); Haidenbauer, Johann; Hanhart, Christoph [Institut fuer Kernphysik (Theorie), Juelich Center for Hadron Physics, Forschungszentrum Juelich, D-52425 Juelich (Germany); Institute for Advanced Simulation, Forschungszentrum Juelich, D-52425 Juelich (Germany); Kudryavtsev, Alexander [Institute for Theoretical and Experimental Physics, 117218, B. Cheremushkinskaya 25, Moscow (Russian Federation); Meissner, Ulf G. [Institut fuer Kernphysik (Theorie), Juelich Center for Hadron Physics, Forschungszentrum Juelich, D-52425 Juelich (Germany); Helmholtz-Institut fuer Strahlen- und Kernphysik (Theorie), Universitaet Bonn, D-53115 Bonn (Germany); Bethe Center for Theoretical Physics, Universitaet Bonn, D-53115 Bonn (Germany); Institute for Advanced Simulation, Forschungszentrum Juelich, D-52425 Juelich (Germany)

    2010-07-01

    We study charge symmetry breaking (CSB) in the reaction pn {yields} d {pi}{sup 0}. CSB manifests itself in a forward-backward asymmetry of the differential cross section measured recently at TRIUMF. A complete calculation of CSB effects at leading order in chiral perturbation theory is performed. A new leading-order operator is included. This allowed us to extract the strong contribution to the neutron-proton mass difference. The value obtained is consistent with the result of Gasser and Leutwyler based on Cottingham sum rule and an extraction from lattice QCD.

  13. Inflation and reheating in theories with spontaneous scale invariance symmetry breaking

    Science.gov (United States)

    Rinaldi, Massimiliano; Vanzo, Luciano

    2016-07-01

    We study a scale-invariant model of quadratic gravity with a nonminimally coupled scalar field. We focus on cosmological solutions and find that scale invariance is spontaneously broken and a mass scale naturally emerges. Before the symmetry breaking, the Universe undergoes an inflationary expansion with nearly the same observational predictions of Starobinsky's model. At the end of inflation, the Hubble parameter and the scalar field converge to a stable fixed point through damped oscillations and the usual Einstein-Hilbert action is recovered. The oscillations around the fixed point can reheat the Universe in various ways, and we study in detail some of these possibilities.

  14. Imaging dynamical chiral-symmetry breaking: pion wave function on the light front.

    Science.gov (United States)

    Chang, Lei; Cloët, I C; Cobos-Martinez, J J; Roberts, C D; Schmidt, S M; Tandy, P C

    2013-03-29

    We project onto the light front the pion's Poincaré-covariant Bethe-Salpeter wave function obtained using two different approximations to the kernels of quantum chromodynamics' Dyson-Schwinger equations. At an hadronic scale, both computed results are concave and significantly broader than the asymptotic distribution amplitude, φ(π)(asy)(x)=6x(1-x); e.g., the integral of φ(π)(x)/φ(π)(asy)(x) is 1.8 using the simplest kernel and 1.5 with the more sophisticated kernel. Independent of the kernels, the emergent phenomenon of dynamical chiral-symmetry breaking is responsible for hardening the amplitude.

  15. Calculations of charge-symmetry breaking in n-p elastic scattering

    International Nuclear Information System (INIS)

    Charge-symmetry breaking of nuclear forces can be observed in neutron-proton elastic scattering. The major contributions arise from the neutron-proton mass difference in one-pion and one-rho exchanges, from the neutron anomalous magnetic moment in one-photon exchange, and from rho-omega meson mixing. Predictions are compared for a number of different models and are found to agree well with both the existing TRIUMF measurement at 477 MeV and with the new IUCF measurement first reported at this meeting. 19 refs., 3 figs., 1 tab

  16. Charge symmetry breaking effect for 3H and 3He within s-wave approach

    Science.gov (United States)

    Filikhin, I.; Suslov, V. M.; Vlahovic, B.

    2016-06-01

    Three-nucleon systems are considered assuming the neutrons and protons to be distinguishable particles. The configuration space Faddeev equations are exploited to calculate ground state energies of 3H and 3He nuclei within an s-wave approach applying the Malfliet-Tjon, Tamagaki G3RS and Afnan-Tang ATS3 NN potentials. We modify the potentials by scaling strength parameters to define nn, pp and np singlet components. The scaling parameters are fixed to reproduce experimental scattering lengths. The charge symmetry breaking energy is numerically evaluated. The relation between nn, pp and np singlet potentials is discussed.

  17. Macroscopic anisotropy and symmetry breaking in the pyrochlore antiferromagnet Gd2Ti2O7

    Science.gov (United States)

    Hassan, A. K.; Lévy, L. P.; Darie, C.; Strobel, P.

    2003-06-01

    In the Heisenberg antiferromagnet Gd2Ti2O7, the exchange interactions are geometrically frustrated by the pyrochlore lattice structure. This ESR study reveals a strong temperature dependent anisotropy with respect to a [111] body diagonal below a temperature TA=80 K, despite the spin only nature of the Gd3+ ion. Anisotropy and symmetry breaking can nevertheless appear through the superexchange interaction. In the presence of anisotropic exchanges, short range planar correlations restricted to specific Kagomé planes are sufficient to explain the two ESR modes studied in this work.

  18. Spontaneous symmetry breaking and strong deformations in metal adsorbed graphene sheets

    Science.gov (United States)

    Jalbout, A. F.; Ortiz, Y. P.; Seligman, T. H.

    2013-03-01

    We study the adsorption of Li to graphene flakes simulated as aromatic molecules. Surprisingly the out of plane deformation is much stronger for the double adsorption from both sides to the same ring than for a single adsorption, although a symmetric solution seems possible. We thus have an interesting case of spontaneous symmetry breaking. While we cannot rule out a Jahn Teller deformation with certainty, this explanation seems unlikely and other options are discussed. We find a similar behavior for boron-nitrogen sheets, and also for other light alkalines as adsorbants.

  19. Spontaneous Symmetry Breaking and Strong Deformations in Metal Adsorbed Graphene Sheets

    CERN Document Server

    Jalbout, A F; Seligman, T H

    2013-01-01

    We study the adsorption of Li to graphene flakes described as aromatic molecules. Surprisingly the out of plane deformation is much stronger for the double adsorption from both sides to the same ring than for a single adsorption, although a symmetric solution seems possible. We thus have an interesting case of spontaneous symmetry breaking. While we cannot rule out a Jahn Teller deformation with certainty, this explanation seems unlikely and other options are discussed. We find a similar behavior for Boron-Nitrogen sheets, and also for other light alkalines.

  20. Inflation and reheating in theories with spontaneous scale invariance symmetry breaking

    CERN Document Server

    Rinaldi, Massimiliano

    2015-01-01

    We study a scale-invariant model of quadratic gravity with a non-minimally coupled scalar field. We focus on cosmological solutions and find that scale invariance is spontaneously broken and a mass scale naturally emerges. Before the symmetry breaking, the Universe undergoes an inflationary expansion with the same characteristics of Starobinsky's model. At the end of inflation, the Hubble parameter and the scalar field converge to a stable fixed point through damped oscillations that are responsible for the reheating of the Universe via parametric amplification of other matter fields.

  1. Spontaneous breaking of Lorentz symmetry in (2+1)-dimensional QED

    CERN Document Server

    Janssen, Lukas

    2016-01-01

    The phase diagram of quantum electrodynamics in three space-time dimensions as a function of fermion flavor number $N$ exhibits two well-known phases: at large $N > N_c^{conf}$ the system is in a conformal state with anomalous exponents, while for small $N N_c^{\\chi SB}$. There is therefore an intermediate range of values of $N$ at which a third phase is stabilized. We demonstrate that this phase is characterized by spontaneous breaking of Lorentz symmetry, in which a composite vector boson field acquires a vacuum expectation value with the fermions and the photon remaining massless.

  2. The Fano-like lineshape without interference in graphene symmetry-breaking structures

    Science.gov (United States)

    Luo, Weiwei; Cai, Wei; Xue, Shuqing; Wang, Lei; Ma, Zenghong; Du, Chenglin; Niu, Linyu; Zhang, Xinzheng; Xu, Jingjun

    2015-11-01

    We demonstrate that the concepts in metal plasmonics cannot be totally used indiscriminately in graphene plasmonics. A typical Fano resonance for a metallic symmetry-breaking structure is simulated for graphene. Although a Fano-like extinction spectrum emerges, our analysis proves that the asymmetry is due to the intensity superposition of three plasmon modes instead of interference. The difference between graphene and metal plasmons comes from different contributions to the extinction, where the former is absorption instead of scattering. Furthermore, the asymmetric lineshape can be effectively tuned by changing not only the carrier mobility and Fermi energy of graphene, but also the geometry of the disk.

  3. Chiral symmetry breaking in three-dimensional quantum electrodynamics as fixed point annihilation

    CERN Document Server

    Herbut, Igor F

    2016-01-01

    Spontaneous chiral symmetry breaking in three dimensional ($d=3$) quantum electrodynamics is understood as annihilation of an infrared-stable fixed point that describes the large-N conformal phase by another unstable fixed point at a critical number of fermions $N=N_c$. We discuss the root of universality of $N_c$ in this picture, together with some features of the phase boundary in the $(d,N)$ plane. In particular, it is shown that as $d\\rightarrow 4$, $N_c\\rightarrow 0$ with a constant slope, our best estimate of which suggests that $N_c = 2.89$ in $d=3$.

  4. Chiral symmetry breaking in three-dimensional quantum electrodynamics as fixed point annihilation

    Science.gov (United States)

    Herbut, Igor F.

    2016-07-01

    Spontaneous chiral symmetry breaking in three-dimensional (d =3 ) quantum electrodynamics is understood as annihilation of an infrared-stable fixed point that describes the large-N conformal phase by another unstable fixed point at a critical number of fermions N =Nc. We discuss the root of universality of Nc in this picture, together with some features of the phase boundary in the (d ,N ) plane. In particular, it is shown that as d →4 , Nc→0 with a constant slope, our best estimate of which suggests that Nc=2.89 in d =3 .

  5. Symmetry Breaking and Adaptation Evidence from a Toy Model of a Virus

    CERN Document Server

    Mora, J; Waelbroeck, H

    1997-01-01

    We argue that the phenomenon of symmetry breaking in genetics can enhance the adaptability of a species to changes in the environment. In the case of a virus, the claim is that the codon bias in the neutralization epitope improves the virus' ability to generate mutants that evade the induced immune response. We support our claim with a simple ``toy model'' of a viral epitope evolving in competition with the immune system. The effective selective advantage of a higher mutability leads to a dominance of codons that favour non-synonymous mutations. The results in this paper suggest the possibility of emergence of an algorithmic language in more complicated systems.

  6. On spontaneous breaking of conformal symmetry by probe flavour D-branes

    International Nuclear Information System (INIS)

    We explore the possibilities of breaking conformal symmetry spontaneously by introducing flavour branes into conformal holographic backgrounds in the probe limit. A prototype model of such a mechanism is based on placing D7-D-bar7 configuration in the Klebanov-Witten conifold based model. In this paper we generalize this model. We conjecture on the required topology of the backgrounds and the corresponding probe brane embeddings. We identify several models that obey these requirements and admit spontaneous breaking of conformal invariance. These include type IIB conifold based examples, dual to defect field theories based on the conifold, and type IIA constructions based on the ABJM model. We identify the dilaton, the corresponding Goldstone boson, discuss its effective action and address the 'a-term'. We briefly discuss the relevance of these models to the pseudo dilaton

  7. Tadpole-Induced Electroweak Symmetry Breaking and pNGB Higgs Models

    Energy Technology Data Exchange (ETDEWEB)

    Harnik, Roni [Fermilab; Howe, Kiel [Fermilab; Kearney, John [Fermilab

    2016-03-11

    We investigate induced electroweak symmetry breaking (EWSB) in models in which the Higgs is a pseudo-Nambu-Goldstone boson (pNGB). In pNGB Higgs models, Higgs properties and precision electroweak measurements imply a hierarchy between the EWSB and global symmetry-breaking scales, $v_H \\ll f_H$. When the pNGB potential is generated radiatively, this hierarchy requires fine-tuning to a degree of at least $\\sim v_H^2/f_H^2$. We show that if Higgs EWSB is induced by a tadpole arising from an auxiliary sector at scale $f_\\Sigma \\ll v_H$, this tuning is significantly ameliorated or can even be removed. We present explicit examples both in Twin Higgs models and in Composite Higgs models based on $SO(5)/SO(4)$. For the Twin case, the result is a fully natural model with $f_H \\sim 1$ TeV and the lightest colored top partners at 2 TeV. These models also have an appealing mechanism to generate the scales of the auxiliary sector and Higgs EWSB directly from the scale $f_H$, with a natural hierarchy $f_\\Sigma \\ll v_H \\ll f_H \\sim{\\rm TeV}$. The framework predicts modified Higgs coupling as well as new Higgs and vector states at LHC13.

  8. Type Ia Supernovae: Can Coriolis force break the symmetry of the gravitational confined detonation explosion mechanism?

    CERN Document Server

    García-Senz, D; Domínguez, I; Thielemann, F K

    2015-01-01

    Nowadays the number of models aimed at explaining the Type Ia supernova phenomenon is high and discriminating between them is a must-do. In this work we explore the influence of rotation in the evolution of the nuclear flame which drives the explosion in the so called gravitational confined detonation models. Assuming that the flame starts in a point-like region slightly above the center of the white dwarf (WD) and adding a moderate amount of angular velocity to the star we follow the evolution of the deflagration using a smoothed particle hydrodynamics code. We find that the results are very dependent on the angle between the rotational axis and the line connecting the initial bubble of burned material with the center of the white dwarf at the moment of the ignition. The impact of rotation is larger for angles close to 90{\\deg} because the Coriolis force on a floating element of fluid is maximum, and its principal effect is to break the symmetry of the deflagration. Such symmetry breaking weakens the converg...

  9. Conditions for the emergence of gauge bosons from spontaneous Lorentz symmetry breaking

    Science.gov (United States)

    Escobar, C. A.; Urrutia, L. F.

    2015-07-01

    The emergence of gauge particles (e.g., photons and gravitons) as Goldstone bosons arising from spontaneous symmetry breaking is an interesting hypothesis which would provide a dynamical setting for the gauge principle. We investigate this proposal in the framework of a general SO (N ) non-Abelian Nambu model (NANM), effectively providing spontaneous Lorentz symmetry breaking in terms of the corresponding Goldstone bosons. Using a nonperturbative Hamiltonian analysis, we prove that the SO (N ) Yang-Mills (YM) theory is equivalent to the corresponding NANM, after both current conservation and the Gauss laws are imposed as initial conditions for the latter. This equivalence is independent of any gauge fixing in the YM theory. A substantial conceptual and practical improvement in the analysis arises by choosing a particular parametrization that solves the nonlinear constraint defining the NANM. This choice allows us to show that the relation between the NANM canonical variables and the corresponding ones of the YM theory, Aia and Eb j , is given by a canonical transformation. In terms of the latter variables, the NANM Hamiltonian has the same form as the YM Hamiltonian, except that the Gauss laws do not arise as first-class constraints. The dynamics of the NANM further guarantees that it is sufficient to impose them only as initial conditions, in order to recover the full equivalence. It is interesting to observe that this particular parametrization exhibits the NANM as a regular theory, thus providing a substantial simplification in the calculations.

  10. Radiative symmetry breaking on D-branes at non-supersymmetric singularities

    Science.gov (United States)

    Kitazawa, Noriaki

    2006-10-01

    The possibility of radiative gauge symmetry breaking on D3-branes at non-supersymmetric orbifold singularities is examined. As an example, a simple model of D3-branes at non-supersymmetric C/Z singularity with some D7-branes for the cancellations of RR tadpoles in twisted sectors is analyzed in detail. We find that there are no tachyon modes in twisted sectors, and NS-NS tadpoles in twisted sectors are canceled out, though uncanceled tadpoles and tachyon modes exist in untwisted sectors. This means that this singularity background is a stable solution of string theory at tree level, though some specific compactification of six-dimensional space should be considered for a consistent untwisted sector. On D3-brane three massless "Higgs doublet fields" and three family "up-type quarks" are realized at tree level. Other fermion fields, "down-type quarks" and "leptons", can be realized as massless modes of the open strings stretching between D3-branes and D7-branes. The Higgs doublet fields have Yukawa couplings with up-type quarks, and they also have self-couplings which give a scalar potential without flat directions. Since there is no supersymmetry, the radiative corrections may naturally develop negative Higgs mass squared and "electroweak symmetry breaking". We explicitly calculate the open string one-loop correction to the Higgs mass squared from twisted sectors, and find that the negative value is indeed realized in this specific model.

  11. Mass textures and wolfenstein parameters from breaking the flavour permutational symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Mondragon, A; Rivera, T. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico,Mexico D.F. (Mexico); Rodriguez Jauregui, E. [Deutsches Elekronen-Synchrotron, Theory Group, Hamburg (Germany)

    2001-12-01

    We will give an overview of recent progress in the phenomenological study of quark mass matrices, quark flavour mixings and CP-violation with emphasis on the possibility of an underlying discrete, flavour permutational symmetry and its breaking, from which realistic models of mass generation could be built. The quark mixing angles and CP-violating phase, as well as the Wolfenstein parameters are given in terms of four quark mass ratios and only two parameters (Z{sup 1}/2, {phi}) characterizing the symmetry breaking pattern. Excellent agreement with all current experimental data is found. [Spanish] Daremos una visita panoramica del progreso reciente en el estudio fenomenologico de las matrices de masas y de mezclas del sabor de los quarks y la violacion de PC, con enfasis en la posibilidad de que, subyacentes al problema, se halle una simetria discreta, permutacional del sabor y su rompimiento a partir de las cuales se puedan construir modelos realistas de la generacion de las masas. Los angulos de mezcla de los quarks y la fase que viola CP, asi como los parametros de Wolfenstein se dan en terminos de cuatro razones de masas de los quarks y solamente dos parametros (Z{sup 1}/2, {phi}) que caracterizan el patron del rompimiento de la simetria. Los resultados se encuentran en excelente acuerdo con todos los datos experimentales mas recientes.

  12. Symmetry Breaking by Surface Blocking: Synthesis of Bimorphic Silver Nanoparticles, Nanoscale Fishes and Apples

    Science.gov (United States)

    Cathcart, Nicole; Kitaev, Vladimir

    2016-09-01

    A powerful approach to augment the diversity of well-defined metal nanoparticle (MNP) morphologies, essential for MNP advanced applications, is symmetry breaking combined with seeded growth. Utilizing this approach enabled the formation of bimorphic silver nanoparticles (bi-AgNPs) consisting of two shapes linked by one regrowth point. Bi-AgNPs were formed by using an adsorbing polymer, poly(acrylic acid), PAA, to block the surface of a decahedral AgNP seed and restricting growth of new silver to a single nucleation point. First, we have realized 2-D growth of platelets attached to decahedra producing nanoscale shapes reminiscent of apples, fishes, mushrooms and kites. 1-D bimorphic growth of rods (with chloride) and 3-D bimorphic growth of cubes and bipyramids (with bromide) were achieved by using halides to induce preferential (100) stabilization over (111) of platelets. Furthermore, the universality of the formation of bimorphic nanoparticles was demonstrated by using different seeds. Bi-AgNPs exhibit strong SERS enhancement due to regular cavities at the necks. Overall, the reported approach to symmetry breaking and bimorphic nanoparticle growth offers a powerful methodology for nanoscale shape design.

  13. The complex Langevin analysis of spontaneous symmetry breaking induced by complex fermion determinant

    CERN Document Server

    Ito, Yuta

    2016-01-01

    In many interesting physical systems, the determinant which appears from integrating out fermions becomes complex, and its phase plays a crucial role in the determination of the vacuum. An example of this is QCD at low temperature and high density, where various exotic fermion condensates are conjectured to form. Another example is the Euclidean version of the type IIB matrix model for 10d superstring theory, where spontaneous breaking of the SO(10) rotational symmetry down to SO(4) is expected to occur. When one applies the complex Langevin method to these systems, one encounters the singular-drift problem associated with the appearance of nearly zero eigenvalues of the Dirac operator. Here we propose to avoid this problem by deforming the action with a fermion bilinear term. The results for the original system are obtained by extrapolations with respect to the deformation parameter. We demonstrate the power of this approach by applying it to a simple matrix model, in which spontaneous symmetry breaking from...

  14. Tadpole-Induced Electroweak Symmetry Breaking and pNGB Higgs Models

    CERN Document Server

    Harnik, Roni; Kearney, John

    2016-01-01

    We investigate induced electroweak symmetry breaking (EWSB) in models in which the Higgs is a pseudo-Nambu-Goldstone boson (pNGB). In pNGB Higgs models, Higgs properties and precision electroweak measurements imply a hierarchy between the EWSB and global symmetry-breaking scales, $v_H \\ll f_H$. When the pNGB potential is generated radiatively, this hierarchy requires fine-tuning to a degree of at least $\\sim v_H^2/f_H^2$. We show that if Higgs EWSB is induced by a tadpole arising from an auxiliary sector at scale $f_\\Sigma \\ll v_H$, this tuning is significantly ameliorated or can even be removed. We present explicit examples both in Twin Higgs models and in Composite Higgs models based on $SO(5)/SO(4)$. For the Twin case, the result is a fully natural model with $f_H \\sim 1$ TeV and the lightest colored top partners at 2 TeV. These models also have an appealing mechanism to generate the scales of the auxiliary sector and Higgs EWSB directly from the scale $f_H$, with a natural hierarchy $f_\\Sigma \\ll v_H \\ll ...

  15. Symmetry Breaking by Surface Blocking: Synthesis of Bimorphic Silver Nanoparticles, Nanoscale Fishes and Apples

    Science.gov (United States)

    Cathcart, Nicole; Kitaev, Vladimir

    2016-01-01

    A powerful approach to augment the diversity of well-defined metal nanoparticle (MNP) morphologies, essential for MNP advanced applications, is symmetry breaking combined with seeded growth. Utilizing this approach enabled the formation of bimorphic silver nanoparticles (bi-AgNPs) consisting of two shapes linked by one regrowth point. Bi-AgNPs were formed by using an adsorbing polymer, poly(acrylic acid), PAA, to block the surface of a decahedral AgNP seed and restricting growth of new silver to a single nucleation point. First, we have realized 2-D growth of platelets attached to decahedra producing nanoscale shapes reminiscent of apples, fishes, mushrooms and kites. 1-D bimorphic growth of rods (with chloride) and 3-D bimorphic growth of cubes and bipyramids (with bromide) were achieved by using halides to induce preferential (100) stabilization over (111) of platelets. Furthermore, the universality of the formation of bimorphic nanoparticles was demonstrated by using different seeds. Bi-AgNPs exhibit strong SERS enhancement due to regular cavities at the necks. Overall, the reported approach to symmetry breaking and bimorphic nanoparticle growth offers a powerful methodology for nanoscale shape design. PMID:27605125

  16. Symmetry breaking polymerization: one-pot synthesis of plasmonic hybrid Janus nanoparticles.

    Science.gov (United States)

    Wang, Yanming; Ding, Tao; Baumberg, Jeremy J; Smoukov, Stoyan K

    2015-06-21

    Asymmetric hybrid nanoparticles have many important applications in catalysis, nanomotion, sensing, and diagnosis, however ways to generate the asymmetric hybrid nanoparticles are quite limited and inefficient. Most current methods rely on interfacial adhesion and modification of already formed particles. In this article we report a one-pot, facile and scalable synthesis of anisotropic Au-polymer hybrid nanoparticles via interfacial oxidative dispersion polymerization. The interfacial nucleation and polymerization lead to spontaneous symmetry breaking and formation of the Janus particles. The reaction is initiated by monomer radicals generated by the strong oxidant HAuCl4, which is itself later reduced by the electron-rich monomers to self-nucleate and form Au nanoparticles (NPs). The competition between divinylbenzene adsorption and the PVP capping agent results in effective partial surface wetting, forming asymmetric Au-PDVB hybrid nanoparticles, by confining growth of each material to its own phase. Such spontaneous symmetry breaking, important in morphogenesis, with control over the subsequent growth processes should lead to significant advances in the synthesis of asymmetric nanostructures.

  17. Symmetry-Breaking as a Paradigm to Design Highly-Sensitive Sensor Systems

    Directory of Open Access Journals (Sweden)

    Antonio Palacios

    2015-06-01

    Full Text Available A large class of dynamic sensors have nonlinear input-output characteristics, often corresponding to a bistable potential energy function that controls the evolution of the sensor dynamics. These sensors include magnetic field sensors, e.g., the simple fluxgate magnetometer and the superconducting quantum interference device (SQUID, ferroelectric sensors and mechanical sensors, e.g., acoustic transducers, made with piezoelectric materials. Recently, the possibilities offered by new technologies and materials in realizing miniaturized devices with improved performance have led to renewed interest in a new generation of inexpensive, compact and low-power fluxgate magnetometers and electric-field sensors. In this article, we review the analysis of an alternative approach: a symmetry-based design for highly-sensitive sensor systems. The design incorporates a network architecture that produces collective oscillations induced by the coupling topology, i.e., which sensors are coupled to each other. Under certain symmetry groups, the oscillations in the network emerge via an infinite-period bifurcation, so that at birth, they exhibit a very large period of oscillation. This characteristic renders the oscillatory wave highly sensitive to symmetry-breaking effects, thus leading to a new detection mechanism. Model equations and bifurcation analysis are discussed in great detail. Results from experimental works on networks of fluxgate magnetometers are also included.

  18. Spontaneous symmetry breaking, and strings defects in hypercomplex gauge field theories

    Science.gov (United States)

    Cartas-Fuentevilla, R.; Meza-Aldama, O.

    2016-02-01

    Inspired by the appearance of split-complex structures in the dimensional reduction of string theory, and in the theories emerging as byproducts, we study the hypercomplex formulation of Abelian gauge field theories by incorporating a new complex unit to the usual complex one. The hypercomplex version of the traditional Mexican hat potential associated with the U(1) gauge field theory, corresponds to a hybrid potential with two real components, and with U(1)× SO(1,1) as symmetry group. Each component corresponds to a deformation of the hat potential, with the appearance of a new degenerate vacuum. Hypercomplex electrodynamics will show novel properties, such as spontaneous symmetry breaking scenarios with running masses for the vectorial and scalar Higgs fields, and such as Aharonov-Bohm type strings defects as exact solutions; these topological defects may be detected only by quantum interference of charged particles through gauge invariant loop integrals. In a particular limit, the hyperbolic electrodynamics does not admit topological defects associated with continuous symmetries.

  19. Spontaneous symmetry breaking, and strings defects in hypercomplex gauge field theories

    Energy Technology Data Exchange (ETDEWEB)

    Cartas-Fuentevilla, R. [Universidad Autonoma de Puebla, Instituto de Fisica, Puebla, Pue. (Mexico); Meza-Aldama, O. [Universidad Autonoma de Puebla, Facultad de Ciencias Fisico-Matematicas, Puebla, Pue. (Mexico)

    2016-02-15

    Inspired by the appearance of split-complex structures in the dimensional reduction of string theory, and in the theories emerging as byproducts, we study the hypercomplex formulation of Abelian gauge field theories by incorporating a new complex unit to the usual complex one. The hypercomplex version of the traditional Mexican hat potential associated with the U(1) gauge field theory, corresponds to a hybrid potential with two real components, and with U(1) x SO(1,1) as symmetry group. Each component corresponds to a deformation of the hat potential, with the appearance of a new degenerate vacuum. Hypercomplex electrodynamics will show novel properties, such as spontaneous symmetry breaking scenarios with running masses for the vectorial and scalar Higgs fields, and such as Aharonov-Bohm type strings defects as exact solutions; these topological defects may be detected only by quantum interference of charged particles through gauge invariant loop integrals. In a particular limit, the hyperbolic electrodynamics does not admit topological defects associated with continuous symmetries. (orig.)

  20. SU(6)-breaking symmetry and the ratio of proton momentum distributions

    CERN Document Server

    Giannini, M M; Vassallo, A; Vanderhaeghen, M

    2015-01-01

    The ratio between the anomalous magnetic moments of proton and neutron has recently been suggested to be connected to the ratio of proton momentum fractions carried by valence quarks. This relation has been obtained within a parametrization of the Generalized Parton Distributions (GPD) \\cite{gpv}, but it is completely independent of such a parametrization.\\\\ It will be shown that using different CQMs this relation holds within a few percent accuracy. This agreement is based on what all the CQMs have in common: the effective degrees of freedom of the three constituent quarks and the underlying SU(6) symmetry.\\\\ On the other hand, the experimental value of the ratio is not reproduced by CQMs. This means that the SU(6)-breaking mechanism contained in the phenomenological partonic distributions does not correspond to the SU(6) breaking mechanism implemented in the CQMs we have analyzed \\cite{noi03}.\\\\ We will also show how this relation can be used in order to understand in which way to implement an $SU(6)$-break...

  1. Maximal breaking of symmetry at critical angles and a closed-form expression for angular deviations of the Snell law

    Science.gov (United States)

    Araújo, Manoel P.; Carvalho, Silvânia A.; De Leo, Stefano

    2014-09-01

    A detailed analysis of the propagation of laser Gaussian beams at critical angles shows under which conditions it is possible to maximize the breaking of symmetry in the angular distribution and for which values of the laser wavelength and beam waist it is possible to find an analytic formula for the maximal angular deviation from the optical path predicted by the Snell law. For beam propagation through N dielectric blocks and for a maximal breaking of symmetry, a closed expression for the Goos-Hänchen shift is obtained. The multiple-peak phenomenon clearly represents additional evidence of the breaking of symmetry in the angular distribution of optical beams. Finally, the laser wavelength and beam-waist conditions to produce focal effects in the outgoing beam are also briefly discussed.

  2. Concerning the proofs of spontaneous chiral symmetry breaking in Q.C.D. from the effective lagrangian point of view

    International Nuclear Information System (INIS)

    Claims that spontaneous chiral symmetry breaking in Q.C.D. is mediated by the U(1) axial anomaly are examined from the viewpoint of effective chiral lagrangians. The proofs are seen to arise from a use of effective chiral lagrangians in which the U(1) axial symmetry is explicitly broken by effects of the anomaly. A U(1) axial invariant chiral lagrangian (to be presented) offers no such proof. (author)

  3. Two-sublattice fermionic Ising spin glass model in a transverse field: Asymmetric replica symmetry breaking solution

    Energy Technology Data Exchange (ETDEWEB)

    Zimmer, F.M. [Laboratorio de Mecanica Estatistica e Teoria da Materia Condensada, UFSM, 97105-900 Santa Maria, RS (Brazil); Department of Fisica, UDESC, 89223-100 Joinville, SC (Brazil)], E-mail: zimmer@mail.ufsm.br; Magalhaes, S.G. [Laboratorio de Mecanica Estatistica e Teoria da Materia Condensada, UFSM, 97105-900 Santa Maria, RS (Brazil)

    2008-07-15

    We investigate a two-sublattice fermionic infinite-range Ising spin glass (SG) model in a transverse field {gamma} by one-step replica symmetry breaking (1S-RSB) theory. In this model, a parallel magnetic field H breaks the symmetry of the sublattices. It destroys the antiferromagnetic (AF) order, but it can favor a non-ergodic mixed phase (SG+AF) characterizing an asymmetric RSB region. The {gamma} field introduces a quantum spin flip mechanism that suppresses the magnetic orders leading them to quantum critical points. The competition between disorder and quantum fluctuations is analyzed by 1S-RSB solution in the asymmetric RSB region.

  4. Stability of string defects in models of non-Abelian symmetry breaking

    CERN Document Server

    Thatcher, M J

    1999-01-01

    In this paper we describe a new type of topological defect, called a homilia string, which is stabilized via interactions with the string network. Using analytical and numerical techniques, we investigate the stability and dynamics of homilia strings, and their implications for cosmology. In SU(N) models of symmetry breaking, monopoles are identified with the intersection of two homilia strings. Due to repulsive forces, the homilia strings seperate, resulting in monopole annihilation. Homilia string loops cannot stabilize as vortons, which circumvents the adverse cosmological consequences of stable loops. In principle, measurments of the cosmic microwave background can distinguish between the smaller fluctuations induced by a homilia string network and those due to primordial cosmic strings.

  5. On the spontaneous time-reversal symmetry breaking in synchronously-pumped passive Kerr resonators

    CERN Document Server

    Rossi, J; Kevrekidis, P G; Haragus, M

    2016-01-01

    We study the spontaneous temporal symmetry breaking instability in a coherently-driven passive optical Kerr resonator observed experimentally by Xu and Coen in Opt.~Lett.~{\\bf 39}, 3492 (2014). We perform a detailed stability analysis of the Lugiato-Lefever model for the optical Kerr resonators and analyze the temporal bifurcation structure of stationary symmetric and the emerging asymmetric states as a function of the pump power. For intermediate pump powers a pitchfork loop is responsible for the destabilization of symmetric states towards stationary asymmetric ones while at large pump powers we find the emergence of periodic asymmetric solutions via a Hopf bifurcation. From a theoretical perspective, we use local bifurcation theory in order to analyze the most unstable eigenmode of the system. We also explore a non-conservative variational approximation capturing, among others, the evolution of the solution's amplitude, width and center of mass. Both methods provide insight towards the pitchfork bifurcatio...

  6. Order statistics inference for describing topological coupling and mechanical symmetry breaking in multidomain proteins

    CERN Document Server

    Kononova, Olga; Barsegov, Valeri

    2015-01-01

    Cooperativity is a hallmark of proteins, many of which show a modular architecture comprising discrete structural domains. Detecting and describing dynamic couplings between structural regions is difficult in view of the many-body nature of protein-protein interactions. By utilizing the GPU-based computational acceleration, we carried out simulations of the protein forced unfolding for the dimer WW-WW of the all-beta-sheet WW domains used as a model multidomain protein. We found that while the physically non-interacting identical protein domains (WW) show nearly symmetric mechanical properties at low tension, reflected, e.g., in the similarity of their distributions of unfolding times, these properties become distinctly different when tension is increased. Moreover, the uncorrelated unfolding transitions at a low pulling force become increasingly more correlated (dependent) at higher forces. Hence, the applied force not only breaks "the mechanical symmetry" but also couples the physically non-interacting prot...

  7. Non-minimal CW inflation, electroweak symmetry breaking and the 750 GeV anomaly

    CERN Document Server

    Marzola, Luca; Raidal, Martti; Urban, Federico R; Veermäe, Hardi

    2015-01-01

    We study whether the hinted 750 GeV resonance at the LHC can be a Coleman-Weinberg inflaton which is non-minimally coupled to gravity. Since the inflaton must couple to new charged and coloured states to reproduce the LHC diphoton signature, the same interaction can generate its effective potential and trigger the electroweak symmetry breaking via the portal coupling to the Higgs boson. This inflationary scenario predicts a lower bound on the tensor-to-scalar ratio of $r\\gtrsim 0.006$, where the minimal value corresponds to the measured spectral index $n_s\\simeq0.97$. However, we find that the compatibility with the LHC diphoton signal requires exotic new physics at energy scales accessible at the LHC. We study and quantify the properties of the predicted exotic particles.

  8. Symmetry-breaking bifurcation in the nonlinear Schr\\"{o}dinger equation with symmetric potentials

    CERN Document Server

    Kirr, E; Pelinovsky, D E

    2010-01-01

    We consider the focusing (attractive) nonlinear Schr\\"odinger (NLS) equation with an external, symmetric potential which vanishes at infinity and supports a linear bound state. We prove that the symmetric, nonlinear ground states must undergo a symmetry breaking bifurcation if the potential has a non-degenerate local maxima at zero. Under a generic assumption we show that the bifurcation is either subcritical or supercritical pitchfork. In the particular case of double-well potentials with large separation, the power of nonlinearity determines the subcritical or supercritical character of the bifurcation. The results are obtained from a careful analysis of the spectral properties of the ground states at both small and large values for the corresponding eigenvalue parameter. We employ a novel technique combining concentration--compactness and spectral properties of linearized Schr\\"odinger type operators to show that the symmetric ground states can either be uniquely continued for the entire interval of the ei...

  9. Holographic fermions at strong translational symmetry breaking: a Bianchi-VII case study

    CERN Document Server

    Bagrov, A; Krikun, A; Schalm, K; Zaanen, J

    2016-01-01

    It is presently unknown how strong lattice potentials influence the fermion spectral function of the holographic strange metals predicted by the AdS/CFT correspondence. This embodies a crucial test for the application of holography to condensed matter experiments. We show that for one particular momentum direction this spectrum can be computed for arbitrary strength of the effective translational symmetry breaking potential of the so-called Bianchi-VII geometry employing ordinary differential equations. Deep in the strange metal regime we find rather small changes to the single-fermion response computed by the emergent quantum critical IR, even when the potential becomes relevant in the infra-red. However, in the regime where holographic quasi-particles occur, defining a Fermi surface in the continuum, they acquire a finite lifetime at any finite potential strength. At the transition from irrelevancy to relevancy of the Bianchi potential in the deep infra-red the quasi-particle remnants disappear completely a...

  10. Cosmology of an asymptotically free scalar field with spontaneous symmetry breaking

    CERN Document Server

    Huang, Kerson; Tung, Roh-Suan

    2010-01-01

    We solve Einstein's equation with Robertson-Walker metric as an initial-value problem, using as the source of gravity a Halpern-Huang real scalar field, which was derived from renormalization-group analysis, with a potential that exhibits asymptotic freedom and spontaneous symmetry breaking. Both properties are crucial to the formulation of the problem. Numerical solutions show that the universe expands at an accelerated rate, with the radius increasing like the exponential of a power of the time. This is relevant to "dark energy" and "cosmic inflation". Extension to the complex scalar field will make the universe a superfluid. The vortex dynamics that emerges offers explanations for other cosmological problems, namely, matter creation, galactic voids, and the "dark mass".

  11. Charge Symmetry Breaking in dd->4He{\\pi}0 with WASA-at-COSY

    CERN Document Server

    :,; Augustyniak, W; Bardan, W; Bashkanov, M; Bergmann, F S; Berłowski, M; Bhatt, H; Bondar, A; Büscher, M; Calén, H; Ciepał, I; Clement, H; Coderre, D; Czerwiński, E; Demmich, K; Doroshkevich, E; Engels, R; Erven, A; Erven, W; Eyrich, W; Fedorets, P; Föhl, K; Fransson, K; Goldenbaum, F; Goslawski, P; Goswami, A; Grigoryev, K; Gullström, C -O; Hanhart, C; Hauenstein, F; Heijkenskjöld, L; Hejny, V; Höistad, B; Hüsken, N; Jarczyk, L; Johansson, T; Kamys, B; Kemmerling, G; Khan, F A; Khoukaz, A; Kirillov, D A; Kistryn, S; Kleines, H; Kłos, B; Krzemień, W; Kulessa, P; Kupść, A; Kuzmin, A; Lalwani, K; Lersch, D; Lorentz, B; Magiera, A; Maier, R; Marciniewski, P; Mariański, B; Mikirtychiants, M; Morsch, H -P; Moskal, P; Ohm, H; Ozerianska, I; del Rio, E Perez; Piskunov, N M; Podkopał, P; Prasuhn, D; Pricking, A; Pszczel, D; Pysz, K; Pyszniak, A; Redmer, C F; Ritman, J; Roy, A; Rudy, Z; Sawant, S; Schadmand, S; Sefzick, T; Serdyuk, V; Shwartz, B; Siudak, R; Skorodko, T; Skurzok, M; Smyrski, J; Sopov, V; Stassen, R; Stepaniak, J; Stephan, E; Sterzenbach, G; Stockhorst, H; Ströher, H; Szczurek, A; Täschner, A; Trzciński, A; Varma, R; Wolke, M; Wrońska, A; Wüstner, P; Wurm, P; Yamamoto, A; Yurev, L; Zabierowski, J; Zieliński, M J; Zink, A; Złomańczuk, J; Żuprański, P; Żurek, M

    2014-01-01

    Charge symmetry breaking (CSB) observables are a suitable experimental tool to examine effects induced by quark masses on the nuclear level. Previous high precision data from TRIUMF and IUCF are currently used to develop a consistent description of CSB within the framework of chiral perturbation theory. In this work the experimental studies on the reaction dd->4He{\\pi}0 have been extended towards higher excess energies in order to provide information on the contribution of p-waves in the final state. For this, an exclusive measurement has been carried out at a beam momentum of p=1.2 GeV/c using the WASA-at-COSY facility. The total cross section amounts to sigma(tot) = (118 +- 18(stat) +- 13(sys) +- 8(ext)) pb and first data on the differential cross section are consistent with s-wave pion production.

  12. Consequences of simultaneous chiral symmetry breaking and deconfinement for the isospin symmetric phase diagram

    CERN Document Server

    Fischer, Tobias; Hempel, Matthias

    2016-01-01

    The thermodynamic bag model (tdBag) has been applied widely to model quark matter properties in both heavy-ion and astrophysics communities. Several fundamental physics aspects are missing in tdBag, e.g., dynamical chiral symmetry breaking (D$\\chi$SB) and repulsions due to the vector interaction are both included explicitly in the novel vBag quark matter model of Kl\\"ahn and Fischer (2015) (Astrophys. J. 810, 134 (2015)). An important feature of vBag is the simultaneous D$\\chi$SB and deconfinement, where the latter links vBag to a given hadronic model for the construction of the phase transition. In this article we discuss the extension to finite temperatures and the resulting phase diagram for the isospin symmetric medium.

  13. Rencontres de Moriond EW 2012: Addressing symmetry breaking and mass hierarchy

    CERN Multimedia

    Pauline Gagnon

    2012-01-01

    Last Friday at the Moriond conference in La Thuile in Italy, Lisa Randall from Harvard University reminded the audience how all fields are related: electroweak symmetry breaking must take into account flavour physics for example. Every good model should address this intrinsic connection.   Despite many expectations, no signs for supersymmetry (SUSY) of any type has been found to date. So Lisa Randall worked with Csaba Csaki and John Terning to explore alternatives and developed a version of supersymmetry built on the Minimal Composite Supersymmetry Standard Model (MCSSM) that Csaki, Shirman, and Terning had developed, incorporating a strongly interacting theory with compositeness that addresses among other things the fact that the top quark is so much heavier than all other quarks. Randall and collaborators showed that this model, when supersymmetry is incorporated, naturally accommodates both a Higgs boson around 125 GeV and a light stop, the supersymmetric partner to the top quark. &a...

  14. Photons emerging as Goldstone bosons from spontaneous Lorentz symmetry breaking: The Abelian Nambu model

    CERN Document Server

    Escobar, C A

    2015-01-01

    After imposing current conservation together with the Gauss law as initial conditions on the Abelian Nambu model, we prove that the resulting theory is equivalent to standard QED in the non-linear gauge $\\left(A_{\\mu }A^{\\mu }-n^{2}M^{2}\\right)=0$, to all orders in perturbation theory. We show this by writing both models in terms of the same variables, which produce identical Feynman rules for the interactions and propagators. A crucial point is to verify that the Faddeev-Popov ghosts arising from the gauge fixing procedure in the QED sector decouple to all orders. We verify this decoupling by following a method like that employed in Yang-Mills theories when investigating the behavior of axial gauges. The equivalence between the two theories supports the idea that gauge particles can be envisaged as the Goldstone bosons originating from spontaneous Lorentz symmetry breaking.

  15. On the Binding Energy and the Charge Symmetry Breaking in A<=16 Lambda-hypernuclei

    CERN Document Server

    Botta, E; Feliciello, A

    2016-01-01

    Recent achievements in hypernuclear spectroscopy, in particular the determination of the $\\Lambda$-binding energy B$_{\\Lambda}$ by high precision magnetic spectrometry, contributed to stimulate considerably the search for Charge Symmetry Breaking effects in $\\Lambda$-hypernuclei isomultiplets. We have reorganized the results from the FINUDA experiment and we have produced a list of B$_{\\Lambda}$ values for hypernuclei with A$\\leq$16 considering only the data from magnetic spectrometers with an absolute calibration of the energy scale (FINUDA at DA$\\Phi$NE and electroproduction experiments). By comparing them with the corresponding B$_{\\Lambda}$ from the emulsion experiments, we observe that there is a systematic small difference that is taken into account. A synopsis of all the results on B$_{\\Lambda}$ so far published is finally suggested. Several interesting conclusions are drawn, among which the equality within the errors of B$_{\\Lambda}$ for the A=7, 12, 16 isomultiplets, based only on recent spectrometri...

  16. Noether identities in gravity theories with nondynamical backgrounds and explicit spacetime symmetry breaking

    CERN Document Server

    Bluhm, Robert

    2016-01-01

    Gravitational effective field theories with nondynamical backgrounds explicitly break diffeomorphism and local Lorentz invariance. At the same time, to maintain observer independence the action describing these theories is required to be mathematically invariant under general coordinate transformations and changes of local Lorentz bases. These opposing effects of having broken spacetime symmetries but invariance under mathematical observer transformations can result in theoretical inconsistency unless certain conditions hold. The consistency constraints that must hold originate from Noether identities associated with the mathematical observer invariances in the action. These identities are examined in detail and are used to investigate gravity theories with nondynamical backgrounds, including when a St\\"uckelberg approach is used. Specific examples include gravity theories with fixed scalar or tensor backgrounds, Einstein-Maxwell theory with a fixed external current, and massive gravity.

  17. Transversal symmetry breaking and axial spreading modification for Gaussian optical beams

    CERN Document Server

    Araujo, Manoel; Lima, Marina

    2016-01-01

    For a long time it was believed there was no reason to include the geometrical phase in studying the propagation of gaussian optical beams through dielectric blocks. This can be justified by the fact that the first order term in the Taylor expansion of this phase is responsible for the lateral shift of the optical beam which is also predicted by ray optics. From this point of view, the geometrical phase can be seen as a purely auxiliary concept. In this paper, we show how the second order term in the Taylor expansion accounts for the symmetry breaking of the transversal spatial distribution and acts as an axial spreading modifier. These new effects clearly shows the importance of the geometrical phase in describing the correct behavior of light. To test our theoretical predictions, we briefly discuss a possible experimental implementation.

  18. A composite light scalar, electro-weak symmetry breaking and the recent LHC searches

    Energy Technology Data Exchange (ETDEWEB)

    Elander, Daniel, E-mail: daniel@theory.tifr.res.in [Department of Theoretical Physics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005 (India); Piai, Maurizio [Swansea University, College of Science, Singleton Park, Swansea, Wales (United Kingdom)

    2012-11-11

    We construct a model in which electro-weak symmetry breaking is induced by a strongly coupled sector, which is described in terms of a five-dimensional model in the spirit of the bottom-up approach to holography. We compute the precision electro-weak parameters, and identify regions of parameter space allowed by indirect tests. We compute the spectrum of scalar and vector resonances, which contains a set of parametrically light states that can be identified with the electro-weak gauge bosons and a light dilaton. There is then a little desert, up to 2-3 TeV, where towers of resonances of the vector, axial-vector and scalar particles appear.

  19. A composite light scalar, electro-weak symmetry breaking and the recent LHC searches

    Science.gov (United States)

    Elander, Daniel; Piai, Maurizio

    2012-11-01

    We construct a model in which electro-weak symmetry breaking is induced by a strongly coupled sector, which is described in terms of a five-dimensional model in the spirit of the bottom-up approach to holography. We compute the precision electro-weak parameters, and identify regions of parameter space allowed by indirect tests. We compute the spectrum of scalar and vector resonances, which contains a set of parametrically light states that can be identified with the electro-weak gauge bosons and a light dilaton. There is then a little desert, up to 2-3 TeV, where towers of resonances of the vector, axial-vector and scalar particles appear.

  20. A composite light scalar, electro-weak symmetry breaking and the recent LHC searches

    CERN Document Server

    Elander, Daniel

    2011-01-01

    We construct a model in which electro-weak symmetry breaking is induced by a strongly coupled sector, which is described in terms of a five-dimensional model in the spirit of the bottom-up approach to holography. We compute the precision electro-weak parameters, and identify regions of parameter space allowed by indirect tests. We compute the spectrum of scalar and vector resonances, which contains a set of parametrically light states that can be identified with the electroweak gauge bosons and a light dilaton. There is then a little desert, up to 2-3 TeV, where towers of resonances of the vector, axial-vector and scalar particles appear.

  1. Conformal Symmetry Breaking and Thermodynamics of Near-Extremal Black Holes

    CERN Document Server

    Almheiri, Ahmed

    2016-01-01

    It has been argued recently by Almheiri and Polchinski that the near-horizon conformal symmetry of extremal black holes must be broken due to gravitational backreaction at an IR scale linear in $G_N$. In this paper, we show that this scale coincides with the so-called `thermodynamic mass gap' of near-extremal black holes, a scale which signals the breakdown of their thermodynamic description. We also develop a method which extends the analysis of Almheiri and Polchinski to more complicated models with extremal throats by studying the bulk linearized quantum field theory. Moreover, we show how their original model correctly captures the universal physics of the near-horizon region of near-extremal black holes at tree level, and conclude that this equivalence of the conformal breaking and mass gap scale is general.

  2. Composite models of quarks and leptons, dynamical symmetry-breaking, and hypercolor

    International Nuclear Information System (INIS)

    Composite models of quarks, leptons and Higgs bosons are described and discussed. The fermion models considered are those in which the basic concepts are abstracted from the quark model of nucleon structure; the quark model paradigm thus serves as a convenient frame of reference for discussion of the problems encountered in describing quarks and leptons as composite entities. The hypercolor-based scenario, for dynamical symmetry breaking and generation of composite Higgs bosons, is briefly reviewed and the contribution of hyperquarks to the problem of quark proliferation is noted. Experimental signatures of composite fermions and the hypercolor scenario are contrasted with those of the canonical theory with elementary quarks, leptons and spin-0 bosons. It is tacitly assumed that the structure of elementary particle interactions, at the energy-regimes considered here, can be discussed in a meaningful way without bringing gravity into the picture

  3. Breaking the symmetry. The first steps of a new way of thinking

    International Nuclear Information System (INIS)

    The concept of Spontaneous Symmetry Breaking (SSB) represents a real breakthrough for the present description of fundamental interactions by means of gauge theories. Although the underlying ideas were ancient, their formalization required a long time, due to epistemological obstacles and technical difficulties. In this paper, the main steps of SSB evolution are briefly outlined, from the introduction of the order parameter in the Thirties to the birth of the many-body theory at the end of the Fifties. In this context, the contribute of the capital L. Landau's works on phase transitions and quantum fluids, as well as of the seminal ideas of F. London, is highlighted, and the phenomenological approach in theoretical physics (whose features are schematically underlined) is showed to be crucial in the rising field of complex systems.

  4. Bulk gauge and matter fields in nested warping: II. Symmetry Breaking and phenomenological consequences

    CERN Document Server

    Arun, Mathew Thomas

    2016-01-01

    Generalizing the Randall-Sundrum scenario to higher dimensions with nested warpings has been shown to avoid the constraints besetting the former. In the first paper of this series [JHEP 1509 (2015) 202], the Standard Model gauge and fermion fields were extended into such a six-dimensional bulk and the construction was shown to have several interesting and welcome features. In this paper, we discuss the electroweak symmetry breaking, presenting a novel Higgs localization mechanism that leads to interesting phenomenology in the Higgs sector. Localizing the Higgs modifies the $Z_{\\mu}$ and $W_{\\mu}$ boson wavefunctions, which leads to tree level changes in the oblique parameters. Using these as well as the correction to low-energy four-Fermi operators, we derive the constraints on our model and also discuss the gauge coupling evolution therein. Amusingly, the model can naturally incorporate a Higgs resonance in the 700--800 GeV range.

  5. The Tayler instability at low magnetic Prandtl numbers: Chiral symmetry breaking and synchronizable helicity oscillations

    CERN Document Server

    Stefani, F; Giesecke, A; Weber, N; Weier, T

    2016-01-01

    The current-driven, kink-type Tayler instability (TI) is a key ingredient of the Tayler-Spruit dynamo model for the generation of stellar magnetic fields, but is also discussed as a mechanism that might hamper the up-scaling of liquid metal batteries. Under some circumstances, the TI involves a helical flow pattern which goes along with some alpha effect. Here we focus on the chiral symmetry breaking and the related impact on the alpha effect that would be needed to close the dynamo loop in the Tayler-Spruit model. For low magnetic Prandtl numbers, we observe intrinsic oscillations of the alpha effect. These oscillations serve then as the basis for a synchronized Tayler-Spruit dynamo model, which could possibly link the periodic tidal forces of planets with the oscillation periods of stellar dynamos.

  6. Recent Results from CMS and ATLAS: Electroweak Symmetry, Breaking and Beyond

    CERN Document Server

    Azzurri, Paolo

    2016-01-01

    The discovery of the Higgs boson, announced by the CMS and ATLAS collaborations in 2012, unearthed the final cornerstone of the standard electroweak model of particle physics, and repre- sents the main legacy of the LHC Run 1. With Run 1 data the mass of the Higgs boson has been determined with 0.2pct precision, while coupling properties are only established at the 10pct level or worse. As the picture of the minimal standard model is now complete, unsettled difficulties and open questions remain on its stage. The LHC Run 2 has successfully started in 2015, opening a new period of particle physics exploration, at higher energy and intensity it will undoubtedly de- liver more insight on the electroweak model, its symmetry breaking mechanism, and on possible solutions to its difficulties.

  7. Breaking the symmetry. The first steps of a new way of thinking

    CERN Document Server

    Sardella, Ignazio A

    2010-01-01

    The concept of Spontaneous Symmetry Breaking (SSB) represents a real breakthrough for present description of fundamental interactions by means of gauge theories. Although the underlying ideas were ancient, their formalization required a long time, due to epistemological obstacles and technical difficulties. In this paper, the main steps of SSB evolution are briefly outlined, from the introduction of the order parameter in the Thirties to the birth of the many-body theory at the end of the Fifties. In this context, the contribute of the capital L.Landau's works on phase transitions and quantum fluids, as well as of the seminal ideas of F. London, is highlighted, and the phenomenological approach in theoretical physics (whose features are schematically underlined) is showed to be crucial in the rising field of complex systems.

  8. Self-assembly of subwavelength nanostructures with symmetry breaking in solution

    Science.gov (United States)

    Tian, Xiang-Dong; Chen, Shu; Zhang, Yue-Jiao; Dong, Jin-Chao; Panneerselvam, Rajapandiyan; Zhang, Yun; Yang, Zhi-Lin; Li, Jian-Feng; Tian, Zhong-Qun

    2016-01-01

    Nanostructures with symmetry breaking can allow the coupling between dark and bright plasmon modes to induce strong Fano resonance. However, it is still a daunting challenge to prepare bottom-up self-assembled subwavelength asymmetric nanostructures with appropriate gaps between the nanostructures especially below 5 nm in solution. Here we present a viable self-assembly method to prepare symmetry-breaking nanostructures consisting of Ag nanocubes and Au nanospheres both with tunable size (90-250 nm for Au nanospheres; 100-160 nm for Ag nanocubes) and meanwhile control the nanogaps through ultrathin silica shells of 1-5 nm thickness. The Raman tag of 4-mercaptobenzoic acid (MBA) assists the self-assembly process and endows the subwavelength asymmetric nanostructures with surface-enhanced Raman scattering (SERS) activity. Moreover, thick silica shells (above 50 nm thickness) can be coated on the self-assembled nanostructures in situ to stabilize the whole nanostructures, paving the way toward bioapplications. Single particle scattering spectroscopy with a 360° polarization resolution is performed on individual Ag nanocube and Au nanosphere dimers, correlated with high-resolution TEM characterization. The asymmetric dimers exhibit strong configuration and polarization dependence Fano resonance properties. Overall, the solution-based self-assembly method reported here is opening up new opportunities to prepare diverse multicomponent nanomaterials with optimal performance.Nanostructures with symmetry breaking can allow the coupling between dark and bright plasmon modes to induce strong Fano resonance. However, it is still a daunting challenge to prepare bottom-up self-assembled subwavelength asymmetric nanostructures with appropriate gaps between the nanostructures especially below 5 nm in solution. Here we present a viable self-assembly method to prepare symmetry-breaking nanostructures consisting of Ag nanocubes and Au nanospheres both with tunable size (90-250 nm

  9. Efficiency optimization and symmetry-breaking in a model of ciliary locomotion

    CERN Document Server

    Michelin, Sebastien

    2010-01-01

    A variety of swimming microorganisms, called ciliates, exploit the bending of a large number of small and densely-packed organelles, termed cilia, in order to propel themselves in a viscous fluid. We consider a spherical envelope model for such ciliary locomotion where the dynamics of the individual cilia are replaced by that of a continuous overlaying surface allowed to deform tangentially to itself. Employing a variational approach, we determine numerically the time-periodic deformation of such surface which leads to low-Reynolds locomotion with minimum rate of energy dissipation (maximum efficiency). Employing both Lagrangian and Eulerian points of views, we show that in the optimal swimming stroke, individual cilia display weak asymmetric beating, but that a significant symmetry-breaking occurs at the organism level, with the whole surface deforming in a wave-like fashion reminiscent of metachronal waves of biological cilia. This wave motion is analyzed using a formal modal decomposition, is found to occu...

  10. Frustration and time-reversal symmetry breaking for Fermi and Bose-Fermi systems

    Science.gov (United States)

    Sacha, Krzysztof; Targońska, Katarzyna; Zakrzewski, Jakub

    2012-05-01

    The modulation of an optical lattice potential that breaks time-reversal symmetry enables the realization of complex tunneling amplitudes in the corresponding tight-binding model. For a superfluid Fermi gas in a triangular lattice potential with complex tunnelings, the pairing function acquires a complex phase, so the frustrated magnetism of fermions can be realized. Bose-Fermi mixtures of bosonic molecules and unbound fermions in the lattice also show interesting behavior. Due to boson-fermion coupling, the fermions become enslaved by the bosons and the corresponding pairing function takes the complex phase determined by the bosons. In the presence of bosons the Fermi system can reveal both gapped and gapless superfluidity.

  11. Population structure induces a symmetry breaking favoring the emergence of cooperation.

    Directory of Open Access Journals (Sweden)

    Jorge M Pacheco

    2009-12-01

    Full Text Available The evolution of cooperation described in terms of simple two-person interactions has received considerable attention in recent years, where several key results were obtained. Among those, it is now well established that the web of social interaction networks promotes the emergence of cooperation when modeled in terms of symmetric two-person games. Up until now, however, the impacts of the heterogeneity of social interactions into the emergence of cooperation have not been fully explored, as other aspects remain to be investigated. Here we carry out a study employing the simplest example of a prisoner's dilemma game in which the benefits collected by the participants may be proportional to the costs expended. We show that the heterogeneous nature of the social network naturally induces a symmetry breaking of the game, as contributions made by cooperators may become contingent on the social context in which the individual is embedded. A new, numerical, mean-field analysis reveals that prisoner's dilemmas on networks no longer constitute a defector dominance dilemma--instead, individuals engage effectively in a general coordination game. We find that the symmetry breaking induced by population structure profoundly affects the evolutionary dynamics of cooperation, dramatically enhancing the feasibility of cooperators: cooperation blooms when each cooperator contributes the same cost, equally shared among the plethora of games in which she participates. This work provides clear evidence that, while individual rational reasoning may hinder cooperative actions, the intricate nature of social interactions may effectively transform a local dilemma of cooperation into a global coordination problem.

  12. Radiative Symmetry Breaking in the Supersymmetric Minimal B-L Extended Standard Model

    CERN Document Server

    Burell, Zachary

    2016-01-01

    The Standard Model (SM) of particle physics is a precise model of electroweak interactions, however there is growing tension between the SM and observations (neutrino oscillations, dark matter, dark energy, baryogenesis, among others). There is no reason to expect the validity of the ad hoc SM to remain intact at energy scales above a few TeV, thus a more fundamental theory will almost certainly be required. Motivated by these considerations, we investigate a Supersymmetric version of a natural extension of the SM, the $U(1)_{B-L}$ model, that is obtained by gauging the accidental B-L symmetry that exists in the ordinary SM. The Supersymmetric $U(1)_{B-L}$ extended SM can resolve the neutrino mass problem, the dark matter problem, the hierarchy problem, and provides a mechanism for establishing the observed baryon asymmetry of the Universe. When we include quantum corrections to the Higgs potential of the model, we find that Radiative $B-L$ symmetry breaking occurs through the interplay between large Majorana...

  13. The Inverse Seesaw in Conformal Electro-Weak Symmetry Breaking and Phenomenological Consequences

    CERN Document Server

    Humbert, Pascal; Smirnov, Juri

    2015-01-01

    We study the inverse seesaw mechanism for neutrino masses and phenomenological consequences in the context of conformal electro-weak symmetry breaking. The main difference to the usual case is that all explicit fermion mass terms including Majorana masses for neutrinos are forbidden. All fermion mass terms arise therefore from vacuum expectation values of suitable scalars times some Yukawa couplings. This leads to interesting consequences for model building, neutrino mass phenomenology and the Dark Matter abundance. In the context of the inverse seesaw we find a favoured scenario with heavy pseudo-Dirac sterile neutrinos at the TeV scale, which in the conformal framework conspire with the electro-weak scale to generate keV scale warm Dark Matter. The mass scale relations provide naturally the correct relic abundance due to a freeze-in mechanism. We demonstrate also how conformal symmetry decouples the right-handed neutrino mass scale and effective lepton number violation. We find that lepton flavour violating...

  14. ${\\mathcal{PT}}$ symmetry breaking in photonic waveguides with competing gain rates

    CERN Document Server

    Kalozoumis, P A; Diakonos, F K; Schmelcher, P

    2016-01-01

    We consider a discrete $\\mathcal{PT}$ symmetric quadrimer optical structure with two competing gain parameters. The existence of the additional loss/gain rate has a major impact on the phase diagram of the system leading to multiple transitions, not only between the unbroken and a broken phase, but also between broken phases with distinct light propagation properties. The $\\mathcal{PT}$-unbroken phase is shown to be characterized by the vanishing of a symmetry-adapted nonlocal current ${Q}$, whose site-average behaves as a natural order parameter across the spontaneous symmetry breaking transition. Utilizing the quadrimer as a unit cell of a uniform lattice, we investigate how the corresponding band structure and the attendant beam dynamics in large waveguide arrays are affected by the existence of the second loss/gain parameter. The enriched band structure landscape yields the possibility to control the propagation length of a beam before divergence when the system resides in the broken $\\mathcal{PT}$ phase.

  15. Discriminative phenomenological features of scale invariant models for electroweak symmetry breaking

    Directory of Open Access Journals (Sweden)

    Katsuya Hashino

    2016-01-01

    Full Text Available Classical scale invariance (CSI may be one of the solutions for the hierarchy problem. Realistic models for electroweak symmetry breaking based on CSI require extended scalar sectors without mass terms, and the electroweak symmetry is broken dynamically at the quantum level by the Coleman–Weinberg mechanism. We discuss discriminative features of these models. First, using the experimental value of the mass of the discovered Higgs boson h(125, we obtain an upper bound on the mass of the lightest additional scalar boson (≃543 GeV, which does not depend on its isospin and hypercharge. Second, a discriminative prediction on the Higgs-photon–photon coupling is given as a function of the number of charged scalar bosons, by which we can narrow down possible models using current and future data for the di-photon decay of h(125. Finally, for the triple Higgs boson coupling a large deviation (∼+70% from the SM prediction is universally predicted, which is independent of masses, quantum numbers and even the number of additional scalars. These models based on CSI can be well tested at LHC Run II and at future lepton colliders.

  16. Moving vortex phases, dynamical symmetry breaking, and jamming for vortices in honeycomb pinning arrays

    Energy Technology Data Exchange (ETDEWEB)

    Reichhardt, Charles [Los Alamos National Laboratory; Reichhardt, Cynthia [Los Alamos National Laboratory

    2008-01-01

    We show using numerical simulations that vortices in honeycomb pinning arrays can exhibit a remarkable variety of dynamical phases that are distinct from those found for triangular and square pinning arrays. In the honeycomb arrays, it is possible for the interstitial vortices to form dimer or higher n-mer states which have an additional orientational degree of freedom that can lead to the formation of vortex molecular crystals. For filling fractions where dimer states appear, a dynamical symmetry breaking can occur when the dimers flow in one of two possible alignment directions. This leads to transport in the direction transverse to the applied drive. We show that dimerization produces distinct types of moving phases which depend on the direction of the driving force with respect to the pinning lattice symmetry. When the dimers are driven along certain directions, a reorientation of the dimers can produce a jamming phenomenon which results in a strong enhancement in the critical depinning force. The jamming can also cause unusual effects such as an increase in the critical depinning force when the size of the pinning sites is reduced.

  17. Chiral symmetry breaking and chiral polarization: Tests for finite temperature and many flavors

    Directory of Open Access Journals (Sweden)

    Andrei Alexandru

    2015-02-01

    Full Text Available It was recently conjectured that, in SU(3 gauge theories with fundamental quarks, valence spontaneous chiral symmetry breaking is equivalent to condensation of local dynamical chirality and appearance of chiral polarization scale Λch. Here we consider more general association involving the low-energy layer of chirally polarized modes which, in addition to its width (Λch, is also characterized by volume density of participating modes (Ω and the volume density of total chirality (Ωch. Few possible forms of the correspondence are discussed, paying particular attention to singular cases where Ω emerges as the most versatile characteristic. The notion of finite-volume “order parameter”, capturing the nature of these connections, is proposed. We study the effects of temperature (in Nf=0 QCD and light quarks (in Nf=12, both in the regime of possible symmetry restoration, and find agreement with these ideas. In Nf=0 QCD, results from several volumes indicate that, at the lattice cutoff studied, the deconfinement temperature Tc is strictly smaller than the overlap–valence chiral transition temperature Tch in real Polyakov line vacuum. Somewhat similar intermediate phase (in quark mass is also seen in Nf=12. It is suggested that deconfinement in Nf=0 is related to indefinite convexity of absolute X-distributions.

  18. Mirror Symmetry Breaking in Helical Polysilanes: Preference between Left and Right of Chemical and Physical Origin

    Directory of Open Access Journals (Sweden)

    Michiya Fujiki

    2010-08-01

    Full Text Available From elemental particles to human beings, matter is dissymmetric with respect to mirror symmetry. In 1860, Pasteur conjectured that biomolecular handedness— homochirality—may originate from certain inherent dissymmetric forces existing in the universe. Kipping, a pioneer of organosilicon chemistry, was interested in the handedness of sodium chlorate during his early research life. Since Kipping first synthesized several Si-Si bonded oligomers bearing phenyl groups, Si-Si bonded high polymers carrying various organic groups—polysilanes—can be prepared by sodium-mediated condensation of the corresponding organodichlorosilanes. Among these polysilanes, optically active helical polysilanes with enantiomeric pairs of organic side groups may be used for testing the mirror symmetry-breaking hypothesis by weak neutral current (WNC origin in the realm of chemistry and material science. Several theoretical studies have predicted that WNC-existing chiral molecules with stereogenic centers and/or stereogenic bonds allow for distinguishing between image and mirror image molecules. Based on several amplification mechanisms, theorists claimed that minute differences, though still very subtle, may be detectable by precise spectroscopic and physicochemical measurements if proper chiral molecular pairs were employed. The present paper reports comprehensively an inequality between six pairs of helical polysilane high polymers, presumably, detectable by (chiroptical and achiral 29Si-/13C- NMR spectra, and viscometric measurements.

  19. Role of Symmetry Breaking on the Optical Transitions in Lead-Salt Quantum Dots

    KAUST Repository

    Nootz, Gero

    2010-09-08

    The influence of quantum confinement on the one- and two-photon absorption spectra (1PA and 2PA) of PbS and PbSe semiconductor quantum dots (QDs) is investigated. The results show 2PA peaks at energies where only 1PA transitions are predicted and 1PA peaks where only 2PA transitions are predicted by the often used isotropic k•p four-band envelope function formalism. The first experimentally identified two-photon absorption peak coincides with the energy of the first one photon allowed transition. This first two-photon peak cannot be explained by band anisotropy, verifying that the inversion symmetry of the wave functions is broken and relaxation of the parity selection rules has to be taken into account to explain optical transitions in lead-salt QDs. Thus, while the band anisotropy of the bulk semiconductor plays a role in the absorption spectra, especially for the more anisotropic PbSe QDs, a complete model of the absorption spectra, for both 1PA and 2PA, must also include symmetry breaking of the quantum confined wave functions. These studies clarify the controversy of the origin of spectral features in lead-salt QDs. © 2010 American Chemical Society.

  20. Relativistic Anandan quantum phase and the Aharonov-Casher effect under Lorentz symmetry breaking effects in the cosmic string spacetime

    Science.gov (United States)

    Bakke, K.; Furtado, C.; Belich, H.

    2016-09-01

    From the modified Maxwell theory coupled to gravity, we establish a possible scenario of the violation of the Lorentz symmetry and write an effective metric for the cosmic string spacetime. Then, we investigate the arising of an analogue of the Anandan quantum phase for a relativistic Dirac neutral particle with a permanent magnetic dipole moment in the cosmic string spacetime under Lorentz symmetry breaking effects. Besides, we analyse the influence of the effects of the Lorentz symmetry violation and the topology of the defect on the Aharonov-Casher geometric quantum phase in the nonrelativistic limit.

  1. Spontaneous breaking of flavor symmetry and naturalness of nearly degenerate neutrino masses and bi-maximal mixing

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The gauge model with SO(3)F flavor symmetry and three Higgs triplets is studied. We show how the intriguing nearly degenerate neutrino mass and bi-maximal mixing scenario comes out naturally after spontaneous breaking of the symmetry. The hierarchy between the neutrino mass-squared differences, which is needed for reconciling both solar and atmospheric neutrino data, naturally results from an approximate permutation symmetry. The model can also lead to interesting phenomena on lepton-flavor violations via the SO(3)F gauge interactions.

  2. The linear U3 x U3 sigma Model, the sigma resonance and the spontaneous breaking of symmetries

    CERN Document Server

    Törnqvist, N A

    1998-01-01

    My recent fit of the light scalar mesons is discussed in the light of the U3 x U3 linear sigma model. The argument for why there exists a light and broad sigma meson is explained in more detail, and the mechanism of spontaneous symmetry breaking is discussed.

  3. Chirality and its spontaneous symmetry breaking in two liquid crystal systems

    Science.gov (United States)

    Kang, Louis

    Chirality, or handedness, is a key concept spanning all fields of natural science, from biology to mathematics. Chiral structures can arise from achiral building blocks that lack a handedness if their assembly is unstable to chiral deformations, a phenomenon called spontaneous symmetry breaking. We theoretically study the role of chirality in two systems composed of liquid crystals dissolved or suspended in water, and our results match those obtained experimentally by our collaborators. In the first system, we study achiral liquid crystals whose Frank twist modulus is much lower than their splay and bend Frank moduli and which are confined in capillaries. Under homeotropic anchoring, their ground state configuration undergoes spontaneous chiral symmetry breaking when the twist modulus decreases enough relative to the splay and bend moduli. Under degenerate planar anchoring, a small twist-to-saddle-splay ratio of elastic moduli leads to degenerate twisted configurations even though an undeformed configuration is possible. Measuring the twist profile of an experimental system produces a value for the saddle-splay constant, which has been difficult to achieve previously. Under either boundary condition, domain walls and point defects, whose topological charges depend on chirality, separate domains with different degenerate configurations, and certain ones are energetically preferred over others. In the second system, we study filamentous viruses acting as colloidal liquid crystals under the influence of depletion, which promotes condensation of the viruses into 2D colloidal monolayers. These membranes have tunable chirality and show a rich array of emergent behaviors, including a transition from a circular shape to a striking starfish shape upon changing the chirality of constituent viruses, partial coalescence via domain walls through which the viruses twist by 180 degrees, and phase-separated rafts of a particular size when two virus species with different lengths

  4. Electromagnetic duality symmetry and helicity conservation for the macroscopic Maxwell's equations (previously "Experimental demonstration of electromagnetic duality symmetry breaking")

    CERN Document Server

    Fernandez-Corbaton, Ivan; Tischler, Nora; Minovich, Alexander; Vidal, Xavier; Juan, Mathieu L; Molina-Terriza, Gabriel

    2013-01-01

    Modern physics is largely devoted to study conservation laws, such as charge, energy, linear momentum or angular momentum, because they give us information about the symmetries of our universe. Here, we propose to add the relationship between electromagnetic duality and helicity to the toolkit. Generalized electromagnetic duality symmetry, broken in the microscopic Maxwell's equations by the empirical absence of magnetic charges, can be restored for the macroscopic Maxwell's equations. The restoration of this symmetry is shown to be independent of the geometry of the problem. These results provide a simple and powerful tool for the study of light-matter interactions within the framework of symmetries and conservation laws. We apply such framework to the experimental investigation of helicity transformations in cylindrical nanoapertures, and we find that the transformation is significantly enhanced by the coupling to surface modes, where electromagnetic duality is strongly broken.

  5. On a relativistic scalar particle subject to a Coulomb-type potential given by Lorentz symmetry breaking effects

    CERN Document Server

    Bakke, K

    2015-01-01

    The behaviour of a relativistic scalar particle in a possible scenario that arises from the violation of the Lorentz symmetry is investigated. The background of the Lorentz symmetry violation is defined by a tensor field that governs the Lorentz symmetry violation out of the Standard Model Extension. Thereby, we show that a Coulomb-type potential can be induced by Lorentz symmetry breaking effects and bound states solutions to the Klein-Gordon equation can be obtained. Further, we discuss the effects of this Coulomb-type potential on the confinement of the relativistic scalar particle to a linear confining potential by showing that bound states solutions to the Klein-Gordon equation can also be achieved, and obtain a quantum effect characterized by the dependence of a parameter of the linear confining potential on the quantum numbers $\\left\\{n,l\\right\\}$ of the system.

  6. Breaking the boundary layer symmetry in turbulent convection using wall geometry

    CERN Document Server

    Toppaladoddi, Srikanth; Wettlaufer, John S

    2014-01-01

    We systematically probe the interaction of the boundary layer with the core flow during two-dimensional turbulent Rayleigh-B\\'{e}nard convection using numerical simulations and scaling theory. The boundary layer/core flow interaction is manipulated by configuring the top plate with a sinusoidal geometry and breaking the symmetry between the top and bottom thermal boundary layers. At long wavelength the planar results are recovered. However, at intermediate wavelengths, and for Rayleigh numbers ($Ra$) such that the amplitude of the roughness elements is larger than the boundary layer thickness, there is enhanced cold plume production at the tips of the elements. It is found that, while the interior of the flow is well mixed as in the classical theory of Malkus, the mean temperature is lower than that in the planar case. For a Prandtl number of unity and $Ra = 10^6$ to $2.5 \\times 10^9$ we find a Nusselt number ($Nu$) scaling law of $Nu = 0.052 \\times Ra^{0.34}$, in good agreement with recent experiments. The c...

  7. Fluctuations and symmetry breaking during regeneration of Hydra vulgaris tissue toroids

    CERN Document Server

    Krahe, Michael; Lin, Kao-Nung; Fischer, Julia; Fütterer, Claus

    2012-01-01

    While much is known in single cell mechanics, the mechanics of regeneration of naturally grown tissues and cell assemblies is largely unexplored. We found a symmetry breaking scenario accompanied by shape fluctuations in dissected regenerating Hydra vulgaris tissue tori. A subsequent folding and merging process leads finally to a regenerating spheroid. These phenomena are related to the dynamics of fluorescent beta- and trans-cellular alpha-actin structures. By embedding the tissues in a hydro-gel the fluctuations could be studied over a longer period of time. The power spectrum of the torus-fluctuations shows a non-trivial energy distribution dynamics depending on the gel stiffness. During the transition, many higher modes where found but in the end the 2nd mode wins in most cases. The toroid builds up an uniform alpha-actin ring along the inner edge of the torus. We found this ring in the inner cellular layer to be responsible for the force generation destabilizing the toroid shape. This actin structure is ...

  8. Vacuum Stability and Radiative Electroweak Symmetry Breaking in an SO(10) Dark Matter Model

    CERN Document Server

    Mambrini, Yann; Olive, Keith A; Zheng, Jiaming

    2016-01-01

    Vacuum stability in the Standard Model is problematic as the Higgs quartic self-coupling runs negative at a renormalization scale of about $10^{10}$ GeV. We consider a non-supersymmetric SO(10) grand unification model for which gauge coupling unification is made possible through an intermediate scale gauge group, $G_{\\rm int}=\\text{SU}(3)_C\\otimes \\text{SU}(2)_L\\otimes \\text{SU}(2)_R \\otimes \\text{U}(1)_{B-L}$. $G_{\\rm int}$ is broken by the vacuum expectation value of a 126 of SO(10) which not only provides for neutrino masses through the see-saw mechanism, but also preserves a discrete $\\mathbb{Z}_2$ that can account for the stability of a dark matter candidate, here taken to be the Standard Model singlet component of a bosonic 16. We show that in addition to these features, the model insures the positivity of the Higgs quartic coupling through its interactions to the dark matter multiplet and 126. We also show that the Higgs mass-squared runs negative triggering electroweak symmetry breaking. Thus the vacu...

  9. Chiral symmetry breaking by spatial confinement in tactoidal droplets of lyotropic chromonic liquid crystals.

    Science.gov (United States)

    Tortora, Luana; Lavrentovich, Oleg D

    2011-03-29

    In many colloidal systems, an orientationally ordered nematic (N) phase emerges from the isotropic (I) melt in the form of spindle-like birefringent tactoids. In cases studied so far, the tactoids always reveal a mirror-symmetric nonchiral structure, sometimes even when the building units are chiral. We report on chiral symmetry breaking in the nematic tactoids formed in molecularly nonchiral polymer-crowded aqueous solutions of low-molecular weight disodium cromoglycate. The parity is broken by twisted packing of self-assembled molecular aggregates within the tactoids as manifested by the observed optical activity. Fluorescent confocal microscopy reveals that the chiral N tactoids are located at the boundaries of cells. We explain the chirality induction as a replacement of energetically costly splay packing of the aggregates within the curved bipolar tactoidal shape with twisted packing. The effect represents a simple pathway of macroscopic chirality induction in an organic system with no molecular chirality, as the only requirements are orientational order and curved shape of confinement.

  10. Spontaneous symmetry breaking of self-trapped and leaky modes in quasi-double-well potentials

    CERN Document Server

    Zegadlo, Krzysztof B; Trippenbach, Marek; Karpierz, Miroslaw A; Malomed, Boris A

    2016-01-01

    We investigate competition between two phase transitions of the second kind induced by the self-attractive nonlinearity, viz., self-trapping of the leaky modes, and spontaneous symmetry breaking (SSB) of both fully trapped and leaky states. We use a one-dimensional mean-field model, which combines the cubic nonlinearity and a double-well-potential (DWP) structure with an elevated floor, which supports leaky modes (quasi-bound states) in the linear limit. The setting can be implemented in nonlinear optics and BEC. The order in which the SSB and self-trapping transitions take place with the growth of the nonlinearity strength depends on the height of the central barrier of the DWP: the SSB happens first if the barrier is relatively high, while self-trapping comes first if the barrier is lower. The SSB of the leaky modes is characterized by specific asymmetry of their radiation tails, which, in addition, feature a resonant dependence on the relation between the total size of the system and radiation wavelength. ...

  11. Current-current interactions, dynamical symmetry-breaking, and quantum chromodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Neuenschwander, D.E. Jr.

    1983-01-01

    Quantum Chromodynamics with massive gluons (gluon mass triple bond xm/sub p/) in a contact-interaction limit called CQCD (strong coupling g..-->..infinity; x..-->..infinity), despite its non-renormalizability and lack of hope of confinement, is nevertheless interesting for at least two reasons. Some authors have suggested a relation between 4-Fermi and Yang-Mills theories. If g/x/sup 2/ much less than 1, then CQCD is not merely a 4-Fermi interaction, but includes 4,6,8 etc-Fermi non-Abelian contact interactions. With possibility of infrared slavery, perturbative evaluation of QCD in the infrared is a dubious practice. However, if g/sup 2//x/sup 2/ much less than 1 in CQCD, then the simplest 4-Fermi interaction is dominant, and CQCD admits perturbative treatment, but only in the infrared. With the dominant interaction, a dynamical Nambu-Goldstone realization of chiral symmetry-breaking (XSB) is found. Although in QCD the relation between confinement and XSB is controversial, XSB occurs in CQCD provided confinement is sacrificed.

  12. Spontaneous symmetry breaking in nonlinear systems: An overview and a simple model

    CERN Document Server

    Malomed, Boris A

    2015-01-01

    The paper combines two topics belonging to the general theme of the spontaneous symmetry breaking (SSB) in systems including two basic competing ingredients: the self-focusing cubic nonlinearity and a double-well-potential (DWP) structure. Such systems find diverse physical realizations, chiefly in optical waveguides, made of a nonlinear material and featuring a transverse DWP structure, and in models of atomic BEC with attractive inter-atomic interactions, loaded into a pair of symmetric potential wells coupled by tunneling across the separating barrier. With the increase of the nonlinearity strength, the SSB occurs at a critical value of the strength. The first part of the paper offers a brief overview of the topic. The second part presents a model which is designed as the simplest one capable to produce the SSB phenomenology in the one-dimensional geometry. The model is based on the DWP built as an infinitely deep potential box, which is split into two wells by a delta-functional barrier at the central poi...

  13. Global Currents, Phase Transitions, and Chiral Symmetry Breaking in Large N_c Gauge Theory

    CERN Document Server

    Albash, T; Johnson, C V; Kundu, A; Albash, Tameem; Filev, Veselin; Johnson, Clifford V.; Kundu, Arnab

    2006-01-01

    We study the finite temperature dynamics of SU(N_c) gauge theory for large N_c, with fundamental quark flavours in a quenched approximation, in the presence of a fixed charge under a global current. We observe several notable phenomena. There is a first order phase transition where the quark condensate jumps discontinuously at finite quark mass, generalizing similar transitions seen at zero charge. We find a non-zero condensate at zero quark mass above a critical value of the charge, corresponding to an analogue of spontaneous chiral symmetry breaking at finite number density. We find that the spectrum of mesons contains the expected associated Goldstone (``pion'') degrees of freedom with a mass dependence on the quark mass that is consistent with the Gell-Mann-Oakes-Renner relation. Our tool in these studies is holography, the string dual of the gauge theory being the geometry of $N_c$ spinning D3-branes at finite temperature, probed by a D7-brane.

  14. Random matrix model for chiral symmetry breaking and color superconductivity in QCD at finite density

    CERN Document Server

    Vanderheyden, B J; Vanderheyden, Benoit

    2000-01-01

    We consider a random matrix model which describes the competition between chiral symmetry breaking and the formation of quark Cooper pairs in QCD at finite density. We study the evolution of the phase structure in temperature and chemical potential with variations of the strength of the interaction in the quark-quark channel and demonstrate that the phase diagram can realize a total of six different topologies. A vector interaction representing single-gluon exchange reproduces a topology commonly encountered in previous QCD models, in which a low-density chiral broken phase is separated from a high-density diquark phase by a first-order line. The other five topologies either do not possess a diquark phase or display a new phase and new critical points. Since these five cases require large variations of the coupling constants away from the values expected for a vector interaction, we conclude that the phase diagram of finite density QCD has the topology suggested by single-gluon exchange and that this topology...

  15. On the stability of multi-scale models of dynamical symmetry breaking from holography

    CERN Document Server

    Faedo, Anton F; Schofield, Daniel

    2013-01-01

    We consider two classes of backgrounds of Type IIB supergravity obtained by wrapping D5-branes on a two-cycle inside the conifold. The field theory dual exhibits confinement and, in addition, a region in which the dynamics is walking, at least in the weak sense that the running of the coupling is anomalously slow. We introduce quenched matter in the fundamental, modelled by probe D7-branes which wrap an internal three-dimensional manifold and lie at the equator of the transverse two-sphere. In the space spanned by the remaining internal angle and the radial coordinate the branes admit two embeddings. The first one is U-shaped: the branes merge at some finite value of the radius. The second one is disconnected and extends along the entire radial direction at fixed angular separation. We interpret these two configurations as corresponding to chiral-symmetry breaking and preserving phases, respectively. We present a simple diagnostic tool to examine the classical stability of the embedding, based on the concavit...

  16. Quantum anomalous Hall effect in time-reversal-symmetry breaking topological insulators

    Science.gov (United States)

    Chang, Cui-Zu; Li, Mingda

    2016-03-01

    The quantum anomalous Hall effect (QAHE), the last member of Hall family, was predicted to exhibit quantized Hall conductivity {σyx}=\\frac{{{e}2}}{h} without any external magnetic field. The QAHE shares a similar physical phenomenon with the integer quantum Hall effect (QHE), whereas its physical origin relies on the intrinsic topological inverted band structure and ferromagnetism. Since the QAHE does not require external energy input in the form of magnetic field, it is believed that this effect has unique potential for applications in future electronic devices with low-power consumption. More recently, the QAHE has been experimentally observed in thin films of the time-reversal symmetry breaking ferromagnetic (FM) topological insulators (TI), Cr- and V- doped (Bi,Sb)2Te3. In this topical review, we review the history of TI based QAHE, the route to the experimental observation of the QAHE in the above two systems, the current status of the research of the QAHE, and finally the prospects for future studies.

  17. A Class of Nonperturbative Configurations in Abelian-Higgs Models: Complexity from Dynamical Symmetry Breaking

    CERN Document Server

    Gleiser, Marcelo

    2008-01-01

    We present a numerical investigation of the dynamics of symmetry breaking in both Abelian and non-Abelian $[S U (2)]$ Higgs models in three spatial dimensions. We find a class of time-dependent, long-lived nonperturbative field configurations within the range of parameters corresponding to type-1 superconductors, that is, with vector masses ($m_v$) larger than scalar masses ($m_s$). We argue that these emergent nontopological configurations are related to oscillons found previously in other contexts. For the Abelian-Higgs model, our lattice implementation allows us to map the range of parameter space -- the values of $\\beta = (m_s /m_v)^2$ -- where such configurations exist and to follow them for times $t \\sim \\O(10^5) m^{-1}$. An investigation of their properties for $\\hat z$-symmetric models reveals an enormously rich structure of resonances and mode-mode oscillations reminiscent of excited atomic states. For the SU(2) case, we present preliminary results indicating the presence of similar oscillonic config...

  18. Radiative Symmetry Breaking on D-branes at Non-supersymmetric Singularities

    CERN Document Server

    Kitazawa, N

    2006-01-01

    The possibility of radiative gauge symmetry breaking on D3-branes at non-supersymmetric orbifold singularities is examined. As an example, a simple model of D3-branes at non-supersymmetric C^3/Z_6 singularity with some D7-branes for the cancellations of R-R tadpoles in twisted sectors is analyzed in detail. We find that there are no tachyon modes in twisted sectors, and NS-NS tadpoles in twisted sectors are canceled out, though uncanceled tadpoles and tachyon modes exist in untwisted sectors. This means that this singularity background is a stable solution of string theory at tree level, though some specific compactification of six-dimensional space should be considered for a consistent untwisted sector. On D3-brane three massless "Higgs doublet fields" and three family "up-type quarks" are realized at tree level. Other fermion fields, "down-type quarks" and "leptons", can be realized as massless modes of the open strings stretching between D3-branes and D7-branes. The Higgs doublet fields have Yukawa couplin...

  19. Symmetry breaking: A heuristic approach to chaotic scattering in many dimensions

    Science.gov (United States)

    Benet, L.; Broch, J.; Merlo, O.; Seligman, T. H.

    2005-03-01

    As the theory of chaotic scattering in high-dimensional systems is poorly developed, it is very difficult to determine initial conditions for which interesting scattering events, such as long delay times, occur. We propose to use symmetry breaking as a way to gain the insight necessary to determine low-dimensional subspaces of initial conditions in which we can find such events easily. We study numerically the planar scattering off a disk moving on an elliptic Kepler orbit, as a simplified model of the elliptic restricted three-body problem. When the motion of the disk is circular, the system has an integral of motion, the Jacobi integral, which is no longer conserved for nonvanishing eccentricity. In the latter case, the system has an effective five-dimensional phase space and is therefore not amenable for study with the usual methods. Using the symmetric problem as a starting point we define an appropriate two-dimensional subspace of initial conditions by fixing some coordinates. This subspace proves to be useful to define scattering experiments where the rich and nontrivial dynamics of the problem is illustrated. We consider in particular trajectories which take very long before escaping or are trapped by consecutive collisions with the disk.

  20. Electroweak symmetry breaking without a Higgs boson in warped backgrounds constraints and signatures

    CERN Document Server

    Davoudiasl, H; Lillie, Benjamin Huntington; Rizzo, T G; 10.1103/PhysRevD.70.015006

    2004-01-01

    A warped 5-dimensional SU(2)$_L \\times SU(2)_R \\times$ U(1)$_{B-L}$ model has been recently proposed to implement electroweak symmetry breaking through boundary conditions, without the presence of a Higgs boson. This proposal is based on the Randall-Sundrum hierarchy solution. We use precision electroweak data to constrain the general parameter space of this model. Our analysis includes independent $L$ and $R$ gauge couplings, radiatively induced boundary gauge kinetic terms, and all higher order corrections from the curvature of the 5-d space. We show that this setup can be brought into good agreement with the precision electroweak data for typical values of the parameters. However, this set of parameters leads to violation of unitarity in gauge boson scattering, and hence this model is excluded in its present form. Assuming that unitarity can be restored in a modified version of this scenario, we consider the collider signatures. It is found that new spin-1 states will be observed at the LHC and measurement...