WorldWideScience

Sample records for act cercla remedial

  1. Integrating NEPA [National Environmental Policy Act] and CERCLA [Comprehensive Environmental Response, Compensation, and Liability Act] requirements during remedial responses at DOE facilities

    International Nuclear Information System (INIS)

    US Department of Energy (DOE) Order 5400.4, issued October 6, 1989, calls for integrating the requirements of the National Environmental Policy Act (NEPA) with those of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) for DOE remedial actions under CERCLA. CERCLA requires that decisions on site remediation be made through a formal process called a Remedial Investigation/Feasibility Study (RI/FS). According to the DOE order, integration is to be accomplished by conducting the NEPA and CERCLA environmental planning and review procedures concurrently. The primary instrument for integrating the processes is to be the RI/FS process, which will be supplemented as needed to meet the procedural and documentational requirements of NEPA. The final product of the integrated process will be a single, integrated set of documents; namely, an RI report and an FS-EIS that satisfy the requirements of both NEPA and CERCLA. The contents of the report include (1) an overview and comparison of the requirements of the two processes; (2) descriptions of the major tasks included in the integrated RI/FS-EIS process; (3) recommended contents for integrated RI/FS-EIS documents; and (4)a discussion of some potential problems in integrating NEPA and CERCLA that fall outisde the scope of the RI/FS-EIS process, with suggestions for resolving some of these problems. 15 refs

  2. RCRA corrective action ampersand CERCLA remedial action reference guide

    International Nuclear Information System (INIS)

    This reference guide provides a side-by-side comparison of RCRA corrective action and CERCLA Remedial Action, focusing on the statutory and regulatory requirements under each program, criterial and other factors that govern a site's progress, and the ways in which authorities or requirements under each program overlap and/or differ. Topics include the following: Intent of regulation; administration; types of sites and/or facilities; definition of site and/or facility; constituents of concern; exclusions; provisions for short-term remedies; triggers for initial site investigation; short term response actions; site investigations; remedial investigations; remedial alternatives; clean up criterial; final remedy; implementing remedy; on-site waste management; completion of remedial process

  3. Remedial Action Assessment System (RAAS): Evaluation of selected feasibility studies of CERCLA (Comprehensive Environmental Response, Compensation, and Liability Act) hazardous waste sites

    Energy Technology Data Exchange (ETDEWEB)

    Whelan, G. (Pacific Northwest Lab., Richland, WA (USA)); Hartz, K.E.; Hilliard, N.D. (Beck (R.W.) and Associates, Seattle, WA (USA))

    1990-04-01

    Congress and the public have mandated much closer scrutiny of the management of chemically hazardous and radioactive mixed wastes. Legislative language, regulatory intent, and prudent technical judgment, call for using scientifically based studies to assess current conditions and to evaluate and select costeffective strategies for mitigating unacceptable situations. The NCP requires that a Remedial Investigation (RI) and a Feasibility Study (FS) be conducted at each site targeted for remedial response action. The goal of the RI is to obtain the site data needed so that the potential impacts on public health or welfare or on the environment can be evaluated and so that the remedial alternatives can be identified and selected. The goal of the FS is to identify and evaluate alternative remedial actions (including a no-action alternative) in terms of their cost, effectiveness, and engineering feasibility. The NCP also requires the analysis of impacts on public health and welfare and on the environment; this analysis is the endangerment assessment (EA). In summary, the RI, EA, and FS processes require assessment of the contamination at a site, of the potential impacts in public health or the environment from that contamination, and of alternative RAs that could address potential impacts to the environment. 35 refs., 7 figs., 1 tab.

  4. A comparison of the RCRA Corrective Action and CERCLA Remedial Action Processes

    Energy Technology Data Exchange (ETDEWEB)

    Traceski, Thomas T.

    1994-02-01

    This document provides a comprehensive side-by-side comparison of the RCRA corrective action and the CERCLA remedial action processes. On the even-numbered pages a discussion of the RCRA corrective action process is presented and on the odd-numbered pages a comparative discussion of the CERCLA remedial action process can be found. Because the two programs have a difference structure, there is not always a direct correlation between the two throughout the document. This document serves as an informative reference for Departmental and contractor personnel responsible for oversight or implementation of RCRA corrective action and CERCLA remedial action activities at DOE environmental restoration sites.

  5. Defining the role of risk assessment in the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) remedial investigation process at the DOE-OR

    International Nuclear Information System (INIS)

    The risk assessment strategy that will be implemented on the Oak Ridge Reservation has been standardized to ensure consistency and technical defensibility in all risk assessment activities and is presented within this document. The strategy emphasizes using existing environmental data in screening risk analyses to aid in identifying chemicals of potential concern, operable units that could pursue a no further investigation determination, and operable units that may warrant early response actions. The screening risk analyses include a comparison of measured chemical concentrations to preliminary remediation goals, performing a most likely exposure and integration point assessment, and performing a screening ecological risk assessment. This document focuses heavily on the screening risk analyses and relies on existing U.S. Environmental Protection Agency risk assessment guidance to provide specific details on conducting baseline risk assessments. However, the document does contain a section on the baseline risk assessment process that details the exposure pathways to be evaluated on the Oak Ridge Reservation. This document will be used in conjunction with existing Martin Marietta Energy Systems, Inc. Environmental Restoration risk assessment standards, policies, procedures, and technical memoranda. The material contained herein will be periodically updated as the strategy is tried and tested and as the risk assessment methodology is revised. The primary purpose for this document is to present the proposed strategy to the Tennessee Department of Environment and Conservation and the U.S. Environmental Protection Agency, Region IV and receive concurrence or additional comments on the material presented herein

  6. Complying with Land Disposal Restrictions (LDR) for CERCLA remedial actions involving contaminated soil and debris

    International Nuclear Information System (INIS)

    CERCLA Sect. 121(e) requires that remedial actions must comply with at least the minimum standards of all ''applicable or relevant and appropriate requirements'' (ARARs) of federal and state laws. EPA has determined that RCRA land disposal restrictions may be ARAR for certain CERCLA remedial actions involving soil and debris. This means that soil and debris contaminated with prohibited or restricted wastes cannot be land disposed if (1) these wastes have not attained the treatment standards set by EPA for a specified waste or (2) have been the subject of a case-by-case extension, national capacity variance, or successful ''no migration'' petition. RCRA LDR treatment standards are based on ''Best Demonstrated Available Technology'' (BDAT), not on health-based concentrations. Because the treatment of the soil and debris matrix presents technological difficulties not yet addressed by EPA (BDAT standards are generally set for industrial process wastes), compliance options such as obtaining a Treatability Variance, are available and will generally be necessary for soil and debris wastes. In the recently promulgated revisions to the National Contingency Plan (NCP) for CERCLA implementation, EPA provides important information for CERCLA project managers regarding LDR compliance, particularly for obtaining a treatability variance for land disposal of contaminated soil and debris

  7. 77 FR 69827 - Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) or Superfund...

    Science.gov (United States)

    2012-11-21

    ... outreach to local communities to increase their awareness and knowledge regarding the importance of... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL PROTECTION AGENCY Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) or Superfund;...

  8. 75 FR 984 - Draft Recommended Interim Preliminary Remediation Goals for Dioxin in Soil at CERCLA and RCRA Sites

    Science.gov (United States)

    2010-01-07

    ... the National Oil and Hazardous Substances Pollution Contingency Plan (NCP) (40 CFR 300.430(e)(2)(i... AGENCY RIN 2050-ZA05 Draft Recommended Interim Preliminary Remediation Goals for Dioxin in Soil at CERCLA...) developed in the Draft Recommended Interim Preliminary Remediation Goals for Dioxin in Soil at...

  9. Guide to ground water remediation at CERCLA response action and RCRA corrective action sites

    International Nuclear Information System (INIS)

    This Guide contains the regulatory and policy requirements governing remediation of ground water contaminated with hazardous waste [including radioactive mixed waste (RMW)], hazardous substances, or pollutants/contaminants that present (or may present) an imminent and substantial danger. It was prepared by the Office of Environmental Policy and Assistance, RCRA/CERCLA Division (EH-413), to assist Environmental Program Managers (ERPMs) who often encounter contaminated ground water during the performance of either response actions under CERCLA or corrective actions under Subtitle C of RCRA. The Guide begins with coverage of the regulatory and technical issues that are encountered by ERPM's after a CERCLA Preliminary Assessment/Site Investigation (PA/SI) or the RCRA Facility Assessment (RFA) have been completed and releases into the environment have been confirmed. It is based on the assumption that ground water contamination is present at the site, operable unit, solid waste management unit, or facility. The Guide's scope concludes with completion of the final RAs/corrective measures and a determination by the appropriate regulatory agencies that no further response action is necessary

  10. Hazard Ranking System evaluation of CERCLA [Comprehensive Environmental Response, Compensation, and Liability Act] inactive waste sites at Hanford: Volume 1, Evaluation methods and results

    International Nuclear Information System (INIS)

    The purpose of this report is to formally document the individual site Hazard Ranking System (HRS) evaluations conducted as part of the preliminary assessment/site inspection (PA/SI) activities at the US Department of Energy (DOE) Hanford Site. These activities were carried out pursuant to the DOE orders that describe the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Program addressing the cleanup of inactive waste sites. These orders incorporate the US Environmental Protection Agency methodology, which is based on the Superfund Amendments and Reauthorization Act of 1986 (SARA). The methodology includes six parts: PA/SI, remedial investigation/feasibility study, record of decision, design and implementation of remedial action, operation and monitoring, and verification monitoring. Volume 1 of this report discusses the CERCLA inactive waste-site evaluation process, assumptions, and results of the HRS methodology employed. Volume 2 presents the data on the individual CERCLA engineered-facility sites at Hanford, as contained in the Hanford Inactive Site Surveillance (HISS) Data Base. Volume 3 presents the data on the individual CERCLA unplanned-release sites at Hanford, as contained in the HISS Data Base. 34 refs., 43 figs., 47 tabs

  11. A Cercla-Based Decision Model to Support Remedy Selection for an Uncertain Volume of Contaminants at a DOE Facility

    Energy Technology Data Exchange (ETDEWEB)

    Christine E. Kerschus

    1999-03-31

    The Paducah Gaseous Diffusion Plant (PGDP) operated by the Department of Energy is challenged with selecting the appropriate remediation technology to cleanup contaminants at Waste Area Group (WAG) 6. This research utilizes value-focused thinking and multiattribute preference theory concepts to produce a decision analysis model designed to aid the decision makers in their selection process. The model is based on CERCLA's five primary balancing criteria, tailored specifically to WAG 6 and the contaminants of concern, utilizes expert opinion and the best available engineering, cost, and performance data, and accounts for uncertainty in contaminant volume. The model ranks 23 remediation technologies (trains) in their ability to achieve the CERCLA criteria at various contaminant volumes. A sensitivity analysis is performed to examine the effects of changes in expert opinion and uncertainty in volume. Further analysis reveals how volume uncertainty is expected to affect technology cost, time and ability to meet the CERCLA criteria. The model provides the decision makers with a CERCLA-based decision analysis methodology that is objective, traceable, and robust to support the WAG 6 Feasibility Study. In addition, the model can be adjusted to address other DOE contaminated sites.

  12. A Cercla-Based Decision Model to Support Remedy Selection for an Uncertain Volume of Contaminants at a DOE Facility

    International Nuclear Information System (INIS)

    The Paducah Gaseous Diffusion Plant (PGDP) operated by the Department of Energy is challenged with selecting the appropriate remediation technology to cleanup contaminants at Waste Area Group (WAG) 6. This research utilizes value-focused thinking and multiattribute preference theory concepts to produce a decision analysis model designed to aid the decision makers in their selection process. The model is based on CERCLA's five primary balancing criteria, tailored specifically to WAG 6 and the contaminants of concern, utilizes expert opinion and the best available engineering, cost, and performance data, and accounts for uncertainty in contaminant volume. The model ranks 23 remediation technologies (trains) in their ability to achieve the CERCLA criteria at various contaminant volumes. A sensitivity analysis is performed to examine the effects of changes in expert opinion and uncertainty in volume. Further analysis reveals how volume uncertainty is expected to affect technology cost, time and ability to meet the CERCLA criteria. The model provides the decision makers with a CERCLA-based decision analysis methodology that is objective, traceable, and robust to support the WAG 6 Feasibility Study. In addition, the model can be adjusted to address other DOE contaminated sites

  13. INEEL Subsurface Disposal Area CERCLA-based Decision Analysis for Technology Screening and Remedial Alternative Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Parnell, G. S.; Kloeber, Jr. J.; Westphal, D; Fung, V.; Richardson, John Grant

    2000-03-01

    A CERCLA-based decision analysis methodology for alternative evaluation and technology screening has been developed for application at the Idaho National Engineering and Environmental Laboratory WAG 7 OU13/14 Subsurface Disposal Area (SDA). Quantitative value functions derived from CERCLA balancing criteria in cooperation with State and Federal regulators are presented. A weighted criteria hierarchy is also summarized that relates individual value function numerical values to an overall score for a specific technology alternative.

  14. Applicability of Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) to releases of radioactive substances

    International Nuclear Information System (INIS)

    The Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA), commonly called Superfund, provided a $1.6 billion fund (financed by a tax on petrochemical feedstocks and crude oil and by general revenues) for the cleanup of releases of hazardous substances, including source, special nuclear or byproduct material, and other radioactive substances, from mostly inactive facilities. The US Environmental Protection Agency (EPA) is authorized to require private responsible parties to clean up releases of hazardous substances, or EPA, at its option, may undertake the cleanup with monies from the Fund and recover the monies through civil actions brought against responsible parties. CERCLA imposes criminal penalties for noncompliance with its reporting requirements. This paper will overview the key provisions of CERCLA which apply to the cleanup of radioactive materials

  15. K basins interim remedial action health and safety plan

    Energy Technology Data Exchange (ETDEWEB)

    DAY, P.T.

    1999-09-14

    The K Basins Interim Remedial Action Health and Safety Plan addresses the requirements of the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA), as they apply to the CERCLA work that will take place at the K East and K West Basins. The provisions of this plan become effective on the date the US Environmental Protection Agency issues the Record of Decision for the K Basins Interim Remedial Action, currently planned in late August 1999.

  16. Reference manual for toxicity and exposure assessment and risk characterization. CERCLA Baseline Risk Assessment

    International Nuclear Information System (INIS)

    The Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA, 1980) (CERCLA or Superfund) was enacted to provide a program for identifying and responding to releases of hazardous substances into the environment. The Superfund Amendments and Reauthorization Act (SARA, 1986) was enacted to strengthen CERCLA by requiring that site clean-ups be permanent, and that they use treatments that significantly reduce the volume, toxicity, or mobility of hazardous pollutants. The National Oil and Hazardous Substances Pollution Contingency Plan (NCP) (USEPA, 1985; USEPA, 1990) implements the CERCLA statute, presenting a process for (1) identifying and prioritizing sites requiring remediation and (2) assessing the extent of remedial action required at each site. The process includes performing two studies: a Remedial Investigation (RI) to evaluate the nature, extent, and expected consequences of site contamination, and a Feasibility Study (FS) to select an appropriate remedial alternative adequate to reduce such risks to acceptable levels. An integral part of the RI is the evaluation of human health risks posed by hazardous substance releases. This risk evaluation serves a number of purposes within the overall context of the RI/FS process, the most essential of which is to provide an understanding of ''baseline'' risks posed by a given site. Baseline risks are those risks that would exist if no remediation or institutional controls are applied at a site. This document was written to (1) guide risk assessors through the process of interpreting EPA BRA policy and (2) help risk assessors to discuss EPA policy with regulators, decision makers, and stakeholders as it relates to conditions at a particular DOE site

  17. Reference manual for toxicity and exposure assessment and risk characterization. CERCLA Baseline Risk Assessment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-01

    The Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA, 1980) (CERCLA or Superfund) was enacted to provide a program for identifying and responding to releases of hazardous substances into the environment. The Superfund Amendments and Reauthorization Act (SARA, 1986) was enacted to strengthen CERCLA by requiring that site clean-ups be permanent, and that they use treatments that significantly reduce the volume, toxicity, or mobility of hazardous pollutants. The National Oil and Hazardous Substances Pollution Contingency Plan (NCP) (USEPA, 1985; USEPA, 1990) implements the CERCLA statute, presenting a process for (1) identifying and prioritizing sites requiring remediation and (2) assessing the extent of remedial action required at each site. The process includes performing two studies: a Remedial Investigation (RI) to evaluate the nature, extent, and expected consequences of site contamination, and a Feasibility Study (FS) to select an appropriate remedial alternative adequate to reduce such risks to acceptable levels. An integral part of the RI is the evaluation of human health risks posed by hazardous substance releases. This risk evaluation serves a number of purposes within the overall context of the RI/FS process, the most essential of which is to provide an understanding of ``baseline`` risks posed by a given site. Baseline risks are those risks that would exist if no remediation or institutional controls are applied at a site. This document was written to (1) guide risk assessors through the process of interpreting EPA BRA policy and (2) help risk assessors to discuss EPA policy with regulators, decision makers, and stakeholders as it relates to conditions at a particular DOE site.

  18. Interim action record of decision remedial alternative selection: TNX area groundwater operable unit

    International Nuclear Information System (INIS)

    This document presents the selected interim remedial action for the TNX Area Groundwater Operable Unit at the Savannah River Site (SRS), which was developed in accordance with CERCLA of 1980, as amended by the Superfund Amendments and Reauthorization Act (SARA) of 1986, and to the extent practicable, the National Oil and Hazardous Substances Pollution contingency Plan (NCP). This decision is based on the Administrative Record File for this specific CERCLA unit

  19. ICDF Complex Remedial Action Work Plan

    Energy Technology Data Exchange (ETDEWEB)

    W. M. Heileson

    2006-12-01

    This Remedial Action Work Plan provides the framework for operation of the Idaho Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Disposal Facility Complex (ICDF). This facility includes (a) an engineered landfill that meets the substantial requirements of DOE Order 435.1, Resource Conservation and Recovery Act Subtitle C, Idaho Hazardous Waste Management Act, and Toxic Substances Control Act polychlorinated biphenyl landfill requirements; (b) centralized receiving, inspections, administration, storage/staging, and treatment facilities necessary for CERCLA investigation-derived, remedial, and removal waste at the Idaho National Laboratory (INL) prior to final disposition in the disposal facility or shipment off-Site; and (c) an evaporation pond that has been designated as a corrective action management unit. The ICDF Complex, including a buffer zone, will cover approximately 40 acres, with a landfill disposal capacity of approximately 510,000 yd3. The ICDF Complex is designed and authorized to accept INL CERCLA-generated wastes, and includes the necessary subsystems and support facilities to provide a complete waste management system. This Remedial Action Work Plan presents the operational approach and requirements for the various components that are part of the ICDF Complex. Summaries of the remedial action work elements are presented herein, with supporting information and documents provided as appendixes to this work plan that contain specific detail about the operation of the ICDF Complex. This document presents the planned operational process based upon an evaluation of the remedial action requirements set forth in the Operable Unit 3-13 Final Record of Decision.

  20. 20 CFR 356.2 - Program Fraud Civil Remedies Act of 1986.

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 1 2010-04-01 2010-04-01 false Program Fraud Civil Remedies Act of 1986. 356.2 Section 356.2 Employees' Benefits RAILROAD RETIREMENT BOARD ADMINISTRATIVE REMEDIES FOR FRAUDULENT CLAIMS OR STATEMENTS CIVIL MONETARY PENALTY INFLATION ADJUSTMENT § 356.2 Program Fraud Civil Remedies...

  1. What's an ARAR?exclamation point: Regulatory requirements for CERCLA remedial activities at D ampersand D sites on the Oak Ridge Reservation

    International Nuclear Information System (INIS)

    Many government-owned facilities that supported early nuclear energy research and defense programs have no current use and have been retired. Some of these facilities have residual radioactive or chemical contamination that require remediation. The Department of Energy (DOE) Decontamination and Decommissioning (D ampersand D) Program is responsible for managing these surplus facilities. Remedial activities for contaminated environs and inactive land-based units (e.g., landfills, surface impoundments) at the Oak Ridge Reservation (ORR) are conducted under the direction of the Environmental Restoration (ER) Program

  2. Guidance for performing site inspections under CERCLA

    Energy Technology Data Exchange (ETDEWEB)

    1992-09-01

    This guidance presents EPA`s site inspection (SI) strategy. The strategy discusses procedural guidelines to investigate potential Superfund (CERCLA) sites for evaluation pursuant to the Hazard Ranking System (HRS), revised in accordance with the Superfund Amendments and Reauthorization Act of 1986. The HRS is the primary means by which EPA evaluates sites for superfund`s National Priorities List (NPL).

  3. Briefing paper -- Remedial Action Assessment System

    Energy Technology Data Exchange (ETDEWEB)

    Buelt, J.L.

    1990-04-01

    Congress has mandated a more comprehensive management of hazardous wastes with the Resource Conservation and Recovery Act (RCRA), the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA or Superfund'') and the Superfund Amendment and Reauthorization Act (SARA). This mandate includes restoration of disposal sites contaminated through past disposal practices. This mandate applies to facilities operated for and by the Department of Energy (DOE), just as it does to industrial and other institutions. To help implement the CERCLA/SARA remedial investigation and feasibility study (RI/FS) process in a consistent, timely, and cost-effective manner, a methodology needs to be developed that will allow definition, sorting, and screening of remediation technologies for each operable unit (waste site). This need is stated specifically in Section 2.2.2.1 of the October 1989 Applied Research, Development, Demonstration, Testing, and Evaluation (RDDT E) Plan of the DOE. This Briefing Paper is prepared to respond to this need. 1 fig.

  4. 300-FF-1 remedial design report/remedial action work plan

    International Nuclear Information System (INIS)

    The 300 Area has been divided into three operable units 300-FF-1, 300-FF-2, and 300-FF-5 all of which are in various stages of the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) process. The 300-FF-1 Operable Unit, the subject of this report, includes liquid waste disposal sites, landfills, and a burial ground. This Remedial Design Report/Remedial Action Work Plan (RDR/RAWP) provides a summary description of each waste site included in the 300-FF-1 Operable Unit, the basis for remedial actions to be taken, and the remedial action approach and management process for implementing these actions. The remedial action approach and management sections provide a description of the remedial action process description, the project schedule, the project team, required planning documentation, the remedial action change process, the process for verifying attainment of the remedial action goals, and the required CERCLA and RCRA closeout documentation. Appendix A provides additional details on each waste site. In addition to remediation of the waste sites, waste generated during the remedial investigation/feasibility study portions of the project will also be disposed at the Environmental Restoration Disposal Facility (ERDF). Appendix B provides a summary of the modeling performed in the 300-FF-1 Phase 3 FS and a description of the modeling effort to be used to show attainment of the remedial action goals. Appendix C provides the sampling and analysis plan (SAP) for all sampling and field-screening activities performed during remediation and for verification of attainment with the remedial action goals. Appendix D provides the public involvement plan, prepared to ensure information is provided to the public during remedial design and remedial action processes

  5. CERCLA site assessment workbook, Volume 1

    International Nuclear Information System (INIS)

    This workbook provides instructions for planning, implementing, and reporting site assessments under CERCLA, commonly referred to as Superfund. Site assessment consists of two information-gathering steps: the remedial preliminary assessment (PA) and the site inspection (SI). The information obtained is then used to estimate, or score, a site's relative risk to public health and the environment. The score is derived via the hazard ranking system (HRS). Although the workbook and its exercises can be adapted to group study, it is designed primarily for use by an individual

  6. CERCLA site assessment workbook

    International Nuclear Information System (INIS)

    This contains comments for each chapter of exercises (in Vol. 1) which illustrate how to conduct site assessments for CERCLA regulation. A through analysis of the exercises is provided so that work and solutions from Vol 1 can be critiqued and comments are also included on the strategy of site assessment whereas the exercises illustrate the principles involved. Covered exercises include the following: A preliminary assessment of a ground water site; waste characteristics and characterization of sources; documentation of observed releases and actual contamination of targets; the strategy of an SI at a surface water site; the soil exposure pathway; the air pathway

  7. Idaho CERCLA Disposal Facility Complex Compliance Demonstration for DOE Order 435.1

    Energy Technology Data Exchange (ETDEWEB)

    J. Simonds

    2006-09-01

    This compliance demonstration document provides an analysis of the Idaho CERCLA Disposal Facility (ICDF) Complex compliance with DOE Order 435.1. The ICDF Complex includes the disposal facility (landfill), evaporation pond, admin facility, weigh scale, decon building, treatment systems, and various staging/storage areas. These facilities were designed and are being constructed to be compliant with DOE Order 435.1, Resource Conservation and Recovery Act Subtitle C, and Toxic Substances Control Act polychlorinated biphenyl design and construction standards. The ICDF Complex is designated as the central Idaho National Laboratory (INL) facilityyy for the receipt, staging/storage, treatment, and disposal of INL Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) waste streams. This compliance demonstration document discusses the conceptual site model for the ICDF Complex area. Within this conceptual site model, the selection of the area for the ICDF Complex is discussed. Also, the subsurface stratigraphy in the ICDF Complex area is discussed along with the existing contamination beneath the ICDF Complex area. The designs for the various ICDF Complex facilities are also included in this compliance demonstration document. These design discussions are a summary of the design as presented in the Remedial Design/Construction Work Plans for the ICDF landfill and evaporation pond and the Staging, Storage, Sizing, and Treatment Facility. Each of the major facilities or systems is described including the design criteria.

  8. Remedial investigation report on Bear Creek Valley Operable Unit 2 (Rust Spoil Area, Spoil Area 1, and SY-200 Yard) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 1, Main text

    International Nuclear Information System (INIS)

    The enactment of the Resource Conservation and Recovery Act (RCRA) in 1976 and the Hazardous and Solid Waste Amendments (HSWA) to RCRA in 1984 created management requirements for hazardous waste facilities. The facilities within the Oak Ridge Reservation (ORR) were in the process of meeting the RCRA requirements when the ORR was placed on the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) National Priorities List (NPL) on November 21, 1989. Under RCRA, the actions typically follow the RCRA Facility Assessment/RCRA Facility Investigation (RFI)/Corrective Measures Study (CMS)/Corrective Measures Implementation process. Under CERCLA, the actions follow the preliminary assessment/site investigation/Remedial Investigation (RI)/Feasibility Study (FS)/Remedial Design/Remedial Action process. This document incorporates requirements under both RCRA and CERCLA in the form of an RI report for the characterization of Bear Creek Valley (BCV) Operable Unit (OU) 2

  9. Remedial investigation work plan for Bear Creek Valley Operable Unit 2 (Rust Spoil Area, SY-200 Yard, Spoil Area 1) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Environmental Restoration Program

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-01

    The enactment of the Resource Conservation and Recovery Act (RCRA) in 1976 and the Hazardous and Solid Waste Amendments (HSWA) to RCRA in 1984 created management requirements for hazardous waste facilities. The facilities within the Oak Ridge Reservation (ORR) were in the process of meeting the RCRA requirements when ORR was placed on the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) National Priorities List (NPL) on November 21, 1989. Under RCRA, the actions typically follow the RCRA Facility Assessment (RFA)/RCRA Facility Investigation (RFI)/Corrective Measures Study (CMS)/Corrective Measures implementation process. Under CERCLA the actions follow the PA/SI/Remedial Investigation (RI)/Feasibility Study (FS)/Remedial Design/Remedial Action process. The development of this document will incorporate requirements under both RCRA and CERCLA into an RI work plan for the characterization of Bear Creek Valley (BCV) Operable Unit (OU) 2.

  10. Remedial investigation work plan for Bear Creek Valley Operable Unit 2 (Rust Spoil Area, SY-200 Yard, Spoil Area 1) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    The enactment of the Resource Conservation and Recovery Act (RCRA) in 1976 and the Hazardous and Solid Waste Amendments (HSWA) to RCRA in 1984 created management requirements for hazardous waste facilities. The facilities within the Oak Ridge Reservation (ORR) were in the process of meeting the RCRA requirements when ORR was placed on the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) National Priorities List (NPL) on November 21, 1989. Under RCRA, the actions typically follow the RCRA Facility Assessment (RFA)/RCRA Facility Investigation (RFI)/Corrective Measures Study (CMS)/Corrective Measures implementation process. Under CERCLA the actions follow the PA/SI/Remedial Investigation (RI)/Feasibility Study (FS)/Remedial Design/Remedial Action process. The development of this document will incorporate requirements under both RCRA and CERCLA into an RI work plan for the characterization of Bear Creek Valley (BCV) Operable Unit (OU) 2

  11. 40 CFR Appendix A to Part 307 - Application for Preauthorization of a CERCLA Response Action

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 27 2010-07-01 2010-07-01 false Application for Preauthorization of a CERCLA Response Action A Appendix A to Part 307 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... RESPONSE, COMPENSATION, AND LIABILITY ACT (CERCLA) CLAIMS PROCEDURES Pt. 307, App. A Appendix A to Part...

  12. Incorporating ecological risk assessment into remedial investigation/feasibility study work plans

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    This guidance document (1) provides instructions on preparing the components of an ecological work plan to complement the overall site remedial investigation/feasibility study (RI/FS) work plan and (2) directs the user on how to implement ecological tasks identified in the plan. Under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA), as amended by the Superfund Amendments and Reauthorization Act of 1986 (SARA), and RI/FS work plan will have to be developed as part of the site-remediation scoping process. Specific guidance on the RI/FS process and the preparation of work plans has been developed by the US Environmental Protection Agency (EPA 1988a). This document provides guidance to US Department of Energy (DOE) staff and contractor personnel for incorporation of ecological information into environmental remediation planning and decision making at CERCLA sites.

  13. Incorporating ecological risk assessment into remedial investigation/feasibility study work plans

    International Nuclear Information System (INIS)

    This guidance document (1) provides instructions on preparing the components of an ecological work plan to complement the overall site remedial investigation/feasibility study (RI/FS) work plan and (2) directs the user on how to implement ecological tasks identified in the plan. Under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA), as amended by the Superfund Amendments and Reauthorization Act of 1986 (SARA), and RI/FS work plan will have to be developed as part of the site-remediation scoping process. Specific guidance on the RI/FS process and the preparation of work plans has been developed by the US Environmental Protection Agency (EPA 1988a). This document provides guidance to US Department of Energy (DOE) staff and contractor personnel for incorporation of ecological information into environmental remediation planning and decision making at CERCLA sites

  14. Implementation of Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Health Authority by the Agency for Toxic Substances and Disease Registry

    International Nuclear Information System (INIS)

    The Superfund Amendments and Reauthorization Act (SARA) of 1986 greatly expanded the health authority of the Comprehensive Environmental Response, Compensation, and Liability Act. One of the federal agencies most affected by SARA is the Agency for Toxic Substances and Disease Registry (ATSDR) of the U.S. Public Health Service. Among other responsibilities, ATSDR was mandated to conduct health assessments within strict time frames for each site on or proposed for the U.S. Environmental Protection Agency's National Priorities List. The author will review ATSDR's efforts to address this new statutory mandate, especially for federal facilities, and will focus on different conceptual frameworks for implementing the health assessment program

  15. Threatened and endangered wildlife species of the Hanford Site related to CERCLA characterization activities

    Energy Technology Data Exchange (ETDEWEB)

    Fitzner, R.E. [Pacific Northwest Lab., Richland, WA (United States); Weiss, S.G.; Stegen, J.A. [Westinghouse Hanford Co., Richland, WA (United States)

    1994-06-01

    The US Department of Energy`s (DOE) Hanford Site has been placed on the National Priorities List, which requires that it be remediated under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) or Superfund. Potentially contaminated areas of the Hanford Site were grouped into operable units, and detailed characterization and investigation plans were formulated. The DOE Richland Operations Office requested Westinghouse Hanford Company (WHC) to conduct a biological assessment of the potential impact of these characterization activities on the threatened, endangered, and sensitive wildlife species of the Hanford Site. Additional direction for WHC compliances with wildlife protection can be found in the Environmental Compliance Manual. This document is intended to meet these requirements, in part, for the CERCLA characterization activities, as well as for other work comparable in scope. This report documents the biological assessment and describes the pertinent components of the Hanford Site as well as the planned characterization activities. Also provided are accounts of endangered, threatened, and federal candidate wildlife species on the Hanford Site and information as to how human disturbances can affect these species. Potential effects of the characterization activities are described with recommendations for mitigation measures.

  16. Potential CERCLA reauthorization issues relevant to US DOE's Environmental Restoration Program

    International Nuclear Information System (INIS)

    The Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) is currently scheduled to be reauthorized in 1994. The US Department of Energy (DOE) has a significant stake in CERCLA reauthorization. CERCLA, along with its implementing regulation, the National Contingency Plan (NCP), is the principal legal authority governing DOE's environmental restoration program. The manner in which CERCLA-related issues are identified, evaluated, and dispatched may have a substantial impact on DOE's ability to conduct its environmental restoration program. A number of issues that impact DOE's environmental restoration program could be addressed through CERCLA reauthorization. These issues include the need to (1) address how the National Environmental Policy Act (NEPA) should be integrated into DOE CERCLA actions, (2) facilitate the streamlining of the Superfund process at DOE sites, (3) address the conflicts between the requirements of CERCLA and the Resource Conservation and Recovery Act (RCRA) that are especially relevant to DOE, (4) examine the criteria for waiving applicable or relevant and appropriate requirements (ARARs) at DOE sites, and (5) delineate the appropriate use of institutional controls at DOE sites

  17. Methodology to remediate a mixed waste site

    Energy Technology Data Exchange (ETDEWEB)

    Berry, J.B.

    1994-08-01

    In response to the need for a comprehensive and consistent approach to the complex issue of mixed waste management, a generalized methodology for remediation of a mixed waste site has been developed. The methodology is based on requirements set forth in the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and the Resource Conservation and Recovery Act (RCRA) and incorporates ``lessons learned`` from process design, remediation methodologies, and remediation projects. The methodology is applied to the treatment of 32,000 drums of mixed waste sludge at the Oak Ridge K-25 Site. Process technology options are developed and evaluated, first with regard to meeting system requirements and then with regard to CERCLA performance criteria. The following process technology options are investigated: (1) no action, (2) separation of hazardous and radioactive species, (3) dewatering, (4) drying, and (5) solidification/stabilization. The first two options were eliminated from detailed consideration because they did not meet the system requirements. A quantitative evaluation clearly showed that, based on system constraints and project objectives, either dewatering or drying the mixed waste sludge was superior to the solidification/stabilization process option. The ultimate choice between the drying and the dewatering options will be made on the basis of a technical evaluation of the relative merits of proposals submitted by potential subcontractors.

  18. Methodology to remediate a mixed waste site

    International Nuclear Information System (INIS)

    In response to the need for a comprehensive and consistent approach to the complex issue of mixed waste management, a generalized methodology for remediation of a mixed waste site has been developed. The methodology is based on requirements set forth in the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and the Resource Conservation and Recovery Act (RCRA) and incorporates ''lessons learned'' from process design, remediation methodologies, and remediation projects. The methodology is applied to the treatment of 32,000 drums of mixed waste sludge at the Oak Ridge K-25 Site. Process technology options are developed and evaluated, first with regard to meeting system requirements and then with regard to CERCLA performance criteria. The following process technology options are investigated: (1) no action, (2) separation of hazardous and radioactive species, (3) dewatering, (4) drying, and (5) solidification/stabilization. The first two options were eliminated from detailed consideration because they did not meet the system requirements. A quantitative evaluation clearly showed that, based on system constraints and project objectives, either dewatering or drying the mixed waste sludge was superior to the solidification/stabilization process option. The ultimate choice between the drying and the dewatering options will be made on the basis of a technical evaluation of the relative merits of proposals submitted by potential subcontractors

  19. Remedial investigation report for J-Field, Aberdeen Proving Ground, Maryland. Volume 3: Ecological risk assessment

    International Nuclear Information System (INIS)

    The Environmental Management Division of the U.S. Army Aberdeen Proving Ground (APG), Maryland, is conducting a remedial investigation (RI) and feasibility study (FS) of the J-Field area at APG, pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended. As part of that activity, Argonne National Laboratory (ANL) conducted an ecological risk assessment (ERA) of the J-Field site. This report presents the results of that assessment

  20. Remedial investigation report for J-Field, Aberdeen Proving Ground, Maryland. Volume 3: Ecological risk assessment

    Energy Technology Data Exchange (ETDEWEB)

    Hlohowskyj, I.; Hayse, J.; Kuperman, R.; Van Lonkhuyzen, R.

    2000-02-25

    The Environmental Management Division of the U.S. Army Aberdeen Proving Ground (APG), Maryland, is conducting a remedial investigation (RI) and feasibility study (FS) of the J-Field area at APG, pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended. As part of that activity, Argonne National Laboratory (ANL) conducted an ecological risk assessment (ERA) of the J-Field site. This report presents the results of that assessment.

  1. 100 Areas CERCLA ecological investigations

    Energy Technology Data Exchange (ETDEWEB)

    Landeen, D.S.; Sackschewsky, M.R.; Weiss, S.

    1993-09-01

    This document reports the results of the field terrestrial ecological investigations conducted by Westinghouse Hanford Company during fiscal years 1991 and 1992 at operable units 100-FR-3, 100-HR-3, 100-NR-2, 100-KR-4, and 100-BC-5. The tasks reported here are part of the Remedial Investigations conducted in support of the Comprehensive Environmental Response, compensation, and Liability Act of 1980 studies for the 100 Areas. These ecological investigations provide (1) a description of the flora and fauna associated with the 100 Areas operable units, emphasizing potential pathways for contaminants and species that have been given special status under existing state and/or federal laws, and (2) an evaluation of existing concentrations of heavy metals and radionuclides in biota associated with the 100 Areas operable units.

  2. 100 Areas CERCLA ecological investigations

    International Nuclear Information System (INIS)

    This document reports the results of the field terrestrial ecological investigations conducted by Westinghouse Hanford Company during fiscal years 1991 and 1992 at operable units 100-FR-3, 100-HR-3, 100-NR-2, 100-KR-4, and 100-BC-5. The tasks reported here are part of the Remedial Investigations conducted in support of the Comprehensive Environmental Response, compensation, and Liability Act of 1980 studies for the 100 Areas. These ecological investigations provide (1) a description of the flora and fauna associated with the 100 Areas operable units, emphasizing potential pathways for contaminants and species that have been given special status under existing state and/or federal laws, and (2) an evaluation of existing concentrations of heavy metals and radionuclides in biota associated with the 100 Areas operable units

  3. ICDF Complex Remedial Action Report

    Energy Technology Data Exchange (ETDEWEB)

    W. M. Heileson

    2007-09-26

    This Idaho CERCLA Disposal Facility (ICDF) Remedial Action Report has been prepared in accordance with the requirements of Section 6.2 of the INEEL CERCLA Disposal Facility Remedial Action Work Plan. The agency prefinal inspection of the ICDF Staging, Storage, Sizing, and Treatment Facility (SSSTF) was completed in June of 2005. Accordingly, this report has been developed to describe the construction activities completed at the ICDF along with a description of any modifications to the design originally approved for the facility. In addition, this report provides a summary of the major documents prepared for the design and construction of the ICDF, a discussion of relevant requirements and remedial action objectives, the total costs associated with the development and operation of the facility to date, and identification of necessary changes to the Agency-approved INEEL CERCLA Disposal Facility Remedial Action Work Plan and the ICDF Complex Operations and Maintenance Plan.

  4. Decision analysis applications and the CERCLA process

    Energy Technology Data Exchange (ETDEWEB)

    Purucker, S.T.; Lyon, B.F. [Oak Ridge National Lab., TN (United States). Risk Analysis Section]|[Univ. of Tennessee, Knoxville, TN (United States)

    1994-06-01

    Quantitative decision methods can be developed during environmental restoration projects that incorporate stakeholder input and can complement current efforts that are undertaken for data collection and alternatives evaluation during the CERCLA process. These decision-making tools can supplement current EPA guidance as well as focus on problems that arise as attempts are made to make informed decisions regarding remedial alternative selection. In examining the use of such applications, the authors discuss the use of decision analysis tools and their impact on collecting data and making environmental decisions from a risk-based perspective. They will look at the construction of objective functions for quantifying different risk-based perspective. They will look at the construction of objective functions for quantifying different risk-based decision rules that incorporate stakeholder concerns. This represents a quantitative method for implementing the Data Quality Objective (DQO) process. These objective functions can be expressed using a variety of indices to analyze problems that currently arise in the environmental field. Examples include cost, magnitude of risk, efficiency, and probability of success or failure. Based on such defined objective functions, a project can evaluate the impact of different risk and decision selection strategies on data worth and alternative selection.

  5. Glossary of CERCLA, RCRA and TSCA related terms and acronyms

    International Nuclear Information System (INIS)

    This glossary contains CERCLA, RCRA and TSCA related terms that are most often encountered in the US Department of Energy (DOE) Environmental Restoration and Emergency Preparedness activities. Detailed definitions are included for key terms. The CERCLA definitions included in this glossary are taken from the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA), as amended and related federal rulemakings. The RCRA definitions included in this glossary are taken from the Resource Conservation and Recovery Act (RCRA) and related federal rulemakings. The TSCA definitions included in this glossary are taken from the Toxic Substances and Control Act (TSCA) and related federal rulemakings. Definitions related to TSCA are limited to those sections in the statute and regulations concerning PCBs and asbestos.Other sources for definitions include additional federal rulemakings, assorted guidance documents prepared by the US Environmental Protection Agency (EPA), guidance and informational documents prepared by the US Department of Energy (DOE), and DOE Orders. The source of each term is noted beside the term. Terms presented in this document reflect revised and new definitions published before July 1, 1993

  6. Fiscal year 1995 progress in implementing Section 120 of the Comprehensive Environmental Response, Compensation, and Liability Act. Ninth annual report to Congress

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    Congress passed the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) (Public Law 96-510), commonly known as Superfund, in 1980. The Superfund Amendments and Reauthorization Act (SARA) which amended CERCLA in 1986, added Section 120 regarding the cleanup of contaminated sites at Federal facilities. Under Section 120(e)(5) of CERCLA, each department, agency, or instrumentality of the Federal government responsible for compliance with Section 120 must submit an annual report to Congress concerning its progress in implementing the requirements of Section 120. The report must include information on the progress in reaching Interagency Agreements (IAGs), conducting Remedial Investigation and Feasibility Studies (RI/FSs), and performing remedial action. Federal agencies that own or operate facilities on the National priorities List (NPL) are required to begin an RI/FS for these facilities within 6 months after being placed on the NPL. Remediation of these facilities is addressed in an IAG between the Federal agency, the US Environmental Protection Agency (EPA), and in some instances the state within which the facility is located. This report provides the status of ongoing activities being performed in support of CERCLA Section 120 at DOE facilities. This includes activities conducted to reach IAGs and progress in conducting remedial actions.

  7. 32 CFR 516.68 - Program Fraud Civil Remedies Act (PFCRA).

    Science.gov (United States)

    2010-07-01

    ... AUTHORITIES AND PUBLIC RELATIONS LITIGATION Remedies in Procurement Fraud and Corruption § 516.68 Program... claims and statements. It is also applicable to program fraud and provides an administrative remedy...

  8. Idaho CERCLA Disposal Facility Complex Compliance Demonstration for DOE Order 435.1

    Energy Technology Data Exchange (ETDEWEB)

    Simonds, J.

    2007-11-06

    This compliance demonstration document provides an analysis of the Idaho CERCLA Disposal Facility (ICDF) Complex compliance with DOE Order 435.1. The ICDF Complex includes the disposal facility (landfill), evaporation pond, administration facility, weigh scale, and various staging/storage areas. These facilities were designed and constructed to be compliant with DOE Order 435.1, Resource Conservation and Recovery act Subtitle C, and Toxic Substances Control Act polychlorinated biphenyl design and construction standards. The ICDF Complex is designated as the Idaho National Laboratory (INL) facility for the receipt, staging/storage, treatment, and disposal of INL Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) waste streams.

  9. CENTRAL PLATEAU REMEDIATION OPTIMIZATION STUDY

    Energy Technology Data Exchange (ETDEWEB)

    BERGMAN, T. B.; STEFANSKI, L. D.; SEELEY, P. N.; ZINSLI, L. C.; CUSACK, L. J.

    2012-09-19

    THE CENTRAL PLATEAU REMEDIATION OPTIMIZATION STUDY WAS CONDUCTED TO DEVELOP AN OPTIMAL SEQUENCE OF REMEDIATION ACTIVITIES IMPLEMENTING THE CERCLA DECISION ON THE CENTRAL PLATEAU. THE STUDY DEFINES A SEQUENCE OF ACTIVITIES THAT RESULT IN AN EFFECTIVE USE OF RESOURCES FROM A STRATEGIC PERSPECTIVE WHEN CONSIDERING EQUIPMENT PROCUREMENT AND STAGING, WORKFORCE MOBILIZATION/DEMOBILIZATION, WORKFORCE LEVELING, WORKFORCE SKILL-MIX, AND OTHER REMEDIATION/DISPOSITION PROJECT EXECUTION PARAMETERS.

  10. Remedial Investigation/Feasibility Study (RI/FS) process, elements and techniques guidance

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-01

    This manual provides detailed guidance on Remedial Investigation/Feasibility Studies (RI/FSs) conducted pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) at Department of Energy (DOE) facilities. The purpose of the RI/FS, to assess the risk posed by a hazardous waste site and to determine the best way to reduce that risk, and its structure (site characterization, risk assessment, screening and detailed analysis of alternatives, etc.) is defined in the National Oil and Hazardous Substances Pollution Contingency Plan (NCP) and further explained in the Environmental Protection Agency`s (EPA`s) Guidance for Conducting Remedial Investigations and Feasibility Studies Under CERCLA (Interim Final) 540/G-89/004, OSWER Directive 9355.3-01, October 1988. Though issued in 1988, the EPA guidance remains an excellent source of information on the conduct and structure of an RI/FS. This document makes use of supplemental RI/FS-related guidance that EPA has developed since its initial document was issued in 1988, incorporates practical lessons learned in more than 12 years of experience in CERCLA hazardous site remediation, and drawing on those lessons, introduces the Streamlined Approach For Environmental Restoration (SAFER), developed by DOE as a way to proceed quickly and efficiently through the RI/FS process at DOE facilities. Thus as its title implies, this guidance is intended to describe in detail the process and component elements of an RI/FS, as well as techniques to manage the RI/FS effectively.

  11. Work plan for the remedial investigation/feasibility study-environmental assessment for the Colonie site, Colonie, New York

    Energy Technology Data Exchange (ETDEWEB)

    1990-06-01

    This work plan has been prepared to document the scoping and planning process performed by the US Department of Energy (DOE) to support remedial action activities at the Colonie site. The site is located in eastern New York State in the town of Colonie near the city of Albany. Remedial action of the Colonie site is being planned as part of DOE's Formerly Utilized Sites Remedial Action Program. The DOE is responsible for controlling the release of all radioactive and chemical contaminants from the site. Under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), a remedial investigation/feasibility study (RI/FS) must be prepared to support the decision-making process for evaluating remedial action alternatives. This work plan contains a summary of information known about the site as of January 1988, presents a conceptual site model that identifies potential routes of human exposure to site containments, identifies data gaps, and summarizes the process and proposed studies that will be used to fill the data gaps. In addition, DOE activities must be conducted in compliance with the National Environmental Policy Act (NEPA), which requires consideration of the environmental consequences of a proposed action as part of its decision-making process. This work also describes the approach that will be used to evaluate potential remedial action alternatives and includes a description of the organization, project controls, and task schedules that will be employed to fulfill the requirements of both CERCLA and NEPA. 48 refs., 18 figs., 25 tabs.

  12. Work plan for the remedial investigation/feasibility study-environmental assessment for the Colonie site, Colonie, New York

    International Nuclear Information System (INIS)

    This work plan has been prepared to document the scoping and planning process performed by the US Department of Energy (DOE) to support remedial action activities at the Colonie site. The site is located in eastern New York State in the town of Colonie near the city of Albany. Remedial action of the Colonie site is being planned as part of DOE's Formerly Utilized Sites Remedial Action Program. The DOE is responsible for controlling the release of all radioactive and chemical contaminants from the site. Under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), a remedial investigation/feasibility study (RI/FS) must be prepared to support the decision-making process for evaluating remedial action alternatives. This work plan contains a summary of information known about the site as of January 1988, presents a conceptual site model that identifies potential routes of human exposure to site containments, identifies data gaps, and summarizes the process and proposed studies that will be used to fill the data gaps. In addition, DOE activities must be conducted in compliance with the National Environmental Policy Act (NEPA), which requires consideration of the environmental consequences of a proposed action as part of its decision-making process. This work also describes the approach that will be used to evaluate potential remedial action alternatives and includes a description of the organization, project controls, and task schedules that will be employed to fulfill the requirements of both CERCLA and NEPA. 48 refs., 18 figs., 25 tabs

  13. Work plan for the remedial investigation/feasibility study-environmental impact statement for the Maywood site, Maywood, New Jersey

    International Nuclear Information System (INIS)

    This work plan has been prepared to document the scoping and planning process performed by the US Department of Energy (DOE) to support remedial action activities at the Maywood site located in northern New Jersey in the boroughs of Maywood and Lodi and the township of Rochelle Park. Remedial action at the Maywood site is being planned as part of DOE's Formerly Utilized Sites Remedial Action Program. The DOE is responsible for controlling the release of all contaminants from the site. Under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), a remedial investigation/feasibility study (RI/FS) must be prepared to support the decision-making process for evaluating remedial action alternatives. This work plan contains a summary of information currently known about the Maywood site, presents a conceptual site model that identifies potential routes of human exposure to site contaminants, identifies data gaps, and summarizes the process and proposed studies that will be used to fill the data gaps. In addition, DOE activities must be conducted in compliance with the National Environmental Policy Act (NEPA), which requires consideration of the environmental consequences of a proposed action as part of its decision-making process. It is DOE policy to integrate the requirements of the CERCLA and NEPA processes for remedial actions at sites for which it has responsibility. This work plan also describes the approach that will be used to evaluate potential remedial action alternatives and includes a description of the organization, project controls, and task schedules that will be employed to fulfill the requirements of both CERCLA and NEPA. 150 refs., 26 figs., 17 tabs

  14. Remedial investigation/feasibility study of the Clinch River/Poplar Creek operable unit. Volume 1, main text

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    This document is the combined Remedial Investigation/Feasibility Study (RI/FS) Report for the Clinch River/Poplar Creek Operable Unit (CR/PC OU), an off-site OU associated with environmental restoration activities at the U.S. Department of Energy (DOE) Oak Ridge Reservation (ORR). As a result of past, present, and potential future releases of hazardous substances into the environment, the ORR was placed on the National Priorities List in December 1989 (54 FR 48184). Sites on this list must be investigated for possible remedial action, as required by the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA, 42 U.S.C. 9601, et seq.). This report documents the findings of the remedial investigation of this OU and the feasibility of potential remedial action alternatives. These studies are authorized by Sect. 117 of CERCLA and were conducted in accordance with the requirements of the National Contingency Plan (40 CFR Part 300). DOE, the U.S. Environmental Protection Agency (EPA), and the Tennessee Department of Environment and Conservation (TDEC) have entered into a Federal Facility Agreement (FFA), as authorized by Sect. 120 of CERCLA and Sects. 3008(h) and 6001 of the Resource Conservation and Recovery Act (RCRA) (42 U.S.C. 6901, et seq.). The purpose of this agreement is to ensure a coordinated and effective response for all environmental restoration activities occurring at the ORR. In addition to other responsibilities, the FFA parties mutually define the OU boundaries, set remediation priorities, establish remedial investigation priorities and strategies, and identify and select remedial actions. A copy of this FFA is available from the DOE Information Resource Center in Oak Ridge, Tennessee.

  15. Remedial investigation/feasibility study of the Clinch River/Poplar Creek operable unit. Volume 1, main text

    International Nuclear Information System (INIS)

    This document is the combined Remedial Investigation/Feasibility Study (RI/FS) Report for the Clinch River/Poplar Creek Operable Unit (CR/PC OU), an off-site OU associated with environmental restoration activities at the U.S. Department of Energy (DOE) Oak Ridge Reservation (ORR). As a result of past, present, and potential future releases of hazardous substances into the environment, the ORR was placed on the National Priorities List in December 1989 (54 FR 48184). Sites on this list must be investigated for possible remedial action, as required by the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA, 42 U.S.C. 9601, et seq.). This report documents the findings of the remedial investigation of this OU and the feasibility of potential remedial action alternatives. These studies are authorized by Sect. 117 of CERCLA and were conducted in accordance with the requirements of the National Contingency Plan (40 CFR Part 300). DOE, the U.S. Environmental Protection Agency (EPA), and the Tennessee Department of Environment and Conservation (TDEC) have entered into a Federal Facility Agreement (FFA), as authorized by Sect. 120 of CERCLA and Sects. 3008(h) and 6001 of the Resource Conservation and Recovery Act (RCRA) (42 U.S.C. 6901, et seq.). The purpose of this agreement is to ensure a coordinated and effective response for all environmental restoration activities occurring at the ORR. In addition to other responsibilities, the FFA parties mutually define the OU boundaries, set remediation priorities, establish remedial investigation priorities and strategies, and identify and select remedial actions. A copy of this FFA is available from the DOE Information Resource Center in Oak Ridge, Tennessee

  16. Remedial investigation work plan for the Upper East Fork Poplar Creek Characterization Area, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    More than 200 contaminated sites created by past waste management practices have been identified at the Y-12 Plant. Many of the sites have been grouped into operable units based on priority and on investigative and remediation requirements. The Y-12 Plant is one of three major facilities on the ORR. The ORR contains both hazardous and mixed-waste sites that are subject to regulations promulgated under the Resource Conservation and Recovery Act of 1976 (RCRA) and the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA), as amended by the Superfund Amendments and Reauthorization Act of 1986. Under RCRA guidelines and requirements from the Tennessee Department of Environment and Conservation (TDEC), the Y-12 Plant initiated investigation and monitoring of various sites within its boundaries in the mid-1980s. The entire ORR was placed on the National Priorities List (NPL) of CERCLA sites in November 1989. Following CERCLA guidelines, sites under investigation require a remedial investigation (RI) to define the nature and extent of contamination, evaluate the risks to public health and the environment, and determine the goals for a feasibility study (FS) of potential remedial actions.

  17. Remedial investigation work plan for the Upper East Fork Poplar Creek Characterization Area, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    More than 200 contaminated sites created by past waste management practices have been identified at the Y-12 Plant. Many of the sites have been grouped into operable units based on priority and on investigative and remediation requirements. The Y-12 Plant is one of three major facilities on the ORR. The ORR contains both hazardous and mixed-waste sites that are subject to regulations promulgated under the Resource Conservation and Recovery Act of 1976 (RCRA) and the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA), as amended by the Superfund Amendments and Reauthorization Act of 1986. Under RCRA guidelines and requirements from the Tennessee Department of Environment and Conservation (TDEC), the Y-12 Plant initiated investigation and monitoring of various sites within its boundaries in the mid-1980s. The entire ORR was placed on the National Priorities List (NPL) of CERCLA sites in November 1989. Following CERCLA guidelines, sites under investigation require a remedial investigation (RI) to define the nature and extent of contamination, evaluate the risks to public health and the environment, and determine the goals for a feasibility study (FS) of potential remedial actions

  18. Catalog of CERCLA applicable or relevant and appropriate requirements (ARARs) - fact sheets

    Energy Technology Data Exchange (ETDEWEB)

    1990-07-01

    Section 121(d) of the Comprehensive Environmental Response Compensation and Liability Act (CERCLA) as amended by the Superfund Amendments and Reauthorization Act of 1986 (SARA), requires attainment of federal and state applicable or relevant and appropriate requirements (ARARs). Subpart E, Section 300.400(g) {open_quotes}Identification of applicable or relevant and appropriate requirements{close_quotes} of the National Oil and Hazardous Substances Pollution Contingency Plan (NCP)(55 FR 8666, March 8, 1990) describes the process for attaining ARARs. The purpose of this catalog is to provide DOE Program Offices and Field Organizations with all of the {open_quotes}Quick Reference Fact Sheets{close_quotes} on attaining ARARS. These fact sheets provide overviews of ARARs for CERCLA cleanup actions pertinent to DOE environmental restoration activities. All of the fact sheets in this catalog were prepared by the Environmental Protection Agency`s Office of Solid Waste and Emergency Response. Fact sheets 1-7 discuss land disposal restrictions (LDRs) and their applicability. LDRs may pertain to a number of CERCLA response actions at DOE facilities. Fact Sheets 8-13 are based on the CERCLA Compliance with Other Laws Manual: Parts I and II and provide an overview of many other CERCLA ARARs. Overview of ARARs-Focus on ARAR Waivers (fact sheet 11), provides a good introduction to ARARS. The last two fact sheets, 14 and 15, are periodic reports that describe additional fact sheets and clarify issues.

  19. CERCLA/superfund orientation manual

    International Nuclear Information System (INIS)

    The manual serves as a program orientation guide and reference document, and it is designed to assist EPA and State personnel involved with hazardous waste remediation, emergency response, and chemical and emergency preparedness. The Manual describes the organizational and operational components of the Superfund Program

  20. Record of Decision Remedial Alternative Selection for the Gunsite 113 Access Road (631-24G) Operable Unit: Final Action

    International Nuclear Information System (INIS)

    This decision document presents the selected remedial action for the Gunsite 113 Access Road Unit located at the Savannah River Site near Aiken, SC. The selected action was developed in accordance with CERCLA, as amended, and to the extent practicable, the National Oil and Hazardous Substances Pollution Contingency Plan (NCP). The selected remedy satisfies both CERCLA and RCRA 3004(U) requirements. This decision is based ont he Administrative Record File for this specific RCRA/CERCLA Unit

  1. Environmental assessment for 881 Hillside (High Priority Sites) interim remedial action

    International Nuclear Information System (INIS)

    This Environmental Assessment evaluates the impact of an interim remedial action proposed for the High Priority Sites (881 Hillside Area) at the Rocky Flats Plant (RFP). This interim action is to be conducted to minimize the release of hazardous substances from the 881 Hillside Area that pose a potential long-term threat to public health and the environment. This document integrates current site characterization data and environmental analyses required by the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) or ''Superfund'' process, into an environmental assessment pursuant to the National Environmental Policy Act (NEPA). Characterization of the 881 Hillside Area is continuing. Consequently, a final remedial action has not yet been proposed. Environmental impacts associated with the proposed interim remedial action and reasonable alternatives designed to remove organic and inorganic contaminants, including radionuclides, from alluvial groundwater in the 881 Hillside Area are addressed. 24 refs., 5 figs., 23 tabs

  2. 2010 Remediation Effectiveness Report for the U.S. Department of Energy Oak Ridge Reservation, Oak Ridge, Tennessee - Data and Evaluations

    Energy Technology Data Exchange (ETDEWEB)

    Bechtel Jacobs

    2010-09-01

    Under the requirements of the Oak Ridge Reservation (ORR) Federal Facility Agreement (FFA) established between the U.S. Department of Energy (DOE), the U.S. Environmental Protection Agency, (EPA) and the Tennessee Department of Environment and Conservation (TDEC) in 1992, all environmental restoration activities on the ORR are performed in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). Since the 1990s, the environmental restoration activities have experienced a gradual shift from characterization to remediation. As this has occurred, it has been determined that the assessment of the individual and cumulative performance of all ORR CERCLA remedial actions (RAs) is most effectively tracked in a single document. The Remediation Effectiveness Report (RER) is an FFA document intended to collate all ORR CERCLA decision requirements, compare pre- and post-remediation conditions at CERCLA sites, and present the results of any required post-decision remediation effectiveness monitoring. First issued in 1997, the RER has been reissued annually to update the performance histories of completed actions and to add descriptions of new CERCLA actions. Monitoring information used in the 2010 RER to assess remedy performance was collected and/or compiled by DOE's Water Resources Restoration Program (WRRP). Only data used to assess performance of completed actions are provided. In addition to collecting CERCLA performance assessment data, the WRRP also collects baseline data to be used to gauge the effectiveness of future actions once implemented. These baseline data are maintained in the Oak Ridge Environmental Information System and will be reported in future RERs, as necessary, once the respective actions are completed. However, when insufficient data exist to assess the impact of the RAs, e.g., when the RA was only recently completed, a preliminary evaluation is made of early indicators of effectiveness at the

  3. Overview of Green and Sustainable Remediation for Soil and Groundwater Remediation - 12545

    Energy Technology Data Exchange (ETDEWEB)

    Simpkin, Thomas J. [CH2M HILL, Denver, Colorado (United States); Favara, Paul [CH2M HILL, Gainesville, Florida (United States)

    2012-07-01

    Making remediation efforts more 'sustainable' or 'green' is a topic of great interest in the remediation community. It has been spurred on by Executive Orders from the White House, as well as Department of Energy (DOE) sustainability plans. In private industry, it is motivated by corporate sustainability goals and corporate social responsibility. It has spawned new organizations, areas of discussion, tools and practices, and guidance documents around sustainable remediation or green remediation. Green remediation can be thought of as a subset of sustainable remediation and is mostly focused on reducing the environmental footprint of cleanup efforts. Sustainable remediation includes both social and economic considerations, in addition to environmental. Application of both green and sustainable remediation (GSR) may involve two primary activities. The first is to develop technologies and alternatives that are greener or more sustainable. This can also include making existing remediation approaches greener or more sustainable. The second is to include GSR criteria in the evaluation of remediation alternatives and strategies. In other words, to include these GSR criteria in the evaluation of alternatives in a feasibility study. In some cases, regulatory frameworks allow the flexibility to include GSR criteria into the evaluation process (e.g., state cleanup programs). In other cases, regulations allow less flexibility to include the evaluation of GSR criteria (e.g., Comprehensive Environmental Response Compensation, and Liability Act (CERCLA)). New regulatory guidance and tools will be required to include these criteria in typical feasibility studies. GSR provides a number of challenges for remediation professionals performing soil and groundwater remediation projects. Probably the most significant is just trying to stay on top of the ever changing landscape of products, tools, and guidance documents coming out of various groups, the US EPA, and

  4. Overview of Green and Sustainable Remediation for Soil and Groundwater Remediation - 12545

    International Nuclear Information System (INIS)

    Making remediation efforts more 'sustainable' or 'green' is a topic of great interest in the remediation community. It has been spurred on by Executive Orders from the White House, as well as Department of Energy (DOE) sustainability plans. In private industry, it is motivated by corporate sustainability goals and corporate social responsibility. It has spawned new organizations, areas of discussion, tools and practices, and guidance documents around sustainable remediation or green remediation. Green remediation can be thought of as a subset of sustainable remediation and is mostly focused on reducing the environmental footprint of cleanup efforts. Sustainable remediation includes both social and economic considerations, in addition to environmental. Application of both green and sustainable remediation (GSR) may involve two primary activities. The first is to develop technologies and alternatives that are greener or more sustainable. This can also include making existing remediation approaches greener or more sustainable. The second is to include GSR criteria in the evaluation of remediation alternatives and strategies. In other words, to include these GSR criteria in the evaluation of alternatives in a feasibility study. In some cases, regulatory frameworks allow the flexibility to include GSR criteria into the evaluation process (e.g., state cleanup programs). In other cases, regulations allow less flexibility to include the evaluation of GSR criteria (e.g., Comprehensive Environmental Response Compensation, and Liability Act (CERCLA)). New regulatory guidance and tools will be required to include these criteria in typical feasibility studies. GSR provides a number of challenges for remediation professionals performing soil and groundwater remediation projects. Probably the most significant is just trying to stay on top of the ever changing landscape of products, tools, and guidance documents coming out of various groups, the US EPA, and states. However, this

  5. CERCLA integration with site operations the Fernald experience

    International Nuclear Information System (INIS)

    A major transition in the Fernald Environmental Management Project (FEMP) site mission has occurred over the past few years. The production capabilities formally provided by the FEMP are being transferred to private industry through a vendor qualification program. Environmental compliance and site cleanup are now the primary focus. In line with this program, the production of uranium products at the site was suspended in July 1989 in order to concentrate resources on the environmental mission. Formal termination of the FEMP production mission was accomplished on June 19, 1991. Environmental issues such as stored inventories of process residues materials and equipment are being addressed under the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA). The diversity of these hazards complicates the strategic planning for an integrated site cleanup program. This paper will discuss the programmatic approach which is being implemented to ensure activities such as waste management, site utility and support services, health and safety programs, and Resource Conservation and Recovery Act (RCRA) programs are being integrated with CERCLA. 6 figs., 3 tabs

  6. Remedial design work plan for Lower East Fork Poplar Creek Operable Unit, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    The Remedial Design Work Plan (RDWP) for Lower East Fork Poplar Creek (EFPC) Operable Unit (OU) in Oak Ridge, Tennessee. This remedial action fits into the overall Oak Ridge Reservation (ORR) cleanup strategy by addressing contaminated floodplain soil. The objective of this remedial action is to minimize the risk to human health and the environment from contaminated soil in the Lower EFPC floodplain pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and the Federal Facility Agreement (FFA) (1992). In accordance with the FFA, a remedial investigation (RI) (DOE 1994a) and a feasibility study (DOE 1994b) were conducted to assess contamination of the Lower EFPC and propose remediation alternatives. The remedial investigation determined that the principal contaminant is mercury, which originated from releases during Y-12 Plant operations, primarily between 1953 and 1963. The recommended alternative by the feasibility study was to excavate and dispose of floodplain soils contaminated with mercury above the remedial goal option. Following the remedial investigation/feasibility study, and also in accordance with the FFA, a proposed plan was prepared to more fully describe the proposed remedy.

  7. Applicable or Relevant and Appropriate Requirements (ARARs) for Remedial Action at the Oak Ridge Reservation: A compendium of major environmental laws

    International Nuclear Information System (INIS)

    Section 121 of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) of 1980 specifies that remedial actions for cleanup of hazardous substances must comply with applicable or relevant and appropriate requirements (ARARS) or standards under federal and state environmental laws. The US Department of Energy (DOE) Oak Ridge Reservation (ORR) was placed on the National Priorities List by the US Environmental Protection Agency (EPA) on November 21, 1989, effective December 21, 1989. As a result of this listing, DOE, EPA, and the Tennessee Department of Environment and Conservation have signed a Federal Facility Agreement (FFA) for the environmental restoration of the ORR. Section XXI(F) of the FFA calls for the preparation of a draft listing of all ARARs as mandated by CERCLA section 121. This report supplies a preliminary list of available federal and state ARARs that might be considered for remedial response at the ORR. A description of the terms ''applicable'' and ''relevant and appropriate'' is provided, as well as definitions of chemical-, location-, and action-specific ARARS. ARARs promulgated by the federal government and by the state of Tennessee are listed in tables. In addition, the major provisions of the Resource Conservation and Recovery Act, the Safe Drinking Water Act, the Clean Water Act, the Clean Air and other acts, as they apply to hazardous waste cleanup, are discussed. In the absence of ARARS, CERCLA section 121 provides for the use of nonpromulgated federal criteria, guidelines, and advisories in evaluating the human risk associated with remedial action alternatives. Such nonpromulgated standards are classified as ''to-be-considered'' (TBC) guidance. A ion of available guidance is given; summary tables fist the available federal standards and guidance information. In addition, the substantive contents of the DOE orders as they apply to remediation of radioactively contaminated sites are discussed as TBC guidance

  8. Fiscal Year 1994 progress in implementing Section 120 of the Comprehensive Environmental Rresponse, Compensation, and Liability Act. Eighth annual report to Congress

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    Congress passed the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) (Public Law 96-510), commonly known as Superfund, in 1980. The Superfund Amendments and Reauthorization Act (SARA) (Public Law 99-499), which amended CERCLA in 1986, added Section 120 regarding the cleanup of contaminated sites at Federal facilities. Under Section 120(e)(5) of CERCLA, each department, agency, or instrumentality of the Federal government responsible for compliance with Section 120 must submit an annual report to Congress concerning its progress in implementing the requirements of Section 120. The report must include information on the progress in reaching Interagency Agreements (IAGs), conducting Remedial Investigation and Feasibility Studies (RI/FSs), and performing remedial actions. Federal agencies that own or operate facilities on the National Priorities List (NPL) are required to begin an RI/FS for these facilities within 6 months after being placed on the NPL. Remediation of these facilities is addressed in an IAG between the Federal agency, the U.S. Environmental Protection Agency (EPA), and in some instances the state within which the facility is located. This report, prepared by the U.S. Department of Energy`s (DOE`s) Office of Environmental Management, is being submitted to Congress in accordance with Section 120(e)(5) of CERCLA. It is DOE`s Eighth Annual Report to Congress and provides information on DOE`s progress in implementing CERCLA Section 120 in Fiscal Year 1994 (FY 94), i.e., from October 1, 1993, to September 30, 1994. In this report the words {open_quotes}site{close_quotes} and {open_quotes}facility{close_quotes} are used interchangeably.

  9. Ecological risk assessment guidance for preparation of remedial investigation/feasibility study work plans

    Energy Technology Data Exchange (ETDEWEB)

    Pentecost, E.D.; Vinikour, W.S. [Argonne National Lab., IL (United States)

    1993-08-01

    This guidance document (1) provides instructions on preparing the components of an ecological work plan to complement the overall site remedial assessment investigation/feasibility study (RI/FS) work plan and (2) directs the user on how to implement ecological tasks identified in the plan. Under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA), as amended by the Superfired Amendments and Reauthorization Act of 1986 (SARA), an RI/FS work plan win have to be developed as part of the site-remediation scoping the process. Specific guidance on the RI/FS process and the preparation of work plans has been developed by the US Environmental Protection Agency (EPA 1988a). This document provides guidance to US Department of Energy (DOE) staff and contractor personnel for incorporation of ecological information into environmental remediation planning and decision making at CERCLA sites. An overview analysis of early ecological risk assessment methods (i.e., in the 1980s) at Superfund sites was conducted by the EPA (1989a). That review provided a perspective of attention given to ecological issues in some of the first RI/FS studies. By itself, that reference is of somewhat limited value; it does, however, establish a basis for comparison of past practices in ecological risk with current, more refined methods.

  10. Ecological risk assessment guidance for preparation of remedial investigation/feasibility study work plans

    International Nuclear Information System (INIS)

    This guidance document (1) provides instructions on preparing the components of an ecological work plan to complement the overall site remedial assessment investigation/feasibility study (RI/FS) work plan and (2) directs the user on how to implement ecological tasks identified in the plan. Under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA), as amended by the Superfired Amendments and Reauthorization Act of 1986 (SARA), an RI/FS work plan win have to be developed as part of the site-remediation scoping the process. Specific guidance on the RI/FS process and the preparation of work plans has been developed by the US Environmental Protection Agency (EPA 1988a). This document provides guidance to US Department of Energy (DOE) staff and contractor personnel for incorporation of ecological information into environmental remediation planning and decision making at CERCLA sites. An overview analysis of early ecological risk assessment methods (i.e., in the 1980s) at Superfund sites was conducted by the EPA (1989a). That review provided a perspective of attention given to ecological issues in some of the first RI/FS studies. By itself, that reference is of somewhat limited value; it does, however, establish a basis for comparison of past practices in ecological risk with current, more refined methods

  11. Remedial investigation/feasibility study work plan for the 100-KR-4 operable unit, Hanford Site, Richland, Washington

    Energy Technology Data Exchange (ETDEWEB)

    1992-09-01

    Four areas of the Hanford Site (the 100, 200, 300, and 1100 Areas) have been included on the US Environmental Protection Agency`s (EPA`s) National Priorities List (NPL) under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). This work plan and the attached supporting project plans establish the operable unit setting and the objectives, procedures, tasks, and schedule for conducting the CERCLA remedial investigation/feasibility study (RI/FS) for the 100-KR-4 operable unit. The 100-K Area consists of the 100-KR-4 groundwater operable unit and three source operable units. The 100-KR-4 operable unit includes all contamination found in the aquifer soils and water beneath the 100-K Area. Source operable units include facilities and unplanned release sites that are potential sources of contamination.

  12. CERCLA interim action at the Par Pond unit: A case study

    International Nuclear Information System (INIS)

    The Par Pond unit designated under CERCLA consists of sediments within a Savannah River Site (SRS) cooling water reservoir. The sediments are contaminated with radionuclides and nonradioactive constituents from nuclear production reactor operations. The mercury in Par Pond is believed to have originated from the Savannah River. Because of Par Pond Dam safety Issues, the water level of the reservoir was drawn down, exposing more than 1300 acres of contaminated sediments and triggering the need for CERCLA interim remedial action. This paper presents the interim action approach taken with Par Pond as a case study. The approach considered the complexity of the Par Pond ecosystem, the large size of Par Pond, the volume of contaminated sediments, and the institutional controls existing at SRS. The Environmental Protection Agency (EPA) considers units with large volumes of low-concentration wastes, as is the case with Par Pond, to be open-quotes special sites.close quotes Accordingly, EPA guidance establishes that the range of alternatives developed focus primarily on containment options and other remedial approaches that mitigate potential risks associated with the open-quotes special site.close quotes The remedial alternatives, according to EPA, are not to be prohibitively expensive or difficult to implement. This case study also is representative of the types of issues that will need to be addressed within the Department of Energy (DOE) complex as nuclear facilities are transitioned to inactive status and corrective/remedial actions are warranted

  13. Remedial investigation/feasibility study of the Clinch River/Poplar Creek operable unit. Volume 1: Main text

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-01

    This report presents the findings of an investigation into contamination of the Clinch River and Poplar Creek near the US Department of Energy`s (DOE`s) Oak Ridge Reservation (ORR) in eastern Tennessee. For more than 50 years, various hazardous and radioactive substances have been released to the environment as a result of operations and waste management activities at the ORR. In 1989, the ORR was placed on the National Priorities List (NPL), established and maintained under the federal Comprehensive environmental Response, Compensation, and Liability Act of 1980 (CERCLA). Under CERCLA, NPL sites must be investigated to determine the nature and extent of contamination at the site, assess the risk to human health and the environment posed by the site, and, if necessary, identify feasible remedial alternatives that could be used to clean the site and reduce risk. To facilitate the overall environmental restoration effort at the ORR, CERCLA activities are being implemented individually as distinct operable units (OUs). This document is the combined Remedial Investigation and Feasibility Study Report for the Clinch River/Poplar Creek OU.

  14. Work plan for the remedial investigation/feasibility study-environmental assessment for the quarry residuals operable unit at the Weldon Spring Site

    International Nuclear Information System (INIS)

    The US Department of Energy (DOE) is conducting cleanup activities at the Weldon Spring site, which is located in St. Charles County, Missouri, about 48 km (30 mi) west of St. Louis. The Weldon Spring site consists of two noncontiguous areas -- the chemical plant area, which includes four raffinate pits, and the quarry. Cleanup activities at the Weldon Spring site are conducted in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended, incorporating the values of the National Environmental Policy Act (NEPA). The contents of the documents prepared for the project are not intended to represent a statement regarding the legal applicability of NEPA to remedial actions conducted under CERCLA. In accordance with the integrated CERCLA/NEPA approach, a remedial investigation/feasibility study-environmental assessment (RI/FS-EA) is being conducted to evaluate conditions and potential responses for the quarry residuals operable unit (QROU). This operable unit consists of the following areas and/or media: the residual material remaining at the Weldon Spring quarry after removal of the pond water and bulk waste; underlying groundwater; and other media located in the surrounding vicinity of the quarry, including adjacent soil, surface water, and sediment in Femme Osage Slough. This work plan identifies the activities within the RI/FS-EA process that are being proposed to address contamination remaining at the quarry area

  15. Work plan for the remedial investigation/feasibility study-environmental assessment for the quarry residuals operable unit at the Weldon Spring Site

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    The US Department of Energy (DOE) is conducting cleanup activities at the Weldon Spring site, which is located in St. Charles County, Missouri, about 48 km (30 mi) west of St. Louis. The Weldon Spring site consists of two noncontiguous areas -- the chemical plant area, which includes four raffinate pits, and the quarry. Cleanup activities at the Weldon Spring site are conducted in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended, incorporating the values of the National Environmental Policy Act (NEPA). The contents of the documents prepared for the project are not intended to represent a statement regarding the legal applicability of NEPA to remedial actions conducted under CERCLA. In accordance with the integrated CERCLA/NEPA approach, a remedial investigation/feasibility study-environmental assessment (RI/FS-EA) is being conducted to evaluate conditions and potential responses for the quarry residuals operable unit (QROU). This operable unit consists of the following areas and/or media: the residual material remaining at the Weldon Spring quarry after removal of the pond water and bulk waste; underlying groundwater; and other media located in the surrounding vicinity of the quarry, including adjacent soil, surface water, and sediment in Femme Osage Slough. This work plan identifies the activities within the RI/FS-EA process that are being proposed to address contamination remaining at the quarry area.

  16. A large scale environmental assessment: The Clinch River Remedial Investigation

    International Nuclear Information System (INIS)

    The USEPA identified the Department of Energy Oak Ridge Reservation (ORR) in east Tennessee as a Superfund National Priorities List site in 1989. Facilities at the ORR have released a variety of radiological, organic, and inorganic contaminants to the local aquatic environment as a result of nuclear weapons production, uranium enrichment, and energy research and development activities from the mid 1940s to the present. The Clinch River Remedial Investigation (CRRI) was initiated to meet the Resource Conservation Recovery Act (RCRA) and the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) requirements to determine the nature and extent of hazardous releases to the aquatic environment. Phase 1 of the CRRI consisted of sampling and analysis of selected sites representing differing levels of contamination to determine the range of contaminant concentrations present in off-site water, sediment, and fish. Sampling activities in support of Phase 2 of the remedial investigation were designed to assist in defining the nature and extent of the contaminants of concern in sediment, water and biota, and to provide information for assessing the potential risks to human health and the environment associated with those contaminants. A concurrent study evaluated potential remedial alternatives and identified effective and acceptable corrective measures. An overview of the CRRI, including a history of the facilities and their contaminant releases, and the regulatory context in which the remedial investigation occurred is presented

  17. JAERI's technical supports sending the remediation act officers to promote decontamination work in Fukushima prefecture

    International Nuclear Information System (INIS)

    The demonstration remediation projects carried out by JAEA for a regional contamination following the Fukushima Dai-ichi Nuclear Power Plants accident which released substantial quantities of radionuclides to the environment are explained. Followings are examples carried out by a committee appointed by JAERI: Demonstration tests to find effective technologies that can be utilized in decontamination efforts and confirmation effectiveness, economical effects, operational safety, etc (353 cases), high-pressure water jet washing and water treatment for mortal roofs of habitant housings (525), stripping of moss, weeds, and topsoil with the depth of 2 to 5 cm, joint survey or inspection of decontamination work in the presence of expert team, and attendance to the meeting to provide information to local residents (54 cases). (S. Ohno)

  18. Fiscal year 1996 progress in implementing Section 120 of the Comprehensive Environmental Response, Compensation, and Liability Act. Tenth annual report to Congress

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    Congress passed the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) (Public Law 96-510), commonly known as Superfund, in 1980. The Superfund Amendments and Reauthorization Act (SARA) (Public Law 99-499), which amended CERCLA in 1986, added Section 120 regarding the cleanup of contaminated sites at Federal facilities. Under Section 120(e)(5) of CERCLA, each department, agency, or instrumentality of the Federal government responsible for compliance with Section 120 must submit an annual report to Congress concerning its progress in implementing the requirements of Section 120. The report must include information on the progress in reaching Interagency Agreements (IAGs), conducting remedial investigation and feasibility studies (RI/FSs), and performing remedial actions. Federal agencies that own or operate facilities on the National Priorities List (NPL) are required to begin an RI/FS for these facilities within 6 months after being placed on the NPL. Remediation of these facilities is addressed in an IAG between the Federal agency, the US Environmental Protection Agency (EPA), and in some instances the state within which the facility is located.

  19. Idaho CERCLA Disposal Facility Complex Waste Acceptance Criteria

    Energy Technology Data Exchange (ETDEWEB)

    W. Mahlon Heileson

    2006-10-01

    The Idaho Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Disposal Facility (ICDF) has been designed to accept CERCLA waste generated within the Idaho National Laboratory. Hazardous, mixed, low-level, and Toxic Substance Control Act waste will be accepted for disposal at the ICDF. The purpose of this document is to provide criteria for the quantities of radioactive and/or hazardous constituents allowable in waste streams designated for disposal at ICDF. This ICDF Complex Waste Acceptance Criteria is divided into four section: (1) ICDF Complex; (2) Landfill; (3) Evaporation Pond: and (4) Staging, Storage, Sizing, and Treatment Facility (SSSTF). The ICDF Complex section contains the compliance details, which are the same for all areas of the ICDF. Corresponding sections contain details specific to the landfill, evaporation pond, and the SSSTF. This document specifies chemical and radiological constituent acceptance criteria for waste that will be disposed of at ICDF. Compliance with the requirements of this document ensures protection of human health and the environment, including the Snake River Plain Aquifer. Waste placed in the ICDF landfill and evaporation pond must not cause groundwater in the Snake River Plain Aquifer to exceed maximum contaminant levels, a hazard index of 1, or 10-4 cumulative risk levels. The defined waste acceptance criteria concentrations are compared to the design inventory concentrations. The purpose of this comparison is to show that there is an acceptable uncertainty margin based on the actual constituent concentrations anticipated for disposal at the ICDF. Implementation of this Waste Acceptance Criteria document will ensure compliance with the Final Report of Decision for the Idaho Nuclear Technology and Engineering Center, Operable Unit 3-13. For waste to be received, it must meet the waste acceptance criteria for the specific disposal/treatment unit (on-Site or off-Site) for which it is destined.

  20. Sampling and analysis plan for volatile organic compounds in storm drain for the Upper East Fork Poplar Creek characterization area remedial investigation at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The Oak Ridge Y-12 Plant, located within the Oak Ridge Reservation (ORR), is owned by the US Department of Energy and managed by Lockheed Martin Energy Systems, Inc. The Y-12 Plant is one of three major facilities on the ORR. The ORR contains both hazardous- and mixed-waste sites that are subject to regulations promulgated under the Resource Conservation and Recovery Act of 1976 (RCRA) and the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) as amended by the Superfund Amendments and Reauthorization Act of 1986. Under RCRA guidelines and requirements from the Tennessee Department of Environment and Conservation, the Y-12 Plant initiated investigation and monitoring of various sites within its boundaries in the mid-1980s. The entire ORR was placed on the National Priorities List of CERCLA sites in November 1989. Following CERCLA guidelines, sites under investigation require a remedial investigation (RI) to define the nature and extent of contamination, evaluate the risks to public health and the environment, and determine the goals for a feasibility study (FS) of potential remedial actions.

  1. Sampling and analysis plan for volatile organic compounds in storm drain for the Upper East Fork Poplar Creek characterization area remedial investigation at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    The Oak Ridge Y-12 Plant, located within the Oak Ridge Reservation (ORR), is owned by the US Department of Energy and managed by Lockheed Martin Energy Systems, Inc. The Y-12 Plant is one of three major facilities on the ORR. The ORR contains both hazardous- and mixed-waste sites that are subject to regulations promulgated under the Resource Conservation and Recovery Act of 1976 (RCRA) and the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) as amended by the Superfund Amendments and Reauthorization Act of 1986. Under RCRA guidelines and requirements from the Tennessee Department of Environment and Conservation, the Y-12 Plant initiated investigation and monitoring of various sites within its boundaries in the mid-1980s. The entire ORR was placed on the National Priorities List of CERCLA sites in November 1989. Following CERCLA guidelines, sites under investigation require a remedial investigation (RI) to define the nature and extent of contamination, evaluate the risks to public health and the environment, and determine the goals for a feasibility study (FS) of potential remedial actions

  2. Remedial investigation work plan for Bear Creek Valley Operable Unit 4 (shallow groundwater in Bear Creek Valley) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    The enactment of the Resource Conservation and Recovery Act (RCRA) in 1976 and the Hazardous and Solid Waste Amendments (HSWA) to RCRA in 1984 created management requirements for hazardous waste fadities. The facilities within the Oak Ridge Reservation (ORR) were in the process of meeting the RCRA requirements when ORR was placed on the Comprehensive Environmental Response, Compensation, and Liability Act (CERCIA) National Priorities List (NPL) on November 21, 1989. Under RCRA, the actions typically follow the RCRA Facility Assessment (RIFA)/RCRA Facility Investigation (RFI)/Coffective Measures Study (CMS)/Corrective Measures Implementation process. Under CERCLA, the actions follow the Pre at sign ary Assessment/Site Investigation (PA/Sl) Remedial Investigation Feasibility Study (RI/FS)/Remedial Design/Remedial Action process. The development of this document will incorporate requirements under both RCRA and CERCIA into an RI Work Plan for the lint phase of characterization of Bear Creek Valley (BCV) Operable Unit (OU) 4

  3. Risk assessment and optimization (ALARA) analysis for the environmental remediation of Brookhaven National Laboratory's hazardous waste management facility

    International Nuclear Information System (INIS)

    The Department of Energy's (DOE) Office of Environment, Safety, and Health (EH) sought examples of risk-based approaches to environmental restoration to include in their guidance for DOE nuclear facilities. Extensive measurements of radiological contamination in soil and ground water have been made at Brookhaven National Laboratory's Hazardous Waste Management Facility (HWMF) as part of a Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) remediation process. This provided an ideal opportunity for a case study. This report provides a risk assessment and an open-quotes As Low as Reasonably Achievableclose quotes (ALARA) analysis for use at other DOE nuclear facilities as an example of a risk-based decision technique

  4. CERCLA document flow: Compressing the schedule, saving costs, and expediting review at the Savannah River Site

    International Nuclear Information System (INIS)

    The purpose of this paper is to convey the logic of the CERCLA document flow including Work Plans, Characterization Studies, Risk Assessments, Remedial Investigations, Feasibility Studies, proposed plans, and Records of Decision. The intent is to show how schedules at the Savannah River Site are being formulated to accomplish work using an observational approach where carefully planned tasks can be initiated early and carried out in parallel. This paper will share specific proactive experience in working with the EPA to expedite projects, begin removal actions, take interim actions, speed document flow, and eliminate unnecessary documents from the review cycle

  5. Remedial investigation report for J-Field, Aberdeen Proving Ground, Maryland. Volume 1: Remedial investigation results

    International Nuclear Information System (INIS)

    This report presents the results of the remedial investigation (RI) conducted at J-Field in the Edgewood Area of Aberdeen Proving Ground (APG), a U.S. Army installation located in Harford County, Maryland. Since 1917, activities in the Edgewood Area have included the development, manufacture, and testing of chemical agents and munitions and the subsequent destruction of these materials at J-Field by open burning and open detonation. These activities have raised concerns about environmental contamination at J-Field. This RI was conducted by the Environmental Conservation and Restoration Division, Directorate of Safety, Health and Environmental Division of APG, pursuant to requirements outlined under the Comprehensive Environmental Response, Compensation, and Liability Act, as amended (CERCLA). The RI was accomplished according to the procedures developed by the U.S. Environmental Protection Agency (EPA 1988). The RI provides a comprehensive evaluation of the site conditions, nature of contaminants present, extent of contamination, potential release mechanisms and migration pathways, affected populations, and risks to human health and the environment. This information will be used as the basis for the design and implementation of remedial actions to be performed during the remedial action phase, which will follow the feasibility study (FS) for J-Field

  6. Remedial investigation report for J-Field, Aberdeen Proving Ground, Maryland. Volume 1: Remedial investigation results

    Energy Technology Data Exchange (ETDEWEB)

    Yuen, C. R.; Martino, L. E.; Biang, R. P.; Chang, Y. S.; Dolak, D.; Van Lonkhuyzen, R. A.; Patton, T. L.; Prasad, S.; Quinn, J.; Rosenblatt, D. H.; Vercellone, J.; Wang, Y. Y.

    2000-03-14

    This report presents the results of the remedial investigation (RI) conducted at J-Field in the Edgewood Area of Aberdeen Proving Ground (APG), a U.S. Army installation located in Harford County, Maryland. Since 1917, activities in the Edgewood Area have included the development, manufacture, and testing of chemical agents and munitions and the subsequent destruction of these materials at J-Field by open burning and open detonation. These activities have raised concerns about environmental contamination at J-Field. This RI was conducted by the Environmental Conservation and Restoration Division, Directorate of Safety, Health and Environmental Division of APG, pursuant to requirements outlined under the Comprehensive Environmental Response, Compensation, and Liability Act, as amended (CERCLA). The RI was accomplished according to the procedures developed by the U.S. Environmental Protection Agency (EPA 1988). The RI provides a comprehensive evaluation of the site conditions, nature of contaminants present, extent of contamination, potential release mechanisms and migration pathways, affected populations, and risks to human health and the environment. This information will be used as the basis for the design and implementation of remedial actions to be performed during the remedial action phase, which will follow the feasibility study (FS) for J-Field.

  7. Glossary of CERCLA, RCRA and TSCA related terms and acronyms. Environmental Guidance

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-01

    This glossary contains CERCLA, RCRA and TSCA related terms that are most often encountered in the US Department of Energy (DOE) Environmental Restoration and Emergency Preparedness activities. Detailed definitions are included for key terms. The CERCLA definitions included in this glossary are taken from the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA), as amended and related federal rulemakings. The RCRA definitions included in this glossary are taken from the Resource Conservation and Recovery Act (RCRA) and related federal rulemakings. The TSCA definitions included in this glossary are taken from the Toxic Substances and Control Act (TSCA) and related federal rulemakings. Definitions related to TSCA are limited to those sections in the statute and regulations concerning PCBs and asbestos.Other sources for definitions include additional federal rulemakings, assorted guidance documents prepared by the US Environmental Protection Agency (EPA), guidance and informational documents prepared by the US Department of Energy (DOE), and DOE Orders. The source of each term is noted beside the term. Terms presented in this document reflect revised and new definitions published before July 1, 1993.

  8. Remedial investigation/feasibility study of the Clinch River/Poplar Creek operable unit. Volume 3: Appendixes E and F -- Risk assessment information

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-01

    This report presents the findings of an investigation into contamination of the Clinch River and Poplar Creek near the US Department of Energy`s (DOE`s) Oak Ridge Reservation (ORR) in eastern Tennessee. For more than 50 years, various hazardous and radioactive substances have been released to the environment as a result of operations and waste management activities at the ORR. In 1989, the ORR was placed on the National Priorities List (NPL), established and maintained under the federal Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). Under CERCLA, NPL sites must be investigated to determine the nature and extent of contamination at the site, assess the risk to human health and the environment posed by the site, and, if necessary, identify feasible remedial alternatives that could be used to clean the site and reduce risk. To facilitate the overall environmental restoration effort at the ORR, CERCLA activities are being implemented individually as distinct operable units (OUs). This document is the combined Remedial Investigation and Feasibility Study Report for the Clinch River/Poplar Creek OU.

  9. Remedial investigation/feasibility study of the Clinch River/Poplar Creek Operable Unit. Volume 3. Risk assessment information. Appendixes E, F

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    This report presents the findings of an investigation into contamination of the Clinch River and Poplar Creek near the U.S. Department of Energy`s (DOE`s) Oak Ridge Reservation (ORR) in eastern Tennessee. For more than 50 years, various hazardous and radioactive substances have been released to the environment as a result of operations and waste management activities at the ORR. In 1989, the ORR was placed on the National Priorities List (NPL), established and maintained under the federal Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). Under CERCLA, NPL sites must be investigated to determine the nature and extent of contamination at the site, assess the risk to human health and the environment posed by the site, and, if necessary, identify feasible remedial alternatives that could be used to clean the site and reduce risk. To facilitate the overall environmental restoration effort at the ORR, CERCLA activities are being implemented individually as distinct operable units (OUs). This document is Volume 3 of the combined Remedial Investigation and Feasibility Study Report for the Clinch River/Poplar Creek OU.

  10. Remedial investigation/feasibility study of the Clinch River/Poplar Creek Operable Unit. Volume 5. Appendixes J, K, L, M, and N-other supporting information

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-01

    This report presents the findings of an investigation into contamination of the Clinch River and Poplar Creek near the U.S. Department of Energy`s (DOE`s) Oak Ridge Reservation (ORR) in eastern Tennessee. For more than 50 years, various hazardous and radioactive substances have been released to the environment as a result of operations and waste management activities at the ORR. In 1989, the ORR was placed on the National Priorities List (NPL), established and maintained under the federal Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). Under CERCLA, NPL sites must be investigated to determine the nature and extent of contamination at the site, assess the risk to human health and the environment posed by the site, and, if necessary, identify feasible remedial alternatives that could be used to clean the site and reduce risk. To facilitate the overall environmental restoration effort at the ORR, CERCLA activities are being implemented individually as distinct operable units (OUs). This document is Volume 5 of the combined Remedial Investigation and Feasibility Study Report for the Clinch River/Poplar Creek OU.

  11. Remedial investigation/feasibility study of the Clinch River/Poplar Creek Operable Unit. Volume 2. Biota and representative concentrations of contaminants. Appendixes A, B, C, D

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    This report presents the findings of an investigation into contamination of the Clinch River and Poplar Creek near the U.S. Department of Energy`s (DOE`s) Oak Ridge Reservation (ORR) in eastern Tennessee. For more than 50 years, various hazardous and radioactive substances have been released to the environment as a result of operations and waste management activities at the ORR. In 1989, the ORR was placed on the National Priorities List (NPL), established and maintained under the federal Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). Under CERCLA, NPL sites must be investigated to determine the nature and extent of contamination at the site, assess the risk to human health and the environment posed by the site, and, if necessary, identify feasible remedial alternatives that could be used to clean the site and reduce risk. To facilitate the overall environmental restoration effort at the ORR, CERCLA activities are being implemented individually as distinct operable units (OU`s). This document is the combined Remedial Investigation and Feasibility Study Report for the Clinch River/Poplar Creek OU.

  12. Environmental restoration and remediation technical data management plan

    International Nuclear Information System (INIS)

    The tasks performed in the Remedial Investigation/Feasibility Study (RI/FS) work plan for each Hanford Site operable unit must meet the requirements of the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) and the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement, Ecology et. al 1992). An extensive amount of data will be generated in the evaluation and remediation of hazardous waste sites at the Site. The data must be of sufficient quality, as they will be used to evaluate the need, select the method(s), and support the full remediation of the waste sites as stipulated in the Tri-Party Agreement. In particular, a data management plan (DMP) is to be included in an RI/FS work plan for managing the technical data obtained during the characterization of an operable unit, as well as other data related to the study of the operable unit. Resource Conservation and Recovery Act of 1976 (RCRA) sites are involved in the operable unit. Thus, the data management activities for the operable unit should be applied consistently to RCRA sites in the operable unit as well. This DMP provides common direction for managing-the environmental technical data of all defined operable units at the Hanford Site during the RI/FS activities. Details specific to an operable unit will be included in the actual work plan of that operable unit

  13. Remediation and Recycling of Linde FUSRAP Materials

    International Nuclear Information System (INIS)

    During World War II, the Manhattan Engineering District (MED) utilized facilities in the Buffalo, New York area to extract natural uranium from uranium-bearing ores. The Linde property is one of several properties within the Tonawanda, New York Formerly Utilized Sites Remedial Action Program (FUSRAP) site, which includes Linde, Ashland 1, Ashland 2, and Seaway. Union Carbide Corporation's Linde Division was placed under contract with the Manhattan Engineering District (MED) from 1942 to 1946 to extract uranium from seven different ore sources: four African pitchblende ores and three domestic ores. Over the years, erosion and weathering have spread contamination from the residuals handled and disposed of at Linde to adjacent soils. The U.S. Department of Energy (DOE) and the U.S. Environmental Protection Agency (EPA) negotiated a Federal Facilities Agreement (FFA) governing remediation of the Linde property. In Fiscal Year (FY) 1998, Congress transferred cleanup management responsibility for the sites in the FUSRAP program, including the Linde Site, from the DOE to the U.S. Army Corps of Engineers (USACE), with the charge to commence cleanup promptly. All actions by the USACE at the Linde Site are being conducted subject to the administrative, procedural, and regulatory provisions of the Comprehensive Environmental Response Compensation and Liability Act (CERCLA) and the existing FFA. USACE issued a Proposed Plan for the Linde Property in 1999 and a Final Record of Decision (ROD) in 2000. USACE worked with the local community near the Tonawanda site, and after considering public comment, selected the remedy calling for removing soils that exceed the site-specific cleanup standard, and transporting the contaminated material to off-site locations. The selected remedy is protective of human health and the environment, complies with Federal and State requirements, and meets commitments to the community

  14. Phase I remedial investigation report for the 300-FF-5 operable unit, Volume 1

    International Nuclear Information System (INIS)

    The focus of this remedial investigation (RI) is the 300-FF-5 operable unit, one of five operable units associated with the 300 Area aggregate of the U.S. Department of Energy's (DOE's) Hanford Site. The 300-FF-5 operable unit is a groundwater operable unit beneath the 300-FF-1, 300-FF-2, and 300-FF-3 source operable units. This operable unit was designated to include all contamination detected in the groundwater and sediments below the water table that emanates from the 300-FF-1, 300-FF-2, and 300-FF-3 operable units (DOE-RL 1990a). In November 1989, the U.S. Environmental Protection Agency (EPA) placed the 300 Area on the National Priorities List (NPL) contained within Appendix B of the National Oil and Hazardous Substance Pollution Contingency Plan (NCP, 53 FR 51391 et seq.). The EPA took this action pursuant to their authority under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA, 42 USC 9601 et seq.). The DOE Richland Operations Office (DOE-RL), the EPA and Washington Department of Ecology (Ecology) issued the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement), in May 1989 (Ecology et al. 1992, Rev. 2). This agreement, among other matters, governs all CERCLA efforts at the Hanford Site. In June 1990, a remedial investigation/feasibility study (RI/FS) workplan for the 300-FF-5 operable unit was issued pursuant to the Tri-Party Agreement

  15. Phase I remedial investigation report for the 300-FF-5 operable unit, Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-01-01

    The focus of this remedial investigation (RI) is the 300-FF-5 operable unit, one of five operable units associated with the 300 Area aggregate of the U.S. Department of Energy`s (DOE`s) Hanford Site. The 300-FF-5 operable unit is a groundwater operable unit beneath the 300-FF-1, 300-FF-2, and 300-FF-3 source operable units. This operable unit was designated to include all contamination detected in the groundwater and sediments below the water table that emanates from the 300-FF-1, 300-FF-2, and 300-FF-3 operable units (DOE-RL 1990a). In November 1989, the U.S. Environmental Protection Agency (EPA) placed the 300 Area on the National Priorities List (NPL) contained within Appendix B of the National Oil and Hazardous Substance Pollution Contingency Plan (NCP, 53 FR 51391 et seq.). The EPA took this action pursuant to their authority under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA, 42 USC 9601 et seq.). The DOE Richland Operations Office (DOE-RL), the EPA and Washington Department of Ecology (Ecology) issued the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement), in May 1989 (Ecology et al. 1992, Rev. 2). This agreement, among other matters, governs all CERCLA efforts at the Hanford Site. In June 1990, a remedial investigation/feasibility study (RI/FS) workplan for the 300-FF-5 operable unit was issued pursuant to the Tri-Party Agreement.

  16. Analysis of abandoned potential CERCLA hazardous waste sites using historic aerial photographs

    International Nuclear Information System (INIS)

    Aerial photographs of varying scale from federal agencies and commercial aerial service companies covering the years 1938, 1942, 1948, 1952, 1957, 1960, 1970, 1971, 1977, and 1986 of the Edgewood Area of Aberdeen Proving Ground (APG), Maryland, (Gunpowder Neck 7.5 Minute United States Geological Survey Topographic Quadrangle Map) were evaluated for identification of potential Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) hazardous waste sites and land use changes for approximately 1500 acres (610 hectares) used in the testing of military-related chemicals and munitions on Carroll Island and Graces Quarters. Detailed testing records exist only for July 1964 to December 1971, thus making the interpretation of aerial photographs a valuable tool in reconstructing past activities from the late 1930s to June 1964 and guiding future sampling locations in the multiphased CERCLA process. Many potential test sites were activated by either clear-cutting tracks of vegetation or using existing cleared land until final abandonment of the site(s) circa 1974-1975. Ground inspection of open-quotes land scarringclose quotes at either known or suspected sites was essential for verifying the existence, location, and subsequent sampling of potential CERCLA sites. Photomorphic mapping techniques are described to delineate and compare different land use changes in past chemical and munitions handling and testing. Delineation of features was based on photographic characteristics of tone, pattern, texture, shape, shadow, size, and proximity to known features. 7 refs., 9 figs

  17. Remedial investigation/feasibility study of the Clinch River/Poplar Creek Operable Unit. Volume 4. Appendixes G, H, and I and information related to the feasibility study and ARARs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-01

    This report presents the findings of an investigation into contamination of the Clinch River and Poplar Creek near the U.S. Department of Energy`s (DOE`s) Oak Ridge Reservation (ORR) in eastern Tennessee. For more than 50 years, various hazardous and radioactive substances have been released to the environment as a result of operations and waste management activities at the ORR. In 1989, the ORR was placed on the National Priorities List (NPL), established and maintained under the federal Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). Under CERCLA, NPL sites must be investigated to determine the nature and extent of contamination at the site, assess the risk to human health and the environment posed by the site, and, if necessary, identify feasible remedial alternatives that could be used to clean the site and reduce risk. To facilitate the overall environmental restoration effort at the ORR, CERCLA activities are being implemented individually as distinct operable units (OUs). This document is Volume 4 of the combined Remedial Investigation and Feasibility Study Report for the Clinch River/Poplar Creek OU.

  18. Remedial investigation/feasibility study of the Clinch River/Poplar Creek Operable Unit. Volume 2. Appendixes A, B, C, and D-Biota and representative concentrations of contaminants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-01

    This report presents the findings of an investigation into contamination of the Clinch River and Poplar Creek near the U.S. Department of Energy`s (DOE`s) Oak Ridge Reservation (ORR) in eastern Tennessee. For more than 50 years, various hazardous and radioactive substances have been released to the environment as a result of operations and waste management activities at the ORR. In 1989, the ORR was placed on the National Priorities List (NPL), established and maintained under the federal Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). Under CERCLA, NPL sites must be investigated to determine the nature and extent of contamination at the site, assess the risk to human health and the environment posed by the site, and, if necessary, identify feasible remedial alternatives that could be used to clean the site and reduce risk. To facilitate the overall environmental restoration effort at the ORR, CERCLA activities are being implemented individually as distinct operable units (OUs). This document is Volume 2 of the combined Remedial Investigation and Feasibility Study Report for the Clinch River/Poplar Creek OU.

  19. Record of decision remedial alternative selection for the F-area burning/rubble pits (231-F, 231-1F, and 231-2F)

    International Nuclear Information System (INIS)

    This decision document presents the selected remedial alternative for the FBRP located at the SRS in Aiken, South Carolina. The selected alternative was developed in accordance with CERCLA, as amended, and to the extent practicable, the National Oil and Hazardous Substances Pollution Contingency Plan. This decision is based on the Administrative Record File for this specific RCRA/CERCLA unit

  20. Characterization and remediation of soil prior to construction of an on-site disposal facility at Fernald

    International Nuclear Information System (INIS)

    During the production years at the Feed Materials Production Center (FMPC), the soil of the site and the surrounding areas was surficially impacted by airborne contamination. The volume of impacted soil is estimated at 2.2 million cubic yards. During site remediation, this contamination will be excavated, characterized, and disposed of. In 1986 the US Environmental Protection Agency (EPA) and the Department of Energy (DOE) entered into a Federal Facility Compliance Agreement (FFCA) covering environmental impacts associated with the FMPC. A site wide Remedial Investigation/Feasibility Study (RI/FS) was initiated pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act, as amended by the Superfund Amendments and Reauthorization Act (CERCLA). The DOE has completed the RI/FS process and has received approval of the final Records of Decision. The name of the facility was changed to the Fernald Environmental Management Project (FEMP) to emphasize the change in mission to environmental restoration. Remedial actions which address similar scopes of work or types of contaminated media have been grouped into remedial projects for the purpose of managing the remediation of the FEMP. The Soil Characterization and Excavation Project (SCEP) will address the remediation of FEMP soils, certain waste units, at- and below-grade material, and will certify attainment of the final remedial limits (FRLs) for the FEMP. The FEMP will be using an on-site facility for low level radioactive waste disposal. The facility will be an above-ground engineered structure constructed of geological material. The area designated for construction of the base of the on-site disposal facility (OSDF) is referred to as the footprint. Contaminated soil within the footprint must be identified and remediated. Excavation of Phase 1, the first of seven remediation areas, is complete

  1. Phase 1 remedial investigation report for 200-BP-1 operable unit. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    The US Department of Energy (DOE) Hanford Site, in Washington State is organized into numerically designated operational areas including the 100, 200, 300, 400, 600, and 1100 Areas. The US Environmental Protection Agency (EPA), in November 1989 included the 200 Areas of the Hanford Site on the National Priority List (NPL) under the Comprehensive Environmental Response, Compensation and Liability Act of 1980 (CERCLA). Inclusion on the NPL initiated the remedial investigation (RD process for the 200-BP-1 operable unit. These efforts are being addressed through the Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1989) which was negotiated and approved by the DOE, the EPA, and the State of Washington Department of Ecology (Ecology) in May 1989. This agreement, known as the Tri-Party Agreement, governs all CERCLA efforts at Hanford. In March of 1990, the Department of Energy, Richland Operations (DOE-RL) issued a Remedial Investigation/Feasibility Study (RI/FS) work plan (DOE-RL 1990a) for the 200-BP-1 operable unit. The work plan initiated the first phase of site characterization activities associated with the 200-BP-1 operable unit. The purpose of the 200-BP-1 operable unit RI is to gather and develop the necessary information to adequately understand the risks to human health and the environment posed by the site and to support the development and analysis of remedial alternatives during the FS. The RI analysis will, in turn, be used by Tri-Party Agreement signatories to make a risk-management-based selection of remedies for the releases of hazardous substances that have occurred from the 200-BP-1 operable unit.

  2. Phase 1 remedial investigation report for 200-BP-1 operable unit

    International Nuclear Information System (INIS)

    The US Department of Energy (DOE) Hanford Site, in Washington State is organized into numerically designated operational areas including the 100, 200, 300, 400, 600, and 1100 Areas. The US Environmental Protection Agency (EPA), in November 1989 included the 200 Areas of the Hanford Site on the National Priority List (NPL) under the Comprehensive Environmental Response, Compensation and Liability Act of 1980 (CERCLA). Inclusion on the NPL initiated the remedial investigation (RD process for the 200-BP-1 operable unit. These efforts are being addressed through the Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1989) which was negotiated and approved by the DOE, the EPA, and the State of Washington Department of Ecology (Ecology) in May 1989. This agreement, known as the Tri-Party Agreement, governs all CERCLA efforts at Hanford. In March of 1990, the Department of Energy, Richland Operations (DOE-RL) issued a Remedial Investigation/Feasibility Study (RI/FS) work plan (DOE-RL 1990a) for the 200-BP-1 operable unit. The work plan initiated the first phase of site characterization activities associated with the 200-BP-1 operable unit. The purpose of the 200-BP-1 operable unit RI is to gather and develop the necessary information to adequately understand the risks to human health and the environment posed by the site and to support the development and analysis of remedial alternatives during the FS. The RI analysis will, in turn, be used by Tri-Party Agreement signatories to make a risk-management-based selection of remedies for the releases of hazardous substances that have occurred from the 200-BP-1 operable unit

  3. Argonne's Expedited Site Characterization: An integrated approach to cost- and time-effective remedial investigation

    International Nuclear Information System (INIS)

    Argonne National Laboratory has developed a methodology for remedial site investigation that has proven to be both technically superior to and more cost- and time-effective than traditional methods. This methodology is referred to as the Argonne Expedited Site Characterization (ESC). Quality is the driving force within the process. The Argonne ESC process is abbreviated only in time and cost and never in terms of quality. More usable data are produced with the Argonne ESC process than with traditional site characterization methods that are based on statistical-grid sampling and multiple monitoring wells. This paper given an overview of the Argonne ESC process and compares it with traditional methods for site characterization. Two examples of implementation of the Argonne ESC process are discussed to illustrate the effectiveness of the process in CERCLA (Comprehensive Environmental Response, Compensation, and Liability Act) and RCRA (Resource Conservation and Recovery Act) programs

  4. Vicinity Property Assessments at Formerly Utilized Sites Remedial Action Program Project Sites in the New York District - 13420

    International Nuclear Information System (INIS)

    The Formerly Utilized Sites Remedial Action Program (FUSRAP) has addressed sites across the nation for almost 4 decades. Multiple stake holder pressures, multiple regulations, and process changes occur over such long time periods. These result in many challenges to the FUSRAP project teams. Initial FUSRAP work was not performed under Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Records of Decision (ROD). The ROD identifies the remedy decision and ultimately the criteria to be used to release a site. Early FUSRAP projects used DOE Orders or the Uranium Mill Tailings Radiation Control Act (UMTRCA) standards. Under current RODs, regulations may differ, resulting in different cleanup criteria than that used in prior Vicinity Property (VP) remediation. The USACE, in preparation for closeout of Sites, conducts reviews to evaluate whether prior actions were sufficient to meet the cleanup criteria specified in the current ROD. On the basis of these reviews, USACE has conducted additional sampling, determined that prior actions were sufficient, or conducted additional remediation consistent with the selected remedy in the ROD. As the public pressures, regulations, and processes that the FUSRAP encounters continue to change, the program itself continues to evolve. Assessment of VPs at FUSRAP sites is a necessary step in the life cycle of our site management. (authors)

  5. Comprehensive Environmental Response, Compensation and Liability Act

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), commonly known as Superfund, provides a federal "superfund" to clean up...

  6. CERCLA Site Assessment questions and answers (Qs&As)

    Energy Technology Data Exchange (ETDEWEB)

    Traceski, T.T.

    1993-11-09

    This documents contains commonly asked questions and corresponding answers (Qs&As) on the CERCLA Site Assessment process. These questions were derived from DOE element responses to a solicitation calling for the identification of (unresolved) issues associated with the conduct of CERCLA site assessments, and from inquiries received during a series of Site Assessment Workshops provided by the Environmental Protection Agency (EPA) and the Office of Environmental Guidance, RCRA/CERCLA Division (EH-231). Answers to these questions were prepared by EH-231 in cooperation with the EPA Federal Facilities Team in Office of Solid Waste and Emergency Response, Site Assessment Branch, and in coordination with the Office of Environmental Compliance, Facilities Compliance Division (EH-222).

  7. 2011 Remediation Effectiveness Report for the U.S. Department of Energy Oak Ridge Reservation, Oak Ridge, Tennessee - Data and Evaluations

    Energy Technology Data Exchange (ETDEWEB)

    Bechtel Jacobs

    2011-03-01

    Under the requirements of the Oak Ridge Reservation (ORR) Federal Facility Agreement (FFA) established between the U.S. Department of Energy (DOE), the U.S. Environmental Protection Agency, (EPA) and the Tennessee Department of Environment and Conservation (TDEC) in 1992, all environmental restoration activities on the ORR are performed in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). Since the 1990s, the environmental restoration activities have experienced a gradual shift from characterization to remediation. As this has occurred, it has been determined that the assessment of the individual and cumulative performance of all ORR CERCLA remedial actions (RAs) is most effectively tracked in a single document. The Remediation Effectiveness Report (RER) is an FFA document intended to collate all ORR CERCLA decision requirements, compare pre- and post-remediation conditions at CERCLA sites, and present the results of any required post-decision remediation effectiveness monitoring. First issued in 1997, the RER has been reissued annually to update the performance histories of completed actions and to add descriptions of new CERCLA actions. Monitoring information used in the 2011 RER to assess remedy performance was collected and/or compiled by DOE's Water Resources Restoration Program (WRRP). Only data used to assess performance of completed actions are provided. In addition to collecting CERCLA performance assessment data, the WRRP also collects baseline data to be used to gauge the effectiveness of future actions once implemented. These baseline data are maintained in the Oak Ridge Environmental Information System and will be reported in future RERs, as necessary, once the respective actions are completed. However, when insufficient data exist to assess the impact of the RAs, e.g., when the RA was only recently completed, a preliminary evaluation is made of early indicators of effectiveness at the

  8. Verification of EPA's ''Preliminary Remediation Goals for radionuclides'' (PRG) electronic calculator

    Energy Technology Data Exchange (ETDEWEB)

    Jannik, Tim [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Stagich, Brooke [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-08-28

    The U.S. Environmental Protection Agency (EPA) requested an external, independent verification study of their updated “Preliminary Remediation Goals for Radionuclides” (PRG) electronic calculator. The calculator provides PRGs for radionuclides that are used as a screening tool at Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and Resource Conservation and Recovery Act (RCRA) sites. These risk-based PRGs establish concentration limits under specific exposure scenarios. The purpose of this verification study is to determine that the calculator has no inherit numerical problems with obtaining solutions as well as to ensure that the equations are programmed correctly. There are 167 equations used in the calculator. To verify the calculator, all equations for each of seven receptor types (resident, construction worker, outdoor and indoor worker, recreator, farmer, and composite worker) were hand calculated using the default parameters. The same four radionuclides (Am-241, Co-60, H-3, and Pu-238) were used for each calculation for consistency throughout.

  9. Remedial investigation report on Waste Area Grouping 5 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 3, Appendix B, Technical findings and conclusions

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-01

    This Remedial Investigation Report on Waste Area Grouping, (NVAG) 5 at Oak Ridge National Laboratory was prepared in accordance with requirements under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) for reporting, the results of a site chacterization for public review. This work was performed under Work Breakdown Structure 1.4.12.6.1.05.40.02 (Activity Data Sheet 3305, ``WAG 5``). Publication of this document meets a Federal Facility Agreement milestone of March 31, 1995. This document provides the Environmental Restoration Program with information about the results of investigations performed at WAG 5. It includes information on risk assessments that have evaluated long-term impacts to human health and the environment. Information provided in this document forms the basis for decisions regarding, the need for subsequent remediation work at WAG 5.

  10. Remedial investigation report on Waste Area Grouping 5 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 3, Appendix B, Technical findings and conclusions

    International Nuclear Information System (INIS)

    This Remedial Investigation Report on Waste Area Grouping, (NVAG) 5 at Oak Ridge National Laboratory was prepared in accordance with requirements under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) for reporting, the results of a site chacterization for public review. This work was performed under Work Breakdown Structure 1.4.12.6.1.05.40.02 (Activity Data Sheet 3305, ''WAG 5''). Publication of this document meets a Federal Facility Agreement milestone of March 31, 1995. This document provides the Environmental Restoration Program with information about the results of investigations performed at WAG 5. It includes information on risk assessments that have evaluated long-term impacts to human health and the environment. Information provided in this document forms the basis for decisions regarding, the need for subsequent remediation work at WAG 5

  11. Responsiveness summary for the remedial investigation/feasibility study for management of the bulk wastes at the Weldon Spring quarry, Weldon Spring, Missouri

    International Nuclear Information System (INIS)

    The US Department of Energy (DOE) is responsible for conducting remedial actions at the Weldon Spring site in St. Charles County, Missouri, under its Surplus Facilities Management Program. The site consists of a quarry and a chemical plant area located about 6.4 km (4 mi) northeast of the quarry. The quarry is surrounded by the Weldon Spring Wildfire Area and is near an alluvial well field that constitutes a major source of potable water for St. Charles County; the nearest supply well is located about 0.8 km (0.5 mi) southeast of the quarry. From 1942 to 1969, the quarry was used for the disposal of various radioactively and chemically contaminated materials. Bulk wastes in the quarry consist of contaminated soils and sediments, rubble, metal debris, and equipment. As part of overall site remediation, DOE is proposing to conduct an interim remedial action at the quarry to manage the radioactively and chemically contaminated bulk wastes contained therein. Potential remedial action alternatives for managing the quarry bulk wastes have been evaluated consistent with US Environmental Protection Agency (EPA) guidance for conducting remedial actions under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended. The contents of these documents were developed in consultation with EPA Region VII and the state of Missouri and reflect the focused scope defined for this interim remedial action. 9 refs

  12. 33 CFR 1.01-70 - CERCLA delegations.

    Science.gov (United States)

    2010-07-01

    ... from a facility, and to secure such relief as may be necessary to abate such danger or threat through the United States attorney of the district in which the threat occurs. (2) Authority, pursuant to.... (3) Authority, pursuant to section 108 of CERCLA, to deny entry to any port or place in the...

  13. The marriage of RCRA and CERCLA at the Rocky Flats Environmental Technology Site

    International Nuclear Information System (INIS)

    A key goal of the Rocky Flats Cleanup Agreement (RFCA) signed in July of 1996 was to provide a seamless marriage of the Resource Conservation and Recovery Act (RCRA) (and other media specific programs) and the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) and the implementing agencies of each. This paper examines the two years since the signing of RFCA and identifies the successes, failures, and stresses of the marriage. RFCA has provided an excellent vehicle for regulatory and substantive progress at the Department of Energy's Rocky Flats facility. The key for a fully successful marriage is to build on the accomplishments to date and to continually improve the internal and external systems and relationships. To date, the parties can be proud of both the substantial accomplishment of substantive environmental work and the regulatory systems that have enabled the work

  14. Remedial investigation/feasibility study report for Lower Watts Bar Reservoir Operable Unit

    International Nuclear Information System (INIS)

    This document is the combined Remedial Investigation and Feasibility Study Report for the lower Watts Bar Reservoir (LWBR) Operable Unit (OU). The LWBR is located in Roane, Rhea, and Meigs counties, Tennessee, and consists of Watts Bar Reservoir downstream of the Clinch river. This area has received hazardous substances released over a period of 50 years from the US Department of Energy's Oak Ridge Reservation (ORR), a National Priority List site established under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). As required by this law, the ORR and all off-site areas that have received contaminants, including LWBR, must be investigated to determine the risk to human health and the environment resulting from these releases, the need for any remedial action to reduce these risks, and the remedial actions that are most feasible for implementation in this OU. Contaminants from the ORR are primarily transported to the LWBR via the Clinch River. There is little data regarding the quantities of most contaminants potentially released from the ORR to the Clinch River, particularly for the early years of ORR operations. Estimates of the quantities released during this period are available for most radionuclides and some inorganic contaminants, indicating that releases 30 to 50 years ago were much higher than today. Since the early 1970s, the release of potential contaminants has been monitored for compliance with environmental law and reported in the annual environmental monitoring reports for the ORR

  15. Remedial investigation/feasibility study report for Lower Watts Bar Reservoir Operable Unit

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-01

    This document is the combined Remedial Investigation and Feasibility Study Report for the lower Watts Bar Reservoir (LWBR) Operable Unit (OU). The LWBR is located in Roane, Rhea, and Meigs counties, Tennessee, and consists of Watts Bar Reservoir downstream of the Clinch river. This area has received hazardous substances released over a period of 50 years from the US Department of Energy`s Oak Ridge Reservation (ORR), a National Priority List site established under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). As required by this law, the ORR and all off-site areas that have received contaminants, including LWBR, must be investigated to determine the risk to human health and the environment resulting from these releases, the need for any remedial action to reduce these risks, and the remedial actions that are most feasible for implementation in this OU. Contaminants from the ORR are primarily transported to the LWBR via the Clinch River. There is little data regarding the quantities of most contaminants potentially released from the ORR to the Clinch River, particularly for the early years of ORR operations. Estimates of the quantities released during this period are available for most radionuclides and some inorganic contaminants, indicating that releases 30 to 50 years ago were much higher than today. Since the early 1970s, the release of potential contaminants has been monitored for compliance with environmental law and reported in the annual environmental monitoring reports for the ORR.

  16. A guide to CERCLA site assessment. Environmental Guidance

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    This Pocket Guide is a condensed version of information provided in three EPA documents: Guidance for Performing Preliminary Assessments Under CERCLA, Guidance for Performing Site Inspections Under CERCLA, and Hazard Ranking System Guidance Manual. Additionally the guide provides a DOE perspective on site assessment issues and information on the Federal Agency Hazardous Waste Compliance Docket as well as data sources for DOE site assessments. The guide is intended to present this information in a simple, portable, and direct manner that will allow the user to effectively focus on those aspects of the site assessment process of interest. The guide is not intended as a substitute for the three EPA guidance documents mentioned previously. DOE investigators should be thoroughly familiar with the EPA guidance before conducting site assessments. Use this pocketguide as an overview of procedures and requirements and as a field guide.

  17. Savannah River Site, Liquid Waste Program, Savannah River Remediation American Recovery and Reinvestment Act Benefits and Lessons Learned - 12559

    International Nuclear Information System (INIS)

    Utilizing funding provided by the American Recovery and Reinvestment Act (ARRA), the Liquid Waste Program at Savannah River site successfully executed forty-one design, procurement, construction, and operating activities in the period from September 2009 through December 2011. Project Management of the program included noteworthy practices involving safety, integrated project teams, communication, and cost, schedule and risk management. Significant upgrades to plant capacity, progress toward waste tank closure and procurement of needed infrastructure were accomplished. Over 1.5 million hours were worked without a single lost work day case. Lessons Learned were continually identified and applied to enhance the program. Investment of Recovery Act monies into the Liquid Waste Program has ensured continued success in the disposition of radioactive wastes and the closure of high level waste tanks at SRS. The funding of a portion of the Liquid Waste Program at SRS by ARRA was a major success. Significant upgrades to plant capacity, progress toward waste tank closure and procurement of needed infrastructure was accomplished. Integrated Project Teams ensured quality products and services were provided to the Operations customers. Over 1.5 million hours were worked without a single lost work day case. Lessons Learned were continually reviewed and reapplied to enhance the program. Investment of Recovery Act monies into the Liquid Waste Program has ensured continued success in the disposition of radioactive wastes and the closure of high level waste tanks at SRS. (authors)

  18. Work plan addendum for the remedial investigation and feasibility study of the Salmon Site

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    This document is intended as an addendum to the Remedial Investigation and Feasibility Study (RI/FS) Work Plan for the Salmon Site (SS) (formerly the Tatum Dome Test Site) Lamar County, Mississippi. The original work plan - Remedial Investigation and Feasibility Study of the Tatum Dome Test Site, Lamar County, Mississippi (herein after called the Work Plan) was approved by the state of Mississippi in 1992 and was intended as the operative document for investigative activities at the Tatum Dome Test Site. Subsequent to the approval of the document a series of activities were undertaken under the auspices of the work plan. This document is organized in the same manner as the original work plan: (1) Introduction; (2) Site Background and History; (3) Initial Evaluation; (4) Data Quality Objectives; (5) RI/FS Tasks; (6) Project Schedule; (7) Project Management; and (8) Reference. This addendum will identify changes to the original work plan that are necessary because of additional information acquired at the SS. This document is not intended to replace the work plan, rather, it is intended to focus the remaining work in the context of additional site knowledge gained since the development of the original work plan. The U.S. Department of Energy (DOE) is conducting a focused and phased site characterization as a part, of the RI/FS. The RI/FS is the methodology under the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) for evaluating hazardous waste sites on the National Priorities List (NPL). The SS is not listed on the NPL, but DOE has voluntarily elected to conduct the evaluation of the SS in accordance with CERCLA.

  19. Development of exposure scenarios for CERCLA risk assessments at the Savannah River Site

    International Nuclear Information System (INIS)

    A CERCLA Baseline Risk Assessment (BRA) is performed to determine if there are any potential risks to human health and the environment from waste unit at SRS. The SRS has numerous waste units to evaluate in the RFMU and CMS/FS programs and, in order to provide a consistent approach, four standard exposure scenarios were developed for exposure assessments to be used in human health risk assessments. The standard exposure scenarios are divided into two temporal categories: (a) Current Land Use in the BRA, and (b) Future Land Use in the RERA. The Current Land Use scenarios consist of the evaluation of human health risk for Industrial Exposure (of a worker not involved in waste unit characterization or remediation), a Trespasser, a hypothetical current On-site Resident, and an Off-site Resident. The Future Land Use scenario considers exposure to an On-site Resident following termination of institutional control in the absence of any remedial action (No Action Alternative), as well as evaluating potential remedial alternatives against the four scenarios from the BRA. A critical facet in the development of a BRA or RERA is the scoping of exposure scenarios that reflect actual conditions at a waste unit, rather than using factors such as EPA Standard Default Exposure Scenarios (OSWER Directive 9285.6-03) that are based on upper-bound exposures that tend to reflect worst case conditions. The use of site-specific information for developing risk assessment exposure scenarios will result in a more realistic estimate of Reasonable Maximum Exposure for SRS waste units

  20. Risk assessment and optimization (ALARA) analysis for the environmental remediation of Brookhaven National Laboratory`s hazardous waste management facility

    Energy Technology Data Exchange (ETDEWEB)

    Dionne, B.J.; Morris, S.C. III; Baum, J.W. [and others

    1998-01-01

    The Department of Energy`s (DOE) Office of Environment, Safety, and Health (EH) sought examples of risk-based approaches to environmental restoration to include in their guidance for DOE nuclear facilities. Extensive measurements of radiological contamination in soil and ground water have been made at Brookhaven National Laboratory`s Hazardous Waste Management Facility (HWMF) as part of a Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) remediation process. This provided an ideal opportunity for a case study. This report provides a risk assessment and an {open_quotes}As Low as Reasonably Achievable{close_quotes} (ALARA) analysis for use at other DOE nuclear facilities as an example of a risk-based decision technique. This document contains the Appendices for the report.

  1. Risk assessment and optimization (ALARA) analysis for the environmental remediation of Brookhaven National Laboratory`s hazardous waste management facility

    Energy Technology Data Exchange (ETDEWEB)

    Dionne, B.J.; Morris, S. III; Baum, J.W. [and others

    1998-03-01

    The Department of Energy`s (DOE) Office of Environment, Safety, and Health (EH) sought examples of risk-based approaches to environmental restoration to include in their guidance for DOE nuclear facilities. Extensive measurements of radiological contamination in soil and ground water have been made at Brookhaven National Laboratory`s Hazardous Waste Management Facility (HWMF) as part of a Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) remediation process. This provided an ideal opportunity for a case study. This report provides a risk assessment and an {open_quotes}As Low as Reasonably Achievable{close_quotes} (ALARA) analysis for use at other DOE nuclear facilities as an example of a risk-based decision technique.

  2. Risk assessment and optimization (ALARA) analysis for the environmental remediation of Brookhaven National Laboratory's hazardous waste management facility

    International Nuclear Information System (INIS)

    The Department of Energy's (DOE) Office of Environment, Safety, and Health (EH) sought examples of risk-based approaches to environmental restoration to include in their guidance for DOE nuclear facilities. Extensive measurements of radiological contamination in soil and ground water have been made at Brookhaven National Laboratory's Hazardous Waste Management Facility (HWMF) as part of a Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) remediation process. This provided an ideal opportunity for a case study. This report provides a risk assessment and an open-quotes As Low as Reasonably Achievableclose quotes (ALARA) analysis for use at other DOE nuclear facilities as an example of a risk-based decision technique. This document contains the Appendices for the report

  3. State Environmental Policy Act (SEPA) environmental checklist forms for 304 Concretion Facility Closure Plan. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-01

    The 300 Area of the Hanford Site contains reactor fuel manufacturing facilities and several research and development laboratories. Recyclable scrap uranium with zircaloy-2 and copper silicon alloy, uranium-titanium alloy, beryllium/zircaloy-2 alloy, and zircaloy-2 chips and fines were secured in concrete billets (7.5-gallon containers) in the 304 Facility, located in the 300 Area. The beryllium/zircaloy-2 alloy and zircaloy-2 chips and fines are designated as mixed waste with the characteristic of ignitability. The concretion process reduced the ignitability of the fines and chips for safe storage and shipment. This process has been discontinued and the 304 Facility is now undergoing closure as defined in the Resource Conservation and Recovery Act (RCRA) of 1976 and the Washington Administrative Code (WAC) Dangerous Waste Regulations, WAC 173-303-040. This closure plan presents a description of the 304 Facility, the history of materials and waste managed, and the procedures that will be followed to close the 304 Facility. The 304 Facility is located within the 300-FF-3 (source) and 300-FF-5 (groundwater) operable units, as designated in the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) (Ecology et al. 1992). Contamination in the operable units 300-FF-3 and 300-FF-5 is scheduled to be addressed through the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) of 1980 remedial action process. Therefore, all soil remedial action at the 304 Facility will be conducted as part of the CERCLA remedial action of operable units 300-FF-3 and 300-FF-5.

  4. State Environmental Policy Act (SEPA) environmental checklist forms for 304 Concretion Facility Closure Plan

    International Nuclear Information System (INIS)

    The 300 Area of the Hanford Site contains reactor fuel manufacturing facilities and several research and development laboratories. Recyclable scrap uranium with zircaloy-2 and copper silicon alloy, uranium-titanium alloy, beryllium/zircaloy-2 alloy, and zircaloy-2 chips and fines were secured in concrete billets (7.5-gallon containers) in the 304 Facility, located in the 300 Area. The beryllium/zircaloy-2 alloy and zircaloy-2 chips and fines are designated as mixed waste with the characteristic of ignitability. The concretion process reduced the ignitability of the fines and chips for safe storage and shipment. This process has been discontinued and the 304 Facility is now undergoing closure as defined in the Resource Conservation and Recovery Act (RCRA) of 1976 and the Washington Administrative Code (WAC) Dangerous Waste Regulations, WAC 173-303-040. This closure plan presents a description of the 304 Facility, the history of materials and waste managed, and the procedures that will be followed to close the 304 Facility. The 304 Facility is located within the 300-FF-3 (source) and 300-FF-5 (groundwater) operable units, as designated in the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) (Ecology et al. 1992). Contamination in the operable units 300-FF-3 and 300-FF-5 is scheduled to be addressed through the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) of 1980 remedial action process. Therefore, all soil remedial action at the 304 Facility will be conducted as part of the CERCLA remedial action of operable units 300-FF-3 and 300-FF-5

  5. Feasibility study for remedial action for the Quarry Residuals Operable Unit at the Weldon Spring Site, Weldon Spring, Missouri

    International Nuclear Information System (INIS)

    The U.S. Department of Energy (DOE) is conducting cleanup activities at the Weldon Spring site, which is located in St. Charles County, Missouri, about 48 km (30 mi) west of St. Louis (Figure 1.1). Cleanup of the Weldon Spring site consists of several integrated components. The quarry residuals operable unit (QROU) is one of four operable units being evaluated. In accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended, a remedial investigation/feasibility study (RI/FS) is being conducted to evaluate conditions and potential responses for the following areas and/or media that constitute the QROU: (1) the residual material (soil and sediment) remaining at the Weldon Spring quarry after removal of the bulk waste (about 11 million L [3 million gal] of uranium-contaminated ponded water was also addressed previous to bulk waste removal); (2) other media located in the surrounding vicinity of the quarry, including adjacent soil, surface water, and sediment in Femme Osage Slough and several creeks; and (3) quarry groundwater located primarily north of Femme Osage Slough. Potential impacts to the St. Charles County well field downgradient of the quarry area are also being addressed as part of QROU RI/FS evaluations. For remedial action sites, it is DOE policy to integrate values associated with the National Environmental Policy Act (NEPA) into the CERCLA decision-making process. The analyses contained herein address NEPA values as appropriate to the actions being considered for the QROU. A work plan summarizing initial site conditions and providing conceptual site hydrogeological and exposure models was published in January 1994. The RI and baseline risk assessment (BRA) reports have been completed. The RI discusses in detail the nature and extent and the fate and transport of contamination at the quarry area

  6. Feasibility study for remedial action for the Quarry Residuals Operable Unit at the Weldon Spring Site, Weldon Spring, Missouri

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The U.S. Department of Energy (DOE) is conducting cleanup activities at the Weldon Spring site, which is located in St. Charles County, Missouri, about 48 km (30 mi) west of St. Louis (Figure 1.1). Cleanup of the Weldon Spring site consists of several integrated components. The quarry residuals operable unit (QROU) is one of four operable units being evaluated. In accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended, a remedial investigation/feasibility study (RI/FS) is being conducted to evaluate conditions and potential responses for the following areas and/or media that constitute the QROU: (1) the residual material (soil and sediment) remaining at the Weldon Spring quarry after removal of the bulk waste (about 11 million L [3 million gal] of uranium-contaminated ponded water was also addressed previous to bulk waste removal); (2) other media located in the surrounding vicinity of the quarry, including adjacent soil, surface water, and sediment in Femme Osage Slough and several creeks; and (3) quarry groundwater located primarily north of Femme Osage Slough. Potential impacts to the St. Charles County well field downgradient of the quarry area are also being addressed as part of QROU RI/FS evaluations. For remedial action sites, it is DOE policy to integrate values associated with the National Environmental Policy Act (NEPA) into the CERCLA decision-making process. The analyses contained herein address NEPA values as appropriate to the actions being considered for the QROU. A work plan summarizing initial site conditions and providing conceptual site hydrogeological and exposure models was published in January 1994. The RI and baseline risk assessment (BRA) reports have been completed. The RI discusses in detail the nature and extent and the fate and transport of contamination at the quarry area.

  7. Five-Year Review of CERCLA Response Actions at the Idaho National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    W. L. Jolley

    2007-02-01

    This report summarizes the documentation submitted in support of the five-year review or remedial actions implemented under the Comprehensive Environmental Response, Compensation, and Liability Act Sitewide at the Idaho National Laboratory. The report also summarizes documentation and inspections conducted at the no-further-action sites. This review covered actions conducted at 9 of the 10 waste area groups at the Idaho National Laboratory, i.e. Waste Area Groups 1, 2, 3, 4, 5, 6, 7, 9, and 10. Waste Area Group 8 was not subject to this review, because it does not fall under the jurisdiction of the U.S. Department of Energy Idaho Operations Office. The review included past site inspections and monitoring data collected in support of the remedial actions. The remedial actions have been completed at Waste Area Groups 2, 4, 5, 6, and 9. Remedial action reports have been completed for Waste Area Groups 2 and 4, and remedial action reports are expected to be completed during 2005 for Waste Area Groups 1, 5, and 9. Remediation is ongoing at Waste Area Groups 3, 7, and 10. Remedial investigations are yet to be completed for Operable Units 3-14, 7-13/14, and 10-08. The review showed that the remedies have been constructed in accordance with the requirements of the Records of Decision and are functioning as designed. Immediate threats have been addressed, and the remedies continue to be protective. Potential short-term threats are being addressed though institutional controls. Soil cover and cap remedies are being maintained properly and inspected in accordance with the appropriate requirements. Soil removal actions and equipment or system removals have successfully achieved remedial action objectives identified in the Records of Decision. The next Sitewide five-year review is scheduled for completion by 2011.

  8. Summary of Model Toxics Control Act (MTCA) Potential Impacts Related to Hanford Cleanup and the Tri-Party Agreement (TPA)

    Energy Technology Data Exchange (ETDEWEB)

    IWATATE, D.F.

    2000-07-14

    This white paper provides an initial assessment of the potential impacts of the Model Toxics Control Act (MTCA) regulations (and proposed revisions) on the Hanford site cleanup and addresses concerns that MTCA might impose inappropriate or unachievable clean-up levels and drive clean-up costs higher. The white paper and supporting documentation (Appendices A and B) provide DOE with a concise and up-to-date review of potential MTCA impacts to cost and schedule for the Hanford site activities. MTCA, Chapter 70.105D RCW, is the State of Washington's risk based law governing clean-up of contaminated sites and is implemented by The Washington Department of Ecology (Ecology) under the MTCA Clean-up Regulations, Chapter 173-340 WAC. Hanford cleanup is subject to the MTCA requirements as Applicable, Relevant and Appropriate Requirements (ARARs) for those areas of Hanford being managed under the authority of the Federal Resource Conservation and Recovery Act (RCRA), Comprehensive Environmental Response, Compensation and Liability Act (CERCLA), and the state Dangerous Waste Regulations. MTCA provides Ecology with authority to implement site clean-up actions under both the federal RCRA and CERCLA regulations as well as the state regulations. Most of the Hanford clean-up actions are being implemented under the CERCLA program, however, there is a trend is toward increased use of MTCA procedures and standards. The application of MTCA to the Hanford clean-up has been an evolving process with some of the Hanford clean-up actions considering MTCA standards as an ARAR and using MTCA procedures for remedy selection. The increased use and application of MTCA standards and procedures could potentially impact both cost and schedule for the Hanford cleanup.

  9. Feasibility study for remedial action for the groundwater operable units at the chemical plant area and the ordnance works area, Weldon Spring, Missouri

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-15

    The U.S. Department of Energy (DOE) and the U.S. Department of Army (DA) are conducting an evaluation to identify the appropriate response action to address groundwater contamination at the Weldon Spring Chemical Plant (WSCP) and the Weldon Spring Ordnance Works (WSOW), respectively. The two areas are located in St. Charles County, about 48 km (30 rni) west of St. Louis. The groundwater operable unit (GWOU) at the WSCP is one of four operable units being evaluated by DOE as part of the Weldon Spring Site Remedial Action Project (WSSRAP). The groundwater operable unit at the WSOW is being evaluated by the DA as Operable Unit 2 (OU2); soil and pipeline contamination are being managed under Operable Unit 1 (OU1). Remedial activities at the WSCP and the WSOW are being conducted in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). Consistent with DOE policy, National Environmental Policy Act (NEPA) values have been incorporated into the CERCLA process. A remedial investigation/feasibility study (RI/FS) work plan summarizing initial site conditions and providing site hydrogeological and exposure models was published in August of 1995 (DOE 1995). The remedial investigation (RI) and baseline risk assessment (BRA) have also recently been completed. The RI (DOE and DA 1998b) discusses in detail the nature, extent, fate, and transport of groundwater and spring water contamination. The BRA (DOE and DA 1998a) is a combined baseline assessment of potential human health and ecological impacts and provides the estimated potential health risks and ecological impacts associated with groundwater and springwater contamination if no remedial action were taken. This feasibility study (FS) has been prepared to evaluate potential options for addressing groundwater contamination at the WSCP and the WSOW. A brief description of the history and environmental setting of the sites is presented in Section 1.1, key information relative to the

  10. Feasibility study for remedial action for the groundwater operable units at the chemical plant area and the ordnance works area at the Weldon Spring Site, Weldon Spring, Missouri

    International Nuclear Information System (INIS)

    The U.S. Department of Energy (DOE) and the U.S. Department of Army (DA) are conducting an evaluation to identify the appropriate response action to address groundwater contamination at the Weldon Spring Chemical Plant (WSCP) and the Weldon Spring Ordnance Works (WSOW), respectively. The two areas are located in St. Charles County, about 48 km (30 rni) west of St. Louis. The groundwater operable unit (GWOU) at the WSCP is one of four operable units being evaluated by DOE as part of the Weldon Spring Site Remedial Action Project (WSSRAP). The groundwater operable unit at the WSOW is being evaluated by the DA as Operable Unit 2 (OU2); soil and pipeline contamination are being managed under Operable Unit 1 (OU1). Remedial activities at the WSCP and the WSOW are being conducted in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). Consistent with DOE policy, National Environmental Policy Act (NEPA) values have been incorporated into the CERCLA process. A remedial investigation/feasibility study (RI/FS) work plan summarizing initial site conditions and providing site hydrogeological and exposure models was published in August of 1995 (DOE 1995). The remedial investigation (RI) and baseline risk assessment (BRA) have also recently been completed. The RI (DOE and DA 1998b) discusses in detail the nature, extent, fate, and transport of groundwater and spring water contamination. The BRA (DOE and DA 1998a) is a combined baseline assessment of potential human health and ecological impacts and provides the estimated potential health risks and ecological impacts associated with groundwater and springwater contamination if no remedial action were taken. This feasibility study (FS) has been prepared to evaluate potential options for addressing groundwater contamination at the WSCP and the WSOW. A brief description of the history and environmental setting of the sites is presented in Section 1.1, key information relative to the

  11. Validated analytical data summary report for White Oak Creek Watershed remedial investigation supplemental sampling, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    CDM Federal Programs Corporation (CDM Federal) was tasked by the Environmental Restoration Program of Lockheed Martin Energy Systems Inc. (Energy Systems), to collect supplemental surface soil data for the remedial investigation/feasibility study (RI/FS) for the White Oak Creek (WOC) watershed. The WOC watershed RI/FS is being conducted to define a remediation approach for complying with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) at Oak Ridge National Laboratory (ORNL). The data generated from these supplemental sampling activities will be incorporated into the RUFS to aid decision makers and stakeholders with the selection of remedial alternatives and establish remediation goals for the WOC watershed. A series of Data Quality Objective (DQO) meetings were held in February 1996 to determine data needs for the WOC watershed RI/FS. The meetings were attended by representatives from the Tennessee Department of Environment and Conservation, the U.S. Environmental Protection Agency (EPA), the U.S. Department of Energy (DOE), and contractors to DOE. During the DQO meetings, it was determined that the human health risk associated with exposure to radionuclides was high enough to establish a baseline for action; however, it was also determined that the impacts associated with other analytes (mainly metals) were insufficient for determining the baseline ecological risk. Based on this premise, it was determined that additional sampling would be required at four of the Waste Area Groupings (WAGs) included in the WOC watershed to fulfill this data gap.

  12. PEEL V HAMON J&C ENGINEERING (PTY LTD: Ignoring The Result-Requirement of Section 163(1(A of the Companies Act And Extending the Oppression Remedy Beyond its statutorily intended reach

    Directory of Open Access Journals (Sweden)

    HGJ Beukes

    2014-11-01

    Full Text Available This case note provides a concise and understandable version of the confusing facts in Peel v Hamon J&C Engineering (Pty Ltd, and deals with the remedy provided for in section 163 of the Companies Act (the oppression remedy. The importance of drawing a distinction between the application of this section and the orders that the Court can make to provide relief in terms of subsection (2 is explained, after which each requirement contained in subsection (1(a is analysed. With reference to the locus standi-requirement, it is indicated that the judgment is not to be regarded as authority for the contention that a shareholder or a director who wants to exercise the oppression remedy need not have been a shareholder or a director of the company at the time of the conduct. With reference to the conduct-requirement, it is indicated that it would have been more appropriate for the applicants to have made use of a remedy in terms of the law of contract. Most importantly, the result-requirement is indicated to have been ignored, as a lack of certainty that there will be a result is argued not to constitute a result. Ignoring the result-requirement is explained to have resulted in ignoring the detriment-requirement, in turn. Accordingly, it is concluded that the oppression remedy was utilised without the specified statutory criteria having been satisfied and that the applicants' interests were protected by a remedy which should not have found application under the circumstances, as this was beyond the remedy's statutorily intended reach.

  13. Addendum to the East Tennessee Technology Park Site-Wide Residual Contamination Remedial Investigation Work Plan Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    SAIC

    2011-04-01

    The East Tennessee Technology Park Site-Wide Residual Contamination Remedial Investigation Work Plan (DOE 2004) describes the planned fieldwork to support the remedial investigation (RI) for residual contamination at the East Tennessee Technology Park (ETTP) not addressed in previous Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) decisions. This Addendum describes activities that will be conducted to gather additional information in Zone 1 of the ETTP for groundwater, surface water, and sediments. This Addendum has been developed from agreements reached in meetings held on June 23, 2010, August 25, 2010, October 13, 2010, November 13, 2010, December 1, 2010, and January 13, 2011, with representatives of the U. S. Department of Energy (DOE), U. S. Environmental Protection Agency (EPA), and Tennessee Department of Environment and Conservation (TDEC). Based on historical to recent groundwater data for ETTP and the previously completed Sitewide Remedial Investigation for the ETTP (DOE 2007a), the following six areas of concern have been identified that exhibit groundwater contamination downgradient of these areas above state of Tennessee and EPA drinking water maximum contaminant levels (MCLs): (1) K-720 Fly Ash Pile, (2) K-770 Scrap Yard, (3) Duct Island, (4) K-1085 Firehouse Burn/J.A. Jones Maintenance Area, (5) Contractor's Spoil Area (CSA), and (6) Former K-1070-A Burial Ground. The paper presents a brief summary of the history of the areas, the general conceptual models for the observed groundwater contamination, and the data gaps identified.

  14. 78 FR 63978 - Proposed CERCLA Settlements Relating to the Truckers Warehouse Site in Passaic, Passaic County...

    Science.gov (United States)

    2013-10-25

    ... AGENCY Proposed CERCLA Settlements Relating to the Truckers Warehouse Site in Passaic, Passaic County...(h)(1) of CERCLA, with (1) RJS Corp.; (2) Your Factory Warehouse, Inc., Douglas Marino and Mark... response costs incurred at or in connection with the Truckers Warehouse Site (``Site''), located in...

  15. Remedial investigation plan for Waste Area Grouping 1 at Oak Ridge National Laboratory, Oak Ridge, Tennessee: Responses to regulator comments

    Energy Technology Data Exchange (ETDEWEB)

    1991-05-01

    This document, ES/ER-6 D2, is a companion document to ORNL/RAP/Sub-87/99053/4 R1, Remedial Investigation Plan for ORNL Waste Area Grouping 1, dated August 1989. This document lists comments received from the Environmental Protection Agency, Region 4 (EPA) and the Tennessee Department of Health and Environment (TDHE) and responses to each of these comments. As requested by EPA, a revised Remedial Investigation (RI) Plan for Waste Area Grouping (WAG) 1 will not be submitted. The document is divided into two Sections and Appendix. Section I contains responses to comments issued on May 22, 1990, by EPA's Region 4 program office responsible for implementing the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). Section 2 contains responses to comments issued on April 7, 1989, by EPA's program office responsible for implementing the Resource Conservation and Recovery Act (RCRA); these comments include issues raised by the TDHE. The Appendix contains the attachments referenced in a number of the responses. 35 refs.

  16. Targeted Health Assessment for Wastes Contained at the Niagara Falls Storage Site to Guide Planning for Remedial Action Alternatives - 13428

    Energy Technology Data Exchange (ETDEWEB)

    Busse, John; Keil, Karen; Staten, Jane; Miller, Neil; Barker, Michelle [U.S. Army Corps of Engineers, Buffalo District, 1776 Niagara Street, Buffalo, NY (United States); MacDonell, Margaret; Peterson, John; Chang, Young-Soo; Durham, Lisa [Argonne National Laboratory, Environmental Science Division, 9700 S. Cass Ave., Argonne, IL 60439 (United States)

    2013-07-01

    The U.S. Army Corps of Engineers (USACE) is evaluating potential remedial alternatives at the 191-acre Niagara Falls Storage Site (NFSS) in Lewiston, New York, under the Formerly Utilized Sites Remedial Action Program (FUSRAP). The Manhattan Engineer District (MED) and Atomic Energy Commission (AEC) brought radioactive wastes to the site during the 1940's and 1950's, and the U.S. Department of Energy (US DOE) consolidated these wastes into a 10-acre interim waste containment structure (IWCS) in the southwest portion of the site during the 1980's. The USACE is evaluating remedial alternatives for radioactive waste contained within the IWCS at the NFSS under the Feasibility Study phase of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) process. A preliminary evaluation of the IWCS has been conducted to assess potential airborne releases associated with uncovered wastes, particularly during waste excavation, as well as direct exposures to uncovered wastes. Key technical issues for this assessment include: (1) limitations in waste characterization data; (2) representative receptors and exposure routes; (3) estimates of contaminant emissions at an early stage of the evaluation process; (4) consideration of candidate meteorological data and air dispersion modeling approaches; and (5) estimates of health effects from potential exposures to both radionuclides and chemicals that account for recent updates of exposure and toxicity factors. Results of this preliminary health risk assessment indicate if the wastes were uncovered and someone stayed at the IWCS for a number of days to weeks, substantial doses and serious health effects could be incurred. Current controls prevent such exposures, and the controls that would be applied to protect onsite workers during remedial action at the IWCS would also effectively protect the public nearby. This evaluation provides framing context for the upcoming development and detailed

  17. In-Situ Radiological Surveys to Address Nuclear Criticality Safety Requirements During Remediation Activities at the Shallow Land Disposal Area, Armstrong County, Pennsylvania - 12268

    International Nuclear Information System (INIS)

    Cabrera Services Inc. (CABRERA) is the remedial contractor for the Shallow Land Disposal Area (SLDA) Site in Armstrong County Pennsylvania, a United States (US) Army Corps of Engineers - Buffalo District (USACE) contract. The remediation is being completed under the USACE's Formerly Utilized Sites Remedial Action Program (FUSRAP) which was established to identify, investigate, and clean up or control sites previously used by the Atomic Energy Commission (AEC) and its predecessor, the Manhattan Engineer District (MED). As part of the management of the FUSRAP, the USACE is overseeing investigation and remediation of radiological contamination at the SLDA Site in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), 42 US Code (USC), Section 9601 et. seq, as amended and, the National Oil and Hazardous Substance Pollution Contingency Plan (NCP), Title 40 of the Code of Federal Regulations (CFR) Section 300.430(f) (2). The objective of this project is to clean up radioactive waste at SLDA. The radioactive waste contains special nuclear material (SNM), primarily U-235, in 10 burial trenches, Cabrera duties include processing, packaging and transporting the waste to an offsite disposal facility in accordance with the selected remedial alternative as defined in the Final Record of Decision (USACE, 2007). Of particular importance during the remediation is the need to address nuclear criticality safety (NCS) controls for the safe exhumation and management of waste containing fissile materials. The partnership between Cabrera Services, Inc. and Measutronics Corporation led to the development of a valuable survey tool and operating procedure that are essential components of the SLDA Criticality Safety and Material Control and Accountability programs. Using proven existing technologies in the design and manufacture of the Mobile Survey Cart, the continued deployment of the Cart will allow for an efficient and reliable methodology to

  18. 75 FR 34448 - Proposed CERCLA Administrative Cost Recovery Settlement; Great Lakes Container Corporation...

    Science.gov (United States)

    2010-06-17

    ... AGENCY Proposed CERCLA Administrative Cost Recovery Settlement; Great Lakes Container Corporation... Lakes Container Corporation Superfund Site, located in Coventry Rhode Island with the settling parties...-1216. Comments should reference the Great Lakes Container Corporation Superfund Site, Coventry,...

  19. 76 FR 51029 - Proposed CERCLA Administrative Cost Recovery Settlement; Carpenter Avenue Mercury Site, Iron...

    Science.gov (United States)

    2011-08-17

    ... AGENCY Proposed CERCLA Administrative Cost Recovery Settlement; Carpenter Avenue Mercury Site, Iron... Mercury site in Iron Mountain, Dickenson County, Michigan with the following settling parties: The.... Comments should reference the Carpenter Avenue Mercury site, Iron Mountain, Dickenson County, Michigan...

  20. Remedial investigation concept plan for the groundwater operable units at the chemical plant area and the ordnance works area, Weldon Spring, Missouri

    International Nuclear Information System (INIS)

    The U.S. Department of Energy (DOE) and the U.S. Department of the Army (DA) are conducting cleanup activities at two properties--the DOE chemical plant area and the DA ordnance works area (the latter includes the training area)--located in the Weldon Spring area in St. Charles County, Missouri. These areas are on the National Priorities List (NPL), and cleanup activities at both areas are conducted in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended. DOE and DA are conducting a joint remedial investigation (RI) and baseline risk assessment (BRA) as part of the remedial investigation/feasibility study (RI/FS) for the groundwater operable units for the two areas. This joint effort will optimize further data collection and interpretation efforts and facilitate overall remedial decision making since the aquifer of concern is common to both areas. A Work Plan issued jointly in 1995 by DOE and the DA discusses the results of investigations completed at the time of preparation of the report. The investigations were necessary to provide an understanding of the groundwater system beneath the chemical plant area and the ordnance works area. The Work Plan also identifies additional data requirements for verification of the evaluation presented

  1. Remedial investigation concept plan for the groundwater operable units at the chemical plant area and the ordnance works area, Weldon Spring, Missouri

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-15

    The U.S. Department of Energy (DOE) and the U.S. Department of the Army (DA) are conducting cleanup activities at two properties--the DOE chemical plant area and the DA ordnance works area (the latter includes the training area)--located in the Weldon Spring area in St. Charles County, Missouri. These areas are on the National Priorities List (NPL), and cleanup activities at both areas are conducted in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended. DOE and DA are conducting a joint remedial investigation (RI) and baseline risk assessment (BRA) as part of the remedial investigation/feasibility study (RI/FS) for the groundwater operable units for the two areas. This joint effort will optimize further data collection and interpretation efforts and facilitate overall remedial decision making since the aquifer of concern is common to both areas. A Work Plan issued jointly in 1995 by DOE and the DA discusses the results of investigations completed at the time of preparation of the report. The investigations were necessary to provide an understanding of the groundwater system beneath the chemical plant area and the ordnance works area. The Work Plan also identifies additional data requirements for verification of the evaluation presented.

  2. Genealogy Remediated

    DEFF Research Database (Denmark)

    Marselis, Randi

    2007-01-01

    Genealogical websites are becoming an increasingly popular genre on the Web. This chapter will examine how remediation is used creatively in the construction of family history. While remediation of different kinds of old memory materials is essential in genealogy, digital technology opens new...

  3. Remedial investigation/feasibility study report for lower Watts Bar Reservoir Operable Unit

    International Nuclear Information System (INIS)

    This document is the combined Remedial Investigation and Feasibility Study Report for the Lower Watts Bar Reservoir (LWBR) Operable Unit (OU). The LWBR is located in Roane, Rhea, and Meigs counties, Tennessee, and consists of Watts Bar Reservoir downstream of the Clinch River. This area has received hazardous substances released over a period of 50 years from the U.S. Department of Energy's Oak Ridge Reservation (ORR), a National Priority List site established under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). As required by this law, the ORR and all off-site areas that have received containments, including LWBR, must be investigated to determine the risk to human health and the environment resulting from these releases, the need for any remedial action to reduce these risks, and the remedial actions that are most feasible for implementation in this OU. Contaminants from the ORR are primarily transported to the LWBR via the Clinch River. Water-soluble contaminants released to ORR surface waters are rapidly diluted upon entering the Clinch River and then quickly transported downstream to the Tennessee River where further dilution occurs. Almost the entire quantity of these diluted contaminants rapidly flows through LWBR. In contrast, particle-associated contaminants tend to accumulate in the lower Clinch River and in LWBR in areas of sediment deposition. Those particle-associated contaminants that were released in peak quantities during the early years of ORR operations (e.g., mercury and 137Cs) are buried under as much as 80 cm of cleaner sediment in LWBR. Certain contaminants, most notably polychlorinated biphenyls (PCBs), have accumulated in LWBR biota. The contamination of aquatic biota with PCBs is best documented for certain fish species and extends to reservoirs upstream of the ORR, indicating a contamination problem that is regional in scope and not specific to the ORR

  4. 10 CFR 1008.15 - Civil remedies.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Civil remedies. 1008.15 Section 1008.15 Energy DEPARTMENT OF ENERGY (GENERAL PROVISIONS) RECORDS MAINTAINED ON INDIVIDUALS (PRIVACY ACT) Requests for Access or Amendment § 1008.15 Civil remedies. Subsection (g) of the Act provides that an individual may bring...

  5. The Positive Impacts Of American Reinvestment And Recovery Act (ARRA) Funding To The Waste Management Program On Hanford's Plateau Remediation Project

    International Nuclear Information System (INIS)

    In April 2009, the Department of Energy (DOE) Richland Operations Office (RL) was allocated $1.6 billion (B) in ARRA funding to be applied to cleanup projects at the Hanford Site. DOE-RL selected projects to receive ARRA funding based on 3-criteria: creating/saving jobs, reducing the footprint of the Hanford Site, and reducing life-cycle costs for cleanup. They further selected projects that were currently covered under regulatory documents and existing prime contracts, which allowed work to proceed quickly. CH2M HILL Plateau Remediation Company (CHPRC) is a prime contractor to the DOE focused on the environmental cleanup of the DOE Hanford Site Central Plateau. CHPRC was slated to receive $1.36B in ARRA funding. As of January, 2010, CHPRC has awarded over $200 million (M) in subcontracts (64% to small businesses), created more that 1,100 jobs, and touched more than 2,300 lives - all in support of long-term objectives for remediation of the Central Plateau, on or ahead of schedule. ARRA funding is being used to accelerate and augment cleanup activities already underway under the baseline Plateau Remediation Contract (PRC). This paper details challenges and accomplishments using ARRA funding to meet DOE-RL objectives of creating/saving jobs, expediting cleanup, and reducing lifecycle costs for cleanup during the first months of implementation.

  6. THE POSITIVE IMPACTS OF AMERICAN REINVESTMENT AND RECOVERY ACT (ARRA) FUNDING TO THE WASTE MANAGEMENT PROGRAM ON HANFORD'S PLATEAU REMEDIATION PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    BLACKFORD LT

    2010-01-19

    In April 2009, the Department of Energy (DOE) Richland Operations Office (RL) was allocated $1.6 billion (B) in ARRA funding to be applied to cleanup projects at the Hanford Site. DOE-RL selected projects to receive ARRA funding based on 3-criteria: creating/saving jobs, reducing the footprint of the Hanford Site, and reducing life-cycle costs for cleanup. They further selected projects that were currently covered under regulatory documents and existing prime contracts, which allowed work to proceed quickly. CH2M HILL Plateau Remediation Company (CHPRC) is a prime contractor to the DOE focused on the environmental cleanup of the DOE Hanford Site Central Plateau. CHPRC was slated to receive $1.36B in ARRA funding. As of January, 2010, CHPRC has awarded over $200 million (M) in subcontracts (64% to small businesses), created more that 1,100 jobs, and touched more than 2,300 lives - all in support of long-term objectives for remediation of the Central Plateau, on or ahead of schedule. ARRA funding is being used to accelerate and augment cleanup activities already underway under the baseline Plateau Remediation Contract (PRC). This paper details challenges and accomplishments using ARRA funding to meet DOE-RL objectives of creating/saving jobs, expediting cleanup, and reducing lifecycle costs for cleanup during the first months of implementation.

  7. Remedial investigation/feasibility study work plan for the 100-BC-2 operable unit, Hanford Site, Richland, Washington

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-01

    This work plan and attached supporting project plans establish the operable unit setting and the objectives, procedures, tasks, and schedule for conducting the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) remedial investigation/feasibility study (RI/FS) for the 100-BC-2 operable unit in the 100 Area of the Hanford Site. The 100 Area is one of four areas at the Hanford Site that are on the US Environmental Protection Agency`s (EPA) National Priorities List under CERCLA. The 100-BC-2 operable unit is one of two source operable units in the 100-B/C Area (Figure ES-1). Source operable units are those that contain facilities and unplanned release sites that are potential sources of hazardous substance contamination. The 100-BC-2 source operable unit contains waste sites that were formerly in the 100-BC-2, 100-BC-3, and 100-BC-4 operable units. Because of their size and geographic location, the waste sites from these two operable units were added to 100-BC-2. This allows for a more efficient and effective investigation of the remaining 100-B/C Reactor area waste sites. The investigative approach to waste sites associated with the 100-BC-2 operable unit are listed in Table ES-1. The waste sites fall into three general categories: high priority liquid waste disposal sites, low priority liquid waste disposal sites, and solid waste burial grounds. Several sites have been identified as candidates for conducting an IRM. Two sites have been identified as warranting additional limited field sampling. The two sites are the 116-C-2A pluto crib, and the 116-C-2C sand filter.

  8. Remedial investigation/feasibility study work plan for the 100-BC-2 operable unit, Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    This work plan and attached supporting project plans establish the operable unit setting and the objectives, procedures, tasks, and schedule for conducting the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) remedial investigation/feasibility study (RI/FS) for the 100-BC-2 operable unit in the 100 Area of the Hanford Site. The 100 Area is one of four areas at the Hanford Site that are on the US Environmental Protection Agency's (EPA) National Priorities List under CERCLA. The 100-BC-2 operable unit is one of two source operable units in the 100-B/C Area (Figure ES-1). Source operable units are those that contain facilities and unplanned release sites that are potential sources of hazardous substance contamination. The 100-BC-2 source operable unit contains waste sites that were formerly in the 100-BC-2, 100-BC-3, and 100-BC-4 operable units. Because of their size and geographic location, the waste sites from these two operable units were added to 100-BC-2. This allows for a more efficient and effective investigation of the remaining 100-B/C Reactor area waste sites. The investigative approach to waste sites associated with the 100-BC-2 operable unit are listed in Table ES-1. The waste sites fall into three general categories: high priority liquid waste disposal sites, low priority liquid waste disposal sites, and solid waste burial grounds. Several sites have been identified as candidates for conducting an IRM. Two sites have been identified as warranting additional limited field sampling. The two sites are the 116-C-2A pluto crib, and the 116-C-2C sand filter

  9. Screening of Potential Remediation Methods for the 200-ZP-1 Operable Unit at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Truex, Michael J.; Nimmons, Michael J.; Johnson, Christian D.; Dresel, P EVAN.; Murray, Christopher J.

    2006-08-07

    A screening-level evaluation of potential remediation methods for application to the contaminants of concern (COC) in the 200-ZP-1 Operable Unit at the Hanford Site was conducted based on the methods outlined in the Guidance for Conducting Remedial Investigations and Feasibility Studies under CERCLA Interim Final. The scope of this screening was to identify the most promising remediation methods for use in the more detailed analysis of remediation alternatives that will be conducted as part of the full feasibility study. The screening evaluation was conducted for the primary COC (potential major risk drivers). COC with similar properties were grouped for the screening evaluation. The screening evaluation was conducted in two primary steps. The initial screening step evaluated potential remediation methods based on whether they can be effectively applied within the environmental setting of the 200-ZP-1 Operable Unit for the specified contaminants. In the second step, potential remediation methods were screened using scoping calculations to estimate the scale of infrastructure, overall quantities of reagents, and conceptual approach for applying the method for each defined grouping of COC. Based on these estimates, each method was screened with respect to effectiveness, implementability, and relative cost categories of the CERCLA feasibility study screening process defined in EPA guidance.

  10. 75 FR 52942 - Two Proposed CERCLA Section 122(g) Administrative Agreements for De Minimis Settlements for the...

    Science.gov (United States)

    2010-08-30

    ... From the Federal Register Online via the Government Publishing Office ] ENVIRONMENTAL PROTECTION AGENCY Two Proposed CERCLA Section 122(g) Administrative Agreements for De Minimis Settlements for the...''), Region II, of two proposed de minimis administrative agreements pursuant to Section 122(g) of CERCLA,...

  11. Hazardous Substance Release Reporting Under CERCLA, EPCR {section}304 and DOE Emergency Management System (EMS) and DOE Occurrence Reporting Requirements. Environmental Guidance

    Energy Technology Data Exchange (ETDEWEB)

    Traceski, T.T.

    1994-06-01

    Releases of various substances from DOE facilities may be subject to reporting requirements under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and the Emergency Planning and Community Right-to-Know Act (EPCRA), as well as DOE`s internal ``Occurrence Reporting and Processing of Operations Information`` and the ``Emergency Management System`` (EMS). CERCLA and EPCPA are Federal laws that require immediate reporting of a release of a Hazardous Substance (HS) and an Extremely Hazardous Substance (EHS), respectively, in a Reportable Quantity (RQ) or more within a 24-hour period. This guidance uses a flowchart, supplemental information, and tables to provide an overview of the process to be followed, and more detailed explanations of the actions that must be performed, when chemical releases of HSs, EHSs, pollutants, or contaminants occur at DOE facilities. This guidance should be used in conjunction with, rather than in lieu of, applicable laws, regulations, and DOE Orders. Relevant laws, regulations, and DOE Orders are referenced throughout this guidance.

  12. Reimagining Remediation

    Science.gov (United States)

    Handel, Stephen J.; Williams, Ronald A.

    2011-01-01

    In 2007, the College Board's Community College Advisory Panel--a group of college presidents that advises the organization's membership on community college issues--asked these authors to write a paper describing effective remedial education programs. They never wrote the paper. The problem was not the lack of dedicated faculty and staff working…

  13. 78 FR 73525 - Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) or Superfund...

    Science.gov (United States)

    2013-12-06

    ... increasing awareness of its response program, and improving the skills of program staff. It may also include... include outreach to local communities to increase their awareness and knowledge regarding the importance... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL...

  14. 75 FR 69992 - Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) or Superfund...

    Science.gov (United States)

    2010-11-16

    ... outreach and training directly related to increasing awareness of its response program, and improving the... outreach to local communities to increase their awareness and knowledge regarding the importance of... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL...

  15. Inactive Tanks Remediation Program strategy and plans for Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    The overall objective of the Inactive Tank Remediation Program is to remediate all LLLW tanks that have been removed fimn service to the extent practicable in accordance with the FFA and CERCLA requirements. Applicable or relevant and appropriate requirements (ARARs) will be addressed in choosing a remediation alternative. Preference will be given to remedies that are highly reliable and provide long-term protection. Efforts will be directed toward permanently and significantly reducing the volume, toxicity, or mobility of hazardous substances, pollutants, and contaminants associated with the tank systems. Where indicated by operational or other restraints, interim measures short of full and complete remediation may be taken to maintain human health and ecological risks at acceptable levels until full remediation can be accomplished.

  16. State Environmental Policy Act (SEPA) Environmental Checklist Form 216-B-3 Expansion Ponds Closure Plan

    International Nuclear Information System (INIS)

    The 216-B-3 Expansion Ponds Closure Plan (Revision 1) consists of a Part A Dangerous Waste Permit Application and a Resource Conservation and Recovery Act Closure Plan. An explanation of the Part A submitted with this document is provided at the beginning of the Part A Section. The closure plan consists of nine chapters and five appendices. The 216-B-3 Pond System consists of a series of four earthen, unlined, interconnected ponds and the 216-B-3-3 Ditch that receive waste water from various 200 East Area operating facilities. These four ponds, collectively. Waste water (primarily cooling water, steam condensate, and sanitary water) from various 200 East Area facilities is discharged to the 216-B-3-3 Ditch. Water discharged to the 216-8-3-3 Ditch flows directly into the 216-B-3 Pond. In the past, waste water discharges to B Pond and the 216-B-3-3 Ditch contained mixed waste (radioactive waste and dangerous waste). The radioactive portion of mixed waste has been interpreted by the US Department of Energy (DOE) to be regulated under the Atomic Energy Act of 1954; the nonradioactive dangerous portion of mixed waste is regulated under RCRA. Mixed waste also may be considered a hazardous substance under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) when considering remediation of waste sites

  17. 77 FR 9652 - Proposed CERCLA Administrative Cost Recovery Settlement; Lake Linden Superfund Site in Lake...

    Science.gov (United States)

    2012-02-17

    ... AGENCY Proposed CERCLA Administrative Cost Recovery Settlement; Lake Linden Superfund Site in Lake Linden... administrative settlement for recovery of past response costs concerning the Lake Linden Superfund Site in Lake..., Chicago, Illinois, C-14J, 60604, (312) 886-6609. Comments should reference the Lake Linden Superfund...

  18. 77 FR 64513 - Proposed Administrative Agreement for Collection of CERCLA Past Costs

    Science.gov (United States)

    2012-10-22

    ... AGENCY Proposed Administrative Agreement for Collection of CERCLA Past Costs AGENCY: U.S Environmental... collection of a percentage of past response costs at the Ultimate Industries, Inc. Site. Respondent has agreed to pay $8,000 out of total past costs of approximately $83,776.10, in return for a covenant not...

  19. 78 FR 77673 - Proposed CERCLA Administrative Cost Recovery Settlement; Cadie Auto Salvage Site, Belvidere...

    Science.gov (United States)

    2013-12-24

    ... AGENCY Proposed CERCLA Administrative Cost Recovery Settlement; Cadie Auto Salvage Site, Belvidere, Boone... recovery of past response costs concerning the Cadie Auto Salvage Site in Belvidere, Boone County, Illinois... Counsel, EPA, Office of Regional Counsel, Region 5, 77 W. Jackson Blvd., mail code: C-14J,...

  20. 78 FR 74128 - Proposed CERCLA Administrative Cost Recovery Settlement; Cadie Auto Salvage Site, Belvidere...

    Science.gov (United States)

    2013-12-10

    ... AGENCY Proposed CERCLA Administrative Cost Recovery Settlement; Cadie Auto Salvage Site, Belvidere, Boone... recovery of past response costs concerning the Cadie Auto Salvage Site in Belvidere, Boone County, Illinois... Counsel, EPA, Office of Regional Counsel, Region 5, 77 W. Jackson Blvd., mail code: C-14J,...

  1. 77 FR 52021 - Proposed CERCLA Administrative Settlement Agreement and Order on Consent for the Mercury Refining...

    Science.gov (United States)

    2012-08-28

    ... AGENCY Proposed CERCLA Administrative Settlement Agreement and Order on Consent for the Mercury Refining... ``Settling Parties'') pertaining to the Mercury Refining Superfund Site (``Site'') located in the Towns of... each Settling Party to the EPA Hazardous Substance Superfund Mercury Refining Superfund Site...

  2. 78 FR 40140 - Proposed CERCLA Administrative Settlement Agreement and Order on Consent for the Mercury Refining...

    Science.gov (United States)

    2013-07-03

    ... AGENCY Proposed CERCLA Administrative Settlement Agreement and Order on Consent for the Mercury Refining... between EPA and Titan Wheel Corporation of Illinois (hereafter ``Titan'') pertaining to the Mercury.... Comments should be sent to the individual identified below and should reference the Mercury...

  3. CERCLA {section}103 and EPCRA {section}304 Release Notification Requirements update

    Energy Technology Data Exchange (ETDEWEB)

    1995-01-01

    This guidance document updates and clarifies information provided in an earlier guidance document published by the US Environmental Protection Agency (EPA) entitled Guidance for Federal Facilities on Release Notification Requirements under CERCLA and SARA Title III (EPA 9360.7-06; November 1990). Since publication of that earlier guidance document, several significant events have occurred that affect the reporting obligations of facilities owned or operated by the Department of Energy (DOE), including the publication of Executive Order 12856--Federal Compliance with Right-to-Know Laws and Pollution Prevention Requirements--and a rejection by the US Court of Appeals of EPA`s interpretation of the term release into the environment. In preparing this guidance document, the Office of Environmental Policy and Assistance, RCRA/CERCLA Division (EH-413), has documented responses to queries from DOE field elements on CERCLA and EPCRA release reporting requirements, as well as incorporating those Questions and Answers from the previous document that remain germane to DOE`s reporting obligations under CERCLA and EPCRA.

  4. Alternative Endpoints and Approaches for the Remediation of Contaminated Groundwater at Complex Sites - 13426

    International Nuclear Information System (INIS)

    alternative endpoints for groundwater remediation at complex sites. A statistical analysis of Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) sites receiving TI waivers will be presented as well as case studies of other types of alternative endpoints and alternative remedial strategies that illustrate the variety of approaches used at complex sites and the technical analyses used to predict and document cost, time frame, and potential remedial effectiveness. This presentation is intended to inform DOE program managers, state regulators, practitioners and other stakeholders who are evaluating technical cleanup challenges within their own programs, and establishing programmatic approaches to evaluating and implementing long-term management approaches. Case studies provide examples of long-term management designations and strategies to manage and remediate groundwater at complex sites. At least 13 states consider some designation for groundwater containment in their corrective action policies, such as groundwater management zones, containment zones, and groundwater classification exemption areas. Long-term management designations are not a way to 'do nothing' or walk away from a site. Instead, soil and groundwater within the zone is managed to be protective of human health and the environment. Understanding when and how to adopt a long-term management approach can lead to cost savings and the more efficient use of resources across DOE and at numerous other industrial and military sites across the U.S. This presentation provides context for assessing the use and appropriate role of alternative endpoints and supporting long-term management designations in final remedies. (authors)

  5. 14 CFR 1212.800 - Civil remedies.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Civil remedies. 1212.800 Section 1212.800... Comply With Requirements of This Part § 1212.800 Civil remedies. Failure to comply with the requirements of the Privacy Act and this part could subject NASA to civil suit under the provisions of 5...

  6. 32 CFR 310.47 - Civil remedies.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 2 2010-07-01 2010-07-01 false Civil remedies. 310.47 Section 310.47 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) PRIVACY PROGRAM DOD PRIVACY PROGRAM Privacy Act Violations § 310.47 Civil remedies. In addition to specific...

  7. Remedial Investigation of Hanford Site Releases to the Columbia River - 13603

    International Nuclear Information System (INIS)

    In south-central Washington State, the Columbia River flows through the U.S. Department of Energy Hanford Site. A primary objective of the Hanford Site cleanup mission is protection of the Columbia River, through remediation of contaminated soil and groundwater that resulted from its weapons production mission. Within the Columbia River system, surface water, sediment, and biota samples related to potential Hanford Site hazardous substance releases have been collected since the start of Hanford operations. The impacts from release of Hanford Site radioactive substances to the Columbia River in areas upstream, within, and downstream of the Hanford Site boundary have been previously investigated as mandated by the U.S. Department of Energy requirements under the Atomic Energy Act. The Remedial Investigation Work Plan for Hanford Site Releases to the Columbia River [1] was issued in 2008 to initiate assessment of the impacts under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 [2]. The work plan established a phased approach to characterize contaminants, assess current risks, and determine whether or not there is a need for any cleanup actions. Field investigation activities over a 120-mile stretch of the Columbia River began in October 2008 and were completed in 2010. Sampled media included surface water, pore water, surface and core sediment, island soil, and fish (carp, walleye, whitefish, sucker, small-mouth bass, and sturgeon). Information and sample results from the field investigation were used to characterize current conditions within the Columbia River and assess whether current conditions posed a risk to ecological or human receptors that would merit additional study or response actions under CERCLA. The human health and ecological risk assessments are documented in reports that were published in 2012 [3, 4]. Conclusions from the risk assessment reports are being summarized and integrated with remedial investigation

  8. Screening of Potential Remediation Methods for the 200-BP-5 Operable Unit at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Truex, Michael J.; Dresel, P. EVAN; Nimmons, Michael J.; Johnson, Christian D.

    2006-09-21

    A screening-level evaluation of potential remediation methods for application to the contaminants of concern (COC) in the 200-BP-5 Operable Unit at the Hanford Site was conducted based on the methods outlined in the Guidance for Conducting Remedial Investigations and Feasibility Studies under CERCLA Interim Final (EPA 1988). The scope of this screening was to identify the most promising remediation methods for use in the more detailed analysis of remediation alternatives that will be conducted as part of the full feasibility study. The screening evaluation was conducted for the primary COC (potential major risk drivers) identified in the groundwater sampling and analysis plan for the operable unit (DOE/RL-2001-49, Rev. 1) with additions.

  9. Surveillance and maintenance report on decontamination and decommissioning and remedial action activities at the Oak Ridge Y-12 plant, Oak Ridge, Tennessee. Fiscal year 1996

    Energy Technology Data Exchange (ETDEWEB)

    King, H.L.; Sollenberger, M.L.; Sparkman, D.E.; Reynolds, R.M.; Wayland, G.S.

    1996-12-01

    The Oak Ridge Y-12 Plant Decontamination and Decommissioning (D&D) and Remedial Action (RA) programs are part of the Environmental Restoration (ER) Division and are funded by the Office of Environmental Management (EM-40). Building 9201-4 (known as Alpha-4), three sites located within Building 9201-3 (the Oil Storage Tank, the Molten Salt Reactor Experiment Fuel Handling Facility, and the Coolant Salt Technology Facility), and Building 9419-1 (the Decontamination Facility) are currently the facilities at the Y-12 Plant included in the D&D program. The RA program provides surveillance and maintenance (S&M) and program management of ER sites at the Y-12 Plant, including selected sites listed in Appendix C of the Federal Facilities Agreement (FFA), sites listed in the Hazardous and Solid Waste Amendment (HSWA) permit Solid Waste Management Unit (SWM-U) list, and sites currently closed or undergoing post-closure activities under the Resource Conservation and Recovery Act of 1976 (RCRA) or the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). This report communicates the status of the program plans and specific S&M activities for the D&D and RA programs.

  10. Remedial investigation work plan for Bear Creek (Y02-S600) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    As part of its response to Resource Conservation and Recovery Act (RCRA), the US Department of Energy had agreed to further investigate contamination of Bear Creek and its floodplain resulting from releases of hazardous waste or hazardous constituents from the Y-12 Plant solid waste management units (SWMU) located in the Bear Creek watershed. That proposed RCRA Facility Investigation has been modified to incorporate the requirements of Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) into a Remedial Investigation (RI) Plan for Bear Creek. This document is the RI Plan for Bear Creek and its flood-of-record floodplain. The following assumptions were made in the preparation of this RI Plan: (1) That source-area groundwater monitoring will be conducted as a part of the comprehensive groundwater monitoring plan for the Bear Creek Hydrogeologic Regime; and (2) that postclosure activities associated with each SWMU do not explicitly include a comprehensive assessment of surface water, sediment, and floodplain soil contamination in Bear Creek and its tributaries. The RI Plan is thus intended to provide a more comprehensive evaluation of Bear Creek and its floodplain than that provided by the investigative monitoring and risk assessment activities associated with the ten individual SWMUs. RI activities will be carefully coordinated with other monitoring and assessment activities to avoid redundancy and to maximize the utility of data gathered during the investigation. 121 refs., 61 figs., 46 tabs

  11. Decommissioning of U.S. Department of Energy surplus facilities under the Comprehensive Environmental Response, Compensation, and Liability Act

    International Nuclear Information System (INIS)

    The US Department of Energy (DOE) has identified more than 850 contaminated surplus facilities that require decommissioning through the environmental restoration program. This paper discusses the regulatory framework for decommissioning these facilities, specifically the framework established by the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). CERCLA jurisdiction covers releases of hazardous substances to the environment, substantial threats of such releases, and responses to these situations. DOE has determined that the use of CERCLA removal action authority is the appropriate means of responding to releases or threats of releases from contaminated surplus facilities under the jurisdiction, custody, or control of the Department. This paper focuses on the policy and process for decommissioning contaminated surplus facilities. Not all surplus facilities to be decommissioned will fall under CERCLA jurisdiction. In all instances, however, the same basic process will still be followed and a graded approach will be applied, consistent with DOE orders

  12. Reporting continuous releases of hazardous and extremely hazardous substances under CERCLA and EPCRA

    Energy Technology Data Exchange (ETDEWEB)

    1995-01-01

    This guidance is designed to provide basic instruction to US DOE and DOE operations contractor personnel on how to characterize CERCLA and EPCRA hazardous substance releases as continuous and how to prepare and deliver continuousreleasee reports to Federal, State, and local authorities. DOE staff should use this guidance as an overview of the continuous release requirements, a quick ready reference guide for specific topics concerning continuous releases and a step-by-step guide for the process of identifying and reporting continuous releases.

  13. A tale of negotiations: CERCLA interagency agreement at the Mound plant

    International Nuclear Information System (INIS)

    The purpose of this paper is to explain some of the more important provisions of the Mound agreement and to explore some lessons learned from the Mound experience about CERCLA Interagency Agreement negotiations. The authors have chosen six specific IAG provisions to discuss because they represent key elements in their attempt to merge what may sometimes seem like incongruous goals - the need to conduct a thorough CERCLA cleanup under the direction of another federal agency and the desire to protect the public's money. The provisions they will discuss are: integration of CERCLA and RCRA requirements; EPA's covenant not to sue or assess administrative penalties against DOE's contractors for any of their actions which may have given rise to the releases covered by the agreement; inclusion of a streamlined Statement of Work; the procedure whereby investigative work already completed at the Mound site which was not conducted utilizing EPA-approved methods may be accepted for future reports; the short list of primary documents; and use of a yearly schedule for work activities.. Tritium, as well as trace levels of chlorinated organics, have been found in the groundwater at Mound. On-site and off-site soils are contaminated with plutonium and several on-site locations are contaminated with thorium

  14. Superfund TIO videos. Set A. Removal process: Planning and initiating removals, managing removals, non-CERCLA funded removals. Part 3 Audio-Visual

    International Nuclear Information System (INIS)

    The videotape is divided into three sections. Section 1 outlines the major components of planning and initiating a removal, such as identifying appropriate response actions, preparing an Action Memorandum (AM), projecting the cost of the removal, obtaining site access, setting up a command post, and overseeing the development of the required plans. The resources available to the OSC to conduct a removal also are discussed. Section 2 discusses the OSC's role in managing the removal and describes how to obtain resources and how to manage site activities and monitor costs. The statutory limits of a removal and the importance of documenting site activities accurately and completely also are outlined. Section 3 outlines the OSC's role in removal actions conducted by parties other than EPA OSCs. Discussed are CERCLA removals conducted by PRPs, States, Federal facilities and Indian tribes. Underground Storage Tank (UST) assessment and removal under Resource Conservation and Recovery Act (RCRA) authority is also discussed

  15. Environmental compliance plan for the Lower East Fork Poplar Creek Remedial Action Project at Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    Remedial action for Lower East Fork Poplar Creek, as defined by the Record of Decision, requires that soil contaminated with >400 ppM mercury be excavated and disposed. Based on the remediation goal, soil will be excavated from areas located at the NOAA site and the Bruner site and disposed at the Industrial Landfill V at the Y-12 Plant. Objective is to minimize the risk to human health and the environment from contaminated soil in the lower EFPC floodplain pursuant to CERCLA and the Federal Facility Agreement (DOE 1992).

  16. Site Safety Plan for Lawrence Livermore National Laboratory CERCLA investigations

    Energy Technology Data Exchange (ETDEWEB)

    Bainer, R.; Duarte, J.

    1993-07-01

    The safety policy of LLNL is to take every reasonable precaution in the performance of work to protect the environment and the health and safety of employees and the public, and to prevent property damage. With respect to hazardous agents, this protection is provided by limiting human exposures, releases to the environment, and contamination of property to levels that are as low as reasonably achievable (ALARA). It is the intent of this Plan to supply the broad outline for completing environmental investigations within ALARA guidelines. It may not be possible to determine actual working conditions in advance of the work; therefore, planning must allow the opportunity to provide a range of protection based upon actual working conditions. Requirements will be the least restrictive possible for a given set of circumstances, such that work can be completed in an efficient and timely fashion. Due to the relatively large size of the LLNL Site and the different types of activities underway, site-specific Operational Safety Procedures (OSPs) will be prepared to supplement activities not covered by this Plan. These site-specific OSPs provide the detailed information for each specific activity and act as an addendum to this Plan, which provides the general plan for LLNL Main Site operation.

  17. Rail transportation of Fernald remediation waste

    Energy Technology Data Exchange (ETDEWEB)

    Fellman, R.T.; Lojek, D.A.; Motl, G.P.; Weddendorf, W.K.

    1995-01-24

    Remediation of the Department of Energy (DOE) Fernald site located north of Cincinnati will generate large quantities of low-level radwaste. This volume includes approximately 1,050,000 tons of material to be removed from eight waste pits comprising Operable Unit 1 (OU-1). The remedial alternative selected includes waste material excavation, drying and transportation by rail to a burial site in the arid west for disposal. Rail transportation was selected not only because rail transportation is safer than truck transportation, but also because of the sheer magnitude of the project and the availability of bulk rail car unloading facilities at a representative disposal site. Based upon current waste quantity estimates as presented in the Feasibility Study for OUI, a fully-loaded 47-car unit train would depart the Fernald site weekly for five years. This paper illustrates the steps taken to obtain agency and public acceptance of the Record of Decision for the remedy which hinged on rail transportation. A preliminary, but detailed, rail transportation plan was prepared for the project to support a series of CERCLA public meetings conducted in late 1994. Some of the major issues addressed in the plan included the following: (1) Scope of project leading to selection of rail transportation; (2) Waste classification; (3) Rail Company overview; (4) Train configuration and rail car selection; (5) Routing; (6) Safety; (7) Prior Notification Requirements (8) Emergency Response. A series of three public meetings identified a number of issues of prime concern to Fernald stakeholders. Following resolution of these issues during the public comment period, a Record of Decision (ROD) approving implementation of the rail transportation strategy was approved pending incorporation of EPA and State of Ohio comments on December 22, 1994.

  18. 77 FR 15276 - National Priorities List, Final Rule No. 53

    Science.gov (United States)

    2012-03-15

    ..., Compensation, and Liability Act of 1980 (``CERCLA'' or ``the Act''), as amended, requires that the National Oil... Decisions Branch, Assessment and Remediation Division, Office of Superfund Remediation and Technology...? To implement CERCLA, the EPA promulgated the revised National Oil and Hazardous Substances...

  19. 77 FR 27368 - National Priorities List, Final Rule No. 54

    Science.gov (United States)

    2012-05-10

    ... Liability Act of 1980 (``CERCLA'' or ``the Act''), as amended, requires that the National Oil and Hazardous..., Assessment and Remediation Division, Office of Superfund Remediation and Technology Innovation (Mail Code...? To implement CERCLA, the EPA promulgated the revised National Oil and Hazardous Substances...

  20. 78 FR 31417 - National Priorities List, Final Rule No. 56

    Science.gov (United States)

    2013-05-24

    ... Liability Act of 1980 (``CERCLA'' or ``the Act''), as amended, requires that the National Oil and Hazardous... Decisions Branch, Assessment and Remediation Division, Office of Superfund Remediation and Technology...? To implement CERCLA, the EPA promulgated the revised National Oil and Hazardous Substances...

  1. Work Plan for the Feasibility Study for Remedial Action at J-Field, Aberdeen Proving Ground, Maryland

    Energy Technology Data Exchange (ETDEWEB)

    Benioff, P.; Biang, C.; Haffenden, R.; Goyette, M.; Martino, L.; Patton, T.; Yuen, C.

    1995-05-01

    The purpose of the feasibility study is to gather sufficient information to develop and evaluate alternative remedial actions to address contamination at J-Field in compliance with the NCP, CERCLA, and SARA. This FS Work Plan summarizes existing environmental data for each AOC and outlines the tasks to be performed to evaluate and select remedial technologies. The tasks to be performed will include (1) developing remedial action objectives and identifying response actions to meet these objectives; (2) identifying and screening remedial action technologies on the basis of effectiveness, implementability, and cost; (3) assembling technologies into comprehensive alternatives for J-Field; (4) evaluating, in detail, each alternative against the nine EPA evaluation criteria and comparing the alternatives to identify their respective strengths and weaknesses; and (5) selecting the preferred alternative for each operable unit.

  2. Remediation of a large contaminated reactor cooling reservoir: Resolving and environmental/regulatory paradox

    Energy Technology Data Exchange (ETDEWEB)

    Bowers, J.A.: Gladden, J.B.; Hickey, H.M.; Jones, M.P.; Mackey, H.E.; Mayer, J.J. [Westinghouse Savannah River Co., Aiken, SC (United States); Doswell, A. [USDOE, Washington, DC (United States)

    1994-05-01

    This paper presents a case study of a former reactor cooling water reservoir, PAR Pond, located Savannah River Site. PAR Pond, a 2640 acre, man-made reservoir was built in 1958 and until 1988, received cooling water from two DOE nuclear production reactors, P and R. The lake sediments were contaminated with low levels of radiocesium (CS-137) and transuranics in the late 1950s and early 1960s because of leaking fuel elements. Elevated levels of mercury accumulated in the sediments from pumping water from the Savannah River to maintain a full pool. PAR Ponds` stability, size, and nutrient content made a significant, unique, and highly studied ecological resource for fish and wildlife populations until it was partially drained in 1991 due to a depression in the downslope of the earthen dam. The drawdown, created 1340 acres of exposed, radioactively contaminated sediments along 33 miles of shoreline. This led US EPA to declare PAR Pond as a CERCLA operable unit subject to remediation. The drawdown also raised concerns for the populations of aquatic plants, fish, alligators, and endangered species and increased the potential for off-site migration of contaminated wildlife from contact with the exposed sediments. Applicable regulations, such as NEPA and CERCLA, require wetland loss evaluations, human health and ecological risk assessments, and remediation feasibility studies. DOE is committed to spending several million dollars to repair the dam for safety reasons, even though the lake will probably not be used for cooling purposes. At the same time, DOE must make decisions whether to refill and expend additional public funds to maintain a full pool to reduce the risks defined under CERCLA or spend hundreds of millions in remediation costs to reduce the risks of the exposed sediments.

  3. Remedial investigation sampling and analysis plan for J-Field, Aberdeen Proving Ground, Maryland. Volume 1: Field Sampling Plan

    Energy Technology Data Exchange (ETDEWEB)

    Benioff, P.; Biang, R.; Dolak, D.; Dunn, C.; Martino, L.; Patton, T.; Wang, Y.; Yuen, C.

    1995-03-01

    The Environmental Management Division (EMD) of Aberdeen Proving Ground (APG), Maryland, is conducting a remedial investigation and feasibility study (RI/FS) of the J-Field area at APG pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended. J-Field is within the Edgewood Area of APG in Harford County, Maryland (Figure 1. 1). Since World War II activities in the Edgewood Area have included the development, manufacture, testing, and destruction of chemical agents and munitions. These materials were destroyed at J-Field by open burning and open detonation (OB/OD). Considerable archival information about J-Field exists as a result of efforts by APG staff to characterize the hazards associated with the site. Contamination of J-Field was first detected during an environmental survey of the Edgewood Area conducted in 1977 and 1978 by the US Army Toxic and Hazardous Materials Agency (USATHAMA) (predecessor to the US Army Environmental Center [AEC]). As part of a subsequent USATHAMA -environmental survey, 11 wells were installed and sampled at J-Field. Contamination at J-Field was also detected during a munitions disposal survey conducted by Princeton Aqua Science in 1983. The Princeton Aqua Science investigation involved the installation and sampling of nine wells and the collection and analysis of surficial and deep composite soil samples. In 1986, a Resource Conservation and Recovery Act (RCRA) permit (MD3-21-002-1355) requiring a basewide RCRA Facility Assessment (RFA) and a hydrogeologic assessment of J-Field was issued by the US Environmental Protection Agency (EPA). In 1987, the US Geological Survey (USGS) began a two-phased hydrogeologic assessment in data were collected to model, groundwater flow at J-Field. Soil gas investigations were conducted, several well clusters were installed, a groundwater flow model was developed, and groundwater and surface water monitoring programs were established that continue today.

  4. Topical Day on Site Remediation

    International Nuclear Information System (INIS)

    Ongoing activities at the Belgian Nuclear Research Centre relating to site remediation and restoration are summarized. Special attention has been paid to the different phases of remediation including characterization, impact assessment, evaluation of remediation actions, and execution of remediation actions

  5. Topical Day on Site Remediation

    Energy Technology Data Exchange (ETDEWEB)

    Vandenhove, H. [ed.

    1996-09-18

    Ongoing activities at the Belgian Nuclear Research Centre relating to site remediation and restoration are summarized. Special attention has been paid to the different phases of remediation including characterization, impact assessment, evaluation of remediation actions, and execution of remediation actions.

  6. Work plan for the remedial investigation/feasibility study for the groundwater operable units at the Chemical Plant Area and the Ordnance Works Area, Weldon Spring, Missouri

    International Nuclear Information System (INIS)

    US Department of Energy (DOE) and the US Army Corps of Engineers (CE) are conducting cleanup activities at two properties, the chemical plant area and the ordnance works area, located adjacent to one another in St. Charles County, Missouri. In accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended, DOE and CE are evaluating conditions and potential responses at the chemical plant area and at the ordnance works area, respectively, to address groundwater and surface water contamination. This work plan provides a comprehensive evaluation of areas that are relevant to the (GWOUs) of both the chemical plant and the ordnance works area. Following areas or media are addressed in this work plan: groundwater beneath the chemical plant area (including designated vicinity properties described in Section 5 of the RI for the chemical plant area [DOE 1992d]) and beneath the ordnance works area; surface water and sediment at selected springs, including Burgermeister Spring. The organization of this work plan is as follows: Chapter 1 discusses the objectives for conducting the evaluation, including a summary of relevant site information and overall environmental compliance activities to be undertaken; Chapter 2 presents a history and a description of the site and areas addressed within the GWOUs, along with currently available data; Chapter 3 presents a preliminary evaluation of areas included in the GWOUs, which is based on information given in Section 2, and discusses data requirements; Chapter 4 presents rationale for data collection or characterization activities to be carried out in the remedial investigation (RI) phase, along with brief summaries of supporting documents ancillary to this work plan; Chapter 5 discusses the activities planned for GWOUs under each of the 14 tasks for an remedial (RI/FS); Chapter 6 presents proposed schedules for RI/FS for the GWOUS; and Chapter 7 explains the project management structure

  7. Work plan for the remedial investigation/feasibility study for the groundwater operable units at the Chemical Plant Area and the Ordnance Works Area, Weldon Spring, Missouri

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    US Department of Energy (DOE) and the US Army Corps of Engineers (CE) are conducting cleanup activities at two properties, the chemical plant area and the ordnance works area, located adjacent to one another in St. Charles County, Missouri. In accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended, DOE and CE are evaluating conditions and potential responses at the chemical plant area and at the ordnance works area, respectively, to address groundwater and surface water contamination. This work plan provides a comprehensive evaluation of areas that are relevant to the (GWOUs) of both the chemical plant and the ordnance works area. Following areas or media are addressed in this work plan: groundwater beneath the chemical plant area (including designated vicinity properties described in Section 5 of the RI for the chemical plant area [DOE 1992d]) and beneath the ordnance works area; surface water and sediment at selected springs, including Burgermeister Spring. The organization of this work plan is as follows: Chapter 1 discusses the objectives for conducting the evaluation, including a summary of relevant site information and overall environmental compliance activities to be undertaken; Chapter 2 presents a history and a description of the site and areas addressed within the GWOUs, along with currently available data; Chapter 3 presents a preliminary evaluation of areas included in the GWOUs, which is based on information given in Section 2, and discusses data requirements; Chapter 4 presents rationale for data collection or characterization activities to be carried out in the remedial investigation (RI) phase, along with brief summaries of supporting documents ancillary to this work plan; Chapter 5 discusses the activities planned for GWOUs under each of the 14 tasks for an remedial (RI/FS); Chapter 6 presents proposed schedules for RI/FS for the GWOUS; and Chapter 7 explains the project management structure.

  8. Duct Remediation Program: Remediation operations and implementation

    Energy Technology Data Exchange (ETDEWEB)

    Beckman, T.d.; Davis, M.M.; Karas, T.M.

    1992-11-01

    Plutonium holdup material has accumulated in the process ventilation duct systems at Rocky Flats. Non-Destructive Assay (NDA) measurements identified ducts containing this material. The Defense Nuclear Facility Safety Board and the Department of Energy established the criteria for remediation of these ducts. A remediation team was assembled and a program plan created. This program plan included activities such as fissile material accumulation identification, criticality safety assessments, radiation dose determinations, facility safety evaluations, prevention of future accumulation, and removal of holdup material. Several operational considerations had to be evaluated in determining completion of remediation.

  9. 77 FR 31611 - Proposed CERCLA Section 122(g)(4) Administrative Agreement and Order on Consent for the Mercury...

    Science.gov (United States)

    2012-05-29

    ... AGENCY Proposed CERCLA Section 122(g)(4) Administrative Agreement and Order on Consent for the Mercury... the Mercury Refining Superfund Site (``Site'') located in the Towns of Guilderland and Colonie, Albany... Hazardous Substance Superfund Mercury Refining Superfund Site Special Account, which combined total...

  10. Phase 2 sampling and analysis plan, Quality Assurance Project Plan, and environmental health and safety plan for the Clinch River Remedial Investigation: An addendum to the Clinch River RCRA Facility Investigation plan

    International Nuclear Information System (INIS)

    This document contains a three-part addendum to the Clinch River Resource Conservation and Recovery Act (RCRA) Facility Investigation Plan. The Clinch River RCRA Facility Investigation began in 1989, as part of the comprehensive remediation of facilities on the US Department of Energy Oak Ridge Reservation (ORR). The ORR was added to the National Priorities List in December 1989. The regulatory agencies have encouraged the adoption of Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) terminology; therefore, the Clinch River activity is now referred to as the Clinch River Remedial Investigation (CRRI), not the Clinch River RCRA Facility Investigation. Part 1 of this document is the plan for sampling and analysis (S ampersand A) during Phase 2 of the CRRI. Part 2 is a revision of the Quality Assurance Project Plan for the CRRI, and Part 3 is a revision of the Environmental Health and Safety Plan for the CRRI. The Clinch River RI (CRRI) is designed to address the transport, fate, and distribution of waterborne contaminants (radionuclides, metals, and organic compounds) released from the DOE Oak Ridge Reservation (ORR) and to assess potential risks to human health and the environment associated with these contaminants. Primary areas of investigation are Melton Hill Reservoir, the Clinch River from Melton Hill Dam to its confluence with the Tennessee River, Poplar Creek, and Watts Bar Reservoir. The contaminants identified in the Clinch River/Watts Bar Reservoir (CR/WBR) downstream of the ORR are those associated with the water, suspended particles, deposited sediments, aquatic organisms, and wildlife feeding on aquatic organisms. The purpose of the Phase 2 S ampersand A Plan is to describe the proposed tasks and subtasks developed to meet the primary objectives of the CRRI

  11. Records Management in the Formerly Used Sites Remedial Action Program (FUSRAP)

    International Nuclear Information System (INIS)

    The U.S. Army Corps of Engineers' (USACE's) performance of site investigation and remediation under the Formerly Used Sites Remedial Action Program (FUSRAP) requires the use of a records management system in order to effectively capture and manage data, document the decision making process, and allow communication of project information to regulators, congress, and the public. The USACE faces many challenges in managing the vast amount of data, correspondence, and reports generated under this program, including: management of data and reports in a variety of paper, electronic, and microfilm formats; incorporation of records generated by the Department of Energy (DOE) prior to 1997; ensuring smooth flow of information among numerous internal Project Managers and regulators; and facilitating public access to information through the development of CERCLA Administrative Records and response to Freedom of Information Act (FOIA) requests. In 2004-2005, the USACE Buffalo District contracted with Dynamac Corporation to adapt the records management system developed for the Formerly Used Defense Sites (FUDS) Program to the records for the Luckey and Painesville FUSRAP sites. The system, known as the FUDS Information Improvement Plan (FIIP), was jointly developed by the USACE Hazardous, Toxic, and Radioactive Waste Center of Expertise (HTRW-CX), USACE Rock Island District, and several FUDS contractors (including Dynamac Corporation) in 2003. The primary components of the FIIP which address the challenges faced by the FUSRAP Program include: the development of a standardized document organization system; the standardization of electronic conversion processes; the standardization of file naming conventions; and the development of an automated data capture system to speed the process and reduce errors in indexing. The document organization system allows for the assignment of each individual document to one of approximately 150 categories. The categories are based upon a

  12. 14 CFR 17.21 - Protest remedies.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Protest remedies. 17.21 Section 17.21 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PROCEDURAL RULES... are allowable to the extent permitted by the Equal Access to Justice Act, 5 U.S.C. 504(a)(1)(EAJA)....

  13. A responsible remediation strategy

    International Nuclear Information System (INIS)

    This paper deals with an approach to cleaning up the residue of 150 years of intense urban and industrial development in the United States. The discussion focuses on several choices and strategies that business can adopt given the existing environmental laws and the socio-economic trends of the 1990's. The thesis of this paper is that the best business strategy for dealing with environmental liabilities is to act affirmatively and aggressively. An aggressive, pro-active approach to environmental remediation liabilities makes good business sense. It allows a company to learn the true size of the problem early. Early assessment and prioritization allows one to control the course and conduct of the cleanup. Early voluntary action is always viewed favorably by agencies. It gives one control over spending patterns which has value in and of itself. Voluntary cleanups are certainly faster and invariably more efficient. And they attain clearly acceptable standards. The volunteering company that takes the lead in a multi-party site finds that the courts are supportive in helping the volunteer collect from recalcitrant polluters. All of these pluses have a direct and positive impact on the bottom line and that means that the aggressive approach is the right thing to do for both stockholders and the communities where a business exists

  14. Addendum to the remedial investigation report on Bear Creek Valley Operable Unit 2 (Rust Spoil Area, Spoil Area 1, and SY-200 Yard) at the Oak Ridge Y-12 Plant Oak Ridge, Tennessee. Volume 1: Main text

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    This addendum to the Remedial Investigation (RI) Report on Bear Creek Valley Operable Unit (OU) 2 at the Oak Ridge Y-12 Plant was prepared in accordance with requirements under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) for reporting the results of a site characterization for public review. This addendum is a supplement to a document that was previously issued in January 1995 and that provided the Environmental Restoration Program with information about the results of the 1993 investigation performed at OU 2. The January 1995 D2 version of the RI Report on Bear Creek Valley OU 2 included information on risk assessments that have evaluated impacts to human health and the environment. Information provided in the document formed the basis for the development of the Feasibility Study Report. This addendum includes revisions to four chapters of information that were a part of the document issued in January 1995. Specifically, it includes revisions to Chaps. 2, 3, 4, and 9. Volume 1 of this document is not being reissued in its entirety as a D3 version because only the four chapters just mentioned have been affected by requested changes. Note also that Volume 2 of this RI Report on Bear Creek Valley OU 2 is not being reissued in conjunction with Volume 1 of this document because there have been no changes requested or made to the previously issued version of Volume 2 of this document.

  15. Addendum to the remedial investigation report on Bear Creek Valley Operable Unit 2 (Rust Spoil Area, Spoil Area 1, and SY-200 Yard) at the Oak Ridge Y-12 Plant Oak Ridge, Tennessee. Volume 1: Main text

    International Nuclear Information System (INIS)

    This addendum to the Remedial Investigation (RI) Report on Bear Creek Valley Operable Unit (OU) 2 at the Oak Ridge Y-12 Plant was prepared in accordance with requirements under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) for reporting the results of a site characterization for public review. This addendum is a supplement to a document that was previously issued in January 1995 and that provided the Environmental Restoration Program with information about the results of the 1993 investigation performed at OU 2. The January 1995 D2 version of the RI Report on Bear Creek Valley OU 2 included information on risk assessments that have evaluated impacts to human health and the environment. Information provided in the document formed the basis for the development of the Feasibility Study Report. This addendum includes revisions to four chapters of information that were a part of the document issued in January 1995. Specifically, it includes revisions to Chaps. 2, 3, 4, and 9. Volume 1 of this document is not being reissued in its entirety as a D3 version because only the four chapters just mentioned have been affected by requested changes. Note also that Volume 2 of this RI Report on Bear Creek Valley OU 2 is not being reissued in conjunction with Volume 1 of this document because there have been no changes requested or made to the previously issued version of Volume 2 of this document.

  16. 77 FR 19716 - Notice of Filing of Consent Decree Pursuant to the Clean Air Act, CERCLA and EPCRA

    Science.gov (United States)

    2012-04-02

    ...), Department of Justice Case Number 90-5-1-1-06025/3. During the public comment period, the Consent Decree may... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF JUSTICE Notice... of Justice will receive for a period of thirty (30) days from the date of this publication...

  17. Electrodialytic soil remediation

    DEFF Research Database (Denmark)

    Karlsmose, Bodil; Ottosen, Lisbeth M.; Hansen, Lene;

    1999-01-01

    The paper gives an overview of how heavy metals can be found in the soil and the theory of electrodialytic remediation. Basically electrodialytic remediation works by passing electric current through the soil, and the heavy metals in ionic form will carry some of the current. Ion-exchange membranes...... prevents the protons and the hydroxides ions from the electrode processes to enter the soil. The heavy metals are collected in a concentration compartment, which is separated from the soil by ion-exchange membranes. Examples from remediation experiments are shown, and it is demonstrated that it is possible...... to remediate soil polluted with heavy metals be this method. When adding desorbing agents or complexing agents, chosing the right current density, electrolyte and membranes, the proces can be optimised for a given remediation situation. Also electroosmosis is influencing the system, and if extra water...

  18. Aquatic environmental remediation approaches

    International Nuclear Information System (INIS)

    The 2011 Fukushima Daiichi Nuclear Plant's nuclear accident contaminated a significant portion of Fukushima Prefecture, and environmental remediation activities have been performed. To reduce the human exposure to the radiation induced by the nuclear contamination, one can reduce the radiation level in the environment, and/or eliminate radionuclide pathways to humans. This paper presents some case studies that are relevant to the Fukushima case. These examples include the Chernobyl nuclear accident's environmental and remediation assessments, U.S. Hanford environmental remediation activities, and the pesticide remediation assessment for the James River Estuary, Virginia, U.S.A. 1-D TODAM, 2-D FETRA and 3-D FLESCOT codes have been applied to the surface waters. TODAM code is currently being applied to the Ukedo and Takase rivers in Fukushima to predict cesium-137 migration in these rivers. A lesson learned from these experiences is that to achieve the effective clean-up, remediation decision makers must include knowledgeable scientists and competent engineers, so that environmental remediation activities are based on a scientifically-valid approach for a given contaminated location. Local participation to the remediation decision making is critically important. (author)

  19. Dnapl Site Remediation: Status and Research Needs (Invited)

    Science.gov (United States)

    Stroo, H. F.; Kueper, B. H.

    2013-12-01

    Remediation of sites impacted by dense, non-aqueous phase liquids (DNAPLs) such as chlorinated solvents remains technically challenging despite significant advances over the past 30 years. Contaminants are difficult to locate in the subsurface, and it is difficult to deliver remedial agents to the contamination effectively. If lower permeability media are present, these can act as diffusive sinks for aqueous and sorbed phase constituents, further complicating characterization and cleanup. DNAPL source zones are particularly difficult to remediate, and even after treatment these sources can persist for many decades, if not centuries, and it is difficult to transition sites to a passive management strategy. A recent expert panel on source zone remediation identified three overriding objectives for future remediation - to be more surgical, more sustainable, and more certain. Surgical remediation refers to precise delineation of contaminants and hydrogeology, with more targeted remediation efforts. Sustainable remediation refers to the growing need to consider all environmental impacts when developing remediation strategies, including energy use, greenhouse gas emissions, lifecycle impacts, and the increasing demand for clean water. Although considerable uncertainty is inherent in subsurface remediation, there is potential to reduce this uncertainty through improved monitoring and modeling. Specific characterization and remediation needs will be summarized separately. Improved technologies for source characterization are critical because inadequate characterization is common given the costs and limitations of current techniques. As a result, the performance of field-scale remediation technologies is frequently disappointing. Specific research needs to improve source zone characterization include: (i) better delineation and mass estimation, (ii) source zone architecture characterization methods, and (iii) increased resolution and fine-scale mapping of geologic

  20. Elements of a CERCLA action at a former Army ammunition plant

    Energy Technology Data Exchange (ETDEWEB)

    Tucker, D.F.; Marotz, G.A.; Frazier, G.F.

    1999-07-01

    The Sunflower Army Ammunition Plant covers 44 km{sup 2} and is located near several large population centers. Leased sites within the plant are now being used for various activities including recreation and manufacturing. Plans are in place for conversion of an additional 3,000 ha to a commercial amusement park. Some 400 structures from the plant remain and most must be removed if further ventures are to take place. Many of the buildings are structurally unsound or contain potentially hazardous materials, such as explosive residues, lead sheathing or asbestos shingles, that were stored or used in the construction of the structures. State and federal agencies agreed that the buildings should be destroyed, but the method to do so was unclear. Analysis on building by building basis revealed that in many cases explosive residue made it unsafe to remove the buildings by any other method rather than combustion. Completion of a comprehensive destruction plan that included ground-level monitoring of combustion plumes, and burn scheduling under tightly prescribed micro and mesoscale meteorological conditions was approved by the EPA as a non-time critical removal action under CERCLA in 1996; the US Army was designated as the lead agency. Personnel at the University of Kansas assisted in developing the destruction plan and helped conduct two test burns using the comprehensive plan protocols. Results of one test burn scenario on June 26, 1997, intended as a test of probable dispersion safety margin and covered extensively by print and television media, the EPA and State agencies, are described in this paper. The selected building was smaller than typical of the buildings on the plant site. The events leading to a burn decision on the test day are used to illustrate the decision-making process.

  1. 25 Years Of Environmental Remediation In The General Separations Area Of The Savannah River Site: Lessons Learned About What Worked And What Did Not Work In Soil And Groundwater Cleanup

    Energy Technology Data Exchange (ETDEWEB)

    Blount, Gerald [Savannah River Nuclear Solutions (SRNS), Aiken, SC (United States); Thibault, Jeffrey [Savannah River Nuclear Solutions (SRNS), Aiken, SC (United States); Millings, Margaret [Savannah River Nuclear Solutions (SRNS), Aiken, SC (United States); Prater, Phil [Savannah River Site (SRS), Aiken, SC (United States)

    2015-03-16

    The Savannah River Site (SRS) is owned and administered by the US Department of Energy (DOE). SRS covers an area of approximately 900 square kilometers. The General Separation Area (GSA) is located roughly in the center of the SRS and includes: radioactive material chemical separations facilities, radioactive waste tank farms, a variety of radioactive seepage basins, and the radioactive waste burial grounds. Radioactive wastes were disposed in the GSA from the mid-1950s through the mid-1990s. Radioactive operations at the F Canyon began in 1954; radioactive operations at H Canyon began in 1955. Waste water disposition to the F and H Seepage Basins began soon after operations started in the canyons. The Old Radioactive Waste Burial Ground (ORWBG) began operations in 1952 to manage solid waste that could be radioactive from all the site operations, and ceased receiving waste in 1972. The Mixed Waste Management Facility (MWMF) and Low Level Radioactive Waste Disposal Facility (LLRWDF) received radioactive solid waste from 1969 until 1995. Environmental legislation enacted in the 1970s, 1980s, and 1990s led to changes in waste management and environmental cleanup practices at SRS. The US Congress passed the Clean Air Act in 1970, and the Clean Water Act in 1972; the Resource Conservation and Recovery Act (RCRA) was enacted in 1976; the Comprehensive Environmental Response Compensation, and Liability Act (CERCLA) was enacted by Congress in 1980; the Federal Facilities Compliance Act (FFCA) was signed into law in 1992. Environmental remediation at the SRS essentially began with a 1987 Settlement Agreement between the SRS and the State of South Carolina (under the South Carolina Department of Health and Environmental Control - SCDHEC), which recognized linkage between many SRS waste management facilities and RCRA. The SRS manages several of the larger groundwater remedial activities under RCRA for facilities recognized early on as environmental problems. All subsequent

  2. Managing Waste Inventory and License Limits at the Perma-Fix Northwest Facility to Meet CH2M Hill Plateau Remediation Company (CHPRC) American Recovery and Reinvestment Act (ARRA) Deliverables - 12335

    International Nuclear Information System (INIS)

    CH2M Hill Plateau Remediation Company (CHRPC) is a prime contractor to the U.S. Department of Energy (DOE) focused on the largest ongoing environmental remediation project in the world at the DOE Hanford Site Central Plateau, i.e. the DOE Hanford Plateau Remediation Contract. The East Tennessee Materials and Energy Corporation (M and EC); a wholly owned subsidiary of Perma-Fix Environmental Services, Inc. (PESI), is a small business team member to CHPRC. Our scope includes project management; operation and maintenance of on-site storage, repackaging, treatment, and disposal facilities; and on-site waste management including waste receipt from generators and delivery to on-site and off-site treatment, storage, and disposal facilities. As part of this scope, M and EC staffs the centralized Waste Support Services organization responsible for all waste characterization and acceptance required to support CHPRC and waste generators across the Hanford Site. At the time of the CHPRC contract award (August 2008) slightly more than 9,000 cubic meters (m3) of legacy waste was defined as 'no-path-forward waste'. A significant portion of this waste (7,650 m3) comprised wastes with up to 50 grams of special nuclear materials (SNM) in oversized packages recovered during retrieval operations and large glove boxes removed from the Plutonium Finishing Plant (PFP). Through a collaborative effort between the DOE, CHPRC, and Perma-Fix Environmental Services, Inc. (PESI), pathways for these problematic wastes were developed that took advantage of commercial treatment capabilities at a nearby vendor facility, Perma-Fix Northwest (PFNW). In the spring of 2009, CHPRC initiated a pilot program under which they began shipping large package, low gram suspect TRU (<15 g SNM per container), and large package contact and remote handled MLLW to the off-site PFNW facility for treatment. PFNW is restricted by the SNM limits set for the total quantity of SNM allowed at the facility in accordance

  3. Site Remediation in Practice

    International Nuclear Information System (INIS)

    This paper describes the remediation of a former uranium mining area in Hungary. The work was carried out using stringent quality controls and special attention was paid to the radiological survey during the cleanup works on the roads, on pipe lines and yards, on the mill site and places used earlier for heap leaching. Groundwater quality control and the related groundwater quality restoration were the most important aspects of the post remediation phase which was aimed at the long term protection of the nearby drinking water aquifer. The expenditure for the remediation was approximately $100 million. The estimated cost for long term monitoring and water treatment is about US $4 million/year. (author)

  4. Remedial design/remedial action strategy report

    Energy Technology Data Exchange (ETDEWEB)

    Dieffenbacher, R.G.

    1994-06-30

    This draft Regulatory Compliance Strategy (RCS) report will aid the ER program in developing and implementing Remedial Design/Remedial Action (RD/RA) projects. The intent of the RCS is to provide guidance for the implementation of project management requirements and to allow the implementation of a flexible, graded approach to design requirements depending on the complexity, magnitude, schedule, risk, and cost for any project. The RCS provides a functional management-level guidance document for the identification, classification, and implementation of the managerial and regulatory aspects of an ER project. The RCS has been written from the perspective of the ER Design Manager and provides guidance for the overall management of design processes and elements. The RCS does not address the project engineering or specification level of detail. Topics such as project initiation, funding, or construction are presented only in the context in which these items are important as sources of information or necessary process elements that relate to the design project phases.

  5. Electrodialytic Soil Remediation

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Hansen, Lene; Hansen, Henrik K.;

    1997-01-01

    It is not possible for all heavy metal polluted soils to remediate it by an applied electric field alone. A desorbing agent must in different cases be added to the soil in order to make the process possible or to make it cost effective......It is not possible for all heavy metal polluted soils to remediate it by an applied electric field alone. A desorbing agent must in different cases be added to the soil in order to make the process possible or to make it cost effective...

  6. Solutions Remediate Contaminated Groundwater

    Science.gov (United States)

    2010-01-01

    During the Apollo Program, NASA workers used chlorinated solvents to clean rocket engine components at launch sites. These solvents, known as dense non-aqueous phase liquids, had contaminated launch facilities to the point of near-irreparability. Dr. Jacqueline Quinn and Dr. Kathleen Brooks Loftin of Kennedy Space Center partnered with researchers from the University of Central Florida's chemistry and engineering programs to develop technology capable of remediating the area without great cost or further environmental damage. They called the new invention Emulsified Zero-Valent Iron (EZVI). The groundwater remediation compound is cleaning up polluted areas all around the world and is, to date, NASA's most licensed technology.

  7. 76 FR 13089 - National Priorities List, Final Rule No. 51

    Science.gov (United States)

    2011-03-10

    ... Liability Act of 1980 (``CERCLA'' or ``the Act''), as amended, requires that the National Oil and Hazardous...- mail: jeng.terry@epa.gov , Site Assessment and Remedy Decisions Branch; Assessment and Remediation Division; Office of Superfund Remediation and Technology Innovation (mail code 5204P); U.S....

  8. In situ Remediation Technologies

    NARCIS (Netherlands)

    Grotenhuis, J.T.C.; Rijnaarts, H.H.M.

    2011-01-01

    A summary of two decades of developments of In Situ remediation is presented in this chapter. The basic principles of In Situ technology application are addressed, such as equilibrium relations between contaminant phases, factors controlling biological and geochemical processes, contaminant characte

  9. Catalysts for Environmental Remediation

    DEFF Research Database (Denmark)

    Abrams, B. L.; Vesborg, Peter Christian Kjærgaard

    2013-01-01

    The properties of catalysts used in environmental remediation are described here through specific examples in heterogeneous catalysis and photocatalysis. In the area of heterogeneous catalysis, selective catalytic reduction (SCR) of NOx was used as an example reaction with vanadia and tungsta...

  10. The Remediation of Nosferatu

    DEFF Research Database (Denmark)

    Ghellal, Sabiha; Morrison, Ann; Hassenzahl, Marc;

    2014-01-01

    In this paper we present The Remediation of Nosferatu, a location based augmented reality horror adventure. Using the theory of fictional universe elements, we work with diverse material from Nosferatu’s horror genre and vampire themes as a case study. In this interdisciplinary research we...

  11. 2014 Ohio Remediation Report

    Science.gov (United States)

    Ohio Board of Regents, 2014

    2014-01-01

    In fulfillment of Ohio Revised Code 3333.041 (A) (1) the Chancellor has published a listing by school district of the number of the 2013 high school graduates who attended a state institution of higher education in academic year 2013-2014 and the percentage of each district's graduates required by the institution to enroll in a remedial course in…

  12. [Cognitive remediation and nursing care].

    Science.gov (United States)

    Schenin-King, Palmyre; Thomas, Fanny; Braha-Zeitoun, Sonia; Bouaziz, Noomane; Januel, Dominique

    2016-01-01

    Therapies based on cognitive remediation integrate psychiatric care. Cognitive remediation helps to ease cognitive disorders and enable patients to improve their day-to-day lives. It is essential to complete nurses' training in this field. This article presents the example of a patient with schizophrenia who followed the Cognitive Remediation Therapy programme, enabling him to access mainstream employment. PMID:27615702

  13. ICD Complex Operations and Maintenance Plan

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, P. L.

    2007-06-25

    This Operations and Maintenance (O&M) Plan describes how the Idaho National Laboratory (INL) conducts operations, winterization, and startup of the Idaho CERCLA Disposal Facility (ICDF) Complex. The ICDF Complex is the centralized INL facility responsible for the receipt, storage, treatment (as necessary), and disposal of INL Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) remediation waste.

  14. Selected remedy at the Queen City Farms superfund site: A risk management approach

    International Nuclear Information System (INIS)

    A risk management approach at a former industrial waste disposal site in western Washington resulted in a selected remedy that is cost-effective and that meets the CERCLA threshold criterion of protecting human health and the environment. The proposed remedy, which addresses contamination in soil and groundwater, does not require an ARARs waiver and received state and community acceptance. By analyzing the current and potential risk at the site, a proposed remedy was chosen that would control the source and naturally attenuate the groundwater plume. Source control will include removal and treatment of some light nonaqueous phase liquid (LNAPL) and some soil, followed by isolation of the remaining soil and LNAPL within a slurry wall and beneath a multilayer cap. A contingent groundwater extraction and treatment system was included to address uncertainty in the risk characterization. Implementing source control is predicted to result in a steady decline in volatile organic compound levels in the drinking water aquifer through adsorption, degradation, and dispersion. Exposure to groundwater during the period of natural attenuation will be controlled by monitoring, institutional controls, and a thorough characterization of the plume and receptors. 7 figs., 1 tab

  15. Baseline public health assessment for CERCLA investigations at the LLNL Livermore Site

    Energy Technology Data Exchange (ETDEWEB)

    Layton, D.W.; Daniels, J.I.; Isherwood, W.I. (eds.); Bogen, K.T.; Cederwall, R.T.; Daniels, J.I.; Goyal, K.; Hall, C.H.; Hall, L.C.; Johnson, V.M.; Layton, D.W.; Mallon, B.J.; McKone, T.E.; Rice, D.W. Jr.; Thorpe, R.K.; Tompson, A.F.B. (Lawrence Livermore National Lab., CA (United States)); Dresen, M.D.; McKereghan, P.F.; Nichols, E.M.; Small, M.C.; Yukic, F.S. (Weiss Associates, Emeryville, CA (United States))

    1990-09-30

    In 1987, the US Environmental Protection Agency (EPA) added the Lawrence Livermore National Laboratory (LLNL) Livermore site to the National Priorities List (NPL) due to volatile organic compounds (VOCs) found by LLNL in ground water onsite and offsite. One key component of the site cleanup effort at a NPL or Superfund site is the Remedial Investigation (RI), which includes studies and monitoring programs to acquire and analyze pertinent site-related data, such as the nature and extent of contamination and the characteristics of the local hydrogeology. An important part of the RI is the Baseline Public Health Assessment (BPHA), which addresses the potential future public health risks that could exist if no cleanup is attempted. This BPHA material was included in the RI for the LLNL Livermore site, which was submitted to regulatory agencies in May 1990. The BPHA is published here as a stand-alone document for the convenience of those interested only in this material. Because of the US Department of Energy (DOE), LLNL and environmental regulatory agencies are dedicated to the remediation of contaminated soils, sediments, and ground water at the Livermore site, the potential risks described herein are unlikely to occur. This BPHA provides the information needed to evaluate the benefits of cleanup alternatives. 166 refs., 49 figs., 35 tabs.

  16. Remediation Technology Collaboration Development

    Science.gov (United States)

    Mahoney, John; Olsen, Wade

    2010-01-01

    This slide presentation reviews programs at NASA aimed at development at Remediation Technology development for removal of environmental pollutants from NASA sites. This is challenging because there are many sites with different environments, and various jurisdictions and regulations. There are also multiple contaminants. There must be different approaches based on location and type of contamination. There are other challenges: such as costs, increased need for resources and the amount of resources available, and a regulatory environment that is increasing.

  17. Hanford Site National Environmental Policy Act (NEPA) Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Neitzel, Duane A.; Bunn, Amoret L.; Duncan, Joanne P.; Eschbach, Tara O.; Fowler, Richard A.; Fritz, Brad G.; Goodwin, Shannon M.; Harvey, David W.; Hendrickson, Paul L.; Hoitink, Dana J.; Horton, Duane G.; Last, George V.; Poston, Ted M.; Prendergast-Kennedy, Ellen L.; Rohay, Alan C.; Scott, Michael J.; Thorne, Paul D.

    2002-09-01

    This document describes the U.S. Department of Energy's (DOE) Hanford Site environment. It is updated each year and is intended to provide a consistent description of the Hanford Site environment for the many National Environmental Policy Act (NEPA) documents being prepared by DOE contractors. No statements of significance or environmental consequences are provided. This year's report is the thirteenth revision of the original document published in 1988 and is (until replaced by the fourteenth revision) the only version that is relevant for use in the preparation of Hanford NEPA, State Environmental Policy Act (SEPA), and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) documents. The two chapters included in this document (Chapters 4 and 6) are numbered to correspond to the chapters where such information is typically presented in environmental impact statements (Weiss) and other Hanford Site NEPA or CERCLA documentation. Chapter 4.0 (Affected Environment) describes Hanford Site climate and meteorology, geology, hydrology, ecology, cultural, archaeological, and historical resources, socioeconomics, occupational safety, and noise. Chapter 6.0 (Statutory and Regulatory Requirements) describes federal and state laws and regulations, DOE directives and permits, and presidential executive orders that are applicable to the NEPA documents prepared for Hanford Site activities.

  18. Hanford Site National Environmental Policy Act (NEPA) Characterization Report

    Energy Technology Data Exchange (ETDEWEB)

    Neitzel, Duane A.; Bunn, Amoret L.; Cannon, Sandra D.; Duncan, Joanne P.; Fowler, Richard A.; Fritz, Brad G.; Harvey, David W.; Hendrickson, Paul L.; Hoitink, Dana J.; Horton, Duane G.; Last, George V.; Poston, Ted M.; Prendergast-Kennedy, Ellen L.; Reidel, Steve P.; Rohay, Alan C.; Scott, Michael J.; Thorne, Paul D.

    2004-09-22

    This document describes the U.S. Department of Energy's (DOE) Hanford Site environment. It is updated each year and is intended to provide a consistent description of the Hanford Site environment for the many National Environmental Policy Act (NEPA) documents being prepared by DOE contractors. No statements of significance or environmental consequences are provided. This year's report is the sixteenth revision of the original document published in 1988 and is (until replaced by the seventeenth revision) the only version that is relevant for use in the preparation of Hanford NEPA, State Environmental Policy Act (SEPA), and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) documents. The two chapters included in this document (Chapters 4 and 6) are numbered to correspond to the chapters where such information is typically presented in environmental impact statements (Weiss) and other Hanford Site NEPA or CERCLA documentation. Chapter 4.0 (Affected Environment) describes Hanford Site climate and meteorology, geology, hydrology, ecology, cultural, archaeological, and historical resources, socioeconomics, occupational safety and health, and noise. Chapter 6.0 (Statutory and Regulatory Requirements) describes federal and state laws and regulations, DOE directives and permits, and presidential executive orders that are applicable to the NEPA documents prepared for Hanford Site activities.

  19. Hanford Site National Environmental Policy Act (NEPA) Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Neitzel, Duane A.; Antonio, Ernest J.; Eschbach, Tara O.; Fowler, Richard A.; Goodwin, Shannon M.; Harvey, David W.; Hendrickson, Paul L.; Hoitink, Dana J.; Horton, Duane G.; Last, George V.; Poston, Ted M.; Prendergast, Ellen L.; Rohay, Alan C.; Thorne, Paul D.

    2001-09-01

    This document describes the U.S. Department of Energy's (DOE) Hanford Site environment. It is updated each year and is intended to provide a consistent description of the Hanford Site environment for the many National Environmental Policy Act (NEPA) documents being prepared by DOE contractors. No statements of significance or environmental consequences are provided. This year's report is the thirteenth revision of the original document published in 1988 and is (until replaced by the fourteenth revision) the only version that is relevant for use in the preparation of Hanford NEPA, State Environmental Policy Act (SEPA), and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) documents. The two chapters included in this document (Chapters 4 and 6) are numbered to correspond to the chapters where such information is typically presented in environmental impact statements (Weiss) and other Hanford Site NEPA or CERCLA documentation. Chapter 4.0 (Affected Environment) describes Hanford Site climate and meteorology, geology, hydrology, ecology, cultural, archaeological, and historical resources, socioeconomics, occupational safety, and noise. Chapter 6.0 (Statutory and Regulatory Requirements) describes federal and state laws and regulations, DOE directives and permits, and presidential executive orders that are applicable to the NEPA documents prepared for Hanford Site activities.

  20. Hanford Site National Environmental Policy Act (NEPA) Characterization, Revision 15

    Energy Technology Data Exchange (ETDEWEB)

    Neitzel, Duane A.; Bunn, Amoret L.; Burk, Kenneth W.; Cannon, Sandra D.; Duncan, Joanne P.; Fowler, Richard A.; Fritz, Brad G.; Harvey, David W.; Hendrickson, Paul L.; Horton, Duane G.; Last, George V.; Poston, Ted M.; Prendergast-Kennedy, Ellen L.; Reidel, Steve P.; Scott, Michael J.; Thorne, Paul D.; Woody, Dave M.

    2003-09-01

    This document describes the U.S. Department of Energy's (DOE) Hanford Site environment. It is updated each year and is intended to provide a consistent description of the Hanford Site environment for the many National Environmental Policy Act (NEPA) documents being prepared by DOE contractors. No statements of significance or environmental consequences are provided. This year's report is the thirteenth revision of the original document published in 1988 and is (until replaced by the fourteenth revision) the only version that is relevant for use in the preparation of Hanford NEPA, State Environmental Policy Act (SEPA), and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) documents. The two chapters included in this document (Chapters 4 and 6) are numbered to correspond to the chapters where such information is typically presented in environmental impact statements (Weiss) and other Hanford Site NEPA or CERCLA documentation. Chapter 4.0 (Affected Environment) describes Hanford Site climate and meteorology, geology, hydrology, ecology, cultural, archaeological, and historical resources, socioeconomics, occupational safety, and noise. Chapter 6.0 (Statutory and Regulatory Requirements) describes federal and state laws and regulations, DOE directives and permits, and presidential executive orders that are applicable to the NEPA documents prepared for Hanford Site activities.

  1. CENTRAL PLATEAU REMEDIATION

    Energy Technology Data Exchange (ETDEWEB)

    ROMINE, L.D.

    2006-02-01

    A systematic approach to closure planning is being implemented at the Hanford Site's Central Plateau to help achieve the goal of closure by the year 2035. The overall objective of Central Plateau remediation is to protect human health and the environment from the significant quantity of contaminated material that resulted from decades of plutonium production in support of the nation's defense. This goal will be achieved either by removing contaminants or placing the residual contaminated materials in a secure configuration that minimizes further migration to the groundwater and reduces the potential for inadvertent intrusion into contaminated sites. The approach to Central Plateau cleanup used three key concepts--closure zones, closure elements, and closure process steps--to create an organized picture of actions required to complete remediation. These actions were merged with logic ties, constraints, and required resources to produce an integrated time-phased schedule and cost profile for Central Plateau closure. Programmatic risks associated with implementation of Central Plateau closure were identified and analyzed. Actions to mitigate the most significant risks are underway while high priority remediation projects continue to make progress.

  2. Remediating MGP brownfields

    International Nuclear Information System (INIS)

    Before natural gas pipelines became widespread in this country, gas fuel was produced locally in more than 5,000 manufactured gas plants (MGPs). The toxic wastes from these processes often were disposed onsite and have since seeped into the surrounding soil and groundwater. Although the MGPs--commonly called gas plants, gas-works or town gas plants--have closed and most have been demolished, they have left a legacy of environmental contamination. At many MGP sites, underground storage tanks were constructed of wood or brick, with process piping and equipment which frequently leaked. Waste materials often were disposed onsite. Releases of coal tars, oils and condensates produced within the plants contributed to a wide range of contamination from polycyclic aromatic hydrocarbons, phenols, benzene and cyanide. Remediation of selected MGP sites has been sporadic. Unless the site has been identified as a Comprehensive Environmental Response, Compensation and Liability Information System (CERCLIS) Superfund site, the regulatory initiative to remediate often remains with the state in which the MGP is located. A number of factors are working to change that picture and to create a renewed interest in MGP site remediation. The recent Brownfield Initiative by the US Environmental Protection Agency (EPA) is such an example

  3. The Nexus Between Ecological Risk Assessment and Natural Resources Damage Assessment Under CERCLA: Introduction to a Society of Environmental Toxicology and Chemistry Techincal Workshop

    Science.gov (United States)

    A SETAC Technical Workshop titled “The Nexus Between Ecological Risk Assessment and Natural Resource Damage Assessment Under CERCLA: Understanding and Improving the Common Scientific Underpinnings,” was held 18–22 August 2008 in Gregson, Montana, USA, to examine the linkage, nexu...

  4. RCRA Facility Investigation/Remedial Investigation Report for the Grace Road Site (631-22G)

    International Nuclear Information System (INIS)

    This report summarizes the activities and documents the results of a Resource Conservation and Recovery Act Facility Investigation/Remedial Investigation conducted at Grace Road Site on the Savannah River Site near Aiken, South Carolina

  5. RCRA Facility Investigation/Remedial Investigation Report for the Grace Road Site (631-22G)

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, E.

    1998-10-02

    This report summarizes the activities and documents the results of a Resource Conservation and Recovery Act Facility Investigation/Remedial Investigation conducted at Grace Road Site on the Savannah River Site near Aiken, South Carolina.

  6. 15 CFR 700.74 - Violations, penalties, and remedies.

    Science.gov (United States)

    2010-01-01

    ... REGULATIONS DEFENSE PRIORITIES AND ALLOCATIONS SYSTEM Compliance § 700.74 Violations, penalties, and remedies.... The maximum penalty provided by the Defense Production Act is a $10,000 fine, or one year in prison... fine, or three years in prison, or both. (b) The government may also seek an injunction from a court...

  7. Electrokinetic remediation prefield test methods

    Science.gov (United States)

    Hodko, Dalibor (Inventor)

    2000-01-01

    Methods for determining the parameters critical in designing an electrokinetic soil remediation process including electrode well spacing, operating current/voltage, electroosmotic flow rate, electrode well wall design, and amount of buffering or neutralizing solution needed in the electrode wells at operating conditions are disclosed These methods are preferably performed prior to initiating a full scale electrokinetic remediation process in order to obtain efficient remediation of the contaminants.

  8. Remediating Remediation: From Basic Writing to Writing across the Curriculum

    Science.gov (United States)

    Faulkner, Melissa

    2013-01-01

    This article challenges faculty members and administrators to rethink current definitions of remediation. First year college students are increasingly placed into basic writing courses due to a perceived inability to use English grammar correctly, but it must be acknowledged that all students will encounter the need for remediation as they attempt…

  9. Remedial action technology - arid

    International Nuclear Information System (INIS)

    A summary is presented of the low-level waste remedial action program at Los Alamos. The experimental design and progress is described for the experiments on second generation intrusion barriers, subsidence effects on SLB components, moisture cycling effects on chemical transport, and erosion control methodologies. The soil moisture data from the bio-intrusion and moisture cycling experiments both demonstrate the overwhelming importance of vegetation in minimizing infiltration of water through trench covers and backfill. Evaporation, as a water loss component in trench covers, is only effective in reducing soil moisture within 40 cm of the trench cover surface. Moisture infiltrating past the zone of evaporation in unvegetated or poorly vegetated trench covers is in storage and accumulates until drainage out of the soil profile occurs. Judicious selection of vegetation species for revegetating a low-level waste site may prevent infiltration of moisture into the trench and, when coupled with other design features (i.e. trench cover slope, tilling and seeding practice), may greatly reduce problems with erosion. Standard US Department of Agriculture erosion plots, when coupled with a state-of-the-art water balance and erosion model (CREAMS) promises to be highly useful in screening proposed remedial action cover designs for low-level waste sites. The erosion plot configuration allows for complete accounting of the water balance in a soil profile. This feature enables the user to optimize cover designs to minimize erosion and infiltration of water into the trench

  10. Managing soil remediation problems.

    Science.gov (United States)

    Okx, J P; Hordijk, L; Stein, A

    1996-12-01

    Soil remediation has only a short history but the problem addressed is a significant one. Cost estimates for the clean-up of contaminated sites in the European Union and the United States are in the order of magnitude of 1,400 billion ECU. Such an enormous operation deserves the best management it can get. Reliable cost estimations per contaminated site are an important prerequisite. This paper addresses the problems related to site-wise estimations.When solving soil remediation problems, we have to deal with a large number of scientific disciplines. Too often solutions are presented from the viewpoint of only one discipline. In order to benefit from the combined disciplinary knowledge and experience, we think that it is necessary to describe the interrelations between these disciplines. This can be realized by developing an adequate model of the desired process which enables to consider and evaluate the essential factors as interdependent components of the total system.The resulting model provides a binding paradigm to the contributing disciplines which will result in improved efficiency and effectivity of the decision and the cost estimation process. In the near future, we will release the "Biosparging and Bioventing Expert Support System", an expert support system for problem owners, consultants and authorities dealing with the design and operation of a biosparging and/or a bioventing system.

  11. Community Environmental Response Facilitation Act (CERFA) report, Fort George G. Mead, Maryland. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Schultheisz, D.; Ward, L.

    1994-04-01

    This report presents the results of the Community Environmental Response Facilitation Act (CERFA) investigation conducted by Environmental Resources Management (ERM) at Fort George G. Meade (FGGM), a U.S. Government property selected for closure by the Base Realignment and Closure (BRAC) Commission. Under CERFA, Federal agencies are required to expeditiously identify real property that can be immediately reused and redeveloped. Satisfying this objective requires the identification of real property where no hazardous substances or petroleum products, regulated by the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), were stored for one year or more, known to have been released, or disposed. Fort George G. Meade, CERFA, Base closure, BRAC.

  12. Successful Opening and Disposal to-Date of Mixed CERCLA Waste at the ORR-EMWMF

    Energy Technology Data Exchange (ETDEWEB)

    Corpstein, P.; Hopper, P.; McNutt, R.

    2003-02-25

    On May 28, 2002, the Environmental Management Waste Management Facility (EMWMF) opened for operations on the Department of Energy's Oak Ridge Reservation (ORR). The EMWMF is the centerpiece in the DOE's strategy for ORR environmental cleanup. The 8+ year planned project is an on-site engineered landfill, which is accepting for disposal radioactive, hazardous, toxic and mixed wastes generated by remedial action subcontractors. The opening of the EMWMF on May 28, 2002 marked the culmination of a long development process that began in mid-1980. In late 1999 the Record of Decision was signed and a full year of design for the initial 400, 000-yd3 disposal cell began. In early 2000 Duratek Federal Services, Inc. (Federal Services) began construction. Since then, Federal Services and Bechtel Jacobs Company, LLC (BJC) have worked cooperatively to complete a required DOE readiness evaluation, develop all the Safety Authorization Basis Documentation (ASA's, SER, and UCD's) and prepare procedures and work controlling documents required to safely accept waste. This paper explains the intricacies and economics of designing and constructing the facility.

  13. Current state and future prospects of remedial soil protection. Background

    Energy Technology Data Exchange (ETDEWEB)

    Frauenstein, Joerg

    2009-08-15

    The legal basis for soil protection in the Federal Republic of Germany is: -The Act on Protection against Harmful Changes to Soil and on Rehabilitation of Contaminated Sites (Federal Soil Protection Act) (Bundes-Bodenschutzgesetz - BBodSchG) of 1998 [1] -The Federal Soil Protection and Contaminated Sites Ordinance (BBodSchV) of 1999 [2]. In Germany, the Federal Government has legislative competence in the field of soil protection. The Lander (German federal states), in turn, are responsible for enforcement of the BBodSchG and the BBodSchV; they may also issue supplementary procedural regulations. According to Article 1 BBodschG, the purpose of the Act is inter alia to protect and restore the functions of the soil on a permanent sustainable basis. These actions shall include prevention of harmful soil changes as well as rehabilitating soil, contaminated sites and waters contaminated by such sites in such a way that any contamination remains permanently below the hazard threshold. Whilst prevention aims to protect and preserve soil functions on a long-term basis, the object of remediation is mainly to avert concrete hazards in a spatial, temporal and manageable causative context. ''Remedial soil protection'' encompasses a tiered procedure in which a suspicion is verified successively and with least-possible effort and in which the circumstances of the individual case at hand are taken into account in deciding whether or not a need for remediation exists. It comprises the systematic stages of identifying, investigating and assessing suspect sites and sites suspected of being contaminated with a view to their hazard potential, determining whether remediation is necessary, remediating identified harmful soil changes and contaminated sites, and carrying out, where necessary, aftercare measures following final inspection of the remedial measure. (orig.)

  14. Electrodialytic remediation of solid waste

    DEFF Research Database (Denmark)

    Hansen, Henrik K.; Ottosen, Lisbeth M.; Karlsmose, Bodil;

    1996-01-01

    Electrodialytic remediation of heavy metal polluted solid waste is a method that combines the technique of electrodialysis with the electromigration of ions in the solid waste. Results of laboratory scale remediation experiments of soil are presented and considerations are given on how to secure...... fly ash waste deposits from polluting the ground water....

  15. Fermentative processes for environmental remediation

    OpenAIRE

    Grilli, Selene

    2013-01-01

    The growing interest in environmental protection has led to the development of emerging biotechnologies for environmental remediation also introducing the biorefinery concept. This work mainly aimed to evaluate the applicability of innovative biotechnologies for environmental remediation and bioenergy production, throught fermentative processes. The investigated biotechnologies for waste and wastewater treatment and for the valorisation of specific feedstocks and energy recovery, were m...

  16. Soil remediation: a systems approach.

    NARCIS (Netherlands)

    Okx, J.P.

    1998-01-01

    Soil remediation has only a short history, but the problem addressed is a significant one. When solving soil remediation problems we have to deal with a large number of scientific disciplines, however solutions are often presented from the viewpoint of just one discipline. In order to benefit from t

  17. RCRA Facility Investigation/Remedial Investigation Report for the Gunsite 113 Access Road Unit (631-24G) - March 1996

    International Nuclear Information System (INIS)

    Gunsite 113 Access Road Unit is located in the northeast corner of SRS. In the mid 1980's, sparse vegetation, dead trees, and small mounds of soil were discovered on a portion of the road leading to Gunsite 113. This area became the Gunsite 113 Access Road Unit (Gunsite 113). The unit appears to have been used as a spoil dirt and / or road construction debris disposal area. There is no documentation or record of any hazardous substance management, disposal, or any type of waste disposal at this unit. Based upon the available evidence, there are no potential contaminants of concern available for evaluation by a CERCLA baseline risk assessment. Therefore, there is no determinable health risk associated with Gunsite 113. In addition, it is also reasonable to conclude that, since contamination is below risk-based levels, the unit presents no significant ecological risk. It is recommended that no further remedial action be performed at this unit

  18. ACTS 2014

    DEFF Research Database (Denmark)

    Co-curator of ACTS 2014 together with Rasmus Holmboe, Judith Schwarzbart and Sanne Kofoed. ACTS is the Museum of Contemporary Art’s international bi-annual festival. ACTS was established in 2011 and, while the primary focus is on sound and performance art, it also looks toward socially oriented art...... various possibilities and public spaces as a stage. ACTS takes place in and around the museum and diverse locations in Roskilde city. ACTS is partly curated by the museum staff and partly by guest curators. ACTS 2014 is supported by Nordea-fonden and is a part of the project The Museum goes downtown....

  19. Opium the Best Remedy

    Directory of Open Access Journals (Sweden)

    Harold Merskey

    2004-01-01

    Full Text Available Sydenham was the leading English physician of the 17th century and probably to the present time. He was using a well tried remedy. It had been known by then for about 4000 years, frequently mentioned by Hippocrates, and recognized in use in medieval Europe where it probably came through Arabic traders and was well established in use in Paris by the 12th century (2. Professional concerns up to the time of Sydenham were not about addiction. As can be seen from his text, they were about whether the drug was available in adequate preparations, whether there was any difference between opium and other narcotics, particularly comparing the natural juice with "its artificial preparations" (1 (all of which he thought to be about equal in effect, whether it was stimulant or restorative and invigorating, and whether it was being properly used for all the conditions in which it could be helpful. Addiction, dependence and insanity are not mentioned, although the fact that it could occasionally promote excitement ("frenzy" was known.

  20. Plant-based remediation processes

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Dharmendra Kumar (ed.) [Belgian Nuclear Research Centre (SCK.CEN), Mol (Belgium). Radiological Impact and Performance Assessment Division

    2013-11-01

    A valuable source of information for scientists in the field of environmental pollution and remediation. Describes the latest biotechnological methods for the treatment of contaminated soils. Includes case studies and protocols. Phytoremediation is an emerging technology that employs higher plants for the clean-up of contaminated environments. Basic and applied research have unequivocally demonstrated that selected plant species possess the genetic potential to accumulate, degrade, metabolize and immobilize a wide range of contaminants. The main focus of this volume is on the recent advances of technologies using green plants for remediation of various metals and metalloids. Topics include biomonitoring of heavy metal pollution, amendments of higher uptake of toxic metals, transport of heavy metals in plants, and toxicity mechanisms. Further chapters discuss agro-technological methods for minimizing pollution while improving soil quality, transgenic approaches to heavy metal remediation and present protocols for metal remediation via in vitro root cultures.

  1. Progress and Future Plans for Mercury Remediation at the Y-12 National Security Complex, Oak Ridge, Tennessee - 13059

    International Nuclear Information System (INIS)

    The U.S. Department of Energy (DOE), along with the Tennessee Department of Environment and Conservation (TDEC) and the U.S. Environmental Protection Agency (EPA), has identified mercury contamination at the Y-12 National Security Complex (Y-12) as the highest priority cleanup risk on the Oak Ridge Reservation (ORR). The historic loss of mercury to the environment dwarfs any other contaminant release on the ORR. Efforts over the last 20 years to reduce mercury levels leaving the site in the surface waters of Upper East Fork Poplar Creek (UEFPC) have not resulted in a corresponding decrease in mercury concentrations in fish. Further reductions in mercury surface water concentrations are needed. Recent stimulus funding through the American Recovery and Reinvestment Act of 2009 (ARRA) has supported several major efforts involving mercury cleanup at Y-12. Near-term implementation activities are being pursued with remaining funds and include design of a centrally located mercury treatment facility for waterborne mercury, treatability studies on mercury-contaminated soils, and free mercury removal from storm drains. Out-year source removal will entail demolition/disposal of several massive uranium processing facilities along with removal and disposal of underlying contaminated soil. As a National Priorities List (NPL) site, cleanup is implemented under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and directed by the Federal Facility Agreement (FFA) between DOE, EPA, and TDEC. The CERCLA process is followed to plan, reach approval, implement, and monitor the cleanup. (authors)

  2. 18 CFR 706.103 - Remedial action.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Remedial action. 706... RESPONSIBILITIES AND CONDUCT General Provisions § 706.103 Remedial action. (a) A violation of this part by an employee or special Government employee may be cause for remedial action. Remedial action may include,...

  3. Electrokinetic remediation of copper mine tailings

    DEFF Research Database (Denmark)

    Hansen, Henrik K.; Rojo, Adrián; Ottosen, Lisbeth M.

    2007-01-01

    Important process parameters to optimize in electrokinetic soil remediation are those influencing remediation time and power consumption since these directly affect the cost of a remediation action. This work shows how the electrokinetic remediation (EKR) process could be improved by implementing...

  4. 42 CFR 82.16 - How will NIOSH add to monitoring data to remedy limitations of individual monitoring and missed...

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false How will NIOSH add to monitoring data to remedy... PROGRAM ACT OF 2000 Dose Reconstruction Process § 82.16 How will NIOSH add to monitoring data to remedy... to add this to the total dose estimate. For monitoring periods where external dosimetry data...

  5. Comprehensive Environmental Response, Compensation, and Liability Act, as amended by the Superfund Amendments and Reauthorization Act Section 120(e)(5)

    International Nuclear Information System (INIS)

    The US Department of Energy (DOE) is committed to conducting its operations. In a safe and environmentally sound manner. High priorities for the Department are identifying and correcting environmental problems at DOE facilities that resulted from past operations, and preventing environmental problems from occurring during present and future operations. In this regard, the Department is committed to the 30-year goal of cleanup of all facilities by the year 2019. DOE has issued an Order and guidance establishing policy and procedures for activities conducted under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended by the Superfund Amendments and Reauthorization Act (SARA), and has developed a Five-Year Plan, updated annually, that integrates planing for corrective activities, environmental restoration, and waste management operations at its facilities. During Calendar Year 1991 and early 1992, DOE made significant progress in reaching agreements with regulatory entities, undertaking cleanup actions, and initiating preventive measures designed to eliminate future environmental problems. These accomplishments are described

  6. The Employee Polygraph Protection Act of 1988.

    Science.gov (United States)

    Duffy, Patrick J.

    1989-01-01

    Aspects of the new Employee Polygraph Protection Act are discussed, including exemptions, prohibited devices, limitations, exceptions, injury and access requirements, reasonable suspicion, drug industry investigations, procedural requirements, disclosure, basis for discharge, enforcement and remedies, and preemption and existing state laws. (MSE)

  7. HANFORD GROUNDWATER REMEDIATION

    Energy Technology Data Exchange (ETDEWEB)

    CHARBONEAU, B; THOMPSON, M; WILDE, R.; FORD, B.; GERBER, M.S.

    2006-02-01

    geographically dispersed community is united in its desire to protect the Columbia River and have a voice in Hanford's future. This paper presents the challenges, and then discusses the progress and efforts underway to reduce the risk posed by contaminated groundwater at Hanford. While Hanford groundwater is not a source of drinking water on or off the Site, there are possible near-shore impacts where it flows into the Columbia River. Therefore, this remediation is critical to the overall efforts to clean up the Site, as well as protect a natural resource.

  8. Hanford Groundwater Remediation

    International Nuclear Information System (INIS)

    united in its desire to protect the Columbia River and have a voice in Hanford's future. This paper presents the challenges, and then discusses the progress and efforts underway to reduce the risk posed by contaminated groundwater at Hanford. While Hanford groundwater is not a source of drinking water on or off the Site, there are possible near-shore impacts where it flows into the Columbia River. Therefore, this remediation is critical to the overall efforts to clean up the Site, as well as protect a natural resource. (authors)

  9. The benefits from environmental remediation

    International Nuclear Information System (INIS)

    Environmental remediation projects inevitably take place against a backdrop of overall social goals and values. These goals can include, for example, full employment, preservation of the cultural, economic and archaeological resources, traditional patterns of land use, spiritual values, quality of life factors, biological diversity, environmental and socio-economic sustainability, protection of public health. Different countries will have different priorities, linked to the overall set of societal goals and the availability of resources, including funding, man-power and skills. These issues are embedded within both a national and local socio-cultural context, and will shape the way in which the remediation process is structured in any one country. The context will shape both the overall objectives of a remediation activity within the framework of competing societal goals, as well as generate constraints on the decision making process. Hence, the overall benefit of a remediation project is determined by its overall efficiency and effectiveness within the given legal, institutional, and governance framework, under the prevailing socio-economic boundary conditions, and balancing technology performance and risk reduction with fixed or limited budgetary resources, and is not simply the result of the technical remediation operation itself. (author)

  10. Grand Junction Remedial Action Program

    International Nuclear Information System (INIS)

    The Grand Junction Remedial Action Program (hereinafter referred to as the Program) originated in 1972 due to a recognized need to reduce the levels of radiation found in some of the structures identified in Grand Junction, Colorado that were constructed in part with uranium mill tailings. Out of over 640 locations eventually identified as qualifying for corrective action, the Program performed remedial construction on 594 of them. The owners of over 45 unremediated structures either did not wish to participate in the voluntary Program, or the structures were torn down, burned down, or were abandoned before the Program could take action on them. Because this was the first remedial action program of its type, and because its task was to reduce the radiation levels as soon as practical, there was no time for lengthly research and development of remedial methods or techniques. Trial and error combined with basic engineering and health physics produced a Program that learned as it progressed. At a cost of $22.7 million over a 15-year period, a substantial portion of the community had radiation exposure reduced because many public buildings such as schools, churches, and businesses, as well as private residences were remediated. 21 refs., 10 figs., 6 tabs

  11. Remedial Action Contacts Directory - 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    This document, which was prepared for the US Department of Energy (DOE) Office of Environmental Restoration (ER), is a directory of 2628 individuals interested or involved in environmental restoration and/or remedial actions at radioactively contaminated sites. This directory contains a list of mailing addresses and phone numbers of DOE operations, area, site, project, and contractor offices; an index of DOE operations, area, site, project, and contractor office sorted by state; a list of individuals, presented by last name, facsimile number, and e-mail address; an index of affiliations presented alphabetically, with individual contacts appearing below each affiliation name; and an index of foreign contacta sorted by country and affiliation. This document was generated from the Remedial Action Contacts Database, which is maintained by the Remedial Action Program Information Center (RAPIC).

  12. Bioelectrical Perchlorate Remediation

    Science.gov (United States)

    Thrash, C.; Achenbach, L. A.; Coates, J. D.

    2007-12-01

    low-level perchlorate (100 μg.L-1) influent as well as mixed-waste influents more typically found in the environment containing both nitrate and perchlorate. Through extended periods of operation (>70 days), no loss in treatment efficiency was noted and no measurable growth in biomass was observed. Gas phase analysis indicated that low levels of H2 produced at the cathode surface through electrolysis can provide enough reducing equivalents to mediate this metabolism. The results of these studies demonstrate that perchlorate remediation can be facilitated through the use of a cathode as the primary electron donor, and that continuous treatment in such a system approaches current industry standards. This has important implications for the continuous treatment of this critical contaminant in industrial waste streams and drinking water. Such a process has the advantage of long-term, low-maintenance operation with ease of online monitoring and control while limiting the injection of additional chemicals into the water treatment process and outgrowth of the microbial populations. This would negate the need for the continual removal and disposal of biomass produced during treatment and also the downstream issues associated with corrosion and biofouling of distribution systems and the production of toxic disinfection byproducts.

  13. Remediation Technologies Eliminate Contaminants

    Science.gov (United States)

    2012-01-01

    groundwater tainted by chlorinated solvents once used to clean rocket engine components. The award-winning innovation (Spinoff 2010) is now NASA s most licensed technology to date. PCBs in paint presented a new challenge. Removing the launch stand for recycling proved a difficult operation; the toxic paint had to be fully stripped from the steel structure, a lengthy and costly process that required the stripped paint to be treated before disposal. Noting the lack of efficient, environmentally friendly options for dealing with PCBs, Quinn and her colleagues developed the Activated Metal Treatment System (AMTS). AMTS is a paste consisting of a solvent solution containing microscale particles of activated zero-valent metal. When applied to a painted surface, the paste extracts and degrades the PCBs into benign byproducts while leaving the paint on the structure. This provides a superior alternative to other methods for PCB remediation, such as stripping the paint or incinerating the structure, which prevents reuse and can release volatized PCBs into the air. Since its development, AMTS has proven to be a valuable solution for removing PCBs from paint, caulking, and various insulation and filler materials in older buildings, naval ships, and former munitions facilities where the presence of PCBs interferes with methods for removing trace explosive materials. Miles of potentially toxic caulking join sections of runways at airports. Any of these materials installed before 1979 potentially contain PCBs, Quinn says. "This is not just a NASA problem," she says. "It s a global problem."

  14. Remediation of former industrial sites

    International Nuclear Information System (INIS)

    The remediation of former industrial sites in now raising serious questions over the points of the sites investigation and of risk assessment, because it is necessary to take into account the ultimate aim of this process, being the reintegration of these sites into the surrounding social-economical context as well as their control. The case of the former uranium treatment units of Seelingstaedt (situated in the former East Germany) is a perfect illustration of the difficulties that may be encountered whilst important remediation projects take place. (author). 5 figs., 2 tabs

  15. On and Off Contract Remedies

    OpenAIRE

    Brooks, Richard; Stremitzer, Alexander

    2009-01-01

    A party dissatisfied with the contractual performance of a counterparty is typically able to pursue a variety of legal recourses. Within this apparent variety lurk two fundamental alternatives. The aggrieved party may (i) “affirm†the contract and seek money damages or specific performance; or (ii) “disaffirm†the contract with the remedy of rescission and restitution. This simple dichotomy of contract remedies applies broadly in both common law and civil law practice. We show here that...

  16. Background report for the uranium-mill-tailings-sites remedial-action program

    International Nuclear Information System (INIS)

    The Uranium Mill Tailings Radiation Control Act of 1978, Public Law 95-604, mandates remedial action responsibilities to the Department of Energy for designated inactive uranium processing sites. To comply with the mandates of the Act, a program to survey and evaluate the radiological conditions at inactive uranium processing sites and at vicinity properties containing residual radioactive material derived from the sites is being conducted; the Remedial Action Program Office, Office of the Assistant Secretary for Nuclear Energy is implementing remedial actions at these processing sites. This report provides a brief history of the program, a description of the scope of the program, and a set of site-specific summaries for the 22 locations specified in the Act and three additional locations designated in response to Federal Register notices issued on August 17 and September 5, 1979. It is designed to be a quick source of background information on sites covered by the implementation program for Public Law 95-604

  17. GROUND WATER REMEDIATION POWERED WITH RENEWABLE ENERGY

    Science.gov (United States)

    Technical challenge: Resource conservation has become a critical concept in the remediation of contaminated ground water supplies. Ground water remedies which include surface discharge of treated ground water are often viewed as wasteful and non-sustainable....

  18. Antihistamines, Decongestants, and Cold Remedies

    Science.gov (United States)

    ... but drying agents, aspirin (or aspirin substitutes), and cough suppressants may also be added. Therefore, consumers should choose remedies with ingredients best suited to combat their own symptoms. If the label does not clearly state the ingredients and their functions, ask the pharmacist to explain them. * May be available over the counter without a prescription, although often obtained at the counter itself. Read ...

  19. Green Chemistry and Environmental Remediation

    Science.gov (United States)

    Abstract: Nutrient remediation and recovery is a growing concern for two key reasons: (i) the prevention of harmful algal bloom proliferation, and (ii) the recycling of nutrients (e.g., phosphates) as they are non-renewable resources which are quickly being depleted. A wide range...

  20. Adolescent Literacy: More than Remediation

    Science.gov (United States)

    Biancarosa, Gina

    2012-01-01

    The challenge of adolescent literacy involves more than providing remediation for students who have not mastered basic reading skills. To become successful learners, adolescents must master complex texts, understand the diverse literacy demands of the different content areas, and navigate digital texts. In this article, Biancarosa reviews what the…

  1. Electrodialytic Remediation of Copper Mine Tailings

    DEFF Research Database (Denmark)

    Hansen, H.K.; Rojo, A.; Ottosen, L.M.

    2012-01-01

    This work compares and evaluates sixteen electrodialytic laboratory remediation experiments on copper mine tailings. Different parameters were analysed, such as remediation time, addition of desorbing agents, and the use of pulsed electrical fields.......This work compares and evaluates sixteen electrodialytic laboratory remediation experiments on copper mine tailings. Different parameters were analysed, such as remediation time, addition of desorbing agents, and the use of pulsed electrical fields....

  2. 40 CFR 85.1803 - Remedial Plan.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Remedial Plan. 85.1803 Section 85.1803... POLLUTION FROM MOBILE SOURCES Recall Regulations § 85.1803 Remedial Plan. (a) When any manufacturer is... manufacturer shall submit a plan to the Administrator to remedy such nonconformity. The plan shall contain...

  3. 40 CFR 92.705 - Remedial plan.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Remedial plan. 92.705 Section 92.705... POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Recall Regulations § 92.705 Remedial plan. (a) When any... manufacturer or remanufacturer shall submit a plan to the Administrator to remedy such nonconformity. The...

  4. ELECTROCHEMICAL REMEDIATION TECHNOLOGIES (ECRTS) DEMONSTRATION BULLETIN

    Science.gov (United States)

    The ElectroChemical Remediation Technologies (ECRTs) process was developed by P2-Soil Remediation, Inc. P-2 Soil Remediation, Inc. formed a partnership with Weiss Associates and ElectroPetroleum, Inc. to apply the technology to contaminated sites. The ECRTs process was evaluated ...

  5. Remediation: Higher Education's Bridge to Nowhere

    Science.gov (United States)

    Complete College America, 2012

    2012-01-01

    The intentions were noble. It was hoped that remediation programs would be an academic bridge from poor high school preparation to college readiness. Sadly, remediation has become instead higher education's "Bridge to Nowhere." This broken remedial bridge is travelled by some 1.7 million beginning students each year, most of whom will…

  6. Removing Remediation Requirements: Effectiveness of Intervention Programs

    Science.gov (United States)

    Fine, Anne; Duggan, Mickle; Braddy, Linda

    2009-01-01

    Remediation of incoming college freshman students is a national concern because remediated students are at higher risk of failing to complete their degrees. Some Oklahoma higher education institutions are working to assist K-12 systems in finding ways to reduce the number of incoming college freshman students requiring remediation. This study…

  7. Civil Rights for Trafficked Persons: Recommendations for a More Effective Federal Civil Remedy

    Directory of Open Access Journals (Sweden)

    Shannon Lack

    2008-05-01

    Full Text Available In response to increasing public awareness of human trafficking in the United States, the Victims of Trafficking and Violence Protection Act (TVPA was signed into law by President Bill Clinton in October of 2000. The TVPA consolidated existing legislation to create a comprehensive civil remedy; this ensures that trafficking victims are no longer forced to seek redress under multiple criminal and civil statutes that target only components of the human trafficking offense. However, despite its status as the first comprehensive anti-trafficking legislation to be enacted in the United States, the TVPA fails to sufficiently address human trafficking concerns. It is suggested that the failure of the TVPA is a result of both the prosecutorial focus of the legislation, a focus which tends to overlook victims’ civil rights, and the contingency of TVPA benefits upon adherence to the prosecutorial process. In response to the shortcomings of the TVPA, the legislation was amended by the Trafficking Victims Protection Reauthorization Act of 2003 (TVPRA to provide a civil remedy for trafficking victims. The civil remedy confers on trafficking victims the private right to vindicate their civil rights and hold their traffickers directly accountable for their exploitative acts. By directly compensating victims, the civil remedy acts as a financial deterrent against traffickers and provides a private enforcement anti-trafficking policy. In pursuing the civil remedy, trafficking victims possess several advantages over the prosecutorial process of the TVPA and other civil causes of action. However, despite its advantages, the civil remedy is infrequently utilized thus frustrating congressional intent that victims advance antitrafficking policy by enforcing a civil remedy against their traffickers.

  8. Remedial investigation work plan for the Upper East Fork Poplar Creek characterization area, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The Oak Ridge Y-12 Plant, located within the Oak Ridge Reservation (ORR), is owned by the US Department of Energy (DOE) and managed by Lockheed Martin Energy Systems, Inc. The entire ORR was placed on the National Priorities List (NPL) of CERCLA sites in November 1989. Following CERCLA guidelines, sites under investigation require a remedial investigation (RI) to define the nature and extent of contamination, evaluate the risks to public health and the environment, and determine the goals for a feasibility study (FS) of potential remedial actions. The need to complete RIs in a timely manner resulted in the establishment of the Upper East Fork Poplar Creek (UEFPC) Characterization Area (CA) and the Bear Creek CA. The CA approach considers the entire watershed and examines all appropriate media within it. The UEFPC CA, which includes the main Y-12 Plant area, is an operationally and hydrogeologically complex area that contains numerous contaminants and containment sources, as well as ongoing industrial and defense-related activities. The UEFPC CA also is the suspected point of origin for off-site groundwater and surface-water contamination. The UEFPC CA RI also will address a carbon-tetrachloride/chloroform-dominated groundwater plume that extends east of the DOE property line into Union Valley, which appears to be connected with springs in the valley. In addition, surface water in UEFPC to the Lower East Fork Poplar Creek CA boundary will be addressed. Through investigation of the entire watershed as one ``site,`` data gaps and contaminated areas will be identified and prioritized more efficiently than through separate investigations of many discrete units.

  9. D-Area Burning/Rubble Pits (431-D and 431-1D) Corrective Measures Study/Focused Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, E.R. [Westinghouse Savannah River Company, AIKEN, SC (United States); Mason, J.T.

    1995-09-01

    The purpose of this report is to determine alternatives which may be used to remediate the D-Area Burning/Rubble Pits (DBRP). An objective of this process is to provide decision makers adequate information to compare alternatives, select an appropriate remediation for the DBRP, and demonstrate the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) requirements in the Record of Decision.

  10. Book Act

    OpenAIRE

    Kivland, Sharon

    2014-01-01

    Book Act was a new project by AMBruno, initiated by Sophie Loss, in which artist book-makers performed and embodied the concept or essence of their books through the medium of film or performance. The exhibition at The Tetley, Leeds, comprised the originating books and corresponding video work, with live performances on Sunday 9 March 2014. Book Act took place during the 17th International Contemporary Artists' Book Fair (7th to 9th March) and the exhibition continued until 26th March 2014.

  11. Programmatic Environmental Report for remedial actions at UMTRA (Uranium Mill Tailings Remedial Action) Project vicinity properties

    Energy Technology Data Exchange (ETDEWEB)

    1985-03-01

    This Environmental Report (ER) examines the environmental consequences of implementing a remedial action that would remove radioactive uranium mill tailings and associated contaminated materials from 394 vicinity properties near 14 inactive uranium processing sites included in the Uranium Mill Tailings Remedial Action (UMTRA) Project pursuant to Public Law 95--604, the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978. Vicinity properties are those properties in the vicinity of the UMTRA Project inactive mill sites, either public or private, that are believed to be contaminated by residual radioactive material originating from one of the 14 inactive uranium processing sites, and which have been designated under Section 102(a)(1) of UMTRCA. The principal hazard associated with the contaminated properties results from the production of radon, a radioactive decay product of the radium contained in the tailings. Radon, a radioactive gas, can diffuse through the contaminated material and be released into the atmosphere where it and its radioactive decay products may be inhaled by humans. A second radiation exposure pathway results from the emission of gamma radiation from uranium decay products contained in the tailings. Gamma radiation emitted from contaminated material delivers an external exposure to the whole body. If the concentration of radon and its decay products is high enough and the exposure time long enough, or if the exposure to direct gamma radiation is long enough, cancers (i.e., excess health effects) may develop in persons living and working at the vicinity properties. 3 refs., 7 tabs.

  12. New IAEA guidelines on environmental remediation

    Energy Technology Data Exchange (ETDEWEB)

    Fesenko, Sergey [International Atomic Energy Agency, A2444, Seibersdorf (Austria); Howard, Brenda [Centre for Ecology and Hydrology, Lancaster Environment Centre, LA1 4AP, Lancaster (United Kingdom); Kashparov, Valery [Ukrainian Institute of Agricultural Radiology, 08162, 7, Mashinobudivnykiv str., Chabany, Kyivo-Svyatoshin region, Kyiv (Ukraine); Sanzharova, Natalie [Russian Institute of Agricultural Radiology and Agroecology, Russian Federation, 249032, Obninsk (Russian Federation); Vidal, Miquel [Analytical Chemistry Department-Universitat de Barcelona, Barcelona, 08028 Barcelona (Spain)

    2014-07-01

    In response to the needs of its Member States, the International Atomic Energy Agency (IAEA) has published many documents covering different aspects of remediation of contaminated environments. These documents range from safety fundamentals and safety requirements to technical documents describing remedial technologies. Almost all the documents on environmental remediation are related to uranium mining areas and decommissioning of nuclear facilities. IAEA radiation safety standards on remediation of contaminated environments are largely based on these two types of remediation. The exception is a document related to accidents, namely the IAEA TRS No. 363 'Guidelines for Agricultural Countermeasures Following an Accidental Release of Radionuclides'. Since the publication of TRS 363, there has been a considerable increase in relevant information. In response, the IAEA initiated the development of a new document, which incorporated new knowledge obtained during last 20 years, lessons learned and subsequent changes in the regulatory framework. The new document covers all aspects related to the environmental remediation from site characterisation to a description of individual remedial actions and decision making frameworks, covering urban, agricultural, forest and freshwater environments. Decisions taken to commence remediation need to be based on an accurate assessment of the amount and extent of contamination in relevant environmental compartments and how they vary with time. Major aspects of site characterisation intended for remediation are described together with recommendations on effective sampling programmes and data compilation for decision making. Approaches for evaluation of remedial actions are given in the document alongside the factors and processes which affect their implementation for different environments. Lessons learned following severe radiation accidents indicate that remediation should be considered with respect to many different

  13. Hanford Sitewide Groundwater Remediation Strategy

    International Nuclear Information System (INIS)

    This document fulfills the requirements of the Hanford Federal Facility Agreement and Consent Order, Milestone M-13-81, to develop a concise statement of strategy that describe show the Hanford Site groundwater remediation will be accomplished. The strategy addresses objectives and goals, prioritization of activities, and technical approaches for groundwater cleanup. The strategy establishes that the overall goal of groundwater remediation on the Hanford Site is to restore groundwater to its beneficial uses in terms of protecting human health and the environment, and its use as a natural resource. The Hanford Future Site Uses Working Group established two categories for groundwater commensurate with various proposed landuses: (1) restricted use or access to groundwater in the Central Plateau and in a buffer zone surrounding it and (2) unrestricted use or access to groundwater for all other areas. In recognition of the Hanford Future Site Uses Working Group and public values, the strategy establishes that the sitewide approach to groundwater cleanup is to remediate the major plumes found in the reactor areas that enter the Columbia River and to contain the spread and reduce the mass of the major plumes found in the Central Plateau

  14. Environmental Remediation Data Management Tools

    Energy Technology Data Exchange (ETDEWEB)

    Wierowski, J. V.; Henry, L. G.; Dooley, D. A.

    2002-02-26

    Computer software tools for data management can improve site characterization, planning and execution of remediation projects. This paper discusses the use of two such products that have primarily been used within the nuclear power industry to enhance the capabilities of radiation protection department operations. Advances in digital imaging, web application development and programming technologies have made development of these tools possible. The Interactive Visual Tour System (IVTS) allows the user to easily create and maintain a comprehensive catalog containing digital pictures of the remediation site. Pictures can be cataloged in groups (termed ''tours'') that can be organized either chronologically or spatially. Spatial organization enables the user to ''walk around'' the site and view desired areas or components instantly. Each photo is linked to a map (floor plan, topographical map, elevation drawing, etc.) with graphics displaying the location on the map and any available tour/component links. Chronological organization enables the user to view the physical results of the remediation efforts over time. Local and remote management teams can view these pictures at any time and from any location. The Visual Survey Data System (VSDS) allows users to record survey and sample data directly on photos and/or maps of areas and/or components. As survey information is collected for each area, survey data trends can be reviewed for any repetitively measured location or component. All data is stored in a Quality Assurance (Q/A) records database with reference to its physical sampling point on the site as well as other information to support the final closeout report for the site. The ease of use of these web-based products has allowed nuclear power plant clients to plan outage work from their desktop and realize significant savings with respect to dose and cost. These same tools are invaluable for remediation and decommissioning

  15. Salmon Site Remedial Investigation Report

    International Nuclear Information System (INIS)

    This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides into the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the

  16. RCRA Facility Investigation/Remedial Investigation Report with Baseline Risk Assessment for the Fire Department Hose Training Facility (904-113G)

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, E. [Westinghouse Savannah River Company, AIKEN, SC (United States)

    1997-04-01

    This report documents the Resource Conservation and Recovery Act (RCRA) Facility Investigation/Remedial Investigation/Baseline Risk Assessment (RFI/RI/BRA) for the Fire Department Hose Training Facility (FDTF) (904-113G).

  17. 75 FR 71677 - Reimbursement for Costs of Remedial Action at Active Uranium and Thorium Processing Sites

    Science.gov (United States)

    2010-11-24

    ... Reimbursement for Costs of Remedial Action at Active Uranium and Thorium Processing Sites AGENCY: Department of... uranium and thorium processing site licensees for reimbursement under Title X of the Energy Policy Act of... requires DOE to reimburse eligible uranium and thorium licensees for certain costs of...

  18. 77 FR 3460 - Reimbursement for Costs of Remedial Action at Active Uranium and Thorium Processing Sites

    Science.gov (United States)

    2012-01-24

    ... Reimbursement for Costs of Remedial Action at Active Uranium and Thorium Processing Sites AGENCY: Department of... uranium and thorium processing site licensees for reimbursement under Title X of the Energy Policy Act of... requires DOE to reimburse eligible uranium and thorium licensees for certain costs of...

  19. Remedies by competitors for false advertising.

    Science.gov (United States)

    Hirsch, B D; Wilcox, D P

    1990-05-01

    Patients who are victimized as a consequence of false medical advertising are not the only ones who can sue for damages. Under section 43(a) of the Lanham Act, effective November 17, 1989, anyone "who believes that he or she is or is likely to be damaged" by deceptive advertising may bring a civil action for damages (1). Competing physicians may sue other physicians who falsely advertise that they possess unique skills and achieve better results than other physicians because they employ exclusive methods of treatment or claim that certain surgical procedures they perform in the office are absolutely safe and without risk or who advertise false professional credentials to lure patients. Voluntary informed consent excludes the use of deceit. Misrepresentation through advertising deprives a patient of the right to exercise an informed consent (2). A patient who relies on a doctor's false advertising in agreeing to a procedure that causes the patient injury may sue for malpractice even if the procedure was performed without negligence. False medical advertising also exposes the advertiser to litigation by competitors for unfair competition. This article is concerned with the remedy that may be available for instituting private litigation against physicians and other health care providers who engage in untruthful advertising. PMID:2343426

  20. ELECTROCHEMICAL REMEDIATION TECHNOLOGIES (ECRTS) - IN SITU REMEDIATION OF CONTAMINATED MARINE SEDIMENTS

    Science.gov (United States)

    This Innovative Technology Evaulation Report summarizes the results of the evaluation of the Electrochemical Remediation Technologies (ECRTs) process, developed by P2-Soil Remediation, Inc. (in partnership with Weiss Associates and Electro-Petroleum, Inc.). This evaluation was co...

  1. Hanford site tank waste remediation system programmatic environmental review report

    Energy Technology Data Exchange (ETDEWEB)

    Haass, C.C.

    1998-09-03

    The US Department of Energy (DOE) committed in the Tank Waste Remediation System (TWRS) Environmental Impact Statement (EIS) Record of Decision (ROD) to perform future National Environmental Policy Act (NEPA) analysis at key points in the Program. Each review will address the potential impacts that new information may have on the environmental impacts presented in the TWRS EIS and support an assessment of whether DOE`s plans for remediating the tank waste are still pursuing the appropriate plan for remediation or whether adjustments to the program are needed. In response to this commitment, DOE prepared a Supplement Analysis (SA) to support the first of these reevaluations. Subsequent to the completion of the SA, the Phase IB negotiations process with private contractors resulted in several changes to the planned approach. These changes along with other new information regarding the TWRS Program have potential implications for Phase 1 and Phase 2 of tank waste retrieval and waste storage and/or disposal that may influence the environmental impacts of the Phased Implementation alternative. This report focuses on identifying those potential environmental impacts that may require NEPA analysis prior to authorization to begin facility construction and operations.

  2. Hanford site tank waste remediation system programmatic environmental review report

    International Nuclear Information System (INIS)

    The US Department of Energy (DOE) committed in the Tank Waste Remediation System (TWRS) Environmental Impact Statement (EIS) Record of Decision (ROD) to perform future National Environmental Policy Act (NEPA) analysis at key points in the Program. Each review will address the potential impacts that new information may have on the environmental impacts presented in the TWRS EIS and support an assessment of whether DOE's plans for remediating the tank waste are still pursuing the appropriate plan for remediation or whether adjustments to the program are needed. In response to this commitment, DOE prepared a Supplement Analysis (SA) to support the first of these reevaluations. Subsequent to the completion of the SA, the Phase IB negotiations process with private contractors resulted in several changes to the planned approach. These changes along with other new information regarding the TWRS Program have potential implications for Phase 1 and Phase 2 of tank waste retrieval and waste storage and/or disposal that may influence the environmental impacts of the Phased Implementation alternative. This report focuses on identifying those potential environmental impacts that may require NEPA analysis prior to authorization to begin facility construction and operations

  3. Tank Waste Remediation System Guide

    Energy Technology Data Exchange (ETDEWEB)

    Robershotte, M.A.; Dirks, L.L.; Seaver, D.A.; Bothers, A.J.; Madden, M.S.

    1995-06-01

    The scope, number and complexity of Tank Waste Remediation System (TWRS) decisions require an integrated, consistent, and logical approach to decision making. TWRS has adopted a seven-step decision process applicable to all decisions. Not all decisions, however, require the same degree of rigor/detail. The decision impact will dictate the appropriate required detail. In the entire process, values, both from the public as well as from the decision makers, play a key role. This document concludes with a general discussion of the implementation process that includes the roles of concerned parties.

  4. Night blindness and ancient remedy

    Directory of Open Access Journals (Sweden)

    H.A. Hajar Al Binali

    2014-01-01

    Full Text Available The aim of this article is to briefly review the history of night blindness and its treatment from ancient times until the present. The old Egyptians, the Babylonians, the Greeks and the Arabs used animal liver for treatment and successfully cured the disease. The author had the opportunity to observe the application of the old remedy to a patient. Now we know what the ancients did not know, that night blindness is caused by Vitamin A deficiency and the animal liver is the store house for Vitamin A.

  5. Remedial action plan for the inactive Uranium Processing Site at Naturita, Colorado. Remedial action plan: Attachment 2, Geology report, Attachment 3, Ground water hydrology report: Working draft

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    The uranium processing site near Naturita, Colorado, is one of 24 inactive uranium mill sites designated to be cleaned up by the US Department of Energy (DOE) under the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA), 42 USC {section}7901 et seq. Part of the UMTRCA requires that the US Nuclear Regulatory Commission (NRC) concur with the DOE`s remedial action plan (RAP) and certify that the remedial action conducted at the site complies with the standards promulgated by the US Environmental Protection Agency (EPA). This RAP serves two purposes. First, it describes the activities that are proposed by the DOE to accomplish remediation and long-term stabilization and control of the radioactive materials at the inactive uranium processing site near Naturita, Colorado. Second, this RAP, upon concurrence and execution by the DOE, the state of Colorado, and the NRC, become Appendix B of the cooperative agreement between the DOE and the state of Colorado.

  6. Remedial action plan for the inactive Uranium Processing Site at Naturita, Colorado. Remedial action plan: Attachment 2, Geology report, Attachment 3, Ground water hydrology report: Working draft

    International Nuclear Information System (INIS)

    The uranium processing site near Naturita, Colorado, is one of 24 inactive uranium mill sites designated to be cleaned up by the US Department of Energy (DOE) under the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA), 42 USC section 7901 et seq. Part of the UMTRCA requires that the US Nuclear Regulatory Commission (NRC) concur with the DOE's remedial action plan (RAP) and certify that the remedial action conducted at the site complies with the standards promulgated by the US Environmental Protection Agency (EPA). This RAP serves two purposes. First, it describes the activities that are proposed by the DOE to accomplish remediation and long-term stabilization and control of the radioactive materials at the inactive uranium processing site near Naturita, Colorado. Second, this RAP, upon concurrence and execution by the DOE, the state of Colorado, and the NRC, become Appendix B of the cooperative agreement between the DOE and the state of Colorado

  7. Tank waste remediation system (TWRS) mission analysis

    Energy Technology Data Exchange (ETDEWEB)

    Rieck, R.H.

    1996-10-03

    The Tank Waste Remediation System Mission Analysis provides program level requirements and identifies system boundaries and interfaces. Measures of success appropriate to program level accomplishments are also identified.

  8. Nuclear facility decommissioning and site remedial actions

    International Nuclear Information System (INIS)

    The 394 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the eleventh in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Citations to foreign and domestic literature of all types -- technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions -- have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's Remedial Action Programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Programs, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Grand Junction Remedial Action Program, (7) Uranium Mill Tailings Management, (8) Technical Measurements Center, (9) Remedial Action Program, and (10) Environmental Restoration Program. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and keywords. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects and analyzes information on remedial actions and relevant radioactive waste management technologies

  9. Nuclear facility decommissioning and site remedial actions

    Energy Technology Data Exchange (ETDEWEB)

    Knox, N.P.; Webb, J.R.; Ferguson, S.D.; Goins, L.F.; Owen, P.T.

    1990-09-01

    The 394 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the eleventh in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Citations to foreign and domestic literature of all types -- technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions -- have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's Remedial Action Programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Programs, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Grand Junction Remedial Action Program, (7) Uranium Mill Tailings Management, (8) Technical Measurements Center, (9) Remedial Action Program, and (10) Environmental Restoration Program. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and keywords. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects and analyzes information on remedial actions and relevant radioactive waste management technologies.

  10. Electrokinetic remediation of oil-contaminated soils.

    Science.gov (United States)

    Korolev, Vladimir A; Romanyukha, Olga V; Abyzova, Anna M

    2008-07-01

    This investigation was undertaken to determine the factors influencing electrokinetic remediation of soils from petroleum pollutants. The remediation method was applied in two versions: (i) static and (ii) flowing, when a sample was washed with leaching solution. It was found that all the soils studied can be purified using this technique. It was also observed that the mineral and grain-size composition of soils, their properties, and other parameters affect the remediation efficiency. The static and flowing versions of the remediation method removed 25-75% and 90-95% of the petroleum pollutants, respectively from the soils under study.

  11. Remedial Investigation Report on Bear Creek Valley Operable Unit 2 (Rust Spoil Area, Spoil Area 1, and SY-200 Yard) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 1, Main text

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-01-01

    This report on the BCV OU 2 at the Y-12 Plant, was prepared in accordance with requirements under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) for reporting the results of a site characterization for public review. It provides the Environmental Restoration Program with information about the results of the 1993 investigation. It includes information on risk assessments that have evaluated impacts to human health and the environment. Field activities included collection of subsurface soil samples, groundwater and surface water samples, and sediments and seep at the Rust Spoil Area (RSA), SY-200 Yard, and SA-1.

  12. Remedial Investigation Report on Bear Creek Valley Operable Unit 2 (Rust Spoil Area, Spoil Area 1, and SY-200 Yard) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 1, Main text

    International Nuclear Information System (INIS)

    This report on the BCV OU 2 at the Y-12 Plant, was prepared in accordance with requirements under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) for reporting the results of a site characterization for public review. It provides the Environmental Restoration Program with information about the results of the 1993 investigation. It includes information on risk assessments that have evaluated impacts to human health and the environment. Field activities included collection of subsurface soil samples, groundwater and surface water samples, and sediments and seep at the Rust Spoil Area (RSA), SY-200 Yard, and SA-1

  13. Draft Hanford Remedial Action Environmental Impact Statement and Comprehensive Land Use Plan. Volume 4 of 4

    International Nuclear Information System (INIS)

    The US Department of Energy's (DOE) is preparing this ''Hanford Site Comprehensive Land Use Plan'' (Comprehensive Plan), Appendix M to address future land uses for the Hanford Site. The DOE has integrated this land-use planning initiative with the development of the HRA-EIS to facilitate and expedite land-use and remediation decision making, reduce time and cost of remediation, and optimize the usefulness of the planning process. The HRA-EIS is being developed to evaluate the potential environmental impacts associated with remediation, create a remedial baseline for the Environmental Restoration Program, and provide a framework for future uses at the Hanford Site. This Comprehensive Plan identifies current assets and resources related to land-use planning, and provides the analysis and recommendations for future land sues and accompanying restrictions at the Hanford Site over a 50-year period. This Comprehensive Plan relies on the analysis of environmental impacts in the HRA-EIS. The National Environmental Policy Act of 1969 (NEPA) Record of Decision (ROD) issued for the HRA-EIS will be the decision process for finalization and adoption of this Comprehensive Plan. The HRA-EIS and this Comprehensive Plan will provide a basis for remediation decisions to be identified and contained in site- and area-specific Comprehensive Environmental Response, Compensation and Liability Act of 1980 ROD

  14. Environmental assessment of remedial action at the Naturita Uranium Processing Site near Naturita, Colorado. Revision 4

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-01

    The Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978, Public Law (PL) 95-604, authorized the US Department of Energy (DOE) to perform remedial action at the Naturita, Colorado, uranium processing site to reduce the potential health effects from the radioactive materials at the site and at vicinity properties associated with the site. The US Environmental Protection Agency (EPA) promulgated standards for the UMTRCA that contain measures to control the contaminated materials and to protect groundwater quality. Remedial action at the Naturita site must be performed in accordance with these standards and with the concurrence of the US Nuclear Regulatory Commission (NRC) and the state of Colorado. The proposed remedial action for the Naturita processing site is relocation of the contaminated materials and debris to either the Dry Flats disposal site, 6 road miles (mi) [10 kilometers (km)] to the southeast, or a licensed non-DOE disposal facility capable of handling RRM. At either disposal site, the contaminated materials would be stabilized and covered with layers of earth and rock. The proposed Dry Flats disposal site is on land administered by the Bureau of Land Management (BLM) and used primarily for livestock grazing. The final disposal site would cover approximately 57 ac (23 ha), which would be permanently transferred from the BLM to the DOE and restricted from future uses. The remedial action would be conducted by the DOE`s Uranium Mill Tailings Remedial Action (UMTRA) Project. This report discusses environmental impacts associated with the proposed remedial action.

  15. Testing and inspection of remedial actions at inactive uranium mill tailing sites

    International Nuclear Information System (INIS)

    DOE is responsible for planning and conducting remedial actions for stabilization of inactive uranium mill tailings in accordance with EPA standards. The options presently being considered and implemented by the DOE for stabilization of the inactive tailings consists of (i) stabilization of tailings in place, (ii) stabilization on site, and (iii) relocation and stabilization of tailings at another location. The detailed design and construction procedure for each remedial action depends upon the site-specific plan selected by the DOE. Title I of the Uranium Mill Tailings Radiation Control Act of 1978, as amended (UMTRCA) requires Nuclear Regulatory Commission (NRC) concurrence in DOE's selection and performance of remedial actions at inactive uranium mill tailings sites. Among the specific technical aspects of the remedial action performance is field control, including testing and inspection. The paper identifies remedial action inspection plan features related to geotechnical engineering that may be necessary to control, verify, and document the DOE's remedial action activities. Basically, the extent of inspection and testing should be sufficient to provide adequate quality control, to satisfy requirements of plans and specifications, and to furnish the necessary permanent record. Also, it is essential that the personnel performing the inspection and testing have the required training and experience to perform a professional job

  16. Environmental assessment of remedial action at the Naturita Uranium Processing Site near Naturita, Colorado

    International Nuclear Information System (INIS)

    The Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978, Public Law (PL) 95-604, authorized the US Department of Energy (DOE) to perform remedial action at the Naturita, Colorado, uranium processing site to reduce the potential health effects from the radioactive materials at the site and at vicinity properties associated with the site. The US Environmental Protection Agency (EPA) promulgated standards for the UMTRCA that contain measures to control the contaminated materials and to protect groundwater quality. Remedial action at the Naturita site must be performed in accordance with these standards and with the concurrence of the US Nuclear Regulatory Commission (NRC) and the state of Colorado. The proposed remedial action for the Naturita processing site is relocation of the contaminated materials and debris to either the Dry Flats disposal site, 6 road miles (mi) [10 kilometers (km)] to the southeast, or a licensed non-DOE disposal facility capable of handling RRM. At either disposal site, the contaminated materials would be stabilized and covered with layers of earth and rock. The proposed Dry Flats disposal site is on land administered by the Bureau of Land Management (BLM) and used primarily for livestock grazing. The final disposal site would cover approximately 57 ac (23 ha), which would be permanently transferred from the BLM to the DOE and restricted from future uses. The remedial action would be conducted by the DOE's Uranium Mill Tailings Remedial Action (UMTRA) Project. This report discusses environmental impacts associated with the proposed remedial action

  17. Remedial Action Work Plan Amchitka Island Mud Pit Closures

    Energy Technology Data Exchange (ETDEWEB)

    DOE/NV

    2001-04-05

    This remedial action work plan presents the project organization and construction procedures developed for the performance of the remedial actions at U.S. Department of Energy (DOE's) sites on Amchitka Island, Alaska. During the late1960s and early 1970s, the U.S. Department of Defense and the U.S. Atomic Energy Commission (the predecessor agency to DOE) used Amchitka Island as a site for underground nuclear tests. A total of nine sites on the Island were considered for nuclear testing; however, tests were only conducted at three sites (i.e., Long Shot in 1965, Milrow in 1969, and Cannikin in 1971). In addition to these three sites, large diameter emplacement holes were drilled in two other locations (Sites D and F) and an exploratory hole was in a third location (Site E). It was estimated that approximately 195 acres were disturbed by drilling or preparation for drilling in conjunction with these activities. The disturbed areas include access roads, spoil-disposal areas, mud pits which have impacted the environment, and an underground storage tank at the hot mix plant which was used to support asphalt-paving operations on the island. The remedial action objective for Amchitka Island is to eliminate human and ecological exposure to contaminants by capping drilling mud pits, removing the tank contents, and closing the tank in place. The remedial actions will meet State of Alaska regulations, U.S. Fish and Wildlife Service refuge management goals, address stakeholder concerns, and address the cultural beliefs and practices of the native people. The U.S. Department of Energy, Nevada Operations Office will conduct work on Amchitka Island under the authority of the Comprehensive Emergency Response, Compensation, and Liability Act. Field activities are scheduled to take place May through September 2001. The results of these activities will be presented in a subsequent Closure Report.

  18. 76 FR 24481 - Notice of Two Proposed Agreements, a CERCLA Agreement and Order on Consent for Removal Action by...

    Science.gov (United States)

    2011-05-02

    ... settlements for which public comment is requested. In one, Puma Energy, Caribe LLC (``Puma'') and the U.S...-9675. In the other proposed agreement (referred to as the ``RCRA UST Agreement''), Puma, the United... Conservation and Recovery Act, as amended (``RCRA''), 42 U.S.C. 6991-6991m, concerning issues related to...

  19. Remedy Evaluation Framework for Inorganic, Non-Volatile Contaminants in the Vadose Zone

    Energy Technology Data Exchange (ETDEWEB)

    Truex, Michael J.; Carroll, Kenneth C.

    2013-05-01

    Contaminants in the vadose zone may act as a potential long-term source of groundwater contamination and need to be considered in remedy evaluations. In many cases, remediation decisions for the vadose zone will need to be made all or in part based on projected impacts to groundwater. Because there are significant natural attenuation processes inherent in vadose zone contaminant transport, remediation in the vadose zone to protect groundwater is functionally a combination of natural attenuation and use of other remediation techniques, as needed, to mitigate contaminant flux to groundwater. Attenuation processes include both hydrobiogeochemical processes that serve to retain contaminants within porous media and physical processes that mitigate the rate of water flux. In particular, the physical processes controlling fluid flow in the vadose zone are quite different and generally have a more significant attenuation impact on contaminant transport relative to those within the groundwater system. A remedy evaluation framework is presented herein that uses an adaptation of the established EPA Monitored Natural Attenuation (MNA) evaluation approach and a conceptual model based approach focused on identifying and quantifying features and processes that control contaminant flux through the vadose zone. A key concept for this framework is to recognize that MNA will comprise some portion of all remedies in the vadose zone. Thus, structuring evaluation of vadose zone waste sites to use an MNA-based approach provides information necessary to either select MNA as the remedy, if appropriate, or to quantify how much additional attenuation would need to be induced by a remedial action (e.g., technologies considered in a feasibility study) to augment the natural attenuation processes and meet groundwater protection goals.

  20. Act resilient.

    Science.gov (United States)

    Joseph, Genie; Bice-Stephens, Wynona

    2014-01-01

    Attendees have reported changing from being fearful to serene, from listless to energized, from disengaged to connected, and becoming markedly less anxious in a few weeks. Anecdotally, self-reported stress levels have been reduced by over 50% after just one class. Attendees learn not to be afraid of their feelings by working with emotions in a playful manner. When a person can act angry, but separate himself from his personal story, the emotional energy exists in a separate form that is not attached to specific events, and can be more easily dealt with and neutralized. Attendees are taught to "take out the emotional trash" through expressive comedy. They become less intimated by their own emotional intensity and triggers as they learn how even metaphorical buckets of anger, shame, guilt and hurt can be emotionally emptied. The added benefit is that this is accomplished without the disclosure of personal information of the requirement to reexperience past pain which can trigger its own cascade of stress. PMID:24706248

  1. 29 CFR 35.15 - Remedial action.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 1 2010-07-01 2010-07-01 true Remedial action. 35.15 Section 35.15 Labor Office of the Secretary of Labor NONDISCRIMINATION ON THE BASIS OF AGE IN PROGRAMS OR ACTIVITIES RECEIVING FEDERAL... Remedial action. Even in the absence of a finding of discrimination, a recipient, in administering...

  2. Laboratory Experiment on Electrokinetic Remediation of Soil

    Science.gov (United States)

    Elsayed-Ali, Alya H.; Abdel-Fattah, Tarek; Elsayed-Ali, Hani E.

    2011-01-01

    Electrokinetic remediation is a method of decontaminating soil containing heavy metals and polar organic contaminants by passing a direct current through the soil. An undergraduate chemistry laboratory is described to demonstrate electrokinetic remediation of soil contaminated with copper. A 30 cm electrokinetic cell with an applied voltage of 30…

  3. Foreword Special Issue on Electrokinetic remediation

    NARCIS (Netherlands)

    Loch, J.P.G.; Lima, A.T.

    2012-01-01

    Since the first symposium on Electro-remediation (EREM) in 1997 at the École des Mines d’Albi, in Albi, France, much international attention, interest and progress have been generated in the science and technology of electro-remediation of contaminated soils, sediments and construction materials...

  4. An Expert support model for ex situ soil remediation

    NARCIS (Netherlands)

    Okx, J.P.; Frankhuizen, E.M.; Wit, de J.C.; Pijls, C.G.J.M.; Stein, A.

    2000-01-01

    This paper presents an expert support model recombining knowledge and experience obtained during ex situ soil remediation. To solve soil remediation problems, an inter-disciplinary approach is required. Responsibilities during the soil remediation process, however, are increasingly decentralised, wh

  5. Proposed environmental remediation at Argonne National Laboratory, Argonne, Illinois

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    The Department of Energy (DOE) has prepared an Environmental Assessment evaluating proposed environmental remediation activity at Argonne National Laboratory-East (ANL-E), Argonne, Illinois. The environmental remediation work would (1) reduce, eliminate, or prevent the release of contaminants from a number of Resource Conservation and Recovery Act (RCRA) Solid Waste Management Units (SWMUs) and two radiologically contaminated sites located in areas contiguous with SWMUs, and (2) decrease the potential for exposure of the public, ANL-E employees, and wildlife to such contaminants. The actions proposed for SWMUs are required to comply with the RCRA corrective action process and corrective action requirements of the Illinois Environmental Protection Agency; the actions proposed are also required to reduce the potential for continued contaminant release. Based on the analysis in the EA, the DOE has determined that the proposed action does not constitute a major federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969 (NEPA). Therefore, the preparation of an Environmental Impact Statement is not required.

  6. Proposed environmental remediation at Argonne National Laboratory, Argonne, Illinois

    International Nuclear Information System (INIS)

    The Department of Energy (DOE) has prepared an Environmental Assessment evaluating proposed environmental remediation activity at Argonne National Laboratory-East (ANL-E), Argonne, Illinois. The environmental remediation work would (1) reduce, eliminate, or prevent the release of contaminants from a number of Resource Conservation and Recovery Act (RCRA) Solid Waste Management Units (SWMUs) and two radiologically contaminated sites located in areas contiguous with SWMUs, and (2) decrease the potential for exposure of the public, ANL-E employees, and wildlife to such contaminants. The actions proposed for SWMUs are required to comply with the RCRA corrective action process and corrective action requirements of the Illinois Environmental Protection Agency; the actions proposed are also required to reduce the potential for continued contaminant release. Based on the analysis in the EA, the DOE has determined that the proposed action does not constitute a major federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969 (NEPA). Therefore, the preparation of an Environmental Impact Statement is not required

  7. Light Pollution Responses and Remedies

    CERN Document Server

    Mizon, Bob

    2012-01-01

    Light pollution is a major threat to astronomy across the entire developed world. The night sky that most of us can see bears little relationship to the spectacular vistas that our ancestors have gazed at for tens of thousands of years. It is ironic that as our understanding of the universe has improved, our ability to see it has been dramatically reduced by the skyglow of our civilization. In the second edition of Light Pollution - Responses and Remedies, Bob Mizon delves into the history and practice of lighting and how its misue has not only stolen the stars, but blighted our lives and those of our fellow-creatures on this planet. This book suggests how we can win back the night sky and at the same time save energy and money, improve our health, and even lower crime rate! It also includes a list of targets for urban stargazers, and recommendations for ensuring sane lighting worldwide.

  8. Remedial Investigation Work Plan for Chestnut Ridge Operable Unit 1 (Chestnut Ridge Security Pits) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    This Remedial Investigation (RI) Work Plan specifically addresses Chestnut Ridge Operable Unit 1, (OU1) which consists of the Chestnut Ridge Security Pits (CRSP). The CRSP are located ∼800 ft southeast of the central portion of the Y-12 Plant atop Chestnut Ridge, which is bounded to the northwest by Bear Creek Valley and to the southeast by Bethel Valley. Operated from 1973 to 1988, the CRSP consisted of a series of trenches used for the disposal of classified hazardous and nonhazardous waste materials. Disposal of hazardous waste materials was discontinued in December 1984, while nonhazardous waste disposal ended on November 8, 1988. An RI is being conducted at this site in response to CERCLA regulations. The overall objectives of the RI are to collect data necessary to evaluate the nature and extent of contaminants of concern (COC), support an ecological risk assessment (ERA) and a human health risk assessment (HHRA), support the evaluation of remedial alternatives, and ultimately develop a Record of Decision for the site. The purpose of this Work Plan is to outline RI activities necessary to define the nature and extent of suspected contaminants at Chestnut Ridge OU1. Potential migration pathways also will be investigated. Data collected during the RI will be used to evaluate the overall risk posed to human health and the environment by OU1

  9. Remedial Investigation Work Plan for Chestnut Ridge Operable Unit 1 (Chestnut Ridge Security Pits) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    This Remedial Investigation (RI) Work Plan specifically addresses Chestnut Ridge Operable Unit 1, (OU1) which consists of the Chestnut Ridge Security Pits (CRSP). The CRSP are located {approximately}800 ft southeast of the central portion of the Y-12 Plant atop Chestnut Ridge, which is bounded to the northwest by Bear Creek Valley and to the southeast by Bethel Valley. Operated from 1973 to 1988, the CRSP consisted of a series of trenches used for the disposal of classified hazardous and nonhazardous waste materials. Disposal of hazardous waste materials was discontinued in December 1984, while nonhazardous waste disposal ended on November 8, 1988. An RI is being conducted at this site in response to CERCLA regulations. The overall objectives of the RI are to collect data necessary to evaluate the nature and extent of contaminants of concern (COC), support an ecological risk assessment (ERA) and a human health risk assessment (HHRA), support the evaluation of remedial alternatives, and ultimately develop a Record of Decision for the site. The purpose of this Work Plan is to outline RI activities necessary to define the nature and extent of suspected contaminants at Chestnut Ridge OU1. Potential migration pathways also will be investigated. Data collected during the RI will be used to evaluate the overall risk posed to human health and the environment by OU1.

  10. Innovative vitrification for soil remediation

    International Nuclear Information System (INIS)

    The objective of this DOE demonstration program is to validate the performance and operation of the Vortec Cyclone Melting System (CMS trademark) for the processing of LLW contaminated soils found at DOE sites. This DOE vitrification demonstration project has successfully progressed through the first two phases. Phase 1 consisted of pilot scale testing with surrogate wastes and the conceptual design of a process plant operating at a generic DOE site. The objective of Phase 2, which is scheduled to be completed the end of FY 95, is to develop a definitive process plant design for the treatment of wastes at a specific DOE facility. During Phase 2, a site specific design was developed for the processing of LLW soils and muds containing TSCA organics and RCRA metal contaminants. Phase 3 will consist of a full scale demonstration at the DOE gaseous diffusion plant located in Paducah, KY. Several DOE sites were evaluated for potential application of the technology. Paducah was selected for the demonstration program because of their urgent waste remediation needs as well as their strong management and cost sharing financial support for the project. During Phase 2, the basic nitrification process design was modified to meet the specific needs of the new waste streams available at Paducah. The system design developed for Paducah has significantly enhanced the processing capabilities of the Vortec vitrification process. The overall system design now includes the capability to shred entire drums and drum packs containing mud, concrete, plastics and PCB's as well as bulk waste materials. This enhanced processing capability will substantially expand the total DOE waste remediation applications of the technology

  11. Flow assurance intervention, hydrates remediation

    Energy Technology Data Exchange (ETDEWEB)

    Mancini, Christopher S. [Oceaneering International Inc., Houston, TX (United States)

    2012-07-01

    This paper addresses the issues of removing hydrates in sub sea flow lines and associated equipment with an Remotely Operated Vehicle (ROV) of opportunity and a multi-service-vessel (MSV). The paper is split into three topics: the equipment used with the ROV, assessing the interface points and handling fluids produced from drawing down the pressure. Each section is explained thoroughly and backed up with real world experience. The equipment section details information from actual jobs performed and why the particular components were utilized. The system is generally contained in an ROV mounted skid. Pumps are utilized to draw down the pressure inside the hydrated section of equipment, removing one of the three necessary components for hydrates formation. Once the section is pumped down, several options exist for handling the fluids pumped out of the system: pumping to surface, re-injection into the well, or injection into an operating flow line. This method of hydrates remediation is both economical and timely. Hydrate blockages form in low temperatures and high pressures. Reducing the pressure or increasing the temperature so the conditions lie to the right of the hydrate dissociation curve will slowly decompose the blockage. Depressurization and the use of MEG or methanol will give favorable conditions to remove the hydrate plug. Oceaneering has the capabilities to remove hydrates using the FRS in conjunction with an installation vessel to dispose of the gas and fluid removed from the flow line. Hydrate remediation techniques should be implemented into the initial design to reduce costs later. The cost of stopped production combined with the day rate for equipment needed for hydrate removal outweighs the costs if no technique is utilized. (author)

  12. Space Debris Environment Remediation Concepts

    Science.gov (United States)

    Johnson, Nicholas L.; Klinkrad, Heiner

    2009-01-01

    Long-term projections of the space debris environment indicate that even drastic measures, such as an immediate, complete halt of launch and release activities, will not result in a stable environment of man-made space objects. Collision events between already existing space hardware will within a few decades start to dominate the debris population, and result in a net increase of the space debris population, also in size regimes which may cause further catastrophic collisions. Such a collisional cascading will ultimately lead to a run-away situation ("Kessler syndrome"), with no further possibility of human intervention. The International Academy of Astronautics (IAA) has been investigating the status and the stability of the space debris environment in several studies by first looking into space traffic management possibilities and then investigating means of mitigating the creation of space debris. In an ongoing activity, an IAA study group looks at ways of active space debris environment remediation. In contrast to the former mitigation study, the current activity concentrates on the active removal of small and large objects, such as defunct spacecraft, orbital stages, and mission-related objects, which serve as a latent mass reservoir that fuels initial catastrophic collisions and later collisional cascading. The paper will outline different mass removal concepts, e.g. based on directed energy, tethers (momentum exchange or electrodynamic), aerodynamic drag augmentation, solar sails, auxiliary propulsion units, retarding surfaces, or on-orbit capture. Apart from physical principles of the proposed concepts, their applicability to different orbital regimes, and their effectiveness concerning mass removal efficiency will be analyzed. The IAA activity on space debris environment remediation is a truly international project which involves more than 23 contributing authors from 9 different nations.

  13. Policy and Strategies for Environmental Remediation

    International Nuclear Information System (INIS)

    In the environmental remediation of a given site, concerned and interested parties have diverse and often conflicting interests with regard to remediation goals, the time frames involved, reuse of the site, the efforts necessary and cost allocation. An environmental remediation policy is essential for establishing the core values on which remediation is to be based. It incorporates a set of principles to ensure the safe and efficient management of remediation situations. Policy is mainly established by the national government and may become codified in the national legislative system. An environmental remediation strategy sets out the means for satisfying the principles and requirements of the national policy. It is normally established by the relevant remediation implementer or by the government in the case of legacy sites. Thus, the national policy may be elaborated in several different strategies. To ensure the safe, technically optimal and cost effective management of remediation situations, countries are advised to formulate an appropriate policy and strategies. Situations involving remediation include remediation of legacy sites (sites where past activities were not stringently regulated or adequately supervised), remediation after emergencies (nuclear and radiological) and remediation after planned ongoing operation and decommissioning. The environmental policy involves the principles of justification, optimization of protection, protection of future generations and the environment, efficiency in the use of resources, and transparent interaction with stakeholders. A typical policy will also take into account the national legal framework and institutional structure and applicable international conventions while providing for the allocation of responsibilities and resources, in addition to safety and security objectives and public information and participation in the decision making process. The strategy reflects and elaborates the goals and requirements set

  14. Responses to comments on the remedial investigation/feasibility study-environmental impact statement for remedial action at the Chemical Plant area of the Weldon Spring site (November 1992)

    International Nuclear Information System (INIS)

    The US Department of Energy (DOE) is responsible for cleanup activities at the Weldon Spring site in St. Charles County, Missouri. The site consists of a chemical plant area and a noncontiguous limestone quarry; both areas are radioactively and chemically contaminated as a result of past processing and disposal activities. Explosives were produced by the US Army at the chemical plant in the 1940s, and uranium and thorium materials were processed by DOE's predecessor agency in the 1950s and 1960s. During that time, various wastes were disposed of at both areas of the site. The DOE is conducting cleanup activities at the site under its Environmental Restoration and Waste Management Program. The integrated remedial investigation/feasibility study-environmental impact statement (RI/FS-EIS) documents for the chemical plant area were issued to the public in November 1992 as the draft RI/FS-EIS. (The CERCLA RI/FS is considered final when issued to the public, whereas per the NEPA process, an EIS is initially issued as a draft and is finalized after substantive public comments have been addressed.) Four documents made up the draft RI/FS-EIS, which is hereafter referred to as the RI/FS-EIS: (1) the RI (DOE 1992d), which presents general information on the site environment and the nature and extent of contamination; (2) the baseline assessment (BA) (DOE 1992a), which evaluates human health and environmental effects that might occur if no cleanup actions were taken; (3) the FS (DOE 1992b), which develops and evaluates alternatives for site cleanup; and (4) the proposed plan (PP) (DOE 1992c), which summarizes key information from the RI, BA, and FS reports and identifies DOE's preferred alternative for remedial action. This comment response document combined with those four documents constitutes the final RI/FS-EIS for the chemical plant area

  15. Responses to comments on the remedial investigation/feasibility study-environmental impact statement for remedial action at the Chemical Plant area of the Weldon Spring site (November 1992)

    Energy Technology Data Exchange (ETDEWEB)

    1993-06-01

    The US Department of Energy (DOE) is responsible for cleanup activities at the Weldon Spring site in St. Charles County, Missouri. The site consists of a chemical plant area and a noncontiguous limestone quarry; both areas are radioactively and chemically contaminated as a result of past processing and disposal activities. Explosives were produced by the US Army at the chemical plant in the 1940s, and uranium and thorium materials were processed by DOE`s predecessor agency in the 1950s and 1960s. During that time, various wastes were disposed of at both areas of the site. The DOE is conducting cleanup activities at the site under its Environmental Restoration and Waste Management Program. The integrated remedial investigation/feasibility study-environmental impact statement (RI/FS-EIS) documents for the chemical plant area were issued to the public in November 1992 as the draft RI/FS-EIS. (The CERCLA RI/FS is considered final when issued to the public, whereas per the NEPA process, an EIS is initially issued as a draft and is finalized after substantive public comments have been addressed.) Four documents made up the draft RI/FS-EIS, which is hereafter referred to as the RI/FS-EIS: (1) the RI (DOE 1992d), which presents general information on the site environment and the nature and extent of contamination; (2) the baseline assessment (BA) (DOE 1992a), which evaluates human health and environmental effects that might occur if no cleanup actions were taken; (3) the FS (DOE 1992b), which develops and evaluates alternatives for site cleanup; and (4) the proposed plan (PP) (DOE 1992c), which summarizes key information from the RI, BA, and FS reports and identifies DOE`s preferred alternative for remedial action. This comment response document combined with those four documents constitutes the final RI/FS-EIS for the chemical plant area.

  16. Technologies for remediation of radioactively contaminated sites

    International Nuclear Information System (INIS)

    This report presents particulars on environmental restoration technologies (control and treatment) which can be applied to land based, radioactively contaminated sites. The media considered include soils, groundwater, surface water, sediments, air, and terrestrial and aquatic vegetation. The technologies addressed in this report can be categorized as follows: self-attenuation (natural restoration); in-situ treatment; removal of contamination; ex-situ treatment; and transportation and final disposal. The report provides also background information about and a general approach to remediation of radioactively contaminated sites as well as some guidance for the selection of a preferred remediation technology. Examples of remediation experience in Australia and Canada are given it annexes

  17. Remedial investigations for quarry bulk wastes

    International Nuclear Information System (INIS)

    The US Department of Energy proposes, as a separate operable unit of the Weldon Spring Site Remedial Action Project, to remove contaminated bulk wastes from the Weldon Spring quarry and transport them approximately four miles to the chemical plant portion of the raffinate pits and chemical plant area. The wastes will be held in temporary storage prior to the record of decision for the overall remedial action. The decision on the ultimate disposal of these bulk wastes will be included as part of the decision for management of the waste materials resulting from remedial action activities at the raffinate pits and chemical plant area. 86 refs., 71 figs., 83 tabs

  18. 高度稀释的顺势疗法药物对噬菌体感染的细菌基因水平的作用%Phenotypic evidence of ultra-highly diluted homeopathic remedies acting at gene expression level: a novel probe on experimental phage infectivity in bacteria

    Institute of Scientific and Technical Information of China (English)

    Santu Kumar Saha; SreemantiDas; Anisur Rahman Khuda-Bukhsh

    2012-01-01

    目的:探讨具有抗病毒作用的高度稀释的顺势疗法药物对噬菌体感染的大肠杆菌在基因水平调节噬菌体ΦX174 DNA的作用.方法:本研究之所以选用噬菌体ΦX174是因为其对大肠杆菌的宿主特异性及其在宿主内进行溶菌素基因E的组成性表达.采用顶层琼脂法,计数琼脂板上的斑块数量以衡量不同的顺势疗法药物对噬菌体感染的大肠杆菌的保护作用.被噬菌体感染的大肠杆菌接受不同顺势疗法药物的干预,以高度稀释的乙醇做为安慰剂对照,并加设空白对照组.琼脂板上的斑块数量表明菌群被噬菌体ΦX174感染并溶解的数量.反之,我们在用顺势疗法药物干预前将噬菌体ΦX174混入药物中,再与细菌作用,以确定药物本身对感染细菌的噬菌体ΦX174没有作用.结果:每一种顺势疗法药物干预后的细菌琼脂板上的斑块数量均较安慰剂对照组和空白对照组有显著下降;而混入药物的噬菌体ΦX174感染细菌后,琼脂板上的斑块数量并无明显下降.因为噬菌体ΦX174在细菌内开始其溶菌过程,斑块数量的下降可能是因为溶菌素基因E被抑制或者整个噬菌体ΦX174的DNA被大肠杆菌内的基因产物(抑制酶)所破坏.结论:本研究的结果证实了高度稀释的顺势疗法药物对噬菌体感染的大肠杆菌在基因水平有调节作用.%OBJECTIVE:To explore if some ultra-highly diluted homeopathic remedies claimed to have antiviral effects can demonstrate any discernible action in the bacteria Escherichia coli through modulating infectivity potentials of the bacteriophage ΦX174 DNA.METHODS:ΦX174 was selected because of its known host specificity to E.coli and its constitutive expression of lytic gene E when inside the bacterial host.We deployed the “bacteriophage assay system” by “top layer agar plating” method of plaque-counting for evaluation of efficacy of the homeopathic remedies in rendering the bacteria

  19. Annual status report on the Uranium Mill Tailings Remedial Action Program

    International Nuclear Information System (INIS)

    This fourteenth annual status report for the Uranium Mill Tailings Remedial Action (UMTRA) Project Office summarizes activities of the Uranium Mill Tailings Remedial Action Surface (UMTRA-Surface) and Uranium Mill Tailings Remedial Action Groundwater (UMTRA-Groundwater) Projects undertaken during fiscal year (FY) 1992 by the US Department of Energy (DOE) and other agencies. Project goals for FY 1993 are also presented. An annual report of this type was a statutory requirement through January 1, 1986, pursuant to the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978, Public Law (PL) 95-604. The DOE will continue to submit annual reports to DOE-Headquarters, the states, tribes, and local representatives through Project completion in order to inform the public of the yearly Project status. The purpose of the remedial action is to stabilize and control the tailings and other residual radioactive material (RRM) located on the inactive uranium processing sites in a safe and environmentally sound manner, and to minimize or eliminate potential health hazards. Commercial and residential properties near designated processing sites that are contaminated with material from the sites, herein referred to as ''vicinity properties (VP),'' are also eligible for remedial action. Included in the UMTRA Project are 24 inactive uranium processing sites and associated VPs located in 10 states, and the VPs associated with the Edgemont, South Dakota, uranium mill currently owned by the Tennessee Valley Authority (TVA) (Figure A.1, Appendix A)

  20. Luminescence study of homeopathic remedies

    Science.gov (United States)

    Lobyshev, Valentin I.; Tomkevitch, Marie

    2001-06-01

    It was shown in our recent papers that distilled water possesses intrinsic luminescence at wavelength of about 400 nm with excitation wavelength 300 nm, which is very sensitive to small amount of dissolved substances. This phenomena was chosen to study homeopathic remedies. Pronounced difference in the intensity of luminescence between several commercial preparations with the same potency and one preparation with various potencies was obtained. Long scale evolution of the spectra was registered and final result was dependent on preparation and its potency. Systematic study of homeopathic preparations of halit (natural sodium chloride) from 1 to 30 decimal dilution was done. A stepwise dilution with mechanical agitation between the dilution steps, the so-called potentisation, was produced specially by homeopathic company Weleda. Luminescence intensity against concentration (potency) of halit is non monotonous function with several maxima, the main maximum is located at 13-14-th dilution. Evolution of the spectra was registered during several months. The analogous potentisation treatment of water without additional substances results also in changes of the luminescence spectra, depending on the number of potentisation. The obtained differences of luminescence spectra at ultra high dilutions and potentisation show that the collective properties of water are really changed in homeopathic preparations.

  1. Compliance monitoring for remediated sites

    International Nuclear Information System (INIS)

    Throughout the world, many countries have experienced problems associated with pollution of the environment. Poorly managed practices in nuclear fuel cycle, medicine, industry, weapons production and testing, research and development activities, as well as accidents, and poor disposal practices have produced a large array of radioactively contaminated facilities and sites. Structures, biota, soils, rocks, and both surface and groundwaters have become contaminated with radionuclides and other associated contaminants, a condition that raises serious concern due to potential health effects to the exposed human populations and the environment. In response to the needs of its Member States in dealing with the problems of radioactive contamination in the environment, the IAEA has established an Environmental Restoration Project. The principal aspects of current IAEA efforts in this area include (1) gathering information and data, performing analyses, and publishing technical summaries, and other documents on key technical aspects of environmental restoration; (2) conducting a Co-ordinated Research Project on Environmental Restoration; and (3) providing direct technical assistance to Member States through technical co-operation programmes. The transfer of technologies to Member States in need of applicable methodologies and techniques for the remediation of contaminated sites is a principal objective of this project

  2. Innovative vitrification for soil remediation

    Energy Technology Data Exchange (ETDEWEB)

    Jetta, N.W.; Patten, J.S.; Hnat, J.G. [Vortec Corp., Collegeville, PA (United States)

    1995-10-01

    The objective of this DOE demonstration program is to validate the performance and operation of the Vortec Cyclone Melting System (CMS{trademark}) for the processing of LLW contaminated soils found at DOE sites. This DOE vitrification demonstration project has successfully progressed through the first two phases. Phase I consisted of pilot scale testing with surrogate wastes and the conceptual design of a process plant operating at a generic DOE site. The objective of Phase 2, which is scheduled to be completed the end of FY 95, is to develop a definitive process plant design for the treatment of wastes at a specific DOE facility. During Phase 2, a site specific design was developed for the processing of LLW soils and muds containing TSCA organics and RCRA metal contaminants. Phase 3 will consist of a full scale demonstration at the DOE gaseous diffusion plant located in Paducah, KY. Several DOE sites were evaluated for potential application of the technology. Paducah was selected for the demonstration program because of their urgent waste remediation needs as well as their strong management and cost sharing financial support for the project.

  3. List of Contractors to Support Anthrax Remediation

    Energy Technology Data Exchange (ETDEWEB)

    Judd, Kathleen S.; Lesperance, Ann M.

    2010-05-14

    This document responds to a need identified by private sector businesses for information on contractors that may be qualified to support building remediation efforts following a wide-area anthrax release.

  4. Civil Remedies Division Administrative Law Judge Decisions

    Data.gov (United States)

    U.S. Department of Health & Human Services — Decisions issued by Administrative Law Judges of the Departmental Appeals Board's Civil Remedies Division concerning fraud and abuse determinations by the Office of...

  5. Porous graphene materials for water remediation.

    Science.gov (United States)

    Niu, Zhiqiang; Liu, Lili; Zhang, Li; Chen, Xiaodong

    2014-09-10

    Water remediation has been a critical issue over the past decades due to the expansion of wastewater discharge to the environment. Currently, a variety of functional materials have been successfully prepared for water remediation applications. Among them, graphene is an attractive candidate due to its high specific surface area, tunable surface behavior, and high strength. This Concept paper summarizes the design strategy of porous graphene materials and their applications in water remediation, such as the cleanup of oil, removal of heavy metal ions, and elimination of water soluble organic contaminants. The progress made so far will guide further development in structure design strategy of porous materials based on graphene and exploration of such materials in environmental remediation.

  6. Green PCB Remediation from Sediment Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPRSS technology is an in situ remediation technique for PCB-contaminated sediments. The technique provides an effective and safe method for sediment cleanup...

  7. ELECTROKINETIC REMEDIATION: BASICS AND TECHNOLOGY STATUS

    Science.gov (United States)

    Electrokinetic remediation, variably named as electrochemical soil processing, electromigration, electrokinetic decontamination or electroreclamation uses electric currents to extract radionuclides, heavy metals, certain organic compounds, or mixed inorganic species and some orga...

  8. Corporate governance: remedying and ratifying directors' breaches

    OpenAIRE

    Worthington, Sarah

    2000-01-01

    Extent to which company may relax scope and content of directors' duties, whether it can exonerate directors who default on their duties and whether it can ratify actions of defaulting directors and determine remedy for breach of duty.

  9. REAL TIME DATA FOR REMEDIATION ACTIVITIES (11505)

    International Nuclear Information System (INIS)

    Health physicists from the CH2M HILL Plateau Remediation Company collaborated with Berkeley Nucleonics Corporation to modify the SAM 940 isotope identifier instrument to be used for nuclear waste remediation. These modifications coupled with existing capabilities of the SAM 940 have proven to be invaluable during remediation activities, reducing disposal costs by allowing swift remediation of targeted areas that have been identified as having isotopes of concern (IOC), and eliminating multiple visits to sites by declaring an excavation site clear of IOCs before demobilizing from the site. These advantages are enabled by accumulating spectral data for specific isotopes that is nearly 100 percent free of false positives, which are filtered out in 'real time.'

  10. The College and Career Readiness Act: Findings from Evaluation--Year One. In Brief

    Science.gov (United States)

    Khan, Sadya; Castro, Erin; Bragg, Debra D.; Barrientos, Jessica I.; Baber, Lorenzo

    2009-01-01

    Rising remediation rates among college students are leading to increased time for completion of degree, additional costs for students and colleges, and financial aid being used on courses that do not count towards a degree. In response to these issues, in 2007 the state of Illinois passed the College and Career Readiness Act (CCR Act), Public Act…

  11. The Illinois College and Career Readiness Act: Year-One Evaluation Results

    Science.gov (United States)

    Baber, Lorenzo DuBois; Barrientos, Jessica I.; Bragg, Debra D.; Castro, Erin; Khan, Sadya

    2009-01-01

    Rising remediation rates among college students are leading to increased time for completion of degree, additional costs for students and colleges, and financial aid being used on courses that do not count towards a degree. In response to these issues, in 2007 the state of Illinois passed the College and Career Readiness Act, Public Act 095-0694,…

  12. Natural Remediation at Savannah River Site

    International Nuclear Information System (INIS)

    Natural remediation is a general term that includes any technology or strategy that takes advantage of natural processes to remediate a contaminated media to a condition that is protective of human health and the environment. Natural remediation techniques are often passive and minimally disruptive to the environment. They are generally implemented in conjunction with traditional remedial solutions for source control (i.e., capping, stabilization, removal, soil vapor extraction, etc.). Natural remediation techniques being employed at Savannah River Site (SRS) include enhanced bio-remediation, monitored natural attenuation, and phytoremediation. Enhanced bio-remediation involves making nutrients available and conditions favorable for microbial growth. With proper precautions and feeding, the naturally existing microbes flourish and consume the contaminants. Case studies of enhanced bio-remediation include surface soils contaminated with PCBs and pesticides, and Volatile Organic Compound (VOC) contamination in both the vadose zone and groundwater. Monitored natural attenuation (MNA) has been selected as the preferred alternative for groundwater clean up at several SRS waste units. Successful implementation of MNA has been based on demonstration that sources have been controlled, groundwater modeling that indicates that plumes will not expand or reach surface water discharge points at levels that exceed regulatory limits, and continued monitoring. Phytoremediation is being successfully utilized at several SRS waste units. Phytoremediation involves using plants and vegetation to uptake, break down, or manage contaminants in groundwater or soils. Case studies at SRS include managing groundwater plumes of tritium and VOCs with pine trees that are native to the area. Significant decreases in tritium discharge to a site stream have been realized in one phytoremediation project. Studies of other vegetation types, methods of application, and other target contaminants are

  13. Water as a Reagent for Soil Remediation

    Energy Technology Data Exchange (ETDEWEB)

    Jayaweera, Indira S.; Marti-Perez, Montserrat; Diaz-Ferrero, Jordi; Sanjurjo, Angel

    2003-03-06

    SRI International conducted experiments in a two-year, two-phase process to develop and evaluate hydrothermal extraction technology, also known as hot water extraction (HWE) technology, for remediating petroleum-contaminated soils. The bench-scale demonstration of the process has shown great promise, and the implementation of this technology will revolutionize the conventional use of water in soil remediation technologies and provide a standalone technology for removal of both volatile and heavy components from contaminated soil.

  14. Could Trade Remedy Keep Industry Safe?

    Institute of Scientific and Technical Information of China (English)

    Dennis; K.; Zhao

    2009-01-01

    The world trade is regressing while the trade protectionism is progressing. With this,trade remedies will be more used to protect domestic interests as was seen in Great Depression in history, but also seen in new stimulus program in a few weeks of history of US new administration. Will China be possible to take a new approach to maintaining its industry secured by buying and investing more overseas rather than reacting with the same remedy tool?

  15. International experience in tailings pond remediation

    International Nuclear Information System (INIS)

    Tailings pond remediation is required primarily on mine closure. While mining is an ancient industry, requirement for mine facility remediation is a comparatively new development. Requirement for remediation has come about partly as a result of mans awareness of the environmental impacts of mining and his desire to minimize this, partly, as a result of the ever-increasing scale and production rates of tailings generation and the resulting increased environmental impacts and safety risks. The paper starts with a review of the evolution of mans intolerance of environmental impacts from tailings production and the assignment of liability to remediate such impacts. Many of the tailings ponds currently undergoing remediation were designed and constructed using methods and technology that would be considered inappropriate for new impoundments being designed and developed today. The paper reviews the history of tailings impoundment design and construction practice and the resulting inherent deficiencies that must be remediated. Current practices and future trends in tailings pond remediation are reviewed. The evolution of regulatory requirements is not only in terms of technical and safety criteria, but also in terms of financial and political risk. Perhaps the most substantive driver of risk management is today the requirement for corporate governance at mining company board level and oversight of new project development in the underdeveloped countries by the large financial institutions responsible for funding projects. Embarrassment in the public eye and punishment in the stock markets for poor environmental and safety performance is driving the need for efficient and effective risk management of potential impacts and the remediation to avoid these. A basis for practical risk management is described. (orig.)

  16. Natural Remediation at Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, C. M.; Van Pelt, R.

    2002-02-25

    Natural remediation is a general term that includes any technology or strategy that takes advantage of natural processes to remediate a contaminated media to a condition that is protective of human health and the environment. Natural remediation techniques are often passive and minimally disruptive to the environment. They are generally implemented in conjunction with traditional remedial solutions for source control (i.e., capping, stabilization, removal, soil vapor extraction, etc.). Natural remediation techniques being employed at Savannah River Site (SRS) include enhanced bio-remediation, monitored natural attenuation, and phytoremediation. Enhanced bio-remediation involves making nutrients available and conditions favorable for microbial growth. With proper precautions and feeding, the naturally existing microbes flourish and consume the contaminants. Case studies of enhanced bio-remediation include surface soils contaminated with PCBs and pesticides, and Volatile Organic Compound (VOC) contamination in both the vadose zone and groundwater. Monitored natural attenuation (MNA) has been selected as the preferred alternative for groundwater clean up at several SRS waste units. Successful implementation of MNA has been based on demonstration that sources have been controlled, groundwater modeling that indicates that plumes will not expand or reach surface water discharge points at levels that exceed regulatory limits, and continued monitoring. Phytoremediation is being successfully utilized at several SRS waste units. Phytoremediation involves using plants and vegetation to uptake, break down, or manage contaminants in groundwater or soils. Case studies at SRS include managing groundwater plumes of tritium and VOCs with pine trees that are native to the area. Significant decreases in tritium discharge to a site stream have been realized in one phytoremediation project. Studies of other vegetation types, methods of application, and other target contaminants are

  17. Operable Unit 3-13, Group 3, Other Surface Soils Remediation Sets 4-6 (Phase II) Remedial Design/Remedial Action Work Plan

    Energy Technology Data Exchange (ETDEWEB)

    D. E. Shanklin

    2006-06-01

    This Remedial Design/Remedial Action Work Plan provides the framework for defining the remedial design requirements, preparing the design documentation, and defining the remedial actions for Waste Area Group 3, Operable Unit 3-13, Group 3, Other Surface Soils, Remediation Sets 4-6 (Phase II) located at the Idaho Nuclear Technology and Engineering Center at the Idaho National Laboratory. This plan details the design developed to support the remediation and disposal activities selected in the Final Operable Unit 3-13, Record of Decision.

  18. Hazardous waste treatment and environmental remediation research

    International Nuclear Information System (INIS)

    Los Alamos National Laboratory (LANL) is currently evaluating hazardous waste treatment and environmental remediation technologies in existence and under development to determine applicability to remediation needs of the DOE facilities under the Albuquerque Operations Office and to determine areas of research need. To assist LANL is this effort, Science Applications International Corporation (SAIC) conducted an assessment of technologies and monitoring methods that have been demonstrated or are under development. The focus of this assessment is to: (1) identify existing technologies for hazardous waste treatment and environmental remediation of old waste sites; (2) identify technologies under development and the status of the technology; (3) assess new technologies that need development to provide adequate hazardous waste treatment and remedial action technologies for DOD and DOE sites; and (4) identify hazardous waste and remediation problems for environmental research and development. There are currently numerous research and development activities underway nationwide relating to environmental contaminants and the remediation of waste sites. To perform this effort, SAIC evaluated current technologies and monitoring methods development programs in EPA, DOD, and DOE, as these are the primary agencies through which developmental methods are being demonstrated. This report presents this evaluation and provides recommendations as to pertinent research needs or activities to address waste site contamination problems. The review and assessment have been conducted at a programmatic level; site-specific and contaminant-specific evaluations are being performed by LANL staff as a separate, related activity

  19. Hanford sitewide grounwater remediation - supporting technical information

    International Nuclear Information System (INIS)

    The Hanford Sitewide Groundwater Remediation Strategy was issued in 1995 to establish overall goals for groundwater remediation on the Hanford Site. This strategy is being refined to provide more detailed justification for remediation of specific plumes and to provide a decision process for long-range planning of remediation activities. Supporting this work is a comprehensive modeling study to predict movement of the major site plumes over the next 200 years to help plan the remediation efforts. The information resulting from these studies will be documented in a revision to the Strategy and the Hanford Site Groundwater Protection Management Plan. To support the modeling work and other studies being performed to refine the strategy, this supporting technical information report has been produced to compile all of the relevant technical information collected to date on the Hanford Site groundwater contaminant plumes. The primary information in the report relates to conceptualization of the source terms and available history of groundwater transport, and description of the contaminant plumes. The primary information in the report relates to conceptualization of the source terms and available history of groundwater transport, description of the contaminant plumes, rate of movement based on the conceptual model and monitoring data, risk assessment, treatability study information, and current approach for plume remediation

  20. Nuclear facility decommissioning and site remedial actions

    Energy Technology Data Exchange (ETDEWEB)

    Owen, P.T.; Knox, N.P.; Ferguson, S.D.; Fielden, J.M.; Schumann, P.L.

    1989-09-01

    The 576 abstracted references on nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the tenth in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Citations to foreign and domestic literature of all types--technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions--have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's Remedial Action Programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) General Remedial Action Program Studies. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication description. Indexes are provided for author, corporate affiliation, title work, publication description, geographic location, subject category, and keywords.

  1. Hazardous waste treatment and environmental remediation research

    Energy Technology Data Exchange (ETDEWEB)

    1989-09-29

    Los Alamos National Laboratory (LANL) is currently evaluating hazardous waste treatment and environmental remediation technologies in existence and under development to determine applicability to remediation needs of the DOE facilities under the Albuquerque Operations Office and to determine areas of research need. To assist LANL is this effort, Science Applications International Corporation (SAIC) conducted an assessment of technologies and monitoring methods that have been demonstrated or are under development. The focus of this assessment is to: (1) identify existing technologies for hazardous waste treatment and environmental remediation of old waste sites; (2) identify technologies under development and the status of the technology; (3) assess new technologies that need development to provide adequate hazardous waste treatment and remedial action technologies for DOD and DOE sites; and (4) identify hazardous waste and remediation problems for environmental research and development. There are currently numerous research and development activities underway nationwide relating to environmental contaminants and the remediation of waste sites. To perform this effort, SAIC evaluated current technologies and monitoring methods development programs in EPA, DOD, and DOE, as these are the primary agencies through which developmental methods are being demonstrated. This report presents this evaluation and provides recommendations as to pertinent research needs or activities to address waste site contamination problems. The review and assessment have been conducted at a programmatic level; site-specific and contaminant-specific evaluations are being performed by LANL staff as a separate, related activity.

  2. Nuclear facility decommissioning and site remedial actions

    International Nuclear Information System (INIS)

    The 576 abstracted references on nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the tenth in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Citations to foreign and domestic literature of all types--technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions--have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's Remedial Action Programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) General Remedial Action Program Studies. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication description. Indexes are provided for author, corporate affiliation, title work, publication description, geographic location, subject category, and keywords

  3. Remedial investigation work plan for Chestnut Ridge Operable Unit 4 (Rogers Quarry/Lower McCoy Branch) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    The Oak Ridge Y-12 Plant includes - 800 acres near the northeast comer of the reservation and adjacent to the city of Oak Ridge (Fig. 1-1). The plant is a manufacturing and developmental engineering facility that produced components for various nuclear weapons systems and provides engineering support to other Energy Systems facilities. More than 200 contaminated sites have been identified at the Y-12 Plant that resulted from past waste management practices. Many of the sites have operable units (OUs) based on priority and on investigative and remediation requirements. This Remedial Investigation RI work plan specifically addresses Chestnut Ridge OU 4. Chestnut Ridge OU 4 consists of Rogers Quarry and Lower McCoy Branch (MCB). Rogers Quarry, which is also known as Old Rogers Quarry or Bethel Valley Quarry was used for quarrying from the late 1940s or early 1950s until about 1960. Since that time, the quarry has been used for disposal of coal ash and materials from Y-12 production operations, including classified materials. Disposal of coal ash ended in July 1993. An RI is being conducted at this site in response to CERCLA regulations. The overall objectives of the RI are to collect data necessary to evaluate the nature and extent of contaminants of concern, support an Ecological Risk Assessment and a Human Health Risk Assessment, support the evaluation of remedial alternatives, and ultimately develop a Record of Decision for the site. The purpose of this work plan is to outline RI activities necessary to define the nature and extent of suspected contaminants at Chestnut Ridge OU 4. Potential migration pathways also will be investigated. Data collected during the RI will be used to evaluate the risk posed to human health and the environment by OU 4.

  4. Magnetic separation for environmental remediation

    International Nuclear Information System (INIS)

    High Gradient Magnetic Separation (HGMS) is a form of magnetic separation used to separate solids from other solids, liquids or gases. HGMS uses large magnetic field gradients to separate ferromagnetic and paramagnetic particles from diamagnetic host materials. The technology relies only on physical properties, and therefore separations can be achieved while producing a minimum of secondary waste. Actinide and fission product wastes within the DOE weapons complex pose challenging problems for environmental remediation. Because the majority of actinide complexes and many fission products are paramagnetic, while most host materials are diamagnetic, HGMS can be used to concentrate the contaminants into a low volume waste stream. The authors are currently developing HGMS for applications to soil decontamination, liquid waste treatment, underground storage tank waste treatment, and actinide chemical processing residue concentration. Application of HGMS usually involves passing a slurry of the contaminated mixture through a magnetized volume. Field gradients are produced in the magnetized volume by a ferromagnetic matrix material, such as steel wool, expanded metal, iron shot, or nickel foam. The matrix fibers become trapping sites for ferromagnetic and paramagnetic particles in the host material. The particles with a positive susceptibility are attracted toward an increasing magnetic field gradient and can be extracted from diamagnetic particles, which react in the opposite direction, moving away from the areas of high field gradients. The extracted paramagnetic contaminants are flushed from the matrix fibers when the magnetic field is reduced to zero or when the matrix canister is removed from the magnetic field. Results are discussed for the removal of uranium trioxide from water, PuO2, U, and Pu from various soils (Fernald, Nevada Test Site), and the waste water treatment of Pu and Am isotopes using HGMS

  5. Magnetic separation for environmental remediation

    Energy Technology Data Exchange (ETDEWEB)

    Schake, A.R.; Avens, L.R.; Hill, D.D.; Padilla, D.D.; Prenger, F.C.; Romero, D.A.; Worl, L.A. [Los Alamos National Lab., NM (United States); Tolt, T.L. [Lockheed Environmental Systems and Technologies Co., Las Vegas, NV (United States)

    1994-11-01

    High Gradient Magnetic Separation (HGMS) is a form of magnetic separation used to separate solids from other solids, liquids or gases. HGMS uses large magnetic field gradients to separate ferromagnetic and paramagnetic particles from diamagnetic host materials. The technology relies only on physical properties, and therefore separations can be achieved while producing a minimum of secondary waste. Actinide and fission product wastes within the DOE weapons complex pose challenging problems for environmental remediation. Because the majority of actinide complexes and many fission products are paramagnetic, while most host materials are diamagnetic, HGMS can be used to concentrate the contaminants into a low volume waste stream. The authors are currently developing HGMS for applications to soil decontamination, liquid waste treatment, underground storage tank waste treatment, and actinide chemical processing residue concentration. Application of HGMS usually involves passing a slurry of the contaminated mixture through a magnetized volume. Field gradients are produced in the magnetized volume by a ferromagnetic matrix material, such as steel wool, expanded metal, iron shot, or nickel foam. The matrix fibers become trapping sites for ferromagnetic and paramagnetic particles in the host material. The particles with a positive susceptibility are attracted toward an increasing magnetic field gradient and can be extracted from diamagnetic particles, which react in the opposite direction, moving away from the areas of high field gradients. The extracted paramagnetic contaminants are flushed from the matrix fibers when the magnetic field is reduced to zero or when the matrix canister is removed from the magnetic field. Results are discussed for the removal of uranium trioxide from water, PuO{sub 2}, U, and Pu from various soils (Fernald, Nevada Test Site), and the waste water treatment of Pu and Am isotopes using HGMS.

  6. Innovative fossil fuel fired vitrification technology for soil remediation

    International Nuclear Information System (INIS)

    Vortex has successfully completed Phase 1 of the ''Innovative Fossil Fuel Fired Vitrification Technology for Soil Remediation'' program with the Department of Energy (DOE) Morgantown Energy Technology Center (METC). The Combustion and Melting System (CMS) has processed 7000 pounds of material representative of contaminated soil that is found at DOE sites. The soil was spiked with Resource Conversation and Recovery Act (RCRA) metals surrogates, an organic contaminant, and a surrogate radionuclide. The samples taken during the tests confirmed that virtually all of the radionuclide was retained in the glass and that it did not leach to the environment. The organic contaminant, anthracene, was destroyed during the test with a Destruction and Removal Efficiency (DRE) of at least 99.99%. RCRA metal surrogates, that were in the vitrified product, were retained and will not leach to the environment--as confirmed by the TCLP testing. Semi-volatile RCRA metal surrogates were captured by the Air Pollution Control (APC) system, and data on the amount of metal oxide particulate and the chemical composition of the particulate were established for use in the Phase 2 APC system design. This topical report will present a summary of the activities conducted during Phase 1 of the ''Innovative Fossil Fuel Fired Vitrification Technology for Soil Remediation'' program. The report includes the detail technical data generated during the experimental program and the design and cost data for the preliminary Phase 2 plant

  7. 7 CFR 4290.1810 - Events of default and the Secretary's remedies for RBIC's noncompliance with terms of Debentures.

    Science.gov (United States)

    2010-01-01

    ... the remedies in paragraph (e) of this section. (1) Fraud. You commit a fraudulent act that causes... right, and you consent to the Secretary's exercise of such right: (1) With respect to a Corporate RBIC...) With respect to a Corporate RBIC, Partnership RBIC, or LLC RBIC, to obtain the appointment of...

  8. In Situ Remediation Integrated Program: Technology summary

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    The In Situ Remediation Integrated Program (ISR IP) was instituted out of recognition that in situ remediation could fulfill three important criteria: significant cost reduction of cleanup by eliminating or minimizing excavation, transportation, and disposal of wastes; reduced health impacts on workers and the public by minimizing exposure to wastes during excavation and processing; and remediation of inaccessible sites, including: deep subsurfaces, in, under, and around buildings. Buried waste, contaminated soils and groundwater, and containerized wastes are all candidates for in situ remediation. Contaminants include radioactive wastes, volatile and non-volatile organics, heavy metals, nitrates, and explosive materials. The ISR IP intends to facilitate development of in situ remediation technologies for hazardous, radioactive, and mixed wastes in soils, groundwater, and storage tanks. Near-term focus is on containment of the wastes, with treatment receiving greater effort in future years. ISR IP is an applied research and development program broadly addressing known DOE environmental restoration needs. Analysis of a sample of 334 representative sites by the Office of Environmental Restoration has shown how many sites are amenable to in situ remediation: containment--243 sites; manipulation--244 sites; bioremediation--154 sites; and physical/chemical methods--236 sites. This needs assessment is focused on near-term restoration problems (FY93--FY99). Many other remediations will be required in the next century. The major focus of the ISR EP is on the long term development of permanent solutions to these problems. Current needs for interim actions to protect human health and the environment are also being addressed.

  9. Provincial labour market study : mould remediation industry

    International Nuclear Information System (INIS)

    Indoor exposure to mold can be problematic to human health, and some molds are considered to be toxigenic. The emergent mold remediation industry in Ontario is fragmented, with various different standards, training and certification processes. This report investigated the labour market for mold remediation workers, with particular reference to training needs and priorities. Research was derived from a literature review in order to analyze the economic, legal, technical and social context of the mold remediation industry. Data on the organized work force were obtained from records of the International Union of Painters and Allied Trades, the Labour Force Historical Review 2002, and various publications. Population data from the Ontario government and Statistics Canada were also used. Surveys of workers and employers were conducted with questionnaires. Results of the surveys indicated that mold remediation projects currently constitute a minority share of most companies' business. However, the importance of mold remediation projects is expected to increase, and industry self-regulation is the most likely scenario for the development of standards and related training programs. It was suggested that the creation of an industry body representing key stakeholder constituencies or the legitimization of an existing industry organization will reduce fragmentation and facilitate research, standard setting and certification, as well as improve marketing and education. If the demand for mold remediation services increases as anticipated, the industry will face the challenge of remaining competitive in the province's projected labour market due to shortages in personnel. There was a strong consensus between employers and workers in the mold remediation industry regarding the need for skills upgrading and compulsory certification. It was concluded that leadership is needed in the development and delivery of training programs, standard setting, recruitment and retention and

  10. In Situ Remediation Integrated Program: Technology summary

    International Nuclear Information System (INIS)

    The In Situ Remediation Integrated Program (ISR IP) was instituted out of recognition that in situ remediation could fulfill three important criteria: significant cost reduction of cleanup by eliminating or minimizing excavation, transportation, and disposal of wastes; reduced health impacts on workers and the public by minimizing exposure to wastes during excavation and processing; and remediation of inaccessible sites, including: deep subsurfaces, in, under, and around buildings. Buried waste, contaminated soils and groundwater, and containerized wastes are all candidates for in situ remediation. Contaminants include radioactive wastes, volatile and non-volatile organics, heavy metals, nitrates, and explosive materials. The ISR IP intends to facilitate development of in situ remediation technologies for hazardous, radioactive, and mixed wastes in soils, groundwater, and storage tanks. Near-term focus is on containment of the wastes, with treatment receiving greater effort in future years. ISR IP is an applied research and development program broadly addressing known DOE environmental restoration needs. Analysis of a sample of 334 representative sites by the Office of Environmental Restoration has shown how many sites are amenable to in situ remediation: containment--243 sites; manipulation--244 sites; bioremediation--154 sites; and physical/chemical methods--236 sites. This needs assessment is focused on near-term restoration problems (FY93--FY99). Many other remediations will be required in the next century. The major focus of the ISR EP is on the long term development of permanent solutions to these problems. Current needs for interim actions to protect human health and the environment are also being addressed

  11. Environmental management audit, Uranium Mill Tailings Remedial Action Project (UMTRA)

    International Nuclear Information System (INIS)

    The Office of Environment, Safety and Health (EH) has established, as part of the internal oversight responsibilities within Department of Energy (DOE), a program within the Office of Environmental Audit (EH-24), to conduct environmental audits at DOE's operating facilities. This document contains the results of the Environmental Management Audit of the Uranium Mill Tailings Remedial Action (UMTRA) Project. This Environmental Management Audit was conducted by the DOE's Office of Environmental Audit from October 26 through November 6, 1992. The audit's objective is to advise the Secretary as to the adequacy of UMTRA's environmental programs, and management organization in ensuring environmental protection and compliance with Federal, state, and DOE environmental requirements. This Environmental Management Audit's scope was comprehensive and covered all areas of environmental management with the exception of environmental programs pertaining to the implementation of the requirements of the National Environmental Policy Act (NEPA), which is the responsibility of the DOE Headquarters Office of NEPA Oversight

  12. Environmental Audit, Weldon Spring Site Remedial Action Project

    International Nuclear Information System (INIS)

    This report documents the results of the Environmental Baseline Audit of DOE's Weldon Spring Site Remedial Action Project (WSSRAP), located in St. Charles, Missouri. The purpose of the Environmental Baseline Audit is to provide the Secretary of Energy with concise information pertaining to the following issues: (1) compliance status with applicable environmental regulations (with the exception of National Environmental Policy Act [NEPA] requirements); (2) adherence to best management and accepted industry practices; (3) DOE vulnerabilities and liabilities associated with compliance status, environmental conditions, and management practices; (4) root causes of compliance findings (CF) and best management practice (BMP) findings; (5) adequacy of environmental management programs and organizations; and (6) noteworthy practices. This information will assist DOE in determining patterns and trends in environmental compliance, BMPs, and root causes, and will provide the information necessary for line management to take appropriate corrective actions. 6 figs., 11 tabs

  13. Remedial actions: A discussion of technological, regulatory and construction issues

    Energy Technology Data Exchange (ETDEWEB)

    Manrod, W.E.; Miller, R.A.; Barton, W.D. III; Pierce, T.J. [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States). Engineering Div.

    1989-11-01

    The Oak Ridge Reservation consists of approximately 35,252 acres located in the Ridge and Valley Province of the Appalachian Mountains in Eastern Tennessee. Three Department of Energy facilities are located on the Reservation: the Y-12 Plant, the Oak Ridge Gaseous Diffusion Plant and the Oak Ridge National Laboratory. The plants have, over the years, disposed of low-level and mixed waste in various areas on the reservation principally with shallow land burial. A discussion is presented of some of the actions to remediate and close areas used for disposal of waste in the past. Current or planned activities for waste disposal and storage are also discussed. Closures completed to date have complied with Resource Conservation and Recovery Act Regulations. The new approach for disposal and storage has adopted ideas that have been successfully used by the French to dispose of low-level waste, as well as, improved on older shallow burial disposal techniques.

  14. EDTA retention and emissions from remediated soil.

    Science.gov (United States)

    Jez, Erika; Lestan, Domen

    2016-05-01

    EDTA-based remediation is reaching maturity but little information is available on the state of chelant in remediated soil. EDTA soil retention was examined after extracting 20 soil samples from Pb contaminated areas in Slovenia, Austria, Czech Republic and USA with 120 mM kg(-1) Na2H2EDTA, CaNa2EDTA and H4EDTA for 2 and 24 h. On average, 73% of Pb was removed from acidic and 71% from calcareous soils (24 h extractions). On average, 15% and up to 64% of applied EDTA was after remediation retained in acidic soils. Much less; in average 1% and up to the 22% of EDTA was retained in calcareous soils. The secondary emissions of EDTA retained in selected remediated soil increased with the acidity of the media: the TCLP (Toxicity Characteristic Leaching Procedure) solution (average pH end point 3.6) released up to 36% of EDTA applied in the soil (28.1 mmol kg(-1)). Extraction with deionised water (pH > 6.0) did not produce measurable EDTA emissions. Exposing soil to model abiotic (thawing/freezing cycles) and biotic (ingestion by earthworms Lumbricus rubellus) ageing factors did not induce additional secondary emissions of EDTA retained in remediated soil. PMID:26943741

  15. Salt contamination assessment and remediation guidelines

    International Nuclear Information System (INIS)

    Environmental impacts associated with excess salt in oil and surface water or groundwater (a frequent occurrence in oil and gas production) may be manifested as degradation of soil chemical or physical properties, impaired vegetable growth and degraded surface or groundwater quality. Spill prevention is by far the most effective and most efficient way of avoiding these adverse effects and the attendant remediation costs. However, when spills do occur effective response, based on a comprehensive understanding of impacts, salt movements and remediation procedures can mitigate the adverse environmental effects. This guide is designed to assist those involved in the prevention, assessment, remediation and management of salt-contaminated sites. It summarizes the regulatory requirements in Alberta, including salt remediation objectives, and provides an overview of salt spill problems and effective site assessment and remediation procedures. Background information on the sources of salt, the movement of salt in soil and groundwater, and the adverse effects of salt on soil, vegetation and groundwater is provided in an appendix attached to the Guide. A selected bibliography and a glossary of terms are also included. 42 refs., tabs., figs

  16. Remedial Action Programs annual meeting: Proceedings

    International Nuclear Information System (INIS)

    Within the DOE's Office of Nuclear Energy, the Office of Remedial Action and Waste Technology manages a number of programs whose purposes are to complete remedial actions at DOE facilities and sites located throughout the United States. These programs include the Surplus Facilities Management Program, the Formerly Utilized Sites Remedial Action Program, the Uranium Mill Tailings remedial Action Program and the West Valley Demonstration Project. The programs involve the decontamination and decommissioning of radioactively-contaminated structures and equipment, the disposal of uranium mill tailings, and the cleanup or restoration of soils and ground water that have been contaminated with radioactive hazardous substances. Each year the DOE and DOE-contractor staff who conduct these programs meet to exchange information and experience in common technical areas. This year's meeting was hosted by the Surplus Facilities Management Program and was held near DOE Headquarters, in Gaithersburg, Maryland. This volume of proceedings provides the record for the meeting. The proceedings consist of abstracts for each presentation made at the meeting, and the visual aids (if any) used by the speakers. The material is organized in the following pages according to the five different sessions at the meeting: Session 1: Environmental Compliance--Policy; Session 2: Environmental Compliance--Practice; Session 3: Reports from working groups; Session 4: DandD Technology; and Session 5: Remedial Action Technology. The agenda for the meeting and the list of meeting registrants are provided in Appendix A and B, respectively. Individual papers are processed separately for the data base

  17. Electrokinetic soil remediation--critical overview.

    Science.gov (United States)

    Virkutyt, Jurate; Sillanpää, Mika; Latostenmaa, Petri

    2002-04-22

    In recent years, there has been increasing interest in finding new and innovative solutions for the efficient removal of contaminants from soils to solve groundwater, as well as soil, pollution. The objective of this review is to examine several alternative soil-remediating technologies, with respect to heavy metal remediation, pointing out their strengths and drawbacks and placing an emphasis on electrokinetic soil remediation technology. In addition, the review presents detailed theoretical aspects, design and operational considerations of electrokinetic soil-remediation variables, which are most important in efficient process application, as well as the advantages over other technologies and obstacles to overcome. The review discusses possibilities of removing selected heavy metal contaminants from clay and sandy soils, both saturated and unsaturated. It also gives selected efficiency rates for heavy metal removal, the dependence of these rates on soil variables, and operational conditions, as well as a cost-benefit analysis. Finally, several emerging in situ electrokinetic soil remediation technologies, such as Lasagna, Elektro-Klean, electrobioremediation, etc., are reviewed, and their advantages, disadvantages and possibilities in full-scale commercial applications are examined. PMID:12049409

  18. Hanford Site Groundwater Monitoring for Fiscal Year 2002

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, Mary J.; Morasch, Launa F.; Webber, William D.

    2003-02-28

    This report presents the results of groundwater and vadose zone monitoring and remediation for fiscal year 2002 on the U.S. Department of Energy's Hanford Site in Washington State. This report is written to meet the requirements in CERCLA, RCRA, the Atomic Energy Act of 1954, and Washington State Administrative Code.

  19. Nuclear Regulatory Authority Act, 2015 (Act 895)

    International Nuclear Information System (INIS)

    An Act to establish a Nuclear Regulatory Authority in Ghana. This Act provides for the regulation and management of activities and practices for the peaceful use of nuclear material or energy, and to provide for the protection of persons and the environment against the harmful effects of radiation; and to ensure the effective implementation of the country’s international obligations and for related matters. This Act replaced the Radiation Protection Instrument, of 1993 (LI 1559).

  20. Tank waste remediation system operational scenario

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, M.E.

    1995-05-01

    The Tank Waste Remediation System (TWRS) mission is to store, treat, and immobilize highly radioactive Hanford waste (current and future tank waste and the strontium and cesium capsules) in an environmentally sound, safe, and cost-effective manner (DOE 1993). This operational scenario is a description of the facilities that are necessary to remediate the Hanford Site tank wastes. The TWRS Program is developing technologies, conducting engineering analyses, and preparing for design and construction of facilities necessary to remediate the Hanford Site tank wastes. An Environmental Impact Statement (EIS) is being prepared to evaluate proposed actions of the TWRS. This operational scenario is only one of many plausible scenarios that would result from the completion of TWRS technology development, engineering analyses, design and construction activities and the TWRS EIS. This operational scenario will be updated as the development of the TWRS proceeds and will be used as a benchmark by which to evaluate alternative scenarios.

  1. Technology development activities supporting tank waste remediation

    Energy Technology Data Exchange (ETDEWEB)

    Bonner, W.F.; Beeman, G.H.

    1994-06-01

    This document summarizes work being conducted under the U.S. Department of Energy`s Office of Technology Development (EM-50) in support of the Tank Waste Remediation System (TWRS) Program. The specific work activities are organized by the following categories: safety, characterization, retrieval, barriers, pretreatment, low-level waste, and high-level waste. In most cases, the activities presented here were identified as supporting tank remediation by EM-50 integrated program or integrated demonstration lead staff and the selections were further refined by contractor staff. Data sheets were prepared from DOE-HQ guidance to the field issued in September 1993. Activities were included if a significant portion of the work described provides technology potentially needed by TWRS; consequently, not all parts of each description necessarily support tank remediation.

  2. Technology development activities supporting tank waste remediation

    International Nuclear Information System (INIS)

    This document summarizes work being conducted under the U.S. Department of Energy's Office of Technology Development (EM-50) in support of the Tank Waste Remediation System (TWRS) Program. The specific work activities are organized by the following categories: safety, characterization, retrieval, barriers, pretreatment, low-level waste, and high-level waste. In most cases, the activities presented here were identified as supporting tank remediation by EM-50 integrated program or integrated demonstration lead staff and the selections were further refined by contractor staff. Data sheets were prepared from DOE-HQ guidance to the field issued in September 1993. Activities were included if a significant portion of the work described provides technology potentially needed by TWRS; consequently, not all parts of each description necessarily support tank remediation

  3. Electrodialytic remediation of heavy metal polluted soil

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Jensen, Pernille Erland; Kirkelund, Gunvor Marie;

    2012-01-01

    Electrodialytic soil remediation is a method for removal of heavy metals. Good results have previously been obtained with both treatment of a stationary, water saturated soil matrix and with remediation of a stirred suspension of soil in water. The two different setups have different uses...... without a short distance between the membranes. The acidification of the suspended soil was fastest and following the mobilization of heavy metals. This may indicate that water splitting at the anion exchange membrane is used more efficiently in the stirred setup........ The first as in-situ or on-site treatment when there is no requirement for fast remediation, as the removal rate of the heavy metals are dependent on the distance between the electrodes (everything else equal) and in such application the electrode spacing must have a certain distance (often meters...

  4. Ferric iron remediation and stabilisation (firs) - developing a new robust electrokinetic remediation technique for heavy metal and radionuclide contaminated sites

    Energy Technology Data Exchange (ETDEWEB)

    Faulkner, D.; Hopkinson, L. [Brighton Univ, Div. of Civil Engineering and Geology (United Kingdom); Cundy, A. [Sussex Univ., Centre for Environmental Research, Brighton (United Kingdom)

    2005-07-01

    Electrokinetic remediation is an emerging technology that has generated considerable interest as a technique for the in-situ remediation of contaminated clay-rich soils and sediments. Despite promising experimental results, however, at present there is no standardised universal electrokinetic soil/sediment remediation approach. Many of the current technologies are technically complex and energy intensive, and geared towards the removal of 90% or more of specific contaminants, under very specific field or laboratory-based conditions. However, in the real environment a low-tech, low-energy contaminant reduction / containment technique may be more appropriate and realistic. Such a technique, FIRS (Ferric Iron Remediation and Stabilisation), is discussed here. The FIRS technique involves the application of a low magnitude (typically less than 0.2 V/cm) direct electric potential between two or more sacrificial, iron-rich, electrodes emplaced either side of a contaminated soil or sediment. The electric potential is used to generate a strong pH (and Eh) gradient within the soil column (pH 2 - 13), which acts to re-mobilize contaminants in the treated soil, and force the precipitation of an impermeable, sorptive iron-rich barrier or 'pan' in the soil between the electrodes. Geochemical data from bench-scale treatment cells indicate that the FIRS technique can significantly reduce the concentration of a range of heavy metals and radionuclides in contaminated soils, by remobilization of contaminants followed by precipitation on, or around, the iron-rich barrier generated by the technique. In addition, arsenic seems highly amenable to the FIRS treatment, due to its solubility under the high pH conditions generated near to the cathode, and its marked geochemical affinity with the freshly precipitated iron oxides and oxy-hydroxides in the iron barrier. Geotechnical tests indicate that the iron barrier produced by the technique is practically impervious (permeability

  5. Implementation of Electrokinetic-ISCO Remediation

    Science.gov (United States)

    Wu, M. Z.; Reynolds, D.; Fourie, A.; Prommer, H.; Thomas, D.

    2011-12-01

    Significant challenges remain in the remediation of low-permeability porous media (e.g. clays, silts) contaminated with dissolved and sorbed organic contaminants. Current remediation technologies, such as in-situ chemical oxidation (ISCO), are often ineffective and the treatment region is limited by very slow rates of groundwater flow (advection) or molecular diffusion. At the laboratory-scale several studies (e.g. Reynolds et al. 2008) have highlighted the potential for utilising electrokinetic transport, as induced by the application of an electric field, to deliver a remediation compound (e.g. permanganate, persulfate) within heterogeneous and low-permeability sediments for ISCO (termed EK-ISCO) or other treatments. Process-based numerical modelling of the coupled flow, transport and reaction processes can provide important insights into the prevailing controls and feedback mechanisms and therefore guide the optimisation of EK-ISCO remediation efficacy. In this study, a numerical model was developed that simulates groundwater flow and multi-species reactive transport under both hydraulic and electric gradients (Wu et al. 2010). Coupled into the existing, previously verified reactive transport model PHT3D (Prommer et al. 2003), the model was verified against analytical solutions and data from experimental studies. Using the newly developed model, the sensitivity of electrokinetic, hydraulic and engineering parameters as well as alternative configurations of the EK-ISCO treatment process were investigated. The duration and energy required for remediation was most dependent upon the applied voltage gradient and the natural oxidant demand and all investigated parameters affected the remediation process to some extent. Investigated variants of treatment configurations included several alternative locations for oxidant injection and a series of one-dimensional and two-dimensional electrode configurations.

  6. Mapping Contaminant Remediation with Electrical Resistivity Tomography

    Science.gov (United States)

    Gerhard, J.; Power, C.; Tsourlos, P.; Karaoulis, M.; Giannopoulos, A.; Soupios, P. M.; Simyrdanis, K.

    2014-12-01

    The remediation of sites contaminated with industrial chemicals - specifically dense non-aqueous phase liquids (DNAPLs) like coal tar and chlorinated solvents - represents a major geoenvironmental challenge. Remediation activities would benefit from a non-destructive technique to map the evolution of DNAPL mass in space and time. Electrical resistivity tomography (ERT) has long-standing potential in this context but has not yet become a common tool at DNAPL sites. This work evaluated the potential of time-lapse ERT for mapping DNAPL mass reduction in real time during remediation. Initially, a coupled DNAPL-ERT numerical model was developed for exploring this potential at the field scale, generating realistic DNAPL scenarios and predicting the response of an ERT survey. Also, new four-dimensional (4D) inversion algorithms were integrated for tracking DNAPL removal over time. 4D ERT applied at the surface for mapping an evolving DNAPL distribution was first demonstrated in a laboratory experiment. Independent simulation of the experiment demonstrated the reliability of the DNAPL-ERT model for simulating real systems. The model was then used to explore the 4D ERT approach at the field scale for a range of realistic DNAPL remediation scenarios. The approach showed excellent potential for mapping shallow DNAPL changes. However, remediation at depth was not as well resolved. To overcome this limitation, a new surface-to-horizontal borehole (S2HB) ERT configuration is proposed. A second laboratory experiment was conducted that demonstrated that S2HB ERT does better resolve changes in DNAPL distribution relative to surface ERT, particularly at depth. The DNAPL-ERT model was also used to demonstrate the improved mapping of S2HB ERT for field scale DNAPL scenarios. Overall, this work demonstrates that, with these innovations, ERT exhibits significant potential as a real time, non-destructive geoenvironmental remediation site monitoring tool.

  7. Electrodialytic remediation of suspended mine tailings

    DEFF Research Database (Denmark)

    Hansen, Henrik K.; Rojo, Adrian; Pino, Denisse;

    2008-01-01

    This work shows the laboratory results of nine electrodialytic remediation experiments on copper mine tailings. A newly designed remediation cell, where the solids were kept in suspension by airflow, was tested. The results show that electric current could remove copper from suspended tailings...... experiment at 40 mA, with approximately 137.5 g mine tailings on dry basis. The removal for a static (baseline) experiment only amounted 15% when passing approximately the same amount of charge through 130 g of mine tailings. The use of air bubbling to keep the tailings suspended increased the removal...

  8. Strategy paper. Remedial design/remedial action 100 Area. Revision 2

    International Nuclear Information System (INIS)

    This strategy paper identifies and defines the approach for remedial design and remedial action (RD/RA) for source waste sites in the 100 Area of the Hanford Site, located in southeastern Washington State. This paper provides the basis for the US Department of Energy (DOE) to assess and approve the Environmental Restoration Contractor's (ERC) approach to RD/RA. Additionally, DOE is requesting review/agreement from the US Environmental Protection Agency (EPA) and Washington State Department of Ecology (Ecology) on the strategy presented in this document in order to expedite remedial activities

  9. Annual status report on the inactive uranium mill tailings sites remedial action program

    Energy Technology Data Exchange (ETDEWEB)

    1979-12-01

    Assessments of inactive uranium mill tailings sites in the United States led to the designation of 25 processing sites for remedial action under the provisions of Section 102(a) Public Law 95-604. The Department of Energy assessed the potential health effects to the public from the residual radioactive materials on or near the 25 sites; and, with the advice of the Environmental Protection Agency, the Secretary established priorities for performing remedial action. In designating the 25 sites and establishing the priorities for performing remedial action, the Department of Energy consulted with the Environmental Protection Agency, Nuclear Regulatory Commission, Department of the Interior, governors of the affected States, Navajo Nation, and appropriate property owners. Public participation in this process was encouraged. During Fiscal Year 1980, Department of Energy will be conducting surveys to verify the radiological characterization at the designated processing sites; developing cooperative agreements with the affected States; and initiating the appropriate National Environmental Policy Act documentation prior to conducting specific remedial actions.

  10. Annual status report on the inactive uranium mill tailings sites remedial action program

    International Nuclear Information System (INIS)

    Assessments of inactive uranium mill tailings sites in the United States led to the designation of 25 processing sites for remedial action under the provisions of Section 102(a) Public Law 95-604. The Department of Energy assessed the potential health effects to the public from the residual radioactive materials on or near the 25 sites; and, with the advice of the Environmental Protection Agency, the Secretary established priorities for performing remedial action. In designating the 25 sites and establishing the priorities for performing remedial action, the Department of Energy consulted with the Environmental Protection Agency, Nuclear Regulatory Commission, Department of the Interior, governors of the affected States, Navajo Nation, and appropriate property owners. Public participation in this process was encouraged. During Fiscal Year 1980, Department of Energy will be conducting surveys to verify the radiological characterization at the designated processing sites; developing cooperative agreements with the affected States; and initiating the appropriate National Environmental Policy Act documentation prior to conducting specific remedial actions

  11. Annual status report on the Uranium Mill Tailings Remedial Action Program

    International Nuclear Information System (INIS)

    This eleventh annual status report summarizes activities of the Uranium Mill Tailings Remedial Action (UMTRA) Project undertaken during Fiscal Year (FY) 1989 by the US Department of Energy (DOE) and other agencies. Project goals for FY 1990 are also presented. An annual report of this type was a statutory requirement through January 1, 1986, pursuant to the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978, Public Law (PL) 95--604. The DOE will continue to submit an annual report through project completion in order to inform the public of yearly project status. Title I of the UMTRCA authorizes the DOE, in cooperation with affected states and Indian tribes within whose boundaries designated uranium processing sites are located, to provide a program of assessment and remedial action at such sites. The purpose of the remedial action is to stabilize and control the tailings and other residual radioactive materials located on the inactive uranium processing sites in a safe and environmentally sound manner and to minimize or eliminate potential radiation health hazards. Commercial and residential properties in the vicinity of designated processing sites that are contaminated with material from the sites, herein referred to as ''vicinity properties,'' are also eligible for remedial action. Included in the UMTRA Project are 24 inactive uranium processing sites and associated vicinity properties located in 10 states, and the vicinity properties associated with Edgemont, South Dakota, an inactive uranium mill currently owned by the Tennessee Valley Authority (TVA)

  12. 32 CFR 516.64 - Comprehensive remedies plan.

    Science.gov (United States)

    2010-07-01

    ... AND PUBLIC RELATIONS LITIGATION Remedies in Procurement Fraud and Corruption § 516.64 Comprehensive... investigation involving fraud or corruption that relates to Army procurement activities. When possible, these.... (4) Consideration of each criminal, civil, contractual, and administrative remedy available,...

  13. A model for homeopathic remedy effects: low dose nanoparticles, allostatic cross-adaptation, and time-dependent sensitization in a complex adaptive system

    Directory of Open Access Journals (Sweden)

    Bell Iris R

    2012-10-01

    Full Text Available Abstract Background This paper proposes a novel model for homeopathic remedy action on living systems. Research indicates that homeopathic remedies (a contain measurable source and silica nanoparticles heterogeneously dispersed in colloidal solution; (b act by modulating biological function of the allostatic stress response network (c evoke biphasic actions on living systems via organism-dependent adaptive and endogenously amplified effects; (d improve systemic resilience. Discussion The proposed active components of homeopathic remedies are nanoparticles of source substance in water-based colloidal solution, not bulk-form drugs. Nanoparticles have unique biological and physico-chemical properties, including increased catalytic reactivity, protein and DNA adsorption, bioavailability, dose-sparing, electromagnetic, and quantum effects different from bulk-form materials. Trituration and/or liquid succussions during classical remedy preparation create “top-down” nanostructures. Plants can biosynthesize remedy-templated silica nanostructures. Nanoparticles stimulate hormesis, a beneficial low-dose adaptive response. Homeopathic remedies prescribed in low doses spaced intermittently over time act as biological signals that stimulate the organism’s allostatic biological stress response network, evoking nonlinear modulatory, self-organizing change. Potential mechanisms include time-dependent sensitization (TDS, a type of adaptive plasticity/metaplasticity involving progressive amplification of host responses, which reverse direction and oscillate at physiological limits. To mobilize hormesis and TDS, the remedy must be appraised as a salient, but low level, novel threat, stressor, or homeostatic disruption for the whole organism. Silica nanoparticles adsorb remedy source and amplify effects. Properly-timed remedy dosing elicits disease-primed compensatory reversal in direction of maladaptive dynamics of the allostatic network, thus promoting

  14. Tank waste remediation system mission analysis report

    Energy Technology Data Exchange (ETDEWEB)

    Acree, C.D.

    1998-01-06

    The Tank Waste Remediation System Mission Analysis Report identifies the initial states of the system and the desired final states of the system. The Mission Analysis Report identifies target measures of success appropriate to program-level accomplishments. It also identifies program-level requirements and major system boundaries and interfaces.

  15. An ancient greek pain remedy for athletes

    DEFF Research Database (Denmark)

    Bartels, Else M.; Swaddling, Judith; Harrison, Adrian Paul

    2006-01-01

    While Hippocratic writings make no reference to the actual Olympics, there is frequent mention of diet, exercise, and the treatment of injuries sustained by the athletic participants. Indeed, Galen in his Composition of Medicines gives details of a remedy prescribed for the relief of pains and sw...

  16. Detection and Remediation of Groundwater Pollution

    Institute of Scientific and Technical Information of China (English)

    王杰

    2016-01-01

    Groundwater is an important part of the water cycle and is also widely used as sources of drinking water. With the increasing de?velopment of groundwater exploitation, the pollution is becoming more and more serious. This paper talks about the main research direc?tions of groundwater pollution, the detection, the remediation and some conclusions.

  17. Methods of radon remediation in Finnish dwellings

    International Nuclear Information System (INIS)

    A study was made of remedial measures taken in dwellings with high indoor radon concentrations and the results obtained. The data regarding the remedial measures taken in 400 dwellings was obtained from a questionnaire study. The mean annual average indoor radon concentration before the remedies was 1.500 Bq/m3, the concentration exceeding in nearly every house the action level of 400 Bq/m3. After the measures were taken the mean indoor radon concentration was 500 Bq/m3. The resulting indoor radon concentration was less than 400 Bq/m3 in 60 percent of the dwellings. The best results were achieved using sub-slab-suction and radon well. These methods effectively decrease both the flow of radon bearing air from soil into dwellings and the radon concentration of leakage air. Typical reduction rates in radon concentration were 70-95 percent. The action level was achieved in more than 70 percent of the houses. Sealing the entry routes and improvement of the ventilation resulted typically in reduction rates of 10-50 percent. The goal of the report is to give useful information for the house owners, the do-it-yourself-mitigators, the mitigation firms and the local authorities. The report includes practical guidance, price information and examples of remedial measures. (13 refs., 10 figs., 2 tabs.)

  18. Communicative and remedial effects of social blushing

    NARCIS (Netherlands)

    de Jong, Peter

    1999-01-01

    Three experiments (N = 90; N = 78; N = 52) examined the communicative and remedial properties of blushing. in Experiments 1 and 2, participants read scripts describing incidents that took place in shops. Following the mishap the actor left while displaying a blush (target condition), left the shop w

  19. Tank waste remediation system program plan

    Energy Technology Data Exchange (ETDEWEB)

    Powell, R.W.

    1998-01-05

    This program plan establishes the framework for conduct of the Tank Waste Remediation System (TWRS) Project. The plan focuses on the TWRS Retrieval and Disposal Mission and is specifically intended to support the DOE mid-1998 Readiness to Proceed with Privatized Waste Treatment evaluation for establishing firm contracts for waste immobilization.

  20. REMEDIATION OF CONTAMINATED SOILS BY SOLVENT FLUSHING

    Science.gov (United States)

    Solvent flushing is a potential technique for remediating a waste disposal/spill site contaminated with organic chemicals. This technique involves the injection of a solvent mixture (e.g., water plus alcohols) that enhances contaminant solubility, reduces the retardation factor, ...

  1. Proceedings: Conference on Compensatory/Remedial Education.

    Science.gov (United States)

    Fea, Henry R., Ed.; And Others

    This document presents the papers and discussions from the Conference on Compensatory/Remedial Education. The contents include: "Institutional Programs for the Low Achievers" by Joan G. Roloff; "Communication in Compensatory Education" by Henry R. Fea; "Seminar: Special Programs for Minorities" by Constance Acholonu; "Seminar: Special Programs for…

  2. Remedial Action Program annual conference: Proceedings

    International Nuclear Information System (INIS)

    Within the DOE's Office of Environmental Restoration ampersand Waste Management, the Office of Environmental Restoration manages a number of programs whose purposes are to complete remedial actions at DOE facilities and sites located throughout the United States. The programs include the Surplus Facilities Management Program, the Formerly Utilized Sites Remedial Action Program, the Uranium Mill Tailings Remedial Action Program, and the West Valley Demonstration Project. These programs involve the decontamination and decommissioning of radioactively-contaminated structures and equipment, the disposal of uranium mill tailings, and the cleanup or restoration of soils and ground water that have been contaminated with radioactive or hazardous substances. Each year the DOE and DOE-contractor staff who conduct these programs meet to exchange information and experience in common technical areas. This year's meeting was hosted by the Uranium Mill Tailings Remedial Action Project, DOE-AL, and was held in Albuquerque, NM. This volume of proceedings is the record of that conference. The proceedings consist of abstracts, summaries, or actual text for each presentation made and any visual aids used by the speakers

  3. Some aspects of remediation of contaminated soils

    Science.gov (United States)

    Bech, Jaume; Korobova, Elena; Abreu, Manuela; Bini, Claudio; Chon, Hyo-Taek; Pérez-Sirvent, Carmen; Roca, Núria

    2014-05-01

    Soils are essential components of the environment, a limited precious and fragile resource, the quality of which should be preserved. The concentration, chemical form and distribution of potential harmful elements in soils depends on parent rocks, weathering, soil type and soil use. However, their concentration can be altered by mismanagement of industrial and mining activities, energy generation, traffic increase, overuse of agrochemicals, sewage sludge and waste disposal, causing contamination, environmental problems and health concerns. Heavy metals, some metalloids and radionuclides are persistent in the environment. This persistence hampers the cost/efficiency of remediation technologies. The choice of the most appropriate soil remediation techniques depends of many factors and essentially of the specific site. This contribution aims to offer an overview of the main remediation methods in contaminated soils. There are two main groups of technologies: the first group dealing with containment and confinement, minimizing their toxicity, mobility and bioavailability. Containment measures include covering, sealing, encapsulation and immobilization and stabilization. The second group, remediation with decontamination, is based on the remotion, clean up and/or destruction of contaminants. This group includes mechanical procedures, physical separations, chemical technologies such as soil washing with leaching or precipitation of harmful elements, soil flushing, thermal treatments and electrokinetic technologies. There are also two approaches of biological nature: bioremediation and phytoremediation. Case studies from Chile, Ecuador, Italy, Korea, Peru, Portugal, Russia and Spain, will be discussed in accordance with the time available.

  4. Microbial Remediation of Metals in Soils

    Science.gov (United States)

    Hietala, K. A.; Roane, T. M.

    Of metal-contaminated systems, metal-contaminated soils present the greatest challenge to remediation efforts because of the structural, physical, chemical, and biological heterogeneities encountered in soils. One of the confounding issues surrounding metal remediation is that metals can be readily re-mobilized, requiring constant monitoring of metal toxicity in sites where metals are not removed. Excessive metal content in soils can impact air, surface water, and groundwater quality. However, our understanding of how metals affect organisms, from bacteria to plants and animals, and our ability to negate the toxicity of metals are in their infancies. The ubiquity of metal contamination in developing and industrialized areas of the world make remediation of soils via removal, containment, and/or detoxification of metals a primary concern. Recent examples of the health and environmental consequences of metal contamination include arsenic in drinking water (Wang and Wai 2004), mercury levels in fish (Jewett and Duffy 2007), and metal uptake by agricultural crops (Howe et al. 2005). The goal of this chapter is to summarize the traditional approaches and recent developments using microorganisms and microbial products to address metal toxicity and remediation.

  5. The transdisciplinary potential of remediated painting

    DEFF Research Database (Denmark)

    Petersen, Anne Ring

    2011-01-01

    "The Transdisciplinary Potential of Remediated Painting" Over the last decades the notion of what painting is has been considerably widened due to intermediality, i.e. crossovers between artistic media such as painting and sculpture, painting and photography, painting and installation, painting a...

  6. Regulatory Aspects Of Implementing Electrokinetic Remediation

    Science.gov (United States)

    A better understanding of the environmental impact of hazardous waste management practices has led to new environmental laws and a comprehensive regulatory program. This program is designed to address remediation of past waste management practices and to ensure that the hazardou...

  7. Remediating Hyperkinetic Behavior with Inpulse Control Procedures.

    Science.gov (United States)

    Berger, Mike

    1981-01-01

    This case study reviews a remediation program developed for a hyperkinetic school child. An important element of the program is the verbal portion of the therapist-student interaction. This consists of training in physical skills, encouragement, challenges, and conditioning the hand and verbal signals. (Author/AL)

  8. 24 CFR 81.46 - Remedial actions.

    Science.gov (United States)

    2010-04-01

    ..., probation, reprimand or settlement, against lenders found to have engaged in discriminatory lending... future fair lending violations; (viii) The extent that a finding of liability against a lender is based...) Following the Secretary's decision concerning the appropriate remedial action(s) that the GSE is to...

  9. Evaluation of Remedial Programs at UC Davis.

    Science.gov (United States)

    Hunziker, Celeste M.

    Efforts at the University of California, Davis, (UC Davis) to develop standard evaluation models for remedial programs are described, and three UC Davis evaluation studies are considered. A standard evaluation model entails a formal orientation, a singular values perspective, and a primary audience of program funders and oversight agencies. The…

  10. Hanford Site Tank Waste Remediation System

    International Nuclear Information System (INIS)

    The US Department of Energy's (DOE) Hanford Site in southeastern Washington State has the most diverse and largest amount of highly radioactive waste of any site in the US. High-level radioactive waste has been stored in large underground tanks since 1944. A Tank Waste Remediation System Program has been established within the DOE to safely manage and immobilize these wastes in anticipation of permanent disposal in a geologic repository. The Hanford Site Tank Waste Remediation System Waste Management 1993 Symposium Papers and Viewgraphs covered the following topics: Hanford Site Tank Waste Remediation System Overview; Tank Waste Retrieval Issues and Options for their Resolution; Tank Waste Pretreatment - Issues, Alternatives and Strategies for Resolution; Low-Level Waste Disposal - Grout Issue and Alternative Waste Form Technology; A Strategy for Resolving High-Priority Hanford Site Radioactive Waste Storage Tank Safety Issues; Tank Waste Chemistry - A New Understanding of Waste Aging; Recent Results from Characterization of Ferrocyanide Wastes at the Hanford Site; Resolving the Safety Issue for Radioactive Waste Tanks with High Organic Content; Technology to Support Hanford Site Tank Waste Remediation System Objectives

  11. Gamma Ray Imaging for Environmental Remediation

    Energy Technology Data Exchange (ETDEWEB)

    B.F. Philips; R.A. Kroeger: J.D. Kurfess: W.N. Johnson; E.A. Wulf; E. I. Novikova

    2004-11-12

    This program is the development of germanium strip detectors for environmental remediation. It is a collaboration between the Naval Research Laboratory and Lawrence Berkeley National Lab. The goal is to develop detectors that are simultaneously capable of excellent spectroscopy and imaging of gamma radiation.

  12. Using Technology in Remedial Education. ERIC Digest.

    Science.gov (United States)

    Keup, Jennifer Rinella

    This digest discusses two specific computer-aided instruction systems used in two-year colleges in the United States and Canada, and addresses critical points regarding system implementation in remedial education programs. As developed in the Nova Scotia Community College System in Canada, the INVEST computer system provides literacy-based…

  13. Electrodialytic Remediation of Different Cu-Polluted Soils

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Hansen, Henrik K.; Hansen, Lene;

    1999-01-01

    Based on characterization of a polluted soil a proper desorbing agent to be added to the soil before the remediation can be found. The desorbing agent can improve the remediation according to both energy consumption and duration of the action......Based on characterization of a polluted soil a proper desorbing agent to be added to the soil before the remediation can be found. The desorbing agent can improve the remediation according to both energy consumption and duration of the action...

  14. Petroleum hydrocarbon contaminated sites: a review of investigation and remediation regulations and processes

    Energy Technology Data Exchange (ETDEWEB)

    Epelbaum, Michel; Claudio, Jair R. [Bureau Veritas do Brasil Sociedade Classificadora e Certificadora Ltda., Sao Paulo, SP (Brazil)

    1993-12-31

    This paper discusses alternatives on remediation of petroleum hydrocarbon contaminated sites which include groundwater remediation techniques and soil remediation techniques. Finally, the work points out some trends of sites remediation in Brazil and abroad. 6 refs., 1 fig., 7 tabs.

  15. TECHNICAL GUIDANCE DOCUMENT: CONSTRUCTION QUALITY MANAGEMENT FOR REMEDIAL ACTION AND REMEDIAL DESIGN WASTE CONTAINMENT SYSTEMS

    Science.gov (United States)

    This Technical Guidance Document is intended to augment the numerous construction quality control and construction quality assurance (CQC and CQA) documents that are available far materials associated with waste containment systems developed for Superfund site remediation. In ge...

  16. Predicting the phytoextraction duration to remediate heavy metal contaminated soils

    NARCIS (Netherlands)

    Koopmans, G.F.; Römkens, P.F.A.M.; Song, J.; Temminghoff, E.J.M.; Japenga, J.

    2007-01-01

    The applicability of phytoextraction to remediate soils contaminated with heavy metals (HMs) depends on, amongst others, the duration before remediation is completed. The impact of changes in the HM content in soil occurring during remediation on plant uptake has to be considered in order to obtain

  17. 40 CFR 761.269 - Sampling liquid PCB remediation waste.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Sampling liquid PCB remediation waste..., AND USE PROHIBITIONS Cleanup Site Characterization Sampling for PCB Remediation Waste in Accordance with § 761.61(a)(2) § 761.269 Sampling liquid PCB remediation waste. (a) If the liquid is single...

  18. 77 FR 12293 - PCBs Bulk Product v. Remediation Waste

    Science.gov (United States)

    2012-02-29

    ... AGENCY PCBs Bulk Product v. Remediation Waste AGENCY: Environmental Protection Agency (EPA). ACTION... remediation waste. The proposed reinterpretation is ] in response to questions EPA received about the... regarding PCB bulk product and PCB remediation waste under regulations promulgated at 40 CFR part 761....

  19. Strategy paper. Remedial design/remedial action 100 Area. Revision 1

    International Nuclear Information System (INIS)

    The purpose of this planning document is to identify and define the approach for remedial design and remedial action (RD/RA) in the 100 Area of the Hanford Site, located in southeastern Washington State. Additionally, this document will support the Hanford Site Environmental Restoration Contract (ERC) team, the US Department of Energy (DOE), and regulatory agencies in identifying and agreeing upon the complete process for expedited cleanup of the 100 Area

  20. 200 North Aggregate Area source AAMS report

    Energy Technology Data Exchange (ETDEWEB)

    1993-06-01

    This report presents the results of an aggregate area management study (AAMS) for the 200 North Aggregate Area in the 200 Areas of the US Department of Energy (DOE) Hanford Site in Washington State. This scoping level study provides the basis for initiating Remedial Investigation/Feasibility Study (RI/FS) activities under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) or Resource Conservation and Recovery Act (RCRA) Facility Investigations (RFI) and Corrective Measures Studies (CMS) under RCRA. This report also integrates select RCRA treatment, storage, or disposal (TSD) closure activities with CERCLA and RCRA past practice investigations.

  1. 200 North Aggregate Area source AAMS report

    International Nuclear Information System (INIS)

    This report presents the results of an aggregate area management study (AAMS) for the 200 North Aggregate Area in the 200 Areas of the US Department of Energy (DOE) Hanford Site in Washington State. This scoping level study provides the basis for initiating Remedial Investigation/Feasibility Study (RI/FS) activities under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) or Resource Conservation and Recovery Act (RCRA) Facility Investigations (RFI) and Corrective Measures Studies (CMS) under RCRA. This report also integrates select RCRA treatment, storage, or disposal (TSD) closure activities with CERCLA and RCRA past practice investigations

  2. 200 West Groundwater Aggregate Area management study report

    International Nuclear Information System (INIS)

    This report presents the results of an aggregate area management study (AAMS) for the 200 West Groundwater Aggregate Area in the 200 Areas of the US Department of Energy (DOE) Hanford Site in Washington State. This scoping level study provides the basis for initiating Remedial Investigation/Feasibility Study (RI/FS) activities under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) or Resource Conservation and Recovery Act (RCRA), Facility Investigations (Rlq) and Corrective Measures Studies (CMS) under RCRA. This report also integrates select RCRA treatment, storage or disposal (TSD) closure activities with CERCLA and RCRA past practice investigations

  3. Draft Hanford Remedial Action Environmental Impact Statement and Comprehensive Land Use Plan: Volume 1 of 4

    International Nuclear Information System (INIS)

    This document analyzes the potential environmental impacts associated with establishing future land-use objectives for the US Department of Energy's Hanford Site. Impact analysis is performed by examining the consequences (primarily from remediation activities) of the actions determined necessary to achieve a desired future land-use objective. It should be noted that site-specific decisions regarding remediation technologies and remediation activities would not be made by this document, but rather by processes specified in the Comprehensive Environmental Response, Compensation and Liability Act of 1980 and the Resource Conservation and Recovery Act of 1976. To facilitate the establishment of future land-use objectives, the Hanford Site was divided into four geographic areas: (1) Columbia River; (2) reactors on the river; (3) central plateau; (4) all other areas. The future land-use alternatives considered in detail for each of the geographic areas are as follows: Columbia River--unrestricted and restricted; reactors on the river--unrestricted and restricted; central plateau--exclusive; all other areas--restricted. A No-Action Alternative also is included to provide a baseline against which the potential impacts of the proposed action can be assessed

  4. Draft Hanford Remedial Action Environmental Impact Statement and Comprehensive Land Use Plan: Summary

    International Nuclear Information System (INIS)

    This document analyzes the potential environmental impacts associated with establishing future land-use objectives for the US Department of Energy's Hanford Site. Impact analysis is performed by examining the consequences (primarily from remediation activities) of the actions determined necessary to achieve a desired future land-use objective. It should be noted that site-specific decisions regarding remediation technologies and remediation activities would not be made by this document, but rather by processes specified in the Comprehensive Environmental Response, Compensation and Liability Act of 1980 and the Resource Conservation and Recovery Act of 1976. To facilitate the establishment of future land-use objectives, the Hanford Site was divided into four geographic areas: (1) Columbia River; (2) reactors on the river; (3) central plateau; (4) all other areas. The future land-use alternatives considered in detail for each of the geographic areas are as follows: Columbia River--unrestricted and restricted; reactors on the river--unrestricted and restricted; central plateau--exclusive; all other areas--restricted. A No-Action Alternative also is included to provide a baseline against which the potential impacts of the proposed action can be assessed

  5. Risk Management and Insurance Implications Associated with the Americans with Disabilities Act: Accessibility to Places of Public Accommodation

    OpenAIRE

    Robert J. Aalberts; Donald W. Hardigree

    1992-01-01

    The authors provided an analysis of Title Ill of the Americans with Disabilities Act and its impact on risk managers. They explained the issue of accessibility to public accommodations, along with the requirements for conforming with the Title III requirements of the Act. Potential insurance and risk management implications are addressed, with an analysis of possible loss control actions or remedies and insurance coverages.

  6. Marine Mammal Protection Act

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Marine Mammal Protection Act (MMPA or Act) prohibits, with certain exceptions, the "take" of marine mammals in U.S. waters and by U.S. citizens on the high...

  7. Assertive Community Treatment (ACT)

    Science.gov (United States)

    ... services—including both ER visits and inpatient hospitalizations—ACT team members are also well-connected with local hospitals and have the ability to work with hospital and emergency room staff. ACT teams ...

  8. ACTS data center

    Science.gov (United States)

    Syed, Ali; Vogel, Wolfhard J.

    1993-01-01

    Viewgraphs on ACTS Data Center status report are included. Topics covered include: ACTS Data Center Functions; data flow overview; PPD flow; RAW data flow; data compression; PPD distribution; RAW Data Archival; PPD Audit; and data analysis.

  9. Nuclear Installations Act 1965

    International Nuclear Information System (INIS)

    This Act governs all activities related to nuclear installations in the United Kingdom. It provides for the licensing procedure for nuclear installations, the duties of licensees, the competent authorities and carriers of nuclear material in respect of nuclear occurrences, as well as for the system of third party liability and compensation for nuclear damage. The Act repeals the Nuclear Installations (Licensing and Insurance) Act 1959 and the Nuclear Installations (Amendment Act) 1965 except for its Section 17(2). (NEA)

  10. Pit 9 project: A private sector initiative

    International Nuclear Information System (INIS)

    This report discusses the Pit 9 Comprehensive Demonstration which is intended to demonstrate a cost-effective approach to remediate an Idaho National Engineering Laboratory (INEL) waste disposal pit through a Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Interim Action. The remediation will include additional requirements, if needed, to provide high confidence that only minor additional work would be necessary to accomplish the final closure as part of the overall final closure strategy for the INEL's Subsurface Disposal Area (SDA)

  11. Remedial Design/Remedial Action Work Plan for Operable Units 6-05 and 10-04, Phase III

    Energy Technology Data Exchange (ETDEWEB)

    R. P. Wells

    2006-09-19

    The remedial design/remedial action for Operable Unit 6-05 (Waste Area Group 6) and Operable Unit 10-04 (Waste Area Group 10) - collectively called Operable Unit 10-04 has been divided into four phases. Phase I consists of developing and implementing institutional controls at Operable Unit 10-04 sites and developing and implementing Idaho National Laboratory-wide plans for both institutional controls and ecological monitoring. Phase II will remediate sites contaminated with trinitrotoluene and Royal Demolition Explosive. Phase III will remediate lead contamination at a gun range, and Phase IV will remediate hazards from unexploded ordnance. This Phase III remedial Design/Remedial Action Work Plan addresses the remediation of lead-contaminated soils found at the Security Training Facility (STF)-02 Gun Range located at the Idaho National Laboratory. Remediation of the STF-02 Gun Range will include excavating contaminated soils; physically separating copper and lead for recycling; returning separated soils below the remediation goal to the site; stabilizing contaminated soils, as required, and disposing of the separated soils that exceed the remediation goal; encapsulating and disposing of creosote-contaminated railroad ties and power poles; removing and disposing of the wooden building and asphalt pads found at the STF-02 Gun Range; sampling and analyzing soil to determine the excavation requirements; and when the remediation goals have been met, backfilling and contouring excavated areas and revegetating the affected area.

  12. Forgetting ACT UP

    Science.gov (United States)

    Juhasz, Alexandra

    2012-01-01

    When ACT UP is remembered as the pinnacle of postmodern activism, other forms and forums of activism that were taking place during that time--practices that were linked, related, just modern, in dialogue or even opposition to ACT UP's "confrontational activism"--are forgotten. In its time, ACT UP was embedded in New York City, and a larger world,…

  13. Remedial Principles and Meaningful Engagement in Education Rights Disputes

    Directory of Open Access Journals (Sweden)

    Sandra Liebenberg

    2016-04-01

    Full Text Available This article evaluates the meaningful engagement doctrine in the education rights jurisprudence of the Constitutional Court in the light of a set of normative principles developed by Susan Sturm for evaluating participatory public law remedies. It commences by identifying four principles for evaluating participatory remedies appropriate to South African constitutional law and jurisprudence. Thereafter the relevant jurisprudence is analysed and evaluated in the light of these principles. The article concludes by making proposals for the development of meaningful engagement as a participatory remedy in educational rights disputes. These proposals seek to ensure a better alignment between the meaningful engagement remedy and the four remedial principles identified.

  14. Novel physico-biological treatment for the remediation of textile dyes-containing industrial effluents.

    Science.gov (United States)

    Álvarez, M S; Moscoso, F; Rodríguez, A; Sanromán, M A; Deive, F J

    2013-10-01

    In this work, a novel remediation strategy consisting of a sequential biological and physical process is proposed to remove dyes from a textile polluted effluent. The decolorization ability of Anoxybacillus flavithermus in an aqueous effluent containing two representative textile finishing dyes (Reactive Black 5 and Acid Black 48, as di-azo and antraquinone class, respectively) was proved. The decolorization efficiency for a mixture of both dyes reached almost 60% in less than 12h, which points out the suitability of the selected microorganism. In a sequential stage, an aqueous biphasic system consisting of non-ionic surfactants and a potassium-based organic salt, acting as the salting out agent, was investigated. The phase segregation potential of the selected salts was evaluated in the light of different thermodynamic models, and remediation levels higher than 99% were reached.

  15. Towards successful bioaugmentation with entrapped cells as a soil remediation technology

    DEFF Research Database (Denmark)

    Owsianiak, Mikolaj; Dechesne, Arnaud; Binning, Philip John;

    2010-01-01

    Soil remediation technologies are proposed that rely on inoculation with degrading microorganisms entrapped in protective carriers. A mathematical model developed to model entrapped cell bioaugmentation describes the 3-D diffusion-driven mass transfer of benzoate, and its mineralization by Pseudo......Soil remediation technologies are proposed that rely on inoculation with degrading microorganisms entrapped in protective carriers. A mathematical model developed to model entrapped cell bioaugmentation describes the 3-D diffusion-driven mass transfer of benzoate, and its mineralization...... saturation 7%) and agree satisfactory well with model predictions. In contrast, much larger mineralization rates are measured for wet conditions (water saturation of 68%). This discrepancy originates from extensive cell dispersal, not accounted for in the model, which occurs in wet conditions...... but is restricted in dry conditions, as confirmed by performing cell counts. This highlights the potential of entrapped cells when they act as seeds for soil colonization....

  16. WASTE PACKAGE REMEDIATION SYSTEM DESCRIPTION DOCUMENT

    Energy Technology Data Exchange (ETDEWEB)

    N.D. Sudan

    2000-06-22

    The Waste Package Remediation System remediates waste packages (WPs) and disposal containers (DCs) in one of two ways: preparation of rejected DC closure welds for repair or opening of the DC/WP. DCs are brought to the Waste Package Remediation System for preparation of rejected closure welds if testing of the closure weld by the Disposal Container Handling System indicates an unacceptable, but repairable, welding flaw. DC preparation of rejected closure welds will require removal of the weld in such a way that the Disposal Container Handling System may resume and complete the closure welding process. DCs/WPs are brought to the Waste Package Remediation System for opening if the Disposal Container Handling System testing of the DC closure weld indicates an unrepairable welding flaw, or if a WP is recovered from the subsurface repository because suspected damage to the WP or failure of the WP has occurred. DC/WP opening will require cutting of the DC/WP such that a temporary seal may be installed and the waste inside the DC/WP removed by another system. The system operates in a Waste Package Remediation System hot cell located in the Waste Handling Building that has direct access to the Disposal Container Handling System. One DC/WP at a time can be handled in the hot cell. The DC/WP arrives on a transfer cart, is positioned within the cell for system operations, and exits the cell without being removed from the cart. The system includes a wide variety of remotely operated components including a manipulator with hoist and/or jib crane, viewing systems, machine tools for opening WPs, and equipment used to perform pressure and gas composition sampling. Remotely operated equipment is designed to facilitate DC/WP decontamination and hot cell equipment maintenance, and interchangeable components are provided where appropriate. The Waste Package Remediation System interfaces with the Disposal Container Handling System for the receipt and transport of WPs and DCs. The Waste

  17. Biological assessment of remedial action at the abandoned uranium mill tailings site near Naturita, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Pursuant to the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978, the U.S. Department of Energy (DOE) is proposing to conduct remedial action to clean up the residual radioactive materials (RRM) at the Naturita uranium processing site in Colorado. The Naturita site is in Montrose County, Colorado, and is approximately 2 miles (mi) (3 kilometer [km]) from the unincorporated town of Naturita. The proposed remedial action is to remove the RRM from the Naturita site to the Upper Burbank Quarry at the Uravan disposal site. To address the potential impacts of the remedial action on threatened and endangered species, the DOE prepared this biological assessment. Informal consultations with the U.S. Department of the Interior, Fish and Wildlife Service (FWS) were initiated in 1986, and the FWS provided a list of the threatened and endangered species that may occur in the Naturita study area. This list was updated by two FWS letters in 1988 and by verbal communication in 1990. A biological assessment was included in the environmental assessment (EA) of the proposed remedial action that was prepared in 1990. This EA addressed the impacts of moving the Naturita RRM to the Dry Flats disposal site. In 1993, the design for the Dry Flats disposal alternative was changed. The FWS was again consulted in 1993 and provided a new list of threatened and endangered species that may occur in the Naturita study area. The Naturita EA and the biological assessment were revised in response to these changes. In 1994, remedial action was delayed because an alternate disposal site was being considered. The DOE decided to move the FIRM at the Naturita site to the Upper Burbank Quarry at the Uravan site. Due to this delay, the FWS was consulted in 1995 and a list of threatened and endangered species was provided. This biological assessment is a revision of the assessment attached to the Naturita EA and addresses moving the Naturita RRM to the Upper Burbank Quarry disposal site.

  18. Remedial action plan and site design for stabilization of the inactive uranium processing site at Naturita, Colorado. Remedial Action Selection Report, Appendix B of Attachment 2: Geology report, Final

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    The uranium processing site near Naturita, Colorado, is one of 24 inactive uranium mill sites designated to be cleaned up by the US Department of Energy (DOE) under the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA), 42 USC {section} 7901 et seq. Part of the UMTRCA requires that the US Nuclear Regulatory Commission (NRC) concur with the DOE`s remedial action plan (RAP) and certify that the remedial action conducted at the site complies with the standards promulgated by the US Environmental Protection Agency (EPA). Included in the RAP is this Remedial Action Selection Report (RAS), which describes the proposed remedial action for the Naturita site. An extensive amount of data and supporting information has been generated and evaluated for this remedial action. These data and supporting information are not incorporated into this single document but are included or referenced in the supporting documents. The RAP consists of this RAS and four supporting documents or attachments. This Attachment 2, Geology Report describes the details of geologic, geomorphic, and seismic conditions at the Dry Flats disposal site.

  19. Hanford Site Groundwater Monitoring for Fiscal Year 2006

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, Mary J.; Morasch, Launa F.; Webber, William D.

    2007-03-01

    This report presents the results of groundwater monitoring for FY 2006 on DOE's Hanford Site. Results of groundwater remediation, vadose zone monitoring, and characterization are summarized. DOE monitors groundwater at the Hanford Site to fulfill a variety of state and federal regulations, including the Atomic Energy Act (AEA), the Resource Conservation and Recovery Act (RCRA), the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), and Washington Administrative Code (WAC).

  20. Proposed Plan for Interim Remedial Action and Dangerous Waste Modified Closure of the Treatment, Storage, and Disposal Units and Associated Sites in the 100-NR-1 Operable Unit

    International Nuclear Information System (INIS)

    This Proposed Plan identifies the preferred alternatives for interim remedial action and dangerous waste unit modified closure and corrective action of the treatment, storage, and disposal (TSD) units and their associated sites in the 100-NR-1 Operable Unit, located at the Hanford Site (Figure S-1). The TSD units consist of contaminated soils, structures, and pipelines. There are four Resource Conservation and Recovery Act of 1976 (RCRA) TSD units: the 116-N-1 Crib and Trench, the 116-N-3 Crib and Trench, the 120-N-1 Percolation Pond, and the 120-N-2 Surface Impoundment. There are two associated sites: the UPR-100-N-31 unplanned release (UPR) spill site and the 100-N-58 South Settling Pond. This Proposed Plan also summarizes the other remedial alternatives analyzed for remedial action. The intent of the remedial action is to address contaminated areas that pose potential threats to human health and the environment

  1. Indirect Speech Acts

    Institute of Scientific and Technical Information of China (English)

    李威

    2001-01-01

    Indirect speech acts are frequently used in verbal communication, the interpretation of them is of great importance in order to meet the demands of the development of students' communicative competence. This paper, therefore, intends to present Searle' s indirect speech acts and explore the way how indirect speech acts are interpreted in accordance with two influential theories. It consists of four parts. Part one gives a general introduction to the notion of speech acts theory. Part two makes an elaboration upon the conception of indirect speech act theory proposed by Searle and his supplement and development of illocutionary acts. Part three deals with the interpretation of indirect speech acts. Part four draws implication from the previous study and also serves as the conclusion of the dissertation.

  2. DOE In Situ Remediation Integrated Program

    International Nuclear Information System (INIS)

    The In Situ Remediation Integrated Program (ISRP) supports and manages a balanced portfolio of applied research and development activities in support of DOE environmental restoration and waste management needs. ISRP technologies are being developed in four areas: containment, chemical and physical treatment, in situ bioremediation, and in situ manipulation (including electrokinetics). the focus of containment is to provide mechanisms to stop contaminant migration through the subsurface. In situ bioremediation and chemical and physical treatment both aim to destroy or eliminate contaminants in groundwater and soils. In situ manipulation (ISM) provides mechanisms to access contaminants or introduce treatment agents into the soil, and includes other technologies necessary to support the implementation of ISR methods. Descriptions of each major program area are provided to set the technical context of the ISM subprogram. Typical ISM needs for major areas of in situ remediation research and development are identified

  3. In situ remediation of uranium contaminated groundwater

    International Nuclear Information System (INIS)

    In an effort to develop cost-efficient techniques for remediating uranium contaminated groundwater at DOE Uranium Mill Tailing Remedial Action (UMTRA) sites nationwide, Sandia National Laboratories (SNL) deployed a pilot scale research project at an UMTRA site in Durango, CO. Implementation included design, construction, and subsequent monitoring of an in situ passive reactive barrier to remove Uranium from the tailings pile effluent. A reactive subsurface barrier is produced by emplacing a reactant material (in this experiment - various forms of metallic iron) in the flow path of the contaminated groundwater. Conceptually the iron media reduces and/or adsorbs uranium in situ to acceptable regulatory levels. In addition, other metals such as Se, Mo, and As have been removed by the reductive/adsorptive process. The primary objective of the experiment was to eliminate the need for surface treatment of tailing pile effluent. Experimental design, and laboratory and field preliminary results are discussed with regard to other potential contaminated groundwater treatment applications

  4. Enhanced Remediation of a Hydrocarbon Polluted Soil

    Directory of Open Access Journals (Sweden)

    E.C. Wokoma and C.C.Wokocha

    2011-03-01

    Full Text Available The aim of this study was to use NPKs, saw dust and poultry manure as enhanced remediation techniques of a crude oil polluted soil, using a 42-day study period, time length. Polluted soil samples were collected at 0-10 cm depth from different polluted sites of the same area. Physicochemical parametres such as pottasium concentration and total hydrocarbon recorded a decrease at the 6th week, after application and lab testing. Total organic carbon recorded an increase on the 6th week, for treatments containing; PS+SD, PS+NPK and PS+PM. pH ranged between 5.21-10.1. The results suggest that a combination of ammendments in the right proportion w ould be effective in the remediation of crude oil polluted soil.

  5. Radioactive tank waste remediation focus area

    International Nuclear Information System (INIS)

    EM's Office of Science and Technology has established the Tank Focus Area (TFA) to manage and carry out an integrated national program of technology development for tank waste remediation. The TFA is responsible for the development, testing, evaluation, and deployment of remediation technologies within a system architecture to characterize, retrieve, treat, concentrate, and dispose of radioactive waste stored in the underground stabilize and close the tanks. The goal is to provide safe and cost-effective solutions that are acceptable to both the public and regulators. Within the DOE complex, 335 underground storage tanks have been used to process and store radioactive and chemical mixed waste generated from weapon materials production and manufacturing. Collectively, thes tanks hold over 90 million gallons of high-level and low-level radioactive liquid waste in sludge, saltcake, and as supernate and vapor. Very little has been treated and/or disposed or in final form

  6. Soil and ground-water remediation techniques

    International Nuclear Information System (INIS)

    Urban areas typically contain numerous sites underlain by soils or ground waters which are contaminated to levels that exceed clean-up guidelines and are hazardous to public health. Contamination most commonly results from the disposal, careless use and spillage of chemicals, or the historic importation of contaminated fill onto properties undergoing redevelopment. Contaminants of concern in soil and ground water include: inorganic chemicals such as heavy metals; radioactive metals; salt and inorganic pesticides, and a range of organic chemicals included within petroleum fuels, coal tar products, PCB oils, chlorinated solvents, and pesticides. Dealing with contaminated sites is a major problem affecting all urban areas and a wide range of different remedial technologies are available. This chapter reviews the more commonly used methods for ground-water and soil remediation, paying particular regard to efficiency and applicability of specific treatments to different site conditions. (author). 43 refs., 1 tab., 27 figs

  7. The role of innovative remediation technologies

    International Nuclear Information System (INIS)

    There are currently over 1200 sites on the US Superfund's National Priorities List (NPL) of hazardous waste sites, and there are over 30, 000 sites listed by the Comprehensive Environmental Responsibility, Compensation and Liability Information System (CERCLIS). The traditional approach to remediating sites in the US has been to remove the material and place it in a secure landfill, or in the case of groundwater, pump and treat the effluent. These technologies have proven to be very expensive and don't really fix the problem. The waste is just moved from one place to another. In recent years, however, alternative and innovative technologies have been increasingly used in the US to replace the traditional approaches. This paper will focus on just such innovative remediation technologies in the US, looking at the regulatory drivers, the emerging technologies, some of the problems in deploying technologies, and a case study

  8. ELECTROKINETIC REMEDIATION STUDY FOR CADMIUM CONTAMINATED SOIL

    Directory of Open Access Journals (Sweden)

    P. Bala Ramudu

    2007-09-01

    Full Text Available This paper presents the results of an experimental research undertaken to evaluate different purging solutions to enhance the removal of cadmium from spiked contaminated field soil by electrokinetic remediation. Three experiments were conducted when soil was saturated with deionised water and subsequently deionised water, ammonium citrate and sodium citrate were used as purging solutions at anode end. One experiment was conducted when the soil was saturated with ammonium citrate and itself was used as the purging solution. Results showed that 49% reduction of cadmium concentration was achieved in the case of soil saturated (washed with ammonium citrate as well as purging solution also was ammonium citrate. The soil pH and washing solutions were the most important factors in controlling the removal of cadmium in electrokinetic remediation process.

  9. Decommissioning and environmental remediation: An overview

    International Nuclear Information System (INIS)

    The objective in both decommissioning and environmental remediation is to lower levels of residual radioactivity enough that the sites may be used for any purpose, without restriction. In some cases, however, this may not be practical and restrictions may be placed on future land use. Following decommissioning, for example, some sites may be reused for non-nuclear industrial activities, but not for habitation. Some former uranium mining sites may be released for reuse as nature reserves or for other leisure activities. Both decommissioning and environmental remediation are major industrial projects in which the safety of the workforce, the local public and the environment must be ensured from both radiological and conventional hazards. Hence, an appropriate legal and regulatory framework, as well as proper training for personnel both in implementation and in regulatory oversight are among the necessary preconditions to ensure safety

  10. Remediating sites contaminated with heavy metals

    International Nuclear Information System (INIS)

    This article is intended to serve as a reference for decision makers who must choose an approach to remediate sites contaminated with heavy metals. Its purpose is to explain pertinent chemical and physical characteristics of heavy metals, how to use these characteristics to select remedial technologies, and how to interpret and use data from field investigations. Different metal species are typically associated with different industrial processes. The contaminant species behave differently in various media (i.e., groundwater, soils, air), and require different technologies for containment and treatment. We focus on the metals that are used in industries that generate regulated waste. These include steelmaking, paint and pigment manufacturing, metal finishing, leather tanning, papermaking, aluminum anodizing, and battery manufacturing. Heavy metals are also present in refinery wastes as well as in smelting wastes and drilling muds

  11. Remedial action plan and site design for stabilization of the inactive uranium processing site at Naturita, Colorado

    International Nuclear Information System (INIS)

    The uranium processing site near Naturita, Colorado, is one of 24 inactive uranium mill sites designated to be cleaned up by the US Department of Energy (DOE) under the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA), 42 USC section 7901 et seq. Part of the UMTRCA requires that the US Nuclear Regulatory Commission (NRC) concur with the DOE's remedial action plan (RAP) and certify that the remedial action conducted at the site complies with the standards promulgated by the US Environmental Protection Agency (EPA). Included in the RAP is this Remedial Action Selection Report (RAS), which describes the proposed remedial action for the Naturita site. An extensive amount of data and supporting information has been generated and evaluated for this remedial action. These data and supporting information are not incorporated into this single document but are included or referenced in the supporting documents. The RAP consists of this RAS and four supporting documents or attachments. This Attachment 2, Geology Report describes the details of geologic, geomorphic, and seismic conditions at the Dry Flats disposal site

  12. Tank waste remediation system mission analysis report

    Energy Technology Data Exchange (ETDEWEB)

    Acree, C.D.

    1998-01-09

    This document describes and analyzes the technical requirements that the Tank Waste Remediation System (TWRS) must satisfy for the mission. This document further defines the technical requirements that TWRS must satisfy to supply feed to the private contractors` facilities and to store or dispose the immobilized waste following processing in these facilities. This document uses a two phased approach to the analysis to reflect the two-phased nature of the mission.

  13. Remediation of Contaminated Soils by Solvent Flushing

    OpenAIRE

    Augustijn, Denie C.M.; Jessup, Ron E.; Rao, P. Suresh C.; Wood, A. Lynn

    1994-01-01

    Solvent flushing is a potential technique for remediating a waste disposal/spill site contaminated with organic chemicals. This technique involves the injection of a solvent mixture (e.g., water plus alcohols) that enhances contaminant solubility, reduces the retardation factor, and increases the release rates of the contaminants. A simulation model is developed to predict contaminant elution curves during solvent flushing for the case of one‐dimensional, steady flow through a contaminated me...

  14. Remedial action programs annual meeting: Meeting notes

    International Nuclear Information System (INIS)

    The US Department of Energy Grand Junction Projects Office was pleased to host the 1987 Remedial Action programs Annual Meeting and herein presents notes from that meeting as prepared (on relatively short notice) by participants. These notes are a summary of the information derived from the workshops, case studies, and ad hoc committee reports rather than formal proceedings. The order of the materials in this report follows the actual sequence of presentations during the annual meeting

  15. Remediation of attention deficits in head injury.

    OpenAIRE

    Nag S; Rao S

    1999-01-01

    Head injury is associated with psychological sequelae which impair the patient′s psychosocial functioning. Information processing, attention and memory deficits are seen in head injuries of all severity. We attempted to improve deficits of focused, sustained and divided attention. The principle of overlapping sources of attention resource pools was utilised in devising the remediation programme. Tasks used simple inexpensive materials. Four head injured young adult males with post conc...

  16. Thixotropic gel for vadose zone remediation

    Energy Technology Data Exchange (ETDEWEB)

    Riha, Brian D.; Looney, Brian B.

    2015-10-27

    A thixotropic gel suitable for use in subsurface bioremediation is provided along with a process of using the gel. The thixotropic gel provides a non-migrating injectable substrate that can provide below ground barrier properties. In addition, the gel components provide for a favorable environment in which certain contaminants are preferentially sequestered in the gel and subsequently remediated by either indigenous or introduced microorganisms.

  17. Cultural services remediated in Second Life

    DEFF Research Database (Denmark)

    Heilesen, Simon

    2008-01-01

    In 2007, the Danish Public Libraries conducted an experiment in establishing a library in the virtual world Second Life. The Info Island DK provided the framework for a number of online library services and cultural events. This study, based on interviews with most of the active participants in t...... project, discusses the experiences in remediating conventional library services into the new medium and in understanding and redefining the role of the librarian in an online virtual world....

  18. ELECTROKINETIC REMEDIATION STUDY FOR CADMIUM CONTAMINATED SOIL

    OpenAIRE

    P. Bala Ramudu; R. P. Tiwari; Srivastava, R. K.

    2007-01-01

    This paper presents the results of an experimental research undertaken to evaluate different purging solutions to enhance the removal of cadmium from spiked contaminated field soil by electrokinetic remediation. Three experiments were conducted when soil was saturated with deionised water and subsequently deionised water, ammonium citrate and sodium citrate were used as purging solutions at anode end. One experiment was conducted when the soil was saturated with ammonium citrate and itself wa...

  19. Life Cycle Analysis of Soil Remediation Technologies

    OpenAIRE

    Cappuyns, Valérie; Bouckenooghe, Diederik; Van Breuseghem, Lien

    2009-01-01

    Life cycle analysis (LCA) was applied to evaluate remediation technologies for soil and groundwater contaminated with organic components. The environmental impact, cost and risk of three techniques, namely (1) vacuum enhanced recovery, (2) a new in situ thermal treatment technique and (3) soil excavation have been evaluated by means of different tools. Several LCA-based software packages were screened, with special attention for their easiness to use, the amount of data necessary to perform t...

  20. Tank waste remediation system mission analysis report

    International Nuclear Information System (INIS)

    This document describes and analyzes the technical requirements that the Tank Waste Remediation System (TWRS) must satisfy for the mission. This document further defines the technical requirements that TWRS must satisfy to supply feed to the private contractors' facilities and to store or dispose the immobilized waste following processing in these facilities. This document uses a two phased approach to the analysis to reflect the two-phased nature of the mission

  1. Thixotropic gel for vadose zone remediation

    Science.gov (United States)

    Rhia, Brian D.

    2011-03-01

    A thixotropic gel suitable for use in subsurface bioremediation is provided along with a process of using the gel. The thixotropic gel provides a non-migrating injectable substrate that can provide below ground barrier properties. In addition, the gel components provide for a favorable environment in which certain contaminants are preferentially sequestered in the gel and subsequently remediated by either indigenous or introduced microorganisms.

  2. Indoor radon remediation : effect of ventilation

    International Nuclear Information System (INIS)

    Radon and its progeny are the major contributors to the natural radiation dose received by human beings. As per the ICRP recommendations, it becomes necessary to take remedial steps for the reduction of radon daughters in a dwelling place if the level is found to be more than 200 Bqm-3. Ventilation process can simulate the conditions generated through advection or diffusion, therefore it may be major factors that control the indoor radon concentration is the room. In the present investigations, the effects of natural ventilation in a room having an external source of radon have been studied. The variation in radon concentration with operative time of exhaust fan has also been studied. For radon concentration measurement the LR-115 type II solid state nuclear track detectors (SSNTDs) were use. The radon reduction factor, which is the ratio of radon concentrations before and after remediation has been calculated. The radon reduction factor was found to vary 1.08 to 1.17 due to natural ventilation where as 1.17 to 3.01 due to forced ventilation. The results indicate that optimized ventilation (natural or forced) can be simple mean of radon remediation in dwellings. (author)

  3. Laboratory/industry partnerships for environmental remediation

    International Nuclear Information System (INIS)

    There are two measures of ''successful'' technology transfer in DOE's environmental restoration and waste management program. The first is remediation of DOE sites, and the second is commercialization of an environmental remediation process or product. The ideal case merges these two in laboratory/industry partnerships for environmental remediation. The elements to be discussed in terms of their effectiveness in aiding technology transfer include: a decision-making champion; timely and sufficient funding; well organized technology transfer function; well defined DOE and commercial markets; and industry/commercial partnering. Several case studies are presented, including the successful commercialization of a process for vitrification of low-level radioactive waste, the commercial marketing of software for hazardous waste characterization, and the application of a monitoring technique that has won a prestigious technical award. Case studies will include: vitrification of low-level radioactive waste (GTS Duratek, Columbia, MD); borehole liner for emplacing instrumentation and sampling groundwater (Science and Engineering Associates, Inc., Santa Fe, NM); electronic cone penetrometer (Applied Research Associates, Inc., South Royalton, VT); and software for hazardous waste monitoring ConSolve, Inc. (Lexington, MA). The roles of the Department of Energy and Argonne National Laboratory in these successes will be characterized

  4. An unmanned ground vehicle for landmine remediation

    Science.gov (United States)

    Wasson, Steven R.; Guilberto, Jose; Ogg, Wade; Wedeward, Kevin; Bruder, Stephen; El-Osery, Aly

    2004-09-01

    Anti-tank (AT) landmines slow down and endanger military advances and present sizeable humanitarian problems. The remediation of these mines by direct human intervention is both dangerous and costly. The Intelligent Systems & Robotics Group (ISRG) at New Mexico Tech has provided a partial solution to this problem by developing an Unmanned Ground Vehicle (UGV) to remediate these mines without endangering human lives. This paper presents an overview of the design and operation of this UGV. Current results and future work are also described herein. To initiate the remediation process the UGV is given the GPS coordinates of previously detected landmines. Once the UGV autonomously navigates to an acceptable proximity of the landmine, a remote operator acquires control over a wireless network link using a joystick on a base station. Utilizing two cameras mounted on the UGV, the operator is able to accurately position the UGV directly over the landmine. The UGV houses a self-contained drill system equipped with its own processing resources, sensors, and actuators. The drill system deploys a neutralizing device over the landmine to neutralize it. One such device, developed by Science Applications International Corporation (SAIC), employs incendiary materials to melt through the container of the landmine and slowly burn the explosive material, thereby safely and remotely disabling the landmine.

  5. Innovative technologies for in-situ remediation

    International Nuclear Information System (INIS)

    LLNL is developing several innovative remediation technologies as long-term improvements to the current pump and treat approaches to cleaning up contaminated soils and groundwater. These technologies include dynamic underground stripping, in-situ microbial filters, and remediation using bremsstrahlung radiation. Concentrated underground organic contaminant plumes are one of the most prevalent groundwater contamination sources. The solvent or fuel can percolate deep into the earth, often into water-bearing regions. Collecting as a separate, liquid organic phase called dense non-aqueous-phase liquids (DNAPLs), or light NAPLs (LNAPLs), these contaminants provide a source term that continuously compromises surrounding groundwater. This type of spill is one of the most difficult environmental problems to remediate. Attempts to remove such material requires a huge amount of water which must be washed through the system to clean it, requiring decades. Traditional pump and treat approaches have not been successful. LLNL has developed several innovative technologies to clean up NAPL contamination. Detailed descriptions of these technologies are given

  6. Reading program-Remedial, integrated, and innovative.

    Science.gov (United States)

    Butler, S R

    1991-01-01

    An innovative integrated remedial reading program has been developed based on recent research findings. My longitudinal studies have revealed that poor reading compounds itself over the years. The majority of children with reading disabilities currently remain in regular classrooms with varying techniques being used depending upon individual school directives and current educational theory.Despite current remedial techniques, the poorer reader tends to remain so throughout the school years. Innovative techniques must be developed in the hope of altering this pattern.This paper presents one alternative strategy which can be used to upgrade reading skills and break the cycle of reading failure. The Reading Assistance Tutorial Pack (R.A.T. Pack) is a carefully sequenced series of activities that enables the learner to experience the motivating and reinforcing properties of success through all stages of phonetic and reading skills development.It is a systematic, multidisciplinary remedial reading program based on sound behavior, psycholinguistic and cognitive theories of learning-incorporating listening, speaking, seeing, writing, thinking, and comprehension skills. The R.A.T. Pack demands a high percentage of on-task behavior and trains phonological processing strategies. Functional language use is promoted through enjoyable activities involving sentence construction, cloze passages, puzzles, games, and other creative manipulations of the surface features of languages. The program has proven successful in schools, homes, and clinics. PMID:24233760

  7. Drug interactions in African herbal remedies.

    Science.gov (United States)

    Cordier, Werner; Steenkamp, Vanessa

    2011-01-01

    Herbal usage remains popular as an alternative or complementary form of treatment, especially in Africa. However, the misconception that herbal remedies are safe due to their "natural" origins jeopardizes human safety, as many different interactions can occur with concomitant use with other pharmaceuticals on top of potential inherent toxicity. Cytochrome P450 enzymes are highly polymorphic, and pose a problem for pharmaceutical drug tailoring to meet an individual's specific metabolic activity. The influence of herbal remedies further complicates this. The plants included in this review have been mainly researched for determining their effect on cytochrome P450 enzymes and P-glycoprotein drug transporters. Usage of herbal remedies, such as Hypoxis hemerocallidea, Sutherlandia frutescens and Harpagophytum procumbensis popular in Africa. The literature suggests that there is a potential for drug-herb interactions, which could occur through alterations in metabolism and transportation of drugs. Research has primarily been conducted in vitro, whereas in vivo data are lacking. Research concerning the effect of African herbals on drug metabolism should also be approached, as specific plants are especially popular in conjunction with certain treatments. Although these interactions can be beneficial, the harm they pose is just as great. PMID:21756221

  8. Uranium Mill Tailings Remediation in Central Asia

    International Nuclear Information System (INIS)

    Uranium ore is a naturally occurring radioactive material which is often regarded as something separate to NORM due to its place at the front end of the nuclear fuel cycle. Uranium mining and processing was a significant industry in the Central Asian countries of the former Soviet Union. When the Soviet Union broke up in 1989 these countries gained their independence but the uranium mining industry now had to try and survive in a new economic environment. In Tajikistan and Kyrgyzstan this proved too great a challenge. Production stopped and sites were simply abandoned with little or no attention paid to remediation. Skilled personnel departed and both physical and regulatory infrastructure decayed. Consequently, the legacies of the former times remained throughout Central Asia to become an issue of considerable concern to many. The sites were generally uncontrolled and the NORM residues from the mining and processing were a source of environmental contamination which also threatened public health in a number of ways. In recent years there has been considerable activity by a number of international agencies and Governments working towards solutions for these issues. Much of the effort has been undertaken by the IAEA and this paper describes the original situation, the development of remediation strategies and the various remediation related projects, their outcomes to date, and plans for the future in both the political and scientific arenas. (author)

  9. Best management practices plan for the Lower East Fork Poplar Creek remedial action project, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    The U.S. Department of Energy (DOE) has three major operating facilities on the DOE Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee: the Oak Ridge Y-12 Plant, the K-25 Site, and the Oak Ridge National Laboratory (ORNL) managed by Lockheed Martin Environmental Research Corporation. All facilities are managed by Lockheed Martin Energy Systems, Incorporated (Energy Systems) for the DOE. The Y-12 Plant is adjacent to the city of Oak Ridge and is also upstream from Oak Ridge along East Fork Poplar Creek. The portion of the creek downstream from the Y-12 Plant is Lower East Fork Poplar Creek (LEFPC). This project will remove mercury-contaminated soils from the LEFPC floodplain, transport the soils to Industrial Landfill V (ILF-V), and restore any affected areas. This project contains areas that were designated in 1989 as a Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) site. The site includes DOE property and portions of commercial, residential, agricultural, and miscellaneous areas within the city of Oak Ridge.

  10. Environmental impacts of remediation of a trichloroethene-contaminated site: life cycle assessment of remediation alternatives.

    Science.gov (United States)

    Lemming, Gitte; Hauschild, Michael Z; Chambon, Julie; Binning, Philip J; Bulle, Cécile; Margni, Manuele; Bjerg, Poul L

    2010-12-01

    The environmental impacts of remediation of a chloroethene-contaminated site were evaluated using life cycle assessment (LCA). The compared remediation options are (i) in situ bioremediation by enhanced reductive dechlorination (ERD), (ii) in situ thermal desorption (ISTD), and (iii) excavation of the contaminated soil followed by off-site treatment and disposal. The results showed that choosing the ERD option will reduce the life-cycle impacts of remediation remarkably compared to choosing either ISTD or excavation, which are more energy-demanding. In addition to the secondary impacts of remediation, this study includes assessment of local toxic impacts (the primary impact) related to the on-site contaminant leaching to groundwater and subsequent human exposure via drinking water. The primary human toxic impacts were high for ERD due to the formation and leaching of chlorinated degradation products, especially vinyl chloride during remediation. However, the secondary human toxic impacts of ISTD and excavation are likely to be even higher, particularly due to upstream impacts from steel production. The newly launched model, USEtox, was applied for characterization of primary and secondary toxic impacts and combined with a site-dependent fate model of the leaching of chlorinated ethenes from the fractured clay till site. PMID:21053954

  11. Comprehensive Environmental Response, Compensation, and Liability Act, as amended by the Superfund Amendments and Reauthorization Act Section 120(e)(5). Annual report to Congress for Fiscal year 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-01

    The US Department of Energy (DOE) is committed to conducting its operations in a safe and environmentally sound manner. High priorities for the Department are identifying and correcting environmental problems at DOE facilities that resulted from past operations, and preventing environmental problems from occurring during present and future operations. In this regard, the Department is committed to clean up the 1989 inventory of sites in the Environmental Restoration Program by the year 2019. DOE has issued an Order and guidance establishing policy and procedures for activities conducted under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended by the Superfund Amendments and Reauthorization Act (SARA), and has developed a Five-Year Plan, updated annually, that integrates planning for corrective activities, environmental restoration and waste management operations at its facilities. DOE also continues to conduct assessments (e.g., Management Audits, Environmental Safety and Health (ES & H) Progress Assessments, Internal Self Assessments) at its operating facilities to provide the Secretary of Energy with information on current environmental compliance status and follow-up on findings.

  12. European Court of Justice finds more possibilities for legal remedy of German environmental associations

    International Nuclear Information System (INIS)

    In its ruling of March 12, 2011, the European Court of Justice (ECJ) states that the limitation of legal remedies under German law applying to environmental associations seeking to claim violations of provisions protecting third parties is not in line with EU law. Under EU law, environmental associations may, because of potentially considerable environmental impacts, claim violation of substantive as well as procedural provisions by litigation even if the provision stemming from Union law and seeking to protect the environment 'protects only the interests of the public, not the interests of individuals.' The ECJ had to express an opinion on the reference by the Muenster Higher Court of Administration (OVG) of March 5, 2009 about the question whether German transposition in the Environmental Legal Remedy Act of 2006 is in keeping with Article 10a of the Environmental Impact Assessment Directive of 1985 as amended on March 26, 2003. The point was whether the project in question could give rise to considerable impairment of flora and fauna habitats in the vicinity of the site of a nuclear power plant in the meaning of the EU Habitat Directive. In summary, the ECJ finds that the provisions of the Environmental Legal Remedy Act are not in compliance with EU law. The concise decision by the ECJ relates to areas of fundamental importance in societal and government politics. As laid down in the 2003 Environmental Impact Assessment Directive, the right to bring action of environmental associations is asserted first. Transposition of the Environmental Impact Assessment Directive of 2003 in the Environmental Legal Remedy Act of 2006 had been the subject of several rulings of higher courts of administration and of critical scholarly debates about the legal remedies of environmental associations, expressing concern about the German transposition being in conformity with EU law. As far as German atomic energy law is concerned, it remains to be seen whether environmental

  13. Hanford Site National Environmental Policy Act (NEPA) Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, Joanne P.; Burk, Kenneth W.; Chamness, Mickie A.; Fowler, Richard A.; Fritz, Brad G.; Hendrickson, Paul L.; Kennedy, Ellen P.; Last, George V.; Poston, Ted M.; Sackschewsky, Michael R.; Scott, Michael J.; Snyder, Sandra F.; Sweeney, Mark D.; Thorne, Paul D.

    2007-09-27

    This document describes the U.S. Department of Energy’s (DOE) Hanford Site environment. It is intended to provide a consistent description of the Hanford Site for the many environmental documents being prepared by DOE contractors concerning the National Environmental Policy Act (NEPA). No statements regarding significance or environmental consequences are provided. This year’s report is the eighteen revision of the original document published in 1988 and is (until replaced by the nineteenth revision) the only version that is relevant for use in the preparation of Hanford NEPA, State Environmental Policy Act (SEPA), and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) documents. Two chapters are included in this document (Chapters 4 and 6), numbered to correspond to chapters typically presented in environmental impact statements (EISs) and other Hanford Site NEPA or CERCLA documentation. Chapter 4.0 (Affected Environment) describes Hanford Site climate and meteorology; air quality; geology; hydrology; ecology; cultural, archaeological, and historical resources; socioeconomics; noise; and occupational health and safety. Sources for extensive tabular data related to these topics are provided in the chapter. When possible, subjects are divided into a general description of the characteristics of the Hanford Site, followed by site-specific information, where available, for the 100, 200, 300 and other areas. This division allows the reader to go directly to those sections of particular interest. When specific information on each of these separate areas is not complete or available, the general Hanford Site description should be used. Chapter 6.0 (Statutory and Regulatory Requirements) describes federal and state laws and regulations, DOE directives and permits, and presidential executive orders that are applicable to NEPA documents prepared for Hanford Site activities. Information in Chapter 6 can be adapted and supplemented with

  14. Salmon Site Remedial Investigation Report, Main Body

    Energy Technology Data Exchange (ETDEWEB)

    US DOE/NV

    1999-09-01

    This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides into the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the

  15. Salmon Site Remedial Investigation Report, Exhibit 2

    International Nuclear Information System (INIS)

    This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides into the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the

  16. Salmon Site Remedial Investigation Report, Appendix C

    International Nuclear Information System (INIS)

    This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides into the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the

  17. ERT monitoring of environmental remediation processes

    Science.gov (United States)

    La Brecque, D. J.; Ramirez, A. L.; Daily, W. D.; Binley, A. M.; Schima, S. A.

    1996-03-01

    The use of electrical resistance tomography (ERT) to monitor new environmental remediation processes is addressed. An overview of the ERT method, including design of surveys and interpretation, is given. Proper design and lay-out of boreholes and electrodes are important for successful results. Data are collected using an automated collection system and interpreted using a nonlinear least squares inversion algorithm. Case histories are given for three remediation technologies: Joule (ohmic) heating, in which clay layers are heated electrically; air sparging, the injection of air below the water table; and electrokinetic treatment, which moves ions by applying an electric current. For Joule heating, a case history is given for an experiment near Savannah River, Georgia, USA. The target for Joule heating was a clay layer of variable thickness. During the early stages of heating, ERT images show increases in conductivity due to the increased temperatures. Later, the conductivities decreased as the system became dehydrated. For air sparging, a case history from Florence, Oregon, USA is described. Air was injected into a sandy aquifer at the site of a former service station. Successive images clearly show the changes in shape of the region of air saturation with time. The monitoring of an electrokinetic laboratory test on core samples is shown. The electrokinetic treatment creates a large change in the core resistivity, decreasing near the anode and increasing near the cathode. Although remediation efforts were successful both at Savannah River and at Florence, in neither case did experiments progress entirely as predicted. At Savannah River, the effects of heating and venting were not uniform and at Florence the radius of air flow was smaller than expected. Most sites are not as well characterized as these two sites. Improving remediation methods requires an understanding of the movements of heat, air, fluids and ions in the sub-surface which ERT can provide. The

  18. Field Implementation of Electrokinetic-ISCO Remediation

    Science.gov (United States)

    Wu, M. Z.; Reynolds, D. A.; Fourie, A.; Thomas, D.; Prommer, H.

    2010-12-01

    Challenges remain in the remediation of low-permeability porous media (e.g. clays, silts) contaminated with dissolved and sorbed organic contaminants. Current remediation technologies, such as in-situ chemical oxidation (ISCO), are often ineffective and the treatment region is limited by very slow rates of groundwater flow (advection) or molecular diffusion. Several studies (e.g. Reynolds et al. 2008) have highlighted the potential at a laboratory scale for utilising electrokinetic transport, through the application of an electric field, to deliver a remediation compound (e.g. permanganate, persulfate) within heterogeneous and low-permeability sediments for ISCO (termed EK-ISCO) or other treatments. A numerical modelling approach is highly beneficial to optimise the efficacy of EK-ISCO remediation. A numerical model was developed that simulates groundwater flow and multi-species reactive transport under hydraulic and electric gradients (Wu et al. 2010). Coupled into the existing, previously verified reactive transport model PHT3D (Prommer, Barry and Zheng 2003), the model was verified against analytical and experimental studies. This study, through numerical modelling, investigated the feasibility of various factors, such as electrode configurations, applied voltage and oxidant loading, for EK-ISCO treatment at several field sites. Successful in situ oxidation is dependent upon the electrokinetic transport and dispersal of oxidant through the contaminated region, however this is limited by modelled conditions such as natural oxidant demand and contaminant phase. Electrode configurations investigated included one-dimensional or two-dimensional configurations, unidirectional, bidirectional or rotational operations, and position of oxidant injection. References Prommer, H, Barry, DA and Zheng, C 2003, 'MODFLOW/MT3DMS-Based Reactive Multicomponent Transport Modeling', Ground Water, vol. 41, no. 2, pp. 247-257. Reynolds, DA, Jones, EH, Gillen, M, Yusoff, I and Thomas

  19. Salmon Site Remedial Investigation Report, Exhibit 5

    Energy Technology Data Exchange (ETDEWEB)

    USDOE/NV

    1999-09-01

    This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides into the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the

  20. Salmon Site Remedial Investigation Report, Appendix C

    Energy Technology Data Exchange (ETDEWEB)

    US DOE/NV

    1999-09-01

    This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides into the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the

  1. Salmon Site Remedial Investigation Report, Exhibit 2

    Energy Technology Data Exchange (ETDEWEB)

    USDOE NV

    1999-09-01

    This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides into the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the

  2. Remediation of sediments contaminated by oil spills

    International Nuclear Information System (INIS)

    Recent environmental legislation and increased awareness of the environmental pollution by oil spills have stimulated a demand for invention, development and implementation of effective remediation technologies. There are positive achievements in cleaning up of terrestrial ecosystems but remediation of aquatic ecosystems is still acute problem. Oil contaminated bottom sediments are the chronic contamination source for the aquatic ecosystems. General practice of most oil companies in Russia for treatment of oil spills in rivers and lakes is limited to harvesting of floating oil and treatment of spoiled shore. The pilot project on remediation of Shuchye Lake (Usinsk District, Komi Republic, Arctic European part of Russia) supported by oil production company Lukoil-Comi Ltd. is carried out by NTT Priborservice Ltd. NTT Priborservice Ltd. is R and D enterprise specialized in the contaminated soils, sediments and water remediation, and production of equipments (devices) for this. The project aimed to develop and implement cost-effective technology for cleaning up sediments contaminated by oil hydrocarbons. The technology is based on combination of physico-mechanical and biological approaches. Treatment of bottoms sediments was carried out with usage of the original devices for flotation ('Flotator') and aeration. Usage of 'Flotator' allows to extract petroleum hydrocarbons from sediments excepting mineral particles. Treatment of bottom sediments is combined with aeration of deep layers of water and supplying fertilizers to stimulate microflora, zooplankton and phytoplankton. The project consists of several steps. Survey carried out before the first step of project indicated the average depth of water was ∼4 m (max 7 m), the initial concentration of petroleum hydrocarbons in bottom sediments was ∼55 g/kg dw (max 125 g/kg dw). Total amount of bottom surface treated during the first step of the project (July-August 2004) was 4 ha. Monitoring allows to assess the

  3. Salmon Site Remedial Investigation Report, Appendix D

    International Nuclear Information System (INIS)

    This Salmon Site Remedial Investigation Report provides the results of activities initiated by the U.S. Department of Energy (DOE) to determine if contamination at the Salmon Site poses a current or future risk to human health and the environment. These results were used to develop and evaluate a range of risk-based remedial alternatives. Located in Lamar County, Mississippi, the Salmon Site was used by the U.S. Atomic Energy Commission (predecessor to the DOE) between 1964 and 1970 for two nuclear and two gas explosions conducted deep underground in a salt dome. The testing resulted in the release of radionuclides into the salt dome. During reentry drilling and other site activities, liquid and solid wastes containing radioactivity were generated resulting in surface soil and groundwater contamination. Most of the waste and contaminated soil and water were disposed of in 1993 during site restoration either in the cavities left by the tests or in an injection well. Other radioactive wastes were transported to the Nevada Test Site for disposal. Nonradioactive wastes were disposed of in pits at the site and capped with clean soil and graded. The preliminary investigation showed residual contamination in the Surface Ground Zero mud pits below the water table. Remedial investigations results concluded the contaminant concentrations detected present no significant risk to existing and/or future land users, if surface institutional controls and subsurface restrictions are maintained. Recent sampling results determined no significant contamination in the surface or shallow subsurface. The test cavity resulting from the experiments is contaminated and cannot be economically remediated with existing technologies. The ecological sampling did not detect biological uptake of contaminants in the plants or animals sampled. Based on the current use of the Salmon Site, the following remedial actions were identified to protect both human health and the environment: (1) the

  4. Remediation of Site of Decommissioning Research Reactor

    International Nuclear Information System (INIS)

    In the world the most widespread method of soil decontamination consists of removing the contaminated upper layer and sending it for long-term controlled storage. However, implementation of this soil cleanup method for remediation of large contaminated areas would involve high material and financial expenditures, because it produces large amounts of radioactive waste demanding removal to special storage sites. Contaminated soil extraction and cleanup performed right on the spot of remediation activities represents a more advanced and economically acceptable method. Radiological separation of the radioactive soil allows reducing of amount of radwaste. Studies performed during the liquidation of the Chernobyl accident consequences revealed that a considerable fraction of radioactivity is accumulated in minute soil grains. So, the separation of contaminated soil by size fractions makes it possible to extract and concentrate the major share of radioactivity in the fine fraction. Based on these researches water gravity separation technology was proposed by Bochvar Institute. The method extracts the fine fraction from contaminated soil. Studies carried out by Bochvar Institute experts showed that, together with the fine fraction (amounting to 10-20% of the initial soil), this technology can remove up to 85-90% of contaminating radionuclides. The resulting 'dirty' soil fraction could be packaged into containers and removed as radwaste, and decontaminated fractions returned back to their extraction site. Use of radiological and water gravity separations consequently increases the productivity of decontamination facility. Efficiency of this technology applied for contaminated soil cleanup was confirmed in the course of remediation of the contaminated territories near decommissioning research reactor in the Kurchatov Institute. For soil cleaning purposes, a special facility implementing the technology of water gravity separation and radiometric monitoring of soil

  5. Physiochemical technologies for HCB remediation and disposal: A review

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Man [State Key Lab of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074 (China); Environmental Science Research Institute, Huazhong University of Science and Technology, Wuhan 430074 (China); Yuan, Songhu, E-mail: yuansonghu622@hotmail.com [State Key Lab of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074 (China)

    2012-08-30

    Highlights: Black-Right-Pointing-Pointer HCB contamination is still a serious environmental problem. Black-Right-Pointing-Pointer Physiochemical technologies for HCB remediation and disposal are reviewed. Black-Right-Pointing-Pointer Perspectives for most remediation technologies are proposed. Black-Right-Pointing-Pointer Pilot and large scale remediation and disposal are presented. - Abstract: Hexachlorobenzene (HCB) is one of the 12 persistent organic pollutants (POPs) listed in 'Stockholm Convention'. It is hydrophobic, toxic and persistent in the environment. Due to extensive use in the past, HCB contamination is still a serious environmental problem. Strong adsorption on solid particles makes the remediation difficult. This paper presents an overview of the physiochemical technologies for HCB remediation and disposal. The adsorption/desorption behavior of HCB is firstly described because it comprises the fundamental for most remediation technologies. Physiochemical technologies concerned mostly for HCB remediation and disposal, i.e., chemical enhanced washing, electrokinetic remediation, reductive dechlorination and thermal decomposition, are reviewed in terms of fundamentals, state of the art and perspectives. The other physiochemical technologies including chemical oxidation, radiation induced catalytic dechlorination, ultrasonic assisted treatment and mechanochemical dechlorination are also reviewed. The pilot and large scale tests on HCB remediation or disposal are summarized in the end. This review aims to provide useful information to researchers and practitioners regarding HCB remediation and disposal.

  6. DESCRIPTION OF MODELING ANALYSES IN SUPPORT OF THE 200-ZP-1 REMEDIAL DESIGN/REMEDIAL ACTION

    Energy Technology Data Exchange (ETDEWEB)

    VONGARGEN BH

    2009-11-03

    The Feasibility Study/or the 200-ZP-1 Groundwater Operable Unit (DOE/RL-2007-28) and the Proposed Plan/or Remediation of the 200-ZP-1 Groundwater Operable Unit (DOE/RL-2007-33) describe the use of groundwater pump-and-treat technology for the 200-ZP-1 Groundwater Operable Unit (OU) as part of an expanded groundwater remedy. During fiscal year 2008 (FY08), a groundwater flow and contaminant transport (flow and transport) model was developed to support remedy design decisions at the 200-ZP-1 OU. This model was developed because the size and influence of the proposed 200-ZP-1 groundwater pump-and-treat remedy will have a larger areal extent than the current interim remedy, and modeling is required to provide estimates of influent concentrations and contaminant mass removal rates to support the design of the aboveground treatment train. The 200 West Area Pre-Conceptual Design/or Final Extraction/Injection Well Network: Modeling Analyses (DOE/RL-2008-56) documents the development of the first version of the MODFLOW/MT3DMS model of the Hanford Site's Central Plateau, as well as the initial application of that model to simulate a potential well field for the 200-ZP-1 remedy (considering only the contaminants carbon tetrachloride and technetium-99). This document focuses on the use of the flow and transport model to identify suitable extraction and injection well locations as part of the 200 West Area 200-ZP-1 Pump-and-Treat Remedial Design/Remedial Action Work Plan (DOEIRL-2008-78). Currently, the model has been developed to the extent necessary to provide approximate results and to lay a foundation for the design basis concentrations that are required in support of the remedial design/remediation action (RD/RA) work plan. The discussion in this document includes the following: (1) Assignment of flow and transport parameters for the model; (2) Definition of initial conditions for the transport model for each simulated contaminant of concern (COC) (i.e., carbon

  7. ACT Verbal Prep Course

    CERN Document Server

    Standridge, Nathan

    2012-01-01

    Comprehensive Prep for ACT Verbal. Every year, students pay 1,000 and more to test prep companies to prepare for the verbal sections of the ACT. Now you can get the same preparation in a book. The verbal sections are not easy. There is no quick fix that will allow you to "beat" the ACT, but it is very learnable. If you study hard and master the techniques in this book, your score will improve-significantly. The ACT cannot be "beaten." But it can be mastered-through hard work, analytical thought, and by training yourself to think like a test writer. Many of the exercises in this book are design

  8. Radiological Protection Act 1970

    International Nuclear Information System (INIS)

    This Act provides for the establishment of a Radiological Protection Board to undertake research and advise on protection from radiation hazards. Its functions include provision of advice to Government departments with responsibilities in relation to protection of sectors of the community or the community as a whole against the hazards of ionizing radiation. The Act, which lays down that the Board shall replace certain departments concerned with radiation protection, repeals several Sections of the Radioactive Substances Act 1948 and the Science and Technology Act 1965. (NEA)

  9. Deconstructing Remediation in Community Colleges: Exploring Associations between Course-Taking Patterns, Course Outcomes, and Attrition from the Remedial Math and Remedial Writing Sequences

    Science.gov (United States)

    Bahr, Peter Riley

    2012-01-01

    Each year, a sizeable percentage of community college students enroll in remedial coursework to address skill deficiencies in math, writing, and/or reading. Unfortunately, the majority of these students do not attain college-level competency in the subjects in which they require remedial assistance. Moreover, students whose point of entry into the…

  10. The Class Program for Acting Out Children: R & D Procedures, Program Outcomes and Implementation Issues.

    Science.gov (United States)

    Walker, Hill M.; Hops, Hyman

    1979-01-01

    The Contingencies for Learning Academic and Social Skills (CLASS) program is described. CLASS is a comprehensive, self-contained behavior management package designed for remediation of the behavior problems of disruptive, acting-out students in Kindergarten through grade 3. (Author/MH)

  11. 28 CFR 501.3 - Prevention of acts of violence and terrorism.

    Science.gov (United States)

    2010-07-01

    ... Administrative Remedy Program, 28 CFR part 542. (f) Other appropriate officials of the Department of Justice... terrorism. 501.3 Section 501.3 Judicial Administration BUREAU OF PRISONS, DEPARTMENT OF JUSTICE GENERAL MANAGEMENT AND ADMINISTRATION SCOPE OF RULES § 501.3 Prevention of acts of violence and terrorism. (a)...

  12. Environmental Assessment of Remedial Action at the Riverton Uranium Mill Tailings Site, Riverton, Wyoming

    International Nuclear Information System (INIS)

    The US Department of Energy (DOE) has prepared an environmental assessment (DOE/EA-0254) on the proposed remedial action at the inactive uranium milling site near Riverton, Wyoming. Based on the analyses in the EA, the DOE has determined that the proposed action does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969 (42 U.S.C. 4321, et seq.). Therefore, the preparation of an environmental impact statement (EIS) is not required

  13. Environmental Assessment of Remedial Action at the Riverton Uranium Mill Tailings Site, Riverton, Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    None

    1987-06-01

    The US Department of Energy (DOE) has prepared an environmental assessment (DOE/EA-0254) on the proposed remedial action at the inactive uranium milling site near Riverton, Wyoming. Based on the analyses in the EA, the DOE has determined that the proposed action does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969 (42 U.S.C. 4321, et seq.). Therefore, the preparation of an environmental impact statement (EIS) is not required.

  14. Physicochemical and microbiological effects of biosurfactant on the remediation of HOC-contaminated soil

    Institute of Scientific and Technical Information of China (English)

    ZENG Guangming; ZHONG Hua; HUANG Guohe; FU Haiyan

    2005-01-01

    Remediation of soil contaminated by hydrophobic organic compounds using biosurfactants as additives involves interactions between soil matrix, hydrophobic organic compound contaminants, biosurfactants and microorganisms. In this paper, the mechanism for biosurfactants to enhance the contaminant degradation is basically revealed. Biosurfactants can enhance solubilization of the contaminants in the soil matrix, change their mass transfer properties into the aqueous phase, as well as affect their sorption properties. Furthermore, biosurfactants can act on microorganisms and change their surface properties, accordingly cause new growth and uptake behavior of the bacteria in the soil matrix. Both the physicochemical and the microbiological effects can basically increase the bioavailability of the contaminants and enhance their degradation.

  15. Environmental Assessment of Remedial Action at the Mexican Hat Uranium Mill Tailings Site, Mexican Hat, Utah

    OpenAIRE

    U.S. Department of Energy

    1987-01-01

    This document assesses the environmental impacts of the proposed remedial action at the Mexican Hat uranium mill tailings site located on the Navajo Reservation in southern Utah. The site covers 235 acres and contains 69 acres of tailings and several of the original mill structures. The Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978, Public Law 95-604 (PL95-604), authorized the U.S. Department of Energy to clean up the site to reduce the potential health impacts associated wit...

  16. Uranium Mill Tailings Remedial Action Project 1993 Environmental Report

    International Nuclear Information System (INIS)

    This annual report documents the Uranium Mill Tailing Remedial Action (UMTRA) Project environmental monitoring and protection program. The UMTRA Project routinely monitors radiation, radioactive residual materials, and hazardous constituents at associated former uranium tailings processing sites and disposal sites. At the end of 1993, surface remedial action was complete at 10 of the 24 designated UMTRA Project processing sites. In 1993 the UMTRA Project office revised the UMTRA Project Environmental Protection Implementation Plan, as required by the US DOE. Because the UMTRA Project sites are in different stages of remedial action, the breadth of the UMTRA environmental protection program differs from site to site. In general, sites actively undergoing surface remedial action have the most comprehensive environmental programs for sampling media. At sites where surface remedial action is complete and at sites where remedial action has not yet begun, the environmental program consists primarily of surface water and ground water monitoring to support site characterization, baseline risk assessments, or disposal site performance assessments

  17. Gas: A Neglected Phase in Remediation of Metals and Radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Denham, Miles E.; Looney, Brian B

    2005-09-28

    The gas phase is generally ignored in remediation of metals and radionuclides because it is assumed that there is no efficient way to exploit it. In the literal sense, all remediations involve the gas phase because this phase is linked to the liquid and solid phases by vapor pressure and thermodynamic relationships. Remediation methods that specifically use the gas phase as a central feature have primarily targeted volatile organic contaminants, not metals and radionuclides. Unlike many organic contaminants, the vapor pressure and Henry's Law constants of metals and radionuclides are not generally conducive to direct air stripping of dissolved contaminants. Nevertheless, the gas phase can play an important role in remediation of inorganic contaminants and provide opportunities for efficient, cost effective remediation. The objective here is to explore ways in which manipulation of the gas phase can be used to facilitate remediation of metals and radionuclides.

  18. Uranium Mill Tailings Remedial Action Project 1993 Environmental Report

    Energy Technology Data Exchange (ETDEWEB)

    1994-10-01

    This annual report documents the Uranium Mill Tailing Remedial Action (UMTRA) Project environmental monitoring and protection program. The UMTRA Project routinely monitors radiation, radioactive residual materials, and hazardous constituents at associated former uranium tailings processing sites and disposal sites. At the end of 1993, surface remedial action was complete at 10 of the 24 designated UMTRA Project processing sites. In 1993 the UMTRA Project office revised the UMTRA Project Environmental Protection Implementation Plan, as required by the US DOE. Because the UMTRA Project sites are in different stages of remedial action, the breadth of the UMTRA environmental protection program differs from site to site. In general, sites actively undergoing surface remedial action have the most comprehensive environmental programs for sampling media. At sites where surface remedial action is complete and at sites where remedial action has not yet begun, the environmental program consists primarily of surface water and ground water monitoring to support site characterization, baseline risk assessments, or disposal site performance assessments.

  19. Remedies for common family ailments: 5. Sunscreen creams and lotions.

    Science.gov (United States)

    Sinclair, A

    1994-01-01

    Prolonged exposure to strong sunlight significantly increases the risk of skin cancer. Sunscreens provide useful protection from sunburn if correctly used. Some sunscreens contain chemical compounds which work by absorbing UVB wavelengths. Others contain chemicals which act as reflectants of UVA waves, eg titanium dioxide. Stars on the packet indicate how much UVA protection the product provides-the more stars, the more protection. Products are labelled with their sunscreen protection factor (SPF). The higher the factor, the greater the protection. Products used on children should have an SPF of at least 15. Fair-skinned and freckled people also need a high SPF as they burn easily. Use products according to the manufacturer's instructions and reapply at intervals and after swimming. Some products combine sunscreen properties with being water resistant perspiration-resistant or insect-repellent. Avoid folklore remedies like coconut oil. It is better to go or a scientifically formulated, branded product. A properly formulated after-sun lotion is advisable in order to counteract the drying effects of the sun on the skin.

  20. Innovative fossil fuel fired vitrification technology for soil remediation

    International Nuclear Information System (INIS)

    Vortec has successfully completed Phase 1 of the ''Innovative Fossil Fuel Fired Vitrification Technology for Soil Remediation'' program. The Combustion and Melting System (CMS) has processed 7000 pounds of material representative of contaminated soil that is found at DOE sites. The soil was spiked with Resource Conservation and Recovery Act (RCRA) metals surrogates, an organic contaminant, and a surrogate radionuclide. The samples taken during the tests confirmed that virtually all of the radionuclide was retained in the glass and that it did not leach to the environment-as confirmed by both ANS 16.1 and Toxicity Characteristic Leaching Procedure (TCLP) testing. The organic contaminant, anthracene, was destroyed during the test with a Destruction and Removal Efficiency (DRE) of at least 99.99%. RCRA metal surrogates, that were in the vitrified product, were retained and did not leach to the environment as confirmed by the TCLP testing. Semi-volatile RCRA metal surrogates were captured by the Air Pollution Control (APC) system, and data on the amount of metal oxide particulate and the chemical composition of the particulate were established for use in the Phase 2 APC subsystem design

  1. Remedies for common family ailments: 5. Sunscreen creams and lotions.

    Science.gov (United States)

    Sinclair, A

    1994-01-01

    Prolonged exposure to strong sunlight significantly increases the risk of skin cancer. Sunscreens provide useful protection from sunburn if correctly used. Some sunscreens contain chemical compounds which work by absorbing UVB wavelengths. Others contain chemicals which act as reflectants of UVA waves, eg titanium dioxide. Stars on the packet indicate how much UVA protection the product provides-the more stars, the more protection. Products are labelled with their sunscreen protection factor (SPF). The higher the factor, the greater the protection. Products used on children should have an SPF of at least 15. Fair-skinned and freckled people also need a high SPF as they burn easily. Use products according to the manufacturer's instructions and reapply at intervals and after swimming. Some products combine sunscreen properties with being water resistant perspiration-resistant or insect-repellent. Avoid folklore remedies like coconut oil. It is better to go or a scientifically formulated, branded product. A properly formulated after-sun lotion is advisable in order to counteract the drying effects of the sun on the skin. PMID:8680178

  2. Sustainability: A new imperative in contaminated land remediation

    International Nuclear Information System (INIS)

    Highlights: • Reviewed the emerging green and sustainable remediation movement in the US and Europe. • Identified three sources of pressures for emphasizing sustainability in the remediation field. • Presented a holistic view of sustainability considerations in remediation. • Developed an integrated framework for sustainability assessment and decision making. - Abstract: Land is not only a critical component of the earth's life support system, but also a precious resource and an important factor of production in economic systems. However, historical industrial operations have resulted in large areas of contaminated land that are only slowly being remediated. In recent years, sustainability has drawn increasing attention in the environmental remediation field. In Europe, there has been a movement towards sustainable land management; and in the US, there is an urge for green remediation. Based on a questionnaire survey and a review of existing theories and empirical evidence, this paper suggests the expanding emphasis on sustainable remediation is driven by three general factors: (1) increased recognition of secondary environmental impacts (e.g., life-cycle greenhouse gas emissions, air pollution, energy consumption, and waste production) from remediation operations, (2) stakeholders’ demand for economically sustainable brownfield remediation and “green” practices, and (3) institutional pressures (e.g., social norm and public policy) that promote sustainable practices (e.g., renewable energy, green building, and waste recycling). This paper further argues that the rise of the “sustainable remediation” concept represents a critical intervention point from where the remediation field will be reshaped and new norms and standards will be established for practitioners to follow in future years. This paper presents a holistic view of sustainability considerations in remediation, and an integrated framework for sustainability assessment and decision making

  3. The effect of Soil Temperature on Electrodialytic Remediation

    DEFF Research Database (Denmark)

    Kristensen, Iben Vernegren

    1999-01-01

    The electrodialytic remediation of copper, zinc and lead contaminated kaolin was studied at three different temperatures (0-39 degrees centrigrate). It is shown that an increase in temperature increases the rate of remediation for all three metals. Copper and zinc shows similar rate constants......, while for lead, the rate constant obtained are significantly smaller. The increased remediation rate is presumed to be due mainly to the lowering of the viscosity....

  4. Historical hydronuclear testing: Characterization and remediation technologies

    International Nuclear Information System (INIS)

    This report examines the most current literature and information available on characterization and remediation technologies that could be used on the Nevada Test Site (NTS) historical hydronuclear test areas. Historical hydronuclear tests use high explosives and a small amount of plutonium. The explosion scatters plutonium within a contained subsurface environment. There is currently a need to characterize these test areas to determine the spatial extent of plutonium in the subsurface and whether geohydrologic processes are transporting the plutonium away from the event site. Three technologies were identified to assist in the characterization of the sites. These technologies are the Pipe Explorer trademark, cone penetrometer, and drilling. If the characterization results indicate that remediation is needed, three remediation technologies were identified that should be appropriate, namely: capping or sealing the surface, in situ grouting, and in situ vitrification. Capping the surface would prevent vertical infiltration of water into the soil column, but would not restrict lateral movement of vadose zone water. Both the in situ grouting and vitrification techniques would attempt to immobilize the radioactive contaminants to restrict or prevent leaching of the radioactive contaminants into the groundwater. In situ grouting uses penetrometers or boreholes to inject the soil below the contaminant zone with low permeability grout. In situ vitrification melts the soil containing contaminants into a solid block. This technique would provide a significantly longer contaminant immobilization, but some research and development would be required to re-engineer existing systems for use at deep soil depths. Currently, equipment can only handle shallow depth vitrification. After existing documentation on the historical hydronuclear tests have been reviewed and the sites have been visited, more specific recommendations will be made

  5. Geostatistics and cost-effective environmental remediation

    International Nuclear Information System (INIS)

    Numerous sites within the U.S. Department of Energy (DOE) complex have been contaminated with various radioactive and hazardous materials by defense-related activities during the post-World War II era. The perception is that characterization and remediation of these contaminated sites will be too costly using currently available technology. Consequently, the DOE Office of Technology Development has funded development of a number of alternative processes for characterizing and remediating these sites. The former Feed-Materials Processing Center near Fernald, Ohio (USA), was selected for demonstrating several innovative technologies. Contamination at the Fernald site consists principally of particulate uranium and derivative compounds in surficial soil. A field-characterization demonstration program was conducted during the summer of 1994 specifically to demonstrate the relative economic performance of seven proposed advanced-characterization tools for measuring uranium activity of in-situ soils. These innovative measurement technologies are principally radiation detectors of varied designs. Four industry-standard measurement technologies, including conventional, regulatory-agency-accepted soil sampling followed by laboratory geochemical analysis, were also demonstrated during the program for comparative purposes. A risk-based economic-decision model has been used to evaluate the performance of these alternative characterization tools. The decision model computes the dollar value of an objective function for each of the different characterization approaches. The methodology not only can assist site operators to choose among engineering alternatives for site characterization and/or remediation, but also can provide an objective and quantitative basis for decisions with respect to the completeness of site characterization

  6. Cognitive remediation for vocational rehabilitation nonresponders.

    Science.gov (United States)

    McGurk, Susan R; Mueser, Kim T; Xie, Haiyi; Feldman, Karin; Shaya, Yaniv; Klein, Leslie; Wolfe, Rosemarie

    2016-08-01

    Cognitive remediation in people with severe mental illnesses (SMI) that interfere with work, but less research has evaluated its effects in those who have not benefitted from vocational services. Participants with SMI (83% schizophrenia) who had not benefitted from vocational rehabilitation were randomized to vocational services enhanced by training vocational specialists in recognizing cognitive difficulties and providing job-relevant cognitive coping strategies (Enhanced Vocational Rehabilitation: E-VR), or similarly enhanced vocational services and cognitive remediation (Thinking Skills Work: TSW). Cognition and symptoms were assessed at baseline, post-treatment (9months), and follow-up (18months), with work tracked weekly for 3years. Fifty-four participants were randomized to E-VR (N=26) or TSW (N=28). Participants in TSW had high rates of exposure to the program (89%) and improved more than those in E-VR on cognitive functioning post-training, with attenuation of some gains at the 18-months. Participants in TSW and E-VR did not differ significantly in competitive work (57% vs. 48%) or paid employment (61% vs. 48%) over the 3-year study, although those in TSW were more likely to be engaged in any work activity, including paid or volunteer work (75% vs. 50%, p=0.057), and had more weeks of work activity (23.04 vs. 48.82, p=0.051), and improved marginally more on the clinical symptoms. The significantly higher education level of participants in E-VR than TSW at baseline may have obscured the effects of TSW. This study supports the feasibility and potential benefits of cognitive remediation for persons who have not benefited from vocational rehabilitation. PMID:27209526

  7. Historical hydronuclear testing: Characterization and remediation technologies

    Energy Technology Data Exchange (ETDEWEB)

    Shaulis, L.; Wilson, G.; Jacobson, R.

    1997-09-01

    This report examines the most current literature and information available on characterization and remediation technologies that could be used on the Nevada Test Site (NTS) historical hydronuclear test areas. Historical hydronuclear tests use high explosives and a small amount of plutonium. The explosion scatters plutonium within a contained subsurface environment. There is currently a need to characterize these test areas to determine the spatial extent of plutonium in the subsurface and whether geohydrologic processes are transporting the plutonium away from the event site. Three technologies were identified to assist in the characterization of the sites. These technologies are the Pipe Explorer{trademark}, cone penetrometer, and drilling. If the characterization results indicate that remediation is needed, three remediation technologies were identified that should be appropriate, namely: capping or sealing the surface, in situ grouting, and in situ vitrification. Capping the surface would prevent vertical infiltration of water into the soil column, but would not restrict lateral movement of vadose zone water. Both the in situ grouting and vitrification techniques would attempt to immobilize the radioactive contaminants to restrict or prevent leaching of the radioactive contaminants into the groundwater. In situ grouting uses penetrometers or boreholes to inject the soil below the contaminant zone with low permeability grout. In situ vitrification melts the soil containing contaminants into a solid block. This technique would provide a significantly longer contaminant immobilization, but some research and development would be required to re-engineer existing systems for use at deep soil depths. Currently, equipment can only handle shallow depth vitrification. After existing documentation on the historical hydronuclear tests have been reviewed and the sites have been visited, more specific recommendations will be made.

  8. Environmental assessment of remedial action at the Tuba City uranium mill tailings site, Tuba City, Arizona

    International Nuclear Information System (INIS)

    This document assesses and compares the environmental impacts of various alternatives for remedial action at the Tuba City uranium mill tailings site located approximately six miles east of Tuba City, Arizona. The site covers 105 acres and contains 25 acres of tailings and some of the original mill structures. The Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA), Public Law 95-604, authorizes the US Department of Energy to clean up the site to reduce the potential health impacts associated with the residual radioactive materials remaining at the site and at associated properties off the site. The US Environmental Protection Agency promulgated standards for the remedial actions (40 CFR Part 192). Remedial actions must be performed in accordance with these standards and with the concurrence of the Nuclear Regulatory Commission. The proposed action is to stabilize the tailings at their present location by consolidating the tailings and associated contaminated materials into a recontoured pile. A radon barrier would be constructed over the pile and various erosion control measures would be taken to assure the long-term stability of the pile. Another alternative which would involve moving the tailings to a new location is also assessed in this document. This alternative would generally involve greater short-term impacts and costs but would result in stabilization of the tailings at a more remote location. The no action alternative is also assessed in this document

  9. Environmental assessment of remedial action at the Naturita uranium processing site near Naturita, Colorado: Revision 5

    Energy Technology Data Exchange (ETDEWEB)

    1994-10-01

    Title 1 of the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978, Public Law (PL) 95-604, authorized the US Department of Energy (DOE) to perform remedial action at the inactive Naturita, Colorado, uranium processing site to reduce the potential health effects from the radioactive materials at the site and at vicinity properties associated with the site. Title 2 of the UMTRCA authorized the US Nuclear Regulatory Commission (NRC) or agreement state to regulate the operation and eventual reclamation of active uranium processing sites. The uranium mill tailings at the site were removed and reprocessed from 1977 to 1979. The contaminated areas include the former tailings area, the mill yard, the former ore storage area, and adjacent areas that were contaminated by uranium processing activities and wind and water erosion. The Naturita remedial action would result in the loss of 133 acres (ac) of contaminated soils at the processing site. If supplemental standards are approved by the NRC and the state of Colorado, approximately 112 ac of steeply sloped contaminated soils adjacent to the processing site would not be cleaned up. Cleanup of this contamination would have adverse environmental consequences and would be potentially hazardous to remedial action workers.

  10. New Jersey state information handbook: Formerly Utilized Sites Remedial Action Program

    International Nuclear Information System (INIS)

    Under the implied authority of the Atomic Energy Act of 1954, as amended, radiological surveys and research work has been conducted to determine radiological conditions at former MED/AEC sites. As of this time, 31 sites in 13 states have been identified that require or may require remedial action. This volume is one of a series produced under contract with DOE, Office of Nuclear Waste Management, by POLITECH CORPORATION to develop a legislative and regulatory data base to assist the FUSRAP management in addressing the institutional and socioeconomic issues involved in carrying out the Remedial Action Program. This Information Handbook series contains information about all relevant government agencies at the Federal and state levels, the pertinent programs they administer, each affected state legislature, and current Federal and state legislative and regulatory initiatives. This volume is a compilation of information about the state of New Jersey. It contains: a description of the state executive branch structure; a summary of relevant state statutes and regulations; a description of the structure of the state legislature, identification of the officers and committee chairmen, and a summary of recent relevant legislative action; and the full text of relevant statutes and regulations. The loose-leaf format used in these volumes will allow the material to be updated periodically as the Remedial Action Program progresses

  11. Environmental assessment of remedial action at the Naturita uranium processing site near Naturita, Colorado: Revision 5

    International Nuclear Information System (INIS)

    Title 1 of the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978, Public Law (PL) 95-604, authorized the US Department of Energy (DOE) to perform remedial action at the inactive Naturita, Colorado, uranium processing site to reduce the potential health effects from the radioactive materials at the site and at vicinity properties associated with the site. Title 2 of the UMTRCA authorized the US Nuclear Regulatory Commission (NRC) or agreement state to regulate the operation and eventual reclamation of active uranium processing sites. The uranium mill tailings at the site were removed and reprocessed from 1977 to 1979. The contaminated areas include the former tailings area, the mill yard, the former ore storage area, and adjacent areas that were contaminated by uranium processing activities and wind and water erosion. The Naturita remedial action would result in the loss of 133 acres (ac) of contaminated soils at the processing site. If supplemental standards are approved by the NRC and the state of Colorado, approximately 112 ac of steeply sloped contaminated soils adjacent to the processing site would not be cleaned up. Cleanup of this contamination would have adverse environmental consequences and would be potentially hazardous to remedial action workers

  12. Environmental assessment of remedial action at the Tuba City uranium mill tailings site, Tuba City, Arizona

    Energy Technology Data Exchange (ETDEWEB)

    None

    1986-11-01

    This document assesses and compares the environmental impacts of various alternatives for remedial action at the Tuba City uranium mill tailings site located approximately six miles east of Tuba City, Arizona. The site covers 105 acres and contains 25 acres of tailings and some of the original mill structures. The Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA), Public Law 95-604, authorizes the US Department of Energy to clean up the site to reduce the potential health impacts associated with the residual radioactive materials remaining at the site and at associated properties off the site. The US Environmental Protection Agency promulgated standards for the remedial actions (40 CFR Part 192). Remedial actions must be performed in accordance with these standards and with the concurrence of the Nuclear Regulatory Commission. The proposed action is to stabilize the tailings at their present location by consolidating the tailings and associated contaminated materials into a recontoured pile. A radon barrier would be constructed over the pile and various erosion control measures would be taken to assure the long-term stability of the pile. Another alternative which would involve moving the tailings to a new location is also assessed in this document. This alternative would generally involve greater short-term impacts and costs but would result in stabilization of the tailings at a more remote location. The no action alternative is also assessed in this document.

  13. Recovery of Rare Earth Elements and Yttrium from Passive-Remediation Systems of Acid Mine Drainage.

    Science.gov (United States)

    Ayora, Carlos; Macías, Francisco; Torres, Ester; Lozano, Alba; Carrero, Sergio; Nieto, José-Miguel; Pérez-López, Rafael; Fernández-Martínez, Alejandro; Castillo-Michel, Hiram

    2016-08-01

    Rare earth elements and yttrium (REY) are raw materials of increasing importance for modern technologies, and finding new sources has become a pressing need. Acid mine drainage (AMD) is commonly considered an environmental pollution issue. However, REY concentrations in AMD can be several orders of magnitude higher than in naturally occurring water bodies. With respect to shale standards, the REY distribution pattern in AMD is enriched in intermediate and valuable REY, such as Tb and Dy. The objective of the present work is to study the behavior of REY in AMD passive-remediation systems. Traditional AMD passive remediation systems are based on the reaction of AMD with calcite-based permeable substrates followed by decantation ponds. Experiments with two columns simulating AMD treatment demonstrate that schwertmannite does not accumulate REY, which, instead, are retained in the basaluminite residue. The same observation is made in two field-scale treatments from the Iberian Pyrite Belt (IPB, southwest Spain). On the basis of the amplitude of this process and on the extent of the IPB, our findings suggest that the proposed AMD remediation process can represent a modest but suitable REY source. In this sense, the IPB could function as a giant heap-leaching process of regional scale in which rain and oxygen act as natural driving forces with no energy investment. In addition to having environmental benefits of its treatment, AMD is expected to last for hundreds of years, and therefore, the total reserves are practically unlimited. PMID:27351211

  14. Environmental assessment of remedial action at the Slick Rock uranium mill tailings sites, Slick Rock, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-01-01

    The Uranium Mill Tailings Radiation Control Act of 1978, hereafter referred to as the UMTRCA, authorized the US Department of Energy (DOE) to clean up two uranium mill tailings processing sites near Slick Rock, Colorado, in San Miguel County. The purpose of the cleanup is to reduce the potential health effects associated with the radioactive materials remaining on the processing sites and on vicinity properties (VPs) associated with the sites. The US Environmental Protection Agency (EPA) promulgated standards for the UMTRCA that contained measures to control the contaminated materials and to protect the ground water from further degradation. The sites contain concrete foundations of mill buildings, tailings piles, and areas contaminated by windblown and waterborne radioactive tailings materials. The proposed action is to remediate the UC and NC sites by removing all contaminated materials within the designated site boundaries or otherwise associated with the sites, and relocating them to, and stabilizing them at, a location approximately 5 road mi (8 km) northeast of the processing sites on land administered by the US Bureau of Land Management (BLM). Remediation would be performed by the DOE`s Uranium Mill Tailings Remedial Action (UMTRA) Project.

  15. Environmental assessment of remedial action at the Gunnison Uranium Mill Tailings Site, Gunnison, Colorado

    International Nuclear Information System (INIS)

    This document assesses and compares the environmental impacts of various alternatives for remedial action at the Gunnison uranium of mill tailings site located 0.5 miles south of Gunnison, Colorado. The site covers 56 acres and contains 35 acres of tailings, 2 of the original mill buildings and a water tower. The Uranium Mill Tailings Radiation Control of Act of 1978 (UMTRCA), Public Law 95-604, authorizes the US Department of Energy to clean up the site to reduce the potential health impacts associated with the residual radioactive materials remaining at the site and at associated [vicinity] properties off the site. The US Environmental Protection Agency promulgated standards for the remedial actions (40 CFR 192). Remedial actions must be performed in accordance with these standards and with the occurrence of the Nuclear Regulatory Commission. Four alternatives have been addressed in this document. The first alternative is to consolidate the tailings and associated contaminated soils into a recontoured pile on the southern portion of the existing site. A radon barrier of silty clay would be constructed over the pile and various erosion control measures would be taken to assure the long-term integrity of the pile. Two other alternatives which involve moving the tailings to new locations are assessed in this document. These alternatives generally involve greater short-term impacts and are more costly but would result in the tailings being stabilized in a location farther from the city of Gunnison. The no action alternative is also assessed

  16. Environmental assessment of remedial action at the Slick Rock uranium mill tailings sites, Slick Rock, Colorado

    International Nuclear Information System (INIS)

    The Uranium Mill Tailings Radiation Control Act of 1978, hereafter referred to as the UMTRCA, authorized the US Department of Energy (DOE) to clean up two uranium mill tailings processing sites near Slick Rock, Colorado, in San Miguel County. The purpose of the cleanup is to reduce the potential health effects associated with the radioactive materials remaining on the processing sites and on vicinity properties (VPs) associated with the sites. The US Environmental Protection Agency (EPA) promulgated standards for the UMTRCA that contained measures to control the contaminated materials and to protect the ground water from further degradation. The sites contain concrete foundations of mill buildings, tailings piles, and areas contaminated by windblown and waterborne radioactive tailings materials. The proposed action is to remediate the UC and NC sites by removing all contaminated materials within the designated site boundaries or otherwise associated with the sites, and relocating them to, and stabilizing them at, a location approximately 5 road mi (8 km) northeast of the processing sites on land administered by the US Bureau of Land Management (BLM). Remediation would be performed by the DOE's Uranium Mill Tailings Remedial Action (UMTRA) Project

  17. Fe(0) Nanomotors in Ton Quantities (10(20) Units) for Environmental Remediation.

    Science.gov (United States)

    Teo, Wei Zhe; Zboril, Radek; Medrik, Ivo; Pumera, Martin

    2016-03-24

    Despite demonstrating potential for environmental remediation and biomedical applications, the practical environmental applications of autonomous self-propelled micro-/nanorobots have been limited by the inability to fabricate these devices in large (kilograms/tons) quantities. In view of the demand for large-scale environmental remediation by micro-/nanomotors, which are easily synthesized and powered by nontoxic fuel, we have developed bubble-propelled Fe(0) Janus nanomotors by a facile thermally induced solid-state procedure and investigated their potential as decontamination agents of pollutants. These Fe(0) Janus nanomotors, stabilized by an ultrathin iron oxide shell, were fuelled by their decomposition in citric acid, leading to the asymmetric bubble propulsion. The degradation of azo-dyes was dramatically increased in the presence of moving self-propelled Fe(0) nanomotors, which acted as reducing agents. Such enhanced pollutant decomposition triggered by biocompatible Fe(0) (nanoscale zero-valent iron motors), which can be handled in the air and fabricated in ton quantities for low cost, will revolutionize the way that environmental remediation is carried out.

  18. Environmental assessment of remedial action at the Gunnison Uranium Mill Tailings Site, Gunnison, Colorado. [UMTRA Project

    Energy Technology Data Exchange (ETDEWEB)

    Bachrach, A.; Hoopes, J.; Morycz, D. (Jacobs Engineering Group, Inc., Pasadena, CA (USA)); Bone, M.; Cox, S.; Jones, D.; Lechel, D.; Meyer, C.; Nelson, M.; Peel, R.; Portillo, R.; Rogers, L.; Taber, B.; Zelle, P. (Weston (Roy F.), Inc., Washington, DC (USA)); Rice, G. (Sergent, Hauskins and Beckwith (USA))

    1984-12-01

    This document assesses and compares the environmental impacts of various alternatives for remedial action at the Gunnison uranium of mill tailings site located 0.5 miles south of Gunnison, Colorado. The site covers 56 acres and contains 35 acres of tailings, 2 of the original mill buildings and a water tower. The Uranium Mill Tailings Radiation Control of Act of 1978 (UMTRCA), Public Law 95-604, authorizes the US Department of Energy to clean up the site to reduce the potential health impacts associated with the residual radioactive materials remaining at the site and at associated (vicinity) properties off the site. The US Environmental Protection Agency promulgated standards for the remedial actions (40 CFR 192). Remedial actions must be performed in accordance with these standards and with the occurrence of the Nuclear Regulatory Commission. Four alternatives have been addressed in this document. The first alternative is to consolidate the tailings and associated contaminated soils into a recontoured pile on the southern portion of the existing site. A radon barrier of silty clay would be constructed over the pile and various erosion control measures would be taken to assure the long-term integrity of the pile. Two other alternatives which involve moving the tailings to new locations are assessed in this document. These alternatives generally involve greater short-term impacts and are more costly but would result in the tailings being stabilized in a location farther from the city of Gunnison. The no action alternative is also assessed.

  19. New Jersey state information handbook: Formerly Utilized Sites Remedial Action Program

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-10-31

    Under the implied authority of the Atomic Energy Act of 1954, as amended, radiological surveys and research work has been conducted to determine radiological conditions at former MED/AEC sites. As of this time, 31 sites in 13 states have been identified that require or may require remedial action. This volume is one of a series produced under contract with DOE, Office of Nuclear Waste Management, by POLITECH CORPORATION to develop a legislative and regulatory data base to assist the FUSRAP management in addressing the institutional and socioeconomic issues involved in carrying out the Remedial Action Program. This Information Handbook series contains information about all relevant government agencies at the Federal and state levels, the pertinent programs they administer, each affected state legislature, and current Federal and state legislative and regulatory initiatives. This volume is a compilation of information about the state of New Jersey. It contains: a description of the state executive branch structure; a summary of relevant state statutes and regulations; a description of the structure of the state legislature, identification of the officers and committee chairmen, and a summary of recent relevant legislative action; and the full text of relevant statutes and regulations. The loose-leaf format used in these volumes will allow the material to be updated periodically as the Remedial Action Program progresses.

  20. Defense remediations: Two glimpses into the future

    International Nuclear Information System (INIS)

    As the Department of Defense (DoD) embarks on the closure of dozens of military installations, a major obstacle to release of the sites is the presence of hazardous materials. Activities such as test firing of depleted uranium munitions, research and development of weapons and ammunition, and on-post disposal of material has resulted in large scale contamination. The U.S. Army's Radioactive Waste Disposal Office, as the DoD's Executive Agent for Radioactive Waste, manages the disposition of DoD's low-level radioactive waste. Two of the initial remediation projects offer a good look into the type of situations the DoD faces