WorldWideScience

Sample records for actin gene family

  1. Actin genes and their expression in pacific white shrimp, Litopenaeus vannamei.

    Science.gov (United States)

    Zhang, Xiaoxi; Zhang, Xiaojun; Yuan, Jianbo; Du, Jiangli; Li, Fuhua; Xiang, Jianhai

    2018-04-01

    Actin is a multi-functional gene family that can be divided into muscle-type actins and non-muscle-type actins. In this study, 37 unigenes encoding actins were identified from RNA-Seq data of Pacific white shrimp, Litopenaeus vannamei. According to phylogenetic analysis, four and three cDNAs belong to cytoplasmic- and heart-type actins and were named LvActinCT and LvActinHT, respectively. 10 cDNAs belong to the slow-type skeletal muscle actins, and 18 belong to the fast-type skeletal muscle actins; they were designated LvActinSSK and LvActinFSK, respectively. Some muscle actin genes formed gene clusters in the genome. Multiple alternative transcription starts sites (ATSSs) were found for LvActinCT1. Based on the early developmental expression profile, almost all LvActins were highly expressed between the early limb bud and post-larval stages. Using LvActinSSK5 as probes, slow-type muscle was localized in pleopod muscle and superficial ventral muscle. We also found three actin genes that were down-regulated in the hemocytes of white spot syndrome virus (WSSV)- and Vibrio parahaemolyticus-infected L. vannamei. This study provides valuable information on the actin gene structure of shrimp, furthers our understanding of the shrimp muscle system and helps us develop strategies for disease control and sustainable shrimp farming.

  2. The actin multigene family of Paramecium tetraurelia

    Directory of Open Access Journals (Sweden)

    Wagner Erika

    2007-03-01

    Full Text Available Abstract Background A Paramecium tetraurelia pilot genome project, the subsequent sequencing of a Megabase chromosome as well as the Paramecium genome project aimed at gaining insight into the genome of Paramecium. These cells display a most elaborate membrane trafficking system, with distinct, predictable pathways in which actin could participate. Previously we had localized actin in Paramecium; however, none of the efforts so far could proof the occurrence of actin in the cleavage furrow of a dividing cell, despite the fact that actin is unequivocally involved in cell division. This gave a first hint that Paramecium may possess actin isoforms with unusual characteristics. The genome project gave us the chance to search the whole Paramecium genome, and, thus, to identify and characterize probably all actin isoforms in Paramecium. Results The ciliated protozoan, P. tetraurelia, contains an actin multigene family with at least 30 members encoding actin, actin-related and actin-like proteins. They group into twelve subfamilies; a large subfamily with 10 genes, seven pairs and one trio with > 82% amino acid identity, as well as three single genes. The different subfamilies are very distinct from each other. In comparison to actins in other organisms, P. tetraurelia actins are highly divergent, with identities topping 80% and falling to 30%. We analyzed their structure on nucleotide level regarding the number and position of introns. On amino acid level, we scanned the sequences for the presence of actin consensus regions, for amino acids of the intermonomer interface in filaments, for residues contributing to ATP binding, and for known binding sites for myosin and actin-specific drugs. Several of those characteristics are lacking in several subfamilies. The divergence of P. tetraurelia actins and actin-related proteins between different P. tetraurelia subfamilies as well as with sequences of other organisms is well represented in a phylogenetic

  3. Developmental expression of the alpha-skeletal actin gene

    Directory of Open Access Journals (Sweden)

    Vonk Freek J

    2008-06-01

    Full Text Available Abstract Background Actin is a cytoskeletal protein which exerts a broad range of functions in almost all eukaryotic cells. In higher vertebrates, six primary actin isoforms can be distinguished: alpha-skeletal, alpha-cardiac, alpha-smooth muscle, gamma-smooth muscle, beta-cytoplasmic and gamma-cytoplasmic isoactin. Expression of these actin isoforms during vertebrate development is highly regulated in a temporal and tissue-specific manner, but the mechanisms and the specific differences are currently not well understood. All members of the actin multigene family are highly conserved, suggesting that there is a high selective pressure on these proteins. Results We present here a model for the evolution of the genomic organization of alpha-skeletal actin and by molecular modeling, illustrate the structural differences of actin proteins of different phyla. We further describe and compare alpha-skeletal actin expression in two developmental stages of five vertebrate species (mouse, chicken, snake, salamander and fish. Our findings confirm that alpha-skeletal actin is expressed in skeletal muscle and in the heart of all five species. In addition, we identify many novel non-muscular expression domains including several in the central nervous system. Conclusion Our results show that the high sequence homology of alpha-skeletal actins is reflected by similarities of their 3 dimensional protein structures, as well as by conserved gene expression patterns during vertebrate development. Nonetheless, we find here important differences in 3D structures, in gene architectures and identify novel expression domains for this structural and functional important gene.

  4. Molecular evolution of the actin-like MreB protein gene family in wall-less bacteria.

    Science.gov (United States)

    Ku, Chuan; Lo, Wen-Sui; Kuo, Chih-Horng

    2014-04-18

    The mreB gene family encodes actin-like proteins that determine cell shape by directing cell wall synthesis and often exists in one to three copies in the genomes of non-spherical bacteria. Intriguingly, while most wall-less bacteria do not have this gene, five to seven mreB homologs are found in Spiroplasma and Haloplasma, which are both characterized by cell contractility. To investigate the molecular evolution of this gene family in wall-less bacteria, we sampled the available genome sequences from these two genera and other related lineages for comparative analysis. The gene phylogenies indicated that the mreB homologs in Haloplasma are more closely related to those in Firmicutes, whereas those in Spiroplasma form a separate clade. This finding suggests that the gene family expansions in these two lineages are the results of independent ancient duplications. Moreover, the Spiroplasma mreB homologs can be classified into five clades, of which the genomic positions are largely conserved. The inference of gene gains and losses suggests that there has been an overall trend to retain only one homolog from each of the five mreB clades in the evolutionary history of Spiroplasma. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Bioinformatics study of the mangrove actin genes

    Science.gov (United States)

    Basyuni, M.; Wasilah, M.; Sumardi

    2017-01-01

    This study describes the bioinformatics methods to analyze eight actin genes from mangrove plants on DDBJ/EMBL/GenBank as well as predicted the structure, composition, subcellular localization, similarity, and phylogenetic. The physical and chemical properties of eight mangroves showed variation among the genes. The percentage of the secondary structure of eight mangrove actin genes followed the order of a helix > random coil > extended chain structure for BgActl, KcActl, RsActl, and A. corniculatum Act. In contrast to this observation, the remaining actin genes were random coil > extended chain structure > a helix. This study, therefore, shown the prediction of secondary structure was performed for necessary structural information. The values of chloroplast or signal peptide or mitochondrial target were too small, indicated that no chloroplast or mitochondrial transit peptide or signal peptide of secretion pathway in mangrove actin genes. These results suggested the importance of understanding the diversity and functional of properties of the different amino acids in mangrove actin genes. To clarify the relationship among the mangrove actin gene, a phylogenetic tree was constructed. Three groups of mangrove actin genes were formed, the first group contains B. gymnorrhiza BgAct and R. stylosa RsActl. The second cluster which consists of 5 actin genes the largest group, and the last branch consist of one gene, B. sexagula Act. The present study, therefore, supported the previous results that plant actin genes form distinct clusters in the tree.

  6. Actin gene identification from selected medicinal plants for their use as internal controls for gene expression studies

    International Nuclear Information System (INIS)

    Mufti, F.U.D.; Banaras, S.

    2015-01-01

    Internal control genes are the constitutive genes which maintain the basic cellular functions and regularly express in both normal and stressed conditions in living organisms. They are used in normalization of gene expression studies in comparative analysis of target genes, as their expression remains comparatively unchanged in all varied conditions. Among internal control genes, actin is considered as a candidate gene for expression studies due to its vital role in shaping cytoskeleton and plant physiology. Unfortunately most of such knowledge is limited to only model plants or crops, not much is known about important medicinal plants. Therefore, we selected seven important medicinal wild plants for molecular identification of actin gene. We used gene specific primers designed from the conserved regions of several known orthologues or homologues of actin genes from other plants. The amplified products of 370-380 bp were sequenced and submitted to GeneBank after their confirmation using different bioinformatics tools. All the novel partial sequences of putative actin genes were submitted to GeneBank (Parthenium hysterophorus (KJ774023), Fagonia indica (KJ774024), Rhazya stricta (KJ774025), Whithania coagulans (KJ774026), Capparis decidua (KJ774027), Verbena officinalis (KJ774028) and Aerva javanica (KJ774029)). The comparisons of these partial sequences by Basic Local Alignment Search Tool (BLAST) and phylogenetic trees demonstrated high similarity with known actin genes of other plants. Our findings illustrated highly conserved nature of actin gene among these selected plants. These novel partial fragments of actin genes from these wild medicinal plants can be used as internal controls for future gene expression studies of these important plants after precise validations of their stable expression in such plants. (author)

  7. Comparative genome analysis reveals a conserved family of actin-like proteins in apicomplexan parasites

    Directory of Open Access Journals (Sweden)

    Sibley L David

    2005-12-01

    Full Text Available Abstract Background The phylum Apicomplexa is an early-branching eukaryotic lineage that contains a number of important human and animal pathogens. Their complex life cycles and unique cytoskeletal features distinguish them from other model eukaryotes. Apicomplexans rely on actin-based motility for cell invasion, yet the regulation of this system remains largely unknown. Consequently, we focused our efforts on identifying actin-related proteins in the recently completed genomes of Toxoplasma gondii, Plasmodium spp., Cryptosporidium spp., and Theileria spp. Results Comparative genomic and phylogenetic studies of apicomplexan genomes reveals that most contain only a single conventional actin and yet they each have 8–10 additional actin-related proteins. Among these are a highly conserved Arp1 protein (likely part of a conserved dynactin complex, and Arp4 and Arp6 homologues (subunits of the chromatin-remodeling machinery. In contrast, apicomplexans lack canonical Arp2 or Arp3 proteins, suggesting they lost the Arp2/3 actin polymerization complex on their evolutionary path towards intracellular parasitism. Seven of these actin-like proteins (ALPs are novel to apicomplexans. They show no phylogenetic associations to the known Arp groups and likely serve functions specific to this important group of intracellular parasites. Conclusion The large diversity of actin-like proteins in apicomplexans suggests that the actin protein family has diverged to fulfill various roles in the unique biology of intracellular parasites. Conserved Arps likely participate in vesicular transport and gene expression, while apicomplexan-specific ALPs may control unique biological traits such as actin-based gliding motility.

  8. Characterizing interaction forces between actin and proteins of the tropomodulin family reveals the presence of the N-terminal actin-binding site in leiomodin.

    Science.gov (United States)

    Arslan, Baran; Colpan, Mert; Gray, Kevin T; Abu-Lail, Nehal I; Kostyukova, Alla S

    2018-01-15

    Tropomodulin family of proteins includes several isoforms of tropomodulins (Tmod) and leiomodins (Lmod). These proteins can sequester actin monomers or nucleate actin polymerization. Although it is known that their actin-binding properties are isoform-dependent, knowledge on how they vary in strengths of interactions with G-actin is missing. While it is confirmed in many studies that Tmods have two actin-binding sites, information on number and location of actin-binding sites in Lmod2 is controversial. We used atomic force microscopy to study interactions between G-actin and proteins of the tropomodulin family. Unbinding forces between G-actin and Tmod1, Tmod2, Tmod3, or Lmod2 were quantified. Our results indicated that Tmod1 and Tmod3 had unimodal force distributions, Tmod2 had a bimodal distribution and Lmod2 had a trimodal distribution. The number of force distributions correlates with the proteins' abilities to sequester actin or to nucleate actin polymerization. We assigned specific unbinding forces to the individual actin-binding sites of Tmod2 and Lmod2 using mutations that destroy actin-binding sites of Tmod2 and truncated Lmod2. Our results confirm the existence of the N-terminal actin-binding site in Lmod2. Altogether, our data demonstrate how the differences between the number and the strength of actin-binding sites of Tmod or Lmod translate to their functional abilities. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. MRP-1/CD9 gene transduction regulates the actin cytoskeleton through the downregulation of WAVE2.

    Science.gov (United States)

    Huang, C-L; Ueno, M; Liu, D; Masuya, D; Nakano, J; Yokomise, H; Nakagawa, T; Miyake, M

    2006-10-19

    Motility-related protein-1 (MRP-1/CD9) is involved in cell motility. We studied the change in the actin cytoskeleton, and the expression of actin-related protein (Arp) 2 and Arp3 and the Wiskott-Aldrich syndrome protein (WASP) family according to MRP-1/CD9 gene transduction into HT1080 cells. The frequency of cells with lamellipodia was significantly lower in MRP-1/CD9-transfected HT1080 cells than in control HT1080 cells (PMRP-1/CD9 gene transduction affected the subcellular localization of Arp2 and Arp3 proteins. Furthermore, MRP-1/CD9 gene transduction induced a downregulation of WAVE2 expression (PMRP-1/CD9 monoclonal antibody inhibited downregulation of WAVE2 in MRP-1/CD9-transfected HT1080 cells (PMRP-1/CD9 gene transduction. Furthermore, downregulation of WAVE2 by transfection of WAVE2-specific small interfering RNA (siRNA) mimicked the morphological effects of MRP-1/CD9 gene transduction and suppressed cell motility. However, transfection of each siRNA for Wnt1, Wnt2b1 or Wnt5a did not affect WAVE2 expression. Transfection of WAVE2-specific siRNA also did not affect expressions of these Wnts. These results indicate that MRP-1/CD9 regulates the actin cytoskeleton by downregulating of the WAVE2, through the Wnt-independent signal pathway.

  10. Molecular analysis of an actin gene, CarACT1, from chickpea (Cicer arietinum L.).

    Science.gov (United States)

    Peng, Hui; Cheng, Huiying; Yu, Xingwang; Shi, Qinghua; Zhang, Hua; Li, Jiangui; Ma, Hao

    2010-02-01

    Actins are ubiquitous and highly conserved proteins that play key roles in cell formation and cellular activities. In this study, an actin gene was isolated from chickpea for the first time and designated as CarACT1 (for Cicer arietinum L. actin gene 1; Genbank accession no. EU529707). It encoded a putative protein with 377 amino acids and contained five exons and four introns within genomic DNA sequence. CarACT1 was localized in cytoplasm and showed high similarity to other well known actins from various species. Reverse transcription-polymerase chain reaction (RT-PCR) assay proved that CarACT1 transcripts were ubiquitously accumulated in all major organs, such as seedling roots, stems, leaves, flowers, young pods, and seeds, as well as in diverse developmental stages, such as leaf senescence, seed development and germination. Our results suggested that CarACT1 is an actin gene with physiological functions and may be served as a potential reference gene for transcription level of interesting genes in chickpea.

  11. Mapping of the Mouse Actin Capping Protein Beta Subunit Gene

    Directory of Open Access Journals (Sweden)

    Cooper John A

    2000-07-01

    Full Text Available Abstract Background Capping protein (CP, a heterodimer of α and β subunits, is found in all eukaryotes. CP binds to the barbed ends of actin filaments in vitro and controls actin assembly and cell motility in vivo. Vertebrates have three isoforms of CPβ produced by alternatively splicing from one gene; lower organisms have one gene and one isoform. Results We isolated genomic clones corresponding to the β subunit of mouse CP and identified its chromosomal location by interspecies backcross mapping. Conclusions The CPβ gene (Cappb1 mapped to Chromosome 4 between Cdc42 and D4Mit312. Three mouse mutations, snubnose, curly tail, and cribriform degeneration, map in the vicinity of the β gene.

  12. Clarin-1, encoded by the Usher Syndrome III causative gene, forms a membranous microdomain: possible role of clarin-1 in organizing the actin cytoskeleton.

    Science.gov (United States)

    Tian, Guilian; Zhou, Yun; Hajkova, Dagmar; Miyagi, Masaru; Dinculescu, Astra; Hauswirth, William W; Palczewski, Krzysztof; Geng, Ruishuang; Alagramam, Kumar N; Isosomppi, Juha; Sankila, Eeva-Marja; Flannery, John G; Imanishi, Yoshikazu

    2009-07-10

    Clarin-1 is the protein product encoded by the gene mutated in Usher syndrome III. Although the molecular function of clarin-1 is unknown, its primary structure predicts four transmembrane domains similar to a large family of membrane proteins that include tetraspanins. Here we investigated the role of clarin-1 by using heterologous expression and in vivo model systems. When expressed in HEK293 cells, clarin-1 localized to the plasma membrane and concentrated in low density compartments distinct from lipid rafts. Clarin-1 reorganized actin filament structures and induced lamellipodia. This actin-reorganizing function was absent in the modified protein encoded by the most prevalent North American Usher syndrome III mutation, the N48K form of clarin-1 deficient in N-linked glycosylation. Proteomics analyses revealed a number of clarin-1-interacting proteins involved in cell-cell adhesion, focal adhesions, cell migration, tight junctions, and regulation of the actin cytoskeleton. Consistent with the hypothesized role of clarin-1 in actin organization, F-actin-enriched stereocilia of auditory hair cells evidenced structural disorganization in Clrn1(-/-) mice. These observations suggest a possible role for clarin-1 in the regulation and homeostasis of actin filaments, and link clarin-1 to the interactive network of Usher syndrome gene products.

  13. Genome-wide identification, phylogenetic classification, and exon-intron structure characterisation of the tubulin and actin genes in flax (Linum usitatissimum).

    Science.gov (United States)

    Pydiura, Nikolay; Pirko, Yaroslav; Galinousky, Dmitry; Postovoitova, Anastasiia; Yemets, Alla; Kilchevsky, Aleksandr; Blume, Yaroslav

    2018-06-08

    Flax (Linum usitatissimum L.) is a valuable food and fiber crop cultivated for its quality fiber and seed oil. α-, β-, γ-tubulins and actins are the main structural proteins of the cytoskeleton. α- and γ-tubulin and actin genes have not been characterized yet in the flax genome. In this study, we have identified 6 α-tubulin genes, 13 β-tubulin genes, 2 γ-tubulin genes, and 15 actin genes in the flax genome and analysed the phylogenetic relationships between flax and A. thaliana tubulin and actin genes. Six α-tubulin genes are represented by 3 paralogous pairs, among 13 β-tubulin genes 7 different isotypes can be distinguished, 6 of which are encoded by two paralogous genes each. γ-tubulin is represented by a paralogous pair of genes one of which may be not functional. Fifteen actin genes represent 7 paralogous pairs - 7 actin isotypes and a sequentially duplicated copy of one of the genes of one of the isotypes. Exon-intron structure analysis has shown intron length polymorphism within the β-tubulin genes and intron number variation among the α-tubulin gene: 3 or 4 introns are found in two or four genes, respectively. Intron positioning occurs at conservative sites, as observed in numerous other plant species. Flax actin genes show both intron length polymorphisms and variation in the number of intron that may be 2 or 3. These data will be useful to support further studies on the specificity, functioning, regulation and evolution of the flax cytoskeleton proteins. This article is protected by copyright. All rights reserved.

  14. The actinome of Dictyostelium discoideum in comparison to actins and actin-related proteins from other organisms.

    Directory of Open Access Journals (Sweden)

    Jayabalan M Joseph

    Full Text Available Actin belongs to the most abundant proteins in eukaryotic cells which harbor usually many conventional actin isoforms as well as actin-related proteins (Arps. To get an overview over the sometimes confusing multitude of actins and Arps, we analyzed the Dictyostelium discoideum actinome in detail and compared it with the genomes from other model organisms. The D. discoideum actinome comprises 41 actins and actin-related proteins. The genome contains 17 actin genes which most likely arose from consecutive gene duplications, are all active, in some cases developmentally regulated and coding for identical proteins (Act8-group. According to published data, the actin fraction in a D. discoideum cell consists of more than 95% of these Act8-type proteins. The other 16 actin isoforms contain a conventional actin motif profile as well but differ in their protein sequences. Seven actin genes are potential pseudogenes. A homology search of the human genome using the most typical D. discoideum actin (Act8 as query sequence finds the major actin isoforms such as cytoplasmic beta-actin as best hit. This suggests that the Act8-group represents a nearly perfect actin throughout evolution. Interestingly, limited data from D. fasciculatum, a more ancient member among the social amoebae, show different relationships between conventional actins. The Act8-type isoform is most conserved throughout evolution. Modeling of the putative structures suggests that the majority of the actin-related proteins is functionally unrelated to canonical actin. The data suggest that the other actin variants are not necessary for the cytoskeleton itself but rather regulators of its dynamical features or subunits in larger protein complexes.

  15. Mapping of the mouse actin capping protein {alpha} subunit genes and pseudogenes

    Energy Technology Data Exchange (ETDEWEB)

    Hart, M.C.; Korshunova, Y.O.; Cooper, J.A. [Washington Univ. School of Medicine, St. Louis, MO (United States)

    1997-02-01

    Capping protein (CP), a heterodimer of {alpha} and {beta} subunits, is found in all eukaryotes. CP binds to the barbed ends of actin filaments in vitro and controls actin assembly and cell motility in vivo. Vertebrates have three {alpha} isoforms ({alpha}1, {alpha}2, {alpha}3) produced from different genes, whereas lower organisms have only one gene and one isoform. We isolated genomic clones corresponding to the a subunits of mouse CP and found three {alpha}1 genes, two of which are pseudogenes, and a single gene for both {alpha}2 and {alpha}3. Their chromosomal locations were identified by interspecies backcross mapping. The {alpha}1 gene (Cappa1) mapped to Chromosome 3 between D3Mit11 and D3Mit13. The {alpha}1 pseudogenes (Cappa1-ps1 and Cappa1-ps2) mapped to Chromosomes 1 and 9, respectively. The {alpha}2 gene (Cappa2) mapped to Chromosome 6 near Ptn. The {alpha}3 gene (Cappa3) also mapped to Chromosome 6, approximately 68 cM distal from Cappa2 near Kras2. One mouse mutation, de, maps in the vicinity of the {alpha}1 gene. No known mouse mutations map to regions near the {alpha}2 or {alpha}3 genes. 29 refs., 3 figs., 1 tab.

  16. The actin family protein ARP6 contributes to the structure and the function of the nucleolus.

    Science.gov (United States)

    Kitamura, Hiroshi; Matsumori, Haruka; Kalendova, Alzbeta; Hozak, Pavel; Goldberg, Ilya G; Nakao, Mitsuyoshi; Saitoh, Noriko; Harata, Masahiko

    2015-08-21

    The actin family members, consisting of actin and actin-related proteins (ARPs), are essential components of chromatin remodeling complexes. ARP6, one of the nuclear ARPs, is part of the Snf-2-related CREB-binding protein activator protein (SRCAP) chromatin remodeling complex, which promotes the deposition of the histone variant H2A.Z into the chromatin. In this study, we showed that ARP6 influences the structure and the function of the nucleolus. ARP6 is localized in the central region of the nucleolus, and its knockdown induced a morphological change in the nucleolus. We also found that in the presence of high concentrations of glucose ARP6 contributed to the maintenance of active ribosomal DNA (rDNA) transcription by placing H2A.Z into the chromatin. In contrast, under starvation, ARP6 was required for cell survival through the repression of rDNA transcription independently of H2A.Z. These findings reveal novel pleiotropic roles for the actin family in nuclear organization and metabolic homeostasis. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Histones bundle F-actin filaments and affect actin structure.

    Science.gov (United States)

    Blotnick, Edna; Sol, Asaf; Muhlrad, Andras

    2017-01-01

    Histones are small polycationic proteins complexed with DNA located in the cell nucleus. Upon apoptosis they are secreted from the cells and react with extracellular polyanionic compounds. Actin which is a polyanionic protein, is also secreted from necrotic cells and interacts with histones. We showed that both histone mixture (histone type III) and the recombinant H2A histone bundles F-actin, increases the viscosity of the F-actin containing solution and polymerizes G-actin. The histone-actin bundles are relatively insensitive to increase of ionic strength, unlike other polycation, histatin, lysozyme, spermine and LL-37 induced F-actin bundles. The histone-actin bundles dissociate completely only in the presence of 300-400 mM NaCl. DNA, which competes with F-actin for histones, disassembles histone induced actin bundles. DNase1, which depolymerizes F- to G-actin, actively unbundles the H2A histone induced but slightly affects the histone mixture induced actin bundles. Cofilin decreases the amount of F-actin sedimented by low speed centrifugation, increases light scattering and viscosity of F-actin-histone mixture containing solutions and forms star like superstructures by copolymerizing G-actin with H2A histone. The results indicate that histones are tightly attached to F-actin by strong electrostatic and hydrophobic forces. Since both histones and F-actin are present in the sputum of patients with cystic fibrosis, therefore, the formation of the stable histone-actin bundles can contribute to the pathology of this disease by increasing the viscosity of the sputum. The actin-histone interaction in the nucleus might affect gene expression.

  18. Heterozygous de novo and inherited mutations in the smooth muscle actin (ACTG2 gene underlie megacystis-microcolon-intestinal hypoperistalsis syndrome.

    Directory of Open Access Journals (Sweden)

    Michael F Wangler

    2014-03-01

    Full Text Available Megacystis-microcolon-intestinal hypoperistalsis syndrome (MMIHS is a rare disorder of enteric smooth muscle function affecting the intestine and bladder. Patients with this severe phenotype are dependent on total parenteral nutrition and urinary catheterization. The cause of this syndrome has remained a mystery since Berdon's initial description in 1976. No genes have been clearly linked to MMIHS. We used whole-exome sequencing for gene discovery followed by targeted Sanger sequencing in a cohort of patients with MMIHS and intestinal pseudo-obstruction. We identified heterozygous ACTG2 missense variants in 15 unrelated subjects, ten being apparent de novo mutations. Ten unique variants were detected, of which six affected CpG dinucleotides and resulted in missense mutations at arginine residues, perhaps related to biased usage of CpG containing codons within actin genes. We also found some of the same heterozygous mutations that we observed as apparent de novo mutations in MMIHS segregating in families with intestinal pseudo-obstruction, suggesting that ACTG2 is responsible for a spectrum of smooth muscle disease. ACTG2 encodes γ2 enteric actin and is the first gene to be clearly associated with MMIHS, suggesting an important role for contractile proteins in enteric smooth muscle disease.

  19. Histones bundle F-actin filaments and affect actin structure.

    Directory of Open Access Journals (Sweden)

    Edna Blotnick

    Full Text Available Histones are small polycationic proteins complexed with DNA located in the cell nucleus. Upon apoptosis they are secreted from the cells and react with extracellular polyanionic compounds. Actin which is a polyanionic protein, is also secreted from necrotic cells and interacts with histones. We showed that both histone mixture (histone type III and the recombinant H2A histone bundles F-actin, increases the viscosity of the F-actin containing solution and polymerizes G-actin. The histone-actin bundles are relatively insensitive to increase of ionic strength, unlike other polycation, histatin, lysozyme, spermine and LL-37 induced F-actin bundles. The histone-actin bundles dissociate completely only in the presence of 300-400 mM NaCl. DNA, which competes with F-actin for histones, disassembles histone induced actin bundles. DNase1, which depolymerizes F- to G-actin, actively unbundles the H2A histone induced but slightly affects the histone mixture induced actin bundles. Cofilin decreases the amount of F-actin sedimented by low speed centrifugation, increases light scattering and viscosity of F-actin-histone mixture containing solutions and forms star like superstructures by copolymerizing G-actin with H2A histone. The results indicate that histones are tightly attached to F-actin by strong electrostatic and hydrophobic forces. Since both histones and F-actin are present in the sputum of patients with cystic fibrosis, therefore, the formation of the stable histone-actin bundles can contribute to the pathology of this disease by increasing the viscosity of the sputum. The actin-histone interaction in the nucleus might affect gene expression.

  20. Low-intensity infrared lasers alter actin gene expression in skin and muscle tissue

    International Nuclear Information System (INIS)

    Fonseca, A S; Mencalha, A L; Campos, V M A; Ferreira-Machado, S C; Peregrino, A A F; Magalhães, L A G; Geller, M; Paoli, F

    2013-01-01

    The biostimulative effect of low-intensity lasers is the basis for treatment of diseases in soft tissues. However, data about the influence of biostimulative lasers on gene expression are still scarce. The aim of this work was to evaluate the effects of low-intensity infrared lasers on the expression of actin mRNA in skin and muscle tissue. Skin and muscle tissue of Wistar rats was exposed to low-intensity infrared laser radiation at different fluences and frequencies. One and 24 hours after laser exposure, tissue samples were withdrawn for total RNA extraction, cDNA synthesis and evaluation of actin gene expression by quantitative polymerase chain reaction. The data obtained show that laser radiation alters the expression of actin mRNA differently in skin and muscle tissue of Wistar rats depending of the fluence, frequency and time after exposure. The results could be useful for laser dosimetry, as well as to justify the therapeutic protocols for treatment of diseases of skin and muscle tissues based on low-intensity infrared laser radiation. (paper)

  1. Tailor-made ezrin actin binding domain to probe its interaction with actin in-vitro.

    Directory of Open Access Journals (Sweden)

    Rohini Shrivastava

    Full Text Available Ezrin, a member of the ERM (Ezrin/Radixin/Moesin protein family, is an Actin-plasma membrane linker protein mediating cellular integrity and function. In-vivo study of such interactions is a complex task due to the presence of a large number of endogenous binding partners for both Ezrin and Actin. Further, C-terminal actin binding capacity of the full length Ezrin is naturally shielded by its N-terminal, and only rendered active in the presence of Phosphatidylinositol bisphosphate (PIP2 or phosphorylation at the C-terminal threonine. Here, we demonstrate a strategy for the design, expression and purification of constructs, combining the Ezrin C-terminal actin binding domain, with functional elements such as fusion tags and fluorescence tags to facilitate purification and fluorescence microscopy based studies. For the first time, internal His tag was employed for purification of Ezrin actin binding domain based on in-silico modeling. The functionality (Ezrin-actin interaction of these constructs was successfully demonstrated by using Total Internal Reflection Fluorescence Microscopy. This design can be extended to other members of the ERM family as well.

  2. The actin family protein ARP6 contributes to the structure and the function of the nucleolus

    Energy Technology Data Exchange (ETDEWEB)

    Kitamura, Hiroshi [Laboratory of Molecular Biology, Graduate School of Agricultural Science, Tohoku University, Tsutsumidori-Amamiyamachi 1-1, Aoka-ku, Sendai 981-8555 (Japan); Matsumori, Haruka [Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811 (Japan); Kalendova, Alzbeta; Hozak, Pavel [Department of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic, v.v.i., Vídeňská 1083, 142 20 Prague (Czech Republic); Goldberg, Ilya G. [Image Informatics and Computational Biology Unit, Laboratory of Genetics, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224 (United States); Nakao, Mitsuyoshi [Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811 (Japan); Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Tokyo 102-0076 (Japan); Saitoh, Noriko [Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811 (Japan); Harata, Masahiko, E-mail: mharata@biochem.tohoku.ac.jp [Laboratory of Molecular Biology, Graduate School of Agricultural Science, Tohoku University, Tsutsumidori-Amamiyamachi 1-1, Aoka-ku, Sendai 981-8555 (Japan)

    2015-08-21

    The actin family members, consisting of actin and actin-related proteins (ARPs), are essential components of chromatin remodeling complexes. ARP6, one of the nuclear ARPs, is part of the Snf-2-related CREB-binding protein activator protein (SRCAP) chromatin remodeling complex, which promotes the deposition of the histone variant H2A.Z into the chromatin. In this study, we showed that ARP6 influences the structure and the function of the nucleolus. ARP6 is localized in the central region of the nucleolus, and its knockdown induced a morphological change in the nucleolus. We also found that in the presence of high concentrations of glucose ARP6 contributed to the maintenance of active ribosomal DNA (rDNA) transcription by placing H2A.Z into the chromatin. In contrast, under starvation, ARP6 was required for cell survival through the repression of rDNA transcription independently of H2A.Z. These findings reveal novel pleiotropic roles for the actin family in nuclear organization and metabolic homeostasis. - Highlights: • ARP6, an actin related protein, is important for nucleolar function and structure. • A population of ARP6 is localized in the center of nucleolus. • Depletion of ARP6 resulted in aberrant shape of the nucleolus. • ARP6 maintains the active rDNA transcription under high glucose. • ARP6 is required for the repression of rDNA transcription under starvation.

  3. The actin family protein ARP6 contributes to the structure and the function of the nucleolus

    International Nuclear Information System (INIS)

    Kitamura, Hiroshi; Matsumori, Haruka; Kalendova, Alzbeta; Hozak, Pavel; Goldberg, Ilya G.; Nakao, Mitsuyoshi; Saitoh, Noriko; Harata, Masahiko

    2015-01-01

    The actin family members, consisting of actin and actin-related proteins (ARPs), are essential components of chromatin remodeling complexes. ARP6, one of the nuclear ARPs, is part of the Snf-2-related CREB-binding protein activator protein (SRCAP) chromatin remodeling complex, which promotes the deposition of the histone variant H2A.Z into the chromatin. In this study, we showed that ARP6 influences the structure and the function of the nucleolus. ARP6 is localized in the central region of the nucleolus, and its knockdown induced a morphological change in the nucleolus. We also found that in the presence of high concentrations of glucose ARP6 contributed to the maintenance of active ribosomal DNA (rDNA) transcription by placing H2A.Z into the chromatin. In contrast, under starvation, ARP6 was required for cell survival through the repression of rDNA transcription independently of H2A.Z. These findings reveal novel pleiotropic roles for the actin family in nuclear organization and metabolic homeostasis. - Highlights: • ARP6, an actin related protein, is important for nucleolar function and structure. • A population of ARP6 is localized in the center of nucleolus. • Depletion of ARP6 resulted in aberrant shape of the nucleolus. • ARP6 maintains the active rDNA transcription under high glucose. • ARP6 is required for the repression of rDNA transcription under starvation

  4. The role of actin isoforms in somatic embryogenesis in Norway spruce

    Czech Academy of Sciences Publication Activity Database

    Schwarzerová, K.; Vondráková, Zuzana; Fischer, L.; Boříková, P.; Bellinvia, E.; Eliášová, Kateřina; Havelková, L.; Fišerová, J.; Vágner, Martin; Opatrný, Z.

    2010-01-01

    Roč. 10, č. 89 (2010), s. 1-13 ISSN 1471-2229 R&D Projects: GA MŠk(CZ) LC06034; GA MŠk OC 158; GA MŠk ME 668 Institutional research plan: CEZ:AV0Z50380511 Keywords : PROGRAMMED CELL-DEATH * GENE FAMILY * F-ACTIN Subject RIV: ED - Physiology Impact factor: 4.085, year: 2010

  5. Molecular typing of the actin gene of Trichomonas vaginalis isolates by PCR-RFLP in Iran.

    Science.gov (United States)

    Momeni, Zohreh; Sadraei, Javid; Kazemi, Bahram; Dalimi, Abdolhossein

    2015-12-01

    Trichomonas vaginalis is a human urogenital pathogen that causes trichomoniasis, the most common nonviral, parasitic sexually transmitted infection in the world. At present, little is known regarding the degree of strain variability of T. vaginalis. A classification method for T. vaginalis strains would be a useful tool in the study of the epidemiology, drug resistance, pathogenesis and transmission of T. vaginalis. Eight different types of actin genes have been identified by PCR-RFLP in T. vaginalis; the purpose of this study is to determine the genotypes of this parasite in Karaj city, Iran. Forty-five clinical T. vaginalis isolates from vaginal secretions and urine sediment were collected from Karaj city from 2012 through 2014. DNA was extracted and the actin gene was amplified by nested-PCR; all samples were positive. To determine the genetic differences, sequencing on seven samples was conducted. Then, all PCR products were digested with HindII, MseI, and RsaI restriction enzymes. Of 45 isolates, 23 samples (51.1%) were of actin genotype G, 11 samples (24.4%) of genotype E, six samples (13.3%) of genotype H, three samples (6.6%) of genotype I, and two samples (4.4%) were mixed genotypes of G and E. Genetic diversity of T. vaginalis isolates is notable. The actin genotype G may be the dominant genotype in Karaj city, Iran. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. WICH, a member of WASP-interacting protein family, cross-links actin filaments

    International Nuclear Information System (INIS)

    Kato, Masayoshi; Takenawa, Tadaomi

    2005-01-01

    In yeast, Verprolin plays an important role in rearrangement of the actin cytoskeleton. There are three mammalian homologues of Verprolin, WIP, CR16, and WICH, and all of them bind actin and Wiskott-Aldrich syndrome protein (WASP) and/or neural-WASP. Here, we describe a novel function of WICH. In vitro co-sedimentation analysis revealed that WICH not only binds to actin filaments but also cross-links them. Fluorescence and electron microscopy detected that this cross-linking results in straight bundled actin filaments. Overexpression of WICH alone in cultured fibroblast caused the formation of thick actin fibers. This ability of WICH depended on its own actin cross-linking activity. Importantly, the actin cross-linking activity of WICH was modified through a direct association with N-WASP. Taken together, these data suggest that WICH induces a bundled form of actin filament with actin cross-linking activity and the association with N-WASP suppresses that activity. WICH thus appears to be a novel actin bundling protein

  7. Cytoskeletal actin genes function downstream of HNF-3beta in ascidian notochord development.

    Science.gov (United States)

    Jeffery, W R; Ewing, N; Machula, J; Olsen, C L; Swalla, B J

    1998-11-01

    We have examined the expression and regulation of cytoskeletal actin genes in ascidians with tailed (Molgula oculata) and tailless larvae (Molgula occulta). Four cDNA clones were isolated representing two pairs of orthologous cytoskeletal actin genes (CA1 and CA2), which encode proteins differing by five amino acids in the tailed and tailless species. The CA1 and CA2 genes are present in one or two copies, although several related genes may also be present in both species. Maternal CA1 and CA2 mRNA is present in small oocytes but transcript levels later decline, suggesting a role in early oogenesis. In the tailed species, embryonic CA1 and CA2 mRNAs first appear in the presumptive mesenchyme and muscle cells during gastrulation, subsequently accumulate in the presumptive notochord cells, and can be detected in these tissues through the tadpole stage. CA1 mRNAs accumulate initially in the same tissues in the tailless species but subsequently disappear, in concert with the arrest of notochord and tail development. In contrast, CA2 mRNAs were not detected in embryos of the tailless species. Fertilization of eggs of the tailless species with sperm of the tailed species, which restores the notochord and the tail, also results in the upregulation of CA1 and CA2 gene expression in hybrid embryos. Antisense oligodeoxynucleotide experiments suggest that CA1 and CA2 expression in the notochord, but not in the muscle cells, is dependent on prior expression of Mocc FHI, an ascidian HNF-3beta-like gene. The expression of the CA1 and CA2 genes in the notochord in the tailed species, downregulation in the tailless species, upregulation in interspecific hybrids, and dependence on HNF-3beta activity is consistent with a role of these genes in development of the ascidian notochord.

  8. WASH and WAVE actin regulators of the Wiskott-Aldrich syndrome protein (WASP) family are controlled by analogous structurally related complexes.

    Science.gov (United States)

    Jia, Da; Gomez, Timothy S; Metlagel, Zoltan; Umetani, Junko; Otwinowski, Zbyszek; Rosen, Michael K; Billadeau, Daniel D

    2010-06-08

    We recently showed that the Wiskott-Aldrich syndrome protein (WASP) family member, WASH, localizes to endosomal subdomains and regulates endocytic vesicle scission in an Arp2/3-dependent manner. Mechanisms regulating WASH activity are unknown. Here we show that WASH functions in cells within a 500 kDa core complex containing Strumpellin, FAM21, KIAA1033 (SWIP), and CCDC53. Although recombinant WASH is constitutively active toward the Arp2/3 complex, the reconstituted core assembly is inhibited, suggesting that it functions in cells to regulate actin dynamics through WASH. FAM21 interacts directly with CAPZ and inhibits its actin-capping activity. Four of the five core components show distant (approximately 15% amino acid sequence identify) but significant structural homology to components of a complex that negatively regulates the WASP family member, WAVE. Moreover, biochemical and electron microscopic analyses show that the WASH and WAVE complexes are structurally similar. Thus, these two distantly related WASP family members are controlled by analogous structurally related mechanisms. Strumpellin is mutated in the human disease hereditary spastic paraplegia, and its link to WASH suggests that misregulation of actin dynamics on endosomes may play a role in this disorder.

  9. Molecular typing of Trichomonas vaginalis isolates by actin gene sequence analysis and carriage of T. vaginalis viruses.

    Science.gov (United States)

    Masha, Simon C; Cools, Piet; Crucitti, Tania; Sanders, Eduard J; Vaneechoutte, Mario

    2017-10-30

    The protozoan parasite Trichomonas vaginalis is the most common non-viral, sexually transmitted pathogen. Although T. vaginalis is highly prevalent among women in Kenya, there is lack of data regarding genetic diversity of isolates currently in circulation in Kenya. Typing was performed on 22 clinical isolates of T. vaginalis collected from women attending the antenatal care clinic at Kilifi County Hospital, Kenya, in 2015. Genotyping followed a previously proposed restriction fragment length polymorphism (RFLP) scheme, which involved in silico cleavage of the amplified actin gene by HindII, MseI and RsaI restriction enzymes. Phylogenetic analysis of all the sequences was performed to confirm the results obtained by RFLP-analysis and to assess the diversity within the RFLP genotypes. Additionally, we determined carriage of the four different types of Trichomonas vaginalis viruses (TVVs) by polymerase chain reaction. In silico RFLP-analysis revealed five actin genotypes; 50.0% of the isolates were of actin genotype E, 27.3% of actin genotype N, 13.6% of actin genotype G and 4.5% of actin genotypes I and P. Phylogenetic analysis was in agreement with the RFLP-analysis, with the different actin genotypes clustering together. Prevalence of TVVs was 43.5% (95% confidence interval, CI: 23.2-65.5). TVV1 was the most prevalent, present in 39.1% of the strains and 90% of the T. vaginalis isolates which harbored TVVs had more than one type of TVV. None of the isolates of actin genotype E harbored any TVV. The presence of five actin genotypes in our study suggests notable diversity among T. vaginalis isolates occurring among pregnant women in Kilifi, Kenya. Isolates of the most prevalent actin genotype E lacked TVVs. We found no association between T. vaginalis genotype, carriage of TVVs and symptoms. Further studies with higher number of strains should be conducted in order to corroborate these results.

  10. The Nance-Horan syndrome protein encodes a functional WAVE homology domain (WHD) and is important for co-ordinating actin remodelling and maintaining cell morphology.

    Science.gov (United States)

    Brooks, Simon P; Coccia, Margherita; Tang, Hao R; Kanuga, Naheed; Machesky, Laura M; Bailly, Maryse; Cheetham, Michael E; Hardcastle, Alison J

    2010-06-15

    Nance-Horan syndrome (NHS) is an X-linked developmental disorder, characterized by bilateral congenital cataracts, dental anomalies, facial dysmorphism and mental retardation. Null mutations in a novel gene, NHS, cause the syndrome. The NHS gene appears to have multiple isoforms as a result of alternative transcription, but a cellular function for the NHS protein has yet to be defined. We describe NHS as a founder member of a new protein family (NHS, NHSL1 and NHSL2). Here, we demonstrate that NHS is a novel regulator of actin remodelling and cell morphology. NHS localizes to sites of cell-cell contact, the leading edge of lamellipodia and focal adhesions. The N-terminus of isoforms NHS-A and NHS-1A, implicated in the pathogenesis of NHS, have a functional WAVE homology domain that interacts with the Abi protein family, haematopoietic stem/progenitor cell protein 300 (HSPC300), Nap1 and Sra1. NHS knockdown resulted in the disruption of the actin cytoskeleton. We show that NHS controls cell morphology by maintaining the integrity of the circumferential actin ring and controlling lamellipod formation. NHS knockdown led to a striking increase in cell spreading. Conversely, ectopic overexpression of NHS inhibited lamellipod formation. Remodelling of the actin cytoskeleton and localized actin polymerization into branched actin filaments at the plasma membrane are essential for mediating changes in cell shape, migration and cell contact. Our data identify NHS as a new regulator of actin remodelling. We suggest that NHS orchestrates actin regulatory protein function in response to signalling events during development.

  11. The Nance–Horan syndrome protein encodes a functional WAVE homology domain (WHD) and is important for co-ordinating actin remodelling and maintaining cell morphology

    Science.gov (United States)

    Brooks, Simon P.; Coccia, Margherita; Tang, Hao R.; Kanuga, Naheed; Machesky, Laura M.; Bailly, Maryse; Cheetham, Michael E.; Hardcastle, Alison J.

    2010-01-01

    Nance–Horan syndrome (NHS) is an X-linked developmental disorder, characterized by bilateral congenital cataracts, dental anomalies, facial dysmorphism and mental retardation. Null mutations in a novel gene, NHS, cause the syndrome. The NHS gene appears to have multiple isoforms as a result of alternative transcription, but a cellular function for the NHS protein has yet to be defined. We describe NHS as a founder member of a new protein family (NHS, NHSL1 and NHSL2). Here, we demonstrate that NHS is a novel regulator of actin remodelling and cell morphology. NHS localizes to sites of cell–cell contact, the leading edge of lamellipodia and focal adhesions. The N-terminus of isoforms NHS-A and NHS-1A, implicated in the pathogenesis of NHS, have a functional WAVE homology domain that interacts with the Abi protein family, haematopoietic stem/progenitor cell protein 300 (HSPC300), Nap1 and Sra1. NHS knockdown resulted in the disruption of the actin cytoskeleton. We show that NHS controls cell morphology by maintaining the integrity of the circumferential actin ring and controlling lamellipod formation. NHS knockdown led to a striking increase in cell spreading. Conversely, ectopic overexpression of NHS inhibited lamellipod formation. Remodelling of the actin cytoskeleton and localized actin polymerization into branched actin filaments at the plasma membrane are essential for mediating changes in cell shape, migration and cell contact. Our data identify NHS as a new regulator of actin remodelling. We suggest that NHS orchestrates actin regulatory protein function in response to signalling events during development. PMID:20332100

  12. Actin, actin-binding proteins, and actin-related proteins in the nucleus.

    Science.gov (United States)

    Kristó, Ildikó; Bajusz, Izabella; Bajusz, Csaba; Borkúti, Péter; Vilmos, Péter

    2016-04-01

    Extensive research in the past decade has significantly broadened our view about the role actin plays in the life of the cell and added novel aspects to actin research. One of these new aspects is the discovery of the existence of nuclear actin which became evident only recently. Nuclear activities including transcriptional activation in the case of all three RNA polymerases, editing and nuclear export of mRNAs, and chromatin remodeling all depend on actin. It also became clear that there is a fine-tuned equilibrium between cytoplasmic and nuclear actin pools and that this balance is ensured by an export-import system dedicated to actin. After over half a century of research on conventional actin and its organizing partners in the cytoplasm, it was also an unexpected finding that the nucleus contains more than 30 actin-binding proteins and new classes of actin-related proteins which are not able to form filaments but had evolved nuclear-specific functions. The actin-binding and actin-related proteins in the nucleus have been linked to RNA transcription and processing, nuclear transport, and chromatin remodeling. In this paper, we attempt to provide an overview of the wide range of information that is now available about actin, actin-binding, and actin-related proteins in the nucleus.

  13. Computational Study of the Binding Mechanism of Actin-Depolymerizing Factor 1 with Actin in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Juan Du

    Full Text Available Actin is a highly conserved protein. It plays important roles in cellular function and exists either in the monomeric (G-actin or polymeric form (F-actin. Members of the actin-depolymerizing factor (ADF/cofilin protein family bind to both G-actin and F-actin and play vital roles in actin dynamics by manipulating the rates of filament polymerization and depolymerization. It has been reported that the S6D and R98A/K100A mutants of actin-depolymerizing factor 1 (ADF1 in Arabidopsis thaliana decreased the binding affinity of ADF for the actin monomer. To investigate the binding mechanism and dynamic behavior of the ADF1-actin complex, we constructed a homology model of the AtADF1-actin complex based on the crystal structure of AtADF1 and the twinfilin C-terminal ADF-H domain in a complex with a mouse actin monomer. The model was then refined for subsequent molecular dynamics simulations. Increased binding energy of the mutated system was observed using the Molecular Mechanics Generalized Born Surface Area and Poisson-Boltzmann Surface Area (MM-GB/PBSA methods. To determine the residues that make decisive contributions to the ADF1 actin-binding affinity, per-residue decomposition and computational alanine scanning analyses were performed, which provided more detailed information on the binding mechanism. Root-mean-square fluctuation and principal component analyses confirmed that the S6D and R98A/K100A mutants induced an increased conformational flexibility. The comprehensive molecular insight gained from this study is of great importance for understanding the binding mechanism of ADF1 and G-actin.

  14. Gene cluster statistics with gene families.

    Science.gov (United States)

    Raghupathy, Narayanan; Durand, Dannie

    2009-05-01

    Identifying genomic regions that descended from a common ancestor is important for understanding the function and evolution of genomes. In distantly related genomes, clusters of homologous gene pairs are evidence of candidate homologous regions. Demonstrating the statistical significance of such "gene clusters" is an essential component of comparative genomic analyses. However, currently there are no practical statistical tests for gene clusters that model the influence of the number of homologs in each gene family on cluster significance. In this work, we demonstrate empirically that failure to incorporate gene family size in gene cluster statistics results in overestimation of significance, leading to incorrect conclusions. We further present novel analytical methods for estimating gene cluster significance that take gene family size into account. Our methods do not require complete genome data and are suitable for testing individual clusters found in local regions, such as contigs in an unfinished assembly. We consider pairs of regions drawn from the same genome (paralogous clusters), as well as regions drawn from two different genomes (orthologous clusters). Determining cluster significance under general models of gene family size is computationally intractable. By assuming that all gene families are of equal size, we obtain analytical expressions that allow fast approximation of cluster probabilities. We evaluate the accuracy of this approximation by comparing the resulting gene cluster probabilities with cluster probabilities obtained by simulating a realistic, power-law distributed model of gene family size, with parameters inferred from genomic data. Surprisingly, despite the simplicity of the underlying assumption, our method accurately approximates the true cluster probabilities. It slightly overestimates these probabilities, yielding a conservative test. We present additional simulation results indicating the best choice of parameter values for data

  15. Formin' actin in the nucleus.

    Science.gov (United States)

    Baarlink, Christian; Grosse, Robert

    2014-01-01

    Many if not most proteins can, under certain conditions, change cellular compartments, such as, for example, shuttling from the cytoplasm to the nucleus. Thus, many proteins may exert functions in various and very different subcellular locations, depending on the signaling context. A large amount of actin regulatory proteins has been detected in the mammalian cell nucleus, although their potential roles are much debated and are just beginning to emerge. Recently, members of the formin family of actin nucleators were also reported to dynamically localize to the nuclear environment. Here we discuss our findings that specific diaphanous-related formins can promote nuclear actin assembly in a signal-dependent manner.

  16. The Caenorhabditis chemoreceptor gene families

    Directory of Open Access Journals (Sweden)

    Robertson Hugh M

    2008-10-01

    Full Text Available Abstract Background Chemoreceptor proteins mediate the first step in the transduction of environmental chemical stimuli, defining the breadth of detection and conferring stimulus specificity. Animal genomes contain families of genes encoding chemoreceptors that mediate taste, olfaction, and pheromone responses. The size and diversity of these families reflect the biology of chemoperception in specific species. Results Based on manual curation and sequence comparisons among putative G-protein-coupled chemoreceptor genes in the nematode Caenorhabditis elegans, we identified approximately 1300 genes and 400 pseudogenes in the 19 largest gene families, most of which fall into larger superfamilies. In the related species C. briggsae and C. remanei, we identified most or all genes in each of the 19 families. For most families, C. elegans has the largest number of genes and C. briggsae the smallest number, suggesting changes in the importance of chemoperception among the species. Protein trees reveal family-specific and species-specific patterns of gene duplication and gene loss. The frequency of strict orthologs varies among the families, from just over 50% in two families to less than 5% in three families. Several families include large species-specific expansions, mostly in C. elegans and C. remanei. Conclusion Chemoreceptor gene families in Caenorhabditis species are large and evolutionarily dynamic as a result of gene duplication and gene loss. These dynamics shape the chemoreceptor gene complements in Caenorhabditis species and define the receptor space available for chemosensory responses. To explain these patterns, we propose the gray pawn hypothesis: individual genes are of little significance, but the aggregate of a large number of diverse genes is required to cover a large phenotype space.

  17. The Caenorhabditis chemoreceptor gene families.

    Science.gov (United States)

    Thomas, James H; Robertson, Hugh M

    2008-10-06

    Chemoreceptor proteins mediate the first step in the transduction of environmental chemical stimuli, defining the breadth of detection and conferring stimulus specificity. Animal genomes contain families of genes encoding chemoreceptors that mediate taste, olfaction, and pheromone responses. The size and diversity of these families reflect the biology of chemoperception in specific species. Based on manual curation and sequence comparisons among putative G-protein-coupled chemoreceptor genes in the nematode Caenorhabditis elegans, we identified approximately 1300 genes and 400 pseudogenes in the 19 largest gene families, most of which fall into larger superfamilies. In the related species C. briggsae and C. remanei, we identified most or all genes in each of the 19 families. For most families, C. elegans has the largest number of genes and C. briggsae the smallest number, suggesting changes in the importance of chemoperception among the species. Protein trees reveal family-specific and species-specific patterns of gene duplication and gene loss. The frequency of strict orthologs varies among the families, from just over 50% in two families to less than 5% in three families. Several families include large species-specific expansions, mostly in C. elegans and C. remanei. Chemoreceptor gene families in Caenorhabditis species are large and evolutionarily dynamic as a result of gene duplication and gene loss. These dynamics shape the chemoreceptor gene complements in Caenorhabditis species and define the receptor space available for chemosensory responses. To explain these patterns, we propose the gray pawn hypothesis: individual genes are of little significance, but the aggregate of a large number of diverse genes is required to cover a large phenotype space.

  18. Molecular typing of Trichomonas vaginalis isolates by actin gene sequence analysis and carriage of T. vaginalis viruses

    Directory of Open Access Journals (Sweden)

    Simon C. Masha

    2017-10-01

    Full Text Available Abstract Background The protozoan parasite Trichomonas vaginalis is the most common non-viral, sexually transmitted pathogen. Although T. vaginalis is highly prevalent among women in Kenya, there is lack of data regarding genetic diversity of isolates currently in circulation in Kenya. Methods Typing was performed on 22 clinical isolates of T. vaginalis collected from women attending the antenatal care clinic at Kilifi County Hospital, Kenya, in 2015. Genotyping followed a previously proposed restriction fragment length polymorphism (RFLP scheme, which involved in silico cleavage of the amplified actin gene by HindII, MseI and RsaI restriction enzymes. Phylogenetic analysis of all the sequences was performed to confirm the results obtained by RFLP-analysis and to assess the diversity within the RFLP genotypes. Additionally, we determined carriage of the four different types of Trichomonas vaginalis viruses (TVVs by polymerase chain reaction. Results In silico RFLP-analysis revealed five actin genotypes; 50.0% of the isolates were of actin genotype E, 27.3% of actin genotype N, 13.6% of actin genotype G and 4.5% of actin genotypes I and P. Phylogenetic analysis was in agreement with the RFLP-analysis, with the different actin genotypes clustering together. Prevalence of TVVs was 43.5% (95% confidence interval, CI: 23.2–65.5. TVV1 was the most prevalent, present in 39.1% of the strains and 90% of the T. vaginalis isolates which harbored TVVs had more than one type of TVV. None of the isolates of actin genotype E harbored any TVV. Conclusion The presence of five actin genotypes in our study suggests notable diversity among T. vaginalis isolates occurring among pregnant women in Kilifi, Kenya. Isolates of the most prevalent actin genotype E lacked TVVs. We found no association between T. vaginalis genotype, carriage of TVVs and symptoms. Further studies with higher number of strains should be conducted in order to corroborate these results.

  19. Leiomodins: larger members of the tropomodulin (Tmod) gene family

    Science.gov (United States)

    Conley, C. A.; Fritz-Six, K. L.; Almenar-Queralt, A.; Fowler, V. M.

    2001-01-01

    The 64-kDa autoantigen D1 or 1D, first identified as a potential autoantigen in Graves' disease, is similar to the tropomodulin (Tmod) family of actin filament pointed end-capping proteins. A novel gene with significant similarity to the 64-kDa human autoantigen D1 has been cloned from both humans and mice, and the genomic sequences of both genes have been identified. These genes form a subfamily closely related to the Tmods and are here named the Leiomodins (Lmods). Both Lmod genes display a conserved intron-exon structure, as do three Tmod genes, but the intron-exon structure of the Lmods and the Tmods is divergent. mRNA expression analysis indicates that the gene formerly known as the 64-kDa autoantigen D1 is most highly expressed in a variety of human tissues that contain smooth muscle, earning it the name smooth muscle Leiomodin (SM-Lmod; HGMW-approved symbol LMOD1). Transcripts encoding the novel Lmod gene are present exclusively in fetal and adult heart and adult skeletal muscle, and it is here named cardiac Leiomodin (C-Lmod; HGMW-approved symbol LMOD2). Human C-Lmod is located near the hypertrophic cardiomyopathy locus CMH6 on human chromosome 7q3, potentially implicating it in this disease. Our data demonstrate that the Lmods are evolutionarily related and display tissue-specific patterns of expression distinct from, but overlapping with, the expression of Tmod isoforms. Copyright 2001 Academic Press.

  20. Actin and myosin contribute to mammalian mitochondrial DNA maintenance

    Science.gov (United States)

    Reyes, A.; He, J.; Mao, C. C.; Bailey, L. J.; Di Re, M.; Sembongi, H.; Kazak, L.; Dzionek, K.; Holmes, J. B.; Cluett, T. J.; Harbour, M. E.; Fearnley, I. M.; Crouch, R. J.; Conti, M. A.; Adelstein, R. S.; Walker, J. E.; Holt, I. J.

    2011-01-01

    Mitochondrial DNA maintenance and segregation are dependent on the actin cytoskeleton in budding yeast. We found two cytoskeletal proteins among six proteins tightly associated with rat liver mitochondrial DNA: non-muscle myosin heavy chain IIA and β-actin. In human cells, transient gene silencing of MYH9 (encoding non-muscle myosin heavy chain IIA), or the closely related MYH10 gene (encoding non-muscle myosin heavy chain IIB), altered the topology and increased the copy number of mitochondrial DNA; and the latter effect was enhanced when both genes were targeted simultaneously. In contrast, genetic ablation of non-muscle myosin IIB was associated with a 60% decrease in mitochondrial DNA copy number in mouse embryonic fibroblasts, compared to control cells. Gene silencing of β-actin also affected mitochondrial DNA copy number and organization. Protease-protection experiments and iodixanol gradient analysis suggest some β-actin and non-muscle myosin heavy chain IIA reside within human mitochondria and confirm that they are associated with mitochondrial DNA. Collectively, these results strongly implicate the actomyosin cytoskeleton in mammalian mitochondrial DNA maintenance. PMID:21398640

  1. Duplication in the microtubule-actin cross-linking factor 1 gene causes a novel neuromuscular condition

    DEFF Research Database (Denmark)

    Jørgensen, Louise H; Mosbech, Mai-Britt; Færgeman, Nils J

    2014-01-01

    Spectrins and plakins are important communicators linking cytoskeletal components to each other and to cellular junctions. Microtubule-actin cross-linking factor 1 (MACF1) belongs to the spectraplakin family and is involved in control of microtubule dynamics. Complete knock out of MACF1 in mice...... muscles and diminished motor skills, with heterogeneous presentation among the affected family members. To corroborate these findings we used RNA interference to knock down the VAB-10 locus containing the MACF1 homologue in C. elegans, and we could show that this also causes movement disturbances...

  2. Genome-Wide Comparative Gene Family Classification

    Science.gov (United States)

    Frech, Christian; Chen, Nansheng

    2010-01-01

    Correct classification of genes into gene families is important for understanding gene function and evolution. Although gene families of many species have been resolved both computationally and experimentally with high accuracy, gene family classification in most newly sequenced genomes has not been done with the same high standard. This project has been designed to develop a strategy to effectively and accurately classify gene families across genomes. We first examine and compare the performance of computer programs developed for automated gene family classification. We demonstrate that some programs, including the hierarchical average-linkage clustering algorithm MC-UPGMA and the popular Markov clustering algorithm TRIBE-MCL, can reconstruct manual curation of gene families accurately. However, their performance is highly sensitive to parameter setting, i.e. different gene families require different program parameters for correct resolution. To circumvent the problem of parameterization, we have developed a comparative strategy for gene family classification. This strategy takes advantage of existing curated gene families of reference species to find suitable parameters for classifying genes in related genomes. To demonstrate the effectiveness of this novel strategy, we use TRIBE-MCL to classify chemosensory and ABC transporter gene families in C. elegans and its four sister species. We conclude that fully automated programs can establish biologically accurate gene families if parameterized accordingly. Comparative gene family classification finds optimal parameters automatically, thus allowing rapid insights into gene families of newly sequenced species. PMID:20976221

  3. Bacterial Actins.

    Science.gov (United States)

    Izoré, Thierry; van den Ent, Fusinita

    2017-01-01

    A diverse set of protein polymers, structurally related to actin filaments contributes to the organization of bacterial cells as cytomotive or cytoskeletal filaments. This chapter describes actin homologs encoded by bacterial chromosomes. MamK filaments, unique to magnetotactic bacteria, help establishing magnetic biological compasses by interacting with magnetosomes. Magnetosomes are intracellular membrane invaginations containing biomineralized crystals of iron oxide that are positioned by MamK along the long-axis of the cell. FtsA is widespread across bacteria and it is one of the earliest components of the divisome to arrive at midcell, where it anchors the cell division machinery to the membrane. FtsA binds directly to FtsZ filaments and to the membrane through its C-terminus. FtsA shows altered domain architecture when compared to the canonical actin fold. FtsA's subdomain 1C replaces subdomain 1B of other members of the actin family and is located on the opposite side of the molecule. Nevertheless, when FtsA assembles into protofilaments, the protofilament structure is preserved, as subdomain 1C replaces subdomain IB of the following subunit in a canonical actin filament. MreB has an essential role in shape-maintenance of most rod-shaped bacteria. Unusually, MreB filaments assemble from two protofilaments in a flat and antiparallel arrangement. This non-polar architecture implies that both MreB filament ends are structurally identical. MreB filaments bind directly to membranes where they interact with both cytosolic and membrane proteins, thereby forming a key component of the elongasome. MreB filaments in cells are short and dynamic, moving around the long axis of rod-shaped cells, sensing curvature of the membrane and being implicated in peptidoglycan synthesis.

  4. Actin isoform and alpha 1B-adrenoceptor gene expression in aortic and coronary smooth muscle is influenced by cyclical stretch.

    Science.gov (United States)

    Lundberg, M S; Sadhu, D N; Grumman, V E; Chilian, W M; Ramos, K S

    1995-09-01

    The occurrence of vascular domains with specific biological and pharmacological characteristics suggests that smooth muscle cells in different arteries may respond differentially to a wide range of environmental stimuli. To determine if some of these vessel-specific differences may be attributable to mechano-sensitive gene regulation, the influence of cyclical stretch on the expression of actin isoform and alpha 1B-adrenoceptor genes was examined in aortic and coronary smooth muscle cells. Cells were seeded on an elastin substrate and subjected to maximal stretching (24% elongation) and relaxation cycles at a frequency of 120 cycles/min in a Flexercell strain unit for 72 h. Total RNA was extracted and hybridized to radiolabeled cDNA probes to assess gene expression. Stretch caused a greater reduction of actin isoform mRNA levels in aortic smooth muscle cells as compared to cells from the coronary artery. Steady-state mRNA levels of alpha 1B-adrenoceptor were also decreased by cyclical stretch in both cell types but the magnitude of the response was greater in coronary smooth muscle cells. No changes in alpha 1B-adrenoceptor or beta/gamma-actin steady-state mRNA levels were observed in H4IIE cells, a nonvascular, immortalized cell line. The relative gene expression of heat shock protein 70 was not influenced by the cyclic stretch regimen in any of these cell types. These results suggest that stretch may participate in the regulation of gene expression in vascular smooth muscle cells and that this response exhibits some degree of cell-specificity.

  5. Unconventional actin conformations localize on intermediate filaments in mitosis

    International Nuclear Information System (INIS)

    Hubert, Thomas; Vandekerckhove, Joel; Gettemans, Jan

    2011-01-01

    Research highlights: → Unconventional actin conformations colocalize with vimentin on a cage-like structure in metaphase HEK 293T cells. → These conformations are detected with the anti-actin antibodies 1C7 ('lower dimer') and 2G2 ('nuclear actin'), but not C4 (monomeric actin). → Mitotic unconventional actin cables are independent of filamentous actin or microtubules. → Unconventional actin colocalizes with vimentin on a nocodazole-induced perinuclear dense mass of cables. -- Abstract: Different structural conformations of actin have been identified in cells and shown to reside in distinct subcellular locations of cells. In this report, we describe the localization of actin on a cage-like structure in metaphase HEK 293T cells. Actin was detected with the anti-actin antibodies 1C7 and 2G2, but not with the anti-actin antibody C4. Actin contained in this structure is independent of microtubules and actin filaments, and colocalizes with vimentin. Taking advantage of intermediate filament collapse into a perinuclear dense mass of cables when microtubules are depolymerized, we were able to relocalize actin to such structures. We hypothesize that phosphorylation of intermediate filaments at mitosis entry triggers the recruitment of different actin conformations to mitotic intermediate filaments. Storage and partition of the nuclear actin and antiparallel 'lower dimer' actin conformations between daughter cells possibly contribute to gene transcription and transient actin filament dynamics at G1 entry.

  6. A Gly65Val substitution in an actin, GhACT_LI1, disrupts cell polarity and membrane anchoring of F-actin resulting in dwarf, lintless Li1 cotton plants

    Science.gov (United States)

    Actin polymerizes to form the cytoskeleton and organize polar growth in all eukaryotic cells. Species with numerous actin genes are especially useful for the dissection of actin molecular function due to redundancy and neofunctionalization. Here, we investigated the role of a cotton (Gossypium hi...

  7. Actin is closely associated with RNA polymerase II and involved in activation of gene transcription

    International Nuclear Information System (INIS)

    Zhu Xiaojuan; Zeng Xianlu; Huang Baiqu; Hao, Shui

    2004-01-01

    Biochemical and morphological studies have demonstrated the presence of actin in the nucleus of different eukaryotic cells, whereas its role remains unclear. In this work, we studied the interaction and the functional relationship between nuclear actin and RNA polymerase II (RNAP II). The immunofluorescence study demonstrated a clear co-localization of nuclear actin with RNAP II in HeLa cells. Meanwhile, actin can be immunoprecipitated by anti-RNAP II antibody, indicating that they could interact with each other. Treatment of cells with α-amanitin induced the formation of actin bundle network in the nucleoplasm. Blocking of the formation of filamentous actin (F-actin) by cytochalasin B modified the distribution of actin. Although the actin content remained unchanged in resting and concanavalinA stimulated mouse lymphocytes, the actin content in the nuclei showed a progressive increase after stimulation. Furthermore, the antibody against actin blocked RNA synthesis in a eukaryotic in vitro transcription system. These observations implicate that nuclear actin interacts with RNAP II and may have function on the RNAP II-mediated transcription

  8. Reduced myelin basic protein and actin-related gene expression in visual cortex in schizophrenia.

    Science.gov (United States)

    Matthews, Paul R; Eastwood, Sharon L; Harrison, Paul J

    2012-01-01

    Most brain gene expression studies of schizophrenia have been conducted in the frontal cortex or hippocampus. The extent to which alterations occur in other cortical regions is not well established. We investigated primary visual cortex (Brodmann area 17) from the Stanley Neuropathology Consortium collection of tissue from 60 subjects with schizophrenia, bipolar disorder, major depression, or controls. We first carried out a preliminary array screen of pooled RNA, and then used RT-PCR to quantify five mRNAs which the array identified as differentially expressed in schizophrenia (myelin basic protein [MBP], myelin-oligodendrocyte glycoprotein [MOG], β-actin [ACTB], thymosin β-10 [TB10], and superior cervical ganglion-10 [SCG10]). Reduced mRNA levels were confirmed by RT-PCR for MBP, ACTB and TB10. The MBP reduction was limited to transcripts containing exon 2. ACTB and TB10 mRNAs were also decreased in bipolar disorder. None of the transcripts were altered in subjects with major depression. Reduced MBP mRNA in schizophrenia replicates findings in other brain regions and is consistent with oligodendrocyte involvement in the disorder. The decreases in expression of ACTB, and the actin-binding protein gene TB10, suggest changes in cytoskeletal organisation. The findings confirm that the primary visual cortex shows molecular alterations in schizophrenia and extend the evidence for a widespread, rather than focal, cortical pathophysiology.

  9. Biphasic interactions between a cationic dendrimer and actin.

    Science.gov (United States)

    Ruenraroengsak, Pakatip; Florence, Alexander T

    2010-12-01

    Gene delivery systems face the problem not only of the route toward the cell and tissues in question, but also of the molecularly crowded environment of both the cytoplasm and the nucleus itself. One of the physical barriers in the cytoplasm for diffusing nanoparticles is an actin network. Here, we describe the finding that a self-fluorescent sixth generation cationic dendrimer (6 nm in diameter) interacts reversibly and possibly electrostatically with actin filaments in vitro. Not only does this interaction slow the diffusion of the dendrimer but it also affects actin polymerization in a biphasic manner. At low concentrations the dendrimer behaves like a G-binding actin protein, retarding actin polymerization, whereas at high concentrations the dendrimer acts as a nucleating protein accelerating the polymerization. Thus in vivo the diffusion of a dendrimer carrier such as this has both physical and chemical elements: by decreasing polymerization it might accelerate its own transport, and by enhancing actin polymerization retard it. This finding suggests that such a dendrimer may have a role as an anticancer agent through its inhibitory effect on actin polymerization.

  10. The MARVEL domain protein Nce102 regulates actin organization and invasive growth of Candida albicans.

    Science.gov (United States)

    Douglas, Lois M; Wang, Hong X; Konopka, James B

    2013-11-26

    contributes to virulence, we analyzed a set of eight genes encoding MARVEL family proteins that are predicted to function in membrane organization. Interestingly, deletion of one gene, NCE102, caused a strong defect in formation of invasive hyphal growth in vitro and decreased virulence in mice. The nce102Δ mutant cells showed defects in actin organization that underlie the morphogenesis defect, since mutation of a known regulator of actin organization caused a similar defect. These studies identify a novel way in which the plasma membrane regulates the actin cytoskeleton and contributes to pathogenesis.

  11. Identities among actin-encoding cDNAs of the Nile tilapia (Oreochromis niloticus and other eukaryote species revealed by nucleotide and amino acid sequence analyses

    Directory of Open Access Journals (Sweden)

    Andréia B. Poletto

    2008-01-01

    Full Text Available Actin-encoding cDNAs of Nile tilapia (Oreochromis niloticus were isolated by RT-PCR using total RNA samples of different tissues and further characterized by nucleotide sequencing and in silico amino acid (aa sequence analysis. Comparisons among the actin gene sequences of O. niloticus and those of other species evidenced that the isolated genes present a high similarity to other fish and other vertebrate actin genes. The highest nucleotide resemblance was observed between O. niloticus and O. mossambicus a-actin and b-actin genes. Analysis of the predicted aa sequences revealed two distinct types of cytoplasmic actins, one cardiac muscle actin type and one skeletal muscle actin type that were expressed in different tissues of Nile tilapia. The evolutionary relationships between the Nile tilapia actin genes and diverse other organisms is discussed.

  12. Molecular karyotype and chromosomal localization of genes encoding ß-tubulin, cysteine proteinase, hsp 70 and actin in Trypanosoma rangeli

    Directory of Open Access Journals (Sweden)

    CB Toaldo

    2001-01-01

    Full Text Available The molecular karyotype of nine Trypanosoma rangeli strains was analyzed by contour-clamped homogeneous electric field electrophoresis, followed by the chromosomal localization of ß-tubulin, cysteine proteinase, 70 kDa heat shock protein (hsp 70 and actin genes. The T. rangeli strains were isolated from either insects or mammals from El Salvador, Honduras, Venezuela, Colombia, Panama and southern Brazil. Also, T. cruzi CL-Brener clone was included for comparison. Despite the great similarity observed among strains from Brazil, the molecular karyotype of all T. rangeli strains analyzed revealed extensive chromosome polymorphism. In addition, it was possible to distinguish T. rangeli from T. cruzi by the chromosomal DNA electrophoresis pattern. The localization of ß-tubulin genes revealed differences among T. rangeli strains and confirmed the similarity between the isolates from Brazil. Hybridization assays using probes directed to the cysteine proteinase, hsp 70 and actin genes discriminated T. rangeli from T. cruzi, proving that these genes are useful molecular markers for the differential diagnosis between these two species. Numerical analysis based on the molecular karyotype data revealed a high degree of polymorphism among T. rangeli strains isolated from southern Brazil and strains isolated from Central and the northern South America. The T. cruzi reference strain was not clustered with any T. rangeli strain.

  13. Distinct functional interactions between actin isoforms and nonsarcomeric myosins.

    Directory of Open Access Journals (Sweden)

    Mirco Müller

    Full Text Available Despite their near sequence identity, actin isoforms cannot completely replace each other in vivo and show marked differences in their tissue-specific and subcellular localization. Little is known about isoform-specific differences in their interactions with myosin motors and other actin-binding proteins. Mammalian cytoplasmic β- and γ-actin interact with nonsarcomeric conventional myosins such as the members of the nonmuscle myosin-2 family and myosin-7A. These interactions support a wide range of cellular processes including cytokinesis, maintenance of cell polarity, cell adhesion, migration, and mechano-electrical transduction. To elucidate differences in the ability of isoactins to bind and stimulate the enzymatic activity of individual myosin isoforms, we characterized the interactions of human skeletal muscle α-actin, cytoplasmic β-actin, and cytoplasmic γ-actin with human myosin-7A and nonmuscle myosins-2A, -2B and -2C1. In the case of nonmuscle myosins-2A and -2B, the interaction with either cytoplasmic actin isoform results in 4-fold greater stimulation of myosin ATPase activity than was observed in the presence of α-skeletal muscle actin. Nonmuscle myosin-2C1 is most potently activated by β-actin and myosin-7A by γ-actin. Our results indicate that β- and γ-actin isoforms contribute to the modulation of nonmuscle myosin-2 and myosin-7A activity and thereby to the spatial and temporal regulation of cytoskeletal dynamics. FRET-based analyses show efficient copolymerization abilities for the actin isoforms in vitro. Experiments with hybrid actin filaments show that the extent of actomyosin coupling efficiency can be regulated by the isoform composition of actin filaments.

  14. The Infection of Cucumber (Cucumis sativus L. Roots by Meloidogyne incognita Alters the Expression of Actin-Depolymerizing Factor (ADF Genes, Particularly in Association with Giant Cell Formation

    Directory of Open Access Journals (Sweden)

    Bin Liu

    2016-09-01

    Full Text Available Cucumber (Cucumis sativus L. is threatened by substantial yield losses due to the south root-knot nematode (Meloidogyne incognita. However, understanding of the molecular mechanisms underlying the process of nematode infection is still limited. In this study, we found that M. incognita infection affected the structure of cells in cucumber roots and treatment of the cytoskeleton inhibitor (cytochalasin D reduced root-knot nematode (RKN parasitism. It is known that Actin-Depolymerizing Factor (ADF affects cell structure, as well as the organization of the cytoskeleton. To address the hypothesis that nematode-induced abnormal cell structures and cytoskeletal rearrangements might be mediated by the ADF genes, we identified and characterized eight cucumber ADF (CsADF genes. Phylogenetic analysis showed that the cucumber ADF gene family is grouped into four ancient subclasses. Expression analysis revealed that CsADF1, CsADF2-1, CsADF2-2, CsADF2-3 (Subclass I and CsADF6 (Subclass III have higher transcript levels than CsADF7-1, CsADF7-2 (Subclass II genes and CsADF5 (Subclass IV in roots. Members of subclass I genes (CsADF1, CsADF2-1, CsADF2-2 and CsADF2-3, with the exception of CsADF2-1, exhibited a induction of expression in roots 14 days after their inoculation (DAI with nematodes. However, the expression of subclass II genes (CsADF7-1 and CsADF7-2 showed no significant change after inoculation. The transcript levels of CsADF6 (Subclass III showed a specific induction at 21 DAI, while CsADF5 (Subclass IV was weakly expressed in roots, but was strongly up-regulated as early as 7 DAI. In addition, treatment of roots with cytochalasin D caused an approximately two-fold down-regulation of the CsADF genes in the treated plants. These results suggest that CsADF gene mediated actin dynamics are associated with structural changes in roots as a consequence of M. incognita infection.

  15. The evolution of compositionally and functionally distinct actin filaments.

    Science.gov (United States)

    Gunning, Peter W; Ghoshdastider, Umesh; Whitaker, Shane; Popp, David; Robinson, Robert C

    2015-06-01

    The actin filament is astonishingly well conserved across a diverse set of eukaryotic species. It has essentially remained unchanged in the billion years that separate yeast, Arabidopsis and man. In contrast, bacterial actin-like proteins have diverged to the extreme, and many of them are not readily identified from sequence-based homology searches. Here, we present phylogenetic analyses that point to an evolutionary drive to diversify actin filament composition across kingdoms. Bacteria use a one-filament-one-function system to create distinct filament systems within a single cell. In contrast, eukaryotic actin is a universal force provider in a wide range of processes. In plants, there has been an expansion of the number of closely related actin genes, whereas in fungi and metazoa diversification in tropomyosins has increased the compositional variety in actin filament systems. Both mechanisms dictate the subset of actin-binding proteins that interact with each filament type, leading to specialization in function. In this Hypothesis, we thus propose that different mechanisms were selected in bacteria, plants and metazoa, which achieved actin filament compositional variation leading to the expansion of their functional diversity. © 2015. Published by The Company of Biologists Ltd.

  16. Evaluation of Gene-Based Family-Based Methods to Detect Novel Genes Associated With Familial Late Onset Alzheimer Disease

    Directory of Open Access Journals (Sweden)

    Maria V. Fernández

    2018-04-01

    Full Text Available Gene-based tests to study the combined effect of rare variants on a particular phenotype have been widely developed for case-control studies, but their evolution and adaptation for family-based studies, especially studies of complex incomplete families, has been slower. In this study, we have performed a practical examination of all the latest gene-based methods available for family-based study designs using both simulated and real datasets. We examined the performance of several collapsing, variance-component, and transmission disequilibrium tests across eight different software packages and 22 models utilizing a cohort of 285 families (N = 1,235 with late-onset Alzheimer disease (LOAD. After a thorough examination of each of these tests, we propose a methodological approach to identify, with high confidence, genes associated with the tested phenotype and we provide recommendations to select the best software and model for family-based gene-based analyses. Additionally, in our dataset, we identified PTK2B, a GWAS candidate gene for sporadic AD, along with six novel genes (CHRD, CLCN2, HDLBP, CPAMD8, NLRP9, and MAS1L as candidate genes for familial LOAD.

  17. TGF-beta-induced early gene-1 overexpression promotes oxidative stress protection and actin cytoskeleton rearrangement in human skin fibroblasts.

    Science.gov (United States)

    Leduc, Chloe; Sobilo, Lauren; Toumi, Hechmi; Mondon, Philippe; Lespessailles, Eric; Ossant, Fédéric; Kurfurst, Robin; Pichon, Chantal

    2016-06-01

    Transforming growth factor beta inducible early gene-1 (TIEG-1), a member of the Krüppel-like factor, was identified as a primary response gene for TGF-β. The role of TIEG-1 in skin repair has been mainly addressed in vivo on TIEG-1 null mice model and the mechanism remains unexplored. We investigated the modulation of TIEG-1 expression in normal human skin fibroblasts by either down-expressing or overexpressing the gene. We evaluated reactive oxygen species production and the cell viability of treated cells. The effect of TIEG-1 overexpression was monitored by wound healing assay and immunofluorescence staining of actin fibers organization and alpha-smooth muscle actin (α-SMA). Western blots were carried out to identify the level of expression or phosphorylation of key proteins such as cofilin, Rho GTPases, and p38 mitogen-activated protein kinase (p38 MAPK). TIEG-1 down-regulation had a deleterious effect on the cell viability. It was significantly reduced (65±5%) and exposure to ultraviolet further increased this effect (47±3%). By contrast, cells overexpressing TIEG-1 had a reduced reactive oxygen species production (75%) compared to control and mock-transfected cells. This overexpression also resulted in formation of actin stress fibers and increased α-SMA expression and an enhanced wound healing feature. RhoB GTPase was upregulated and phosphorylation of cofilin and p38 MAPK was observed. TIEG-1 overexpression in normal human skin fibroblasts results in improved resistance to oxidative stress, myofibroblast-like conversion that involved RhoB signaling pathway with cofilin and p38 MAPK proteins activation. This study enlightens the role of TIEG-1 role in skin biology. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Actinic keratosis

    Science.gov (United States)

    Solar keratosis; Sun-induced skin changes - keratosis; Keratosis - actinic (solar); Skin lesion - actinic keratosis ... Actinic keratosis is caused by exposure to sunlight. You are more likely to develop it if you: Have fair ...

  19. Microfluidic measurement of effects of ACF7/MACF1 gene on the mechanics of primary cortical neurons

    Science.gov (United States)

    Lee, Donghee; Ka, Minhan; Kim, Woo-Yang; Ryu, Sangjin

    2014-03-01

    Actin filaments and microtubules play important roles in determining the mechanics of cells, and ACF7/MACF1 (Actin Crosslinking Family 7/Microtubule And Actin Crosslinking Factor 1) gene seems to be closely related to connections between actin filaments and microtubules. To identify such roles of the ACF7/MACF1 gene of primary cortical neurons, we isolated neuronal cells from the cerebral cortex of the embryonic mouse brain, which is important in memory, language and perception. We exerted viscous shear flow to normal neuronal cells and ACF7/MACF1 gene knockout neuronal cells using rectangular microfluidic channels. While changing viscous shear stress on the cells, we recorded changes in the morphology of the two cell types using video microscopy. Having analyzed the deformation of the cells, we could quantitatively correlate differences in the morphological change between the both normal and ACF7/MACF1 gene knockout neuronal cells to the applied shear force, which will contribute toward identifying cell mechanical roles of the ACF7/MACF1 gene.

  20. G-actin sequestering protein thymosin-β4 regulates the activity of myocardin-related transcription factor

    International Nuclear Information System (INIS)

    Morita, Tsuyoshi; Hayashi, Ken’ichiro

    2013-01-01

    Highlights: •Tβ4 competed with MRTF-A for G-actin binding. •Tβ4 activated the MRTF–SRF signaling pathway. •Tβ4 increased the endogenous expression of SRF-dependent genes. -- Abstract: Myocardin-related transcription factors (MRTFs) are robust coactivators of serum response factor (SRF). MRTFs contain three copies of the RPEL motif at their N-terminus, and they bind to monomeric globular actin (G-actin). Previous studies illustrate that G-actin binding inhibits MRTF activity by preventing the MRTFs nuclear accumulation. In the living cells, the majority of G-actin is sequestered by G-actin binding proteins that prevent spontaneous actin polymerization. Here, we demonstrate that the most abundant G-actin sequestering protein thymosin-β4 (Tβ4) was involved in the regulation of subcellular localization and activity of MRTF-A. Tβ4 competed with MRTF-A for G-actin binding; thus, interfering with G-actin–MRTF-A complex formation. Tβ4 overexpression induced the MRTF-A nuclear accumulation and activation of MRTF–SRF signaling. The activation rate of MRTF-A by the Tβ4 mutant L17A, whose affinity for G-actin is very low, was lower than that by wild-type Tβ4. In contrast, the β-actin mutant 3DA, which has a lower affinity for Tβ4, more effectively suppressed MRTF-A activity than wild-type β-actin. Furthermore, ectopic Tβ4 increased the endogenous expression of SRF-dependent actin cytoskeletal genes. Thus, Tβ4 is an important MRTF regulator that controls the G-actin–MRTFs interaction

  1. G-actin sequestering protein thymosin-β4 regulates the activity of myocardin-related transcription factor

    Energy Technology Data Exchange (ETDEWEB)

    Morita, Tsuyoshi, E-mail: tsuyo@nbiochem.med.osaka-u.ac.jp; Hayashi, Ken’ichiro

    2013-08-02

    Highlights: •Tβ4 competed with MRTF-A for G-actin binding. •Tβ4 activated the MRTF–SRF signaling pathway. •Tβ4 increased the endogenous expression of SRF-dependent genes. -- Abstract: Myocardin-related transcription factors (MRTFs) are robust coactivators of serum response factor (SRF). MRTFs contain three copies of the RPEL motif at their N-terminus, and they bind to monomeric globular actin (G-actin). Previous studies illustrate that G-actin binding inhibits MRTF activity by preventing the MRTFs nuclear accumulation. In the living cells, the majority of G-actin is sequestered by G-actin binding proteins that prevent spontaneous actin polymerization. Here, we demonstrate that the most abundant G-actin sequestering protein thymosin-β4 (Tβ4) was involved in the regulation of subcellular localization and activity of MRTF-A. Tβ4 competed with MRTF-A for G-actin binding; thus, interfering with G-actin–MRTF-A complex formation. Tβ4 overexpression induced the MRTF-A nuclear accumulation and activation of MRTF–SRF signaling. The activation rate of MRTF-A by the Tβ4 mutant L17A, whose affinity for G-actin is very low, was lower than that by wild-type Tβ4. In contrast, the β-actin mutant 3DA, which has a lower affinity for Tβ4, more effectively suppressed MRTF-A activity than wild-type β-actin. Furthermore, ectopic Tβ4 increased the endogenous expression of SRF-dependent actin cytoskeletal genes. Thus, Tβ4 is an important MRTF regulator that controls the G-actin–MRTFs interaction.

  2. A missense mutation in the alpha-actinin 1 gene (ACTN1 is the cause of autosomal dominant macrothrombocytopenia in a large French family.

    Directory of Open Access Journals (Sweden)

    Paul Guéguen

    Full Text Available Inherited thrombocytopenia is a heterogeneous group of disorders characterized by a reduced number of blood platelets. Despite the identification of nearly 20 causative genes in the past decade, approximately half of all subjects with inherited thrombocytopenia still remain unexplained in terms of the underlying pathogenic mechanisms. Here we report a six-generation French pedigree with an autosomal dominant mode of inheritance and the identification of its genetic basis. Of the 55 subjects available for analysis, 26 were diagnosed with isolated macrothrombocytopenia. Genome-wide linkage analysis mapped a 10.9 Mb locus to chromosome 14 (14q22 with a LOD score of 7.6. Candidate gene analysis complemented by targeted next-generation sequencing identified a missense mutation (c.137GA; p.Arg46Gln in the alpha-actinin 1 gene (ACTN1 that segregated with macrothrombocytopenia in this large pedigree. The missense mutation occurred within actin-binding domain of alpha-actinin 1, a functionally critical domain that crosslinks actin filaments into bundles. The evaluation of cultured mutation-harboring megakaryocytes by electron microscopy and the immunofluorescence examination of transfected COS-7 cells suggested that the mutation causes disorganization of the cellular cytoplasm. Our study concurred with a recently published whole-exome sequence analysis of six small Japanese families with congenital macrothrombocytopenia, adding ACTN1 to the growing list of thrombocytopenia genes.

  3. A Novel Alpha Cardiac Actin (ACTC1 Mutation Mapping to a Domain in Close Contact with Myosin Heavy Chain Leads to a Variety of Congenital Heart Defects, Arrhythmia and Possibly Midline Defects.

    Directory of Open Access Journals (Sweden)

    Céline Augière

    Full Text Available A Lebanese Maronite family presented with 13 relatives affected by various congenital heart defects (mainly atrial septal defects, conduction tissue anomalies and midline defects. No mutations were found in GATA4 and NKX2-5.A set of 399 poly(AC markers was used to perform a linkage analysis which peaked at a 2.98 lod score on the long arm of chromosome 15. The haplotype analysis delineated a 7.7 meganucleotides genomic interval which included the alpha-cardiac actin gene (ACTC1 among 36 other protein coding genes. A heterozygous missense mutation was found (c.251T>C, p.(Met84Thr in the ACTC1 gene which changed a methionine residue conserved up to yeast. This mutation was absent from 1000 genomes and exome variant server database but segregated perfectly in this family with the affection status. This mutation and 2 other ACTC1 mutations (p.(Glu101Lys and p.(Met125Val which result also in congenital heart defects are located in a region in close apposition to a myosin heavy chain head region by contrast to 3 other alpha-cardiac actin mutations (p.(Ala297Ser,p.(Asp313His and p.(Arg314His which result in diverse cardiomyopathies and are located in a totally different interaction surface.Alpha-cardiac actin mutations lead to congenital heart defects, cardiomyopathies and eventually midline defects. The consequence of an ACTC1 mutation may in part be dependent on the interaction surface between actin and myosin.

  4. ISOLASI DAN KARAKTERISASI PROMOTER β-ACTIN DARI IKAN KERAPU BEBEK (Cromileptes altivelis

    Directory of Open Access Journals (Sweden)

    Alimuddin Alimuddin

    2016-11-01

    Promoter as gene expression regulator is one of the factors affecting the successful of transgenesis. Isolation and characterization of β -actin promoter (ktBA from humpback grouper (Cromileptes altivelis towards generation of autotransgenic grouper have been conducted.  β -actin promoter has high activity in muscle. Sequence of ktBA promoter was isolated by using degenerate PCR method. Sequencing was performed using ABI PRISM 3100 machine. Analysis of sequences was conducted using BLAST, GENETYX version 7 and TFBind softwares. DNA fragment of PCR amplification product digested from the vector cloning was then ligated with pEGFPN1 to generate pktBA-GFP construct. The construct was microinjected into one-cell stage of zebrafish (Danio rerio embryos to test the ktBA promoter activity. EGFP gene expression was observed by fluorescence microscope. The result of sequence analysis showed that the length of DNA fragment obtained is about 1.6 kb and containing the evolutionary conserved sequences of transcription factor for β -actin promoter including CCAAT, CArG and TATA boxes. Furthermore, ktBA sequence in pktBA-EGFP construct could drove GFP expression in muscle of zebrafish embryos injected with the construct. The results suggested that PCR amplification product is the regulator sequence of humpback grouper β -actin gene. Autotransgenic grouper can be then produced by changing GFP gene fragment of pktBA-EGFP construct with genes from grouper encoding important traits in aquaculture.

  5. Design and evaluation of Actichip, a thematic microarray for the study of the actin cytoskeleton

    Science.gov (United States)

    Muller, Jean; Mehlen, André; Vetter, Guillaume; Yatskou, Mikalai; Muller, Arnaud; Chalmel, Frédéric; Poch, Olivier; Friederich, Evelyne; Vallar, Laurent

    2007-01-01

    Background The actin cytoskeleton plays a crucial role in supporting and regulating numerous cellular processes. Mutations or alterations in the expression levels affecting the actin cytoskeleton system or related regulatory mechanisms are often associated with complex diseases such as cancer. Understanding how qualitative or quantitative changes in expression of the set of actin cytoskeleton genes are integrated to control actin dynamics and organisation is currently a challenge and should provide insights in identifying potential targets for drug discovery. Here we report the development of a dedicated microarray, the Actichip, containing 60-mer oligonucleotide probes for 327 genes selected for transcriptome analysis of the human actin cytoskeleton. Results Genomic data and sequence analysis features were retrieved from GenBank and stored in an integrative database called Actinome. From these data, probes were designed using a home-made program (CADO4MI) allowing sequence refinement and improved probe specificity by combining the complementary information recovered from the UniGene and RefSeq databases. Actichip performance was analysed by hybridisation with RNAs extracted from epithelial MCF-7 cells and human skeletal muscle. Using thoroughly standardised procedures, we obtained microarray images with excellent quality resulting in high data reproducibility. Actichip displayed a large dynamic range extending over three logs with a limit of sensitivity between one and ten copies of transcript per cell. The array allowed accurate detection of small changes in gene expression and reliable classification of samples based on the expression profiles of tissue-specific genes. When compared to two other oligonucleotide microarray platforms, Actichip showed similar sensitivity and concordant expression ratios. Moreover, Actichip was able to discriminate the highly similar actin isoforms whereas the two other platforms did not. Conclusion Our data demonstrate that

  6. LL-37 induces polymerization and bundling of actin and affects actin structure.

    Directory of Open Access Journals (Sweden)

    Asaf Sol

    Full Text Available Actin exists as a monomer (G-actin which can be polymerized to filaments F-actin that under the influence of actin-binding proteins and polycations bundle and contribute to the formation of the cytoskeleton. Bundled actin from lysed cells increases the viscosity of sputum in lungs of cystic fibrosis patients. The human host defense peptide LL-37 was previously shown to induce actin bundling and was thus hypothesized to contribute to the pathogenicity of this disease. In this work, interactions between actin and the cationic LL-37 were studied by optical, proteolytic and surface plasmon resonance methods and compared to those obtained with scrambled LL-37 and with the cationic protein lysozyme. We show that LL-37 binds strongly to CaATP-G-actin while scrambled LL-37 does not. While LL-37, at superstoichiometric LL-37/actin concentrations polymerizes MgATP-G-actin, at lower non-polymerizing concentrations LL-37 inhibits actin polymerization by MgCl(2 or NaCl. LL-37 bundles Mg-F-actin filaments both at low and physiological ionic strength when in equimolar or higher concentrations than those of actin. The LL-37 induced bundles are significantly less sensitive to increase in ionic strength than those induced by scrambled LL-37 and lysozyme. LL-37 in concentrations lower than those needed for actin polymerization or bundling, accelerates cleavage of both monomer and polymer actin by subtilisin. Our results indicate that the LL-37-actin interaction is partially electrostatic and partially hydrophobic and that a specific actin binding sequence in the peptide is responsible for the hydrophobic interaction. LL-37-induced bundles, which may contribute to the accumulation of sputum in cystic fibrosis, are dissociated very efficiently by DNase-1 and also by cofilin.

  7. Immune-mediated changes in actinic keratosis following topical treatment with imiquimod 5% cream

    Directory of Open Access Journals (Sweden)

    Raghavan Shalini

    2007-01-01

    Full Text Available Abstract Background The objective of this study was to identify the molecular processes responsible for the anti-lesional activity of imiquimod in subjects with actinic keratosis using global gene expression profiling. Methods A double-blind, placebo-controlled, randomized study was conducted to evaluate gene expression changes in actinic keratosis treated with imiquimod 5% cream. Male subjects (N = 17 with ≥ 5 actinic keratosis on the scalp applied placebo cream or imiquimod 3 times a week on nonconsecutive days for 4 weeks. To elucidate the molecular processes involved in actinic keratosis lesion regression by imiquimod, gene expression analysis using oligonucleotide arrays and real time reverse transcriptase polymerase chain reaction were performed on shave biopsies of lesions taken before and after treatment. Results Imiquimod modulated the expression of a large number of genes important in both the innate and adaptive immune response, including increased expression of interferon-inducible genes with known antiviral, anti-proliferative and immune modulatory activity, as well as various Toll-like receptors. In addition, imiquimod increased the expression of genes associated with activation of macrophages, dendritic cells, cytotoxic T cells, and natural killer cells, as well as activation of apoptotic pathways. Conclusion Data suggest that topical application of imiquimod stimulates cells in the skin to secrete cytokines and chemokines that lead to inflammatory cell influx into the lesions and subsequent apoptotic and immune cell-mediated destruction of lesions.

  8. Morphodynamics of the Actin-Rich Cytoskeleton in Entamoeba histolytica

    Directory of Open Access Journals (Sweden)

    Maria Manich

    2018-05-01

    Full Text Available Entamoeba histolytica is the anaerobic protozoan parasite responsible for human amoebiasis, the third most deadly parasitic disease worldwide. This highly motile eukaryotic cell invades human tissues and constitutes an excellent experimental model of cell motility and cell shape deformation. The absence of extranuclear microtubules in Entamoeba histolytica means that the actin-rich cytoskeleton takes on a crucial role in not only amoebic motility but also other processes sustaining pathogenesis, such as the phagocytosis of human cells and the parasite's resistance of host immune responses. Actin is highly conserved among eukaryotes, although diverse isoforms exist in almost all organisms studied to date. However, E. histolytica has a single actin protein, the structure of which differs significantly from those of its human homologs. Here, we studied the expression, structure and dynamics of actin in E. histolytica. We used molecular and cellular approaches to evaluate actin gene expression during intestinal invasion by E. histolytica trophozoites. Based on a three-dimensional structural bioinformatics analysis, we characterized protein domains differences between amoebic actin and human actin. Fine-tuned molecular dynamics simulations enabled us to examine protein motion and refine the three-dimensional structures of both actins, including elements potentially accounting for differences changes in the affinity properties of amoebic actin and deoxyribonuclease I. The dynamic, multifunctional nature of the amoebic cytoskeleton prompted us to examine the pleiotropic forms of actin structures within live E. histolytica cells; we observed the cortical cytoskeleton, stress fibers, “dot-like” structures, adhesion plates, and macropinosomes. In line with these data, a proteomics study of actin-binding proteins highlighted the Arp2/3 protein complex as a crucial element for the development of macropinosomes and adhesion plaques.

  9. Changes in actin dynamics are involved in salicylic acid signaling pathway.

    Science.gov (United States)

    Matoušková, Jindřiška; Janda, Martin; Fišer, Radovan; Sašek, Vladimír; Kocourková, Daniela; Burketová, Lenka; Dušková, Jiřina; Martinec, Jan; Valentová, Olga

    2014-06-01

    Changes in actin cytoskeleton dynamics are one of the crucial players in many physiological as well as non-physiological processes in plant cells. Positioning of actin filament arrays is necessary for successful establishment of primary lines of defense toward pathogen attack, depolymerization leads very often to the enhanced susceptibility to the invading pathogen. On the other hand it was also shown that the disruption of actin cytoskeleton leads to the induction of defense response leading to the expression of PATHOGENESIS RELATED proteins (PR). In this study we show that pharmacological actin depolymerization leads to the specific induction of genes in salicylic acid pathway but not that involved in jasmonic acid signaling. Life imaging of leafs of Arabidopsis thaliana with GFP-tagged fimbrin (GFP-fABD2) treated with 1 mM salicylic acid revealed rapid disruption of actin filaments resembling the pattern viewed after treatment with 200 nM latrunculin B. The effect of salicylic acid on actin filament fragmentation was prevented by exogenous addition of phosphatidic acid, which binds to the capping protein and thus promotes actin polymerization. The quantitative evaluation of actin filament dynamics is also presented. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  10. The role of retrotransposons in gene family expansions: insights from the mouse Abp gene family.

    Science.gov (United States)

    Janoušek, Václav; Karn, Robert C; Laukaitis, Christina M

    2013-05-29

    Retrotransposons have been suggested to provide a substrate for non-allelic homologous recombination (NAHR) and thereby promote gene family expansion. Their precise role, however, is controversial. Here we ask whether retrotransposons contributed to the recent expansions of the Androgen-binding protein (Abp) gene families that occurred independently in the mouse and rat genomes. Using dot plot analysis, we found that the most recent duplication in the Abp region of the mouse genome is flanked by L1Md_T elements. Analysis of the sequence of these elements revealed breakpoints that are the relicts of the recombination that caused the duplication, confirming that the duplication arose as a result of NAHR using L1 elements as substrates. L1 and ERVII retrotransposons are considerably denser in the Abp regions than in one Mb flanking regions, while other repeat types are depleted in the Abp regions compared to flanking regions. L1 retrotransposons preferentially accumulated in the Abp gene regions after lineage separation and roughly followed the pattern of Abp gene expansion. By contrast, the proportion of shared vs. lineage-specific ERVII repeats in the Abp region resembles the rest of the genome. We confirmed the role of L1 repeats in Abp gene duplication with the identification of recombinant L1Md_T elements at the edges of the most recent mouse Abp gene duplication. High densities of L1 and ERVII repeats were found in the Abp gene region with abrupt transitions at the region boundaries, suggesting that their higher densities are tightly associated with Abp gene duplication. We observed that the major accumulation of L1 elements occurred after the split of the mouse and rat lineages and that there is a striking overlap between the timing of L1 accumulation and expansion of the Abp gene family in the mouse genome. Establishing a link between the accumulation of L1 elements and the expansion of the Abp gene family and identification of an NAHR-related breakpoint in

  11. TGF1-Induced Differentiation of Human Bone Marrow-Derived MSCs Is Mediated by Changes to the Actin Cytoskeleton

    DEFF Research Database (Denmark)

    Elsafadi, Mona; Manikandan, Muthurangan; Almalki, Sami

    2018-01-01

    MSC cultures using DNA microarrays. In total, 1932 genes were upregulated, and 1298 genes were downregulated. Bioinformatics analysis revealed that TGFβl treatment was associated with an enrichment of genes in the skeletal and extracellular matrix categories and the regulation of the actin cytoskeleton....... To investigate further, we examined the actin cytoskeleton following treatment with TGFβ1 and/or cytochalasin D. Interestingly, cytochalasin D treatment of hMSCs enhanced adipogenic differentiation but inhibited osteogenic differentiation. Global gene expression profiling revealed a significant enrichment...... of pathways related to osteogenesis and adipogenesis and of genes regulated by both TGFβ1 and cytochalasin D. Our study demonstrates that TGFβ1 enhances hMSC commitment to either the osteogenic or adipogenic lineages by reorganizing the actin cytoskeleton....

  12. Comparative genome analysis of PHB gene family reveals deep evolutionary origins and diverse gene function.

    Science.gov (United States)

    Di, Chao; Xu, Wenying; Su, Zhen; Yuan, Joshua S

    2010-10-07

    PHB (Prohibitin) gene family is involved in a variety of functions important for different biological processes. PHB genes are ubiquitously present in divergent species from prokaryotes to eukaryotes. Human PHB genes have been found to be associated with various diseases. Recent studies by our group and others have shown diverse function of PHB genes in plants for development, senescence, defence, and others. Despite the importance of the PHB gene family, no comprehensive gene family analysis has been carried to evaluate the relatedness of PHB genes across different species. In order to better guide the gene function analysis and understand the evolution of the PHB gene family, we therefore carried out the comparative genome analysis of the PHB genes across different kingdoms. The relatedness, motif distribution, and intron/exon distribution all indicated that PHB genes is a relatively conserved gene family. The PHB genes can be classified into 5 classes and each class have a very deep evolutionary origin. The PHB genes within the class maintained the same motif patterns during the evolution. With Arabidopsis as the model species, we found that PHB gene intron/exon structure and domains are also conserved during the evolution. Despite being a conserved gene family, various gene duplication events led to the expansion of the PHB genes. Both segmental and tandem gene duplication were involved in Arabidopsis PHB gene family expansion. However, segmental duplication is predominant in Arabidopsis. Moreover, most of the duplicated genes experienced neofunctionalization. The results highlighted that PHB genes might be involved in important functions so that the duplicated genes are under the evolutionary pressure to derive new function. PHB gene family is a conserved gene family and accounts for diverse but important biological functions based on the similar molecular mechanisms. The highly diverse biological function indicated that more research needs to be carried out

  13. HIV infection of T cells: actin-in and actin-out.

    Science.gov (United States)

    Liu, Yin; Belkina, Natalya V; Shaw, Stephen

    2009-04-14

    Three studies shed light on the decade-old observation that the actin cytoskeleton is hijacked to facilitate entry of HIV into its target cells. Polymerization of actin is required to assemble high concentrations of CD4 and CXCR4 at the plasma membrane, which promote viral binding and entry in both the simple model of infection by free virus and the more physiologically relevant route of infection through the virological synapse. Three types of actin-interacting proteins-filamin, ezrin/radixin/moesin (ERM), and cofilin-are now shown to play critical roles in this process. Filamin binds to both CD4 and CXCR4 in a manner promoted by signaling of the HIV gp120 glycoprotein. ERM proteins attach actin filaments to the membrane and may promote polymerization of actin. Early in the process of viral entry, cofilin is inactivated, which is proposed to facilitate the early assembly of actin filaments, but cofilin is reported to be activated soon thereafter to facilitate postentry events. This complex role of cofilin may help to reconcile the paradox that actin polymerization promotes initial binding and fusion steps but inhibits some subsequent early postentry events.

  14. Chorein Sensitivity of Actin Polymerization, Cell Shape and Mechanical Stiffness of Vascular Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Ioana Alesutan

    2013-09-01

    Full Text Available Background/Aims: Endothelial cell stiffness plays a key role in endothelium-dependent control of vascular tone and arterial blood pressure. Actin polymerization and distribution of microfilaments is essential for mechanical cell stiffness. Chorein, a protein encoded by the VPS13A gene, defective in chorea-acanthocytosis (ChAc, is involved in neuronal cell survival as well as cortical actin polymerization of erythrocytes and blood platelets. Chorein is expressed in a wide variety of further cells, yet nothing is known about the impact of chorein on cells other than neurons, erythrocytes and platelets. The present study explored whether chorein is expressed in human umbilical vein endothelial cells (HUVECs and addressed the putative role of chorein in the regulation of cytoskeletal architecture, stiffness and survival of those cells. Methods: In HUVECs with or without silencing of the VPS13A gene, VPS13A mRNA expression was determined utilizing quantitative RT-PCR, cytoskeletal organization visualized by confocal microscopy, G/F actin ratio and phosphorylation status of focal adhesion kinase quantified by western blotting, cell death determined by flow cytometry, mechanical properties studied by atomic force microscopy (AFM and cell morphology analysed by scanning ion conductance microscopy (SICM. Results: VPS13A mRNA expression was detectable in HUVECs. Silencing of the VPS13A gene attenuated the filamentous actin network, decreased the ratio of soluble G-actin over filamentous F-actin, reduced cell stiffness and changed cell morphology as compared to HUVECs silenced with negative control siRNA. These effects were paralleled by a significant decrease in FAK phosphorylation following VPS13A silencing. Moreover, silencing of the VPS13A gene increased caspase 3 activity and induced necrosis in HUVECs. Conclusions: Chorein is a novel regulator of cytoskeletal architecture, cell shape, mechanical stiffness and survival of vascular endothelial cells.

  15. Espins and the actin cytoskeleton of hair cell stereocilia and sensory cell microvilli

    Science.gov (United States)

    Sekerková, Gabriella; Zheng, Lili; Loomis, Patricia A.; Mugnaini, Enrico; Bartles, James R.

    2008-01-01

    The espins are novel actin-bundling proteins that are produced in multiple isoforms from a single gene. They are present at high concentration in the parallel actin bundle of hair cell stereocilia and are the target of deafness mutations in mice and humans. Espins are also enriched in the microvilli of taste receptor cells, solitary chemoreceptor cells, vomeronasal sensory neurons and Merkel cells, suggesting that espins play important roles in the microvillar projections of vertebrate sensory cells. Espins are potent actin-bundling proteins that are not inhibited by Ca2+. In cells, they efficiently elongate parallel actin bundles and, thereby, help determine the steady-state length of microvilli and stereocilia. Espins bind actin monomer via their WH2 domain and can assemble actin bundles in cells. Certain espin isoforms can also bind phosphatidylinositol 4,5-bisphosphate, profilins or SH3 proteins. These biological activities distinguish espins from other actin-bundling proteins and may make them well-suited to sensory cells. PMID:16909209

  16. Dual effect of pseudorabies virus growth factor (PRGF) displayed on actin cytoskeleton.

    Science.gov (United States)

    Urbancíková, M; Vozárová, G; Lesko, J; Golais, F

    1999-10-01

    Pseudorabies virus growth factor (PRGF) was shown to possess transforming activity as well as transformation repressing activity in in vitro systems. In order to better understand these phenomena we studied actin cytoskeleton and its alterations induced by PRGF using normal human fibroblasts VH-10 and transformed cell line HeLa. For specific detection of filamentous actin cells were stained with phalloidin conjugated with fluorescein isothiocyanate (FITC)-phalloidin. PRGF was applied to VH-10 cells for various length of time from 10 min up to 48 h. The effect was very fast and changes in actin filament composition could be detected already after 10 min. In comparison to untreated cells the staining of treated cells was more diffuse and a number of actin microfilaments in individual stress fibers became reduced. After 30 min thick short actin bundles appeared in the perinuclear region. A 24-h exposure resulted in a large reduction of actin bundles. After additional 24 h a partial restoration of actin cytoskeleton in cells was observed. In transformed HeLa cells PRGF induced opposite process than in normal cells: the number of filamentous actin structures increased. We hypothesise that PRGF may act as a transcription-like factor and may initiate changes in gene expression which consequently result in actin cytoskeleton alterations.

  17. Gene family size conservation is a good indicator of evolutionary rates.

    Science.gov (United States)

    Chen, Feng-Chi; Chen, Chiuan-Jung; Li, Wen-Hsiung; Chuang, Trees-Juen

    2010-08-01

    The evolution of duplicate genes has been a topic of broad interest. Here, we propose that the conservation of gene family size is a good indicator of the rate of sequence evolution and some other biological properties. By comparing the human-chimpanzee-macaque orthologous gene families with and without family size conservation, we demonstrate that genes with family size conservation evolve more slowly than those without family size conservation. Our results further demonstrate that both family expansion and contraction events may accelerate gene evolution, resulting in elevated evolutionary rates in the genes without family size conservation. In addition, we show that the duplicate genes with family size conservation evolve significantly more slowly than those without family size conservation. Interestingly, the median evolutionary rate of singletons falls in between those of the above two types of duplicate gene families. Our results thus suggest that the controversy on whether duplicate genes evolve more slowly than singletons can be resolved when family size conservation is taken into consideration. Furthermore, we also observe that duplicate genes with family size conservation have the highest level of gene expression/expression breadth, the highest proportion of essential genes, and the lowest gene compactness, followed by singletons and then by duplicate genes without family size conservation. Such a trend accords well with our observations of evolutionary rates. Our results thus point to the importance of family size conservation in the evolution of duplicate genes.

  18. Inhibiting actin depolymerization enhances osteoblast differentiation and bone formation in human stromal stem cells

    DEFF Research Database (Denmark)

    Chen, Li; Shi, Kaikai; Frary, Charles

    2015-01-01

    Remodeling of the actin cytoskeleton through actin dynamics is involved in a number of biological processes, but its role in human stromal (skeletal) stem cells (hMSCs) differentiation is poorly understood. In the present study, we demonstrated that stabilizing actin filaments by inhibiting gene...... expression of the two main actin depolymerizing factors (ADFs): Cofilin 1 (CFL1) and Destrin (DSTN) in hMSCs, enhanced cell viability and differentiation into osteoblastic cells (OB) in vitro, as well as heterotopic bone formation in vivo. Similarly, treating hMSC with Phalloidin, which is known to stabilize...... polymerized actin filaments, increased hMSCs viability and OB differentiation. Conversely, Cytocholasin D, an inhibitor of actin polymerization, reduced cell viability and inhibited OB differentiation of hMSC. At a molecular level, preventing Cofilin phosphorylation through inhibition of LIM domain kinase 1...

  19. Insight into the assembly properties and functional organisation of the magnetotactic bacterial actin-like homolog, MamK.

    Directory of Open Access Journals (Sweden)

    Sanjiv Sonkaria

    Full Text Available Magnetotactic bacteria (MTB synthesize magnetosomes, which are intracellular vesicles comprising a magnetic particle. A series of magnetosomes arrange themselves in chains to form a magnetic dipole that enables the cell to orient itself along the Earth's magnetic field. MamK, an actin-like homolog of MreB has been identified as a central component in this organisation. Gene deletion, fluorescence microscopy and in vitro studies have yielded mechanistic differences in the filament assembly of MamK with other bacterial cytoskeletal proteins within the cell. With little or no information on the structural and behavioural characteristics of MamK outside the cell, the mamK gene from Magnetospirillium gryphiswaldense was cloned and expressed to better understand the differences in the cytoskeletal properties with its bacterial homologues MreB and acitin. Despite the low sequence identity shared between MamK and MreB (22% and actin (18%, the behaviour of MamK monitored by light scattering broadly mirrored that of its bacterial cousin MreB primarily in terms of its pH, salt, divalent metal-ion and temperature dependency. The broad size variability of MamK filaments revealed by light scattering studies was supported by transmission electron microscopy (TEM imaging. Filament morphology however, indicated that MamK conformed to linearly orientated filaments that appeared to be distinctly dissimilar compared to MreB suggesting functional differences between these homologues. The presence of a nucleotide binding domain common to actin-like proteins was demonstrated by its ability to function both as an ATPase and GTPase. Circular dichroism and structural homology modelling showed that MamK adopts a protein fold that is consistent with the 'classical' actin family architecture but with notable structural differences within the smaller domains, the active site region and the overall surface electrostatic potential.

  20. Actin grips: circular actin-rich cytoskeletal structures that mediate the wrapping of polymeric microfibers by endothelial cells.

    Science.gov (United States)

    Jones, Desiree; Park, DoYoung; Anghelina, Mirela; Pécot, Thierry; Machiraju, Raghu; Xue, Ruipeng; Lannutti, John J; Thomas, Jessica; Cole, Sara L; Moldovan, Leni; Moldovan, Nicanor I

    2015-06-01

    Interaction of endothelial-lineage cells with three-dimensional substrates was much less studied than that with flat culture surfaces. We investigated the in vitro attachment of both mature endothelial cells (ECs) and of less differentiated EC colony-forming cells to poly-ε-capro-lactone (PCL) fibers with diameters in 5-20 μm range ('scaffold microfibers', SMFs). We found that notwithstanding the poor intrinsic adhesiveness to PCL, both cell types completely wrapped the SMFs after long-term cultivation, thus attaining a cylindrical morphology. In this system, both EC types grew vigorously for more than a week and became increasingly more differentiated, as shown by multiplexed gene expression. Three-dimensional reconstructions from multiphoton confocal microscopy images using custom software showed that the filamentous (F) actin bundles took a conspicuous ring-like organization around the SMFs. Unlike the classical F-actin-containing stress fibers, these rings were not associated with either focal adhesions or intermediate filaments. We also demonstrated that plasma membrane boundaries adjacent to these circular cytoskeletal structures were tightly yet dynamically apposed to the SMFs, for which reason we suggest to call them 'actin grips'. In conclusion, we describe a particular form of F-actin assembly with relevance for cytoskeletal organization in response to biomaterials, for endothelial-specific cell behavior in vitro and in vivo, and for tissue engineering. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. De Novo Transcriptome Sequencing of Olea europaea L. to Identify Genes Involved in the Development of the Pollen Tube.

    Science.gov (United States)

    Iaria, Domenico; Chiappetta, Adriana; Muzzalupo, Innocenzo

    2016-01-01

    In olive (Olea europaea L.), the processes controlling self-incompatibility are still unclear and the molecular basis underlying this process are still not fully characterized. In order to determine compatibility relationships, using next-generation sequencing techniques and a de novo transcriptome assembly strategy, we show that pollen tubes from different olive plants, grown in vitro in a medium containing its own pistil and in combination pollen/pistil from self-sterile and self-fertile cultivars, have a distinct gene expression profile and many of the differentially expressed sequences between the samples fall within gene families involved in the development of the pollen tube, such as lipase, carboxylesterase, pectinesterase, pectin methylesterase, and callose synthase. Moreover, different genes involved in signal transduction, transcription, and growth are overrepresented. The analysis also allowed us to identify members in actin and actin depolymerization factor and fibrin gene family and member of the Ca(2+) binding gene family related to the development and polarization of pollen apical tip. The whole transcriptomic analysis, through the identification of the differentially expressed transcripts set and an extended functional annotation analysis, will lead to a better understanding of the mechanisms of pollen germination and pollen tube growth in the olive.

  2. The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Baumgarten Andrew

    2004-06-01

    Full Text Available Abstract Background Most genes in Arabidopsis thaliana are members of gene families. How do the members of gene families arise, and how are gene family copy numbers maintained? Some gene families may evolve primarily through tandem duplication and high rates of birth and death in clusters, and others through infrequent polyploidy or large-scale segmental duplications and subsequent losses. Results Our approach to understanding the mechanisms of gene family evolution was to construct phylogenies for 50 large gene families in Arabidopsis thaliana, identify large internal segmental duplications in Arabidopsis, map gene duplications onto the segmental duplications, and use this information to identify which nodes in each phylogeny arose due to segmental or tandem duplication. Examples of six gene families exemplifying characteristic modes are described. Distributions of gene family sizes and patterns of duplication by genomic distance are also described in order to characterize patterns of local duplication and copy number for large gene families. Both gene family size and duplication by distance closely follow power-law distributions. Conclusions Combining information about genomic segmental duplications, gene family phylogenies, and gene positions provides a method to evaluate contributions of tandem duplication and segmental genome duplication in the generation and maintenance of gene families. These differences appear to correspond meaningfully to differences in functional roles of the members of the gene families.

  3. Activation of the skeletal alpha-actin promoter during muscle regeneration.

    Science.gov (United States)

    Marsh, D R; Carson, J A; Stewart, L N; Booth, F W

    1998-11-01

    Little is known concerning promoter regulation of genes in regenerating skeletal muscles. In young rats, recovery of muscle mass and protein content is complete within 21 days. During the initial 5-10 days of regeneration, mRNA abundance for IGF-I, myogenin and MyoD have been shown to be dramatically increased. The skeletal alpha-actin promoter contains E box and serum response element (SRE) regulatory regions which are directly or indirectly activated by myogenin (or MyoD) and IGF-I proteins, respectively. We hypothesized that the skeletal alpha-actin promoter activity would increase during muscle regeneration, and that this induction would occur before muscle protein content returned to normal. Total protein content and the percentage content of skeletal alpha-actin protein was diminished at 4 and 8 days and re-accumulation had largely occurred by 16 days post-bupivacaine injection. Skeletal alpha-actin mRNA per whole muscle was decreased at day 8, and thereafter returned to control values. During regeneration at day 8, luciferase activity (a reporter of promoter activity) directed by -424 skeletal alpha-actin and -99 skeletal alpha-actin promoter constructs was increased by 700% and 250% respectively; however, at day 16, skeletal alpha-actin promoter activities were similar to control values. Thus, initial activation of the skeletal alpha-actin promoter is associated with regeneration of skeletal muscle, despite not being sustained during the later stages of regrowth. The proximal SRE of the skeletal alpha-actin promoter was not sufficient to confer a regeneration-induced promoter activation, despite increased serum response factor protein binding to this regulatory element in electrophoretic mobility shift assays. Skeletal alpha-actin promoter induction during regeneration is due to a combination of regulatory elements, at least including the SRE and E box.

  4. Phosphorylation of actin-binding protein (ABP-280; filamin) by tyrosine kinase p56lck modulates actin filament cross-linking.

    Science.gov (United States)

    Pal Sharma, C; Goldmann, Wolfgang H

    2004-01-01

    Actin-binding protein (ABP-280; filamin) is a phosphoprotein present in the periphery of the cytoplasm where it can cross-link actin filaments, associate with lipid membranes, and bind to membrane surface receptors. Given its function and localization in the cell, we decided to investigate the possibility of whether it serves as substrate for p56lck, a lymphocyte-specific member of the src family of protein tyrosine kinases associated with cell surface glycoproteins. The interaction of p56lck with membrane glycoproteins is important for cell development and functional activation. Here, we show that purified p56lck interacts and catalyzes in vitro kinase reactions. Tyrosine phosphorylation by p56lck is restricted to a single peptide of labeled ABP-280 shown by protease digest. The addition of phorbol ester to cells results in the inhibition of phosphorylation of ABP-280 by p56lck. These results show a decrease in phosphorylation suggesting conformationally induced regulation. Dynamic light scattering confirmed increased actin filament cross-linking due to phosphorylation of ABP-280 by p56lck.

  5. Actin-interacting Protein 1 Promotes Disassembly of Actin-depolymerizing Factor/Cofilin-bound Actin Filaments in a pH-dependent Manner.

    Science.gov (United States)

    Nomura, Kazumi; Hayakawa, Kimihide; Tatsumi, Hitoshi; Ono, Shoichiro

    2016-03-04

    Actin-interacting protein 1 (AIP1) is a conserved WD repeat protein that promotes disassembly of actin filaments when actin-depolymerizing factor (ADF)/cofilin is present. Although AIP1 is known to be essential for a number of cellular events involving dynamic rearrangement of the actin cytoskeleton, the regulatory mechanism of the function of AIP1 is unknown. In this study, we report that two AIP1 isoforms from the nematode Caenorhabditis elegans, known as UNC-78 and AIPL-1, are pH-sensitive in enhancement of actin filament disassembly. Both AIP1 isoforms only weakly enhance disassembly of ADF/cofilin-bound actin filaments at an acidic pH but show stronger disassembly activity at neutral and basic pH values. However, a severing-defective mutant of UNC-78 shows pH-insensitive binding to ADF/cofilin-decorated actin filaments, suggesting that the process of filament severing or disassembly, but not filament binding, is pH-dependent. His-60 of AIP1 is located near the predicted binding surface for the ADF/cofilin-actin complex, and an H60K mutation of AIP1 partially impairs its pH sensitivity, suggesting that His-60 is involved in the pH sensor for AIP1. These biochemical results suggest that pH-dependent changes in AIP1 activity might be a novel regulatory mechanism of actin filament dynamics. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Coronin 3 involvement in F-actin-dependent processes at the cell cortex

    International Nuclear Information System (INIS)

    Rosentreter, Andre; Hofmann, Andreas; Xavier, Charles-Peter; Stumpf, Maria; Noegel, Angelika A.; Clemen, Christoph S.

    2007-01-01

    The actin interaction of coronin 3 has been mainly documented by in vitro experiments. Here, we discuss coronin 3 properties in the light of new structural information and focus on assays that reflect in vivo roles of coronin 3 and its impact on F-actin-associated functions. Using GFP-tagged coronin 3 fusion proteins and RNAi silencing we show that coronin 3 has roles in wound healing, protrusion formation, cell proliferation, cytokinesis, endocytosis, axonal growth, and secretion. During formation of cell protrusions actin accumulation precedes the focal enrichment of coronin 3 suggesting a role for coronin 3 in events that follow the initial F-actin assembly. Moreover, we show that coronin 3 similar to other coronins interacts with the Arp2/3-complex and cofilin indicating that this family in general is involved in regulating Arp2/3-mediated events

  7. G-actin sequestering protein thymosin-β4 regulates the activity of myocardin-related transcription factor.

    Science.gov (United States)

    Morita, Tsuyoshi; Hayashi, Ken'ichiro

    2013-08-02

    Myocardin-related transcription factors (MRTFs) are robust coactivators of serum response factor (SRF). MRTFs contain three copies of the RPEL motif at their N-terminus, and they bind to monomeric globular actin (G-actin). Previous studies illustrate that G-actin binding inhibits MRTF activity by preventing the MRTFs nuclear accumulation. In the living cells, the majority of G-actin is sequestered by G-actin binding proteins that prevent spontaneous actin polymerization. Here, we demonstrate that the most abundant G-actin sequestering protein thymosin-β4 (Tβ4) was involved in the regulation of subcellular localization and activity of MRTF-A. Tβ4 competed with MRTF-A for G-actin binding; thus, interfering with G-actin-MRTF-A complex formation. Tβ4 overexpression induced the MRTF-A nuclear accumulation and activation of MRTF-SRF signaling. The activation rate of MRTF-A by the Tβ4 mutant L17A, whose affinity for G-actin is very low, was lower than that by wild-type Tβ4. In contrast, the β-actin mutant 3DA, which has a lower affinity for Tβ4, more effectively suppressed MRTF-A activity than wild-type β-actin. Furthermore, ectopic Tβ4 increased the endogenous expression of SRF-dependent actin cytoskeletal genes. Thus, Tβ4 is an important MRTF regulator that controls the G-actin-MRTFs interaction. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Gamma interferon-induced guanylate binding protein 1 is a novel actin cytoskeleton remodeling factor.

    Science.gov (United States)

    Ostler, Nicole; Britzen-Laurent, Nathalie; Liebl, Andrea; Naschberger, Elisabeth; Lochnit, Günter; Ostler, Markus; Forster, Florian; Kunzelmann, Peter; Ince, Semra; Supper, Verena; Praefcke, Gerrit J K; Schubert, Dirk W; Stockinger, Hannes; Herrmann, Christian; Stürzl, Michael

    2014-01-01

    Gamma interferon (IFN-γ) regulates immune defenses against viruses, intracellular pathogens, and tumors by modulating cell proliferation, migration, invasion, and vesicle trafficking processes. The large GTPase guanylate binding protein 1 (GBP-1) is among the cellular proteins that is the most abundantly induced by IFN-γ and mediates its cell biologic effects. As yet, the molecular mechanisms of action of GBP-1 remain unknown. Applying an interaction proteomics approach, we identified actin as a strong and specific binding partner of GBP-1. Furthermore, GBP-1 colocalized with actin at the subcellular level and was both necessary and sufficient for the extensive remodeling of the fibrous actin structure observed in IFN-γ-exposed cells. These effects were dependent on the oligomerization and the GTPase activity of GBP-1. Purified GBP-1 and actin bound to each other, and this interaction was sufficient to impair the formation of actin filaments in vitro, as demonstrated by atomic force microscopy, dynamic light scattering, and fluorescence-monitored polymerization. Cosedimentation and band shift analyses demonstrated that GBP-1 binds robustly to globular actin and slightly to filamentous actin. This indicated that GBP-1 may induce actin remodeling via globular actin sequestering and/or filament capping. These results establish GBP-1 as a novel member within the family of actin-remodeling proteins specifically mediating IFN-γ-dependent defense strategies.

  9. The H3K4me3/2 histone demethylase RBR-2 controls axon guidance by repressing the actin-remodeling gene wsp-1

    DEFF Research Database (Denmark)

    Mariani, Luca; Lussi, Yvonne C.; Vandamme, Julien

    2016-01-01

    . Here, we show that RBR-2, the sole homolog of the KDM5 family of H3K4me3/2 demethylases in Caenorhabditis elegans, ensures correct axon guidance by controlling the expression of the actin regulator wsp-1. Loss of rbr-2 results in increased levels of H3K4me3 at the transcriptional start site of wsp-1...

  10. Cloning and selection of reference genes for gene expression ...

    African Journals Online (AJOL)

    Full length mRNA sequences of Ac-β-actin and Ac-gapdh, and partial mRNA sequences of Ac-18SrRNA and Ac-ubiquitin were cloned from pineapple in this study. The four genes were tested as housekeeping genes in three experimental sets. GeNorm and NormFinder analysis revealed that β-actin was the most ...

  11. Oral acetylsalicylic acid and prevalence of actinic keratosis.

    Science.gov (United States)

    Schmitt, Juliano; Miot, Hélio

    2014-01-01

    To investigate the influence of a regular oral use of acetylsalicylic acid in the prevalence of actinic keratosis. A case-control study with dermatologic outpatients above 50 years of age assessed between 2009 and 2011. Cases were defined as those who had been under regular use of oral acetylsalicylic acid for more than six consecutive months. The assessment focused on: age, sex, skin-type, tobacco smoking, use of medication, occurrence of individual or family skin cancer, and sunscreen and sun exposure habits. Actinic keratoses were counted in the medial region of the face and upper limbs. Counts were adjusted by co-variables based on a generalized linear model. A total of 74 cases and 216 controls were assessed. The median time of acetylsalicylic acid use was 36 months. Cases differed from controls as to the highest age, highest prevalence of use of angiotensin-converting enzyme inhibitors and fewer keratosis on the face and on the upper limbs (pkeratosis and upper-limb erythematous actinic keratosis (pkeratosis, especially facial and erythematous ones.

  12. Plant vegetative and animal cytoplasmic actins share functional competence for spatial development with protists.

    Science.gov (United States)

    Kandasamy, Muthugapatti K; McKinney, Elizabeth C; Roy, Eileen; Meagher, Richard B

    2012-05-01

    Actin is an essential multifunctional protein encoded by two distinct ancient classes of genes in animals (cytoplasmic and muscle) and plants (vegetative and reproductive). The prevailing view is that each class of actin variants is functionally distinct. However, we propose that the vegetative plant and cytoplasmic animal variants have conserved functional competence for spatial development inherited from an ancestral protist actin sequence. To test this idea, we ectopically expressed animal and protist actins in Arabidopsis thaliana double vegetative actin mutants that are dramatically altered in cell and organ morphologies. We found that expression of cytoplasmic actins from humans and even a highly divergent invertebrate Ciona intestinalis qualitatively and quantitatively suppressed the root cell polarity and organ defects of act8 act7 mutants and moderately suppressed the root-hairless phenotype of act2 act8 mutants. By contrast, human muscle actins were unable to support prominently any aspect of plant development. Furthermore, actins from three protists representing Choanozoa, Archamoeba, and green algae efficiently suppressed all the phenotypes of both the plant mutants. Remarkably, these data imply that actin's competence to carry out a complex suite of processes essential for multicellular development was already fully developed in single-celled protists and evolved nonprogressively from protists to plants and animals.

  13. Interferon induced IFIT family genes in host antiviral defense.

    Science.gov (United States)

    Zhou, Xiang; Michal, Jennifer J; Zhang, Lifan; Ding, Bo; Lunney, Joan K; Liu, Bang; Jiang, Zhihua

    2013-01-01

    Secretion of interferons (IFNs) from virus-infected cells is a hallmark of host antiviral immunity and in fact, IFNs exert their antiviral activities through the induction of antiviral proteins. The IFN-induced protein with tetratricopeptide repeats (IFITs) family is among hundreds of IFN-stimulated genes. This family contains a cluster of duplicated loci. Most mammals have IFIT1, IFIT2, IFIT3 and IFIT5; however, bird, marsupial, frog and fish have only IFIT5. Regardless of species, IFIT5 is always adjacent to SLC16A12. IFIT family genes are predominantly induced by type I and type III interferons and are regulated by the pattern recognition and the JAK-STAT signaling pathway. IFIT family proteins are involved in many processes in response to viral infection. However, some viruses can escape the antiviral functions of the IFIT family by suppressing IFIT family genes expression or methylation of 5' cap of viral molecules. In addition, the variants of IFIT family genes could significantly influence the outcome of hepatitis C virus (HCV) therapy. We believe that our current review provides a comprehensive picture for the community to understand the structure and function of IFIT family genes in response to pathogens in human, as well as in animals.

  14. Actin depolymerization enhances adipogenic differentiation in human stromal stem cells

    Directory of Open Access Journals (Sweden)

    Li Chen

    2018-05-01

    Full Text Available Human stromal stem cells (hMSCs differentiate into adipocytes that play a role in skeletal tissue homeostasis and whole body energy metabolism. During adipocyte differentiation, hMSCs exhibit significant changes in cell morphology suggesting changes in cytoskeletal organization. Here, we examined the effect of direct modulation of actin microfilament dynamics on adipocyte differentiation. Stabilizing actin filaments in hMSCs by siRNA-mediated knock down of the two main actin depolymerizing factors (ADFs: Cofilin 1 (CFL1 and Destrin (DSTN or treating the cells by Phalloidin reduced adipocyte differentiation as evidenced by decreased number of mature adipocytes and decreased adipocyte specific gene expression (ADIPOQ, LPL, PPARG, FABP4. In contrast, disruption of actin cytoskeleton by Cytochalasin D enhanced adipocyte differentiation. Follow up studies revealed that the effects of CFL1 on adipocyte differentiation depended on the activity of LIM domain kinase 1 (LIMK1 which is the major upstream kinase of CFL1. Inhibiting LIMK by its specific chemical inhibitor LIMKi inhibited the phosphorylation of CFL1 and actin polymerization, and enhanced the adipocyte differentiation. Moreover, treating hMSCs by Cytochalasin D inhibited ERK and Smad2 signaling and this was associated with enhanced adipocyte differentiation. On the other hand, Phalloidin enhanced ERK and Smad2 signaling, but inhibited adipocyte differentiation which was rescued by ERK specific chemical inhibitor U0126. Our data provide a link between restructuring of hMSCs cytoskeleton and hMSCs lineage commitment and differentiation. Keywords: Actin cytoskeleton, Actin depolymerizing factors, Adipocyte differentiation, Human stromal stem cells

  15. Yersinia outer protein YopE affects the actin cytoskeleton in Dictyostelium discoideum through targeting of multiple Rho family GTPases

    LENUS (Irish Health Repository)

    Vlahou, Georgia

    2009-07-14

    Abstract Background All human pathogenic Yersinia species share a virulence-associated type III secretion system that translocates Yersinia effector proteins into host cells to counteract infection-induced signaling responses and prevent phagocytosis. Dictyostelium discoideum has been recently used to study the effects of bacterial virulence factors produced by internalized pathogens. In this study we explored the potential of Dictyostelium as model organism for analyzing the effects of ectopically expressed Yersinia outer proteins (Yops). Results The Yersinia pseudotuberculosis virulence factors YopE, YopH, YopM and YopJ were expressed de novo within Dictyostelium and their effects on growth in axenic medium and on bacterial lawns were analyzed. No severe effect was observed for YopH, YopJ and YopM, but expression of YopE, which is a GTPase activating protein for Rho GTPases, was found to be highly detrimental. GFP-tagged YopE expressing cells had less conspicuous cortical actin accumulation and decreased amounts of F-actin. The actin polymerization response upon cAMP stimulation was impaired, although chemotaxis was unaffected. YopE also caused reduced uptake of yeast particles. These alterations are probably due to impaired Rac1 activation. We also found that YopE predominantly associates with intracellular membranes including the Golgi apparatus and inhibits the function of moderately overexpressed RacH. Conclusion The phenotype elicited by YopE in Dictyostelium can be explained, at least in part, by inactivation of one or more Rho family GTPases. It further demonstrates that the social amoeba Dictyostelium discoideum can be used as an efficient and easy-to-handle model organism in order to analyze the function of a translocated GAP protein of a human pathogen.

  16. Separation of actin-dependent and actin-independent lipid rafts

    NARCIS (Netherlands)

    Klappe, Karin; Hummel, Ina; Kok, Jan Willem

    2013-01-01

    Lipid rafts have been isolated on the basis of their resistance to various detergents and more recently by using detergent-free procedures. The actin cytoskeleton is now recognized as a dynamic regulator of lipid raft stability. We carefully analyzed the effects of the cortical actin-disrupting

  17. Hem-1 complexes are essential for Rac activation, actin polymerization, and myosin regulation during neutrophil chemotaxis.

    Directory of Open Access Journals (Sweden)

    Orion D Weiner

    2006-02-01

    Full Text Available Migrating cells need to make different actin assemblies at the cell's leading and trailing edges and to maintain physical separation of signals for these assemblies. This asymmetric control of activities represents one important form of cell polarity. There are significant gaps in our understanding of the components involved in generating and maintaining polarity during chemotaxis. Here we characterize a family of complexes (which we term leading edge complexes, scaffolded by hematopoietic protein 1 (Hem-1, that organize the neutrophil's leading edge. The Wiskott-Aldrich syndrome protein family Verprolin-homologous protein (WAVE2 complex, which mediates activation of actin polymerization by Rac, is only one member of this family. A subset of these leading edge complexes are biochemically separable from the WAVE2 complex and contain a diverse set of potential polarity-regulating proteins. RNA interference-mediated knockdown of Hem-1-containing complexes in neutrophil-like cells: (a dramatically impairs attractant-induced actin polymerization, polarity, and chemotaxis; (b substantially weakens Rac activation and phosphatidylinositol-(3,4,5-tris-phosphate production, disrupting the (phosphatidylinositol-(3,4,5-tris-phosphate/Rac/F-actin-mediated feedback circuit that organizes the leading edge; and (c prevents exclusion of activated myosin from the leading edge, perhaps by misregulating leading edge complexes that contain inhibitors of the Rho-actomyosin pathway. Taken together, these observations show that versatile Hem-1-containing complexes coordinate diverse regulatory signals at the leading edge of polarized neutrophils, including but not confined to those involving WAVE2-dependent actin polymerization.

  18. Detection and quantitative analysis of actin mRNA by in situ hybridization with an oligodeoxynucleotide probe

    International Nuclear Information System (INIS)

    Taneja, K.; Singer, R.

    1987-01-01

    In situ hybridization is a useful method for localizing specific nucleic acid sequences intracellularly and for studying regulation of gene expression. Recently synthetic oligonucleotides have been successfully used as probes in this technique. Since they can be made easily to specific nucleic acid regions, they may be the best approach for analysis of a gene family of highly conserved sequences. They have analyzed these probes for the development of an in situ hybridization method. Oligonucleotides were made to different regions of chick beta-actin mRNA and used for detection of these sequences in a culture of chicken fibroblasts and myoblasts. They found that synthetic DNAs have different efficiencies of hybridization, indicating that not all target sequences are equivalent. They have investigated in detail a particular probe to the actin mRNA coding region and have optimized hybridization parameters. When hybridization was quantitated it was found that an oligonucleotide end labelled with 35 S or 32 P was capable of detecting several thousand messages per cell with a signal-to-noise ratio of 10:1. In situ hybridization confirmed the specificity of the hybridization as well as the background level. Increase in the number of oligonucleotides used should increase the signal-to-noise ratio-proportionately. Under particular circumstances the specificity of oligonucleotides make them an important reagent for in situ hybridization

  19. Effects of F/G-actin ratio and actin turn-over rate on NADPH oxidase activity in microglia

    DEFF Research Database (Denmark)

    Rasmussen, Izabela; Pedersen, Line Hjortshøj; Byg, Luise

    2010-01-01

    Most in vivo studies that have addressed the role of actin dynamics in NADPH oxidase function in phagocytes have used toxins to modulate the polymerization state of actin and mostly effects on actin has been evaluated by end point measurements of filamentous actin, which says little about actin d...... dynamics, and without consideration for the subcellular distribution of the perturbed actin cytoskeleton....

  20. A new F-actin structure in fungi: actin ring formation around the cell nucleus of Cryptococcus neoformans.

    Science.gov (United States)

    Kopecká, Marie; Kawamoto, Susumu; Yamaguchi, Masashi

    2013-04-01

    The F-actin cytoskeleton of Cryptococcus neoformans is known to comprise actin cables, cortical patches and cytokinetic ring. Here, we describe a new F-actin structure in fungi, a perinuclear F-actin collar ring around the cell nucleus, by fluorescent microscopic imaging of rhodamine phalloidin-stained F-actin. Perinuclear F-actin rings form in Cryptococcus neoformans treated with the microtubule inhibitor Nocodazole or with the drug solvent dimethyl sulfoxide (DMSO) or grown in yeast extract peptone dextrose (YEPD) medium, but they are absent in cells treated with Latrunculin A. Perinuclear F-actin rings may function as 'funicular cabin' for the cell nucleus, and actin cables as intracellular 'funicular' suspending nucleus in the central position in the cell and moving nucleus along the polarity axis along actin cables.

  1. The Caenorhabditis chemoreceptor gene families

    OpenAIRE

    Robertson Hugh M; Thomas James H

    2008-01-01

    Abstract Background Chemoreceptor proteins mediate the first step in the transduction of environmental chemical stimuli, defining the breadth of detection and conferring stimulus specificity. Animal genomes contain families of genes encoding chemoreceptors that mediate taste, olfaction, and pheromone responses. The size and diversity of these families reflect the biology of chemoperception in specific species. Results Based on manual curation and sequence comparisons among putative G-protein-...

  2. Title: Cytoskeletal proteins in cortical development and diseasesubtitle: Actin associated proteins in periventricular heterotopia

    Directory of Open Access Journals (Sweden)

    Gewei eLian

    2015-04-01

    Full Text Available The actin cytoskeleton regulates many important cellular processes in the brain, including cell division and proliferation, migration, and cytokinesis and differentiation. These developmental processes can be regulated through actin dependent vesicle and organelle movement, cell signaling, and the establishment and maintenance of cell junctions and cell shape. Many of these processes are mediated by extensive and intimate interactions of actin with cellular membranes and proteins. Disruption in the actin cytoskeleton in the brain gives rise to periventricular heterotopia (PH, a malformation of cortical development, characterized by abnormal neurons clustered deep in the brain along the lateral ventricles. This disorder can give rise to seizures, dyslexia and psychiatric disturbances. Anatomically, PH is characterized by a smaller brain (impaired proliferation, heterotopia (impaired initial migration and disruption along the neuroependymal lining (impaired cell-cell adhesion. Genes causal for PH have also been implicated in actin-dependent processes. The current review provides mechanistic insight into actin cytoskeletal regulation of cortical development in the context of this malformation of cortical development.

  3. p95-APP1 links membrane transport to Rac-mediated reorganization of actin

    DEFF Research Database (Denmark)

    Di Cesare, A; Paris, S; Albertinazzi, C

    2000-01-01

    Motility requires protrusive activity at the cellular edge, where Rho family members regulate actin dynamics. Here we show that p95-APP1 (ArfGAP-putative, Pix-interacting, paxillin-interacting protein 1), a member of the GIT1/PKL family, is part of a complex that interacts with Rac. Wild-type and...

  4. The atypical Rho GTPase RhoD is a regulator of actin cytoskeleton dynamics and directed cell migration

    Energy Technology Data Exchange (ETDEWEB)

    Blom, Magdalena; Reis, Katarina [Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77 Stockholm (Sweden); Heldin, Johan [Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala SE-751 22 Uppsala (Sweden); Kreuger, Johan [Department of Medical Cell Biology, Science for Life Laboratory, Uppsala University, SE-751 23 Uppsala (Sweden); Aspenström, Pontus, E-mail: pontus.aspenstrom@ki.se [Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77 Stockholm (Sweden)

    2017-03-15

    RhoD belongs to the Rho GTPases, a protein family responsible for the regulation and organization of the actin cytoskeleton, and, consequently, many cellular processes like cell migration, cell division and vesicle trafficking. Here, we demonstrate that the actin cytoskeleton is dynamically regulated by increased or decreased protein levels of RhoD. Ectopic expression of RhoD has previously been shown to give an intertwined weave of actin filaments. We show that this RhoD-dependent effect is detected in several cell types and results in a less dynamic actin filament system. In contrast, RhoD depletion leads to increased actin filament-containing structures, such as cortical actin, stress fibers and edge ruffles. Moreover, vital cellular functions such as cell migration and proliferation are defective when RhoD is silenced. Taken together, we present data suggesting that RhoD is an important component in the control of actin dynamics and directed cell migration. - Highlights: • Increased RhoD expression leads to loss of actin structures, e.g. stress fibers and gives rise to decreased actin dynamics. • RhoD knockdown induces various actin-containing structures such as edge ruffles, stress fibers and cortical actin, in a cell-type specific manner. • RhoD induces specific actin rearrangements depending on its subcellular localization. • RhoD knockdown has effects on cellular processes, such as directed cell migration and proliferation.

  5. The atypical Rho GTPase RhoD is a regulator of actin cytoskeleton dynamics and directed cell migration

    International Nuclear Information System (INIS)

    Blom, Magdalena; Reis, Katarina; Heldin, Johan; Kreuger, Johan; Aspenström, Pontus

    2017-01-01

    RhoD belongs to the Rho GTPases, a protein family responsible for the regulation and organization of the actin cytoskeleton, and, consequently, many cellular processes like cell migration, cell division and vesicle trafficking. Here, we demonstrate that the actin cytoskeleton is dynamically regulated by increased or decreased protein levels of RhoD. Ectopic expression of RhoD has previously been shown to give an intertwined weave of actin filaments. We show that this RhoD-dependent effect is detected in several cell types and results in a less dynamic actin filament system. In contrast, RhoD depletion leads to increased actin filament-containing structures, such as cortical actin, stress fibers and edge ruffles. Moreover, vital cellular functions such as cell migration and proliferation are defective when RhoD is silenced. Taken together, we present data suggesting that RhoD is an important component in the control of actin dynamics and directed cell migration. - Highlights: • Increased RhoD expression leads to loss of actin structures, e.g. stress fibers and gives rise to decreased actin dynamics. • RhoD knockdown induces various actin-containing structures such as edge ruffles, stress fibers and cortical actin, in a cell-type specific manner. • RhoD induces specific actin rearrangements depending on its subcellular localization. • RhoD knockdown has effects on cellular processes, such as directed cell migration and proliferation.

  6. Molecular cloning of RBCS genes in Selaginella and the evolution of the rbcS gene family

    Directory of Open Access Journals (Sweden)

    Wang Bo

    2015-01-01

    Full Text Available Rubisco small subunits (RBCS are encoded by a nuclear rbcS multigene family in higher plants and green algae. However, owing to the lack of rbcS sequences in lycophytes, the characteristics of rbcS genes in lycophytes is unclear. Recently, the complete genome sequence of the lycophyte Selaginella moellendorffii provided the first insight into the rbcS gene family in lycophytes. To understand further the characteristics of rbcS genes in other Selaginella, the full length of rbcS genes (rbcS1 and rbcS2 from two other Selaginella species were isolated. Both rbcS1 and rbcS2 genes shared more than 97% identity among three Selaginella species. RBCS proteins from Selaginella contained the Pfam RBCS domain F00101, which was a major domain of other plant RBCS proteins. To explore the evolution of the rbcS gene family across Selaginella and other plants, we identified and performed comparative analysis of the rbcS gene family among 16 model plants based on a genome-wide analysis. The results showed that (i two rbcS genes were obtained in Selaginella, which is the second fewest number of rbcS genes among the 16 representative plants; (ii an expansion of rbcS genes occurred in the moss Physcomitrella patens; (iii only RBCS proteins from angiosperms contained the Pfam PF12338 domains, and (iv a pattern of concerted evolution existed in the rbcS gene family. Our study provides new insights into the evolution of the rbcS gene family in Selaginella and other plants.

  7. The roles of gene duplication, gene conversion and positive selection in rodent Esp and Mup pheromone gene families with comparison to the Abp family.

    Science.gov (United States)

    Karn, Robert C; Laukaitis, Christina M

    2012-01-01

    Three proteinaceous pheromone families, the androgen-binding proteins (ABPs), the exocrine-gland secreting peptides (ESPs) and the major urinary proteins (MUPs) are encoded by large gene families in the genomes of Mus musculus and Rattus norvegicus. We studied the evolutionary histories of the Mup and Esp genes and compared them with what is known about the Abp genes. Apparently gene conversion has played little if any role in the expansion of the mouse Class A and Class B Mup genes and pseudogenes, and the rat Mups. By contrast, we found evidence of extensive gene conversion in many Esp genes although not in all of them. Our studies of selection identified at least two amino acid sites in β-sheets as having evolved under positive selection in the mouse Class A and Class B MUPs and in rat MUPs. We show that selection may have acted on the ESPs by determining K(a)/K(s) for Exon 3 sequences with and without the converted sequence segment. While it appears that purifying selection acted on the ESP signal peptides, the secreted portions of the ESPs probably have undergone much more rapid evolution. When the inner gene converted fragment sequences were removed, eleven Esp paralogs were present in two or more pairs with K(a)/K(s) >1.0 and thus we propose that positive selection is detectable by this means in at least some mouse Esp paralogs. We compare and contrast the evolutionary histories of all three mouse pheromone gene families in light of their proposed functions in mouse communication.

  8. Actin filaments as tension sensors.

    Science.gov (United States)

    Galkin, Vitold E; Orlova, Albina; Egelman, Edward H

    2012-02-07

    The field of mechanobiology has witnessed an explosive growth over the past several years as interest has greatly increased in understanding how mechanical forces are transduced by cells and how cells migrate, adhere and generate traction. Actin, a highly abundant and anomalously conserved protein, plays a large role in forming the dynamic cytoskeleton that is so essential for cell form, motility and mechanosensitivity. While the actin filament (F-actin) has been viewed as dynamic in terms of polymerization and depolymerization, new results suggest that F-actin itself may function as a highly dynamic tension sensor. This property may help explain the unusual conservation of actin's sequence, as well as shed further light on actin's essential role in structures from sarcomeres to stress fibers. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Actinic keratosis

    DEFF Research Database (Denmark)

    Erlendsson, Andrés M; Egekvist, Henrik; Lorentzen, Henrik F.

    2016-01-01

    Objectives: The incidence of actinic keratosis (AK) is increasing, and several treatment options are available. The aim of this study was to describe clinical characteristics and treatment patterns in patients with AK treated by Danish dermatologists. Methods: A multicenter, non-interventional, c......Objectives: The incidence of actinic keratosis (AK) is increasing, and several treatment options are available. The aim of this study was to describe clinical characteristics and treatment patterns in patients with AK treated by Danish dermatologists. Methods: A multicenter, non...... and currently suspected in 9.4% of AK-affected anatomical regions. Lesions of AK were located primarily on the face (38.6%), scalp (12.8%), and hands (11.2%). Actinic keratosis commonly presented with multiple AK lesions (38.6%) and field cancerization (38.5%). The treatments used most frequently were...

  10. Recurrent APC gene mutations in Polish FAP families

    Directory of Open Access Journals (Sweden)

    Pławski Andrzej

    2007-12-01

    Full Text Available Abstract The molecular diagnostics of genetically conditioned disorders is based on the identification of the mutations in the predisposing genes. Hereditary cancer disorders of the gastrointestinal tracts are caused by mutations of the tumour suppressor genes or the DNA repair genes. Occurrence of recurrent mutation allows improvement of molecular diagnostics. The mutation spectrum in the genes causing hereditary forms of colorectal cancers in the Polish population was previously described. In the present work an estimation of the frequency of the recurrent mutations of the APC gene was performed. Eight types of mutations occurred in 19.4% of our FAP families and these constitute 43% of all Polish diagnosed families.

  11. The IQD gene family in soybean: structure, phylogeny, evolution and expression.

    Directory of Open Access Journals (Sweden)

    Lin Feng

    Full Text Available Members of the plant-specific IQ67-domain (IQD protein family are involved in plant development and the basal defense response. Although systematic characterization of this family has been carried out in Arabidopsis, tomato (Solanum lycopersicum, Brachypodium distachyon and rice (Oryza sativa, systematic analysis and expression profiling of this gene family in soybean (Glycine max have not previously been reported. In this study, we identified and structurally characterized IQD genes in the soybean genome. A complete set of 67 soybean IQD genes (GmIQD1-67 was identified using Blast search tools, and the genes were clustered into four subfamilies (IQD I-IV based on phylogeny. These soybean IQD genes are distributed unevenly across all 20 chromosomes, with 30 segmental duplication events, suggesting that segmental duplication has played a major role in the expansion of the soybean IQD gene family. Analysis of the Ka/Ks ratios showed that the duplicated genes of the GmIQD family primarily underwent purifying selection. Microsynteny was detected in most pairs: genes in clade 1-3 might be present in genome regions that were inverted, expanded or contracted after the divergence; most gene pairs in clade 4 showed high conservation with little rearrangement among these gene-residing regions. Of the soybean IQD genes examined, six were most highly expressed in young leaves, six in flowers, one in roots and two in nodules. Our qRT-PCR analysis of 24 soybean IQD III genes confirmed that these genes are regulated by MeJA stress. Our findings present a comprehensive overview of the soybean IQD gene family and provide insights into the evolution of this family. In addition, this work lays a solid foundation for further experiments aimed at determining the biological functions of soybean IQD genes in growth and development.

  12. PlantTribes: a gene and gene family resource for comparative genomics in plants

    OpenAIRE

    Wall, P. Kerr; Leebens-Mack, Jim; Müller, Kai F.; Field, Dawn; Altman, Naomi S.; dePamphilis, Claude W.

    2007-01-01

    The PlantTribes database (http://fgp.huck.psu.edu/tribe.html) is a plant gene family database based on the inferred proteomes of five sequenced plant species: Arabidopsis thaliana, Carica papaya, Medicago truncatula, Oryza sativa and Populus trichocarpa. We used the graph-based clustering algorithm MCL [Van Dongen (Technical Report INS-R0010 2000) and Enright et al. (Nucleic Acids Res. 2002; 30: 1575–1584)] to classify all of these species’ protein-coding genes into putative gene families, ca...

  13. Predictions of Gene Family Distributions in Microbial Genomes: Evolution by Gene Duplication and Modification

    International Nuclear Information System (INIS)

    Yanai, Itai; Camacho, Carlos J.; DeLisi, Charles

    2000-01-01

    A universal property of microbial genomes is the considerable fraction of genes that are homologous to other genes within the same genome. The process by which these homologues are generated is not well understood, but sequence analysis of 20 microbial genomes unveils a recurrent distribution of gene family sizes. We show that a simple evolutionary model based on random gene duplication and point mutations fully accounts for these distributions and permits predictions for the number of gene families in genomes not yet complete. Our findings are consistent with the notion that a genome evolves from a set of precursor genes to a mature size by gene duplications and increasing modifications. (c) 2000 The American Physical Society

  14. Predictions of Gene Family Distributions in Microbial Genomes: Evolution by Gene Duplication and Modification

    Energy Technology Data Exchange (ETDEWEB)

    Yanai, Itai; Camacho, Carlos J.; DeLisi, Charles

    2000-09-18

    A universal property of microbial genomes is the considerable fraction of genes that are homologous to other genes within the same genome. The process by which these homologues are generated is not well understood, but sequence analysis of 20 microbial genomes unveils a recurrent distribution of gene family sizes. We show that a simple evolutionary model based on random gene duplication and point mutations fully accounts for these distributions and permits predictions for the number of gene families in genomes not yet complete. Our findings are consistent with the notion that a genome evolves from a set of precursor genes to a mature size by gene duplications and increasing modifications. (c) 2000 The American Physical Society.

  15. Actin and ubiquitin protein sequences support a cercozoan/foraminiferan ancestry for the plasmodiophorid plant pathogens.

    Science.gov (United States)

    Archibald, John M; Keeling, Patrick J

    2004-01-01

    The plasmodiophorids are a group of eukaryotic intracellular parasites that cause disease in a variety of economically significant crops. Plasmodiophorids have traditionally been considered fungi but have more recently been suggested to be members of the Cercozoa, a morphologically diverse group of amoeboid, flagellate, and amoeboflagellate protists. The recognition that Cercozoa constitute a monophyletic lineage has come from phylogenetic analyses of small subunit ribosomal RNA genes. Protein sequence data have suggested that the closest relatives of Cercozoa are the Foraminifera. To further test a cercozoan origin for the plasmodiophorids, we isolated actin genes from Plasmodiophora brassicae, Sorosphaera veronicae, and Spongospora subterranea, and polyubiquitin gene fragments from P. brassicae and S. subterranea. We also isolated actin genes from the chlorarachniophyte Lotharella globosa. In protein phylogenies of actin, the plasmodiophorid sequences consistently branch with Cercozoa and Foraminifera, and weakly branch as the sister group to the foraminiferans. The plasmodiophorid polyubiquitin sequences contain a single amino acid residue insertion at the functionally important processing point between ubiquitin monomers, the same place in which an otherwise unique insertion exists in the cercozoan and foraminiferan proteins. Taken together, these results indicate that plasmodiophorids are indeed related to Cercozoa and Foraminifera, although the relationships amongst these groups remain unresolved.

  16. Ultra Large Gene Families: A Matter of Adaptation or Genomic Parasites?

    Directory of Open Access Journals (Sweden)

    Philipp H. Schiffer

    2016-08-01

    Full Text Available Gene duplication is an important mechanism of molecular evolution. It offers a fast track to modification, diversification, redundancy or rescue of gene function. However, duplication may also be neutral or (slightly deleterious, and often ends in pseudo-geneisation. Here, we investigate the phylogenetic distribution of ultra large gene families on long and short evolutionary time scales. In particular, we focus on a family of NACHT-domain and leucine-rich-repeat-containing (NLR-genes, which we previously found in large numbers to occupy one chromosome arm of the zebrafish genome. We were interested to see whether such a tight clustering is characteristic for ultra large gene families. Our data reconfirm that most gene family inflations are lineage-specific, but we can only identify very few gene clusters. Based on our observations we hypothesise that, beyond a certain size threshold, ultra large gene families continue to proliferate in a mechanism we term “run-away evolution”. This process might ultimately lead to the failure of genomic integrity and drive species to extinction.

  17. Polycation induced actin bundles

    OpenAIRE

    Muhlrad, Andras; Grintsevich, Elena E.; Reisler, Emil

    2011-01-01

    Three polycations, polylysine, the polyamine spermine and the polycationic protein lysozyme were used to study the formation, structure, ionic strength sensitivity and dissociation of polycation-induced actin bundles. Bundles form fast, simultaneously with the polymerization of MgATP-G-actins, upon addition of polycations to solutions of actins at low ionic strength conditions. This indicates that nuclei and/or nascent filaments bundle due to attractive, electrostatic effect of polycations an...

  18. Geometrical Determinants of Neuronal Actin Waves.

    Science.gov (United States)

    Tomba, Caterina; Braïni, Céline; Bugnicourt, Ghislain; Cohen, Floriane; Friedrich, Benjamin M; Gov, Nir S; Villard, Catherine

    2017-01-01

    Hippocampal neurons produce in their early stages of growth propagative, actin-rich dynamical structures called actin waves. The directional motion of actin waves from the soma to the tip of neuronal extensions has been associated with net forward growth, and ultimately with the specification of neurites into axon and dendrites. Here, geometrical cues are used to control actin wave dynamics by constraining neurons on adhesive stripes of various widths. A key observable, the average time between the production of consecutive actin waves, or mean inter-wave interval (IWI), was identified. It scales with the neurite width, and more precisely with the width of the proximal segment close to the soma. In addition, the IWI is independent of the total number of neurites. These two results suggest a mechanistic model of actin wave production, by which the material conveyed by actin waves is assembled in the soma until it reaches the threshold leading to the initiation and propagation of a new actin wave. Based on these observations, we formulate a predictive theoretical description of actin wave-driven neuronal growth and polarization, which consistently accounts for different sets of experiments.

  19. Loop-Mediated Isothermal Amplification Targeting Actin DNA of Trichomonas vaginalis.

    Science.gov (United States)

    Goo, Youn-Kyoung; Shin, Won-Sik; Yang, Hye-Won; Joo, So-Young; Song, Su-Min; Ryu, Jae-Sook; Kong, Hyun-Hee; Lee, Won-Ki; Chung, Dong-Il; Hong, Yeonchul

    2016-06-01

    Trichomoniasis caused by Trichomonas vaginalis is a common sexually transmitted disease. Its association with several health problems, including preterm birth, pelvic inflammatory disease, cervical cancer, and transmission of human immunodeficiency virus, emphasizes the importance of improved access to early and accurate detection of T. vaginalis. In this study, a rapid and efficient loop-mediated isothermal amplification-based method for the detection of T. vaginalis was developed and validated, using vaginal swab specimens from subjects suspected to have trichomoniasis. The LAMP assay targeting the actin gene was highly sensitive with detection limits of 1 trichomonad and 1 pg of T. vaginalis DNA per reaction, and specifically amplified the target gene only from T. vaginalis. Validation of this assay showed that it had the highest sensitivity and better agreement with PCR (used as the gold standard) compared to microscopy and multiplex PCR. This study showed that the LAMP assay, targeting the actin gene, could be used to diagnose early infections of T. vaginalis. Thus, we have provided an alternative molecular diagnostic tool and a point-of-care test that may help to prevent trichomoniasis transmission and associated complications.

  20. The ALMT Gene Family Performs Multiple Functions in Plants

    Directory of Open Access Journals (Sweden)

    Jie Liu

    2018-02-01

    Full Text Available The aluminium activated malate transporter (ALMT gene family is named after the first member of the family identified in wheat (Triticum aestivum L.. The product of this gene controls resistance to aluminium (Al toxicity. ALMT genes encode transmembrane proteins that function as anion channels and perform multiple functions involving the transport of organic anions (e.g., carboxylates and inorganic anions in cells. They share a PF11744 domain and are classified in the Fusaric acid resistance protein-like superfamily, CL0307. The proteins typically have five to seven transmembrane regions in the N-terminal half and a long hydrophillic C-terminal tail but predictions of secondary structure vary. Although widely spread in plants, relatively little information is available on the roles performed by other members of this family. In this review, we summarized functions of ALMT gene families, including Al resistance, stomatal function, mineral nutrition, microbe interactions, fruit acidity, light response and seed development.

  1. Repeat-associated plasticity in the Helicobacter pylori RD gene family.

    Science.gov (United States)

    Shak, Joshua R; Dick, Jonathan J; Meinersmann, Richard J; Perez-Perez, Guillermo I; Blaser, Martin J

    2009-11-01

    The bacterium Helicobacter pylori is remarkable for its ability to persist in the human stomach for decades without provoking sterilizing immunity. Since repetitive DNA can facilitate adaptive genomic flexibility via increased recombination, insertion, and deletion, we searched the genomes of two H. pylori strains for nucleotide repeats. We discovered a family of genes with extensive repetitive DNA that we have termed the H. pylori RD gene family. Each gene of this family is composed of a conserved 3' region, a variable mid-region encoding 7 and 11 amino acid repeats, and a 5' region containing one of two possible alleles. Analysis of five complete genome sequences and PCR genotyping of 42 H. pylori strains revealed extensive variation between strains in the number, location, and arrangement of RD genes. Furthermore, examination of multiple strains isolated from a single subject's stomach revealed intrahost variation in repeat number and composition. Despite prior evidence that the protein products of this gene family are expressed at the bacterial cell surface, enzyme-linked immunosorbent assay and immunoblot studies revealed no consistent seroreactivity to a recombinant RD protein by H. pylori-positive hosts. The pattern of repeats uncovered in the RD gene family appears to reflect slipped-strand mispairing or domain duplication, allowing for redundancy and subsequent diversity in genotype and phenotype. This novel family of hypervariable genes with conserved, repetitive, and allelic domains may represent an important locus for understanding H. pylori persistence in its natural host.

  2. Adhesive F-actin Waves: A Novel Integrin-Mediated Adhesion Complex Coupled to Ventral Actin Polymerization

    OpenAIRE

    Case, Lindsay B.; Waterman, Clare M.

    2011-01-01

    At the leading lamellipodium of migrating cells, protrusion of an Arp2/3-nucleated actin network is coupled to formation of integrin-based adhesions, suggesting that Arp2/3-mediated actin polymerization and integrin-dependent adhesion may be mechanistically linked. Arp2/3 also mediates actin polymerization in structures distinct from the lamellipodium, in "ventral F-actin waves" that propagate as spots and wavefronts along the ventral plasma membrane. Here we show that integrins engage the ex...

  3. Actinic keratosis among seafarers.

    Science.gov (United States)

    Oldenburg, M; Kuechmeister, B; Ohnemus, U; Baur, X; Moll, I

    2013-11-01

    The aim of this study was to assess the prevalence of UV-induced actinic keratosis and further skin lesions. A newly developed questionnaire about lifetime UV radiation exposure was completed by 514 seafarers. An experienced dermatologist inspected the whole-body skin status of all participants. The questionnaire revealed a pre-employment UV radiation exposure in 104 seafarers, sunbed use in 26 subjects and a median work-related UV radiation exposure at sea of 20 years. The diagnosis of actinic keratoses was made in 94 seafarers and the clinical diagnosis of skin cancers in 48 seafarers (28 basal cell carcinoma, 11 squamous cell carcinoma, 9 malignant melanoma). After age standardisation according to a European reference population, the male European seafarers in this study had a 1.80-fold increased risk of actinic keratosis. Actinic keratoses [OR 1.03 (1.01-1.05)] and squamous cell carcinoma [OR 1.07 (1.01-1.13)] were related to the duration of seafaring time in years. A significant association was also found between actinic keratosis/squamous cell carcinoma and sunlight exposure during home leave [OR 1.67 (1.03-2.81) and OR 6.19 (1.18-32.40)]. Furthermore, the engine room personnel-especially the technical officers-were at higher risk of developing actinic keratosis. Due to the high prevalence of actinic keratosis especially among older seafarers with fair skin, with longer duration of seafaring employment at sea and with higher UV exposure during home leave, more intensive advice should be given on sun protection both at sea and ashore.

  4. Green fluorescent protein-mtalin causes defects in actin organization and cell expansion in Arabidopsis and inhibits actin depolymerizing factor's actin depolymerizing activity in vitro

    NARCIS (Netherlands)

    Ketelaar, T.; Anthony, R.G.; Hussey, P.J.

    2004-01-01

    Expression of green fluorescent protein (GFP) linked to an actin binding domain is a commonly used method for live cell imaging of the actin cytoskeleton. One of these chimeric proteins is GFP-mTalin (GFP fused to the actin binding domain of mouse talin). Although it has been demonstrated that

  5. Actin-Dependent Alterations of Dendritic Spine Morphology in Shankopathies

    Directory of Open Access Journals (Sweden)

    Tasnuva Sarowar

    2016-01-01

    Full Text Available Shank proteins (Shank1, Shank2, and Shank3 act as scaffolding molecules in the postsynaptic density of many excitatory neurons. Mutations in SHANK genes, in particular SHANK2 and SHANK3, lead to autism spectrum disorders (ASD in both human and mouse models. Shank3 proteins are made of several domains—the Shank/ProSAP N-terminal (SPN domain, ankyrin repeats, SH3 domain, PDZ domain, a proline-rich region, and the sterile alpha motif (SAM domain. Via various binding partners of these domains, Shank3 is able to bind and interact with a wide range of proteins including modulators of small GTPases such as RICH2, a RhoGAP protein, and βPIX, a RhoGEF protein for Rac1 and Cdc42, actin binding proteins and actin modulators. Dysregulation of all isoforms of Shank proteins, but especially Shank3, leads to alterations in spine morphogenesis, shape, and activity of the synapse via altering actin dynamics. Therefore, here, we highlight the role of Shank proteins as modulators of small GTPases and, ultimately, actin dynamics, as found in multiple in vitro and in vivo models. The failure to mediate this regulatory role might present a shared mechanism in the pathophysiology of autism-associated mutations, which leads to dysregulation of spine morphogenesis and synaptic signaling.

  6. Simultaneous Expression of GUS and Actin Genes by Using the Multiplex RT-PCR and Multiplex Gold Nanoparticle Probes.

    Science.gov (United States)

    Ghazi, Yaser; Vaseghi, Akbar; Ahmadi, Sepideh; Haddadi, Fatemeh

    2018-04-23

    Gene expression analysis is considered to be extremely important in many different biological researches. DNA-based diagnostic test, which contributes to DNA identification, has higher specificity, cost, and speed than some biochemical and molecular methods. In this study, we try to use the novel nano technology approach with Multiplex RT-PCR and Gold nano particular probes (GNPs-probes) in order to get gene expression in Curcumas melons. We used Agrobacterium tumefactions for gene transfer and GUS reporter gene as a reporter. After cDNA synthesis, Multiplex PCR and Multiplex RT-PCR techniques were used. Finally, probes were designed for RNA of GUS and Actin genes, and then the analysis of the gene expression using the probes attached to GNPs was carried out and the color changes in the GNPs were applied. In the following, probes hybridization was checked with DNA between 400 to 700 nm wavelengths and the highest rate was observed in the 550 to 650 nm. The results show that the simultaneous use of GNP-attached detectors and Multiplex RT-PCRcan reduce time and costmore considerably than somelaboratory methods for gene expiration investigation. Additionally, it can be seen thatthere is an increase in sensitivity and specificity of our investigation. Based on our findings, this can bea novel study doneusingMultiplex RT-PCRand unmodified AuNPs for gene transfer and expression detection to plants. We can claim that this assay has a remarkable advantage including rapid, cost-effectiveness, specificity and accuracy to detect transfer and expression genes in plants. Also,we can use this technique from other gene expressionsin many different biology samples.

  7. Dendritic Actin Cytoskeleton: Structure, Functions, and Regulations

    Directory of Open Access Journals (Sweden)

    Anja Konietzny

    2017-05-01

    Full Text Available Actin is a versatile and ubiquitous cytoskeletal protein that plays a major role in both the establishment and the maintenance of neuronal polarity. For a long time, the most prominent roles that were attributed to actin in neurons were the movement of growth cones, polarized cargo sorting at the axon initial segment, and the dynamic plasticity of dendritic spines, since those compartments contain large accumulations of actin filaments (F-actin that can be readily visualized using electron- and fluorescence microscopy. With the development of super-resolution microscopy in the past few years, previously unknown structures of the actin cytoskeleton have been uncovered: a periodic lattice consisting of actin and spectrin seems to pervade not only the whole axon, but also dendrites and even the necks of dendritic spines. Apart from that striking feature, patches of F-actin and deep actin filament bundles have been described along the lengths of neurites. So far, research has been focused on the specific roles of actin in the axon, while it is becoming more and more apparent that in the dendrite, actin is not only confined to dendritic spines, but serves many additional and important functions. In this review, we focus on recent developments regarding the role of actin in dendrite morphology, the regulation of actin dynamics by internal and external factors, and the role of F-actin in dendritic protein trafficking.

  8. Human heavy-chain variable region gene family nonrandomly rearranged in familial chronic lymphocytic leukemia

    International Nuclear Information System (INIS)

    Shen, A.; Humphries, C.; Tucker, P.; Blattner, F.

    1987-01-01

    The authors have identified a family of human immunoglobulin heavy-chain variable-region (V/sub H/) genes, one member of which is rearranged in two affected members of a family in which the father and four of five siblings developed chronic lymphocytic leukemia. Cloning and sequencing of the rearranged V/sub H/ genes from leukemic lymphocytes of three affected siblings showed that two siblings had rearranged V/sub H/ genes (V/sub H/TS1 and V/sub H/WS1) that were 90% homologous. The corresponding germ-line gene, V/sub H/251, was found to part of a small (four gene) V/sub H/ gene family, which they term V/sub H/V. The DNA sequence homology to V/sub H/WS1 (95%) and V/sub H/TS1 (88%) and identical restriction sites on the 5' side of V/sub H/ confirm that rearrangement of V/sub H/251 followed by somatic mutation produced the identical V/sub H/ gene rearrangements in the two siblings. V/sub H/TS1 is not a functional V/sub H/ gene; a functional V/sub H/ rearrangement was found on the other chromosome of this patient. The other two siblings had different V/sub H/ gene rearrangements. All used different diversity genes. Mechanisms proposed for nonrandom selection of a single V/sub H/ gene include developmental regulation of this V/sub H/ gene rearrangement or selection of a subpopulation of B cells in which this V/sub H/ has been rearranged

  9. The SPINK gene family and celiac disease susceptibility

    NARCIS (Netherlands)

    Wapenaar, M.C.; Monsuur, A.J.; Poell, J.; Slot, R. van 't; Meijer, J.W.R.; Meijer, G.A.; Mulder, C.J.; Mearin, M.L.; Wijmenga, C.

    2007-01-01

    The gene family of serine protease inhibitors of the Kazal type (SPINK) are functional and positional candidate genes for celiac disease (CD). Our aim was to assess the gut mucosal gene expression and genetic association of SPINK1, -2, -4, and -5 in the Dutch CD population. Gene expression was

  10. The SPINK gene family and celiac disease susceptibility

    NARCIS (Netherlands)

    Wapenaar, Martin C.; Monsuur, Alienke J.; Poell, Jos; Slot, Ruben Van 't; Meijer, Jos W. R.; Meijer, Gerrit A.; Mulder, Chris J.; Mearin, Maria Luisa; Wijmenga, Cisca

    The gene family of serine protease inhibitors of the Kazal type (SPINK) are functional and positional candidate genes for celiac disease (CD). Our aim was to assess the gut mucosal gene expression and genetic association of SPINK1, -2, -4, and -5 in the Dutch CD population. Gene expression was

  11. Regulation of the actin cytoskeleton in Helicobacter pylori-induced migration and invasive growth of gastric epithelial cells

    Directory of Open Access Journals (Sweden)

    Rieder Gabriele

    2011-11-01

    Full Text Available Abstract Dynamic rearrangement of the actin cytoskeleton is a significant hallmark of Helicobacter pylori (H. pylori infected gastric epithelial cells leading to cell migration and invasive growth. Considering the cellular mechanisms, the type IV secretion system (T4SS and the effector protein cytotoxin-associated gene A (CagA of H. pylori are well-studied initiators of distinct signal transduction pathways in host cells targeting kinases, adaptor proteins, GTPases, actin binding and other proteins involved in the regulation of the actin lattice. In this review, we summarize recent findings of how H. pylori functionally interacts with the complex signaling network that controls the actin cytoskeleton of motile and invasive gastric epithelial cells.

  12. Plant Vegetative and Animal Cytoplasmic Actins Share Functional Competence for Spatial Development with Protists[W][OA

    Science.gov (United States)

    Kandasamy, Muthugapatti K.; McKinney, Elizabeth C.; Roy, Eileen; Meagher, Richard B.

    2012-01-01

    Actin is an essential multifunctional protein encoded by two distinct ancient classes of genes in animals (cytoplasmic and muscle) and plants (vegetative and reproductive). The prevailing view is that each class of actin variants is functionally distinct. However, we propose that the vegetative plant and cytoplasmic animal variants have conserved functional competence for spatial development inherited from an ancestral protist actin sequence. To test this idea, we ectopically expressed animal and protist actins in Arabidopsis thaliana double vegetative actin mutants that are dramatically altered in cell and organ morphologies. We found that expression of cytoplasmic actins from humans and even a highly divergent invertebrate Ciona intestinalis qualitatively and quantitatively suppressed the root cell polarity and organ defects of act8 act7 mutants and moderately suppressed the root-hairless phenotype of act2 act8 mutants. By contrast, human muscle actins were unable to support prominently any aspect of plant development. Furthermore, actins from three protists representing Choanozoa, Archamoeba, and green algae efficiently suppressed all the phenotypes of both the plant mutants. Remarkably, these data imply that actin’s competence to carry out a complex suite of processes essential for multicellular development was already fully developed in single-celled protists and evolved nonprogressively from protists to plants and animals. PMID:22589468

  13. Cytoskeletal actin dynamics shape a ramifying actin network underpinning immunological synapse formation

    DEFF Research Database (Denmark)

    Fritzsche, Marco; Fernandes, Ricardo A.; Chang, Veronica T.

    2017-01-01

    optical microscopes to analyze resting and activated T cells, we show that, following contact formation with activating surfaces, these cells sequentially rearrange their cortical actin across the entire cell, creating a previously unreported ramifying actin network above the immunological synapse...

  14. Mesoscopic model of actin-based propulsion.

    Directory of Open Access Journals (Sweden)

    Jie Zhu

    Full Text Available Two theoretical models dominate current understanding of actin-based propulsion: microscopic polymerization ratchet model predicts that growing and writhing actin filaments generate forces and movements, while macroscopic elastic propulsion model suggests that deformation and stress of growing actin gel are responsible for the propulsion. We examine both experimentally and computationally the 2D movement of ellipsoidal beads propelled by actin tails and show that neither of the two models can explain the observed bistability of the orientation of the beads. To explain the data, we develop a 2D hybrid mesoscopic model by reconciling these two models such that individual actin filaments undergoing nucleation, elongation, attachment, detachment and capping are embedded into the boundary of a node-spring viscoelastic network representing the macroscopic actin gel. Stochastic simulations of this 'in silico' actin network show that the combined effects of the macroscopic elastic deformation and microscopic ratchets can explain the observed bistable orientation of the actin-propelled ellipsoidal beads. To test the theory further, we analyze observed distribution of the curvatures of the trajectories and show that the hybrid model's predictions fit the data. Finally, we demonstrate that the model can explain both concave-up and concave-down force-velocity relations for growing actin networks depending on the characteristic time scale and network recoil. To summarize, we propose that both microscopic polymerization ratchets and macroscopic stresses of the deformable actin network are responsible for the force and movement generation.

  15. Polycation induced actin bundles.

    Science.gov (United States)

    Muhlrad, Andras; Grintsevich, Elena E; Reisler, Emil

    2011-04-01

    Three polycations, polylysine, the polyamine spermine and the polycationic protein lysozyme were used to study the formation, structure, ionic strength sensitivity and dissociation of polycation-induced actin bundles. Bundles form fast, simultaneously with the polymerization of MgATP-G-actins, upon the addition of polycations to solutions of actins at low ionic strength conditions. This indicates that nuclei and/or nascent filaments bundle due to attractive, electrostatic effect of polycations and the neutralization of repulsive interactions of negative charges on actin. The attractive forces between the filaments are strong, as shown by the low (in nanomolar range) critical concentration of their bundling at low ionic strength. These bundles are sensitive to ionic strength and disassemble partially in 100 mM NaCl, but both the dissociation and ionic strength sensitivity can be countered by higher polycation concentrations. Cys374 residues of actin monomers residing on neighboring filaments in the bundles can be cross-linked by the short span (5.4Å) MTS-1 (1,1-methanedyl bismethanethiosulfonate) cross-linker, which indicates a tight packing of filaments in the bundles. The interfilament cross-links, which connect monomers located on oppositely oriented filaments, prevent disassembly of bundles at high ionic strength. Cofilin and the polysaccharide polyanion heparin disassemble lysozyme induced actin bundles more effectively than the polylysine-induced bundles. The actin-lysozyme bundles are pathologically significant as both proteins are found in the pulmonary airways of cystic fibrosis patients. Their bundles contribute to the formation of viscous mucus, which is the main cause of breathing difficulties and eventual death in this disorder. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Changes in actin dynamics are involved in salicylic acid signaling pathway

    Czech Academy of Sciences Publication Activity Database

    Matoušková, J.; Janda, M.; Fišer, R.; Šašek, Vladimír; Kocourková, Daniela; Burketová, Lenka; Dušková, J.; Martinec, Jan; Valentová, O.

    2014-01-01

    Roč. 223, JUN 2014 (2014), s. 36-44 ISSN 0168-9452 R&D Projects: GA ČR(CZ) GAP501/11/1654 Institutional support: RVO:61389030 Keywords : Actin dynamics * Salicylic acid * PR genes Subject RIV: CE - Biochemistry Impact factor: 3.607, year: 2014

  17. Characterization of the MLO gene family in Rosaceae and gene expression analysis in Malus domestica.

    Science.gov (United States)

    Pessina, Stefano; Pavan, Stefano; Catalano, Domenico; Gallotta, Alessandra; Visser, Richard G F; Bai, Yuling; Malnoy, Mickael; Schouten, Henk J

    2014-07-22

    Powdery mildew (PM) is a major fungal disease of thousands of plant species, including many cultivated Rosaceae. PM pathogenesis is associated with up-regulation of MLO genes during early stages of infection, causing down-regulation of plant defense pathways. Specific members of the MLO gene family act as PM-susceptibility genes, as their loss-of-function mutations grant durable and broad-spectrum resistance. We carried out a genome-wide characterization of the MLO gene family in apple, peach and strawberry, and we isolated apricot MLO homologs through a PCR-approach. Evolutionary relationships between MLO homologs were studied and syntenic blocks constructed. Homologs that are candidates for being PM susceptibility genes were inferred by phylogenetic relationships with functionally characterized MLO genes and, in apple, by monitoring their expression following inoculation with the PM causal pathogen Podosphaera leucotricha. Genomic tools available for Rosaceae were exploited in order to characterize the MLO gene family. Candidate MLO susceptibility genes were identified. In follow-up studies it can be investigated whether silencing or a loss-of-function mutations in one or more of these candidate genes leads to PM resistance.

  18. Diclofenac Topical (actinic keratosis)

    Science.gov (United States)

    ... topical gel (Solaraze) is used to treat actinic keratosis (flat, scaly growths on the skin caused by ... The way diclofenac gel works to treat actinic keratosis is not known.Diclofenac is also available as ...

  19. Enhancement of radiosensitivity in H1299 cancer cells by actin-associated protein cofilin

    International Nuclear Information System (INIS)

    Lee, Y.-J.; Sheu, T.-J.; Keng, Peter C.

    2005-01-01

    Cofilin is an actin-associated protein that belongs to the actin depolymerization factor/cofilin family and is important for regulation of actin dynamics. Cofilin can import actin monomers into the nucleus under certain stress conditions, however the biological effects of nuclear transport are unclear. In this study, we found that over-expression of cofilin led to increased radiation sensitivity in human non-small lung cancer H1299 cells. Cell survival as determined by colony forming assay showed that cells over-expressing cofilin were more sensitive to ionizing radiation (IR) than normal cells. To determine whether the DNA repair capacity was altered in cofilin over-expressing cells, comet assays were performed on irradiated cells. Repair of DNA damage caused by ionizing radiation was detected in cofilin over-expressing cells after 24 h of recovery. Consistent with this observation, the key components for repair of DNA double-strand breaks, including Rad51, Rad52, and Ku70/Ku80, were down-regulated in cofilin over-expressing cells after IR exposure. These findings suggest that cofilin can influence radiosensitivity by altering DNA repair capacity

  20. Molecular evolution of the major chemosensory gene families in insects.

    Science.gov (United States)

    Sánchez-Gracia, A; Vieira, F G; Rozas, J

    2009-09-01

    Chemoreception is a crucial biological process that is essential for the survival of animals. In insects, olfaction allows the organism to recognise volatile cues that allow the detection of food, predators and mates, whereas the sense of taste commonly allows the discrimination of soluble stimulants that elicit feeding behaviours and can also initiate innate sexual and reproductive responses. The most important proteins involved in the recognition of chemical cues comprise moderately sized multigene families. These families include odorant-binding proteins (OBPs) and chemosensory proteins (CSPs), which are involved in peripheral olfactory processing, and the chemoreceptor superfamily formed by the olfactory receptor (OR) and gustatory receptor (GR) families. Here, we review some recent evolutionary genomic studies of chemosensory gene families using the data from fully sequenced insect genomes, especially from the 12 newly available Drosophila genomes. Overall, the results clearly support the birth-and-death model as the major mechanism of evolution in these gene families. Namely, new members arise by tandem gene duplication, progressively diverge in sequence and function, and can eventually be lost from the genome by a deletion or pseudogenisation event. Adaptive changes fostered by environmental shifts are also observed in the evolution of chemosensory families in insects and likely involve reproductive, ecological or behavioural traits. Consequently, the current size of these gene families is mainly a result of random gene gain and loss events. This dynamic process may represent a major source of genetic variation, providing opportunities for FUTURE specific adaptations.

  1. Non-Straub type actin from molluscan catch muscle

    Energy Technology Data Exchange (ETDEWEB)

    Shelud' ko, Nikolay S., E-mail: sheludko@stl.ru; Girich, Ulyana V.; Lazarev, Stanislav S.; Vyatchin, Ilya G.

    2016-05-27

    We have developed a method of obtaining natural actin from smooth muscles of the bivalves on the example of the Crenomytilus grayanus catch muscle. The muscles were previously rigorized to prevent a loss of thin filaments during homogenization and washings. Thin filaments were isolated with a low ionic strength solution in the presence of ATP and sodium pyrophosphate. Surface proteins of thin filaments-tropomyosin, troponin, calponin and some minor actin-binding proteins-were dissociated from actin filaments by increasing the ionic strength to 0.6 M KCL. Natural fibrillar actin obtained in that way depolymerizes easily in low ionic strength solutions commonly used for the extraction of Straub-type actin from acetone powder. Purification of natural actin was carried out by the polymerization–depolymerization cycle. The content of inactivated actin remaining in the supernatant is much less than at a similar purification of Straub-type actin. A comparative investigation was performed between the natural mussel actin and the Straub-type rabbit skeletal actin in terms of the key properties of actin: polymerization, activation of Mg-ATPase activity of myosin, and the electron-microscopic structure of actin polymers. -- Highlights: •We developed method of repolymerizable invertebrate smooth muscle actin obtaining. •Our method does not involve use of denaturating agents, which could modify proteins. •Viscosity and polymerization rate of actin, gained that way, is similar to Straub one. •Electron microscopy showed that repolymerized mussel actin is similar to Straub one. •Repolymerized mussel actin has greater ATPase activating capacity, than Straub actin.

  2. Actin depolymerization enhances adipogenic differentiation in human stromal stem cells.

    Science.gov (United States)

    Chen, Li; Hu, Huimin; Qiu, Weimin; Shi, Kaikai; Kassem, Moustapha

    2018-05-01

    Human stromal stem cells (hMSCs) differentiate into adipocytes that play a role in skeletal tissue homeostasis and whole body energy metabolism. During adipocyte differentiation, hMSCs exhibit significant changes in cell morphology suggesting changes in cytoskeletal organization. Here, we examined the effect of direct modulation of actin microfilament dynamics on adipocyte differentiation. Stabilizing actin filaments in hMSCs by siRNA-mediated knock down of the two main actin depolymerizing factors (ADFs): Cofilin 1 (CFL1) and Destrin (DSTN) or treating the cells by Phalloidin reduced adipocyte differentiation as evidenced by decreased number of mature adipocytes and decreased adipocyte specific gene expression (ADIPOQ, LPL, PPARG, FABP4). In contrast, disruption of actin cytoskeleton by Cytochalasin D enhanced adipocyte differentiation. Follow up studies revealed that the effects of CFL1 on adipocyte differentiation depended on the activity of LIM domain kinase 1 (LIMK1) which is the major upstream kinase of CFL1. Inhibiting LIMK by its specific chemical inhibitor LIMKi inhibited the phosphorylation of CFL1 and actin polymerization, and enhanced the adipocyte differentiation. Moreover, treating hMSCs by Cytochalasin D inhibited ERK and Smad2 signaling and this was associated with enhanced adipocyte differentiation. On the other hand, Phalloidin enhanced ERK and Smad2 signaling, but inhibited adipocyte differentiation which was rescued by ERK specific chemical inhibitor U0126. Our data provide a link between restructuring of hMSCs cytoskeleton and hMSCs lineage commitment and differentiation. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. TGFβ1-Induced Differentiation of Human Bone Marrow-Derived MSCs Is Mediated by Changes to the Actin Cytoskeleton

    Directory of Open Access Journals (Sweden)

    Mona Elsafadi

    2018-01-01

    Full Text Available TGFβ is a potent regulator of several biological functions in many cell types, but its role in the differentiation of human bone marrow-derived skeletal stem cells (hMSCs is currently poorly understood. In the present study, we demonstrate that a single dose of TGFβ1 prior to induction of osteogenic or adipogenic differentiation results in increased mineralized matrix or increased numbers of lipid-filled mature adipocytes, respectively. To identify the mechanisms underlying this TGFβ-mediated enhancement of lineage commitment, we compared the gene expression profiles of TGFβ1-treated hMSC cultures using DNA microarrays. In total, 1932 genes were upregulated, and 1298 genes were downregulated. Bioinformatics analysis revealed that TGFβl treatment was associated with an enrichment of genes in the skeletal and extracellular matrix categories and the regulation of the actin cytoskeleton. To investigate further, we examined the actin cytoskeleton following treatment with TGFβ1 and/or cytochalasin D. Interestingly, cytochalasin D treatment of hMSCs enhanced adipogenic differentiation but inhibited osteogenic differentiation. Global gene expression profiling revealed a significant enrichment of pathways related to osteogenesis and adipogenesis and of genes regulated by both TGFβ1 and cytochalasin D. Our study demonstrates that TGFβ1 enhances hMSC commitment to either the osteogenic or adipogenic lineages by reorganizing the actin cytoskeleton.

  4. The nitrate transporter (NRT gene family in poplar.

    Directory of Open Access Journals (Sweden)

    Hua Bai

    Full Text Available Nitrate is an important nutrient required for plant growth. It also acts as a signal regulating plant development. Nitrate is actively taken up and transported by nitrate transporters (NRT, which form a large family with many members and distinct functions. In contrast to Arabidopsis and rice there is little information about the NRT family in woody plants such as Populus. In this study, a comprehensive analysis of the Populus NRT family was performed. Sixty-eight PtNRT1/PTR, 6 PtNRT2, and 5 PtNRT3 genes were identified in the P. trichocarpa genome. Phylogenetic analysis confirmed that the genes of the NRT family are divided into three clades: NRT1/PTR with four subclades, NRT2, and NRT3. Topological analysis indicated that all members of PtNRT1/PTR and PtNRT2 have 8 to 12 trans-membrane domains, whereas the PtNRT3 proteins have no or up to two trans-membrane domains. Four PtNRT3 members were predicted as secreted proteins. Microarray analyses revealed tissue-specific expression patterns of PtNRT genes with distinct clusters of NRTs for roots, for the elongation zone of the apical stem segment and the developing xylem and a further cluster for leaves, bark and wood. A comparison of different poplar species (P. trichocarpa, P. tremula, P. euphratica, P. fremontii x P. angustifolia, and P. x canescens showed that the tissue-specific patterns of the NRT genes varied to some extent with species. Bioinformatic analysis of putative cis-regulatory elements in the promoter regions of PtNRT family retrieved motifs suggesting the regulation of the NRT genes by N metabolism, by energy and carbon metabolism, and by phytohormones and stress. Multivariate analysis suggested that the combination and abundance of motifs in distinct promoters may lead to tissue-specificity. Our genome wide analysis of the PtNRT genes provides a valuable basis for functional analysis towards understanding the role of nitrate transporters for tree growth.

  5. Identification of a novel gene family that includes the interferon-inducible human genes 6–16 and ISG12

    Directory of Open Access Journals (Sweden)

    Parker Nadeene

    2004-01-01

    Full Text Available Abstract Background The human 6–16 and ISG12 genes are transcriptionally upregulated in a variety of cell types in response to type I interferon (IFN. The predicted products of these genes are small (12.9 and 11.5 kDa respectively, hydrophobic proteins that share 36% overall amino acid identity. Gene disruption and over-expression studies have so far failed to reveal any biochemical or cellular roles for these proteins. Results We have used in silico analyses to identify a novel family of genes (the ISG12 gene family related to both the human 6–16 and ISG12 genes. Each ISG12 family member codes for a small hydrophobic protein containing a conserved ~80 amino-acid motif (the ISG12 motif. So far we have detected 46 family members in 25 organisms, ranging from unicellular eukaryotes to humans. Humans have four ISG12 genes: the 6–16 gene at chromosome 1p35 and three genes (ISG12(a, ISG12(b and ISG12(c clustered at chromosome 14q32. Mice have three family members (ISG12(a, ISG12(b1 and ISG12(b2 clustered at chromosome 12F1 (syntenic with human chromosome 14q32. There does not appear to be a murine 6–16 gene. On the basis of phylogenetic analyses, genomic organisation and intron-alignments we suggest that this family has arisen through divergent inter- and intra-chromosomal gene duplication events. The transcripts from human and mouse genes are detectable, all but two (human ISG12(b and ISG12(c being upregulated in response to type I IFN in the cell lines tested. Conclusions Members of the eukaryotic ISG12 gene family encode a small hydrophobic protein with at least one copy of a newly defined motif of ~80 amino-acids (the ISG12 motif. In higher eukaryotes, many of the genes have acquired a responsiveness to type I IFN during evolution suggesting that a role in resisting cellular or environmental stress may be a unifying property of all family members. Analysis of gene-function in higher eukaryotes is complicated by the possibility of

  6. Espins are multifunctional actin cytoskeletal regulatory proteins in the microvilli of chemosensory and mechanosensory cells

    Science.gov (United States)

    Sekerková, Gabriella; Zheng, Lili; Loomis, Patricia A.; Changyaleket, Benjarat; Whitlon, Donna S.; Mugnaini, Enrico; Bartles, James R.

    2010-01-01

    Espins are associated with the parallel actin bundles of hair cell stereocilia and are the target of mutations that cause deafness and vestibular dysfunction in mice and humans. Here, we report that espins are also concentrated in the microvilli of a number of other sensory cells: vomeronasal organ sensory neurons, solitary chemoreceptor cells, taste cells and Merkel cells. Moreover, we show that hair cells and these other sensory cells contain novel espin isoforms that arise from a different transcriptional start site and differ significantly from other espin isoforms in their complement of ligand-binding activities and their effects on actin polymerization. The novel espin isoforms of sensory cells bundled actin filaments with high affinity in a Ca2+-resistant fashion, bound actin monomer via a WASP homology 2 domain, bound profilin via a single proline-rich peptide, and caused a dramatic elongation of microvillus-type parallel actin bundles in transfected epithelial cells. In addition, the novel espin isoforms of sensory cells differed from other espin isoforms in that they potently inhibited actin polymerization in vitro, did not bind the Src homology 3 domain of the adapter protein insulin receptor substrate p53 and did not bind the acidic, signaling phospholipid phosphatidylinositol 4,5- bisphosphate. Thus, the espins constitute a family of multifunctional actin cytoskeletal regulatory proteins with the potential to differentially influence the organization, dimensions, dynamics and signaling capabilities of the actin filament-rich, microvillus-type specializations that mediate sensory transduction in a variety of mechanosensory and chemosensory cells. PMID:15190118

  7. CF2 represses Actin 88F gene expression and maintains filament balance during indirect flight muscle development in Drosophila.

    Directory of Open Access Journals (Sweden)

    Kathleen M Gajewski

    2010-05-01

    Full Text Available The zinc finger protein CF2 is a characterized activator of muscle structural genes in the body wall muscles of the Drosophila larva. To investigate the function of CF2 in the indirect flight muscle (IFM, we examined the phenotypes of flies bearing five homozygous viable mutations. The gross structure of the IFM was not affected, but the stronger hypomorphic alleles caused an increase of up to 1.5X in the diameter of the myofibrils. This size increase did not cause any disruption of the hexameric arrangement of thick and thin filaments. RT-PCR analysis revealed an increase in the transcription of several structural genes. Ectopic overexpression of CF2 in the developing IFM disrupts muscle formation. While our results indicate a role for CF2 as a direct negative regulator of the thin filament protein gene Actin 88F (Act88F, effects on levels of transcripts of myosin heavy chain (mhc appear to be indirect. This role is in direct contrast to that described in the larval muscles, where CF2 activates structural gene expression. The variation in myofibril phenotypes of CF2 mutants suggest the CF2 may have separate functions in fine-tuning expression of structural genes to insure proper filament stoichiometry, and monitoring and/or controlling the final myofibril size.

  8. Actin Nemaline Myopathy Mouse Reproduces Disease, Suggests Other Actin Disease Phenotypes and Provides Cautionary Note on Muscle Transgene Expression

    Science.gov (United States)

    Ravenscroft, Gianina; Jackaman, Connie; Sewry, Caroline A.; McNamara, Elyshia; Squire, Sarah E.; Potter, Allyson C.; Papadimitriou, John; Griffiths, Lisa M.; Bakker, Anthony J.; Davies, Kay E.; Laing, Nigel G.; Nowak, Kristen J.

    2011-01-01

    Mutations in the skeletal muscle α-actin gene (ACTA1) cause congenital myopathies including nemaline myopathy, actin aggregate myopathy and rod-core disease. The majority of patients with ACTA1 mutations have severe hypotonia and do not survive beyond the age of one. A transgenic mouse model was generated expressing an autosomal dominant mutant (D286G) of ACTA1 (identified in a severe nemaline myopathy patient) fused with EGFP. Nemaline bodies were observed in multiple skeletal muscles, with serial sections showing these correlated to aggregates of the mutant skeletal muscle α-actin-EGFP. Isolated extensor digitorum longus and soleus muscles were significantly weaker than wild-type (WT) muscle at 4 weeks of age, coinciding with the peak in structural lesions. These 4 week-old mice were ∼30% less active on voluntary running wheels than WT mice. The α-actin-EGFP protein clearly demonstrated that the transgene was expressed equally in all myosin heavy chain (MHC) fibre types during the early postnatal period, but subsequently became largely confined to MHCIIB fibres. Ringbinden fibres, internal nuclei and myofibrillar myopathy pathologies, not typical features in nemaline myopathy or patients with ACTA1 mutations, were frequently observed. Ringbinden were found in fast fibre predominant muscles of adult mice and were exclusively MHCIIB-positive fibres. Thus, this mouse model presents a reliable model for the investigation of the pathobiology of nemaline body formation and muscle weakness and for evaluation of potential therapeutic interventions. The occurrence of core-like regions, internal nuclei and ringbinden will allow analysis of the mechanisms underlying these lesions. The occurrence of ringbinden and features of myofibrillar myopathy in this mouse model of ACTA1 disease suggests that patients with these pathologies and no genetic explanation should be screened for ACTA1 mutations. PMID:22174871

  9. Geometrical Determinants of Neuronal Actin Waves

    OpenAIRE

    Tomba, Caterina; Bra?ni, C?line; Bugnicourt, Ghislain; Cohen, Floriane; Friedrich, Benjamin M.; Gov, Nir S.; Villard, Catherine

    2017-01-01

    Hippocampal neurons produce in their early stages of growth propagative, actin-rich dynamical structures called actin waves. The directional motion of actin waves from the soma to the tip of neuronal extensions has been associated with net forward growth, and ultimately with the specification of neurites into axon and dendrites. Here, geometrical cues are used to control actin wave dynamics by constraining neurons on adhesive stripes of various widths. A key observable, the average time betwe...

  10. Stochastic Severing of Actin Filaments by Actin Depolymerizing Factor/Cofilin Controls the Emergence of a Steady Dynamical Regime

    Science.gov (United States)

    Roland, Jeremy; Berro, Julien; Michelot, Alphée; Blanchoin, Laurent; Martiel, Jean-Louis

    2008-01-01

    Actin dynamics (i.e., polymerization/depolymerization) powers a large number of cellular processes. However, a great deal remains to be learned to explain the rapid actin filament turnover observed in vivo. Here, we developed a minimal kinetic model that describes key details of actin filament dynamics in the presence of actin depolymerizing factor (ADF)/cofilin. We limited the molecular mechanism to 1), the spontaneous growth of filaments by polymerization of actin monomers, 2), the ageing of actin subunits in filaments, 3), the cooperative binding of ADF/cofilin to actin filament subunits, and 4), filament severing by ADF/cofilin. First, from numerical simulations and mathematical analysis, we found that the average filament length, 〈L〉, is controlled by the concentration of actin monomers (power law: 5/6) and ADF/cofilin (power law: −2/3). We also showed that the average subunit residence time inside the filament, 〈T〉, depends on the actin monomer (power law: −1/6) and ADF/cofilin (power law: −2/3) concentrations. In addition, filament length fluctuations are ∼20% of the average filament length. Moreover, ADF/cofilin fragmentation while modulating filament length keeps filaments in a high molar ratio of ATP- or ADP-Pi versus ADP-bound subunits. This latter property has a protective effect against a too high severing activity of ADF/cofilin. We propose that the activity of ADF/cofilin in vivo is under the control of an affinity gradient that builds up dynamically along growing actin filaments. Our analysis shows that ADF/cofilin regulation maintains actin filaments in a highly dynamical state compatible with the cytoskeleton dynamics observed in vivo. PMID:18065447

  11. Extensive lineage-specific gene duplication and evolution of the spiggin multi-gene family in stickleback

    Directory of Open Access Journals (Sweden)

    Nishida Mutsumi

    2007-11-01

    Full Text Available Abstract Background The threespine stickleback (Gasterosteus aculeatus has a characteristic reproductive mode; mature males build nests using a secreted glue-like protein called spiggin. Although recent studies reported multiple occurrences of genes that encode this glue-like protein spiggin in threespine and ninespine sticklebacks, it is still unclear how many genes compose the spiggin multi-gene family. Results Genome sequence analysis of threespine stickleback showed that there are at least five spiggin genes and two pseudogenes, whereas a single spiggin homolog occurs in the genomes of other fishes. Comparative genome sequence analysis demonstrated that Muc19, a single-copy mucous gene in human and mouse, is an ortholog of spiggin. Phylogenetic and molecular evolutionary analyses of these sequences suggested that an ancestral spiggin gene originated from a member of the mucin gene family as a single gene in the common ancestor of teleosts, and gene duplications of spiggin have occurred in the stickleback lineage. There was inter-population variation in the copy number of spiggin genes and positive selection on some codons, indicating that additional gene duplication/deletion events and adaptive evolution at some amino acid sites may have occurred in each stickleback population. Conclusion A number of spiggin genes exist in the threespine stickleback genome. Our results provide insight into the origin and dynamic evolutionary process of the spiggin multi-gene family in the threespine stickleback lineage. The dramatic evolution of genes for mucous substrates may have contributed to the generation of distinct characteristics such as "bio-glue" in vertebrates.

  12. Cytoplasmic Actin: Purification and Single Molecule Assembly Assays

    Science.gov (United States)

    Hansen, Scott D.; Zuchero, J. Bradley; Mullins, R. Dyche

    2014-01-01

    The actin cytoskeleton is essential to all eukaryotic cells. In addition to playing important structural roles, assembly of actin into filaments powers diverse cellular processes, including cell motility, cytokinesis, and endocytosis. Actin polymerization is tightly regulated by its numerous cofactors, which control spatial and temporal assembly of actin as well as the physical properties of these filaments. Development of an in vitro model of actin polymerization from purified components has allowed for great advances in determining the effects of these proteins on the actin cytoskeleton. Here we describe how to use the pyrene actin assembly assay to determine the effect of a protein on the kinetics of actin assembly, either directly or as mediated by proteins such as nucleation or capping factors. Secondly, we show how fluorescently labeled phalloidin can be used to visualize the filaments that are created in vitro to give insight into how proteins regulate actin filament structure. Finally, we describe a method for visualizing dynamic assembly and disassembly of single actin filaments and fluorescently labeled actin binding proteins using total internal reflection fluorescence (TIRF) microscopy. PMID:23868587

  13. Evolutionary history of chordate PAX genes: dynamics of change in a complex gene family.

    Directory of Open Access Journals (Sweden)

    Vanessa Rodrigues Paixão-Côrtes

    Full Text Available Paired box (PAX genes are transcription factors that play important roles in embryonic development. Although the PAX gene family occurs in animals only, it is widely distributed. Among the vertebrates, its 9 genes appear to be the product of complete duplication of an original set of 4 genes, followed by an additional partial duplication. Although some studies of PAX genes have been conducted, no comprehensive survey of these genes across the entire taxonomic unit has yet been attempted. In this study, we conducted a detailed comparison of PAX sequences from 188 chordates, which revealed restricted variation. The absence of PAX4 and PAX8 among some species of reptiles and birds was notable; however, all 9 genes were present in all 74 mammalian genomes investigated. A search for signatures of selection indicated that all genes are subject to purifying selection, with a possible constraint relaxation in PAX4, PAX7, and PAX8. This result indicates asymmetric evolution of PAX family genes, which can be associated with the emergence of adaptive novelties in the chordate evolutionary trajectory.

  14. Evolution of the YABBY gene family in seed plants.

    Science.gov (United States)

    Finet, Cédric; Floyd, Sandra K; Conway, Stephanie J; Zhong, Bojian; Scutt, Charles P; Bowman, John L

    2016-01-01

    Members of the YABBY gene family of transcription factors in angiosperms have been shown to be involved in the initiation of outgrowth of the lamina, the maintenance of polarity, and establishment of the leaf margin. Although most of the dorsal-ventral polarity genes in seed plants have homologs in non-spermatophyte lineages, the presence of YABBY genes is restricted to seed plants. To gain insight into the origin and diversification of this gene family, we reconstructed the evolutionary history of YABBY gene lineages in seed plants. Our findings suggest that either one or two YABBY genes were present in the last common ancestor of extant seed plants. We also examined the expression of YABBY genes in the gymnosperms Ephedra distachya (Gnetales), Ginkgo biloba (Ginkgoales), and Pseudotsuga menziesii (Coniferales). Our data indicate that some YABBY genes are expressed in a polar (abaxial) manner in leaves and female cones in gymnosperms. We propose that YABBY genes already acted as polarity genes in the last common ancestor of extant seed plants. © 2016 Wiley Periodicals, Inc.

  15. Identification of a novel Gig2 gene family specific to non-amniote vertebrates.

    Directory of Open Access Journals (Sweden)

    Yi-Bing Zhang

    Full Text Available Gig2 (grass carp reovirus (GCRV-induced gene 2 is first identified as a novel fish interferon (IFN-stimulated gene (ISG. Overexpression of a zebrafish Gig2 gene can protect cultured fish cells from virus infection. In the present study, we identify a novel gene family that is comprised of genes homologous to the previously characterized Gig2. EST/GSS search and in silico cloning identify 190 Gig2 homologous genes in 51 vertebrate species ranged from lampreys to amphibians. Further large-scale search of vertebrate and invertebrate genome databases indicate that Gig2 gene family is specific to non-amniotes including lampreys, sharks/rays, ray-finned fishes and amphibians. Phylogenetic analysis and synteny analysis reveal lineage-specific expansion of Gig2 gene family and also provide valuable evidence for the fish-specific genome duplication (FSGD hypothesis. Although Gig2 family proteins exhibit no significant sequence similarity to any known proteins, a typical Gig2 protein appears to consist of two conserved parts: an N-terminus that bears very low homology to the catalytic domains of poly(ADP-ribose polymerases (PARPs, and a novel C-terminal domain that is unique to this gene family. Expression profiling of zebrafish Gig2 family genes shows that some duplicate pairs have diverged in function via acquisition of novel spatial and/or temporal expression under stresses. The specificity of this gene family to non-amniotes might contribute to a large extent to distinct physiology in non-amniote vertebrates.

  16. Boolean gates on actin filaments

    International Nuclear Information System (INIS)

    Siccardi, Stefano; Tuszynski, Jack A.; Adamatzky, Andrew

    2016-01-01

    Actin is a globular protein which forms long polar filaments in the eukaryotic cytoskeleton. Actin networks play a key role in cell mechanics and cell motility. They have also been implicated in information transmission and processing, memory and learning in neuronal cells. The actin filaments have been shown to support propagation of voltage pulses. Here we apply a coupled nonlinear transmission line model of actin filaments to study interactions between voltage pulses. To represent digital information we assign a logical TRUTH value to the presence of a voltage pulse in a given location of the actin filament, and FALSE to the pulse's absence, so that information flows along the filament with pulse transmission. When two pulses, representing Boolean values of input variables, interact, then they can facilitate or inhibit further propagation of each other. We explore this phenomenon to construct Boolean logical gates and a one-bit half-adder with interacting voltage pulses. We discuss implications of these findings on cellular process and technological applications. - Highlights: • We simulate interaction between voltage pulses using on actin filaments. • We use a coupled nonlinear transmission line model. • We design Boolean logical gates via interactions between the voltage pulses. • We construct one-bit half-adder with interacting voltage pulses.

  17. Boolean gates on actin filaments

    Energy Technology Data Exchange (ETDEWEB)

    Siccardi, Stefano, E-mail: ssiccardi@2ssas.it [The Unconventional Computing Centre, University of the West of England, Bristol (United Kingdom); Tuszynski, Jack A., E-mail: jackt@ualberta.ca [Department of Oncology, University of Alberta, Edmonton, Alberta (Canada); Adamatzky, Andrew, E-mail: andrew.adamatzky@uwe.ac.uk [The Unconventional Computing Centre, University of the West of England, Bristol (United Kingdom)

    2016-01-08

    Actin is a globular protein which forms long polar filaments in the eukaryotic cytoskeleton. Actin networks play a key role in cell mechanics and cell motility. They have also been implicated in information transmission and processing, memory and learning in neuronal cells. The actin filaments have been shown to support propagation of voltage pulses. Here we apply a coupled nonlinear transmission line model of actin filaments to study interactions between voltage pulses. To represent digital information we assign a logical TRUTH value to the presence of a voltage pulse in a given location of the actin filament, and FALSE to the pulse's absence, so that information flows along the filament with pulse transmission. When two pulses, representing Boolean values of input variables, interact, then they can facilitate or inhibit further propagation of each other. We explore this phenomenon to construct Boolean logical gates and a one-bit half-adder with interacting voltage pulses. We discuss implications of these findings on cellular process and technological applications. - Highlights: • We simulate interaction between voltage pulses using on actin filaments. • We use a coupled nonlinear transmission line model. • We design Boolean logical gates via interactions between the voltage pulses. • We construct one-bit half-adder with interacting voltage pulses.

  18. A nanobody targeting the F-actin capping protein CapG restrains breast cancer metastasis.

    Science.gov (United States)

    Van Impe, Katrien; Bethuyne, Jonas; Cool, Steven; Impens, Francis; Ruano-Gallego, David; De Wever, Olivier; Vanloo, Berlinda; Van Troys, Marleen; Lambein, Kathleen; Boucherie, Ciska; Martens, Evelien; Zwaenepoel, Olivier; Hassanzadeh-Ghassabeh, Gholamreza; Vandekerckhove, Joël; Gevaert, Kris; Fernández, Luis Ángel; Sanders, Niek N; Gettemans, Jan

    2013-12-13

    Aberrant turnover of the actin cytoskeleton is intimately associated with cancer cell migration and invasion. Frequently however, evidence is circumstantial, and a reliable assessment of the therapeutic significance of a gene product is offset by lack of inhibitors that target biologic properties of a protein, as most conventional drugs do, instead of the corresponding gene. Proteomic studies have demonstrated overexpression of CapG, a constituent of the actin cytoskeleton, in breast cancer. Indirect evidence suggests that CapG is involved in tumor cell dissemination and metastasis. In this study, we used llama-derived CapG single-domain antibodies or nanobodies in a breast cancer metastasis model to address whether inhibition of CapG activity holds therapeutic merit. We raised single-domain antibodies (nanobodies) against human CapG and used these as intrabodies (immunomodulation) after lentiviral transduction of breast cancer cells. Functional characterization of nanobodies was performed to identify which biochemical properties of CapG are perturbed. Orthotopic and tail vein in vivo models of metastasis in nude mice were used to assess cancer cell spreading. With G-actin and F-actin binding assays, we identified a CapG nanobody that binds with nanomolar affinity to the first CapG domain. Consequently, CapG interaction with actin monomers or actin filaments is blocked. Intracellular delocalization experiments demonstrated that the nanobody interacts with CapG in the cytoplasmic environment. Expression of the nanobody in breast cancer cells restrained cell migration and Matrigel invasion. Notably, the nanobody prevented formation of lung metastatic lesions in orthotopic xenograft and tail-vein models of metastasis in immunodeficient mice. We showed that CapG nanobodies can be delivered into cancer cells by using bacteria harboring a type III protein secretion system (T3SS). CapG inhibition strongly reduces breast cancer metastasis. A nanobody-based approach offers

  19. Early evolution of the LIM homeobox gene family

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Mansi; Larroux, Claire; Lu, Daniel R; Mohanty, Kareshma; Chapman, Jarrod; Degnan, Bernard M; Rokhsar, Daniel S

    2010-01-01

    LIM homeobox (Lhx) transcription factors are unique to the animal lineage and have patterning roles during embryonic development in flies, nematodes and vertebrates, with a conserved role in specifying neuronal identity. Though genes of this family have been reported in a sponge and a cnidarian, the expression patterns and functions of the Lhx family during development in non-bilaterian phyla are not known. We identified Lhx genes in two cnidarians and a placozoan and report the expression of Lhx genes during embryonic development in Nematostella and the demosponge Amphimedon. Members of the six major LIM homeobox subfamilies are represented in the genomes of the starlet sea anemone, Nematostella vectensis, and the placozoan Trichoplax adhaerens. The hydrozoan cnidarian, Hydra magnipapillata, has retained four of the six Lhx subfamilies, but apparently lost two others. Only three subfamilies are represented in the haplosclerid demosponge Amphimedon queenslandica. A tandem cluster of three Lhx genes of different subfamilies and a gene containing two LIM domains in the genome of T. adhaerens (an animal without any neurons) indicates that Lhx subfamilies were generated by tandem duplication. This tandem cluster in Trichoplax is likely a remnant of the original chromosomal context in which Lhx subfamilies first appeared. Three of the six Trichoplax Lhx genes are expressed in animals in laboratory culture, as are all Lhx genes in Hydra. Expression patterns of Nematostella Lhx genes correlate with neural territories in larval and juvenile polyp stages. In the aneural demosponge, A. queenslandica, the three Lhx genes are expressed widely during development, including in cells that are associated with the larval photosensory ring. The Lhx family expanded and diversified early in animal evolution, with all six subfamilies already diverged prior to the cnidarian-placozoan-bilaterian last common ancestor. In Nematostella, Lhx gene expression is correlated with neural

  20. Early evolution of the LIM homeobox gene family

    Directory of Open Access Journals (Sweden)

    Degnan Bernard M

    2010-01-01

    Full Text Available Abstract Background LIM homeobox (Lhx transcription factors are unique to the animal lineage and have patterning roles during embryonic development in flies, nematodes and vertebrates, with a conserved role in specifying neuronal identity. Though genes of this family have been reported in a sponge and a cnidarian, the expression patterns and functions of the Lhx family during development in non-bilaterian phyla are not known. Results We identified Lhx genes in two cnidarians and a placozoan and report the expression of Lhx genes during embryonic development in Nematostella and the demosponge Amphimedon. Members of the six major LIM homeobox subfamilies are represented in the genomes of the starlet sea anemone, Nematostella vectensis, and the placozoan Trichoplax adhaerens. The hydrozoan cnidarian, Hydra magnipapillata, has retained four of the six Lhx subfamilies, but apparently lost two others. Only three subfamilies are represented in the haplosclerid demosponge Amphimedon queenslandica. A tandem cluster of three Lhx genes of different subfamilies and a gene containing two LIM domains in the genome of T. adhaerens (an animal without any neurons indicates that Lhx subfamilies were generated by tandem duplication. This tandem cluster in Trichoplax is likely a remnant of the original chromosomal context in which Lhx subfamilies first appeared. Three of the six Trichoplax Lhx genes are expressed in animals in laboratory culture, as are all Lhx genes in Hydra. Expression patterns of Nematostella Lhx genes correlate with neural territories in larval and juvenile polyp stages. In the aneural demosponge, A. queenslandica, the three Lhx genes are expressed widely during development, including in cells that are associated with the larval photosensory ring. Conclusions The Lhx family expanded and diversified early in animal evolution, with all six subfamilies already diverged prior to the cnidarian-placozoan-bilaterian last common ancestor. In

  1. TreeFam: a curated database of phylogenetic trees of animal gene families

    DEFF Research Database (Denmark)

    Li, Heng; Coghlan, Avril; Ruan, Jue

    2006-01-01

    TreeFam is a database of phylogenetic trees of gene families found in animals. It aims to develop a curated resource that presents the accurate evolutionary history of all animal gene families, as well as reliable ortholog and paralog assignments. Curated families are being added progressively......, based on seed alignments and trees in a similar fashion to Pfam. Release 1.1 of TreeFam contains curated trees for 690 families and automatically generated trees for another 11 646 families. These represent over 128 000 genes from nine fully sequenced animal genomes and over 45 000 other animal proteins...

  2. Validation of reference genes for quantifying changes in gene expression in virus-infected tobacco.

    Science.gov (United States)

    Baek, Eseul; Yoon, Ju-Yeon; Palukaitis, Peter

    2017-10-01

    To facilitate quantification of gene expression changes in virus-infected tobacco plants, eight housekeeping genes were evaluated for their stability of expression during infection by one of three systemically-infecting viruses (cucumber mosaic virus, potato virus X, potato virus Y) or a hypersensitive-response-inducing virus (tobacco mosaic virus; TMV) limited to the inoculated leaf. Five reference-gene validation programs were used to establish the order of the most stable genes for the systemically-infecting viruses as ribosomal protein L25 > β-Tubulin > Actin, and the least stable genes Ubiquitin-conjugating enzyme (UCE) genes were EF1α > Cysteine protease > Actin, and the least stable genes were GAPDH genes, three defense responsive genes were examined to compare their relative changes in gene expression caused by each virus. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Enamelin/ameloblastin gene polymorphisms in autosomal amelogenesis imperfecta among Syrian families.

    Science.gov (United States)

    Dashash, Mayssoon; Bazrafshani, Mohamed Riza; Poulton, Kay; Jaber, Saaed; Naeem, Emad; Blinkhorn, Anthony Stevenson

    2011-02-01

      This study was undertaken to investigate whether a single G deletion within a series of seven G residues (codon 196) at the exon 9-intron 9 boundary of the enamelin gene ENAM and a tri-nucleotide deletion at codon 180 in exon 7 (GGA vs deletion) of ameloblastin gene AMBN could have a role in autosomal amelogenesis imperfecta among affected Syrian families.   A new technique - size-dependent, deletion screening - was developed to detect nucleotide deletion in ENAM and AMBN genes. Twelve Syrian families with autosomal-dominant or -recessive amelogenesis imperfecta were included.   A homozygous/heterozygous mutation in the ENAM gene (152/152, 152/153) was identified in affected members of three families with autosomal-dominant amelogenesis imperfecta and one family with autosomal-recessive amelogenesis imperfecta. A heterozygous mutation (222/225) in the AMBN gene was identified. However, no disease causing mutations was found. The present findings provide useful information for the implication of ENAM gene polymorphism in autosomal-dominant/-recessive amelogenesis imperfecta.   Further investigations are required to identify other genes responsible for the various clinical phenotypes. © 2010 Blackwell Publishing Asia Pty Ltd.

  4. Bulkiness or aromatic nature of tyrosine-143 of actin is important for the weak binding between F-actin and myosin-ADP-phosphate

    Energy Technology Data Exchange (ETDEWEB)

    Gomibuchi, Yuki [Graduate School of Science and Engineering, Teikyo University, Toyosatodai 1-1, Utsunomiya 320-8551 (Japan); Uyeda, Taro Q.P. [Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, AIST Tsukuba Central 4, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8562 (Japan); Wakabayashi, Takeyuki, E-mail: tw007@nasu.bio.teikyo-u.ac.jp [Graduate School of Science and Engineering, Teikyo University, Toyosatodai 1-1, Utsunomiya 320-8551 (Japan); Department of Judo Therapy, Faculty of Medical Technology, Teikyo University, Toyosatodai 1-1, Utsunomiya 320-8551 (Japan)

    2013-11-29

    Highlights: •The effect of mutation of Tyr143 that becomes more exposed on assembly was examined. •Mutation of tyrosine-143 of Dictyostelium actin changed actin polymerizability. •The bulkiness or aromatic nature of Tyr143 is important for the weak binding. •The weak interaction between myosin and actin strengthened by Tyr143Trp mutation. -- Abstract: Actin filaments (F-actin) interact with myosin and activate its ATPase to support force generation. By comparing crystal structures of G-actin and the quasi-atomic model of F-actin based on high-resolution cryo-electron microscopy, the tyrosine-143 was found to be exposed more than 60 Å{sup 2} to the solvent in F-actin. Because tyrosine-143 flanks the hydrophobic cleft near the hydrophobic helix that binds to myosin, the mutant actins, of which the tyrosine-143 was replaced with tryptophan, phenylalanine, or isoleucine, were generated using the Dictyostelium expression system. It polymerized significantly poorly when induced by NaCl, but almost normally by KCl. In the presence of phalloidin and KCl, the extents of the polymerization of all the mutant actins were comparable to that of the wild-type actin so that the actin-activated myosin ATPase activity could be reliably compared. The affinity of skeletal heavy meromyosin to F-actin and the maximum ATPase activity (V{sub max}) were estimated by a double reciprocal plot. The Tyr143Trp-actin showed the higher affinity (smaller K{sub app}) than that of the wild-type actin, with the V{sub max} being almost unchanged. The K{sub app} and V{sub max} of the Tyr143Phe-actin were similar to those of the wild-type actin. However, the activation by Tyr143Ile-actin was much smaller than the wild-type actin and the accurate determination of K{sub app} was difficult. Comparison of the myosin ATPase activated by the various mutant actins at the same concentration of F-actin showed that the extent of activation correlates well with the solvent-accessible surface areas (ASA

  5. Elucidating Key Motifs Required for Arp2/3-Dependent and Independent Actin Nucleation by Las17/WASP

    Science.gov (United States)

    Urbanek, Agnieszka N.; Smaczynska-de Rooij, Iwona I.

    2016-01-01

    Actin nucleation is the key rate limiting step in the process of actin polymerization, and tight regulation of this process is critical to ensure actin filaments form only at specific times and at defined regions of the cell. Arp2/3 is a well-characterised protein complex that can promote nucleation of new filaments, though its activity requires additional nucleation promotion factors (NPFs). The best recognized of these factors are the WASP family of proteins that contain binding motifs for both monomeric actin and for Arp2/3. Previously we demonstrated that the yeast WASP homologue, Las17, in addition to activating Arp2/3 can also nucleate actin filaments de novo, independently of Arp2/3. This activity is dependent on its polyproline rich region. Through biochemical and in vivo analysis we have now identified key motifs within the polyproline region that are required for nucleation and elongation of actin filaments, and have addressed the role of the WH2 domain in the context of actin nucleation without Arp2/3. We have also demonstrated that full length Las17 is able to bind liposomes giving rise to the possibility of direct linkage of nascent actin filaments to specific membrane sites to which Las17 has been recruited. Overall, we propose that Las17 functions as the key initiator of de novo actin filament formation at endocytic sites by nucleating, elongating and tethering nascent filaments which then serve as a platform for Arp2/3 recruitment and function. PMID:27637067

  6. Genomic instability in human actinic keratosis and squamous cell carcinoma

    Science.gov (United States)

    Cabral, Luciana Sanches; Neto, Cyro Festa; Sanches, José A; Ruiz, Itamar R G

    2011-01-01

    OBJECTIVE: To compare the repetitive DNA patterns of human actinic keratoses and squamous cell carcinomas to determine the genetic alterations that are associated with malignant transformation. INTRODUCTION: Cancer cells are prone to genomic instability, which is often due to DNA polymerase slippage during the replication of repetitive DNA and to mutations in the DNA repair genes. The progression of benign actinic keratoses to malignant squamous cell carcinomas has been proposed by several authors. MATERIAL AND METHODS: Eight actinic keratoses and 24 squamous cell carcinomas (SCC), which were pair-matched to adjacent skin tissues and/or leucocytes, were studied. The presence of microsatellite instability (MSI) and the loss of heterozygosity (LOH) in chromosomes 6 and 9 were investigated using nine PCR primer pairs. Random Amplified Polymorphic DNA patterns were also evaluated using eight primers. RESULTS: MSI was detected in two (D6S251, D9S50) of the eight actinic keratosis patients. Among the 8 patients who had squamous cell carcinoma-I and provided informative results, a single patient exhibited two LOH (D6S251, D9S287) and two instances of MSI (D9S180, D9S280). Two LOH and one example of MSI (D6S251) were detected in three out of the 10 patients with squamous cell carcinoma-II. Among the four patients with squamous cell carcinoma-III, one patient displayed three MSIs (D6S251, D6S252, and D9S180) and another patient exhibited an MSI (D9S280). The altered random amplified polymorphic DNA ranged from 70% actinic keratoses, 76% squamous cell carcinoma-I, and 90% squamous cell carcinoma-II, to 100% squamous cell carcinoma-III. DISCUSSION: The increased levels of alterations in the microsatellites, particularly in D6S251, and the random amplified polymorphic DNA fingerprints were statistically significant in squamous cell carcinomas, compared with actinic keratoses. CONCLUSION: The overall alterations that were observed in the repetitive DNA of actinic keratoses and

  7. Triptolide disrupts the actin-based Sertoli-germ cells adherens junctions by inhibiting Rho GTPases expression

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiang; Zhao, Fang [Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009 (China); Lv, Zhong-ming; Shi, Wei-qin [Jiangsu Provincial Center for Disease Control and Prevention, Nanjing (China); Zhang, Lu-yong, E-mail: lyzhang@cpu.edu.cn [Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009 (China); Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing (China); State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009 (China); Yan, Ming, E-mail: brookming@cpu.edu.cn [Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009 (China)

    2016-11-01

    Triptolide (TP), derived from the medicinal plant Triterygium wilfordii Hook. f. (TWHF), is a diterpene triepoxide with variety biological and pharmacological activities. However, TP has been restricted in clinical application due to its narrow therapeutic window especially in reproductive system. During spermatogenesis, Sertoli cell cytoskeleton plays an essential role in facilitating germ cell movement and cell-cell actin-based adherens junctions (AJ). At Sertoli cell-spermatid interface, the anchoring device is a kind of AJ, known as ectoplasmic specializations (ES). In this study, we demonstrate that β-actin, an important component of cytoskeleton, has been significantly down-regulated after TP treatment. TP can inhibit the expression of Rho GTPase such as, RhoA, RhoB, Cdc42 and Rac1. Downstream of Rho GTPase, Rho-associated protein kinase (ROCKs) gene expressions were also suppressed by TP. F-actin immunofluorescence proved that TP disrupts Sertoli cells cytoskeleton network. As a result of β-actin down-regulation, TP treatment increased expression of testin, which indicating ES has been disassembled. In summary, this report illustrates that TP induces cytoskeleton dysfunction and disrupts cell-cell adherens junctions via inhibition of Rho GTPases. - Highlights: • Triptolide induced the disruption of Sertoli-germ cell adherens junction. • Rho GTPases expression and actin dynamics have been suppressed by triptolide. • Actin-based adherens junction is a potential antifertility target of triptolide. • Rho-Rock is involved in the regulation of actin dynamics.

  8. Triptolide disrupts the actin-based Sertoli-germ cells adherens junctions by inhibiting Rho GTPases expression

    International Nuclear Information System (INIS)

    Wang, Xiang; Zhao, Fang; Lv, Zhong-ming; Shi, Wei-qin; Zhang, Lu-yong; Yan, Ming

    2016-01-01

    Triptolide (TP), derived from the medicinal plant Triterygium wilfordii Hook. f. (TWHF), is a diterpene triepoxide with variety biological and pharmacological activities. However, TP has been restricted in clinical application due to its narrow therapeutic window especially in reproductive system. During spermatogenesis, Sertoli cell cytoskeleton plays an essential role in facilitating germ cell movement and cell-cell actin-based adherens junctions (AJ). At Sertoli cell-spermatid interface, the anchoring device is a kind of AJ, known as ectoplasmic specializations (ES). In this study, we demonstrate that β-actin, an important component of cytoskeleton, has been significantly down-regulated after TP treatment. TP can inhibit the expression of Rho GTPase such as, RhoA, RhoB, Cdc42 and Rac1. Downstream of Rho GTPase, Rho-associated protein kinase (ROCKs) gene expressions were also suppressed by TP. F-actin immunofluorescence proved that TP disrupts Sertoli cells cytoskeleton network. As a result of β-actin down-regulation, TP treatment increased expression of testin, which indicating ES has been disassembled. In summary, this report illustrates that TP induces cytoskeleton dysfunction and disrupts cell-cell adherens junctions via inhibition of Rho GTPases. - Highlights: • Triptolide induced the disruption of Sertoli-germ cell adherens junction. • Rho GTPases expression and actin dynamics have been suppressed by triptolide. • Actin-based adherens junction is a potential antifertility target of triptolide. • Rho-Rock is involved in the regulation of actin dynamics.

  9. Actin expression in some Platyhelminthe species.

    Science.gov (United States)

    Fagotti, A; Panara, F; Di Rosa, I; Simoncelli, F; Gabbiani, G; Pascolini, R

    1994-10-01

    Actin expression in some Platyhelminthe species was demonstrated by western-blotting and immunocytochemical analysis using two distinct anti-actin antibodies: the anti-total actin that reacts against all actin isoforms of higher vertebrates and the anti-alpha SM-1 that recognizes the alpha-smooth muscle (alpha SM) isotype of endothermic vertebrates (Skalli et al., 1986). Western-blotting experiments showed that all species tested, including some free-living Platyhelminthes (Tricladida and Rhabdocoela) and the parasitic Fasciola hepatica, were stained by anti-total actin antibody while only Dugesidae and Dendrocoelidae showed a positive immunoreactivity against anti-alpha SM-1. These results were confirmed by cytochemical immunolocalization using both avidin biotin conjugated peroxidase reaction on paraffin sections, and immunogold staining on Lowicryl 4KM embedded specimens. Our findings may contribute to the understanding of Platyhelminthes phylogeny.

  10. Actin depolymerization enhances adipogenic differentiation in human stromal stem cells

    DEFF Research Database (Denmark)

    Chen, Li; Hu, Huimin; Qiu, Weimin

    2018-01-01

    Human stromal stem cells (hMSCs) differentiate into adipocytes that play a role in skeletal tissue homeostasis and whole body energy metabolism. During adipocyte differentiation, hMSCs exhibit significant changes in cell morphology suggesting changes in cytoskeletal organization. Here, we examined...... differentiation as evidenced by decreased number of mature adipocytes and decreased adipocyte specific gene expression (ADIPOQ, LPL, PPARG, FABP4). In contrast, disruption of actin cytoskeleton by Cytochalasin D enhanced adipocyte differentiation. Follow up studies revealed that the effects of CFL1 on adipocyte...... differentiation depended on the activity of LIM domain kinase 1 (LIMK1) which is the major upstream kinase of CFL1. Inhibiting LIMK by its specific chemical inhibitor LIMKi inhibited the phosphorylation of CFL1 and actin polymerization, and enhanced the adipocyte differentiation. Moreover, treating h...

  11. Autism-like Deficits in Shank3-Deficient Mice Are Rescued by Targeting Actin Regulators

    Directory of Open Access Journals (Sweden)

    Lara J. Duffney

    2015-06-01

    Full Text Available Haploinsufficiency of the Shank3 gene, which encodes a scaffolding protein at glutamatergic synapses, is a highly prevalent and penetrant risk factor for autism. Using combined behavioral, electrophysiological, biochemical, imaging, and molecular approaches, we find that Shank3-deficient mice exhibit autism-like social deficits and repetitive behaviors, as well as the significantly diminished NMDA receptor (NMDAR synaptic function and synaptic distribution in prefrontal cortex. Concomitantly, Shank3-deficient mice have a marked loss of cortical actin filaments, which is associated with the reduced Rac1/PAK activity and increased activity of cofilin, the major actin depolymerizing factor. The social deficits and NMDAR hypofunction are rescued by inhibiting cofilin or activating Rac1 in Shank3-deficient mice and are induced by inhibiting PAK or Rac1 in wild-type mice. These results indicate that the aberrant regulation of synaptic actin filaments and loss of synaptic NMDARs contribute to the manifestation of autism-like phenotypes. Thus, targeting actin regulators provides a strategy for autism treatment.

  12. Loss of γ-cytoplasmic actin triggers myofibroblast transition of human epithelial cells.

    Science.gov (United States)

    Lechuga, Susana; Baranwal, Somesh; Li, Chao; Naydenov, Nayden G; Kuemmerle, John F; Dugina, Vera; Chaponnier, Christine; Ivanov, Andrei I

    2014-10-15

    Transdifferentiation of epithelial cells into mesenchymal cells and myofibroblasts plays an important role in tumor progression and tissue fibrosis. Such epithelial plasticity is accompanied by dramatic reorganizations of the actin cytoskeleton, although mechanisms underlying cytoskeletal effects on epithelial transdifferentiation remain poorly understood. In the present study, we observed that selective siRNA-mediated knockdown of γ-cytoplasmic actin (γ-CYA), but not β-cytoplasmic actin, induced epithelial-to-myofibroblast transition (EMyT) of different epithelial cells. The EMyT manifested by increased expression of α-smooth muscle actin and other contractile proteins, along with inhibition of genes responsible for cell proliferation. Induction of EMyT in γ-CYA-depleted cells depended on activation of serum response factor and its cofactors, myocardial-related transcriptional factors A and B. Loss of γ-CYA stimulated formin-mediated actin polymerization and activation of Rho GTPase, which appear to be essential for EMyT induction. Our findings demonstrate a previously unanticipated, unique role of γ-CYA in regulating epithelial phenotype and suppression of EMyT that may be essential for cell differentiation and tissue fibrosis. © 2014 Lechuga, Baranwal, et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  13. Cdc42-dependent actin dynamics controls maturation and secretory activity of dendritic cells

    DEFF Research Database (Denmark)

    Schulz, Anna M; Stutte, Susanne; Hogl, Sebastian

    2015-01-01

    Cell division cycle 42 (Cdc42) is a member of the Rho guanosine triphosphatase family and has pivotal functions in actin organization, cell migration, and proliferation. To further study the molecular mechanisms of dendritic cell (DC) regulation by Cdc42, we used Cdc42-deficient DCs. Cdc42 defici...

  14. Clostridium botulinum C2 toxin--new insights into the cellular up-take of the actin-ADP-ribosylating toxin.

    Science.gov (United States)

    Aktories, Klaus; Barth, Holger

    2004-04-01

    Clostridium botulinum C2 toxin is a member of the family of binary actin-ADP-ribosylating toxins. It consists of the enzyme component C2I, and the separated binding/translocation component C2II. Proteolytically activated C2II forms heptamers and binds to a carbohydrate cell surface receptor. After attachment of C2I, the toxin complex is endocytosed to reach early endosomes. At low pH of endosomes, C2II-heptamers insert into the membrane, form pores and deliver C2I into the cytosol. Here, C2I ADP-ribosylates actin at Arg177 to block actin polymerization and to induce depolymerization of actin filaments. The mini-review describes main properties of C2 toxin and discusses new findings on the involvement of chaperones in the up-take process of the toxin.

  15. Actin dynamics and the elasticity of cytoskeletal networks

    Directory of Open Access Journals (Sweden)

    2009-09-01

    Full Text Available The structural integrity of a cell depends on its cytoskeleton, which includes an actin network. This network is transient and depends upon the continual polymerization and depolymerization of actin. The degradation of an actin network, and a corresponding reduction in cell stiffness, can indicate the presence of disease. Numerical simulations will be invaluable for understanding the physics of these systems and the correlation between actin dynamics and elasticity. Here we develop a model that is capable of generating actin network structures. In particular, we develop a model of actin dynamics which considers the polymerization, depolymerization, nucleation, severing, and capping of actin filaments. The structures obtained are then fed directly into a mechanical model. This allows us to qualitatively assess the effects of changing various parameters associated with actin dynamics on the elasticity of the material.

  16. The nature of the globular- to fibrous-actin transition.

    Science.gov (United States)

    Oda, Toshiro; Iwasa, Mitsusada; Aihara, Tomoki; Maéda, Yuichiro; Narita, Akihiro

    2009-01-22

    Actin plays crucial parts in cell motility through a dynamic process driven by polymerization and depolymerization, that is, the globular (G) to fibrous (F) actin transition. Although our knowledge about the actin-based cellular functions and the molecules that regulate the G- to F-actin transition is growing, the structural aspects of the transition remain enigmatic. We created a model of F-actin using X-ray fibre diffraction intensities obtained from well oriented sols of rabbit skeletal muscle F-actin to 3.3 A in the radial direction and 5.6 A along the equator. Here we show that the G- to F-actin conformational transition is a simple relative rotation of the two major domains by about 20 degrees. As a result of the domain rotation, the actin molecule in the filament is flat. The flat form is essential for the formation of stable, helical F-actin. Our F-actin structure model provides the basis for understanding actin polymerization as well as its molecular interactions with actin-binding proteins.

  17. Recruitment Kinetics of Tropomyosin Tpm3.1 to Actin Filament Bundles in the Cytoskeleton Is Independent of Actin Filament Kinetics.

    Science.gov (United States)

    Appaduray, Mark A; Masedunskas, Andrius; Bryce, Nicole S; Lucas, Christine A; Warren, Sean C; Timpson, Paul; Stear, Jeffrey H; Gunning, Peter W; Hardeman, Edna C

    2016-01-01

    The actin cytoskeleton is a dynamic network of filaments that is involved in virtually every cellular process. Most actin filaments in metazoa exist as a co-polymer of actin and tropomyosin (Tpm) and the function of an actin filament is primarily defined by the specific Tpm isoform associated with it. However, there is little information on the interdependence of these co-polymers during filament assembly and disassembly. We addressed this by investigating the recovery kinetics of fluorescently tagged isoform Tpm3.1 into actin filament bundles using FRAP analysis in cell culture and in vivo in rats using intracellular intravital microscopy, in the presence or absence of the actin-targeting drug jasplakinolide. The mobile fraction of Tpm3.1 is between 50% and 70% depending on whether the tag is at the C- or N-terminus and whether the analysis is in vivo or in cultured cells. We find that the continuous dynamic exchange of Tpm3.1 is not significantly impacted by jasplakinolide, unlike tagged actin. We conclude that tagged Tpm3.1 may be able to undergo exchange in actin filament bundles largely independent of the assembly and turnover of actin.

  18. Characterization of the avian Trojan gene family reveals contrasting evolutionary constraints.

    Science.gov (United States)

    Petrov, Petar; Syrjänen, Riikka; Smith, Jacqueline; Gutowska, Maria Weronika; Uchida, Tatsuya; Vainio, Olli; Burt, David W

    2015-01-01

    "Trojan" is a leukocyte-specific, cell surface protein originally identified in the chicken. Its molecular function has been hypothesized to be related to anti-apoptosis and the proliferation of immune cells. The Trojan gene has been localized onto the Z sex chromosome. The adjacent two genes also show significant homology to Trojan, suggesting the existence of a novel gene/protein family. Here, we characterize this Trojan family, identify homologues in other species and predict evolutionary constraints on these genes. The two Trojan-related proteins in chicken were predicted as a receptor-type tyrosine phosphatase and a transmembrane protein, bearing a cytoplasmic immuno-receptor tyrosine-based activation motif. We identified the Trojan gene family in ten other bird species and found related genes in three reptiles and a fish species. The phylogenetic analysis of the homologues revealed a gradual diversification among the family members. Evolutionary analyzes of the avian genes predicted that the extracellular regions of the proteins have been subjected to positive selection. Such selection was possibly a response to evolving interacting partners or to pathogen challenges. We also observed an almost complete lack of intracellular positively selected sites, suggesting a conserved signaling mechanism of the molecules. Therefore, the contrasting patterns of selection likely correlate with the interaction and signaling potential of the molecules.

  19. Wnt Signalling Promotes Actin Dynamics during Axon Remodelling through the Actin-Binding Protein Eps8.

    Directory of Open Access Journals (Sweden)

    Eleanna Stamatakou

    Full Text Available Upon arrival at their synaptic targets, axons slow down their growth and extensively remodel before the assembly of presynaptic boutons. Wnt proteins are target-derived secreted factors that promote axonal remodelling and synaptic assembly. In the developing spinal cord, Wnts secreted by motor neurons promote axonal remodelling of NT-3 responsive dorsal root ganglia neurons. Axon remodelling induced by Wnts is characterised by growth cone pausing and enlargement, processes that depend on the re-organisation of microtubules. However, the contribution of the actin cytoskeleton has remained unexplored. Here, we demonstrate that Wnt3a regulates the actin cytoskeleton by rapidly inducing F-actin accumulation in growth cones from rodent DRG neurons through the scaffold protein Dishevelled-1 (Dvl1 and the serine-threonine kinase Gsk3β. Importantly, these changes in actin cytoskeleton occurs before enlargement of the growth cones is evident. Time-lapse imaging shows that Wnt3a increases lamellar protrusion and filopodia velocity. In addition, pharmacological inhibition of actin assembly demonstrates that Wnt3a increases actin dynamics. Through a yeast-two hybrid screen, we identified the actin-binding protein Eps8 as a direct interactor of Dvl1, a scaffold protein crucial for the Wnt signalling pathway. Gain of function of Eps8 mimics Wnt-mediated axon remodelling, whereas Eps8 silencing blocks the axon remodelling activity of Wnt3a. Importantly, blockade of the Dvl1-Eps8 interaction completely abolishes Wnt3a-mediated axonal remodelling. These findings demonstrate a novel role for Wnt-Dvl1 signalling through Eps8 in the regulation of axonal remodeling.

  20. Regulation of retinoschisin secretion in Weri-Rb1 cells by the F-actin and microtubule cytoskeleton.

    Directory of Open Access Journals (Sweden)

    Eiko Kitamura

    Full Text Available Retinoschisin is encoded by the gene responsible for X-linked retinoschisis (XLRS, an early onset macular degeneration that results in a splitting of the inner layers of the retina and severe loss in vision. Retinoschisin is predominantly expressed and secreted from photoreceptor cells as a homo-oligomer protein; it then associates with the surface of retinal cells and maintains the retina cellular architecture. Many missense mutations in the XLRS1 gene are known to cause intracellular retention of retinoschisin, indicating that the secretion process of the protein is a critical step for its normal function in the retina. However, the molecular mechanisms underlying retinoschisin's secretion remain to be fully elucidated. In this study, we investigated the role of the F-actin cytoskeleton in the secretion of retinoschisin by treating Weri-Rb1 cells, which are known to secrete retinoschisin, with cytochalasin D, jasplakinolide, Y-27632, and dibutyryl cGMP. Our results show that cytochalasin D and jasplakinolide inhibit retinoschisin secretion, whereas Y-27632 and dibutyryl cGMP enhance secretion causing F-actin alterations. We also demonstrate that high concentrations of taxol, which hyperpolymerizes microtubules, inhibit retinoschisin secretion. Our data suggest that retinoschisin secretion is regulated by the F-actin cytoskeleton, that cGMP or inhibition of ROCK alters F-actin structure enhancing the secretion, and that the microtubule cytoskeleton is also involved in this process.

  1. Regulation of Retinoschisin Secretion in Weri-Rb1 Cells by the F-Actin and Microtubule Cytoskeleton

    Science.gov (United States)

    Kitamura, Eiko; Gribanova, Yekaterina E.; Farber, Debora B.

    2011-01-01

    Retinoschisin is encoded by the gene responsible for X-linked retinoschisis (XLRS), an early onset macular degeneration that results in a splitting of the inner layers of the retina and severe loss in vision. Retinoschisin is predominantly expressed and secreted from photoreceptor cells as a homo-oligomer protein; it then associates with the surface of retinal cells and maintains the retina cellular architecture. Many missense mutations in the XLRS1 gene are known to cause intracellular retention of retinoschisin, indicating that the secretion process of the protein is a critical step for its normal function in the retina. However, the molecular mechanisms underlying retinoschisin's secretion remain to be fully elucidated. In this study, we investigated the role of the F-actin cytoskeleton in the secretion of retinoschisin by treating Weri-Rb1 cells, which are known to secrete retinoschisin, with cytochalasin D, jasplakinolide, Y-27632, and dibutyryl cGMP. Our results show that cytochalasin D and jasplakinolide inhibit retinoschisin secretion, whereas Y-27632 and dibutyryl cGMP enhance secretion causing F-actin alterations. We also demonstrate that high concentrations of taxol, which hyperpolymerizes microtubules, inhibit retinoschisin secretion. Our data suggest that retinoschisin secretion is regulated by the F-actin cytoskeleton, that cGMP or inhibition of ROCK alters F-actin structure enhancing the secretion, and that the microtubule cytoskeleton is also involved in this process. PMID:21738583

  2. Syndapin/SDPN-1 is required for endocytic recycling and endosomal actin association in the Caenorhabditis elegans intestine

    Science.gov (United States)

    Gleason, Adenrele M.; Nguyen, Ken C. Q.; Hall, David H.; Grant, Barth D.

    2016-01-01

    Syndapin/pascin-family F-BAR domain proteins bind directly to membrane lipids and are associated with actin dynamics at the plasma membrane. Previous reports also implicated mammalian syndapin 2 in endosome function during receptor recycling, but precise analysis of a putative recycling function for syndapin in mammalian systems is difficult because of its effects on the earlier step of endocytic uptake and potential redundancy among the three separate genes that encode mammalian syndapin isoforms. Here we analyze the endocytic transport function of the only Caenorhabditis elegans syndapin, SDPN-1. We find that SDPN-1 is a resident protein of the early and basolateral recycling endosomes in the C. elegans intestinal epithelium, and sdpn-1 deletion mutants display phenotypes indicating a block in basolateral recycling transport. sdpn-1 mutants accumulate abnormal endosomes positive for early endosome and recycling endosome markers that are normally separate, and such endosomes accumulate high levels of basolateral recycling cargo. Furthermore, we observed strong colocalization of endosomal SDPN-1 with the F-actin biosensor Lifeact and found that loss of SDPN-1 greatly reduced Lifeact accumulation on early endosomes. Taken together, our results provide strong evidence for an in vivo function of syndapin in endocytic recycling and suggest that syndapin promotes transport via endosomal fission. PMID:27630264

  3. Fibroblast-mediated contraction in actinically exposed and actinically protected aging skin

    International Nuclear Information System (INIS)

    Marks, M.W.; Morykwas, M.J.; Wheatley, M.J.

    1990-01-01

    The changes in skin morphology over time are a consequence of both chronologic aging and the accumulation of environmental exposure. Through observation, we know that actinic radiation intensifies the apparent aging of skin. We have investigated the effects of aging and actinic radiation on the ability of fibroblasts to contract collagen-fibroblast lattices. Preauricular and postauricular skin samples were obtained from eight patients aged 49 to 74 undergoing rhytidectomy. The samples were kept separate, and the fibroblasts were grown in culture. Lattices constructed with preauricular fibroblasts consistently contracted more than lattices containing postauricular fibroblasts. The difference in amount of contraction in 7 days between sites was greatest for the younger patients and decreased linearly as donor age increased (r = -0.96). This difference may be due to preauricular fibroblasts losing their ability to contract a lattice as aging skin is exposed to more actinic radiation

  4. Managing actinic keratosis in primary care.

    Science.gov (United States)

    Salmon, Nicola; Tidman, Michael J

    2016-10-01

    Actinic, or solar, keratosis is caused by chronic ultraviolet-induced damage to the epidermis. In the UK, 15-23% of individuals have actinic keratosis lesions. Risk factors include: advanced age; male gender; cumulative sun exposure or phototherapy; Fitzpatrick skin phototypes I-II; long-term immuno-suppression and genetic syndromes e.g. xeroderma pigmentosum and albinism. Actinic keratoses are regarded by some authorities as premalignant lesions that may transform into invasive squamous cell carcinoma (SCC) and by others as in situ SCC that may progress to an invasive stage. The risk of malignant change appears low; up to 0.5% per lesion per year. Up to 20-30% of lesions may spontaneously regress but in the absence of any reliable prognostic clinical indicators regarding malignant potential active treatment is considered appropriate. Actinic keratosis lesions may present as discrete hyperkeratotic papules, cutaneous horns, or more subtle flat lesions on sun-exposed areas of skin. The single most helpful diagnostic sign is an irregularly roughened surface texture: a sandpaper-like feel almost always indicates actinic damage. Dermatoscopy can be helpful in excluding signs of basal cell carcinoma when actinic keratosis is non-keratotic. It is always important to consider the possibility of SCC. The principal indication for referral to secondary care is the possibility of cutaneous malignancy. However, widespread and severe actinic damage in patients who are immunosuppressed is also a reason for referral.

  5. Prevalence of variations in melanoma susceptibility genes among Slovenian melanoma families

    Directory of Open Access Journals (Sweden)

    Besic Nikola

    2008-09-01

    Full Text Available Abstract Background Two high-risk genes have been implicated in the development of CM (cutaneous melanoma. Germline mutations of the CDKN2A gene are found in CDK4 gene reported to date. Beside those high penetrance genes, certain allelic variants of the MC1R gene modify the risk of developing the disease. The aims of our study were: to determine the prevalence of germline CDKN2A mutations and variants in members of families with familial CM and in patients with multiple primary CM; to search for possible CDK4 mutations, and to determine the frequency of variations in the MC1R gene. Methods From January 2001 until January 2007, 64 individuals were included in the study. The group included 28 patients and 7 healthy relatives belonging to 25 families, 26 patients with multiple primary tumors and 3 children with CM. Additionally 54 healthy individuals were included as a control group. Mutations and variants of the melanoma susceptibility genes were identified by direct sequencing. Results Seven families with CDKN2A mutations were discovered (7/25 or 28.0%. The L94Q mutation found in one family had not been previously reported in other populations. The D84N variant, with possible biological impact, was discovered in the case of patient without family history but with multiple primary CM. Only one mutation carrier was found in the control group. Further analysis revealed that c.540C>T heterozygous carriers were more common in the group of CM patients and their healthy relatives (11/64 vs. 2/54. One p14ARF variant was discovered in the control group and no mutations of the CDK4 gene were found. Most frequently found variants of the MC1R gene were T314T, V60L, V92M, R151C, R160W and R163Q with frequencies slightly higher in the group of patients and their relatives than in the group of controls, but the difference was statistically insignificant. Conclusion The present study has shown high prevalence of p16INK4A mutations in Slovenian population of

  6. Analysis of factor VIII gene inversions in 164 unrelated hemophilia A families

    Energy Technology Data Exchange (ETDEWEB)

    Vnencak-Jones, L.; Phillips, J.A. III; Janco, R.L. [Vanderbilt Univ. School of Medicine, Nashville, TN (United States)] [and others

    1994-09-01

    Hemophilia A is an X-linked recessive disease with variable phenotype and both heterogeneous and wide spread mutations in the factor VIII (F8) gene. As a result, diagnostic carrier or prenatal testing often relies upon laborious DNA linkage analysis. Recently, inversion mutations resulting from an intrachromosomal recombination between DNA sequences in one of two A genes {approximately}500 kb upstream from the F8 gene and a homologous A gene in intron 22 of the F8 gene were identified and found in 45% of severe hemophiliacs. We have analyzed banked DNA collected since 1986 from affected males or obligate carrier females representing 164 unrelated hemophilia A families. The disease was sporadic in 37%, familial in 54% and in 10% of families incomplete information was given. A unique deletion was identified in 1/164, a normal pattern was observed in 110/164 (67%), and 53/164 (32%) families had inversion mutations with 43/53 (81%) involving the distal A gene (R3 pattern) and 10/53 (19%) involving the proximal A gene (R2 pattern). While 19% of all rearrangements were R2, in 35 families with severe disease (< 1% VIII:C activity) all 16 rearrangements seen were R3. In 18 families with the R3 pattern and known activities, 16 (89%) had levels < 1%, with the remaining 2 families having {le} 2.4% activity. Further, 18 referrals specifically noted the production of inhibitors and 8/18 (45%) had the R3 pattern. Our findings demonstrate that the R3 inversion mutation patterns is (1) only seen with VIII:C activity levels of {le} 2.4%, (2) seen in 46% of families with severe hemophilia, (3) seen in 45% of hemophiliacs known to have inhibitors, (4) not correlated with sporadic or familial disease and (5) not in disequilibrium with the Bcl I or Taq I intron 18 or ST14 polymorphisms. Finally, in families positive for an inversion mutation, direct testing offers a highly accurate and less expensive alternative to DNA linkage analysis.

  7. ACTG2 variants impair actin polymerization in sporadic Megacystis Microcolon Intestinal Hypoperistalsis Syndrome

    NARCIS (Netherlands)

    Halim, Danny; Hofstra, Robert M. W.; Signorile, Luca; Verdijk, Rob M.; van der Werf, Christine S.; Sribudiani, Yunia; Brouwer, Rutger W. W.; van IJcken, Wilfred F. J.; Dahl, Niklas; Verheij, Joke B. G. M.; Baumann, Clarisse; Kerner, John; van Bever, Yolande; Galjart, Niels; Wijnen, Rene M. H.; Tibboel, Dick; Burns, Alan J.; Muller, Franoise; Brooks, Alice S.; Alves, Maria M.

    2016-01-01

    Megacystis Microcolon Intestinal Hypoperistalsis Syndrome (MMIHS) is a rare congenital disorder, in which heterozygous missense variants in the Enteric Smooth Muscle actin gamma-2 (ACTG2) gene have been recently identified. To investigate the mechanism by which ACTG2 variants lead to MMIHS, we

  8. The human protein disulfide isomerase gene family

    Directory of Open Access Journals (Sweden)

    Galligan James J

    2012-07-01

    Full Text Available Abstract Enzyme-mediated disulfide bond formation is a highly conserved process affecting over one-third of all eukaryotic proteins. The enzymes primarily responsible for facilitating thiol-disulfide exchange are members of an expanding family of proteins known as protein disulfide isomerases (PDIs. These proteins are part of a larger superfamily of proteins known as the thioredoxin protein family (TRX. As members of the PDI family of proteins, all proteins contain a TRX-like structural domain and are predominantly expressed in the endoplasmic reticulum. Subcellular localization and the presence of a TRX domain, however, comprise the short list of distinguishing features required for gene family classification. To date, the PDI gene family contains 21 members, varying in domain composition, molecular weight, tissue expression, and cellular processing. Given their vital role in protein-folding, loss of PDI activity has been associated with the pathogenesis of numerous disease states, most commonly related to the unfolded protein response (UPR. Over the past decade, UPR has become a very attractive therapeutic target for multiple pathologies including Alzheimer disease, Parkinson disease, alcoholic and non-alcoholic liver disease, and type-2 diabetes. Understanding the mechanisms of protein-folding, specifically thiol-disulfide exchange, may lead to development of a novel class of therapeutics that would help alleviate a wide range of diseases by targeting the UPR.

  9. Apatite-mediated actin dynamics in resorbing osteoclasts.

    Science.gov (United States)

    Saltel, Frédéric; Destaing, Olivier; Bard, Frédéric; Eichert, Diane; Jurdic, Pierre

    2004-12-01

    The actin cytoskeleton is essential for osteoclasts main function, bone resorption. Two different organizations of actin have been described in osteoclasts, the podosomes belt corresponding to numerous F-actin columns arranged at the cell periphery, and the sealing zone defined as a unique large band of actin. To compare the role of these two different actin organizations, we imaged osteoclasts on various substrata: glass, dentin, and apatite. Using primary osteoclasts expressing GFP-actin, we found that podosome belts and sealing zones, both very dynamic actin structures, were present in mature osteoclasts; podosome belts were observed only in spread osteoclasts adhering onto glass, whereas sealing zone were seen in apico-basal polarized osteoclasts adherent on mineralized matrix. Dynamic observations of several resorption cycles of osteoclasts seeded on apatite revealed that 1) podosomes do not fuse together to form the sealing zone; 2) osteoclasts alternate successive stationary polarized resorption phases with a sealing zone and migration, nonresorption phases without any specific actin structure; and 3) apatite itself promotes sealing zone formation though c-src and Rho signaling. Finally, our work suggests that apatite-mediated sealing zone formation is dependent on both c-src and Rho whereas apico-basal polarization requires only Rho.

  10. [At the plant side of formins--organizers of the actin cytoskeleton].

    Science.gov (United States)

    Maruniewicz, Michalina; Kasprowicz, Anna; Wojtaszek, Przemysław

    2009-01-01

    Rearrangements of actin cytoskeleton enable proper functioning of the cells under normal conditions, and also cellular adaptations to changes in the direct surroundings. Formins are actin binding proteins, responsible for actin nucleation and further elongation of microfilaments. The distinguishing feature of formins is the presence of conserved FH2 (formin homology domain 2) domain, as well as other domains typical for distinct formin classes. In animal cells formins are involved in cytokinesis and determination and maintenance of the cell shape and polarity, but also in the formation of filopodia, endocytosis and many other processes. The presence of proteins from the formin family in plant cells, and their involvement in the tip growth and cytokinesis, has been determined only recently. As the functional organization of plant and animal cells is different, one can assume that the range of putative functions of plant formins might also be diverse. One of such proposed functions for formins in plants is the role of linker protein within WMC continuum (cell wall-plasma membrane-cytoskeleton). Unfortunately, for that moment the state of knowledge about plant formins in comparison with animal or fungal ones is much poorer.

  11. A shared promoter region suggests a common ancestor for the human VCX/Y, SPANX, and CSAG gene families and the murine CYPT family

    DEFF Research Database (Denmark)

    Hansen, Martin A; Nielsen, John E; Retelska, Dorota

    2008-01-01

    , sequences corresponding to the shared promoter region of the CYPT family were identified at 39 loci. Most loci were located immediately upstream of genes belonging to the VCX/Y, SPANX, or CSAG gene families. Sequence comparison of the loci revealed a conserved CYPT promoter-like (CPL) element featuring TATA...... cell types. The genomic regions harboring the gene families were rich in direct and inverted segmental duplications (SD), which may facilitate gene conversion and rapid evolution. The conserved CPL and the common expression profiles suggest that the human VCX/Y, SPANX, and CSAG2 gene families together......Many testis-specific genes from the sex chromosomes are subject to rapid evolution, which can make it difficult to identify murine genes in the human genome. The murine CYPT gene family includes 15 members, but orthologs were undetectable in the human genome. However, using refined homology search...

  12. Bundling Actin Filaments From Membranes: Some Novel Players

    Directory of Open Access Journals (Sweden)

    Clément eThomas

    2012-08-01

    Full Text Available Progress in live-cell imaging of the cytoskeleton has significantly extended our knowledge about the organization and dynamics of actin filaments near the plasma membrane of plant cells. Noticeably, two populations of filamentous structures can be distinguished. On the one hand, fine actin filaments which exhibit an extremely dynamic behavior basically characterized by fast polymerization and prolific severing events, a process referred to as actin stochastic dynamics. On the other hand, thick actin bundles which are composed of several filaments and which are comparatively more stable although they constantly remodel as well. There is evidence that the actin cytoskeleton plays critical roles in trafficking and signaling at both the cell cortex and organelle periphery but the exact contribution of actin bundles remains unclear. A common view is that actin bundles provide the long-distance tracks used by myosin motors to deliver their cargo to growing regions and accordingly play a particularly important role in cell polarization. However, several studies support that actin bundles are more than simple passive highways and display multiple and dynamic roles in the regulation of many processes, such as cell elongation, polar auxin transport, stomatal and chloroplast movement, and defense against pathogens. The list of identified plant actin-bundling proteins is ever expanding, supporting that plant cells shape structurally and functionally different actin bundles. Here I review the most recently characterized actin-bundling proteins, with a particular focus on those potentially relevant to membrane trafficking and/or signaling.

  13. Engagement of CD81 induces ezrin tyrosine phosphorylation and its cellular redistribution with filamentous actin

    Energy Technology Data Exchange (ETDEWEB)

    Coffey, Greg P.; Rajapaksa, Ranjani; Liu, Raymond; Sharpe, Orr; Kuo, Chiung-Chi; Wald Krauss, Sharon; Sagi, Yael; Davis, R. Eric; Staudt, Louis M.; Sharman, Jeff P.; Robinson, William H.; Levy, Shoshana

    2009-06-09

    CD81 is a tetraspanin family member involved in diverse cellular interactions in the immune and nervous systems and in cell fusion events. However, the mechanism of action of CD81 and of other tetraspanins has not been defined. We reasoned that identifying signaling molecules downstream of CD81 would provide mechanistic clues. We engaged CD81 on the surface of Blymphocytes and identified the induced tyrosine-phosphorylated proteins by mass spectrometry. This analysis showed that the most prominent tyrosine phosphorylated protein was ezrin, an actin binding protein and a member of the ezrin-radixin-moesin family. We also found that CD81 engagement induces spleen tyrosine kinase (Syk) and that Syk was involved in tyrosine phosphorylation of ezrin. Ezrin colocalized with CD81 and F-actin upon stimulation and this association was disrupted when Syk activation was blocked. Taken together, these studies suggest a model in which CD81 interfaces between the plasma membrane and the cytoskeleton by activating Syk, mobilizing ezrin, and recruiting F-actin to facilitate cytoskeletal reorganization and cell signaling. This may be a mechanism explaining the pleiotropic effects induced in response to stimulating cells by anti-CD81 antibodies or by the hepatitis C virus, which uses this molecule as its key receptor.

  14. Dichotomy in the NRT gene families of dicots and grass species.

    Directory of Open Access Journals (Sweden)

    Darren Plett

    Full Text Available A large proportion of the nitrate (NO(3(- acquired by plants from soil is actively transported via members of the NRT families of NO(3(- transporters. In Arabidopsis, the NRT1 family has eight functionally characterised members and predominantly comprises low-affinity transporters; the NRT2 family contains seven members which appear to be high-affinity transporters; and there are two NRT3 (NAR2 family members which are known to participate in high-affinity transport. A modified reciprocal best hit (RBH approach was used to identify putative orthologues of the Arabidopsis NRT genes in the four fully sequenced grass genomes (maize, rice, sorghum, Brachypodium. We also included the poplar genome in our analysis to establish whether differences between Arabidopsis and the grasses may be generally applicable to monocots and dicots. Our analysis reveals fundamental differences between Arabidopsis and the grass species in the gene number and family structure of all three families of NRT transporters. All grass species possessed additional NRT1.1 orthologues and appear to lack NRT1.6/NRT1.7 orthologues. There is significant separation in the NRT2 phylogenetic tree between NRT2 genes from dicots and grass species. This indicates that determination of function of NRT2 genes in grass species will not be possible in cereals based simply on sequence homology to functionally characterised Arabidopsis NRT2 genes and that proper functional analysis will be required. Arabidopsis has a unique NRT3.2 gene which may be a fusion of the NRT3.1 and NRT3.2 genes present in all other species examined here. This work provides a framework for future analysis of NO(3(- transporters and NO(3(- transport in grass crop species.

  15. EZH2-mediated α-actin methylation needs lncRNA TUG1, and promotes the cortex cytoskeleton formation in VSMCs.

    Science.gov (United States)

    Chen, Rong; Kong, Peng; Zhang, Fan; Shu, Ya-Nan; Nie, Xi; Dong, Li-Hua; Lin, Yan-Ling; Xie, Xiao-Li; Zhao, Li-Li; Zhang, Xiang-Jian; Han, Mei

    2017-06-15

    Recent studies have revealed that long non-coding RNAs (lncRNAs) participate in vascular homeostasis and pathophysiological conditions development. But still very few literatures elucidate the regulatory mechanism of non-coding RNAs in this biological process. Here we identified lncRNA taurine up-regulated gene 1 (TUG1) in rat vascular smooth muscle cells (VSMCs), and got 4612bp nucleotide sequence. The expression level of TUG1 RNA was increased in synthetic VSMCs by real-time PCR analysis. Meanwhile, the expression of enhancer of zeste homolog 2 (EZH2) (TUG1 binding protein) increased in cytoplasm of VSMCs under the same conditions. Immunofluoresce analysis displayed the colocalization of EZH2 with α-actin in cytoplasm and F-actin in cell edge ruffles. This leads us to hypothesize the existence of cytoplasmic TUG1/EZH2/α-actin complex. Using RNA pull down assay, we found that TUG1 interacted with both EZH2 and α-actin. Disruption of TUG1 abolished the interaction of EZH2 with α-actin, and accelerated depolymerization of F-actin in VSMCs. Based on EZH2 methyltransferase activity and the potential methylation sites in α-actin structure, we revealed that α-actin was lysine-methylated. Furthermore, the methylation of α-actin was inhibited by knockdown of TUG1. In conclusion, these findings partly suggested that EZH2-mediated methylation of α-actin may be dependent on TUG1, and thereby promotes cortex F-actin polymerization in synthetic VSMCs. Copyright © 2017. Published by Elsevier B.V.

  16. Saltatory Evolution of the Ectodermal Neural Cortex Gene Family at the Vertebrate Origin

    Science.gov (United States)

    Feiner, Nathalie; Murakami, Yasunori; Breithut, Lisa; Mazan, Sylvie; Meyer, Axel; Kuraku, Shigehiro

    2013-01-01

    The ectodermal neural cortex (ENC) gene family, whose members are implicated in neurogenesis, is part of the kelch repeat superfamily. To date, ENC genes have been identified only in osteichthyans, although other kelch repeat-containing genes are prevalent throughout bilaterians. The lack of elaborate molecular phylogenetic analysis with exhaustive taxon sampling has obscured the possible link of the establishment of this gene family with vertebrate novelties. In this study, we identified ENC homologs in diverse vertebrates by means of database mining and polymerase chain reaction screens. Our analysis revealed that the ENC3 ortholog was lost in the basal eutherian lineage through single-gene deletion and that the triplication between ENC1, -2, and -3 occurred early in vertebrate evolution. Including our original data on the catshark and the zebrafish, our comparison revealed high conservation of the pleiotropic expression pattern of ENC1 and shuffling of expression domains between ENC1, -2, and -3. Compared with many other gene families including developmental key regulators, the ENC gene family is unique in that conventional molecular phylogenetic inference could identify no obvious invertebrate ortholog. This suggests a composite nature of the vertebrate-specific gene repertoire, consisting not only of de novo genes introduced at the vertebrate origin but also of long-standing genes with no apparent invertebrate orthologs. Some of the latter, including the ENC gene family, may be too rapidly evolving to provide sufficient phylogenetic signals marking orthology to their invertebrate counterparts. Such gene families that experienced saltatory evolution likely remain to be explored and might also have contributed to phenotypic evolution of vertebrates. PMID:23843192

  17. Probing friction in actin-based motility

    International Nuclear Information System (INIS)

    Marcy, Yann; Joanny, Jean-Francois; Prost, Jacques; Sykes, Cecile

    2007-01-01

    Actin dynamics are responsible for cell protrusion and certain intracellular movements. The transient attachment of the actin filaments to a moving surface generates a friction force that resists the movement. We probe here the dynamics of these attachments by inducing a stick-slip behavior via micromanipulation of a growing actin comet. We show that general principles of adhesion and friction can explain our observations

  18. Dynamic Regulation of Sarcomeric Actin Filaments in Striated Muscle

    OpenAIRE

    Ono, Shoichiro

    2010-01-01

    In striated muscle, the actin cytoskeleton is differentiated into myofibrils. Actin and myosin filaments are organized in sarcomeres and specialized for producing contractile forces. Regular arrangement of actin filaments with uniform length and polarity is critical for the contractile function. However, the mechanisms of assembly and maintenance of sarcomeric actin filaments in striated muscle are not completely understood. Live imaging of actin in striated muscle has revealed that actin sub...

  19. Actin filaments – a target for redox regulation

    Science.gov (United States)

    Wilson, Carlos; Terman, Jonathan R.; González-Billault, Christian; Ahmed, Giasuddin

    2016-01-01

    Actin and its ability to polymerize into dynamic filaments is critical for the form and function of cells throughout the body. While multiple proteins have been characterized as affecting actin dynamics through non-covalent means, actin and its protein regulators are also susceptible to covalent modifications of their amino acid residues. In this regard, oxidation-reduction (Redox) intermediates have emerged as key modulators of the actin cytoskeleton with multiple different effects on cellular form and function. Here, we review work implicating Redox intermediates in post-translationally altering actin and discuss what is known regarding how these alterations affect the properties of actin. We also focus on two of the best characterized enzymatic sources of these Redox intermediates – the NADPH oxidase NOX and the flavoprotein monooxygenase MICAL – and detail how they have both been identified as altering actin, but share little similarity and employ different means to regulate actin dynamics. Finally, we discuss the role of these enzymes and redox signaling in regulating the actin cytoskeleton in vivo and highlight their importance for neuronal form and function in health and disease. PMID:27309342

  20. Undefined familial colorectal cancer and the role of pleiotropism in cancer susceptibility genes.

    Science.gov (United States)

    Dobbins, Sara E; Broderick, Peter; Chubb, Daniel; Kinnersley, Ben; Sherborne, Amy L; Houlston, Richard S

    2016-10-01

    Although family history is a major risk factor for colorectal cancer (CRC) a genetic diagnosis cannot be obtained in over 50 % of familial cases when screened for known CRC cancer susceptibility genes. The genetics of undefined-familial CRC is complex and recent studies have implied additional clinically actionable mutations for CRC in susceptibility genes for other cancers. To clarify the contribution of non-CRC susceptibility genes to undefined-familial CRC we conducted a mutational screen of 114 cancer susceptibility genes in 847 patients with early-onset undefined-familial CRC and 1609 controls by analysing high-coverage exome sequencing data. We implemented American College of Medical Genetics and Genomics standards and guidelines for assigning pathogenicity to variants. Globally across all 114 cancer susceptibility genes no statistically significant enrichment of likely pathogenic variants was shown (6.7 % cases 57/847, 5.3 % controls 85/1609; P = 0.15). Moreover there was no significant enrichment of mutations in genes such as TP53 or BRCA2 which have been proposed for clinical testing in CRC. In conclusion, while we identified genes that may be considered interesting candidates as determinants of CRC risk warranting further research, there is currently scant evidence to support a role for genes other than those responsible for established CRC syndromes in the clinical management of familial CRC.

  1. Aux/IAA Gene Family in Plants: Molecular Structure, Regulation, and Function

    Directory of Open Access Journals (Sweden)

    Jie Luo

    2018-01-01

    Full Text Available Auxin plays a crucial role in the diverse cellular and developmental responses of plants across their lifespan. Plants can quickly sense and respond to changes in auxin levels, and these responses involve several major classes of auxin-responsive genes, including the Auxin/Indole-3-Acetic Acid (Aux/IAA family, the auxin response factor (ARF family, small auxin upregulated RNA (SAUR, and the auxin-responsive Gretchen Hagen3 (GH3 family. Aux/IAA proteins are short-lived nuclear proteins comprising several highly conserved domains that are encoded by the auxin early response gene family. These proteins have specific domains that interact with ARFs and inhibit the transcription of genes activated by ARFs. Molecular studies have revealed that Aux/IAA family members can form diverse dimers with ARFs to regulate genes in various ways. Functional analyses of Aux/IAA family members have indicated that they have various roles in plant development, such as root development, shoot growth, and fruit ripening. In this review, recently discovered details regarding the molecular characteristics, regulation, and protein–protein interactions of the Aux/IAA proteins are discussed. These details provide new insights into the molecular basis of the Aux/IAA protein functions in plant developmental processes.

  2. Characterization and gene expression analysis of the cir multi-gene family of plasmodium chabaudi chabaudi (AS)

    KAUST Repository

    Lawton, Jennifer

    2012-03-29

    Background: The pir genes comprise the largest multi-gene family in Plasmodium, with members found in P. vivax, P. knowlesi and the rodent malaria species. Despite comprising up to 5% of the genome, little is known about the functions of the proteins encoded by pir genes. P. chabaudi causes chronic infection in mice, which may be due to antigenic variation. In this model, pir genes are called cirs and may be involved in this mechanism, allowing evasion of host immune responses. In order to fully understand the role(s) of CIR proteins during P. chabaudi infection, a detailed characterization of the cir gene family was required.Results: The cir repertoire was annotated and a detailed bioinformatic characterization of the encoded CIR proteins was performed. Two major sub-families were identified, which have been named A and B. Members of each sub-family displayed different amino acid motifs, and were thus predicted to have undergone functional divergence. In addition, the expression of the entire cir repertoire was analyzed via RNA sequencing and microarray. Up to 40% of the cir gene repertoire was expressed in the parasite population during infection, and dominant cir transcripts could be identified. In addition, some differences were observed in the pattern of expression between the cir subgroups at the peak of P. chabaudi infection. Finally, specific cir genes were expressed at different time points during asexual blood stages.Conclusions: In conclusion, the large number of cir genes and their expression throughout the intraerythrocytic cycle of development indicates that CIR proteins are likely to be important for parasite survival. In particular, the detection of dominant cir transcripts at the peak of P. chabaudi infection supports the idea that CIR proteins are expressed, and could perform important functions in the biology of this parasite. Further application of the methodologies described here may allow the elucidation of CIR sub-family A and B protein

  3. Characterization and gene expression analysis of the cir multi-gene family of plasmodium chabaudi chabaudi (AS

    Directory of Open Access Journals (Sweden)

    Lawton Jennifer

    2012-03-01

    Full Text Available Abstract Background The pir genes comprise the largest multi-gene family in Plasmodium, with members found in P. vivax, P. knowlesi and the rodent malaria species. Despite comprising up to 5% of the genome, little is known about the functions of the proteins encoded by pir genes. P. chabaudi causes chronic infection in mice, which may be due to antigenic variation. In this model, pir genes are called cirs and may be involved in this mechanism, allowing evasion of host immune responses. In order to fully understand the role(s of CIR proteins during P. chabaudi infection, a detailed characterization of the cir gene family was required. Results The cir repertoire was annotated and a detailed bioinformatic characterization of the encoded CIR proteins was performed. Two major sub-families were identified, which have been named A and B. Members of each sub-family displayed different amino acid motifs, and were thus predicted to have undergone functional divergence. In addition, the expression of the entire cir repertoire was analyzed via RNA sequencing and microarray. Up to 40% of the cir gene repertoire was expressed in the parasite population during infection, and dominant cir transcripts could be identified. In addition, some differences were observed in the pattern of expression between the cir subgroups at the peak of P. chabaudi infection. Finally, specific cir genes were expressed at different time points during asexual blood stages. Conclusions In conclusion, the large number of cir genes and their expression throughout the intraerythrocytic cycle of development indicates that CIR proteins are likely to be important for parasite survival. In particular, the detection of dominant cir transcripts at the peak of P. chabaudi infection supports the idea that CIR proteins are expressed, and could perform important functions in the biology of this parasite. Further application of the methodologies described here may allow the elucidation of CIR sub-family

  4. Characterization and gene expression analysis of the cir multi-gene family of plasmodium chabaudi chabaudi (AS)

    KAUST Repository

    Lawton, Jennifer; Brugat, Thibaut; Yan, Yam Xue; Reid, Adam James; Bö hme, Ulrike; Otto, Thomas Dan; Pain, Arnab; Jackson, Andrew; Berriman, Matthew; Cunningham, Deirdre; Preiser, Peter; Langhorne, Jean

    2012-01-01

    Background: The pir genes comprise the largest multi-gene family in Plasmodium, with members found in P. vivax, P. knowlesi and the rodent malaria species. Despite comprising up to 5% of the genome, little is known about the functions of the proteins encoded by pir genes. P. chabaudi causes chronic infection in mice, which may be due to antigenic variation. In this model, pir genes are called cirs and may be involved in this mechanism, allowing evasion of host immune responses. In order to fully understand the role(s) of CIR proteins during P. chabaudi infection, a detailed characterization of the cir gene family was required.Results: The cir repertoire was annotated and a detailed bioinformatic characterization of the encoded CIR proteins was performed. Two major sub-families were identified, which have been named A and B. Members of each sub-family displayed different amino acid motifs, and were thus predicted to have undergone functional divergence. In addition, the expression of the entire cir repertoire was analyzed via RNA sequencing and microarray. Up to 40% of the cir gene repertoire was expressed in the parasite population during infection, and dominant cir transcripts could be identified. In addition, some differences were observed in the pattern of expression between the cir subgroups at the peak of P. chabaudi infection. Finally, specific cir genes were expressed at different time points during asexual blood stages.Conclusions: In conclusion, the large number of cir genes and their expression throughout the intraerythrocytic cycle of development indicates that CIR proteins are likely to be important for parasite survival. In particular, the detection of dominant cir transcripts at the peak of P. chabaudi infection supports the idea that CIR proteins are expressed, and could perform important functions in the biology of this parasite. Further application of the methodologies described here may allow the elucidation of CIR sub-family A and B protein

  5. Characterization of the avian Trojan gene family reveals contrasting evolutionary constraints.

    Directory of Open Access Journals (Sweden)

    Petar Petrov

    Full Text Available "Trojan" is a leukocyte-specific, cell surface protein originally identified in the chicken. Its molecular function has been hypothesized to be related to anti-apoptosis and the proliferation of immune cells. The Trojan gene has been localized onto the Z sex chromosome. The adjacent two genes also show significant homology to Trojan, suggesting the existence of a novel gene/protein family. Here, we characterize this Trojan family, identify homologues in other species and predict evolutionary constraints on these genes. The two Trojan-related proteins in chicken were predicted as a receptor-type tyrosine phosphatase and a transmembrane protein, bearing a cytoplasmic immuno-receptor tyrosine-based activation motif. We identified the Trojan gene family in ten other bird species and found related genes in three reptiles and a fish species. The phylogenetic analysis of the homologues revealed a gradual diversification among the family members. Evolutionary analyzes of the avian genes predicted that the extracellular regions of the proteins have been subjected to positive selection. Such selection was possibly a response to evolving interacting partners or to pathogen challenges. We also observed an almost complete lack of intracellular positively selected sites, suggesting a conserved signaling mechanism of the molecules. Therefore, the contrasting patterns of selection likely correlate with the interaction and signaling potential of the molecules.

  6. Plant ion channels: gene families, physiology, and functional genomics analyses.

    Science.gov (United States)

    Ward, John M; Mäser, Pascal; Schroeder, Julian I

    2009-01-01

    Distinct potassium, anion, and calcium channels in the plasma membrane and vacuolar membrane of plant cells have been identified and characterized by patch clamping. Primarily owing to advances in Arabidopsis genetics and genomics, and yeast functional complementation, many of the corresponding genes have been identified. Recent advances in our understanding of ion channel genes that mediate signal transduction and ion transport are discussed here. Some plant ion channels, for example, ALMT and SLAC anion channel subunits, are unique. The majority of plant ion channel families exhibit homology to animal genes; such families include both hyperpolarization- and depolarization-activated Shaker-type potassium channels, CLC chloride transporters/channels, cyclic nucleotide-gated channels, and ionotropic glutamate receptor homologs. These plant ion channels offer unique opportunities to analyze the structural mechanisms and functions of ion channels. Here we review gene families of selected plant ion channel classes and discuss unique structure-function aspects and their physiological roles in plant cell signaling and transport.

  7. Global Analysis of miRNA Gene Clusters and Gene Families Reveals Dynamic and Coordinated Expression

    Directory of Open Access Journals (Sweden)

    Li Guo

    2014-01-01

    Full Text Available To further understand the potential expression relationships of miRNAs in miRNA gene clusters and gene families, a global analysis was performed in 4 paired tumor (breast cancer and adjacent normal tissue samples using deep sequencing datasets. The compositions of miRNA gene clusters and families are not random, and clustered and homologous miRNAs may have close relationships with overlapped miRNA species. Members in the miRNA group always had various expression levels, and even some showed larger expression divergence. Despite the dynamic expression as well as individual difference, these miRNAs always indicated consistent or similar deregulation patterns. The consistent deregulation expression may contribute to dynamic and coordinated interaction between different miRNAs in regulatory network. Further, we found that those clustered or homologous miRNAs that were also identified as sense and antisense miRNAs showed larger expression divergence. miRNA gene clusters and families indicated important biological roles, and the specific distribution and expression further enrich and ensure the flexible and robust regulatory network.

  8. Novel genetic variants in miR-191 gene and familial ovarian cancer

    International Nuclear Information System (INIS)

    Shen, Jie; DiCioccio, Richard; Odunsi, Kunle; Lele, Shashikant B; Zhao, Hua

    2010-01-01

    Half of the familial aggregation of ovarian cancer can't be explained by any known risk genes, suggesting the existence of other genetic risk factors. Some of these unknown factors may not be traditional protein encoding genes. MicroRNA (miRNA) plays a critical role in tumorigenesis, but it is still unknown if variants in miRNA genes lead to predisposition to cancer. Considering the fact that miRNA regulates a number of tumor suppressor genes (TSGs) and oncogenes, genetic variations in miRNA genes could affect the levels of expression of TSGs or oncogenes and, thereby, cancer risk. To test this hypothesis in familial ovarian cancer, we screened for genetic variants in thirty selected miRNA genes, which are predicted to regulate key ovarian cancer genes and are reported to be misexpressed in ovarian tumor tissues, in eighty-three patients with familial ovarian cancer. All of the patients are non-carriers of any known BRCA1/2 or mismatch repair (MMR) gene mutations. Seven novel genetic variants were observed in four primary or precursor miRNA genes. Among them, three rare variants were found in the precursor or primary precursor of the miR-191 gene. In functional assays, the one variant located in the precursor of miR-191 resulted in conformational changes in the predicted secondary structures, and consequently altered the expression of mature miR-191. In further analysis, we found that this particular variant exists in five family members who had ovarian cancer. Our findings suggest that there are novel genetic variants in miRNA genes, and those certain genetic variants in miRNA genes can affect the expression of mature miRNAs and, consequently, might alter the regulation of TSGs or oncogenes. Additionally, the variant might be potentially associated with the development of familial ovarian cancer

  9. Plasmin enzymatic activity in the presence of actin

    Directory of Open Access Journals (Sweden)

    Yusova E. I.

    2015-10-01

    Full Text Available Aim. To study the changes in the plasmin activity towards substrates with high and low molecular mass in the presence of actin. Methods. The proteins used for this investigation were obtained by affinity chromatography and gel-filtration. The plasmin enzymatic activity was determined by a turbidimetric assay and a chromogenic substrate-based assay. The enzyme linked immunosorbent assay and biotin-avidin-phosphatase system were used to study the interaction of plasminogen and its fragments with actin. Results. It was shown that G-actin causes 1.5-fold decrease in the rate of polymeric fibrin hydrolysis by plasmin and Glu-plasminogen activated by the tissue plasminogen activator. However, actin did not impede plasmin autolysis and had no influence on its amidase activity. We have studied an interaction of biotinylated Glu-plasminogen and its fragments (kringle 1-3, kringle 4 and mini-plasminogen with immobilized G-actin. Glu-plasminogen and kringle 4 had a high affinity towards actin (C50 is 113 and 117 nM correspondingly. Mini-plasminogen and kringe 4 did not bind to actin. A similar affinity of Glu-plasminogen and kringle 1-3 towards actin proves the involvement of the kringle 1-3 lysine-binding sites of the native plasminogen form in the actin interaction. Conclusions. Actin can modulate plasmin specificity towards high molecular mass substrates through its interaction with lysine-binding sites of the enzyme kringle domains. Actin inhibition of the fibrinolytic activity of plasmin is due to its competition with fibrin for thelysine binding sites of plasminogen/plasmin.

  10. Xenopus egg cytoplasm with intact actin.

    Science.gov (United States)

    Field, Christine M; Nguyen, Phuong A; Ishihara, Keisuke; Groen, Aaron C; Mitchison, Timothy J

    2014-01-01

    We report optimized methods for preparing Xenopus egg extracts without cytochalasin D, that we term "actin-intact egg extract." These are undiluted egg cytoplasm that contains abundant organelles, and glycogen which supplies energy, and represents the least perturbed cell-free cytoplasm preparation we know of. We used this system to probe cell cycle regulation of actin and myosin-II dynamics (Field et al., 2011), and to reconstitute the large, interphase asters that organize early Xenopus embryos (Mitchison et al., 2012; Wühr, Tan, Parker, Detrich, & Mitchison, 2010). Actin-intact Xenopus egg extracts are useful for analysis of actin dynamics, and interaction of actin with other cytoplasmic systems, in a cell-free system that closely mimics egg physiology, and more generally for probing the biochemistry and biophysics of the egg, zygote, and early embryo. Detailed protocols are provided along with assays used to check cell cycle state and tips for handling and storing undiluted egg extracts. © 2014 Elsevier Inc. All rights reserved.

  11. Effects of polymerization and nucleotide identity on the conformational dynamics of the bacterial actin homolog MreB.

    Science.gov (United States)

    Colavin, Alexandre; Hsin, Jen; Huang, Kerwyn Casey

    2014-03-04

    The assembly of protein filaments drives many cellular processes, from nucleoid segregation, growth, and division in single cells to muscle contraction in animals. In eukaryotes, shape and motility are regulated through cycles of polymerization and depolymerization of actin cytoskeletal networks. In bacteria, the actin homolog MreB forms filaments that coordinate the cell-wall synthesis machinery to regulate rod-shaped growth and contribute to cellular stiffness through unknown mechanisms. Like actin, MreB is an ATPase and requires ATP to polymerize, and polymerization promotes nucleotide hydrolysis. However, it is unclear whether other similarities exist between MreB and actin because the two proteins share low sequence identity and have distinct cellular roles. Here, we use all-atom molecular dynamics simulations to reveal surprising parallels between MreB and actin structural dynamics. We observe that MreB exhibits actin-like polymerization-dependent structural changes, wherein polymerization induces flattening of MreB subunits, which restructures the nucleotide-binding pocket to favor hydrolysis. MreB filaments exhibited nucleotide-dependent intersubunit bending, with hydrolyzed polymers favoring a straighter conformation. We use steered simulations to demonstrate a coupling between intersubunit bending and the degree of flattening of each subunit, suggesting cooperative bending along a filament. Taken together, our results provide molecular-scale insight into the diversity of structural states of MreB and the relationships among polymerization, hydrolysis, and filament properties, which may be applicable to other members of the broad actin family.

  12. Molecular analysis of the NDP gene in two families with Norrie disease.

    Science.gov (United States)

    Rivera-Vega, M Refugio; Chiñas-Lopez, Silvet; Vaca, Ana Luisa Jimenez; Arenas-Sordo, M Luz; Kofman-Alfaro, Susana; Messina-Baas, Olga; Cuevas-Covarrubias, Sergio Alberto

    2005-04-01

    To describe the molecular defects in the Norrie disease protein (NDP) gene in two families with Norrie disease (ND). We analysed two families with ND at molecular level through polymerase chain reaction, DNA sequence analysis and GeneScan. Two molecular defects found in the NDP gene were: a missense mutation (265C > G) within codon 97 that resulted in the interchange of arginine by proline, and a partial deletion in the untranslated 3' region of exon 3 of the NDP gene. Clinical findings were more severe in the family that presented the partial deletion. We also diagnosed the carrier status of one daughter through GeneScan; this method proved to be a useful tool for establishing female carriers of ND. Here we report two novel mutations in the NDP gene in Mexican patients and propose that GeneScan is a viable mean of establishing ND carrier status.

  13. Ancient signals: comparative genomics of plant MAPK and MAPKK gene families

    DEFF Research Database (Denmark)

    Hamel, Louis-Philippe; Nicole, Marie-Claude; Sritubtim, Somrudee

    2006-01-01

    MAPK signal transduction modules play crucial roles in regulating many biological processes in plants, and their components are encoded by highly conserved genes. The recent availability of genome sequences for rice and poplar now makes it possible to examine how well the previously described...... Arabidopsis MAPK and MAPKK gene family structures represent the broader evolutionary situation in plants, and analysis of gene expression data for MPK and MKK genes in all three species allows further refinement of those families, based on functionality. The Arabidopsis MAPK nomenclature appears sufficiently...

  14. Evolution of the vertebrate insulin receptor substrate (Irs) gene family.

    Science.gov (United States)

    Al-Salam, Ahmad; Irwin, David M

    2017-06-23

    Insulin receptor substrate (Irs) proteins are essential for insulin signaling as they allow downstream effectors to dock with, and be activated by, the insulin receptor. A family of four Irs proteins have been identified in mice, however the gene for one of these, IRS3, has been pseudogenized in humans. While it is known that the Irs gene family originated in vertebrates, it is not known when it originated and which members are most closely related to each other. A better understanding of the evolution of Irs genes and proteins should provide insight into the regulation of metabolism by insulin. Multiple genes for Irs proteins were identified in a wide variety of vertebrate species. Phylogenetic and genomic neighborhood analyses indicate that this gene family originated very early in vertebrae evolution. Most Irs genes were duplicated and retained in fish after the fish-specific genome duplication. Irs genes have been lost of various lineages, including Irs3 in primates and birds and Irs1 in most fish. Irs3 and Irs4 experienced an episode of more rapid protein sequence evolution on the ancestral mammalian lineage. Comparisons of the conservation of the proteins sequences among Irs paralogs show that domains involved in binding to the plasma membrane and insulin receptors are most strongly conserved, while divergence has occurred in sequences involved in interacting with downstream effector proteins. The Irs gene family originated very early in vertebrate evolution, likely through genome duplications, and in parallel with duplications of other components of the insulin signaling pathway, including insulin and the insulin receptor. While the N-terminal sequences of these proteins are conserved among the paralogs, changes in the C-terminal sequences likely allowed changes in biological function.

  15. Multiple essential functions of Plasmodium falciparum actin-1 during malaria blood-stage development.

    Science.gov (United States)

    Das, Sujaan; Lemgruber, Leandro; Tay, Chwen L; Baum, Jake; Meissner, Markus

    2017-08-15

    The phylum Apicomplexa includes intracellular parasites causing immense global disease burden, the deadliest of them being the human malaria parasite Plasmodium falciparum, which invades and replicates within erythrocytes. The cytoskeletal protein actin is well conserved within apicomplexans but divergent from mammalian actins, and was primarily reported to function during host cell invasion. However, novel invasion mechanisms have been described for several apicomplexans, and specific functions of the acto-myosin system are being reinvestigated. Of the two actin genes in P. falciparum, actin-1 (pfact1) is ubiquitously expressed in all life-cycle stages and is thought to be required for erythrocyte invasion, although its functions during parasite development are unknown, and definitive in vivo characterisation during invasion is lacking. Here we have used a conditional Cre-lox system to investigate the functions of PfACT1 during P. falciparum blood-stage development and host cell invasion. We demonstrate that PfACT1 is crucially required for segregation of the plastid-like organelle, the apicoplast, and for efficient daughter cell separation during the final stages of cytokinesis. Surprisingly, we observe that egress from the host cell is not an actin-dependent process. Finally, we show that parasites lacking PfACT1 are capable of microneme secretion, attachment and formation of a junction with the erythrocyte, but are incapable of host cell invasion. This study provides important mechanistic insights into the definitive essential functions of PfACT1 in P. falciparum, which are not only of biological interest, but owing to functional divergence from mammalian actins, could also form the basis for the development of novel therapeutics against apicomplexans.

  16. Polymorphism in the interferon-{alpha} gene family

    Energy Technology Data Exchange (ETDEWEB)

    Golovleva, I.; Lundgren, E.; Beckman, L. [Univ. of Umea (Sweden); Kandefer-Szerszen, M. [Maria Curie-Sklodowska Univ., Lublin (Poland)

    1996-09-01

    A pronounced genetic polymorphism of the interferon type I gene family has been assumed on the basis of RFLP analysis of the genomic region as well as the large number of sequences published compared to the number of loci. However, IFNA2 is the only locus that has been carefully analyzed concerning gene frequency, and only naturally occurring rare alleles have been found. We have extended the studies on a variation of expressed sequences by studying the IFNA1, IFNA2, IFNA10, IFNA13, IFNA14, and IFNA17 genes. Genomic white-blood-cell DNA from a population sample of blood donors and from a family material were screened by single-nucleotide primer extension (allele-specific primer extension) of PCR fragments. Because of sequence similarities, in some cases {open_quotes}nested{close_quotes} PCR was used, and, when applicable, restriction analysis or control sequencing was performed. All individuals carried the interferon-{alpha} 1 and interferon-{alpha} 13 variants but not the LeIF D variant. At the IFNA2 and IFNA14 loci only one sequence variant was found, while in the IFNA10 and IFNA17 groups two alleles were detected in each group. The IFNA10 and IFNA17 alleles segregated in families and showed a close fit to the Hardy-Weinberg equilibrium. There was a significant linkage disequilibrium between IFNA10 and IFNA17 alleles. The fact that the extent of genetic polymorphism was lower than expected suggests that a majority of the previously described gene sequences represent nonpolymorphic rare mutants that may have arisen in tumor cell lines. 44 refs., 4 figs., 4 tabs.

  17. Mechanics model for actin-based motility.

    Science.gov (United States)

    Lin, Yuan

    2009-02-01

    We present here a mechanics model for the force generation by actin polymerization. The possible adhesions between the actin filaments and the load surface, as well as the nucleation and capping of filament tips, are included in this model on top of the well-known elastic Brownian ratchet formulation. A closed form solution is provided from which the force-velocity relationship, summarizing the mechanics of polymerization, can be drawn. Model predictions on the velocity of moving beads driven by actin polymerization are consistent with experiment observations. This model also seems capable of explaining the enhanced actin-based motility of Listeria monocytogenes and beads by the presence of Vasodilator-stimulated phosphoprotein, as observed in recent experiments.

  18. Phactr3/scapinin, a member of protein phosphatase 1 and actin regulator (phactr family, interacts with the plasma membrane via basic and hydrophobic residues in the N-terminus.

    Directory of Open Access Journals (Sweden)

    Akihiro Itoh

    Full Text Available Proteins that belong to the protein phosphatase 1 and actin regulator (phactr family are involved in cell motility and morphogenesis. However, the mechanisms that regulate the actin cytoskeleton are poorly understood. We have previously shown that phactr3, also known as scapinin, localizes to the plasma membrane, including lamellipodia and membrane ruffles. In the present study, experiments using deletion and point mutants showed that the basic and hydrophobic residues in the N-terminus play crucial roles in the localization to the plasma membrane. A BH analysis (http://helixweb.nih.gov/bhsearch is a program developed to identify membrane-binding domains that comprise basic and hydrophobic residues in membrane proteins. We applied this program to phactr3. The results of the BH plot analysis agreed with the experimentally determined region that is responsible for the localization of phactr3 to the plasma membrane. In vitro experiments showed that the N-terminal itself binds to liposomes and acidic phospholipids. In addition, we showed that the interaction with the plasma membrane via the N-terminal membrane-binding sequence is required for phactr3-induced morphological changes in Cos7 cells. The membrane-binding sequence in the N-terminus is highly conserved in all members of the phactr family. Our findings may provide a molecular basis for understanding the mechanisms that allow phactr proteins to regulate cell morphogenesis.

  19. Titin-Actin Interaction: PEVK-Actin-Based Viscosity in a Large Animal

    Directory of Open Access Journals (Sweden)

    Charles S. Chung

    2011-01-01

    Full Text Available Titin exhibits an interaction between its PEVK segment and the actin filament resulting in viscosity, a speed dependent resistive force, which significantly influences diastolic filling in mice. While diastolic disease is clinically pervasive, humans express a more compliant titin (N2BA:N2B ratio ~0.5–1.0 than mice (N2BA:N2B ratio ~0.2. To examine PEVK-actin based viscosity in compliant titin-tissues, we used pig cardiac tissue that expresses titin isoforms similar to that in humans. Stretch-hold experiments were performed at speeds from 0.1 to 10 lengths/s from slack sarcomere lengths (SL to SL of 2.15 μm. Viscosity was calculated from the slope of stress-relaxation vs stretch speed. Recombinant PEVK was added to compete off native interactions and this found to reduce the slope by 35%, suggesting that PEVK-actin interactions are a strong contributor of viscosity. Frequency sweeps were performed at frequencies of 0.1–400 Hz and recombinant protein reduced viscous moduli by 40% at 2.15 μm and by 50% at 2.25 μm, suggesting a SL-dependent nature of viscosity that might prevent SL ``overshoot’’ at long diastolic SLs. This study is the first to show that viscosity is present at physiologic speeds in the pig and supports the physiologic relevance of PEVK-actin interactions in humans in both health and disease.

  20. Electrostatics Control Actin Filament Nucleation and Elongation Kinetics*

    Science.gov (United States)

    Crevenna, Alvaro H.; Naredi-Rainer, Nikolaus; Schönichen, André; Dzubiella, Joachim; Barber, Diane L.; Lamb, Don C.; Wedlich-Söldner, Roland

    2013-01-01

    The actin cytoskeleton is a central mediator of cellular morphogenesis, and rapid actin reorganization drives essential processes such as cell migration and cell division. Whereas several actin-binding proteins are known to be regulated by changes in intracellular pH, detailed information regarding the effect of pH on the actin dynamics itself is still lacking. Here, we combine bulk assays, total internal reflection fluorescence microscopy, fluorescence fluctuation spectroscopy techniques, and theory to comprehensively characterize the effect of pH on actin polymerization. We show that both nucleation and elongation are strongly enhanced at acidic pH, with a maximum close to the pI of actin. Monomer association rates are similarly affected by pH at both ends, although dissociation rates are differentially affected. This indicates that electrostatics control the diffusional encounter but not the dissociation rate, which is critical for the establishment of actin filament asymmetry. A generic model of protein-protein interaction, including electrostatics, explains the observed pH sensitivity as a consequence of charge repulsion. The observed pH effect on actin in vitro agrees with measurements of Listeria propulsion in pH-controlled cells. pH regulation should therefore be considered as a modulator of actin dynamics in a cellular environment. PMID:23486468

  1. Electrostatics control actin filament nucleation and elongation kinetics.

    Science.gov (United States)

    Crevenna, Alvaro H; Naredi-Rainer, Nikolaus; Schönichen, André; Dzubiella, Joachim; Barber, Diane L; Lamb, Don C; Wedlich-Söldner, Roland

    2013-04-26

    The actin cytoskeleton is a central mediator of cellular morphogenesis, and rapid actin reorganization drives essential processes such as cell migration and cell division. Whereas several actin-binding proteins are known to be regulated by changes in intracellular pH, detailed information regarding the effect of pH on the actin dynamics itself is still lacking. Here, we combine bulk assays, total internal reflection fluorescence microscopy, fluorescence fluctuation spectroscopy techniques, and theory to comprehensively characterize the effect of pH on actin polymerization. We show that both nucleation and elongation are strongly enhanced at acidic pH, with a maximum close to the pI of actin. Monomer association rates are similarly affected by pH at both ends, although dissociation rates are differentially affected. This indicates that electrostatics control the diffusional encounter but not the dissociation rate, which is critical for the establishment of actin filament asymmetry. A generic model of protein-protein interaction, including electrostatics, explains the observed pH sensitivity as a consequence of charge repulsion. The observed pH effect on actin in vitro agrees with measurements of Listeria propulsion in pH-controlled cells. pH regulation should therefore be considered as a modulator of actin dynamics in a cellular environment.

  2. msh/Msx gene family in neural development.

    Science.gov (United States)

    Ramos, Casto; Robert, Benoît

    2005-11-01

    The involvement of Msx homeobox genes in skull and tooth formation has received a great deal of attention. Recent studies also indicate a role for the msh/Msx gene family in development of the nervous system. In this article, we discuss the functions of these transcription factors in neural-tissue organogenesis. We will deal mainly with the interactions of the Drosophila muscle segment homeobox (msh) gene with other homeobox genes and the repressive cascade that leads to neuroectoderm patterning; the role of Msx genes in neural-crest induction, focusing especially on the differences between lower and higher vertebrates; their implication in patterning of the vertebrate neural tube, particularly in diencephalon midline formation. Finally, we will examine the distinct activities of Msx1, Msx2 and Msx3 genes during neurogenesis, taking into account their relationships with signalling molecules such as BMP.

  3. Genome-Wide Identification and Analysis of the TIFY Gene Family in Grape

    Science.gov (United States)

    Zhang, Yucheng; Gao, Min; Singer, Stacy D.; Fei, Zhangjun; Wang, Hua; Wang, Xiping

    2012-01-01

    Background The TIFY gene family constitutes a plant-specific group of genes with a broad range of functions. This family encodes four subfamilies of proteins, including ZML, TIFY, PPD and JASMONATE ZIM-Domain (JAZ) proteins. JAZ proteins are targets of the SCFCOI1 complex, and function as negative regulators in the JA signaling pathway. Recently, it has been reported in both Arabidopsis and rice that TIFY genes, and especially JAZ genes, may be involved in plant defense against insect feeding, wounding, pathogens and abiotic stresses. Nonetheless, knowledge concerning the specific expression patterns and evolutionary history of plant TIFY family members is limited, especially in a woody species such as grape. Methodology/Principal Findings A total of two TIFY, four ZML, two PPD and 11 JAZ genes were identified in the Vitis vinifera genome. Phylogenetic analysis of TIFY protein sequences from grape, Arabidopsis and rice indicated that the grape TIFY proteins are more closely related to those of Arabidopsis than those of rice. Both segmental and tandem duplication events have been major contributors to the expansion of the grape TIFY family. In addition, synteny analysis between grape and Arabidopsis demonstrated that homologues of several grape TIFY genes were found in the corresponding syntenic blocks of Arabidopsis, suggesting that these genes arose before the divergence of lineages that led to grape and Arabidopsis. Analyses of microarray and quantitative real-time RT-PCR expression data revealed that grape TIFY genes are not a major player in the defense against biotrophic pathogens or viruses. However, many of these genes were responsive to JA and ABA, but not SA or ET. Conclusion The genome-wide identification, evolutionary and expression analyses of grape TIFY genes should facilitate further research of this gene family and provide new insights regarding their evolutionary history and regulatory control. PMID:22984514

  4. DNA Double-Strand Breaks Induce the Nuclear Actin Filaments Formation in Cumulus-Enclosed Oocytes but Not in Denuded Oocytes.

    Directory of Open Access Journals (Sweden)

    Ming-Hong Sun

    Full Text Available As a gamete, oocyte needs to maintain its genomic integrity and passes this haploid genome to the next generation. However, fully-grown mouse oocyte cannot respond to DNA double-strand breaks (DSBs effectively and it is also unable to repair them before the meiosis resumption. To compensate for this disadvantage and control the DNA repair events, oocyte needs the cooperation with its surrounding cumulus cells. Recently, evidences have shown that nuclear actin filament formation plays roles in cellular DNA DSB repair. To explore whether these nuclear actin filaments are formed in the DNA-damaged oocytes, here, we labeled the filament actins in denuded oocytes (DOs and cumulus-enclosed oocytes (CEOs. We observed that the nuclear actin filaments were formed only in the DNA-damaged CEOs, but not in DOs. Formation of actin filaments in the nucleus was an event downstream to the DNA damage response. Our data also showed that the removal of cumulus cells led to a reduction in the nuclear actin filaments in oocytes. Knocking down of the Adcy1 gene in cumulus cells did not affect the formation of nuclear actin filaments in oocytes. Notably, we also observed that the nuclear actin filaments in CEOs could be induced by inhibition of gap junctions. From our results, it was confirmed that DNA DSBs induce the nuclear actin filament formation in oocyte and which is controlled by the cumulus cells.

  5. Increased actin polymerization and stabilization interferes with neuronal function and survival in the AMPKγ mutant Loechrig.

    Directory of Open Access Journals (Sweden)

    Mandy Cook

    Full Text Available loechrig (loe mutant flies are characterized by progressive neuronal degeneration, behavioral deficits, and early death. The mutation is due to a P-element insertion in the gene for the γ-subunit of the trimeric AMP-activated protein kinase (AMPK complex, whereby the insertion affects only one of several alternative transcripts encoding a unique neuronal isoform. AMPK is a cellular energy sensor that regulates a plethora of signaling pathways, including cholesterol and isoprenoid synthesis via its downstream target hydroxy-methylglutaryl (HMG-CoA reductase. We recently showed that loe interferes with isoprenoid synthesis and increases the prenylation and thereby activation of RhoA. During development, RhoA plays an important role in neuronal outgrowth by activating a signaling cascade that regulates actin dynamics. Here we show that the effect of loe/AMPKγ on RhoA prenylation leads to a hyperactivation of this signaling pathway, causing increased phosphorylation of the actin depolymerizating factor cofilin and accumulation of filamentous actin. Furthermore, our results show that the resulting cytoskeletal changes in loe interfere with neuronal growth and disrupt axonal integrity. Surprisingly, these phenotypes were enhanced by expressing the Slingshot (SSH phosphatase, which during development promotes actin depolymerization by dephosphorylating cofilin. However, our studies suggest that in the adult SSH promotes actin polymerization, supporting in vitro studies using human SSH1 that suggested that SSH can also stabilize and bundle filamentous actin. Together with the observed increase in SSH levels in the loe mutant, our experiments suggest that in mature neurons SSH may function as a stabilization factor for filamentous actin instead of promoting actin depolymerization.

  6. Incorporation of mammalian actin into microfilaments in plant cell nucleus

    Directory of Open Access Journals (Sweden)

    Paves Heiti

    2004-04-01

    Full Text Available Abstract Background Actin is an ancient molecule that shows more than 90% amino acid homology between mammalian and plant actins. The regions of the actin molecule that are involved in F-actin assembly are largely conserved, and it is likely that mammalian actin is able to incorporate into microfilaments in plant cells but there is no experimental evidence until now. Results Visualization of microfilaments in onion bulb scale epidermis cells by different techniques revealed that rhodamine-phalloidin stained F-actin besides cytoplasm also in the nuclei whereas GFP-mouse talin hybrid protein did not enter the nuclei. Microinjection of fluorescently labeled actin was applied to study the presence of nuclear microfilaments in plant cells. Ratio imaging of injected fluorescent rabbit skeletal muscle actin and phalloidin staining of the microinjected cells showed that mammalian actin was able to incorporate into plant F-actin. The incorporation occurred preferentially in the nucleus and in the perinuclear region of plant cells whereas part of plant microfilaments, mostly in the periphery of cytoplasm, did not incorporate mammalian actin. Conclusions Microinjected mammalian actin is able to enter plant cell's nucleus, whereas incorporation of mammalian actin into plant F-actin occurs preferentially in the nucleus and perinuclear area.

  7. Sequential actin-based pushing forces drive meiosis I chromosome migration and symmetry breaking in oocytes

    Science.gov (United States)

    Yi, Kexi; Rubinstein, Boris; Unruh, Jay R.; Guo, Fengli; Slaughter, Brian D.

    2013-01-01

    Polar body extrusion during oocyte maturation is critically dependent on asymmetric positioning of the meiotic spindle, which is established through migration of the meiosis I (MI) spindle/chromosomes from the oocyte interior to a subcortical location. In this study, we show that MI chromosome migration is biphasic and driven by consecutive actin-based pushing forces regulated by two actin nucleators, Fmn2, a formin family protein, and the Arp2/3 complex. Fmn2 was recruited to endoplasmic reticulum structures surrounding the MI spindle, where it nucleated actin filaments to initiate an initially slow and poorly directed motion of the spindle away from the cell center. A fast and highly directed second migration phase was driven by actin-mediated cytoplasmic streaming and occurred as the chromosomes reach a sufficient proximity to the cortex to activate the Arp2/3 complex. We propose that decisive symmetry breaking in mouse oocytes results from Fmn2-mediated perturbation of spindle position and the positive feedback loop between chromosome signal-induced Arp2/3 activation and Arp2/3-orchestrated cytoplasmic streaming that transports the chromosomes. PMID:23439682

  8. Validation of commonly used reference genes for sleep-related gene expression studies

    Directory of Open Access Journals (Sweden)

    Castro Rosa MRPS

    2009-05-01

    Full Text Available Abstract Background Sleep is a restorative process and is essential for maintenance of mental and physical health. In an attempt to understand the complexity of sleep, multidisciplinary strategies, including genetic approaches, have been applied to sleep research. Although quantitative real time PCR has been used in previous sleep-related gene expression studies, proper validation of reference genes is currently lacking. Thus, we examined the effect of total or paradoxical sleep deprivation (TSD or PSD on the expression stability of the following frequently used reference genes in brain and blood: beta-actin (b-actin, beta-2-microglobulin (B2M, glyceraldehyde-3-phosphate dehydrogenase (GAPDH, and hypoxanthine guanine phosphoribosyl transferase (HPRT. Results Neither TSD nor PSD affected the expression stability of all tested genes in both tissues indicating that b-actin, B2M, GAPDH and HPRT are appropriate reference genes for the sleep-related gene expression studies. In order to further verify these results, the relative expression of brain derived neurotrophic factor (BDNF and glycerol-3-phosphate dehydrogenase1 (GPD1 was evaluated in brain and blood, respectively. The normalization with each of four reference genes produced similar pattern of expression in control and sleep deprived rats, but subtle differences in the magnitude of expression fold change were observed which might affect the statistical significance. Conclusion This study demonstrated that sleep deprivation does not alter the expression stability of commonly used reference genes in brain and blood. Nonetheless, the use of multiple reference genes in quantitative RT-PCR is required for the accurate results.

  9. The Bacterial Actin MamK

    Science.gov (United States)

    Ozyamak, Ertan; Kollman, Justin; Agard, David A.; Komeili, Arash

    2013-01-01

    It is now recognized that actin-like proteins are widespread in bacteria and, in contrast to eukaryotic actins, are highly diverse in sequence and function. The bacterial actin, MamK, represents a clade, primarily found in magnetotactic bacteria, that is involved in the proper organization of subcellular organelles, termed magnetosomes. We have previously shown that MamK from Magnetospirillum magneticum AMB-1 (AMB-1) forms dynamic filaments in vivo. To gain further insights into the molecular mechanisms that underlie MamK dynamics and function, we have now studied the in vitro properties of MamK. We demonstrate that MamK is an ATPase that, in the presence of ATP, assembles rapidly into filaments that disassemble once ATP is depleted. The mutation of a conserved active site residue (E143A) abolishes ATPase activity of MamK but not its ability to form filaments. Filament disassembly depends on both ATPase activity and potassium levels, the latter of which results in the organization of MamK filaments into bundles. These data are consistent with observations indicating that accessory factors are required to promote filament disassembly and for spatial organization of filaments in vivo. We also used cryo-electron microscopy to obtain a high resolution structure of MamK filaments. MamK adopts a two-stranded helical filament architecture, but unlike eukaryotic actin and other actin-like filaments, subunits in MamK strands are unstaggered giving rise to a unique filament architecture. Beyond extending our knowledge of the properties and function of MamK in magnetotactic bacteria, this study emphasizes the functional and structural diversity of bacterial actins in general. PMID:23204522

  10. Gene Structures, Evolution and Transcriptional Profiling of the WRKY Gene Family in Castor Bean (Ricinus communis L.).

    Science.gov (United States)

    Zou, Zhi; Yang, Lifu; Wang, Danhua; Huang, Qixing; Mo, Yeyong; Xie, Guishui

    2016-01-01

    WRKY proteins comprise one of the largest transcription factor families in plants and form key regulators of many plant processes. This study presents the characterization of 58 WRKY genes from the castor bean (Ricinus communis L., Euphorbiaceae) genome. Compared with the automatic genome annotation, one more WRKY-encoding locus was identified and 20 out of the 57 predicted gene models were manually corrected. All RcWRKY genes were shown to contain at least one intron in their coding sequences. According to the structural features of the present WRKY domains, the identified RcWRKY genes were assigned to three previously defined groups (I-III). Although castor bean underwent no recent whole-genome duplication event like physic nut (Jatropha curcas L., Euphorbiaceae), comparative genomics analysis indicated that one gene loss, one intron loss and one recent proximal duplication occurred in the RcWRKY gene family. The expression of all 58 RcWRKY genes was supported by ESTs and/or RNA sequencing reads derived from roots, leaves, flowers, seeds and endosperms. Further global expression profiles with RNA sequencing data revealed diverse expression patterns among various tissues. Results obtained from this study not only provide valuable information for future functional analysis and utilization of the castor bean WRKY genes, but also provide a useful reference to investigate the gene family expansion and evolution in Euphorbiaceus plants.

  11. Measurement and Analysis of in vitro Actin Polymerization

    Science.gov (United States)

    Doolittle, Lynda K.; Rosen, Michael K.; Padrick, Shae B.

    2014-01-01

    Summary The polymerization of actin underlies force generation in numerous cellular processes. While actin polymerization can occur spontaneously, cells maintain control over this important process by preventing actin filament nucleation and then allowing stimulated polymerization and elongation by several regulated factors. Actin polymerization, regulated nucleation and controlled elongation activities can be reconstituted in vitro, and used to probe the signaling cascades cells use to control when and where actin polymerization occurs. Introducing a pyrene fluorophore allows detection of filament formation by an increase in pyrene fluorescence. This method has been used for many years and continues to be broadly used, owing to its simplicity and flexibility. Here we describe how to perform and analyze these in vitro actin polymerization assays, with an emphasis on extracting useful descriptive parameters from kinetic data. PMID:23868594

  12. Actin polymerisation at the cytoplasmic face of eukaryotic nuclei

    Directory of Open Access Journals (Sweden)

    David-Watine Brigitte

    2006-05-01

    Full Text Available Abstract Background There exists abundant molecular and ultra-structural evidence to suggest that cytoplasmic actin can physically interact with the nuclear envelope (NE membrane system. However, this interaction has yet to be characterised in living interphase cells. Results Using a fluorescent conjugate of the actin binding drug cytochalasin D (CD-BODIPY we provide evidence that polymerising actin accumulates in vicinity to the NE. In addition, both transiently expressed fluorescent actin and cytoplasmic micro-injection of fluorescent actin resulted in accumulation of actin at the NE-membrane. Consistent with the idea that the cytoplasmic phase of NE-membranes can support this novel pool of perinuclear actin polymerisation we show that isolated, intact, differentiated primary hepatocyte nuclei support actin polymerisation in vitro. Further this phenomenon was inhibited by treatments hindering steric access to outer-nuclear-membrane proteins (e.g. wheat germ agglutinin, anti-nesprin and anti-nucleoporin antibodies. Conclusion We conclude that actin polymerisation occurs around interphase nuclei of living cells at the cytoplasmic phase of NE-membranes.

  13. Hypertrophic stimulation increases beta-actin dynamics in adult feline cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Sundaravadivel Balasubramanian

    2010-07-01

    Full Text Available The myocardium responds to hemodynamic stress through cellular growth and organ hypertrophy. The impact of cytoskeletal elements on this process, however, is not fully understood. While alpha-actin in cardiomyocytes governs muscle contraction in combination with the myosin motor, the exact role of beta-actin has not been established. We hypothesized that in adult cardiomyocytes, as in non-myocytes, beta-actin can facilitate cytoskeletal rearrangement within cytoskeletal structures such as Z-discs. Using a feline right ventricular pressure overload (RVPO model, we measured the level and distribution of beta-actin in normal and pressure overloaded myocardium. Resulting data demonstrated enriched levels of beta-actin and enhanced translocation to the Triton-insoluble cytoskeletal and membrane skeletal complexes. In addition, RVPO in vivo and in vitro hypertrophic stimulation with endothelin (ET or insulin in isolated adult cardiomyocytes enhanced the content of polymerized fraction (F-actin of beta-actin. To determine the localization and dynamics of beta-actin, we adenovirally expressed GFP-tagged beta-actin in isolated adult cardiomyocytes. The ectopically expressed beta-actin-GFP localized to the Z-discs, costameres, and cell termini. Fluorescence recovery after photobleaching (FRAP measurements of beta-actin dynamics revealed that beta-actin at the Z-discs is constantly being exchanged with beta-actin from cytoplasmic pools and that this exchange is faster upon hypertrophic stimulation with ET or insulin. In addition, in electrically stimulated isolated adult cardiomyocytes, while beta-actin overexpression improved cardiomyocyte contractility, immunoneutralization of beta-actin resulted in a reduced contractility suggesting that beta-actin could be important for the contractile function of adult cardiomyocytes. These studies demonstrate the presence and dynamics of beta-actin in the adult cardiomyocyte and reinforce its usefulness in measuring

  14. Integrins in cell migration – the actin connection

    OpenAIRE

    Vicente-Manzanares, Miguel; Choi, Colin Kiwon; Horwitz, Alan Rick

    2008-01-01

    The connection between integrins and actin is driving the field of cell migration in new directions. Integrins and actin are coupled through a physical linkage, which provides traction for migration. Recent studies show the importance of this linkage in regulating adhesion organization and development. Actin polymerization orchestrates adhesion assembly near the leading edge of a migrating cell, and the dynamic cross-linking of actin filaments promotes adhesion maturat...

  15. Building bridges: formin1 of Arabidopsis forms a connection between the cell wall and the actin cytoskeleton.

    Science.gov (United States)

    Martinière, Alexandre; Gayral, Philippe; Hawes, Chris; Runions, John

    2011-04-01

    Actin microfilament (MF) organization and remodelling is critical to cell function. The formin family of actin binding proteins are involved in nucleating MFs in Arabidopsis thaliana. They all contain formin homology domains in the intracellular, C-terminal half of the protein that interacts with MFs. Formins in class I are usually targeted to the plasma membrane and this is true of Formin1 (AtFH1) of A. thaliana. In this study, we have investigated the extracellular domain of AtFH1 and we demonstrate that AtFH1 forms a bridge from the actin cytoskeleton, across the plasma membrane and is anchored within the cell wall. AtFH1 has a large, extracellular domain that is maintained by purifying selection and that contains four conserved regions, one of which is responsible for immobilising the protein. Protein anchoring within the cell wall is reduced in constructs that express truncations of the extracellular domain and in experiments in protoplasts without primary cell walls. The 18 amino acid proline-rich extracellular domain that is responsible for AtFH1 anchoring has homology with cell-wall extensins. We also have shown that anchoring of AtFH1 in the cell wall promotes actin bundling within the cell and that overexpression of AtFH1 has an inhibitory effect on organelle actin-dependant dynamics. Thus, the AtFH1 bridge provides stable anchor points for the actin cytoskeleton and is probably a crucial component of the signalling response and actin-remodelling mechanisms. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.

  16. Genome-wide identification of the SWEET gene family in wheat.

    Science.gov (United States)

    Gao, Yue; Wang, Zi Yuan; Kumar, Vikranth; Xu, Xiao Feng; Yuan, De Peng; Zhu, Xiao Feng; Li, Tian Ya; Jia, Baolei; Xuan, Yuan Hu

    2018-02-05

    The SWEET (sugars will eventually be exported transporter) family is a newly characterized group of sugar transporters. In plants, the key roles of SWEETs in phloem transport, nectar secretion, pollen nutrition, stress tolerance, and plant-pathogen interactions have been identified. SWEET family genes have been characterized in many plant species, but a comprehensive analysis of SWEET members has not yet been performed in wheat. Here, 59 wheat SWEETs (hereafter TaSWEETs) were identified through homology searches. Analyses of phylogenetic relationships, numbers of transmembrane helices (TMHs), gene structures, and motifs showed that TaSWEETs carrying 3-7 TMHs could be classified into four clades with 10 different types of motifs. Examination of the expression patterns of 18 SWEET genes revealed that a few are tissue-specific while most are ubiquitously expressed. In addition, the stem rust-mediated expression patterns of SWEET genes were monitored using a stem rust-susceptible cultivar, 'Little Club' (LC). The resulting data showed that the expression of five out of the 18 SWEETs tested was induced following inoculation. In conclusion, we provide the first comprehensive analysis of the wheat SWEET gene family. Information regarding the phylogenetic relationships, gene structures, and expression profiles of SWEET genes in different tissues and following stem rust disease inoculation will be useful in identifying the potential roles of SWEETs in specific developmental and pathogenic processes. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Extracellular Actin Is a Receptor for Mycoplasma hyopneumoniae

    Directory of Open Access Journals (Sweden)

    Benjamin B. A. Raymond

    2018-02-01

    Full Text Available Mycoplasma hyopneumoniae, an agriculturally important porcine pathogen, disrupts the mucociliary escalator causing ciliostasis, loss of cilial function, and epithelial cell death within the porcine lung. Losses to swine production due to growth rate retardation and reduced feed conversion efficiency are severe, and antibiotics are used heavily to control mycoplasmal pneumonia. Notably, little is known about the repertoire of host receptors that M. hyopneumoniae targets to facilitate colonization. Here we show, for the first time, that actin exists extracellularly on porcine epithelial monolayers (PK-15 using surface biotinylation and 3D-Structured Illumination Microscopy (3D-SIM, and that M. hyopneumoniae binds to the extracellular β-actin exposed on the surface of these cells. Consistent with this hypothesis we show: (i monoclonal antibodies that target β-actin significantly block the ability of M. hyopneumoniae to adhere and colonize PK-15 cells; (ii microtiter plate binding assays show that M. hyopneumoniae cells bind to monomeric G-actin in a dose dependent manner; (iii more than 100 M. hyopneumoniae proteins were recovered from affinity-chromatography experiments using immobilized actin as bait; and (iv biotinylated monomeric actin binds directly to M. hyopneumoniae proteins in ligand blotting studies. Specifically, we show that the P97 cilium adhesin possesses at least two distinct actin-binding regions, and binds monomeric actin with nanomolar affinity. Taken together, these observations suggest that actin may be an important receptor for M. hyopneumoniae within the swine lung and will aid in the future development of intervention strategies against this devastating pathogen. Furthermore, our observations have wider implications for extracellular actin as an important bacterial receptor.

  18. Extracellular Actin Is a Receptor for Mycoplasma hyopneumoniae.

    Science.gov (United States)

    Raymond, Benjamin B A; Madhkoor, Ranya; Schleicher, Ina; Uphoff, Cord C; Turnbull, Lynne; Whitchurch, Cynthia B; Rohde, Manfred; Padula, Matthew P; Djordjevic, Steven P

    2018-01-01

    Mycoplasma hyopneumoniae , an agriculturally important porcine pathogen, disrupts the mucociliary escalator causing ciliostasis, loss of cilial function, and epithelial cell death within the porcine lung. Losses to swine production due to growth rate retardation and reduced feed conversion efficiency are severe, and antibiotics are used heavily to control mycoplasmal pneumonia. Notably, little is known about the repertoire of host receptors that M. hyopneumoniae targets to facilitate colonization. Here we show, for the first time, that actin exists extracellularly on porcine epithelial monolayers (PK-15) using surface biotinylation and 3D-Structured Illumination Microscopy (3D-SIM), and that M. hyopneumoniae binds to the extracellular β-actin exposed on the surface of these cells. Consistent with this hypothesis we show: (i) monoclonal antibodies that target β-actin significantly block the ability of M. hyopneumoniae to adhere and colonize PK-15 cells; (ii) microtiter plate binding assays show that M. hyopneumoniae cells bind to monomeric G-actin in a dose dependent manner; (iii) more than 100 M. hyopneumoniae proteins were recovered from affinity-chromatography experiments using immobilized actin as bait; and (iv) biotinylated monomeric actin binds directly to M. hyopneumoniae proteins in ligand blotting studies. Specifically, we show that the P97 cilium adhesin possesses at least two distinct actin-binding regions, and binds monomeric actin with nanomolar affinity. Taken together, these observations suggest that actin may be an important receptor for M. hyopneumoniae within the swine lung and will aid in the future development of intervention strategies against this devastating pathogen. Furthermore, our observations have wider implications for extracellular actin as an important bacterial receptor.

  19. IFT88 influences chondrocyte actin organization and biomechanics.

    Science.gov (United States)

    Wang, Z; Wann, A K T; Thompson, C L; Hassen, A; Wang, W; Knight, M M

    2016-03-01

    Primary cilia are microtubule based organelles which control a variety of signalling pathways important in cartilage development, health and disease. This study examines the role of the intraflagellar transport (IFT) protein, IFT88, in regulating fundamental actin organisation and mechanics in articular chondrocytes. The study used an established chondrocyte cell line with and without hypomorphic mutation of IFT88 (IFT88(orpk)). Confocal microscopy was used to quantify F-actin and myosin IIB organisation. Viscoelastic cell and actin cortex mechanics were determined using micropipette aspiration with actin dynamics visualised in live cells transfected with LifeACT-GFP. IFT88(orpk) cells exhibited a significant increase in acto-myosin stress fibre organisation relative to wild-type (WT) cells in monolayer and an altered response to cytochalasin D. Rounded IFT88(orpk) cells cultured in suspension exhibited reduced cortical actin expression with reduced cellular equilibrium modulus. Micropipette aspiration resulted in reduced membrane bleb formation in IFT88(orpk) cells. Following membrane blebbing, IFT88(orpk) cells exhibited slower reformation of the actin cortex. IFT88(orpk) cells showed increased actin deformability and reduced cortical tension confirming that IFT regulates actin cortex mechanics. The reduced cortical tension is also consistent with the reduced bleb formation. This study demonstrates for the first time that the ciliary protein IFT88 regulates fundamental actin organisation and the stiffness of the actin cortex leading to alterations in cell deformation, mechanical properties and blebbing in an IFT88 chondrocyte cell line. This adds to the growing understanding of the role of primary cilia and IFT in regulating cartilage biology. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Prevalence and phenotypes of congenital myopathy due to α-actin 1 gene mutations

    DEFF Research Database (Denmark)

    Witting, Nanna; Werlauff, Ulla; Duno, Morten

    2016-01-01

    airway pressure. Limb flexor/extensor muscles and upper and lower extremities were affected equally. Pronounced neck flexor weakness was noted. CONCLUSIONS: Congenital myopathy caused by ACTA1 mutations is fatal in infancy in most cases. This study shows that the prevalence of α-actin myopathy in older...... patients with congenital myopathy is not negligible and that phenotypes can be quite mild....

  1. Characterization of the bovine pregnancy-associated glycoprotein gene family – analysis of gene sequences, regulatory regions within the promoter and expression of selected genes

    Directory of Open Access Journals (Sweden)

    Walker Angela M

    2009-04-01

    Full Text Available Abstract Background The Pregnancy-associated glycoproteins (PAGs belong to a large family of aspartic peptidases expressed exclusively in the placenta of species in the Artiodactyla order. In cattle, the PAG gene family is comprised of at least 22 transcribed genes, as well as some variants. Phylogenetic analyses have shown that the PAG family segregates into 'ancient' and 'modern' groupings. Along with sequence differences between family members, there are clear distinctions in their spatio-temporal distribution and in their relative level of expression. In this report, 1 we performed an in silico analysis of the bovine genome to further characterize the PAG gene family, 2 we scrutinized proximal promoter sequences of the PAG genes to evaluate the evolution pressures operating on them and to identify putative regulatory regions, 3 we determined relative transcript abundance of selected PAGs during pregnancy and, 4 we performed preliminary characterization of the putative regulatory elements for one of the candidate PAGs, bovine (bo PAG-2. Results From our analysis of the bovine genome, we identified 18 distinct PAG genes and 14 pseudogenes. We observed that the first 500 base pairs upstream of the translational start site contained multiple regions that are conserved among all boPAGs. However, a preponderance of conserved regions, that harbor recognition sites for putative transcriptional factors (TFs, were found to be unique to the modern boPAG grouping, but not the ancient boPAGs. We gathered evidence by means of Q-PCR and screening of EST databases to show that boPAG-2 is the most abundant of all boPAG transcripts. Finally, we provided preliminary evidence for the role of ETS- and DDVL-related TFs in the regulation of the boPAG-2 gene. Conclusion PAGs represent a relatively large gene family in the bovine genome. The proximal promoter regions of these genes display differences in putative TF binding sites, likely contributing to observed

  2. ARF6, PI3-kinase and host cell actin cytoskeleton in Toxoplasma gondii cell invasion

    International Nuclear Information System (INIS)

    Vieira da Silva, Claudio; Alves da Silva, Erika; Costa Cruz, Mario; Chavrier, Philippe; Arruda Mortara, Renato

    2009-01-01

    Toxoplasma gondii infects a variety of different cell types in a range of different hosts. Host cell invasion by T. gondii occurs by active penetration of the host cell, a process previously described as independent of host actin polymerization. Also, the parasitophorous vacuole has been shown to resist fusion with endocytic and exocytic pathways of the host cell. ADP-ribosylation factor-6 (ARF6) belongs to the ARF family of small GTP-binding proteins. ARF6 regulates membrane trafficking and actin cytoskeleton rearrangements at the plasma membrane. Here, we have observed that ARF6 is recruited to the parasitophorous vacuole of tachyzoites of T. gondii RH strain and it also plays an important role in the parasite cell invasion with activation of PI3-kinase and recruitment of PIP 2 and PIP 3 to the parasitophorous vacuole of invading parasites. Moreover, it was verified that maintenance of host cell actin cytoskeleton integrity is important to parasite invasion.

  3. Identification and characterization of NF-YB family genes in tung tree.

    Science.gov (United States)

    Yang, Susu; Wang, Yangdong; Yin, Hengfu; Guo, Haobo; Gao, Ming; Zhu, Huiping; Chen, Yicun

    2015-12-01

    The NF-YB transcription factor gene family encodes a subunit of the CCAAT box-binding factor (CBF), a highly conserved trimeric activator that strongly binds to the CCAAT box promoter element. Studies on model plants have shown that NF-YB proteins participate in important developmental and physiological processes, but little is known about NF-YB proteins in trees. Here, we identified seven NF-YB transcription factor-encoding genes in Vernicia fordii, an important oilseed tree in China. A phylogenetic analysis separated the genes into two groups; non-LEC1 type (VfNF-YB1, 5, 7, 9, 11, 13) and LEC1-type (VfNF-YB 14). A gene structure analysis showed that VfNF-YB 5 has three introns and the other genes have no introns. The seven VfNF-YB sequences contain highly conserved domains, a disordered region at the N terminus, and two long helix structures at the C terminus. Phylogenetic analyses showed that VfNF-YB family genes are highly homologous to GmNF-YB genes, and many of them are closely related to functionally characterized NF-YBs. In expression analyses of various tissues (root, stem, leaf, and kernel) and the root during pathogen infection, VfNF-YB1, 5, and 11 were dominantly expressed in kernels, and VfNF-YB7 and 9 were expressed only in the root. Different VfNF-YB family genes showed different responses to pathogen infection, suggesting that they play different roles in the pathogen response. Together, these findings represent the first extensive evaluation of the NF-YB family in tung tree and provide a foundation for dissecting the functions of VfNF-YB genes in seed development, stress adaption, fatty acid synthesis, and pathogen response.

  4. Bacterial Actins? An Evolutionary Perspective

    Science.gov (United States)

    Doolittle, Russell F.; York, Amanda L.

    2003-01-01

    According to the conventional wisdom, the existence of a cytoskeleton in eukaryotes and its absence in prokaryotes constitute a fundamental divide between the two domains of life. An integral part of the dogma is that a cytoskeleton enabled an early eukaryote to feed upon prokaryotes, a consequence of which was the occasional endosymbiosis and the eventual evolution of organelles. Two recent papers present compelling evidence that actin, one of the principal components of a cytoskeleton, has a homolog in Bacteria that behaves in many ways like eukaryotic actin. Sequence comparisons reveml that eukaryotic actin and the bacterial homolog (mreB protein), unlike many other proteins common to eukaryotes and Bacteria, have very different and more highly extended evolutionary histories.

  5. Identification of the full-length β-actin sequence and expression profiles in the tree shrew (Tupaia belangeri).

    Science.gov (United States)

    Zheng, Yu; Yun, Chenxia; Wang, Qihui; Smith, Wanli W; Leng, Jing

    2015-02-01

    The tree shrew (Tupaia belangeri) diverges from the primate order (Primates) and is classified as a separate taxonomic group of mammals - Scandentia. It has been suggested that the tree shrew can be used as an animal model for studying human diseases; however, the genomic sequence of the tree shrew is largely unidentified. In the present study, we reported the full-length cDNA sequence of the housekeeping gene, β-actin, in the tree shrew. The amino acid sequence of β-actin in the tree shrew was compared to that of humans and other species; a simple phylogenetic relationship was discovered. Quantitative polymerase chain reaction (qPCR) and western blot analysis further demonstrated that the expression profiles of β-actin, as a general conservative housekeeping gene, in the tree shrew were similar to those in humans, although the expression levels varied among different types of tissue in the tree shrew. Our data provide evidence that the tree shrew has a close phylogenetic association with humans. These findings further enhance the potential that the tree shrew, as a species, may be used as an animal model for studying human disorders.

  6. Duplications and losses in gene families of rust pathogens highlight putative effectors.

    Science.gov (United States)

    Pendleton, Amanda L; Smith, Katherine E; Feau, Nicolas; Martin, Francis M; Grigoriev, Igor V; Hamelin, Richard; Nelson, C Dana; Burleigh, J Gordon; Davis, John M

    2014-01-01

    Rust fungi are a group of fungal pathogens that cause some of the world's most destructive diseases of trees and crops. A shared characteristic among rust fungi is obligate biotrophy, the inability to complete a lifecycle without a host. This dependence on a host species likely affects patterns of gene expansion, contraction, and innovation within rust pathogen genomes. The establishment of disease by biotrophic pathogens is reliant upon effector proteins that are encoded in the fungal genome and secreted from the pathogen into the host's cell apoplast or within the cells. This study uses a comparative genomic approach to elucidate putative effectors and determine their evolutionary histories. We used OrthoMCL to identify nearly 20,000 gene families in proteomes of 16 diverse fungal species, which include 15 basidiomycetes and one ascomycete. We inferred patterns of duplication and loss for each gene family and identified families with distinctive patterns of expansion/contraction associated with the evolution of rust fungal genomes. To recognize potential contributors for the unique features of rust pathogens, we identified families harboring secreted proteins that: (i) arose or expanded in rust pathogens relative to other fungi, or (ii) contracted or were lost in rust fungal genomes. While the origin of rust fungi appears to be associated with considerable gene loss, there are many gene duplications associated with each sampled rust fungal genome. We also highlight two putative effector gene families that have expanded in Cqf that we hypothesize have roles in pathogenicity.

  7. Genomewide analysis of TCP transcription factor gene family in ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Genetics; Volume 93; Issue 3. Genomewide ... Teosinte branched1/cycloidea/proliferating cell factor1 (TCP) proteins are a large family of transcriptional regulators in angiosperms. They are ... To the best of our knowledge, this is the first study of a genomewide analysis of apple TCP gene family.

  8. Stress generation by myosin minifilaments in actin bundles

    International Nuclear Information System (INIS)

    Dasanayake, Nilushi L; Carlsson, Anders E

    2013-01-01

    Forces and stresses generated by the action of myosin minifilaments are analyzed in idealized computer-generated actin bundles, and compared to results for isotropic actin networks. The bundles are generated as random collections of actin filaments in two dimensions with constrained orientations, crosslinked and attached to two fixed walls. Myosin minifilaments are placed on actin filament pairs and allowed to move and deform the network so that it exerts forces on the walls. The vast majority of simulation runs end with contractile minifilament stress, because minifilaments rotate into energetically stable contractile configurations. This process is aided by the bending and stretching of actin filaments, which accomodate minifilament rotation. Stresses for bundles are greater than those for isotropic networks, and antiparallel filaments generate more tension than parallel filaments. The forces transmitted by the actin network to the walls of the simulation cell often exceed the tension in the minifilament itself. (paper)

  9. Involvement of the actin cytoskeleton and p21rho-family GTPases in the pathogenesis of the human protozoan parasite Entamoeba histolytica

    Directory of Open Access Journals (Sweden)

    G.D. Godbold

    1998-08-01

    Full Text Available It has been estimated that infection with the enteric protozoan parasite Entamoeba histolytica kills more than 50,000 people a year. Central to the pathogenesis of this organism is its ability to directly lyse host cells and cause tissue destruction. Amebic lesions show evidence of cell lysis, tissue necrosis, and damage to the extracellular matrix. The specific molecular mechanisms by which these events are initiated, transmitted, and effected are just beginning to be uncovered. In this article we review what is known about host cell adherence and contact-dependent cytolysis. We cover the involvement of the actin cytoskeleton and small GTP-binding proteins of the p21rho-family in the process of cell killing and phagocytosis, and also look at how amebic interactions with molecules of the extracellular matrix contribute to its cytopathic effects.

  10. The SKP1-like gene family of Arabidopsis exhibits a high degree of differential gene expression and gene product interaction during development.

    Directory of Open Access Journals (Sweden)

    Mohammad H Dezfulian

    Full Text Available The Arabidopsis thaliana genome encodes several families of polypeptides that are known or predicted to participate in the formation of the SCF-class of E3-ubiquitin ligase complexes. One such gene family encodes the Skp1-like class of polypeptide subunits, where 21 genes have been identified and are known to be expressed in Arabidopsis. Phylogenetic analysis based on deduced polypeptide sequence organizes the family of ASK proteins into 7 clades. The complexity of the ASK gene family, together with the close structural similarity among its members raises the prospect of significant functional redundancy among select paralogs. We have assessed the potential for functional redundancy within the ASK gene family by analyzing an expanded set of criteria that define redundancy with higher resolution. The criteria used include quantitative expression of locus-specific transcripts using qRT-PCR, assessment of the sub-cellular localization of individual ASK:YFP auto-fluorescent fusion proteins expressed in vivo as well as the in planta assessment of individual ASK-F-Box protein interactions using bimolecular fluorescent complementation techniques in combination with confocal imagery in live cells. The results indicate significant functional divergence of steady state transcript abundance and protein-protein interaction specificity involving ASK proteins in a pattern that is poorly predicted by sequence-based phylogeny. The information emerging from this and related studies will prove important for defining the functional intersection of expression, localization and gene product interaction that better predicts the formation of discrete SCF complexes, as a prelude to investigating their molecular mode of action.

  11. The Role of a Novel TRMT1 Gene Mutation and Rare GRM1 Gene Defect in Intellectual Disability in Two Azeri Families.

    Science.gov (United States)

    Davarniya, Behzad; Hu, Hao; Kahrizi, Kimia; Musante, Luciana; Fattahi, Zohreh; Hosseini, Masoumeh; Maqsoud, Fariba; Farajollahi, Reza; Wienker, Thomas F; Ropers, H Hilger; Najmabadi, Hossein

    2015-01-01

    Cognitive impairment or intellectual disability (ID) is a widespread neurodevelopmental disorder characterized by low IQ (below 70). ID is genetically heterogeneous and is estimated to affect 1-3% of the world's population. In affected children from consanguineous families, autosomal recessive inheritance is common, and identifying the underlying genetic cause is an important issue in clinical genetics. In the framework of a larger project, aimed at identifying candidate genes for autosomal recessive intellectual disorder (ARID), we recently carried out single nucleotide polymorphism-based genome-wide linkage analysis in several families from Ardabil province in Iran. The identification of homozygosity-by-descent loci in these families, in combination with whole exome sequencing, led us to identify possible causative homozygous changes in two families. In the first family, a missense variant was found in GRM1 gene, while in the second family, a frameshift alteration was identified in TRMT1, both of which were found to co-segregate with the disease. GRM1, a known causal gene for autosomal recessive spinocerebellar ataxia (SCAR13, MIM#614831), encodes the metabotropic glutamate receptor1 (mGluR1). This gene plays an important role in synaptic plasticity and cerebellar development. Conversely, the TRMT1 gene encodes a tRNA methyltransferase that dimethylates a single guanine residue at position 26 of most tRNAs using S-adenosyl methionine as the methyl group donor. We recently presented TRMT1 as a candidate gene for ARID in a consanguineous Iranian family (Najmabadi et al., 2011). We believe that this second Iranian family with a biallelic loss-of-function mutation in TRMT1 gene supports the idea that this gene likely has function in development of the disorder.

  12. Murine Adseverin (D5), a Novel Member of the Gelsolin Family, and Murine Adseverin Are Induced by Interleukin-9 in T-Helper Lymphocytes

    Science.gov (United States)

    Robbens, Johan; Louahed, Jamila; De Pestel, Kathleen; Van Colen, Inge; Ampe, Christophe; Vandekerckhove, Joel; Renauld, Jean-Christophe

    1998-01-01

    We identified a number of upregulated genes by differential screening of interleukin-9-stimulated T-helper lymphocytes. Interestingly, two of these messengers encode proteins that are similar to proteins of the gelsolin family. The first displays a typical structure of six homologous domains and shows a high level of identity (90%) with bovine adseverin (or scinderin) and may therefore be considered the murine adseverin homolog. The second encodes a protein with only five segments. Sequence comparison shows that most of the fifth segment and a short amino-terminal part of the sixth segment (amino acids 528 to 628 of adseverin) are missing, and thus, this form may represent an alternatively spliced product derived from the same gene. The corresponding protein is called mouse adseverin (D5). We expressed both proteins in Escherichia coli and show that mouse adseverin displays the typical characteristics of all members of the gelsolin family with respect to actin binding (capping, severing, and nucleation) and its regulation by Ca2+. In contrast, mouse adseverin (D5) fails to nucleate actin polymerization, although like mouse adseverin and gelsolin, it severs and caps actin filaments in a Ca2+-dependent manner. Adseverin is present in all of the tissues and most of the cell lines tested, although at low concentrations. Mouse adseverin (D5) was found only in blood cells and in cell lines derived from T-helper lymphocytes and mast cells, where it is weakly expressed. In a gel filtration experiment, we demonstrated that mouse adseverin forms a 1:2 complex with G actin which is stable only in the presence of Ca2+, while no stable complex was observed for mouse adseverin (D5). PMID:9671468

  13. Changes in Actin Organization During the Cytotoxic Process

    NARCIS (Netherlands)

    Radosevic, K.; Radosevic, Katarina; van Leeuwen, Anne Marie T.; Segers-Nolten, Gezina M.J.; Figdor, Carl; de Grooth, B.G.; Greve, Jan

    1994-01-01

    Changes in organization of F-actin during the cytotoxic process between NK and K562 cells have been observed and studied using confpcal laser scanning microscopy and quantitative fluorescence microscopy. An increase in F-actin content and orientation of F-actin towards the target cell have been

  14. Mutations in a Novel Isoform of TRIOBP That Encodes a Filamentous-Actin Binding Protein Are Responsible for DFNB28 Recessive Nonsyndromic Hearing Loss

    Science.gov (United States)

    Shahin, Hashem; Walsh, Tom; Sobe, Tama; Abu Sa’ed, Judeh; Abu Rayan, Amal; Lynch, Eric D.; Lee, Ming K.; Avraham, Karen B.; King, Mary-Claire; Kanaan, Moein

    2006-01-01

    In a large consanguineous Palestinian kindred, we previously mapped DFNB28—a locus associated with recessively inherited, prelingual, profound sensorineural hearing impairment—to chromosome 22q13.1. We report here that mutations in a novel 218-kDa isoform of TRIOBP (TRIO and filamentous actin [F-actin] binding protein) are associated with DFNB28 hearing loss in a total of nine Palestinian families. Two nonsense mutations (R347X and Q581X) truncate the protein, and a potentially deleterious missense mutation (G1019R) occurs in a conserved motif in a putative SH3-binding domain. In seven families, 27 deaf individuals are homozygous for one of the nonsense mutations; in two other families, 3 deaf individuals are compound heterozygous for the two nonsense mutations or for Q581X and G1019R. The novel long isoform of TRIOBP has a restricted expression profile, including cochlea, retina, and fetal brain, whereas the original short isoform is widely expressed. Antibodies to TRIOBP reveal expression in sensory cells of the inner ear and colocalization with F-actin along the length of the stereocilia. PMID:16385458

  15. Conservation, Divergence, and Genome-Wide Distribution of PAL and POX A Gene Families in Plants.

    Science.gov (United States)

    Rawal, H C; Singh, N K; Sharma, T R

    2013-01-01

    Genome-wide identification and phylogenetic and syntenic comparison were performed for the genes responsible for phenylalanine ammonia lyase (PAL) and peroxidase A (POX A) enzymes in nine plant species representing very diverse groups like legumes (Glycine max and Medicago truncatula), fruits (Vitis vinifera), cereals (Sorghum bicolor, Zea mays, and Oryza sativa), trees (Populus trichocarpa), and model dicot (Arabidopsis thaliana) and monocot (Brachypodium distachyon) species. A total of 87 and 1045 genes in PAL and POX A gene families, respectively, have been identified in these species. The phylogenetic and syntenic comparison along with motif distributions shows a high degree of conservation of PAL genes, suggesting that these genes may predate monocot/eudicot divergence. The POX A family genes, present in clusters at the subtelomeric regions of chromosomes, might be evolving and expanding with higher rate than the PAL gene family. Our analysis showed that during the expansion of POX A gene family, many groups and subgroups have evolved, resulting in a high level of functional divergence among monocots and dicots. These results will act as a first step toward the understanding of monocot/eudicot evolution and functional characterization of these gene families in the future.

  16. Conservation, Divergence, and Genome-Wide Distribution of PAL and POX A Gene Families in Plants

    Directory of Open Access Journals (Sweden)

    H. C. Rawal

    2013-01-01

    Full Text Available Genome-wide identification and phylogenetic and syntenic comparison were performed for the genes responsible for phenylalanine ammonia lyase (PAL and peroxidase A (POX A enzymes in nine plant species representing very diverse groups like legumes (Glycine max and Medicago truncatula, fruits (Vitis vinifera, cereals (Sorghum bicolor, Zea mays, and Oryza sativa, trees (Populus trichocarpa, and model dicot (Arabidopsis thaliana and monocot (Brachypodium distachyon species. A total of 87 and 1045 genes in PAL and POX A gene families, respectively, have been identified in these species. The phylogenetic and syntenic comparison along with motif distributions shows a high degree of conservation of PAL genes, suggesting that these genes may predate monocot/eudicot divergence. The POX A family genes, present in clusters at the subtelomeric regions of chromosomes, might be evolving and expanding with higher rate than the PAL gene family. Our analysis showed that during the expansion of POX A gene family, many groups and subgroups have evolved, resulting in a high level of functional divergence among monocots and dicots. These results will act as a first step toward the understanding of monocot/eudicot evolution and functional characterization of these gene families in the future.

  17. Antibodies to actin in autoimmune haemolytic anaemia

    Directory of Open Access Journals (Sweden)

    Ritzmann Mathias

    2010-03-01

    Full Text Available Abstract Background In autoimmune haemolytic anaemia (AIHA, autoreactive antibodies directed against red blood cells are up-regulated, leading to erythrocyte death. Mycoplasma suis infections in pigs induce AIHA of both the warm and cold types. The aim of this study was to identify the target autoantigens of warm autoreactive IgG antibodies. Sera from experimentally M. suis-infected pigs were screened for autoreactivity. Results Actin-reactive antibodies were found in the sera of 95% of all animals tested. The reactivity was species-specific, i.e. reactivity with porcine actin was significantly higher than with rabbit actin. Sera of animals previously immunised with the M. suis adhesion protein MSG1 showed reactivity with actin prior to infection with M. suis indicating that molecular mimicry is involved in the specific autoreactive mechanism. A potentially cross-reactive epitope was detected. Conclusions This is the first report of autoreactive anti-actin antibodies involved in the pathogenesis of autoimmune haemolytic anaemia.

  18. Structural Basis of Actin Filament Nucleation by Tandem W Domains

    Science.gov (United States)

    Chen, Xiaorui; Ni, Fengyun; Tian, Xia; Kondrashkina, Elena; Wang, Qinghua; Ma, Jianpeng

    2013-01-01

    SUMMARY Spontaneous nucleation of actin is very inefficient in cells. To overcome this barrier, cells have evolved a set of actin filament nucleators to promote rapid nucleation and polymerization in response to specific stimuli. However, the molecular mechanism of actin nucleation remains poorly understood. This is hindered largely by the fact that actin nucleus, once formed, rapidly polymerizes into filament, thus making it impossible to capture stable multisubunit actin nucleus. Here, we report an effective double-mutant strategy to stabilize actin nucleus by preventing further polymerization. Employing this strategy, we solved the crystal structure of AMPPNP-actin in complex with the first two tandem W domains of Cordon-bleu (Cobl), a potent actin filament nucleator. Further sequence comparison and functional studies suggest that the nucleation mechanism of Cobl is probably shared by the p53 cofactor JMY, but not Spire. Moreover, the double-mutant strategy opens the way for atomic mechanistic study of actin nucleation and polymerization. PMID:23727244

  19. Selection of Reliable Reference Genes for Gene Expression Studies in the Biofuel Plant Jatropha curcas Using Real-Time Quantitative PCR

    Directory of Open Access Journals (Sweden)

    Lu Zhang

    2013-12-01

    Full Text Available Jatropha curcas is a promising renewable feedstock for biodiesel and bio-jet fuel production. To study gene expression in Jatropha in different tissues throughout development and under stress conditions, we examined a total of 11 typical candidate reference genes using real-time quantitative polymerase chain reaction (RT-qPCR analysis, which is widely used for validating transcript levels in gene expression studies. The expression stability of these candidate reference genes was assessed across a total of 20 samples, including various tissues at vegetative and reproductive stages and under desiccation and cold stress treatments. The results obtained using software qBasePLUS showed that the top-ranked reference genes differed across the sample subsets. The combination of actin, GAPDH, and EF1α would be appropriate as a reference panel for normalizing gene expression data across samples at different developmental stages; the combination of actin, GAPDH, and TUB5 should be used as a reference panel for normalizing gene expression data across samples under various abiotic stress treatments. With regard to different developmental stages, we recommend the use of actin and TUB8 for normalization at the vegetative stage and GAPDH and EF1α for normalization at the reproductive stage. For abiotic stress treatments, we recommend the use of TUB5 and TUB8 for normalization under desiccation stress and GAPDH and actin for normalization under cold stress. These results are valuable for future research on gene expression during development or under abiotic stress in Jatropha. To our knowledge, this is the first report on the stability of reference genes in Jatropha.

  20. Gene Environment Interactions and Predictors of Colorectal Cancer in Family-Based, Multi-Ethnic Groups.

    Science.gov (United States)

    Shiao, S Pamela K; Grayson, James; Yu, Chong Ho; Wasek, Brandi; Bottiglieri, Teodoro

    2018-02-16

    For the personalization of polygenic/omics-based health care, the purpose of this study was to examine the gene-environment interactions and predictors of colorectal cancer (CRC) by including five key genes in the one-carbon metabolism pathways. In this proof-of-concept study, we included a total of 54 families and 108 participants, 54 CRC cases and 54 matched family friends representing four major racial ethnic groups in southern California (White, Asian, Hispanics, and Black). We used three phases of data analytics, including exploratory, family-based analyses adjusting for the dependence within the family for sharing genetic heritage, the ensemble method, and generalized regression models for predictive modeling with a machine learning validation procedure to validate the results for enhanced prediction and reproducibility. The results revealed that despite the family members sharing genetic heritage, the CRC group had greater combined gene polymorphism rates than the family controls ( p relation to gene-environment interactions in the prevention of CRC.

  1. Genomewide analysis of MATE-type gene family in maize reveals ...

    Indian Academy of Sciences (India)

    Huasheng Zhu and Jiandong Wu contributed equally to this work. As a group of secondary active transporters, the MATE gene family consists of multiple genes that widely exist in ..... Roots of the stress-treated plants were collected at 0,.

  2. Networks Models of Actin Dynamics during Spermatozoa Postejaculatory Life: A Comparison among Human-Made and Text Mining-Based Models

    Directory of Open Access Journals (Sweden)

    Nicola Bernabò

    2016-01-01

    Full Text Available Here we realized a networks-based model representing the process of actin remodelling that occurs during the acquisition of fertilizing ability of human spermatozoa (HumanMade_ActinSpermNetwork, HM_ASN. Then, we compared it with the networks provided by two different text mining tools: Agilent Literature Search (ALS and PESCADOR. As a reference, we used the data from the online repository Kyoto Encyclopaedia of Genes and Genomes (KEGG, referred to the actin dynamics in a more general biological context. We found that HM_ALS and the networks from KEGG data shared the same scale-free topology following the Barabasi-Albert model, thus suggesting that the information is spread within the network quickly and efficiently. On the contrary, the networks obtained by ALS and PESCADOR have a scale-free hierarchical architecture, which implies a different pattern of information transmission. Also, the hubs identified within the networks are different: HM_ALS and KEGG networks contain as hubs several molecules known to be involved in actin signalling; ALS was unable to find other hubs than “actin,” whereas PESCADOR gave some nonspecific result. This seems to suggest that the human-made information retrieval in the case of a specific event, such as actin dynamics in human spermatozoa, could be a reliable strategy.

  3. Genome-wide identification and characterization of WRKY gene family in Salix suchowensis.

    Science.gov (United States)

    Bi, Changwei; Xu, Yiqing; Ye, Qiaolin; Yin, Tongming; Ye, Ning

    2016-01-01

    WRKY proteins are the zinc finger transcription factors that were first identified in plants. They can specifically interact with the W-box, which can be found in the promoter region of a large number of plant target genes, to regulate the expressions of downstream target genes. They also participate in diverse physiological and growing processes in plants. Prior to this study, a plenty of WRKY genes have been identified and characterized in herbaceous species, but there is no large-scale study of WRKY genes in willow. With the whole genome sequencing of Salix suchowensis, we have the opportunity to conduct the genome-wide research for willow WRKY gene family. In this study, we identified 85 WRKY genes in the willow genome and renamed them from SsWRKY1 to SsWRKY85 on the basis of their specific distributions on chromosomes. Due to their diverse structural features, the 85 willow WRKY genes could be further classified into three main groups (group I-III), with five subgroups (IIa-IIe) in group II. With the multiple sequence alignment and the manual search, we found three variations of the WRKYGQK heptapeptide: WRKYGRK, WKKYGQK and WRKYGKK, and four variations of the normal zinc finger motif, which might execute some new biological functions. In addition, the SsWRKY genes from the same subgroup share the similar exon-intron structures and conserved motif domains. Further studies of SsWRKY genes revealed that segmental duplication events (SDs) played a more prominent role in the expansion of SsWRKY genes. Distinct expression profiles of SsWRKY genes with RNA sequencing data revealed that diverse expression patterns among five tissues, including tender roots, young leaves, vegetative buds, non-lignified stems and barks. With the analyses of WRKY gene family in willow, it is not only beneficial to complete the functional and annotation information of WRKY genes family in woody plants, but also provide important references to investigate the expansion and evolution of

  4. Duplications and losses in gene families of rust pathogens highlight putative effectors

    Directory of Open Access Journals (Sweden)

    Amanda L. Pendleton

    2014-06-01

    Full Text Available Rust fungi are a group of fungal pathogens that cause some of the world’s most destructive diseases of trees and crops. A shared characteristic among rust fungi is obligate biotrophy, the inability to complete a lifecycle without a host. This dependence on a host species likely affects patterns of gene expansion, contraction, and innovation within rust pathogen genomes. The establishment of disease by biotrophic pathogens is reliant upon effector proteins that are encoded in the fungal genome and secreted from the pathogen into the host’s cell apoplast or within the cells. This study uses a comparative genomic approach to elucidate putative effectors and determine their evolutionary histories. We used OrthoMCL to identify nearly 20,000 gene families in proteomes of sixteen diverse fungal species, which include fifteen basidiomycetes and one ascomycete. We inferred patterns of duplication and loss for each gene family and identified families with distinctive patterns of expansion/contraction associated with the evolution of rust fungal genomes. To recognize potential contributors for the unique features of rust pathogens, we identified families harboring secreted proteins that: i arose or expanded in rust pathogens relative to other fungi, or ii contracted or were lost in rust fungal genomes. While the origin of rust fungi appears to be associated with considerable gene loss, there are many gene duplications associated with each sampled rust fungal genome. We also highlight two putative effector gene families that have expanded in Cqf that we hypothesize have roles in pathogenicity.

  5. Mutation analysis of pre-mRNA splicing genes in Chinese families with retinitis pigmentosa

    Science.gov (United States)

    Pan, Xinyuan; Chen, Xue; Liu, Xiaoxing; Gao, Xiang; Kang, Xiaoli; Xu, Qihua; Chen, Xuejuan; Zhao, Kanxing; Zhang, Xiumei; Chu, Qiaomei; Wang, Xiuying

    2014-01-01

    Purpose Seven genes involved in precursor mRNA (pre-mRNA) splicing have been implicated in autosomal dominant retinitis pigmentosa (adRP). We sought to detect mutations in all seven genes in Chinese families with RP, to characterize the relevant phenotypes, and to evaluate the prevalence of mutations in splicing genes in patients with adRP. Methods Six unrelated families from our adRP cohort (42 families) and two additional families with RP with uncertain inheritance mode were clinically characterized in the present study. Targeted sequence capture with next-generation massively parallel sequencing (NGS) was performed to screen mutations in 189 genes including all seven pre-mRNA splicing genes associated with adRP. Variants detected with NGS were filtered with bioinformatics analyses, validated with Sanger sequencing, and prioritized with pathogenicity analysis. Results Mutations in pre-mRNA splicing genes were identified in three individual families including one novel frameshift mutation in PRPF31 (p.Leu366fs*1) and two known mutations in SNRNP200 (p.Arg681His and p.Ser1087Leu). The patients carrying SNRNP200 p.R681H showed rapid disease progression, and the family carrying p.S1087L presented earlier onset ages and more severe phenotypes compared to another previously reported family with p.S1087L. In five other families, we identified mutations in other RP-related genes, including RP1 p. Ser781* (novel), RP2 p.Gln65* (novel) and p.Ile137del (novel), IMPDH1 p.Asp311Asn (recurrent), and RHO p.Pro347Leu (recurrent). Conclusions Mutations in splicing genes identified in the present and our previous study account for 9.5% in our adRP cohort, indicating the important role of pre-mRNA splicing deficiency in the etiology of adRP. Mutations in the same splicing gene, or even the same mutation, could correlate with different phenotypic severities, complicating the genotype–phenotype correlation and clinical prognosis. PMID:24940031

  6. Endophilin A1 Promotes Actin Polymerization in Dendritic Spines Required for Synaptic Potentiation

    Directory of Open Access Journals (Sweden)

    Yanrui Yang

    2018-05-01

    Full Text Available Endophilin A1 is a member of the N-BAR domain-containing endophilin A protein family that is involved in membrane dynamics and trafficking. At the presynaptic terminal, endophilin As participate in synaptic vesicle recycling and autophagosome formation. By gene knockout studies, here we report that postsynaptic endophilin A1 functions in synaptic plasticity. Ablation of endophilin A1 in the hippocampal CA1 region of mature mouse brain impairs long-term spatial and contextual fear memory. Its loss in CA1 neurons postsynaptic of the Schaffer collateral pathway causes impairment in their AMPA-type glutamate receptor-mediated synaptic transmission and long-term potentiation. In KO neurons, defects in the structural and functional plasticity of dendritic spines can be rescued by overexpression of endophilin A1 but not A2 or A3. Further, endophilin A1 promotes actin polymerization in dendritic spines during synaptic potentiation. These findings reveal a physiological role of endophilin A1 distinct from that of other endophilin As at the postsynaptic site.

  7. Effect of nickel on the organization of actin filaments in Arabidopsis thaliana primary root cells

    International Nuclear Information System (INIS)

    Goryunova, I.I.; Krasilenko, Yu.A.; Emets, A.I.; Blyum, Ya.B.

    2016-01-01

    The influence of one of the most toxic heavy metals - nickel (Ni 2+ ) - on the organization of actin filaments (microfilaments) of different types of Arabidopsis thaliana (L.) root cells is studied in living cells by the laser scanning microscopy. To visualize microfilaments, the A. thaliana line expressing chimeric gene gfp-fabd2 was used. Ni 2+ leads to a significant inhibition of the growth of the main root and disturbs its morphology, causing the swelling of epidermal cells and inducing a large number of abnormally long root hairs. For the first time, it has been shown that Ni 2+ disturbs the organization of actin filaments in cells, leading to morphological changes of a root as the main organ, being the first exposed to the intoxication by soil pollutants. It is found that the most sensitive to its action are actin filaments of epidermal cells of all growth zones of A. thaliana root

  8. The Eucalyptus terpene synthase gene family.

    Science.gov (United States)

    Külheim, Carsten; Padovan, Amanda; Hefer, Charles; Krause, Sandra T; Köllner, Tobias G; Myburg, Alexander A; Degenhardt, Jörg; Foley, William J

    2015-06-11

    Terpenoids are abundant in the foliage of Eucalyptus, providing the characteristic smell as well as being valuable economically and influencing ecological interactions. Quantitative and qualitative inter- and intra- specific variation of terpenes is common in eucalypts. The genome sequences of Eucalyptus grandis and E. globulus were mined for terpene synthase genes (TPS) and compared to other plant species. We investigated the relative expression of TPS in seven plant tissues and functionally characterized five TPS genes from E. grandis. Compared to other sequenced plant genomes, Eucalyptus grandis has the largest number of putative functional TPS genes of any sequenced plant. We discovered 113 and 106 putative functional TPS genes in E. grandis and E. globulus, respectively. All but one TPS from E. grandis were expressed in at least one of seven plant tissues examined. Genomic clusters of up to 20 genes were identified. Many TPS are expressed in tissues other than leaves which invites a re-evaluation of the function of terpenes in Eucalyptus. Our data indicate that terpenes in Eucalyptus may play a wider role in biotic and abiotic interactions than previously thought. Tissue specific expression is common and the possibility of stress induction needs further investigation. Phylogenetic comparison of the two investigated Eucalyptus species gives insight about recent evolution of different clades within the TPS gene family. While the majority of TPS genes occur in orthologous pairs some clades show evidence of recent gene duplication, as well as loss of function.

  9. Probing GFP-actin diffusion in living cells using fluorescence correlation spectroscopy

    International Nuclear Information System (INIS)

    Engelke, Hanna; Heinrich, Doris; Rädler, Joachim O.

    2010-01-01

    The cytoskeleton of eukaryotic cells is continuously remodeled by polymerization and depolymerization of actin. Consequently, the relative content of polymerized filamentous actin (F-actin) and monomeric globular actin (G-actin) is subject to temporal and spatial fluctuations. Since fluorescence correlation spectroscopy (FCS) can measure the diffusion of fluorescently labeled actin it seems likely that FCS allows us to determine the dynamics and hence indirectly the structural properties of the cytoskeleton components with high spatial resolution. To this end we investigate the FCS signal of GFP-actin in living Dictyostelium discoideum cells and explore the inherent spatial and temporal signatures of the actin cytoskeleton. Using the free green fluorescent protein (GFP) as a reference, we find that actin diffusion inside cells is dominated by G-actin and slower than diffusion in diluted cell extract. The FCS signal in the dense cortical F-actin network near the cell membrane is probed using the cytoskeleton protein LIM and is found to be slower than cytosolic G-actin diffusion. Furthermore, we show that polymerization of the cytoskeleton induced by Jasplakinolide leads to a substantial decrease of G-actin diffusion. Pronounced fluctuations in the distribution of the FCS correlation curves can be induced by latrunculin, which is known to induce actin waves. Our work suggests that the FCS signal of GFP-actin in combination with scanning or spatial correlation techniques yield valuable information about the local dynamics and concomitant cytoskeletal properties

  10. Members of the barley NAC transcription factor gene family show differential co-regulation with senescence-associated genes during senescence of flag leaves

    DEFF Research Database (Denmark)

    Christiansen, Michael W; Gregersen, Per L.

    2014-01-01

    -expressed with members of the NAC gene family. In conclusion, a list of up to 15 NAC genes from barley that are strong candidates for being regulatory factors of importance for senescence and biotic stress-related traits affecting the productivity of cereal crop plants has been generated. Furthermore, a list of 71...... in the NAC transcription factor family during senescence of barley flag leaves was studied. Several members of the NAC transcription factor gene family were up-regulated during senescence in a microarray experiment, together with a large range of senescence-associated genes, reflecting the coordinated...... activation of degradation processes in senescing barley leaf tissues. This picture was confirmed in a detailed quantitative reverse transcription–PCR (qRT–PCR) experiment, which also showed distinct gene expression patterns for different members of the NAC gene family, suggesting a group of ~15 out of the 47...

  11. Chronic Actinic Dermatitis

    Directory of Open Access Journals (Sweden)

    Bengü Çevirgen Cemil

    2017-06-01

    Full Text Available Chronic actinic dermatitis (CAD is characterized by persistent eczema-like lesions, mainly on sun-exposed sites, induced by ultraviolet B, sometimes ultraviolet A, and occasionally visible light. CAD is a rare photodermatitis. It is often associated with contact allergens including airborne allergens such as fragrances, plant antigens and topical medications. A 62 year old farmer is applied with eczematous lesions restricted to sun-exposed areas. Clinical findings and histopathologic features were consistent with the diagnosis of chronic actinic dermatitis. The patient also had contact allergy to multiple allergens. We present this case to emphasize the significance of patch test on CAD treatment and the success of topical tacrolimus and azathioprine.

  12. Actinic Granuloma with Focal Segmental Glomerulosclerosis

    Directory of Open Access Journals (Sweden)

    Ruedee Phasukthaworn

    2016-02-01

    Full Text Available Actinic granuloma is an uncommon granulomatous disease, characterized by annular erythematous plaque with central clearing predominately located on sun-damaged skin. The pathogenesis is not well understood, ultraviolet radiation is recognized as precipitating factor. We report a case of a 52-year-old woman who presented with asymptomatic annular erythematous plaques on the forehead and both cheeks persisting for 2 years. The clinical presentation and histopathologic findings support the diagnosis of actinic granuloma. During that period of time, she also developed focal segmental glomerulosclerosis. The association between actinic granuloma and focal segmental glomerulosclerosis needs to be clarified by further studies.

  13. A Requirement for Mena, an Actin Regulator, in Local mRNA Translation in Developing Neurons.

    Science.gov (United States)

    Vidaki, Marina; Drees, Frauke; Saxena, Tanvi; Lanslots, Erwin; Taliaferro, Matthew J; Tatarakis, Antonios; Burge, Christopher B; Wang, Eric T; Gertler, Frank B

    2017-08-02

    During neuronal development, local mRNA translation is required for axon guidance and synaptogenesis, and dysregulation of this process contributes to multiple neurodevelopmental and cognitive disorders. However, regulation of local protein synthesis in developing axons remains poorly understood. Here, we uncover a novel role for the actin-regulatory protein Mena in the formation of a ribonucleoprotein complex that involves the RNA-binding proteins HnrnpK and PCBP1 and regulates local translation of specific mRNAs in developing axons. We find that translation of dyrk1a, a Down syndrome- and autism spectrum disorders-related gene, is dependent on Mena, both in steady-state conditions and upon BDNF stimulation. We identify hundreds of additional mRNAs that associate with the Mena complex, suggesting that it plays broader role(s) in post-transcriptional gene regulation. Our work establishes a dual role for Mena in neurons, providing a potential link between regulation of actin dynamics and local translation. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. The Role of a Novel TRMT1 Gene Mutation and Rare GRM1 Gene Defect in Intellectual Disability in Two Azeri Families.

    Directory of Open Access Journals (Sweden)

    Behzad Davarniya

    Full Text Available Cognitive impairment or intellectual disability (ID is a widespread neurodevelopmental disorder characterized by low IQ (below 70. ID is genetically heterogeneous and is estimated to affect 1-3% of the world's population. In affected children from consanguineous families, autosomal recessive inheritance is common, and identifying the underlying genetic cause is an important issue in clinical genetics. In the framework of a larger project, aimed at identifying candidate genes for autosomal recessive intellectual disorder (ARID, we recently carried out single nucleotide polymorphism-based genome-wide linkage analysis in several families from Ardabil province in Iran. The identification of homozygosity-by-descent loci in these families, in combination with whole exome sequencing, led us to identify possible causative homozygous changes in two families. In the first family, a missense variant was found in GRM1 gene, while in the second family, a frameshift alteration was identified in TRMT1, both of which were found to co-segregate with the disease. GRM1, a known causal gene for autosomal recessive spinocerebellar ataxia (SCAR13, MIM#614831, encodes the metabotropic glutamate receptor1 (mGluR1. This gene plays an important role in synaptic plasticity and cerebellar development. Conversely, the TRMT1 gene encodes a tRNA methyltransferase that dimethylates a single guanine residue at position 26 of most tRNAs using S-adenosyl methionine as the methyl group donor. We recently presented TRMT1 as a candidate gene for ARID in a consanguineous Iranian family (Najmabadi et al., 2011. We believe that this second Iranian family with a biallelic loss-of-function mutation in TRMT1 gene supports the idea that this gene likely has function in development of the disorder.

  15. The Role of a Novel TRMT1 Gene Mutation and Rare GRM1 Gene Defect in Intellectual Disability in Two Azeri Families

    Science.gov (United States)

    Kahrizi, Kimia; Musante, Luciana; Fattahi, Zohreh; Hosseini, Masoumeh; Maqsoud, Fariba; Farajollahi, Reza; Wienker, Thomas F.; Ropers, H. Hilger; Najmabadi, Hossein

    2015-01-01

    Cognitive impairment or intellectual disability (ID) is a widespread neurodevelopmental disorder characterized by low IQ (below 70). ID is genetically heterogeneous and is estimated to affect 1–3% of the world’s population. In affected children from consanguineous families, autosomal recessive inheritance is common, and identifying the underlying genetic cause is an important issue in clinical genetics. In the framework of a larger project, aimed at identifying candidate genes for autosomal recessive intellectual disorder (ARID), we recently carried out single nucleotide polymorphism-based genome-wide linkage analysis in several families from Ardabil province in Iran. The identification of homozygosity-by-descent loci in these families, in combination with whole exome sequencing, led us to identify possible causative homozygous changes in two families. In the first family, a missense variant was found in GRM1 gene, while in the second family, a frameshift alteration was identified in TRMT1, both of which were found to co-segregate with the disease. GRM1, a known causal gene for autosomal recessive spinocerebellar ataxia (SCAR13, MIM#614831), encodes the metabotropic glutamate receptor1 (mGluR1). This gene plays an important role in synaptic plasticity and cerebellar development. Conversely, the TRMT1 gene encodes a tRNA methyltransferase that dimethylates a single guanine residue at position 26 of most tRNAs using S-adenosyl methionine as the methyl group donor. We recently presented TRMT1 as a candidate gene for ARID in a consanguineous Iranian family (Najmabadi et al., 2011). We believe that this second Iranian family with a biallelic loss-of-function mutation in TRMT1 gene supports the idea that this gene likely has function in development of the disorder. PMID:26308914

  16. The ACBP gene family in Rhodnius prolixus

    DEFF Research Database (Denmark)

    Majerowicz, David; Hannibal-Bach, Hans K; Castro, Rodolfo S C

    2016-01-01

    The acyl-CoA-binding proteins (ACBP) constitute a family of conserved proteins that bind acyl-CoA with high affinity and protect it from hydrolysis. Thus, ACBPs may have essential roles in basal cellular lipid metabolism. The genome of the insect Rhodnius prolixus encodes five ACBP genes similar...

  17. Ring closure in actin polymers

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, Supurna, E-mail: supurna@rri.res.in [Raman Research Institute, Bangalore 560080 (India); Chattopadhyay, Sebanti [Doon University, Dehradun 248001 (India)

    2017-03-18

    We present an analysis for the ring closure probability of semiflexible polymers within the pure bend Worm Like Chain (WLC) model. The ring closure probability predicted from our analysis can be tested against fluorescent actin cyclization experiments. We also discuss the effect of ring closure on bend angle fluctuations in actin polymers. - Highlights: • Ring closure of biopolymers. • Worm like chain model. • Predictions for experiments.

  18. Identification of the 14-3-3 gene family in Rafflesia cantleyi

    Science.gov (United States)

    Rosli, Khadijah; Wan, Kiew-Lian

    2018-04-01

    Rafflesia is known to be the largest flower in the world. Due to its size and appearance, it is considered to be very unique. Little is known about the molecular biology of this rare parasitic flowering plant as it is very difficult to locate and has a short life-span as a flower. Physiological activities in plants are regulated by signalling regulators such as the members of the 14-3-3 gene family. The number of members of this gene family varies in plants and there are thirteen known members in Arabidopsis thaliana. Their role is to bind to phosphorylated targets to complete signal transduction processes. Sequence comparison using BLAST of transcriptome data from three different Rafflesia cantleyi floral bud stages against the Swissprot database revealed 27 transcripts annotated as members of this gene family. All of the transcripts were expressed during floral bud stage 1 (S1) while 14 and four transcripts were expressed during floral bud stages 2 (S2) and 3 (S3), respectively. Significant downregulation was recorded for six and nine transcripts at S1 vs. S2 and S2 vs. S3 respectively. This gene family may play a critical role as signalling regulators during the development of Rafflesia floral bud.

  19. Identification and expression profiling analysis of TCP family genes involved in growth and development in maize.

    Science.gov (United States)

    Chai, Wenbo; Jiang, Pengfei; Huang, Guoyu; Jiang, Haiyang; Li, Xiaoyu

    2017-10-01

    The TCP family is a group of plant-specific transcription factors. TCP genes encode proteins harboring bHLH structure, which is implicated in DNA binding and protein-protein interactions and known as the TCP domain. TCP genes play important roles in plant development and have been evolutionarily and functionally elaborated in various plants, however, no overall phylogenetic analysis or expression profiling of TCP genes in Zea mays has been reported. In the present study, a systematic analysis of molecular evolution and functional prediction of TCP family genes in maize ( Z . mays L.) has been conducted. We performed a genome-wide survey of TCP genes in maize, revealing the gene structure, chromosomal location and phylogenetic relationship of family members. Microsynteny between grass species and tissue-specific expression profiles were also investigated. In total, 29 TCP genes were identified in the maize genome, unevenly distributed on the 10 maize chromosomes. Additionally, ZmTCP genes were categorized into nine classes based on phylogeny and purifying selection may largely be responsible for maintaining the functions of maize TCP genes. What's more, microsynteny analysis suggested that TCP genes have been conserved during evolution. Finally, expression analysis revealed that most TCP genes are expressed in the stem and ear, which suggests that ZmTCP genes influence stem and ear growth. This result is consistent with the previous finding that maize TCP genes represses the growth of axillary organs and enables the formation of female inflorescences. Altogether, this study presents a thorough overview of TCP family in maize and provides a new perspective on the evolution of this gene family. The results also indicate that TCP family genes may be involved in development stage in plant growing conditions. Additionally, our results will be useful for further functional analysis of the TCP gene family in maize.

  20. APC gene mutations and extraintestinal phenotype of familial adenomatous polyposis

    NARCIS (Netherlands)

    Giardiello, F. M.; Petersen, G. M.; Piantadosi, S.; Gruber, S. B.; Traboulsi, E. I.; Offerhaus, G. J.; Muro, K.; Krush, A. J.; Booker, S. V.; Luce, M. C.; Laken, S. J.; Kinzler, K. W.; Vogelstein, B.; Hamilton, S. R.

    1997-01-01

    Familial adenomatous polyposis (FAP) is caused by germline mutation of the adenomatous polyposis coli (APC) gene on chromosome 5q. This study assessed genotype-phenotype correlations for extraintestinal lesions in FAP. Mutations of the APC gene were compared with the occurrence of seven

  1. Coordination of membrane and actin cytoskeleton dynamics during filopodia protrusion.

    Directory of Open Access Journals (Sweden)

    Changsong Yang

    2009-05-01

    Full Text Available Leading edge protrusion of migrating cells involves tightly coordinated changes in the plasma membrane and actin cytoskeleton. It remains unclear whether polymerizing actin filaments push and deform the membrane, or membrane deformation occurs independently and is subsequently stabilized by actin filaments. To address this question, we employed an ability of the membrane-binding I-BAR domain of IRSp53 to uncouple the membrane and actin dynamics and to induce filopodia in expressing cells. Using time-lapse imaging and electron microscopy of IRSp53-I-BAR-expressing B16F1 melanoma cells, we demonstrate that cells are not able to protrude or maintain durable long extensions without actin filaments in their interior, but I-BAR-dependent membrane deformation can create a small and transient space at filopodial tips that is subsequently filled with actin filaments. Moreover, the expressed I-BAR domain forms a submembranous coat that may structurally support these transient actin-free protrusions until they are further stabilized by the actin cytoskeleton. Actin filaments in the I-BAR-induced filopodia, in contrast to normal filopodia, do not have a uniform length, are less abundant, poorly bundled, and display erratic dynamics. Such unconventional structural organization and dynamics of actin in I-BAR-induced filopodia suggests that a typical bundle of parallel actin filaments is not necessary for generation and mechanical support of the highly asymmetric filopodial geometry. Together, our data suggest that actin filaments may not directly drive the protrusion, but only stabilize the space generated by the membrane deformation; yet, such stabilization is necessary for efficient protrusion.

  2. The conserved Tarp actin binding domain is important for chlamydial invasion.

    Directory of Open Access Journals (Sweden)

    Travis J Jewett

    2010-07-01

    Full Text Available The translocated actin recruiting phosphoprotein (Tarp is conserved among all pathogenic chlamydial species. Previous reports identified single C. trachomatis Tarp actin binding and proline rich domains required for Tarp mediated actin nucleation. A peptide antiserum specific for the Tarp actin binding domain was generated and inhibited actin polymerization in vitro and C. trachomatis entry in vivo, indicating an essential role for Tarp in chlamydial pathogenesis. Sequence analysis of Tarp orthologs from additional chlamydial species and C. trachomatis serovars indicated multiple putative actin binding sites. In order to determine whether the identified actin binding domains are functionally conserved, GST-Tarp fusions from multiple chlamydial species were examined for their ability to bind and nucleate actin. Chlamydial Tarps harbored variable numbers of actin binding sites and promoted actin nucleation as determined by in vitro polymerization assays. Our findings indicate that Tarp mediated actin binding and nucleation is a conserved feature among diverse chlamydial species and this function plays a critical role in bacterial invasion of host cells.

  3. Identification and analysis of YELLOW protein family genes in the silkworm, Bombyx mori

    Directory of Open Access Journals (Sweden)

    Yi Yong-Zhu

    2006-08-01

    Full Text Available Abstract Background The major royal jelly proteins/yellow (MRJP/YELLOW family possesses several physiological and chemical functions in the development of Apis mellifera and Drosophila melanogaster. Each protein of the family has a conserved domain named MRJP. However, there is no report of MRJP/YELLOW family proteins in the Lepidoptera. Results Using the YELLOW protein sequence in Drosophila melanogaster to BLAST silkworm EST database, we found a gene family composed of seven members with a conserved MRJP domain each and named it YELLOW protein family of Bombyx mori. We completed the cDNA sequences with RACE method. The protein of each member possesses a MRJP domain and a putative cleavable signal peptide consisting of a hydrophobic sequence. In view of genetic evolution, the whole Bm YELLOW protein family composes a monophyletic group, which is distinctly separate from Drosophila melanogaster and Apis mellifera. We then showed the tissue expression profiles of Bm YELLOW protein family genes by RT-PCR. Conclusion A Bombyx mori YELLOW protein family is found to be composed of at least seven members. The low homogeneity and unique pattern of gene expression by each member among the family ensure us to prophesy that the members of Bm YELLOW protein family would play some important physiological functions in silkworm development.

  4. The microRNA-200 family coordinately regulates cell adhesion and proliferation in hair morphogenesis.

    Science.gov (United States)

    Hoefert, Jaimee E; Bjerke, Glen A; Wang, Dongmei; Yi, Rui

    2018-06-04

    The microRNA (miRNA)-200 (miR-200) family is highly expressed in epithelial cells and frequently lost in metastatic cancer. Despite intensive studies into their roles in cancer, their targets and functions in normal epithelial tissues remain unclear. Importantly, it remains unclear how the two subfamilies of the five-miRNA family, distinguished by a single nucleotide within the seed region, regulate their targets. By directly ligating miRNAs to their targeted mRNA regions, we identify numerous miR-200 targets involved in the regulation of focal adhesion, actin cytoskeleton, cell cycle, and Hippo/Yap signaling. The two subfamilies bind to largely distinct target sites, but many genes are coordinately regulated by both subfamilies. Using inducible and knockout mouse models, we show that the miR-200 family regulates cell adhesion and orientation in the hair germ, contributing to precise cell fate specification and hair morphogenesis. Our findings demonstrate that combinatorial targeting of many genes is critical for miRNA function and provide new insights into miR-200's functions. © 2018 Hoefert et al.

  5. The map-1 gene family in root-knot nematodes, Meloidogyne spp.: a set of taxonomically restricted genes specific to clonal species.

    Directory of Open Access Journals (Sweden)

    Iva Tomalova

    Full Text Available Taxonomically restricted genes (TRGs, i.e., genes that are restricted to a limited subset of phylogenetically related organisms, may be important in adaptation. In parasitic organisms, TRG-encoded proteins are possible determinants of the specificity of host-parasite interactions. In the root-knot nematode (RKN Meloidogyne incognita, the map-1 gene family encodes expansin-like proteins that are secreted into plant tissues during parasitism, thought to act as effectors to promote successful root infection. MAP-1 proteins exhibit a modular architecture, with variable number and arrangement of 58 and 13-aa domains in their central part. Here, we address the evolutionary origins of this gene family using a combination of bioinformatics and molecular biology approaches. Map-1 genes were solely identified in one single member of the phylum Nematoda, i.e., the genus Meloidogyne, and not detected in any other nematode, thus indicating that the map-1 gene family is indeed a TRG family. A phylogenetic analysis of the distribution of map-1 genes in RKNs further showed that these genes are specifically present in species that reproduce by mitotic parthenogenesis, with the exception of M. floridensis, and could not be detected in RKNs reproducing by either meiotic parthenogenesis or amphimixis. These results highlight the divergence between mitotic and meiotic RKN species as a critical transition in the evolutionary history of these parasites. Analysis of the sequence conservation and organization of repeated domains in map-1 genes suggests that gene duplication(s together with domain loss/duplication have contributed to the evolution of the map-1 family, and that some strong selection mechanism may be acting upon these genes to maintain their functional role(s in the specificity of the plant-RKN interactions.

  6. Search for intracranial aneurysm susceptibility gene(s using Finnish families

    Directory of Open Access Journals (Sweden)

    Ryynänen Markku

    2002-08-01

    Full Text Available Abstract Background Cerebrovascular disease is the third leading cause of death in the United States, and about one-fourth of cerebrovascular deaths are attributed to ruptured intracranial aneurysms (IA. Epidemiological evidence suggests that IAs cluster in families, and are therefore probably genetic. Identification of individuals at risk for developing IAs by genetic tests will allow concentration of diagnostic imaging on high-risk individuals. We used model-free linkage analysis based on allele sharing with a two-stage design for a genome-wide scan to identify chromosomal regions that may harbor IA loci. Methods We previously estimated sibling relative risk in the Finnish population at between 9 and 16, and proceeded with a genome-wide scan for loci predisposing to IA. In 85 Finnish families with two or more affected members, 48 affected sibling pairs (ASPs were available for our genetic study. Power calculations indicated that 48 ASPs were adequate to identify chromosomal regions likely to harbor predisposing genes and that a liberal stage I lod score threshold of 0.8 provided a reasonable balance between detection of false positive regions and failure to detect real loci with moderate effect. Results Seven chromosomal regions exceeded the stage I lod score threshold of 0.8 and five exceeded 1.0. The most significant region, on chromosome 19q, had a maximum multipoint lod score (MLS of 2.6. Conclusions Our study provides evidence for the locations of genes predisposing to IA. Further studies are necessary to elucidate the genes and their role in the pathophysiology of IA, and to design genetic tests.

  7. Expressional and Biochemical Characterization of Rice Disease Resistance Gene Xa3/Xa26 Family

    Institute of Scientific and Technical Information of China (English)

    Songjie Xu; Yinglong Cao; Xianghua Li; Shiping Wang

    2007-01-01

    The rice (Oryza sativa L.) Xa3/Xa26 gene, conferring race-specific resistance to bacterial blight disease and encoding a leucine-rich repeat (LRR) receptor kinase-like protein, belongs to a multigene family consisting of tandem clustered homologous genes, colocalizing with several uncharacterized genes for resistance to bacterial blight or fungal blast. To provide more information on the expressional and biochemical characteristics of the Xa3/Xa26 family, we analyzed the family members. Four Xa3/Xa26 family members in the indica rice variety Teqing, which carries a bacterial blight resistance gene with a chromosomal location tightly linked to Xa3/Xa26, and five Xa3/Xa26 family members in the japonica rice variety Nipponbare, which carries at least one uncharacterized blast resistance gene, were constitutively expressed in leaf tissue. The result suggests that some of the family members may be candidates of these uncharacterized resistance genes. At least five putative N-glycosylation sites in the LRR domain of XA3/XA26 protein are not glycosylated. The XA3/XA26 and its family members MRKa and MRKc all possess the consensus sequences of paired cysteines, which putatively function in dimerization of the receptor proteins for signal transduction, immediately before the first LRR and immediately after the last LRR. However, no homo-dimer between the XA3/XA26 molecules or hetero-dimer between XA3/XA26 and MRKa or MRKc were formed, indicating that XA3/XA26 protein might function either as a monomer or a hetero-dimer formed with other protein outside of the XA3/XA26 family. These results provide valuable information for further extensive investigation into this multiple protein family.

  8. A family with X-linked anophthalmia: exclusion of SOX3 as a candidate gene.

    Science.gov (United States)

    Slavotinek, Anne; Lee, Stephen S; Hamilton, Steven P

    2005-10-01

    We report on a four-generation family with X-linked anophthalmia in four affected males and show that this family has LOD scores consistent with linkage to Xq27, the third family reported to be linked to the ANOP1 locus. We sequenced the SOX3 gene at Xq27 as a candidate gene for the X-linked anophthalmia based on the high homology of this gene to SOX2, a gene previously mutated in bilateral anophthlamia. However, no amino acid sequence alterations were identified in SOX3. We have improved the definition of the phenotype in males with anophthalmia linked to the ANOP1 locus, as microcephaly, ocular colobomas, and severe renal malformations have not been described in families linked to ANOP1. (c) 2005 Wiley-Liss, Inc.

  9. Natural killer cell receptor genes in the family Equidae: not only Ly49.

    Directory of Open Access Journals (Sweden)

    Jan Futas

    Full Text Available Natural killer (NK cells have important functions in immunity. NK recognition in mammals can be mediated through killer cell immunoglobulin-like receptors (KIR and/or killer cell lectin-like Ly49 receptors. Genes encoding highly variable NK cell receptors (NKR represent rapidly evolving genomic regions. No single conservative model of NKR genes was observed in mammals. Single-copy low polymorphic NKR genes present in one mammalian species may expand into highly polymorphic multigene families in other species. In contrast to other non-rodent mammals, multiple Ly49-like genes appear to exist in the horse, while no functional KIR genes were observed in this species. In this study, Ly49 and KIR were sought and their evolution was characterized in the entire family Equidae. Genomic sequences retrieved showed the presence of at least five highly conserved polymorphic Ly49 genes in horses, asses and zebras. These findings confirmed that the expansion of Ly49 occurred in the entire family. Several KIR-like sequences were also identified in the genome of Equids. Besides a previously identified non-functional KIR-Immunoglobulin-like transcript fusion gene (KIR-ILTA and two putative pseudogenes, a KIR3DL-like sequence was analyzed. In contrast to previous observations made in the horse, the KIR3DL sequence, genomic organization and mRNA expression suggest that all Equids might produce a functional KIR receptor protein molecule with a single non-mutated immune tyrosine-based inhibition motif (ITIM domain. No evidence for positive selection in the KIR3DL gene was found. Phylogenetic analysis including rhinoceros and tapir genomic DNA and deduced amino acid KIR-related sequences showed differences between families and even between species within the order Perissodactyla. The results suggest that the order Perissodactyla and its family Equidae with expanded Ly49 genes and with a potentially functional KIR gene may represent an interesting model for

  10. Natural Killer Cell Receptor Genes in the Family Equidae: Not only Ly49

    Science.gov (United States)

    Futas, Jan; Horin, Petr

    2013-01-01

    Natural killer (NK) cells have important functions in immunity. NK recognition in mammals can be mediated through killer cell immunoglobulin-like receptors (KIR) and/or killer cell lectin-like Ly49 receptors. Genes encoding highly variable NK cell receptors (NKR) represent rapidly evolving genomic regions. No single conservative model of NKR genes was observed in mammals. Single-copy low polymorphic NKR genes present in one mammalian species may expand into highly polymorphic multigene families in other species. In contrast to other non-rodent mammals, multiple Ly49-like genes appear to exist in the horse, while no functional KIR genes were observed in this species. In this study, Ly49 and KIR were sought and their evolution was characterized in the entire family Equidae. Genomic sequences retrieved showed the presence of at least five highly conserved polymorphic Ly49 genes in horses, asses and zebras. These findings confirmed that the expansion of Ly49 occurred in the entire family. Several KIR-like sequences were also identified in the genome of Equids. Besides a previously identified non-functional KIR-Immunoglobulin-like transcript fusion gene (KIR-ILTA) and two putative pseudogenes, a KIR3DL-like sequence was analyzed. In contrast to previous observations made in the horse, the KIR3DL sequence, genomic organization and mRNA expression suggest that all Equids might produce a functional KIR receptor protein molecule with a single non-mutated immune tyrosine-based inhibition motif (ITIM) domain. No evidence for positive selection in the KIR3DL gene was found. Phylogenetic analysis including rhinoceros and tapir genomic DNA and deduced amino acid KIR-related sequences showed differences between families and even between species within the order Perissodactyla. The results suggest that the order Perissodactyla and its family Equidae with expanded Ly49 genes and with a potentially functional KIR gene may represent an interesting model for evolutionary biology of

  11. [Genome-wide identification and bioinformatic analysis of PPR gene family in tomato].

    Science.gov (United States)

    Ding, Anming; Li, Ling; Qu, Xu; Sun, Tingting; Chen, Yaqiong; Zong, Peng; Li, Zunqiang; Gong, Daping; Sun, Yuhe

    2014-01-01

    Pentatricopeptide repeats (PPRs) genes constitute one of the largest gene families in plants, which play a broad and essential role in plant growth and development. In this study, the protein sequences annotated by the tomato (S. lycopersicum L.) genome project were screened with the Pfam PPR sequences. A total of 471 putative PPR-encoding genes were identified. Based on the motifs defined in A. thaliana L., protein structure and conserved sequences for each tomato motif were analyzed. We also analyzed phylogenetic relationship, subcellular localization, expression and GO analysis of the identified gene sequences. Our results demonstrate that tomato PPR gene family contains two subfamilies, P and PLS, each accounting for half of the family. PLS subfamily can be divided into four subclasses i.e., PLS, E, E+ and DYW. Each subclass of sequences forms a clade in the phylogenetic tree. The PPR motifs were found highly conserved among plants. The tomato PPR genes were distributed over 12 chromosomes and most of them lack introns. The majority of PPR proteins harbor mitochondrial or chloroplast localization sequences, whereas GO analysis showed that most PPR proteins participate in RNA-related biological processes.

  12. Expression stability and selection of optimal reference genes for gene expression normalization in early life stage rainbow trout exposed to cadmium and copper.

    Science.gov (United States)

    Shekh, Kamran; Tang, Song; Niyogi, Som; Hecker, Markus

    2017-09-01

    Gene expression analysis represents a powerful approach to characterize the specific mechanisms by which contaminants interact with organisms. One of the key considerations when conducting gene expression analyses using quantitative real-time reverse transcription-polymerase chain reaction (qPCR) is the selection of appropriate reference genes, which is often overlooked. Specifically, to reach meaningful conclusions when using relative quantification approaches, expression levels of reference genes must be highly stable and cannot vary as a function of experimental conditions. However, to date, information on the stability of commonly used reference genes across developmental stages, tissues and after exposure to contaminants such as metals is lacking for many vertebrate species including teleost fish. Therefore, in this study, we assessed the stability of expression of 8 reference gene candidates in the gills and skin of three different early life-stages of rainbow trout after acute exposure (24h) to two metals, cadmium (Cd) and copper (Cu) using qPCR. Candidate housekeeping genes were: beta actin (b-actin), DNA directed RNA polymerase II subunit I (DRP2), elongation factor-1 alpha (EF1a), glyceraldehyde 3-phosphate dehydrogenase (GAPDH), glucose-6-phosphate dehydrogenase (G6PD), hypoxanthine phosphoribosyltransferase (HPRT), ribosomal protein L8 (RPL8), and 18S ribosomal RNA (18S). Four algorithms, geNorm, NormFinder, BestKeeper, and the comparative ΔCt method were employed to systematically evaluate the expression stability of these candidate genes under control and exposed conditions as well as across three different life-stages. Finally, stability of genes was ranked by taking geometric means of the ranks established by the different methods. Stability of reference genes was ranked in the following order (from lower to higher stability): HPRTactin in gills of fish exposed to Cd; b-actin

  13. NDP gene mutations in 14 French families with Norrie disease.

    Science.gov (United States)

    Royer, Ghislaine; Hanein, Sylvain; Raclin, Valérie; Gigarel, Nadine; Rozet, Jean-Michel; Munnich, Arnold; Steffann, Julie; Dufier, Jean-Louis; Kaplan, Josseline; Bonnefont, Jean-Paul

    2003-12-01

    Norrie disease is a rare X-inked recessive condition characterized by congenital blindness and occasionally deafness and mental retardation in males. This disease has been ascribed to mutations in the NDP gene on chromosome Xp11.1. Previous investigations of the NDP gene have identified largely sixty disease-causing sequence variants. Here, we report on ten different NDP gene allelic variants in fourteen of a series of 21 families fulfilling inclusion criteria. Two alterations were intragenic deletions and eight were nucleotide substitutions or splicing variants, six of them being hitherto unreported, namely c.112C>T (p.Arg38Cys), c.129C>G (p.His43Gln), c.133G>A (p.Val45Met), c.268C>T (p.Arg90Cys), c.382T>C (p.Cys128Arg), c.23479-1G>C (unknown). No NDP gene sequence variant was found in seven of the 21 families. This observation raises the issue of misdiagnosis, phenocopies, or existence of other X-linked or autosomal genes, the mutations of which would mimic the Norrie disease phenotype. Copyright 2003 Wiley-Liss, Inc.

  14. Transgenic rats overexpressing the human MrgX3 gene show cataracts and an abnormal skin phenotype

    International Nuclear Information System (INIS)

    Kaisho, Yoshihiko; Watanabe, Takuya; Nakata, Mitsugu; Yano, Takashi; Yasuhara, Yoshitaka; Shimakawa, Kozo; Mori, Ikuo; Sakura, Yasufumi; Terao, Yasuko; Matsui, Hideki; Taketomi, Shigehisa

    2005-01-01

    The human MrgX3 gene, belonging to the mrgs/SNSRs (mass related genes/sensory neuron specific receptors) family, was overexpressed in transgenic rats using the actin promoter. Two animal lines showed cataracts with liquification/degeneration and swelling of the lens fiber cells. The transient epidermal desquamation was observed in line with higher gene expression. Histopathology of the transgenic rats showed acanthosis and focal parakeratosis. In the epidermis, there was an increase in cellular keratin 14, keratin 10, and loricrin, as well as PGP 9.5 in innervating nerve fibers. These phenotypes accompanied an increase in the number of proliferating cells. These results suggest that overexpression of the human MrgX3 gene causes a disturbance of the normal cell-differentiation process

  15. Fast and simple protein-alignment-guided assembly of orthologous gene families from microbiome sequencing reads.

    Science.gov (United States)

    Huson, Daniel H; Tappu, Rewati; Bazinet, Adam L; Xie, Chao; Cummings, Michael P; Nieselt, Kay; Williams, Rohan

    2017-01-25

    Microbiome sequencing projects typically collect tens of millions of short reads per sample. Depending on the goals of the project, the short reads can either be subjected to direct sequence analysis or be assembled into longer contigs. The assembly of whole genomes from metagenomic sequencing reads is a very difficult problem. However, for some questions, only specific genes of interest need to be assembled. This is then a gene-centric assembly where the goal is to assemble reads into contigs for a family of orthologous genes. We present a new method for performing gene-centric assembly, called protein-alignment-guided assembly, and provide an implementation in our metagenome analysis tool MEGAN. Genes are assembled on the fly, based on the alignment of all reads against a protein reference database such as NCBI-nr. Specifically, the user selects a gene family based on a classification such as KEGG and all reads binned to that gene family are assembled. Using published synthetic community metagenome sequencing reads and a set of 41 gene families, we show that the performance of this approach compares favorably with that of full-featured assemblers and that of a recently published HMM-based gene-centric assembler, both in terms of the number of reference genes detected and of the percentage of reference sequence covered. Protein-alignment-guided assembly of orthologous gene families complements whole-metagenome assembly in a new and very useful way.

  16. Diagnosing CADASIL using MRI: evidence from families with known mutations of Notch 3 gene

    International Nuclear Information System (INIS)

    Chawda, S.J.; Lange, R.P.J. de; St-Clair, D.; Hourihan, M.D.; Halpin, S.F.S.

    2000-01-01

    Clinical data and MRI findings are presented on 18 subjects from two families with neuropathologically confirmed CADASIL. DNA analysis revealed mutations in exon 4 of Notch 3 gene in both families. All family members with mutations in Notch 3 gene had extensive abnormalities on MRI, principally lesions in the white matter of the frontal lobes and in the external capsules. Of several family members in whom a diagnosis of CADASIL was suspected on the basis of minor symptoms, one had MRI changes consistent with CADASIL; none of these cases carried a mutation in the Notch 3 gene. MRI and clinical features that may alert the radiologist to the diagnosis of CADASIL are reviewed. However, a wide differential diagnosis exists for the MRI appearances of CADASIL, including multiple sclerosis and small-vessel disease secondary to hypertension. The definitive diagnosis cannot be made on MRI alone and requires additional evidence, where available, from a positive family history and by screening DNA for mutations of Notch 3 gene. (orig.)

  17. Evaluation of Appropriate Reference Genes for Gene Expression Normalization during Watermelon Fruit Development.

    Directory of Open Access Journals (Sweden)

    Qiusheng Kong

    Full Text Available Gene expression analysis in watermelon (Citrullus lanatus fruit has drawn considerable attention with the availability of genome sequences to understand the regulatory mechanism of fruit development and to improve its quality. Real-time quantitative reverse-transcription PCR (qRT-PCR is a routine technique for gene expression analysis. However, appropriate reference genes for transcript normalization in watermelon fruits have not been well characterized. The aim of this study was to evaluate the appropriateness of 12 genes for their potential use as reference genes in watermelon fruits. Expression variations of these genes were measured in 48 samples obtained from 12 successive developmental stages of parthenocarpic and fertilized fruits of two watermelon genotypes by using qRT-PCR analysis. Considering the effects of genotype, fruit setting method, and developmental stage, geNorm determined clathrin adaptor complex subunit (ClCAC, β-actin (ClACT, and alpha tubulin 5 (ClTUA5 as the multiple reference genes in watermelon fruit. Furthermore, ClCAC alone or together with SAND family protein (ClSAND was ranked as the single or two best reference genes by NormFinder. By using the top-ranked reference genes to normalize the transcript abundance of phytoene synthase (ClPSY1, a good correlation between lycopene accumulation and ClPSY1 expression pattern was observed in ripening watermelon fruit. These validated reference genes will facilitate the accurate measurement of gene expression in the studies on watermelon fruit biology.

  18. Evaluation of Appropriate Reference Genes for Gene Expression Normalization during Watermelon Fruit Development.

    Science.gov (United States)

    Kong, Qiusheng; Yuan, Jingxian; Gao, Lingyun; Zhao, Liqiang; Cheng, Fei; Huang, Yuan; Bie, Zhilong

    2015-01-01

    Gene expression analysis in watermelon (Citrullus lanatus) fruit has drawn considerable attention with the availability of genome sequences to understand the regulatory mechanism of fruit development and to improve its quality. Real-time quantitative reverse-transcription PCR (qRT-PCR) is a routine technique for gene expression analysis. However, appropriate reference genes for transcript normalization in watermelon fruits have not been well characterized. The aim of this study was to evaluate the appropriateness of 12 genes for their potential use as reference genes in watermelon fruits. Expression variations of these genes were measured in 48 samples obtained from 12 successive developmental stages of parthenocarpic and fertilized fruits of two watermelon genotypes by using qRT-PCR analysis. Considering the effects of genotype, fruit setting method, and developmental stage, geNorm determined clathrin adaptor complex subunit (ClCAC), β-actin (ClACT), and alpha tubulin 5 (ClTUA5) as the multiple reference genes in watermelon fruit. Furthermore, ClCAC alone or together with SAND family protein (ClSAND) was ranked as the single or two best reference genes by NormFinder. By using the top-ranked reference genes to normalize the transcript abundance of phytoene synthase (ClPSY1), a good correlation between lycopene accumulation and ClPSY1 expression pattern was observed in ripening watermelon fruit. These validated reference genes will facilitate the accurate measurement of gene expression in the studies on watermelon fruit biology.

  19. Evolution of the MAGUK protein gene family in premetazoan lineages

    Directory of Open Access Journals (Sweden)

    Ruiz-Trillo Iñaki

    2010-04-01

    Full Text Available Abstract Background Cell-to-cell communication is a key process in multicellular organisms. In multicellular animals, scaffolding proteins belonging to the family of membrane-associated guanylate kinases (MAGUK are involved in the regulation and formation of cell junctions. These MAGUK proteins were believed to be exclusive to Metazoa. However, a MAGUK gene was recently identified in an EST survey of Capsaspora owczarzaki, an unicellular organism that branches off near the metazoan clade. To further investigate the evolutionary history of MAGUK, we have undertook a broader search for this gene family using available genomic sequences of different opisthokont taxa. Results Our survey and phylogenetic analyses show that MAGUK proteins are present not only in Metazoa, but also in the choanoflagellate Monosiga brevicollis and in the protist Capsaspora owczarzaki. However, MAGUKs are absent from fungi, amoebozoans or any other eukaryote. The repertoire of MAGUKs in Placozoa and eumetazoan taxa (Cnidaria + Bilateria is quite similar, except for one class that is missing in Trichoplax, while Porifera have a simpler MAGUK repertoire. However, Vertebrata have undergone several independent duplications and exhibit two exclusive MAGUK classes. Three different MAGUK types are found in both M. brevicollis and C. owczarzaki: DLG, MPP and MAGI. Furthermore, M. brevicollis has suffered a lineage-specific diversification. Conclusions The diversification of the MAGUK protein gene family occurred, most probably, prior to the divergence between Metazoa+choanoflagellates and the Capsaspora+Ministeria clade. A MAGI-like, a DLG-like, and a MPP-like ancestral genes were already present in the unicellular ancestor of Metazoa, and new gene members have been incorporated through metazoan evolution within two major periods, one before the sponge-eumetazoan split and another within the vertebrate lineage. Moreover, choanoflagellates have suffered an independent MAGUK

  20. Genome-wide analysis of the WRKY gene family in cotton.

    Science.gov (United States)

    Dou, Lingling; Zhang, Xiaohong; Pang, Chaoyou; Song, Meizhen; Wei, Hengling; Fan, Shuli; Yu, Shuxun

    2014-12-01

    WRKY proteins are major transcription factors involved in regulating plant growth and development. Although many studies have focused on the functional identification of WRKY genes, our knowledge concerning many areas of WRKY gene biology is limited. For example, in cotton, the phylogenetic characteristics, global expression patterns, molecular mechanisms regulating expression, and target genes/pathways of WRKY genes are poorly characterized. Therefore, in this study, we present a genome-wide analysis of the WRKY gene family in cotton (Gossypium raimondii and Gossypium hirsutum). We identified 116 WRKY genes in G. raimondii from the completed genome sequence, and we cloned 102 WRKY genes in G. hirsutum. Chromosomal location analysis indicated that WRKY genes in G. raimondii evolved mainly from segmental duplication followed by tandem amplifications. Phylogenetic analysis of alga, bryophyte, lycophyta, monocot and eudicot WRKY domains revealed family member expansion with increasing complexity of the plant body. Microarray, expression profiling and qRT-PCR data revealed that WRKY genes in G. hirsutum may regulate the development of fibers, anthers, tissues (roots, stems, leaves and embryos), and are involved in the response to stresses. Expression analysis showed that most group II and III GhWRKY genes are highly expressed under diverse stresses. Group I members, representing the ancestral form, seem to be insensitive to abiotic stress, with low expression divergence. Our results indicate that cotton WRKY genes might have evolved by adaptive duplication, leading to sensitivity to diverse stresses. This study provides fundamental information to inform further analysis and understanding of WRKY gene functions in cotton species.

  1. Genome organization and expression of the rat ACBP gene family

    DEFF Research Database (Denmark)

    Mandrup, S; Andreasen, P H; Knudsen, J

    1993-01-01

    pool former. We have molecularly cloned and characterized the rat ACBP gene family which comprises one expressed and four processed pseudogenes. One of these was shown to exist in two allelic forms. A comprehensive computer-aided analysis of the promoter region of the expressed ACBP gene revealed...

  2. Evolutionary relationship and structural characterization of the EPF/EPFL gene family.

    Science.gov (United States)

    Takata, Naoki; Yokota, Kiyonobu; Ohki, Shinya; Mori, Masashi; Taniguchi, Toru; Kurita, Manabu

    2013-01-01

    EPF1-EPF2 and EPFL9/Stomagen act antagonistically in regulating leaf stomatal density. The aim of this study was to elucidate the evolutionary functional divergence of EPF/EPFL family genes. Phylogenetic analyses showed that AtEPFL9/Stomagen-like genes are conserved only in vascular plants and are closely related to AtEPF1/EPF2-like genes. Modeling showed that EPF/EPFL peptides share a common 3D structure that is constituted of a scaffold and loop. Molecular dynamics simulation suggested that AtEPF1/EPF2-like peptides form an additional disulfide bond in their loop regions and show greater flexibility in these regions than AtEPFL9/Stomagen-like peptides. This study uncovered the evolutionary relationship and the conformational divergence of proteins encoded by the EPF/EPFL family genes.

  3. Actin cytoskeleton organization, cell surface modification and invasion rate of 5 glioblastoma cell lines differing in PTEN and p53 status

    International Nuclear Information System (INIS)

    Djuzenova, Cholpon S.; Fiedler, Vanessa; Memmel, Simon; Katzer, Astrid; Hartmann, Susanne; Krohne, Georg; Zimmermann, Heiko; Scholz, Claus-Jürgen; Polat, Bülent; Flentje, Michael

    2015-01-01

    Glioblastoma cells exhibit highly invasive behavior whose mechanisms are not yet fully understood. The present study explores the relationship between the invasion capacity of 5 glioblastoma cell lines differing in p53 and PTEN status, expression of mTOR and several other marker proteins involved in cell invasion, actin cytoskeleton organization and cell morphology. We found that two glioblastoma lines mutated in both p53 and PTEN genes (U373-MG and SNB19) exhibited the highest invasion rates through the Matrigel or collagen matrix. In DK-MG (p53wt/PTENwt) and GaMG (p53mut/PTENwt) cells, F-actin mainly occurred in the numerous stress fibers spanning the cytoplasm, whereas U87-MG (p53wt/PTENmut), U373-MG and SNB19 (both p53mut/PTENmut) cells preferentially expressed F-actin in filopodia and lamellipodia. Scanning electron microscopy confirmed the abundant filopodia and lamellipodia in the PTEN mutated cell lines. Interestingly, the gene profiling analysis revealed two clusters of cell lines, corresponding to the most (U373-MG and SNB19, i.e. p53 and PTEN mutated cells) and less invasive phenotypes. The results of this study might shed new light on the mechanisms of glioblastoma invasion. - Highlights: • We examine 5 glioblastoma lines on the invasion capacity and actin cytoskeleton. • Glioblastoma cell lines mutated in both p53 and PTEN were the most invasive. • Less invasive cells showed much less lamellipodia, but more actin stress fibers. • A mechanism for the differences in tumor cell invasion is proposed

  4. Actin cytoskeleton organization, cell surface modification and invasion rate of 5 glioblastoma cell lines differing in PTEN and p53 status

    Energy Technology Data Exchange (ETDEWEB)

    Djuzenova, Cholpon S., E-mail: djuzenova_t@ukw.de [Department of Radiation Oncology, University Hospital, Josef-Schneider-Strasse 11, D-97080 Würzburg (Germany); Fiedler, Vanessa [Department of Radiation Oncology, University Hospital, Josef-Schneider-Strasse 11, D-97080 Würzburg (Germany); Memmel, Simon [Lehrstuhl für Biotechnologie und Biophysik, Universität Würzburg, Biozentrum Am Hubland, 97070 Würzburg (Germany); Katzer, Astrid; Hartmann, Susanne [Department of Radiation Oncology, University Hospital, Josef-Schneider-Strasse 11, D-97080 Würzburg (Germany); Krohne, Georg [Elektronenmikroskopie, Biozentrum, Universität Würzburg, Am Hubland, 97070 Würzburg (Germany); Zimmermann, Heiko [Hauptabteilung Biophysik and Kryotechnologie, Fraunhofer-Institut für Biomedizinische Technik, Lehrstuhl für Molekulare und Zelluläre Biotechnologie/Nanotechnologie, Universität des Saarlandes, Ensheimer Strasse 48, 66386 St. Ingbert (Germany); Scholz, Claus-Jürgen [Interdisciplinary Center for Clinical Research, University Hospital, Versbacher Strasse 7, 97078 Würzburg (Germany); Polat, Bülent; Flentje, Michael [Department of Radiation Oncology, University Hospital, Josef-Schneider-Strasse 11, D-97080 Würzburg (Germany); and others

    2015-01-15

    Glioblastoma cells exhibit highly invasive behavior whose mechanisms are not yet fully understood. The present study explores the relationship between the invasion capacity of 5 glioblastoma cell lines differing in p53 and PTEN status, expression of mTOR and several other marker proteins involved in cell invasion, actin cytoskeleton organization and cell morphology. We found that two glioblastoma lines mutated in both p53 and PTEN genes (U373-MG and SNB19) exhibited the highest invasion rates through the Matrigel or collagen matrix. In DK-MG (p53wt/PTENwt) and GaMG (p53mut/PTENwt) cells, F-actin mainly occurred in the numerous stress fibers spanning the cytoplasm, whereas U87-MG (p53wt/PTENmut), U373-MG and SNB19 (both p53mut/PTENmut) cells preferentially expressed F-actin in filopodia and lamellipodia. Scanning electron microscopy confirmed the abundant filopodia and lamellipodia in the PTEN mutated cell lines. Interestingly, the gene profiling analysis revealed two clusters of cell lines, corresponding to the most (U373-MG and SNB19, i.e. p53 and PTEN mutated cells) and less invasive phenotypes. The results of this study might shed new light on the mechanisms of glioblastoma invasion. - Highlights: • We examine 5 glioblastoma lines on the invasion capacity and actin cytoskeleton. • Glioblastoma cell lines mutated in both p53 and PTEN were the most invasive. • Less invasive cells showed much less lamellipodia, but more actin stress fibers. • A mechanism for the differences in tumor cell invasion is proposed.

  5. [Study of gene mutation and pathogenetic mechanism for a family with Waardenburg syndrome].

    Science.gov (United States)

    Chen, Hongsheng; Liao, Xinbin; Liu, Yalan; He, Chufeng; Zhang, Hua; Jiang, Lu; Feng, Yong; Mei, Lingyun

    2017-08-10

    To explore the pathogenetic mechanism of a family affected with Waardenburg syndrome. Clinical data of the family was collected. Potential mutation of the MITF, SOX10 and SNAI2 genes were screened. Plasmids for wild type (WT) and mutant MITF proteins were constructed to determine their exogenous expression and subcellular distribution by Western blotting and immunofluorescence assay, respectively. A heterozygous c.763C>T (p.R255X) mutation was detected in exon 8 of the MITF gene in the proband and all other patients from the family. No pathological mutation of the SOX10 and SNAI2 genes was detected. The DNA sequences of plasmids of MITF wild and mutant MITF R255X were confirmed. Both proteins were detected with the expected size. WT MITF protein only localized in the nucleus, whereas R255X protein showed aberrant localization in the nucleus as well as the cytoplasm. The c.763C>T mutation of the MITF gene probably underlies the disease in this family. The mutation can affect the subcellular distribution of MITF proteins in vitro, which may shed light on the molecular mechanism of Waardenburg syndrome caused by mutations of the MITF gene.

  6. Actin dynamics, architecture, and mechanics in cell motility.

    Science.gov (United States)

    Blanchoin, Laurent; Boujemaa-Paterski, Rajaa; Sykes, Cécile; Plastino, Julie

    2014-01-01

    Tight coupling between biochemical and mechanical properties of the actin cytoskeleton drives a large range of cellular processes including polarity establishment, morphogenesis, and motility. This is possible because actin filaments are semi-flexible polymers that, in conjunction with the molecular motor myosin, can act as biological active springs or "dashpots" (in laymen's terms, shock absorbers or fluidizers) able to exert or resist against force in a cellular environment. To modulate their mechanical properties, actin filaments can organize into a variety of architectures generating a diversity of cellular organizations including branched or crosslinked networks in the lamellipodium, parallel bundles in filopodia, and antiparallel structures in contractile fibers. In this review we describe the feedback loop between biochemical and mechanical properties of actin organization at the molecular level in vitro, then we integrate this knowledge into our current understanding of cellular actin organization and its physiological roles.

  7. A novel AVP gene mutation in a Turkish family with neurohypophyseal diabetes insipidus.

    Science.gov (United States)

    Ilhan, M; Tiryakioglu, N O; Karaman, O; Coskunpinar, E; Yildiz, R S; Turgut, S; Tiryakioglu, D; Toprak, H; Tasan, E

    2016-03-01

    Familial neurohypophyseal diabetes insipidus (FNDI) is a rare, autosomal dominant, inherited disorder which is characterized by severe polydipsia and polyuria generally presenting in early childhood. In the present study, we aimed to analyze the AVP gene in a Turkish family with FNDI. Four patients with neurohypophyseal diabetes insipidus and ten healthy members of the family were studied. Diabetes insipidus was diagnosed by the water deprivation test in affected family members. Mutation analysis was performed by sequencing the whole coding region of AVP-NPII gene using DNA isolated from peripheral blood samples. Urine osmolality was low (C in all patients. c.-3A>C mutation in 5'UTR of AVP gene in this family might lead to the truncation of signal peptide, aggregation of AVP in the cytoplasm instead of targeting in the endoplasmic reticulum, thereby could disrupt AVP secretion without causing neuronal cytotoxicity, which might explain the presence of bright spot. The predicted effect of this mutation should be investigated by further in vitro molecular studies.

  8. The polyphenol oxidase gene family in land plants: Lineage-specific duplication and expansion

    Directory of Open Access Journals (Sweden)

    Tran Lan T

    2012-08-01

    Full Text Available Abstract Background Plant polyphenol oxidases (PPOs are enzymes that typically use molecular oxygen to oxidize ortho-diphenols to ortho-quinones. These commonly cause browning reactions following tissue damage, and may be important in plant defense. Some PPOs function as hydroxylases or in cross-linking reactions, but in most plants their physiological roles are not known. To better understand the importance of PPOs in the plant kingdom, we surveyed PPO gene families in 25 sequenced genomes from chlorophytes, bryophytes, lycophytes, and flowering plants. The PPO genes were then analyzed in silico for gene structure, phylogenetic relationships, and targeting signals. Results Many previously uncharacterized PPO genes were uncovered. The moss, Physcomitrella patens, contained 13 PPO genes and Selaginella moellendorffii (spike moss and Glycine max (soybean each had 11 genes. Populus trichocarpa (poplar contained a highly diversified gene family with 11 PPO genes, but several flowering plants had only a single PPO gene. By contrast, no PPO-like sequences were identified in several chlorophyte (green algae genomes or Arabidopsis (A. lyrata and A. thaliana. We found that many PPOs contained one or two introns often near the 3’ terminus. Furthermore, N-terminal amino acid sequence analysis using ChloroP and TargetP 1.1 predicted that several putative PPOs are synthesized via the secretory pathway, a unique finding as most PPOs are predicted to be chloroplast proteins. Phylogenetic reconstruction of these sequences revealed that large PPO gene repertoires in some species are mostly a consequence of independent bursts of gene duplication, while the lineage leading to Arabidopsis must have lost all PPO genes. Conclusion Our survey identified PPOs in gene families of varying sizes in all land plants except in the genus Arabidopsis. While we found variation in intron numbers and positions, overall PPO gene structure is congruent with the phylogenetic

  9. Actin-cytoskeleton rearrangement modulates proton-induced uptake

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Dov, Nadav [Department of Physiology and Pharmacology, Faculty of Medicine, Tel-Aviv University, 69978 Tel-Aviv (Israel); Korenstein, Rafi, E-mail: korens@post.tau.ac.il [Department of Physiology and Pharmacology, Faculty of Medicine, Tel-Aviv University, 69978 Tel-Aviv (Israel)

    2013-04-15

    Recently it has been shown that elevating proton concentration at the cell surface stimulates the formation of membrane invaginations and vesicles accompanied by an enhanced uptake of macromolecules. While the initial induction of inward membrane curvature was rationalized in terms of proton-based increase of charge asymmetry across the membrane, the mechanisms underlying vesicle formation and its scission are still unknown. In light of the critical role of actin in vesicle formation during endocytosis, the present study addresses the involvement of cytoskeletal actin in proton-induced uptake (PIU). The uptake of dextran-FITC is used as a measure for the factual fraction of inward invaginations that undergo scission from the cell's plasma membrane. Our findings show that the rate of PIU in suspended cells is constant, whereas the rate of PIU in adherent cells is gradually increased in time, saturating at the level possessed by suspended cells. This is consistent with pH induced gradual degradation of stress-fibers in adherent cells. Wortmannin and calyculin-A are able to elevate PIU by 25% in adherent cells but not in suspended cells, while cytochalasin-D, rapamycin and latrunculin-A elevate PIU both in adherent and suspended cells. However, extensive actin depolymerization by high concentrations of latrunculin-A is able to inhibit PIU. We conclude that proton-induced membrane vesiculation is restricted by the actin structural resistance to the plasma membrane bending. Nevertheless, a certain degree of cortical actin restructuring is required for the completion of the scission process. - Highlights: ► Acidification of cells' exterior enhances uptake of macromolecules by the cells. ► Disruption of actin stress fibers leads to enhancement of proton induced uptake. ► Extensive depolymerization of cellular actin attenuates proton-induced uptake.

  10. Linkage and candidate gene analysis of X-linked familial exudative vitreoretinopathy.

    Science.gov (United States)

    Shastry, B S; Hejtmancik, J F; Plager, D A; Hartzer, M K; Trese, M T

    1995-05-20

    Familial exudative vitreoretinopathy (FEVR) is a hereditary eye disorder characterized by avascularity of the peripheral retina, retinal exudates, tractional detachment, and retinal folds. The disorder is most commonly transmitted as an autosomal dominant trait, but X-linked transmission also occurs. To initiate the process of identifying the gene responsible for the X-linked disorder, linkage analysis has been performed with three previously unreported three- or four-generation families. Two-point analysis showed linkage to MAOA (Zmax = 2.1, theta max = 0) and DXS228 (Zmax = 0.5, theta max = 0.11), and this was further confirmed by multipoint analysis with these same markers (Zmax = 2.81 at MAOA), which both lie near the gene causing Norrie disease. Molecular genetic analysis further reveals a missense mutation (R121W) in the third exon of the Norrie's disease gene that perfectly cosegregates with the disease through three generations in one family. This mutation was not detected in the unaffected family members and six normal unrelated controls, suggesting that it is likely to be the pathogenic mutation. Additionally, a polymorphic missense mutation (H127R) was detected in a severely affected patient.

  11. Gene structure, phylogeny and expression profile of the sucrose synthase gene family in cacao (Theobroma cacao L.).

    Science.gov (United States)

    Li, Fupeng; Hao, Chaoyun; Yan, Lin; Wu, Baoduo; Qin, Xiaowei; Lai, Jianxiong; Song, Yinghui

    2015-09-01

    In higher plants, sucrose synthase (Sus, EC 2.4.1.13) is widely considered as a key enzyme involved in sucrose metabolism. Although, several paralogous genes encoding different isozymes of Sus have been identified and characterized in multiple plant genomes, to date detailed information about the Sus genes is lacking for cacao. This study reports the identification of six novel Sus genes from economically important cacao tree. Analyses of the gene structure and phylogeny of the Sus genes demonstrated evolutionary conservation in the Sus family across cacao and other plant species. The expression of cacao Sus genes was investigated via real-time PCR in various tissues, different developmental phases of leaf, flower bud and pod. The Sus genes exhibited distinct but partially redundant expression profiles in cacao, with TcSus1, TcSus5 and TcSus6, being the predominant genes in the bark with phloem, TcSus2 predominantly expressing in the seed during the stereotype stage. TcSus3 and TcSus4 were significantly detected more in the pod husk and seed coat along the pod development, and showed development dependent expression profiles in the cacao pod. These results provide new insights into the evolution, and basic information that will assist in elucidating the functions of cacao Sus gene family.

  12. Beta-actin deficiency with oxidative posttranslational modifications in Rett syndrome erythrocytes: insights into an altered cytoskeletal organization.

    Directory of Open Access Journals (Sweden)

    Alessio Cortelazzo

    Full Text Available Beta-actin, a critical player in cellular functions ranging from cell motility and the maintenance of cell shape to transcription regulation, was evaluated in the erythrocyte membranes from patients with typical Rett syndrome (RTT and methyl CpG binding protein 2 (MECP2 gene mutations. RTT, affecting almost exclusively females with an average frequency of 1∶10,000 female live births, is considered the second commonest cause of severe cognitive impairment in the female gender. Evaluation of beta-actin was carried out in a comparative cohort study on red blood cells (RBCs, drawn from healthy control subjects and RTT patients using mass spectrometry-based quantitative analysis. We observed a decreased expression of the beta-actin isoforms (relative fold changes for spots 1, 2 and 3: -1.82±0.15, -2.15±0.06, and -2.59±0.48, respectively in pathological RBCs. The results were validated by western blotting and immunofluorescence microscopy. In addition, beta-actin from RTT patients also showed a dramatic increase in oxidative posttranslational modifications (PTMs as the result of its binding with the lipid peroxidation product 4-hydroxy-2-nonenal (4-HNE. Our findings demonstrate, for the first time, a beta-actin down-regulation and oxidative PTMs for RBCs of RTT patients, thus indicating an altered cytoskeletal organization.

  13. Actin and Arp2/3 localize at the centrosome of interphase cells

    Energy Technology Data Exchange (ETDEWEB)

    Hubert, Thomas; Vandekerckhove, Joel; Gettemans, Jan, E-mail: jan.gettemans@vib-ugent.be

    2011-01-07

    Research highlights: {yields} Actin was detected at the centrosome with the anti-actin antibody 1C7 that recognizes antiparallel ('lower dimer') actin dimers. {yields} Centrosomal actin was found in interphase but not mitotic MDA-MB-231 cells. {yields} Neither the anti-actin antibody C4 that binds to globular, monomer actin, nor the anti-actin antibody 2G2 that recognizes the nuclear conformation of actin detect actin at the centrosome. {yields} The Arp2/3 complex transiently localizes at the pericentriolar matrix but not at the centrioles of interphase HEK 293T cells. -- Abstract: Although many actin binding proteins such as cortactin and the Arp2/3 activator WASH localize at the centrosome, the presence and conformation of actin at the centrosome has remained elusive. Here, we report the localization of actin at the centrosome in interphase but not in mitotic MDA-MB-231 cells. Centrosomal actin was detected with the anti-actin antibody 1C7 that recognizes antiparallel ('lower dimer') actin dimers. In addition, we report the transient presence of the Arp2/3 complex at the pericentriolar matrix but not at the centrioles of interphase HEK 293T cells. Overexpression of an Arp2/3 component resulted in expansion of the pericentriolar matrix and selective accumulation of the Arp2/3 component in the pericentriolar matrix. Altogether, we hypothesize that the centrosome transiently recruits Arp2/3 to perform processes such as centrosome separation prior to mitotic entry, whereas the observed constitutive centrosomal actin staining in interphase cells reinforces the current model of actin-based centrosome reorientation toward the leading edge in migrating cells.

  14. Actin and Arp2/3 localize at the centrosome of interphase cells

    International Nuclear Information System (INIS)

    Hubert, Thomas; Vandekerckhove, Joel; Gettemans, Jan

    2011-01-01

    Research highlights: → Actin was detected at the centrosome with the anti-actin antibody 1C7 that recognizes antiparallel ('lower dimer') actin dimers. → Centrosomal actin was found in interphase but not mitotic MDA-MB-231 cells. → Neither the anti-actin antibody C4 that binds to globular, monomer actin, nor the anti-actin antibody 2G2 that recognizes the nuclear conformation of actin detect actin at the centrosome. → The Arp2/3 complex transiently localizes at the pericentriolar matrix but not at the centrioles of interphase HEK 293T cells. -- Abstract: Although many actin binding proteins such as cortactin and the Arp2/3 activator WASH localize at the centrosome, the presence and conformation of actin at the centrosome has remained elusive. Here, we report the localization of actin at the centrosome in interphase but not in mitotic MDA-MB-231 cells. Centrosomal actin was detected with the anti-actin antibody 1C7 that recognizes antiparallel ('lower dimer') actin dimers. In addition, we report the transient presence of the Arp2/3 complex at the pericentriolar matrix but not at the centrioles of interphase HEK 293T cells. Overexpression of an Arp2/3 component resulted in expansion of the pericentriolar matrix and selective accumulation of the Arp2/3 component in the pericentriolar matrix. Altogether, we hypothesize that the centrosome transiently recruits Arp2/3 to perform processes such as centrosome separation prior to mitotic entry, whereas the observed constitutive centrosomal actin staining in interphase cells reinforces the current model of actin-based centrosome reorientation toward the leading edge in migrating cells.

  15. Common mutations identified in the MLH1 gene in familial Lynch syndrome

    Directory of Open Access Journals (Sweden)

    Jisha Elias

    2017-12-01

    In this study we identified three families with Lynch syndrome from a rural cancer center in western India (KCHRC, Goraj, Gujarat, where 70-75 CRC patients are seen annually. DNA isolated from the blood of consented family members of all three families (8-10 members/family was subjected to NGS sequencing methods on an Illumina HiSeq 4000 platform. We identified unique mutations in the MLH1 gene in all three HNPCC family members. Two of the three unrelated families shared a common mutation (154delA and 156delA. Total 8 members of a family were identified as carriers for 156delA mutation of which 5 members were unaffected while 3 were affected (age of onset: 1 member <30yrs & 2 were>40yr. The family with 154delA mutation showed 2 affected members (>40yr carrying the mutations.LYS618DEL mutation found in 8 members of the third family showed that both affected and unaffected carried the mutation. Thus the common mutations identified in the MLH1 gene in two unrelated families had a high risk for lynch syndrome especially above the age of 40.

  16. The 5’cap of Tobacco Mosaic Virus (TMV) is required for virion attachment to the actin/ER network during early infection

    DEFF Research Database (Denmark)

    Christensen, Nynne Meyn; Tilsner, Jens; Bell, Karen

    to the motile cortical actin/ER network within minutes of injection. Granule movement on actin/ER was arrested by actin inhibitors indicating actindependent RNA movement. The 5’ methylguanosine TMV cap was shown to be required for vRNA anchoring to the ER. TMV vRNA lacking the 5’cap failed to form granules...... the fluorescent vRNA pool nor co-injected GFP left the injected trichome, indicating that the synthesis of unlabelled progeny viral (v)RNA is required to initiate cell-cell movement, and that virus movement is not accompanied by passive plasmodesmatal gating. Cy3-vRNA formed granules that became anchored...... on the same ER-bound granules, indicating that TMV virions may become attached to the ER prior to uncoating of the viral genome....

  17. The importance of melanoma inhibitory activity gene family in the tumor progression of oral cancer.

    Science.gov (United States)

    Sasahira, Tomonori; Bosserhoff, Anja Katrin; Kirita, Tadaaki

    2018-05-01

    Oral squamous cell carcinoma has a high potential for locoregional invasion and nodal metastasis. Consequently, early detection of such malignancies is of immense importance. The melanoma inhibitory activity (MIA) gene family comprises MIA, MIA2, transport and Golgi organization protein 1 (TANGO), and otoraplin (OTOR). These members of the MIA gene family have a highly conserved Src homology 3 (SH3)-like structure. Although the molecules of this family share 34-45% amino acid homology and 47-59% cDNA sequence homology, those members, excluding OTOR, play different tumor-associated functions. MIA has a pivotal role in the progression and metastasis of melanoma; MIA2 and TANGO have been suggested to possess tumor-suppressive functions; and OTOR is uniquely expressed in cochlea of the inner ear. Therefore, the definite functions of the MIA gene family in cancer cells remain unclear. Since the members of the MIA gene family are secreted proteins, these molecules might be useful tumor markers that can be detected in the body fluids, including serum and saliva. In this review, we described the molecular biological functions of the MIA gene family in oral cancer. © 2018 Japanese Society of Pathology and John Wiley & Sons Australia, Ltd.

  18. Presence of an SH2 domain in the actin-binding protein tensin.

    Science.gov (United States)

    Davis, S; Lu, M L; Lo, S H; Lin, S; Butler, J A; Druker, B J; Roberts, T M; An, Q; Chen, L B

    1991-05-03

    The molecular cloning of the complementary DNA coding for a 90-kilodalton fragment of tensin, an actin-binding component of focal contacts and other submembraneous cytoskeletal structures, is reported. The derived amino acid sequence revealed the presence of a Src homology 2 (SH2) domain. This domain is shared by a number of signal transduction proteins including nonreceptor tyrosine kinases such as Abl, Fps, Src, and Src family members, the transforming protein Crk, phospholipase C-gamma 1, PI-3 (phosphatidylinositol) kinase, and guanosine triphosphatase-activating protein (GAP). Like the SH2 domain found in Src, Crk, and Abl, the SH2 domain of tensin bound specifically to a number of phosphotyrosine-containing proteins from v-src-transformed cells. Tensin was also found to be phosphorylated on tyrosine residues. These findings suggest that by possessing both actin-binding and phosphotyrosine-binding activities and being itself a target for tyrosine kinases, tensin may link signal transduction pathways with the cytoskeleton.

  19. WD-repeat instability and diversification of the Podospora anserina hnwd non-self recognition gene family.

    Science.gov (United States)

    Chevanne, Damien; Saupe, Sven J; Clavé, Corinne; Paoletti, Mathieu

    2010-05-06

    Genes involved in non-self recognition and host defence are typically capable of rapid diversification and exploit specialized genetic mechanism to that end. Fungi display a non-self recognition phenomenon termed heterokaryon incompatibility that operates when cells of unlike genotype fuse and leads to the cell death of the fusion cell. In the fungus Podospora anserina, three genes controlling this allorecognition process het-d, het-e and het-r are paralogs belonging to the same hnwd gene family. HNWD proteins are STAND proteins (signal transduction NTPase with multiple domains) that display a WD-repeat domain controlling recognition specificity. Based on genomic sequence analysis of different P. anserina isolates, it was established that repeat regions of all members of the gene family are extremely polymorphic and undergoing concerted evolution arguing for frequent recombination within and between family members. Herein, we directly analyzed the genetic instability and diversification of this allorecognition gene family. We have constituted a collection of 143 spontaneous mutants of the het-R (HNWD2) and het-E (hnwd5) genes with altered recognition specificities. The vast majority of the mutants present rearrangements in the repeat arrays with deletions, duplications and other modifications as well as creation of novel repeat unit variants. We investigate the extreme genetic instability of these genes and provide a direct illustration of the diversification strategy of this eukaryotic allorecognition gene family.

  20. Incorporation of β-actin loading control into zymography.

    Science.gov (United States)

    Govindasamy, Natasha; Yan, MengJie; Jurasz, Paul

    2016-11-01

    Gelatin zymography and immunoblot are widely used gel electrophoresis techniques to study matrix metalloproteinases-2 and -9. Each method has its advantages and disadvantages. Zymography is exquisitely sensitive but offers no loading control to ensure equal sample loading. Immunoblot is a 100-1000-fold less sensitive, but allows for the probing of a sample loading control such as β-actin to ensure accurate protein loading. In this report, we describe two simple protocols that combine gelatin zymography to study MMP-2 and -9 levels with an in-gel β-actin immunoblot loading control, thus combining sensitivity and accuracy in a single assay. The protocols incorporate the loading of molecular weight markers to demarcate MMP-2/-9 from the β-actin. The first protocol utilizes the overlay of a 10% zymography gel over a 5% Tris-Glycine separating gel from which the β-actin is transferred. The second protocol involves the direct transfer of the β-actin from a single 10% zymography gel.

  1. Bacterial subversion of host actin dynamics at the plasma membrane.

    Science.gov (United States)

    Carabeo, Rey

    2011-10-01

    Invasion of non-phagocytic cells by a number of bacterial pathogens involves the subversion of the actin cytoskeletal remodelling machinery to produce actin-rich cell surface projections designed to engulf the bacteria. The signalling that occurs to induce these actin-rich structures has considerable overlap among a diverse group of bacteria. The molecular organization within these structures act in concert to internalize the invading pathogen. This dynamic process could be subdivided into three acts - actin recruitment, engulfment, and finally, actin disassembly/internalization. This review will present the current state of knowledge of the molecular processes involved in each stage of bacterial invasion, and provide a perspective that highlights the temporal and spatial control of actin remodelling that occurs during bacterial invasion. © 2011 Blackwell Publishing Ltd.

  2. Evolutionary relationship and structural characterization of the EPF/EPFL gene family.

    Directory of Open Access Journals (Sweden)

    Naoki Takata

    Full Text Available EPF1-EPF2 and EPFL9/Stomagen act antagonistically in regulating leaf stomatal density. The aim of this study was to elucidate the evolutionary functional divergence of EPF/EPFL family genes. Phylogenetic analyses showed that AtEPFL9/Stomagen-like genes are conserved only in vascular plants and are closely related to AtEPF1/EPF2-like genes. Modeling showed that EPF/EPFL peptides share a common 3D structure that is constituted of a scaffold and loop. Molecular dynamics simulation suggested that AtEPF1/EPF2-like peptides form an additional disulfide bond in their loop regions and show greater flexibility in these regions than AtEPFL9/Stomagen-like peptides. This study uncovered the evolutionary relationship and the conformational divergence of proteins encoded by the EPF/EPFL family genes.

  3. Transcriptomic and phylogenetic analysis of Culex pipiens quinquefasciatus for three detoxification gene families

    Directory of Open Access Journals (Sweden)

    Yan Liangzhen

    2012-11-01

    Full Text Available Abstract Background The genomes of three major mosquito vectors of human diseases, Anopheles gambiae, Aedes aegypti, and Culex pipiens quinquefasciatus, have been previously sequenced. C. p. quinquefasciatus has the largest number of predicted protein-coding genes, which partially results from the expansion of three detoxification gene families: cytochrome P450 monooxygenases (P450, glutathione S-transferases (GST, and carboxyl/cholinesterases (CCE. However, unlike An. gambiae and Ae. aegypti, which have large amounts of gene expression data, C. p. quinquefasciatus has limited transcriptomic resources. Knowledge of complete gene expression information is very important for the exploration of the functions of genes involved in specific biological processes. In the present study, the three detoxification gene families of C. p. quinquefasciatus were analyzed for phylogenetic classification and compared with those of three other dipteran insects. Gene expression during various developmental stages and the differential expression responsible for parathion resistance were profiled using the digital gene expression (DGE technique. Results A total of 302 detoxification genes were found in C. p. quinquefasciatus, including 71 CCE, 196 P450, and 35 cytosolic GST genes. Compared with three other dipteran species, gene expansion in Culex mainly occurred in the CCE and P450 families, where the genes of α-esterases, juvenile hormone esterases, and CYP325 of the CYP4 subfamily showed the most pronounced expansion on the genome. For the five DGE libraries, 3.5-3.8 million raw tags were generated and mapped to 13314 reference genes. Among 302 detoxification genes, 225 (75% were detected for expression in at least one DGE library. One fourth of the CCE and P450 genes were detected uniquely in one stage, indicating potential developmentally regulated expression. A total of 1511 genes showed different expression levels between a parathion-resistant and a

  4. A nucleator arms race: cellular control of actin assembly.

    Science.gov (United States)

    Campellone, Kenneth G; Welch, Matthew D

    2010-04-01

    For over a decade, the actin-related protein 2/3 (ARP2/3) complex, a handful of nucleation-promoting factors and formins were the only molecules known to directly nucleate actin filament formation de novo. However, the past several years have seen a surge in the discovery of mammalian proteins with roles in actin nucleation and dynamics. Newly recognized nucleation-promoting factors, such as WASP and SCAR homologue (WASH), WASP homologue associated with actin, membranes and microtubules (WHAMM), and junction-mediating regulatory protein (JMY), stimulate ARP2/3 activity at distinct cellular locations. Formin nucleators with additional biochemical and cellular activities have also been uncovered. Finally, the Spire, cordon-bleu and leiomodin nucleators have revealed new ways of overcoming the kinetic barriers to actin polymerization.

  5. The F-actin modifier villin regulates insulin granule dynamics and exocytosis downstream of islet cell autoantigen 512

    Directory of Open Access Journals (Sweden)

    Hassan Mziaut

    2016-08-01

    Full Text Available Objective: Insulin release from pancreatic islet β cells should be tightly controlled to avoid hypoglycemia and insulin resistance. The cortical actin cytoskeleton is a gate for regulated exocytosis of insulin secretory granules (SGs by restricting their mobility and access to the plasma membrane. Prior studies suggest that SGs interact with F-actin through their transmembrane cargo islet cell autoantigen 512 (Ica512 (also known as islet antigen 2/Ptprn. Here we investigated how Ica512 modulates SG trafficking and exocytosis. Methods: Transcriptomic changes in Ica512−/− mouse islets were analyzed. Imaging as well as biophysical and biochemical methods were used to validate if and how the Ica512-regulated gene villin modulates insulin secretion in mouse islets and insulinoma cells. Results: The F-actin modifier villin was consistently downregulated in Ica512−/− mouse islets and in Ica512-depleted insulinoma cells. Villin was enriched at the cell cortex of β cells and dispersed villin−/− islet cells were less round and less deformable. Basal mobility of SGs in villin-depleted cells was enhanced. Moreover, in cells depleted either of villin or Ica512 F-actin cages restraining cortical SGs were enlarged, basal secretion was increased while glucose-stimulated insulin release was blunted. The latter changes were reverted by overexpressing villin in Ica512-depleted cells, but not vice versa. Conclusion: Our findings show that villin controls the size of the F-actin cages restricting SGs and, thus, regulates their dynamics and availability for exocytosis. Evidence that villin acts downstream of Ica512 also indicates that SGs directly influence the remodeling properties of the cortical actin cytoskeleton for tight control of insulin secretion. Keywords: F-actin, Granules, Ica512, Insulin, Secretion, Villin

  6. Analysis of the WUSCHEL-RELATED HOMEOBOX gene family in Pinus pinaster: New insights into the gene family evolution.

    Science.gov (United States)

    Alvarez, José M; Bueno, Natalia; Cañas, Rafael A; Avila, Concepción; Cánovas, Francisco M; Ordás, Ricardo J

    2018-02-01

    WUSCHEL-RELATED HOMEOBOX (WOX) genes are key players controlling stem cells in plants and can be divided into three clades according to the time of their appearance during plant evolution. Our knowledge of stem cell function in vascular plants other than angiosperms is limited, they separated from gymnosperms ca 300 million years ago and their patterning during embryogenesis differs significantly. For this reason, we have used the model gymnosperm Pinus pinaster to identify WOX genes and perform a thorough analysis of their gene expression patterns. Using transcriptomic data from a comprehensive range of tissues and stages of development we have shown three major outcomes: that the P. pinaster genome encodes at least fourteen members of the WOX family spanning all the major clades, that the genome of gymnosperms contains a WOX gene with no homologues in angiosperms representing a transitional stage between intermediate- and WUS-clade proteins, and that we can detect discrete WUS and WOX5 transcripts for the first time in a gymnosperm. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  7. Identification of pathogenic gene variants in small families with intellectually disabled siblings by exome sequencing.

    Science.gov (United States)

    Schuurs-Hoeijmakers, Janneke H M; Vulto-van Silfhout, Anneke T; Vissers, Lisenka E L M; van de Vondervoort, Ilse I G M; van Bon, Bregje W M; de Ligt, Joep; Gilissen, Christian; Hehir-Kwa, Jayne Y; Neveling, Kornelia; del Rosario, Marisol; Hira, Gausiya; Reitano, Santina; Vitello, Aurelio; Failla, Pinella; Greco, Donatella; Fichera, Marco; Galesi, Ornella; Kleefstra, Tjitske; Greally, Marie T; Ockeloen, Charlotte W; Willemsen, Marjolein H; Bongers, Ernie M H F; Janssen, Irene M; Pfundt, Rolph; Veltman, Joris A; Romano, Corrado; Willemsen, Michèl A; van Bokhoven, Hans; Brunner, Han G; de Vries, Bert B A; de Brouwer, Arjan P M

    2013-12-01

    Intellectual disability (ID) is a common neurodevelopmental disorder affecting 1-3% of the general population. Mutations in more than 10% of all human genes are considered to be involved in this disorder, although the majority of these genes are still unknown. We investigated 19 small non-consanguineous families with two to five affected siblings in order to identify pathogenic gene variants in known, novel and potential ID candidate genes. Non-consanguineous families have been largely ignored in gene identification studies as small family size precludes prior mapping of the genetic defect. Using exome sequencing, we identified pathogenic mutations in three genes, DDHD2, SLC6A8, and SLC9A6, of which the latter two have previously been implicated in X-linked ID phenotypes. In addition, we identified potentially pathogenic mutations in BCORL1 on the X-chromosome and in MCM3AP, PTPRT, SYNE1, and ZNF528 on autosomes. We show that potentially pathogenic gene variants can be identified in small, non-consanguineous families with as few as two affected siblings, thus emphasising their value in the identification of syndromic and non-syndromic ID genes.

  8. Exclusion of known gene for enamel development in two Brazilian families with amelogenesis imperfecta.

    Science.gov (United States)

    Santos, Maria C L G; Hart, P Suzanne; Ramaswami, Mukundhan; Kanno, Cláudia M; Hart, Thomas C; Line, Sergio R P

    2007-01-31

    Amelogenesis imperfecta (AI) is a genetically heterogeneous group of diseases that result in defective development of tooth enamel. Mutations in several enamel proteins and proteinases have been associated with AI. The object of this study was to evaluate evidence of etiology for the six major candidate gene loci in two Brazilian families with AI. Genomic DNA was obtained from family members and all exons and exon-intron boundaries of the ENAM, AMBN, AMELX, MMP20, KLK4 and Amelotin gene were amplified and sequenced. Each family was also evaluated for linkage to chromosome regions known to contain genes important in enamel development. The present study indicates that the AI in these two families is not caused by any of the known loci for AI or any of the major candidate genes proposed in the literature. These findings indicate extensive genetic heterogeneity for non-syndromic AI.

  9. Amphidinolide H, a novel type of actin-stabilizing agent isolated from dinoflagellate

    International Nuclear Information System (INIS)

    Saito, Shin-ya; Feng Jue; Kira, Atsushi; Kobayashi, Jun'ichi; Ohizumi, Yasushi

    2004-01-01

    The effect of novel cytotoxic marine macrolide, amphidinolide H (Amp-H), on actin dynamics was investigated in vitro. Amp-H attenuated actin depolymerization induced by diluting F-actin. This effect remained after washing out of unbound Amp-H by filtration. In the presence of either Amp-H or phalloidin, lag phase, which is the rate-limiting step of actin polymerization, was shortened. Phalloidin decreased the polymerization-rate whereas Amp-H did not. Meanwhile, the effects of both compounds were the same when barbed end of actin was capped by cytochalasin D. Quartz crystal microbalance system revealed interaction of Amp-H with G-actin and F-actin. Amp-H also enhanced the binding of phalloidin to F-actin. We concluded that Amp-H stabilizes actin in a different manner from that of phalloidin and serves as a novel pharmacological tool for analyzing actin-mediated cell function

  10. Regulation of the actin cytoskeleton-plasma membrane interplay by phosphoinositides.

    Science.gov (United States)

    Saarikangas, Juha; Zhao, Hongxia; Lappalainen, Pekka

    2010-01-01

    The plasma membrane and the underlying cortical actin cytoskeleton undergo continuous dynamic interplay that is responsible for many essential aspects of cell physiology. Polymerization of actin filaments against cellular membranes provides the force for a number of cellular processes such as migration, morphogenesis, and endocytosis. Plasma membrane phosphoinositides (especially phosphatidylinositol bis- and trisphosphates) play a central role in regulating the organization and dynamics of the actin cytoskeleton by acting as platforms for protein recruitment, by triggering signaling cascades, and by directly regulating the activities of actin-binding proteins. Furthermore, a number of actin-associated proteins, such as BAR domain proteins, are capable of directly deforming phosphoinositide-rich membranes to induce plasma membrane protrusions or invaginations. Recent studies have also provided evidence that the actin cytoskeleton-plasma membrane interactions are misregulated in a number of pathological conditions such as cancer and during pathogen invasion. Here, we summarize the wealth of knowledge on how the cortical actin cytoskeleton is regulated by phosphoinositides during various cell biological processes. We also discuss the mechanisms by which interplay between actin dynamics and certain membrane deforming proteins regulate the morphology of the plasma membrane.

  11. Optimal Reference Genes for Gene Expression Normalization in Trichomonas vaginalis

    Science.gov (United States)

    dos Santos, Odelta; de Vargas Rigo, Graziela; Frasson, Amanda Piccoli; Macedo, Alexandre José; Tasca, Tiana

    2015-01-01

    Trichomonas vaginalis is the etiologic agent of trichomonosis, the most common non-viral sexually transmitted disease worldwide. This infection is associated with several health consequences, including cervical and prostate cancers and HIV acquisition. Gene expression analysis has been facilitated because of available genome sequences and large-scale transcriptomes in T. vaginalis, particularly using quantitative real-time polymerase chain reaction (qRT-PCR), one of the most used methods for molecular studies. Reference genes for normalization are crucial to ensure the accuracy of this method. However, to the best of our knowledge, a systematic validation of reference genes has not been performed for T. vaginalis. In this study, the transcripts of nine candidate reference genes were quantified using qRT-PCR under different cultivation conditions, and the stability of these genes was compared using the geNorm and NormFinder algorithms. The most stable reference genes were α-tubulin, actin and DNATopII, and, conversely, the widely used T. vaginalis reference genes GAPDH and β-tubulin were less stable. The PFOR gene was used to validate the reliability of the use of these candidate reference genes. As expected, the PFOR gene was upregulated when the trophozoites were cultivated with ferrous ammonium sulfate when the DNATopII, α-tubulin and actin genes were used as normalizing gene. By contrast, the PFOR gene was downregulated when the GAPDH gene was used as an internal control, leading to misinterpretation of the data. These results provide an important starting point for reference gene selection and gene expression analysis with qRT-PCR studies of T. vaginalis. PMID:26393928

  12. Genome-Wide Analysis of the Aquaporin Gene Family in Chickpea (Cicer arietinum L.).

    Science.gov (United States)

    Deokar, Amit A; Tar'an, Bunyamin

    2016-01-01

    Aquaporins (AQPs) are essential membrane proteins that play critical role in the transport of water and many other solutes across cell membranes. In this study, a comprehensive genome-wide analysis identified 40 AQP genes in chickpea ( Cicer arietinum L.). A complete overview of the chickpea AQP (CaAQP) gene family is presented, including their chromosomal locations, gene structure, phylogeny, gene duplication, conserved functional motifs, gene expression, and conserved promoter motifs. To understand AQP's evolution, a comparative analysis of chickpea AQPs with AQP orthologs from soybean, Medicago, common bean, and Arabidopsis was performed. The chickpea AQP genes were found on all of the chickpea chromosomes, except chromosome 7, with a maximum of six genes on chromosome 6, and a minimum of one gene on chromosome 5. Gene duplication analysis indicated that the expansion of chickpea AQP gene family might have been due to segmental and tandem duplications. CaAQPs were grouped into four subfamilies including 15 NOD26-like intrinsic proteins (NIPs), 13 tonoplast intrinsic proteins (TIPs), eight plasma membrane intrinsic proteins (PIPs), and four small basic intrinsic proteins (SIPs) based on sequence similarities and phylogenetic position. Gene structure analysis revealed a highly conserved exon-intron pattern within CaAQP subfamilies supporting the CaAQP family classification. Functional prediction based on conserved Ar/R selectivity filters, Froger's residues, and specificity-determining positions suggested wide differences in substrate specificity among the subfamilies of CaAQPs. Expression analysis of the AQP genes indicated that some of the genes are tissue-specific, whereas few other AQP genes showed differential expression in response to biotic and abiotic stresses. Promoter profiling of CaAQP genes for conserved cis -acting regulatory elements revealed enrichment of cis -elements involved in circadian control, light response, defense and stress responsiveness

  13. The cell wall of Arabidopsis thaliana influences actin network dynamics.

    Science.gov (United States)

    Tolmie, Frances; Poulet, Axel; McKenna, Joseph; Sassmann, Stefan; Graumann, Katja; Deeks, Michael; Runions, John

    2017-07-20

    In plant cells, molecular connections link the cell wall-plasma membrane-actin cytoskeleton to form a continuum. It is hypothesized that the cell wall provides stable anchor points around which the actin cytoskeleton remodels. Here we use live cell imaging of fluorescently labelled marker proteins to quantify the organization and dynamics of the actin cytoskeleton and to determine the impact of disrupting connections within the continuum. Labelling of the actin cytoskeleton with green fluorescent protein (GFP)-fimbrin actin-binding domain 2 (FABD2) resulted in a network composed of fine filaments and thicker bundles that appeared as a highly dynamic remodelling meshwork. This differed substantially from the GFP-Lifeact-labelled network that appeared much more sparse with thick bundles that underwent 'simple movement', in which the bundles slightly change position, but in such a manner that the structure of the network was not substantially altered during the time of observation. Label-dependent differences in actin network morphology and remodelling necessitated development of two new image analysis techniques. The first of these, 'pairwise image subtraction', was applied to measurement of the more rapidly remodelling actin network labelled with GFP-FABD2, while the second, 'cumulative fluorescence intensity', was used to measure bulk remodelling of the actin cytoskeleton when labelled with GFP-Lifeact. In each case, these analysis techniques show that the actin cytoskeleton has a decreased rate of bulk remodelling when the cell wall-plasma membrane-actin continuum is disrupted either by plasmolysis or with isoxaben, a drug that specifically inhibits cellulose deposition. Changes in the rate of actin remodelling also affect its functionality, as observed by alteration in Golgi body motility. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  14. Surfing pathogens and the lessons learned for actin polymerization.

    Science.gov (United States)

    Frischknecht, F; Way, M

    2001-01-01

    A number of unrelated bacterial species as well as vaccinia virus (ab)use the process of actin polymerization to facilitate and enhance their infection cycle. Studies into the mechanism by which these pathogens hijack and control the actin cytoskeleton have provided many interesting insights into the regulation of actin polymerization in migrating cells. This review focuses on what we have learnt from the actin-based motilities of Listeria, Shigella and vaccinia and discusses what we would still like to learn from our nasty friends, including enteropathogenic Escherichia coli and Rickettsia

  15. Screening Key Genes Associated with the Development and Progression of Non-small Cell Lung Cancer Based on Gene-enrichment Analysis and Meta-analysis

    Directory of Open Access Journals (Sweden)

    Wenwu HE

    2012-07-01

    Full Text Available Background and objective Non-small cell lung cancer (NSCLC is one of the most common malignant tumors; however, its causes are still not completely understood. This study was designed to screen the key genes and pathways related to NSCLC occurrence and development and to establish the scientific foundation for the genetic mechanisms and targeted therapy of NSCLC. Methods Both gene set-enrichment analysis (GSEA and meta-analysis (meta were used to screen the critical pathways and genes that might be corretacted with the development and progression of lung cancer at the transcription level. Results Using the GSEA and meta methods, focal adhesion and regulation of actin cytoskeleton were determined to be the more prominent overlapping significant pathways. In the focal adhesion pathway, 31 genes were statistically significant (P<0.05, whereas in the regulation of actin cytoskeleton pathway, 32 genes were statistically significant (P<0.05. Conclusion The focal adhesion and the regulation of actin cytoskeleton pathways might play important roles in the occurrence and development of NSCLC. Further studies are needed to determine the biological function for the positiue genes.

  16. Binding and assembly of actin filaments by plasma membranes from dictyostelium discoideum

    International Nuclear Information System (INIS)

    Schwartz, M.A.; Luna, E.J.

    1986-01-01

    The binding of native, 125 I-Bolton-Hunter-labeled actin to purified Dictyostelium discoideum plasma membranes was measured using a sedimentation assay. Binding was saturable only in the presence of the actin capping protein, gelsolin. The binding curves were sigmoidal, indicating positive cooperativity at low actin concentrations. This cooperativity appeared to be due to actin-actin associations during polymerization, since phalloidin converted the curve to a hyperbolic shape. This membrane-bound actin stained with rhodamine-phalloidin and was cross-linked by m-maleimidobenzoyl succinimide ester, a bifunctional cross-linker, into multimers with the same pattern observed for cross-linked F-actin. The authors conclude that D. discoideum plasma membranes bind actin specifically and saturably and that these membranes organize actin into filaments below the normal critical concentration for polymerization. This interaction probably occurs between multiple binding sites on the membrane and the side of the actin filament, and may be related to the clustering of membrane proteins

  17. Massive expansion of the calpain gene family in unicellular eukaryotes

    Directory of Open Access Journals (Sweden)

    Zhao Sen

    2012-09-01

    Full Text Available Abstract Background Calpains are Ca2+-dependent cysteine proteases that participate in a range of crucial cellular processes. Dysfunction of these enzymes may cause, for instance, life-threatening diseases in humans, the loss of sex determination in nematodes and embryo lethality in plants. Although the calpain family is well characterized in animal and plant model organisms, there is a great lack of knowledge about these genes in unicellular eukaryote species (i.e. protists. Here, we study the distribution and evolution of calpain genes in a wide range of eukaryote genomes from major branches in the tree of life. Results Our investigations reveal 24 types of protein domains that are combined with the calpain-specific catalytic domain CysPc. In total we identify 41 different calpain domain architectures, 28 of these domain combinations have not been previously described. Based on our phylogenetic inferences, we propose that at least four calpain variants were established in the early evolution of eukaryotes, most likely before the radiation of all the major supergroups of eukaryotes. Many domains associated with eukaryotic calpain genes can be found among eubacteria or archaebacteria but never in combination with the CysPc domain. Conclusions The analyses presented here show that ancient modules present in prokaryotes, and a few de novo eukaryote domains, have been assembled into many novel domain combinations along the evolutionary history of eukaryotes. Some of the new calpain genes show a narrow distribution in a few branches in the tree of life, likely representing lineage-specific innovations. Hence, the functionally important classical calpain genes found among humans and vertebrates make up only a tiny fraction of the calpain family. In fact, a massive expansion of the calpain family occurred by domain shuffling among unicellular eukaryotes and contributed to a wealth of functionally different genes.

  18. Massive expansion of the calpain gene family in unicellular eukaryotes.

    Science.gov (United States)

    Zhao, Sen; Liang, Zhe; Demko, Viktor; Wilson, Robert; Johansen, Wenche; Olsen, Odd-Arne; Shalchian-Tabrizi, Kamran

    2012-09-29

    Calpains are Ca2+-dependent cysteine proteases that participate in a range of crucial cellular processes. Dysfunction of these enzymes may cause, for instance, life-threatening diseases in humans, the loss of sex determination in nematodes and embryo lethality in plants. Although the calpain family is well characterized in animal and plant model organisms, there is a great lack of knowledge about these genes in unicellular eukaryote species (i.e. protists). Here, we study the distribution and evolution of calpain genes in a wide range of eukaryote genomes from major branches in the tree of life. Our investigations reveal 24 types of protein domains that are combined with the calpain-specific catalytic domain CysPc. In total we identify 41 different calpain domain architectures, 28 of these domain combinations have not been previously described. Based on our phylogenetic inferences, we propose that at least four calpain variants were established in the early evolution of eukaryotes, most likely before the radiation of all the major supergroups of eukaryotes. Many domains associated with eukaryotic calpain genes can be found among eubacteria or archaebacteria but never in combination with the CysPc domain. The analyses presented here show that ancient modules present in prokaryotes, and a few de novo eukaryote domains, have been assembled into many novel domain combinations along the evolutionary history of eukaryotes. Some of the new calpain genes show a narrow distribution in a few branches in the tree of life, likely representing lineage-specific innovations. Hence, the functionally important classical calpain genes found among humans and vertebrates make up only a tiny fraction of the calpain family. In fact, a massive expansion of the calpain family occurred by domain shuffling among unicellular eukaryotes and contributed to a wealth of functionally different genes.

  19. A peek into tropomyosin binding and unfolding on the actin filament.

    Directory of Open Access Journals (Sweden)

    Abhishek Singh

    Full Text Available BACKGROUND: Tropomyosin is a prototypical coiled coil along its length with subtle variations in structure that allow interactions with actin and other proteins. Actin binding globally stabilizes tropomyosin. Tropomyosin-actin interaction occurs periodically along the length of tropomyosin. However, it is not well understood how tropomyosin binds actin. PRINCIPAL FINDINGS: Tropomyosin's periodic binding sites make differential contributions to two components of actin binding, cooperativity and affinity, and can be classified as primary or secondary sites. We show through mutagenesis and analysis of recombinant striated muscle alpha-tropomyosins that primary actin binding sites have a destabilizing coiled-coil interface, typically alanine-rich, embedded within a non-interface recognition sequence. Introduction of an Ala cluster in place of the native, more stable interface in period 2 and/or period 3 sites (of seven increased the affinity or cooperativity of actin binding, analysed by cosedimentation and differential scanning calorimetry. Replacement of period 3 with period 5 sequence, an unstable region of known importance for cooperative actin binding, increased the cooperativity of binding. Introduction of the fluorescent probe, pyrene, near the mutation sites in periods 2 and 3 reported local instability, stabilization by actin binding, and local unfolding before or coincident with dissociation from actin (measured using light scattering, and chain dissociation (analyzed using circular dichroism. CONCLUSIONS: This, and previous work, suggests that regions of tropomyosin involved in binding actin have non-interface residues specific for interaction with actin and an unstable interface that is locally stabilized upon binding. The destabilized interface allows residues on the coiled-coil surface to obtain an optimal conformation for interaction with actin by increasing the number of local substates that the side chains can sample. We suggest

  20. Gene amplification in Chinese hamster embryo cells by the decay of incorporated iodine-125

    International Nuclear Information System (INIS)

    Luecke-Huhle, Christine; Ehrfeld, Angelika; Rau, Waltraud

    1988-01-01

    Simian Virus 40-transformed Chinese hamster embryo cells (Co631) contain 5 viral copies integrated per cell genome. These SV40 sequences were used as an endogenous indicator gene to study response of mammalian cells to radiation at gene level. Cells were internally irradiated by Auger electrons emitted by Iodine-125 which was incorporated in cell DNA in form of 5-[ 125 I] iododeoxyuridine ( 125 IdU). An increase in gene copy number was measured using dispersed cell blotting and Southern analysis in combination with highly sensitive DNA hybridization. A 13-fold amplification of the SV40 sequences and a 2-fold amplification of two cellular oncogenes of the ras family were found. Other cellular genes, like the α-actin gene, are not amplified and no variation in gene copy number was observed after incubation of cells with cold IdU. Thus, specific gene amplification seems to be the consequence of radiation-induced DNA damage and the resulting cell cycle arrest. (author)

  1. Two Functionally Distinct Sources of Actin Monomers Supply the Leading Edge of Lamellipodia

    Science.gov (United States)

    Vitriol, Eric A.; McMillen, Laura M.; Kapustina, Maryna; Gomez, Shawn M.; Vavylonis, Dimitrios; Zheng, James Q.

    2015-01-01

    Summary Lamellipodia, the sheet-like protrusions of motile cells, consist of networks of actin filaments (F-actin) regulated by the ordered assembly from and disassembly into actin monomers (G-actin). Traditionally, G-actin is thought to exist as a homogeneous pool. Here, we show that there are two functionally and molecularly distinct sources of G-actin that supply lamellipodial actin networks. G-actin originating from the cytosolic pool requires the monomer binding protein thymosin β4 (Tβ4) for optimal leading edge localization, is targeted to formins, and is responsible for creating an elevated G/F-actin ratio that promotes membrane protrusion. The second source of G-actin comes from recycled lamellipodia F-actin. Recycling occurs independently of Tβ4 and appears to regulate lamellipodia homeostasis. Tβ4-bound G-actin specifically localizes to the leading edge because it doesn’t interact with Arp2/3-mediated polymerization sites found throughout the lamellipodia. These findings demonstrate that actin networks can be constructed from multiple sources of monomers with discrete spatiotemporal functions. PMID:25865895

  2. Automated detection of actinic keratoses in clinical photographs.

    Science.gov (United States)

    Hames, Samuel C; Sinnya, Sudipta; Tan, Jean-Marie; Morze, Conrad; Sahebian, Azadeh; Soyer, H Peter; Prow, Tarl W

    2015-01-01

    Clinical diagnosis of actinic keratosis is known to have intra- and inter-observer variability, and there is currently no non-invasive and objective measure to diagnose these lesions. The aim of this pilot study was to determine if automatically detecting and circumscribing actinic keratoses in clinical photographs is feasible. Photographs of the face and dorsal forearms were acquired in 20 volunteers from two groups: the first with at least on actinic keratosis present on the face and each arm, the second with no actinic keratoses. The photographs were automatically analysed using colour space transforms and morphological features to detect erythema. The automated output was compared with a senior consultant dermatologist's assessment of the photographs, including the intra-observer variability. Performance was assessed by the correlation between total lesions detected by automated method and dermatologist, and whether the individual lesions detected were in the same location as the dermatologist identified lesions. Additionally, the ability to limit false positives was assessed by automatic assessment of the photographs from the no actinic keratosis group in comparison to the high actinic keratosis group. The correlation between the automatic and dermatologist counts was 0.62 on the face and 0.51 on the arms, compared to the dermatologist's intra-observer variation of 0.83 and 0.93 for the same. Sensitivity of automatic detection was 39.5% on the face, 53.1% on the arms. Positive predictive values were 13.9% on the face and 39.8% on the arms. Significantly more lesions (p<0.0001) were detected in the high actinic keratosis group compared to the no actinic keratosis group. The proposed method was inferior to assessment by the dermatologist in terms of sensitivity and positive predictive value. However, this pilot study used only a single simple feature and was still able to achieve sensitivity of detection of 53.1% on the arms.This suggests that image analysis is

  3. The SOD gene family in tomato: identification, phylogenetic relationships and expression patterns

    Directory of Open Access Journals (Sweden)

    kun feng

    2016-08-01

    Full Text Available Superoxide dismutases (SODs are critical antioxidant enzymes that protect organisms from reactive oxygen species (ROS caused by adverse conditions, and have been widely found in the cytoplasm, chloroplasts, and mitochondria of eukaryotic and prokaryotic cells. Tomato (Solanum lycopersicum L. is an important economic crop and is cultivated worldwide. However, abiotic and biotic stresses severely hinder growth and development of the plant, which affects the production and quality of the crop. To reveal the potential roles of SOD genes under various stresses, we performed a systematic analysis of the tomato SOD gene family and analyzed the expression patterns of SlSOD genes in response to abiotic stresses at the whole-genome level. The characteristics of the SlSOD gene family were determined by analyzing gene structure, conserved motifs, chromosomal distribution, phylogenetic relationships, and expression patterns. We determined that there are at least nine SOD genes in tomato, including four Cu/ZnSODs, three FeSODs, and one MnSOD, and they are unevenly distributed on 12 chromosomes. Phylogenetic analyses of SOD genes from tomato and other plant species were separated into two groups with a high bootstrap value, indicating that these SOD genes were present before the monocot-dicot split. Additionally, many cis-elements that respond to different stresses were found in the promoters of nine SlSOD genes. Gene expression analysis based on RNA-seq data showed that most genes were expressed in all tested tissues, with the exception of SlSOD6 and SlSOD8, which were only expressed in young fruits. Microarray data analysis showed that most members of the SlSOD gene family were altered under salt- and drought-stress conditions. This genome-wide analysis of SlSOD genes helps to clarify the function of SlSOD genes under different stress conditions and provides information to aid in further understanding the evolutionary relationships of SOD genes in plants.

  4. Bioinformatics Analysis of MAPKKK Family Genes in Medicago truncatula

    Directory of Open Access Journals (Sweden)

    Wei Li

    2016-04-01

    Full Text Available Mitogen‐activated protein kinase kinase kinase (MAPKKK is a component of the MAPK cascade pathway that plays an important role in plant growth, development, and response to abiotic stress, the functions of which have been well characterized in several plant species, such as Arabidopsis, rice, and maize. In this study, we performed genome‐wide and systemic bioinformatics analysis of MAPKKK family genes in Medicago truncatula. In total, there were 73 MAPKKK family members identified by search of homologs, and they were classified into three subfamilies, MEKK, ZIK, and RAF. Based on the genomic duplication function, 72 MtMAPKKK genes were located throughout all chromosomes, but they cluster in different chromosomes. Using microarray data and high‐throughput sequencing‐data, we assessed their expression profiles in growth and development processes; these results provided evidence for exploring their important functions in developmental regulation, especially in the nodulation process. Furthermore, we investigated their expression in abiotic stresses by RNA‐seq, which confirmed their critical roles in signal transduction and regulation processes under stress. In summary, our genome‐wide, systemic characterization and expressional analysis of MtMAPKKK genes will provide insights that will be useful for characterizing the molecular functions of these genes in M. truncatula.

  5. Mutations in a Novel Isoform of TRIOBP That Encodes a Filamentous-Actin Binding Protein Are Responsible for DFNB28 Recessive Nonsyndromic Hearing Loss

    OpenAIRE

    Shahin, Hashem; Walsh, Tom; Sobe, Tama; Abu Sa’ed, Judeh; Abu Rayan, Amal; Lynch, Eric D.; Lee, Ming K.; Avraham, Karen B.; King, Mary-Claire; Kanaan, Moein

    2005-01-01

    In a large consanguineous Palestinian kindred, we previously mapped DFNB28—a locus associated with recessively inherited, prelingual, profound sensorineural hearing impairment—to chromosome 22q13.1. We report here that mutations in a novel 218-kDa isoform of TRIOBP (TRIO and filamentous actin [F-actin] binding protein) are associated with DFNB28 hearing loss in a total of nine Palestinian families. Two nonsense mutations (R347X and Q581X) truncate the protein, and a potentially deleterious mi...

  6. How capping protein enhances actin filament growth and nucleation on biomimetic beads.

    Science.gov (United States)

    Wang, Ruizhe; Carlsson, Anders E

    2015-11-25

    Capping protein (CP), which caps the growing ends of actin filaments, accelerates actin-based motility. Recent experiments on biomimetic beads have shown that CP also enhances the rate of actin filament nucleation. Proposed explanations for these phenomena include (i) the actin funneling hypothesis (AFH), in which the presence of CP increases the free-actin concentration, and (ii) the monomer gating model, in which CP binding to actin filament barbed ends makes more monomers available for filament nucleation. To establish how CP increases the rates of filament elongation and nucleation on biomimetic beads, we perform a quantitative modeling analysis of actin polymerization, using rate equations that include actin filament nucleation, polymerization and capping, as modified by monomer depletion near the surface of the bead. With one adjustable parameter, our simulation results match previously measured time courses of polymerized actin and filament number. The results support a version of the AFH where CP increases the local actin monomer concentration at the bead surface, but leaves the global free-actin concentration nearly constant. Because the rate of filament nucleation increases with the monomer concentration, the increased local monomer concentration enhances actin filament nucleation. We derive a closed-form formula for the characteristic CP concentration where the local free-actin concentration reaches half the bulk value, and find it to be comparable to the global Arp2/3 complex concentration. We also propose an experimental protocol for distinguishing branching nucleation of filaments from spontaneous nucleation.

  7. Chicken genome analysis reveals novel genes encoding biotin-binding proteins related to avidin family

    Directory of Open Access Journals (Sweden)

    Nordlund Henri R

    2005-03-01

    Full Text Available Abstract Background A chicken egg contains several biotin-binding proteins (BBPs, whose complete DNA and amino acid sequences are not known. In order to identify and characterise these genes and proteins we studied chicken cDNAs and genes available in the NCBI database and chicken genome database using the reported N-terminal amino acid sequences of chicken egg-yolk BBPs as search strings. Results Two separate hits showing significant homology for these N-terminal sequences were discovered. For one of these hits, the chromosomal location in the immediate proximity of the avidin gene family was found. Both of these hits encode proteins having high sequence similarity with avidin suggesting that chicken BBPs are paralogous to avidin family. In particular, almost all residues corresponding to biotin binding in avidin are conserved in these putative BBP proteins. One of the found DNA sequences, however, seems to encode a carboxy-terminal extension not present in avidin. Conclusion We describe here the predicted properties of the putative BBP genes and proteins. Our present observations link BBP genes together with avidin gene family and shed more light on the genetic arrangement and variability of this family. In addition, comparative modelling revealed the potential structural elements important for the functional and structural properties of the putative BBP proteins.

  8. Toward the Structure of Dynamic Membrane-Anchored Actin Networks

    Science.gov (United States)

    Weber, Igor

    2007-01-01

    In the cortex of a motile cell, membrane-anchored actin filaments assemble into structures of varying shape and function. Filopodia are distinguished by a core of bundled actin filaments within finger-like extensions of the membrane. In a recent paper by Medalia et al1 cryo-electron tomography has been used to reconstruct, from filopodia of Dictyostelium cells, the 3-dimensional organization of actin filaments in connection with the plasma membrane. A special arrangement of short filaments converging toward the filopod's tip has been called a “terminal cone”. In this region force is applied for protrusion of the membrane. Here we discuss actin organization in the filopodia of Dictyostelium in the light of current views on forces that are generated by polymerizing actin filaments, and on the resistance of membranes against deformation that counteracts these forces. PMID:19262130

  9. Monoubiquitination Inhibits the Actin Bundling Activity of Fascin.

    Science.gov (United States)

    Lin, Shengchen; Lu, Shuang; Mulaj, Mentor; Fang, Bin; Keeley, Tyler; Wan, Lixin; Hao, Jihui; Muschol, Martin; Sun, Jianwei; Yang, Shengyu

    2016-12-30

    Fascin is an actin bundling protein that cross-links individual actin filaments into straight, compact, and stiff bundles, which are crucial for the formation of filopodia, stereocillia, and other finger-like membrane protrusions. The dysregulation of fascin has been implicated in cancer metastasis, hearing loss, and blindness. Here we identified monoubiquitination as a novel mechanism that regulates fascin bundling activity and dynamics. The monoubiquitination sites were identified to be Lys 247 and Lys 250 , two residues located in a positive charge patch at the actin binding site 2 of fascin. Using a chemical ubiquitination method, we synthesized chemically monoubiquitinated fascin and determined the effects of monoubiquitination on fascin bundling activity and dynamics. Our data demonstrated that monoubiquitination decreased the fascin bundling EC 50 , delayed the initiation of bundle assembly, and accelerated the disassembly of existing bundles. By analyzing the electrostatic properties on the solvent-accessible surface of fascin, we proposed that monoubiquitination introduced steric hindrance to interfere with the interaction between actin filaments and the positively charged patch at actin binding site 2. We also identified Smurf1 as a E3 ligase regulating the monoubiquitination of fascin. Our findings revealed a previously unidentified regulatory mechanism for fascin, which will have important implications for the understanding of actin bundle regulation under physiological and pathological conditions. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Monoubiquitination Inhibits the Actin Bundling Activity of Fascin*

    Science.gov (United States)

    Lin, Shengchen; Lu, Shuang; Mulaj, Mentor; Fang, Bin; Keeley, Tyler; Wan, Lixin; Hao, Jihui; Muschol, Martin; Sun, Jianwei; Yang, Shengyu

    2016-01-01

    Fascin is an actin bundling protein that cross-links individual actin filaments into straight, compact, and stiff bundles, which are crucial for the formation of filopodia, stereocillia, and other finger-like membrane protrusions. The dysregulation of fascin has been implicated in cancer metastasis, hearing loss, and blindness. Here we identified monoubiquitination as a novel mechanism that regulates fascin bundling activity and dynamics. The monoubiquitination sites were identified to be Lys247 and Lys250, two residues located in a positive charge patch at the actin binding site 2 of fascin. Using a chemical ubiquitination method, we synthesized chemically monoubiquitinated fascin and determined the effects of monoubiquitination on fascin bundling activity and dynamics. Our data demonstrated that monoubiquitination decreased the fascin bundling EC50, delayed the initiation of bundle assembly, and accelerated the disassembly of existing bundles. By analyzing the electrostatic properties on the solvent-accessible surface of fascin, we proposed that monoubiquitination introduced steric hindrance to interfere with the interaction between actin filaments and the positively charged patch at actin binding site 2. We also identified Smurf1 as a E3 ligase regulating the monoubiquitination of fascin. Our findings revealed a previously unidentified regulatory mechanism for fascin, which will have important implications for the understanding of actin bundle regulation under physiological and pathological conditions. PMID:27879315

  11. [Mutation analysis of FGFR3 gene in a family featuring hereditary dwarfism].

    Science.gov (United States)

    Zhang, Qiong; Jiang, Hai-ou; Quan, Qing-li; Li, Jun; He, Ting; Huang, Xue-shuang

    2011-12-01

    To investigate the clinical symptoms and potential mutation in FGFR3 gene for a family featuring hereditary dwarfism in order to attain diagnosis and provide prenatal diagnosis. Five patients and two unaffected relatives from the family, in addition with 100 healthy controls, were recruited. Genome DNA was extracted. Exons 10 and 13 of the FGFR3 gene were amplified using polymerase chain reaction (PCR). PCR products were sequenced in both directions. All patients had similar features including short stature, short limbs, lumbar hyperlordosis but normal craniofacial features. A heterozygous mutation G1620T (N540K) was identified in the cDNA from all patients but not in the unaffected relatives and 100 control subjects. A heterozygous G380R mutation was excluded. The hereditary dwarfism featured by this family has been caused by hypochondroplasia (HCH) due to a N540K mutation in the FGFR3 gene.

  12. A single charge in the actin binding domain of fascin can independently tune the linear and non-linear response of an actin bundle network.

    Science.gov (United States)

    Maier, M; Müller, K W; Heussinger, C; Köhler, S; Wall, W A; Bausch, A R; Lieleg, O

    2015-05-01

    Actin binding proteins (ABPs) not only set the structure of actin filament assemblies but also mediate the frequency-dependent viscoelastic moduli of cross-linked and bundled actin networks. Point mutations in the actin binding domain of those ABPs can tune the association and dissociation dynamics of the actin/ABP bond and thus modulate the network mechanics both in the linear and non-linear response regime. We here demonstrate how the exchange of a single charged amino acid in the actin binding domain of the ABP fascin triggers such a modulation of the network rheology. Whereas the overall structure of the bundle networks is conserved, the transition point from strain-hardening to strain-weakening sensitively depends on the cross-linker off-rate and the applied shear rate. Our experimental results are consistent both with numerical simulations of a cross-linked bundle network and a theoretical description of the bundle network mechanics which is based on non-affine bending deformations and force-dependent cross-link dynamics.

  13. Identification and description of three families with familial Alzheimer disease that segregate variants in the SORL1 gene.

    Science.gov (United States)

    Thonberg, Håkan; Chiang, Huei-Hsin; Lilius, Lena; Forsell, Charlotte; Lindström, Anna-Karin; Johansson, Charlotte; Björkström, Jenny; Thordardottir, Steinunn; Sleegers, Kristel; Van Broeckhoven, Christine; Rönnbäck, Annica; Graff, Caroline

    2017-06-09

    Alzheimer disease (AD) is a progressive neurodegenerative disorder and the most common form of dementia. The majority of AD cases are sporadic, while up to 5% are families with an early onset AD (EOAD). Mutations in one of the three genes: amyloid beta precursor protein (APP), presenilin 1 (PSEN1) or presenilin 2 (PSEN2) can be disease causing. However, most EOAD families do not carry mutations in any of these three genes, and candidate genes, such as the sortilin-related receptor 1 (SORL1), have been suggested to be potentially causative. To identify AD causative variants, we performed whole-exome sequencing on five individuals from a family with EOAD and a missense variant, p.Arg1303Cys (c.3907C > T) was identified in SORL1 which segregated with disease and was further characterized with immunohistochemistry on two post mortem autopsy cases from the same family. In a targeted re-sequencing effort on independent index patients from 35 EOAD-families, a second SORL1 variant, c.3050-2A > G, was found which segregated with the disease in 3 affected and was absent in one unaffected family member. The c.3050-2A > G variant is located two nucleotides upstream of exon 22 and was shown to cause exon 22 skipping, resulting in a deletion of amino acids Gly1017- Glu1074 of SORL1. Furthermore, a third SORL1 variant, c.5195G > C, recently identified in a Swedish case control cohort included in the European Early-Onset Dementia (EU EOD) consortium study, was detected in two affected siblings in a third family with familial EOAD. The finding of three SORL1-variants that segregate with disease in three separate families with EOAD supports the involvement of SORL1 in AD pathology. The cause of these rare monogenic forms of EOAD has proven difficult to find and the use of exome and genome sequencing may be a successful route to target them.

  14. A Clinical and Molecular Genetic Study of 50 Families with Autosomal Recessive Parkinsonism Revealed Known and Novel Gene Mutations.

    Science.gov (United States)

    Taghavi, Shaghayegh; Chaouni, Rita; Tafakhori, Abbas; Azcona, Luis J; Firouzabadi, Saghar Ghasemi; Omrani, Mir Davood; Jamshidi, Javad; Emamalizadeh, Babak; Shahidi, Gholam Ali; Ahmadi, Mona; Habibi, Seyed Amir Hassan; Ahmadifard, Azadeh; Fazeli, Atena; Motallebi, Marzieh; Petramfar, Peyman; Askarpour, Saeed; Askarpour, Shiva; Shahmohammadibeni, Hossein Ali; Shahmohammadibeni, Neda; Eftekhari, Hajar; Shafiei Zarneh, Amir Ehtesham; Mohammadihosseinabad, Saeed; Khorrami, Mehdi; Najmi, Safa; Chitsaz, Ahmad; Shokraeian, Parasto; Ehsanbakhsh, Hossein; Rezaeidian, Jalal; Ebrahimi Rad, Reza; Madadi, Faranak; Andarva, Monavvar; Alehabib, Elham; Atakhorrami, Minoo; Mortazavi, Seyed Erfan; Azimzadeh, Zahra; Bayat, Mahdis; Besharati, Amir Mohammad; Harati-Ghavi, Mohammad Ali; Omidvari, Samareh; Dehghani-Tafti, Zahra; Mohammadi, Faraz; Mohammad Hossein Pour, Banafsheh; Noorollahi Moghaddam, Hamid; Esmaili Shandiz, Ehsan; Habibi, Arman; Taherian-Esfahani, Zahra; Darvish, Hossein; Paisán-Ruiz, Coro

    2018-04-01

    In this study, the role of known Parkinson's disease (PD) genes was examined in families with autosomal recessive (AR) parkinsonism to assist with the differential diagnosis of PD. Some families without mutations in known genes were also subject to whole genome sequencing with the objective to identify novel parkinsonism-related genes. Families were selected from 4000 clinical files of patients with PD or parkinsonism. AR inheritance pattern, consanguinity, and a minimum of two affected individuals per family were used as inclusion criteria. For disease gene/mutation identification, multiplex ligation-dependent probe amplification, quantitative PCR, linkage, and Sanger and whole genome sequencing assays were carried out. A total of 116 patients (50 families) were examined. Fifty-four patients (46.55%; 22 families) were found to carry pathogenic mutations in known genes while a novel gene, not previously associated with parkinsonism, was found mutated in a single family (2 patients). Pathogenic mutations, including missense, nonsense, frameshift, and exon rearrangements, were found in Parkin, PINK1, DJ-1, SYNJ1, and VAC14 genes. In conclusion, variable phenotypic expressivity was seen across all families.

  15. Phylogenetic analysis of the expansion of the MATH-BTB gene family in the grasses.

    Science.gov (United States)

    Juranić, Martina; Dresselhaus, Thomas

    2014-01-01

    MATH-BTB proteins are known to act as substrate-specific adaptors of cullin3 (CUL3)-based ubiquitin E3 ligases to target protein for ubiquitination. In a previous study we reported the presence of 31 MATH-BTB genes in the maize genome and determined the regulatory role of the MATH-BTB protein MAB1 during meiosis to mitosis transition. In contrast to maize, there are only 6 homologous genes in the model plant Arabidopsis, while this family has largely expanded in grasses. Here, we report a phylogenetic analysis of the MATH-BTB gene family in 9 land plant species including various mosses, eudicots, and grasses. We extend a previous classification of the plant MATH-BTB family and additionally arrange the expanded group into 5 grass-specific clades. Synteny studies indicate that expansion occurred to a large extent due to local gene duplications. Expression studies of 3 closely related MATH-BTB genes in maize (MAB1-3) indicate highly specific expression pattern. In summary, this work provides a solid base for further studies comparing genetic and functional information of the MATH-BTB family especially in the grasses.

  16. Actin-myosin network is required for proper assembly of influenza virus particles

    Energy Technology Data Exchange (ETDEWEB)

    Kumakura, Michiko; Kawaguchi, Atsushi, E-mail: ats-kawaguchi@md.tsukuba.ac.jp; Nagata, Kyosuke, E-mail: knagata@md.tsukuba.ac.jp

    2015-02-15

    Actin filaments are known to play a central role in cellular dynamics. After polymerization of actin, various actin-crosslinking proteins including non-muscle myosin II facilitate the formation of spatially organized actin filament networks. The actin-myosin network is highly expanded beneath plasma membrane. The genome of influenza virus (vRNA) replicates in the cell nucleus. Then, newly synthesized vRNAs are nuclear-exported to the cytoplasm as ribonucleoprotein complexes (vRNPs), followed by transport to the beneath plasma membrane where virus particles assemble. Here, we found that, by inhibiting actin-myosin network formation, the virus titer tends to be reduced and HA viral spike protein is aggregated on the plasma membrane. These results indicate that the actin-myosin network plays an important role in the virus formation. - Highlights: • Actin-myosin network is important for the influenza virus production. • HA forms aggregations at the plasma membrane in the presence of blebbistatin. • M1 is recruited to the budding site through the actin-myosin network.

  17. Actin-myosin network is required for proper assembly of influenza virus particles

    International Nuclear Information System (INIS)

    Kumakura, Michiko; Kawaguchi, Atsushi; Nagata, Kyosuke

    2015-01-01

    Actin filaments are known to play a central role in cellular dynamics. After polymerization of actin, various actin-crosslinking proteins including non-muscle myosin II facilitate the formation of spatially organized actin filament networks. The actin-myosin network is highly expanded beneath plasma membrane. The genome of influenza virus (vRNA) replicates in the cell nucleus. Then, newly synthesized vRNAs are nuclear-exported to the cytoplasm as ribonucleoprotein complexes (vRNPs), followed by transport to the beneath plasma membrane where virus particles assemble. Here, we found that, by inhibiting actin-myosin network formation, the virus titer tends to be reduced and HA viral spike protein is aggregated on the plasma membrane. These results indicate that the actin-myosin network plays an important role in the virus formation. - Highlights: • Actin-myosin network is important for the influenza virus production. • HA forms aggregations at the plasma membrane in the presence of blebbistatin. • M1 is recruited to the budding site through the actin-myosin network

  18. Transcriptional profiling of the human fibrillin/LTBP gene family, key regulators of mesenchymal cell functions

    DEFF Research Database (Denmark)

    Davis, Margaret R.; Andersson, Robin; Severin, Jessica

    2014-01-01

    in the structure of the extracellular matrix and controlling the bioavailability of TGFβ family members. Genes encoding these proteins show differential expression in mesenchymal cell types which synthesize the extracellular matrix. We have investigated the promoter regions of the seven gene family members using...... of the family members were expressed in a range of mesenchymal and other cell types, often associated with use of alternative promoters or transcription start sites within a promoter in different cell types. FBN3 was the lowest expressed gene, and was found only in embryonic and fetal tissues. The different...

  19. Genome-wide analysis of the GRAS gene family in Prunus mume.

    Science.gov (United States)

    Lu, Jiuxing; Wang, Tao; Xu, Zongda; Sun, Lidan; Zhang, Qixiang

    2015-02-01

    Prunus mume is an ornamental flower and fruit tree in Rosaceae. We investigated the GRAS gene family to improve the breeding and cultivation of P. mume and other Rosaceae fruit trees. The GRAS gene family encodes transcriptional regulators that have diverse functions in plant growth and development, such as gibberellin and phytochrome A signal transduction, root radial patterning, and axillary meristem formation and gametogenesis in the P. mume genome. Despite the important roles of these genes in plant growth regulation, no findings on the GRAS genes of P. mume have been reported. In this study, we discerned phylogenetic relationships of P. mume GRAS genes, and their locations, structures in the genome and expression levels of different tissues. Out of 46 identified GRAS genes, 45 were located on the 8 P. mume chromosomes. Phylogenetic results showed that these genes could be classified into 11 groups. We found that Group X was P. mume-specific, and three genes of Group IX clustered with the rice-specific gene Os4. We speculated that these genes existed before the divergence of dicotyledons and monocotyledons and were lost in Arabidopsis. Tissue expression analysis indicated that 13 genes showed high expression levels in roots, stems, leaves, flowers and fruits, and were related to plant growth and development. Functional analysis of 24 GRAS genes and an orthologous relationship analysis indicated that many functioned during plant growth and flower and fruit development. Our bioinformatics analysis provides valuable information to improve the economic, agronomic and ecological benefits of P. mume and other Rosaceae fruit trees.

  20. [Gene mutation analysis and prenatal diagnosis of a family with Bartter syndrome].

    Science.gov (United States)

    Li, Long; Ma, Na; Li, Xiu-Rong; Gong, Fei; DU, Juan

    2016-08-01

    To investigate the mutation of related genes and prenatal diagnosis of a family with Bartter syndrome (BS). The high-throughput capture sequencing technique and PCR-Sanger sequencing were used to detect pathogenic genes in the proband of this family and analyze the whole family at the genomic level. After the genetic cause was clarified, the amniotic fluid was collected from the proband's mother who was pregnant for 5 months for prenatal diagnosis. The proband carried compound heterozygous mutations of c.88C>T(p.Arg30*) and c.968+2T>A in the CLCNKB gene; c.88C>T(p.Arg30*) had been reported as a pathogenic mutation, and c.968+2T>A was a new mutation. Pedigree analysis showed that the two mutations were inherited from the mother and father, respectively. Prenatal diagnosis showed that the fetus did not inherit the mutations from parents and had no mutations at the two loci. The follow-up visit confirmed that the infant was in a healthy state, which proved the accuracy of genetic diagnosis and prenatal diagnosis. The compound heterozygous mutations c.88C>T(p.Arg30*) and c.968+2T>A in the CLCNKB gene are the cause of BS in the proband, and prenatal diagnosis can prevent the risk of recurrence of BS in this family.

  1. Discrimination of Deletion and Duplication Subtypes of the Deleted in Azoospermia Gene Family in the Context of Frequent Interloci Gene Conversion

    Science.gov (United States)

    Vaszkó, Tibor; Papp, János; Krausz, Csilla; Casamonti, Elena; Géczi, Lajos; Olah, Edith

    2016-01-01

    Due to its palindromic setup, AZFc (Azoospermia Factor c) region of chromosome Y is one of the most unstable regions of the human genome. It contains eight gene families expressed mainly in the testes. Several types of rearrangement resulting in changes in the cumulative copy number of the gene families were reported to be associated with diseases such as male infertility and testicular germ cell tumors. The best studied AZFc rearrangement is gr/gr deletion. Its carriers show widespread phenotypic variation from azoospermia to normospermia. This phenomenon was initially attributed to different gr/gr subtypes that would eliminate distinct members of the affected gene families. However, studies conducted to confirm this hypothesis have brought controversial results, perhaps, in part, due to the shortcomings of the utilized subtyping methodology. This proof-of-concept paper is meant to introduce here a novel method aimed at subtyping AZFc rearrangements. It is able to differentiate the partial deletion and partial duplication subtypes of the Deleted in Azoospermia (DAZ) gene family. The keystone of the method is the determination of the copy number of the gene family member-specific variant(s) in a series of sequence family variant (SFV) positions. Most importantly, we present a novel approach for the correct interpretation of the variant copy number data to determine the copy number of the individual DAZ family members in the context of frequent interloci gene conversion.Besides DAZ1/DAZ2 and DAZ3/DAZ4 deletions, not yet described rearrangements such as DAZ2/DAZ4 deletion and three duplication subtypes were also found by the utilization of the novel approach. A striking feature is the extremely high concordance among the individual data pointing to a certain type of rearrangement. In addition to being able to identify DAZ deletion subtypes more reliably than the methods used previously, this approach is the first that can discriminate DAZ duplication subtypes as well

  2. The SULTR gene family in maize (Zea mays L.): Gene cloning and expression analyses under sulfate starvation and abiotic stress.

    Science.gov (United States)

    Huang, Qin; Wang, Meiping; Xia, Zongliang

    2018-01-01

    Sulfur is an essential macronutrient required for plant growth, development and stress responses. The family of sulfate transporters (SULTRs) mediates the uptake and translocation of sulfate in higher plants. However, basic knowledge of the SULTR gene family in maize (Zea mays L.) is scarce. In this study, a genome-wide bioinformatic analysis of SULTR genes in maize was conducted, and the developmental expression patterns of the genes and their responses to sulfate starvation and abiotic stress were further investigated. The ZmSULTR family includes eight putative members in the maize genome and is clustered into four groups in the phylogenetic tree. These genes displayed differential expression patterns in various organs of maize. For example, expression of ZmSULTR1;1 and ZmSULTR4;1 was high in roots, and transcript levels of ZmSULTR3;1 and ZmSULTR3;3 were high in shoots. Expression of ZmSULTR1;2, ZmSULTR2;1, ZmSULTR3;3, and ZmSULTR4;1 was high in flowers. Also, these eight genes showed differential responses to sulfate deprivation in roots and shoots of maize seedlings. Transcript levels of ZmSULTR1;1, ZmSULTR1;2, and ZmSULTR3;4 were significantly increased in roots during 12-day-sulfate starvation stress, while ZmSULTR3;3 and ZmSULTR3;5 only showed an early response pattern in shoots. In addition, dynamic transcriptional changes determined via qPCR revealed differential expression profiles of these eight ZmSULTR genes in response to environmental stresses such as salt, drought, and heat stresses. Notably, all the genes, except for ZmSULTR3;3, were induced by drought and heat stresses. However, a few genes were induced by salt stress. Physiological determination showed that two important thiol-containing compounds, cysteine and glutathione, increased significantly under these abiotic stresses. The results suggest that members of the SULTR family might function in adaptations to sulfur deficiency stress and adverse growing environments. This study will lay a

  3. The sieve element occlusion gene family in dicotyledonous plants.

    Science.gov (United States)

    Ernst, Antonia M; Rüping, Boris; Jekat, Stephan B; Nordzieke, Steffen; Reineke, Anna R; Müller, Boje; Bornberg-Bauer, Erich; Prüfer, Dirk; Noll, Gundula A

    2011-01-01

    Sieve element occlusion (SEO) genes encoding forisome subunits have been identified in Medicago truncatula and other legumes. Forisomes are structural phloem proteins uniquely found in Fabaceae sieve elements. They undergo a reversible conformational change after wounding, from a condensed to a dispersed state, thereby blocking sieve tube translocation and preventing the loss of photoassimilates. Recently, we identified SEO genes in several non-Fabaceae plants (lacking forisomes) and concluded that they most probably encode conventional non-forisome P-proteins. Molecular and phylogenetic analysis of the SEO gene family has identified domains that are characteristic for SEO proteins. Here, we extended our phylogenetic analysis by including additional SEO genes from several diverse species based on recently published genomic data. Our results strengthen the original assumption that SEO genes seem to be widespread in dicotyledonous angiosperms, and further underline the divergent evolution of SEO genes within the Fabaceae.

  4. The family structure of the Mucorales: a synoptic revision based on comprehensive multigene-genealogies.

    Science.gov (United States)

    Hoffmann, K; Pawłowska, J; Walther, G; Wrzosek, M; de Hoog, G S; Benny, G L; Kirk, P M; Voigt, K

    2013-06-01

    The Mucorales (Mucoromycotina) are one of the most ancient groups of fungi comprising ubiquitous, mostly saprotrophic organisms. The first comprehensive molecular studies 11 yr ago revealed the traditional classification scheme, mainly based on morphology, as highly artificial. Since then only single clades have been investigated in detail but a robust classification of the higher levels based on DNA data has not been published yet. Therefore we provide a classification based on a phylogenetic analysis of four molecular markers including the large and the small subunit of the ribosomal DNA, the partial actin gene and the partial gene for the translation elongation factor 1-alpha. The dataset comprises 201 isolates in 103 species and represents about one half of the currently accepted species in this order. Previous family concepts are reviewed and the family structure inferred from the multilocus phylogeny is introduced and discussed. Main differences between the current classification and preceding concepts affects the existing families Lichtheimiaceae and Cunninghamellaceae, as well as the genera Backusella and Lentamyces which recently obtained the status of families along with the Rhizopodaceae comprising Rhizopus, Sporodiniella and Syzygites. Compensatory base change analyses in the Lichtheimiaceae confirmed the lower level classification of Lichtheimia and Rhizomucor while genera such as Circinella or Syncephalastrum completely lacked compensatory base changes.

  5. The effect of pyrene labelling on the thermal stability of actin filaments

    International Nuclear Information System (INIS)

    Halasi, Szulamit; Papp, Gabor; Bugyi, Beata; Barko, Szilvia; Orban, Jozsef; Ujfalusi, Zoltan; Visegrady, Balazs

    2006-01-01

    The ability of actin to form filaments is fundamental to its biological function and often characterised by various methods in vitro. One of the most frequently used methods capitalises on the observation that the fluorescence emission of a pyrene label on the Cys-374 residue of actin is enhanced by a factor of ∼20 during polymerisation. This method inherently involves the chemical modification of actin monomers with pyrene. It was reported earlier that the pyrene labelling of actin monomers has only small effect on the polymerisation and depolymerisation rates of actin, indicating that the method is suitable to characterise the effect of actin-binding proteins or peptides on the polymerisation kinetics. In our present work we tested the effect of the pyrene labelling on the thermal denaturation of actin filaments by using the method of differential scanning calorimetry (DSC). By recording the heat denaturation profiles of unlabelled and pyrene labelled actin filaments we observed that pyrene labelling shifted the melting point (T m ) of actin filaments from 66 to 68 deg. C. A similar effect was detected in the presence of equimolar concentration of phalloidin where the T m shifted from 79 to 82 deg. C. We concluded that the observed pyrene labelling induced differences of the thermal denaturation of actin filaments were small. The DSC results, therefore, confirmed that the methods based on the measurements of pyrene intensity during actin polymerisation are suitable to characterise the polymerisation kinetics of actin under in vitro conditions

  6. X-exome sequencing of 405 unresolved families identifies seven novel intellectual disability genes.

    Science.gov (United States)

    Hu, H; Haas, S A; Chelly, J; Van Esch, H; Raynaud, M; de Brouwer, A P M; Weinert, S; Froyen, G; Frints, S G M; Laumonnier, F; Zemojtel, T; Love, M I; Richard, H; Emde, A-K; Bienek, M; Jensen, C; Hambrock, M; Fischer, U; Langnick, C; Feldkamp, M; Wissink-Lindhout, W; Lebrun, N; Castelnau, L; Rucci, J; Montjean, R; Dorseuil, O; Billuart, P; Stuhlmann, T; Shaw, M; Corbett, M A; Gardner, A; Willis-Owen, S; Tan, C; Friend, K L; Belet, S; van Roozendaal, K E P; Jimenez-Pocquet, M; Moizard, M-P; Ronce, N; Sun, R; O'Keeffe, S; Chenna, R; van Bömmel, A; Göke, J; Hackett, A; Field, M; Christie, L; Boyle, J; Haan, E; Nelson, J; Turner, G; Baynam, G; Gillessen-Kaesbach, G; Müller, U; Steinberger, D; Budny, B; Badura-Stronka, M; Latos-Bieleńska, A; Ousager, L B; Wieacker, P; Rodríguez Criado, G; Bondeson, M-L; Annerén, G; Dufke, A; Cohen, M; Van Maldergem, L; Vincent-Delorme, C; Echenne, B; Simon-Bouy, B; Kleefstra, T; Willemsen, M; Fryns, J-P; Devriendt, K; Ullmann, R; Vingron, M; Wrogemann, K; Wienker, T F; Tzschach, A; van Bokhoven, H; Gecz, J; Jentsch, T J; Chen, W; Ropers, H-H; Kalscheuer, V M

    2016-01-01

    X-linked intellectual disability (XLID) is a clinically and genetically heterogeneous disorder. During the past two decades in excess of 100 X-chromosome ID genes have been identified. Yet, a large number of families mapping to the X-chromosome remained unresolved suggesting that more XLID genes or loci are yet to be identified. Here, we have investigated 405 unresolved families with XLID. We employed massively parallel sequencing of all X-chromosome exons in the index males. The majority of these males were previously tested negative for copy number variations and for mutations in a subset of known XLID genes by Sanger sequencing. In total, 745 X-chromosomal genes were screened. After stringent filtering, a total of 1297 non-recurrent exonic variants remained for prioritization. Co-segregation analysis of potential clinically relevant changes revealed that 80 families (20%) carried pathogenic variants in established XLID genes. In 19 families, we detected likely causative protein truncating and missense variants in 7 novel and validated XLID genes (CLCN4, CNKSR2, FRMPD4, KLHL15, LAS1L, RLIM and USP27X) and potentially deleterious variants in 2 novel candidate XLID genes (CDK16 and TAF1). We show that the CLCN4 and CNKSR2 variants impair protein functions as indicated by electrophysiological studies and altered differentiation of cultured primary neurons from Clcn4(-/-) mice or after mRNA knock-down. The newly identified and candidate XLID proteins belong to pathways and networks with established roles in cognitive function and intellectual disability in particular. We suggest that systematic sequencing of all X-chromosomal genes in a cohort of patients with genetic evidence for X-chromosome locus involvement may resolve up to 58% of Fragile X-negative cases.

  7. Embryonic expression of zebrafish MiT family genes tfe3b, tfeb, and tfec.

    Science.gov (United States)

    Lister, James A; Lane, Brandon M; Nguyen, Anhthu; Lunney, Katherine

    2011-11-01

    The MiT family comprises four genes in mammals: Mitf, Tfe3, Tfeb, and Tfec, which encode transcription factors of the basic-helix-loop-helix/leucine zipper class. Mitf is well-known for its essential role in the development of melanocytes, however the functions of the other members of this family, and of interactions between them, are less well understood. We have now characterized the complete set of MiT genes from zebrafish, which totals six instead of four. The zebrafish genome contain two mitf (mitfa and mitfb), two tfe3 (tfe3a and tfe3b), and single tfeb and tfec genes; this distribution is shared with other teleosts. We present here the sequence and embryonic expression patterns for the zebrafish tfe3b, tfeb, and tfec genes, and identify a new isoform of tfe3a. These findings will assist in elucidating the roles of the MiT gene family over the course of vertebrate evolution. Copyright © 2011 Wiley-Liss, Inc.

  8. Characterization of vNr-13, the first alphaherpesvirus gene of the bcl-2 family

    International Nuclear Information System (INIS)

    Aouacheria, Abdel; Banyai, Michelle; Rigal, Dominique; Schmidt, Carl J.; Gillet, Germain

    2003-01-01

    The Bcl-2 family, including antiapoptotic and proapoptotic members, plays key regulating roles in programmed cell death. We report the characterization of a new member of the bcl-2 family, encoded by herpesvirus of turkeys (HVT). The product of this gene shares 80% homology with Nr-13, an apoptosis inhibitor, which is overexpressed in avian cells transformed by the v-src oncogene. This new gene, that we propose to call vnr-13, is the first member of the bcl-2 family to be isolated among α-herpesviruses. Results from cells expressing the HVT-vnr-13 gene product show that the encoded protein inhibits apoptosis and also reduces the rate of cellular proliferation. Contrary to all bcl-2 homologues found in γ-herpesvirus, which are intronless, vnr-13 has the same organization as the cellular nr-13 gene. Hence, the HVT vnr-13 gene may have been acquired from a reverse transcriptase product of an unspliced precursor RNA, or via direct recombination with the host chromosomal DNA

  9. The effects of near-UV radiation on elasmobranch lens cytoskeletal actin.

    Science.gov (United States)

    Zigman, S; Rafferty, N S; Scholz, D L; Lowe, K

    1992-08-01

    The role of near-UV radiation as a cytoskeletal actin-damaging agent was investigated. Two procedures were used to analyse fresh smooth dogfish (Mustelus canis) eye lenses that were incubated for up to 22 hr in vitro, with elasmobranch Ringer's medium, and with or without exposure to a near-UV lamp (emission principally at 365 nm; irradiance of 2.5 mW cm-2). These were observed histologically using phalloidin-rhodamine specific staining and by transmission electron microscopy. In addition, solutions of purified polymerized rabbit muscle actin were exposed to the same UV conditions and depolymerization was assayed by ultracentrifugation and high-pressure liquid chromatography. While the two actins studied do differ very slightly in some amino acid sequences, they would react physically nearly identically. The results showed that dogfish lenses developed superficial opacities due to near-UV exposure. Whole mounts of lens epithelium exhibited breakdown of actin filaments in the basal region of the cells within 18 hr of UV exposure. TEM confirmed the breakdown of actin filaments due to UV exposure. SDS-PAGE and immunoblotting positively identified actin in these cells. Direct exposure of purified polymerized muscle actin in polymerizing buffer led to an increase in actin monomer of approximately 25% in the UV-exposed solutions within 3-18 hr, whether assayed by ultracentrifugation or HPLC. The above indicates that elasmobranch lens epithelial cells contain UV-labile actin filaments, and that near-UV radiation, as is present in the sunlit environment, can break down the actin structure in these cells. Furthermore, breakdown of purified polymerized muscle actin does occur due to near-UV light exposure.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. TSPAN7, effector of actin nucleation required for dendritic cell-mediated transfer of HIV-1 to T cells.

    Science.gov (United States)

    Ménager, Mickaël M

    2017-06-15

    Dendritic cells (DCs) have essential roles in early detection of pathogens and activation of both innate and adaptive immune responses. Whereas human DCs are resistant to productive HIV-1 replication, they have a unique ability to take up virus and transmit it efficiently to T lymphocytes. By doing that, HIV-1 may evade, at least in part, the first line of defense of the immune system, exploiting DCs instead to facilitate rapid infection of a large pool of immune cells. While performing an shRNA screen in human primary monocyte-derived DCs, to gain insights into this cell biological process, we discovered the role played by tetraspanin-7 (TSPAN7). This member of the tetraspanin family appears to be a positive regulator of actin nucleation and stabilization, through the ARP2/3 complex. By doing so, TSPAN7 limits HIV-1 endocytosis and maintains viral particles on actin-rich dendrites for an efficient transfer toward T lymphocytes. While studying the function of TSPAN7 in the control of actin nucleation, we also discovered the existence in DCs of two opposing forces at the plasma membrane: actin nucleation, a protrusive force which seems to counterbalance actomyosin contraction. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  11. Characterization of the Pichia pastoris protein-O-mannosyltransferase gene family.

    Directory of Open Access Journals (Sweden)

    Juergen H Nett

    Full Text Available The methylotrophic yeast, Pichiapastoris, is an important organism used for the production of therapeutic proteins. However, the presence of fungal-like glycans, either N-linked or O-linked, can elicit an immune response or enable the expressed protein to bind to mannose receptors, thus reducing their efficacy. Previously we have reported the elimination of β-linked glycans in this organism. In the current report we have focused on reducing the O-linked mannose content of proteins produced in P. pastoris, thereby reducing the potential to bind to mannose receptors. The initial step in the synthesis of O-linked glycans in P. pastoris is the transfer of mannose from dolichol-phosphomannose to a target protein in the yeast secretory pathway by members of the protein-O-mannosyltransferase (PMT family. In this report we identify and characterize the members of the P. pastoris PMT family. Like Candida albicans, P. pastoris has five PMT genes. Based on sequence homology, these PMTs can be grouped into three sub-families, with both PMT1 and PMT2 sub-families possessing two members each (PMT1 and PMT5, and PMT2 and PMT6, respectively. The remaining sub-family, PMT4, has only one member (PMT4. Through gene knockouts we show that PMT1 and PMT2 each play a significant role in O-glycosylation. Both, by gene knockouts and the use of Pmt inhibitors we were able to significantly reduce not only the degree of O-mannosylation, but also the chain-length of these glycans. Taken together, this reduction of O-glycosylation represents an important step forward in developing the P. pastoris platform as a suitable system for the production of therapeutic glycoproteins.

  12. Evolution, functional differentiation, and co-expression of the RLK gene family revealed in Jilin ginseng, Panax ginseng C.A. Meyer.

    Science.gov (United States)

    Lin, Yanping; Wang, Kangyu; Li, Xiangyu; Sun, Chunyu; Yin, Rui; Wang, Yanfang; Wang, Yi; Zhang, Meiping

    2018-02-21

    Most genes in a genome exist in the form of a gene family; therefore, it is necessary to have knowledge of how a gene family functions to comprehensively understand organismal biology. The receptor-like kinase (RLK)-encoding gene family is one of the most important gene families in plants. It plays important roles in biotic and abiotic stress tolerances, and growth and development. However, little is known about the functional differentiation and relationships among the gene members within a gene family in plants. This study has isolated 563 RLK genes (designated as PgRLK genes) expressed in Jilin ginseng (Panax ginseng C.A. Meyer), investigated their evolution, and deciphered their functional diversification and relationships. The PgRLK gene family is highly diverged and formed into eight types. The LRR type is the earliest and most prevalent, while only the Lec type originated after P. ginseng evolved. Furthermore, although the members of the PgRLK gene family all encode receptor-like protein kinases and share conservative domains, they are functionally very diverse, participating in numerous biological processes. The expressions of different members of the PgRLK gene family are extremely variable within a tissue, at a developmental stage and in the same cultivar, but most of the genes tend to express correlatively, forming a co-expression network. These results not only provide a deeper and comprehensive understanding of the evolution, functional differentiation and correlation of a gene family in plants, but also an RLK genic resource useful for enhanced ginseng genetic improvement.

  13. A Patient With Desmoid Tumors and Familial FAP Having Frame Shift Mutation of the APC Gene

    Directory of Open Access Journals (Sweden)

    Sanambar Sadighi

    2017-02-01

    Full Text Available Desmoids tumors, characterized by monoclonal proliferation of myofibroblasts, could occur in 5-10% of patients with familial adenomatous polyposis (FAP as an extra-colonic manifestation of the disease. FAP can develop when there is a germ-line mutation in the adenomatous polyposis coli gene. Although mild or attenuated FAP may follow mutations in 5΄ extreme of the gene, it is more likely that 3΄ extreme mutations haveamore severe manifestation of thedisease. A 28-year-old woman was admitted to the Cancer Institute of Iran with an abdominal painful mass. She had strong family history of FAP and underwent prophylactic total colectomy. Pre-operative CT scans revealed a large mass. Microscopic observation showed diffuse fibroblast cell infiltration of the adjacent tissue structures. Peripheral blood DNA extraction followed by adenomatous polyposis coli gene exon by exon sequencing was performed to investigate the mutation in adenomatous polyposis coli gene. Analysis of DNA sequencing demonstrated a mutation of 4 bpdeletions at codon 1309-1310 of the exon 16 of adenomatous polyposis coli gene sequence which was repeated in 3 members of the family. Some of them had desmoid tumor without classical FAP history. Even when there is no familial history of adenomatous polyposis, the adenomatous polyposis coli gene mutation should be investigated in cases of familial desmoids tumors for a suitable prevention. The 3΄ extreme of the adenomatous polyposis coli gene is still the best likely location in such families.

  14. Genomewide analysis of TCP transcription factor gene family in ...

    Indian Academy of Sciences (India)

    2014-12-09

    Dec 9, 2014 ... study of a genomewide analysis of apple TCP gene family. These results provide .... synthesize the first-strand cDNA using the PrimeScript First. Strand cDNA ..... only detected in the stem, leaf and fruit (figure 8). When.

  15. Altering F-Actin Structure of C17.2 Cells using Single-Walled Carbon Nanotubes

    Science.gov (United States)

    Magers, Jay; Gillette, Nathan L. D.; Rotkin, Slava V.; Jedlicka, Sabrina; Pirbhai, Massooma; Lehigh Univesity Collaboration; Susquehanna University Collaboration

    Advancements in nanotechnology have become fundamental to the delivery of drugs to treat various diseases. One such advancement is that of carbon nanotubes and their possible implications on drug delivery. Single-walled carbon nanotubes (SWCNTs) have great potential in the biomedical field as a means to deliver materials such as drugs and genes into the human body due to their size and chemistry. However, the effects of the nanotubes on cells they interact with are still unknown. Previous studies have shown that a low dosage of SWCNTs can affect differentiation of C17.2 neural stem cells. In this experiment, we investigate how the tubes affect the structure of the cells. Specifically, we determined the impact on the cell by examining the actin filament length, protrusions along the edge of the cells, and actin distribution. Presenter/Author 1.

  16. Sequence of a complete chicken BG haplotype shows dynamic expansion and contraction of two gene lineages with particular expression patterns

    DEFF Research Database (Denmark)

    Salomonsen, Jan; Chattaway, John A.; Chan, Andrew C. Y.

    2014-01-01

    complex (MHC), and show striking association with particular autoimmune diseases. In chickens, BG genes encode homologues with somewhat different domain organisation. Only a few BG genes have been characterised, one involved in actin-myosin interaction in the intestinal brush border, and another...... implicated in resistance to viral diseases. We characterise all BG genes in B12 chickens, finding a multigene family organised as tandem repeats in the BG region outside the MHC, a single gene in the MHC (the BF-BL region), and another single gene on a different chromosome. There is a precise cell and tissue...... many hybrid genes, suggesting recombination and/or deletion as major evolutionary forces. We identify BG genes in the chicken whole genome shotgun sequence, as well as by comparison to other haplotypes by fibre fluorescence in situ hybridisation, confirming dynamic expansion and contraction within...

  17. Understanding the mechanisms of ATPase beta family genes for cellular thermotolerance in crossbred bulls.

    Science.gov (United States)

    Deb, Rajib; Sajjanar, Basavaraj; Singh, Umesh; Alex, Rani; Raja, T V; Alyethodi, Rafeeque R; Kumar, Sushil; Sengar, Gyanendra; Sharma, Sheetal; Singh, Rani; Prakash, B

    2015-12-01

    Na+/K+-ATPase is an integral membrane protein composed of a large catalytic subunit (alpha), a smaller glycoprotein subunit (beta), and gamma subunit. The beta subunit is essential for ion recognition as well as maintenance of the membrane integrity. Present study was aimed to analyze the expression pattern of ATPase beta subunit genes (ATPase B1, ATPase B2, and ATPase B3) among the crossbred bulls under different ambient temperatures (20-44 °C). The present study was also aimed to look into the relationship of HSP70 with the ATPase beta family genes. Our results demonstrated that among beta family genes, transcript abundance of ATPase B1 and ATPase B2 is significantly (P ATPase Β1, ATPase B2, and ATPase B3 is highly correlated (P ATPase beta family genes for cellular thermotolerance in cattle.

  18. Relaxin gene family in teleosts: phylogeny, syntenic mapping, selective constraint, andexpression analysis

    Directory of Open Access Journals (Sweden)

    Glen Peter

    2009-12-01

    Full Text Available Abstract Background In recent years, the relaxin family of signaling molecules has been shown to play diverse roles in mammalian physiology, but little is known about its diversity or physiology in teleosts, an infraclass of the bony fishes comprising ~ 50% of all extant vertebrates. In this paper, 32 relaxin family sequences were obtained by searching genomic and cDNA databases from eight teleost species; phylogenetic, molecular evolutionary, and syntenic data analyses were conducted to understand the relationship and differential patterns of evolution of relaxin family genes in teleosts compared with mammals. Additionally, real-time quantitative PCR was used to confirm and assess the tissues of expression of five relaxin family genes in Danio rerio and in situ hybridization used to assess the site-specific expression of the insulin 3-like gene in D. rerio testis. Results Up to six relaxin family genes were identified in each teleost species. Comparative syntenic mapping revealed that fish possess two paralogous copies of human RLN3, which we call rln3a and rln3b, an orthologue of human RLN2, rln, two paralogous copies of human INSL5, insl5a and insl5b, and an orthologue of human INSL3, insl3. Molecular evolutionary analyses indicated that: rln3a, rln3b and rln are under strong evolutionary constraint, that insl3 has been subject to moderate rates of sequence evolution with two amino acids in insl3/INSL3 showing evidence of positively selection, and that insl5b exhibits a higher rate of sequence evolution than its paralogue insl5a suggesting that it may have been neo-functionalized after the teleost whole genome duplication. Quantitative PCR analyses in D. rerio indicated that rln3a and rln3b are expressed in brain, insl3 is highly expressed in gonads, and that there was low expression of both insl5 genes in adult zebrafish. Finally, in situ hybridization of insl3 in D. rerio testes showed highly specific hybridization to interstitial Leydig

  19. Actinic Keratosis Pathogenesis Update and New Patents.

    Science.gov (United States)

    Cantisani, Carmen; Paolino, Giovanni; Melis, Marcello; Faina, Valentina; Romaniello, Federico; Didona, Dario; Cardone, Michele; Calvieri, Stefano

    2016-01-01

    Actinic keratosis is a common premalignant skin lesion. Because of its increasing incidence, several efforts have been made to earlier detectection and to improve knowledge on photocarcinogenic pathways of keratinocytes. As a consequence, recently new discoveries have been done in this field. Starting from our previous review on actinic keratosis, we reviewed the literature focusing on pathogenesis and new patents in order to highlight the most recent progresses in diagnosis and therapeutic approach. Although several efforts have been done in the field of photodamaged skin, new upgrades in diagnosis and therapy are needed to detect superficial actinic keratosis earlier, to improve the disease free survival of patient and to better treat the field cancerization.

  20. MicroRNA-99 family members suppress Homeobox A1 expression in epithelial cells.

    Science.gov (United States)

    Chen, Dan; Chen, Zujian; Jin, Yi; Dragas, Dragan; Zhang, Leitao; Adjei, Barima S; Wang, Anxun; Dai, Yang; Zhou, Xiaofeng

    2013-01-01

    The miR-99 family is one of the evolutionarily most ancient microRNA families, and it plays a critical role in developmental timing and the maintenance of tissue identity. Recent studies, including reports from our group, suggested that the miR-99 family regulates various physiological processes in adult tissues, such as dermal wound healing, and a number of disease processes, including cancer. By combining 5 independent genome-wide expression profiling experiments, we identified a panel of 266 unique transcripts that were down-regulated in epithelial cells transfected with miR-99 family members. A comprehensive bioinformatics analysis using 12 different sequence-based microRNA target prediction algorithms revealed that 81 out of these 266 down-regulated transcripts are potential direct targets for the miR-99 family. Confirmation experiments and functional analyses were performed to further assess 6 selected miR-99 target genes, including mammalian Target of rapamycin (mTOR), Homeobox A1 (HOXA1), CTD small phosphatase-like (CTDSPL), N-myristoyltransferase 1 (NMT1), Transmembrane protein 30A (TMEM30A), and SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A member 5 (SMARCA5). HOXA1 is a known proto-oncogene, and it also plays an important role in embryonic development. The direct targeting of the miR-99 family to two candidate binding sequences located in the HOXA1 mRNA was confirmed using a luciferase reporter gene assay and a ribonucleoprotein-immunoprecipitation (RIP-IP) assay. Ectopic transfection of miR-99 family reduced the expression of HOXA1, which, in consequence, down-regulated the expression of its downstream gene (i.e., Bcl-2) and led to reduced proliferation and cell migration, as well as enhanced apoptosis. In summary, we identified a number of high-confidence miR-99 family target genes, including proto-oncogene HOXA1, which may play an important role in regulating epithelial cell proliferation and migration during

  1. MicroRNA-99 family members suppress Homeobox A1 expression in epithelial cells.

    Directory of Open Access Journals (Sweden)

    Dan Chen

    Full Text Available The miR-99 family is one of the evolutionarily most ancient microRNA families, and it plays a critical role in developmental timing and the maintenance of tissue identity. Recent studies, including reports from our group, suggested that the miR-99 family regulates various physiological processes in adult tissues, such as dermal wound healing, and a number of disease processes, including cancer. By combining 5 independent genome-wide expression profiling experiments, we identified a panel of 266 unique transcripts that were down-regulated in epithelial cells transfected with miR-99 family members. A comprehensive bioinformatics analysis using 12 different sequence-based microRNA target prediction algorithms revealed that 81 out of these 266 down-regulated transcripts are potential direct targets for the miR-99 family. Confirmation experiments and functional analyses were performed to further assess 6 selected miR-99 target genes, including mammalian Target of rapamycin (mTOR, Homeobox A1 (HOXA1, CTD small phosphatase-like (CTDSPL, N-myristoyltransferase 1 (NMT1, Transmembrane protein 30A (TMEM30A, and SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A member 5 (SMARCA5. HOXA1 is a known proto-oncogene, and it also plays an important role in embryonic development. The direct targeting of the miR-99 family to two candidate binding sequences located in the HOXA1 mRNA was confirmed using a luciferase reporter gene assay and a ribonucleoprotein-immunoprecipitation (RIP-IP assay. Ectopic transfection of miR-99 family reduced the expression of HOXA1, which, in consequence, down-regulated the expression of its downstream gene (i.e., Bcl-2 and led to reduced proliferation and cell migration, as well as enhanced apoptosis. In summary, we identified a number of high-confidence miR-99 family target genes, including proto-oncogene HOXA1, which may play an important role in regulating epithelial cell proliferation and

  2. Genome-wide identification, phylogeny and expression analysis of SUN, OFP and YABBY gene family in tomato.

    Science.gov (United States)

    Huang, Zejun; Van Houten, Jason; Gonzalez, Geoffrey; Xiao, Han; van der Knaap, Esther

    2013-04-01

    Members of the plant-specific gene families IQD/SUN, OFP and YABBY are thought to play important roles in plant growth and development. YABBY family members are involved in lateral organ polarity and growth; OFP members encode transcriptional repressors, whereas the role of IQD/SUN members is less clear. The tomato fruit shape genes SUN, OVATE, and FASCIATED belong to IQD/SUN, OFP and the YABBY gene family, respectively. A gene duplication resulting in high expression of SUN leads to elongated fruit, whereas a premature stop codon in OVATE and a large inversion within FASCIATED control fruit elongation and a flat fruit shape, respectively. In this study, we identified 34 SlSUN, 31 SlOFP and 9 SlYABBY genes in tomato and identified their position on 12 chromosomes. Genome mapping analysis showed that the SlSUN, SlOFP, and SlYABBY genes were enriched on the top and bottom segments of several chromosomes. In particular, on chromosome 10, a cluster of SlOFPs were found to originate from tandem duplication events. We also constructed three phylogenetic trees based on the protein sequences of the IQ67, OVATE and YABBY domains, respectively, from members of these families in Arabidopsis and tomato. The closest putative orthologs of the Arabidopsis and tomato genes were determined by the position on the phylogenetic tree and sequence similarity. Furthermore, expression analysis showed that some family members exhibited tissue-specific expression, whereas others were more ubiquitously expressed. Also, certain family members overlapped with known QTLs controlling fruit shape in Solanaceous plants. Combined, these results may help elucidate the roles of SUN, OFP and YABBY family members in plant growth and development.

  3. Evaluation of the norrie disease gene in a family with incontinentia pigmenti.

    Science.gov (United States)

    Shastry, B S; Trese, M T

    2000-01-01

    Incontinentia pigmenti (IP) is an ectodermal multisystem disorder which can affect dental, ocular, cardiac and neurologic structures. The ocular changes of IP can have a very similar appearance to the retinal detachment of X-linked familial exudative vitreoretinopathy, which has been shown to be caused by the mutations in the Norrie disease gene. Therefore, it is of interest to determine whether similar mutations in the gene can account for the retinal pathology in patients with IP. To test our hypothesis, we have analyzed the entire Norrie disease gene for a family with IP, by single strand conformational polymorphism followed by DNA sequencing. The sequencing data revealed no disease-specific sequence alterations. These data suggest that ocular findings of IP are perhaps associated with different genes and there is no direct relationship between the genotype and phenotype. Copyright 2000 S. Karger AG, Basel

  4. Src kinases regulate de novo actin polymerization during exocytosis in neuroendocrine chromaffin cells.

    Directory of Open Access Journals (Sweden)

    María José Olivares

    Full Text Available The cortical actin network is dynamically rearranged during secretory processes. Nevertheless, it is unclear how de novo actin polymerization and the disruption of the preexisting actin network control transmitter release. Here we show that in bovine adrenal chromaffin cells, both formation of new actin filaments and disruption of the preexisting cortical actin network are induced by Ca2+ concentrations that trigger exocytosis. These two processes appear to regulate different stages of exocytosis; whereas the inhibition of actin polymerization with the N-WASP inhibitor wiskostatin restricts fusion pore expansion, thus limiting the release of transmitters, the disruption of the cortical actin network with cytochalasin D increases the amount of transmitter released per event. Further, the Src kinase inhibitor PP2, and cSrc SH2 and SH3 domains also suppress Ca2+-dependent actin polymerization, and slow down fusion pore expansion without disturbing the cortical F-actin organization. Finally, the isolated SH3 domain of c-Src prevents both the disruption of the actin network and the increase in the quantal release induced by cytochalasin D. These findings support a model where a rise in the cytosolic Ca2+ triggers actin polymerization through a mechanism that involves Src kinases. The newly formed actin filaments would speed up the expansion of the initial fusion pore, whereas the preexisting actin network might control a different step of the exocytosis process.

  5. Reorganization of the actin cytoskeleton via transcriptional regulation of cytoskeletal/focal adhesion genes by myocardin-related transcription factors (MRTFs/MAL/MKLs)

    International Nuclear Information System (INIS)

    Morita, Tsuyoshi; Mayanagi, Taira; Sobue, Kenji

    2007-01-01

    RhoA is a crucial regulator of stress fiber and focal adhesion formation through the activation of actin nucleation and polymerization. It also regulates the nuclear translocation of myocardin-related transcription factor-A and -B (MRTF-A/B, MAL or MKL 1/2), which are co-activators of serum response factor (SRF). In dominant-negative MRTF-A (DN-MRTF-A)-expressing NIH 3T3 cell lines, the expressions of several cytoskeletal/focal adhesion genes were down-regulated, and the formation of stress fiber and focal adhesion was severely diminished. MRTF-A/B-knockdown cells also exhibited such cytoskeletal defects. In reporter assays, both RhoA and MRTF-A enhanced promoter activities of these genes in a CArG-box-dependent manner, and DN-MRTF-A inhibited the RhoA-mediated activation of these promoters. In dominant-negative RhoA (RhoA-N19)-expressing NIH 3T3 cell lines, the nuclear translocation of MRTF-A/B was predominantly prevented, resulting in the reduced expression of cytoskeletal/focal adhesion proteins. Further, constitutive-active MRTF-A/B increased the expression of endogenous cytoskeletal/focal adhesion proteins, and thereby rescued the defective phenotype of stress fibers and focal adhesions in RhoA-N19 expressing cells. These results indicate that MRTF-A/B act as pivotal mediators of stress fiber and focal adhesion formation via the transcriptional regulation of a subset of cytoskeletal/focal adhesion genes

  6. A Legionella Effector Disrupts Host Cytoskeletal Structure by Cleaving Actin.

    Directory of Open Access Journals (Sweden)

    Yao Liu

    2017-01-01

    Full Text Available Legionella pneumophila, the etiological agent of Legionnaires' disease, replicates intracellularly in protozoan and human hosts. Successful colonization and replication of this pathogen in host cells requires the Dot/Icm type IVB secretion system, which translocates approximately 300 effector proteins into the host cell to modulate various cellular processes. In this study, we identified RavK as a Dot/Icm substrate that targets the host cytoskeleton and reduces actin filament abundance in mammalian cells upon ectopic expression. RavK harbors an H95EXXH99 motif associated with diverse metalloproteases, which is essential for the inhibition of yeast growth and for the induction of cell rounding in HEK293T cells. We demonstrate that the actin protein itself is the cellular target of RavK and that this effector cleaves actin at a site between residues Thr351 and Phe352. Importantly, RavK-mediated actin cleavage also occurs during L. pneumophila infection. Cleavage by RavK abolishes the ability of actin to form polymers. Furthermore, an F352A mutation renders actin resistant to RavK-mediated cleavage; expression of the mutant in mammalian cells suppresses the cell rounding phenotype caused by RavK, further establishing that actin is the physiological substrate of RavK. Thus, L. pneumophila exploits components of the host cytoskeleton by multiple effectors with distinct mechanisms, highlighting the importance of modulating cellular processes governed by the actin cytoskeleton in the intracellular life cycle of this pathogen.

  7. Allyl Isothiocyanate Inhibits Actin-Dependent Intracellular Transport in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Bjørnar Sporsheim

    2015-12-01

    Full Text Available Volatile allyl isothiocyanate (AITC derives from the biodegradation of the glucosinolate sinigrin and has been associated with growth inhibition in several plants, including the model plant Arabidopsis thaliana. However, the underlying cellular mechanisms of this feature remain scarcely investigated in plants. In this study, we present evidence of an AITC-induced inhibition of actin-dependent intracellular transport in A. thaliana. A transgenic line of A. thaliana expressing yellow fluorescent protein (YFP-tagged actin filaments was used to show attenuation of actin filament movement by AITC. This appeared gradually in a time- and dose-dependent manner and resulted in actin filaments appearing close to static. Further, we employed four transgenic lines with YFP-fusion proteins labeling the Golgi apparatus, endoplasmic reticulum (ER, vacuoles and peroxisomes to demonstrate an AITC-induced inhibition of actin-dependent intracellular transport of or, in these structures, consistent with the decline in actin filament movement. Furthermore, the morphologies of actin filaments, ER and vacuoles appeared aberrant following AITC-exposure. However, AITC-treated seedlings of all transgenic lines tested displayed morphologies and intracellular movements similar to that of the corresponding untreated and control-treated plants, following overnight incubation in an AITC-absent environment, indicating that AITC-induced decline in actin-related movements is a reversible process. These findings provide novel insights into the cellular events in plant cells following exposure to AITC, which may further expose clues to the physiological significance of the glucosinolate-myrosinase system.

  8. Actin is an essential component of plant gravitropic signaling pathways

    Science.gov (United States)

    Braun, Markus; Hauslage, Jens; Limbach, Christoph

    2003-08-01

    A role of the actin cytoskeleton in the different phases of gravitropism in higher plant organs seems obvious, but experimental evidence is still inconclusive and contradictory. In gravitropically tip-growing rhizoids and protonemata, however, it is well documented that actin is an essential component of the tip-growth machinery and is involved either in the cellular mechanisms that lead to gravity sensing and in the processes of the graviresponses that result in the reorientation of the growth direction. All these processes depend on a complexly organized and highly dynamic organization of actin filaments whose diverse functions are coordinated by numerous associated proteins. Actin filaments and myosins mediate the transport of secretory vehicles to the growing tip and precisely control the delivery of cell wall material. In addition, both cell types use a very efficient actomyosin-based system to control and correct the position of their statoliths and to direct sedimenting statoliths to confined graviperception sites at the plasma membrane. The studies presented in this paper provide evidence for the essential role of actin in plant gravity sensing and the gravitropic responses. A unique actin-organizing center exists in the tip of characean rhizoids and protonemata which is associated with and dynamically regulated by a specific set of actin-dynamizing proteins. It is concluded that this highly dynamic apical actin array is an essential prerequisite for gravity sensing and gravity-oriented tip growth.

  9. The claudin gene family: expression in normal and neoplastic tissues

    International Nuclear Information System (INIS)

    Hewitt, Kyle J; Agarwal, Rachana; Morin, Patrice J

    2006-01-01

    The claudin (CLDN) genes encode a family of proteins important in tight junction formation and function. Recently, it has become apparent that CLDN gene expression is frequently altered in several human cancers. However, the exact patterns of CLDN expression in various cancers is unknown, as only a limited number of CLDN genes have been investigated in a few tumors. We identified all the human CLDN genes from Genbank and we used the large public SAGE database to ascertain the gene expression of all 21 CLDN in 266 normal and neoplastic tissues. Using real-time RT-PCR, we also surveyed a subset of 13 CLDN genes in 24 normal and 24 neoplastic tissues. We show that claudins represent a family of highly related proteins, with claudin-16, and -23 being the most different from the others. From in silico analysis and RT-PCR data, we find that most claudin genes appear decreased in cancer, while CLDN3, CLDN4, and CLDN7 are elevated in several malignancies such as those originating from the pancreas, bladder, thyroid, fallopian tubes, ovary, stomach, colon, breast, uterus, and the prostate. Interestingly, CLDN5 is highly expressed in vascular endothelial cells, providing a possible target for antiangiogenic therapy. CLDN18 might represent a biomarker for gastric cancer. Our study confirms previously known CLDN gene expression patterns and identifies new ones, which may have applications in the detection, prognosis and therapy of several human cancers. In particular we identify several malignancies that express CLDN3 and CLDN4. These cancers may represent ideal candidates for a novel therapy being developed based on CPE, a toxin that specifically binds claudin-3 and claudin-4

  10. F-actin distribution and function during sexual differentiation in Schizosaccharomyces pombe

    DEFF Research Database (Denmark)

    Petersen, J; Nielsen, O; Egel, R

    1998-01-01

    Sexual differentiation in Schizosaccharomyces pombe is induced from the G1 phase of the cell cycle by nitrogen starvation and the presence of mating pheromones. We describe the distribution of F-actin during sexual differentiation. Cortical F-actin dots have previously been shown to be restricted...... to one end of the rod shaped cell during the G1 phase of the cell cycle. Within half an hour of nitrogen starvation the distribution of cortical F-actin dots switched from being monopolar to bipolar. This was then reversed as the F-actin cytoskeleton repolarized so that cortical F-actin dots accumulated...

  11. Genome-wide identification and expression analysis of the WRKY gene family in cassava

    Directory of Open Access Journals (Sweden)

    Yunxie eWei

    2016-02-01

    Full Text Available The WRKY family, a large family of transcription factors (TFs found in higher plants, plays central roles in many aspects of physiological processes and adaption to environment. However, little information is available regarding the WRKY family in cassava (Manihot esculenta. In the present study, 85 WRKY genes were identified from the cassava genome and classified into three groups according to conserved WRKY domains and zinc-finger structure. Conserved motif analysis showed that all of the identified MeWRKYs had the conserved WRKY domain. Gene structure analysis suggested that the number of introns in MeWRKY genes varied from 1 to 5, with the majority of MeWRKY genes containing 3 exons. Expression profiles of MeWRKY genes in different tissues and in response to drought stress were analyzed using the RNA-seq technique. The results showed that 72 MeWRKY genes had differential expression in their transcript abundance and 78 MeWRKY genes were differentially expressed in response to drought stresses in different accessions, indicating their contribution to plant developmental processes and drought stress resistance in cassava. Finally, the expression of 9 WRKY genes was analyzed by qRT-PCR under osmotic, salt, ABA, H2O2, and cold treatments, indicating that MeWRKYs may be involved in different signaling pathways. Taken together, this systematic analysis identifies some tissue-specific and abiotic stress-responsive candidate MeWRKY genes for further functional assays in planta, and provides a solid foundation for understanding of abiotic stress responses and signal transduction mediated by WRKYs in cassava.

  12. Genome-Wide Identification and Expression Analysis of the WRKY Gene Family in Cassava.

    Science.gov (United States)

    Wei, Yunxie; Shi, Haitao; Xia, Zhiqiang; Tie, Weiwei; Ding, Zehong; Yan, Yan; Wang, Wenquan; Hu, Wei; Li, Kaimian

    2016-01-01

    The WRKY family, a large family of transcription factors (TFs) found in higher plants, plays central roles in many aspects of physiological processes and adaption to environment. However, little information is available regarding the WRKY family in cassava (Manihot esculenta). In the present study, 85 WRKY genes were identified from the cassava genome and classified into three groups according to conserved WRKY domains and zinc-finger structure. Conserved motif analysis showed that all of the identified MeWRKYs had the conserved WRKY domain. Gene structure analysis suggested that the number of introns in MeWRKY genes varied from 1 to 5, with the majority of MeWRKY genes containing three exons. Expression profiles of MeWRKY genes in different tissues and in response to drought stress were analyzed using the RNA-seq technique. The results showed that 72 MeWRKY genes had differential expression in their transcript abundance and 78 MeWRKY genes were differentially expressed in response to drought stresses in different accessions, indicating their contribution to plant developmental processes and drought stress resistance in cassava. Finally, the expression of 9 WRKY genes was analyzed by qRT-PCR under osmotic, salt, ABA, H2O2, and cold treatments, indicating that MeWRKYs may be involved in different signaling pathways. Taken together, this systematic analysis identifies some tissue-specific and abiotic stress-responsive candidate MeWRKY genes for further functional assays in planta, and provides a solid foundation for understanding of abiotic stress responses and signal transduction mediated by WRKYs in cassava.

  13. RickA expression is not sufficient to promote actin-based motility of Rickettsia raoultii.

    Directory of Open Access Journals (Sweden)

    Premanand Balraj

    Full Text Available BACKGROUND: Rickettsia raoultii is a novel Rickettsia species recently isolated from Dermacentor ticks and classified within the spotted fever group (SFG. The inability of R. raoultii to spread within L929 cells suggests that this bacterium is unable to polymerize host cell actin, a property exhibited by all SFG rickettsiae except R. peacocki. This result led us to investigate if RickA, the protein thought to generate actin nucleation, was expressed within this rickettsia species. METHODOLOGY/PRINCIPAL FINDINGS: Amplification and sequencing of R. raoultii rickA showed that this gene encoded a putative 565 amino acid protein highly homologous to those found in other rickettsiae. Using immunofluorescence assays, we determined that the motility pattern (i.e. microcolonies or cell-to-cell spreading of R. raoultii was different depending on the host cell line in which the bacteria replicated. In contrast, under the same experimental conditions, R. conorii shares the same phenotype both in L929 and in Vero cells. Transmission electron microscopy analysis of infected cells showed that non-motile bacteria were free in the cytosol instead of enclosed in a vacuole. Moreover, western-blot analysis demonstrated that the defect of R. raoultii actin-based motility within L929 cells was not related to lower expression of RickA. CONCLUSION/SIGNIFICANCE: These results, together with previously published data about R. typhi, strongly suggest that another factor, apart from RickA, may be involved with be responsible for actin-based motility in bacteria from the Rickettsia genus.

  14. Isolation of MA-ACS Gene Family and Expression Study of MA-ACS1 Gene in Musa acuminata Cultivar Pisang Ambon Lumut

    Directory of Open Access Journals (Sweden)

    LISTYA UTAMI KARMAWAN

    2009-03-01

    Full Text Available Musa acuminata cultivar pisang ambon lumut is a native climacteric fruit from Indonesia. Climacteric fruit ripening process is triggered by the gaseous plant hormone ethylene. The rate limiting enzyme involved in ethylene biosynthesis is ACC synthase (ACS which is encoded by ACS gene family. The objective of this study is to identify MA-ACS gene family in M. acuminata cultivar pisang ambon lumut and to study the MA-ACS1 gene expression. The result showed that there were nine M. acuminata ACS gene family members called MA-ACS1–9. Two of them (MA-ACS1 and MA-ACS2 were assessed using reverse transcriptase PCR (RT-PCR for gene expression study and it was only MA-ACS1 correlated with fruit ripening. The MA-ACS1 gene fragment has been successfully isolated and characterized and it has three introns, four exons, and one stop codon. It also shows highest homology with MACS1 gene from M. acuminata cultivar Hsian Jien Chiao (GenBank accession number AF056164. Expression analysis of MA-ACS1 using quantitative PCR (qPCR showed that MA-ACS1 gene expression increased significantly in the third day, reached maximum at the fifth day, and then decreased in the seventh day after harvesting. The qPCR expression analysis result correlated with the result of physical analysis during fruit ripening.

  15. The Actin-Binding Protein α-Adducin Is Required for Maintaining Axon Diameter

    Directory of Open Access Journals (Sweden)

    Sérgio Carvalho Leite

    2016-04-01

    Full Text Available The actin-binding protein adducin was recently identified as a component of the neuronal subcortical cytoskeleton. Here, we analyzed mice lacking adducin to uncover the function of this protein in actin rings. α-adducin knockout mice presented progressive axon enlargement in the spinal cord and optic and sciatic nerves, followed by axon degeneration and loss. Using stimulated emission depletion super-resolution microscopy, we show that a periodic subcortical actin cytoskeleton is assembled in every neuron type inspected including retinal ganglion cells and dorsal root ganglia neurons. In neurons devoid of adducin, the actin ring diameter increased, although the inter-ring periodicity was maintained. In vitro, the actin ring diameter adjusted as axons grew, suggesting the lattice is dynamic. Our data support a model in which adducin activity is not essential for actin ring assembly and periodicity but is necessary to control the diameter of both actin rings and axons and actin filament growth within rings.

  16. The Actin-Binding Protein α-Adducin Is Required for Maintaining Axon Diameter.

    Science.gov (United States)

    Leite, Sérgio Carvalho; Sampaio, Paula; Sousa, Vera Filipe; Nogueira-Rodrigues, Joana; Pinto-Costa, Rita; Peters, Luanne Laurel; Brites, Pedro; Sousa, Mónica Mendes

    2016-04-19

    The actin-binding protein adducin was recently identified as a component of the neuronal subcortical cytoskeleton. Here, we analyzed mice lacking adducin to uncover the function of this protein in actin rings. α-adducin knockout mice presented progressive axon enlargement in the spinal cord and optic and sciatic nerves, followed by axon degeneration and loss. Using stimulated emission depletion super-resolution microscopy, we show that a periodic subcortical actin cytoskeleton is assembled in every neuron type inspected including retinal ganglion cells and dorsal root ganglia neurons. In neurons devoid of adducin, the actin ring diameter increased, although the inter-ring periodicity was maintained. In vitro, the actin ring diameter adjusted as axons grew, suggesting the lattice is dynamic. Our data support a model in which adducin activity is not essential for actin ring assembly and periodicity but is necessary to control the diameter of both actin rings and axons and actin filament growth within rings. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  17. FGF: A web tool for Fishing Gene Family in a whole genome database

    DEFF Research Database (Denmark)

    Zheng, Hongkun; Shi, Junjie; Fang, Xiaodong

    2007-01-01

    to efficiently search for and identify gene families. The FGF output displays the results as visual phylogenetic trees including information on gene structure, chromosome position, duplication fate and selective pressure. It is particularly useful to identify pseudogenes and detect changes in gene structure. FGF...

  18. Modelling phagosomal lipid networks that regulate actin assembly

    Directory of Open Access Journals (Sweden)

    Schwarz Roland

    2008-12-01

    Full Text Available Abstract Background When purified phagosomes are incubated in the presence of actin under appropriate conditions, microfilaments start growing from the membrane in a process that is affected by ATP and the lipid composition of the membrane. Isolated phagosomes are metabolically active organelles that contain enzymes and metabolites necessary for lipid interconversion. Hence, addition of ATP, lipids, and actin to the system alter the steady-state composition of the phagosomal membrane at the same time that the actin nucleation is initiated. Our aim was to model all these processes in parallel. Results We compiled detailed experimental data on the effects of different lipids and ATP on actin nucleation and we investigated experimentally lipid interconversion and ATP metabolism in phagosomes by using suitable radioactive compounds. In a first step, a complex lipid network interconnected by chemical reactions catalyzed by known enzymes was modelled in COPASI (Complex Pathway Simulator. However, several lines of experimental evidence indicated that only the phosphatidylinositol branch of the network was active, an observation that dramatically reduced the number of parameters in the model. The results also indicated that a lipid network-independent ATP-consuming activity should be included in the model. When this activity was introduced, the set of differential equations satisfactorily reproduced the experimental data. On the other hand, a molecular mechanism connecting membrane lipids, ATP, and the actin nucleation process is still missing. We therefore adopted a phenomenological (black-box approach to represent the empirical observations. We proposed that lipids and ATP influence the dynamic interconversion between active and inactive actin nucleation sites. With this simple model, all the experimental data were satisfactorily fitted with a single positive parameter per lipid and ATP. Conclusion By establishing an active 'dialogue' between an

  19. Diverse roles of ERECTA family genes in plant development.

    Science.gov (United States)

    Shpak, Elena D

    2013-12-01

    Multiple receptor-like kinases (RLKs) enable intercellular communication that coordinates growth and development of plant tissues. ERECTA family receptors (ERfs) are an ancient family of leucine-rich repeat RLKs that in Arabidopsis consists of three genes: ERECTA, ERL1, and ERL2. ERfs sense secreted cysteine-rich peptides from the EPF/EPFL family and transmit the signal through a MAP kinase cascade. This review discusses the functions of ERfs in stomata development, in regulation of longitudinal growth of aboveground organs, during reproductive development, and in the shoot apical meristem. In addition the role of ERECTA in plant responses to biotic and abiotic factors is examined. Elena D. Shpak (Corresponding author). © 2013 Institute of Botany, Chinese Academy of Sciences.

  20. Dynamics of actin cables in polarized growth of the filamentous fungus Aspergillus nidulans

    Directory of Open Access Journals (Sweden)

    Anna eBergs

    2016-05-01

    Full Text Available Highly polarized growth of filamentous fungi requires a continuous supply of proteins and lipids to the hyphal tip. This transport is managed by vesicle trafficking via the actin and microtubule cytoskeletons and their associated motor proteins. Particularly, actin cables originating from the hyphal tip are essential for hyphal growth. Although specific marker proteins to visualize actin cables have been developed in filamentous fungi, the exact organization and dynamics of actin cables has remained elusive. Here we visualized actin cables using tropomyosin (TpmA and Lifeact fused to fluorescent proteins in Aspergillus nidulans and studied the dynamics and regulation. GFP tagged TpmA visualized dynamic actin cables formed from the hyphal tip with cycles of elongation and shrinkage. The elongation and shrinkage rates of actin cables were similar and approximately 0.6 μm/s. Comparison of actin markers revealed that high concentrations of Lifeact reduced actin dynamics. Simultaneous visualization of actin cables and microtubules suggests temporally and spatially coordinated polymerization and depolymerization between the two cytoskeletons. Our results provide new insights into the molecular mechanism of ordered polarized growth regulated by actin cables and microtubules.

  1. The Vitis vinifera sugar transporter gene family: phylogenetic overview and macroarray expression profiling

    Directory of Open Access Journals (Sweden)

    Atanassova Rossitza

    2010-11-01

    Full Text Available Abstract Background In higher plants, sugars are not only nutrients but also important signal molecules. They are distributed through the plant via sugar transporters, which are involved not only in sugar long-distance transport via the loading and the unloading of the conducting complex, but also in sugar allocation into source and sink cells. The availability of the recently released grapevine genome sequence offers the opportunity to identify sucrose and monosaccharide transporter gene families in a woody species and to compare them with those of the herbaceous Arabidopsis thaliana using a phylogenetic analysis. Results In grapevine, one of the most economically important fruit crop in the world, it appeared that sucrose and monosaccharide transporter genes are present in 4 and 59 loci, respectively and that the monosaccharide transporter family can be divided into 7 subfamilies. Phylogenetic analysis of protein sequences has indicated that orthologs exist between Vitis and Arabidospis. A search for cis-regulatory elements in the promoter sequences of the most characterized transporter gene families (sucrose, hexoses and polyols transporters, has revealed that some of them might probably be regulated by sugars. To profile several genes simultaneously, we created a macroarray bearing cDNA fragments specific to 20 sugar transporter genes. This macroarray analysis has revealed that two hexose (VvHT1, VvHT3, one polyol (VvPMT5 and one sucrose (VvSUC27 transporter genes, are highly expressed in most vegetative organs. The expression of one hexose transporter (VvHT2 and two tonoplastic monosaccharide transporter (VvTMT1, VvTMT2 genes are regulated during berry development. Finally, three putative hexose transporter genes show a preferential organ specificity being highly expressed in seeds (VvHT3, VvHT5, in roots (VvHT2 or in mature leaves (VvHT5. Conclusions This study provides an exhaustive survey of sugar transporter genes in Vitis vinifera and

  2. Engineering an artificial amoeba propelled by nanoparticle-triggered actin polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Yi Jinsoo; Schmidt, Jacob; Chien Aichi; Montemagno, Carlo D [Department of Bioengineering, University of California Los Angeles, 420 Westwood Plaza, 7523 Boelter Hall, Los Angeles, CA 90095-1600 (United States)], E-mail: montemcd@ucmail.uc.edu

    2009-02-25

    We have engineered an amoeba system combining nanofabricated inorganic materials with biological components, capable of propelling itself via actin polymerization. The nanofabricated materials have a mechanism similar to the locomotion of the Listeria monocytogenes, food poisoning bacteria. The propulsive force generation utilizes nanoparticles made from nickel and gold functionalized with the Listeria monocytogenes transmembrane protein, ActA. These Listeria-mimic nanoparticles were in concert with actin, actin binding proteins, ATP (adenosine triphosphate) and encapsulated within a lipid vesicle. This system is an artificial cell, such as a vesicle, where artificial nanobacteria and actin polymerization machinery are used in driving force generators inside the cell. The assembled structure was observed to crawl on a glass surface analogously to an amoeba, with the speed of the movement dependent on the amount of actin monomers and ATP present.

  3. Childhood temperament: passive gene-environment correlation, gene-environment interaction, and the hidden importance of the family environment.

    Science.gov (United States)

    Lemery-Chalfant, Kathryn; Kao, Karen; Swann, Gregory; Goldsmith, H Hill

    2013-02-01

    Biological parents pass on genotypes to their children, as well as provide home environments that correlate with their genotypes; thus, the association between the home environment and children's temperament can be genetically (i.e., passive gene-environment correlation) or environmentally mediated. Furthermore, family environments may suppress or facilitate the heritability of children's temperament (i.e., gene-environment interaction). The sample comprised 807 twin pairs (mean age = 7.93 years) from the longitudinal Wisconsin Twin Project. Important passive gene-environment correlations emerged, such that home environments were less chaotic for children with high effortful control, and this association was genetically mediated. Children with high extraversion/surgency experienced more chaotic home environments, and this correlation was also genetically mediated. In addition, heritability of children's temperament was moderated by home environments, such that effortful control and extraversion/surgency were more heritable in chaotic homes, and negative affectivity was more heritable under crowded or unsafe home conditions. Modeling multiple types of gene-environment interplay uncovered the complex role of genetic factors and the hidden importance of the family environment for children's temperament and development more generally.

  4. Molecular dissection of the mechanism by which EWS/FLI expression compromises actin cytoskeletal integrity and cell adhesion in Ewing sarcoma

    Science.gov (United States)

    Chaturvedi, Aashi; Hoffman, Laura M.; Jensen, Christopher C.; Lin, Yi-Chun; Grossmann, Allie H.; Randall, R. Lor; Lessnick, Stephen L.; Welm, Alana L.; Beckerle, Mary C.

    2014-01-01

    Ewing sarcoma is the second-most-common bone cancer in children. Driven by an oncogenic chromosomal translocation that results in the expression of an aberrant transcription factor, EWS/FLI, the disease is typically aggressive and micrometastatic upon presentation. Silencing of EWS/FLI in patient-derived tumor cells results in the altered expression of hundreds to thousands of genes and is accompanied by dramatic morphological changes in cytoarchitecture and adhesion. Genes encoding focal adhesion, extracellular matrix, and actin regulatory proteins are dominant targets of EWS/FLI-mediated transcriptional repression. Reexpression of genes encoding just two of these proteins, zyxin and α5 integrin, is sufficient to restore cell adhesion and actin cytoskeletal integrity comparable to what is observed when the EWS/FLI oncogene expression is compromised. Using an orthotopic xenograft model, we show that EWS/FLI-induced repression of α5 integrin and zyxin expression promotes tumor progression by supporting anchorage-independent cell growth. This selective advantage is paired with a tradeoff in which metastatic lung colonization is compromised. PMID:25057021

  5. Generation of an efficient artificial promoter of bovine skeletal muscle α-actin gene (ACTA1) through addition of cis-acting element.

    Science.gov (United States)

    Hu, Qian; Tong, Huili; Zhao, Dandan; Cao, Yunkao; Zhang, Weiwei; Chang, Shuwei; Yang, Yu; Yan, Yunqin

    2015-03-01

    The promoter of skeletal muscle α-actin gene (ACTA1) is highly muscle specific. The core of the bovine ACTA1 promoter extends from +29 to -233, about 262 base pairs (bp), which is sufficient to activate transcription in bovine muscle satellite cells. In this study, analysis by PCR site-specific mutagenesis showed that the cis-acting element SRE (serum response element binding factor) was processed as a transcriptional activator. In order to enhance the bovine ACTA1 promoter's activity, we used a strategy to modify it. We cloned a fragment containing three SREs from the promoter of ACTA1, and then one or two clones were linked upstream of the core promoter (262 bp) of ACTA1. One and two clones increased the activity of the ACTA1 promoter 3-fold and 10-fold, respectively, and maintained muscle tissue specificity. The modified promoter with two clones could increase the level of ACTA1 mRNA and protein 4-fold and 1.1-fold, respectively. Immunofluorescence results showed that green fluorescence of ACTA1 increased. Additionally, the number of total muscle microfilaments increased. These genetically engineered promoters might be useful for regulating gene expression in muscle cells and improving muscle mass in livestock.

  6. Genome-wide identification and expression analysis of NBS-encoding genes in Malus x domestica and expansion of NBS genes family in Rosaceae.

    Directory of Open Access Journals (Sweden)

    Preeti Arya

    Full Text Available Nucleotide binding site leucine-rich repeats (NBS-LRR disease resistance proteins play an important role in plant defense against pathogen attack. A number of recent studies have been carried out to identify and characterize NBS-LRR gene families in many important plant species. In this study, we identified NBS-LRR gene family comprising of 1015 NBS-LRRs using highly stringent computational methods. These NBS-LRRs were characterized on the basis of conserved protein motifs, gene duplication events, chromosomal locations, phylogenetic relationships and digital gene expression analysis. Surprisingly, equal distribution of Toll/interleukin-1 receptor (TIR and coiled coil (CC (1 ∶ 1 was detected in apple while the unequal distribution was reported in majority of all other known plant genome studies. Prediction of gene duplication events intriguingly revealed that not only tandem duplication but also segmental duplication may equally be responsible for the expansion of the apple NBS-LRR gene family. Gene expression profiling using expressed sequence tags database of apple and quantitative real-time PCR (qRT-PCR revealed the expression of these genes in wide range of tissues and disease conditions, respectively. Taken together, this study will provide a blueprint for future efforts towards improvement of disease resistance in apple.

  7. Genome-wide identification and expression analysis of NBS-encoding genes in Malus x domestica and expansion of NBS genes family in Rosaceae.

    Science.gov (United States)

    Arya, Preeti; Kumar, Gulshan; Acharya, Vishal; Singh, Anil K

    2014-01-01

    Nucleotide binding site leucine-rich repeats (NBS-LRR) disease resistance proteins play an important role in plant defense against pathogen attack. A number of recent studies have been carried out to identify and characterize NBS-LRR gene families in many important plant species. In this study, we identified NBS-LRR gene family comprising of 1015 NBS-LRRs using highly stringent computational methods. These NBS-LRRs were characterized on the basis of conserved protein motifs, gene duplication events, chromosomal locations, phylogenetic relationships and digital gene expression analysis. Surprisingly, equal distribution of Toll/interleukin-1 receptor (TIR) and coiled coil (CC) (1 ∶ 1) was detected in apple while the unequal distribution was reported in majority of all other known plant genome studies. Prediction of gene duplication events intriguingly revealed that not only tandem duplication but also segmental duplication may equally be responsible for the expansion of the apple NBS-LRR gene family. Gene expression profiling using expressed sequence tags database of apple and quantitative real-time PCR (qRT-PCR) revealed the expression of these genes in wide range of tissues and disease conditions, respectively. Taken together, this study will provide a blueprint for future efforts towards improvement of disease resistance in apple.

  8. Molecular study of the perforin gene in familial hematological malignancies

    Directory of Open Access Journals (Sweden)

    El Abed Rim

    2011-09-01

    Full Text Available Abstract Perforin gene (PRF1 mutations have been identified in some patients diagnosed with the familial form of hemophagocytic lymphohistiocytosis (HLH and in patients with lymphoma. The aim of the present study was to determine whether patients with a familial aggregation of hematological malignancies harbor germline perforin gene mutations. For this purpose, 81 unrelated families from Tunisia and France with aggregated hematological malignancies were investigated. The variants detected in the PRF1 coding region amounted to 3.7% (3/81. Two of the three variants identified were previously described: the p.Ala91Val pathogenic mutation and the p.Asn252Ser polymorphism. A new p.Ala 211Val missense substitution was identified in two related Tunisian patients. In order to assess the pathogenicity of this new variation, bioinformatic tools were used to predict its effects on the perforin protein structure and at the mRNA level. The segregation of the mutant allele was studied in the family of interest and a control population was screened. The fact that this variant was not found to occur in 200 control chromosomes suggests that it may be pathogenic. However, overexpression of mutated PRF1 in rat basophilic leukemia cells did not affect the lytic function of perforin differently from the wild type protein.

  9. XIRP2, an Actin-Binding Protein Essential for Inner Ear Hair-Cell Stereocilia

    Directory of Open Access Journals (Sweden)

    Déborah I. Scheffer

    2015-03-01

    Full Text Available Hair cells of the inner ear are mechanoreceptors for hearing and balance, and proteins highly enriched in hair cells may have specific roles in the development and maintenance of the mechanotransduction apparatus. We identified XIRP2/mXinβ as an enriched protein likely to be essential for hair cells. We found that different isoforms of this protein are expressed and differentially located: short splice forms (also called XEPLIN are targeted more to stereocilia, whereas two long isoforms containing a XIN-repeat domain are in both stereocilia and cuticular plates. Mice lacking the Xirp2 gene developed normal stereocilia bundles, but these degenerated with time: stereocilia were lost and long membranous protrusions emanated from the nearby apical surfaces. At an ultrastructural level, the paracrystalline actin filaments became disorganized. XIRP2 is apparently involved in the maintenance of actin structures in stereocilia and cuticular plates of hair cells, and perhaps in other organs where it is expressed.

  10. Elastic coupling of nascent apCAM adhesions to flowing actin networks.

    Science.gov (United States)

    Mejean, Cecile O; Schaefer, Andrew W; Buck, Kenneth B; Kress, Holger; Shundrovsky, Alla; Merrill, Jason W; Dufresne, Eric R; Forscher, Paul

    2013-01-01

    Adhesions are multi-molecular complexes that transmit forces generated by a cell's acto-myosin networks to external substrates. While the physical properties of some of the individual components of adhesions have been carefully characterized, the mechanics of the coupling between the cytoskeleton and the adhesion site as a whole are just beginning to be revealed. We characterized the mechanics of nascent adhesions mediated by the immunoglobulin-family cell adhesion molecule apCAM, which is known to interact with actin filaments. Using simultaneous visualization of actin flow and quantification of forces transmitted to apCAM-coated beads restrained with an optical trap, we found that adhesions are dynamic structures capable of transmitting a wide range of forces. For forces in the picoNewton scale, the nascent adhesions' mechanical properties are dominated by an elastic structure which can be reversibly deformed by up to 1 µm. Large reversible deformations rule out an interface between substrate and cytoskeleton that is dominated by a number of stiff molecular springs in parallel, and favor a compliant cross-linked network. Such a compliant structure may increase the lifetime of a nascent adhesion, facilitating signaling and reinforcement.

  11. Elastic coupling of nascent apCAM adhesions to flowing actin networks.

    Directory of Open Access Journals (Sweden)

    Cecile O Mejean

    Full Text Available Adhesions are multi-molecular complexes that transmit forces generated by a cell's acto-myosin networks to external substrates. While the physical properties of some of the individual components of adhesions have been carefully characterized, the mechanics of the coupling between the cytoskeleton and the adhesion site as a whole are just beginning to be revealed. We characterized the mechanics of nascent adhesions mediated by the immunoglobulin-family cell adhesion molecule apCAM, which is known to interact with actin filaments. Using simultaneous visualization of actin flow and quantification of forces transmitted to apCAM-coated beads restrained with an optical trap, we found that adhesions are dynamic structures capable of transmitting a wide range of forces. For forces in the picoNewton scale, the nascent adhesions' mechanical properties are dominated by an elastic structure which can be reversibly deformed by up to 1 µm. Large reversible deformations rule out an interface between substrate and cytoskeleton that is dominated by a number of stiff molecular springs in parallel, and favor a compliant cross-linked network. Such a compliant structure may increase the lifetime of a nascent adhesion, facilitating signaling and reinforcement.

  12. Plant villin, lily P-135-ABP, possesses G-actin binding activity and accelerates the polymerization and depolymerization of actin in a Ca2+-sensitive manner.

    Science.gov (United States)

    Yokota, Etsuo; Tominaga, Motoki; Mabuchi, Issei; Tsuji, Yasunori; Staiger, Christopher J; Oiwa, Kazuhiro; Shimmen, Teruo

    2005-10-01

    From germinating pollen of lily, two types of villins, P-115-ABP and P-135-ABP, have been identified biochemically. Ca(2+)-CaM-dependent actin-filament binding and bundling activities have been demonstrated for both villins previously. Here, we examined the effects of lily villins on the polymerization and depolymerization of actin. P-115-ABP and P-135-ABP present in a crude protein extract prepared from germinating pollen bound to a DNase I affinity column in a Ca(2+)-dependent manner. Purified P-135-ABP reduced the lag period that precedes actin filament polymerization from monomers in the presence of either Ca(2+) or Ca(2+)-CaM. These results indicated that P-135-ABP can form a complex with G-actin in the presence of Ca(2+) and this complex acts as a nucleus for polymerization of actin filaments. However, the nucleation activity of P-135-ABP is probably not relevant in vivo because the assembly of G-actin saturated with profilin, a situation that mimics conditions found in pollen, was not accelerated in the presence of P-135-ABP. P-135-ABP also enhanced the depolymerization of actin filaments during dilution-mediated disassembly. Growth from filament barbed ends in the presence of Ca(2+)-CaM was also prevented, consistent with filament capping activity. These results suggested that lily villin is involved not only in the arrangement of actin filaments into bundles in the basal and shank region of the pollen tube, but also in regulating and modulating actin dynamics through its capping and depolymerization (or fragmentation) activities in the apical region of the pollen tube, where there is a relatively high concentration of Ca(2+).

  13. Topical Imiquimod in the Treatment of Conjunctival Actinic Keratosis.

    Science.gov (United States)

    Rowlands, Megan A; Giacometti, Joseph N; Servat, Javier; Materin, Miguel A; Levin, Flora

    Conjunctival actinic keratosis is rare and difficult to treat, as recurrences are common. Imiquimod, an immune response modulator, is currently Food and Drug Administration-approved for cutaneous actinic keratosis and superficial basal cell carcinomas. Emerging reports have shown it to be effective in treating some periocular and conjunctival lesions. The authors present a case of a 68-year-old white man with recurrent actinic keratosis involving the pretarsal conjunctiva, which was successfully treated with 5% topical imiquimod following previous failure with cryotherapy and interferon α-2b. The patient had ocular irritation that resolved on cessation of treatment. To the authors' knowledge, this is the first report of conjunctival actinic keratosis being treated with and successfully eradicated by topical imiquimod.

  14. Evolution of the defensin-like gene family in grass genomes

    Indian Academy of Sciences (India)

    that the DEFL gene family is subjected to purifying selection. However, sliding window analysis .... sorghum from DOE-JGI Community Sequencing Program ..... This work was supported by the National Key Technologies Re- search and ...

  15. Actin cytoskeleton of chemotactic amoebae operates close to the onset of oscillations

    Science.gov (United States)

    Westendorf, Christian; Negrete, Jose; Bae, Albert J.; Sandmann, Rabea; Bodenschatz, Eberhard; Beta, Carsten

    2013-01-01

    The rapid reorganization of the actin cytoskeleton in response to external stimuli is an essential property of many motile eukaryotic cells. Here, we report evidence that the actin machinery of chemotactic Dictyostelium cells operates close to an oscillatory instability. When averaging the actin response of many cells to a short pulse of the chemoattractant cAMP, we observed a transient accumulation of cortical actin reminiscent of a damped oscillation. At the single-cell level, however, the response dynamics ranged from short, strongly damped responses to slowly decaying, weakly damped oscillations. Furthermore, in a small subpopulation, we observed self-sustained oscillations in the cortical F-actin concentration. To substantiate that an oscillatory mechanism governs the actin dynamics in these cells, we systematically exposed a large number of cells to periodic pulse trains of different frequencies. Our results indicate a resonance peak at a stimulation period of around 20 s. We propose a delayed feedback model that explains our experimental findings based on a time-delay in the regulatory network of the actin system. To test the model, we performed stimulation experiments with cells that express GFP-tagged fusion proteins of Coronin and actin-interacting protein 1, as well as knockout mutants that lack Coronin and actin-interacting protein 1. These actin-binding proteins enhance the disassembly of actin filaments and thus allow us to estimate the delay time in the regulatory feedback loop. Based on this independent estimate, our model predicts an intrinsic period of 20 s, which agrees with the resonance observed in our periodic stimulation experiments. PMID:23431176

  16. Identification and biochemical analysis of Slac2-c/MyRIP as a Rab27A-, myosin Va/VIIa-, and actin-binding protein.

    Science.gov (United States)

    Kuroda, Taruho S; Fukuda, Mitsunori

    2005-01-01

    Slac2-c/MyRIP is a specific Rab27A-binding protein that contains an N-terminal synaptotagmin-like protein (Slp) homology domain (SHD, a newly identified GTP-Rab27A-binding motif), but in contrast to the Slp family proteins, it lacks C-terminal tandem C2 domains. In vitro Slac2-c simultaneously directly interacts with both Rab27A and an actin-based motor protein, myosin Va, via its N-terminal SHD and middle region, respectively, consistent with the fact that the overall structure of Slac2-c is similar to that of Slac2-a/melanophilin, a linker protein between Rab27A and myosin Va in the melanosome transport in melanocytes. Unlike Slac2-a, however, the middle region of Slac2-c interacts with two types of myosins, myosin Va and myosin VIIa. In addition, the most C-terminal part of both Slac2-a and Slac2-c functions as an actin-binding domain: it directly interacts with globular and fibrous actin in vitro, and the actin-binding domain of Slac2-a and Slac2-c colocalizes with actin filaments when it is expressed in living cells (i.e., PC12 cells and mouse melanocytes). In this chapter we describe the methods that have been used to analyze the protein-protein interactions of Slac2-c, specifically with Rab27A, myosin Va/VIIa, and actin.

  17. Genome-Wide Analysis of the RNA Helicase Gene Family in Gossypium raimondii

    Directory of Open Access Journals (Sweden)

    Jie Chen

    2014-03-01

    Full Text Available The RNA helicases, which help to unwind stable RNA duplexes, and have important roles in RNA metabolism, belong to a class of motor proteins that play important roles in plant development and responses to stress. Although this family of genes has been the subject of systematic investigation in Arabidopsis, rice, and tomato, it has not yet been characterized in cotton. In this study, we identified 161 putative RNA helicase genes in the genome of the diploid cotton species Gossypium raimondii. We classified these genes into three subfamilies, based on the presence of either a DEAD-box (51 genes, DEAH-box (52 genes, or DExD/H-box (58 genes in their coding regions. Chromosome location analysis showed that the genes that encode RNA helicases are distributed across all 13 chromosomes of G. raimondii. Syntenic analysis revealed that 62 of the 161 G. raimondii helicase genes (38.5% are within the identified syntenic blocks. Sixty-six (40.99% helicase genes from G. raimondii have one or several putative orthologs in tomato. Additionally, GrDEADs have more conserved gene structures and more simple domains than GrDEAHs and GrDExD/Hs. Transcriptome sequencing data demonstrated that many of these helicases, especially GrDEADs, are highly expressed at the fiber initiation stage and in mature leaves. To our knowledge, this is the first report of a genome-wide analysis of the RNA helicase gene family in cotton.

  18. Genome-wide evolutionary characterization and expression analyses of WRKY family genes in Brachypodium distachyon.

    Science.gov (United States)

    Wen, Feng; Zhu, Hong; Li, Peng; Jiang, Min; Mao, Wenqing; Ong, Chermaine; Chu, Zhaoqing

    2014-06-01

    Members of plant WRKY gene family are ancient transcription factors that function in plant growth and development and respond to biotic and abiotic stresses. In our present study, we have investigated WRKY family genes in Brachypodium distachyon, a new model plant of family Poaceae. We identified a total of 86 WRKY genes from B. distachyon and explored their chromosomal distribution and evolution, domain alignment, promoter cis-elements, and expression profiles. Combining the analysis of phylogenetic tree of BdWRKY genes and the result of expression profiling, results showed that most of clustered gene pairs had higher similarities in the WRKY domain, suggesting that they might be functionally redundant. Neighbour-joining analysis of 301 WRKY domains from Oryza sativa, Arabidopsis thaliana, and B. distachyon suggested that BdWRKY domains are evolutionarily more closely related to O. sativa WRKY domains than those of A. thaliana. Moreover, tissue-specific expression profile of BdWRKY genes and their responses to phytohormones and several biotic or abiotic stresses were analysed by quantitative real-time PCR. The results showed that the expression of BdWRKY genes was rapidly regulated by stresses and phytohormones, and there was a strong correlation between promoter cis-elements and the phytohormones-induced BdWRKY gene expression. © The Author 2014. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  19. A comprehensive family-based replication study of schizophrenia genes

    DEFF Research Database (Denmark)

    Aberg, Karolina A; Liu, Youfang; Bukszár, Jozsef

    2013-01-01

     768 control subjects from 6 databases and, after quality control 6298 individuals (including 3286 cases) from 1811 nuclear families. MAIN OUTCOMES AND MEASURES Case-control status for SCZ. RESULTS Replication results showed a highly significant enrichment of SNPs with small P values. Of the SNPs...... in an independent family-based replication study that, after quality control, consisted of 8107 SNPs. SETTING Linkage meta-analysis, brain transcriptome meta-analysis, candidate gene database, OMIM, relevant mouse studies, and expression quantitative trait locus databases. PATIENTS We included 11 185 cases and 10...

  20. X-exome sequencing of 405 unresolved families identifies seven novel intellectual disability genes

    OpenAIRE

    Hu, H.; Haas, S.A.; Chelly, J.; Van Esch, H.; Raynaud, M.; de Brouwer, A.P.M.; Weinert, S.; Froyen, G.; Frints, S.G.M.; Laumonnier, F.; Zemojtel, T.; Love, M.I.; Richard, H.; Emde, A.K.; Bienek, M.

    2016-01-01

    X-linked intellectual disability (XLID) is a clinically and genetically heterogeneous disorder. During the past two decades in excess of 100 X-chromosome ID genes have been identified. Yet, a large number of families mapping to the X-chromosome remained unresolved suggesting that more XLID genes or loci are yet to be identified. Here, we have investigated 405 unresolved families with XLID. We employed massively parallel sequencing of all X-chromosome exons in the index males. The majority of ...

  1. Distinct Gene Expression Signatures in Lynch Syndrome and Familial Colorectal Cancer Type X

    DEFF Research Database (Denmark)

    Valentin, Mev; Therkildsen, Christina; Veerla, Srinivas

    2013-01-01

    Heredity is estimated to cause at least 20% of colorectal cancer. The hereditary nonpolyposis colorectal cancer subset is divided into Lynch syndrome and familial colorectal cancer type X (FCCTX) based on presence of mismatch repair (MMR) gene defects.......Heredity is estimated to cause at least 20% of colorectal cancer. The hereditary nonpolyposis colorectal cancer subset is divided into Lynch syndrome and familial colorectal cancer type X (FCCTX) based on presence of mismatch repair (MMR) gene defects....

  2. Nuclear actin filaments recruit cofilin and actin-related protein 3, and their formation is connected with a mitotic block

    Czech Academy of Sciences Publication Activity Database

    Kalendová, Alžběta; Kalasová, Ilona; Yamazaki, S.; Uličná, Lívia; Harata, M.; Hozák, Pavel

    2014-01-01

    Roč. 142, č. 2 (2014), s. 139-152 ISSN 0948-6143 R&D Projects: GA ČR GAP305/11/2232; GA MŠk LD12063; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:68378050 Keywords : nuclear actin * transcription * mitosis * actin-related protein 3 * cofilin Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.927, year: 2013

  3. Small Mutations of the DMD Gene in Taiwanese Families

    Directory of Open Access Journals (Sweden)

    Hsiao-Lin Hwa

    2008-06-01

    Conclusion: Most identified mutations either led to a predictable premature stop codon or resulted in splicing defects, which caused defective function of dystrophin. Our findings extend the mutation spectrum of the DMD gene. Molecular characterization of the affected families is important for genetic counseling and prenatal diagnosis.

  4. Whole genome duplications and expansion of the vertebrate GATA transcription factor gene family

    Directory of Open Access Journals (Sweden)

    Bowerman Bruce

    2009-08-01

    Full Text Available Abstract Background GATA transcription factors influence many developmental processes, including the specification of embryonic germ layers. The GATA gene family has significantly expanded in many animal lineages: whereas diverse cnidarians have only one GATA transcription factor, six GATA genes have been identified in many vertebrates, five in many insects, and eleven to thirteen in Caenorhabditis nematodes. All bilaterian animal genomes have at least one member each of two classes, GATA123 and GATA456. Results We have identified one GATA123 gene and one GATA456 gene from the genomic sequence of two invertebrate deuterostomes, a cephalochordate (Branchiostoma floridae and a hemichordate (Saccoglossus kowalevskii. We also have confirmed the presence of six GATA genes in all vertebrate genomes, as well as additional GATA genes in teleost fish. Analyses of conserved sequence motifs and of changes to the exon-intron structure, and molecular phylogenetic analyses of these deuterostome GATA genes support their origin from two ancestral deuterostome genes, one GATA 123 and one GATA456. Comparison of the conserved genomic organization across vertebrates identified eighteen paralogous gene families linked to multiple vertebrate GATA genes (GATA paralogons, providing the strongest evidence yet for expansion of vertebrate GATA gene families via genome duplication events. Conclusion From our analysis, we infer the evolutionary birth order and relationships among vertebrate GATA transcription factors, and define their expansion via multiple rounds of whole genome duplication events. As the genomes of four independent invertebrate deuterostome lineages contain single copy GATA123 and GATA456 genes, we infer that the 0R (pre-genome duplication invertebrate deuterostome ancestor also had two GATA genes, one of each class. Synteny analyses identify duplications of paralogous chromosomal regions (paralogons, from single ancestral vertebrate GATA123 and GATA456

  5. Clinical Response to Ingenol Mebutate in Patients With Actinic Keratoses.

    Science.gov (United States)

    Batalla, A; Flórez, Á; Feal, C; Peón, G; Abalde, M T; Salgado-Boquete, L; de la Torre, C

    2015-12-01

    Cryotherapy is the most common treatment for actinic keratosis, but its effect is limited to individual lesions. Several topical drugs, however, are available that, in addition to treating individual actinic keratoses, target field cancerization and thereby act on subclinical lesions. Examples are 5-fluorouracil, imiquimod, diclofenac, and ingenol mebutate. We report on 17 patients with actinic keratoses treated with ingenol mebutate and describe our findings on treatment effectiveness, adherence, and tolerance. Complete and partial response rates were 35% and 53%, respectively. Ninety-four percent of patients fully adhered to treatment and 18% developed severe local reactions. Ingenol mebutate is an effective treatment for actinic keratosis. Although it has a similar rate of local reactions to other treatments available for actinic keratosis, its short treatment regimen favors better adherence. Copyright © 2014 Elsevier España, S.L.U. y AEDV. All rights reserved.

  6. Addition of electrophilic lipids to actin alters filament structure

    International Nuclear Information System (INIS)

    Gayarre, Javier; Sanchez, David; Sanchez-Gomez, Francisco J.; Terron, Maria C.; Llorca, Oscar; Perez-Sala, Dolores

    2006-01-01

    Pathophysiological processes associated with oxidative stress lead to the generation of reactive lipid species. Among them, lipids bearing unsaturated aldehyde or ketone moieties can form covalent adducts with cysteine residues and modulate protein function. Through proteomic techniques we have identified actin as a target for the addition of biotinylated analogs of the cyclopentenone prostaglandins 15-deoxy-Δ 12,14 -PGJ 2 (15d-PGJ 2 ) and PGA 1 in NIH-3T3 fibroblasts. This modification could take place in vitro and mapped to the protein C-terminal end. Other electrophilic lipids, like the isoprostane 8-iso-PGA 1 and 4-hydroxy-2-nonenal, also bound to actin. The C-terminal region of actin is important for monomer-monomer interactions and polymerization. Electron microscopy showed that actin treated with 15d-PGJ 2 or 4-hydroxy-2-nonenal formed filaments which were less abundant and displayed shorter length and altered structure. Streptavidin-gold staining allowed mapping of biotinylated 15d-PGJ 2 at sites of filament disruption. These results shed light on the structural implications of actin modification by lipid electrophiles

  7. Spontaneous actin dynamics in contractile rings

    Science.gov (United States)

    Kruse, Karsten; Wollrab, Viktoria; Thiagarajan, Raghavan; Wald, Anne; Riveline, Daniel

    Networks of polymerizing actin filaments are known to be capable to self-organize into a variety of structures. For example, spontaneous actin polymerization waves have been observed in living cells in a number of circumstances, notably, in crawling neutrophils and slime molds. During later stages of cell division, they can also spontaneously form a contractile ring that will eventually cleave the cell into two daughter cells. We present a framework for describing networks of polymerizing actin filaments, where assembly is regulated by various proteins. It can also include the effects of molecular motors. We show that the molecular processes driven by these proteins can generate various structures that have been observed in contractile rings of fission yeast and mammalian cells. We discuss a possible functional role of each of these patterns. The work was supported by Agence Nationale de la Recherche, France, (ANR-10-LABX-0030-INRT) and by Deutsche Forschungsgemeinschaft through SFB1027.

  8. Crosstalk between Rac1-mediated actin regulation and ROS production.

    Science.gov (United States)

    Acevedo, Alejandro; González-Billault, Christian

    2018-02-20

    The small RhoGTPase Rac1 is implicated in a variety of events related to actin cytoskeleton rearrangement. Remarkably, another event that is completely different from those related to actin regulation has the same relevance; the Rac1-mediated production of reactive oxygen species (ROS) through NADPH oxidases (NOX). Each outcome involves different Rac1 downstream effectors; on one hand, events related to the actin cytoskeleton require Rac1 to bind to WAVEs proteins and PAKs that ultimately promote actin branching and turnover, on the other, NOX-derived ROS production demands active Rac1 to be bound to a cytosolic activator of NOX. How Rac1-mediated signaling ends up promoting actin-related events, NOX-derived ROS, or both is poorly understood. Rac1 regulators, including scaffold proteins, are known to exert tight control over its functions. Hence, evidence of Rac1 regulatory events leading to both actin remodeling and NOX-mediated ROS generation are discussed. Moreover, cellular functions linked to physiological and pathological conditions that exhibit crosstalk between Rac1 outcomes are analyzed, while plausible roles in neuronal functions (and dysfunctions) are highlighted. Together, discussed evidence shed light on cellular mechanisms which requires Rac1 to direct either actin- and/or ROS-related events, helping to understand crucial roles of Rac1 dual functionality. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Actin-based gravity-sensing mechanisms in unicellular plant model systems

    Science.gov (United States)

    Braun, Markus; Limbach, Christoph

    2005-08-01

    Considerable progress has been made in the understanding of the molecular and cellular mechanisms underlying gravity sensing and gravity-oriented polarized growth in single-celled rhizoids and protonemata of the characean algae. It is well known that the actin cytoskeleton plays a key role in these processes. Numerous actin-binding proteins control apical actin polymerization and the dynamic remodeling of the actin arrangement. An actomyosin-based system mediates the delivery and incorporation of secretory vesicles at the growing tip and coordinates the tip-high gradient of cytoplasmic free calcium which is required for local exocytosis. Additionally, the actomyosin system precisely controls the position of statoliths and, upon a change in orientation relative to the gravity vector, directs sedimenting statoliths to the confined graviperception sites of the plasma membrane where gravitropic signalling is initiated. The upward growth response of protonemata is preceded by an actin-dependent relocalization of the Ca2+-gradient to the upper flank. The downward growth response of rhizoids, however, is caused by differential growth of the opposite flankes due to a local reduction of cytoplasmic free calcium limited to the plasma membrane area where statoliths are sedimented. Thus, constant actin polymerization in the growing tip and the spatiotemporal control of actin remodeling are essential for gravity sensing and gravity-oriented polarized growth of characean rhizoids and protonemata.

  10. The actin family protein ARP6 contributes to the structure and the function of the nucleolus

    Czech Academy of Sciences Publication Activity Database

    Kitamura, H.; Matsumori, H.; Kalendová, Alžběta; Hozák, Pavel; Goldberg, I.G.; Nakao, M.; Saitoh, N.; Harata, M.

    2015-01-01

    Roč. 464, č. 2 (2015), s. 554-560 ISSN 0006-291X R&D Projects: GA MŠk EE2.3.30.0050; GA MŠk(CZ) ED1.1.00/02.0109 Grant - others:Human Frontier in Science programe(FR) RGP0017/2013 Institutional support: RVO:68378050 Keywords : Actin-related protein * ARP6 * Histone H2A.Z * Nucleolus * Wndchrm Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.371, year: 2015

  11. Feedback Interactions of Polymerized Actin with the Cell Membrane: Waves, Pulses, and Oscillations

    Science.gov (United States)

    Carlsson, Anders

    Polymerized filaments of the protein actin have crucial functions in cell migration, and in bending the cell membrane to drive endocytosis or the formation of protrusions. The nucleation and polymerization of actin filaments are controlled by upstream agents in the cell membrane, including nucleation-promoting factors (NPFs) that activate the Arp2/3 complex to form new branches on pre-existing filaments. But polymerized actin (F-actin) also feeds back on the assembly of NPFs. We explore the effects of the resulting feedback loop of F-actin and NPFs on two phenomena: actin pulses that drive endocytosis in yeast, and actin waves traveling along the membrane of several cell types. In our model of endocytosis in yeast, the actin network is grown explicitly in three dimensions, exerts a negative feedback interaction on localized patch of NPFs in the membrane, and bends the membrane by exerting a distribution of forces. This model explains observed actin and NPF pulse dynamics, and the effects of several interventions including i) NPF mutations, ii) inhibition of actin polymerization, and iii) deletion of a protein that allows F-actin to bend the cell membrane. The model predicts that mutation of the active region of an NPF will enhance the accumulation of that NPF, and we confirm this prediction by quantitative fluorescence microscopy. For actin waves, we treat a similar model, with NPFs distributed over a larger region of the cell membrane. This model naturally generates actin waves, and predicts a transition from wave behavior to spatially localized oscillations when NPFs are confined to a small region. We also predict a transition from waves to static polarization as the negative-feedback coupling between F-actin and the NPFs is reduced. Supported by NIGMS Grant R01 GM107667.

  12. Cytokinin Regulation of Gene Expression in the AHP Gene Family in Arabidopsis thaliana

    Czech Academy of Sciences Publication Activity Database

    Hradilová, Jana; Malbeck, Jiří; Brzobohatý, Břetislav

    2007-01-01

    Roč. 26, č. 3 (2007), s. 229-244 ISSN 0721-7595 R&D Projects: GA MŠk LN00A081; GA MŠk 1M06030; GA MŠk(CZ) LC06034; GA AV ČR(CZ) IAA600380507; GA AV ČR IAA600040612 Institutional research plan: CEZ:AV0Z50380511; CEZ:AV0Z50040702 Source of funding: V - iné verejné zdroje ; V - iné verejné zdroje ; V - iné verejné zdroje ; V - iné verejné zdroje Keywords : gene expression * AHP gene family * cytokinin signal transduction Subject RIV: EF - Botanics Impact factor: 2.220, year: 2007

  13. GDNF gene is associated with tourette syndrome in a family study.

    Science.gov (United States)

    Huertas-Fernández, Ismael; Gómez-Garre, Pilar; Madruga-Garrido, Marcos; Bernal-Bernal, Inmaculada; Bonilla-Toribio, Marta; Martín-Rodríguez, Juan Francisco; Cáceres-Redondo, María Teresa; Vargas-González, Laura; Carrillo, Fátima; Pascual, Alberto; Tischfield, Jay A; King, Robert A; Heiman, Gary A; Mir, Pablo

    2015-07-01

    Tourette syndrome is a disorder characterized by persistent motor and vocal tics, and frequently accompanied by the comorbidities attention deficit hyperactivity disorder and obsessive-compulsive disorder. Impaired synaptic neurotransmission has been implicated in its pathogenesis. Our aim was to investigate the association of 28 candidate genes, including genes related to synaptic neurotransmission and neurotrophic factors, with Tourette syndrome. We genotyped 506 polymorphisms in a discovery cohort from the United States composed of 112 families and 47 unrelated singletons with Tourette syndrome (201 cases and 253 controls). Genes containing significant polymorphisms were imputed to fine-map the signal(s) to potential causal variants. Allelic analyses in Tourette syndrome cases were performed to check the role in attention deficit hyperactivity disorder and obsessive-compulsive disorder comorbidities. Target polymorphisms were further studied in a replication cohort from southern Spain composed of 37 families and three unrelated singletons (44 cases and 73 controls). The polymorphism rs3096140 in glial cell line-derived neurotrophic factor gene (GDNF) was significant in the discovery cohort after correction (P = 1.5 × 10(-4) ). No linkage disequilibrium was found between rs3096140 and other functional variants in the gene. We selected rs3096140 as target polymorphism, and the association was confirmed in the replication cohort (P = 0.01). No association with any comorbidity was found. As a conclusion, a common genetic variant in GDNF is associated with Tourette syndrome. A defect in the production of GDNF could compromise the survival of parvalbumin interneurons, thus altering the excitatory/inhibitory balance in the corticostriatal circuitry. Validation of this variant in other family cohorts is necessary. © 2015 International Parkinson and Movement Disorder Society.

  14. GDNF Gene Is Associated With Tourette Syndrome in a Family Study

    Science.gov (United States)

    Huertas-Fernández, Ismael; Gómez-Garre, Pilar; Madruga-Garrido, Marcos; Bernal-Bernal, Inmaculada; Bonilla-Toribio, Marta; Martín-Rodríguez, Juan Francisco; Cáceres-Redondo, María Teresa; Vargas-González, Laura; Carrillo, Fátima; Pascual, Alberto; Tischfield, Jay A.; King, Robert A.; Heiman, Gary A.; Mir, Pablo

    2016-01-01

    Background Tourette syndrome is a disorder characterized by persistent motor and vocal tics, and frequently accompanied by the comorbidities attention deficit hyperactivity disorder and obsessive-compulsive disorder. Impaired synaptic neurotransmission has been implicated in its pathogenesis. Our aim was to investigate the association of 28 candidate genes, including genes related to synaptic neurotransmission and neurotrophic factors, with Tourette syndrome. Methods We genotyped 506 polymorphisms in a discovery cohort from the United States composed of 112 families and 47 unrelated singletons with Tourette syndrome (201 cases and 253 controls). Genes containing significant polymorphisms were imputed to fine-map the signal(s) to potential causal variants. Allelic analyses in Tourette syndrome cases were performed to check the role in attention deficit hyperactivity disorder and obsessive-compulsive disorder comorbidities. Target polymorphisms were further studied in a replication cohort from southern Spain composed of 37 families and three unrelated singletons (44 cases and 73 controls). Results The polymorphism rs3096140 in glial cell line–derived neurotrophic factor gene (GDNF) was significant in the discovery cohort after correction (P = 1.5 × 10−4). No linkage disequilibrium was found between rs3096140 and other functional variants in the gene. We selected rs3096140 as target polymorphism, and the association was confirmed in the replication cohort (P = 0.01). No association with any comorbidity was found. Conclusions As a conclusion, a common genetic variant in GDNF is associated with Tourette syndrome. A defect in the production of GDNF could compromise the survival of parvalbumin interneurons, thus altering the excitatory/inhibitory balance in the corticostriatal circuitry. Validation of this variant in other family cohorts is necessary. PMID:26096985

  15. Gene Environment Interactions and Predictors of Colorectal Cancer in Family-Based, Multi-Ethnic Groups

    Directory of Open Access Journals (Sweden)

    S. Pamela K. Shiao

    2018-02-01

    Full Text Available For the personalization of polygenic/omics-based health care, the purpose of this study was to examine the gene–environment interactions and predictors of colorectal cancer (CRC by including five key genes in the one-carbon metabolism pathways. In this proof-of-concept study, we included a total of 54 families and 108 participants, 54 CRC cases and 54 matched family friends representing four major racial ethnic groups in southern California (White, Asian, Hispanics, and Black. We used three phases of data analytics, including exploratory, family-based analyses adjusting for the dependence within the family for sharing genetic heritage, the ensemble method, and generalized regression models for predictive modeling with a machine learning validation procedure to validate the results for enhanced prediction and reproducibility. The results revealed that despite the family members sharing genetic heritage, the CRC group had greater combined gene polymorphism rates than the family controls (p < 0.05, on MTHFR C677T, MTR A2756G, MTRR A66G, and DHFR 19 bp except MTHFR A1298C. Four racial groups presented different polymorphism rates for four genes (all p < 0.05 except MTHFR A1298C. Following the ensemble method, the most influential factors were identified, and the best predictive models were generated by using the generalized regression models, with Akaike’s information criterion and leave-one-out cross validation methods. Body mass index (BMI and gender were consistent predictors of CRC for both models when individual genes versus total polymorphism counts were used, and alcohol use was interactive with BMI status. Body mass index status was also interactive with both gender and MTHFR C677T gene polymorphism, and the exposure to environmental pollutants was an additional predictor. These results point to the important roles of environmental and modifiable factors in relation to gene–environment interactions in the prevention of CRC.

  16. [The mutation analysis of PAH gene and prenatal diagnosis in classical phenylketonuria family].

    Science.gov (United States)

    Yan, Yousheng; Hao, Shengju; Yao, Fengxia; Sun, Qingmei; Zheng, Lei; Zhang, Qinghua; Zhang, Chuan; Yang, Tao; Huang, Shangzhi

    2014-12-01

    To characterize the mutation spectrum of phenylalanine hydroxylase (PAH) gene and perform prenatal diagnosis for families with classical phenylketonuria. By stratified sequencing, mutations were detected in the exons and flaking introns of PAH gene of 44 families with classical phenylketonuria. 47 fetuses were diagnosed by combined sequencing with linkage analysis of three common short tandem repeats (STR) (PAH-STR, PAH-26 and PAH-32) in the PAH gene. Thirty-one types of mutations were identified. A total of 84 mutations were identified in 88 alleles (95.45%), in which the most common mutation have been R243Q (21.59%), EX6-96A>G (6.82%), IVS4-1G>A (5.86%) and IVS7+2T>A (5.86%). Most mutations were found in exons 3, 5, 6, 7, 11 and 12. The polymorphism information content (PIC) of these three STR markers was 0.71 (PAH-STR), 0.48 (PAH-26) and 0.40 (PAH-32), respectively. Prenatal diagnosis was performed successfully with the combined method in 47 fetuses of 44 classical phenylketonuria families. Among them, 11 (23.4%) were diagnosed as affected, 24 (51.1%) as carriers, and 12 (25.5%) as unaffected. Prenatal diagnosis can be achieved efficiently and accurately by stratified sequencing of PAH gene and linkage analysis of STR for classical phenylketonuria families.

  17. Two Paralogous Families of a Two-Gene Subtilisin Operon Are Widely Distributed in Oral Treponemes

    Science.gov (United States)

    Correia, Frederick F.; Plummer, Alvin R.; Ellen, Richard P.; Wyss, Chris; Boches, Susan K.; Galvin, Jamie L.; Paster, Bruce J.; Dewhirst, Floyd E.

    2003-01-01

    Certain oral treponemes express a highly proteolytic phenotype and have been associated with periodontal diseases. The periodontal pathogen Treponema denticola produces dentilisin, a serine protease of the subtilisin family. The two-gene operon prcA-prtP is required for expression of active dentilisin (PrtP), a putative lipoprotein attached to the treponeme's outer membrane or sheath. The purpose of this study was to examine the diversity and structure of treponemal subtilisin-like proteases in order to better understand their distribution and function. The complete sequences of five prcA-prtP operons were determined for Treponema lecithinolyticum, “Treponema vincentii,” and two canine species. Partial operon sequences were obtained for T. socranskii subsp. 04 as well as 450- to 1,000-base fragments of prtP genes from four additional treponeme strains. Phylogenetic analysis demonstrated that the sequences fall into two paralogous families. The first family includes the sequence from T. denticola. Treponemes possessing this operon family express chymotrypsin-like protease activity and can cleave the substrate N-succinyl-alanyl-alanyl-prolyl-phenylalanine-p-nitroanilide (SAAPFNA). Treponemes possessing the second paralog family do not possess chymotrypsin-like activity or cleave SAAPFNA. Despite examination of a range of protein and peptide substrates, the specificity of the second protease family remains unknown. Each of the fully sequenced prcA and prtP genes contains a 5′ hydrophobic leader sequence with a treponeme lipobox. The two paralogous families of treponeme subtilisins represent a new subgroup within the subtilisin family of proteases and are the only subtilisin lipoprotein family. The present study demonstrated that the subtilisin paralogs comprising a two-gene operon are widely distributed among treponemes. PMID:14617650

  18. Suitable Reference Genes for Accurate Gene Expression Analysis in Parsley (Petroselinum crispum) for Abiotic Stresses and Hormone Stimuli.

    Science.gov (United States)

    Li, Meng-Yao; Song, Xiong; Wang, Feng; Xiong, Ai-Sheng

    2016-01-01

    Parsley, one of the most important vegetables in the Apiaceae family, is widely used in the food, medicinal, and cosmetic industries. Recent studies on parsley mainly focus on its chemical composition, and further research involving the analysis of the plant's gene functions and expressions is required. qPCR is a powerful method for detecting very low quantities of target transcript levels and is widely used to study gene expression. To ensure the accuracy of results, a suitable reference gene is necessary for expression normalization. In this study, four software, namely geNorm, NormFinder, BestKeeper, and RefFinder were used to evaluate the expression stabilities of eight candidate reference genes of parsley ( GAPDH, ACTIN, eIF-4 α, SAND, UBC, TIP41, EF-1 α, and TUB ) under various conditions, including abiotic stresses (heat, cold, salt, and drought) and hormone stimuli treatments (GA, SA, MeJA, and ABA). Results showed that EF-1 α and TUB were the most stable genes for abiotic stresses, whereas EF-1 α, GAPDH , and TUB were the top three choices for hormone stimuli treatments. Moreover, EF-1 α and TUB were the most stable reference genes among all tested samples, and UBC was the least stable one. Expression analysis of PcDREB1 and PcDREB2 further verified that the selected stable reference genes were suitable for gene expression normalization. This study can guide the selection of suitable reference genes in gene expression in parsley.

  19. Suitable reference genes for accurate gene expression analysis in parsley (Petroselinum crispum for abiotic stresses and hormone stimuli

    Directory of Open Access Journals (Sweden)

    Meng-Yao Li

    2016-09-01

    Full Text Available Parsley is one of the most important vegetable in Apiaceae family and widely used in food industry, medicinal and cosmetic. The recent studies in parsley are mainly focus on chemical composition, further research involving the analysis of the gene functions and expressions will be required. qPCR is a powerful method for detecting very low quantities of target transcript levels and widely used for gene expression studies. To ensure the accuracy of results, a suitable reference gene is necessary for expression normalization. In this study, three software geNorm, NormFinder, and BestKeeper were used to evaluate the expression stabilities of eight candidate reference genes (GAPDH, ACTIN, eIF-4α, SAND, UBC, TIP41, EF-1α, and TUB under various conditions including abiotic stresses (heat, cold, salt, and drought and hormone stimuli treatments (GA, SA, MeJA, and ABA. The results showed that EF-1α and TUB were identified as the most stable genes for abiotic stresses, while EF-1α, GAPDH, and TUB were the top three choices for hormone stimuli treatments. Moreover, EF-1α and TUB were the most stable reference genes across all the tested samples, while UBC was the least stable one. The expression analysis of PcDREB1 and PcDREB2 further verified that the selected stable reference genes were suitable for gene expression normalization. This study provides a guideline for selection the suitable reference genes in gene expression in parsley.

  20. Gene screening in a Chinese family with Marfan syndrome

    Directory of Open Access Journals (Sweden)

    Wen-Jiao Xia

    2016-05-01

    Full Text Available AIM:To analyze the causative gene mutation for Marfan syndrome(MFSwith autosomal dominant hereditary in a Chinese family in Liaoning Province,China. METHODS: Venous blood was collected and candidate gene was selected to design primers according to the clinical phenotype. With genomic polymerase chain reaction(PCRperformed, the coding exons and their flanking intron in sequences of candidate gene were sequenced,DNA fragments separated by agarose gel electrophoresis and direct sequencing method was used to determine the pathogenic gene.RESULTS:Phenotype of the proband was presented as ectopic lentis. Sequencing of the coding regions of FBN1 gene showed the presence of a heterozygous A→G transversion at nucleotide 640 in the 7 exon of FBN1 and the missense mutation made for Glycine into Serine(G214S. CONCLUSION:A heterozygous mutation of FBN1 c.A640G(p.G214Sis responsible for the Marfan syndrome in the four generation Chinese pedigree.

  1. Molecular characterization and expression analysis of WRKY family genes in Dendrobium officinale.

    Science.gov (United States)

    Wang, Tao; Song, Zheng; Wei, Li; Li, Lubin

    2018-03-01

    The WRKY family of transcription factors is one of the most important families of plant transcriptional regulators, and the members regulate multiple biological processes. However, there is limited information on WRKYs in Dendrobium officinale. In this study, 52 WRKY family genes of D. officinale were surveyed for the first time. Conserved domain, phylogenetic, exon-intron construction, and expression analyses were performed for the DoWRKY genes. Two major types of intron splicing (PR and VQR introns) were found, and the intron insertion position was observed to be relatively conserved in the conserved DoWRKY domains. The expression profiles of nine DoWRKYs were analyzed in cold- and methyl jasmonate (MeJA)-treated D. officinale seedlings; the DoWRKYs showed significant expression changes at different levels, which suggested their vital roles in stress tolerance. Moreover, the expression trends of most of the DoWRKYs after the simultaneous cold stress and MeJA treatment were the opposite of those of DoWRKYs after the individual cold stress and MeJA treatments, suggesting that the two stresses might have antagonistic effects and affect the adaptive capacity of the plants to stresses. Twelve DoWRKY genes were differentially expressed between symbiotic and asymbiotic germinated seeds; all were upregulated in the symbiotic germinated seeds except DoWRKY16. These differences in expression of DoWRKYs might be involved in promoting in vitro symbiotic germination of seeds with Tulasnella-like fungi. Our findings will be useful for further studies on the WRKY family genes in orchids.

  2. A Genome-Wide Identification of the WRKY Family Genes and a Survey of Potential WRKY Target Genes in Dendrobium officinale.

    Science.gov (United States)

    He, Chunmei; Teixeira da Silva, Jaime A; Tan, Jianwen; Zhang, Jianxia; Pan, Xiaoping; Li, Mingzhi; Luo, Jianping; Duan, Jun

    2017-08-23

    The WRKY family, one of the largest families of transcription factors, plays important roles in the regulation of various biological processes, including growth, development and stress responses in plants. In the present study, 63 DoWRKY genes were identified from the Dendrobium officinale genome. These were classified into groups I, II, III and a non-group, each with 14, 28, 10 and 11 members, respectively. ABA-responsive, sulfur-responsive and low temperature-responsive elements were identified in the 1-k upstream regulatory region of DoWRKY genes. Subsequently, the expression of the 63 DoWRKY genes under cold stress was assessed, and the expression profiles of a large number of these genes were regulated by low temperature in roots and stems. To further understand the regulatory mechanism of DoWRKY genes in biological processes, potential WRKY target genes were investigated. Among them, most stress-related genes contained multiple W-box elements in their promoters. In addition, the genes involved in polysaccharide synthesis and hydrolysis contained W-box elements in their 1-k upstream regulatory regions, suggesting that DoWRKY genes may play a role in polysaccharide metabolism. These results provide a basis for investigating the function of WRKY genes and help to understand the downstream regulation network in plants within the Orchidaceae.

  3. [PAX3 gene mutation analysis for two Waardenburg syndrome type Ⅰ families and their prenatal diagnosis].

    Science.gov (United States)

    Bai, Y; Liu, N; Kong, X D; Yan, J; Qin, Z B; Wang, B

    2016-12-07

    Objective: To analyze the mutations of PAX3 gene in two Waardenburg syndrome type Ⅰ (WS1) pedigrees and make prenatal diagnosis for the high-risk 18-week-old fetus. Methods: PAX3 gene was first analyzed by Sanger sequencing and multiplex ligation-dependent probe amplification(MLPA) for detecting pathogenic mutation of the probands of the two pedigrees. The mutations were confirmed by MLPA and Sanger in parents and unrelated healthy individuals.Prenatal genetic diagnosis for the high-risk fetus was performed by amniotic fluid cell after genotyping. Results: A heterozygous PAX3 gene gross deletion (E7 deletion) was identified in all patients from WS1-01 family, and not found in 20 healthy individuals.Prenatal diagnosis in WS1-01 family indicated that the fetus was normal. Molecular studies identified a novel deletion mutation c. 1385_1386delCT within the PAX3 gene in all affected WS1-02 family members, but in none of the unaffected relatives and 200 healthy individuals. Conclusions: PAX3 gene mutation is etiological for two WS1 families. Sanger sequencing plus MLPA is effective and accurate for making gene diagnosis and prenatal diagnosis.

  4. Comparative genomic analysis of the Lipase3 gene family in five plant species reveals distinct evolutionary origins.

    Science.gov (United States)

    Wang, Dan; Zhang, Lin; Hu, JunFeng; Gao, Dianshuai; Liu, Xin; Sha, Yan

    2018-04-01

    Lipases are physiologically important and ubiquitous enzymes that share a conserved domain and are classified into eight different families based on their amino acid sequences and fundamental biological properties. The Lipase3 family of lipases was reported to possess a canonical fold typical of α/β hydrolases and a typical catalytic triad, suggesting a distinct evolutionary origin for this family. Genes in the Lipase3 family do not have the same functions, but maintain the conserved Lipase3 domain. There have been extensive studies of Lipase3 structures and functions, but little is known about their evolutionary histories. In this study, all lipases within five plant species were identified, and their phylogenetic relationships and genetic properties were analyzed and used to group them into distinct evolutionary families. Each identified lipase family contained at least one dicot and monocot Lipase3 protein, indicating that the gene family was established before the split of dicots and monocots. Similar intron/exon numbers and predicted protein sequence lengths were found within individual groups. Twenty-four tandem Lipase3 gene duplications were identified, implying that the distinctive function of Lipase3 genes appears to be a consequence of translocation and neofunctionalization after gene duplication. The functional genes EDS1, PAD4, and SAG101 that are reportedly involved in pathogen response were all located in the same group. The nucleotide diversity (Dxy) and the ratio of nonsynonymous to synonymous nucleotide substitutions rates (Ka/Ks) of the three genes were significantly greater than the average across the genomes. We further observed evidence for selection maintaining diversity on three genes in the Toll-Interleukin-1 receptor type of nucleotide binding/leucine-rich repeat immune receptor (TIR-NBS LRR) immunity-response signaling pathway, indicating that they could be vulnerable to pathogen effectors.

  5. Comprehensive Genomic Identification and Expression Analysis of the Phosphate Transporter (PHT) Gene Family in Apple.

    Science.gov (United States)

    Sun, Tingting; Li, Mingjun; Shao, Yun; Yu, Lingyan; Ma, Fengwang

    2017-01-01

    Elemental phosphorus (Pi) is essential to plant growth and development. The family of phosphate transporters (PHTs) mediates the uptake and translocation of Pi inside the plants. Members include five sub-cellular phosphate transporters that play different roles in Pi uptake and transport. We searched the Genome Database for Rosaceae and identified five clusters of phosphate transporters in apple ( Malus domestica ), including 37 putative genes. The MdPHT1 family contains 14 genes while MdPHT2 has two, MdPHT3 has seven, MdPHT4 has 11, and MdPHT5 has three. Our overview of this gene family focused on structure, chromosomal distribution and localization, phylogenies, and motifs. These genes displayed differential expression patterns in various tissues. For example, expression was high for MdPHT1;12, MdPHT3;6 , and MdPHT3;7 in the roots, and was also increased in response to low-phosphorus conditions. In contrast, MdPHT4;1, MdPHT4;4 , and MdPHT4;10 were expressed only in the leaves while transcript levels of MdPHT1;4, MdPHT1;12 , and MdPHT5;3 were highest in flowers. In general, these 37 genes were regulated significantly in either roots or leaves in response to the imposition of phosphorus and/or drought stress. The results suggest that members of the PHT family function in plant adaptations to adverse growing environments. Our study will lay a foundation for better understanding the PHT family evolution and exploring genes of interest for genetic improvement in apple.

  6. Engineering Circular Gliding of Actin Filaments Along Myosin-Patterned DNA Nanotube Rings To Study Long-Term Actin-Myosin Behaviors.

    Science.gov (United States)

    Hariadi, Rizal F; Appukutty, Abhinav J; Sivaramakrishnan, Sivaraj

    2016-09-27

    Nature has evolved molecular motors that are critical in cellular processes occurring over broad time scales, ranging from seconds to years. Despite the importance of the long-term behavior of molecular machines, topics such as enzymatic lifetime are underexplored due to the lack of a suitable approach for monitoring motor activity over long time periods. Here, we developed an "O"-shaped Myosin Empowered Gliding Assay (OMEGA) that utilizes engineered micron-scale DNA nanotube rings with precise arrangements of myosin VI to trap gliding actin filaments. This circular gliding assay platform allows the same individual actin filament to glide over the same myosin ensemble (50-1000 motors per ring) multiple times. First, we systematically characterized the formation of DNA nanotubes rings with 4, 6, 8, and 10 helix circumferences. Individual actin filaments glide along the nanotube rings with high processivity for up to 12.8 revolutions or 11 min in run time. We then show actin gliding speed is robust to variation in motor number and independent of ring curvature within our sample space (ring diameter of 0.5-4 μm). As a model application of OMEGA, we then analyze motor-based mechanical influence on "stop-and-go" gliding behavior of actin filaments, revealing that the stop-to-go transition probability is dependent on motor flexibility. Our circular gliding assay may provide a closed-loop platform for monitoring long-term behavior of broad classes of molecular motors and enable characterization of motor robustness and long time scale nanomechanical processes.

  7. Prolactin promotes breast cancer cell migration through actin cytoskeleton remodeling

    Directory of Open Access Journals (Sweden)

    Priscilla Ludovico da Silva

    2015-12-01

    Full Text Available The role of prolactin on breast cancer development and progression is debated. Breast cancer progression largely depends on cell movement and on the ability to remodel the actin cytoskeleton. In this process, actin-binding proteins are requested to achieve fibrillar actin de-polymerization and relocation at the cell membrane. Kinases such as focal adhesion kinase (FAK are later required to form actin/vinculin-enriched structures called focal adhesion complexes, which mediate firm adhesion to the extracellular matrix. These controllers are regulated by c-Src, which forms multiprotein signaling complexes with membrane receptors and is regulated by a number of hormones, including prolactin. We here show that breast cancer cells exposed to prolactin display an elevated c-Src expression and phosphorylation. In parallel, increased moesin and FAK expression and phosphorylation are found. These molecular changes are associated to relocation to the plasma membrane of cytoskeletal actin fibers and to increased horizontal cell movement. In conclusion, prolactin regulates actin remodeling and enhances breast cancer cell movement. This finding broadens the understanding of prolactin actions on breast cancer cells, highlighting new pathways that may be relevant to on breast cancer progression.

  8. Mutation analysis of the cathepsin C gene in Indian families with Papillon-Lefèvre syndrome

    Directory of Open Access Journals (Sweden)

    Srivastava Satish

    2003-07-01

    Full Text Available Abstract Background PLS is a rare autosomal recessive disorder characterized by early onset periodontopathia and palmar plantar keratosis. PLS is caused by mutations in the cathepsin C (CTSC gene. Dipeptidyl-peptidase I encoded by the CTSC gene removes dipeptides from the amino-terminus of protein substrates and mainly plays an immune and inflammatory role. Several mutations have been reported in this gene in patients from several ethnic groups. We report here mutation analysis of the CTSC gene in three Indian families with PLS. Methods Peripheral blood samples were obtained from individuals belonging to three Indian families with PLS for genomic DNA isolation. Exon-specific intronic primers were used to amplify DNA samples from individuals. PCR products were subsequently sequenced to detect mutations. PCR-SCCP and ASOH analyses were used to determine if mutations were present in normal control individuals. Results All patients from three families had a classic PLS phenotype, which included palmoplantar keratosis and early-onset severe periodontitis. Sequence analysis of the CTSC gene showed three novel nonsense mutations (viz., p.Q49X, p.Q69X and p.Y304X in homozygous state in affected individuals from these Indian families. Conclusions This study reported three novel nonsense mutations in three Indian families. These novel nonsense mutations are predicted to produce truncated dipeptidyl-peptidase I causing PLS phenotype in these families. A review of the literature along with three novel mutations reported here showed that the total number of mutations in the CTSC gene described to date is 41 with 17 mutations being located in exon 7.

  9. ANDROGENS REGULATE T47D CELLS MOTILITY AND INVASION THROUGH ACTIN CYTOSKELETON REMODELLING

    Directory of Open Access Journals (Sweden)

    Maria Magdalena Montt-Guevara

    2016-09-01

    Full Text Available The relationship between androgens and breast cancer is controversial. Androgens have complex effects on breast cancer progression and metastasis. Moreover, androgens receptor (AR is expressed in approximately 70% to 90% of invasive breast carcinomas, which has prognostic relevance in basal-like cancers and in triple negative breast cancers. Recent studies have associated the actin-binding proteins of the Ezrin-Radixin-Moesin (ERM family with metastasis in endocrine-sensitive cancers. We studied on T47D breast cancer cells whether androgens with different characteristics, such as testosterone (T, dihydrotestosterone (DHT and dehydroepiandrosterone (DHEA may regulate breast cancer cell motility and invasion through the control of actin remodelling. We demonstrate that androgens promote migration and invasion in T47D via Moesin activation. We show that T and DHEA exert their actions via the AR and estrogen receptor (ER, while the non aromatizable androgen – DHT only recruits AR. We further report that androgen induced significant changes in actin organization with pseudopodia along with membrane ruffles formation, and this process is mediated by Moesin. Our work identifies novel mechanisms of action of androgens on breast cancer cells. Through the modulation of Moesin, androgens alter the architecture of cytoskeleton in T47D breast cancer cell and promote cell migration and invasion. These results could help to understand the biological actions of androgens on breast cancer, and eventually to develop new strategies for treatment of breast cancer.

  10. Distribution of mutations in the PEX gene in families with X-linked hypophosphataemic rickets (HYP).

    Science.gov (United States)

    Rowe, P S; Oudet, C L; Francis, F; Sinding, C; Pannetier, S; Econs, M J; Strom, T M; Meitinger, T; Garabedian, M; David, A; Macher, M A; Questiaux, E; Popowska, E; Pronicka, E; Read, A P; Mokrzycki, A; Glorieux, F H; Drezner, M K; Hanauer, A; Lehrach, H; Goulding, J N; O'Riordan, J L

    1997-04-01

    Mutations in the PEX gene at Xp22.1 (phosphate-regulating gene with homologies to endopeptidases, on the X-chromosome), are responsible for X-linked hypophosphataemic rickets (HYP). Homology of PEX to the M13 family of Zn2+ metallopeptidases which include neprilysin (NEP) as prototype, has raised important questions regarding PEX function at the molecular level. The aim of this study was to analyse 99 HYP families for PEX gene mutations, and to correlate predicted changes in the protein structure with Zn2+ metallopeptidase gene function. Primers flanking 22 characterised exons were used to amplify DNA by PCR, and SSCP was then used to screen for mutations. Deletions, insertions, nonsense mutations, stop codons and splice mutations occurred in 83% of families screened for in all 22 exons, and 51% of a separate set of families screened in 17 PEX gene exons. Missense mutations in four regions of the gene were informative regarding function, with one mutation in the Zn2+-binding site predicted to alter substrate enzyme interaction and catalysis. Computer analysis of the remaining mutations predicted changes in secondary structure, N-glycosylation, protein phosphorylation and catalytic site molecular structure. The wide range of mutations that align with regions required for protease activity in NEP suggests that PEX also functions as a protease, and may act by processing factor(s) involved in bone mineral metabolism.

  11. Cell stress promotes the association of phosphorylated HspB1 with F-actin.

    Directory of Open Access Journals (Sweden)

    Joseph P Clarke

    Full Text Available Previous studies have suggested that the small heat shock protein, HspB1, has a direct influence on the dynamics of cytoskeletal elements, in particular, filamentous actin (F-actin polymerization. In this study we have assessed the influence of HspB1 phosphorylation on its interaction(s with F-actin. We first determined the distribution of endogenous non-phosphorylated HspB1, phosphorylated HspB1 and F-actin in neuroendocrine PC12 cells by immunocytochemistry and confocal microscopy. We then investigated a potential direct interaction between HspB1 with F-actin by precipitating F-actin directly with biotinylated phalloidin followed by Western analyses; the reverse immunoprecipitation of HspB1 was also carried out. The phosphorylation influence of HspB1 in this interaction was investigated by using pharmacologic inhibition of p38 MAPK. In control cells, HspB1 interacts with F-actin as a predominantly non-phosphorylated protein, but subsequent to stress there is a redistribution of HspB1 to the cytoskeletal fraction and a significantly increased association of pHspB1 with F-actin. Our data demonstrate HspB1 is found in a complex with F-actin both in phosphorylated and non-phosphorylated forms, with an increased association of pHspB1 with F-actin after heat stress. Overall, our study combines both cellular and biochemical approaches to show cellular localization and direct demonstration of an interaction between endogenous HspB1 and F-actin using methodolgy that specifically isolates F-actin.

  12. AHSG gene polymorphisms are associated with bone mineral density in Caucasian nuclear families

    International Nuclear Information System (INIS)

    Yang Yanjun; Wang Yanbo; Lei Shufeng; Long Jirong; Shen Hui; Zhao Lanjuan; Jiang Deke; Xiao Sumei; Chen Xiangding; Chen Yuan; Deng Hongwen

    2007-01-01

    Purpose. To investigate the role of alpha2-HS glycoprotein (AHSG) gene on bone mineral density (BMD) variation. Methods. A total of 665 subjects from 157 Caucasian nuclear families were genotyped at the AHSG NlaIII, SacI sites. The association and linkage between the single SNP markers and haplotypes constructed by two markers in this gene and BMDs at the spine and hip were determined by using quantitative transmission disequilibrium test (QTDT). Results. Significant within-family associations were obtained for spine BMD at both of studied markers (P = 0.036 and 0.005 at the NlaIII and SacI sites, respectively). Significant (P = 0.008 at the NlaIII locus) (P = 0.004 at the SacI locus) total associations at spine BMD were detected. Haplotype analyses confirmed those within-family and total association. Conclusions. These data suggest the polymorphisms in the AHSG gene may have effects on BMD variation in Caucasian population

  13. [Analysis of gene mutation in a Chinese family with Norrie disease].

    Science.gov (United States)

    Zhang, Tian-xiao; Zhao, Xiu-li; Hua, Rui; Zhang, Jin-song; Zhang, Xue

    2012-09-01

    To detect the pathogenic mutation in a Chinese family with Norrie disease. Clinical diagnosis was based on familial history, clinical sign and B ultrasonic examination. Peripheral blood samples were obtained from all available members in a Chinese family with Norrie disease. Genomic DNA was extracted from lymphocytes by the standard SDS-proteinase K-phenol/chloroform method. Two coding exons and all intron-exon boundaries of the NDP gene were PCR amplified using three pairs of primers and subjected to automatic DNA sequence. The causative mutation was confirmed by restriction enzyme analysis and genotyping analysis in all members. Sequence analysis of NDP gene revealed a missense mutation c.220C > T (p.Arg74Cys) in the proband and his mother. Further mutation identification by restriction enzyme analysis and genotyping analysis showed that the proband was homozygote of this mutation. His mother and other four unaffected members (III3, IV4, III5 and II2) were carriers of this mutation. The mutant amino acid located in the C-terminal cystine knot-like domain, which was critical motif for the structure and function of NDP. A NDP missense mutation was identified in a Chinese family with Norrie disease.

  14. Genome-Wide Identification, Characterization and Expression Analysis of the Solute Carrier 6 Gene Family in Silkworm (Bombyx mori).

    Science.gov (United States)

    Tang, Xin; Liu, Huawei; Chen, Quanmei; Wang, Xin; Xiong, Ying; Zhao, Ping

    2016-10-03

    The solute carrier 6 (SLC6) gene family, initially known as the neurotransmitter transporters, plays vital roles in the regulation of neurotransmitter signaling, nutrient absorption and motor behavior. In this study, a total of 16 candidate genes were identified as SLC6 family gene homologs in the silkworm (Bombyx mori) genome. Spatio-temporal expression patterns of silkworm SLC6 gene transcripts indicated that these genes were highly and specifically expressed in midgut, brain and gonads; moreover, these genes were expressed primarily at the feeding stage or adult stage. Levels of expression for most midgut-specific and midgut-enriched gene transcripts were down-regulated after starvation but up-regulated after re-feeding. In addition, we observed that expression levels of these genes except for BmSLC6-15 and BmGT1 were markedly up-regulated by a juvenile hormone analog. Moreover, brain-enriched genes showed differential expression patterns during wandering and mating processes, suggesting that these genes may be involved in modulating wandering and mating behaviors. Our results improve our understanding of the expression patterns and potential physiological functions of the SLC6 gene family, and provide valuable information for the comprehensive functional analysis of the SLC6 gene family.

  15. Cooperative and non-cooperative conformational changes of F-actin induced by cofilin

    Energy Technology Data Exchange (ETDEWEB)

    Aihara, Tomoki; Oda, Toshiro, E-mail: toda@spring8.or.jp

    2013-05-31

    Highlights: •Mobility of MTSL attached to C374 in F-actin became high upon addition of cofilin. •Change of motility of MTSL attached to C374 with cofilin-binding was cooperative. •Mobility of MTSL attached to V43C in F-actin became high upon addition of cofilin. •Change of motility of MTSL attached to V43C with cofilin-binding was linear. -- Abstract: Cofilin is an actin-binding protein that promotes F-actin depolymerization. It is well-known that cofilin-coated F-actin is more twisted than naked F-actin, and that the protomer is more tilted. However, the means by which the local changes induced by the binding of individual cofilin proteins proceed to the global conformational changes of the whole F-actin molecule remain unknown. Here we investigated the cofilin-induced changes in several parts of F-actin, through site-directed spin-label electron paramagnetic resonance spectroscopy analyses of recombinant actins containing single reactive cysteines. We found that the global, cooperative conformational changes induced by cofilin-binding, which were detected by the spin-label attached to the Cys374 residue, occurred without the detachment of the D-loop in subdomain 2 from the neighboring protomer. The two processes of local and global changes do not necessarily proceed in sequence.

  16. Mechanical coupling between transsynaptic N-cadherin adhesions and actin flow stabilizes dendritic spines

    Science.gov (United States)

    Chazeau, Anaël; Garcia, Mikael; Czöndör, Katalin; Perrais, David; Tessier, Béatrice; Giannone, Grégory; Thoumine, Olivier

    2015-01-01

    The morphology of neuronal dendritic spines is a critical indicator of synaptic function. It is regulated by several factors, including the intracellular actin/myosin cytoskeleton and transcellular N-cadherin adhesions. To examine the mechanical relationship between these molecular components, we performed quantitative live-imaging experiments in primary hippocampal neurons. We found that actin turnover and structural motility were lower in dendritic spines than in immature filopodia and increased upon expression of a nonadhesive N-cadherin mutant, resulting in an inverse relationship between spine motility and actin enrichment. Furthermore, the pharmacological stimulation of myosin II induced the rearward motion of actin structures in spines, showing that myosin II exerts tension on the actin network. Strikingly, the formation of stable, spine-like structures enriched in actin was induced at contacts between dendritic filopodia and N-cadherin–coated beads or micropatterns. Finally, computer simulations of actin dynamics mimicked various experimental conditions, pointing to the actin flow rate as an important parameter controlling actin enrichment in dendritic spines. Together these data demonstrate that a clutch-like mechanism between N-cadherin adhesions and the actin flow underlies the stabilization of dendritic filopodia into mature spines, a mechanism that may have important implications in synapse initiation, maturation, and plasticity in the developing brain. PMID:25568337

  17. "It's good to know": experiences of gene identification and result disclosure in familial epilepsies.

    Science.gov (United States)

    Vears, Danya F; Dunn, Karen L; Wake, Samantha A; Scheffer, Ingrid E

    2015-05-01

    Recognition of the role of genetics in the epilepsies has increased dramatically, impacting on clinical practice across many epilepsy syndromes. There is limited research investigating the impact of gene identification on individuals and families with epilepsy. While research has focused on the impact of delivering genetic information to families at the time of diagnosis in genetic diseases more broadly, little is known about how genetic results in epileptic diseases influences people's lives many years after it has been conveyed. This study used qualitative methods to explore the experience of receiving a genetic result in people with familial epilepsy. Interviews were conducted with individuals with familial epilepsies in whom the underlying genetic mutation had been identified. Recorded interviews underwent thematic analysis. 20 individuals from three families with different epilepsy syndromes and causative genes were interviewed. Multiple generations within families were studied. The mean time from receiving the genetic result prior to interview was 10.9 years (range 5-14 years). Three major themes were identified: 1) living with epilepsy: an individual's experience of the severity of epilepsy in their family influenced their view. 2) Clinical utility of the test: participants expressed varying reactions to receiving a genetic result. While for some it provided helpful information and relief, others were not surprised by the finding given the familial context. Some valued the use of genetic information for reproductive decision-making, particularly in the setting of severely affected family members. While altruistic reasons for participating in genetic research were discussed, participants emphasised the benefit of participation to them and their families. 3) 'Talking about the family genes': individuals reported poor communication between family members about their epilepsy and its genetic implications. The results provide important insights into the family

  18. Diversification and evolution of the SDG gene family in Brassica rapa after the whole genome triplication.

    Science.gov (United States)

    Dong, Heng; Liu, Dandan; Han, Tianyu; Zhao, Yuxue; Sun, Ji; Lin, Sue; Cao, Jiashu; Chen, Zhong-Hua; Huang, Li

    2015-11-24

    Histone lysine methylation, controlled by the SET Domain Group (SDG) gene family, is part of the histone code that regulates chromatin function and epigenetic control of gene expression. Analyzing the SDG gene family in Brassica rapa for their gene structure, domain architecture, subcellular localization, rate of molecular evolution and gene expression pattern revealed common occurrences of subfunctionalization and neofunctionalization in BrSDGs. In comparison with Arabidopsis thaliana, the BrSDG gene family was found to be more divergent than AtSDGs, which might partly explain the rich variety of morphotypes in B. rapa. In addition, a new evolutionary pattern of the four main groups of SDGs was presented, in which the Trx group and the SUVR subgroup evolved faster than the E(z), Ash groups and the SUVH subgroup. These differences in evolutionary rate among the four main groups of SDGs are perhaps due to the complexity and variability of the regions that bind with biomacromolecules, which guide SDGs to their target loci.

  19. Staurosporine augments EGF-mediated EMT in PMC42-LA cells through actin depolymerisation, focal contact size reduction and Snail1 induction – A model for cross-modulation

    International Nuclear Information System (INIS)

    Hugo, Honor J; Wafai, Razan; Blick, Tony; Thompson, Erik W; Newgreen, Donald F

    2009-01-01

    A feature of epithelial to mesenchymal transition (EMT) relevant to tumour dissemination is the reorganization of actin cytoskeleton/focal contacts, influencing cellular ECM adherence and motility. This is coupled with the transcriptional repression of E-cadherin, often mediated by Snail1, Snail2 and Zeb1/δEF1. These genes, overexpressed in breast carcinomas, are known targets of growth factor-initiated pathways, however it is less clear how alterations in ECM attachment cross-modulate to regulate these pathways. EGF induces EMT in the breast cancer cell line PMC42-LA and the kinase inhibitor staurosporine (ST) induces EMT in embryonic neural epithelial cells, with F-actin de-bundling and disruption of cell-cell adhesion, via inhibition of aPKC. PMC42-LA cells were treated for 72 h with 10 ng/ml EGF, 40 nM ST, or both, and assessed for expression of E-cadherin repressor genes (Snail1, Snail2, Zeb1/δEF1) and EMT-related genes by QRT-PCR, multiplex tandem PCR (MT-PCR) and immunofluorescence +/- cycloheximide. Actin and focal contacts (paxillin) were visualized by confocal microscopy. A public database of human breast cancers was assessed for expression of Snail1 and Snail2 in relation to outcome. When PMC42-LA were treated with EGF, Snail2 was the principal E-cadherin repressor induced. With ST or ST+EGF this shifted to Snail1, with more extreme EMT and Zeb1/δEF1 induction seen with ST+EGF. ST reduced stress fibres and focal contact size rapidly and independently of gene transcription. Gene expression analysis by MT-PCR indicated that ST repressed many genes which were induced by EGF (EGFR, CAV1, CTGF, CYR61, CD44, S100A4) and induced genes which alter the actin cytoskeleton (NLF1, NLF2, EPHB4). Examination of the public database of breast cancers revealed tumours exhibiting higher Snail1 expression have an increased risk of disease-recurrence. This was not seen for Snail2, and Zeb1/δEF1 showed a reverse correlation with lower expression values being predictive

  20. Staurosporine augments EGF-mediated EMT in PMC42-LA cells through actin depolymerisation, focal contact size reduction and Snail1 induction – A model for cross-modulation

    Directory of Open Access Journals (Sweden)

    Thompson Erik W

    2009-07-01

    Full Text Available Abstract Background A feature of epithelial to mesenchymal transition (EMT relevant to tumour dissemination is the reorganization of actin cytoskeleton/focal contacts, influencing cellular ECM adherence and motility. This is coupled with the transcriptional repression of E-cadherin, often mediated by Snail1, Snail2 and Zeb1/δEF1. These genes, overexpressed in breast carcinomas, are known targets of growth factor-initiated pathways, however it is less clear how alterations in ECM attachment cross-modulate to regulate these pathways. EGF induces EMT in the breast cancer cell line PMC42-LA and the kinase inhibitor staurosporine (ST induces EMT in embryonic neural epithelial cells, with F-actin de-bundling and disruption of cell-cell adhesion, via inhibition of aPKC. Methods PMC42-LA cells were treated for 72 h with 10 ng/ml EGF, 40 nM ST, or both, and assessed for expression of E-cadherin repressor genes (Snail1, Snail2, Zeb1/δEF1 and EMT-related genes by QRT-PCR, multiplex tandem PCR (MT-PCR and immunofluorescence +/- cycloheximide. Actin and focal contacts (paxillin were visualized by confocal microscopy. A public database of human breast cancers was assessed for expression of Snail1 and Snail2 in relation to outcome. Results When PMC42-LA were treated with EGF, Snail2 was the principal E-cadherin repressor induced. With ST or ST+EGF this shifted to Snail1, with more extreme EMT and Zeb1/δEF1 induction seen with ST+EGF. ST reduced stress fibres and focal contact size rapidly and independently of gene transcription. Gene expression analysis by MT-PCR indicated that ST repressed many genes which were induced by EGF (EGFR, CAV1, CTGF, CYR61, CD44, S100A4 and induced genes which alter the actin cytoskeleton (NLF1, NLF2, EPHB4. Examination of the public database of breast cancers revealed tumours exhibiting higher Snail1 expression have an increased risk of disease-recurrence. This was not seen for Snail2, and Zeb1/δEF1 showed a reverse

  1. Transduction of Oct6 or Oct9 gene concomitant with Myc family gene induced osteoblast-like phenotypic conversion in normal human fibroblasts.

    Science.gov (United States)

    Mizoshiri, N; Kishida, T; Yamamoto, K; Shirai, T; Terauchi, R; Tsuchida, S; Mori, Y; Ejima, A; Sato, Y; Arai, Y; Fujiwara, H; Yamamoto, T; Kanamura, N; Mazda, O; Kubo, T

    2015-11-27

    Osteoblasts play essential roles in bone formation and regeneration, while they have low proliferation potential. Recently we established a procedure to directly convert human fibroblasts into osteoblasts (dOBs). Transduction of Runx2 (R), Osterix (X), Oct3/4 (O) and L-myc (L) genes followed by culturing under osteogenic conditions induced normal human fibroblasts to express osteoblast-specific genes and produce calcified bone matrix both in vitro and in vivo Intriguingly, a combination of only two factors, Oct3/4 and L-myc, significantly induced osteoblast-like phenotype in fibroblasts, but the mechanisms underlying the direct conversion remains to be unveiled. We examined which Oct family genes and Myc family genes are capable of inducing osteoblast-like phenotypic conversion. As result Oct3/4, Oct6 and Oct9, among other Oct family members, had the capability, while N-myc was the most effective Myc family gene. The Oct9 plus N-myc was the best combination to induce direct conversion of human fibroblasts into osteoblast-like cells. The present findings may greatly contribute to the elucidation of the roles of the Oct and Myc proteins in osteoblast direct reprogramming. The results may also lead to establishment of novel regenerative therapy for various bone resorption diseases. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Validation of Reference Genes for Quantitative Expression Analysis by Real-Time RT-PCR in Four Lepidopteran Insects

    OpenAIRE

    Teng, Xiaolu; Zhang, Zan; He, Guiling; Yang, Liwen; Li, Fei

    2012-01-01

    Quantitative real-time polymerase chain reaction (qPCR) is an efficient and widely used technique to monitor gene expression. Housekeeping genes (HKGs) are often empirically selected as the reference genes for data normalization. However, the suitability of HKGs used as the reference genes has been seldom validated. Here, six HKGs were chosen (actin A3, actin A1, GAPDH, G3PDH, E2F, rp49) in four lepidopteran insects Bombyx mori L. (Lepidoptera: Bombycidae), Plutella xylostella L. (Plutellidae...

  3. Real-time RT-PCR analysis of mRNA decay: half-life of Beta-actin mRNA in human leukemia CCRF-CEM and Nalm-6 cell lines

    Directory of Open Access Journals (Sweden)

    Barredo Julio C

    2002-03-01

    Full Text Available Abstract Background We describe an alternative method to determine mRNA half-life (t1/2 based on the Real-Time RT-PCR procedure. This approach was evaluated by using the β-actin gene as a reference molecule for measuring of mRNA stability. Results Human leukemia Nalm-6 and CCRF-CEM cells were treated with various concentrations of Actinomycin D to block transcription and aliquots were removed periodically. Total RNA was isolated and quantified using the RiboGreen® fluorescent dye with the VersaFluor Fluorometer System. One μg of total RNA was reverse transcribed and used as template for the amplification of a region of the β-actin gene (231 bp. To generate the standard curve, serial ten-fold dilutions of the pBactin-231 vector containing the cDNA amplified fragment were employed, β-actin mRNAs were quantified by Real-Time RT-PCR using the SYBR® Green I fluorogenic dye and data analyzed using the iCycle iQ system software. Using this method, the β-actin mRNA exhibited a half-life of 6.6 h and 13.5 h in Nalm-6 and CCRF-CEM cells, respectively. The t1/2 value obtained for Nalm-6 is comparable to those estimated from Northern blot studies, using normal human leukocytes (5.5 h. Conclusions We have developed a rapid, sensitive, and reliable method based on Real-Time RT-PCR for measuring mRNA half-life. Our results confirm that β-actin mRNA half-life can be affected by the cellular growth rate.

  4. Transduction of Oct6 or Oct9 gene concomitant with Myc family gene induced osteoblast-like phenotypic conversion in normal human fibroblasts

    International Nuclear Information System (INIS)

    Mizoshiri, N.; Kishida, T.; Yamamoto, K.; Shirai, T.; Terauchi, R.; Tsuchida, S.; Mori, Y.; Ejima, A.; Sato, Y.; Arai, Y.; Fujiwara, H.; Yamamoto, T.; Kanamura, N.; Mazda, O.; Kubo, T.

    2015-01-01

    Introduction: Osteoblasts play essential roles in bone formation and regeneration, while they have low proliferation potential. Recently we established a procedure to directly convert human fibroblasts into osteoblasts (dOBs). Transduction of Runx2 (R), Osterix (X), Oct3/4 (O) and L-myc (L) genes followed by culturing under osteogenic conditions induced normal human fibroblasts to express osteoblast-specific genes and produce calcified bone matrix both in vitro and in vivo Intriguingly, a combination of only two factors, Oct3/4 and L-myc, significantly induced osteoblast-like phenotype in fibroblasts, but the mechanisms underlying the direct conversion remains to be unveiled. Materials and Methods: We examined which Oct family genes and Myc family genes are capable of inducing osteoblast-like phenotypic conversion. Results: As result Oct3/4, Oct6 and Oct9, among other Oct family members, had the capability, while N-myc was the most effective Myc family gene. The Oct9 plus N-myc was the best combination to induce direct conversion of human fibroblasts into osteoblast-like cells. Discussion: The present findings may greatly contribute to the elucidation of the roles of the Oct and Myc proteins in osteoblast direct reprogramming. The results may also lead to establishment of novel regenerative therapy for various bone resorption diseases. - Highlights: • Introducing L-myc in a combination with either Oct3/4, Oct6 or Oct9 enables the conversion of fibroblasts to osteoblasts. • A combination of L-myc with Oct3/4 or Oct9 can induce the cells to a phenotype closer to normal osteoblasts. • N-myc was considered the most appropriate Myc family gene for induction of osteoblast-like phenotype in fibroblasts. • The combination of Oct9 plus N-myc has the strongest capability of inducing osteoblast-like phenotype.

  5. Transduction of Oct6 or Oct9 gene concomitant with Myc family gene induced osteoblast-like phenotypic conversion in normal human fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Mizoshiri, N. [Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto (Japan); Department of Orthopaedics, Kyoto Prefectural University of Medicine, Kyoto (Japan); Kishida, T. [Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto (Japan); Yamamoto, K. [Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto (Japan); Department of Dental Medicine, Kyoto Prefectural University of Medicine, Kyoto (Japan); Shirai, T.; Terauchi, R.; Tsuchida, S. [Department of Orthopaedics, Kyoto Prefectural University of Medicine, Kyoto (Japan); Mori, Y. [Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto (Japan); Department of Orthopaedics, Kyoto Prefectural University of Medicine, Kyoto (Japan); Ejima, A. [Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto (Japan); Sato, Y. [Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto (Japan); Department of Dental Medicine, Kyoto Prefectural University of Medicine, Kyoto (Japan); Arai, Y.; Fujiwara, H. [Department of Orthopaedics, Kyoto Prefectural University of Medicine, Kyoto (Japan); Yamamoto, T.; Kanamura, N. [Department of Dental Medicine, Kyoto Prefectural University of Medicine, Kyoto (Japan); Mazda, O., E-mail: mazda@koto.kpu-m.ac.jp [Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto (Japan); Kubo, T. [Department of Orthopaedics, Kyoto Prefectural University of Medicine, Kyoto (Japan)

    2015-11-27

    Introduction: Osteoblasts play essential roles in bone formation and regeneration, while they have low proliferation potential. Recently we established a procedure to directly convert human fibroblasts into osteoblasts (dOBs). Transduction of Runx2 (R), Osterix (X), Oct3/4 (O) and L-myc (L) genes followed by culturing under osteogenic conditions induced normal human fibroblasts to express osteoblast-specific genes and produce calcified bone matrix both in vitro and in vivo Intriguingly, a combination of only two factors, Oct3/4 and L-myc, significantly induced osteoblast-like phenotype in fibroblasts, but the mechanisms underlying the direct conversion remains to be unveiled. Materials and Methods: We examined which Oct family genes and Myc family genes are capable of inducing osteoblast-like phenotypic conversion. Results: As result Oct3/4, Oct6 and Oct9, among other Oct family members, had the capability, while N-myc was the most effective Myc family gene. The Oct9 plus N-myc was the best combination to induce direct conversion of human fibroblasts into osteoblast-like cells. Discussion: The present findings may greatly contribute to the elucidation of the roles of the Oct and Myc proteins in osteoblast direct reprogramming. The results may also lead to establishment of novel regenerative therapy for various bone resorption diseases. - Highlights: • Introducing L-myc in a combination with either Oct3/4, Oct6 or Oct9 enables the conversion of fibroblasts to osteoblasts. • A combination of L-myc with Oct3/4 or Oct9 can induce the cells to a phenotype closer to normal osteoblasts. • N-myc was considered the most appropriate Myc family gene for induction of osteoblast-like phenotype in fibroblasts. • The combination of Oct9 plus N-myc has the strongest capability of inducing osteoblast-like phenotype.

  6. Initiation of DNA replication requires actin dynamics and formin activity.

    Science.gov (United States)

    Parisis, Nikolaos; Krasinska, Liliana; Harker, Bethany; Urbach, Serge; Rossignol, Michel; Camasses, Alain; Dewar, James; Morin, Nathalie; Fisher, Daniel

    2017-11-02

    Nuclear actin regulates transcriptional programmes in a manner dependent on its levels and polymerisation state. This dynamics is determined by the balance of nucleocytoplasmic shuttling, formin- and redox-dependent filament polymerisation. Here, using Xenopus egg extracts and human somatic cells, we show that actin dynamics and formins are essential for DNA replication. In proliferating cells, formin inhibition abolishes nuclear transport and initiation of DNA replication, as well as general transcription. In replicating nuclei from transcriptionally silent Xenopus egg extracts, we identified numerous actin regulators, and disruption of actin dynamics abrogates nuclear transport, preventing NLS (nuclear localisation signal)-cargo release from RanGTP-importin complexes. Nuclear formin activity is further required to promote loading of cyclin-dependent kinase (CDK) and proliferating cell nuclear antigen (PCNA) onto chromatin, as well as initiation and elongation of DNA replication. Therefore, actin dynamics and formins control DNA replication by multiple direct and indirect mechanisms. © 2017 The Authors.

  7. Chronophin activation is necessary in Doxorubicin-induced actin cytoskeleton alteration.

    Science.gov (United States)

    Lee, Su Jin; Park, Jeen Woo; Kang, Beom Sik; Lee, Dong-Seok; Lee, Hyun-Shik; Choi, Sooyoung; Kwon, Oh-Shin

    2017-06-01

    Although doxorubicin (Dox)-induced oxidative stress is known to be associated with cytotoxicity, the precise mechanism remains unclear. Genotoxic stress not only generates free radicals, but also affects actin cytoskeleton stability. We showed that Dox-induced RhoA signaling stimulated actin cytoskeleton alterations, resulting in central stress fiber disruption at early time points and cell periphery cortical actin formation at a later stage, in HeLa cells. Interestingly, activation of a cofilin phosphatase, chronophin (CIN), was initially evoked by Dox-induced RhoA signaling, resulting in a rapid phosphorylated cofilin turnover leading to actin cytoskeleton remodeling. In addition, a novel interaction between CIN and 14-3-3ζ was detected in the absence of Dox treatment. We demonstrated that CIN activity is quite contrary to 14-3-3ζ binding, and the interaction leads to enhanced phosphorylated cofilin levels. Therefore, initial CIN activation regulation could be critical in Dox-induced actin cytoskeleton remodeling through RhoA/cofilin signaling. [BMB Reports 2017; 50(6): 335-340].

  8. Nanosecond electric pulses trigger actin responses in plant cells

    International Nuclear Information System (INIS)

    Berghoefer, Thomas; Eing, Christian; Flickinger, Bianca; Hohenberger, Petra; Wegner, Lars H.; Frey, Wolfgang; Nick, Peter

    2009-01-01

    We have analyzed the cellular effects of nanosecond pulsed electrical fields on plant cells using fluorescently tagged marker lines in the tobacco cell line BY-2 and confocal laser scanning microscopy. We observe a disintegration of the cytoskeleton in the cell cortex, followed by contraction of actin filaments towards the nucleus, and disintegration of the nuclear envelope. These responses are accompanied by irreversible permeabilization of the plasma membrane manifest as uptake of Trypan Blue. By pretreatment with the actin-stabilizing drug phalloidin, the detachment of transvacuolar actin from the cell periphery can be suppressed, and this treatment can also suppress the irreversible perforation of the plasma membrane. We discuss these findings in terms of a model, where nanosecond pulsed electric fields trigger actin responses that are key events in the plant-specific form of programmed cell death.

  9. Evolutionary Relationship and Structural Characterization of the EPF/EPFL Gene Family

    OpenAIRE

    Takata, Naoki; Yokota, Kiyonobu; Ohki, Shinya; Mori, Masashi; Taniguchi, Toru; Kurita, Manabu

    2013-01-01

    EPF1-EPF2 and EPFL9/Stomagen act antagonistically in regulating leaf stomatal density. The aim of this study was to elucidate the evolutionary functional divergence of EPF/EPFL family genes. Phylogenetic analyses showed that AtEPFL9/Stomagen-like genes are conserved only in vascular plants and are closely related to AtEPF1/EPF2-like genes. Modeling showed that EPF/EPFL peptides share a common 3D structure that is constituted of a scaffold and loop. Molecular dynamics simulation suggested that...

  10. Variation in the DNA methylation pattern of expressed and nonexpressed genes in chicken.

    Science.gov (United States)

    Cooper, D N; Errington, L H; Clayton, R M

    1983-01-01

    Using methyl-sensitive and -insensitive restriction enzymes, Hpa II and Msp I, the methylation status of various chicken genes was examined in different tissues and developmental stages. Tissue-specific differences in methylation were found for the delta-crystallin, beta-tubulin, G3PDH, rDNA, and actin genes but not for the histone genes. Developmental decreases in methylation were noted for the delta-crystallin and actin genes in chicken kidney between embryo and adult. Since most of the sequences examined were housekeeping genes, transcriptional differences are apparently not a necessary accompaniment to changes in DNA methylation at the CpG sites examined. The only exception is sperm DNA where the delta-crystallin, beta-tubulin, and actin genes are highly methylated and almost certainly not transcribed. However the G3PDH genes are no more highly methylated in sperm than in other somatic tissues. Many sequences homologous to the rDNA and histone probes used are unmethylated in all tissues examined including sperm, but a methylated rDNA subfraction is more heavily methylated in sperm than in other tissues. We speculate as to the significance of these differences in sperm DNA methylation in the light of possible requirements for early gene activation and the probable deleterious mutagenic effects of heavy methylation within coding sequences.

  11. A glycolytic metabolon in Saccharomyces cerevisiae is stabilized by F-actin.

    Science.gov (United States)

    Araiza-Olivera, Daniela; Chiquete-Felix, Natalia; Rosas-Lemus, Mónica; Sampedro, José G; Peña, Antonio; Mujica, Adela; Uribe-Carvajal, Salvador

    2013-08-01

    In the Saccharomyces cerevisiae glycolytic pathway, 11 enzymes catalyze the stepwise conversion of glucose to two molecules of ethanol plus two CO₂ molecules. In the highly crowded cytoplasm, this pathway would be very inefficient if it were dependent on substrate/enzyme diffusion. Therefore, the existence of a multi-enzymatic glycolytic complex has been suggested. This complex probably uses the cytoskeleton to stabilize the interaction of the various enzymes. Here, the role of filamentous actin (F-actin) in stabilization of a putative glycolytic metabolon is reported. Experiments were performed in isolated enzyme/actin mixtures, cytoplasmic extracts and permeabilized yeast cells. Polymerization of actin was promoted using phalloidin or inhibited using cytochalasin D or latrunculin. The polymeric filamentous F-actin, but not the monomeric globular G-actin, stabilized both the interaction of isolated glycolytic pathway enzyme mixtures and the whole fermentation pathway, leading to higher fermentation activity. The associated complexes were resistant against inhibition as a result of viscosity (promoted by the disaccharide trehalose) or inactivation (using specific enzyme antibodies). In S. cerevisiae, a glycolytic metabolon appear to assemble in association with F-actin. In this complex, fermentation activity is enhanced and enzymes are partially protected against inhibition by trehalose or by antibodies. © 2013 FEBS.

  12. Interactions between globular proteins and F-actin in isotonic saline solution.

    Science.gov (United States)

    Lakatos, S; Minton, A P

    1991-10-05

    Solutions of each of three different globular proteins (cytochrome c, chromophorically labeled serum albumin, and chromophorically labeled aldolase), mixed with another unlabeled globular protein or with fibrous actin, were prepared in pH 8.0 Tris-HCl buffer containing 0.15 M NaCl. Each solution was centrifuged at low speed, at 5 degrees C, until unassociated globular protein in solution achieved sedimentation equilibrium. Individual absorbance gradients of both macrosolutes in the mixtures subsequent to centrifugation were obtained via optical scans of the centrifuge tubes at two wavelengths. The gradients of each macrosolute in mixtures of two globular proteins revealed no association of globular proteins under the conditions of these experiments, but perturbation of the gradients of serum albumin, aldolase, and cytochrome c in the presence of F-actin indicated association of all three globular proteins with F-actin. Perturbation of actin gradients in the presence of serum albumin and aldolase suggested partial depolymerization of the F-actin by the globular protein. Analysis of the data with a simple phenomenological model relating free globular protein, bound globular protein, and total actin concentration provided estimates of the respective equilibrium constants for association of serum albumin and aldolase with F-actin, under the conditions of these experiments, of the order of 0.1 microM-1.

  13. FGF: A web tool for Fishing Gene Family in a whole genome database

    DEFF Research Database (Denmark)

    Zheng, Hongkun; Shi, Junjie; Fang, Xiaodong

    2007-01-01

    Gene duplication is an important process in evolution. The availability of genome sequences of a number of organisms has made it possible to conduct comprehensive searches for duplicated genes enabling informative studies of their evolution. We have established the FGF (Fishing Gene Family) progr...... is freely available on a web server at http://fgf.genomics.org.cn/...

  14. Three novel PHEX gene mutations in four Chinese families with X-linked dominant hypophosphatemic rickets

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Qing-lin [Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People' s Hospital, Shanghai 200233 (China); Xu, Jia [Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People' s Hospital, Shanghai 200233 (China); Metabolic Bone Disease and Genetic Research Unit, Department of Osteoporosis and Bone Diseases, Shanghai Jiao Tong University Affiliated Sixth People' s Hospital, Shanghai 200233 (China); Medical College of Soochow University, Suzhou, Jiangsu province 215000 (China); Zhang, Zeng [Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People' s Hospital, Shanghai 200233 (China); Metabolic Bone Disease and Genetic Research Unit, Department of Osteoporosis and Bone Diseases, Shanghai Jiao Tong University Affiliated Sixth People' s Hospital, Shanghai 200233 (China); He, Jin-wei [Metabolic Bone Disease and Genetic Research Unit, Department of Osteoporosis and Bone Diseases, Shanghai Jiao Tong University Affiliated Sixth People' s Hospital, Shanghai 200233 (China); Lu, Lian-song [Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People' s Hospital, Shanghai 200233 (China); Medical College of Soochow University, Suzhou, Jiangsu province 215000 (China); Fu, Wen-zhen [Metabolic Bone Disease and Genetic Research Unit, Department of Osteoporosis and Bone Diseases, Shanghai Jiao Tong University Affiliated Sixth People' s Hospital, Shanghai 200233 (China); Zhang, Zhen-lin, E-mail: zzl2002@medmail.com.cn [Metabolic Bone Disease and Genetic Research Unit, Department of Osteoporosis and Bone Diseases, Shanghai Jiao Tong University Affiliated Sixth People' s Hospital, Shanghai 200233 (China)

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer In our study, all of the patients were of Han Chinese ethnicity, which were rarely reported. Black-Right-Pointing-Pointer We identified three novel PHEX gene mutations in four unrelated families with XLH. Black-Right-Pointing-Pointer We found that the relationship between the phenotype and genotype of the PHEX gene was not invariant. Black-Right-Pointing-Pointer We found that two PHEX gene sites, p.534 and p.731, were conserved. -- Abstract: Background: X-linked hypophosphatemia (XLH), the most common form of inherited rickets, is a dominant disorder that is characterized by renal phosphate wasting with hypophosphatemia, abnormal bone mineralization, short stature, and rachitic manifestations. The related gene with inactivating mutations associated with XLH has been identified as PHEX, which is a phosphate-regulating gene with homologies to endopeptidases on the X chromosome. In this study, a variety of PHEX mutations were identified in four Chinese families with XLH. Methods: We investigated four unrelated Chinese families who exhibited typical features of XLH by using PCR to analyze mutations that were then sequenced. The laboratory and radiological investigations were conducted simultaneously. Results: Three novel mutations were found in these four families: one frameshift mutation, c.2033dupT in exon 20, resulting in p.T679H; one nonsense mutation, c.1294A > T in exon 11, resulting in p.K432X; and one missense mutation, c.2192T > C in exon 22, resulting in p.F731S. Conclusions: We found that the PHEX gene mutations were responsible for XLH in these Chinese families. Our findings are useful for understanding the genetic basis of Chinese patients with XLH.

  15. Three novel PHEX gene mutations in four Chinese families with X-linked dominant hypophosphatemic rickets

    International Nuclear Information System (INIS)

    Kang, Qing-lin; Xu, Jia; Zhang, Zeng; He, Jin-wei; Lu, Lian-song; Fu, Wen-zhen; Zhang, Zhen-lin

    2012-01-01

    Highlights: ► In our study, all of the patients were of Han Chinese ethnicity, which were rarely reported. ► We identified three novel PHEX gene mutations in four unrelated families with XLH. ► We found that the relationship between the phenotype and genotype of the PHEX gene was not invariant. ► We found that two PHEX gene sites, p.534 and p.731, were conserved. -- Abstract: Background: X-linked hypophosphatemia (XLH), the most common form of inherited rickets, is a dominant disorder that is characterized by renal phosphate wasting with hypophosphatemia, abnormal bone mineralization, short stature, and rachitic manifestations. The related gene with inactivating mutations associated with XLH has been identified as PHEX, which is a phosphate-regulating gene with homologies to endopeptidases on the X chromosome. In this study, a variety of PHEX mutations were identified in four Chinese families with XLH. Methods: We investigated four unrelated Chinese families who exhibited typical features of XLH by using PCR to analyze mutations that were then sequenced. The laboratory and radiological investigations were conducted simultaneously. Results: Three novel mutations were found in these four families: one frameshift mutation, c.2033dupT in exon 20, resulting in p.T679H; one nonsense mutation, c.1294A > T in exon 11, resulting in p.K432X; and one missense mutation, c.2192T > C in exon 22, resulting in p.F731S. Conclusions: We found that the PHEX gene mutations were responsible for XLH in these Chinese families. Our findings are useful for understanding the genetic basis of Chinese patients with XLH.

  16. Identification of Candidate Gene Variants in Korean MODY Families by Whole-Exome Sequencing.

    Science.gov (United States)

    Shim, Ye Jee; Kim, Jung Eun; Hwang, Su-Kyeong; Choi, Bong Seok; Choi, Byung Ho; Cho, Eun-Mi; Jang, Kyoung Mi; Ko, Cheol Woo

    2015-01-01

    To date, 13 genes causing maturity-onset diabetes of the young (MODY) have been identified. However, there is a big discrepancy in the genetic locus between Asian and Caucasian patients with MODY. Thus, we conducted whole-exome sequencing in Korean MODY families to identify causative gene variants. Six MODY probands and their family members were included. Variants in the dbSNP135 and TIARA databases for Koreans and the variants with minor allele frequencies >0.5% of the 1000 Genomes database were excluded. We selected only the functional variants (gain of stop codon, frameshifts and nonsynonymous single-nucleotide variants) and conducted a case-control comparison in the family members. The selected variants were scanned for the previously introduced gene set implicated in glucose metabolism. Three variants c.620C>T:p.Thr207Ile in PTPRD, c.559C>G:p.Gln187Glu in SYT9, and c.1526T>G:p.Val509Gly in WFS1 were respectively identified in 3 families. We could not find any disease-causative alleles of known MODY 1-13 genes. Based on the predictive program, Thr207Ile in PTPRD was considered pathogenic. Whole-exome sequencing is a valuable method for the genetic diagnosis of MODY. Further evaluation is necessary about the role of PTPRD, SYT9 and WFS1 in normal insulin release from pancreatic beta cells. © 2015 S. Karger AG, Basel.

  17. The assembly of MreB, a prokaryotic homolog of actin.

    Science.gov (United States)

    Esue, Osigwe; Cordero, Maria; Wirtz, Denis; Tseng, Yiider

    2005-01-28

    MreB, a major component of the bacterial cytoskeleton, exhibits high structural homology to its eukaryotic counterpart actin. Live cell microscopy studies suggest that MreB molecules organize into large filamentous spirals that support the cell membrane and play a key shape-determining function. However, the basic properties of MreB filament assembly remain unknown. Here, we studied the assembly of Thermotoga maritima MreB triggered by ATP in vitro and compared it to the well-studied assembly of actin. These studies show that MreB filament ultrastructure and polymerization depend crucially on temperature as well as the ions present on solution. At the optimal growth temperature of T. maritima, MreB assembly proceeded much faster than that of actin, without nucleation (or nucleation is highly favorable and fast) and with little or no contribution from filament end-to-end annealing. MreB exhibited rates of ATP hydrolysis and phosphate release similar to that of F-actin, however, with a critical concentration of approximately 3 nm, which is approximately 100-fold lower than that of actin. Furthermore, MreB assembled into filamentous bundles that have the ability to spontaneously form ring-like structures without auxiliary proteins. These findings suggest that despite high structural homology, MreB and actin display significantly different assembly properties.

  18. Genome-wide analysis of the SBP-box gene family in Chinese cabbage (Brassica rapa subsp. pekinensis).

    Science.gov (United States)

    Tan, Hua-Wei; Song, Xiao-Ming; Duan, Wei-Ke; Wang, Yan; Hou, Xi-Lin

    2015-11-01

    The SQUAMOSA PROMOTER BINDING PROTEIN (SBP)-box gene family contains highly conserved plant-specific transcription factors that play an important role in plant development, especially in flowering. Chinese cabbage (Brassica rapa subsp. pekinensis) is a leafy vegetable grown worldwide and is used as a model crop for research in genome duplication. The present study aimed to characterize the SBP-box transcription factor genes in Chinese cabbage. Twenty-nine SBP-box genes were identified in the Chinese cabbage genome and classified into six groups. We identified 23 orthologous and 5 co-orthologous SBP-box gene pairs between Chinese cabbage and Arabidopsis. An interaction network among these genes was constructed. Sixteen SBP-box genes were expressed more abundantly in flowers than in other tissues, suggesting their involvement in flowering. We show that the MiR156/157 family members may regulate the coding regions or 3'-UTR regions of Chinese cabbage SBP-box genes. As SBP-box genes were found to potentially participate in some plant development pathways, quantitative real-time PCR analysis was performed and showed that Chinese cabbage SBP-box genes were also sensitive to the exogenous hormones methyl jasmonic acid and salicylic acid. The SBP-box genes have undergone gene duplication and loss, evolving a more refined regulation for diverse stimulation in plant tissues. Our comprehensive genome-wide analysis provides insights into the SBP-box gene family of Chinese cabbage.

  19. Exome sequencing of Pakistani consanguineous families identifies 30 novel candidate genes for recessive intellectual disability.

    Science.gov (United States)

    Riazuddin, S; Hussain, M; Razzaq, A; Iqbal, Z; Shahzad, M; Polla, D L; Song, Y; van Beusekom, E; Khan, A A; Tomas-Roca, L; Rashid, M; Zahoor, M Y; Wissink-Lindhout, W M; Basra, M A R; Ansar, M; Agha, Z; van Heeswijk, K; Rasheed, F; Van de Vorst, M; Veltman, J A; Gilissen, C; Akram, J; Kleefstra, T; Assir, M Z; Grozeva, D; Carss, K; Raymond, F L; O'Connor, T D; Riazuddin, S A; Khan, S N; Ahmed, Z M; de Brouwer, A P M; van Bokhoven, H; Riazuddin, S

    2017-11-01

    Intellectual disability (ID) is a clinically and genetically heterogeneous disorder, affecting 1-3% of the general population. Although research into the genetic causes of ID has recently gained momentum, identification of pathogenic mutations that cause autosomal recessive ID (ARID) has lagged behind, predominantly due to non-availability of sizeable families. Here we present the results of exome sequencing in 121 large consanguineous Pakistani ID families. In 60 families, we identified homozygous or compound heterozygous DNA variants in a single gene, 30 affecting reported ID genes and 30 affecting novel candidate ID genes. Potential pathogenicity of these alleles was supported by co-segregation with the phenotype, low frequency in control populations and the application of stringent bioinformatics analyses. In another eight families segregation of multiple pathogenic variants was observed, affecting 19 genes that were either known or are novel candidates for ID. Transcriptome profiles of normal human brain tissues showed that the novel candidate ID genes formed a network significantly enriched for transcriptional co-expression (P<0.0001) in the frontal cortex during fetal development and in the temporal-parietal and sub-cortex during infancy through adulthood. In addition, proteins encoded by 12 novel ID genes directly interact with previously reported ID proteins in six known pathways essential for cognitive function (P<0.0001). These results suggest that disruptions of temporal parietal and sub-cortical neurogenesis during infancy are critical to the pathophysiology of ID. These findings further expand the existing repertoire of genes involved in ARID, and provide new insights into the molecular mechanisms and the transcriptome map of ID.

  20. Ultrastructural localization of actin and actin-binding proteins in the nucleus

    Czech Academy of Sciences Publication Activity Database

    Dingová, Hana; Fukalová, Jana; Maninová, Miloslava; Philimonenko, Vlada; Hozák, Pavel

    2009-01-01

    Roč. 131, č. 3 (2009), s. 425-434 ISSN 0948-6143 R&D Projects: GA MŠk LC545 Grant - others:MŠk(CZ) LC06063 Program:LC Institutional research plan: CEZ:AV0Z50520514 Keywords : nuclear actin * ultrastructure * actin–binding proteins Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.021, year: 2009

  1. SDF1 Reduces Interneuron Leading Process Branching through Dual Regulation of Actin and Microtubules

    Science.gov (United States)

    Lysko, Daniel E.; Putt, Mary

    2014-01-01

    Normal cerebral cortical function requires a highly ordered balance between projection neurons and interneurons. During development these two neuronal populations migrate from distinct progenitor zones to form the cerebral cortex, with interneurons originating in the more distant ganglionic eminences. Moreover, deficits in interneurons have been linked to a variety of neurodevelopmental disorders underscoring the importance of understanding interneuron development and function. We, and others, have identified SDF1 signaling as one important modulator of interneuron migration speed and leading process branching behavior in mice, although how SDF1 signaling impacts these behaviors remains unknown. We previously found SDF1 inhibited leading process branching while increasing the rate of migration. We have now mechanistically linked SDF1 modulation of leading process branching behavior to a dual regulation of both actin and microtubule organization. We find SDF1 consolidates actin at the leading process tip by de-repressing calpain protease and increasing proteolysis of branched-actin-supporting cortactin. Additionally, SDF1 stabilizes the microtubule array in the leading process through activation of the microtubule-associated protein doublecortin (DCX). DCX stabilizes the microtubule array by bundling microtubules within the leading process, reducing branching. These data provide mechanistic insight into the regulation of interneuron leading process dynamics during neuronal migration in mice and provides insight into how cortactin and DCX, a known human neuronal migration disorder gene, participate in this process. PMID:24695713

  2. SDF1 reduces interneuron leading process branching through dual regulation of actin and microtubules.

    Science.gov (United States)

    Lysko, Daniel E; Putt, Mary; Golden, Jeffrey A

    2014-04-02

    Normal cerebral cortical function requires a highly ordered balance between projection neurons and interneurons. During development these two neuronal populations migrate from distinct progenitor zones to form the cerebral cortex, with interneurons originating in the more distant ganglionic eminences. Moreover, deficits in interneurons have been linked to a variety of neurodevelopmental disorders underscoring the importance of understanding interneuron development and function. We, and others, have identified SDF1 signaling as one important modulator of interneuron migration speed and leading process branching behavior in mice, although how SDF1 signaling impacts these behaviors remains unknown. We previously found SDF1 inhibited leading process branching while increasing the rate of migration. We have now mechanistically linked SDF1 modulation of leading process branching behavior to a dual regulation of both actin and microtubule organization. We find SDF1 consolidates actin at the leading process tip by de-repressing calpain protease and increasing proteolysis of branched-actin-supporting cortactin. Additionally, SDF1 stabilizes the microtubule array in the leading process through activation of the microtubule-associated protein doublecortin (DCX). DCX stabilizes the microtubule array by bundling microtubules within the leading process, reducing branching. These data provide mechanistic insight into the regulation of interneuron leading process dynamics during neuronal migration in mice and provides insight into how cortactin and DCX, a known human neuronal migration disorder gene, participate in this process.

  3. Hes6 is required for actin cytoskeletal organization in differentiating C2C12 myoblasts

    Energy Technology Data Exchange (ETDEWEB)

    Malone, Caroline M.P.; Domaschenz, Renae; Amagase, Yoko [MRC Cancer Cell Unit, Hutchison-MRC Research Centre, Addenbrooke' s Hospital, Cambridge CB2 0XZ (United Kingdom); Dunham, Ian [EMBL-European Bioinformatics Institute (EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD (United Kingdom); Murai, Kasumi [MRC Cancer Cell Unit, Hutchison-MRC Research Centre, Addenbrooke' s Hospital, Cambridge CB2 0XZ (United Kingdom); Jones, Philip H., E-mail: phj20@cam.ac.uk [MRC Cancer Cell Unit, Hutchison-MRC Research Centre, Addenbrooke' s Hospital, Cambridge CB2 0XZ (United Kingdom)

    2011-07-01

    Hes6 is a member of the hairy-enhancer-of-split family of transcription factors that regulate proliferating cell fate in development and is known to be expressed in developing muscle. Here we investigate its function in myogenesis in vitro. We show that Hes6 is a direct transcriptional target of the myogenic transcription factors MyoD and Myf5, indicating that it is integral to the myogenic transcriptional program. The localization of Hes6 protein changes during differentiation, becoming predominantly nuclear. Knockdown of Hes6 mRNA levels by siRNA has no effect on cell cycle exit or induction of myosin heavy chain expression in differentiating C2C12 myoblasts, but F-actin filament formation is disrupted and both cell motility and myoblast fusion are reduced. The knockdown phenotype is rescued by expression of Hes6 cDNA resistant to siRNA. These results define a novel role for Hes6 in actin cytoskeletal dynamics in post mitotic myoblasts.

  4. Hes6 is required for actin cytoskeletal organization in differentiating C2C12 myoblasts

    International Nuclear Information System (INIS)

    Malone, Caroline M.P.; Domaschenz, Renae; Amagase, Yoko; Dunham, Ian; Murai, Kasumi; Jones, Philip H.

    2011-01-01

    Hes6 is a member of the hairy-enhancer-of-split family of transcription factors that regulate proliferating cell fate in development and is known to be expressed in developing muscle. Here we investigate its function in myogenesis in vitro. We show that Hes6 is a direct transcriptional target of the myogenic transcription factors MyoD and Myf5, indicating that it is integral to the myogenic transcriptional program. The localization of Hes6 protein changes during differentiation, becoming predominantly nuclear. Knockdown of Hes6 mRNA levels by siRNA has no effect on cell cycle exit or induction of myosin heavy chain expression in differentiating C2C12 myoblasts, but F-actin filament formation is disrupted and both cell motility and myoblast fusion are reduced. The knockdown phenotype is rescued by expression of Hes6 cDNA resistant to siRNA. These results define a novel role for Hes6 in actin cytoskeletal dynamics in post mitotic myoblasts.

  5. Mutation analysis of the adenomatous polyposis coli (APC) gene in Danish patients with familial adenomatous polyposis (FAP)

    DEFF Research Database (Denmark)

    Bisgaard, Marie Luise; Ripa, Rasmus S; Bülow, Steffen

    2004-01-01

    Development of one hundred or more adenomas in the colon and rectum is diagnostic for the dominantly inherited, autosomal disease Familial Adenomatous Polyposis (FAP). It is possible to identify a mutation in the Adenomatous Polyposis Coli (APC) gene in approximately 80% of the patients, and almost...... 1,000 different pathogenic mutations have been identified in the APC gene up till now. We report 12 novel and 24' previously described germline APC mutations from 48 unrelated Danish families. Four families with the mutation localized in the 3' region of the gene showed great variance in phenotypic...

  6. Enhanced gravitropism of roots with a disrupted cap actin cytoskeleton

    Science.gov (United States)

    Hou, Guichuan; Mohamalawari, Deepti R.; Blancaflor, Elison B.

    2003-01-01

    The actin cytoskeleton has been proposed to be a major player in plant gravitropism. However, understanding the role of actin in this process is far from complete. To address this problem, we conducted an analysis of the effect of Latrunculin B (Lat B), a potent actin-disrupting drug, on root gravitropism using various parameters that included detailed curvature kinetics, estimation of gravitropic sensitivity, and monitoring of curvature development after extended clinorotation. Lat B treatment resulted in a promotion of root curvature after a 90 degrees reorientation in three plant species tested. More significantly, the sensitivity of maize (Zea mays) roots to gravity was enhanced after actin disruption, as determined from a comparison of presentation time of Lat B-treated versus untreated roots. A short 10-min gravistimulus followed by extended rotation on a 1-rpm clinostat resulted in extensive gravitropic responses, manifested as curvature that often exceeded 90 degrees. Application of Lat B to the cap or elongation zone of maize roots resulted in the disruption of the actin cytoskeleton, which was confined to the area of localized Lat B application. Only roots with Lat B applied to the cap displayed the strong curvature responses after extended clinorotation. Our study demonstrates that disrupting the actin cytoskeleton in the cap leads to the persistence of a signal established by a previous gravistimulus. Therefore, actin could function in root gravitropism by providing a mechanism to regulate the proliferation of a gravitropic signal originating from the cap to allow the root to attain its correct orientation or set point angle.

  7. Identification of the trehalose-6-phosphate synthase gene family in ...

    Indian Academy of Sciences (India)

    2015-03-04

    Mar 4, 2015 ... stress, however, our study mainly analysed the TPS gene family under freezing conditions in winter wheat .... size the first-strand cDNA using the Fermentas RevertAid ..... In the stem of Dongnongdongmai 1, TaTPS1, 2, 3, 4, 8,.

  8. Phylogenetic analysis of the MS4A and TMEM176 gene families.

    Directory of Open Access Journals (Sweden)

    Jonathan Zuccolo

    2010-02-01

    Full Text Available The MS4A gene family in humans includes CD20 (MS4A1, FcRbeta (MS4A2, Htm4 (MS4A3, and at least 13 other syntenic genes encoding membrane proteins, most having characteristic tetraspanning topology. Expression of MS4A genes is variable in tissues throughout the body; however, several are limited to cells in the hematopoietic system where they have known roles in immune cell functions. Genes in the small TMEM176 group share significant sequence similarity with MS4A genes and there is evidence of immune function of at least one of the encoded proteins. In this study, we examined the evolutionary history of the MS4A/TMEM176 families as well as tissue expression of the phylogenetically earliest members, in order to investigate their possible origins in immune cells.Orthologs of human MS4A genes were found only in mammals; however, MS4A gene homologs were found in most jawed vertebrates. TMEM176 genes were found only in mammals and bony fish. Several unusual MS4A genes having 2 or more tandem MS4A sequences were identified in the chicken (Gallus gallus and early mammals (opossum, Monodelphis domestica and platypus, Ornithorhyncus anatinus. A large number of highly conserved MS4A and TMEM176 genes was found in zebrafish (Danio rerio. The most primitive organism identified to have MS4A genes was spiny dogfish (Squalus acanthus. Tissue expression of MS4A genes in S. acanthias and D. rerio showed no evidence of expression restricted to the hematopoietic system.Our findings suggest that MS4A genes first appeared in cartilaginous fish with expression outside of the immune system, and have since diversified in many species into their modern forms with expression and function in both immune and nonimmune cells.

  9. Axon initial segment cytoskeleton comprises a multiprotein submembranous coat containing sparse actin filaments

    Science.gov (United States)

    Jones, Steven L.; Korobova, Farida

    2014-01-01

    The axon initial segment (AIS) of differentiated neurons regulates action potential initiation and axon–dendritic polarity. The latter function depends on actin dynamics, but actin structure and functions at the AIS remain unclear. Using platinum replica electron microscopy (PREM), we have characterized the architecture of the AIS cytoskeleton in mature and developing hippocampal neurons. The AIS cytoskeleton assembly begins with bundling of microtubules and culminates in formation of a dense, fibrillar–globular coat over microtubule bundles. Immunogold PREM revealed that the coat contains a network of known AIS proteins, including ankyrin G, spectrin βIV, neurofascin, neuronal cell adhesion molecule, voltage-gated sodium channels, and actin filaments. Contrary to existing models, we find neither polarized actin arrays, nor dense actin meshworks in the AIS. Instead, the AIS contains two populations of sparse actin filaments: short, stable filaments and slightly longer dynamic filaments. We propose that stable actin filaments play a structural role for formation of the AIS diffusion barrier, whereas dynamic actin may promote AIS coat remodeling. PMID:24711503

  10. Disruption of microtubule network rescues aberrant actin comets in dynamin2-depleted cells.

    Directory of Open Access Journals (Sweden)

    Yuji Henmi

    Full Text Available A large GTPase dynamin, which is required for endocytic vesicle formation, regulates the actin cytoskeleton through its interaction with cortactin. Dynamin2 mutants impair the formation of actin comets, which are induced by Listeria monocytogenes or phosphatidylinositol-4-phosphate 5-kinase. However, the role of dynamin2 in the regulation of the actin comet is still unclear. Here we show that aberrant actin comets in dynamin2-depleted cells were rescued by disrupting of microtubule networks. Depletion of dynamin2, but not cortactin, significantly reduced the length and the speed of actin comets induced by Listeria. This implies that dynamin2 may regulate the actin comet in a cortactin-independent manner. As dynamin regulates microtubules, we investigated whether perturbation of microtubules would rescue actin comet formation in dynamin2-depleted cells. Treatment with taxol or colchicine created a microtubule-free space in the cytoplasm, and made no difference between control and dynamin2 siRNA cells. This suggests that the alteration of microtubules by dynamin2 depletion reduced the length and the speed of the actin comet.

  11. Expression of REG family genes in human inflammatory bowel diseases and its regulation

    Directory of Open Access Journals (Sweden)

    Chikatsugu Tsuchida

    2017-12-01

    Full Text Available The pathophysiology of inflammatory bowel disease (IBD reflects a balance between mucosal injury and reparative mechanisms. Some regenerating gene (Reg family members have been reported to be expressed in Crohn's disease (CD and ulcerative colitis (UC and to be involved as proliferative mucosal factors in IBD. However, expression of all REG family genes in IBD is still unclear. Here, we analyzed expression of all REG family genes (REG Iα, REG Iβ, REG III, HIP/PAP, and REG IV in biopsy specimens of UC and CD by real-time RT-PCR. REG Iα, REG Iβ, and REG IV genes were overexpressed in CD samples. REG IV gene was also overexpressed in UC samples. We further analyzed the expression mechanisms of REG Iα, REG Iβ, and REG IV genes in human colon cells. The expression of REG Iα was significantly induced by IL-6 or IL-22, and REG Iβ was induced by IL-22. Deletion analyses revealed that three regions (− 220 to − 211, − 179 to − 156, and − 146 to − 130 in REG Iα and the region (− 274 to− 260 in REG Iβ promoter were responsible for the activation by IL-22/IL-6. The promoters contain consensus transcription factor binding sequences for MZF1, RTEF1/TEAD4, and STAT3 in REG Iα, and HLTF/FOXN2F in REG Iβ, respectively. The introduction of siRNAs for MZF1, RTEF1/TEAD4, STAT3, and HLTF/FOXN2F abolished the transcription of REG Iα and REG Iβ. The gene activation mechanisms of REG Iα/REG Iβ may play a role in colon mucosal regeneration in IBD.

  12. Involvement of Gβγ subunits of Gi protein coupled with S1P receptor on multivesicular endosomes in F-actin formation and cargo sorting into exosomes.

    Science.gov (United States)

    Kajimoto, Taketoshi; Mohamed, Nesma Nabil Ibrahim; Badawy, Shaymaa Mohamed Mohamed; Matovelo, Shubi Ambwene; Hirase, Mitsuhiro; Nakamura, Shunsuke; Yoshida, Daisuke; Okada, Taro; Ijuin, Takeshi; Nakamura, Shun-Ichi

    2018-01-05

    Exosomes play a critical role in cell-to-cell communication by delivering cargo molecules to recipient cells. However, the mechanism underlying the generation of the exosomal multivesicular endosome (MVE) is one of the mysteries in the field of endosome research. Although sphingolipid metabolites such as ceramide and sphingosine 1-phosphate (S1P) are known to play important roles in MVE formation and maturation, the detailed molecular mechanisms are still unclear. Here, we show that Rho family GTPases, including Cdc42 and Rac1, are constitutively activated on exosomal MVEs and are regulated by S1P signaling as measured by fluorescence resonance energy transfer (FRET)-based conformational changes. Moreover, we detected S1P signaling-induced filamentous actin (F-actin) formation. A selective inhibitor of Gβγ subunits, M119, strongly inhibited both F-actin formation on MVEs and cargo sorting into exosomal intralumenal vesicles of MVEs, both of which were fully rescued by the simultaneous expression of constitutively active Cdc42 and Rac1. Our results shed light on the mechanism underlying exosomal MVE maturation and inform the understanding of the physiological relevance of continuous activation of the S1P receptor and subsequent downstream G protein signaling to Gβγ subunits/Rho family GTPases-regulated F-actin formation on MVEs for cargo sorting into exosomal intralumenal vesicles. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Small-Molecule Inhibition of Rho/MKL/SRF Transcription in Prostate Cancer Cells: Modulation of Cell Cycle, ER Stress, and Metastasis Gene Networks

    Directory of Open Access Journals (Sweden)

    Chris R. Evelyn

    2016-05-01

    Full Text Available Metastasis is the major cause of cancer deaths and control of gene transcription has emerged as a critical contributing factor. RhoA- and RhoC-induced gene transcription via the actin-regulated transcriptional co-activator megakaryocytic leukemia (MKL and serum response factor (SRF drive metastasis in breast cancer and melanoma. We recently identified a compound, CCG-1423, which blocks Rho/MKL/SRF-mediated transcription and inhibits PC-3 prostate cancer cell invasion. Here, we undertook a genome-wide expression study in PC-3 cells to explore the mechanism and function of this compound. There was significant overlap in the genes modulated by CCG-1423 and Latrunculin B (Lat B, which blocks the Rho/MKL/SRF pathway by preventing actin polymerization. In contrast, the general transcription inhibitor 5,6-dichloro-1-β-d-ribofuranosyl-1H-benzimidazole (DRB showed a markedly different pattern. Effects of CCG-1423 and Lat B on gene expression correlated with literature studies of MKL knock-down. Gene sets involved in DNA synthesis and repair, G1/S transition, and apoptosis were modulated by CCG-1423. It also upregulated genes involved in endoplasmic reticulum stress. Targets of the known Rho target transcription factor family E2F and genes related to melanoma progression and metastasis were strongly suppressed by CCG-1423. These results confirm the ability of our compound to inhibit expression of numerous Rho/MKL-dependent genes and show effects on stress pathways as well. This suggests a novel approach to targeting aggressive cancers and metastasis.

  14. Genomic Survey and Expression Profiling of the MYB Gene Family in Watermelon

    Directory of Open Access Journals (Sweden)

    Qing XU

    2018-01-01

    Full Text Available Myeloblastosis (MYB proteins constitute one of the largest transcription factor (TF families in plants. They are functionally diverse in regulating plant development, metabolism, and multiple stress responses. However, the function of watermelon MYB proteins remains elusive to date. Here, a genome-wide identification of watermelon MYB TFs was performed by bioinformatics analysis. A total of 162 MYB genes were identified from watermelon (ClaMYB. A comprehensive overview of the ClaMYB genes was undertaken, including the gene structures, chromosomal distribution, gene duplication, conserved protein motif, and phylogenetic relationship. According to the analyses, the watermelon MYB genes were categorized into three groups (R1R2R3-MYB, R2R3-MYB, and MYB-related. Amino acid alignments for all MYB motifs of ClaMYBs demonstrated high conservation. Investigation of their chromosomal localization revealed that these ClaMYB genes distributed across the 11 watermelon chromosomes. Gene duplication analyses showed that tandem duplication events contributed predominantly to the expansion of the MYB gene family in the watermelon genome. Phylogenetic comparison of the ClaMYB proteins with Arabidopsis MYB proteins revealed that watermelon MYB proteins underwent a more diverse evolution after divergence from Arabidopsis. Some watermelon MYBs were found to cluster into the functional clades of Arabidopsis MYB proteins. Expression analysis under different stress conditions identified a group of watermelon MYB proteins implicated in the plant stress responses. The comprehensive investigation of watermelon MYB genes in this study provides a useful reference for future cloning and functional analysis of watermelon MYB proteins. Keywords: watermelon, MYB transcription factor, abiotic stress, phylogenetic analysis

  15. Using paleogenomics to study the evolution of gene families: origin and duplication history of the relaxin family hormones and their receptors.

    Directory of Open Access Journals (Sweden)

    Sergey Yegorov

    Full Text Available Recent progress in the analysis of whole genome sequencing data has resulted in the emergence of paleogenomics, a field devoted to the reconstruction of ancestral genomes. Ancestral karyotype reconstructions have been used primarily to illustrate the dynamic nature of genome evolution. In this paper, we demonstrate how they can also be used to study individual gene families by examining the evolutionary history of relaxin hormones (RLN/INSL and relaxin family peptide receptors (RXFP. Relaxin family hormones are members of the insulin superfamily, and are implicated in the regulation of a variety of primarily reproductive and neuroendocrine processes. Their receptors are G-protein coupled receptors (GPCR's and include members of two distinct evolutionary groups, an unusual characteristic. Although several studies have tried to elucidate the origins of the relaxin peptide family, the evolutionary origin of their receptors and the mechanisms driving the diversification of the RLN/INSL-RXFP signaling systems in non-placental vertebrates has remained elusive. Here we show that the numerous vertebrate RLN/INSL and RXFP genes are products of an ancestral receptor-ligand system that originally consisted of three genes, two of which apparently trace their origins to invertebrates. Subsequently, diversification of the system was driven primarily by whole genome duplications (WGD, 2R and 3R followed by almost complete retention of the ligand duplicates in most vertebrates but massive loss of receptor genes in tetrapods. Interestingly, the majority of 3R duplicates retained in teleosts are potentially involved in neuroendocrine regulation. Furthermore, we infer that the ancestral AncRxfp3/4 receptor may have been syntenically linked to the AncRln-like ligand in the pre-2R genome, and show that syntenic linkages among ligands and receptors have changed dynamically in different lineages. This study ultimately shows the broad utility, with some caveats, of

  16. All-Round Manipulation of the Actin Cytoskeleton by HIV.

    Science.gov (United States)

    Ospina Stella, Alberto; Turville, Stuart

    2018-02-05

    While significant progress has been made in terms of human immunodeficiency virus (HIV) therapy, treatment does not represent a cure and remains inaccessible to many people living with HIV. Continued mechanistic research into the viral life cycle and its intersection with many aspects of cellular biology are not only fundamental in the continued fight against HIV, but also provide many key observations of the workings of our immune system. Decades of HIV research have testified to the integral role of the actin cytoskeleton in both establishing and spreading the infection. Here, we review how the virus uses different strategies to manipulate cellular actin networks and increase the efficiency of various stages of its life cycle. While some HIV proteins seem able to bind to actin filaments directly, subversion of the cytoskeleton occurs indirectly by exploiting the power of actin regulatory proteins, which are corrupted at multiple levels. Furthermore, this manipulation is not restricted to a discrete class of proteins, but rather extends throughout all layers of the cytoskeleton. We discuss prominent examples of actin regulators that are exploited, neutralized or hijacked by the virus, and address how their coordinated deregulation can lead to changes in cellular behavior that promote viral spreading.

  17. Dynamic localization and interaction with other Bacillus subtilis actin-like proteins are important for the function of MreB.

    Science.gov (United States)

    Defeu Soufo, Hervé Joël; Graumann, Peter L

    2006-12-01

    Bacterial actin-like proteins play a key role in cell morphology and in chromosome segregation. Many bacteria, like Bacillus subtilis, contain three genes encoding actin-like proteins, called mreB, mbl and mreBH in B. subtilis. We show that MreB and Mbl colocalize extensively within live cells, and that all three B. subtilis actin paralogues interact with each other underneath the cell membrane. A mutation in the phosphate 2 motif of MreB had a dominant negative effect on cell morphology and on chromosome segregation. Expression of this mutant allele of MreB interfered with the dynamic localization of Mbl. These experiments show that the interaction between MreB and Mbl has physiological significance. An mreB deletion strain can grow under special media conditions, however, depletion of Mbl in this mutant background abolished growth, indicating that actin paralogues can partially complement each other. The membrane protein MreC was found to interact with Mbl, but not with MreB, revealing a clear distinction between the function of the two paralogues. The phosphate 2 mutant MreB protein allowed for filament formation of mutant or wild-type MreB, but abolished the dynamic reorganization of the filaments. The latter mutation led to a strong reduction, but not complete loss, of function of MreB, both in terms of chromosome segregation and of cell morphology. Our work shows that that the dynamic localization of MreB is essential for the proper activity of the actin-like protein and that the interactions between MreB paralogues have important physiological significance.

  18. Genome-wide identification and characterization of the SBP-box gene family in Petunia.

    Science.gov (United States)

    Zhou, Qin; Zhang, Sisi; Chen, Feng; Liu, Baojun; Wu, Lan; Li, Fei; Zhang, Jiaqi; Bao, Manzhu; Liu, Guofeng

    2018-03-12

    SQUAMOSA PROMOTER BINDING PROTEIN (SBP)-box genes encode a family of plant-specific transcription factors (TFs) that play important roles in many growth and development processes including phase transition, leaf initiation, shoot and inflorescence branching, fruit development and ripening etc. The SBP-box gene family has been identified and characterized in many species, but has not been well studied in Petunia, an important ornamental genus. We identified 21 putative SPL genes of Petunia axillaris and P. inflata from the reference genome of P. axillaris N and P. inflata S6, respectively, which were supported by the transcriptome data. For further confirmation, all the 21 genes were also cloned from P. hybrida line W115 (Mitchel diploid). Phylogenetic analysis based on the highly conserved SBP domains arranged PhSPLs in eight groups, analogous to those from Arabidopsis and tomato. Furthermore, the Petunia SPL genes had similar exon-intron structure and the deduced proteins contained very similar conserved motifs within the same subgroup. Out of 21 PhSPL genes, fourteen were predicted to be potential targets of PhmiR156/157, and the putative miR156/157 response elements (MREs) were located in the coding region of group IV, V, VII and VIII genes, but in the 3'-UTR regions of group VI genes. SPL genes were also identified from another two wild Petunia species, P. integrifolia and P. exserta, based on their transcriptome databases to investigate the origin of PhSPLs. Phylogenetic analysis and multiple alignments of the coding sequences of PhSPLs and their orthologs from wild species indicated that PhSPLs were originated mainly from P. axillaris. qRT-PCR analysis demonstrated differential spatiotemperal expression patterns of PhSPL genes in petunia and many were expressed predominantly in the axillary buds and/or inflorescences. In addition, overexpression of PhSPL9a and PhSPL9b in Arabidopsis suggested that these genes play a conserved role in promoting the vegetative

  19. Dlx homeobox gene family expression in osteoclasts.

    Science.gov (United States)

    Lézot, F; Thomas, B L; Blin-Wakkach, C; Castaneda, B; Bolanos, A; Hotton, D; Sharpe, P T; Heymann, D; Carles, G F; Grigoriadis, A E; Berdal, A

    2010-06-01

    Skeletal growth and homeostasis require the finely orchestrated secretion of mineralized tissue matrices by highly specialized cells, balanced with their degradation by osteoclasts. Time- and site-specific expression of Dlx and Msx homeobox genes in the cells secreting these matrices have been identified as important elements in the regulation of skeletal morphology. Such specific expression patterns have also been reported in osteoclasts for Msx genes. The aim of the present study was to establish the expression patterns of Dlx genes in osteoclasts and identify their function in regulating skeletal morphology. The expression patterns of all Dlx genes were examined during the whole osteoclastogenesis using different in vitro models. The results revealed that Dlx1 and Dlx2 are the only Dlx family members with a possible function in osteoclastogenesis as well as in mature osteoclasts. Dlx5 and Dlx6 were detected in the cultures but appear to be markers of monocytes and their derivatives. In vivo, Dlx2 expression in osteoclasts was examined using a Dlx2/LacZ transgenic mouse. Dlx2 is expressed in a subpopulation of osteoclasts in association with tooth, brain, nerve, and bone marrow volumetric growths. Altogether the present data suggest a role for Dlx2 in regulation of skeletal morphogenesis via functions within osteoclasts. (c) 2010 Wiley-Liss, Inc.

  20. Genome-wide analysis of the Dof transcription factor gene family reveals soybean-specific duplicable and functional characteristics.

    Directory of Open Access Journals (Sweden)

    Yong Guo

    Full Text Available The Dof domain protein family is a classic plant-specific zinc-finger transcription factor family involved in a variety of biological processes. There is great diversity in the number of Dof genes in different plants. However, there are only very limited reports on the characterization of Dof transcription factors in soybean (Glycine max. In the present study, 78 putative Dof genes were identified from the whole-genome sequence of soybean. The predicted GmDof genes were non-randomly distributed within and across 19 out of 20 chromosomes and 97.4% (38 pairs were preferentially retained duplicate paralogous genes located in duplicated regions of the genome. Soybean-specific segmental duplications contributed significantly to the expansion of the soybean Dof gene family. These Dof proteins were phylogenetically clustered into nine distinct subgroups among which the gene structure and motif compositions were considerably conserved. Comparative phylogenetic analysis of these Dof proteins revealed four major groups, similar to those reported for Arabidopsis and rice. Most of the GmDofs showed specific expression patterns based on RNA-seq data analyses. The expression patterns of some duplicate genes were partially redundant while others showed functional diversity, suggesting the occurrence of sub-functionalization during subsequent evolution. Comprehensive expression profile analysis also provided insights into the soybean-specific functional divergence among members of the Dof gene family. Cis-regulatory element analysis of these GmDof genes suggested diverse functions associated with different processes. Taken together, our results provide useful information for the functional characterization of soybean Dof genes by combining phylogenetic analysis with global gene-expression profiling.