WorldWideScience

Sample records for acrylonitrile butadiene styrene

  1. Study of the Influence of adding styrene-ethylene/butadiene-styrene in acrylonitrile-butadiene-styrene and polyethylene blends

    OpenAIRE

    Peydro, M. A.; Parres, F.; Navarro Vidal, Raúl; Sanchez-Caballero, Samuel

    2014-01-01

    This work studies the recovery of two grades of acrylonitrile butadiene styrene (ABS) contaminated with low-density polyethylene (LDPE), by adding styrene ethylene/butadiene styrene (SEBS). To simulate contaminated ABS, virgin ABS was mixed with 1, 2, 4, and 8% of LDPE and then extruded at 220°C. After this, the ABS with the highest percentage of LDPE (8%) was mixed with 1, 2, 4, and 8% of SEBS and then extruded. Different blends were mechanically, rheologically, optically, and dimensionally ...

  2. Recovery of recycled acrylonitrile-butadiene-styrene, through mixing with styrene-ethylene/butylene-styrene

    OpenAIRE

    Peydro, M. A.; Parres, F.; Crespo Amorós, José Enrique; Navarro Vidal, Raúl

    2013-01-01

    Recovery of recycled acrylonitrile-butadiene-styrene (ABS) through mixing with styrene-ethylene/butylene-styrene (SEBS) has been studied in this paper. To simulate recycled ABS, virgin ABS was processed through 5 cycles, at extreme processing temperatures, 220 degrees C and 260 degrees C. The virgin ABS, the virgin SEBS, the recycled ABS and the mixtures were mechanically, thermally and rheologically characterized after the various cycles of reprocessing in order to evaluate their correspondi...

  3. 21 CFR 177.1020 - Acrylonitrile/butadiene/sty-rene co-polymer.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Acrylonitrile/butadiene/sty-rene co-polymer. 177... SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances.../butadiene/sty-rene co-polymer. Acrylonitrile/butadiene/styrene copolymer identified in this section may be...

  4. Fuel oil from acrylonitrile-butadiene-styrene copolymers using a tandem PEG-enhanced denitrogenation-pyrolysis method

    NARCIS (Netherlands)

    Zhou, Q.; Yang, J.W.; Du, A.K.; Wang, Y.Z.; Kasteren, van J.M.N.

    2009-01-01

    Acrylonitrile-butadiene-styrene (ABS) was treated using a tandem poly(ethylene glycol) (PEG)-enhanced alkaline denitrogenation-pyrolysis method according to the structure and thermal degradation properties of ABS. This denitrogenated ABS (DABS) were pyrolyzed to produce clean fuels, such as fuel

  5. Dimensional accuracy of Acrylonitrile Butadiene Styrene injection molded parts produced in a pilot produc

    DEFF Research Database (Denmark)

    Mischkot, Michael; Davoudinejad, Ali; Charalambis, Alessandro

    of a geometry including micro-features have been injection-molded in Acrylonitrile Butadiene Styrene (ABS) with a single 20x20x2.5 mm^3 injection molding insert manufactured in a photopolymer composite material. This research investigates the dimensional accuracy of the injection molded parts as a function...

  6. Environmentally benign electroless nickel plating using supercritical carbon-dioxide on hydrophilically modified acrylonitrile-butadiene-styrene

    Science.gov (United States)

    Tengsuwan, Siwach; Ohshima, Masahiro

    2014-08-01

    Electroless Ni-P plating using supercritical carbon dioxide (scCO2) in conjunction with copolymer-based hydrophilic modification was applied to an acrylonitrile-butadiene-styrene (ABS) substrate. The surface of ABS substrate was hydrophilically modified by blending with a multi-block copolymer, poly(ether-ester-amide)s (PEEA), in injection molding process. The substrate was then impregnated with Pd(II)-hexafluoroacetylacetonate, Pd(hfa)2, using scCO2, followed by the electroless plating reaction. ABS/PEEA substrates with different PEEA to ABS blend ratios and different volume ratios of butadiene to the styrene-acrylonitrile copolymer (SAN) matrix were prepared to investigate how the dispersed PEEA and butadiene domains affected the blend morphology and the adhesive strength of the plating metal-to-polymer contact. Increasing the PEEA copolymer to ABS blend ratio increased the mass transfer rate of the plating solution in the ABS substrate. Consequently, the metal-polymer composite layer became thicker, which increased the adhesive strength of the metal-to-polymer contact because of the anchoring effect. The butadiene domains appeared to attract the Pd catalyst precursor, and thus, the proportion of butadiene in the ABS matrix also affected the adhesive strength of the contact between the metal layer and the substrate. The ABS substrate was successfully plated with a Ni-P metal layer with an average adhesive strength of 9.1 ± 0.5 N cm-1 by choosing appropriate ABS/PEEA blend ratios and a Pd(hfa)2 concentration.

  7. Analysis of acrylonitrile, 1,3-butadiene, and related compounds in acrylonitrile-butadiene-styrene copolymers for kitchen utensils and children's toys by headspace gas chromatography/mass spectrometry.

    Science.gov (United States)

    Ohno, Hiroyuki; Kawamura, Yoko

    2010-01-01

    A headspace gas chromatography/mass spectrometry method was developed for the simultaneous determination of the residual levels of acrylonitrile (AN), 1,3-butadiene (1,3-BD), and their related compounds containing propionitrile (PN) and 4-vinyl-1-cyclohexene (4-VC) in acrylonitrile-butadiene-styrene (ABS) copolymers for kitchen utensils and children's toys. A sample was cut into small pieces, then N,N-dimethylacetamide and an internal standard were added in a sealed headspace vial. The vial was incubated for 1 h at 90 degrees C and the headspace gas was analyzed by gas chromatography/mass spectrometry. The recovery rates of the analytes were 93.3-101.8% and the coefficients of variation were 0.3-6.5%. In ABS copolymers, the levels were 0.3-50.4 microg/g for AN, ND-4.5 microg/g for PN, 0.06-1.58 microg/g for 1,3-BD, and 1.1-295 microg/g for 4-VC. The highest level was found for 4-VC, which is a dimer of 1,3-BD, and the next highest was for AN, which is one of the monomers of the ABS copolymer. Furthermore, the method was also applied to acrylonitrile-styrene (AS) copolymers and polystyrenes (PS) for kitchen utensils, and nitrile-butadiene rubber (NBR) gloves. In AS copolymers, AN and PN were detected at 16.8-54.5 and 0.8-6.9 microg/g, respectively. On the other hand, the levels in PS and NBR samples were all low.

  8. Design and Testing of Digitally Manufactured Paraffin Acrylonitrile-Butadiene-Styrene Hybrid Rocket Motors

    OpenAIRE

    McCulley, Jonathan M.

    2013-01-01

    This research investigates the application of additive manufacturing techniques for fabricating hybrid rocket fuel grains composed of porous Acrylonitrile-butadiene-styrene impregnated with paraffin wax. The digitally manufactured ABS substrate provides mechanical support for the paraffin fuel material and serves as an additional fuel component. The embedded paraffin provides an enhanced fuel regression rate while having no detrimental effect on the thermodynamic burn properties of the fuel g...

  9. Ultrasonic degradation of butadiene, styrene and their copolymers.

    Science.gov (United States)

    Sathiskumar, P S; Madras, Giridhar

    2012-05-01

    Ultrasonic degradation of commercially important polymers, styrene-butadiene (SBR) rubber, acrylonitrile-butadiene (NBR) rubber, styrene-acrylonitrile (SAN), polybutadiene rubber and polystyrene were investigated. The molecular weight distributions were measured using gel permeation chromatography (GPC). A model based on continuous distribution kinetics approach was used to study the time evolution of molecular weight distribution for these polymers during degradation. The effect of solvent properties and ultrasound intensity on the degradation of SBR rubber was investigated using different pure solvents and mixed solvents of varying volatility and different ultrasonic intensities. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Thermo-Physical Properties of Kenaf-Filled Acrylonitrile Butadiene Styrene Composites

    Directory of Open Access Journals (Sweden)

    Nikmatin Siti

    2017-01-01

    Full Text Available Studies on advantageous of natural fillers incorporated into polymer composites on thermo-physical and mechanical properties are still intensively investigated. Several evidences suggest that the natural fillers with small contents combined with polymer increase their composite properties. We thus investigate thermo-physical properties of kenaf-filled acrylonitrile butadiene styrene (ABS composites. ABS with 5% kenaf microparticle size (ABS/K5, ABS with 5% kenaf short fiber (ABS/KSF5, and recycled ABS with 5% kenaf microparticle size (RABS/K5 were manufactured. Granular composites were manufactured by the twin screw extruder. Composite properties in terms of X-ray diffractions, surface morphologies, and thermal behaviors were investigated. The present work found that ABS/KSF5 has the highest degree of crystallinity compared to others. No significant difference was found in terms of thermal properties of the composites.

  11. Ionizing radiation effect study by electron beam on acrylonitrile butadiene styrene - ABS terpolymer

    International Nuclear Information System (INIS)

    Landi, Tania Regina Lourenco

    2003-01-01

    The great advantage in the researches involving development has as objective to increase significantly the quality of the products. The ABS (acrylonitrile, butadiene, styrene) resins are terpolymers formed by an elastomer and two thermoplastics amorphous components. The three different monomeric units from the terpolymer ABS contribute separately to the material characteristics exhibited. The molecular stiffness originating from polystyrene and the benzene ring hanging on the chain is responsible for the flexion module ABS. The acrylonitrile and the styrene incorporated butadiene exercises strong influence in the resistance to the impact because it reduces the bonding among them. The engineering use of this terpolymer became important due their mechanical properties and mainly, for the responses of this to tensions or deformations applied. The polymeric materials, when submitted to the ionizing radiation are modified by the transference of energy to these materials, introducing excitation and ionization of the molecules, generating chemical reactions that can produce permanent modifications in the polymeric physicochemical structure. The induced modifications can result in the polymeric material degradation or crosslinking, which can result in the improvement of some properties. This work has, as objective, to study the electron beam ionizing radiation effect, at different doses, in the properties of the polymer ABS. The studied properties were: tensile strength at break, elongation at break, Izod impact strength, flexural strength, melt flow index, Vicat softening temperature and the thermic distortion temperature. Also researches on Differential Scanning Calorimetry (DSC) and Thermogravimetric Analyses (TGA) were accomplished. From the experimental results, it was showed that for doses until 500 kGy, at 22.6 kGy/s dose rate, in the presence of air, the crosslinking process of ABS prevails. (author)

  12. Fittings of unplasticized polyvinyl chloride (PVC-U), chlorinated polyvinyl chloride (PVC-C) or acrylonitrile/butadiene/styrene (ABS) with plain sockets for pipes under pressure - Dimensions of sockets - Metric series

    CERN Document Server

    International Organization for Standardization. Geneva

    1985-01-01

    Fittings of unplasticized polyvinyl chloride (PVC-U), chlorinated polyvinyl chloride (PVC-C) or acrylonitrile/butadiene/styrene (ABS) with plain sockets for pipes under pressure - Dimensions of sockets - Metric series

  13. Fabrication of Acrylonitrile-Butadiene-Styrene Nanostructures with Anodic Alumina Oxide Templates, Characterization and Biofilm Development Test for Staphylococcus epidermidis.

    Directory of Open Access Journals (Sweden)

    Camille Desrousseaux

    Full Text Available Medical devices can be contaminated by microbial biofilm which causes nosocomial infections. One of the strategies for the prevention of such microbial adhesion is to modify the biomaterials by creating micro or nanofeatures on their surface. This study aimed (1 to nanostructure acrylonitrile-butadiene-styrene (ABS, a polymer composing connectors in perfusion devices, using Anodic Alumina Oxide templates, and to control the reproducibility of this process; (2 to characterize the physico-chemical properties of the nanostructured surfaces such as wettability using captive-bubble contact angle measurement technique; (3 to test the impact of nanostructures on Staphylococcus epidermidis biofilm development. Fabrication of Anodic Alumina Oxide molds was realized by double anodization in oxalic acid. This process was reproducible. The obtained molds present hexagonally arranged 50 nm diameter pores, with a 100 nm interpore distance and a length of 100 nm. Acrylonitrile-butadiene-styrene nanostructures were successfully prepared using a polymer solution and two melt wetting methods. For all methods, the nanopicots were obtained but inside each sample their length was different. One method was selected essentially for industrial purposes and for better reproducibility results. The flat ABS surface presents a slightly hydrophilic character, which remains roughly unchanged after nanostructuration, the increasing apparent wettability observed in that case being explained by roughness effects. Also, the nanostructuration of the polymer surface does not induce any significant effect on Staphylococcus epidermidis adhesion.

  14. Certification of mercury in acrylonitrile butadiene styrene by using isotope dilution mass spectrometry

    International Nuclear Information System (INIS)

    Hu Hai; Ma Liandi; Wei Chao; Zhou Tao; Wang Jun; Zhao Motian; Li Jinying

    2008-01-01

    Under the framework of a co-certification system for the development of Certified Reference Materials (CRMs) among China, Japan and Korea, the 1st co-certification campaign of mercury in acrylonitrile butadiene styrene (ABS) for Japanese CRMs was taken. In this campaign isotope dilution mass spectrometry (IDMS) was used. First, all abundances of Hg in spike 202 Hg, CRM and ABS were analyzed by MC-ICP-MS before the certification. Then the concentrations of 202 Hg and Hg in ABS were determined with IDMS by Q-ICP-MS. A new procedure to reduce memory effect was used. first, dilute with 5 μg/g Au solution for 1 min; then, 5 μg/g EDTA solution for 2 min. The results accord to each other very well and this implies that the co-certification system can run swimmingly. (authors)

  15. 21 CFR 177.1050 - Acrylonitrile/styrene copoly-mer modified with butadiene/styrene elastomer.

    Science.gov (United States)

    2010-04-01

    ... parts by weight of a grafted rubber consisting of (i) 8-12 parts of butadiene/styrene elastomer... limitations are determined by an infrared spectro-photo-metric method titled “Infrared Spectro-photo-metric...

  16. Plastics piping systems for industrial applications : acrylonitrile-butadiene- styrene (ABS), unplasticized poly(vinyl chloride) (PVC-U) and chlorinated poly(vinyl chloride) (PVC-C) : specifications for components and the system : metric series

    CERN Document Server

    International Organization for Standardization. Geneva

    2003-01-01

    Plastics piping systems for industrial applications : acrylonitrile-butadiene- styrene (ABS), unplasticized poly(vinyl chloride) (PVC-U) and chlorinated poly(vinyl chloride) (PVC-C) : specifications for components and the system : metric series

  17. Plastics piping systems for industrial applications – Acrylonitrile-butadiene-styrene (ABS), unplasticized poly(vinyl chloride) (PVC-U) and chlorinated poly(vinyl chloride) (PVC-C) – Specifications for components and the system – Metric series

    CERN Document Server

    Deutsches Institut für Normung. Berlin

    2003-01-01

    Plastics piping systems for industrial applications – Acrylonitrile-butadiene-styrene (ABS), unplasticized poly(vinyl chloride) (PVC-U) and chlorinated poly(vinyl chloride) (PVC-C) – Specifications for components and the system – Metric series

  18. Fatigue Characteristics of 3D Printed Acrylonitrile Butadiene Styrene (ABS)

    Science.gov (United States)

    Padzi, M. M.; Bazin, M. M.; Muhamad, W. M. W.

    2017-11-01

    Recently, the use of 3D printer technology has become significant to industries, especially when involving the new product development. 3D printing is a technology, which produces the 3D product or prototype using a layer-by-layer technique. However, there becomes less research on the mechanical performance of the 3D printed component. In the present work, fatigue characteristics of 3D printed specimen have been studied. Acrylonitrile butadiene styrene (ABS) has been chosen as a material research due to its wide applications. Two types of specimen used, which is the 3D printing and moulding specimens. Fused deposition modelling (FDM) technique was used to produce the specimens. The dog bone shape part was produced based on ASTM D638 standard and the tensile test has been carried out to get the mechanical properties. Fatigue test was carried out at 40%, 60% and 80% of the tensile strength. The moulded part shows higher fatigue cycles compared to 3D printed part for all loading percentages. Fatigue lives for 40%, 60% and 80%, were 911, 2645 and 26948 cycles, respectively. The results indicated that 3D printed part has a lower fatigue life, which may not suitable for industrial applications. However, the 3D printed part could be improved by using various parameters and may be introduced in low strength application.

  19. THERMAL DECOMPOSITION AND FLAMMABILITY OF ACRYLONITRILE-BUTADIENE-STYRENE/MULTI-WALLED CARBON NANOTUBES COMPOSITES

    Institute of Scientific and Technical Information of China (English)

    Li-fang Tong; Hai-yun Ma; Zheng-ping Fang

    2008-01-01

    Thermal and flammability properties of acrylonitrile-butadiene-styrene copolymer (ABS) with the addition of multi-walled carbon nanotubes (MWNTs) were studied. ABS/MWNTs composites were prepared via melt blending with the MWNTs content varied from 0.2% to 4.0% by mass. Thermogravimetry results showed that the addition of MWNTs accelerated the degradation of ABS during the whole process under air atmosphere, and both onset and maximum degradation temperature were lower than those of pure ABS. The destabilization effect of MWNTs on the thermal stability of the composites became unobvious under nitrogen, and the addition of MWNTs could improve the maximum degradation temperature. The heat release rate and time of ignition (tign) for the composites reduced greatly with the addition of MWNTs especially when the concentration of nanotubes was higher than 1.0%. The accumulation of carbon nanotubes with a network structure was observed and the char layer became thicker with increasing nanotubes concentration. Results from Raman spectra showed a higher degree of graphitization for the residues of ABS/MWNTs composites.

  20. Synthesis of Ethylene Bis-stearamide for Acrylonitrile-Butadiene-Styrene Polymer

    Directory of Open Access Journals (Sweden)

    M.A. Sayyadnejad

    2009-12-01

    Full Text Available Ethylene bis-stearamide is one of the important acrylonitrile-butadiene-styrene (ABS( polymer additives, which is used as lubricant, slip agent and mold release agent. In this research, ethylene bis-stearamide for ABS application was synthesized using stearic acid and ethylene diamine under reflux condition. Refluxing prevented ethylenediamine from evaporation and thus the initial molar ratio was maintained unchanged. The other role of refluxing was to prevent the oxidation of ethylene diamine by removal of oxygen which might have been present inside the reactor. The synthesized samples were characterized by Fourier transform infrared spectroscopy (FTIR(, total acid number and melting point. The total acid number of the synthesized samples in the lab, bench scale 1 kg( and pilot scale 30 kg( were 6.5, 8.7 and 8.6 mgKOH/g, respectively, and their melting points were in 141-144 °C range. It was found that total acid number values of samples are inversely proportional with reaction time. The longer the reaction time, the higher was the total acid number and sample purity. Compounding was carried out using ABS containing synthesized and reference ethylene bis-stearamide and the physical-mechanical properties of the samples were measured. The obtained results showed that, the measured properties such as melt flow index, impact resistance, softening temperature, heat deflection temperature, tensile strength and hardness for the compound prepared using synthesized ethylene bis-stearamide match very well with those of reference compound.

  1. Enhancing mechanical and thermal properties of styrene-butadiene rubber/carboxylated acrylonitrile butadiene rubber blend by the usage of graphene oxide with diverse oxidation degrees

    Science.gov (United States)

    Xue, Xiaodong; Yin, Qing; Jia, Hongbing; Zhang, Xuming; Wen, Yanwei; Ji, Qingmin; Xu, Zhaodong

    2017-11-01

    Graphene oxide (GO) with various oxidation degrees were prepared through a modified Hummer's method by varying the dosage of oxidizing agent. Styrene-butadiene rubber (SBR)/carboxylated acrylonitrile butadiene rubber (XNBR)/GO nanocomposites were fabricated by aqueous-phase mixing of GO colloidal dispersion with SBR latex and a small loading of XNBR latex, followed by co-coagulation. Effects of GO oxidation degree on the morphology, structure, mechanical and thermal properties of nanocomposites were thoroughly investigated. The results showed that the mechanical strength of nanocomposites were enhanced with the increase of oxidation degree of GO. Especially, when the weight ratio of KMnO4 to graphite was 15/5, the tensile strength, tear strength and thermal conductivity of SBR/XNBR/GO filled with 3 phr (parts per hundred rubber) GO increased by 255.3%, 141.5% and 22.8%, respectively, compared to those of neat SBR/XNBR blend. In addition, the thermal stability and the solvent resistance of the nanocomposites were also improved significantly. This work suggested that GO with higher oxidation degree could effectively improve the properties of SBR/XNBR blend.

  2. Tensile, Creep, and Fatigue Behaviors of 3D-Printed Acrylonitrile Butadiene Styrene

    Science.gov (United States)

    Zhang, Hanyin; Cai, Linlin; Golub, Michael; Zhang, Yi; Yang, Xuehui; Schlarman, Kate; Zhang, Jing

    2018-01-01

    Acrylonitrile butadiene styrene (ABS) is a widely used thermoplastics in 3D printing. However, there is a lack of thorough investigation of the mechanical properties of 3D-printed ABS components, including orientation-dependent tensile strength and creep fatigue properties. In this work, a systematic characterization is conducted on the mechanical properties of 3D-printed ABS components. Specifically, the effect of printing orientation on the tensile and creep properties is investigated. The results show that, in tensile tests, the 0° printing orientation has the highest Young's modulus of 1.81 GPa, and ultimate strength of 224 MPa. In the creep test, the 90° printing orientation has the lowest k value of 0.2 in the plastics creep model, suggesting 90° is the most creep resistant direction. In the fatigue test, the average cycle number under load of 30 N is 3796 cycles. The average cycle number decreases to 128 cycles when the load is 60 N. Using the Paris law, with an estimated crack size of 0.75 mm, and stress intensity factor is varied from 352 to 700 N√ m, the derived fatigue crack growth rate is 0.0341 mm/cycle. This study provides important mechanical property data that is useful for applying 3D-printed ABS in engineering applications.

  3. Study on Exothermic Oxidation of Acrylonitrile-butadiene-styrene (ABS Resin Powder with Application to ABS Processing Safety

    Directory of Open Access Journals (Sweden)

    Jenq-Renn Chen

    2010-08-01

    Full Text Available Oxidative degradation of commercial grade ABS (Acrylonitrile-butadiene-styrene resin powders was studied by thermal analysis. The instabilities of ABS containing different polybutadiene (PB contents with respect to temperature were studied by Differential Scanning Calorimeter (DSC. Thermograms of isothermal test and dynamic scanning were performed. Three exothermic peaks were observed and related to auto-oxidation, degradation and oxidative decomposition, respectively. Onset temperature of the auto-oxidation was determined to be around 193 °C. However, threshold temperature of oxidation was found to be as low as 140 °C by DSC isothermal testing. Another scan of the powder after degeneration in air showed an onset temperature of 127 °C. Reactive hazards of ABS powders were verified to be the exothermic oxidation of unsaturated PB domains, not the SAN (poly(styrene-acrylonitrile matrix. Heat of oxidation was first determined to be 2,800 ± 40 J per gram of ABS or 4,720 ± 20 J per gram of PB. Thermal hazards of processing ABS powder are assessed by adiabatic temperature rise at process conditions. IR spectroscopy associated with heat of oxidation verified the oxidative mechanism, and these evidences excluded the heat source from the degradation of SAN. A specially prepared powder of ABS without adding anti-oxidant was analyzed by DSC for comparing the exothermic behaviors. Exothermic onset temperatures were determined to be 120 °C and 80 °C by dynamic scanning and isothermal test, respectively. The assessment successfully explained fires and explosions in an ABS powder dryer and an ABS extruder.

  4. Experimental Investigations on Tribological Behaviour of Alumina Added Acrylonitrile Butadiene Styrene (ABS Composites

    Directory of Open Access Journals (Sweden)

    T. Panneerselvam

    2016-09-01

    Full Text Available Composite materials are multifunctional in nature, which can be custom-made based on the nature of the applications. The challenge of composite materials lie on complementing the properties of one another i.e. materials which go in the making of composites strengthen each other by inhibiting their weaknesses. Polymers are one of the widely used materials which serve a wide spectrum of engineering needs. In the present work, the tribological behaviour of a composite containing Acrylonitrile Butadiene Styrene (ABS and traces of Alumina is experimentally investigated. Alumina is added to ABS in various percentages such as 1%, and 3% by weight in order to improve the wear resistance of the polymer. Central Composite Design was used to design the experiments and a standard Pin-On-Disk apparatus was used to conduct the experiments. It is observed from the test results that the addition of alumina significantly enhances the wear behavior of the polymer. However, adding more percentage of alumina has led to adverse effect on wear resistance of polymer materials. Abrasive wear mechanism is found to be predominant in the case of alumina added composite materials. It is also found that 1% alumina added composite exhibits excellent wear properties compared to other materials.

  5. Crack initiation and propagation on the polymeric material ABS (Acrylonitrile Butadiene Styrene, under ultrasonic fatigue testing

    Directory of Open Access Journals (Sweden)

    G. M. Domínguez Almaraz

    2015-10-01

    Full Text Available Crack initiation and propagation have been investigated on the polymeric material ABS (Acrylonitrile Butadiene Styrene, under ultrasonic fatigue testing. Three controlled actions were implemented in order to carry out fatigue tests at very high frequency on this material of low thermal conductivity, they are: a The applying load was low to limit heat dissipation at the specimen neck section, b The dimensions of testing specimen were small (but fitting the resonance condition, in order to restraint the temperature gradient at the specimen narrow section, c Temperature at the specimen neck section was restrained by immersion in water or oil during ultrasonic fatigue testing. Experimental results are discussed on the basis of thermo-mechanical behaviour: the tail phenomenon at the initial stage of fatigue, initial shear yielding deformation, crazed development on the later stage, plastic strain on the fracture surface and the transition from low to high crack growth rate. In addition, a numerical analysis is developed to evaluate the J integral of energy dissipation and the stress intensity factor K, with the crack length

  6. Effect of plasticiser on properties of styrene-butadiene-styrene thermoplastic elastomers

    International Nuclear Information System (INIS)

    Norzalia, S.; Farid, A.S.; O'Brien, M.G.

    1999-01-01

    This study investigates the properties of plasticised styrene-butadiene-styrene thermoplastic elastomers for possible applications in pharmaceutical, medical and food industries. Unplasticised styrene-butadiene-styrene (USBS) materials: vector 8550-D and vector 4461-D, which are developmental materials introduced by Exxon, and blends of vector 8550-D with vector 4461-D were plasticised paraffinic type plasticisers plastol 172 and plastol 352. Shore A hardness, tensile stress at break, modulus at 100% strain, elongation at break and density values showed a decrease whereas flow properties such as melt flow index (MFI) increased considerably with increasing plasticiser concentration. The properties of the plasticised styrene-butadiene-styrene thermoplastic elastomers were compared to the USBS materials. (author)

  7. Separation of polycarbonate and acrylonitrile-butadiene-styrene waste plastics by froth flotation combined with ammonia pretreatment.

    Science.gov (United States)

    Wang, Chong-Qing; Wang, Hui; Liu, Qun; Fu, Jian-Gang; Liu, You-Nian

    2014-12-01

    The objective of this research is flotation separation of polycarbonate (PC) and acrylonitrile-butadiene-styrene (ABS) waste plastics combined with ammonia pretreatment. The PC and ABS plastics show similar hydrophobicity, and ammonia treatment changes selectively floatability of PC plastic while ABS is insensitive to ammonia treatment. The contact angle measurement indicates the dropping of flotation recovery of PC is ascribed to a decline of contact angle. X-ray photoelectron spectroscopy demonstrates reactions occur on PC surface, which makes PC surface more hydrophilic. Separation of PC and ABS waste plastics was conducted based on the flotation behavior of single plastic. At different temperatures, PC and ABS mixtures were separated efficiently through froth flotation with ammonia pretreatment for different time (13 min at 23 °C, 18 min at 18 °C and 30 min at 23 °C). For both PC and ABS, the purity and recovery is more than 95.31% and 95.35%, respectively; the purity of PC and ABS is up to 99.72% and 99.23%, respectively. PC and ABS mixtures with different particle sizes were separated effectively, implying that ammonia treatment possesses superior applicability. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Synergetic effect of graphene oxide-carbon nanotube on nanomechanical properties of acrylonitrile butadiene styrene nanocomposites

    Science.gov (United States)

    Jyoti, Jeevan; Pratap Singh, Bhanu; Chockalingam, Sreekumar; Joshi, Amish G.; Gupta, Tejendra K.; Dhakate, S. R.

    2018-04-01

    Herein, multiwall carbon nanotubes (MWCNTs), reduced graphene oxide (rGO), graphene oxide-carbon nanotubes (GCNTs) hybrid reinforced acrylonitrile butadiene styrene (ABS) nanocomposites have been prepared by micro twin screw extruder with back flow channel and the effect of different type of fillers on the nanomechanical properties are studied. The combination of both graphene oxide and CNT has enhanced the dispersion in polymer matrix and lower the probability of CNTs aggregation. GCNTs hybrid have been synthesized via novel chemical route and well characterized using Raman spectroscopic technique. The nanoindentation hardness and elastic modulus of GCNTs-ABS hybrid nanocomposites were improved from 211.3 MPa and 4.12 GPa of neat ABS to 298.9 MPa and 6.02 GPa, respectively at 5wt% GCNTs loading. In addition to hardness and elastic modulus, other mechanical properties i.e. plastic index parameter, elastic recovery, ratio of residual displacement after load removal and displacement at the maximum load and plastic deformation energy have also been investigated. These results were correlated with Raman and X-ray photoelectron spectroscopic (XPS) techniques and microstructural characterizations (scanning electron microscopy). Our demonstration would provide guidelines for the fabrication of hard and scratches nanocomposite materials for potential use in, automotive trim components and bumper bars, carrying cases and electronic industries and electromagnetic interference shielding.

  9. Radiation cured acrylonitrile--butadiene elastomers

    International Nuclear Information System (INIS)

    Eldred, R.J.

    1976-01-01

    In accordance with a preferred embodiment of this invention, the ultimate elongation of an electron beam radiation cured acrylonitrile-butadiene elastomer is significantly increased by the incorporation of a preferred noncrosslinking monomer, glycidyl methacrylate, in combination with the conventional crosslinking monomer, trimethylolpropanetrimethacrylate, prior to the radiation curing process

  10. Proposal of the Tubular Daylight System Using Acrylonitrile Butadiene Styrene (ABS Metalized with Aluminum for Reflective Tube Structure

    Directory of Open Access Journals (Sweden)

    Anderson Diogo Spacek

    2018-01-01

    Full Text Available In the search for alternatives to reduce the consumption of electric energy, the possibility of using natural light for lighting through TDD (tubular daylight devices or TDGS (tubular daylight guidance systems appears. These natural luminaires are used in rooms where you want to save electricity and enjoy the benefits of natural light. The present work proposes the construction of a tubular system for the conduction of natural light that replaces aluminum with silver (currently marketed by several companies by polymer metallized with aluminum, offering a low cost. The polymer acrylonitrile butadiene styrene (ABS, coated with aluminum by physical vapor deposition (ionization, was evaluated for some tests to verify characteristics of the structure and the metallized surface. After the tests, the construction of the reflective tube was performed and validated in a real scale of application. The results proved the technical viability of the proposed tube construction for the realization of direct sunlight for illumination using polymeric material. Although it has produced 35% less than the reference tube, it can be marketed at an estimated cost of 50% less.

  11. Blends of Styrene-Butadiene-Styrene Triblock Copolymer with Random Styrene-Maleic Anhydride Copolymers

    NARCIS (Netherlands)

    Piccini, Maria Teresa; Ruggeri, Giacomo; Passaglia, Elisa; Picchioni, Francesco; Aglietto, Mauro

    2002-01-01

    Blends of styrene-butadiene-styrene triblock copolymer (SBS) with random styrene-maleic anhydride copolymers (PS-co-MA), having different MA content, were prepared in a Brabender Plastigraph mixer. The presence of polystyrene (PS) blocks in the SBS copolymer and the high styrene content (93 and 86

  12. Synchrotron-based FTIR microspectroscopy for the mapping of photo-oxidation and additives in acrylonitrile-butadiene-styrene model samples and historical objects.

    Science.gov (United States)

    Saviello, Daniela; Pouyet, Emeline; Toniolo, Lucia; Cotte, Marine; Nevin, Austin

    2014-09-16

    Synchrotron-based Fourier transform infrared micro-spectroscopy (SR-μFTIR) was used to map photo-oxidative degradation of acrylonitrile-butadiene-styrene (ABS) and to investigate the presence and the migration of additives in historical samples from important Italian design objects. High resolution (3×3 μm(2)) molecular maps were obtained by FTIR microspectroscopy in transmission mode, using a new method for the preparation of polymer thin sections. The depth of photo-oxidation in samples was evaluated and accompanied by the formation of ketones, aldehydes, esters, and unsaturated carbonyl compounds. This study demonstrates selective surface oxidation and a probable passivation of material against further degradation. In polymer fragments from design objects made of ABS from the 1960s, UV-stabilizers were detected and mapped, and microscopic inclusions of proteinaceous material were identified and mapped for the first time. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Biocompatibility of epoxidized styrene-butadiene-styrene block copolymer membrane

    International Nuclear Information System (INIS)

    Yang, Jen Ming; Tsai, Shih Chang

    2010-01-01

    Styrene-butadiene-styrene block copolymer (SBS) membrane was prepared by solution casting method and then was epoxidized with peroxyformic acid generated in situ to yield the epoxidized styrene-butadiene-styrene block copolymer membrane (ESBS). The structure and properties of ESBS were characterized with infrared spectroscopy, Universal Testing Machine, differential scanning calorimetry (DSC), and thermogravimetry analysis (TGA). The performances of contact angle, water content, protein adsorption, and water vapor transmission rate on ESBS membrane were determined. After epoxidation, the hydrophilicity of the membrane increased. The water vapor transmission rate of ESBS membrane is similar to human skin. The biocompatibility of ESBS membrane was evaluated with the cell culture of fibroblasts on the membrane. It revealed that the cells not only remained viable but also proliferated on the surface of the various ESBS membranes and the population doubling time for fibroblast culture decreased.

  14. The effects of printing orientation on the electrochemical behaviour of 3D printed acrylonitrile butadiene styrene (ABS)/carbon black electrodes.

    Science.gov (United States)

    Bin Hamzah, Hairul Hisham; Keattch, Oliver; Covill, Derek; Patel, Bhavik Anil

    2018-06-14

    Additive manufacturing also known as 3D printing is being utilised in electrochemistry to reproducibly develop complex geometries with conductive properties. In this study, we explored if the electrochemical behavior of 3D printed acrylonitrile butadiene styrene (ABS)/carbon black electrodes was influenced by printing direction. The electrodes were printed in both horizontal and vertical directions. The horizsontal direction resulted in a smooth surface (HPSS electrode) and a comparatively rougher surface (HPRS electrode) surface. Electrodes were characterized using cyclic voltammetry, electrochemical impedance spectroscopy and chronoamperometry. For various redox couples, the vertical printed (VP) electrode showed enhanced current response when compared the two electrode surfaces generated by horizontal print direction. No differences in the capacitive response was observed, indicating that the conductive surface area of all types of electrodes were identical. The VP electrode had reduced charge transfer resistance and uncompensated solution resistance when compared to the HPSS and HPRS electrodes. Overall, electrodes printed in a vertical direction provide enhanced electrochemical performance and our study indicates that print orientation is a key factor that can be used to enhance sensor performance.

  15. Co-recycling of acrylonitrile-butadiene-styrene waste plastic and nonmetal particles from waste printed circuit boards to manufacture reproduction composites.

    Science.gov (United States)

    Sun, Zhixing; Shen, Zhigang; Zhang, Xiaojing; Ma, Shulin

    2015-01-01

    This study investigated the feasibility of using acrylonitrile-butadiene-styrene (ABS) waste plastic and nonmetal particles from waste printed circuit boards (WPCB) to manufacture reproduction composites (RC), with the aim of co-recycling these two waste resources. The composites were prepared in a twin-crew extruder and investigated by means of mechanical testing, in situ flexural observation, thermogravimatric analysis, and dimensional stability evaluation. The results showed that the presence of nonmetal particles significantly improved the mechanical properties and the physical performance of the RC. A loading of 30 wt% nonmetal particles could achieve a flexural strength of 72.6 MPa, a flexural modulus of 3.57 GPa, and an impact strength of 15.5 kJ/m2. Moreover, it was found that the application of maleic anhydride-grafted ABS as compatilizer could effectively promote the interfacial adhesion between the ABS plastic and the nonmetal particles. This research provides a novel method to reuse waste ABS and WPCB nonmetals for manufacturing high value-added product, which represents a promising way for waste recycling and resolving the environmental problem.

  16. Compatibilization of acrylonitrile-butadiene-styrene terpolymer/poly(ethylene glycol-co-1,4-cyclohexanedimethanol terephthalate) blend: effect on morphology, interface, mechanical properties and hydrophilicity

    Science.gov (United States)

    Chen, Tingting; Zhang, Jun

    2018-04-01

    The compatibilization of acrylonitrile-butadiene-styrene terpolymer (ABS) and poly(ethylene glycol-co-1,4-cyclohexanedimethanol terephthalate) (PETG) blends was first investigated. Styrene-acrylonitrile-glycidyl methacrylate terpolymer (SAG) and ABS grafted with maleic anhydride (ABS-g-MAH) were selected as reactive compatibilizers for the ABS/PETG blends. The compatibilization effect was assessed by scanning electron microscope (SEM), differential scanning calorimetry (DSC) and mechanical properties. And the effect of compatibilizers on the hydrophilicity of the blends was evaluated as well. SEM observation and DSC analysis confirmed that both SAG and ABS-g-MAH compatibilizers could improve the compatibility between ABS and PETG, leading to an improvement in toughness of the blend. The possible cause for the improvement of compatibility was the reaction between compatibilizers and PETG, which could in situ turn out compatibilizers that acted as interfacial agents to enhance the interfacial interaction in the blend. Especially, the addition of SAG significantly decreased the dispersion phase size and the interface voids almost disappeared. Since the in situ reactions between the epoxy groups of SAG and the end groups (sbnd COOH or sbnd OH) of PETG generated PETG-co-SAG copolymer at the blend interface, and the cross-linking reactions proposed to take place between SAG and the PETG-co-SAG copolymer, acting as compatibilizer, could significantly increase the interfacial interaction. The addition of SAG also enhanced the stiffness of the blends. Moreover, the addition of SAG made the blend more hydrophilic, whereas the addition of ABS-g-MAH made the blend more hydrophobic. Therefore, SAG was a good compatibilizer for the ABS/PETG blends and could simultaneously provide the blends with toughening, stiffening and hydrophilic effects.

  17. Influence of acrylonitrile butadiene rubber on recyclability of blends prepared from poly(vinyl chloride) and poly(methyl methacrylate).

    Science.gov (United States)

    Suresh, Sunil S; Mohanty, Smita; Nayak, Sanjay K

    2018-06-01

    The current investigation deals with the recycling possibilities of poly(vinyl chloride) and poly(methyl methacrylate) in the presence of acrylonitrile butadiene rubber. Recycled blends of poly(vinyl chloride)/poly(methyl methacrylate) are successfully formed from the plastic constituents, those are recovered from waste computer products. However, lower impact performance of the blend and lower stability of the poly(vinyl chloride) phase in the recycled blend restricts its further usage in industrial purposes. Therefore, effective utilisation acrylonitrile butadiene rubber in a recycled blend was considered for improving mechanical and thermal performance. Incorporation of acrylonitrile butadiene rubber resulted in the improvement in impact performance as well as elongation-at-break of the recycled blend. The optimum impact performance was found in the blend with 9 wt% acrylonitrile butadiene rubber, which shows 363% of enhancement as compared with its parent blend. Moreover, incorporated acrylonitrile butadiene rubber also stabilises the poly(vinyl chloride) phase present in the recycled blend, similarly Fourier transform infrared spectroscopy studies indicate the interactions of various functionalities present in the recycled blend and acrylonitrile butadiene rubber. In addition to this, thermogravimetric analysis indicates the improvement in the thermal stability of the recycled blend after the addition of acrylonitrile butadiene rubber into it. The existence of partial miscibility in the recycled blend was identified using differential scanning calorimetry and scanning electron microscopy.

  18. Use of laser-induced breakdown spectroscopy for the determination of polycarbonate (PC) and acrylonitrile-butadiene-styrene (ABS) concentrations in PC/ABS plastics from e-waste.

    Science.gov (United States)

    Costa, Vinicius Câmara; Aquino, Francisco Wendel Batista; Paranhos, Caio Marcio; Pereira-Filho, Edenir Rodrigues

    2017-12-01

    Due to the continual increase in waste generated from electronic devices, the management of plastics, which represents between 10 and 30% by weight of waste electrical and electronic equipment (WEEE or e-waste), becomes indispensable in terms of environmental and economic impacts. Considering the importance of acrylonitrile-butadiene-styrene (ABS), polycarbonate (PC), and their blends in the electronics and other industries, this study presents a new application of laser-induced breakdown spectroscopy (LIBS) for the fast and direct determination of PC and ABS concentrations in blends of these plastics obtained from samples of e-waste. From the LIBS spectra acquired for the PC/ABS blend, multivariate calibration models were built using partial least squares (PLS) regression. In general, it was possible to infer that the relative errors between the theoretical or reference and predicted values for the spiked samples were lower than 10%. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Chrome-tanned leather shavings as a filler of butadiene-acrylonitrile rubber.

    Science.gov (United States)

    Przepiórkowska, A; Chrońska, K; Zaborski, M

    2007-03-06

    The noxious wastes from the tanning industry such as chrome-tanned leather shavings were used as the only filler of rubber mixes containing carboxylated butadiene-acrylonitrile rubber (XNBR) or butadiene-acrylonitrile rubber (NBR), and a dispersing agent Limanol PEV (Schill & Seilacher). The best form addition of leather powder to the rubber mixes is mixed the waste protein with zinc oxide. The leather powder added to the rubber mixes improves the mechanical properties: tensile strength (T(s)), elongation at break (epsilon(b)) and increase the cross-linking density of carboxylated XNBR and NBR rubber mixes. Satisfactory results of these studies are presented in this work.

  20. Three-dimensional Printed Acrylonitrile Butadiene Styrene Framework Coated with Cu-BTC Metal-organic Frameworks for the Removal of Methylene Blue

    Science.gov (United States)

    Wang, Zongyuan; Wang, Jiajun; Li, Minyue; Sun, Kaihang; Liu, Chang-jun

    2014-01-01

    Three-dimensional (3D) printing was applied for the fabrication of acrylonitrile butadiene styrene (ABS) framework. Functionalization of the ABS framework was then performed by coating of porous Cu-BTC (BTC = benzene tricarboxylic acid) metal-organic frameworks on it using a step-by-step in-situ growth. The size of the Cu-BTC particles on ABS was ranged from 200 nm to 900 nm. The Cu-BTC/ABS framework can take up most of the space of the tubular reactor that makes the adsorption effective with no need of stirring. Methylene blue (MB) can be readily removed from aqueous solution by this Cu-BTC/ABS framework. The MB removal efficiency for solutions with concentrations of 10 and 5 mg/L was 93.3% and 98.3%, respectively, within 10 min. After MB adsorption, the Cu-BTC/ABS composite can easily be recovered without the need for centrifugation or filtration and the composite is reusable. In addition the ABS framework can be recovered for subsequent reuse. A significant advantage of 3D-printed frameworks is that different frameworks can be easily fabricated to meet the needs of different applications. This is a promising strategy to synthesize new frameworks using MOFs and polymers to develop materials for applications beyond adsorption. PMID:25089616

  1. Electromechanical responses of poly(3-thiopheneacetic acid/acrylonitrile-butadiene rubbers

    Directory of Open Access Journals (Sweden)

    2008-12-01

    Full Text Available Acrylonitrile-butadiene rubber (NBR and blends of poly(3-thiopheneacetic acid/ acrylonitrile-butadiene rubber, P3TAA/NBR, were fabricated, and the electrorheological properties, dielectric, and electrical conductivities were investigated . The electrorheological properties were determined under an oscillatory shear mode in a frequency range of 0.1 to 100 rad/s at various electric field strengths, from 0 to 2 kV/mm, at a fixed 27°C to observe the effects of acrylonitrile content (ACN in the rubber systems and the conductive particle concentration in the blends. For the pure rubber systems, the storage modulus response (ΔG′ is linearly dependent on its dielectric constant (ε′, and increases with the ACN content. For the NBR/P3TAA blends, the storage modulus response varies nonlinearly with the dielectric constant. The bending responses of the rubbers and the blends were investigated in a vertical cantilever fixture. For the pure rubber system, the bending angle and the dielectrophoresis force vary linearly with electric field strength. For the blend system, the bending angle and the dielectrophoresis force vary nonlinearly with electric field strength.

  2. Preparation and characterization of zinc sulphide nanocomposites based on acrylonitrile butadiene rubber

    Science.gov (United States)

    Ramesan, M. T.; Nihmath, A.; Francis, Joseph

    2013-06-01

    Rubber composite based on acrylonitrile butadiene rubber (NBR) reinforced with nano zinc sulphide (ZnS) have been prepared via vulcanization process and characterized by several techniques. Processing characteristics such as scorch time, optimum cure time decreases with increase in concentration of nano filler in acrylonitrile butadiene rubber. Mechanical properties such as tensile and tear strength increases with increase in concentration of nano filler up to 7 phr of loading thereafter the value decreases, whereas hardness, and flame resistance increases with the dosage of fillers. These enhanced properties are due to the homogenous dispersion of nano fillers in NBR matrix, which is evidenced from the structure that evaluated using X-ray diffraction (XRD) and scanning electron microscopy (SEM).

  3. Quantitative analysis of styrene butadiene copolymers using S-SIMS and LA-FTICRMS

    International Nuclear Information System (INIS)

    Ruch, D.; Boes, C.; Zimmer, R.; Muller, J.F.; Migeon, H.-N.

    2003-01-01

    Styrene butadiene copolymers (SBR) have been analyzed by static secondary ion mass spectrometry (S-SIMS) and laser ablation Fourier transform ion cyclotron resonance mass spectrometry (LA-FTICRMS) to obtain quantitative information based on specific peaks knowing that the complication of this system is that there are no characteristic SIMS peaks unique to each styrene and butadiene monomer. So, to overcome this problem, a silver deposition has been applied into polystyrene (PS), butadiene rubber (BR) and SBR. By this way, new secondary ions are detected in particular silver cationized butadiene and styrene monomers at m/z 161/163 and 211/213, respectively. The LA-FTICRMS experiments do not require pre-treatment. At high laser power density, UV photons (193, 266 and 355 nm) allow to detect directly the styrene and butadiene ions at m/z 104 and 54, respectively. Using these SIMS and LA-FTICRMS peaks, it is possible to obtain quantitative results. However, the silver coating in the SIMS experiment seems to have a great influence on the obtention of quantitative information. For LA-FTICRMS experiments, the best results seem to be obtained at the 355 nm wavelength

  4. Novel in situ coordinated cerium salt/acrylonitrile-butadiene rubber composite

    International Nuclear Information System (INIS)

    Han, Jianjun; Lu, Haifeng; Zhang, Jie; Feng, Shengyu

    2012-01-01

    A novel rubber composite of acrylonitrile-butadiene rubber (NBR) filled with cerium salt particles was vulcanized via in situ coordination for the first time. The resulting materials exhibit good mechanical properties. Curing characteristics analysis, differential scanning calorimetry, X-ray photoelectron spectroscopy, tensile testing, and an equilibrium swelling method were used for the characterization of the composite. The results in this paper indicate that the composite is a kind of elastomer based on the in situ coordination crosslinking interactions between the nitrile groups (–CN) of NBR and cerium ions. The mechanical properties of vulcanized cerium salt/ NBR rubber are altered when changing the sorts of cerium salt. Moreover, these materials show good irradiation resistance because of the introduction of the cerium salt. -- Highlights: ► Cerium salts were firstly used to vulcanize the acrylonitrile-butadiene rubber. ► Cerium salts act as not only crosslink agents but also reinforcing fillers in the matrix. ► These materials show good irradiation resistance and mechanical properties at same time.

  5. Flame retardancy mechanisms of bisphenol A bis(diphenyl phosphate) in combination with zinc borate in bisphenol A polycarbonate/acrylonitrile-butadiene-styrene blends

    International Nuclear Information System (INIS)

    Pawlowski, Kristin H.; Schartel, Bernhard; Fichera, Mario A.; Jaeger, Christian

    2010-01-01

    Bisphenol A polycarbonate/acrylonitrile-butadiene-styrene (PC/ABS) with and without bisphenol A bis(diphenyl phosphate) (BDP) and 5 wt.% zinc borate (Znb) were investigated. The pyrolysis was studied by thermogravimetry (TG), TG-FTIR and NMR, the fire behaviour with a cone calorimeter applying different heat fluxes, LOI and UL 94. Fire residues were examined with NMR. BDP affects the decomposition of PC/ABS and acts as a flame retardant in the gas and condensed phases. The addition of Znb results in an additional hydrolysis of PC. The fire behaviour is similar to PC/ABS, aside from a slightly increased LOI and a reduced peak heat release rate, both caused by borates improving the barrier properties of the char. In PC/ABS + BDP + Znb, the addition of Znb yields a borate network and amorphous phosphates. Znb also reacts with BDP to form alpha-zinc phosphate and borophosphates that suppress the original flame retardancy mechanisms of BDP. The inorganic-organic residue formed provides more effective flame retardancy, in particular at low irradiation in the cone calorimeter, and a clear synergy in LOI, whereas for more developed fires BDP + Znb become less effective than BDP in PC/ABS with respect to the total heat evolved.

  6. Effect of the Compatibilizer Upon the Properties of Styrene-butadiene Rubber Organoclay Nanocomposites

    Directory of Open Access Journals (Sweden)

    M. Tavakoli

    2013-01-01

    Full Text Available Nanocomposite vulcunizates based on styrene-butadiene rubber (SBR, organoclay and a conventional sulfur curing system were prepared by melt blending process in an internal mixer. In order to study the effects of the type of interfacial compatibilizer on the properties of SBR and clay nanoparticles,three types of compatibilizers, maleic anhydride grafted ethylene-propylene diene rubber (EPDM-g-MAH, acrylonitrile-butadiene rubber (NBR and epoxidized natural rubber (ENR50 have been used. The nanocomposites have been compared together from view point of their curing behavior, rheological and mechanical properties. The developed microstructure and dynamics of the macromolecular chains in proximity of the clay nanolayers have been characterized using X-ray diffraction (XRD, scanning electron microscopy (SEM, and melt rheo-mechanical spectroscopy (RMS. Curing behavior of the prepared nanocomposites has been evaluated using a rubber curing rheometer. EPDM-g-MAH and ENR50 showed to enhance the interactions between SBR chains into clay tactoids much stronger than NBR as a compatibilizer. These were consistent with the dynamic mechanical thermal analysis (DMTA data as well as macroscale mechanical properties tested on the samples.

  7. Novel in situ coordinated cerium salt/acrylonitrile-butadiene rubber composite

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jianjun [Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Lu, Haifeng, E-mail: lhf@sdu.edu.cn [Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Zhang, Jie [Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Feng, Shengyu, E-mail: fsy@sdu.edu.cn [Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China)

    2012-09-14

    A novel rubber composite of acrylonitrile-butadiene rubber (NBR) filled with cerium salt particles was vulcanized via in situ coordination for the first time. The resulting materials exhibit good mechanical properties. Curing characteristics analysis, differential scanning calorimetry, X-ray photoelectron spectroscopy, tensile testing, and an equilibrium swelling method were used for the characterization of the composite. The results in this paper indicate that the composite is a kind of elastomer based on the in situ coordination crosslinking interactions between the nitrile groups (-CN) of NBR and cerium ions. The mechanical properties of vulcanized cerium salt/ NBR rubber are altered when changing the sorts of cerium salt. Moreover, these materials show good irradiation resistance because of the introduction of the cerium salt. -- Highlights: Black-Right-Pointing-Pointer Cerium salts were firstly used to vulcanize the acrylonitrile-butadiene rubber. Black-Right-Pointing-Pointer Cerium salts act as not only crosslink agents but also reinforcing fillers in the matrix. Black-Right-Pointing-Pointer These materials show good irradiation resistance and mechanical properties at same time.

  8. Melt processing and property testing of a model system of plastics contained in waste from electrical and electronic equipment.

    Science.gov (United States)

    Triantou, Marianna I; Tarantili, Petroula A; Andreopoulos, Andreas G

    2015-05-01

    In the present research, blending of polymers used in electrical and electronic equipment, i.e. acrylonitrile-butadiene-styrene terpolymer, polycarbonate and polypropylene, was performed in a twin-screw extruder, in order to explore the effect process parameters on the mixture properties, in an attempt to determine some characteristics of a fast and economical procedure for waste management. The addition of polycarbonate in acrylonitrile-butadiene-styrene terpolymer seemed to increase its thermal stability. Also, the addition of polypropylene in acrylonitrile-butadiene-styrene terpolymer facilitates its melt processing, whereas the addition of acrylonitrile-butadiene-styrene terpolymer in polypropylene improves its mechanical performance. Moreover, the upgrading of the above blends by incorporating 2 phr organically modified montmorillonite was investigated. The prepared nanocomposites exhibit greater tensile strength, elastic modulus and storage modulus, as well as higher melt viscosity, compared with the unreinforced blends. The incorporation of montmorillonite nanoplatelets in polycarbonate-rich acrylonitrile-butadiene-styrene terpolymer/polycarbonate blends turns the thermal degradation mechanism into a two-stage process. Alternatively to mechanical recycling, the energy recovery from the combustion of acrylonitrile-butadiene-styrene terpolymer/polycarbonate and acrylonitrile-butadiene-styrene terpolymer/polypropylene blends was recorded by measuring the gross calorific value. Comparing the investigated polymers, polypropylene presents the higher gross calorific value, followed by acrylonitrile-butadiene-styrene terpolymer and then polycarbonate. The above study allows a rough comparative evaluation of various methodologies for treating plastics from waste from electrical and electronic equipment. © The Author(s) 2015.

  9. 21 CFR 177.1040 - Acrylonitrile/styrene copoly-mer.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Acrylonitrile/styrene copoly-mer. 177.1040 Section 177.1040 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use as Basic Components of Single and Repeated Use Food...

  10. Polybutadiene and Styrene-Butadiene rubbers for high-dose dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Lucas N. [Instituto Federal de Educacao, Ciencia e Tecnologia de Goias-IFG,Campus Goiania, Goiania -GO (Brazil); Instituto de Pesquisas Energeticas e Nucleares -IPEN, Sao Paulo-SP (Brazil); Vieira, Silvio L. [Instituto de Fisica, Universidade Federal de Goias-UFG, Campus Samambaia, Goiania-GO (Brazil); Schimidt, Fernando [Instituto Federal de Educacao, Ciencia e Tecnologia de Goias-IFG,Campus Inhumas, Inhumas-GO (Brazil); Antonio, Patricia L.; Caldas, Linda V.E. [Instituto de Pesquisas Energeticas e Nucleares -IPEN, Sao Paulo-SP (Brazil)

    2015-07-01

    Polybutadiene and Styrene-Butadiene are synthetical rubbers used widely for pneumatic tires manufacturing. In this research, the dosimeter characteristics of those rubbers were studied for application in high-dose dosimetry. The rubber samples were irradiated with doses of 10 Gy up to 10 kGy, using a {sup 60}Co Gamma Cell-220 system (dose rate of 1.089 kGy/h) and their readings were taken on a Fourier Transform Infrared Spectroscopy-FTIR system (model Frontier/Perkin Elmer). The ratios of two absorbance peaks were taken for each kind of rubber spectrum, Polybutadiene (1306/1130 cm{sup -1}) and Styrene-Butadiene (1449/1306 cm{sup -1}). The ratio calculated was used as the response to the irradiation, and is not uniform across the sample. From the results, it can be concluded for both rubbers: a) the dose-response curves may be useful for high-dose dosimetry (greater than 250 Gy); b) their response for reproducibility presented standard deviations lower than 2.5%; c) the relative sensitivity was higher for Styrene-Butadiene (1.86 kGy{sup -1}) than for Polybutadiene (1.81 kGy{sup -1}), d) for doses of 10 kGy to 200 kGy, there was no variation in the dosimetric response. Both types of rubber samples showed usefulness as high-dose dosimeters. (authors)

  11. Simultaneous determination of the styrene unit content and assessment of molecular weight of triblock copolymers in adhesives by a size exclusion chromatography method.

    Science.gov (United States)

    Wang, Mingfang; Wang, Yuerong; Luo, Pei; Zhang, Hongyang; Zhang, Min; Hu, Ping

    2017-10-01

    The content of styrene units in nonhydrogenated and hydrogenated styrene-butadiene-styrene and styrene-isoprene-styrene triblock copolymers significantly influences product performance. A size exclusion chromatography method was developed to determine the average styrene content of triblock copolymers blended with tackifier in adhesives. A complete separation of the triblock copolymer from the other additives was realized with size exclusion chromatography. The peak area ratio of the UV and refraction index signals of the copolymers at the same effective elution volume was correlated to the average styrene unit content using nuclear magnetic resonance spectroscopy with commercial copolymers as standards. The obtained calibration curves showed good linearity for both the hydrogenated and nonhydrogenated styrene-butadiene-styrene and styrene-isoprene-styrene triblock copolymers (r = 0.974 for styrene contents of 19.3-46.3% for nonhydrogenated ones and r = 0.970 for the styrene contents of 23-58.2% for hydrogenated ones). For copolymer blends, the developed method provided more accurate average styrene unit contents than nuclear magnetic resonance spectroscopy provided. These results were validated using two known copolymer blends consisting of either styrene-isoprene-styrene or hydrogenated styrene-butadiene-styrene and a hydrocarbon tackifying resin as well as an unknown adhesive with styrene-butadiene-styrene and an aromatic tackifying resin. The methodology can be readily applied to styrene-containing polymers in blends such as poly(acrylonitrile-butadiene styrene). © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Morphology and Phase Transitions in Styrene-Butadiene-Styrene Triblock Copolymer Grafted with Isobutyl Substituted Polyhedral Oligomeric Silsesquioxanes (Postprint)

    National Research Council Canada - National Science Library

    Drazowski, Daniel B; Lee, Andre; Haddad, Timothy S

    2007-01-01

    Two symmetric triblock polystyrene-butadiene-polystyrene (SBS) copolymers with different styrene content were grafted with varying amounts of isobutyl-substituted polyhedral oligomeric silsesquioxane (POSS) molecules...

  13. Morphology and Phase Transitions in Styrene-Butadiene-Styrene Triblock Copolymer Grafted with Isobutyl Substituted Polyhedral Oligomeric Silsesquioxanes (preprint)

    National Research Council Canada - National Science Library

    Drazkowski, Daniel B; Lee, Andre; Haddad, Timothy S

    2006-01-01

    Two symmetric triblock polystyrene-butadiene-polystyrene (SBS) copolymers with different styrene content were grafted with varying amounts of isobutyl-substituted polyhedral oligomeric silsesquioxane (POSS) molecules...

  14. Preparation and properties of blends of polypropylene and acrylonitril-butadiene-styrene with thermoplastic starch

    International Nuclear Information System (INIS)

    Kaseem, M.; Deri, F.

    2012-01-01

    In the present work the rheological and mechanical properties of polypropylene / thermoplastic starch (PP/TPS) and acrylo nitril-butadiene-styrene/ thermoplastic starch (ABS/TPS) blends were investigated. Starch was plasticised using glycerol and blends were prepared using a laboratory scale with single screw extruder. Rheological properties of the prepared blends were determined using a capillary rheometer. Mechanical properties were studied in term of tensile tests, stress at break, strain at break and young's modulus were determined. Rheological results showed that the blends are pseudo plastic in manner and the true viscosity of Pp/TPS blend decreases with increasing TPS content in the blend until 10%, and at more than 10% TPS it increases with increasing TPS. In ABS/TPS, the true viscosity decreases with increasing TPS content in the blend. The mechanical results showed that in both systems, the stress at break and strain at break decrease with increasing TPS content in the blend while the young's modulus increases with increasing TPS content. The mechanical results shown that the addition of TPS to each of PP and ABS follows the general trend for filler effects on polymer properties. (author)

  15. Radical copolymerization in homogenous medium and emulsion system monomers acrylonitrile/styrene

    Directory of Open Access Journals (Sweden)

    Boussehel H.

    2013-09-01

    Full Text Available This study examines the radical copolymerization in homogeneous and emulsion of the monomer system acrylonitrile/styrene. These copolymers are of great interest to the plastics industry, because they combine the good mechanical properties and implementation provided by the styrene units in the very high solvent resistance and extreme gas impermeability provided by the acrylonitrile units. The properties of a copolymer are directly related to its composition and distribution of monomer units in its macromolecular chains. Based on the reports of the couple reactivity's of monomers (AN/S found in the literature, the objective of the work is to provide theoretical simulation (by analytical and numerical integration of the equation of copolymerization: The kinetics of the reaction copolymerization of AN/S in a homogeneous medium and emulsion (drift composition, azeotropic and the microstructure (distribution of monomer sequences and the glass transition property of the macromolecular chains instant formed throughout the copolymerization reaction.

  16. Evaluation of tri-steps modified styrene-butadiene-styrene block copolymer membrane for wound dressing

    International Nuclear Information System (INIS)

    Yang, Jen Ming; Huang, Huei Tsz

    2012-01-01

    Tri-steps modified styrene-butadiene-styrene block copolymer (SBS) membrane was prepared with epoxidation, ring opening reaction with maleated ionomer and layer-by-layer assembled polyelectrolyte technique. The tri-steps modified SBS membrane was characterized by infrared spectroscopy and X-ray photoelectron spectroscope (XPS). The structures of the modified SBS membranes were identified with methylene blue and azocarmine G. The content of amino group on the surface of the modified membrane was calculated from uptake of an acid dye. The values of the contact angle, water absorption, water vapor transmission rate and the adsorption of fibronectin on the membranes were determined. To evaluate the biocompatibility of the tri-steps modified SBS membrane, the cytotoxicity, antibacterial and growth profile of the cell culture of 3T3 fibroblasts on the membrane were evaluated. The bactericidal activity was found on the modified SBS. From the cell culture of 3T3 fibroblasts on the membrane, it revealed that the cells not only remained viable but also proliferated on the surface of the tri-steps modified SBS membranes. As the membranes are sterile semipermeable with bactericidal activity and transparent allowing wound checks, they can be considered for shallow wound with low exudates. - Highlights: ► Styrene-butadiene-styrene block copolymer (SBS) was modified with tri-steps. ► The tri-steps are epoxidation, ring opening reaction and layer-by-layer assembly. ► Modified SBS membrane for wound dressing is evaluated. ► Membranes are sterile semipermeable with bactericidal activity and transparent. ► Membranes can be considered for shallow wound with low exudates.

  17. Equivalent lifetime prediction of acrylonitrile butadiene rubber for thermal aging

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K. Y.; Jang, H. K. [KAERI, Taejon (Korea, Republic of); Ryu, B. H. [Dongguk Universty, Gyeongju (Korea, Republic of); Lee, C. [Chungbuk University, Cheongju (Korea, Republic of)

    2003-07-01

    Thermal degradation of acrylonitrile butadiene rubber(NBR), which is used for O-ring material as elastomeric sealed diaphragm valve in the nuclear power plants, is examined. The thermal degradation is accelerated at 130 .deg. C by arrhenius exploit method using the activation energy calculated by thermogravimetric analysis. The weight loss temperature and glass transition temperature are verified for thermally aged NBR. The relationship between dynamic mechanical properties and elongation at break are also investigated. The threshold valued of thermally aged NBR is a ten year in the change of elongation at break.

  18. Equivalent lifetime prediction of acrylonitrile butadiene rubber for thermal aging

    International Nuclear Information System (INIS)

    Kim, K. Y.; Jang, H. K.; Ryu, B. H.; Lee, C.

    2003-01-01

    Thermal degradation of acrylonitrile butadiene rubber(NBR), which is used for O-ring material as elastomeric sealed diaphragm valve in the nuclear power plants, is examined. The thermal degradation is accelerated at 130 .deg. C by arrhenius exploit method using the activation energy calculated by thermogravimetric analysis. The weight loss temperature and glass transition temperature are verified for thermally aged NBR. The relationship between dynamic mechanical properties and elongation at break are also investigated. The threshold valued of thermally aged NBR is a ten year in the change of elongation at break

  19. Comparative acute toxicity of leachates from plastic products made of polypropylene, polyethylene, PVC, acrylonitrile-butadiene-styrene, and epoxy to Daphnia magna.

    Science.gov (United States)

    Lithner, Delilah; Nordensvan, Ildikó; Dave, Göran

    2012-06-01

    The large global production of plastics and their presence everywhere in the society and the environment create a need for assessing chemical hazards and risks associated with plastic products. The aims of this study were to determine and compare the toxicity of leachates from plastic products made of five plastics types and to identify the class of compounds that is causing the toxicity. Selected plastic types were those with the largest global annual production, that is, polypropylene, polyethylene, and polyvinyl chloride (PVC), or those composed of hazardous monomers (e.g., PVC, acrylonitrile-butadiene-styrene [ABS], and epoxy). Altogether 26 plastic products were leached in deionized water (3 days at 50°C), and the water phases were tested for acute toxicity to Daphnia magna. Initial Toxicity Identification Evaluations (C18 filtration and EDTA addition) were performed on six leachates. For eleven leachates (42%) 48-h EC50s (i.e the concentration that causes effect in 50 percent of the test organisms) were below the highest test concentration, 250 g plastic/L. All leachates from plasticized PVC (5/5) and epoxy (5/5) products were toxic (48-h EC50s ranging from 2 to 235 g plastic/L). None of the leachates from polypropylene (5/5), ABS (5/5), and rigid PVC (1/1) products showed toxicity, but one of the five tested HDPE leachates was toxic (48-h EC50 17-24 g plastic/L). Toxicity Identification Evaluations indicated that mainly hydrophobic organics were causing the toxicity and that metals were the main cause for one leachate (metal release was also confirmed by chemical analysis). Toxic chemicals leached even during the short-term leaching in water, mainly from plasticized PVC and epoxy products.

  20. Evaluation of tri-steps modified styrene-butadiene-styrene block copolymer membrane for wound dressing

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jen Ming, E-mail: jmyang@mail.cgu.edu.tw; Huang, Huei Tsz

    2012-08-01

    Tri-steps modified styrene-butadiene-styrene block copolymer (SBS) membrane was prepared with epoxidation, ring opening reaction with maleated ionomer and layer-by-layer assembled polyelectrolyte technique. The tri-steps modified SBS membrane was characterized by infrared spectroscopy and X-ray photoelectron spectroscope (XPS). The structures of the modified SBS membranes were identified with methylene blue and azocarmine G. The content of amino group on the surface of the modified membrane was calculated from uptake of an acid dye. The values of the contact angle, water absorption, water vapor transmission rate and the adsorption of fibronectin on the membranes were determined. To evaluate the biocompatibility of the tri-steps modified SBS membrane, the cytotoxicity, antibacterial and growth profile of the cell culture of 3T3 fibroblasts on the membrane were evaluated. The bactericidal activity was found on the modified SBS. From the cell culture of 3T3 fibroblasts on the membrane, it revealed that the cells not only remained viable but also proliferated on the surface of the tri-steps modified SBS membranes. As the membranes are sterile semipermeable with bactericidal activity and transparent allowing wound checks, they can be considered for shallow wound with low exudates. - Highlights: Black-Right-Pointing-Pointer Styrene-butadiene-styrene block copolymer (SBS) was modified with tri-steps. Black-Right-Pointing-Pointer The tri-steps are epoxidation, ring opening reaction and layer-by-layer assembly. Black-Right-Pointing-Pointer Modified SBS membrane for wound dressing is evaluated. Black-Right-Pointing-Pointer Membranes are sterile semipermeable with bactericidal activity and transparent. Black-Right-Pointing-Pointer Membranes can be considered for shallow wound with low exudates.

  1. Recycling of engineering plastics from waste electrical and electronic equipments: influence of virgin polycarbonate and impact modifier on the final performance of blends.

    Science.gov (United States)

    Ramesh, V; Biswal, Manoranjan; Mohanty, Smita; Nayak, Sanjay K

    2014-05-01

    This study is focused on the recovery and recycling of plastics waste, primarily polycarbonate, poly(acrylonitrile-butadiene-styrene) and high impact polystyrene, from end-of-life waste electrical and electronic equipments. Recycling of used polycarbonate, acrylonitrile-butadiene-styrene, polycarbonate/acrylonitrile-butadiene-styrene and acrylonitrile-butadiene-styrene/high impact polystrene material was carried out using material recycling through a melt blending process. An optimized blend composition was formulated to achieve desired properties from different plastics present in the waste electrical and electronic equipments. The toughness of blended plastics was improved with the addition of 10 wt% of virgin polycarbonate and impact modifier (ethylene-acrylic ester-glycidyl methacrylate). The mechanical, thermal, dynamic-mechanical and morphological properties of recycled blend were investigated. Improved properties of blended plastics indicate better miscibility in the presence of a compatibilizer suitable for high-end application.

  2. Mechanical and Thermal Properties of Styrene Butadiene Rubber - Functionalized Carbon Nanotubes Nanocomposites

    KAUST Repository

    Laoui, Tahar

    2013-01-01

    The effect of reinforcing styrene butadiene rubber (SBR) with functionalized carbon nanotubes on the mechanical and thermal properties of the nanocomposite was investigated. Multi-walled carbon nanotubes (CNTs) were functionalized with phenol

  3. Modeling of continuous free-radical butadiene-styrene copolymerization process by the Monte Carlo method

    Directory of Open Access Journals (Sweden)

    T. A. Mikhailova

    2016-01-01

    Full Text Available In the paper the algorithm of modeling of continuous low-temperature free-radical butadiene-styrene copolymerization process in emulsion based on the Monte-Carlo method is offered. This process is the cornerstone of industrial production butadienestyrene synthetic rubber which is the most widespread large-capacity rubber of general purpose. Imitation of growth of each macromolecule of the formed copolymer and tracking of the processes happening to it is the basis of algorithm of modeling. Modeling is carried out taking into account residence-time distribution of particles in system that gives the chance to research the process proceeding in the battery of consistently connected polymerization reactors. At the same time each polymerization reactor represents the continuous stirred tank reactor. Since the process is continuous, it is considered continuous addition of portions to the reaction mixture in the first reactor of battery. The constructed model allows to research molecular-weight and viscous characteristics of the formed copolymerization product, to predict the mass content of butadiene and styrene in copolymer, to carry out calculation of molecular-weight distribution of the received product at any moment of conducting process. According to the results of computational experiments analyzed the influence of mode of the process of the regulator introduced during the maintaining on change of characteristics of the formed butadiene-styrene copolymer. As the considered process takes place with participation of monomers of two types, besides listed the model allows to research compositional heterogeneity of the received product that is to carry out calculation of composite distribution and distribution of macromolecules for the size and structure. On the basis of the proposed algorithm created the software tool that allows you to keep track of changes in the characteristics of the resulting product in the dynamics.

  4. Acrylonitrile-Butadiene Rubber (NBR) Prepared via Living/Controlled Radical Polymerization (RAFT).

    Science.gov (United States)

    Kaiser, Andreas; Brandau, Sven; Klimpel, Michael; Barner-Kowollik, Christopher

    2010-09-15

    In the current work we present results on the controlled/living radical copolymerization of acrylonitrile (AN) and 1,3-butadiene (BD) via reversible addition fragmentation chain transfer (RAFT) polymerization techniques. For the first time, a solution polymerization process for the synthesis of nitrile butadiene rubber (NBR) via the use of dithioacetate and trithiocarbonate RAFT agents is described. It is demonstrated that the number average molar mass, $\\overline M _{\\rm n} $, of the NBR can be varied between a few thousand and 60 000 g · mol(-1) with polydispersities between 1.2 and 2.0 (depending on the monomer to polymer conversion). Excellent agreement between the experimentally observed and the theoretically expected molar masses is found. Detailed information on the structure of the synthesized polymers is obtained by variable analytical techniques such as infrared spectroscopy (IR), nuclear magnetic resonance (NMR) spectroscopy, differential scanning calorimetry, and electrospray ionization-mass spectrometry (ESI-MS). Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. An Investigation on the Extraction and Quantitation of a Hexavalent Chromium in Acrylonitrile Butadiene Styrene Copolymer (ABS) and Printed Circuit Board (PCB) by Ion Chromatography Coupled with Inductively Coupled Plasma Atomic Emission Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Sang Ho; Kim, Yu Na [Mokpo National University, Muan (Korea, Republic of)

    2012-06-15

    A hexavalent chromium (Cr (VI)) is one of the hazardous substances regulated by the RoHS. The determination of Cr (VI) in various polymers and printed circuit board (PCB) has been very important. In this study, the three different analytical methods were investigated for the determination of a hexavalent chromium in Acrylonitrile Butadiene Styrene copolymer (ABS) and PCB. The results by three analytical methods were obtained and compared. An analytical method by UV-Visible spectrometer has been generally used for the determination of Cr (VI) in a sample, but a hexavalent chromium should complex with diphenylcarbazide for the detection in the method. The complexation did make an adverse effect on the quantitative analysis of Cr (VI) in ABS. The analytical method using diphenylcarbazide was also not applicable to printed circuit board (PCB) because PCB contained lots of irons. The irons interfered with the analysis of hexavalent chromium because those also could complex with diphenylcarbazide. In this study, hexavalent chromiums in PCB have been separated by ion chromatography (IC), then directly and selectively detected by inductively coupled plasma atomic emission spectrometry (ICP-AES). The quantity of Cr (VI) in PCB was 0.1 mg/kg

  6. Novel synthesis of magnesium hydroxide nanoparticles modified with organic phosphate and their effect on the flammability of acrylonitrile-butadiene styrene nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Attia, Nour F., E-mail: drnour2005@yahoo.com [Fire Protection Laboratory, Chemistry Division, National Institute of Standards, 136, Giza 12211 (Egypt); Goda, Emad S.; Nour, M.A. [Fire Protection Laboratory, Chemistry Division, National Institute of Standards, 136, Giza 12211 (Egypt); Sabaa, M.W. [Chemistry Department, Faculty of Science, Cairo University, NahdetMisr Street, Giza 12613 (Egypt); Hassan, M.A., E-mail: Mohamed_a_hassan@hotmail.com [Fire Protection Laboratory, Chemistry Division, National Institute of Standards, 136, Giza 12211 (Egypt)

    2015-11-15

    New and facile method for the synthesis and modification of magnesium hydroxide nanoparticles has been developed. The organic phosphate was used to facilitate the synthesis and wrapping of magnesium hydroxide nanoparticles with organic phosphate shell. The size of the nanoparticles wrapped with phosphate has an average diameter range from 46 to 125 nm. The preparation method has governed the nanoparticles diameter based on reaction time. Thermal stability and morphological properties of the new nanoparticles coated phosphates were investigated. The developed magnesium hydroxide nanoparticles-organic phosphate achieved a very good compatibility when dispersed in acrylonitrile-butadiene styrene polymer (ABS) produced dispersed nanocomposites. The flammability and thermal properties of the new polymer nanocomposites were studied. The rate of burning of the nanocomposites was reduced to 9.8 mm/min compared to 15, 21.9 and 42.5 mm/min for polymer-conventional magnesium hydroxide composite, polymer-conventional magnesium hydroxide-organic phosphate composite and virgin polymer, respectively. The peak heat release rate (PHRR) and total heat release (THR) of the new nanocomposites were recorded as 243.4 kW/m{sup 2} and 19.2 MJ/m{sup 2}, respectively, achieved 71% reduction for PHRR and 55% for THR. The synergism between magnesium hydroxide nanoparticles and organic phosphates shell was also studied. The developed nanoparticles suppressed the emission of toxic gases. The different materials were characterized using thermal gravimetric analysis, fourier transform infrared spectroscopy, transmission electron microscopy. The flammability properties were evaluated using UL94 horizontal method and cone calorimeter. The dispersion of magnesium hydroxide nanoparticles-organic phosphate in ABS was studied using scanning electron microscope. - Highlights: • Novel and facile nanoparticles synthesis and modification have developed. • Magnesium hydroxide nanoparticles size has

  7. Innovative Application of Biopolymer Keratin as a Filler of Synthetic Acrylonitrile-Butadiene Rubber NBR

    OpenAIRE

    Prochoń, Mirosława; Przepiórkowska, Anita

    2013-01-01

    The current investigations show the influence of keratin, recovered from the tanning industry, on the thermal and mechanical properties of vulcanizates with synthetic rubber acrylonitrile-butadiene rubber NBR. The addition of waste protein to NBR vulcanizates influences the improvement of resistance at high temperatures and mechanical properties like tensile strength and hardness. The introduction of keratin to the mixes of rubber previously blended with zinc oxide (ZnO) before vulcanization ...

  8. SYNTHESIS OF STYRENE-BUTADIENE STATISTIC COPOLYMERS CONTAINING MAGNESIUM INITIATOR

    Directory of Open Access Journals (Sweden)

    A. V. Firsova

    2015-01-01

    Full Text Available The article discusses the use of organomagnesium initiators in the synthesis of styrene-butadiene random copolymer (SBR obtained solution polymerization and their influence on the properties of rubber. Selected organic magnesium dialkyl initiator is combined with a modifier, which is a mixed alkoxide of an alkali and alkaline earth metals, which allows to control the micr ostructure of the diene polymer and its molecular weight characteristics. Alcohol derivatives selected high-boiling alcohols tetra (hydroxypropyl ethylenediamine (lapromol 294 and tetrahydrofurfuryl alcohol (TGFS. Selection of high-boiling alcohols due to the fact that the destruction of alkoxide with aqueous polymer degassing they do not fall into the return solvent and almost fall into the exact water. The metal components of alkoxides are lithium, sodium, potassium, magnesium and calcium. The resulting solutions are stable when stored modifier t hroughout the year even at -40 °C. The scheme of obtaining the new catalyst systems based organomagnesium and alcoxide of alkali and alkaline earth metals, which yields as functionalized SBR with a statistical and a distribution block of butadiene and styrene was developed. The process of copolymerization with styrene to butadiene organomagnesium initiators as using an organolithium compound (n-butyllithium was carried out, and without it. Found that the addition of n-butyllithium in the reaction mixture leads to a sharp increase in the rate of reaction. The results of studies of the effect of composition of the initiator system on the structure of diene polymers. It was revealed that a mixed initiator system affords a high conversion of monomers (to 90 % in 1 hour 1,2-polybutadiene content increased to 60 %. The process of polymerization of only a mixture of organomagnesium initiators and alcoxide of alkali and alkaline earth metals are not actively proceeds, conversion of the monomers reaches to 90 % in 4 hours, the microstructure

  9. Degradation of acrylonitrile butadiene rubber and fluoroelastomers in rapeseed biodiesel and hydrogenated vegetable oil

    OpenAIRE

    Akhlaghi, Shahin

    2017-01-01

    Biodiesel and hydrotreated vegetable oil (HVO) are currently viewed by the transportation sector as the most viable alternative fuels to replace petroleum-based fuels. The use of biodiesel has, however, been limited by the deteriorative effect of biodiesel on rubber parts in automobile fuel systems. This work therefore aimed at investigating the degradation of acrylonitrile butadiene rubber (NBR) and fluoroelastomers (FKM) on exposure to biodiesel and HVO at different temperatures and oxygen ...

  10. Particle reinforced composites from acrylamide modified blend of styrene-butadiene and natural rubber

    Science.gov (United States)

    Blends of styrene-butadiene rubber and natural rubber that provide balanced properties were modified with acrylamide and reinforced with soy protein particles. The rubber composites show improved mechanical properties. Both modified rubber and composites showed a faster curing rate. The crosslinking...

  11. Synthesis and characterization of poly(styrene-co-methyl methacrylate)

    International Nuclear Information System (INIS)

    Augustinho, Tiago R.; Abarca, Silvia A.C.; Machado, Ricardo A.F.

    2011-01-01

    Polystyrene (PS) is nowadays commonly used due its advantages over competitors. PS presents a lower cost when compared with Acrylonitrile Butadiene Styrene (ABS) and with Polyethylene Tere-phthalate (PET), and can be easier processed than polypropylene (PP). At expandable form (EPS), can be used as projective equipment, thermal insulation, floating boards, refrigerators, isothermal, and low cost applications such as packaging and disposable material. Searching for more resistant materials and with a low cost, researches with copolymers materials are being developed. In this study, copolymerization reactions were carried out by suspension polymerization using monomers styrene and methyl methacrylate (MMA) with styrene. Styrene was in the highest percentage in relation to the MMA. The MMA was selected because is a monomer that presents a higher resistance than PS. The copolymerization was confirmed by performing infrared spectroscopy (IR), nuclear magnetic resonance of hydrogen (RMN 1 H), differential scanning calorimetry (DSC) and thermogravimetry (TGA). (author)

  12. Surface hydrophilic modification of acrylonitrile-butadiene-styrene terpolymer by poly(ethylene glycol-co-1,4-cyclohexanedimethanol terephthalate): Preparation, characterization, and properties studies

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Tingting; Zhang, Jun, E-mail: zhangjun@njtech.edu.cn

    2016-12-01

    Highlights: • Surface hydrophilic modified ABS was prepared by melt blending with PETG. • O= C−O groups were enriched on the surface with increasing PETG content. • Hydrophilic property of the blends was enhanced with increasing PETG content. • Phase inversion behavior of the blends occurred around intermediate composition. • Tensile and flexural strength were enhanced with increasing PETG content. - Abstract: Surface hydrophilic modified acrylonitrile-butadiene-styrene (ABS) terpolymer was prepared by melt blending with poly(ethylene glycol-co-1,4-cyclohexanedimethanol terephthalate) (PETG) random copolymer as the modifier. Attenuated total reflectance-Fourier transform-infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS) were used for surface analysis. Through the contact angle measurement, the relationship between surface properties of the ABS/PETG blends and PETG content was investigated. Scanning electron microscope (SEM) and dynamical mechanical thermal analysis (DMTA) were used to characterize interface morphology and compatibility of the blends. The effect of PETG content on the mechanical and rheological properties was examined. The ATR-FTIR and XPS analysis suggested that the hydrophilic groups were enriched on the surface with increasing PETG content in the blend. The decrease of the water contact angle and the increase of the polarity for the blends with increasing PETG content indicated that the hydrophilic property of the blends was enhanced with increasing PETG content. The ABS/PETG blends were partially miscible. And the blends with ≤50 wt% PETG had better compatibility than the blends with above 50 wt% PETG. It was clear that below 50 wt% PETG, the PETG phase was dispersed in spherical form and the ABS phase was continuous. Above 50 wt% PETG, the PETG phase became continuous and the ABS phase was dispersed in irregular form. Moreover, the tensile strength and flexural strength of the blends were enhanced with

  13. Dynamic Evaluation of Acrylonitrile Butadiene Styrene Subjected to High-Strain-Rate Compressive Loads

    Science.gov (United States)

    2014-12-01

    Riddick, J. C.; Hall, A. J.; Haile, M. A.; Von Wahlde, R.; Cole, D. P.; Biggs S. J. Effect of Manufacturing Parameters on Failure in Acrylonitrile...for Tensile Properties of Plastics Annu. Book ASTM Stand. 2004, 1–15. 17. Zukas, J. High Velocity Impact Dynamics; John Wiley & Sons, Inc.: New York

  14. Radiation-induced copolymerization of styrene/n-butyl acrylate in the presence of ultra-fine powdered styrene-butadiene rubber

    Energy Technology Data Exchange (ETDEWEB)

    Yu Haibo [Department of Applied Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); Peng Jing [Department of Applied Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China)], E-mail: jpeng@pku.edu.cn; Zhai Maolin; Li Jiuqiang; Wei Genshuan [Department of Applied Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); Qiao Jinliang [Department of Applied Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); SINOPEC Beijing Research Institute of Chemical Industry, Beijing 100013 (China)

    2007-11-15

    Styrene (St)/n-butyl acrylate (BA) copolymers were prepared by two-stage polymerization: St/BA was pre-polymerized to a viscous state by bulk polymerization with initiation by benzoyl peroxide (BPO) followed by {sup 60}Co {gamma}-ray radiation curing. The resultant copolymers had higher molecular weight and narrower molecular weight distribution than conventional methods. After incorporation of ultra-fine powdered styrene-butadiene rubber (UFSBR) with a particle size of 100 nm in the monomer, the glass transition temperature (T{sub g}) of St-BA copolymer increased at low rubber content. Both the St-BA copolymer and the St-BA copolymer/UFSBR composites had good transparency at BA content below 40%.

  15. Carbon nanotubes as reinforcement of styrene-butadiene rubber

    International Nuclear Information System (INIS)

    De Falco, Alejandro; Goyanes, Silvia; Rubiolo, Gerardo H.; Mondragon, Inaki; Marzocca, Angel

    2007-01-01

    This study reports an easy technique to produce cured styrene-butadiene rubber (SBR)/multi-walled carbon nanotubes (MWCNT) composites with a sulphur/accelerator system at 150 deg. C. Significant improvement in Young's modulus and tensile strength were achieved by incorporating 0.66 wt% of filler without sacrificing SBR elastomer high elongation at break. A comparison with carbon black filled SBR was also made. Field emission scanning electron microscopy was used to investigate dispersion and fracture surfaces. Results indicated that the homogeneous dispersion of MWCNT throughout SBR matrix and strong interfacial adhesion between oxidized MWCNT and the matrix are responsible for the considerable enhancement of mechanical properties of the composite

  16. Fast and robust method for the determination of microstructure and composition in butadiene, styrene-butadiene, and isoprene rubber by near-infrared spectroscopy.

    Science.gov (United States)

    Vilmin, Franck; Dussap, Claude; Coste, Nathalie

    2006-06-01

    In the tire industry, synthetic styrene-butadiene rubber (SBR), butadiene rubber (BR), and isoprene rubber (IR) elastomers are essential for conferring to the product its properties of grip and rolling resistance. Their physical properties depend on their chemical composition, i. e., their microstructure and styrene content, which must be accurately controlled. This paper describes a fast, robust, and highly reproducible near-infrared analytical method for the quantitative determination of the microstructure and styrene content. The quantitative models are calculated with the help of pure spectral profiles estimated from a partial least squares (PLS) regression, using (13)C nuclear magnetic resonance (NMR) as the reference method. This versatile approach allows the models to be applied over a large range of compositions, from a single BR to an SBR-IR blend. The resulting quantitative predictions are independent of the sample path length. As a consequence, the sample preparation is solvent free and simplified with a very fast (five minutes) hot filming step of a bulk polymer piece. No precise thickness control is required. Thus, the operator effect becomes negligible and the method is easily transferable. The root mean square error of prediction, depending on the rubber composition, is between 0.7% and 1.3%. The reproducibility standard error is less than 0.2% in every case.

  17. Development of Polythiophene/Acrylonitrile-Butadiene Rubbers for Artificial Muscle

    Science.gov (United States)

    Thipdech, Pacharavalee; Sirivat, Anuvat

    2007-03-01

    Electroactive polymers (EAPs) can respond to the applied electrical field by an extension or a retraction. In this work, we are interested in using an elastomeric blend for electroactive applications, acrylonitirle-butadiene rubber (NBR) containing a conductive polymer (Poly(3-thiopheneacetic acid, PTAA); the latter can be synthesized via oxidative polymerization. FT-IR, Thermogravimetric analysis (TGA), ^1H-NMR, UV-visible spectroscopy, and SEM are used to characterize the conductive polymer. Electrorheological properties are measured and investigated in terms of acrylonitrile content, blending ratio, doping level, and temperature. Experiments are carried out under oscillatory shear mode and with applied electric field strength varying from 0 to 2 kV/mm. Dielectric properties, conductivities are measured and correlated with the storage modulus responses. The storage modulus sensitivity, δG'G'0of the pure rubbers increases with increasing electric field strength. They attain the maximum values of about 30% and become constant at electric strength at and above 1000 V/mm.

  18. Synthesis and gas permeability of block copolymers composed of poly(styrene-co-acrylonitrile) and polystyrene blocks

    Czech Academy of Sciences Publication Activity Database

    Lokaj, Jan; Brožová, Libuše; Holler, Petr; Pientka, Zbyněk

    2002-01-01

    Roč. 67, č. 2 (2002), s. 267-278 ISSN 0010-0765 R&D Projects: GA ČR GA203/99/0572 Institutional research plan: CEZ:AV0Z4050913 Keywords : azeotropic styrene-acrylonitrile copolymers * block copolymers * nitroxide-mediated copolymerization Subject RIV: CD - Macromolecular Chemistry Impact factor: 0.848, year: 2002

  19. Towards quantification of butadiene content in styrene-butadiene block copolymers and their blends with general purpose polystyrene (GPPS) and the relation between mechanical properties and NMR relaxation times

    Energy Technology Data Exchange (ETDEWEB)

    Nestle, Nikolaus [BASF Aktiengesellschaft, GKP/P-G 201, D-67056 Ludwigshafen (Germany)], E-mail: nikolaus.nestle@basf.com; Heckmann, Walter; Steininger, Helmut; Knoll, Konrad [BASF Aktiengesellschaft, GKP/P-G 201, D-67056 Ludwigshafen (Germany)

    2007-11-26

    The properties of styrene-butadiene-styrene (SBS) block copolymers do not only depend on the butadiene content and the degree of polymerisation but also on their chain architecture. In this contribution we present the results of a low-field time domain (TD) NMR study in which the transverse relaxation behaviour of different SBS block copolymers was analysed and correlated with findings from mechanical testing on pure and blended materials and transmission electron microscopy data which provide information on the microphase separation. The results indicate that while a straightforward determination of the butadiene content as in blended materials like ABS is not possible for these materials, the TD-NMR results correlate quite well with the mechanical performance of blends from SBS block copolymers with general purpose polystyrene (GPPS), i.e. industrial grade homopolymer polystyrene. Temperature-dependent experiments on pure and blended materials revealed a slight reduction in the softening temperature of the GPPS fraction in the blends.

  20. Dielectric study of Poly(styrene- co -butadiene) Composites with Carbon Black, Silica, and Nanoclay

    KAUST Repository

    Vo, Loan T.

    2011-08-09

    Dielectric spectroscopy is used to measure polymer relaxation in styrene-butadiene rubber (SBR) composites. In addition to the bulk polymer relaxation, the SBR nanocomposites also exhibit a slower relaxation attributed to polymer relaxation at the polymer-nanoparticle interface. The glass transition temperature associated with the slower relaxation is used as a way to quantify the interaction strength between the polymer and the surface. Comparisons were made among composites containing nanoclay, silica, and carbon black. The interfacial relaxation glass transition temperature of SBR-clay nanocomposites is more than 80 °C higher than the SBR bulk glass transition temperature. An interfacial mode was also observed for SBR-silica nanocomposites, but the interfacial glass transition temperature of SBR-silica nanocomposite is somewhat lower than that of clay nanocomposites. An interfacial mode is also seen in the carbon black filled system, but the signal is too weak to analyze quantitatively. The interfacial polymer relaxation in SBR-clay nanocomposites is stronger compared to both SBR-carbon black and SBR-silica composites indicating a stronger interfacial interaction in the nanocomposites containing clay. These results are consistent with dynamic shear rheology and dynamic mechanical analysis measurements showing a more pronounced reinforcement for the clay nanocomposites. Comparisons were also made among clay nanocomposites using different SBRs of varying styrene concentration and architecture. The interfacial glass transition temperature of SBR-clay nanocomposites increases as the amount of styrene in SBR increases indicating that styrene interacts more strongly than butadiene with clay. © 2011 American Chemical Society.

  1. Recycling of Chrome Tanned Leather Dust in Acrylonitrile Butadiene Rubber

    Science.gov (United States)

    El-Sabbagh, Salwa H.; Mohamed, Ola A.

    2010-06-01

    Concerns on environmental waste problem caused by chrome tanned leather wastes in huge amount have caused an increasing interest in developing this wastes in many composite formation. This leather dust was used as filler in acrylonitrile butadiene rubber (NBR) before treatment and after treatment with ammonia solution and sod. formate. Different formulations of NBR/ leather dust (untreated-treated with ammonia solution—treated with sod. formate) composites are prepared. The formed composite exhibit a considerable improvement in some of their properties such as rheometric characteristics especially with composites loaded with treated leather dust. Tensile strength, modulus at 100% elongation, hardness and youngs modulus were improved then by further loading start to be steady or decrease. Cross linking density in toluene were increased by incorporation of leather dust treated or untreated resulting in decreases in equilibrium swelling. Distinct increase in the ageing coefficient of both treated and untreated leather with drop in NBR vulcanizates without leather dust. Addition of leather dust treated or untreated exhibit better thermal stability.

  2. Adhesion and adhesion changes at the copper metal-(acrylonitrile-butadiene-styrene) polymer interface

    NARCIS (Netherlands)

    Kisin, S.; Varst, van der P.G.T.; With, de G.

    2007-01-01

    It is known that the adhesive strength of metallic films on polymer substrates often changes in the course of time. To study this effect in more detail, the adhesion energy of sputtered and galvanically strengthened copper coatings on acrylonitrile–butadiene–styrene polymer substrate was determined

  3. Detection of hydrogen dissolved in acrylonitrile butadiene rubber by 1H nuclear magnetic resonance

    Science.gov (United States)

    Nishimura, Shin; Fujiwara, Hirotada

    2012-01-01

    Rubber materials, which are used for hydrogen gas seal, can dissolve hydrogen during exposure in high-pressure hydrogen gas. Dissolved hydrogen molecules were detected by solid state 1H NMR of the unfilled vulcanized acrylonitrile butadiene rubber. Two signals were observed at 4.5 ppm and 4.8 ppm, which were assignable to dissolved hydrogen, in the 1H NMR spectrum of NBR after being exposed 100 MPa hydrogen gas for 24 h at room temperature. These signals were shifted from that of gaseous hydrogen molecules. Assignment of the signals was confirmed by quantitative estimation of dissolved hydrogen and peak area of the signals.

  4. Experimental study on behaviors of dielectric elastomer based on acrylonitrile butadiene rubber

    Science.gov (United States)

    An, Kuangjun; Chuc, Nguyen Huu; Kwon, Hyeok Yong; Phuc, Vuong Hong; Koo, Jachoon; Lee, Youngkwan; Nam, Jaedo; Choi, Hyouk Ryeol

    2010-04-01

    Previously, the dielectric elastomer based on Acrylonitrile Butadiene Rubber (NBR), called synthetic elastomer has been reported by our group. It has the advantages that its characteristics can be modified according to the requirements of performances, and thus, it is applicable to a wide variety of applications. In this paper, we address the effects of additives and vulcanization conditions on the overall performance of synthetic elastomer. In the present work, factors to have effects on the performances are extracted, e.g additives such as dioctyl phthalate (DOP), barium titanium dioxide (BaTiO3) and vulcanization conditions such as dicumyl peroxide (DCP), cross-linking times. Also, it is described how the performances can be optimized by using DOE (Design of Experiments) technique and experimental results are analyzed by ANOVA (Analysis of variance).

  5. Evaluation of image uniformity and radiolucency for computed tomography phantom made of 3-dimensional printing of fused deposition modeling technology by using acrylonitrile but audience styrene resin

    International Nuclear Information System (INIS)

    Seoung, Youl Hun

    2016-01-01

    The purpose of this study was to evaluate the radiolucency for the phantom output to the 3D printing technology. The 3D printing technology was applied for FDM (fused deposition modeling) method and was used the material of ABS (acrylonitrile butadiene styrene) resin. The phantom was designed in cylindrical uniformity. An image uniformity was measured by a cross-sectional images of the 3D printed phantom obtained from the CT equipment. The evaluation of radiolucency was measured exposure dose by the inserted ion-chamber from the 3D printed phantom. As a results, the average of uniformity in the cross-sectional CT image was 2.70 HU and the correlation of radiolucency between PMMA CT phantom and 3D printed ABS phantom is found to have a high correlation to 0.976. In the future, this results will be expected to be used as the basis for the phantom production of the radiation quality control by used 3D printing technology

  6. Evaluation of image uniformity and radiolucency for computed tomography phantom made of 3-dimensional printing of fused deposition modeling technology by using acrylonitrile but audience styrene resin

    Energy Technology Data Exchange (ETDEWEB)

    Seoung, Youl Hun [Dept. of of Radiological Science, Cheongju University, Cheongju (Korea, Republic of)

    2016-09-15

    The purpose of this study was to evaluate the radiolucency for the phantom output to the 3D printing technology. The 3D printing technology was applied for FDM (fused deposition modeling) method and was used the material of ABS (acrylonitrile butadiene styrene) resin. The phantom was designed in cylindrical uniformity. An image uniformity was measured by a cross-sectional images of the 3D printed phantom obtained from the CT equipment. The evaluation of radiolucency was measured exposure dose by the inserted ion-chamber from the 3D printed phantom. As a results, the average of uniformity in the cross-sectional CT image was 2.70 HU and the correlation of radiolucency between PMMA CT phantom and 3D printed ABS phantom is found to have a high correlation to 0.976. In the future, this results will be expected to be used as the basis for the phantom production of the radiation quality control by used 3D printing technology.

  7. Stepwise Swelling of a Thin Film of Lamellae-Forming Poly(styrene-b-butadiene) in Cyclohexane Vapor

    DEFF Research Database (Denmark)

    Di, Zhenyu; Posselt, Dorthe; Smilgies, Detlef-M.

    2012-01-01

    We investigated the swelling of a thin film of lamellae-forming poly(styrene-b-butadiene) in cyclohexane vapor. The vapor pressure and thus the degree of swelling of the film are increased in a stepwise manner using a custom-built sample cell. The resulting structural changes during and after each...

  8. Reduced graphene oxide/hydroxylated styrene-butadiene-styrene tri-block copolymer electroconductive nanocomposites: Preparation and properties

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Yuanqin; Xie, Yanyan [Institute of Polymer Science and Engineering, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); Zhang, Fan [College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000 (China); Ou, Encai; Jiang, Zhuojuan; Ke, Lili; Hu, Ding [Institute of Polymer Science and Engineering, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); Xu, Weijian, E-mail: weijianxu59@gmail.com [Institute of Polymer Science and Engineering, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China)

    2012-08-20

    Highlights: Black-Right-Pointing-Pointer RGO/HO-SBS nanocomposites are prepared successfully. Black-Right-Pointing-Pointer The introduction of -OH improves the compatibility between RGO and HO-SBS. Black-Right-Pointing-Pointer RGO disperse homogeneously and form a compact continuous network in matrix (HO-SBS). Black-Right-Pointing-Pointer The percolation threshold of the nanocomposites is of 0.2-0.5 wt% (0.09-0.23 vol%) and its conductivity is up to 1.3 S/m. - Abstract: Flexible and electroconductive nanocomposites based on reduced graphene oxide (RGO) and hydroxylated styrene-butadiene-styrene tri-block copolymer (HO-SBS) were prepared by solution blending method. By the introduction of the groups of -OH and >C=O onto SBS, the compatibility between RGO and SBS was enhanced. Field emission scanning electron microscopy (FE-SEM) and high-resolution transmission electron microscopy (HR-TEM) showed that RGO dispersed homogeneously and formed a compact continuous network in matrix (HO-SBS). The addition of RGO improved the thermal stability of the RGO/HO-SBS nanocomposites while slightly lowered the mechanical property. Moreover, RGO gave the nanocomposites a maximum electrical conductivity up to 1.3 S/m.

  9. Fire and Gas Barrier Properties of Poly(styrene-co-acrylonitrile Nanocomposites Using Polycaprolactone/Clay Nanohybrid Based-Masterbatch

    Directory of Open Access Journals (Sweden)

    S. Benali

    2008-01-01

    Full Text Available Exfoliated nanocomposites are prepared by dispersion of poly(ε-caprolactone (PCL grafted montmorillonite nanohybrids used as masterbatches in poly(styrene-co-acrylonitrile (SAN. The PCL-grafted clay nanohybrids with high inorganic content are synthesized by in situ intercalative ring-opening polymerization of ε-caprolactone between silicate layers organomodified by alkylammonium cations bearing two hydroxyl functions. The polymerization is initiated by tin alcoholate species derived from the exchange reaction of tin(II bis(2-ethylhexanoate with the hydroxyl groups borne by the ammonium cations that organomodified the clay. These highly filled PCL nanocomposites (25 wt% in inorganics are dispersed as masterbatches in commercial poly(styrene-co-acrylonitrile by melt blending. SAN-based nanocomposites containing 3 wt% of inorganics are accordingly prepared. The direct blend of SAN/organomodified clay is also prepared for sake of comparison. The clay dispersion is characterized by wide-angle X-ray diffraction (WAXD, atomic force microscopy (AFM, and solid state NMR spectroscopy measurements. The thermal properties are studied by thermogravimetric analysis. The flame retardancy and gas barrier resistance properties of nanocomposites are discussed both as a function of the clay dispersion and of the matrix/clay interaction.

  10. 40 CFR 63.500 - Back-end process provisions-carbon disulfide limitations for styrene butadiene rubber by emulsion...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Back-end process provisions-carbon disulfide limitations for styrene butadiene rubber by emulsion processes. 63.500 Section 63.500 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR...

  11. A molecular dynamics study on Young's modulus and tribology of carbon nanotube reinforced styrene-butadiene rubber.

    Science.gov (United States)

    Chawla, Raj; Sharma, Sumit

    2018-03-18

    Styrene-butadiene rubber is a copolymer widely used in making car tires and has excellent abrasion resistance. The Young's modulus and tribology of pure styrene butadiene rubber (SBR) polymer and carbon nanotube reinforced polymer composites have been investigated using molecular dynamics simulations. The mechanism of enhanced tribology properties using carbon nanotube has been studied and discussed. The obtained Young's modulus shows the enhancement in mechanical properties of SBR polymer when carbon nanotubes are used as reinforcement. The concentration, temperature and velocity profiles, radial distribution function, frictional stresses, and cohesive energy density are calculated and analyzed in detail. The Young's modulus of SBR matrix increases about 29.16% in the presence of the 5% CNT. The atom movement velocity and average cohesive energy density in the friction area of pure SBR matrix was found to be more than that of the CNT/SBR composite. Graphical abstract Initial and final conditions of (a) pure SBR matrix and (b) CNT/SBR matrix subjected toshear loading and frictional stresses of top Fe layers of both pure SBR and CNT/SBR composite.

  12. -Styrene)

    KAUST Repository

    Sutisna, Burhannudin; Polymeropoulos, George; Musteata, Valentina-Elena; Sougrat, Rachid; Smilgies, Detlef-M.; Peinemann, Klaus-Viktor; Hadjichristidis, Nikolaos; Nunes, Suzana Pereira

    2017-01-01

    Membranes are prepared by self-assembly and casting of 5 and 13 wt% poly(styrene-b-butadiene-b-styrene) (PS-b-PB-b-PS) copolymers solutions in different solvents, followed by immersion in water or ethanol. By controlling the solution-casting gap

  13. Tensile, swelling and morphological properties of bentonite-filled acrylonitrile butadiene rubber composites

    Science.gov (United States)

    Lotfi, Muhamad Nadhli Amin; Ismail, Hanafi; Othman, Nadras

    2017-10-01

    Tensile, swelling and morphological properties of bentonite filled acrylonitrile butadiene rubber (NBR/Bt) composites were studied. The experiments were conducted at room temperature by using two rolled mill, universal testing machine (INSTRON), and American Standard Testing Method (ASTM) D471 for compounding, tensile testing, and swelling test, respectively. Results obtained indicated that a better tensile strength, elongation at break and tensile modulus were recorded as compared to the pure NBR particularly up to 90 phr of Bt loading. However, swelling (%) exhibited the opposite trend where the liquid uptake by the composites was indirectly proportional with the increasing of Bt loading. Scanning electron microscopy (SEM) used on the tensile fractured surface of the NBR/Bt composites have shown that the fillers were well embedded in the NBR matrix, for Bt loading up to 90 phr. The agglomeration of fillers occurred for Bt loading exceeding 90 phr.

  14. Review of health risks in acrylonitrile industry

    Energy Technology Data Exchange (ETDEWEB)

    Guirguis, S S; Cohen, M B; Rajhans, G S

    1984-05-01

    The Occupational Health Branch of the Ontario Ministry of Labour began a study in 1978 for the evaluation of health risks associated with acrylonitrile (AN) exposure. Detailed hygiene and medical investigations were conducted in fourteen plants for evaluating AN exposure in various industrial processes. For companies were also studied in relation to mixed chemical exposure representing acrylic fibres, nitrile rubber, ABS-resin, and acrylic emulsions production. The possible interaction between AN and other coexisting chemical exposures was reviewed since dimethyl formamide, styrene, and butadiene have similar pharmacokinetics and possible synergistic effects. Exposure in acrylic fibre production may be synergistic and carcinogenic. Results of air monitoring indicated exposure levels to AN below 2 ppm (TWA) in most cases. Exposure to other co-existing chemicals was evaluated. Results of medical tests indicated no significant abnormalities in chest x-rays or liver function tests in currently exposed workers.

  15. Gloves against mineral oils and mechanical hazards: composites of carboxylated acrylonitrile-butadiene rubber latex.

    Science.gov (United States)

    Krzemińska, Sylwia; Rzymski, Władysław M; Malesa, Monika; Borkowska, Urszula; Oleksy, Mariusz

    2016-09-01

    Resistance to permeation of noxious chemical substances should be accompanied by resistance to mechanical factors because the glove material may be torn, cut or punctured in the workplace. This study reports on glove materials, protecting against mineral oils and mechanical hazards, made of carboxylated acrylonitrile-butadiene rubber (XNBR) latex. The obtained materials were characterized by a very high resistance of the produced materials to oil permeation (breakthrough time > 480 min). The mechanical properties, and especially tear resistance, of the studied materials were improved after the addition of modified bentonite (nanofiller) to the XNBR latex mixture. The nanocomposite meets the requirements in terms of parameters characterizing tear, abrasion, cut and puncture resistance. Therefore, the developed material may be used for the production of multifunctional protective gloves.

  16. Styrene-Based Copolymer for Polymer Membrane Modifications

    OpenAIRE

    Harsha Srivastava; Harshad Lade; Diby Paul; G. Arthanareeswaran; Ji Hyang Kweon

    2016-01-01

    Poly(vinylidene fluoride) (PVDF) was modified with a styrene-based copolymer. The crystalline behavior, phase, thermal stability, and surface morphology of the modified membranes were analyzed. The membrane surface roughness showed a strong dependence on the styrene-acrylonitrile content and was reduced to 34% for a PVDF/styrene-acrylonitrile blend membrane with a 40/60 ratio. The thermal and crystalline behavior confirmed the blend miscibility of both polymers. It was observed in X-ray diffr...

  17. Bonding properties of acrylonitrile butadiene rubber with polyamide mediated by a functional layer of silane coupling agent

    International Nuclear Information System (INIS)

    Sang, J.; Aisawa, S.; Hirahara, H.; Mori, K.

    2017-01-01

    This study demonstrates that coating layers, expected to be formed as self-assembled monolayers, of silane coupling agents can act as adhesion layers as the hydrogenated acrylonitrile butadiene rubber (HNBR) and polyamide (PA6) plate interfaces. The resulting PA6/HNBR joints showed excellent adhesion properties with cohesive failure and the interfaces were jointed through chemical bonds, which were confirmed by swelling tests. The surfaces and bonding properties of rubber and PA6 were studied by means of peel tests, X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and nanoscale infrared microscopy and chemical imaging (AFM-IR). (authors)

  18. Zinc chelates as new activators for sulphur vulcanization of acrylonitrile-butadiene elastomer

    Directory of Open Access Journals (Sweden)

    2009-04-01

    Full Text Available The goal of this work was to apply several zinc chelates as activators for sulphur vulcanization of acrylonitrilebutadiene elastomer (NBR, in order to find alternatives for the conventionally used zinc oxide. In this article, we discuss the effects of different zinc complexes on the cure characteristics, crosslinks distribution in the elastomer network and mechanical properties of acrylonitrile-butadiene rubber. Zinc chelates seem to be good substitutes for zinc oxide as activators for sulphur vulcanization of NBR rubber, without detrimental effects on the crosslinking process and physical properties of the obtained vulcanizates. Moreover, application of zinc complexes allows to reduce the amount of zinc ions in rubber compounds by 40% compared to conventionally crosslinked vulcanizates with zinc oxide. It is a very important ecological goal since zinc oxide is classified as toxic to aquatic species and its amount in rubber products must be reduced below 2.5% at least. From a technological point of view it is a very important challenge.

  19. An investigation on chloroprene-compatibilized acrylonitrile butadiene rubber/high density polyethylene blends.

    Science.gov (United States)

    Ahmed, Khalil

    2015-11-01

    Blends of acrylonitrile butadiene rubber/high density polyethylene (NBR/HDPE) compatibilized by Chloroprene rubber (CR) were prepared. A fixed quantity of industrial waste such as marble waste (MW, 40 phr) was also included. The effect of the blend ratio and CR on cure characteristics, mechanical and swelling properties of MW-filled NBR/HDPE blends was investigated. The results showed that the MW-filled NBR/HDPE blends revealed an increase in tensile strength, tear, modulus, hardness and cross-link density for increasing weight ratio of HDPE. The minimum torque (M L) and maximum torque (M H) of blends increased with increasing weight ratio of HDPE while scorch time (ts2) cure time (tc90), compression set and abrasion loss of blends decreased with increasing weight ratio of HDPE. The blends also showed a continuous reduction in elongation at break as well as swelling coefficient with increasing HDPE amount in blends. MW filled blends based on CR provided the most encouraging balance values of overall properties.

  20. An investigation on chloroprene-compatibilized acrylonitrile butadiene rubber/high density polyethylene blends

    Directory of Open Access Journals (Sweden)

    Khalil Ahmed

    2015-11-01

    Full Text Available Blends of acrylonitrile butadiene rubber/high density polyethylene (NBR/HDPE compatibilized by Chloroprene rubber (CR were prepared. A fixed quantity of industrial waste such as marble waste (MW, 40 phr was also included. The effect of the blend ratio and CR on cure characteristics, mechanical and swelling properties of MW-filled NBR/HDPE blends was investigated. The results showed that the MW-filled NBR/HDPE blends revealed an increase in tensile strength, tear, modulus, hardness and cross-link density for increasing weight ratio of HDPE. The minimum torque (ML and maximum torque (MH of blends increased with increasing weight ratio of HDPE while scorch time (ts2 cure time (tc90, compression set and abrasion loss of blends decreased with increasing weight ratio of HDPE. The blends also showed a continuous reduction in elongation at break as well as swelling coefficient with increasing HDPE amount in blends. MW filled blends based on CR provided the most encouraging balance values of overall properties.

  1. Synthesis and characterization of poly(styrene-co-methyl methacrylate); Sintese e caracterizacao do poli(estireno-co-metacrilato de metila)

    Energy Technology Data Exchange (ETDEWEB)

    Augustinho, Tiago R.; Abarca, Silvia A.C.; Machado, Ricardo A.F. [Departamento de Engenharia Quimica e Alimentos - Universidade Federal de Santa Catarina - UFSC, Florianopolis, SC (Brazil)

    2011-07-01

    Polystyrene (PS) is nowadays commonly used due its advantages over competitors. PS presents a lower cost when compared with Acrylonitrile Butadiene Styrene (ABS) and with Polyethylene Tere-phthalate (PET), and can be easier processed than polypropylene (PP). At expandable form (EPS), can be used as projective equipment, thermal insulation, floating boards, refrigerators, isothermal, and low cost applications such as packaging and disposable material. Searching for more resistant materials and with a low cost, researches with copolymers materials are being developed. In this study, copolymerization reactions were carried out by suspension polymerization using monomers styrene and methyl methacrylate (MMA) with styrene. Styrene was in the highest percentage in relation to the MMA. The MMA was selected because is a monomer that presents a higher resistance than PS. The copolymerization was confirmed by performing infrared spectroscopy (IR), nuclear magnetic resonance of hydrogen (RMN{sup 1}H), differential scanning calorimetry (DSC) and thermogravimetry (TGA). (author)

  2. Polybenzoxazole-filled nitrile butadiene rubber compositions

    Science.gov (United States)

    Gajiwala, Himansu M. (Inventor); Guillot, David G. (Inventor)

    2008-01-01

    An insulation composition that comprises at least one nitrile butadiene rubber (NBR) having an acrylonitrile content that ranges from approximately 26% by weight to approximately 35% by weight and polybenzoxazole (PBO) fibers. The NBR may be a copolymer of acrylonitrile and butadiene and may be present in the insulation composition in a range of from approximately 45% by weight to approximately 56% by weight of a total weight of the insulation composition. The PBO fibers may be present in a range of from approximately 3% by weight to approximately 10% by weight of a total weight of the insulation composition. A rocket motor including the insulation composition and a method of insulating a rocket motor are also disclosed.

  3. Innovative Application of Biopolymer Keratin as a Filler of Synthetic Acrylonitrile-Butadiene Rubber NBR

    Directory of Open Access Journals (Sweden)

    Mirosława Prochoń

    2013-01-01

    Full Text Available The current investigations show the influence of keratin, recovered from the tanning industry, on the thermal and mechanical properties of vulcanizates with synthetic rubber acrylonitrile-butadiene rubber NBR. The addition of waste protein to NBR vulcanizates influences the improvement of resistance at high temperatures and mechanical properties like tensile strength and hardness. The introduction of keratin to the mixes of rubber previously blended with zinc oxide (ZnO before vulcanization process leads to an increase in the cross-linking density of vulcanizates. The polymer materials received including addition of proteins will undergo biodecomposition in natural conditions. After soil test, vulcanizates with keratin especially keratin with ZnO showed much more changes on the surface area than vulcanizates without protein. In that aerobic environment, microorganisms, bacteria, and fungus digested better polymer materials containing natural additives.

  4. Study of the Effect of Grafted Antioxidant on the Acrylonitrile-Butadiene Copolymer Properties

    Directory of Open Access Journals (Sweden)

    Abdulaziz Ibrahim Al-Ghonamy

    2010-01-01

    Full Text Available The grafting of ADPEA onto natural rubber was executed with UV radiation. Benzoyl peroxide was used to initiate the free-radical grafting copolymerization. Natural rubber-graft-N-(4-aminodiphenylether acrylamide (NR-g-ADPEA was characterized with an IR technique. The paper aims interested to determine the crosslinking density by using the ultrasonic technique. The ultrasonic velocities of both longitudinal and shear waves were measured in thermoplastic discs of NBR vulcanizates as a function of aging time. Ultrasonic velocity measurements were taken at 2 MHz ultrasonic frequency using the pulse echo method. We studied the effect of aging on the mechanical properties, crosslinking density, and the swelling and extraction phenomena for acrylonitrile-butadiene copolymer (NBR vulcanizates, which contained the prepared NR-g-ADPEA and a commercial antioxidant, N-isopropyl-−-phenyl-p-phenylenediamine. The prepared antioxidant enhanced both the mechanical properties of the NBR vulcanizates and the permanence of the ingredients in these vulcanizates.

  5. Stretchable Fluorescent Polyfluorene/Acrylonitrile Butadiene Rubber Blend Electrospun Fibers through Physical Interaction and Geometrical Confinement.

    Science.gov (United States)

    Hsieh, Hui-Ching; Chen, Jung-Yao; Lee, Wen-Ya; Bera, Debaditya; Chen, Wen-Chang

    2018-03-01

    Stretchable light-emitting polymers are important for wearable electronics; however, the development of intrinsic stretchable light-emitting materials with great performance under large applied strain is the most critical challenge. Herein, this study demonstrates the fabrication of stretchable fluorescent poly[(9,9-bis(3'-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctyl-fluorene)]/acrylonitrile butadiene rubber (PFN/NBR) blend nanofibers using the uniaxial electrospinning technique. The physical interaction of PFN with NBR and the geometrical confinement of nanofibers are employed to reduce PFN aggregation, leading to the high photoluminescence quantum yield of 35.7%. Such fiber mat film shows stable blue emission at the 50% strain for 200 stretching/release cycles, which has potential applications in smart textiles. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. nanocomposites of PA6/ABS blends compatibilized with styrene-maleic anhydride copolymer

    International Nuclear Information System (INIS)

    Oliveira, Amanda D. de; Pessan, Luiz A.

    2009-01-01

    To achieve a balance between stiffness and toughness, ternary nanocomposites based on blends of polyamide 6 (PA6) and acrylonitrile-butadiene-styrene (ABS) were prepared by the melt intercalation using the organoclay Cloisite R 30B (OMMT) and the styrene-maleic anhydride copolymer (SMA) as compatibilizer. Four blending sequences were used to prepare studied systems and their mechanical properties studied through the Young's modulus and notched Izod impact. It was observed that the materials prepared by all blending sequences studied showed an increase in the Young's modulus compared to the neat PA6. However, a decrease in the toughness was observed for the systems with the addition of the organoclay. The DRX results showed an intercalated structure for the some systems that used ABS in their compositions. HDT measurements of the nanocomposites showed an increase in this property compared to the neat PA6. The use of nanoclay lead to a reinforcement of the polymeric matrix. (author)

  7. Effect of casting solvents on the properties of styrene-butadiene-styrene block copolymers studied by positron annihilation techniques

    International Nuclear Information System (INIS)

    Djermouni, B.; Ache, H.J.

    1980-01-01

    The positron annihilation technique was used to study the properties of styrene-butadiene-styrene block copolymers obtained by casting them in four different solvents: toluene, carbon tetrachloride, ethyl acetate, and methyl ethyl ketone. The positron annihilation rates plotted as a function of temperature show in all films irregularities at -70 and +85 0 C which were attributed to the onset of motions in the polybutadiene and polystyrene domaines, respectively. In addition to that, two irregularities were observed at -14 and +10 0 C if a poor solvent, such as ethyl acetate or methyl ethyl ketone, was used, while films cast in a good solvent such as toluene or carbon tetrachloride show only one additional irregularity on the lambda 2 -T curves at -14 0 C. The latter results were explained in terms of the interfacial model by assuming that these irregularities correspond to the glass transition of interlayer phases between the pure polystyrene and the pure polybutadiene phases. The one which shows the irregularity at -14 0 C could be the phase in which polybutadiene is the major component, while the transition at +10 0 C can be attributed to a phase in which polystyrene is the dominating factor

  8. Nanostructured poly(styrene-b-butadiene-b-styrene) (SBS) membranes for the separation of nitrogen from natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Buonomenna, Maria Giovanna; Golemme, Giovanni [Department of Chemical Engineering and Materials, University of Calabria, and Consorzio INSTM, Rende (Italy); Tone, Caterina Maria; De Santo, Maria Penelope; Ciuchi, Federica [IPCF-CNR UOS Cosenza, c/o Physics Department, University of Calabria, Rende (Italy); Perrotta, Enrico [Department of Ecology, University of Calabria, Rende (Italy)

    2012-04-24

    The preparation and characterization of new, tailor-made polymeric membranes using poly(styrene-b-butadiene-b-styrene) (SBS) triblock copolymers for gas separation are reported. Structural differences in the copolymer membranes, obtained by manipulation of the self-assembly of the block copolymers in solution, are characterized using atomic force microscopy, transmission electron microscopy, and the transport properties of three gases (CO{sub 2}, N{sub 2}, and CH{sub 4}). The CH{sub 4}/N{sub 2} ideal selectivity of 7.2, the highest value ever reported for block copolymers, with CH{sub 4} permeability of 41 Barrer, is obtained with a membrane containing the higher amount of polybutadiene (79 wt%) and characterized by a hexagonal array of columnar polystyrene cylinders normal to the membrane surface. Membranes with such a high separation factor are able to ease the exploitation of natural gas with high N{sub 2} content. The CO{sub 2}/N{sub 2} ideal selectivity of 50, coupled with a CO{sub 2} permeability of 289 Barrer, makes SBS a good candidate for the preparation of membranes for the post-combustion capture of carbon dioxide. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Anionic Polymerization of Styrene and 1,3-Butadiene in the Presence of Phosphazene Superbases

    KAUST Repository

    Ntetsikas, Konstantinos

    2017-10-23

    The anionic polymerization of styrene and 1,3-butadiene in the presence of phosphazene bases (t-BuP4, t-BuP2 and t-BuP1), in benzene at room temperature, was studied. When t-BuP1 was used, the polymerization proceeded in a controlled manner, whereas the obtained homopolymers exhibited the desired molecular weights and narrow polydispersity (Ð < 1.05). In the case of t-BuP2, homopolymers with higher than the theoretical molecular weights and relatively low polydispersity were obtained. On the other hand, in the presence of t-BuP4, the polymerization of styrene was uncontrolled due to the high reactivity of the formed carbanion. The kinetic studies from the polymerization of both monomers showed that the reaction rate follows the order of [t-BuP4]/[sec-BuLi] >>> [t-BuP2]/[sec-BuLi] >> [t-BuP1]/[sec-BuLi] > sec-BuLi. Furthermore, the addition of t-BuP2 and t-BuP1 prior the polymerization of 1,3-butadiene allowed the synthesis of polybutadiene with a high 1,2-microstructure (~45 wt %), due to the delocalization of the negative charge. Finally, the one pot synthesis of well-defined polyester-based copolymers [PS-b-PCL and PS-b-PLLA, PS: Polystyrene, PCL: Poly(ε-caprolactone) and PLLA: Poly(L-lactide)], with predictable molecular weights and a narrow molecular weight distribution (Ð < 1.2), was achieved by sequential copolymerization in the presence of t-BuP2 and t-BuP1.

  10. Hardness and swelling behaviour of epoxidized natural rubber/recycled acrylonitrile-butadiene rubber (ENR 50/NBRr) blends

    Science.gov (United States)

    Ahmad, Hazwani Syaza; Ismail, Hanafi; Rashid, Azura A.

    2017-07-01

    This recent work is to investigate the hardness and swelling behaviour of epoxidized natural rubber/recycled acrylonitrile-butadiene rubber (ENR 50/NBRr) blends. ENR 50/NBRr blends were prepared by two-roll mills with five different loading of NBRr from 5 to 35 phr. Results indicated that the hardness of ENR 50/NBRr blends increased as recycled NBR increased due to the improvement in crosslink density of the blends. Increasing NBRr content gives ENR 50/NBRr blends better resistance towards swelling. Higher degree of crosslinking will increase the swelling resistance and reduce the penetration of toluene into the blends. The presence of polar group in ENR 50 and NBRr give better hardness properties and swelling behaviour of the ENR 50/NBRr blends compared to the NR/NBRr blends.

  11. Radiation-induced polymerization of 1, 3-butadiene in urea canal complex as studied by broad line NMR

    International Nuclear Information System (INIS)

    Yoshii, Fumio; Hayakawa, Naohiro; Abe, Toshihiko

    1975-01-01

    Dependence of the NMR spectrum on the molar ratio of 1,3-butadiene to urea, temperature dependence of the spectrum and changes of the spectrum during polymerization were observed. The results were discussed in comparison with previously reported results for the canal polymerization of acrylonitrile and vinyl chloride. 1,3-butadiene formes a canal complex with the molar ratio of 1 to 4 for 1,3-butadiene to urea. The urea canal complex is decomposed at -15 0 C. The spectrum of 1,3-butadiene in urea canal complex shows existence of a remarkably mobile component which was not observed on the spectra of acrylonitrile - urea of vinyl chloride - urea canal complex. The line width of 1,3-butadiene in the urea canal complex except the very narrow component was broader than that for vinyl chloride in the urea canal complex over an observed temperature range. The line width of urea formed the canal decreases at lower temperature than those of urea in vinyl chloride - urea canal complex. The post-polymerization of 1,3-butadiene in the urea canal complex started clearly from -78 0 C and completes when the temperature was raised to 20 0 C. The polymerization will be proceeded by the such way that monomer molecules move to the active center in the canal, as considered in the case of the polymerization of acrylonitrile and vinyl chloride in the canal complex. The crystal structure of the urea canal was maintained during polymerization and than the polybutadiene - urea canal complex was necessarily formed after the polymerization. The formation of the polymer - urea canal complex has distinct difference between 1,3-butadiene and acrylonitrile or vinyl chloride. For acrylonitrile and vinyl chloride the canals around the polymer formed are destroyed. The structure of polybutadiene - urea canal complex was hexagonal having a=8.21, c=10.50 A. (auth.)

  12. Morphological and mechanical properties of styrene butadiene rubber/nano copper nanocomposites

    Science.gov (United States)

    Harandi, Maryam Hadizadeh; Alimoradi, Fakhrodin; Rowshan, Gholamhussein; Faghihi, Morteza; Keivani, Maryam; Abadyan, Mohamadreza

    In this research, rubber based nanocomposites with presence of nanoparticle has been studied. Styrene butadiene rubber (SBR)/nanocopper (NC) composites were prepared using two-roll mill method. Transmission electron microscope (TEM) and scanning electron microscope (SEM) images showed proper dispersion of NC in the SBR matrix without substantial agglomeration of nanoparticles. To evaluate the curing properties of nanocomposite samples, swelling and cure rheometric tests were conducted. Moreover, the rheological studies were carried out over a range of shear rates. The effect of NC particles was examined on the thermal behavior of the SBR using thermal gravimetric analysis (TGA). Furthermore, tensile tests were employed to investigate the capability of nanoparticles to enhance mechanical behavior of the compounds. The results showed enhancement in tensile properties with incorporation of NC to SBR matrix. Moreover, addition of NC increased shear viscosity and curing time of SBR composites.

  13. Nanocomposites prepared from acrylonitrile butadiene rubber and organically modified montmorillonite with vinyl groups

    Science.gov (United States)

    Han, Mijeong; Kim, Hoonjung; Kim, Eunkyoung

    2006-01-01

    Nanocomposites were prepared from acrylonitrile-butadiene rubber (NBR), vinyl groups containing organically modified montmorillonite and additives, such as zinc oxide, stearic acid, and sulfur. The organically modified montmorillonites used in these nanocomposites were prepared by ion exchange reactions of N,N'-dimethylalkyl-(p-vinylbenzyl)-ammonium chlorides (DAVBAs, alkyl = octyl, dodecyl, and octadecyl) with sodium montmorillonite (Na+-MMT). NBR nanocomposites were obtained by controlling both the mixing and vulcanization conditions, by using a Brabender mixer and hot-press process. X-ray diffraction (XRD) analysis shows that, depending on the amount of montmorillonite that is added, both exfoliated and intercalated nanocomposite structures are formed. The NBR/DAVBA-MMT nanocomposites exhibit much higher mechanical properties (e.g., tensile strength, Young's modulus, 300% modulus, and hardness) as well as gas barrier properties as compared to NBR Na+-MMT or NBR composites generated from modified montmorillonites without vinyl groups. Consistent with the results of XRD, transmission electron microscopy (TEM) reveals that the intercalation and exfoliation structures of the nanocomposites coexist and that the DAVBA-MMT layers are well dispersed in NBR.

  14. Styrene-butadiene rubber/halloysite nanotubes nanocomposites modified by methacrylic acid

    International Nuclear Information System (INIS)

    Guo Baochun; Lei Yanda; Chen Feng; Liu Xiaoliang; Du Mingliang; Jia Demin

    2008-01-01

    Methacrylic acid (MAA) was used to improve the performance of styrene-butadiene rubber (SBR)/halloysite nanotubes (HNTs) nanocomposites by direct blending. The detailed interaction mechanisms of MAA and the in situ formed zinc methacrylate (ZDMA) were revealed by X-ray diffraction (XRD), surface area and porosity analysis, X-ray photoelectron spectroscopy (XPS) together with crosslink density determination. The strong interfacial bonding between HNTs and rubber matrix is resulted through ZDMA and MAA intermediated linkages. ZDMA connects SBR and HNTs via grafting/complexation mechanism. MAA bonds SBR and HNTs through grafting/hydrogen bonding mechanism. Significantly improved dispersion of HNTs in virtue of the interactions between HNTs and MAA or ZDMA was achieved. Effects of MAA content on the vulcanization behavior, morphology and mechanical properties of the nanocomposites were investigated. Promising mechanical properties of MAA modified SBR/HNTs nanocomposites were obtained. The changes in vulcanization behavior, mechanical properties and morphology were correlated with the interactions between HNTs and MAA or ZDMA and the largely improved dispersion of HNTs

  15. Styrene-butadiene rubber/halloysite nanotubes nanocomposites modified by methacrylic acid

    Energy Technology Data Exchange (ETDEWEB)

    Guo Baochun [Department of Polymer Materials and Engineering, South China University of Technology, Guangzhou 510640 (China)], E-mail: psbcguo@scut.edu.cn; Lei Yanda; Chen Feng; Liu Xiaoliang; Du Mingliang; Jia Demin [Department of Polymer Materials and Engineering, South China University of Technology, Guangzhou 510640 (China)

    2008-12-30

    Methacrylic acid (MAA) was used to improve the performance of styrene-butadiene rubber (SBR)/halloysite nanotubes (HNTs) nanocomposites by direct blending. The detailed interaction mechanisms of MAA and the in situ formed zinc methacrylate (ZDMA) were revealed by X-ray diffraction (XRD), surface area and porosity analysis, X-ray photoelectron spectroscopy (XPS) together with crosslink density determination. The strong interfacial bonding between HNTs and rubber matrix is resulted through ZDMA and MAA intermediated linkages. ZDMA connects SBR and HNTs via grafting/complexation mechanism. MAA bonds SBR and HNTs through grafting/hydrogen bonding mechanism. Significantly improved dispersion of HNTs in virtue of the interactions between HNTs and MAA or ZDMA was achieved. Effects of MAA content on the vulcanization behavior, morphology and mechanical properties of the nanocomposites were investigated. Promising mechanical properties of MAA modified SBR/HNTs nanocomposites were obtained. The changes in vulcanization behavior, mechanical properties and morphology were correlated with the interactions between HNTs and MAA or ZDMA and the largely improved dispersion of HNTs.

  16. Biodegradation behavior of styrene butadiene rubber (SBR) reinforced with modified coconut shell powder

    Science.gov (United States)

    Sreejith, M. P.; Balan, Aparna K.; Shaniba, V.; Jinitha, T. V.; Subair, N.; Purushothaman, E.

    2017-06-01

    Biodegradation behavior of styrene butadiene rubber composites reinforced with natural filler, coconut shell powder (CSP), with different filler loadings were carried out under soil burial conditions for three to six months. The extent of biodegradation of the composites was evaluated through weight loss, tensile strength and hardness measurements. It was observed that the permanence of the composites was remarkably dependent on filler modification, size of the filler particle and filler content. Composites containing silane modified filler were found to be more resistant to attack by the microbes present in the soil. Mechanical properties such as tensile strength, Young's modulus and hardness were decreased after soil burial testing due to the microbial attack onto the samples.

  17. Free volume dependence on electrical properties of Poly (styrene co-acrylonitrile)/Nickel oxide polymer nanocomposites

    Science.gov (United States)

    Ningaraju, S.; Hegde, Vinayakaprasanna N.; Prakash, A. P. Gnana; Ravikumar, H. B.

    2018-04-01

    Polymer nanocomposites of Poly (styrene co-acrylonitrile)/Nickel Oxide (PSAN/NiO) have been prepared. The increased free volume sizes up to 0.4 wt% of NiO loading indicates overall reduction in packing density of polymer network. The decreased o-Ps lifetime (τ3) at higher concentration of NiO indicates improved interfacial interaction between the surface of NiO nanoparticles and side chain of PSAN polymer matrix. The increased AC/DC conductivity at lower wt% of NiO loading demonstrates increased number of electric charge carriers/mobile ions and their mobility. The increased dielectric constant and dielectric loss up to 0.4 wt% of NiO loading suggests the increased dipoles polarization.

  18. Effects of ageing conditions on degradation of acrylonitrile butadiene rubber filled with heat-treated ZnO star-shaped particles in rapeseed biodiesel

    OpenAIRE

    Akhlaghi, Shahin; Pourrahimi, A. M.; Christian, Sjöstedt; Martin, Bellander; Mikael S., Hedenqvist; Ulf W., Gedde

    2017-01-01

    The degradation of acrylonitrile butadiene rubber (NBR) after exposure to biodiesel at different oxygen partial pressures in an automated ageing equipment at 80 °C, and in a high-pressure autoclave at 150 °C was studied. The oxidation of biodiesel was promoted by an increase in oxygen concentration, resulting in a larger uptake of fuel in the rubber due to internal cavitation, a greater decrease in the strain-at-break of NBR due to the coalescence of cavity, and a faster increase in the cross...

  19. Effect of concentration of polyfunctional monomers on physical properties of acrylonitrile-butadiene rubber under electron-beam irradiation

    International Nuclear Information System (INIS)

    Yasin, T.; Ahmed, S.; Yoshii, F.; Makuuchi, K.

    2003-01-01

    The effect of concentration of different polyfunctional monomers (PFMs) on the physical properties of electron-beam irradiated acrylonitrile-butadiene rubber (NBR) has been investigated. The PFMs used were diethylene glycol dimethacrylate (2G), tetraethylene glycol dimethacrylate (4G), trimethylol propane triacrylate (A-TMPT), trimethylol propane trimethacrylate (TMPT) and tetramethylol methane tetraacrylate (A-TMMT). The physical properties of EB irradiated NBR sheets were evaluated by measurement of tensile strength, elongation %, hardness and gel fraction etc. The results show a remarkable increase in all physical properties as the concentration of PFMs increases from 1 phr to 5 phr in the NBR samples. The improvement in physical properties of radiation crosslinked NBR in the presence of PFMs may be attributed to its increased crosslinking density as observed by corresponding increase in gel content

  20. Carboxyl-terminated butadiene-acrylonitrile-toughened epoxy/carboxyl-modified carbon nanotube nanocomposites: Thermal and mechanical properties

    Directory of Open Access Journals (Sweden)

    H. F. Xie

    2012-09-01

    Full Text Available Carboxyl-modified multi-walled carbon nanotubes (MWCNT–COOHs as nanofillers were incorporated into diglycidyl ether of bisphenol A (DGEBA toughened with carboxyl-terminated butadiene-acrylonitrile (CTBN. The carboxyl functional carbon nanotubes were characterized by Fourier-transform infrared spectroscopy and thermogravimetric analysis. Furthermore, cure kinetics, glass transition temperature (Tg, mechanical properties, thermal stability and morphology of DGEBA/CTBN/MWCNT–COOHs nanocomposites were investigated by differential scanning calorimetry (DSC, dynamic mechanical analysis (DMA, universal test machine, thermogravimetric analysis and scanning electron microscopy (SEM. DSC kinetic studies showed that the addition of MWCNT–COOHs accelerated the curing reaction of the rubber-toughened epoxy resin. DMA results revealed that Tg of rubber-toughened epoxy nanocomposites lowered with MWCNT–COOH contents. The tensile strength, elongation at break, flexural strength and flexural modulus of DGEBA/CTBN/MWCNT-COOHs nanocomposites were increased at lower MWCNT-COOH concentration. A homogenous dispersion of nanocomposites at lower MWCNT–COOH concentration was observed by SEM.

  1. Novel blends of acrylonitrile butadiene rubber and polyurethane-silica hybrid networks

    Directory of Open Access Journals (Sweden)

    X. P. Wang

    2012-07-01

    Full Text Available Novel blends of acrylonitrile butadiene rubber (NBR and polyurethane-silica (PU-SiO2 hybrid networks have been prepared by melt blending. The PU-SiO2 hybrid networks were formed via the reaction of NCO groups of NCO-terminated PU prepolymer and OH groups of SiO2 in the absence of an external crosslinking agent (i.e. alcohols and amines during the curing process of NBR. Both in the neat PU-SiO2 system and the NBR/(PU-SiO2 system, the NCO-terminated PU prepolymer could be crosslinked by SiO2 to form PU-SiO2 hybrid networks. The effects of PU-SiO2 introduction into the NBR, on the properties of the resulting blends were studied. It was found that the vulcanization was activated by the incorporation of PU-SiO2. Transmission electronic microscopy (TEM studies indicated that the interpenetration and entanglement structures between NBR and PU-SiO2 increased with increasing PU-SiO2 content and the quasi-interpenetrating polymer networks (quasi-IPN structures were formed when the PU-SiO2 was 50 wt% in the NBR/(PU-SiO2 systems. The microstructures formed in the blends led to good compatibility between NBR and PU-SiO2 and significantly improved the mechanical properties, abrasion resistance and flex-fatigue life of the blends.

  2. Combining ZnO/microwave treatment for changing wettability of WEEE styrene plastics (ABS and HIPS) and their selective separation by froth flotation

    Science.gov (United States)

    Thanh Truc, Nguyen Thi; Lee, Byeong-Kyu

    2017-10-01

    This study reports a simple froth flotation method to separate plastic wastes of acrylonitrile-butadiene-styrene (ABS) and high impact polystyrene (HIPS) after initial hydrophilization by coating the plastics with ZnO and microwave treatment. ABS and HIPS are typical styrene-based WEEE plastics having similar density and hydrophobicity, which hinders their separation for recycling. After coating with ZnO, 2-min microwave treatment rearranged the ABS surface and thus changed its molecular mobility and increased its hydrophilicity. The combined ZnO coating/microwave treatment facilitated the selective separation of ABS and HIPS with 100% and 95.2% recovery and 95.4% and 100% purity in froth flotation, respectively. The combination of ZnO coating-microwave treatment and froth flotation can be utilized as a selective ABS/HIPS separation technique for improved recycling of WEEE plastics.

  3. Mechanical and Morphological Properties of Short Nylon Fiber Reinforced Acrylonitrile-Butadiene Rubber Composites

    Directory of Open Access Journals (Sweden)

    S.H. Mohseniyan

    2010-12-01

    Full Text Available Acrylonitrile butadiene rubber (NBR composites are prepared from waste nylon 66 short fiber using a two-roll mill mixer. The effects of fiber content and bonding agent on the mechanical and morphological properties of the composites are studied. The curing characteristics of the composites have been studied by using cure rheometer. The cure and scorch time of the composites decrease while cure rate is increased when short fiber content is increased. The mechanical properties of the composites show improvement in both longitudinal and transverse directions with increase in short fiber content. The adhesion between the fiber and rubber is enhanced by using a dry bonding system consisting of resorcinol, xamethylenetetramine and hydrated silica (HRH. The swelling behavior of the composites in N,N-dimethylformamide is tested to find the effect of bonding agent on adhesion strength of the matrix and fibers. Fracture surface morphology of composites is studied by scanning electron microscopy. The restriction to swelling is higher for composites containing bonding agent, especially, in the longitudinal direction. The morphology of the fracture surface shows less fiber pull out when the bonding agent is introduced.

  4. Styrene-butadiene rubber/halloysite nanotubes nanocomposites modified by sorbic acid

    Energy Technology Data Exchange (ETDEWEB)

    Guo Baochun, E-mail: psbcguo@scut.edu.cn [Department of Polymer Materials and Engineering, South China University of Technology, Guangzhou 510640 (China); Chen Feng; Lei Yanda; Liu Xiaoliang; Wan Jingjing; Jia Demin [Department of Polymer Materials and Engineering, South China University of Technology, Guangzhou 510640 (China)

    2009-05-30

    Sorbic acid (SA) was used to improve the performance of styrene-butadiene rubber (SBR)/halloysite nanotubes (HNTs) nanocomposites by direct blending. The detailed mechanisms for the largely improved performance were studied by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), differential scanning calorimetry (DSC), porosity analysis and crosslink density determination. The strong interfacial bonding between HNTs and rubber matrix is resulted through SA intermediated linkages. SA bonds SBR and HNTs through grafting copolymerization/hydrogen bonding mechanism. Significantly improved dispersion of HNTs in virtue of the interactions between HNTs and SA was achieved. Formation of zinc disorbate (ZDS) was revealed during the vulcanization of the composites. However, in the present systems, the contribution of ZDS to the reinforcement was limited. Effects of SA content on the vulcanization behavior, morphology and mechanical properties of the nanocomposites were investigated. Promising mechanical properties of SA modified SBR/HNTs nanocomposites were obtained. The changes in vulcanization behavior, mechanical properties and morphology were correlated with the interactions between HNTs and SA and the largely improved dispersion of HNTs.

  5. Morphological and mechanical properties of styrene butadiene rubber/nano copper nanocomposites

    Directory of Open Access Journals (Sweden)

    Maryam Hadizadeh Harandi

    Full Text Available In this research, rubber based nanocomposites with presence of nanoparticle has been studied. Styrene butadiene rubber (SBR/nanocopper (NC composites were prepared using two-roll mill method. Transmission electron microscope (TEM and scanning electron microscope (SEM images showed proper dispersion of NC in the SBR matrix without substantial agglomeration of nanoparticles. To evaluate the curing properties of nanocomposite samples, swelling and cure rheometric tests were conducted. Moreover, the rheological studies were carried out over a range of shear rates. The effect of NC particles was examined on the thermal behavior of the SBR using thermal gravimetric analysis (TGA. Furthermore, tensile tests were employed to investigate the capability of nanoparticles to enhance mechanical behavior of the compounds. The results showed enhancement in tensile properties with incorporation of NC to SBR matrix. Moreover, addition of NC increased shear viscosity and curing time of SBR composites. Keywords: Nanocopper, Rubber, Curing behavior, Rheological properties, Thermal stability, Tensile characteristics

  6. Effect of concentration of polyfunctional monomers on physical properties of acrylonitrile butadiene rubber under electron-beam irradiation

    Science.gov (United States)

    Yasin, Tariq; Ahmed, Shamshad; Ahmed, Munir; Yoshii, Fumio

    2005-06-01

    An investigation has been undertaken to find out the effect of concentration of different polyfunctional monomers (PFMs) on the physical properties of the acrylonitrile-butadiene rubber (NBR) crosslinked by electron beam (EB). The PFMs used were diethylene glycol dimethacrylate, trimethylol propane trimethacrylate and trimethylol propane triacrylate. The physical properties of EB-irradiated NBR sheets were evaluated by measuring the tensile strength, elongation percent at break, hardness and gel fraction. The results showed a remarkable increase in tensile strength, hardness and gel fraction as the concentration of PFMs was increased from 1 part per hundred (phr) to 5 phr in the NBR samples whereas elongation percent decreased in a steady manner. The improvement in physical properties of radiation crosslinked NBR in the presence of PFMs may be attributed to its increased crosslinking density as observed by the corresponding increase in gel content.

  7. Effect of concentration of polyfunctional monomers on physical properties of acrylonitrile-butadiene rubber under electron-beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Yasin, Tariq [Polymer Processing and Radiation Technology Laboratory, Applied Chemistry Division, Pakistan Institute of Nuclear Science and Technology, P.O. Nilore, Islamabad (Pakistan)]. E-mail: yasintariq@yahoo.com; Ahmed, Shamshad [Polymer Processing and Radiation Technology Laboratory, Applied Chemistry Division, Pakistan Institute of Nuclear Science and Technology, P.O. Nilore, Islamabad (Pakistan); Ahmed, Munir [Polymer Processing and Radiation Technology Laboratory, Applied Chemistry Division, Pakistan Institute of Nuclear Science and Technology, P.O. Nilore, Islamabad (Pakistan); Yoshii, Fumio [Takasaki Radiation Chemistry Research Establishment, JAERI, Takasaki, Gunma-Ken 370-12 (Japan)

    2005-06-01

    An investigation has been undertaken to find out the effect of concentration of different polyfunctional monomers (PFMs) on the physical properties of the acrylonitrile-butadiene rubber (NBR) crosslinked by electron beam (EB). The PFMs used were diethylene glycol dimethacrylate, trimethylol propane trimethacrylate and trimethylol propane triacrylate. The physical properties of EB-irradiated NBR sheets were evaluated by measuring the tensile strength, elongation percent at break, hardness and gel fraction. The results showed a remarkable increase in tensile strength, hardness and gel fraction as the concentration of PFMs was increased from 1 part per hundred (phr) to 5 phr in the NBR samples whereas elongation percent decreased in a steady manner. The improvement in physical properties of radiation crosslinked NBR in the presence of PFMs may be attributed to its increased crosslinking density as observed by the corresponding increase in gel content.

  8. Effect of concentration of polyfunctional monomers on physical properties of acrylonitrile-butadiene rubber under electron-beam irradiation

    International Nuclear Information System (INIS)

    Yasin, Tariq; Ahmed, Shamshad; Ahmed, Munir; Yoshii, Fumio

    2005-01-01

    An investigation has been undertaken to find out the effect of concentration of different polyfunctional monomers (PFMs) on the physical properties of the acrylonitrile-butadiene rubber (NBR) crosslinked by electron beam (EB). The PFMs used were diethylene glycol dimethacrylate, trimethylol propane trimethacrylate and trimethylol propane triacrylate. The physical properties of EB-irradiated NBR sheets were evaluated by measuring the tensile strength, elongation percent at break, hardness and gel fraction. The results showed a remarkable increase in tensile strength, hardness and gel fraction as the concentration of PFMs was increased from 1 part per hundred (phr) to 5 phr in the NBR samples whereas elongation percent decreased in a steady manner. The improvement in physical properties of radiation crosslinked NBR in the presence of PFMs may be attributed to its increased crosslinking density as observed by the corresponding increase in gel content

  9. The influence of nano silica particles on gamma-irradiation ageing of elastomers based on chlorosulphonated polyethylene and acrylonitrile butadiene rubber

    Science.gov (United States)

    Marković, G.; Marinović-Cincović, M.; Tanasić, Lj.; Jovanović, V.; Samaržija-Jovanović, S.; Vukić, N.; Budinski-Simendić, J.

    2011-12-01

    The goal of this work was to study gamma irradiation ageing of rubber blends based on acrylonitrile butadiene rubber (NBR) and chlorosulphonated polyethylene rubber (CSM) reinforced by silica nano particles. The NBR/CSM compounds (50: 50, w/w) filled with different content of filler (0-100 phr) were crosslinked by sulfur. The vulcanization characteristics were assessed using the rheometer with an oscillating disk. The vulcanizates were prepared in a hydraulic press. The obtained materials were exposed to the different irradiation doses (100, 200, 300 and 400 kGy). The mechanical properties (hardness, modulus at 100% elongation, tensile strength and elongation at break) and swelling numbers were assessed before and after gamma irradiation ageing.

  10. Styrene-butadiene-styrene copolymer compatibilized carbon black/polypropylene/polystyrene composites with tunable morphology, electrical conduction and rheological stabilities.

    Science.gov (United States)

    Song, Yihu; Xu, Chunfeng; Zheng, Qiang

    2014-04-21

    We report a facile kinetic strategy in combination with styrene-butadiene-styrene (SBS) copolymer compatibilizers for preparing carbon black (CB) filled immiscible polypropylene (PP)/polystyrene (PS) (1/1) blends with finely tuned morphologies and show the important role of location and migration of CB nanoparticles in determining the electrical conductivity and rheological behaviour of the composites. A novel method of mixing a SBS/CB (5/3) masterbatch with the polymers allowed producing composites with CB aggregates dispersed partially in the unfavorable PP phase and partially in the PP side of the interface to exhibit diverse phase connectivity and electrical conductivity depending on the compounding sequences. A cocontinuous morphology with CB enrichment along the interface was formed in the composite prepared by mixing the SBS/CB masterbatch with the premixed PP/PS blend, giving rise to a highest electrical conductivity and dynamic moduli at low frequencies. On the other hand, mixing the masterbatch with one and then with another polymer yielded droplet (PS)-in-matrix (filled PP) composites. The composites underwent phase coalescence and CB redistribution accompanied by marked dynamic electrical conduction and modulus percolations as a function of time during thermal annealing at 180 °C. The composites with the initial droplet-in-matrix morphology progressed anomalously into the cocontinuous morphology, reflecting a common mechanism being fairly nonspecific for understanding the processing of filled multicomponent composites with tailored performances of general concern.

  11. Effect of gamma irradiation on the properties of natural rubber/styrene butadiene rubber blends

    Directory of Open Access Journals (Sweden)

    A.B. Moustafa

    2016-09-01

    Full Text Available Blends of natural rubber (NR with styrene butadiene rubber (SBR with varying ratios have been prepared. Vulcanization of the prepared blends has been induced by irradiation of gamma rays with varying doses up to 250 kGy. Mechanical properties, namely tensile strength, tensile modulus at 100% elongation, elongation at break have been followed up as a function of irradiation dose as well as blend composition. Physical properties, namely gel fraction and swelling number have been followed up using benzene as a solvent. Thermal measurements namely thermogravimetric analysis were carried out. The results indicated that the addition of NR has improved the properties of NR / SBR blends. Also NR/SBR blend is thermally stable than NR alone.

  12. Chitosan/polyanion surface modification of styrene-butadiene-styrene block copolymer membrane for wound dressing.

    Science.gov (United States)

    Yang, Jen Ming; Yang, Jhe-Hao; Huang, Huei Tsz

    2014-01-01

    The surface of styrene-butadiene-styrene block copolymer (SBS) membrane is modified with tri-steps in this study. At first, two step modified SBS membrane (MSBS) was prepared with epoxidation and ring opening reaction with maleated ionomer. Then chitosan was used as the polycation electrolyte and sodium alginate, poly(γ-glutamic acid) (PGA) and poly(aspartic acid) (PAsp) were selected as polyanion electrolytes to deposit on the surfaces of MSBS membrane by the layer-by-layer self-assembly (LbL) deposition technique to get three [chitosan/polyanion] LbL modified SBS membranes, ([CS/Alg], [CS/PGA] and [CS/PAsp]). From the quantitative XPS analysis and water contact angle measurement, it is found that the order of wettability and the content of functional group percentages of COO(-) and OCN on the three [CS/polyanion] systems are [CS/Alg]>[CS/PGA]>[CS/PAsp]. Performances of water vapor transmission rates, fibronectin adsorption, antibacterial assessment and 3T3 fibroblast cell growth on [CS/Alg], [CS/PGA] and [CS/PAsp] membranes were also evaluated. With the evaluation of water vapor transmission rate, these [CS/Alg], [CS/PGA] and [CS/PAsp] membranes are sterile semipermeable with water evaporation at about 82±8g/day·m(2). It is found that the amount of fibronectin adsorption on the three [CS/polyanion] systems is significantly determined by the sum of the functional group of COO(-) and OCN on the surfaces of [CS/Alg], [CS/PGA] and [CS/PAsp] systems. The results are inverse with the sum of the functional group of COO(-) and OCN on the three [CS/polyanion]. From the cytotoxicity test and cell adhesion and proliferation assay of 3T3 fibroblasts on the three [CS/polyanion] systems, it revealed that the cells not only remained viable but they also proliferated on the surfaces of [CS/Alg], [CS/PGA] and [CS/PAsp]. The bactericidal activity was found on [CS/Alg], [CS/PGA] and [CS/PAsp]. The transport of bacterial through these [CS/polyanion] membranes was also conducted

  13. Reinforcing styrene butadiene rubber with lignin-novolac epoxy resin networks

    Directory of Open Access Journals (Sweden)

    P. Yu

    2015-01-01

    Full Text Available In this study, lignin-novolac epoxy resin networks were fabricated in the styrene butadiene rubber (SBR matrix by combination of latex compounding and melt mixing. Firstly, SBR/lignin compounds were co-coagulated by SBR latex and lignin aqueous solution. Then the novolac epoxy resin (F51 was added in the SBR/lignin compounds by melt compounding method. F51 was directly cured by lignin via the ring-opening reaction of epoxy groups of F51 and OH groups (or COOH groups of lignin during the curing process of rubber compounds, as was particularly evident from Fourier transform infrared spectroscopy (FTIR studies and maximum torque of the curing analysis. The existence of lignin-F51 networks were also detected by scanning electron microscope (SEM and dynamic mechanical analysis (DMA. The structure of the SBR/lignin/F51 was also characterized by rubber process analyzer (RPA, thermogravimetric analysis (TGA and determination of crosslinking density. Due to rigid lignin-F51 networks achieved in SBR/lignin/F51 composites, it was found that the hardness, modulus, tear strength, crosslinking density, the temperature of 5 and 10% weight-loss were significantly enhanced with the loading of F51.

  14. Effect of Silane Coupling Agent on the Creep Behavior and Mechanical Properties of Carbon Fibers/Acrylonitrile Butadiene Rubber Composites.

    Science.gov (United States)

    Choi, Woong-Ki; Park, Gil-Young; Kim, Byoung-Shuk; Seo, Min-Kang

    2018-09-01

    In this study, we investigated the effect of the silane coupling agent on the relationship between the surface free energy of carbon fibers (CFs) and the mechanical strength of CFs/acrylonitrile butadiene rubber (NBR) composites. Moreover, the creep behavior of the CF/NBR composites at surface energetic point of view were studied. The specific component of the surface free energy of the carbon fibers was found to increase upon grafting of the silane coupling agent, resulting in an increase in the tensile strength of the CF/NBR composites. On the other hand, the compressive creep strength was found to follow a slightly different trend. These results indicate the possible formation of a complex interpenetrating polymer network depending on the molecular size of the organic functional groups of the silane coupling agent.

  15. Effect of Graphene Oxide Mixed Epoxy on Mechanical Properties of Carbon Fiber/Acrylonitrile-Butadiene-Styrene Composites.

    Science.gov (United States)

    Wang, Cuicui; Ge, Heyi; Ma, Xiaolong; Liu, Zhifang; Wang, Ting; Zhang, Jingyi

    2018-04-01

    In this study, the watersoluble epoxy resin was prepared via the ring-opening reaction between diethanolamine and epoxy resin. The modified resin mixed with graphene oxide (GO) as a sizing agent was coated onto carbon fiber (CF) and then the GO-CF reinforced acrylonitrile-butadienestyrene (ABS) composites were prepared. The influences of the different contents of GO on CF and CF/ABS composite were explored. The combination among epoxy, GO sheets and maleic anhydride grafted ABS (ABSMA) showed a synergistic effect on improving the properties of GO-CF and GO-CF/ABS composite. The GO-CF had higher single tensile strength than the commercial CF. The maximum ILSS of GO-CF/ABS composite obtained 19.2% improvement as compared with that of the commercial CF/ABS composite. Such multiscale enhancement method and the synergistic reinforced GO-CF/ABS composite show good prospective applications in many industry areas.

  16. Thermal Stability and Flammability of Styrene-Butadiene Rubber-Based (SBR Ceramifiable Composites

    Directory of Open Access Journals (Sweden)

    Rafał Anyszka

    2016-07-01

    Full Text Available Ceramifiable styrene-butadiene (SBR-based composites containing low-softening-point-temperature glassy frit promoting ceramification, precipitated silica, one of four thermally stable refractory fillers (halloysite, calcined kaolin, mica or wollastonite and a sulfur-based curing system were prepared. Kinetics of vulcanization and basic mechanical properties were analyzed and added as Supplementary Materials. Combustibility of the composites was measured by means of cone calorimetry. Their thermal properties were analyzed by means of thermogravimetry and specific heat capacity determination. Activation energy of thermal decomposition was calculated using the Flynn-Wall-Ozawa method. Finally, compression strength of the composites after ceramification was measured and their micromorphology was studied by scanning electron microscopy. The addition of a ceramification-facilitating system resulted in the lowering of combustibility and significant improvement of the thermal stability of the composites. Moreover, the compression strength of the mineral structure formed after ceramification is considerably high. The most promising refractory fillers for SBR-based ceramifiable composites are mica and halloysite.

  17. Blending of styrene-block-butadiene-block-styrene copolymer with sulfonated vinyl aromatic polymers

    NARCIS (Netherlands)

    Ruggeri, Giacomo; Passaglia, Elisa; Giorgi, Ivan; Picchioni, Francesco; Aglietto, Mauro

    2001-01-01

    Different polymers containing sulfonic groups attached to the phenyl rings were prepared by sulfonation of polystyrene (PS) and styrene-block-(ethylene-co-1-butene)-block-styrene (SEBS). The sulfonation degree (SD) was varied between 1 and 20 mol% of the styrene units. Polyphase materials containing

  18. Preparation and properties of carboxylated styrene-butadiene rubber/cellulose nanocrystals composites.

    Science.gov (United States)

    Cao, Xiaodong; Xu, Chuanhui; Liu, Yuhong; Chen, Yukun

    2013-01-30

    A series of carboxylated styrene-butadiene rubber (XSBR)/cellulose nanocrystals (CNs) latex composites were successfully prepared. The vulcanization process, morphology, dynamic viscoelastic behavior, dynamic mechanical property, thermal and mechanical performance of the XSBR/CNs composites were investigated in detail. The results revealed that CNs were dispersed uniformly in the XSBR matrix and formed a strong filler-filler network. The dynamic mechanical analysis (DMA) showed that the glass transition temperature (T(g)) of XSBR matrix was shifted from 48.45 to 50.64 °C with 3 phr CNs, but decreased from 50.64 to 46.28 °C when further increasing CNs content up to 15 phr. The composites exhibited a significant enhancement in tensile strength (from 16.9 to 24.1 MPa) and tear strength (from 43.5 to 65.2 MPa) with loading CNs from 0 to 15 phr. In addition, the thermo-gravimetric analysis (TGA) showed that the temperature at 5% weight loss of the XSBR/CNs composites decreased slightly with an increase of the CNs content. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  19. Response of Primary Human Bone Marrow Mesenchymal Stromal Cells and Dermal Keratinocytes to Thermal Printer Materials In Vitro.

    Science.gov (United States)

    Schmelzer, Eva; Over, Patrick; Gridelli, Bruno; Gerlach, Jörg C

    Advancement in thermal three-dimensional printing techniques has greatly increased the possible applications of various materials in medical applications and tissue engineering. Yet, potential toxic effects on primary human cells have been rarely investigated. Therefore, we compared four materials commonly used in thermal printing for bioengineering, namely thermally printed acrylonitrile butadiene styrene, MED610, polycarbonate, and polylactic acid, and investigated their effects on primary human adult skin epidermal keratinocytes and bone marrow mesenchymal stromal cells (BM-MSCs) in vitro. We investigated indirect effects on both cell types caused by potential liberation of soluble substances from the materials, and also analyzed BM-MSCs in direct contact with the materials. We found that even in culture without direct contact with the materials, the culture with MED610 (and to a lesser extent acrylonitrile butadiene styrene) significantly affected keratinocytes, reducing cell numbers and proliferation marker Ki67 expression, and increasing glucose consumption, lactate secretion, and expression of differentiation-associated genes. BM-MSCs had decreased metabolic activity, and exhibited increased cell death in direct culture on the materials. MED610 and acrylonitrile butadiene styrene induced the strongest expression of genes associated to differentiation and estrogen receptor activation. In conclusion, we found strong cell-type-specific effects of the materials, suggesting that materials for applications in regenerative medicine should be carefully selected not only based on their mechanical properties but also based on their cell-type-specific biological effects.

  20. Influence of Layer Thickness and Raster Angle on the Mechanical Properties of 3D-Printed PEEK and a Comparative Mechanical Study between PEEK and ABS.

    Science.gov (United States)

    Wu, Wenzheng; Geng, Peng; Li, Guiwei; Zhao, Di; Zhang, Haibo; Zhao, Ji

    2015-09-01

    Fused deposition modeling (FDM) is a rapidly growing 3D printing technology. However, printing materials are restricted to acrylonitrile butadiene styrene (ABS) or poly (lactic acid) (PLA) in most Fused deposition modeling (FDM) equipment. Here, we report on a new high-performance printing material, polyether-ether-ketone (PEEK), which could surmount these shortcomings. This paper is devoted to studying the influence of layer thickness and raster angle on the mechanical properties of 3D-printed PEEK. Samples with three different layer thicknesses (200, 300 and 400 μm) and raster angles (0°, 30° and 45°) were built using a polyether-ether-ketone (PEEK) 3D printing system and their tensile, compressive and bending strengths were tested. The optimal mechanical properties of polyether-ether-ketone (PEEK) samples were found at a layer thickness of 300 μm and a raster angle of 0°. To evaluate the printing performance of polyether-ether-ketone (PEEK) samples, a comparison was made between the mechanical properties of 3D-printed polyether-ether-ketone (PEEK) and acrylonitrile butadiene styrene (ABS) parts. The results suggest that the average tensile strengths of polyether-ether-ketone (PEEK) parts were 108% higher than those for acrylonitrile butadiene styrene (ABS), and compressive strengths were 114% and bending strengths were 115%. However, the modulus of elasticity for both materials was similar. These results indicate that the mechanical properties of 3D-printed polyether-ether-ketone (PEEK) are superior to 3D-printed ABS.

  1. Synthesis of styrene/isoprene/butadiene integrated rubber with wide glass transition temperature by reactive extrusion

    Science.gov (United States)

    Huang, Tianhua; Zheng, Anna; Zhan, Pengfei; Shi, Han; Li, Xiang; Guan, Yong; Wei, Dafu

    2018-05-01

    In this work, styrene/isoprene/butadiene integrated rubber (SIBR) was synthesized with n-butyllithium as the initiator and tetrahydrofuran as structure modifier in a co-rotating intermeshing twin-screw extruder. The content of diene in these terpolymers reached a surprising 70 wt% by feeding the monomers in two different sites of the twin-screw extruder. 1H-NMR, GPC and TEM results showed that the molecular structures of terpolymers changed with the variation of feeding site. Dynamic mechanical analysis of the vulcanized SIBR showed that the terpolymer had a wide glass transition region, which assured an excellent combination of high antiskid properties and low rolling resistance. Different from traditional solution polymerization, the present work provides a green approach to prepare the SIBR via bulk polymerization without solvent.

  2. Microstructural analysis of carbon nanotubes produced from pyrolysis/combustion of styrene-butadiene rubber

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Joner O.; Zhuo, Chuanwei; Levendis, Yannis A. [Northeastern Univ., Boston, MA (United States). Coll. of Engineering. Dept. of Mechanical and Industrial Engineering; Tenorio, Jorge A.S. [University of Sao Paulo (USP), SP (Brazil). Polytechnic School. Dept. of Metallurgical and Materials Engineering

    2010-07-01

    Styrene-Butadiene-Rubber (SBR) is a synthetic rubber copolymer used to fabricate several products. This study aims to demonstrate the use of SBR as feedstock for carbon nanotubes (CNTs) growth, and therefore to establish a novel process for destination for wastes produced from SBR. Pellets of this rubber were controlled burned at temperature of 1000 deg C, and a catalyst system was used to synthesize the nanomaterials. CNTs are materials with a wide range of potential applications due to their extraordinary mechanical, thermal and electrical properties. Produced materials were characterized by SEM and TEM, and the hydrocarbons emissions were measured using GC. Results showed that materials with diameters of 30-100 nm and lengths of about 30 {mu}m were formed. That materials presented similar structures of multi-walled CNTs. Therefore, the use of SBR to produce carbon nanotubes showed quite satisfactory and an interesting field for future investments. (author)

  3. Rheology of High-Melt-Strength Polypropylene for Additive Manufacturing

    DEFF Research Database (Denmark)

    Hofstätter, Thomas; Kamleitner, Florian; Jagenteufel, Ralf

    Acrylonitrile butadiene styrene (ABS) is a widely used material for additive manufacturing (AM) fused deposition modeling (FDM). The rheological properties of high-melt-strength polypropylene (HMS-PP) were compared to commercially available ABS 250 filament to study the possibility of using...

  4. Synthesis and characterization of compatibilizers for blends of PA and ABS

    NARCIS (Netherlands)

    Staal, M.P.B.

    2005-01-01

    Blends of polyamide (PA) and acrylonitrile-butadiene-styrene (ABS) copolymers yield polymeric materials that are highly solvent resistant, easy to process and have high impact strengths over a wide temperature range. These properties make these blends interesting materials for various applications

  5. Shape Memory Polymer Composites of Poly(styrene-b-butadiene-b-styrene Copolymer/Liner Low Density Polyethylene/Fe3O4 Nanoparticles for Remote Activation

    Directory of Open Access Journals (Sweden)

    Yongkun Wang

    2016-11-01

    Full Text Available Magnetically sensitive shape memory poly(styrene-b-butadiene-b-styrene copolymer (SBS/liner low density polyethylene (LLDPE composites filled with various contents of Fe3O4 nanoparticles were prepared. The influence of the Fe3O4 nanoparticles content on the thermal properties, mechanical properties, fracture morphology, magnetic behavior, and shape memory effect of SBS/LLDPE/Fe3O4 composites was systematically studied in this paper. The results indicated that homogeneously dispersed Fe3O4 nanoparticles ensured the uniform heat generation and transfer in the alternating magnetic field, and endowed the SBS/LLDPE/Fe3O4 composites with an excellent magnetically responsive shape memory effect. When the shape memory composites were in the alternating magnetic field (f = 60 kHz, H = 21.21 kA·m−1, the best shape recovery ratio reached 99%, the shape retention ratio reached 99.4%, and the shape recovery speed increased significantly with the increment of Fe3O4 nanoparticles. It is anticipated that tagging products with this novel shape memory composite is helpful for the purpose of an intravascular delivery system in Micro-Electro-Mechanical System (MEMS devices.

  6. Superhydrophilic poly (styrene co acrylonitrile)-ZnO nanocomposite surfaces for UV shielding and self-cleaning applications

    Science.gov (United States)

    Singh, Rajender; Sharma, Ramesh; Barman, P. B.; Sharma, Dheeraj

    2017-11-01

    UV shielding based super hydrophilic material is developed in the present formulation by in situ emulsion polymerization of poly (styrene-acrylonitrile) with ZnO nanoparticles. The ESI-MS technique confirms the structure of polymer nanocomposite by their mass fragments. The XRD study confirms the presence of ZnO phase in polymer matrix. PSAN/ZnO nanocomposite leads to give effective UV shielding (upto 375 nm) and visible luminescence with ZnO content in polymer matrix. The FESEM and TEM studies confirm the symmetrical, controlled growth of PNs. The incorporation of ZnO nanofillers into PSAN matrix lead to restructuring the PNs surfaces into superhydrophilic surfaces in water contact angle (WCA) from 70° to 10°. We believe our synthesized PSAN/ZnO nanocomposite could be potential as UV shielding, luminescent and super hydrophilic nature based materials in related commercial applications.

  7. Microstructure evolution and tribological properties of acrylonitrile-butadiene rubber surface modified by atmospheric plasma treatment

    Science.gov (United States)

    Shen, Ming-xue; Zhang, Zhao-xiang; Peng, Xu-dong; Lin, Xiu-zhou

    2017-09-01

    For the purpose of prolonging the service life for rubber sealing elements, the frictional behavior of acrylonitrile-butadiene rubber (NBR) surface by dielectric barrier discharge plasma treatments was investigated in this paper. Surface microstructure and chemical composition were measured by atomic force microscopy, field-emission scanning electron microscopy, and X-ray photoelectron spectroscopy, respectively. Water contact angles of the modified rubber surface were also measured to evaluate the correlation between surface wettability and tribological properties. The results show that plasma treatments can improve the properties of the NBR against friction and wear effectively, the surface microstructure and roughness of plasma-modified NBR surface had an important influence on the surface tribological behavior, and the wear depth first decreased and then increased along with the change of plasma treatment time. It was found that the wettability of the modified surface was gradually improved, which was mainly due to the change of the chemical composition after the treatment. This study suggests that the plasma treatment could effectively improve the tribological properties of the NBR surface, and also provides information for developing wear-resistant NBR for industrial applications.

  8. Disclosed dielectric and electromechanical properties of hydrogenated nitrile–butadiene dielectric elastomer

    International Nuclear Information System (INIS)

    Yang, Dan; Tian, Ming; Dong, Yingchao; Liu, Haoliang; Yu, Yingchun; Zhang, Liqun

    2012-01-01

    This paper presents a comprehensive study of the effects of acrylonitrile content, crosslink density and plasticization on the dielectric and electromechanical performances of hydrogenated nitrile–butadiene dielectric elastomer. It was found that by increasing the acrylonitrile content of hydrogenated nitrile–butadiene dielectric elastomer, the dielectric constant will be improved accompanied with a sharp decrease of electrical breakdown strength leading to a small actuated strain. At a fixed electric field, a high crosslink density increased the elastic modulus of dielectric elastomer, but it also enhanced the electrical breakdown strength leading to a high actuated strain. Adding a plasticizer into the dielectric elastomer decreased the dielectric constant and electrical breakdown strength slightly, but reduced the elastic modulus sharply, which was beneficial for obtaining a large strain at low electric field from the dielectric elastomer. The largest actuated strain of 22% at an electric field of 30 kV mm −1 without any prestrain was obtained. Moreover, the hydrogenated nitrile–butadiene dielectric actuator showed good history dependence. This proposed material has great potential to be an excellent dielectric elastomer. (paper)

  9. Preparation, characterization and evaluation of proton-conducting hybrid membranes based on sulfonated hydrogenated styrene-butadiene and polysiloxanes for fuel cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Monroy-Barreto, M.; Aguilar, J.C.; Rodriguez de San Miguel, E.; de Gyves, J. [Departamento de Quimica Analitica, Facultad de Quimica, UNAM, Ciudad Universitaria, 04360 Mexico, D.F. (Mexico); Acosta, J.L.; del Rio, C.; Ojeda, M.C. [Instituto de Ciencia y Tecnologia de Polimeros (CSIC), c/Juan de la Cierva 3, 28006 Madrid (Spain); Munoz, M. [Departament de Quimica Analitica, Facultat de Ciencies, U.A.B., Bellaterra 08193 Barcelona (Spain)

    2010-12-15

    This paper describes the preparation of proton-conducting hybrid membranes (HMs) obtained by a solvent casting procedure using a solution containing sulfonated hydrogenated styrene-butadiene (HSBS-S) and an inorganic-organic mixture (polysiloxanes) previously prepared by a sol-gel route. HSBS-S copolymers with different sulfonation degrees were obtained and characterized by means of elemental analysis (EA), chemical titration and electrochemical impedance spectroscopy (EIS). HSBS-S with the best properties in terms of proton conductivity and solubility for the casting procedure was selected to prepare the HMs. The solvent casting procedure permitted the two phases to be homogeneously distributed while maintaining a relatively high proton conductivity in the membrane. HMs with different blend ratios were characterized using structural (Fourier transform infrared-attenuated total reflectance (FTIR-ATR), dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC)), electrical (EIS), physicochemical (water uptake, ion-exchange capacity) and thermal (TGA-MS) methods. Finally, the optimized HSBS-S membrane and HMs were tested in hydrogen single fuel cells to obtain the polarization and power curves at different cell temperatures and gas pressures. Results indicate that HMs show a considerable improvement in performance compared to the optimized HSBS-S membrane denoting the benefit of incorporating the inorganic-organic network in the hydrogenated styrene-butadiene matrix. A Nafion membrane was used as reference material throughout this work. (author)

  10. Tear energy and strain-induced crystallization of natural rubber/styrene-butadiene rubber blend

    International Nuclear Information System (INIS)

    Noguchi, F; Akabori, K; Yamamoto, Y; Kawahara, S; Kawazura, T

    2009-01-01

    Strain-induced crystallization of natural rubber (NR), dispersed in styrene-butadiene rubber (SBR), was investigated in relation to dimensional feature of a dispersoid and crosslink density of NR by measuring tear energy (G) of crosslinked NR/SBR blends. The crosslinked NR/SBR blends in ratios of 1/9 and 3/7 by weight were prepared by mixing masticated NR and SBR with an internal mixer at a rotor speed of 30 rpm, followed by crosslinking with dicumyl peroxide on a hot press at 444 K for 60 min. The G, measured in wide-ranges of temperature and tear rate, was superposed into a master curve with a Williams-Landel-Ferry shift factor. The G of the NR/SBR(3/7) blend abruptly decreased to a level comparable to that of SBR at about melting temperature of NR crystals formed on straining. The temperature, at which the dramatic decrease in the G occurred, was associated with the dimensional feature of the NR dispersoid and the crosslink density.

  11. Performance of asphaltic concrete incorporating styrene butadiene rubber subjected to varying aging condition

    Science.gov (United States)

    Salah, Faisal Mohammed; Jaya, Ramadhansyah Putra; Mohamed, Azman; Hassan, Norhidayah Abdul; Rosni, Nurul Najihah Mad; Mohamed, Abdullahi Ali; Agussabti

    2017-12-01

    The influence of styrene butadiene rubber (SBR) on asphaltic concrete properties at different aging conditions was presented in this study. These aging conditions were named as un-aged, short-term, and long-term aging. The conventional asphalt binder of penetration grade 60/70 was used in this work. Four different levels of SBR addition were employed (i.e., 0 %, 1 %, 3 %, and 5 % by binder weight). Asphalt concrete mixes were prepared at selected optimum asphalt content (5 %). The performance was evaluated based on Marshall Stability, resilient modulus, and dynamic creep tests. Results indicated the improving stability and permanent deformation characteristics that the mixes modified with SBR polymer have under aging conditions. The result also showed that the stability, resilient modulus, and dynamic creep tests have the highest rates compared to the short-term aging and un-aged samples. Thus, the use of 5 % SBR can produce more durable asphalt concrete mixtures with better serviceability.

  12. Poly(styrene-co-butadiene) random copolymer thin films and nanostructures on a mica surface: morphology and contact angles of nanodroplets.

    Science.gov (United States)

    McClements, Jake; Buffone, Cosimo; Shaver, Michael P; Sefiane, Khellil; Koutsos, Vasileios

    2017-09-20

    The self-assembly of poly(styrene-co-butadiene) random copolymers on mica surfaces was studied by varying solution concentrations and polymer molecular weights. Toluene solutions of the poly(styrene-co-butadiene) samples were spin coated onto a mica surface and the resulting polymer morphology was investigated by atomic force microscopy. At higher concentrations, thin films formed with varying thicknesses; some dewetting was observed which depended on the molecular weight. Total dewetting did not occur despite the polymer's low glass transition temperature. Instead, partial dewetting was observed suggesting that the polymer was in a metastable equilibrium state. At lower concentrations, spherical cap shaped nanodroplets formed with varying sizes from single polymer chains to aggregates containing millions of chains. As the molecular weight was increased, fewer aggregates were observed on the surface, albeit with larger sizes resulting from increased solution viscosities and more chain entanglements at higher molecular weights. The contact angles of the nanodroplets were shown to be size dependent. A minimum contact angle occurs for droplets with radii of 100-250 nm at each molecular weight. Droplets smaller than 100 nm showed a sharp increase in contact angle; attributed to an increase in the elastic modulus of the droplets, in addition, to a positive line tension value. Droplets larger than 250 nm also showed an increased contact angle due to surface heterogeneities which cannot be avoided for larger droplets. This increase in contact angle plateaus as the droplet size reaches the macroscopic scale.

  13. The Effect of Concentration of P-phenylenediamine Antioxidant on the Acrylonitrile-Butadiene Rubber Seals under High Gamma Irradiation

    International Nuclear Information System (INIS)

    Hegazi, E.M.; Abd El-megeed, A.A.

    2016-01-01

    Acrylonitrile- butadiene rubber (NBR) seals are one of the classified seals used in nuclear facilities. But at high irradiation doses the physical and mechanical properties of NBR are adversely affected due to the degradation induced by radiation and hence affect the sealing performance reducing their service life. The present work is focused on studying the effect of concentration of N-(1, 3-dimethylbutyl)-N’-phenyl-p-phenylene diamine (6PPD) on the physical and mechanical properties of the NBR rubber at high doses of γ-irradiation up to 2 MGy. The physical properties, mechanical properties, hardness, and abrasion of the NBR rubber under γ-radiation were investigated. The optimum amount of 6PPD required to resist deterioration is also estimated. The results showed a remarkable increase in the physical and mechanical properties as the concentration of 6PPD was increased from 1 phr (part per hundred) to 3 phr in NBR samples

  14. Phase Morphology and Mechanical Properties of Cyclic Butylene Terephthalate Oligomer-Containing Rubbers: Effect of Mixing Temperature

    OpenAIRE

    Hal?sz, Istv?n Zolt?n; B?r?ny, Tam?s

    2016-01-01

    In this work, the effect of mixing temperature (Tmix) on the mechanical, rheological, and morphological properties of rubber/cyclic butylene terephthalate (CBT) oligomer compounds was studied. Apolar (styrene butadiene rubber, SBR) and polar (acrylonitrile butadiene rubber, NBR) rubbers were modified by CBT (20 phr) for reinforcement and viscosity reduction. The mechanical properties were determined in tensile, tear, and dynamical mechanical analysis (DMTA) tests. The CBT-caused viscosity cha...

  15. 21 CFR 181.32 - Acrylonitrile copolymers and resins.

    Science.gov (United States)

    2010-04-01

    .../styrene copolymer—for use only as piping for handling food products and for repeated-use articles intended... acrylonitrile monomer extraction for finished food-contact articles, determined by using the method of analysis... from the Center for Food Safety and Applied Nutrition (HFS-200), Food and Drug Administration, 5100...

  16. Synthesis of High cis-Polybutadiene in Styrene Solution with Neodymium-Based Catalysts: Towards the Preparation of HIPS and ABS via In Situ Bulk Polymerization

    Directory of Open Access Journals (Sweden)

    Ramón Díaz de León

    2016-01-01

    Full Text Available In a first step, 1,3-butadiene was selectively polymerized at 60°C in styrene as solvent using NdV3/DIBAH/EASC as the catalyst system. The catalyst system activation process, the addition order of monomers and catalyst components, and the molar ratios [Al]/[Nd] and [Cl]/[Nd] were studied. The catalyst system allowed the selective 1,3-butadiene polymerization, reaching conversions between 57.5 and 88.1% with low polystyrene contents in the order of 6.3 to 15.4%. Molecular weights ranging from 39,000 to 150,000 g/mol were obtained, while cis-1,4 content was found in the interval of 94.4 to 96.4%. On the other hand, the glass transition temperatures of synthesized materials were established in the range of −101.9 to −107.4°C, explained by the presence of polystyrene segments in the polybutadiene chains; in the same sense, the polybutadienes did not show the typical melting endotherm of high cis-polybutadienes. In a second step, the resulting styrene/high cis-1,4 polybutadiene solutions were used to synthesize ABS (adding a fraction of acrylonitrile monomer and HIPS via in situ bulk polymerizations and the results were discussed in terms of morphological development, molecular parameters, dynamical mechanical behavior, and mechanical properties.

  17. A low-cost lead-acid battery with high specific-energy

    Indian Academy of Sciences (India)

    Lightweight grids for lead-acid battery grids have been prepared from acrylonitrile butadiene styrene (ABS) copolymer followed by coating with lead. Subsequently, the grids have been electrochemically coated with a conductive and corrosion-resistant layer of polyaniline. These grids are about 75% lighter than those ...

  18. A low-cost lead-acid battery with high specific-energy

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Lightweight grids for lead-acid battery grids have been prepared from acrylonitrile butadiene styrene (ABS) copolymer followed by coating with lead. Subsequently, the grids have been electro- chemically coated with a conductive and corrosion-resistant layer of polyaniline. These grids are about. 75% lighter than ...

  19. About the cure kinetics in natural rubber/styrene Butadiene rubber blends at 433 K

    International Nuclear Information System (INIS)

    Mansilla, M.A.; Marzocca, A.J.

    2012-01-01

    Vulcanized blends of elastomers are employed in several goods mainly to improve physical properties and reduce costs. One of the most used blends of this kind is that composed by natural rubber (NR) and styrene butadiene rubber (SBR). The cure kinetic of these blends depends mainly on the compound formulation and the cure temperature and time. The preparation method of the blends can influence the mechanical properties of the vulcanized compounds. In this work the cure kinetic at 433 K of NR/SBR blends vulcanized with the system sulfur/TBBS (N-t-butyl-2-benzothiazole sulfenamide) is analyzed in samples prepared by mechanical mixing and solution blending. The two methods produce elastomer domains of NR and SBR, which present different microstructure due to the cure level attained during vulcanization. The cure kinetics is studied by means of rheometer tests and the model proposed by Kamal and Sourour. The analysis of the cure rate is presented and is related to the structure obtained during the vulcanization process.

  20. About the cure kinetics in natural rubber/styrene Butadiene rubber blends at 433 K

    Energy Technology Data Exchange (ETDEWEB)

    Mansilla, M.A., E-mail: mmansilla@df.uba.ar [Laboratorio de Polimeros y Materiales Compuestos, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon 1, C1428EGA Buenos Aires (Argentina); Marzocca, A.J. [Laboratorio de Polimeros y Materiales Compuestos, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon 1, C1428EGA Buenos Aires (Argentina)

    2012-08-15

    Vulcanized blends of elastomers are employed in several goods mainly to improve physical properties and reduce costs. One of the most used blends of this kind is that composed by natural rubber (NR) and styrene butadiene rubber (SBR). The cure kinetic of these blends depends mainly on the compound formulation and the cure temperature and time. The preparation method of the blends can influence the mechanical properties of the vulcanized compounds. In this work the cure kinetic at 433 K of NR/SBR blends vulcanized with the system sulfur/TBBS (N-t-butyl-2-benzothiazole sulfenamide) is analyzed in samples prepared by mechanical mixing and solution blending. The two methods produce elastomer domains of NR and SBR, which present different microstructure due to the cure level attained during vulcanization. The cure kinetics is studied by means of rheometer tests and the model proposed by Kamal and Sourour. The analysis of the cure rate is presented and is related to the structure obtained during the vulcanization process.

  1. Surface treatment with Fenton for separation of acrylonitrile-butadiene-styrene and polyvinylchloride waste plastics by flotation.

    Science.gov (United States)

    Wang, Jian-Chao; Wang, Hui; Huang, Luo-Luo; Wang, Chong-Qing

    2017-09-01

    Surface treatment with Fenton was applied to flotation separation of acrylonitrile-butadienestyrene (ABS) and polyvinylchloride (PVC). After treatment, the floatability of ABS has a dramatic decrease, while the floatability of PVC is not affected. Fourier transform infrared spectroscopy (FT-IR) spectra and X-ray photoelectron spectroscopy (XPS) spectra were recorded to ascertain the mechanism of Fenton treatment. FT-IR and XPS analysis confirms that the introduction of oxygen-containing group occurs on the surface of ABS. The optimum conditions are molar ration (H 2 O 2 :Fe 2+ ) 10000, H 2 O 2 concentration 0.4M/L, pH 5.8, treatment time 2min and temperature 25°C, frother concentration 15mg/L and flotation time 3min. Particle sizes and mixing ratios were also investigated. Plastic mixtures of ABS and PVC with different particle sizes and mixing ratios can be effectively separated. The purity of ABS and PVC are up to 100% and 99.78%, respectively; the recovery of ABS and PVC are up to 99.89% and 100%, respectively. A practical, environmentally friendly and effective reagent, namely Fenton, was originally applied to surface treatment of ABS and PVC waste plastics for flotation separation of their mixtures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Preparation of candidate reference materials for the determination of phosphorus containing flame retardants in styrene-based polymers.

    Science.gov (United States)

    Roth, Thomas; Urpi Bertran, Raquel; Latza, Andreas; Andörfer-Lang, Katrin; Hügelschäffer, Claudia; Pöhlein, Manfred; Puchta, Ralph; Placht, Christian; Maid, Harald; Bauer, Walter; van Eldik, Rudi

    2015-04-01

    Candidate reference materials (RM) for the analysis of phosphorus-based flame retardants in styrene-based polymers were prepared using a self-made mini-extruder. Due to legal requirements of the current restriction for the use of certain hazardous substances in electrical and electronic equipment, focus now is placed on phosphorus-based flame retardants instead of the brominated kind. Newly developed analytical methods for the first-mentioned substances also require RMs similar to industrial samples for validation and verification purposes. Hence, the prepared candidate RMs contained resorcinol-bis-(diphenyl phosphate), bisphenol A bis(diphenyl phosphate), triphenyl phosphate and triphenyl phosphine oxide as phosphorus-based flame retardants. Blends of polycarbonate and acrylonitrile-co-butadiene-co-styrene as well as blends of high-impact polystyrene and polyphenylene oxide were chosen as carrier polymers. Homogeneity and thermal stability of the candidate RMs were investigated. Results showed that the candidate RMs were comparable to the available industrial materials. Measurements by ICP/OES, FTIR and NMR confirmed the expected concentrations of the flame retardants and proved that analyte loss and degradation, respectively, was below the uncertainty of measurement during the extrusion process. Thus, the candidate RMs were found to be suitable for laboratory use.

  3. Mechanical and Thermal Properties of Styrene Butadiene Rubber - Functionalized Carbon Nanotubes Nanocomposites

    KAUST Repository

    Laoui, Tahar

    2013-01-01

    The effect of reinforcing styrene butadiene rubber (SBR) with functionalized carbon nanotubes on the mechanical and thermal properties of the nanocomposite was investigated. Multi-walled carbon nanotubes (CNTs) were functionalized with phenol functional group to enhance their dispersion in SBR matrix. Surface functionalization of the CNTs was carried out using acid treatment and FTIR technique was utilized so as to ascertain the presence of phenol functional group. This was followed with the dispersion of the functionalized CNTs into a polymer solution and a subsequent evaporation of the solvent. This study has demonstrated the inherent capability of CNTs as reinforcing filler as demonstrated by the substantial improvement in Young\\'s Modulus, tensile strength and energy of absorption of the nanocomposites. The tensile strength increased from 0.17 MPa (SBR) to 0.48 MPa while the Young\\'s Modulus increased from 0.25 MPa to 0.83 MPa when 10wt% functionalized CNTs was added. With the addition of 1wt% reinforcement-a peak value of 4.1 KJ energy absorption was obtained. The homogenous dispersion of CNT-Phenol is thought to be responsible for the considerable enhancement in the reported properties. Copyright © Taylor & Francis Group, LLC.

  4. Inner Stucture of Thin Films of Lamellar Poly(styrene-em>b>-butadiene) Diblock Copolymers as revealed by Grazing-Incidence Small-Angle Scattering

    DEFF Research Database (Denmark)

    Busch, Peter; Posselt, Dorthe; Smilgies, Detlef-Matthias

    2007-01-01

    The lamellar orientation in supported, thin films of poly(styrene-b-butadiene) (P(S-b-B)) depends on block copolymer molar mass. We have studied films from nine block copolymer samples with molar masses between 13.9 and 183 kg/mol using grazing-incidence small-angle X-ray scattering (GISAXS) and ...... quantitatively in the framework of our recently developed distorted-wave Born approximation model (Busch, P.; et al. J. Appl. Crystallogr. 2006, 39, 433). The results cannot be explained from enthalpic considerations alone but point to the importance of entropic factors....

  5. Recycling cycle of materials applied to acrylonitrile-butadiene-styrene/policarbonate blends with styrene-butadiene-styrene copolymer addition

    Science.gov (United States)

    Cândido, L. H. A.; Ferreira, D. B.; Júnior, W. Kindlein; Demori, R.; Mauler, R. S.

    2014-05-01

    The scope of this research is the recycling of polymers from mobile phones hulls discarded and the performance evaluation when they are submitted to the Recycling Cycle of Materials (RCM). The studied material was the ABS/PC blend in a 70/30 proportion. Different compositions were evaluated adding virgin material, recycled material and using the copolymer SBS as impact modifier. In order to evaluate the properties of material's composition, the samples were characterized by TGA, FTIR, SEM, IZOD impact strength and tensile strength tests. At the first stage, the presented results suggest the composition containing 25% of recycled material and 5% of SBS combines good mechanical performance to the higher content of recycled material and lower content of impact modifier providing major benefits to recycling plans. Five cycles (RCM) were applied in the second stage; they evidenced a decrease trend considering the impact strength. At first and second cycle the impact strength was higher than reference material (ABS/PC blend) and from the fourth cycle it was lower. The superiority impact strength in the first and second cycles can be attributed to impact modifier effect. The thermal tests and the spectrometry didn't show the presence of degradation process in the material and the TGA curves demonstrated the process stability. The impact surface of each sample was observed at SEM. The microstructures are not homogeneous presenting voids and lamellar appearance, although the outer surface presents no defects, demonstrating good moldability. The present work aims to assess the life cycle of the material from the successive recycling processes.

  6. 3D Printing in Makerspaces: Health and Safety Concerns

    Science.gov (United States)

    Bharti, Neelam

    2017-01-01

    3D (three-dimensional) printing is included in makerspaces around the world and has become increasingly affordable and useful. Most makerspaces use Fused Deposition Modeling (FDM)-based 3D printers, using polylactic acid (PLA) and acrylonitrile butadiene styrene (ABS) as printing materials. However, heating PLA and ABS to high temperatures emits…

  7. Modification of asphaltic concrete with a mineral polymeric additive based on butadiene-styrene rubber and chemically precipitated calcium carbonate

    Directory of Open Access Journals (Sweden)

    S. I. Niftaliev

    2016-01-01

    Full Text Available Modification of asphaltic concrete with a mineral polymeric additive based on butadienestyrene rubber and chemically precipitated calcium carbonate. This paper presents the results of the study of physical – mechanical and service properties of the asphaltic concrete modified with the mineral polymeric composition. Calcium carbonate is used both as a filler and a coagulant. The chalk was preliminarily ground and hydrophobizated by stearic acid. These operations contribute to even distribution of the filler and interfere with lump coagulation. As a result of the experiments, it was found that the best results were obtained by combining the operations of dispersion and hydrophobization. The optimal amount of stearic acid providing the finest grinding in a ball mill is a content from 3 to 5% by weight. The optimal grinding time of the filler was found (4–6 hours. With increasing dispersion time the particles form agglomerates. Filling the butadiene styrene latex with the hydrophobic fine-grained calcium carbonate was carried out in the laboratory mixer. As a result of the experimental works, it was found that the best distribution of the filler takes place with ratio of rubber: chalk – 100:400. The resulting modifier was subjected to the thermal analysis on the derivatograph to determine its application temperature interval. A marked reduction in weight of the mineral polymeric modifier begins at 350 °C. Thus, high temperature of the modifier destruction allows to use it at the temperature of the technological process of asphaltic concrete preparation (up to 170 °C. It was found that an increase in the amount of the carbonate filler in the rubber SKS 30АRК significantly increases its thermal resistance and connection of the polymer with the chalk in the composition.

  8. Blending protocol effect in structural properties of PA6/ABS nanocomposites compatibilized with SAN-MA

    International Nuclear Information System (INIS)

    Castro, Lucas D.C. de; Oliveira, Amanda D.; Pessan, Luiz Antonio

    2015-01-01

    Nanocomposites based on polyamide 6 (PA6) and acrylonitrile-butadiene-styrene (ABS) compatibilized with styrene acrylonitrile-co-maleic anhydride were prepared using different blending protocols in a twin screw extruder. Specimen were prepared though injection molding. The organoclay (OMMT) incorporation and blending sequence effect on structural properties were investigated. X-ray diffraction analysis (XRD) indicates a complete exfoliated structure for all samples. Rheological measurements show an increasing in nanocomposites complex viscosities and storage modulus values when compared with the ternary blend. However, no significant effects in the rheological behavior were observed due the blending sequence. Differential scanning calorimetry (DSC) measurements suggests the incorporation of OMMT and different blending protocols may influence the polyamide polymorphism and degree of crystallinity. (author)

  9. Blending protocol effect in structural properties of PA6/ABS nanocomposites compatibilized with SAN-MA; Influencia do protocolo de mistura nas propriedades estruturais de nanocompositos PA6/ABS compatibilizados com SAN-MA

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Lucas D.C. de; Oliveira, Amanda D.; Pessan, Luiz Antonio, E-mail: lucasdanielcastro@hotmail.com, E-mail: pessan@ufscar.br [Universidade Federal de Sao Carlos (UFSCar), Sao Carlos, SP (Brazil). Programa de Pos-Graduacao em Ciencia e Engenharia de Materiais

    2015-07-01

    Nanocomposites based on polyamide 6 (PA6) and acrylonitrile-butadiene-styrene (ABS) compatibilized with styrene acrylonitrile-co-maleic anhydride were prepared using different blending protocols in a twin screw extruder. Specimen were prepared though injection molding. The organoclay (OMMT) incorporation and blending sequence effect on structural properties were investigated. X-ray diffraction analysis (XRD) indicates a complete exfoliated structure for all samples. Rheological measurements show an increasing in nanocomposites complex viscosities and storage modulus values when compared with the ternary blend. However, no significant effects in the rheological behavior were observed due the blending sequence. Differential scanning calorimetry (DSC) measurements suggests the incorporation of OMMT and different blending protocols may influence the polyamide polymorphism and degree of crystallinity. (author)

  10. Latex stage blending of multiwalled carbon nanotube in carboxylated acrylonitrile butadiene rubber: Mechanical and electrical properties

    International Nuclear Information System (INIS)

    Preetha Nair, K.; Thomas, Paulbert; Joseph, Rani

    2012-01-01

    Highlights: ► MWCNT can act as a reinforcing filler in XNBR at very low concentration. ► SEM and XRD analysis confirm uniform distribution of nanotube in the matrix. ► Mechanical properties showed considerable improvement. ► Thermal stability of the composite is marginally improved. -- Abstract: Multiwalled carbon nanotube (MWCNT) was dispersed in sodium dodecyl benzene sulphonate (SDBS) by sonication. The dispersed MWCNT (0.05–0.3 gm) was incorporated in carboxylated acrylonitrile butadiene rubber (XNBR) latex. Mechanical, electrical and thermal properties of these composites were studied. Mechanical properties of the composites increased up to an optimum concentration and then decreased. Dielectric properties of the composites were studied in the S band (frequency range 2–4 GHz) by Cavity Perturbation method. Direct current (DC) electrical conductivity shows a percolation behaviour and conductivity increased by about 10 orders of magnitude. Thermal studies were conducted using Differential Scanning Calorimetry (DSC) and Thermo Gravimetric Analysis (TGA). As expected with the very small concentration of multiwalled carbon nanotube, glass transition temperature (T g ) and thermal stability of the composite showed a marginal increase. Composites were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and Scanning electron microscope (SEM) analysis.

  11. UV shielding with visible transparency based properties of poly (styrene-co-acrylonitrile)/Ag doped ZnO nanocomposite

    Science.gov (United States)

    Singh, Rajender; Verma, Karan; Singh, Tejbir; Barman, P. B.; Sharma, Dheeraj

    2018-02-01

    Development of ultraviolet (UV) shielding with visible transparency based thermoplastic polymer nanocomposite (PNs) presents an important requisite in terms of their efficiency and cost. Present study contributed for the same approach by dispersion of Ag doped ZnO nanoparticles upto 10 wt% in poly (styrene-co-acrylonitrile) matrix by insitu emulsion polymerization method. The crystal and chemical structure of PNs has been analyzed by x-ray diffraction (XRD) and fourier infrared spectrometer (FTIR) techniques. The morphological and elemental information of synthesized nanomaterial has been studied by field emission scanning electron microscope (FESEM) and energy dispersive spectroscopy (EDS) technique. The optical properties of PNs has been studied by UV-visible spectroscopy technique. The incorporation of nanoparticles in polymer matrix absorb the complete UV light with visible transparency. The present reported polymer nanocomposite (PNs) have tuned refractive index with UV blocking and visible transparency based properties which can serve as a viable alternative as compared to related conventional materials.

  12. Improved ozone resistance of styrene-butadiene rubber cured by a combination of sulfur and ionizing radiation

    International Nuclear Information System (INIS)

    Basfar, A.A.; Silverman, J.

    1995-01-01

    Fourier Transform (FTIR) studies performed in this work indicate that high ozone resistance of Styrene-Butadiene Rubber (SBR) formulations cured by a combination of sulfur and ionizing radiation is associated with unusually high vinyl concentration. On the other hand, sulfur cured SBR formulations with low vinyl concentration have poor ozone resistance. Curing with peroxides which involves chemistry similar to that of radiation curing, also leads to high vinyl concentration (relative to sulfur curing) and high ozone resistance. Increasing the absorbed dose in sulfur-radiation cured samples decreased the high vinyl content to a point where the ozone resistance declined greatly. Carbon black was shown to reduce the absorption of both the transvinylene and the vinyl unsaturation groups, but not to the same extent in all formulations. Also, the carbon black seems to play a greater role in the absorption of the unsaturation as sulfur increases. (Author)

  13. Improved ozone resistance of styrene-butadiene rubber cured by a combination of sulfur and ionizing radiation

    International Nuclear Information System (INIS)

    Basfar, A.A.; Silverman, Joseph

    1995-01-01

    Fourier Transform Infrared (FTIR) studies performed in this work indicate that high ozone resistance of Styrene-Butadiene Rubber (SBR) formulations cured by a combination of sulfur and ionizing radiation is associated with unusually high vinyl concentration. On the other hand, sulfur cured SBR formulations with low vinyl concentration have poor ozone resistance. Curing with peroxides which involves chemistry similar to that of radiation curing, also leads to high vinyl concentration (relative to sulfur curing) and high ozone resistance. Increasing the absorbed dose in sulfur-radiation cured samples decreased the high vinyl content to a point where the ozone resistance declined greatly. Carbon black was shown to reduce the absorption of both the transvinylene and the vinyl unsaturation groups, but not to the same extent in all formulations. Also, the carbon black seems to play a greater role in the absorption of the unsaturation as sulfur increases. (Author)

  14. Hybrid joining of polyamide and hydrogenated acrylonitrile butadiene rubber through heat-resistant functional layer of silane coupling agent

    Science.gov (United States)

    Sang, Jing; Sato, Riku; Aisawa, Sumio; Hirahara, Hidetoshi; Mori, Kunio

    2017-08-01

    A simple, direct adhesion method was developed to join polyamide (PA6) to hydrogenated acrylonitrile butadiene rubber (HNBR) by grafting a functional layer of a silane coupling agent on plasma functionalized PA6 surfaces. The functional layer of the silane coupling agent was prepared using a self-assembly method, which greatly improved the heat resistance of PA6 from 153 °C up to 325 °C and the resulting PA6/HNBR joints showed excellent adhesion properties with cohesive failure between PA6 and HNBR. X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and nanoscale infrared microscopy and chemical imaging (Nano-IR, AFM-IR) were employed to characterize the surfaces and interfaces. The Nano-IR analysis method was employed for the first time to analyze the chemical structures of the adhesion interfaces between different materials and to establish the interface formation mechanism. This study is of significant value for interface research and the study of adhesion between resins and rubbers. There is a promising future for heat-resistant functional layers on resin surfaces, with potential application in fuel hose composite materials for the automotive and aeronautical industries.

  15. Investigation of the effect of nanoclay and processing parameters on the tensile strength and hardness of injection molded Acrylonitrile Butadiene Styrene–organoclay nanocomposites

    International Nuclear Information System (INIS)

    Mamaghani Shishavan, Sajjad; Azdast, Taher; Rash Ahmadi, Samrand

    2014-01-01

    Highlights: • Development of polymer/clay nanocomposites. • Compatibility of ABS and montmorillonite nanoclay and composition capability of them. • Effect of nanoclay content and process parameters on the mechanical properties of nanocomposite. • Analyzing the distribution of nanoclay layers using XRD test. • Dependency of tensile strength and hardness to the nanoclay content and processing conditions. - Abstract: Polymer–clay nanocomposites have attracted considerable interest over recent years due to their dramatic improved mechanical properties. In the present study, compatibility of Acrylonitrile Butadiene Styrene (ABS) and organically modified montmorillonite nanoclay (Cloisite 30B) and composition capability of them are investigated. Polymethylmethacrylate (PMMA) in varying amount (0, 2, and 4 wt%) is used as the compatibilizer. In order to produce nanocomposite parts, the material is first compounded using a twin-screw extruder and then injected into a mold. The effect of the nanoclay percentage and processing parameters on the tensile strength and hardness of nanocomposite parts is also explored using Taguchi Design of Experiments method. Nanoclay content (in three levels: 0, 2 and 4 wt%), melt temperature (in three levels: 190, 200 and 210 °C), holding pressure (in three levels: 80, 105 and 130 MPa) and holding pressure time (in three levels: 1, 2.5 and 4 s) are considered as the variable parameters. Moreover, distribution of nanoclay layers is analyzed using Wide Angle X-ray Diffraction (XRD) test. XRD results displayed that with the presence of PMMA, nanoclay in ABS matrix is compounded in more exfoliated and less intercalated dispersion mode. Adding PMMA also leads to a remarkable increase in the fluidity of the melt during injection molding process. Results also illustrated that nanocomposites with medium loading level (i.e. 2%) of nanoclay have the highest tensile strength, while the highest hardness number belongs to nanocomposites with

  16. Effect of grafting cellulose acetate and methylmethacrylate as compatibilizer onto NBR/SBR blends

    International Nuclear Information System (INIS)

    Khalf, A.I.; Nashar, D.E.El.; Maziad, N.A.

    2010-01-01

    Compatibilizer is used for improving of processability, interfacial interaction and mechanical properties of polymer blends. In this study acrylonitrile butadiene rubber (NBR) and styrene-butadiene rubber (SBR) blends were compatibilized by a graft copolymer of acrylonitrile butadiene rubber (NBR) grafted with cellulose acetate (CA) i.e. (NBR-g-CA) and acrylonitrile butadiene rubber (NBR) grafted with methylmethacrylate i.e. (NBR-g-MMA). Compatibilizers were prepared by gamma radiation induced grafting of NBR with cellulose acetate (CA) and methylmethacrylate (MMA) were added with different ratios to NBR/SBR (50/50) blend. The compatibilized blends were evaluated by rheometric characteristics, physico-mechanical properties, swelling behavior, scanning electron microscope (SEM) and thermal analysis. The results showed that, the blends with graft copolymer effect greatly on the rheological characteristics [optimum cure time (Tc 90 ), scorch time (Ts 2 ), and the cure rate index (CRI)]. The physico-mechanical properties of the investigated blends were enhanced by the incorporation of these graft copolymers, while the resistance to swelling in toluene became higher. SEM photographs confirm that, these compatibilizers improve the interfacial adhesion between NBR/SBR (50/50) blend which induce compatibilization in the immiscible blends. The efficiency of the compatibilizer was also evaluated by studying the thermogravimetric analysis.

  17. Study of the reinforcement of rubber styrene-butadiene with mesoporous silices by solid-state nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Sierra, Ligia; Lopez, Betty; Pena, Bibiana; Rios, Juan Esteban; Castano, Nelson

    2001-01-01

    The knowledge about the interaction rubber/filler for the rubber reinforced with carbon black of silica is important to understand the physical properties, which determine the reinforcement. This paper presents a comparative study of the interactions between styrene butadiene rubber (SBR) and silica for a silica Ultrasil type and mesoporous silica MCM-41 type prepared by different procedures, based on solid state nuclear magnetic resonance: 1H MAS NMR; 13C MAS NMR, 13C CP/MAS, 29Si MAS and 29Si CP/MAS NMR. Mesoporous silica synthesized under certain specific conditions showed better interaction with the rubber than the ultrasil VN3 silica, commonly used as a reinforcement load. Mechanical tests for the SBR vulcanised with this silica indicate an important increase for values of elongation and tearing resistance, but an increase in the vulcanization time in it is compared with the SBR vulcanise with Ultrasil

  18. [Migrants from disposable gloves and residual acrylonitrile].

    Science.gov (United States)

    Wakui, C; Kawamura, Y; Maitani, T

    2001-10-01

    Disposable gloves made from polyvinyl chloride with and without di(2-ethylhexyl) phthalate (PVC-DEHP, PVC-NP), polyethylene (PE), natural rubber (NR) and nitrile-butadiene rubber (NBR) were investigated with respect to evaporation residue, migrated metals, migrants and residual acrylonitrile. The evaporation residue found in n-heptane was 870-1,300 ppm from PVC-DEHP and PVC-NP, which was due to the plasticizers. Most of the PE gloves had low evaporation residue levels and migrants, except for the glove designated as antibacterial, which released copper and zinc into 4% acetic acid. For the NR and NBR gloves, the evaporation residue found in 4% acetic acid was 29-180 ppm. They also released over 10 ppm of calcium and 6 ppm of zinc into 4% acetic acid, and 1.68-8.37 ppm of zinc di-ethyldithiocarbamate and zinc di-n-butyldithiocarbamate used as vulcanization accelerators into n-heptane. The acrylonitrile content was 0.40-0.94 ppm in NBR gloves.

  19. Physico-mechanical properties and thermal stability of thermoset nanocomposites based on styrene-butadiene rubber/phenolic resin blend

    Energy Technology Data Exchange (ETDEWEB)

    Shojaei, Akbar, E-mail: akbar.shojaei@sharif.edu [Department of Chemical and Petroleum Engineering, Sharif University of Technology, P.O. Box 11155-9465, Tehran (Iran, Islamic Republic of); Faghihi, Morteza [Department of Chemical and Petroleum Engineering, Sharif University of Technology, P.O. Box 11155-9465, Tehran (Iran, Islamic Republic of)

    2010-02-15

    Effect of organoclay (OC) on the performance of styrene-butadiene rubber (SBR)/phenolic resin (PH) blend prepared by two-roll mill was investigated. The influence of OC content ranging between 2.5 and 30 phr on the performance of SBR/PH was investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), interfacial energy analysis, tensile, dynamic mechanical, swelling, cure rheometry and thermogravimetric analysis (TGA). It was found that the OC is mainly localized in the SBR phase of SBR/PH blend through the kinetically favored mechanism relevant to rubber chains. The results also demonstrated the positive role of PH on the dispersion of OC. Both PH and OC showed accelerating role on the cure rate of SBR and increased the crosslinking density of the rubber phase. Additionally, the mechanical and dynamic mechanical properties of SBR were influenced by incorporation of both PH and OC. TGA showed that the OC improves thermal stability of SBR vulcanizate, while it exhibits a catalytic role in presence of PH.

  20. Physico-mechanical properties and thermal stability of thermoset nanocomposites based on styrene-butadiene rubber/phenolic resin blend

    International Nuclear Information System (INIS)

    Shojaei, Akbar; Faghihi, Morteza

    2010-01-01

    Effect of organoclay (OC) on the performance of styrene-butadiene rubber (SBR)/phenolic resin (PH) blend prepared by two-roll mill was investigated. The influence of OC content ranging between 2.5 and 30 phr on the performance of SBR/PH was investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), interfacial energy analysis, tensile, dynamic mechanical, swelling, cure rheometry and thermogravimetric analysis (TGA). It was found that the OC is mainly localized in the SBR phase of SBR/PH blend through the kinetically favored mechanism relevant to rubber chains. The results also demonstrated the positive role of PH on the dispersion of OC. Both PH and OC showed accelerating role on the cure rate of SBR and increased the crosslinking density of the rubber phase. Additionally, the mechanical and dynamic mechanical properties of SBR were influenced by incorporation of both PH and OC. TGA showed that the OC improves thermal stability of SBR vulcanizate, while it exhibits a catalytic role in presence of PH.

  1. The emissions of monoaromatic hydrocarbons from small polymeric toys placed in chocolate food products.

    Science.gov (United States)

    Marć, Mariusz; Formela, Krzysztof; Klein, Marek; Namieśnik, Jacek; Zabiegała, Bożena

    2015-10-15

    The article presents findings on the emissions of selected monoaromatic hydrocarbons from children's toys placed in chocolate food products. The emission test system involved the application of a new type of microscale stationary emission chamber, μ-CTE™ 250. In order to determine the type of the applied polymer in the manufacture of the tested toys, Fourier transform infrared spectroscopy and thermogravimetric analysis coupled with differential scanning calorimetry were used. It was found that the tested toy components or the whole toys (figurines) are made of two main types of polymers: polyamide and acrylonitrile-butadiene-styrene copolymer. Total number of studied small polymeric toys was 52. The average emissions of selected monoaromatic hydrocarbons from studied toys made of polyamide were as follows: benzene: 0.45 ± 0.33 ng/g; toluene: 3.3 ± 2.6 ng/g; ethylbenzene: 1.4 ± 1.4 ng/g; p,m-xylene: 2.5 ± 4.5 ng/g; and styrene: 8.2 ± 9.9 ng/g. In the case of studied toys made of acrylonitrile-butadiene-styrene copolymer the average emissions of benzene, toluene, ethylbeznene, p,m-xylene and styrene were: 0.31 ± 0.29 ng/g; 2.5 ± 1.4 ng/g; 4.6 ± 8.9 ng/g; 1.4 ± 1.1 ng/g; and 36 ± 44 ng/g, respectively. Copyright © 2015. Published by Elsevier B.V.

  2. Bond Characteristics of Macro Polypropylene Fiber in Cementitious Composites Containing Nanosilica and Styrene Butadiene Latex Polymer

    Directory of Open Access Journals (Sweden)

    Jae-Woong Han

    2015-01-01

    Full Text Available This study evaluated the bond properties of polypropylene (PP fiber in plain cementitious composites (PCCs and styrene butadiene latex polymer cementitious composites (LCCs at different nanosilica contents. The bond tests were evaluated according to JCI SF-8, in which the contents of nanosilica in the cement were 0, 2, 4, 6, 8, and 10 wt%, based on cement weight. The addition of nanosilica significantly affected the bond properties between macro PP fiber and cementitious composites. For PCCs, the addition of 0–2 wt% nanosilica enhanced bond strength and interface toughness, whereas the addition of 4 wt% or more reduced bond strength and interface toughness. The bond strength and interfacial toughness of LCCs also increased with the addition of up to 6% nanosilica. The analysis of the relative bond strength showed that the addition of nanosilica affects the bond properties of both PCC and LCC. This result was confirmed via microstructural analysis of the macro PP fiber surface after the bond tests, which revealed an increase in scratches due to frictional forces and fiber tearing.

  3. Performance evaluation of a full-scale ABS resin manufacturing wastewater treatment plant: a case study in Tabriz Petrochemical Complex

    Directory of Open Access Journals (Sweden)

    Mohammad Shakerkhatibi

    2016-08-01

    Full Text Available Background: The measurement data regarding the influent and effluent of wastewater treatment plant (WWTP provides a general overview, demonstrating an overall performance of WWTP. Nevertheless, these data do not provide the suitable operational information for the optimization of individual units involved in a WWTP. A full-scale evolution of WWTP was carried out in this study via a reconciled data. Methods: A full-scale evolution of acrylonitrile, butadiene and styrene (ABS resin manufacturing WWTP was carried out. Data reconciliation technique was employed to fulfil the mass conservation law and also enhance the accuracy of the flow measurements. Daily average values from long-term measurements by the WWTP library along with the results of four sampling runs, were utilized for data reconciliation with further performance evaluation and characterization of WWTP. Results: The full-scale evaluation, based on balanced data showed that removal efficiency based on chemical oxygen demand (COD and biochemical oxygen demand (BOD5 through the WWTP were 80% and 90%, respectively, from which only 28% of COD and 20% of BOD5 removal had occurred in biological reactor. In addition, the removal efficiency of styrene and acrylonitrile, throughout the plant, was approximately 90%. Estimation results employing Toxchem model showed that 43% of acrylonitrile and 85% of styrene were emitted into the atmosphere above water surfaces. Conclusion: It can be concluded that the volatilization of styrene and acrylonitrile is the main mechanism for their removal along with corresponded COD elimination from the WWTP.

  4. Effect of adding of the styrene-butadiene-styrene (SBS) copolymer in chemical and rheological properties of the brazilian asphalt; Efeito da adicao de SBS nas propriedades quimicas e reologicas de asfalto oriundo de petroleo brasileiro

    Energy Technology Data Exchange (ETDEWEB)

    Lucena, M.C.C.; Soares, S.A. [Ceara Univ., Fortaleza, CE (Brazil). Dept. de Quimica Organica e Inorganica]. E-mail: mccl@dqoi.ufc.br; sas@ufc.br; Soares, J.B. [Ceara Univ., Fortaleza, CE (Brazil). Dept. de Engenharia de Transportes]. E-mail: jsoares@det.ufc.br

    2003-07-01

    Chemical and rheological characterization of the asphalt cement (AC) from the Fazenda Alegre petroleum, and the effect of adding 4.5% of the styrene-butadiene-styrene (SBS) copolymer were investigated. Structural characteristics were analyzed by infrared spectroscopy (FTIR) and nuclear magnetic resonance (NMR). A structure similar to the Arabian and Venezuelan petroleum was observed. The simulated aging led to structural modification noticed by the increment in the carbonyl and sulphoxide groups. Thermogravimetry (TGA) showed that SBS did not affect the AC thermal decomposition at both inert and oxidative atmosphere. However, the differential scanning calorimetry (DSC) showed a decrease in the glass transition temperature of the material when SBS was added. The effect of SBS on the absolute viscosity revealed that SBS is not an inert additive and causes an increase in viscosity, in a nonlinear fashion. The commonly found Newtonian behavior of asphalt binders under high temperatures was also found on the SBS modified binder. Dynamic mechanical tests have shown that SBS increases the binder performance grade. (author)

  5. Plane-interface-induced lignin-based nanosheets and its reinforcing effect on styrene-butadiene rubber

    Directory of Open Access Journals (Sweden)

    C. Jiang

    2014-09-01

    Full Text Available Lignin was viewed as a spherical microgel in aqueous alkali. While spread out in a monolayer or adsorbed on a surface, lignin was made up of flexible, disk-like molecules with approximately the same thickness of 2 nm. According to this principle, we employed the lamina of montmorillonite (MMT as a plane template to anchor cationic lignin (CL on its two sides, resulting in the formation of CL-MMT hybrid materials (CLM. The isotherm adsorption behavior and structure characteristics of CLM were studied. The results showed that CLM was individually dispersed nanosheets with a thickness of about 5 nm when the mass ratio of CL to MMT is more than 2:1 and prepared at acidic or neutral pH. Compared to the cocoagulation of lignin and styrene-butadiene rubber (SBR, CLM obviously accelerated the coagulation rate, due to the reduction of surface activity of CL restricted by MMT. The nanoscale dispersion of CLM in SBR matrix significantly improved the tensile strength of CLM/SBR nanocomposites to 14.1 MPa by adding only 10 phr CLM and cardanol glycidyl ether (CGE as compatibilizer. Dynamic mechanical analysis (DMA showed that the glass transition temperature of SBR/CLM nanocomposites decreased with increasing CLM loading. Correspondingly, a special interfacial structure was proposed.

  6. Production of PVC/Abs/Nbr blend and the study of its physical and mechanical properties, thermal behaviour and its morphology

    International Nuclear Information System (INIS)

    Mehrabzadeh, M.; Honarkar, H.

    2001-01-01

    In this research a product of triplet blend of polyvinyl chloride, acrylonitrile-butadiene-styrene, acrylonitrile butadiene rubber (PVC/Abs/Nbr) is obtained. The physical, mechanical and thermal behaviour as well as morphology of the blend were studied. Results show that optimum properties in ratio PVC/Abs: 60/40 is obtained. For substituting the Nbr by a portion of Dop to modify the migration to surface, a triplet blend of PVC/Abs/Nbr was made. Experiments with constant amount of Nbr and variable Dop and vice versa were carried out. For preparation of triplet blend from PVC/Abs, a ratio of 60/40 was used. The best results were obtained for a blend with Nbr (10%) and PVC powder, 20% Nbr and PVC granules containing 34% Dop and the thermo formability of PVC/Abs/Nbr blend was examined as well

  7. Effect of Short PET Fiber and Electron Beam Irradiation on The Properties of Acrylonitrile Butadiene Rubber-Poly(Vinyl Chloride) (NBR-PVC) Blend

    International Nuclear Information System (INIS)

    Youssef, H.A.; Shaltout, N.A.; EI Nemer, K.F.; EI Miligy, A.A.

    2009-01-01

    Blend of acrylonitrile-butadiene rubber (NBR ) and ploy vinyl chloride(PYV) (70-30) has been loaded with different concentrations of polyethylene terephthalate (PET) fibers waste ( 0.5 - 40 p hr); in the presence of resorcinol hexamethylenetetramine - precipitated silica (RHS) as bonding agent system and pentaeritheroal tetraacrylate (PET A) as co agent. Curing of the prepared composites has been carried out by electron beam irradiation (25 - 150 kGy) under atmospheric conditions. Evaluations of mechanical, physical, and thermal properties of uncured as well as cured composites have been undertaken. It has been found that the tensile strength, tensile modulus at 25 % elongation and hardness were increased with irradiation dose as well as fiber loading whereas the elongation at break and soluble fraction were decreased. Moreover, it has been found that the thermal stability of prepared composites at constant fiber loading of 10 p hr is improved on irradiation up to 100 kGy. Confirmation of latter data has been found through calculation of activation energy, Ea of the thermal degradation process

  8. Effect of Short PET Fiber and Electron Beam Irradiation on The Properties of Acrylonitrile Butadiene Rubber-Poly(Vinyl Chloride) (NBR-PVC) Blend

    International Nuclear Information System (INIS)

    Youssef, H.A.; Shaltout, N.A.; EI Nemer, K.F.; EI Miligy, A.A.

    2008-01-01

    Blend of acrylonitrile-butadiene rubber (NBR ) and ploy vinyl chloride(PYV) (70-30) has been loaded with different concentrations of polyethylene terephthalate (PET) fibers waste ( 0.5 - 40 p hr); in the presence of resorcinol hexamethylenetetramine - precipitated silica (RHS) as bonding agent system and pentaeritheroal tetraacrylate (PET A) as co agent. Curing of the prepared composites has been carried out by electron beam irradiation (25 - 150 kGy) under atmospheric conditions. Evaluations of mechanical, physical, and thermal properties of uncured as well as cured composites have been undertaken. It has been found that the tensile strength, tensile modulus at 25 % elongation and hardness were increased with irradiation dose as well as fiber loading whereas the elongation at break and soluble fraction were decreased. Moreover, it has been found that the thermal stability of prepared composites at constant fiber loading of 10 p hr is improved on irradiation up to 100 kGy. Confirmation of latter data has been found through calculation of activation energy, Ea of the thermal degradation process

  9. Rheology of ABS and binary of organo clay nanocomposites

    International Nuclear Information System (INIS)

    Galvan, Danieli; Mazzucco, Mateus; Carneiro, Fabio; Bartoli, Julio R.; Morales, Ana Rita; D'Avila, Marcos A.

    2011-01-01

    nanocomposites of poly(acrylonitrile-butadiene-styrene) and organically modified montmorillonite clays by melt intercalation on a co-rotating twin-screw extruder were prepared and characterized. It was studied the effects of screw torque and a binary mixture of organically modified montmorillonites on the intercalation/exfoliation of organoclays in the polymer matrix, characterized by X-ray diffraction morphological analyses and by capillary and parallel plates rheological analyses. (author)

  10. 3D-Printed ABS and PLA Scaffolds for Cartilage and Nucleus Pulposus Tissue Regeneration

    OpenAIRE

    Rosenzweig, Derek H.; Carelli, Eric; Steffen, Thomas; Jarzem, Peter; Haglund, Lisbet

    2015-01-01

    Painful degeneration of soft tissues accounts for high socioeconomic costs. Tissue engineering aims to provide biomimetics recapitulating native tissues. Biocompatible thermoplastics for 3D printing can generate high-resolution structures resembling tissue extracellular matrix. Large-pore 3D-printed acrylonitrile butadiene styrene (ABS) and polylactic acid (PLA) scaffolds were compared for cell ingrowth, viability, and tissue generation. Primary articular chondrocytes and nucleus pulposus (N...

  11. Contribution made by multivariate curve resolution applied to gel permeation chromatography-Fourier transform infrared data for an in-depth characterization of styrene-butadiene rubber blends.

    Science.gov (United States)

    Ruckebusch, C; Vilmin, F; Coste, N; Huvenne, J P

    2008-07-01

    We evaluate the contribution made by multivariate curve resolution-alternating least squares (MCR-ALS) for resolving gel permeation chromatography-Fourier transform infrared (GPC-FT-IR) data collected on butadiene rubber (BR) and styrene butadiene rubber (SBR) blends in order to access in-depth knowledge of polymers along the molecular weight distribution (MWD). In the BR-SBR case, individual polymers differ in chemical composition but share almost the same MWD. Principal component analysis (PCA) gives a general overview of the data structure and attests to the feasibility of modeling blends as a binary system. MCR-ALS is then performed. It allows resolving the chromatographic coelution and validates the chosen methodology. For SBR-SBR blends, the problem is more challenging since the individual elastomers present the same chemical composition. Rank deficiency is detected from the PCA data structure analysis. MCR-ALS is thus performed on column-wise augmented matrices. It brings very useful insight into the composition of the analyzed blends. In particular, a weak change in the composition of individual SBR in the MWD's lowest mass region is revealed.

  12. Preparation of n-tetradecane-containing microcapsules with different shell materials by phase separation method

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Rui [Department of Chemical Engineering, Tsinghua University, Beijing (China); Zhang, Yan; Zhang, Qingwu [Department of Chemical Engineering, China University of Mining and Technology, Beijing (China); Wang, Xin; Zhang, Yinping [Department of Building Science, Tsinghua University, Beijing (China)

    2009-10-15

    Microcapsules for thermal energy storage and heat-transfer enhancement have attracted great attention. Microencapsulation of n-tetradecane with different shell materials was carried out by phase separation method in this paper. Acrylonitrile-styrene copolymer (AS), acrylonitrile-styrene-butadiene copolymer (ABS) and polycarbonate (PC) were used as the shell materials. The structures, morphologies and the thermal capacities of the microcapsules were characterized using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). The ternary phase diagrams showed the potential encapsulation capabilities of the three shell materials. The effects of the shell/core ratio and the molecular weight of the shell material on the encapsulation efficiency and the thermal capacity of the microcapsules were also discussed. Microcapsules with melting enthalpy > 100 J/g, encapsulation efficiency 66-75%, particle size<1 {mu}m were obtained for all three shell materials. (author)

  13. Comparison of sodium naphthenate and air-ionization corona discharge as surface treatments for the ethylene-tetrafluoroethylene polymer (ETFE) to improve adhesion between ETFE and acrylonitrile-butadiene-styrene polymer (ABS) in the presence of a cyanoacrylate adhesive (CAA)

    International Nuclear Information System (INIS)

    Johanning-Solís, Ana Lucía; Stradi-Granados, Benito A

    2014-01-01

    This study compares two ethylene-tetrafluoroethylene (ETFE) surface activation treatments, namely chemical attack with a solution of sodium naphthenate and plasma erosion via air-ionization corona discharge in order to improve the adhesive properties of the ETFE. An experimental design was prepared for both treatments in order to assess the effect of the treatment characteristics on the tensile load needed to break the bond between the ETFE and the acrylonitrile-butadiene-styrene polymer (ABS) formed with a cyanoacrylate adhesive (CAA) applied between them. The reason for the selection of this problem is that both polymers are frequently used in the biomedical industry for their properties, and they need to be joined firmly in biomedical devices, and the cyanoacrylate adhesive is the adhesive traditionally used for fluoropolymers, in this case the ETFE, and the same CAA has also shown good adhesion with ABS. However, the strength of the bond for the triplet ETFE-CAA-ABS has not been reported and the improvement of the strength of the bond with surface treatments is not found in scholarly journals for modern medical devices such as stents and snares. Both treatments were compared based on the aforementioned design of experiments. The case where ETFE receives no surface treatment serves as the reference. The results indicated that the three factors evaluated (initial drying of the material, temperature of the chemical bath, and immersion time), and their interactions have no significant effect over the tensile load at failure (tensile strength) of the adhesive bond being evaluated. For the air-ionization corona discharge treatment, two factors were evaluated: discharge exposition time and air pressure. The results obtained from this experimental design indicate that there is no significant difference between the levels of the factors evaluated. These results were unexpected as the ranges used were representative of the maximum ranges permissible in manufacturing

  14. Comparison of sodium naphthenate and air-ionization corona discharge as surface treatments for the ethylene-tetrafluoroethylene polymer (ETFE) to improve adhesion between ETFE and acrylonitrile-butadiene-styrene polymer (ABS) in the presence of a cyanoacrylate adhesive (CAA)

    Science.gov (United States)

    Lucía Johanning-Solís, Ana; Stradi-Granados, Benito A.

    2014-09-01

    This study compares two ethylene-tetrafluoroethylene (ETFE) surface activation treatments, namely chemical attack with a solution of sodium naphthenate and plasma erosion via air-ionization corona discharge in order to improve the adhesive properties of the ETFE. An experimental design was prepared for both treatments in order to assess the effect of the treatment characteristics on the tensile load needed to break the bond between the ETFE and the acrylonitrile-butadiene-styrene polymer (ABS) formed with a cyanoacrylate adhesive (CAA) applied between them. The reason for the selection of this problem is that both polymers are frequently used in the biomedical industry for their properties, and they need to be joined firmly in biomedical devices, and the cyanoacrylate adhesive is the adhesive traditionally used for fluoropolymers, in this case the ETFE, and the same CAA has also shown good adhesion with ABS. However, the strength of the bond for the triplet ETFE-CAA-ABS has not been reported and the improvement of the strength of the bond with surface treatments is not found in scholarly journals for modern medical devices such as stents and snares. Both treatments were compared based on the aforementioned design of experiments. The case where ETFE receives no surface treatment serves as the reference. The results indicated that the three factors evaluated (initial drying of the material, temperature of the chemical bath, and immersion time), and their interactions have no significant effect over the tensile load at failure (tensile strength) of the adhesive bond being evaluated. For the air-ionization corona discharge treatment, two factors were evaluated: discharge exposition time and air pressure. The results obtained from this experimental design indicate that there is no significant difference between the levels of the factors evaluated. These results were unexpected as the ranges used were representative of the maximum ranges permissible in manufacturing

  15. Stepwise swelling of a thin film of lamellae-forming poly(styrene-b- butadiene) in cyclohexane vapor

    KAUST Repository

    Di, Zhenyu; Posselt, Dorthe; Smilgies, Detlef Matthias; Li, Ruipeng; Rauscher, Markus; Potemkin, Igor I.; Papadakis, Christine M.

    2012-01-01

    We investigated the swelling of a thin film of lamellae-forming poly(styrene-b-butadiene) in cyclohexane vapor. The vapor pressure and thus the degree of swelling of the film are increased in a stepwise manner using a custom-built sample cell. The resulting structural changes during and after each step were followed in situ using time-resolved grazing-incidence small-angle X-ray scattering (GISAXS). During the first step, the lamellar thickness increases strongly, before it decreases again. At the same time, the full width at half-maximum (FWHM) of the diffuse Bragg reflection along the film normal has a sharp maximum. These observations point to the formation of new lamellae. During the subsequent swelling steps, the lamellar thickness overshoots only weakly. The behavior thus resembles qualitatively our previous results on a similar thin film during swelling in saturated vapor of cyclohexane; however, it deviates from earlier theoretical predictions. We propose a theory that is quantitatively correct for the description of the dependence of the lamellar thickness on the polymer volume fraction in the late stage of the swelling steps. © 2012 American Chemical Society.

  16. Stepwise swelling of a thin film of lamellae-forming poly(styrene-b- butadiene) in cyclohexane vapor

    KAUST Repository

    Di, Zhenyu

    2012-06-26

    We investigated the swelling of a thin film of lamellae-forming poly(styrene-b-butadiene) in cyclohexane vapor. The vapor pressure and thus the degree of swelling of the film are increased in a stepwise manner using a custom-built sample cell. The resulting structural changes during and after each step were followed in situ using time-resolved grazing-incidence small-angle X-ray scattering (GISAXS). During the first step, the lamellar thickness increases strongly, before it decreases again. At the same time, the full width at half-maximum (FWHM) of the diffuse Bragg reflection along the film normal has a sharp maximum. These observations point to the formation of new lamellae. During the subsequent swelling steps, the lamellar thickness overshoots only weakly. The behavior thus resembles qualitatively our previous results on a similar thin film during swelling in saturated vapor of cyclohexane; however, it deviates from earlier theoretical predictions. We propose a theory that is quantitatively correct for the description of the dependence of the lamellar thickness on the polymer volume fraction in the late stage of the swelling steps. © 2012 American Chemical Society.

  17. Novel Polyvinyl Alcohol/Styrene Butadiene Rubber Latex/Carboxymethyl Cellulose Nanocomposites Reinforced with Modified Halloysite Nanotubes

    Directory of Open Access Journals (Sweden)

    Yanjun Tang

    2013-01-01

    Full Text Available Novel polyvinyl alcohol (PVA/styrene butadiene rubber (SBR latex/carboxymethyl cellulose (CMC/halloysite nanotubes (HNTs nanocomposites were successfully prepared through physical blending. The as-obtained PVA/SBR/CMC/HNTs nanocomposites were coated on the surface of old corrugated container (OCC-based paper in an effort to improve the mechanical properties of paper. To improve the dispersion of HNTs and enhance the compatibility between HNTs and polymer matrix, HNTs were modified with titanate coupling agent (TCA. FT-IR, together with TGA, confirmed that TCA was grafted onto the surface of HNTs successfully. XRD demonstrated that the crystal structures of HNTs remained almost unchanged. TEM showed that modified HNTs exhibited good dispersion and possessed nanotubular structures with an outer diameter of around 50 nm and an inner diameter of about 20 nm. SEM gave an indication that modified HNTs were dispersed more uniformly than unmodified HNTs within PVA/SBR/CMC matrix. Rheological measurement exhibited that surface modification process enhanced the compatibility between HNTs and polymer matrix, thus resulting in the decreased viscosity of nanocomposites. In comparison with unmodified HNTs, modified HNTs were found to contribute more to the enhancement in mechanical properties, which might be attributed to the better dispersion and compatibility of modified HNTs evidenced by TEM, SEM, and rheological measurement.

  18. Devulcanization of styrene butadiene rubber by microwave energy: Effect of the presence of ionic liquid

    Directory of Open Access Journals (Sweden)

    S. Seghar

    2015-12-01

    Full Text Available In this study, styrene butadiene rubber (SBR was devulcanized using microwave irradiation. In particular, effect of ionic liquid (IL, pyrrolidinium hydrogen sulfate [Pyrr][HSO4], on the devulcanization performance was studied. It was observed that the evolution of the temperature reached by rubber powder exposed to microwave irradiation for different energy values was favored by the presence of ionic liquid [Pyrr][HSO4] significantly over the whole range of the microwave energy values. Beyond the threshold point of 220 Wh/kg, the soluble fraction after devulcanization sharply increased with increasing devulcanization microwave energy. For the powder mixed with [Pyrr][HSO4], the increase was more significant. Furthermore, the crosslink density was observed to decrease slowly with the microwave energy up to 220 Wh/kg, beyond which the crosslink density decreased significantly for the rubber impregnated with IL. For the rubber with IL, significant and continuous increase in Tg with microwave energy values was observed in comparison with the SBR where no change in transition temperature was observed. Mechanical shearing of rubber gums in the two-roll mill favored the devulcanization process, which indicated that the combination of mechanical loading with microwave energy and IL is an efficient procedure allowing an optimal devulcanization of rubbers.

  19. Mechanical properties of styrene-butadiene rubber cured by ionizing radiation in the presence of sulfur and polyfunctional agent

    International Nuclear Information System (INIS)

    Basfar, A.A.; Al-Harithy, F.A.; Abdel-Aziz, M.M.

    1997-01-01

    The mechanical Properties of Styrene-Butadiene Rubber (SBR) samples cured by a combination of sulfur and ionizing radiation in the presence of polyfunctional crosslinking agent were studied. SBR formulations containing various concentrations of trimethyl propane triacrylate (TMPTA) were irradiated at absorbed doses in the range of 35-200 kGy. The influence of TMPTA on the mechanical properties, solubility % and swelling % were investigated. The various formulations were compared at the same crosslink density as determined by 200% modulus (i.e. tensile strength at 200% elongation). The increase in TMPTA concentration has led to the decrease in the absorbed dose required to achieve full-cure conditions. Another set of SBR formulations containing partial levels of sulfur in the presence of the same TMPTA concentrations as the earlier formulations were irradiated at the same absorbed dose range. The presence of sulfur has further decreased the absorbed dose required to achieve full-cure conditions. Thermal stability of the two sets of SBR formulations as studied by Thermogravimetric Analyzer (TGA) and Differential Scanning Calorimeter (DSC) remained unchanged over the entire range of absorbed dose

  20. Antimony leaching in plastics from waste electrical and electronic equipment (WEEE) with various acids and gamma irradiation.

    Science.gov (United States)

    Tostar, Sandra; Stenvall, Erik; Boldizar, Antal; Foreman, Mark R St J

    2013-06-01

    There has been a recent interest in antimony since the availability in readily mined areas is decreasing compared to the amounts used. It is important in many applications such as flame retardants and in the production of polyester, which can trigger an investigation of the leachability of antimony from plastics using different acids. In this paper, different types of acids are tested for their ability to leach antimony from a discarded computer housing, made of poly(acrylonitrile butadiene styrene), which is a common plastic type used in electrical and electronic equipment. The acid solutions included sodium hydrogen tartrate (0.5M) dissolved in either dimethyl sulfoxide or water (at ca. 23°C and heated to ca. 105°C). The metal content after leaching was determined by inductively coupled plasma optical emission spectroscopy. The most efficient leaching medium was the heated solution of sodium hydrogen tartrate in dimethyl sulfoxide, which leached almost half of the antimony from the poly(acrylonitrile butadiene styrene). Gamma irradiation, which is proposed to improve the mechanical properties in plastics, was used here to investigate the influence of antimony leaching ability. No significant change in the amount of leached antimony could be observed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Characteristics of styrene-butadiene rubber/silica/Nanoprene compounds for application in tire tread.

    Science.gov (United States)

    Seo, Byeongho; Kang, Jonghyub; Jang, Sukhee; Kang, Yonggu; Kim, Wonho

    2013-03-01

    Nanoprene is made from chemically cross-linked rubber particles, and has many hydroxyl groups on the surface of the particles. It is speculated that the Nanoprene could reduce the silica-silica network formation by introducing hydrogen bonding between the silanol group of silica and the hydroxyl group of Nanoprene. In this study, the styrene-butadiene rubber (SBR)/silica compounds with two types of the Nanoprene (BM75OH, BM15OH) were evaluated and it could be well explained by the concept of the volume fraction of filler or the volume fraction of rubber. If the Nanoprene applied to the compound is considered as a kind of filler, the minimum torque values and bound rubber contents of the un-vulcanized compounds, the swelling ratio and the stress-strain relationship of the vulcanized compounds could be well explained by the volume fraction of filler (phi(F)). If Nanoprene is considered as a kind of rubber such as SBR, the properties such as peak tan delta, Payne effect, tan delta at 0 degrees C and 60 degrees C, and abrasion resistance could be well explained by the volume fraction of rubber (phi'(R)). However, the improvement of silica dispersion by addition of the Nanoprene particles in the compounds was not significant. The application of BM75OH as a polymer to the tread compound will be suitable for winter tires. In addition, the compound with BM15OH as an additive will be suitable as a tread compound for summer tires.

  2. SOLID WASTE MANAGEMENT IN TABRIZ PETROCHEMICAL COMPLEX

    OpenAIRE

    M. A. Abduli, M. Abbasi, T. Nasrabadi, H. Hoveidi, N. Razmkhah

    2006-01-01

    Tabriz petrochemical complex is located in the northwest of Iran. Major products of this industry include raw plastics like, polyethylene, polystyrene, acrylonitrile, butadiene, styrene, etc. Sources of waste generation include service units, health and cure units, water, power, steam and industrial processes units. In this study, different types of solid waste including hazardous and non hazardous solid wastes were investigated separately. The aim of the study was to focus on the management ...

  3. Reducing the photo-bleaching effect of a new europium complex embedded in styrene butadiene copolymer

    Science.gov (United States)

    Jiménez, G. Lesly; Reyes-Rodríguez, J. L.; Padilla, Isela; Alarcón-Flores, G.; Falcony, C.

    2018-02-01

    A highly luminescent europium complex obtained with two different ligands, succinimide (SI) and 2-thenoyltrifluoroacetone (TTA) , was synthetized with different TTA concentrations. The photoluminescence (PL) emission from these materials corresponds to the characteristic inter-electronic energy level transitions of the Eu3+ ions. However, the excitation spectrum is strongly dependent on the presence of TTA, having an optimum response when 0.75 mmol of this compound is added to the EuL3(H2O)3 complex. The quantum yield obtained by these powders were around 72 % ± 1.7 % indicating an optimum sensitization of these complex. The EuL3 TTA complex with the best PL properties was embedded in a styrene butadiene copolymer (SBC) film, produced by the drop casting method, obtaining similar PL behavior at different concentrations, the highest intensity was observed at 1.2% (w/v) of EuL3 TTA complex and the quantum yield of these composite films was 60.5 % ± 2 % . These films were exposed to continuous UV irradiation and after 141 h no photo-bleaching effect was observed in contrast with the EuL3 TTA complex that exhibited a noticeable photoluminescence intensity degradation at much shorter exposure times. Both the Eu-complexes and the composite films were characterized by FT-IR, XRD, SEM and fluorescence spectroscopy.

  4. Hydrophobic surface modification of TiO2 nanoparticles for production of acrylonitrile-styrene-acrylate terpolymer/TiO2 composited cool materials

    Science.gov (United States)

    Qi, Yanli; Xiang, Bo; Tan, Wubin; Zhang, Jun

    2017-10-01

    Hydrophobic surface modification of TiO2 was conducted for production of acrylonitrile-styrene-acrylate (ASA) terpolymer/titanium dioxide (TiO2) composited cool materials. Different amount of 3-methacryloxypropyl-trimethoxysilane (MPS) was employed to change hydrophilic surface of TiO2 into hydrophobic surface. The hydrophobic organosilane chains were successfully grafted onto TiO2 through Sisbnd Osbnd Ti bonds, which were verified by Fourier transformed infrared spectra and X-ray photoelectron spectroscopy. The water contact angle of the sample added with TiO2 modified by 5 wt% MPS increased from 86° to 113°. Besides, all the ASA/TiO2 composites showed significant improvement in both solar reflectance and cooling property. The reflectance of the composites throughout the near infrared (NIR) region and the whole solar wavelength is increased by 113.92% and 43.35% compared with pristine ASA resin. Simultaneously, significant drop in temperature demonstrates excellent cooling property. A maximum decrease approach to 27 °C was observed in indoor temperature test, while a decrease around 9 °C tested outdoors is achieved.

  5. The Radiation Synthesis of Ultra-Fine Powdered Carboxylated Styrene-Butadiene Rubber (UFCSBR) and Property of Nylon 6/ UFCSBR Blends

    International Nuclear Information System (INIS)

    Xu, L.

    2006-01-01

    A serial of novel ultra-fine powdered carboxylated styrene-butadiene rubber (UFCSBR) were prepared by using radiation crosslinking and spray drying method. Thereafter, these powdered rubber particles were used as toughener of nylon 6.The radiation synthesis of ultra-fine powdered rubbers were studied, moreover, the mechanical and thermal property of nylon 6/UFCSBR blends were investigated. Finally, the toughening mechanism of nylon 6 modified with ultra-fine rubber particles was discussed. The UFCSBR could be dispersed well in nylon 6 as individual particles with a diameter of 150 nm by using melt blending. The Nylon 6/UFCSBR (80/20) blend possesses higher toughness and higher thermal stability than Nylon 6/POE-g-MAH (which is most often used elastomer in toughening nylon now). The deformation mechanism of nylon 6/UFCSBR blends includes shear deformation of nylon 6 and the formation of elongated rubber particles in matrix. In addition, the UFCSBR has good interfacial compatibility with nylon 6. Therefore, the nylon 6/UFCSBR blends with good mechanical performance could be prepared in this work

  6. Hybrid joining of polyamide and hydrogenated acrylonitrile butadiene rubber through heat-resistant functional layer of silane coupling agent

    Energy Technology Data Exchange (ETDEWEB)

    Sang, Jing; Sato, Riku [Department of Frontier Materials and Function Engineering, Graduate School of Engineering, Iwate University, 4-3-5 Ueda, Morioka 020-8551 (Japan); Aisawa, Sumio, E-mail: aisawa@iwate-u.ac.jp [Department of Frontier Materials and Function Engineering, Graduate School of Engineering, Iwate University, 4-3-5 Ueda, Morioka 020-8551 (Japan); Hirahara, Hidetoshi [Department of Frontier Materials and Function Engineering, Graduate School of Engineering, Iwate University, 4-3-5 Ueda, Morioka 020-8551 (Japan); Mori, Kunio [Department of Frontier Materials and Function Engineering, Graduate School of Engineering, Iwate University, 4-3-5 Ueda, Morioka 020-8551 (Japan); Sulfur Chemical Institute, 210, Collabo MIU, 4-3-5, Ueda, Morioka 020-0066 (Japan)

    2017-08-01

    Highlights: • We modify PA6 surface using silane coupling agent layer of APTMS to link HNBR. • APTMS greatly improved heat resistance of PA6 from 153 °C up to 325 °C. • A PA6/HNBR joined body was obtained, and it exhibits high adhesion strength with cohesive failure. • Chemical structures of the adhesion interfaces of PA6/HNBR were confirmed by Nano-IR. - Abstract: A simple, direct adhesion method was developed to join polyamide (PA6) to hydrogenated acrylonitrile butadiene rubber (HNBR) by grafting a functional layer of a silane coupling agent on plasma functionalized PA6 surfaces. The functional layer of the silane coupling agent was prepared using a self-assembly method, which greatly improved the heat resistance of PA6 from 153 °C up to 325 °C and the resulting PA6/HNBR joints showed excellent adhesion properties with cohesive failure between PA6 and HNBR. X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and nanoscale infrared microscopy and chemical imaging (Nano-IR, AFM-IR) were employed to characterize the surfaces and interfaces. The Nano-IR analysis method was employed for the first time to analyze the chemical structures of the adhesion interfaces between different materials and to establish the interface formation mechanism. This study is of significant value for interface research and the study of adhesion between resins and rubbers. There is a promising future for heat-resistant functional layers on resin surfaces, with potential application in fuel hose composite materials for the automotive and aeronautical industries.

  7. 21 CFR 177.1030 - Acrylonitrile/butadiene/styrene/methyl methacrylate copolymer.

    Science.gov (United States)

    2010-04-01

    ... methacrylate copolymer identified in this section may be safely used as an article or component of articles... monomer content of the finished copolymer articles is not more than 11 parts per million as determined by... available from the Center for Food Safety and Applied Nutrition (HFS-200), Food and Drug Administration...

  8. Heat shrinkable behavior, physico-mechanical and structure properties of electron beam cross-linked blends of high-density polyethylene with acrylonitrile-butadiene rubber

    Science.gov (United States)

    Reinholds, Ingars; Kalkis, Valdis; Merijs-Meri, Remo; Zicans, Janis; Grigalovica, Agnese

    2016-03-01

    In this study, heat-shrinkable composites of electron beam irradiated high-density polyethylene (HDPE) composites with acrylonitrile-butadiene rubber (NBR) were investigated. HDPE/NBR blends at a ratio of components 100/0, 90/10, 80/20, 50/50 and 20/80 wt% were prepared using a two-roll mill. The compression molded films were irradiated high-energy (5 MeV) accelerated electrons up to irradiation absorbed doses of 100-300 kGy. The effect of electron beam induced cross-linking was evaluated by the changes of mechanical properties, gel content and by the differences of thermal properties, detected by differential scanning calorimetry. The thermo-shrinkage forces were determined as the kinetics of thermorelaxation and the residual shrinkage stresses of previously oriented (stretched up to 100% at above melting temperature of HDPE and followed by cooling to room temperature) specimens of irradiated HDPE/NBR blends under isometric heating-cooling mode. The compatibility between the both components was enhanced due to the formation of cross-linked sites at amorphous interphase. The results showed increase of mechanical stiffness of composites with increase of irradiation dose. The values of gel fraction compared to thermorelaxation stresses increased with the growth of irradiation dose level, as a result of formation cross-linked sites in amorphous PP/NBR interphase.

  9. Warpage analysis on thin shell part using glowworm swarm optimisation (GSO)

    Science.gov (United States)

    Zulhasif, Z.; Shayfull, Z.; Nasir, S. M.; Fathullah, M.; Hazwan, M. H. M.

    2017-09-01

    The Autodesk Moldflow Insight (AMI) software was used in this study to focuses on the analysis in plastic injection moulding process associate the input parameter and output parameter. The material used in this study is Acrylonitrile Butadiene Styrene (ABS) as the moulded material to produced the plastic part. The MATLAB sortware is a method was used to find the best setting parameter. The variables was selected in this study were melt temperature, packing pressure, coolant temperature and cooling time.

  10. Effect of carbon black composition with sludge palm oil on the curing characteristic and mechanical properties of natural rubber/styrene butadiene rubber compound

    Science.gov (United States)

    Mohamed, R.; Nurazzi, N. Mohd; Huzaifah, M.

    2017-07-01

    This study was conducted to investigate the possibility of utilizing sludge palm oil (SPO) as processing oil, with various amount of carbon black as its reinforcing filler, and its effects on the curing characteristics and mechanical properties of natural rubber/styrene butadiene rubber (NR/SBR) compound. Rubber compound with fixed 15 pphr of SPO loading, and different carbon black loading from 20 to 50 pphr, was prepared using two roll mills. The cure characteristics and mechanical tests that have been conducted are the scorch and cure time analysis, tensile strength and tear strength. Scorch time (ts5) and cure time (t90) of the compound increases with the increasing carbon black loading. The mechanical properties of NR/SBR compound viz. the tensile strength, modulus at 300% strain and tear strength were also improved by the increasing carbon black loading.

  11. Enhanced interfacial interaction and antioxidative behavior of novel halloysite nanotubes/silica hybrid supported antioxidant in styrene-butadiene rubber

    Science.gov (United States)

    Lin, Jing; Luo, Yuanfang; Zhong, Bangchao; Hu, Dechao; Jia, Zhixin; Jia, Demin

    2018-05-01

    A novel antioxidant (HS-s-RT) to improve the mechanical properties and anti-aging performance of styrene-butadiene (SBR) composites was prepared by antioxidant intermediate p-aminodiphenylamine (RT) grafting on the surface of halloysite nanotubes/silica hybrid (HS) via the linkage of silane coupling agent. The analysis of SEM and rubber processing analyzer (RPA) demonstrated HS-s-RT was uniformly dispersed in SBR, and stronger interfacial interaction between HS-s-RT and SBR was formed. Consequently, SBR/HS-s-RT composites have improving mechanical properties. Furthermore, the test of the retention of mechanical properties, Fourier transform infrared spectroscopy with attenuated total reflectance (FTIR-ATR), and oxidation induction time (OIT) showed HS-s-RT can effectively improve the anti-aging effect of SBR composites than corresponding low molecular-weight antioxidant N-isopropyl-N‧-phenyl-4-phenylenediamin (4010NA). Then, the mechanism of thermo-oxidative aging of SBR/HS composites was also investigated, and the superior antioxidative efficiency is attributed to the uniform dispersion and excellent migration resistance of HS-s-RT. Hence, this novel antioxidant might open up new opportunities for the fabrication of high-performance rubber composites due to its superior anti-aging effect and reinforcement.

  12. Mechanical performance of styrene-butadiene-rubber filled with carbon nanoparticles prepared by mechanical mixing

    Energy Technology Data Exchange (ETDEWEB)

    Saatchi, M.M. [Department of Chemical and Petroleum Engineering, Sharif University of Technology, P.O. Box 11155-9465, Tehran (Iran, Islamic Republic of); Shojaei, A., E-mail: akbar.shojaei@sharif.edu [Department of Chemical and Petroleum Engineering, Sharif University of Technology, P.O. Box 11155-9465, Tehran (Iran, Islamic Republic of)

    2011-09-15

    Highlights: {yields} We compare influence of carbon blacks and carbon nanotube on properties of SBR. {yields} We model mechanical behavior of SBR nanocomposites by the micromechanical model. {yields} Mechanical properties of carbon black/SBR is greatly dominated by bound rubber. {yields} Mechanical properties of SBR/nanotube is governed by big aspect ratio of nanotube. - Abstract: Reinforcement of styrene-butadiene-rubber (SBR) was investigated using two different carbon blacks (CBs) with similar particle sizes, including highly structured CB and conventional CB, as well as multi-walled carbon nanotube (MWCNT) prepared by mechanical mixing. The attempts were made to examine reinforcing mechanism of these two different classes of carbon nanoparticles. Scanning electron microscopy and electrical conductivity measurement were used to investigate morphology. Tensile, cyclic tensile and stress relaxation analyses were performed. A modified Halpin-Tsai model based on the concept of an equivalent composite particle, consisting of rubber bound, occluded rubber and nanoparticle, was proposed. It was found that properties of CB filled SBR are significantly dominated by rubber shell and occluded rubber in which molecular mobility is strictly restricted. At low strains, these rubber constituents can contribute in hydrodynamic effects, leading to higher elastic modulus. However, at higher strains, they contribute in stress hardening resulting in higher elongation at break and higher tensile strength. These elastomeric regions can also influence stress relaxation behaviors of CB filled rubber. For SBR/MWCNT, the extremely great inherent mechanical properties of nanotube along with its big aspect ratio were postulated to be responsible for the reinforcement while their interfacial interaction was not so efficient.

  13. Chemical vapor deposition graphene transfer process to a polymeric substrate assisted by a spin coater

    International Nuclear Information System (INIS)

    Kessler, Felipe; Da Rocha, Caique O C; Medeiros, Gabriela S; Fechine, Guilhermino J M

    2016-01-01

    A new method to transfer chemical vapor deposition graphene to polymeric substrates is demonstrated here, it is called direct dry transfer assisted by a spin coater (DDT-SC). Compared to the conventional method DDT, the improvement of the contact between graphene-polymer due to a very thin polymeric film deposited by spin coater before the transfer process prevented air bubbles and/or moisture and avoided molecular expansion on the graphene-polymer interface. An acrylonitrile-butadiene-styrene copolymer, a high impact polystyrene, polybutadiene adipate-co-terephthalate, polylactide acid, and a styrene-butadiene-styrene copolymer are the polymers used for the transfers since they did not work very well by using the DDT process. Raman spectroscopy and optical microscopy were used to identify, to quantify, and to qualify graphene transferred to the polymer substrates. The quantity of graphene transferred was substantially increased for all polymers by using the DDT-SC method when compared with the DDT standard method. After the transfer, the intensity of the D band remained low, indicating low defect density and good quality of the transfer. The DDT-SC transfer process expands the number of graphene applications since the polymer substrate candidates are increased. (paper)

  14. Studies for methods to improve thermostability of the functionalized butadiene styrene rubbers

    Directory of Open Access Journals (Sweden)

    A. L. Rumyantseva

    2018-01-01

    Full Text Available It is well known that the tire performance properties can deteriorate in the processes of production, processing, storage and operation. One of the reasons for that is a series of processes occurring in the polymer under the influence of different factors: thermal, mechanical or chemical. This problem is particularly relevant for functionalized polymers, as functional groups can interact with each other, causing side cross linking reactions that lead to a deterioration of consumer properties of the products. The main purpose of this work was to study influence of several key factors on the thermostability of functionalized rubbers in order to find a solution: different types of antioxidants, rubber polymerizate stripping conditions and rubber processing. In accordance with the problem, solutions were found and work was carried out in several directions: changing the pH of the medium in the rubber stripping and using antioxidants containing carbonyl groups located in ?-positions to methylene groups, namely Irganox 1520 and Irganox 1076. As an evaluation factor, thermal treatment was selected in two modes: at 100 °C for 48 hours and after extruder at 130 °C for 5 minutes + 100 °C for 48 hours. At the same time, the following parameters were determined: molecular weight characteristics and Mooney viscosity of the starting polymers and after thermal aging. During the experiments, it was found that the acidity of the medium in the water degasser does not affect the crosslinking of the functionalized rubber during storage. In addition, a study was made of the effect of the type of antioxidant and its quantity on the thermal stability of functionalized styrene butadiene rubbers, as well as the study of the effect of the content of the modifying agent on the thermal stability of the product. It has been found that the use, as antioxidants, of carbonyl compounds containing a methylene group at the ?-position, leads to inhibition of the cross

  15. -Styrene)

    KAUST Repository

    Sutisna, Burhannudin

    2017-10-04

    Membranes are prepared by self-assembly and casting of 5 and 13 wt% poly(styrene-b-butadiene-b-styrene) (PS-b-PB-b-PS) copolymers solutions in different solvents, followed by immersion in water or ethanol. By controlling the solution-casting gap, porous films of 50 and 1 µm thickness are obtained. A gradient of increasing pore size is generated as the distance from the surface increased. An ordered porous surface layer with continuous nanochannels can be observed. Its formation is investigated, by using time-resolved grazing incident small angle X-ray scattering, electron microscopy, and rheology, suggesting a strong effect of the air-solution interface on the morphology formation. The thin PS-b-PB-b-PS ordered films are modified, by promoting the photolytic addition of thioglycolic acid to the polybutadiene groups, adding chemical functionality and specific transport characteristics on the preformed nanochannels, without sacrificing the membrane morphology. Photomodification increases fivefold the water permeance to around 2 L m(-2) h(-1) bar(-1) , compared to that of the unmodified one. A rejection of 74% is measured for methyl orange in water. The membranes fabrication with tailored nanochannels and chemical functionalities can be demonstrated using relatively lower cost block copolymers. Casting on porous polyacrylonitrile supports makes the membranes even more scalable and competitive in large scale.

  16. The influence of carbon black on curing kinetics and thermal aging of acrylonitrile–butadiene rubber

    OpenAIRE

    Jaroslava Budinski-Simendić; Gordana Marković; Milena Marinović-Cincović; Vojislav Jovanović; Suzana Samardžija-Jovanović

    2009-01-01

    Elastomers based on a copolymer of butadiene and acrylonitrile (NBR) have excellent oil resistance but are very sensitive for degradation at very high temperatures. The aim of this applicative contribution was to determine the effect of high abrasion furnace carbon black with primary particle size 46 nm on aging properties of elastomeric materials based on NBR as network precursor. The curing kinetics was determined using the rheometer with an oscillating disk, in which the network formation ...

  17. Caraterização composicional do AES - um copolímero de enxertia de poli(estireno-co-acrilonitrila em poli(etileno-co-propileno-co-dieno Compositional characterization of AES a graft copolymer based on poly(styrene-co-acrylonitrile and poly(etyhlene-co-propylene-co-diene

    Directory of Open Access Journals (Sweden)

    Renato Turchet

    2006-06-01

    Full Text Available O objetivo deste trabalho é a caracterização do AES, um copolímero de enxertia de poli(estireno-co-acrilonitrila, SAN, em poli(etileno-co-propileno-co-dieno, EPDM. Para tanto, o AES foi submetido à extração seletiva de seus componentes: o SAN livre, o EDPM livre, e o copolímero de enxertia EPDM-g-SAN. O AES e suas frações foram caracterizados por espectroscopia de infravermelho, análise elementar, calorimetria diferencial de varredura e ressonância magnética nuclear, RMN¹H e RMN13C. O AES analisado apresenta a seguinte composição em massa: 65% de EPDM-g-SAN, 13% de EPDM livre e 22% de SAN livre. O EPDM apresenta 69,8% em massa de etileno, 26,5% em massa de propileno e 4,6% em massa do dieno, 2-etilideno-5-norboneno, ENB. O SAN apresenta razão em massa acrilonitrila/estireno de 28/72 e distribuição randômica de comonômeros de estireno e acrilonitrila. Estes resultados são concordantes com a composição do AES fornecida pelo fabricante, indicando que a metodologia proposta é adequada.This work aims the characterization of AES, a graft copolymer based on poly(styrene-co-acrylonitrile, SAN, and poly(etyhlene-co-propylene-co-diene, EPDM. AES was submitted to selective extraction of its components: free SAN, EPDM chains and the graft copolymer EPDM-g-SAN. AES and its fractions were characterized by infrared spectroscopy, elemental analysis, differential scanning calorimetry, 13C and ¹H nuclear magnetic resonance. The AES has 65 wt % of EPDM-g-SAN, 13 wt % of free EPDM and 22 wt % of free SAN. EPDM has 69.8 wt % of ethylene, 26.5 wt % of propylene and 4.6 wt % of diene, 2-ethylidene-5-norbonene ENB. SAN presents acrylonitrile/styrene mass ratio of 28/72 and a random distribution of acrylonitrile and styrene comonomers. These results are in agreement with the composition reported by the AES supplier, indicating that the proposed methodology is adequate.

  18. Surface modification of carbon black for the reinforcement of polycarbonate/acrylonitrile–butadiene–styrene blends

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, B.B. [School of Chemical Engineering, Fuzhou University, Fuzhou 350108 (China); Chen, Y. [School of materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002 (China); Wang, F. [School of Chemical Engineering, Fuzhou University, Fuzhou 350108 (China); Hong, R.Y., E-mail: rhong@suda.edu.cn [School of Chemical Engineering, Fuzhou University, Fuzhou 350108 (China); College of Chemistry, Chemical Engineering and Materials Science & Key Laboratory of Organic Synthesis of Jiangsu Province, Soochow University, SIP, Suzhou 215123 (China)

    2015-10-01

    Highlights: • CB was modified through the method of oxygen plasma treatment. • Surface modified CB applied in PC/ABS blends. • The treated CB showed better compatibility in PC/ABS blends. • PC/ABS blends with treated CB showed better mechanical and thermal properties. - Abstract: The surface of carbon black was modified by oxygen plasma treatment for different times (10, 20 and 30 min). In order to increase the applicability of carbon black (CB), functional groups were grafted on the generally inert surface of CB using oxygen plasma. The surface compositional and structural changes that occurred on CB were investigated by SEM, FT-IR, Raman spectroscopy, XRD and BET. Subsequently, CB reinforced polycarbonate (PC)/acrylonitrile-butadiene-styrene (ABS) composites were prepared by internal batch mixing with the addition of different content of CB (3, 6, 9, 12 wt%). The morphology of PC/ABS/CB (7/3/6 wt%) nanocomposites was studied through scanning electron microscopy. Observations of SEM images showed that the plasma-treated CB had a better dispersion in the blend matrix. Moreover, the mechanical tests showed that the tensile strength and impact strength were improved by 32.4% and 22.5%, respectively, with the addition of plasma-treated CB. In addition, the thermal stability was improved and glass transition temperatures of both PC and ABS increased as shown by TGA and DSC, respectively.

  19. Development of converter to change gas-liquid two-phase slug flow to bubbly flow in a vertical tube

    International Nuclear Information System (INIS)

    Sakaguchi, T.; Minagawa, H.; Hamaguchi, H.; Shakutusi, H.; Ono, M.; Mizuta, H.

    1989-01-01

    The mechanical and/or the thermal fatigue fracture of pipelines due to the pulsating characteristics of slug flow will be prevented if slug flow is changed to bubbly flow. Then kinds of flow pattern converters were developed and tested in a vertical tube of 30.3 mm I.D. This paper reports that the converter composed of five stages of porous plates is useful. The sintered porous plates of spherical particles made acrylonitrile-butadiene-styrene resin and bronze are selected from 76 kinds of porous plates

  20. Screening-level risk assessment for styrene-acrylonitrile (SAN) trimer detected in soil and groundwater.

    Science.gov (United States)

    Kirman, C R; Gargas, M L; Collins, J J; Rowlands, J C

    2012-01-01

    A screening-level risk assessment was conducted for styrene-acrylonitrile (SAN) Trimer detected at the Reich Farm Superfund site in Toms River, NJ. Consistent with a screening-level approach, on-site and off-site exposure scenarios were evaluated using assumptions that are expected to overestimate actual exposures and hazards at the site. Environmental sampling data collected for soil and groundwater were used to estimate exposure point concentrations. Several exposure scenarios were evaluated to assess potential on-site and off-site exposures, using parameter values for exposures to soil (oral, inhalation of particulates, and dermal contact) and groundwater (oral, dermal contact) to reflect central tendency exposure (CTE) and reasonable maximum exposure (RME) conditions. Three reference dose (RfD) values were derived for SAN Trimer for short-term, subchronic, and chronic exposures, based upon its effects on the liver in exposed rats. Benchmark (BMD) methods were used to assess the relationship between exposure and response, and to characterize appropriate points of departure (POD) for each RfD. An uncertainty factor of 300 was applied to each POD to yield RfD values of 0.1, 0.04, and 0.03 mg/kg-d for short-term, subchronic, and chronic exposures, respectively. Because a chronic cancer bioassay for SAN Trimer in rats (NTP 2011a) does not provide evidence of carcinogenicity, a cancer risk assessment is not appropriate for this chemical. Potential health hazards to human health were assessed using a hazard index (HI) approach, which considers the ratio of exposure dose (i.e., average daily dose, mg/kg-d) to toxicity dose (RfD, mg/kg-d) for each scenario. All CTE and RME HI values are well below 1 (where the average daily dose is equivalent to the RfD), indicating that there is no concern for potential noncancer effects in exposed populations even under the conservative assumptions of this screening-level assessment.

  1. Screening-Level Risk Assessment for Styrene-Acrylonitrile (SAN) Trimer Detected in Soil and Groundwater

    Science.gov (United States)

    Kirman, C. R.; Gargas, M. L.; Collins, J. J.; Rowlands, J. C.

    2012-01-01

    A screening-level risk assessment was conducted for styrene-acrylonitrile (SAN) Trimer detected at the Reich Farm Superfund site in Toms River, NJ. Consistent with a screening-level approach, on-site and off-site exposure scenarios were evaluated using assumptions that are expected to overestimate actual exposures and hazards at the site. Environmental sampling data collected for soil and groundwater were used to estimate exposure point concentrations. Several exposure scenarios were evaluated to assess potential on-site and off-site exposures, using parameter values for exposures to soil (oral, inhalation of particulates, and dermal contact) and groundwater (oral, dermal contact) to reflect central tendency exposure (CTE) and reasonable maximum exposure (RME) conditions. Three reference dose (RfD) values were derived for SAN Trimer for short-term, subchronic, and chronic exposures, based upon its effects on the liver in exposed rats. Benchmark (BMD) methods were used to assess the relationship between exposure and response, and to characterize appropriate points of departure (POD) for each RfD. An uncertainty factor of 300 was applied to each POD to yield RfD values of 0.1, 0.04, and 0.03 mg/kg-d for short-term, subchronic, and chronic exposures, respectively. Because a chronic cancer bioassay for SAN Trimer in rats (NTP 2011a) does not provide evidence of carcinogenicity, a cancer risk assessment is not appropriate for this chemical. Potential health hazards to human health were assessed using a hazard index (HI) approach, which considers the ratio of exposure dose (i.e., average daily dose, mg/kg-d) to toxicity dose (RfD, mg/kg-d) for each scenario. All CTE and RME HI values are well below 1 (where the average daily dose is equivalent to the RfD), indicating that there is no concern for potential noncancer effects in exposed populations even under the conservative assumptions of this screening-level assessment. PMID:23030654

  2. Dynamic Response of Acrylonitrile Butadiene Styrene Under Impact Loading (Open Access)

    Science.gov (United States)

    2016-03-16

    Ivankovic, A., & Venizelos, G. (2000). High strain rate properties of selected aluminium alloys . Materials Science and Engineering: A., 278, 225–235...deformation, there has been extensive work on understanding the effects of high strain rate on metals such as aluminum alloys , steels, and other metals...2005) conducted studies on the dynamic deformation of copper and titanium alloys and observed that the maximum stress did not change drastic- ally

  3. Effect of kenaf short fiber loading on mechanical properties of biocomposites

    Science.gov (United States)

    Andilolo, J.; Nikmatin, S.; Nugroho, N.; Alatas, H.; Wismogroho, A. S.

    2017-05-01

    The research of biocomposite product with kenaf (Hibiscus cannabinus) short fiber as a filler and Acrylonitrile Butadiene Styrene (ABS) as the matrix had been done to understand the mechanical properties of this material. Kenaf short fiber was obtained from mechanical sieving after doing the mechanical milling. TAPPI method has been done to determine the chemical properties. In order to form a granular biocomposite a single screw extruder was performed with a variation of particle loading 10 and 15%. The original of acrylonitrile butadiene styrene (ABS) has been used as matrix. The fabrication of speciment had been done by molding injection process. Mechanical properties test was done by ASTM standarization. The results showed the density of the fibers of 1.008 g/cm3 with a fiber length of 897.07 µm and a diameter of 66.38 µm. Tensile strength of kenaf short fiber loading 10 and 15% was 23.522 ± 8.36 MPa and 20.739 ± 6.79 MPa, respectively. The tensile properties showed a decreasing trend as the fiber loading was increased. The values of impact strength were 68.657 ± 4.89 kJ m-2 and 82.090 ± 5.56 kJ m-2, respectively and the hardness values were 96.60 ± 6.03 HR and 105.20 ± 13.17 HR, respectively. Kenaf fiber can be a good reinforcement candidate for high performance polymer bio-composites.

  4. The use of styrene-butadiene rubber waste as a potential filler in nitrile rubber: order of addition and size of waste particles

    Directory of Open Access Journals (Sweden)

    D. A. Baeta

    2009-03-01

    Full Text Available Styrene-butadiene rubber (SBR has large applications in the shoe industry, especially as expanded sheets used to produce insoles and inner soles. According to TG analysis, the rubber content in SBR residues (SBR-r was found to be around 26-wt%. Based on that data, a cost-effective technique for the reuse of SBR-r in Nitrile rubber (NBR was developed. Later, the effect of SBR-r on the cure behavior, mechanical performance, swelling, and crosslink density of reused rubber was investigated, with more emphasis placed on the effect of both particle size and loading of waste filler. Cure characteristics such as optimum cure time and scorch time were then reduced by the increasing amount of SBR-r filler. Owing to the reinforced nature of the largest particle size SBR-r, the best results for the mechanical properties of NBR were those in which SBR-r was added at the end of the cure process. The study has thus shown that SBR residue (SBR-r can be used as an economical alternative filler in NBR.

  5. Computational Investigation of the Competition between the Concerted Diels-Alder Reaction and Formation of Diradicals in Reactions of Acrylonitrile with Non-Polar Dienes

    Science.gov (United States)

    James, Natalie C.; Um, Joann M.; Padias, Anne B.; Hall, H. K.; Houk, K. N.

    2013-01-01

    The energetics of the Diels-Alder cycloaddition reactions of several 1,3-dienes with acrylonitrile, and the energetics of formation of diradicals, were investigated with density functional theory (B3LYP and M06-2X) and compared to experimental data. For the reaction of 2,3-dimethyl-1,3-butadiene with acrylonitrile, the concerted reaction is favored over the diradical pathway by 2.5 kcal/mol using B3LYP/6-31G(d); experimentally this reaction gives both cycloadduct and copolymer. The concerted cycloaddition of cyclopentadiene with acrylonitrile is preferred computationally over the stepwise pathway by 5.9 kcal/mol; experimentally, only the Diels-Alder adduct is formed. For the reactions of (E)-1,3-pentadiene and acrylonitrile, both cycloaddition and copolymerization were observed experimentally; these trends were mimicked by the computational results, which showed only a 1.2 kcal/mol preference for the concerted pathway. For the reactions of (Z)-1,3-pentadiene and acrylonitrile, the stepwise pathway is preferred by 3.9 kcal/mol, in agreement with previous experimental findings that only polymerization occurs. M06-2X is known to give more accurate activation and reaction energetics but the energies of diradicals are too high. PMID:23758325

  6. [Identification of migrants from nitrile-butadiene rubber gloves].

    Science.gov (United States)

    Mutsuga, Motoh; Kawamura, Yoko; Wakui, Chiseko; Maitani, Tamio

    2003-04-01

    Polyvinyl chloride gloves containing di(2-ethylhexyl) phthalate are restricted for food contact use. In their place, disposable gloves made from nitrile-butadiene rubber (NBR) are used in contact with foodstuffs. Some unknown substances were found to migrate into n-heptane from NBR gloves. By GC/MS, HR-MS and NMR, their chemical structures were confirmed to be 2,2,4-trimethyl-1,3-pentanediol diisobutyrate (used as a plasticizer), 4,4'-butylidenedi(6-tert-butyl-m-cresol), a mixture of styrenated phenols consisting of 2-(alpha-methylbenzyl)phenol, 4-(alpha-methylbenzyl)phenol, 2,6-di(alpha-methylbenzyl)phenol, 2,4-di(alpha-methylbenzyl)phenol and 2,4,6-tri(alpha-methylbenzyl)phenol (used as antioxidants), and 2,4-di-tert-butylphenol, which seems to a degradation product of antioxidant. Migration levels of these compounds were 1.68 micrograms/cm2 of 2,4-di-tert-butylphenol, 2.80 micrograms/cm2 of 2,2,4-trimethyl-1,3-pentanediol diisobutyrate, 46.08 micrograms/cm2 of styrenated phenols and 4.22 micrograms/cm2 of 4,4'-butylidenedi(6-tert-butyl-m-cresol) into n-heptane, respectively. The content of total styrenated phenols was 6,900 micrograms/g in NBR gloves.

  7. Charpy Impact Test on Polymeric Molded Parts

    Directory of Open Access Journals (Sweden)

    Alexandra Raicu

    2012-09-01

    Full Text Available The paper presents the Charpy impact tests on the AcrylonitrileButadiene-Styrene (ABS polymeric material parts. The Charpy impact test, also known as the Charpy V-notch test, is a standardized strain rate test which determines the amount of energy absorbed by a material during fracture. This is a typical method described in ASTM Standard D 6110. We use for testing an Instron - Dynatup equipment which have a fully integrated hardware and software package that let us capture load information at very high speed from the impact tests.

  8. Rapid prototyping of polymeric microstructures with a UV laser

    DEFF Research Database (Denmark)

    Jensen, Martin F.; McCormack, John E.; Helbo, Bjarne

    2003-01-01

    By laser ablation of Poly-Ether-Ether-Ketone (PEEK), a negative master of the microsystem was produced. This master is then used for hot embossing of a number of polystyrene (PS) parts. A few hundred replications can be made without warping and alteration of the dimensions. The possibility of using...... ion implantation of the master tool to prolong the lifetime has also been investigated. For injection moulding, where the pressure and temperature is higher than in hot embossing a positive laser ablated Acrylonitrile-butadien-styrene co-polymer (ABS) structure was used, which subsequently has been...

  9. Warpage analysis on thin shell part using response surface methodology (RSM)

    Science.gov (United States)

    Zulhasif, Z.; Shayfull, Z.; Nasir, S. M.; Fathullah, M.; Hazwan, M. H. M.

    2017-09-01

    The optimisation of moulding parameters appropriate to reduce warpage defects produce using Autodesk Moldflow Insight (AMI) 2012 software The product is injected by using Acrylonitrile-Butadiene-Styrene (ABS) materials. This analysis has processing parameter that varies in melting temperature, mould temperature, packing pressure and packing time. Design of Experiments (DOE) has been integrated to obtain a polynomial model using Response Surface Methodology (RSM). The Glowworm Swarm Optimisation (GSO) method is used to predict a best combination parameters to minimise warpage defect in order to produce high quality parts.

  10. Research of operational properties of compound based on high viscosity styrene-butadiene rubber SSBR-2560 TDAE HV

    Directory of Open Access Journals (Sweden)

    M. I. Falyakhov

    2016-01-01

    Full Text Available The article consider the influence of replacement of SSBR-2560 TDAE batch production on high viscosity SSBR-2560-TDAE HV in the tread recipe on the tire performance properties. Obtained samples were highly viscosity styrene butadiene rubber did not differ in the microstructure of the SSBR-2560 TDAE batch production. Increasing the molecular weight possible to increase the Mooney viscosity of the rubber, however, is known to one of adverse factors is the deterioration of processability of rubber compounds based on polymers. In this connection, investigated the behavior in the step mixing compound based on high viscosity SSBR rubber. We chose recipes tread of the tire with a high content of organic silicon filler. It is established that the equivalent replacement of the polymer in the tread recipe does not lead to significant changes in the basic parameters of rubber mixing. We observed a slight increase in the energy consumption for the preparation of the rubber compounds, as well as the discharge temperature at each stage. It was shown to improve the distribution of the filler in the polymer matrix for the compound based on SSBR-2560 TDAE HV. The results showed that compound based on high viscosity SSBR improves rolling resistance and traction characteristics, while maintaining abrasion in comparison with the SSBR-2560-M27 batch production. Recommended use this brand in the production of rubber car tires.

  11. Effect of polypropylene maleic anhydride (PPMAH) on mechanical and morphological properties of polypropylene (PP)/recycled acrylonitrile butadiene rubber (NBRr)/empty fruit bunch (EFB) composites

    Science.gov (United States)

    Othman, Nurul Syazwani; Santiagoo, Ragunathan; Abdillahi, Khalid Mohamed; Ismail, Hanafi

    2017-07-01

    The fabrication of polypropylene (PP)/ recycled acrylonitrile butadiene rubber (NBRr)/ empty fruit bunch (EFB) composites were investigated. The effects of polypropylene maleic anhydride (PPMAH) as a compatibilizer on the mechanical and morphological properties of PP/NBRr/EFB composites were studied. Composites were prepared through melt mixing using heated two roll mill at 180 °C for 9 minutes and rotor speed of 15 rpm. NBRr loading were varied from 0 to 60 phr and PPMAH was fixed for 5 phr. The composites were moulded into a 1 mm thin sheet using hot press machine and then cut into dumbbell shape. The mechanical and morphological properties of composites were examined using universal tensile machine (UTM) and scanning electron microscope (SEM), respectively. Tensile strength and Young's modulus of PP/NBRr/EFB composites decreased with increasing NBRr loading, whilst increasing the elongation at break. However, PPMAH compatibilized composites have resulted 27% to 40% and 25% to 42% higher tensile strength and Young's modulus, respectively, higher compared to uncompatibilized composites. This was due to the better adhesion between PP/NBRr matrices and EFB filler with the presence of maleic anhydride moieties. From the morphological study, the micrograph of PPMAH compatibilized composites has proved the well bonded and good attachments of EFB filler with PP/NBRr matrices which results better tensile strength to the PP/NBRr/EFB composites.

  12. Effects of content and surface hydrophobic modification of BaTiO3 on the cooling properties of ASA (acrylonitrile-styrene-acrylate copolymer)

    Science.gov (United States)

    Xiang, Bo; Zhang, Jun

    2018-01-01

    For the field of cool material, barium titanate (BaTiO3, BT) is still a new member that needs to be further studied. Herein, the effects of both content and surface hydrophobic modification of BT on the cooling properties of acrylonitrile-styrene-acrylate copolymer (ASA) were detailedly investigated, aiming to fabricate composited cool material. Butyl acrylate (BA) was employed to convert the surface of BT from hydrophilic to hydrophobic. The addition of unmodified BT could significantly improve the solar reflectance of ASA, especially when the addition amount is 3 vol%, the near infrared (NIR) reflectance increased from 22.02 to 72.60%. However, serious agglomeration occurred when the addition amount increased to 5 vol% and therefore led to a relatively smaller increase in solar reflectance and an obvious decline in impact strength. After surface hydrophobic modification, the modified BT (M-BT) presented better dispersibility in ASA matrix, which contributed to the improvement of both solar reflectance and impact strength. In addition, the temperature test provided a more sufficient and intuitive way to evaluate the cooling effect of the composited cool materials, and a significant decrease (over 10 °C) could be achieved in the temperature test when M-BT particles were introduced.

  13. Effect of montmorillonite on carboxylated styrene butadiene rubber/hindered phenol damping material with improved extraction resistance

    International Nuclear Information System (INIS)

    Gao, Yuan; Wang, Xiaoping; Liu, Meijun; Xi, Xue; Zhang, Xin; Jia, Demin

    2014-01-01

    Highlights: • MMT and XSBR display synergic effect on protecting HP1098 from being extracted. • A new hindered phenol HP1098 was used to prepare damping material. • Effects of three preparation methods on the material properties were studied. - Abstract: Three methods of blending, including direct blending, melt blending and latex blending, were introduced to disperse sodium based montmorillonite (Na-MMT) and N,N′-hexane-1,6-diylbis{3-(5-di-tert-butyl-4-hydroxyphenyl-propionamide)} (HP1098) into the carboxylated styrene butadiene (XSBR) matrix. Small angle X-ray Diffraction testing indicated that melting Na-MMT with HP1098 enlarged the d-spacing of Na-MMT, which was further enlarged by mechanical blending with XSBR, and this led to homogeneous dispersion of Na-MMT and HP1098, which was indicated by Transmission Electronic Microscopy; latex blending was found most advantageous in dispersing HP1098 which was essential for improved damping performance. Dynamic Mechanical Analysis was utilized to characterize damping properties, and enhanced static mechanical properties were presumably originated from molecule chains being intercalated into the enlarged galleries of Na-MMT by mechanical blending. Formation of hydrogen bonds was observed by Fourier Transformation Infrared Spectrum and was supposed to be responsible for exceptional damping performance at elevated temperature. Extraction measurement of XSBR/Na-MMT/HP1098 composite indicated that XSBR and Na-MMT showed synergic effect in protecting HP1098 molecules from being extracted, which is a promising method in preparing rubber/hindered phenol damping materials with improved extraction resistance, whereby increasing the performance stability and lifespan of the composite materials. Additional advantage of this type of materials is better processability and shortened vulcanization process

  14. Alternative Fuels Compatibility with Army Equipment Testing - Alternative Fuels Material Compatibility Analysis

    Science.gov (United States)

    2012-02-21

    96906) 5330-00-182-3170 O-ring Butadiene-acrylonitrile class NBR AAFARS 13217E5363 (97403) 5330-00-235-4716 Gasket, Sight Gauge Rubber synthetic...Butadiene-acrylonitrile class NBR FSSP 13216E8238 (97403) 5330-00-647-2072 Gasket Rubber synthetic AAFARS MS28774-017 (96906) 5330-00-833-4210 Back...ring Butadiene-acrylonitrile class NBR AAFARS 5331-00-641-1119 O-ring Rubber synthetic AAFARS M25988/1-017 (81349) 5331-00-759-2121 O-ring

  15. Using heat-treated starch to modify the surface of biochar and improve the tensile properties of biochar-filled stryene-butadiene rubber composites

    Science.gov (United States)

    Heat-treated starch is a renewable material that can be used to modify the surface chemistry of small particles. In this work, heat-treated starch was used to coat hydrophilic biochar particles in order to make them more hydrophobic. Then when added as filler to hydrophobic styrene-butadiene rubber,...

  16. Huntsman takes a stake in Chemplex

    International Nuclear Information System (INIS)

    Wood, A.

    1993-01-01

    Huntsman Chemical (Salt Lake City) has bought a 50% stake in Australian styrenics maker Chemplex (Melbourne) from Consolidated Press Holdings (Sydney). Huntsman stepped in after a previous acquisition plan by South Africa's Sentrachem (Johannesburg) broke down because of a failure to agree on price. Chemplex has two production locations near Melbourne: West Footscray, with capacity for 100,000 m.t./year of styrene, plus polystyrene, phenol, and acetone; and Dandenong, with production of acrylonitrile butadiene styrene and latex. The company was originally Monsanto Australia, before being acquired by Consolidated Press in 1988. The deal will give Huntsman its first major production position in the Asia/Pacific region, apart from a 50% stake in a 25,000-m.t./year polystyrene plant in Taiwan, with Grand Pacific Petrochemical (Taipei) as a partner. In 1991, Huntsman abandoned plans to invest in a 25,000-m.t./year polystyrene plant in Thailand with Mitsubishi Corp. and Toa (Bangkok). Huntsman Chemical has annual revenues of $1.3 billion

  17. Adhesion properties of styrene-butadiene rubber (SBR/Standard Malaysian Rubber (SMR L-based adhesives in the presence of phenol formaldehyde resin

    Directory of Open Access Journals (Sweden)

    2007-10-01

    Full Text Available The adhesion properties, i. e. viscosity, tack and peel strength of styrene-butadiene rubber (SBR/Standard Malaysian Rubber (SMR L-based pressure-sensitive adhesive was studied using phenol formaldehyde resin as the tackifying resin. Toluene was used as the solvent throughout the experiment. SBR composition in SBR/SMR L blend used was 0, 20, 40, 60, 80, 100%. Three different resin loadings, i. e. 40, 80 and 120 parts per hundred parts of rubber (phr were used in the adhesive formulation. The viscosity of adhesive was determined by a HAAKE Rotary Viscometer whereas loop tack and peel strength of paper/polyethylene terephthalate (PET film were measured using a Lloyd Adhesion Tester operating at 30 cm/min. Results indicate that the viscosity of adhesive decreases with increasing % SBR whereas loop tack passes through a maximum value at 20% SBR for all resin loadings. Except for the control sample (without resin, the peel strength shows a maximum value at 60% SBR for the three modes of peel tests. For a fixed % SBR, adhesive sample containing 40 phr phenol formaldehyde resin always exhibits the highest loop tack and peel strength, an observation which is associated to the optimum wettability of adhesive on the substrate.

  18. Mechanical and molecular studies of biocomposites filled with oil palm empty fruit bunches microfibers

    Science.gov (United States)

    Nikmatin, S.; Saepulloh, D. R.; Irmansyah; Syafiuddin, A.

    2017-05-01

    The present work aims to investigate mechanical and molecular characteristics of acrylonitrile butadiene styrene (ABS) composites filled with oil palm empty fruit bunches (OPEFB) microfibers. OPEFB microfibers were produced using mechanical milling. Composite granules were fabricated using single screw extruder. These composites were then used for fabricating helmet according to the Indonesian National Standard (SNI). Mechanical testing confirms that the helmet produced using this biocomposites are suitable to the SNI. Molecular interaction between matrix with OPEFB can be described using orbital hybridization theory. In general, this study has successfully investigated mechanical and molecular properties of the biocomposites.

  19. A facile method of hydrophobic surface modification for acrylonitrile-styrene-acrylate terpolymer based on the out-migration property of metallic soaps

    Science.gov (United States)

    Qi, Yanli; Chen, Tingting; Zhang, Jun

    2018-03-01

    Hydrophobic surface modification is conducted in this study by using additives with long alkyl chains. Several kinds of metallic soaps, such as calcium stearate (CaSt), zinc stearate (ZnSt), magnesium stearate (MgSt) and barium stearate (BaSt) were employed. Polymer matrix is acrylonitrile-styrene-acrylate (ASA) terpolymer due to its wonderful weather resistance property. The surface chemical characterization was studied by Fourier transformed infrared (FTIR) technology and X-ray photoelectron spectroscopy (XPS). Carboxylate (Osbnd Csbnd O-) indexes of composites in both transmittance and reflection modes were calculated according to FTIR results. As to the ratio of carboxylate index in reflection mode to that in transmittance mode, the sample added with 5 wt% ZnSt shows a higher value of 8.77, and a much higher value of 14.47 for the sample added with 10 wt% ZnSt. The corresponding Csbnd C/ Csbnd H /Cdbnd C peak areas of the samples added with 5 wt% or 10 wt% ZnSt are 75.4% and 77.3% respectively, much higher than other samples. This indicates ZnSt is much easier to out-migrate to material surface and therefore is more suitable for hydrophobic surface modification. In particular, the water contact angle of the ASA/ZnSt composite added with 10 wt% ZnSt significantly increased to 127o (40o increase in comparison with pure ASA), successfully converting the surface wettability from hydrophilic to hydrophobic.

  20. Effect of γ-aminopropyltriethoxy silane (γ-APS) coupling agent on mechanical and morphological properties of high density polyethylene (HDPE)/acrylonitrile butadiene rubber (NBR)/palm pressed fibre (PPF) composites

    Science.gov (United States)

    Norizan, Nabila Najwa; Santiagoo, Ragunathan; Ismail, Hanafi

    2017-07-01

    The fabrication of High Density Polyethylene (HDPE)/ Acrylonitrile-butadiene rubber (NBR)/ Palm Pressed Fibre (PPF) composite were investigated. The effect of γ-Aminopropyltriethoxy Silane (APS) as coupling agent on the properties of HDPE/ NBR/ PPF composite were studied. The composites were melt mixed using heated two roll mill at 180°C and speed of 15rpm with six different loading (100/0/10, 80/20/10, 70/30/10, 60/40/10, 50/50/10, and 40/60/10). The effects of γ-APS silane on mechanical, and morphological properties were examined using universal tensile machine (UTM) and scanning electron microscopy (SEM), respectively. Tensile strength and Young's modulus of HDPE/ NBR/ PPF composites decrease with increasing of NBR loading, whilst increasing the elongation at break. However, treated composites have resulted 3% to 29%, and 9% to 19%, higher in tensile strength and young's modulus compared to untreated composites. This was due to the better adhesion between HDPE/ NBR matrices and PPF filler with the presence of silanol moieties. From the morphological study, the micrograph of treated composites has proved the well bonded and good attachment of PPF filler with HDPE/ NBR matrices which resulted to better tensile strength to the HDPE/ NBR/ PPF composites.

  1. Heat shrinkable behavior, physico-mechanical and structure properties of electron beam cross-linked blends of high-density polyethylene with acrylonitrile-butadiene rubber

    International Nuclear Information System (INIS)

    Reinholds, Ingars; Kalkis, Valdis; Merijs-Meri, Remo; Zicans, Janis; Grigalovica, Agnese

    2016-01-01

    In this study, heat-shrinkable composites of electron beam irradiated high-density polyethylene (HDPE) composites with acrylonitrile-butadiene rubber (NBR) were investigated. HDPE/NBR blends at a ratio of components 100/0, 90/10, 80/20, 50/50 and 20/80 wt% were prepared using a two-roll mill. The compression molded films were irradiated high-energy (5 MeV) accelerated electrons up to irradiation absorbed doses of 100–300 kGy. The effect of electron beam induced cross-linking was evaluated by the changes of mechanical properties, gel content and by the differences of thermal properties, detected by differential scanning calorimetry. The thermo-shrinkage forces were determined as the kinetics of thermorelaxation and the residual shrinkage stresses of previously oriented (stretched up to 100% at above melting temperature of HDPE and followed by cooling to room temperature) specimens of irradiated HDPE/NBR blends under isometric heating–cooling mode. The compatibility between the both components was enhanced due to the formation of cross-linked sites at amorphous interphase. The results showed increase of mechanical stiffness of composites with increase of irradiation dose. The values of gel fraction compared to thermorelaxation stresses increased with the growth of irradiation dose level, as a result of formation cross-linked sites in amorphous PP/NBR interphase. - Highlights: • Binary blends of HDPE/NBR have been irradiated with 5 MeV accelerated electrons. • Increase of NBR content and irradiation dose improves cross-linking efficiency. • Thermo-shrinkage and residual stresses are investigated for oriented specimens. • Cross-linked HDPE/NBR composites can be successfully used as thermos-shrinkable materials.

  2. Preparation and Characterization of Facilitated Transport Membranes Composed of Chitosan-Styrene and Chitosan-Acrylonitrile Copolymers Modified by Methylimidazolium Based Ionic Liquids for CO2 Separation from CH4 and N2

    Directory of Open Access Journals (Sweden)

    Ksenia V. Otvagina

    2016-06-01

    Full Text Available CO2 separation was found to be facilitated by transport membranes based on novel chitosan (CS–poly(styrene (PS and chitosan (CS–poly(acrylonitrile (PAN copolymer matrices doped with methylimidazolium based ionic liquids: [bmim][BF4], [bmim][PF6], and [bmim][Tf2N] (IL. CS plays the role of biodegradable film former and selectivity promoter. Copolymers were prepared implementing the latest achievements in radical copolymerization with chosen monomers, which enabled the achievement of outstanding mechanical strength values for the CS-based membranes (75–104 MPa for CS-PAN and 69–75 MPa for CS-PS. Ionic liquid (IL doping affected the surface and mechanical properties of the membranes as well as the gas separation properties. The highest CO2 permeability 400 Barrers belongs to CS-b-PS/[bmim][BF4]. The highest selectivity α (CO2/N2 = 15.5 was achieved for CS-b-PAN/[bmim][BF4]. The operational temperature of the membranes is under 220 °C.

  3. New insights into the effects of styrene-butadiene-styrene polymer modifier on the structure, properties, and performance of asphalt binder: The case of AP-5 asphalt and solvent deasphalting pitch

    Energy Technology Data Exchange (ETDEWEB)

    Nciri, Nader, E-mail: nader.nciri@koreatech.ac.kr [Department of Energy, Materials, and Chemical Engineering, Korea University of Technology and Education, 1600 Chungjeol-ro, Byeongcheon-myeon, Dongnam-gu, Cheonan-City, Chungnam-Province 330-708 (Korea, Republic of); Kim, Namho [Department of Architectural Engineering, Korea University of Technology and Education, 1600 Chungjeol-ro, Byeongcheon-myeon, Dongnam-gu, Cheonan-City, Chungnam-Province 330-708 (Korea, Republic of); Cho, Namjun, E-mail: njuncho@koreatech.ac.kr [Department of Energy, Materials, and Chemical Engineering, Korea University of Technology and Education, 1600 Chungjeol-ro, Byeongcheon-myeon, Dongnam-gu, Cheonan-City, Chungnam-Province 330-708 (Korea, Republic of)

    2017-06-01

    This paper deals with the poorly understood effects of styrene-butadiene-styrene (SBS) copolymer on the bitumen performance. It focuses on determining the impact of various concentrations (e.g., 0, 4, 8, and 12 wt. %) of SBS on the attributes of two types of asphalt namely AP-5 asphalt and solvent deasphalting (SDA) pitch. The unmodified and modified binders were investigated in terms of their chemical compositions, microstructures, thermo-analytical behaviors, and physical properties. The intricate chemical compositions were evaluated by elemental analysis and thin layer chromatography-ionization detection (TLC-FID). Fourier transform infrared (FT-IR) and nuclear magnetic resonance (NMR) spectroscopies, scanning electron microscopy (SEM), and X-ray diffraction (XRD) were utilized to examine the microstructures. Whereas, thermal characteristics were evaluated by thermogravimetric analysis (TGA/DTGA) and differential scanning calorimetry (DSC). The physical behaviors were monitored through the softening point, penetration, viscosity, and ductility tests. The findings showed that the blending of asphalt with different amounts of SBS resulted into different rheological behaviors. This was reflected from the difference in the SARA (i.e., saturates, aromatics, resins, and asphaltenes) compositions and colloidal instability indexes of the modified asphalts. SEM exhibited a continuous asphalt phase with distributed SBS particles, a continuous polymer phase with distributed asphalt globules, or two interconnected continuous phases. FT-IR, {sup 1}H {sup 13}C NMR, and XRD data revealed that the AP-5 asphalt and SDA pitch experienced a number of distinct structural changes. TGA/DSC studies determined the occurrence of diverse events during thermal treatment. It is concluded that the degree of SBS modification depends strongly on SARA composition and polymer content. If the polymers are molded at higher concentrations along with aromatics-rich SDA pitches, then the mixtures

  4. Organic chemistry. A rhodium catalyst for single-step styrene production from benzene and ethylene.

    Science.gov (United States)

    Vaughan, Benjamin A; Webster-Gardiner, Michael S; Cundari, Thomas R; Gunnoe, T Brent

    2015-04-24

    Rising global demand for fossil resources has prompted a renewed interest in catalyst technologies that increase the efficiency of conversion of hydrocarbons from petroleum and natural gas to higher-value materials. Styrene is currently produced from benzene and ethylene through the intermediacy of ethylbenzene, which must be dehydrogenated in a separate step. The direct oxidative conversion of benzene and ethylene to styrene could provide a more efficient route, but achieving high selectivity and yield for this reaction has been challenging. Here, we report that the Rh catalyst ((Fl)DAB)Rh(TFA)(η(2)-C2H4) [(Fl)DAB is N,N'-bis(pentafluorophenyl)-2,3-dimethyl-1,4-diaza-1,3-butadiene; TFA is trifluoroacetate] converts benzene, ethylene, and Cu(II) acetate to styrene, Cu(I) acetate, and acetic acid with 100% selectivity and yields ≥95%. Turnover numbers >800 have been demonstrated, with catalyst stability up to 96 hours. Copyright © 2015, American Association for the Advancement of Science.

  5. Surface modification of halloysite nanotubes by vulcanization accelerator and properties of styrene-butadiene rubber nanocomposites with modified halloysite nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Bangchao; Jia, Zhixin, E-mail: zxjia@scut.edu.cn; Hu, Dechao; Luo, Yuanfang; Guo, Baochun; Jia, Demin

    2016-03-15

    Graphical abstract: - Highlights: • Vulcanization accelerant was used to modify halloysite nanotubes (HNTs). • The modified HNTs reduced the activation energy of vulcanization. • Strong filler–rubber interaction was achieved in rubber/modified HNTs composites. • The modified HNTs exhibited excellent reinforcement effect on rubber. - Abstract: Vulcanization accelerant N-cyclohexyl-2-benzothiazole sulfenamide (CZ) was used as a surface modifier and chemically grafted on the surface of halloysite nanotubes (HNTs) to obtain CZ-functionalized HNTs (HNTs-s-CZ). It was found that HNTs-s-CZ could be homogeneously dispersed into styrene-butadiene rubber (SBR). The grafted CZ molecules, exactly located at the filler-rubber interface, reduced the activation energy of vulcanization of SBR/HNTs-s-CZ compounds. Besides, the density of chain segments introduced by the interfacial phase of SBR/HNTs-s-CZ nanocomposites was higher than the other nanocomposites with silane-modified HNTs (m-HNTs) or pristine HNTs, manifesting an indication of enhanced filler-rubber interfacial interaction in SBR/HNTs-s-CZ nanocomposites. Consequently, SBR/HNTs-s-CZ nanocomposites showed excellent mechanical properties. The tensile strength could be enhanced by as much as 38.6% and 102.5% compared to those of SBR/m-HNTs and SBR/HNTs nanocomposites, respectively, though containing equivalent accelerant component. The value of this work lies in the fact that apparent properties improvement of elastomer composites has been achieved by the incorporation of vulcanization accelerant-functionalized HNTs, which may be fruitful for the rational design of filler surface treatment and offer new scientific and technological opportunities for the preparation of high performance elastomer composites.

  6. Surface modification of halloysite nanotubes by vulcanization accelerator and properties of styrene-butadiene rubber nanocomposites with modified halloysite nanotubes

    International Nuclear Information System (INIS)

    Zhong, Bangchao; Jia, Zhixin; Hu, Dechao; Luo, Yuanfang; Guo, Baochun; Jia, Demin

    2016-01-01

    Graphical abstract: - Highlights: • Vulcanization accelerant was used to modify halloysite nanotubes (HNTs). • The modified HNTs reduced the activation energy of vulcanization. • Strong filler–rubber interaction was achieved in rubber/modified HNTs composites. • The modified HNTs exhibited excellent reinforcement effect on rubber. - Abstract: Vulcanization accelerant N-cyclohexyl-2-benzothiazole sulfenamide (CZ) was used as a surface modifier and chemically grafted on the surface of halloysite nanotubes (HNTs) to obtain CZ-functionalized HNTs (HNTs-s-CZ). It was found that HNTs-s-CZ could be homogeneously dispersed into styrene-butadiene rubber (SBR). The grafted CZ molecules, exactly located at the filler-rubber interface, reduced the activation energy of vulcanization of SBR/HNTs-s-CZ compounds. Besides, the density of chain segments introduced by the interfacial phase of SBR/HNTs-s-CZ nanocomposites was higher than the other nanocomposites with silane-modified HNTs (m-HNTs) or pristine HNTs, manifesting an indication of enhanced filler-rubber interfacial interaction in SBR/HNTs-s-CZ nanocomposites. Consequently, SBR/HNTs-s-CZ nanocomposites showed excellent mechanical properties. The tensile strength could be enhanced by as much as 38.6% and 102.5% compared to those of SBR/m-HNTs and SBR/HNTs nanocomposites, respectively, though containing equivalent accelerant component. The value of this work lies in the fact that apparent properties improvement of elastomer composites has been achieved by the incorporation of vulcanization accelerant-functionalized HNTs, which may be fruitful for the rational design of filler surface treatment and offer new scientific and technological opportunities for the preparation of high performance elastomer composites.

  7. Rubber-toughened polypropylene/acrylonitrile-co-butadiene-co-styrene blends: Morphology and mechanical properties

    Czech Academy of Sciences Publication Activity Database

    Šlouf, Miroslav; Kolařík, Jan; Kotek, Jiří

    2007-01-01

    Roč. 47, č. 5 (2007), s. 582-592 ISSN 0032-3888 R&D Projects: GA ČR GP106/02/P029; GA ČR GA106/04/1051 Institutional research plan: CEZ:AV0Z40500505 Keywords : polymer blends * co-continuity * predictive models Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.272, year: 2007

  8. Latex improvement of recycled asphalt pavement

    Science.gov (United States)

    Drennon, C.

    1982-08-01

    The performance of a single unmodified milled recycled asphalt concrete was compared to milled asphalt concrete modified by addition of three types of rubber latex. Latex was added at 2, 3, 5, and 8 percent latex by weight of asphalt in the asphalt concrete. Lattices used were a styrene butadiene (SBR), a natural rubber (NR), an acrylonitrile butadiene (NBR), and four varieties of out of specification SBR lattices. Marshall tests, while indecisive, showed a modest improvement in properties of SBR and NR added material at 3 and 5 percent latex. Addition of NBR latex caused deterioration in Marshall stability and flow over that of control. Repeated load tests were run using the indirect tensile test, analyzed by the VESYS program, which computes life of pavements. Repeated load tests showed improvement in asphalt concrete life when 3 and 5 percent SBR was added. Improvement was also shown by the out of specification SBR.

  9. Mixed waste chemical compatibility with packaging components

    International Nuclear Information System (INIS)

    Nigrey, P.J.; Conroy, M.; Blalock, L.B.

    1994-01-01

    In this paper, a chemical compatibility testing program for packaging of mixed wastes at will be described. We will discuss the choice of four y-radiation doses, four time durations, four temperatures and four waste solutions to simulate the hazardous waste components of mixed wastes for testing materials compatibility of polymers. The selected simulant wastes are (1) an aqueous alkaline mixture of sodium nitrate and sodium nitrite; (2) a chlorinated hydrocarbon mixture; (3) a simulant liquid scintillation fluid; and (4) a mixture of ketones. A selection of 10 polymers with anticipated high resistance to one or more of these types of environments are proposed for testing as potential liner or seal materials. These polymers are butadiene acrylonitrile copolymer, cross-linked polyethylene, epichlorhyarin, ethylene-propylene rubber, fluorocarbon, glass-filled tetrafluoroethylene, high-density poly-ethylene, isobutylene-isoprene copolymer, polypropylene, and styrene-butadiene rubber. We will describe the elements of the testing plan along with a metric for establishing time resistance of the packaging materials to radiation and chemicals

  10. Studies on the runaway reaction of ABS polymerization process

    International Nuclear Information System (INIS)

    Hu, K.-H.; Kao, C.-S.; Duh, Y.-S.

    2008-01-01

    Taiwan has the largest acrylonitrile-butadiene-styrene (ABS) copolymer production in the world. Preventing on unexpected exothermic reactions and related emergency relief hazard is essential in the safety control of ABS emulsion polymerization. A VSP2 (Vent Sizing Package 2) apparatus is capable of studying both normal and abnormal conditions (e.g., cooling failure, mischarge, etc.) of industrial process. In this study, the scenarios were verified from the following abnormal conditions: loss of cooling, double charge of initiator, overcharge of monomer, without charge of solvent, and external fire. An external fire with constant heating will promote higher self-heat rate and this is recommended as the worst case scenario of emulsion polymerization on butadiene. Cooling failure coupled with bulk system of reactant was determined to be the credible worst case in ABS emulsion polymerization. Finally, the emergency vent sizing based on thermokinetics from VSP associated with DIERS methodology were used for evaluating the vent sizing and compared to that of the industrial plants

  11. Assessment of Exposure to VOCs among Pregnant Women in the National Children’s Study

    Directory of Open Access Journals (Sweden)

    Elizabeth Barksdale Boyle

    2016-03-01

    Full Text Available Epidemiologic studies can measure exposure to volatile organic compounds (VOCs using environmental samples, biomarkers, questionnaires, or observations. These different exposure assessment approaches each have advantages and disadvantages; thus, evaluating relationships is an important consideration. In the National Children’s Vanguard Study from 2009 to 2010, participants completed questionnaires and data collectors observed VOC exposure sources and collected urine samples from 488 third trimester pregnant women at in-person study visits. From urine, we simultaneously quantified 28 VOC metabolites of exposure to acrolein, acrylamide, acrylonitrile, benzene, 1-bromopropane, 1,3-butadiene, carbon disulfide, crotonaldehyde, cyanide, N,N-dimethylformamide, ethylbenzene, ethylene oxide, propylene oxide, styrene, tetrachloroethylene, toluene, trichloroethylene, vinyl chloride, and xylene exposures using ultra high performance liquid chromatography coupled with an electrospray ionization tandem mass spectrometry (UPLC-ESI/MSMS method. Urinary thiocyanate was measured using an ion chromatography coupled with an electrospray ionization tandem mass spectrometry method (IC-ESI/MSMS. We modeled the relationship between urinary VOC metabolite concentrations and sources of VOC exposure. Sources of exposure were assessed by participant report via questionnaire (use of air fresheners, aerosols, paint or varnish, organic solvents, and passive/active smoking and by observations by a trained data collector (presence of scented products in homes. We found several significant (p < 0.01 relationships between the urinary metabolites of VOCs and sources of VOC exposure. Smoking was positively associated with metabolites of the tobacco constituents acrolein, acrylamide, acrylonitrile, 1,3-butadiene, crotonaldehyde, cyanide, ethylene oxide, N,N-dimethylformamide, propylene oxide, styrene, and xylene. Study location was negatively associated with the toluene metabolite

  12. Assessment of Exposure to VOCs among Pregnant Women in the National Children's Study.

    Science.gov (United States)

    Boyle, Elizabeth Barksdale; Viet, Susan M; Wright, David J; Merrill, Lori S; Alwis, K Udeni; Blount, Benjamin C; Mortensen, Mary E; Moye, John; Dellarco, Michael

    2016-03-29

    Epidemiologic studies can measure exposure to volatile organic compounds (VOCs) using environmental samples, biomarkers, questionnaires, or observations. These different exposure assessment approaches each have advantages and disadvantages; thus, evaluating relationships is an important consideration. In the National Children's Vanguard Study from 2009 to 2010, participants completed questionnaires and data collectors observed VOC exposure sources and collected urine samples from 488 third trimester pregnant women at in-person study visits. From urine, we simultaneously quantified 28 VOC metabolites of exposure to acrolein, acrylamide, acrylonitrile, benzene, 1-bromopropane, 1,3-butadiene, carbon disulfide, crotonaldehyde, cyanide, N,N-dimethylformamide, ethylbenzene, ethylene oxide, propylene oxide, styrene, tetrachloroethylene, toluene, trichloroethylene, vinyl chloride, and xylene exposures using ultra high performance liquid chromatography coupled with an electrospray ionization tandem mass spectrometry (UPLC-ESI/MSMS) method. Urinary thiocyanate was measured using an ion chromatography coupled with an electrospray ionization tandem mass spectrometry method (IC-ESI/MSMS). We modeled the relationship between urinary VOC metabolite concentrations and sources of VOC exposure. Sources of exposure were assessed by participant report via questionnaire (use of air fresheners, aerosols, paint or varnish, organic solvents, and passive/active smoking) and by observations by a trained data collector (presence of scented products in homes). We found several significant (p < 0.01) relationships between the urinary metabolites of VOCs and sources of VOC exposure. Smoking was positively associated with metabolites of the tobacco constituents acrolein, acrylamide, acrylonitrile, 1,3-butadiene, crotonaldehyde, cyanide, ethylene oxide, N,N-dimethylformamide, propylene oxide, styrene, and xylene. Study location was negatively associated with the toluene metabolite N

  13. Assessment of Exposure to VOCs among Pregnant Women in the National Children’s Study

    Science.gov (United States)

    Boyle, Elizabeth Barksdale; Viet, Susan M.; Wright, David J.; Merrill, Lori S.; Alwis, K. Udeni; Blount, Benjamin C.; Mortensen, Mary E.; Moye, John; Dellarco, Michael

    2016-01-01

    Epidemiologic studies can measure exposure to volatile organic compounds (VOCs) using environmental samples, biomarkers, questionnaires, or observations. These different exposure assessment approaches each have advantages and disadvantages; thus, evaluating relationships is an important consideration. In the National Children’s Vanguard Study from 2009 to 2010, participants completed questionnaires and data collectors observed VOC exposure sources and collected urine samples from 488 third trimester pregnant women at in-person study visits. From urine, we simultaneously quantified 28 VOC metabolites of exposure to acrolein, acrylamide, acrylonitrile, benzene, 1-bromopropane, 1,3-butadiene, carbon disulfide, crotonaldehyde, cyanide, N,N-dimethylformamide, ethylbenzene, ethylene oxide, propylene oxide, styrene, tetrachloroethylene, toluene, trichloroethylene, vinyl chloride, and xylene exposures using ultra high performance liquid chromatography coupled with an electrospray ionization tandem mass spectrometry (UPLC-ESI/MSMS) method. Urinary thiocyanate was measured using an ion chromatography coupled with an electrospray ionization tandem mass spectrometry method (IC-ESI/MSMS). We modeled the relationship between urinary VOC metabolite concentrations and sources of VOC exposure. Sources of exposure were assessed by participant report via questionnaire (use of air fresheners, aerosols, paint or varnish, organic solvents, and passive/active smoking) and by observations by a trained data collector (presence of scented products in homes). We found several significant (p < 0.01) relationships between the urinary metabolites of VOCs and sources of VOC exposure. Smoking was positively associated with metabolites of the tobacco constituents acrolein, acrylamide, acrylonitrile, 1,3-butadiene, crotonaldehyde, cyanide, ethylene oxide, N,N-dimethylformamide, propylene oxide, styrene, and xylene. Study location was negatively associated with the toluene metabolite N

  14. Effects of cavity surface temperature on mechanical properties of specimens with and without a weld line in rapid heat cycle molding

    International Nuclear Information System (INIS)

    Wang, Guilong; Zhao, Guoqun; Wang, Xiaoxin

    2013-01-01

    Highlights: ► Higher cavity surface temperature reduces tensile strength of non-weldline part. ► Higher cavity surface temperature increases weldline tensile strength for PS and PP. ► Higher cavity surface temperature reduces weldline tensile strength for ABS, ABS/PMMA, ABS/PMMA/nano-C a CO 3 and FRPP. ► Tensile strength is reduced more by the weldline than impact strength. ► FRPP has the lowest weld line factor than other plastics without reinforced fibers. - Abstract: Rapid heat cycle molding (RHCM) is a recently developed injection molding technology to enhance surface esthetic of the parts. By rapid heating and cooling of mold cavity surfaces in molding process, it can greatly alleviate or even eliminate the surface defects such as flow mark, weld line, glass fiber rich surface, silver mark, jetting mark, and swirl mark, and also improve gloss finish and dimensional accuracy without prolonging the molding cycle. Besides surface esthetic, mechanical property is also a very import issue for the molded plastic part. The aim of this study is focusing on the effects of the cavity surface temperature just before filling, T cs , in RHCM on the mechanical strength of the specimen with and without weld line. Six kinds of typical plastics including polystyrene (PS), polypropylene (PP), acrylonitrile butadiene styrene (ABS), acrylonitrile butadiene styrene/polymethylmethacrylate (ABS/PMMA), ABS/PMMA/nano-C a CO 3 and glass fiber reinforced polypropylene (FRPP) are used in experiments. The specimens with and without a weld line are produced with the different T cs on the developed electric-heating RHCM system. Tensile tests and notched Izod impact tests are conducted to characterize the mechanical strength of the specimens molded with different cavity surface temperatures. Simulations, differential scanning calorimetry (DSC), scanning electron microscope (SEM) and optical microscope are implemented to explain the impact mechanism of T cs on mechanical properties

  15. Thermodynamics of coil-hyperbranched poly(styrene-b-acrylated epoxidized soybean oil) block copolymers

    Science.gov (United States)

    Lin, Fang-Yi; Hohmann, Austin; Hernández, Nacú; Cochran, Eric

    Here we present the phase behavior of a new type of coil-hyperbranched diblock copolymer: poly(styrene- b-acrylated epoxidized soybean oil), or PS-PAESO. PS-PAESO is an example of a biorenewable thermoplastic elastomer (bio-TPE). To date, we have shown that bio-TPEs can be economical commercial substitutes for their petrochemically derived analogues--such as poly(styrene- b-butadiene- b-styrene) (SBS)--in a range of applications including pressure sensitive adhesives and bitumen modification. From a polymer physics perspective, PS-PAESO is an interesting material in that it couples a linear coil-like block with a highly branched block. Thus in contrast to the past five decades of studies on linear AB diblock copolymers, coil-hyperbranched block copolymers are relatively unknown to the community and can be expected to deviate substantially from the standard ``universal'' phase behavior in the AB systems. To explore these new materials, we have constructed a library of PS-PAESO materials spanning a range of molecular weight and composition values. The phase transition behavior and the morphology information will be interpreted by isochronal temperature scanning in dynamic shear rheology, small angle X-ray scattering and the corresponding transmission electron microscopy.

  16. Design and implementation of a control automatic module for the volume extraction of a 99mTc generator

    International Nuclear Information System (INIS)

    Lopez, Yon; Urquizo, Rafael; Gago, Javier; Mendoza, Pablo

    2014-01-01

    A module for the automatic extraction of volume from 0.05 mL to 1 mL has been developed using a 3D printer, using as base material acrylonitrile butadiene styrene (ABS). The design allows automation of the input and ejection eluate 99m Tc in the generator prototype 99 Mo/ 99m Tc processes; use in other systems is feasible due to its high degree of versatility, depending on the selection of the main components: precision syringe and multi-way solenoid valve. An accuracy equivalent to commercial equipment has been obtained, but at lower cost. This article describes the mechanical design, design calculations of the movement mechanism, electronics and automatic syringe dispenser control. (authors).

  17. Synthesis and properties of butadiene-alpha-methylstyrene thermoplastic elastomer

    Directory of Open Access Journals (Sweden)

    A. V. Firsova

    2016-01-01

    Full Text Available Butadiene-α-methylstyrene block – copolymer – a thermoplastic elastomer (TPE-R DMST occupies a special place among the ethylene – vinyl aromatic block copolymers. TPE-R DMST comprising as plastic – poly-α-methylstyrene unit and elastic – polybutadiene block. TPE-R DMST has high heat resistance, flexibility, abrasion resistance compared to butadiene-styrene thermoplastic elastomer (TPE DST. The synthesis of block copolymers of butadiene and α-methylstyrene was carried out. The process of polymerization the α-methylstyrene characterized the high speed of polymerization in polar medium and low reaction speed in hydrocarbon solvents. Anionic catalyst nbutyllithium (n-BuLi and high concentration – 60–80% α-methylstyrene in the mixture influenced by synthesis of the 1st block of TPE-R DMST, it’s technologically difficult. Found that the low temperature of polymerization α-methylstyrene (+61 o C, the reversibility of these reactions and the high concentration of residual monomer are very importance. It was revealed that a high polymerization rate α-methylstyrene can be achieved by conducting the reaction in a hydrocarbon solvent with polar additives compounds such as tetrahydrofuran (THF and methyl tert-butyl ether (MTBE. The conditions for the synthesis of P-DMST were developed. The kinetics of polymerization for the first DMST-P unit was obtained. Analysis of physical and mechanical properties DMST-P samples was conducted. The optimum content of bound α-methylstyrene block copolymer provides a good combination of properties in a relatively wide temperature range. The tensile strength at normal and elevated temperatures, the hardness and the stiffness of the polymer increased by increasing the content of bound α-methylstyrene. The elongation and the elasticity reduced by increasing the content of bound α-methylstyrene.

  18. Damping of Mechanical Waves with Styrene/Butadiene Rubber Filled with Polystyrene Particle: Effects of Particles Size and Wave Frequency

    Directory of Open Access Journals (Sweden)

    M. Haghgo

    2007-08-01

    Full Text Available Utilizing polymeric materials for damping mechanical waves is of great importance in various fields of applications such as military camouflage, prevention of structural vibrational energy transfer, and noise attenuation. This ability originates from segmental dynamics of chain-like polymer molecules. Damping properties of styrene-butadiene rubbercontaining 10 wt% of monosize polystyrene particles with different diameters (from 80 nm to 500 μm was investigated in the frequency range of vibration, sound, and ultrasound via dynamic mechanical thermal analysis, normalsound adsorption test, and ultrasound attenuation coefficient measurement. The obtained results indicated that for different systems, containing different sizes of polystyrene particles, the area under the damping curve does not show significant change comparing to the neat SBR in the frequency range studied. However, addition of polystyrene particles, specifically nanosized particles, resulted in emergence of a secondary glass transition temperature which could be attributed to the modified dynamics of a layer of matrix molecules near the surface of PS particles. In the range of sound frequency, 0.5 to 6.3 kHz, the maximum damping was observed for the system containing polystyrene nanoparticles. However the single damping curve of neat SBR was separated into two or even three distinct curves owing to the presence of the particles. The maximum damping in the ultrasound frequency range was found for the system containing 0.5 mm polystyrene particles. This is attributed to different contributions from matrix chains dynamics and the reflection of mechanical waves from particles-matrix interface at different frequency ranges. On other words, the increase in the glass transition temperature of the elastomeric matrix phase with increasing the mechanical wave frequency causes a reduction in the contribution from matrix chains dynamics while the contribution due to diffraction from dispersed

  19. Laboratory simulations of the mixed solvent extraction recovery of dominate polymers in electronic waste.

    Science.gov (United States)

    Zhao, Yi-Bo; Lv, Xu-Dong; Yang, Wan-Dong; Ni, Hong-Gang

    2017-11-01

    The recovery of four dominant plastics from electronic waste (e-waste) using mixed solvent extraction was studied. The target plastics included polycarbonate (PC), polystyrene (PS), acrylonitrile butadiene styrene (ABS), and styrene acrylonitrile (SAN). The extraction procedure for multi-polymers at room temperature yielded PC, PS, ABS, and SAN in acceptable recovery rates (64%, 86%, 127%, and 143%, respectively, where recovery rate is defined as the mass ratio of the recovered plastic to the added standard polymer). Fourier transform infrared spectroscopy (FTIR) was used to verify the recovered plastics' purity using a similarity analysis. The similarities ranged from 0.98 to 0.99. Another similar process, which was denoted as an alternative method for plastic recovery, was examined as well. Nonetheless, the FTIR results showed degradation may occur over time. Additionally, the recovery cost estimation model of our method was established. The recovery cost estimation indicated that a certain range of proportion of plastics in e-waste, especially with a higher proportion of PC and PS, can achieve a lower cost than virgin polymer product. It also reduced 99.6%, 30.7% and 75.8% of energy consumptions and CO 2 emissions during the recovery of PC, PS and ABS, and reduced the amount of plastic waste disposal via landfill or incineration and associated environmental impacts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Aerosol Emissions from Fuse-Deposition Modeling 3D Printers in a Chamber and in Real Indoor Environments.

    Science.gov (United States)

    Vance, Marina E; Pegues, Valerie; Van Montfrans, Schuyler; Leng, Weinan; Marr, Linsey C

    2017-09-05

    Three-dimensional (3D) printers are known to emit aerosols, but questions remain about their composition and the fundamental processes driving emissions. The objective of this work was to characterize the aerosol emissions from the operation of a fuse-deposition modeling 3D printer. We modeled the time- and size-resolved emissions of submicrometer aerosols from the printer in a chamber study, gained insight into the chemical composition of emitted aerosols using Raman spectroscopy, and measured the potential for exposure to the aerosols generated by 3D printers under real-use conditions in a variety of indoor environments. The average aerosol emission rates ranged from ∼10 8 to ∼10 11 particles min -1 , and the rates varied over the course of a print job. Acrylonitrile butadiene styrene (ABS) filaments generated the largest number of aerosols, and wood-infused polylactic acid (PLA) filaments generated the smallest amount. The emission factors ranged from 6 × 10 8 to 6 × 10 11 per gram of printed part, depending on the type of filament used. For ABS, the Raman spectra of the filament and the printed part were indistinguishable, while the aerosol spectra lacked important peaks corresponding to styrene and acrylonitrile, which are both present in ABS. This observation suggests that aerosols are not a result of volatilization and subsequent nucleation of ABS or direct release of ABS aerosols.

  1. Elastomers for Tracked Vehicles: 1980-1997 Program to Improve Durability of Rubber Tank Pads for Army Tracked Vehicles

    Science.gov (United States)

    2015-06-01

    elastomeric compound coded NBR -12 was developed. This compound was based on a highly saturated nitrile rubber or hydrogenated acrylonitrile-butadiene...at Fort Belvoir, VA, produced a patented rubber formulation ( NBR -12) based on hydrogenated nitrile rubber (HNBR)1,2 with a novel curing and filler...performance vehicles. • Acrylonitrile butadiene or nitrile rubber ( NBR )10: NBR is the generic name given to emulsion polymerized copolymers of

  2. The influence of carbon black on curing kinetics and thermal aging of acrylonitrile–butadiene rubber

    Directory of Open Access Journals (Sweden)

    Jaroslava Budinski-Simendić

    2009-10-01

    Full Text Available Elastomers based on a copolymer of butadiene and acrylonitrile (NBR have excellent oil resistance but are very sensitive for degradation at very high temperatures. The aim of this applicative contribution was to determine the effect of high abrasion furnace carbon black with primary particle size 46 nm on aging properties of elastomeric materials based on NBR as network precursor. The curing kinetics was determined using the rheometer with an oscillating disk, in which the network formation process is registered by the torque variation during time. The vulcanizates were obtained in a hydraulic press at 150 °C. The mechanical properties of elastomeric composites were determined before and after thermal aging in an air circulating oven. The reinforcing effect of the filler particles was assessed according to mechanical properties before and after aging.

  3. Effect of nano-scaled styrene butadiene rubber based nucleating agent on the thermal, crystallization and physical properties of isotactic polypropylene

    Energy Technology Data Exchange (ETDEWEB)

    Petchwattana, Nawadon [Division of Polymer Materials Technology, Faculty of Agricultural Product Innovation and Technology, Srinakharinwirot University, Sukhumvit 23, Wattana, Bangkok 10110 (Thailand); Covavisaruch, Sirijutaratana, E-mail: sirijutaratana.c@chula.ac.th [Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Pathumwan, Bangkok 10330 (Thailand); Sripanya, Panjapong [Thai Oleochemicals Company Limited (A Subsidiary of PTT Global Chemical Public Company Limited), Mueang Rayong, Rayong 21150 (Thailand)

    2014-01-05

    Highlights: • The effect of a SBR based β-NA on the properties iPP was investigated. • The addition of β-NA led to higher population of nuclei and smaller spherulites. • β to α phase transformation was observed when re-extrusion process was applied. • Impact strength was increased when the β-NA was added from 0.10 to 0.20 wt%. -- Abstract: The influence of a specific nano-scaled styrene butadiene rubber based β-nucleating agent (β-NA) on the properties of isotactic polypropylene (iPP) was investigated in the current research. β-NA was applied at the concentration ranged from 0.05 to 0.50 wt%. Microscopic observation revealed that the neat iPP crystals grew very slowly; they ranged in size from 100 to 200 μm. The addition of β-NA led to higher population of nuclei and smaller spherulites than those found in neat iPP. The addition of only 0.05 wt% β-NA significantly decreased the sizes of the spherulites down to 5 μm; the crystal grew very rapidly, leading to extremely fine morphology. Analysis by X-ray diffraction (XRD) confirmed that iPP/β-NA constituted mainly of β-crystal structure. The transformation of β to α phase was observed upon re-extrusion, it was verified by the lowered fraction of the β-crystalline phase (K{sub β}) although the total degree of crystallinity remained unchanged. A significant improvement in the impact strength of the iPP/β-NA was observed when the β-NA was employed from 0.10 to 0.20 wt%, leading to the formation of tough β-crystals in the β-NA nucleated iPP. The color measurement implied that the iPP nucleated with β-NA was superior in terms of whiteness but it was less transparent, as was evident by the increased haze.

  4. A low volume 3D-printed temperature-controllable cuvette for UV visible spectroscopy.

    Science.gov (United States)

    Pisaruka, Jelena; Dymond, Marcus K

    2016-10-01

    We report the fabrication of a 3D-printed water-heated cuvette that fits into a standard UV visible spectrophotometer. Full 3D-printable designs are provided and 3D-printing conditions have been optimised to provide options to print the cuvette in either acrylonitrile butadiene styrene or polylactic acid polymers, extending the range of solvents that are compatible with the design. We demonstrate the efficacy of the cuvette by determining the critical micelle concentration of sodium dodecyl sulphate at 40 °C, the molar extinction coefficients of cobalt nitrate and dsDNA and by reproducing the thermochromic UV visible spectrum of a mixture of cobalt chloride, water and propan-2-ol. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Effect of oil palm empty fruit bunches fibers reinforced polymer recycled

    Science.gov (United States)

    Hermawan, B.; Nikmatin, S.; Sudaryanto; Alatas, H.; Sukaryo, S. G.

    2017-07-01

    The aim of this research is to process the OPEFB to become fiber with various sizes which will be used as a filler of polymer matrix recycled acrylonitrile butadiene styrene (ABS). Molecular analysis and mechanical test have been done to understand the influence of fiber size toward material capability to receive outer deformation. Single screw extruder formed a biocomposites granular continued with injection moulding to shaped test pieces. Maleic anhydride was added as coupling agent between filler and matrix. Filler concentration were 10 and 20% in fiber size respectively with constant additif. Two kind of fiber glass (10%) were used as comparator. In order to analyze the results of the mechanical test Fisher least significant difference (LSD) in ANOVA method was performed (-with α=0,05-).

  6. Study of processing conditions on properties of ABS and clay organically modified nanocomposites; Estudo das condicoes de processamento nas propriedades de nanocompositos de ABS e argilas organofilicas

    Energy Technology Data Exchange (ETDEWEB)

    Galvan, Danieli; Massucato, Felipe; Bartoli, Julio R., E-mail: bartoli@feq.unicamp.br [Fac. de Engenharia Quimica/Universidade Estadual de Campinas - DTP/FEQ/UNICAMP, Campinas, SP (Brazil); D' Avila, Marcos A. [Fac. de Engenharia Mecanica/Universidade Estadual de Campinas - DEMA/FEM/UNICAMP, Campinas, SP (Brazil); Fernandes, Elizabeth G. [Tezca P and D Celulas Solares, Campinas, SP (Brazil)

    2011-07-01

    Nanocomposites of poly(acrylonitrile-butadiene-styrene) and organically modified montmorillonite clay were prepared by melt intercalation on a co-rotating twin-screw extruder. The independent variables studied were the kind of organoclay (Cloisite 20A and Cloisite 30B) and the screw torque at levels of 45 and 70%. The effect of these variables on the intercalation/exfoliation were accessed by means of the morphological characteristics using X-ray diffraction and the mechanical properties of uniaxial tensile test. The experimental results showed that the incorporation of clay in the polymeric matrix improved the mechanical properties of elastic modulus, yield stress and tensile strength of nanocomposites, being more significant for that containing Cloisite 30B. Torque was also a significant variable for the responses studied. (author)

  7. Study of processing conditions on properties of ABS and clay organically modified nanocomposites

    International Nuclear Information System (INIS)

    Galvan, Danieli; Massucato, Felipe; Bartoli, Julio R.; D'Avila, Marcos A.; Fernandes, Elizabeth G.

    2011-01-01

    Nanocomposites of poly(acrylonitrile-butadiene-styrene) and organically modified montmorillonite clay were prepared by melt intercalation on a co-rotating twin-screw extruder. The independent variables studied were the kind of organoclay (Cloisite 20A and Cloisite 30B) and the screw torque at levels of 45 and 70%. The effect of these variables on the intercalation/exfoliation were accessed by means of the morphological characteristics using X-ray diffraction and the mechanical properties of uniaxial tensile test. The experimental results showed that the incorporation of clay in the polymeric matrix improved the mechanical properties of elastic modulus, yield stress and tensile strength of nanocomposites, being more significant for that containing Cloisite 30B. Torque was also a significant variable for the responses studied. (author)

  8. Characterization of the Mechanical Properties of Electrorheological Fluids Made of Starch and Silicone Fluid

    Science.gov (United States)

    Vieira, Sheila Lopes; de Arruda, Antonio Celso Fonseca

    In the majority of published articles on the topic, ER fluids have been studied as if they were viscous liquids. In this work, electrorheological fluids were characterized as solids and their mechanical properties were determined. The results infer that ER materials are controllably resistant to compression, tensile and shear stress, in this order of magnitude. More precisely, fluids made of starch have elasticity modulus similar to that of rubber, they have tensile strength 103 to 5×104 times lower than that of low density polyethylene (LDPE), static yield stress 4×104 to 8×105 times lower than that of acrylonitrile-butadiene-styrene terpolymer (ABS) and fatigue life similar to some polymers like polyethylene(PE) and polypropylene (PP).

  9. A Novel Approach For Ankle Foot Orthosis Developed By Three Dimensional Technologies

    Science.gov (United States)

    Belokar, R. M.; Banga, H. K.; Kumar, R.

    2017-12-01

    This study presents a novel approach for testing mechanical properties of medical orthosis developed by three dimensional (3D) technologies. A hand-held type 3D laser scanner is used for generating 3D mesh geometry directly from patient’s limb. Subsequently 3D printable orthotic design is produced from crude input model by means of Computer Aided Design (CAD) software. Fused Deposition Modelling (FDM) method in Additive Manufacturing (AM) technologies is used to fabricate the 3D printable Ankle Foot Orthosis (AFO) prototype in order to test the mechanical properties on printout. According to test results, printed Acrylonitrile Butadiene Styrene (ABS) AFO prototype has sufficient elasticity modulus and durability for patient-specific medical device manufactured by the 3D technologies.

  10. Shrinkage Analysis on Thick Plate Part using Response Surface Methodology (RSM

    Directory of Open Access Journals (Sweden)

    Isafiq M.

    2016-01-01

    Full Text Available The work reported herein is about an analysis on the quality (shrinkage on a thick plate part using Response Surface Methodology (RSM. Previous researches showed that the most influential factor affecting the shrinkage on moulded parts are mould and melt temperature. Autodesk Moldflow Insight software was used for the analysis, while specifications of Nessei NEX 1000 injection moulding machine and P20 mould material were incorporated in this study on top of Acrylonitrile Butadiene Styrene (ABS as a moulded thermoplastic material. Mould temperature, melt temperature, packing pressure and packing time were selected as variable parameters. The results show that the shrinkage have improved 42.48% and 14.41% in parallel and normal directions respectively after the optimisation process.

  11. RANDOM COPOLYMER BLENDS OF STYRENE, PARA-FLUORO STYRENE AND ORTHO-FLUORO STYRENE

    NARCIS (Netherlands)

    OUDHUIS, AACM; TENBRINKE, G; KARASZ, FE

    1993-01-01

    This study completes the investigation of the phase behaviour of polymer blends involving styrene (S), ortho-fluoro styrene (oFS) and para-fluoro styrene (pFS). As before, due to the proximity of the glass transition temperatures of most blends investigated, the miscibility or immiscibility is

  12. Kinetic and equilibrium studies of acrylonitrile binding to cytochrome c peroxidase and oxidation of acrylonitrile by cytochrome c peroxidase compound I

    Energy Technology Data Exchange (ETDEWEB)

    Chinchilla, Diana, E-mail: Diana_Chinchilla@yahoo.com; Kilheeney, Heather, E-mail: raindropszoo@yahoo.com; Vitello, Lidia B., E-mail: lvitello@niu.edu; Erman, James E., E-mail: jerman@niu.edu

    2014-01-03

    Highlights: •Cytochrome c peroxidase (CcP) binds acrylonitrile in a pH-independent fashion. •The spectrum of the CcP/acrylonitrile complex is that of a 6c–ls ferric heme. •The acrylonitrile/CcP complex has a K{sub D} value of 1.1 ± 0.2 M. •CcP compound I oxidizes acrylonitrile with a maximum turnover rate of 0.61 min{sup −1}. -- Abstract: Ferric heme proteins bind weakly basic ligands and the binding affinity is often pH dependent due to protonation of the ligand as well as the protein. In an effort to find a small, neutral ligand without significant acid/base properties to probe ligand binding reactions in ferric heme proteins we were led to consider the organonitriles. Although organonitriles are known to bind to transition metals, we have been unable to find any prior studies of nitrile binding to heme proteins. In this communication we report on the equilibrium and kinetic properties of acrylonitrile binding to cytochrome c peroxidase (CcP) as well as the oxidation of acrylonitrile by CcP compound I. Acrylonitrile binding to CcP is independent of pH between pH 4 and 8. The association and dissociation rate constants are 0.32 ± 0.16 M{sup −1} s{sup −1} and 0.34 ± 0.15 s{sup −1}, respectively, and the independently measured equilibrium dissociation constant for the complex is 1.1 ± 0.2 M. We have demonstrated for the first time that acrylonitrile can bind to a ferric heme protein. The binding mechanism appears to be a simple, one-step association of the ligand with the heme iron. We have also demonstrated that CcP can catalyze the oxidation of acrylonitrile, most likely to 2-cyanoethylene oxide in a “peroxygenase”-type reaction, with rates that are similar to rat liver microsomal cytochrome P450-catalyzed oxidation of acrylonitrile in the monooxygenase reaction. CcP compound I oxidizes acrylonitrile with a maximum turnover number of 0.61 min{sup −1} at pH 6.0.

  13. Pengaruh suhu vulkanisasi terhadap sifat mekanis vulkanisat karet alam dan karet akrilonitril-butadiena

    OpenAIRE

    Norma Arisanti Kinasih; Muhammad Irfan Fathurrohman; Dadang Suparto

    2015-01-01

    Natural and acrylonitrile-butadiene rubbers possess different vulcanization characteristics. Selection of the vulcanization system and temperature affects the mechanical properties of vulcanized natural rubber (NR) and acrylonitrile-butadiene rubber (NBR). In the present work, the effect of vulcanization temperature (150, 160, 170 and 180oC) on the mechanical properties of NR and NBR vulcanizates was studied. The effect of different vulcanization system (semi efficient, efficient and sulfur d...

  14. Phase Morphology and Mechanical Properties of Cyclic Butylene Terephthalate Oligomer-Containing Rubbers: Effect of Mixing Temperature.

    Science.gov (United States)

    Halász, István Zoltán; Bárány, Tamás

    2016-08-24

    In this work, the effect of mixing temperature (T mix ) on the mechanical, rheological, and morphological properties of rubber/cyclic butylene terephthalate (CBT) oligomer compounds was studied. Apolar (styrene butadiene rubber, SBR) and polar (acrylonitrile butadiene rubber, NBR) rubbers were modified by CBT (20 phr) for reinforcement and viscosity reduction. The mechanical properties were determined in tensile, tear, and dynamical mechanical analysis (DMTA) tests. The CBT-caused viscosity changes were assessed by parallel-plate rheometry. The morphology was studied by scanning electron microscopy (SEM). CBT became better dispersed in the rubber matrices with elevated mixing temperatures (at which CBT was in partially molten state), which resulted in improved tensile properties. With increasing mixing temperature the size of the CBT particles in the compounds decreased significantly, from few hundred microns to 5-10 microns. Compounding at temperatures above 120 °C and 140 °C for NBR and SBR, respectively, yielded reduced tensile mechanical properties most likely due to the degradation of the base rubber. The viscosity reduction by CBT was more pronounced in mixes with coarser CBT dispersions prepared at lower mixing temperatures.

  15. DISTRIBUTION OF THE MIXTURE THROUGH THE REACTORS CASCADE IN THE PRODUCTION OF LOW MOLECULAR COPOLYMERS OF BUTADIENE WITH STYRENE

    Directory of Open Access Journals (Sweden)

    V. F. Lebedev

    2014-01-01

    Full Text Available Summary. In the polymerization of butadiene with styrene heat removal is the main factor limiting the output of the cascade reactor. Thus the residence time of the monomers in the reactor exceeds significantly the time necessary to complete the process on the basis of kinetic regularities. To increase the output of the mixture the distribution in the reactor cascade is made. It is necessary to distribute the flow of mixture through the reactor of the cascade to have the resulting polymer of the same viscosity at the outlet of each reactor. The algorithm of distribution of the mixture in the reactor cascade with regard to the synthesis parameters (temperature in the reactor and the feed rate of the mixture, the ratio of the modifier and the initiator in the complex, the number of reactors and a determined dynamic viscosity is developed. In accordance with the developed algorithm the calculation of the velocity of the mixture feed in each reactor of the cascade is made. It is shown that the flow of mixture in each polymerization unit depends on the overall output of the installation and the number of reactors in the cascade. The algorithm for the distribution of the initial mixture in the reactor cascade is developed to provide maximum output of the installation and set the quality of the obtained polymer. To determine the degree of conversion of monomers and temperature conditions of the process of polymerization under the calculated speed of the feed mixture in the first polymerization cascade the basic technological parameters of the polymerization process in real time mode, the calculation using a mathematical model is made. The analysis of the simulation results shows that during the first hour, the concentration of monomers does not exceed of 0.085 mol/l, which corresponds to the degree of conversion of monomer to 99 %, while the temperature in the reactor corresponds to the optimal mode - from 65 to 85 0C.

  16. Development of bio-based polymers for use in asphalt.

    Science.gov (United States)

    2014-02-01

    Asphalt binder is typically modified with poly type (styrene-butadiene-styrene or SBS) polymers to improve its rheological properties and performance grade. The elastic and principal component of SBS polymers is butadiene. For the last decade, butadi...

  17. Largely improved the low temperature toughness of acrylonitrile-styrene-acrylate (ASA) resin: Fabricated a core-shell structure of two elastomers through the differences of interfacial tensions

    Science.gov (United States)

    Mao, Zepeng; Zhang, Jun

    2018-06-01

    The phase morphology of two elastomers (i.e., chlorinated polyethylene (CPE) and polybutadiene rubber (BR)) were devised to be a core-shell structure in acrylonitrile-styrene-acrylate (ASA) resin matrix, via the interfacial tension differences of polymer pairs. Selective extraction test and scanning electron microscopy (SEM) were utilized to verify this special phase morphology. The results demonstrated that the core-shell structure, BR core and CPE shell, significantly contributed to improve the low temperature toughness of ASA/CPE/BR ternary blends, which may be because the nonpolar BR core was segregated from polar ASA by the CPE shell. The CPE shell served dual functions: Not only did it play compatibilizing effect in the interface between BR and ASA matrix, but it also toughened the blends at 25 and 0 °C. The blends of ASA/CPE/BR (100/27/3, w/w/w) and ASA/CPE/BR (100/22/8, w/w/w) showed the peak impact strengths at about 28 and 9 kJ/m2 at 0 and -30 °C, respectively, which were higher than both that of ASA/CPE/BR (100/30/0, w/w/w) and ASA/CPE/BR (100/0/30, w/w/w). Moreover, the impact strength of ternary blends at room temperature kept at 40 kJ/m2 when BR content was lower than 10 phr. Other characterizations including contact angle measurement, dynamic mechanical thermal analysis (DMTA), morphology of impact-fractured surfaces, tensile properties, flexural properties, and Fourier transform infrared spectroscopy (FTIR) were measured as well.

  18. The Weathering Study of PC/ASA Alloy For Automotive Exterior Applications

    Directory of Open Access Journals (Sweden)

    Sinan Öztürk

    2017-10-01

    Full Text Available Polycarbonates (PC are used in automotive industry due to high physical and mechanical properties like high impact resistance and ductility. Polycarbonates are blended with ABS (Acrylonitrile-Butadiene-Styrene and ASA (Acrylonitrile-Styrene-Acrylate terpolymers for interior and exterior applications of automotive components to achieve good physical and mechanical properties. Other reason for choosing such alloys for interior applications is the IZOD impact resistance requirement higher than 40kJ/m2. Recently, grades of PC/ASA with UV stabilized are developed for non-painted exterior applications. The aim of our study is to investigate whether new developed PC/ASA could be chosen for exterior applications of automotive industry. In this study, the samples are prepared from injection molding and the weathering performance of PC/ASA was tested by a weather-o-meter for 1500h at a total of 1890 kJ/m2 at 340nm with a cut-off filter at λ<290nm. The results are evaluated by FT-IR, DSC, TGA and SEM. It has been observed that UV degradation of PC/ASA leads to several major changes in its IR spectrum like broad bands occurred in the hydroxyl region around 3300 cm-1, and carbonyl stretching region increased around 1728 cm-1. The main degradations were based on photo-oxidation and photo-Fries rearrangement of PC. In our study, the photo-oxidation was followed by the color shift to yellowing of the polymer.

  19. Pengaruh suhu vulkanisasi terhadap sifat mekanis vulkanisat karet alam dan karet akrilonitril-butadiena

    Directory of Open Access Journals (Sweden)

    Norma Arisanti Kinasih

    2015-12-01

    Full Text Available Natural and acrylonitrile-butadiene rubbers possess different vulcanization characteristics. Selection of the vulcanization system and temperature affects the mechanical properties of vulcanized natural rubber (NR and acrylonitrile-butadiene rubber (NBR. In the present work, the effect of vulcanization temperature (150, 160, 170 and 180oC on the mechanical properties of NR and NBR vulcanizates was studied. The effect of different vulcanization system (semi efficient, efficient and sulfur donor was studied in NR blends, while the effect of different acrylonitrile content (26, 28 and 33 wt % was studied in NBR blends. The NBR curing characteristics and mechanical properties data showed that vulcanization at low temperature (150oC was suitable for low acrylonitrile-NBR, whereas that at high temperature (170oC was suitable for high acrylonitrile-NBR. In addition, the semi efficient system at low temperature vulcanization (150oC was suitable for natural rubber.

  20. Characterisation and materials flow management for waste electrical and electronic equipment plastics from German dismantling centres.

    Science.gov (United States)

    Arends, Dagmar; Schlummer, Martin; Mäurer, Andreas; Markowski, Jens; Wagenknecht, Udo

    2015-09-01

    Waste electrical and electronic equipment is a complex waste stream and treatment options that work for one waste category or product may not be appropriate for others. A comprehensive case study has been performed for plastic-rich fractions that are treated in German dismantling centres. Plastics from TVs, monitors and printers and small household appliances have been characterised extensively. Based on the characterisation results, state-of-the-art treatment technologies have been combined to design an optimised recycling and upgrade process for each input fraction. High-impact polystyrene from TV casings that complies with the European directive on the restriction of hazardous substances (RoHS) was produced by applying continuous density separation with yields of about 60%. Valuable acrylonitrile butadiene styrene/polycarbonate can be extracted from monitor and printer casings by near-infrared-based sorting. Polyolefins and/or a halogen-free fraction of mixed styrenics can be sorted out by density separation from monitors and printers and small household appliances. Emerging separation technologies are discussed to improve recycling results. © The Author(s) 2015.

  1. Occurrence of brominated flame retardants in black thermo cups and selected kitchen utensils purchased on the European market.

    Science.gov (United States)

    Samsonek, J; Puype, F

    2013-01-01

    In order to screen for the presence of a recycled polymer waste stream from waste electric and electronic equipment (WEEE), a market survey was conducted on black plastic food-contact articles (FCA). An analytical method was applied combining X-ray fluorescence spectrometry (XRF) with thermal desorption gas chromatography coupled with mass spectrometry (thermal desorption GC-MS). Firstly, XRF spectrometry was applied to distinguish bromine-positive samples. Secondly, bromine-positive samples were submitted for identification by thermal desorption GC-MS. Generally, the bromine-positive samples contained mainly technical decabromodiphenyl ether (decaBDE). Newer types of BFRs such as tetrabromobisphenol A (TBBPA), tetrabromobisphenol A bis(2,3-dibromopropyl), ether (TBBPA-BDBPE) and decabromodiphenylethane (DBDPE), replacing the polybrominated diphenyleters (PBDEs) and polybrominated diphenyls (PBBs), were also identified. In none of the tested samples were PBBs or hexabromocyclododecane (HBCD) found. Polymer identification was carried out using Fourier-transformed infrared spectroscopy measurement (FTIR) on all samples. The results indicate that polypropylene-polyethylene copolymers (PP-PE) and mainly styrene-based food-contact materials, such as acrylonitrile-butadiene-styrene (ABS) have the highest risk of containing BFRs.

  2. A comparison between the effects of gamma radiation and sulfur cure system on the microstructure and crosslink network of (styrene butadiene rubber/ethylene propylene diene monomer) blends in presence of nanoclay

    Science.gov (United States)

    Shoushtari Zadeh Naseri, Aida; Jalali-Arani, Azam

    2015-10-01

    Rubber blends based on (styrene-butadiene rubber (SBR)/ethylene-propylene-diene monomer (EPDM)) with and without organoclay (OC) were prepared through a melt mixing process. The concentration ratio of the rubber phases (EPDM/SBR; 50/50 wt%) and the amount of the OC were kept constant. The samples were then vulcanized by means of gamma radiation using a Co-60 gamma source as well as sulfur cure system. The effect of absorbed dose on the formation of the crosslinks was confirmed by the Fourier transform infrared spectroscopy (FTIR). The effects of absorbed dose, sulfur cure system and OC on the gel content, and crosslink density were evaluated by the chemical tests. Applying the Charlesby-Pinner equation to estimate the radiation chemical yield, revealed that the use of OC in the blend caused 20% reduction in the degradation/crosslinking ratio. Employing the swelling test data, some thermodynamic parameters were determined. Using field emission scanning electron microscopy (FE-SEM) to investigate microstructure of the samples revealed a more homogeneous structure and also an increase in compatibility of the blend components in the sample cured by the irradiation in comparison to that cured by the sulfur curing system.

  3. Understanding cracking failures of coatings: A fracture mechanics approach

    Science.gov (United States)

    Kim, Sung-Ryong

    A fracture mechanics analysis of coating (paint) cracking was developed. A strain energy release rate (G(sub c)) expression due to the formation of a new crack in a coating was derived for bending and tension loadings in terms of the moduli, thicknesses, Poisson's ratios, load, residual strain, etc. Four-point bending and instrumented impact tests were used to determine the in-situ fracture toughness of coatings as functions of increasing baking (drying) time. The system used was a thin coating layer on a thick substrate layer. The substrates included steel, aluminum, polycarbonate, acrylonitrile-butadiene-styrene (ABS), and Noryl. The coatings included newly developed automotive paints. The four-point bending configuration promoted nice transversed multiple coating cracks on both steel and polymeric substrates. The crosslinked type automotive coatings on steel substrates showed big cracks without microcracks. When theoretical predictions for energy release rate were compared to experimental data for coating/steel substrate samples with multiple cracking, the agreement was good. Crosslinked type coatings on polymeric substrates showed more cracks than theory predicted and the G(sub c)'s were high. Solvent evaporation type coatings on polymeric substrates showed clean multiple cracking and the G(sub c)'s were higher than those obtained by tension analysis of tension experiments with the same substrates. All the polymeric samples showed surface embrittlement after long baking times using four-point bending tests. The most apparent surface embrittlement was observed in the acrylonitrile-butadiene-styrene (ABS) substrate system. The impact properties of coatings as a function of baking time were also investigated. These experiments were performed using an instrumented impact tester. There was a rapid decrease in G(sub c) at short baking times and convergence to a constant value at long baking times. The surface embrittlement conditions and an embrittlement toughness

  4. HBS-1: A Modular Child-Size 3D Printed Humanoid

    Directory of Open Access Journals (Sweden)

    Lianjun Wu

    2016-01-01

    Full Text Available An affordable, highly articulated, child-size humanoid robot could potentially be used for various purposes, widening the design space of humanoids for further study. Several findings indicated that normal children and children with autism interact well with humanoids. This paper presents a child-sized humanoid robot (HBS-1 intended primarily for children’s education and rehabilitation. The design approach is based on the design for manufacturing (DFM and the design for assembly (DFA philosophies to realize the robot fully using additive manufacturing. Most parts of the robot are fabricated with acrylonitrile butadiene styrene (ABS using rapid prototyping technology. Servomotors and shape memory alloy actuators are used as actuating mechanisms. The mechanical design, analysis and characterization of the robot are presented in both theoretical and experimental frameworks.

  5. Preparation and characterization of ABS/anhydrous cobalt chloride composites

    Science.gov (United States)

    Shao, Chengli; Shang, Peng; Mao, Yapeng; Li, Qiuying; Wu, Chifei

    2018-01-01

    Anhydrous cobalt chloride (CoCl2) particles filled acrylonitrile-butadiene-styrene (ABS) composites were successfully prepared and investigated. A strong interfacial interaction between CoCl2 particles and ABS matrix was generated by heat pressing at 190 °C for 15 min. SEM results demonstrated that the particles were dispersed uniformly in the matrix. Fourier transform infrared, x-ray photoelectron spectroscopy and electron spin resonance were used for the investigation of the coordination reaction. The interfacial interaction resulted from a solid-state coordination reaction between nitrile groups (-CN) and cobalt ions (Co2+), leading to an increase in mechanical properties and glass transition temperature. Moreover, heat deflection temperatures were measured and proved to achieve an improvement of 30.6 °C when the CoCl2 content was 7 wt%.

  6. Electroless nickel plating on abs plastics from nickel chloride and nickel sulfate baths

    International Nuclear Information System (INIS)

    Inam-ul-haque; Ahmad, S.; Khan, A.

    2005-01-01

    Aqueous acid nickel chloride and alkaline nickel sulphate bath were studied for electroless nickel planting on acrylonitrile-butadiene-styrene (ABS) plastic. Before electroless nickel plating, specimens were etched, sensitized and activated. Effects of sodium hypophosphite and sodium citrate concentration on the electroless nickel plating thickness were discussed. Aqueous acid nickel chloride bath comprising, nickel chloride 10 g/L, sodium hypophosphite 40 g/L, sodium citrate 40g/L at pH 5.5, temperature 85 deg. C and density of 1 Be/ for thirty minutes gave best coating thickness in micrometer. It was found that acid nickel chloride bath had a greater stability, wide operating range and better coating thickness results than alkaline nickel sulphate bath. Acid nickel chloride bath gave better coating thickness than alkaline nickel sulfate bath

  7. Sustainability of Recycled ABS and PA6 by Banana Fiber Reinforcement: Thermal, Mechanical and Morphological Properties

    Science.gov (United States)

    Singh, Rupinder; Kumar, Ranvijay; Ranjan, Nishant

    2018-01-01

    In the present study efforts have been made to prepare functional prototypes with improved thermal, mechanical and morphological properties from polymeric waste for sustainability. The primary recycled acrylonitrile butadiene styrene (ABS) and polyamide 6 (PA6) has been selected as matrix material with bio-degradable and bio-compatible banana fibers (BF) as reinforcement. The blend (in form of feed stock filament wire) of ABS/PA6 and BF was prepared in house by conventional twin screw extrusion (TSE) process. Finally feed stock filament of ABS/PA6 reinforced with BF was put to run on open source fused deposition modelling based three dimensional printer (without any change in hardware/software of the system) for printing of functional prototypes with improved thermal/mechanical/morphological properties. The results are supported by photomicrographs, thermographs and mechanical testing.

  8. Effect of Reprocessing and Accelerated Weathering on Impact-Modified Recycled Blend

    Science.gov (United States)

    Ramesh, V.; Mohanty, Smita; Biswal, Manoranjan; Nayak, Sanjay K.

    2015-12-01

    Recovery of recycled polycarbonate, acrylonitrile butadiene styrene, high-impact polystyrene, and its blends from waste electrical and electronic equipment plastics products properties were enhanced by the addition of virgin polycarbonate and impact modifier. The optimized blend formulation was processed through five cycles, at processing temperature, 220-240 °C and accelerated weathering up to 700 h. Moreover, the effect of reprocessing and accelerated weathering in the physical properties of the modified blends was investigated by mechanical, thermal, rheological, and morphological studies. The results show that in each reprocessing cycle, the tensile strength and impact strength decreased significantly and the similar behavior has been observed from accelerated weathering. Subsequently, the viscosity decreases and this decrease becomes the effect of thermal and photo-oxidative degradation. This can be correlated with FTIR analysis.

  9. Kinetic and equilibrium studies of acrylonitrile binding to cytochrome c peroxidase and oxidation of acrylonitrile by cytochrome c peroxidase compound I.

    Science.gov (United States)

    Chinchilla, Diana; Kilheeney, Heather; Vitello, Lidia B; Erman, James E

    2014-01-03

    Ferric heme proteins bind weakly basic ligands and the binding affinity is often pH dependent due to protonation of the ligand as well as the protein. In an effort to find a small, neutral ligand without significant acid/base properties to probe ligand binding reactions in ferric heme proteins we were led to consider the organonitriles. Although organonitriles are known to bind to transition metals, we have been unable to find any prior studies of nitrile binding to heme proteins. In this communication we report on the equilibrium and kinetic properties of acrylonitrile binding to cytochrome c peroxidase (CcP) as well as the oxidation of acrylonitrile by CcP compound I. Acrylonitrile binding to CcP is independent of pH between pH 4 and 8. The association and dissociation rate constants are 0.32±0.16 M(-1) s(-1) and 0.34±0.15 s(-1), respectively, and the independently measured equilibrium dissociation constant for the complex is 1.1±0.2 M. We have demonstrated for the first time that acrylonitrile can bind to a ferric heme protein. The binding mechanism appears to be a simple, one-step association of the ligand with the heme iron. We have also demonstrated that CcP can catalyze the oxidation of acrylonitrile, most likely to 2-cyanoethylene oxide in a "peroxygenase"-type reaction, with rates that are similar to rat liver microsomal cytochrome P450-catalyzed oxidation of acrylonitrile in the monooxygenase reaction. CcP compound I oxidizes acrylonitrile with a maximum turnover number of 0.61 min(-1) at pH 6.0. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Effect of acrylonitrile on the electrode processes ivolving copper cations

    Directory of Open Access Journals (Sweden)

    Viktor F. Vargalyuk

    2016-03-01

    Full Text Available Based on the results of cyclic voltammetry and study of deposits morphology, it has been shown that acrylonitrile does not have significant effect on the mechanism of Cu2+ + 2ē → Cu0 reaction. This distinguishes acrylonitrile from the unsaturated polyfunctional organic substances (acrylic acid, acrylamide which forms stable complexes with Cu2+ ions. Acrylonitrile just inhibits cathodic process by adsorbing on the surface of electrode thus blocking its active sites. But the presence of acrylonitrile significantly changes the mechanism of the anodic process. It has been found that acrylonitrile interacts with surface copper atoms thus forming thermodynamically stable [Cu π-AN]0 π‑complexes. Ionization potential of these π‑complexes is more negative if compare to copper atoms. As the result acceleration of anodic process takes place in the low polarization area. However, since the chemisorption is a slow process the presence of acrylonitrile mainly affects dissolution of the first surface layers of copper atoms. Further ionization of copper atoms runs out directly and requires higher polarization.

  11. Fabrication of conducting composite sheets using cost-effective graphite flakes and amorphous styrene acrylonitrile for enhanced thermistor, dielectric, and electromagnetic interference shielding properties

    Energy Technology Data Exchange (ETDEWEB)

    Panwar, Varij, E-mail: varijpanwarcertain@gmail.com [Electronics and Communication Engineering, Graphic Era University, Dehradun, Uttarakhand (India); Gill, Fateh Singh; Rathi, Vikas; Tewari, V.K. [Electronics and Communication Engineering, Graphic Era University, Dehradun, Uttarakhand (India); Mehra, R.M. [Sharda University, Greater Noida (India); Park, Jong-Oh, E-mail: jop@jnu.ac.kr [School of Mechanical Engineering, Chonnam National University, Gwangju (Korea, Republic of); Park, Sukho, E-mail: shpark12@dgist.ac.kr [Department of Robotics Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu (Korea, Republic of)

    2017-06-01

    The fabrication of strong conducting composite sheets (CCSs) using a simple technique with cost-effective materials is desirable for capacitor, decoupling capacitor, and electromagnetic interference (EMI) shielding applications. Here, we used cost-effective graphite flakes (GFs) as a conducting filler and amorphous poly (styrene-co-acrylonitrile) (PSAN) as an insulating polymer to fabricate a CCS via a simple mechanical mixing and hot compression molding process in 2.5 h, with the aim to save time and avoid the use of toxic reagents, which are generally used in chemical methods. In the present method, the GFs are connected in diffusively adhere polymer matrix, controlled by temperature and pressure that generate the conduction in the CCSs. The resulting PSAN/GF CCSs were characterized by using scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and hardness tests. The GFs penetrated the interfacial region of PSAN, thus improving the thermistor and dielectric properties (dielectric constant, AC conductivity, and dissipation factor) of the PSAN/GF CCSs. Furthermore, the PSAN/GF CCSs showed enhanced hardness and EMI shielding effectiveness (SE) properties in the X-band frequency range (8.5–12.5 GHz). The percolation theory was implemented to DC and AC conductivity. To detect the transition of the dielectric properties, the dielectric constant of the CCSs was analyzed with increasing volume fraction of GFs in the radio frequency region. The improved dielectric constant, AC conductivity, and dissipation factor of the PSAN/GF CCS, indicated a significant improvement in their EMI shielding properties in the X-band frequency range, which were measured using the waveguide method. The ac conductivity of PSAN/GF CCS shows stable behavior in the higher frequency ranges. The EMISE of PSAN/GF CCS were found to increase with increasing GF content due to the absorbance mechanism. - Highlights: • Enhanced hardness and

  12. Atomistic simulations of bulk, surface and interfacial polymer properties

    Science.gov (United States)

    Natarajan, Upendra

    In chapter I, quasi-static molecular mechanics based simulations are used to estimate the activation energy of phenoxy rings flips in the amorphous region of a semicrystalline polyimide. Intra and intermolecular contributions to the flip activation energy, the torsional cooperativity accompanying the flip, and the effect of the flip on the motion in the glassy bulk state, are looked at. Also, comparison of the weighted mean activation energy is made with experimental data from solid state NMR measurements; the simulated value being 17.5 kcal/mol., while the experimental value was observed to be 10.5 kcal/mol. Chapter II deals with construction of random copolymer thin films of styrene-butadiene (SB) and styrene-butadiene-acrylonitrile (SBA). The structure and properties of the free surfaces presented by these thin films are analysed by, the atom mass density profiles, backbone bond orientation function, and the spatial distribution of acrylonitrile groups and styrene rings. The surface energies of SB and SBA are calculated using an atomistic equation and are compared with experimental data in the literature. In chapter III, simulations of polymer-polymer interfaces between like and unlike polymers, specifically cis-polybutadiene (PBD) and atatic polypropylene (PP), are presented. The structure of an incompatible polymer-polymer interface, and the estimation of the thermodynamic work of adhesion and interfacial energy between different incompatible polymers, form the focus here. The work of adhesion is calculated using an atomistic equation and is further used in a macroscopic equation to estimate the interfacial energy. The interfacial energy is compared with typical values for other immiscible systems in the literature. The interfacial energy compared very well with interfacial energy values for a few other immiscible hydrocarbon pairs. In chapter IV, the study proceeds to look at the interactions between nonpolar and polar small molecules with SB and SBA thin

  13. Phase Morphology and Mechanical Properties of Cyclic Butylene Terephthalate Oligomer-Containing Rubbers: Effect of Mixing Temperature

    Directory of Open Access Journals (Sweden)

    István Zoltán Halász

    2016-08-01

    Full Text Available In this work, the effect of mixing temperature (Tmix on the mechanical, rheological, and morphological properties of rubber/cyclic butylene terephthalate (CBT oligomer compounds was studied. Apolar (styrene butadiene rubber, SBR and polar (acrylonitrile butadiene rubber, NBR rubbers were modified by CBT (20 phr for reinforcement and viscosity reduction. The mechanical properties were determined in tensile, tear, and dynamical mechanical analysis (DMTA tests. The CBT-caused viscosity changes were assessed by parallel-plate rheometry. The morphology was studied by scanning electron microscopy (SEM. CBT became better dispersed in the rubber matrices with elevated mixing temperatures (at which CBT was in partially molten state, which resulted in improved tensile properties. With increasing mixing temperature the size of the CBT particles in the compounds decreased significantly, from few hundred microns to 5–10 microns. Compounding at temperatures above 120 °C and 140 °C for NBR and SBR, respectively, yielded reduced tensile mechanical properties most likely due to the degradation of the base rubber. The viscosity reduction by CBT was more pronounced in mixes with coarser CBT dispersions prepared at lower mixing temperatures.

  14. A new mechanism for selective adsorption of rubber on carbon black surface caused by nano-confinement in SBR/NBR solution

    Science.gov (United States)

    Kawazoe, Masayuki

    A novel mechanism of selective adsorption of rubber molecules onto carbon black surface in a binary immiscible rubber blend solution has been proposed in this dissertation. The phenomenon leads to uneven distribution of carbon black to the specific polymer in the blend and the obtained electrically conductive composite showed drastic reduction of percolation threshold concentration (PTC). The mechanism and the feature of conductive network formation have much potential concerning both fundamental understanding and industrial application to improve conductive polymer composites. In chapter I, carbon black filled conductive polymer composites are briefly reviewed. Then, in chapter II, a mechanism of rubber molecular confinement into carbon black aggregate structure is introduced to explain the selective adsorption of a specific rubber onto carbon black surface in an immiscible rubber solution blend (styrene butadiene rubber (SBR) and acrylonitrile butadiene rubber (NBR) with toluene or chloroform). Next, in chapters III and IV, polymers with various radius of gyration (Rg) and carbon blacks with various aggregate structure are examined to verify the selective adsorption mechanism. Finally, in chapter V, the novel mechanism was applied to create unique meso-/micro-unit conductive network in carbon black dispersed SBR/NBR composites.

  15. High performance lignin-acrylonitrile polymer blend materials

    Energy Technology Data Exchange (ETDEWEB)

    Naskar, Amit K.; Tran, Chau D.

    2017-11-14

    A polymer blend material comprising: (i) a lignin component having a weight-average molecular weight of up to 1,000,000 g/mol; and (ii) an acrylonitrile-containing copolymer rubber component comprising acrylonitrile units in combination with diene monomer units, and having an acrylonitrile content of at least 20 mol %; wherein said lignin component is present in an amount of at least 5 wt % and up to about 95 wt % by total weight of components (i) and (ii); and said polymer blend material possesses a tensile yield stress of at least 5 MPa, or a tensile stress of at least 5 MPa at 10% elongation, or a tensile stress of at least 5 MPa at 100% elongation. Methods for producing the polymer blend, molded forms thereof, and articles thereof, are also described.

  16. Preparation of epoxy-functionalized methyl methacrylate-butadiene-styrene core-shell particles and investigation of their dispersion in polyamide-6

    NARCIS (Netherlands)

    Aerdts, A.M.; Groeninckx, G.; Zirkzee, H.F.; Aert, van H.A.M.; Geurts, J.M.

    1997-01-01

    Functional core—shell impact modifiers of glycidyl methacrylate (GMA) functionalized methyl methacrylate—butadiene—styrene (MBS) have been prepared via a seeded semi-continuous emulsion polymerization. These functional MBS—GMA particles were blended with polyamide-6. Investigations by transmission

  17. Synthesis, Characterization and Photophysical Properties of Pyridine-Carbazole Acrylonitrile Derivatives

    Science.gov (United States)

    Pérez-Gutiérrez, Enrique; Percino, M. Judith; Chapela, Víctor M.; Cerón, Margarita; Maldonado, José Luis; Ramos-Ortiz, Gabriel

    2011-01-01

    We synthesized three novel highly fluorescent compounds, 2-(2’-pyridyl)-3-(N-ethyl-(3’-carbazolyl))acrylonitrile, 2-(3”-pyridyl)-3-(N-ethyl-(3’-carbazolyl))acrylonitrile, and 2-(4-pyridyl)-3-(N-ethyl-(3’-carbazolyl))acrylonitrile by Knoevenagel condensation. The first two were synthesized without solvent in the presence of piperidine as a catalyst; the third was synthesized without a catalyst and with N,N-dimethylformamide as a solvent. In solution, the molar absorption coefficients showed absorptions at 380, 378, and 396 nm, respectively; in solid state, absorptions were at 398, 390, and 442 nm, respectively. The fluorescence emission was at 540, 540 and 604 nm, respectively, the 2-(4-pyridyl)-3-(N-ethyl-(3’-carbazolyl))acrylonitrile showed a red shift in the emission of 64 nm compared to the other two compounds. The fluorescence quantum yield for the compounds in powder form showed values of 0.05, 0.14, and 0.006, respectively; compared with the value measured for the Alq3 reference, 2-(3”-pyridyl)-3-(N-ethyl-(3’-carbazolyl))acrylonitrile had a lightly higher value. The third harmonic generation measurement for 2-(2’-pyridyl)-3-(N-ethyl-(3’-carbazolyl))acrylonitrile yielded a χ(3) value of 5.5 × 10−12 esu, similar to that reported for commercial polymers. PMID:28880006

  18. Buffing dust as a filler of carboxylated butadiene-acrylonitrile rubber and butadiene-acrylonitrile rubber.

    Science.gov (United States)

    Chronska, K; Przepiorkowska, A

    2008-03-01

    Buffing dust from chrome tanned leather is one of the difficult tannery wastes to manage. It is also hazardous to both human health and the environment. The scientific literature rarely reports studies on dust management, especially on its utilization as a filler for elastomers. In this connection we have made an attempt to use this leather waste as a filler for rubbers such as XNBR and NBR. The addition of the buffing dust to rubber mixes brought improvement in mechanical properties, and increase in resistance to thermal ageing as well as in electric conductivity and crosslink density of vulcalizates.

  19. Selective Vulnerability of the Cochlear Basal Turn to Acrylonitrile and Noise

    International Nuclear Information System (INIS)

    Pouyatos, B.; Gearhart, C.A.; Miller, A.N.; Fulton, S.; Fechter, L.D.; Pouyatos, B.

    2009-01-01

    Exposure to acrylonitrile, a high-production industrial chemical, can promote noise-induced hearing loss (NIHL) in the rat even though this agent does not itself produce permanent hearing loss. The mechanism by which acrylonitrile promotes NIHL includes oxidative stress as antioxidant drugs can partially protect the cochlea from acrylonitrile + noise. Acrylonitrile depletes glutathione levels while noise can increase the formation of reactive oxygen species. It was previously noted that the high-frequency or basal turn of the cochlea was particularly vulnerable to the combined effects of acrylonitrile and noise when the octave band noise (OBN) was centered at 8 k Hz. Normally, such a noise would be expected to yield damage at a more apical region of the cochlea. The present study was designed to determine whether the basal cochlea is selectively sensitive to acrylonitrile or whether, by adjusting the frequency of the noise band, it would be possible to control the region of the auditory impairment. Rats were exposed to one of three different OBNs centered at different frequencies (4 k Hz, 110 dB and 8 or 16 k Hz at 97 dB) for 5 days, with and without administration of acrylonitrile (50 mg/kg/day). The noise was set to cause limited NIHL by itself. Auditory function was monitored by recording distortion products, by compound action potentials, and by performing cochlear histology. While the ACN-only and noise-only exposures induced no or little permanent auditory loss, the three exposures to acrylonitrile + noise produced similar auditory and cochlear impairments above 16 k Hz, despite the fact that the noise exposures covered 2 octaves. These observations show that the basal cochlea is much more sensitive to acrylonitrile + noise than the apical partition. They provide an initial basis for distinguishing the pattern of cochlear injury that results from noise exposure from that which occurs due to the combined effects of noise and a chemical contaminant.

  20. Radiation induced graft copolymerization of acrylonitrile on natural rubber

    International Nuclear Information System (INIS)

    Claramma, N.M.; Mathew, N.M.; Thomas, E.V.

    1989-01-01

    Acrylonitrile graft natural rubber was prepared by initiating the polymerization of acrylonitrile in natural rubber field latex using γ-rays. The reaction was carried out at different rubber-monomer concentrations and the properties of the modified rubbers were compared with those of natural rubber and nitrile rubber. (author)

  1. A comparison of the characteristics of excimer and femtosecond laser ablation of acrylonitrile butadiene styrene (ABS)

    International Nuclear Information System (INIS)

    See, Tian Long; Liu, Zhu; Li, Lin; Zhong, Xiang Li

    2016-01-01

    Highlights: • Ablation threshold for excimer laser is lower compared to femtosecond laser. • Effective optical penetration depth for excimer laser is lower compared to femtosecond laser. • Two ablation characteristic regimes are observed for femtosecond laser ablation. • Reduction of C=C bond following excimer or fs laser ablation is observed. • Addition of oxygen- and nitrogen-rich functional groups is observed. - Abstract: This paper presents an investigation on the ablation characteristics of excimer laser (λ = 248 nm, τ = 15 ns) and femtosecond laser (λ = 800 nm, τ = 100 fs) on ABS polymer sheets. The laser–material interaction parameters (ablation threshold, optical penetration depth and incubation factor) and the changes in material chemical properties were evaluated and compared between the two lasers. The work shows that the ablation threshold and effective optical penetration depth values are dependent on the wavelength of laser beam (photon energy) and the pulse width. The ablation threshold value is lower for the excimer laser ablation of ABS (F_t_h = 0.087 J/cm"2) than that for the femtosecond laser ablation of ABS (F_t_h = 1.576 J/cm"2), demonstrating a more dominating role of laser wavelength than the pulse width in influencing the ablation threshold. The ablation depth versus the logarithmic scale of laser fluence shows two linear regions for the fs laser ablation, not previously known for polymers. The effective optical penetration depth value is lower for excimer laser ablation (α"−"1 = 223 nm) than that for femtosecond laser ablation (α"−"1 = 2917 nm). The ablation threshold decreases with increasing number of pulses (NOP) due to the chain scission process that shortens the polymeric chains, resulting in a weaker polymeric configuration and the dependency is governed by the incubation factor. Excimer laser treatment of ABS eliminates the C=C bond completely through the chain scission process whereas C=C bond is partially eliminated through the femtosecond laser treatment due to the difference in photon energy of the two laser beams. A reduction in the C=C bond through the chain scission process creates free radical carbons which then form crosslinks with each other or react with oxygen, nitrogen and water in air producing oxygen-rich (C−O and C=O bond) and nitrogen-rich (C−N) functional groups.

  2. A comparison of the characteristics of excimer and femtosecond laser ablation of acrylonitrile butadiene styrene (ABS)

    Energy Technology Data Exchange (ETDEWEB)

    See, Tian Long, E-mail: tianlong.see@postgrad.manchester.ac.uk [Corrosion and Protection Centre, School of Materials, The Mill, The University of Manchester, M13 9PL Manchester (United Kingdom); Laser Processing Research Centre, School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, M13 9PL Manchester (United Kingdom); Liu, Zhu [Corrosion and Protection Centre, School of Materials, The Mill, The University of Manchester, M13 9PL Manchester (United Kingdom); Li, Lin [Laser Processing Research Centre, School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, M13 9PL Manchester (United Kingdom); Zhong, Xiang Li [Corrosion and Protection Centre, School of Materials, The Mill, The University of Manchester, M13 9PL Manchester (United Kingdom)

    2016-02-28

    Highlights: • Ablation threshold for excimer laser is lower compared to femtosecond laser. • Effective optical penetration depth for excimer laser is lower compared to femtosecond laser. • Two ablation characteristic regimes are observed for femtosecond laser ablation. • Reduction of C=C bond following excimer or fs laser ablation is observed. • Addition of oxygen- and nitrogen-rich functional groups is observed. - Abstract: This paper presents an investigation on the ablation characteristics of excimer laser (λ = 248 nm, τ = 15 ns) and femtosecond laser (λ = 800 nm, τ = 100 fs) on ABS polymer sheets. The laser–material interaction parameters (ablation threshold, optical penetration depth and incubation factor) and the changes in material chemical properties were evaluated and compared between the two lasers. The work shows that the ablation threshold and effective optical penetration depth values are dependent on the wavelength of laser beam (photon energy) and the pulse width. The ablation threshold value is lower for the excimer laser ablation of ABS (F{sub th} = 0.087 J/cm{sup 2}) than that for the femtosecond laser ablation of ABS (F{sub th} = 1.576 J/cm{sup 2}), demonstrating a more dominating role of laser wavelength than the pulse width in influencing the ablation threshold. The ablation depth versus the logarithmic scale of laser fluence shows two linear regions for the fs laser ablation, not previously known for polymers. The effective optical penetration depth value is lower for excimer laser ablation (α{sup −1} = 223 nm) than that for femtosecond laser ablation (α{sup −1} = 2917 nm). The ablation threshold decreases with increasing number of pulses (NOP) due to the chain scission process that shortens the polymeric chains, resulting in a weaker polymeric configuration and the dependency is governed by the incubation factor. Excimer laser treatment of ABS eliminates the C=C bond completely through the chain scission process whereas C=C bond is partially eliminated through the femtosecond laser treatment due to the difference in photon energy of the two laser beams. A reduction in the C=C bond through the chain scission process creates free radical carbons which then form crosslinks with each other or react with oxygen, nitrogen and water in air producing oxygen-rich (C−O and C=O bond) and nitrogen-rich (C−N) functional groups.

  3. Cryogenically assisted abrasive jet micromachining of polymers

    International Nuclear Information System (INIS)

    Getu, H; Papini, M; Spelt, J K

    2008-01-01

    The abrasive jet micromachining (AJM) of elastomers and polymers such as polydimethylsiloxane (PDMS), acrylonitrile butadiene styrene (ABS) and polytetrafluoroethylene (PTFE) for use in micro-fluidic devices was found to be very slow or impossible at room temperature. To enhance the material removal rate in such materials, a stream of liquid nitrogen (LN 2 ) was injected into the abrasive jet, cooling the target to cryogenic temperatures. Erosion rate measurements on the three polymeric materials (PDMS, ABS and PTFE) with and without the use of LN 2 were compared along with the profiles of micromachined channels and holes. It was found that the use of LN 2 cooling caused brittle erosion in PDMS, allowing it to be micromachined successfully. An erosion rate increase was also observed in PTFE and ABS at high and intermediate impact angles. The use of LN 2 also was found to reduce particle embedding

  4. Gender differences in the metabolism of 1,3-butadiene to butadiene diepoxide in Sprague-Dawley rats

    Energy Technology Data Exchange (ETDEWEB)

    Thornton-Manning, J.R.; Dahl, A.R.; Bechtold, W.E. [and others

    1995-12-01

    1,3-Butadiene (BD), a gaseous compound used in the production of rubber, is a potent carcinogen in mice and a weak carcinogen in rats. The mechanism of BD-induced carcinogenicity is thought to involve genotoxic effects of its reactive epoxide metabolites butadiene monoepoxide (BDO) and butadiene diepoxide (BDO{sub 2}). Studies in our laboratory have shown that levels of the epoxides, particularly BDO{sub 2}, are greater in mice-the more sensitive species-than rats. While both epoxides are genotoxic in a number of assays, BDO{sub 2} is mutagenic in TK6 human lymphoblastoid cells at concentrations approximately 100-fold lower than BDO. Species differences in carcinogenicity of BD have posed a dilemma to investigators deciding which animal model is most appropriate for BD risk assessment.

  5. Comparative study of the monomer grafting: ethylene, acetylene, 1,3-butadiene and estyrene in the matrix of recycled polytetrafluoroethylene (PTFE)

    International Nuclear Information System (INIS)

    Ikari, Carolina T.; Rosner, Gerhardyne O.; Oliveira, Ana C.F.; Ferreto, Helio F.R.; Lima, Luiz F.C.P.; Lugao, Ademar B.; Moreira, Otavio M.

    2009-01-01

    In this study it is used the recycled polytetrafluoroethylene (PTFE), that with the gamma radiation under inert atmosphere or in presence of air, it is obtained free radicals and a posterior the monomer grafting (ethylene, acetylene, styrene or 1.3 butadiene), obtaining the copolymer polytetrafluoroethylene-g-monomer. It is studied the obtention of the polymer by two methods: by direct way, via grafting, where the polymer is irradiated in presence of monomer, and via grafting when the polymer is irradiated in absence of monomer and under inert or air. The characterization of the copolymer was performed by the techniques of infrared region absorption spectroscopy with Fourier transformation (FTIR), thermogravimetric (TGA) and derivative thermogravimetry (DTG), and percentage of mass grafting (DOG)

  6. Genotoxicity of Styrene–Acrylonitrile Trimer in Brain, Liver, and Blood Cells of Weanling F344 Rats

    Science.gov (United States)

    Hobbs, Cheryl A.; Chhabra, Rajendra S.; Recio, Leslie; Streicker, Michael; Witt, Kristine L.

    2012-01-01

    Styrene–acrylonitrile Trimer (SAN Trimer), a by-product in production of acrylonitrile styrene plastics, was identified at a Superfund site in Dover Township, NJ, where childhood cancer incidence rates were elevated for a period of several years. SAN Trimer was therefore tested by the National Toxicology Program in a 2-year perinatal carcinogenicity study in F344/N rats and a bacterial mutagenicity assay; both studies gave negative results. To further characterize its genotoxicity, SAN Trimer was subsequently evaluated in a combined micronucleus (MN)/Comet assay in juvenile male and female F344 rats. SAN Trimer (37.5, 75, 150, or 300 mg/kg/day) was administered by gavage once daily for 4 days. Micronucleated reticulocyte (MN-RET) frequencies in blood were determined by flow cytometry, and DNA damage in blood, liver, and brain cells was assessed using the Comet assay. Highly significant dose-related increases (P < 0.0001) in MN-RET were measured in both male and female rats administered SAN Trimer. The RET population was reduced in high dose male rats, suggesting chemical-related bone marrow toxicity. Results of the Comet assay showed significant, dose-related increases in DNA damage in brain cells of male (P < 0.0074) and female (P < 0.0001) rats; increased levels of DNA damage were also measured in liver cells and leukocytes of treated rats. Chemical-related cytotoxicity was not indicated in any of the tissues examined for DNA damage. The results of this subacute MN/Comet assay indicate induction of significant genetic damage in multiple tissues of weanling F344 male and female rats after oral exposure to SAN Trimer. PMID:22351108

  7. Study on irradiated polymerization of acrylonitrile by NMR

    International Nuclear Information System (INIS)

    Zhao Xin; Lin Hao

    1999-01-01

    Sup 13 C CP/MAS spectra and nuclear Overhauser effects (NOE) at room temperature have been measured for acrylonitrile (AN) in homophase irradiated polymerization. With the increase of radiation dose the chemical shift of cracking peaks and NOE are variation. This implies that the polymerized mechanism of AN were changed with the variation of irradiated doses and dose rate. There is the stronger affinity electron group (-CN) in acrylonitrile monomer. It may be polymerized by various ways and mechanism and be gained the polymer of difference structures and molecular weight of polyacrylonitrile (PAN). Starmicarbon and Starker obtained higher molecular weight of polyacrylonitrile by peroxysulfate-pyrosulfite in oxidation-reduction system. The superhigh molecular weight of PAN was synthesized chemically according to the method of Wu et. al. by suspension polymerization. In this paper we discussed that the relative concentrations of steric dyads and triads in the chain structure in PAN and the irradiation polymerized mechanism of acrylonitrile monomer in room temperature by different dose and dose rate

  8. Styrene exposure and risk of cancer

    Science.gov (United States)

    Huff, James; Infante, Peter F.

    2011-01-01

    Styrene is widely used in the manufacture of synthetic rubber, resins, polyesters and plastics. Styrene and the primary metabolite styrene-7,8-oxide are genotoxic and carcinogenic. Long-term chemical carcinogenesis bioassays showed that styrene caused lung cancers in several strains of mice and mammary cancers in rats and styrene-7,8-oxide caused tumours of the forestomach in rats and mice and of the liver in mice. Subsequent epidemiologic studies found styrene workers had increased mortality or incidences of lymphohematopoietic cancers (leukaemia or lymphoma or all), with suggestive evidence for pancreatic and esophageal tumours. No adequate human studies are available for styrene-7,8-oxide although this is the primary and active epoxide metabolite of styrene. Both are genotoxic and form DNA adducts in humans. PMID:21724974

  9. Molecular Simulation of Gas Solubility in Nitrile Butadiene Rubber.

    Science.gov (United States)

    Khawaja, M; Sutton, A P; Mostofi, A A

    2017-01-12

    Molecular simulation is used to compute the solubility of small gases in nitrile butadiene rubber (NBR) with a Widom particle-insertion technique biased by local free volume. The convergence of the method is examined as a function of the number of snapshots upon which the insertions are performed and the number of insertions per snapshot and is compared to the convergence of the unbiased Widom insertion technique. The effect of varying the definition of local free volume is also investigated. The acrylonitrile content of the polymer is altered to examine its influence on the solubility of helium, CO 2 , and H 2 O, and the solubilities of polar gases are found to be enhanced relative to those of nonpolar gases, in qualitative agreement with experiment. To probe this phenomenon further, the solubilities are decomposed into contributions from the neighborhoods of different atoms, using a Voronoi cell construction, and a strong bias is found for CO 2 and H 2 O in particular to be situated near nitrogen sites in the elastomer. Temperature is shown to suppress the solubility of CO 2 and H 2 O but to increase that of helium. Increasing pressure is found to suppress the solubility of all gases but at different rates, according to a balance between their molecular sizes and electrostatic interactions with the polymer. These results are relevant to the use of NBR seals at elevated temperatures and pressures, such as in oil and gas wells.

  10. Rethinking Timber: Investigation into the Use of Waste Macadamia Nut Shells for Additive Manufacturing

    Science.gov (United States)

    Girdis, Jordan; Gaudion, Lauren; Proust, Gwénaëlle; Löschke, Sandra; Dong, Andy

    2017-03-01

    In this article, the feasibility of turning macadamia nutshells, a waste product from the forestry and agricultural industries, into a three-dimensional (3D) printed, innovative, microtimber product is examined by composing a wood plastic feed stock for fusion deposition modeling. Different ratios of micro-ground macadamia nutshells and acrylonitrile butadiene styrene (ABS) plastics were mixed with a binding agent to extrude a range of filaments. By using a commercial 3D printer, these filaments helped to fabricate specimens that were tested in tension and compression. The results show that printed samples of macadamia-nutshell—ABS composites offer a viable alternative to commercially available wood polymer composite filaments. Although they possess similar mechanical properties, they have a lower density, making them suitable for a range of lightweight product applications. The research demonstrates that there are new opportunities for the use of macadamia nutshell filament in additive manufacturing as a result of its enhanced properties compared with traditional wood filaments.

  11. Impact strength on fiber-reinforced hybrid composite

    International Nuclear Information System (INIS)

    Firdaus, S M; Nurdina; Ariff, M Azmil

    2013-01-01

    Acrylonitrile-Butadiene-Styrene (ABS) has been well known composite in automotive players to have light weight with high impact strength material compared to sheet metal material which has high impact strength but heavy in weight. In this project, the impact strength properties of fabricated pure ABS were compared to the eight samples of hybrid ABS composite with different weight percentages of short fibers and particle sizes of ground rubber. The objective was to improve the impact strength in addition of short fibers and ground rubber particles. These samples were then characterized using an un-notched Izod impact test. Results show that the increasing of filler percentage yielded an adverse effect on the impact strength of the hybrid composite. The effect of the ground rubber particulate sizes however are deemed to be marginal than the effect of varying filler percentage based on the collected impact strength data from all physically tested hybrid composites

  12. Methodology for construction of hollow spheres for use in physical phantoms

    International Nuclear Information System (INIS)

    Oliveira, A.C.H.; Lima, F.R.A.; Oliveira, F.; Vieira, J.W.

    2015-01-01

    In positron emission tomography (PET), quantitative evaluation of spatial resolution/object size, attenuation and scatter effects is often performed using phantoms with hollow spheres. Fillable, plastic-walled spheres are commercially available in several sizes. Radioactive solutions in any concentration can be injected into the spheres. Hollow spheres have several desirable traits, including repeatable, consistent use, and standardization across measurements at different institutions, since identical items are distributed by a single manufacturer. The objective of this work is to describe a methodology for construction of hollow spheres using rapid prototyping. It was used the software SolidWork (2014) to create five 3D models of the hollow spheres with inner diameters of 10 mm, 13 mm, 17 mm, 22 mm, and 28 mm. These models were based on hollow spheres of NEMA/IEC PET body phantom. It was used a Cubex Duo 3D printer (3D Systems) to build the hollow spheres. The material used was the ABS (acrylonitrile butadiene styrene) resin. (authors)

  13. Development of Nylon Based FDM Filament for Rapid Tooling Application

    Science.gov (United States)

    Singh, R.; Singh, S.

    2014-04-01

    There has been critical need for development of cost effective nylon based wire to be used as feed stock filament for fused deposition modelling (FDM) machine. But hitherto, very less work has been reported for development of alternate solution of acrylonitrile butadiene styrene (ABS) based wire which is presently used in most of FDM machines. The present research work is focused on development of nylon based wire as an alternative of ABS wire (which is to be used as feedstock filament on FDM) without changing any hardware or software of machine. For the present study aluminium oxide (Al2O3) as additive in different proportion has been used with nylon fibre. Single screw extruder was used for wire preparation and wire thus produced was tested on FDM. Mechanical properties i.e. tensile strength and percentage elongation of finally developed wire have been optimized by Taguchi L9 technique. The work represented major development in reducing cost and time in rapid tooling applications.

  14. Three-Dimensional Printing with Biomass-Derived PEF for Carbon-Neutral Manufacturing.

    Science.gov (United States)

    Kucherov, Fedor A; Gordeev, Evgeny G; Kashin, Alexey S; Ananikov, Valentine P

    2017-12-11

    Biomass-derived poly(ethylene-2,5-furandicarboxylate) (PEF) has been used for fused deposition modeling (FDM) 3D printing. A complete cycle from cellulose to the printed object has been performed. The printed PEF objects created in the present study show higher chemical resistance than objects printed with commonly available materials (acrylonitrile butadiene styrene (ABS), polylactic acid (PLA), glycol-modified poly(ethylene terephthalate) (PETG)). The studied PEF polymer has shown key advantages for 3D printing: optimal adhesion, thermoplasticity, lack of delamination and low heat shrinkage. The high thermal stability of PEF and relatively low temperature that is necessary for extrusion are optimal for recycling printed objects and minimizing waste. Several successive cycles of 3D printing and recycling were successfully shown. The suggested approach for extending additive manufacturing to carbon-neutral materials opens a new direction in the field of sustainable development. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. TRIBOLOGICAL BEHAVIOURS OF ABS AND PA6 POLYMERMETAL SLIDING COMBINATIONS UNDER DRY FRICTION, WATER ABSORBED AND ELECTROPLATED CONDITIONS

    Directory of Open Access Journals (Sweden)

    MITHUN V. KULKARNI

    2016-01-01

    Full Text Available The friction and wear properties of polyamide 6 (PA6 and poly-Acrylonitrile Butadiene Styrene (ABS sliding against metal under dry sliding, water absorption and electroplated (EP conditions were studied by using a pin-ondisc tribometer. The effect of applied load and sliding speed on the tribological behaviours of the polymer–metal sliding combinations under dry sliding, water absorbed and EP conditions were also investigated. The worn surfaces were examined by using Scanning Electron Microscope (SEM. Experimental results showed that ABS samples under water absorbed conditions showed higher wear loss compared to normal samples and the EP samples had exhibited lower wear loss compared to the water absorbed samples. Similarly EP-PA6 samples exhibited excellent wear resistance when compared with EP-ABS samples. Further, it was observed that the frictional heat produced on account of sliding action had a significant effect on the tribological behaviours of samples under dry sliding and water absorbed conditions.

  16. A discrimination model in waste plastics sorting using NIR hyperspectral imaging system.

    Science.gov (United States)

    Zheng, Yan; Bai, Jiarui; Xu, Jingna; Li, Xiayang; Zhang, Yimin

    2018-02-01

    Classification of plastics is important in the recycling industry. A plastic identification model in the near infrared spectroscopy wavelength range 1000-2500 nm is proposed for the characterization and sorting of waste plastics using acrylonitrile butadiene styrene (ABS), polystyrene (PS), polypropylene (PP), polyethylene (PE), polyethylene terephthalate (PET), and polyvinyl chloride (PVC). The model is built by the feature wavelengths of standard samples applying the principle component analysis (PCA), and the accuracy, property and cross-validation of the model were analyzed. The model just contains a simple equation, center of mass coordinates, and radial distance, with which it is easy to develop classification and sorting software. A hyperspectral imaging system (HIS) with the identification model verified its practical application by using the unknown plastics. Results showed that the identification accuracy of unknown samples is 100%. All results suggested that the discrimination model was potential to an on-line characterization and sorting platform of waste plastics based on HIS. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. A 3D Microfluidic Chip for Electrochemical Detection of Hydrolysed Nucleic Bases by a Modified Glassy Carbon Electrode

    Directory of Open Access Journals (Sweden)

    Jana Vlachova

    2015-01-01

    Full Text Available Modification of carbon materials, especially graphene-based materials, has wide applications in electrochemical detection such as electrochemical lab-on-chip devices. A glassy carbon electrode (GCE modified with chemically alternated graphene oxide was used as a working electrode (glassy carbon modified by graphene oxide with sulphur containing compounds and Nafion for detection of nucleobases in hydrolysed samples (HCl pH = 2.9, 100 °C, 1 h, neutralization by NaOH. It was found out that modification, especially with trithiocyanuric acid, increased the sensitivity of detection in comparison with pure GCE. All processes were finally implemented in a microfluidic chip formed with a 3D printer by fused deposition modelling technology. As a material for chip fabrication, acrylonitrile butadiene styrene was chosen because of its mechanical and chemical stability. The chip contained the one chamber for the hydrolysis of the nucleic acid and another for the electrochemical detection by the modified GCE. This chamber was fabricated to allow for replacement of the GCE.

  18. A 3D microfluidic chip for electrochemical detection of hydrolysed nucleic bases by a modified glassy carbon electrode.

    Science.gov (United States)

    Vlachova, Jana; Tmejova, Katerina; Kopel, Pavel; Korabik, Maria; Zitka, Jan; Hynek, David; Kynicky, Jindrich; Adam, Vojtech; Kizek, Rene

    2015-01-22

    Modification of carbon materials, especially graphene-based materials, has wide applications in electrochemical detection such as electrochemical lab-on-chip devices. A glassy carbon electrode (GCE) modified with chemically alternated graphene oxide was used as a working electrode (glassy carbon modified by graphene oxide with sulphur containing compounds and Nafion) for detection of nucleobases in hydrolysed samples (HCl pH = 2.9, 100 °C, 1 h, neutralization by NaOH). It was found out that modification, especially with trithiocyanuric acid, increased the sensitivity of detection in comparison with pure GCE. All processes were finally implemented in a microfluidic chip formed with a 3D printer by fused deposition modelling technology. As a material for chip fabrication, acrylonitrile butadiene styrene was chosen because of its mechanical and chemical stability. The chip contained the one chamber for the hydrolysis of the nucleic acid and another for the electrochemical detection by the modified GCE. This chamber was fabricated to allow for replacement of the GCE.

  19. Investigating the Impact of Acetone Vapor Smoothing on the Strength and Elongation of Printed ABS Parts

    Science.gov (United States)

    Gao, Harry; Kaweesa, Dorcas V.; Moore, Jacob; Meisel, Nicholas A.

    2017-03-01

    Acetone vapor smoothing is a chemical treatment that "melts" the surface of additively manufactured acrylonitrile butadiene styrene parts. The process fuses layers together and allows them to reform when vapor is removed, resulting in a smooth surface finish. Although commonly used to improve aesthetics, recent work has begun to investigate the effects of vapor smoothing on part strength. Nevertheless, most of this work has failed to take into account the anisotropic nature of printed parts. Prior research has shown that vapor smoothing reduces strength under best-case loading conditions, when the tensile load is parallel with the direction of the layers. In this article, the authors hypothesize that vapor smoothing may increase strength under nonoptimal loading conditions as a result of increased cohesion between layers and a reduction in stress concentrations. They use a design of experiments approach to identify the combined impact of printing and vapor smoothing parameters on part material properties.

  20. Considerations on thermic and mechanic processes that appear when 3D printing using ABS fused deposition modelling technology

    Science.gov (United States)

    Amza, Catalin Gheorghe; Niţoi, Dan Florin

    2018-02-01

    3D printers are of recent history, but with an extremely rapid evolution both in technology and hardware involved. At present excellent performances are reached in applications such as 3D printing of various Acrylonitrile butadiene styrene (ABS) plastic parts for house building using Fused Deposition Modelling technology. Nevertheless, the thermic and mechanic processes that appear when manufacturing such plastic components are quite complex. This aspect is very important, especially when one wants to optimize the manufacturing of parts with certain geometrical complexity. The Finite Element Analysis/Modelling (FEA/FEM) is among the few methods that can study the thermic transfer processes and shape modifications that can appear due to non-seamar behavior that takes place when the ABS plastic material is cooling down. The current papers present such an analysis when simulating the deposition of several strings of materials. A thermic analysis is made followed by a study of deformations that appear when the structure cools down.

  1. Effect of Ultrasonic Vibration on Mechanical Properties of 3D Printing Non-Crystalline and Semi-Crystalline Polymers.

    Science.gov (United States)

    Li, Guiwei; Zhao, Ji; Wu, Wenzheng; Jiang, Jili; Wang, Bofan; Jiang, Hao; Fuh, Jerry Ying Hsi

    2018-05-17

    Fused deposition modeling 3D printing has become the most widely used additive manufacturing technology because of its low manufacturing cost and simple manufacturing process. However, the mechanical properties of the 3D printing parts are not satisfactory. Certain pressure and ultrasonic vibration were applied to 3D printed samples to study the effect on the mechanical properties of 3D printed non-crystalline and semi-crystalline polymers. The tensile strength of the semi-crystalline polymer polylactic acid was increased by 22.83% and the bending strength was increased by 49.05%, which were almost twice the percentage increase in the tensile strength and five times the percentage increase in the bending strength of the non-crystalline polymer acrylonitrile butadiene styrene with ultrasonic strengthening. The dynamic mechanical properties of the non-crystalline and semi-crystalline polymers were both improved after ultrasonic enhancement. Employing ultrasonic energy can significantly improve the mechanical properties of samples without modifying the 3D printed material or adjusting the forming process parameters.

  2. Pre-irradiation induced emulsion graft polymerization of acrylonitrile onto polyethylene nonwoven fabric

    International Nuclear Information System (INIS)

    Liu Hanzhou; Yu Ming; Deng Bo; Li Linfan; Jiang Haiqing; Li Jingye

    2012-01-01

    Acrylonitrile has been widely used in the modification of polymers by graft polymerization. In the present work, pre-irradiation induced emulsion graft polymerization method is used to introduce acrylonitrile onto PE nonwoven fabric instead of the traditional reaction in organic solvents system. The degree of grafting (DG) is measured by gravimetric method and the kinetics of the graft polymerization is studied. The existence of the graft chains is proven by Fourier transform infrared spectroscopy (FT-IR) analysis. Thermal stability of the grafted polymer is measured by Thermogravimetric analysis (TGA). - Highlights: → Acrylonitrile is grafted onto pre-irradiated polyethylene (PE) nonwoven fabrics. → Emulsion system is applied, for the graft polymerization avoids organic solvent. → Kinetic of the pre-irradiation induced graft polymerization is studied. → Optimal condition is determined at the temperature below the b.p. of acrylonitrile.

  3. Recycling of mixed plastic waste from electrical and electronic equipment. Added value by compatibilization.

    Science.gov (United States)

    Vazquez, Yamila V; Barbosa, Silvia E

    2016-07-01

    Plastic waste from electrical and electronic equipment (WEEE) grows up exponentially fast in the last two decades. Either consumption increase of technological products, like cellphones or computers, or the short lifetime of this products contributes to this rise generating an accumulation of specific plastic materials such ABS (Acrylonitrile-Butadiene-Styrene), HIPS (High impact Polystyrene), PC (Polycarbonate), among others. All of they can be recycled by themselves. However, to separate them by type is neither easy nor economically viable, then an alternative is recycling them together as a blend. Taking into account that could be a deterioration in final properties, to enhance phase adhesion and add value to a new plastic WEEE blend a compatibilization is needed. In this work, a systematical study of different compatibilizers for blends of HIPS and ABS from WEEE was performed. A screening analysis was carried out by adding two different compatibilizer concentration (2wt% and 20wt%) on a HIPS/ABS physical blend 80/20 proportion from plastic e-waste. Three copolymers were selected as possible compatibilizers by their possible affinity with initial plastic WEEE. A complete characterization of each WEEE was performed and compatibilization efficiency was evaluated by comparing either mechanical or morphological blends aspects. Considering blends analyzed in this work, the best performance was achieved by using 2% of styrene-acrylonitrile rubber, obtaining a compatibilized blend with double ultimate strength and modulus respect to the physical blend, and also improve mechanical properties of initial WEEE plastics. The proposed way is a promise route to improve benefit of e-scrap with sustainable, low costs and easy handling process. Consequently, social recycling interest will be encouraged by both ecological and economical points of view. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Recent Breakthroughs in the Conversion of Ethanol to Butadiene

    Directory of Open Access Journals (Sweden)

    Guillaume Pomalaza

    2016-12-01

    Full Text Available 1,3-Butadiene is traditionally produced as a byproduct of ethylene production from steam crackers. What is unusual is that the alternative production route for this important commodity chemical via ethanol was developed a long time ago, before World War II. Currently, there is a renewed interest in the production of butadiene from biomass due to the general trend to replace oil in the chemical industry. This review describes the recent progress in the production of butadiene from ethanol (ETB by one or two-step process through intermediate production of acetaldehyde with an emphasis on the new catalytic systems. The different catalysts for butadiene production are compared in terms of structure-catalytic performance relationship, highlighting the key issues and requirements for future developments. The main difficulty in this process is that basic, acid and redox properties have to be combined in one single catalyst for the reactions of condensation, dehydration and hydrogenation. Magnesium and zirconium-based catalysts in the form of oxides or recently proposed silicates and zeolites promoted by metals are prevailing for butadiene synthesis with the highest selectivity of 70% at high ethanol conversion. The major challenge for further application of the process is to increase the butadiene productivity and to enhance the catalyst lifetime by suppression of coke deposition with preservation of active sites.

  5. Isolation and characterization of styrene metabolism genes from styrene-assimilating soil bacteria Rhodococcus sp. ST-5 and ST-10.

    Science.gov (United States)

    Toda, Hiroshi; Itoh, Nobuya

    2012-01-01

    Styrene metabolism genes were isolated from styrene-assimilating bacteria Rhodococcus sp. ST-5 and ST-10. Strain ST-5 had a gene cluster containing four open reading frames which encoded styrene degradation enzymes. The genes showed high similarity to styABCD of Pseudomonas sp. Y2. On the other hand, strain ST-10 had only two genes which encoded styrene monooxygenase and flavin oxidoreductase (styAB). Escherichia coli transformants possessing the sty genes of strains ST-5 and ST-10 produced (S)-styrene oxide from styrene, indicating that these genes function as styrene degradation enzymes. Metabolite analysis by resting-cell reaction with gas chromatography-mass spectrometry revealed that strain ST-5 converts styrene to phenylacetaldehyde via styrene oxide by styrene oxide isomerase (styC) reaction. On the other hand, strain ST-10 lacked this enzyme, and thus accumulated styrene oxide as an intermediate. HPLC analysis showed that styrene oxide was spontaneously isomerized to phenylacetaldehyde by chemical reaction. The produced phenylacetaldehyde was converted to phenylacetic acid (PAA) in strain ST-10 as well as in strain ST-5. Furthermore, phenylacetic acid was converted to phenylacetyl-CoA by the catalysis of phenylacetate-CoA ligase in strains ST-5 and ST-10. This study proposes possible styrene metabolism pathways in Rhodococcus sp. strains ST-5 and ST-10. Copyright © 2011 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  6. Biobased synthesis of acrylonitrile from glutamic acid

    NARCIS (Netherlands)

    Notre, le J.E.L.; Scott, E.L.; Franssen, M.C.R.; Sanders, J.P.M.

    2011-01-01

    Glutamic acid was transformed into acrylonitrile in a two step procedure involving an oxidative decarboxylation in water to 3-cyanopropanoic acid followed by a decarbonylation-elimination reaction using a palladium catalyst

  7. Investigation of the use of recycled polymer-modified asphalt in asphaltic concrete pavements.

    Science.gov (United States)

    2004-06-30

    This report presents issues associated with recycling polymer modified asphalt cements (PMACs), particularly blending aged PMAC with new PMAC. A styrene-butadiene-styrene (SBS) PMAC was selected and graded using the Superpave Performance Grading (PG)...

  8. Radiation initiated copolymerization of allyl alcohol with acrylonitrile

    International Nuclear Information System (INIS)

    Solpan, Dilek; Guven, Olgun

    1996-01-01

    Copolymerization of allyl alcohol (AA) with acrylonitrile (AN) initiated by γ-rays has been investigated to determine the respective reactivity ratios. Three different experimental techniques, namely Fourier Transform Infrared (FTIR), Ultraviolet (UV/vis) and elemental analysis (EA) have been used for the determination of copolymer compositions. Fineman-Ross (FR), Kelen-Tudos (KT), Non-Linear Least Square (NLLS) Analysis and Q-e methods have been applied to the three sets of experimental data. It has been concluded that data obtained from elemental analysis as applied to the Non-Linear Least Square approach gave the most reliable reactivity ratios as 2.09 and 0.40 for acrylonitrile and allyl alcohol, respectively. (Author)

  9. Study on Impact Acoustic-Visual Sensor-Based Sorting of ELV Plastic Materials.

    Science.gov (United States)

    Huang, Jiu; Tian, Chuyuan; Ren, Jingwei; Bian, Zhengfu

    2017-06-08

    This paper concentrates on a study of a novel multi-sensor aided method by using acoustic and visual sensors for detection, recognition and separation of End-of Life vehicles' (ELVs) plastic materials, in order to optimize the recycling rate of automotive shredder residues (ASRs). Sensor-based sorting technologies have been utilized for material recycling for the last two decades. One of the problems still remaining results from black and dark dyed plastics which are very difficult to recognize using visual sensors. In this paper a new multi-sensor technology for black plastic recognition and sorting by using impact resonant acoustic emissions (AEs) and laser triangulation scanning was introduced. A pilot sorting system which consists of a 3-dimensional visual sensor and an acoustic sensor was also established; two kinds commonly used vehicle plastics, polypropylene (PP) and acrylonitrile-butadiene-styrene (ABS) and two kinds of modified vehicle plastics, polypropylene/ethylene-propylene-diene-monomer (PP-EPDM) and acrylonitrile-butadiene-styrene/polycarbonate (ABS-PC) were tested. In this study the geometrical features of tested plastic scraps were measured by the visual sensor, and their corresponding impact acoustic emission (AE) signals were acquired by the acoustic sensor. The signal processing and feature extraction of visual data as well as acoustic signals were realized by virtual instruments. Impact acoustic features were recognized by using FFT based power spectral density analysis. The results shows that the characteristics of the tested PP and ABS plastics were totally different, but similar to their respective modified materials. The probability of scrap material recognition rate, i.e., the theoretical sorting efficiency between PP and PP-EPDM, could reach about 50%, and between ABS and ABS-PC it could reach about 75% with diameters ranging from 14 mm to 23 mm, and with exclusion of abnormal impacts, the actual separation rates were 39.2% for PP, 41

  10. Biofiltration of a styrene/acetone vapor mixture in two reactor types under conditions of styrene overloading

    Directory of Open Access Journals (Sweden)

    Lubos Zapotocky

    2014-10-01

    Full Text Available This aim of study was to compare the performance of a biofilter (BF and trickle bed reactor (TBR under increased styrene loading with a constant acetone load, 2 gc/m3/h. At styrene loading rates up to 30 gc/m3/h, the BF showed higher styrene removal than TBR. However, the BF efficiency started to drop beyond this threshold loading and could never reach steady state, whereas the TBR continued to yield a 50% styrene removal. The acetone removal remained constant (93-98% in both the reactors at any styrene loading. Once the overloading was lifted, the BF recovered within 26 min, whereas the TBR efficiency bounced back only to 95%, gradually returning to complete removal only in 10 h.

  11. Radical polymerization of styrene and styrene-butylmethacrylate in a counterrotating twin screw extruder

    NARCIS (Netherlands)

    vanderGoot, AJ; Janssen, LPB

    1997-01-01

    This article describes the copolymerization of styrene-butylmethacrylate (St-BMA) and the homopolymerization of styrene (St) in a counterrotating twin screw extruder. The effect of prepolymerization on both the product properties and process was studied. It turned out that the process of reactive

  12. Compatibilization of low-density polyethylene/polystyrene blends by segmented EB(PS-block-EB)(n) block copolymers

    NARCIS (Netherlands)

    Kroeze, E; ten Brinke, G.; Hadziioannou, G

    Hydrogenated segmented poly[butadiene-block-(styrene-block-butadiene)(n)] block copolymers, which were developed by use of a polymeric iniferter technique, were tested on their compatibilizing effectiveness for (10/90) LDPE/PS blends. They were found to be effective compatibilizers for this mixture,

  13. Evaluation of hybrid binder for use in surface mixtures in Florida : final report, June 2009.

    Science.gov (United States)

    2009-06-01

    Binder and mixture tests were performed to evaluate the relative performance of a PG 67-22 base binder and six other commercially available binders produced by modifying the same base binder with the following modifiers: one Styrene Butadiene Styrene...

  14. High performance co-polyimide nanofiber reinforced composites

    NARCIS (Netherlands)

    Yao, Jian; Li, Guang; Bastiaansen, Cees; Peijs, Ton

    2015-01-01

    Electrospun co-polyimide BPDA (3, 3′, 4, 4′-Biphenyltetracarboxylic dianhydride)/PDA (p-Phenylenediamine)/ODA (4, 4′-oxydianiline) nanofiber reinforced flexible composites were manufactured by impregnating these high performance nanofibers with styrene-butadiene-styrene (SBS) triblock copolymer

  15. Resistivity and Its Anisotropy Characterization of 3D-Printed Acrylonitrile Butadiene Styrene Copolymer (ABS/Carbon Black (CB Composites

    Directory of Open Access Journals (Sweden)

    Jie Zhang

    2017-01-01

    Full Text Available The rapid printing of 3D parts with desired electrical properties enables numerous applications. Fused deposition modeling (FDM using conductive thermoplastic composites has been a valuable approach for such fabrication. The parts produced by FDM possess various controllable structural features, but the effects of the structural features on the electrical properties remain to be determined. This study investigated the effects of these features on the electrical resistivity and resistivity anisotropy of 3D-printed ABS/CB composites. The effects of the process parameters of FDM, including the layer thickness, raster width, and air gap, on the resistivity in both the vertical and horizontal directions for cubic samples were studied because the internal structure of the printed parts depended on those process parameters. The resistivities of printed parts in different parameter combinations were measured by an impedance analyzer and finite element models were created to investigate the relationship between the resistivity and the internal structure. The results indicated that the parameters remarkably affected the resistivity due to the influence of voids and the bonding condition between adjacent fibers. The resistivity in the vertical direction ranged from 70.40 ± 2.88 Ω·m to 180.33 ± 8.21 Ω·m, and the resistivity in the horizontal direction ranged from 41.91 ± 2.29 Ω·m to 58.35 ± 0.61 Ω·m at the frequency of 1 kHz. Moreover, by adjusting the resistivities in different directions, the resistivity anisotropy of the printed parts can be manipulated from 1.01 to 3.59. This research may serve as a reference to fabricate parts with sophisticated geometry with desired electrical resistivity and resistivity anisotropy.

  16. Radiation graft copolymerization of styrene with m/e and styrene with acrylic acid at highthyl methacryl dose rate

    International Nuclear Information System (INIS)

    Aliev, R.Eh.; Kabanov, B.Ya.

    1984-01-01

    Comparative investigation of radiation graft copolymerization of styrene with methyl methacrylate (MMA) and styrene with acrylic acid (AA) is carried out at considerably differing radiation dose rates. The monomer mixture was grafted to PE low density films at dose rates of 0.16, 0.25 Gy/s (1 MeV electron acceleration). The value of graft was 3-6 and 5-10%, respectively, for the styrene-MMA and styrene-AA systems. An essential difference in the dependences of the formed copolymer composition on initial monomer mixture composition is noticed. Difference in composition of graft polymers prepared at different dose rates is less for the systems with AA, than for systems with MMA. It is shown that at high dose rates in difference with low ones not only radical graft copolymerization of the styrene mixture with AA takes place, but a contribution of the graft styrene polymerization according to cation mechanism as well

  17. Preparation of butadiene D{sub 6} -1-1-2-3-4-4; Preparation du butadiene D{sub 6} -1-1-2-3-4-4

    Energy Technology Data Exchange (ETDEWEB)

    Pichat, L; Chatelain, G [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1959-07-01

    A description of the preparation of butadiene D{sub 6} by dehalogenation of perchlorobutadiene by zinc and heavy water in dioxane. (author) [French] Description de la preparation du butadiene D{sub 6} par reduction deshalogenante du perchlorobutadiene par le zinc et l'eau lourde dans le dioxane. (auteur)

  18. 46 CFR 154.1750 - Butadiene or vinyl chloride: Refrigeration system.

    Science.gov (United States)

    2010-10-01

    ... and Operating Requirements § 154.1750 Butadiene or vinyl chloride: Refrigeration system. A... 46 Shipping 5 2010-10-01 2010-10-01 false Butadiene or vinyl chloride: Refrigeration system. 154.1750 Section 154.1750 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK...

  19. [Studies on the industrial styrene poisoning (Part X). Determination of styrene in biological materials by gas chromatography (author's transl)].

    Science.gov (United States)

    Teramoto, K; Horiguchi, S

    1980-09-01

    For monitoring solvents exposure, it is useful to determine not only metabolites of the solvents in urine but also the solvents themselves in blood and tissues. In a series of studies on the industrial styrene poisoning, we have been determining styrene in blood and other tissues as occasion calls. Our examination of the method is presented in this report. The outline on the method is as follows: Aliquots of 0.5g of tissues being added 5 ml of n-hexane are homogenized by a high-speed homogenizer (Polytoron) for 10 to 30 seconds and the filtrates containing extracts are analyzed for styrene by gas chromatography. The linearity was ascertained from the calibration curve obtained by adding the known quantities of styrene (4, 10, 20, 40, 100 ppm) to the blood, liver and adipose tissues of rats. Rates of recoveries of styrene from the above tissues were 92 to 101 per cent. Reproducibility of this method was examined by repeating determinations of styrene in the blood, liver and adipose tissues of rats exposed to 500 ppm styrene for 4 hours, the coefficients of variation being 2.8 to 14.0 per cent. There was an approximately linear relationship between the styrene concentration (0 to 1,000 ppm) of the exposed air and those in the blood of exposed rats. We conclude that our simple and rapid method is applicable to determination of solvents other than styrene in organs and tissues by combining suitable solvents for extraction and packings of gas chromatography.

  20. A 3D-Printable Polymer-Metal Soft-Magnetic Functional Composite—Development and Characterization

    Directory of Open Access Journals (Sweden)

    Bilal Khatri

    2018-01-01

    Full Text Available In this work, a 3D printed polymer–metal soft-magnetic composite was developed and characterized for its material, structural, and functional properties. The material comprises acrylonitrile butadiene styrene (ABS as the polymer matrix, with up to 40 vol. % stainless steel micropowder as the filler. The composites were rheologically analyzed and 3D printed into tensile and flexural test specimens using a commercial desktop 3D printer. Mechanical characterization revealed a linearly decreasing trend of the ultimate tensile strength (UTS and a sharp decrease in Young’s modulus with increasing filler content. Four-point bending analysis showed a decrease of up to 70% in the flexural strength of the composite and up to a two-factor increase in the secant modulus of elasticity. Magnetic hysteresis characterization revealed retentivities of up to 15.6 mT and coercive forces of up to 4.31 kA/m at an applied magnetic field of 485 kA/m. The composite shows promise as a material for the additive manufacturing of passive magnetic sensors and/or actuators.

  1. Pyrolysis of plastic packaging waste: A comparison of plastic residuals from material recovery facilities with simulated plastic waste.

    Science.gov (United States)

    Adrados, A; de Marco, I; Caballero, B M; López, A; Laresgoiti, M F; Torres, A

    2012-05-01

    Pyrolysis may be an alternative for the reclamation of rejected streams of waste from sorting plants where packing and packaging plastic waste is separated and classified. These rejected streams consist of many different materials (e.g., polyethylene (PE), polypropylene (PP), polystyrene (PS), polyvinyl chloride (PVC), polyethylene terephthalate (PET), acrylonitrile butadiene styrene (ABS), aluminum, tetra-brik, and film) for which an attempt at complete separation is not technically possible or economically viable, and they are typically sent to landfills or incinerators. For this study, a simulated plastic mixture and a real waste sample from a sorting plant were pyrolyzed using a non-stirred semi-batch reactor. Red mud, a byproduct of the aluminum industry, was used as a catalyst. Despite the fact that the samples had a similar volume of material, there were noteworthy differences in the pyrolysis yields. The real waste sample resulted, after pyrolysis, in higher gas and solid yields and consequently produced less liquid. There were also significant differences noted in the compositions of the compared pyrolysis products. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Tribology of Polymer Matrix Composites (PMCs) Fabricated by Additive Manufacturing (AM)

    Science.gov (United States)

    Gupta, S.; Dunnigan, R.; Salem, A.; Kuentz, L.; Halbig, M. C.; Singh, M.

    2016-01-01

    The integral process of depositing thin layers of material, one after another, until the designed component is created is collectively referred to as Additive Manufacturing (AM). Fused deposition process (FDP) is a type of AM where feedstock is extruded into filaments which then are deposited by 3D printing, and the solidification occurs during cooling of the melt. Currently, complex structures are being fabricated by commercial and open source desktop 3D printers. Recently, metal powder containing composite filaments based on polylactic acid (PLA) and acrylonitrile butadiene styrene (ABS) have emerged, which could be utilized for multifunctional applications. For further deployment in the field, especially for aerospace and ground-based applications, it is critical to understand the tribological behavior of 3D printed materials. In this presentation, we will report the tribological behavior of different polymer matrix composites fabricated by fused deposition process. These results will be compared with the base polymer systems. During this study, the tribological behavior of all the samples will be evaluated with tab-on-disc method and compared for different metallic powder reinforcements.

  3. Study of the thermal properties of filaments for 3D printing

    International Nuclear Information System (INIS)

    Trhlíková, Lucie; Zmeskal, Oldrich; Florian, Pavel; Psencik, Petr

    2016-01-01

    Various materials are used for 3D printing, most commonly Acrylonitrile butadiene styrene (ABS), Polylactic acid (PLA), Polyethylene (PET) and Polypropylene (PP). These materials differ mainly in their melting point, which significantly influences the properties of the final products. Filaments are melted in the print head during the printing process. The temperature range is from 150 °C to 250 °C depending on the technology used. The optimum temperature for the cooling substrate on which printing is carried out is chosen so as to ensure uniform cooling and deformation. It generally varies between (40 – 100) °C. From the above it is clear that both temperatures can significantly affect the properties of the printed 3D object. It is therefore important to determine the thermal parameters (thermal conductivity, specific heat and thermal diffusivity) of the materials used across the entire range of temperatures. For evaluating the properties of different types of PLA materials, the step transient method was used, which allows determination of all required parameters using a fractal heat transfer model.

  4. Three new renal simulators for use in nuclear medicine

    Science.gov (United States)

    Dullius, Marcos; Fonseca, Mateus; Botelho, Marcelo; Cunha, Clêdison; Souza, Divanízia

    2014-03-01

    Renal scintigraphy is useful to provide both functional and anatomic information of renal flow of cortical functions and evaluation of pathological collecting system. The objective of this study was develop and evaluate the performance of three renal phantoms: Two anthropomorphic static and another dynamic. The static images of the anthropomorphic phantoms were used for comparison with static renal scintigraphy with 99mTc-DMSA in different concentrations. These static phantoms were manufactured in two ways: one was made of acrylic using as mold a human kidney preserved in formaldehyde and the second was built with ABS (acrylonitrile butadiene styrene) in a 3D printer. The dynamic renal phantom was constructed of acrylic to simulate renal dynamics in scintigraphy with 99mTc-DTPA. These phantoms were scanned with static and dynamic protocols and compared with clinical data. Using these phantoms it is possible to acquire similar renal images as in the clinical scintigraphy. Therefore, these new renal phantoms can be very effective for use in the quality control of renal scintigraphy, and image processing systems.

  5. Prevalence of microplastics in the marine waters of Qatar.

    Science.gov (United States)

    Castillo, Azenith B; Al-Maslamani, Ibrahim; Obbard, Jeffrey Philip

    2016-10-15

    Microplastics are firmly recognized as a ubiquitous and growing threat to marine biota and their associated marine habitats worldwide. The evidence of the prevalence of microplastics was documented for the first time in the marine waters of Qatar's Exclusive Economic Zone (EEZ). An optimized and validated protocol was developed for the extraction of microplastics from plankton-rich seawater samples without loss of microplastic debris present and characterized using Attenuated Total Reflectance-Fourier Transform Infrared spectroscopy. In total 30 microplastic polymers have been identified with an average concentration of 0.71particlesm(-3) (range 0-3particlesm(-3)). Polypropylene, low density polyethylene, polyethylene, polystyrene, polyamide, polymethyl methacrylate, cellophane, and acrylonitrile butadiene styrene polymers were characterized with majority of the microplastics either granular shape, sizes ranging from 125μm to 1.82mm or fibrous with sizes from 150μm to 15.98mm. The microplastics are evident in areas where nearby anthropogenic activities, including oil-rig installations and shipping operations are present. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Low-Velocity Impact Behavior of Sandwich Structures with Additively Manufactured Polymer Lattice Cores

    Science.gov (United States)

    Turner, Andrew J.; Al Rifaie, Mohammed; Mian, Ahsan; Srinivasan, Raghavan

    2018-05-01

    Sandwich panel structures are widely used in aerospace, marine, and automotive applications because of their high flexural stiffness, strength-to-weight ratio, good vibration damping, and low through-thickness thermal conductivity. These structures consist of solid face sheets and low-density cellular core structures, which are traditionally based upon honeycomb folded-sheet topologies. The recent advances in additive manufacturing (AM) or 3D printing process allow lattice core configurations to be designed with improved mechanical properties. In this work, the sandwich core is comprised of lattice truss structures (LTS). Two different LTS designs are 3D-printed using acrylonitrile butadiene styrene (ABS) and are tested under low-velocity impact loads. The absorption energy and the failure mechanisms of lattice cells under such loads are investigated. The differences in energy-absorption capabilities are captured by integrating the load-displacement curve found from the impact response. It is observed that selective placement of vertical support struts in the unit-cell results in an increase in the absorption energy of the sandwich panels.

  7. Unique synergism in flame retardancy in ABS based composites through blending PVDF and halloysite nanotubes

    Science.gov (United States)

    Remanan, Sanjay; Sharma, Maya; Jayashree, Priyadarshini; Parameswaranpillai, Jyotishkumar; Fabian, Thomas; Shih, Julie; Shankarappa, Prasad; Nuggehalli, Bharath; Bose, Suryasarathi

    2017-06-01

    This study demonstrates flame retardant materials designed using bi-phasic polymer blends of acrylonitrile butadiene styrene (ABS) and polyvinylidene fluoride (PVDF) containing halloysite nanotubes (HNTs) and Cloisite 30B nanoclay. The prepared blends with and without nanoparticles were extensively characterized. The nanoparticles were added in different weight concentrations to improve the flame retardancy. It was observed that prepared ABS/PVDF blends showed better flame retardancy than ABS based composites. The flame resistance was further improved by the addition of nanoparticles in the blends. The microscale combustion calorimetry (MCC) test showed better flame resistance in ABS/PVDF blends filled with 5 wt% HNTs than other composites. The total heat release of ABS/PVDF blend filled with 5 wt% HNTs decreased by 31% and also the heat of combustion decreased by 26% as compared to neat ABS. When compared with nanoparticles, the addition of PVDF reduced the peak heat release rate (PHRR) and increased the char residue more effectively. A synergistic improvement was observed from both PVDF and HNTs on the flame resistance properties.

  8. Separation of polyethylene terephthalate from municipal waste plastics by froth flotation for recycling industry.

    Science.gov (United States)

    Wang, Chong-Qing; Wang, Hui; Liu, You-Nian

    2015-01-01

    Recycling is an effective way to manage plastic wastes and receives considerable attention. Since plastic mixtures are difficult to recycle because of their intrinsic characteristics, separation of mixed plastics is the key problem for recycling. Separation of polyethylene terephthalate (PET) from municipal waste plastics (MWP) by froth flotation combined with alkaline pretreatment was investigated for recycling industry. The effect of process variables was estimated by L9 (3(4)) orthogonal array of experiments and single factor experiments. The optimum conditions of alkaline pretreatment are 10 wt% sodium hydroxide, 20 min and 70°C. After alkaline pretreatment under optimum conditions, flotation separation PET from acrylonitrile-butadiene-styrene, polystyrene, polycarbonate or polyvinyl chloride was achieved with high purity and efficiency. The purity of PET is up to 98.46% and the recovery is above 92.47%. A flow sheet of separation PET from MWP by a combination of froth flotation and sink float separation was designed. This study facilitates industrial application of plastics flotation and provides technical insights into recycling of waste plastics. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Composition of plastics from waste electrical and electronic equipment (WEEE) by direct sampling.

    Science.gov (United States)

    Martinho, Graça; Pires, Ana; Saraiva, Luanha; Ribeiro, Rita

    2012-06-01

    This paper describes a direct analysis study carried out in a recycling unit for waste electrical and electronic equipment (WEEE) in Portugal to characterize the plastic constituents of WEEE. Approximately 3400 items, including cooling appliances, small WEEE, printers, copying equipment, central processing units, cathode ray tube (CRT) monitors and CRT televisions were characterized, with the analysis finding around 6000 kg of plastics with several polymer types. The most common polymers are polystyrene, acrylonitrile-butadiene-styrene, polycarbonate blends, high-impact polystyrene and polypropylene. Additives to darken color are common contaminants in these plastics when used in CRT televisions and small WEEE. These additives can make plastic identification difficult, along with missing polymer identification and flame retardant identification marks. These drawbacks contribute to the inefficiency of manual dismantling of WEEE, which is the typical recycling process in Portugal. The information found here can be used to set a baseline for the plastics recycling industry and provide information for ecodesign in electrical and electronic equipment production. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. [Wastewater from the condensation and drying section of ABS was pretreated by microelectrolysis].

    Science.gov (United States)

    Lai, Bo; Qin, Hong-Ke; Zhou, Yue-Xi; Song, Yu-Dong; Cheng, Jia-Yun; Sun, Li-Dong

    2011-04-01

    Wastewater from the condensation and drying section of acrylonitrile-butadiene-styrene (ABS) resin plant was pretreated by the microelectrolysis, and the effect of the influent pH value on the pollution removal efficiency of the microelectrolysis was mainly studied. In order to study the electrochemical action of the microelectrolysis for the degradation of toxic refractory organic pollutants, two control experiments of activated carbon and iron were set up. The results showed that the TOC removal efficiencies were all fluctuated between 40% and 60% under the condition of different influent pH values. The microelectrolysis can decompose and transform the toxic refractory organic pollutants and increase the BOD5/COD ratio from 0.32 to 0.60, which increased the biodegradability of ABS resin wastewater significantly. When the pH value of influent was 4.0, the BOD5/COD ratio of effluent reached 0.71. The result of UV-vis spectra indicates that the removal efficiency of the organic nitrile was the highest with influent pH was 4.0. Therefore, the best influent pH value of microelectrolysis was 4.0.

  11. Physical and Mechanical Characteristics of Kevlar Fiber-Reinforced PC/ABS Composites

    Directory of Open Access Journals (Sweden)

    Kuljira Sujirote

    2012-01-01

    Full Text Available In this research, the composites between polycarbonate (PC and acrylonitrile-butadiene-styrene (ABS alloy and Kevlar fiber were prepared. The flexural and tensile properties of PC/ABS alloy and its composites were determined using a universal testing machine. The synergistic behavior of flexural modulus was observed for all regions of PC contents, while the synergism of flexural strength and tensile strength were found in some PC contents. It was found that the optimum weight ratio of PC:ABS was 60:40. In the Kevlar Fiber-reinforced PC/ABS composite system at PC:ABS of 60:40, both flexural modulus and strength were increased with matrix contents. Additionally, the flexural strength drastically increased with the matrix content and then reached the maximum value of 167 MPa at the matrix content of 33.4 wt%. The results from peel test, water contact measurement, and scanning electron microscopy (SEM reveal that the interfacial adhesion between the Kevlar fiber and the polymer matrix could be improved by increasing the PC content in the matrix.

  12. A novel process for separation of hazardous poly(vinyl chloride) from mixed plastic wastes by froth flotation.

    Science.gov (United States)

    Wang, Jianchao; Wang, Hui; Wang, Chongqing; Zhang, Lingling; Wang, Tao; Zheng, Long

    2017-11-01

    A novel method, calcium hypochlorite (CHC) treatment, was proposed for separation of hazardous poly(vinyl chloride) (PVC) plastic from mixed plastic wastes (MPWs) by froth flotation. Flotation behavior of single plastic indicates that PVC can be separated from poly(ethylene terephthalate) (PET), poly(acrylonitrile-co-butadiene-co-styrene) (ABS), polystyrene (PS), polycarbonate (PC) and poly(methyl methacrylate) (PMMA) by froth flotation combined with CHC treatment. Mechanism of CHC treatment was examined by contact angle measurement, scanning electron microscopy, Fourier transform infrared and X-ray photoelectron spectroscopy. Under the optimum conditions, separation of PVC from binary plastics with different particle sizes is achieved efficiently. The purity of PC, ABS, PMMA, PS and PET is greater than 96.8%, 98.5%, 98.8%, 97.4% and 96.3%, respectively. Separation of PVC from multi-plastics was further conducted by two-stage flotation. PVC can be separated efficiently from MPWs with residue content of 0.37%. Additionally, reusing CHC solution is practical. This work indicates that separation of hazardous PVC from MPWs is effective by froth flotation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Study of the thermal properties of filaments for 3D printing

    Energy Technology Data Exchange (ETDEWEB)

    Trhlíková, Lucie, E-mail: xctrhlikova@fch.vutbr.cz; Zmeskal, Oldrich, E-mail: zmeskal@fch.vutbr.cz; Florian, Pavel, E-mail: xcflorianp@fch.vutbr.cz [Faculty of Chemistry, Brno University of Technology, 612 00 Brno (Czech Republic); Psencik, Petr, E-mail: Petr.Psencik@ceitec.vutbr.cz [CEITEC, Brno University of Technology, 612 00 Brno (Czech Republic)

    2016-07-07

    Various materials are used for 3D printing, most commonly Acrylonitrile butadiene styrene (ABS), Polylactic acid (PLA), Polyethylene (PET) and Polypropylene (PP). These materials differ mainly in their melting point, which significantly influences the properties of the final products. Filaments are melted in the print head during the printing process. The temperature range is from 150 °C to 250 °C depending on the technology used. The optimum temperature for the cooling substrate on which printing is carried out is chosen so as to ensure uniform cooling and deformation. It generally varies between (40 – 100) °C. From the above it is clear that both temperatures can significantly affect the properties of the printed 3D object. It is therefore important to determine the thermal parameters (thermal conductivity, specific heat and thermal diffusivity) of the materials used across the entire range of temperatures. For evaluating the properties of different types of PLA materials, the step transient method was used, which allows determination of all required parameters using a fractal heat transfer model.

  14. Metallization of Various Polymers by Cold Spray

    Science.gov (United States)

    Che, Hanqing; Chu, Xin; Vo, Phuong; Yue, Stephen

    2018-01-01

    Previous results have shown that metallic coatings can be successfully cold sprayed onto polymeric substrates. This paper studies the cold sprayability of various metal powders on different polymeric substrates. Five different substrates were used, including carbon fiber reinforced polymer (CFRP), acrylonitrile butadiene styrene (ABS), polyether ether ketone (PEEK), polyethylenimine (PEI); mild steel was also used as a benchmark substrate. The CFRP used in this work has a thermosetting matrix, and the ABS, PEEK and PEI are all thermoplastic polymers, with different glass transition temperatures as well as a number of distinct mechanical properties. Three metal powders, tin, copper and iron, were cold sprayed with both a low-pressure system and a high-pressure system at various conditions. In general, cold spray on the thermoplastic polymers rendered more positive results than the thermosetting polymers, due to the local thermal softening mechanism in the thermoplastics. Thick copper coatings were successfully deposited on PEEK and PEI. Based on the results, a method is proposed to determine the feasibility and deposition window of cold spraying specific metal powder/polymeric substrate combinations.

  15. CO2/CH4 Separation via Polymeric Blend Membrane

    Directory of Open Access Journals (Sweden)

    H. Sanaeepur

    2013-01-01

    Full Text Available CO2/CH4 gas separation is a very important applicatable process in upgrading the natural gas and landfil gas recovery. In this work, to investigate the membrane separation process performance, the gas permeation results andCO2/CH4 separation characteristics of different prepared membranes (via blending different molecular weights of polyethylene glycol (PEG as a modifier with acrylonitrile-butadiene-styrene (ABS as a backbone structure have been studied. Furthermore, SEM analysis was carried out for morphological investigations. The effect of PEG content on gas transport properties on the selected sample was also studied. The effect of pressure on CO2 permeation was examined and showed that at the pressure beyond 4 bar, permeability is not affected by pressure. The results showed that more or less in all cases, incorporation of PEG molecules without any significant increase in CH4 permeability increases the CO2/CH4 selectivity. From the view point of gas separation applications the resultant data are within commercial attractive range

  16. Deposition of Antimicrobial Copper-Rich Coatings on Polymers by Atmospheric Pressure Jet Plasmas

    Directory of Open Access Journals (Sweden)

    Jana Kredl

    2016-04-01

    Full Text Available Inanimate surfaces serve as a permanent reservoir for infectious microorganisms, which is a growing problem in areas in everyday life. Coating of surfaces with inorganic antimicrobials, such as copper, can contribute to reduce the adherence and growth of microorganisms. The use of a DC operated air plasma jet for the deposition of copper thin films on acrylonitrile butadiene styrene (ABS substrates is reported. ABS is a widespread material used in consumer applications, including hospitals. The influence of gas flow rate and input current on thin film characteristics and its bactericidal effect have been studied. Results from X-ray photoelectron spectroscopy (XPS and atomic force microscopy confirmed the presence of thin copper layers on plasma-exposed ABS and the formation of copper particles with a size in the range from 20 to 100 nm, respectively. The bactericidal properties of the copper-coated surfaces were tested against Staphylococcus aureus. A reduction in growth by 93% compared with the attachment of bacteria on untreated samples was observed for coverage of the surface with 7 at. % copper.

  17. Three new renal simulators for use in nuclear medicine

    International Nuclear Information System (INIS)

    Dullius, M.; Fonseca, M.; Botelho, M.; Cunha, C.; Souza, D.

    2014-01-01

    Renal scintigraphy is useful to provide both functional and anatomic information of renal flow of cortical functions and evaluation of pathological collecting system. The objective of this study was to develop and evaluate the performance of 3 renal phantoms: Two anthropomorphic static and another dynamic. The static images of the anthropomorphic phantoms were used for comparison with static renal scintigraphy with 99m Tc-DMSA in different concentrations. These static phantoms were manufactured in 2 ways: one was made of acrylic using as mold a human kidney preserved in formaldehyde and the second was built with ABS (acrylonitrile butadiene styrene) in a 3D printer. The dynamic renal phantom was constructed of acrylic to simulate renal dynamics in scintigraphy with 99m Tc-DTPA. These phantoms were scanned with static and dynamic protocols and compared with clinical data. Using these phantoms it is possible to acquire similar renal images as in the clinical scintigraphy. Therefore, these new renal phantoms can be very effective for use in the quality control of renal scintigraphy, and image processing systems. (authors)

  18. Low-Velocity Impact Behavior of Sandwich Structures with Additively Manufactured Polymer Lattice Cores

    Science.gov (United States)

    Turner, Andrew J.; Al Rifaie, Mohammed; Mian, Ahsan; Srinivasan, Raghavan

    2018-04-01

    Sandwich panel structures are widely used in aerospace, marine, and automotive applications because of their high flexural stiffness, strength-to-weight ratio, good vibration damping, and low through-thickness thermal conductivity. These structures consist of solid face sheets and low-density cellular core structures, which are traditionally based upon honeycomb folded-sheet topologies. The recent advances in additive manufacturing (AM) or 3D printing process allow lattice core configurations to be designed with improved mechanical properties. In this work, the sandwich core is comprised of lattice truss structures (LTS). Two different LTS designs are 3D-printed using acrylonitrile butadiene styrene (ABS) and are tested under low-velocity impact loads. The absorption energy and the failure mechanisms of lattice cells under such loads are investigated. The differences in energy-absorption capabilities are captured by integrating the load-displacement curve found from the impact response. It is observed that selective placement of vertical support struts in the unit-cell results in an increase in the absorption energy of the sandwich panels.

  19. Enhanced protein adsorption and patterning on nanostructured latex-coated paper.

    Science.gov (United States)

    Juvonen, Helka; Määttänen, Anni; Ihalainen, Petri; Viitala, Tapani; Sarfraz, Jawad; Peltonen, Jouko

    2014-06-01

    Specific interactions of extracellular matrix proteins with cells and their adhesion to the substrate are important for cell growth. A nanopatterned latex-coated paper substrate previously shown to be an excellent substrate for cell adhesion and 2D growth was studied for directed immobilization of proteins. The nanostructured latex surface was formed by short-wavelength IR irradiation of a two-component latex coating consisting of a hydrophilic film-forming styrene butadiene acrylonitrile copolymer and hydrophobic polystyrene particles. The hydrophobic regions of the IR-treated latex coating showed strong adhesion of bovine serum albumin (cell repelling protein), fibronectin (cell adhesive protein) and streptavidin. Opposite to the IR-treated surface, fibronectin and streptavidin had a poor affinity toward the untreated pristine latex coating. Detailed characterization of the physicochemical surface properties of the latex-coated substrates revealed that the observed differences in protein affinity were mainly due to the presence or absence of the protein repelling polar and charged surface groups. The protein adsorption was assisted by hydrophobic (dehydration) interactions. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Pollution characteristics and health risk assessment of volatile organic compounds emitted from different plastic solid waste recycling workshops.

    Science.gov (United States)

    He, Zhigui; Li, Guiying; Chen, Jiangyao; Huang, Yong; An, Taicheng; Zhang, Chaosheng

    2015-04-01

    The pollution profiles of volatile organic compounds (VOCs) emitted from different recycling workshops processing different types of plastic solid waste (PSW) and their health risks were investigated. A total of 64 VOCs including alkanes, alkenes, monoaromatics, oxygenated VOCs (OVOCs), chlorinated VOCs (ClVOCs) and acrylonitrile during the melting extrusion procedure were identified and quantified. The highest concentration of total VOCs (TVOC) occurred in the poly(acrylonitrile-butadiene styrene) (ABS) recycling workshop, followed by the polystyrene (PS), polypropylene (PP), polyamide (PA), polyvinyl chloride (PVC), polyethylene (PE) and polycarbonate (PC) workshops. Monoaromatics were found as the major component emitted from the ABS and PS recycling workshops, while alkanes were mainly emitted from the PE and PP recycling processes, and OVOCs from the PVC and PA recycling workshops. According to the occupational exposure limits' (OEL) assessment, the workers suffered acute and chronic health risks in the ABS and PS recycling workshops. Meanwhile, it was found that most VOCs in the indoor microenvironments were originated from the melting extrusion process, while the highest TVOC concentration was observed in the PS rather than in the ABS recycling workshop. Non-cancer hazard indices (HIs) of all individual VOCs were <1.0, whereas the total HI in the PS recycling workshop was 1.9, posing an adverse chronic health threat. Lifetime cancer risk assessment suggested that the residents also suffered from definite cancer risk in the PS, PA, ABS and PVC recycling workshops. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Preliminary study on radiation crosslinking of PE-NBR multiple phase system

    International Nuclear Information System (INIS)

    Wang Hong; Zhang Wanxi; Sun Jiazhen

    1989-01-01

    The effect of radiation crosslinking on the structure and properties of PE-NBR (polyethylene-acrylonitrile-butadiene rubber) multiple phase system was studied in this paper. The relationship of sol fraction and irradiated dose to multiplephase system was demonstrated

  2. 21 CFR 177.1810 - Styrene block polymers.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Styrene block polymers. 177.1810 Section 177.1810... FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use as Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1810 Styrene block polymers. The styrene...

  3. Rubber curing chemistry governing the orientation of layered silicate

    Directory of Open Access Journals (Sweden)

    2007-11-01

    Full Text Available The effect of curing systems on the orientation and the dispersion of the layered silicates in acrylonitrile butadiene rubber nanocomposite is reported. Significant differences in X-ray diffraction pattern between peroxide curing and sulfur curing was observed. Intense X-ray scattering values in the XRD experiments from peroxide cured vulcanizates indicate an orientation of the layers in a preferred direction as evinced by transmission electron micrographs. However, sulfur cured vulcanizates show no preferential orientation of the silicate particles. Nevertheless, a closer inspection of transmission electron microscopy (TEM images of peroxide and sulfur cured samples shows exfoliated silicate layers in the acrylonitrile butadiene rubber (NBR matrix. It was revealed in the prevailing study that the use of an excess amount of stearic acid in the formulation of the sulfur curing package leads to almost exfoliated type X-ray scattering pattern.

  4. 3D-Printed Millimeter Wave Structures

    Science.gov (United States)

    2016-03-14

    demonstrates the resolution of the printer with a 10 micron nozzle. Figure 2: Measured loss tangent of SEBS and SBS samples. 3D - Printed Millimeter... 3D printing of styrene-butadiene-styrene (SBS) and styrene ethylene/butylene-styrene (SEBS) is used to demonstrate the feasibility of 3D - printed ...Additionally, a dielectric lens is printed which improves the antenna gain of an open-ended WR-28 waveguide from 7 to 8.5 dBi. Keywords: 3D printing

  5. The effect of long-term oxidation on the rheological properties of polymer modified asphalts

    Energy Technology Data Exchange (ETDEWEB)

    Yonghong Ruan; Richard R. Davison; Charles J. Glover [Texas A & M University, College Station, TX (United States). Department of Chemical Engineering

    2003-10-01

    The effect of long-term aging on rheological properties of polymer modified asphalt binders was studied. Modifiers included diblock poly(styrene-b-butadiene) rubber, triblock poly(styrene-b-butadiene-b-styrene), and tire rubber. Asphalt aging was carried out either at 60{sup o}C in a controlled environmental room or at 100{sup o}C in a pressure aging vessel (AASHTO Provisional Standards, 1993). Both dynamic shear properties and extensional properties were investigated. Polymer modification resulted in increased asphalt complex modulus at high temperatures, decreased asphalt complex modulus at low temperatures, broadened relaxation spectra, and improved ductility. Oxidative aging decreased asphalt temperature susceptibility, damaged the polymer network in binders, further broadened the relaxation spectrum, and diminished polymer effectiveness in improving asphalt ductility. 27 refs., 8 figs., 3 tabs.

  6. Muonium radicals in benzene-styrene mixtures

    International Nuclear Information System (INIS)

    Ng, B.W.; Stadlbauer, J.W.; Walker, D.C.

    1984-01-01

    Muonium radicals were observed through their μ + SR precession frequencies in high transverse magnetic fields in pure benzene, pure styrene and their mixtures, all as liquids at room temperature. In benzene-styrene mixtures, the radicals obtained in each pure liquid are both present, so no slow (10 -9 -10 -5 s) intermolecular exchange occurs; but strong selectivity was found with the formation of the radical from styrene being about eight-times more probable than the radical from benzene. (Auth.)

  7. Preparation of pinewood/polymer/composites using gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ajji, Zaki [Polymer Technology Division, Department of Radiation Technology, Atomic Energy Commission, P.O. Box 6091, Damascus (Syrian Arab Republic)]. E-mail: atomic@aec.org.sy

    2006-09-15

    Wood/polymer composites (WPC) have been prepared from pinewood with different compounds using gamma irradiation: butyl acrylate, butyl methacrylate, styrene, acrylamide, acrylonitrile, and unsaturated polyester styrene resin. The polymer loading was determined with respect to the compound concentration and the irradiation dose. The polymer loading increases generally with increase in the monomer or polymer concentration. Tensile and compression strength have been improved in the four cases, but no improvement was observed using unsaturated polyester styrene resin or acrylamide.

  8. Helbredsrisici ved eksponering for styren i glasfiberplastindustrien

    DEFF Research Database (Denmark)

    Kolstad, Henrik Albert; Ebbehøj, Nielse; Bonde, Jens Peter

    2012-01-01

    or relevant exposure levels. We recommend reconsideration of the current Danish threshold limit value of 25 ppm, biological monitoring of styrene exposed workers, and epidemiological analyses of styrene exposure levels and long-term health effects among employees of the Danish reinforced plastics industry.......This is a summary of the health risks of occupational styrene exposure based on recent reviews. We conclude about the exposure levels that there is strong evidence that styrene causes acute irritation of eyes and respiratory tract above 25 ppm, genotoxic effects above 10 ppm, and persistent nervous...... system effects with for instance reduced psychological performance, colour discrimination and hearing level following long-term styrene exposure above 10 ppm. There is moderate evidence of a causal association with cancer, but data are not sufficient to allow us to pinpoint specific cancers at risk...

  9. Hydroxyl radical and ozone initiated photochemical reactions of 1,3-butadiene

    Science.gov (United States)

    Liu, Xiaoyu; Jeffries, Harvey E.; Sexton, Kenneth G.

    1,3-Butadiene, classified as hazardous in the 1990 Clean Air Act Amendments, is an important ambient air pollutant. Understanding its atmospheric transformation is useful for its own sake, and is also helpful for eliciting isoprene's fate in the atmosphere (isoprene dominates the biogenic emissions in US). In this paper, samples from both hydroxyl- and ozone-initiated photooxidation of 1,3-butadiene were analyzed by derivatization with O- (2,3,4,5,6-pentafluorobenzyl)-hydroxylamine followed by separation and detection by gas chromatography/ion trap mass spectrometry to detect and identify carbonyl compounds. The following carbonyls were observed: formaldehyde, acrolein, glycolaldehyde, glycidaldehyde, 3-hydroxy-propanaldehyde, hydroxy acetone, and malonaldehyde, which can be classified into three categories: epoxy carbonyls, hydroxyl carbonyls, and di-carbonyls. Three non-carbonyls, furan, 1,3-buatdiene monoxide, and 1,3-butadiene diepoxide, were also found. To confirm their identities, both commercially available and synthesized standards were used. To investigate the mechanism of 1,3-butadiene, separate batch reactor experiments for acrolein and 1,3-butadiene monoxide were carried out. Time series samples for several products were also taken. When necessary, computational chemistry methods were also employed. Based on these results, various schemes for the reaction mechanism are proposed.

  10. Renewable Acrylonitrile Production

    Energy Technology Data Exchange (ETDEWEB)

    Beckham, Gregg T [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Karp, Eric M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Eaton, Todd R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sanchez i Nogue, Violeta [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Vorotnikov, Vassili [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Biddy, Mary J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Tan, Eric C [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Brandner, David [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Manker, Lorenz [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Michener, William E [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Vardon, Derek R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Bratis, Adam D [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Liu, Rongming [University of Colorado; Gill, Ryan T. [University of Colorado; Gilhespy, Michelle [Johnson Matthey Technology Centre; Skoufa, Zinovia [Johnson Matthey Technology Centre; Watson, Michael J. [Johnson Matthey Technology Centre; Fruchey, O. Stanley [MATRIC; Cywar, Robin M. [Formerly NREL

    2017-12-08

    Acrylonitrile (ACN) is a petroleum-derived compound used in resins, polymers, acrylics, and carbon fiber. We present a process for renewable ACN production using 3-hydroxypropionic acid (3-HP), which can be produced microbially from sugars. The process achieves ACN molar yields exceeding 90% from ethyl 3-hydroxypropanoate (ethyl 3-HP) via dehydration and nitrilation with ammonia over an inexpensive titanium dioxide solid acid catalyst. We further describe an integrated process modeled at scale that is based on this chemistry and achieves near-quantitative ACN yields (98 +/- 2%) from ethyl acrylate. This endothermic approach eliminates runaway reaction hazards and achieves higher yields than the standard propylene ammoxidation process. Avoidance of hydrogen cyanide as a by-product also improves process safety and mitigates product handling requirements.

  11. Anisotropy and humidity effect on tensile properties and electrical volume resistivity of fused deposition modeled acrylonitrile butadiene styrene composites

    OpenAIRE

    Almenara Cueto, Carlos Ignacio

    2017-01-01

    En la presente tesis, se estudió la influencia de la anisotropía y la humedad en las propiedades mecánicas a la tracción y la resistividad volumétrica de los compuestos de Acrilonitrilo Butadieno Estireno reforzado con Nano Tubos de Carbono y Acrilonitrilo Butadieno Estireno reforzado con Micro Fibras de Carbono impresos en 3D de por Deposición de Material Fundido. Para estudiar la influencia de la anisotropía, tres diferentes orientaciones de impresión de capa fueron compar...

  12. Pulmonary function and oxidative stress in workers exposed to styrene in plastic factory: occupational hazards in styrene-exposed plastic factory workers.

    Science.gov (United States)

    Sati, Prakash Chandra; Khaliq, Farah; Vaney, Neelam; Ahmed, Tanzeel; Tripathi, Ashok K; Banerjee, Basu Dev

    2011-11-01

    Styrene is a volatile organic compound used in factories for synthesis of plastic products. The pneumotoxicity of styrene in experimental animals is known. The aim of the present study was to study the effect of styrene on lung function and oxidative stress in occupationally exposed workers in plastic factory. Thirty-four male workers, between 18 and 40 years of age, exposed to styrene for atleast 8 hours a day for more than a year were studied, while 30 age- and sex-matched healthy subjects not exposed to styrene served as controls. Assessment of lung functions showed a statistically significant reduction (p volumes, capacities (FVC, FEV(1), VC, ERV, IRV, and IC) and flow rates (PEFR, MEF(75%), and MVV) in the study group (workers) as compared to controls. Malondialdehyde (MDA) was observed to be significantly high (p < 0.05) while ferric-reducing ability of plasma (FRAP) was significantly low (p < 0.05) in styrene-exposed subjects. Reduced glutathione (GSH) level was significantly depleted in exposed subjects as compared to control group. The mean value of serum cytochrome c in styrene-exposed subjects was found to be 1.1 ng/ml (0.89-1.89) while in control its levels were under detection limit (0.05 ng/ml). It shows that styrene inhalation by workers leads to increased level of oxidative stress, which is supposed to be the cause of lung damage.

  13. CYP2F2-generated metabolites, not styrene oxide, are a key event mediating the mode of action of styrene-induced mouse lung tumors.

    Science.gov (United States)

    Cruzan, G; Bus, J; Hotchkiss, J; Harkema, J; Banton, M; Sarang, S

    2012-02-01

    Styrene induces lung tumors in mice but not in rats. Although metabolism of styrene to 7,8-styrene oxide (SO) by CYP2E1 has been suggested as a mediator of styrene toxicity, lung toxicity is not attenuated in CYP2E1 knockout mice. However, styrene and/or SO metabolism by mouse lung Clara cell-localized CYP2F2 to ring-oxidized cytotoxic metabolite(s) has been postulated as a key metabolic gateway responsible for both lung toxicity and possible tumorigenicity. To test this hypothesis, the lung toxicity of styrene and SO was evaluated in C57BL/6 (WT) and CYP2F2⁻/⁻ knockout mice treated with styrene (400 mg/kg/day, gavage, or 200 or 400 mg/kg/day, ip) or S- or R-SO (200 mg/kg/day, ip) for 5 days. Styrene treated WT mice displayed significant necrosis and exfoliation of Clara cells, and cumulative BrdU-labeling index of S-phase cells was markedly increased in terminal bronchioles of WT mice exposed to styrene or S- or RSO. In contrast, Clara and terminal bronchiole cell toxicity was not observed in CYP2F2⁻/⁻ mice exposed to either styrene or SO. This study clearly demonstrates that the mouse lung toxicity of both styrene and SO is critically dependent on metabolism by CYP2F2. Importantly, the human isoform of CYP2F, CYP2F1, is expressed at much lower levels and likely does not catalyze significant styrene metabolism, supporting the hypothesis that styrene-induced mouse lung tumors may not quantitatively, or possibly qualitatively, predict lung tumor potential in humans. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Toughening of carbon fibre reinforced polymer composites with rubber nanoparticles for advanced industrial applications

    Directory of Open Access Journals (Sweden)

    N. G. Ozdemir

    2016-05-01

    Full Text Available This study investigates the effects of nano carboxylic acrylonitrile butadiene rubber (CNBR-NP and nano acrylonitrile butadiene rubber (NBR-NP on the interlaminar shear strength and fracture toughness of carbon fibre reinforced polymer composites (CFRP with dicyandiamide-cured epoxy matrix. The results show that nano-size dispersion of rubber significantly improved the Mode I delamination fracture toughness (GIC of the CFRP by 250% and its Mode II delamination fracture toughness (GIIC by 80% with the addition of 20 phr of CNBR-NP. For the NBR-NP system, the GIC and GIIC delamination fracture toughness of the CFRP were increased by 200 and 80% respectively with the addition of 20 phr (parts per hundred rubber of nano rubber to the matrix. Scanning electron microscopy (SEM images of the fracture surface revealed that the toughening was mainly achieved by debonding of the nano rubber, crack path deflection and fibre bridging.

  15. Effects on the Physical and Mechanical Properties of Porous Concrete for Plant Growth of Blast Furnace Slag, Natural Jute Fiber, and Styrene Butadiene Latex Using a Dry Mixing Manufacturing Process.

    Science.gov (United States)

    Kim, Hwang-Hee; Kim, Chun-Soo; Jeon, Ji-Hong; Park, Chan-Gi

    2016-01-29

    To evaluate the effects of industrial by-products materials on the performance of porous concrete for plant growth, this study investigated the physical, strength, and freeze/thaw resistances of porous concrete for plant growth, prepared by replacing cement with blast furnace slag powder at 60% by weight, and replacing natural stone aggregates with coarse blast furnace slag aggregates at rates of 0%, 20%, 40%, 60% and 100% by weight. In addition, the effects of adding natural jute fiber and styrene butadiene ( SB) latex to these concrete mixtures were evaluated. The void ratio, compressive strength, and freeze/thaw resistance of the samples were measured. With increasing replacement rate of blast furnace aggregates, addition of latex, and mixing of natural jute fiber the void ratio of the concrete was increased. Compressive strength decreased as the replacement rate of blast-furnace slag aggregates increased. The compressive strength decreased after 100 freeze/thaw cycles, regardless of the replacement rate of blast furnace slag aggregates or of the addition of natural jute fiber and latex. The addition of natural jute fiber and latex decreased the compressive strength after 100 freeze/thaw cycles. The test results indicate that the control mixture satisfied the target compressive strength of 10 MPa and the target void ratio of 25% at replacement rates of 0% and 20% for blast furnace aggregates, and that the mixtures containing latex satisfied the criteria up to an aggregate replacement rate of 60%. However, the mixtures containing natural jute fiber did not satisfy these criteria. The relationship between void ratio and residual compressive strength after 100 freeze/thaw cycles indicates that the control mixture and the mixtures containing jute fiber at aggregate replacement rates of 20% and 40% satisfied the target void ratio of 25% and the target residual compressive strength of over 80% after 100 freeze/thaw cycles. The mixtures containing latex and aggregate

  16. Effects on the Physical and Mechanical Properties of Porous Concrete for Plant Growth of Blast Furnace Slag, Natural Jute Fiber, and Styrene Butadiene Latex Using a Dry Mixing Manufacturing Process

    Directory of Open Access Journals (Sweden)

    Hwang-Hee Kim

    2016-01-01

    Full Text Available To evaluate the effects of industrial by-products materials on the performance of porous concrete for plant growth, this study investigated the physical, strength, and freeze/thaw resistances of porous concrete for plant growth, prepared by replacing cement with blast furnace slag powder at 60% by weight, and replacing natural stone aggregates with coarse blast furnace slag aggregates at rates of 0%, 20%, 40%, 60% and 100% by weight. In addition, the effects of adding natural jute fiber and styrene butadiene (SB latex to these concrete mixtures were evaluated. The void ratio, compressive strength, and freeze/thaw resistance of the samples were measured. With increasing replacement rate of blast furnace aggregates, addition of latex, and mixing of natural jute fiber the void ratio of the concrete was increased. Compressive strength decreased as the replacement rate of blast-furnace slag aggregates increased. The compressive strength decreased after 100 freeze/thaw cycles, regardless of the replacement rate of blast furnace slag aggregates or of the addition of natural jute fiber and latex. The addition of natural jute fiber and latex decreased the compressive strength after 100 freeze/thaw cycles. The test results indicate that the control mixture satisfied the target compressive strength of 10 MPa and the target void ratio of 25% at replacement rates of 0% and 20% for blast furnace aggregates, and that the mixtures containing latex satisfied the criteria up to an aggregate replacement rate of 60%. However, the mixtures containing natural jute fiber did not satisfy these criteria. The relationship between void ratio and residual compressive strength after 100 freeze/thaw cycles indicates that the control mixture and the mixtures containing jute fiber at aggregate replacement rates of 20% and 40% satisfied the target void ratio of 25% and the target residual compressive strength of over 80% after 100 freeze/thaw cycles. The mixtures containing

  17. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics. B G Soares. Articles written in Pramana – Journal of Physics. Volume 69 Issue 3 September 2007 pp 435-443 Research Articles. Variation of long periodicity in blends of styrene butadiene, styrene copolymer/polyaniline using small angle X-ray scattering data · B G Soares ...

  18. Metabolism of styrene to styrene oxide and vinylphenols in cytochrome P450 2F2- and P450 2E1-knockout mouse liver and lung microsomes.

    Science.gov (United States)

    Shen, Shuijie; Li, Lei; Ding, Xinxin; Zheng, Jiang

    2014-01-21

    Pulmonary toxicity of styrene is initiated by cytochromes P450-dependent metabolic activation. P450 2E1 and P450 2F2 are considered to be two main cytochrome P450 enzymes responsible for styrene metabolism in mice. The objective of the current study was to determine the correlation between the formation of styrene metabolites (i.e., styrene oxide and 4-vinylphenol) and pulmonary toxicity of styrene, using Cyp2e1- and Cyp2f2-null mouse models. A dramatic decrease in the formation of styrene glycol and 4-vinylphenol was found in Cyp2f2-null mouse lung microsomes relative to that in the wild-type mouse lung microsomes; however, no significant difference in the production of the styrene metabolites was observed between lung microsomes obtained from Cyp2e1-null and the wild-type mice. The knockout and wild-type mice were treated with styrene (6.0 mmol/kg, ip), and cell counts and LDH activity in bronchoalveolar lavage fluids were monitored to evaluate the pulmonary toxicity induced by styrene. Cyp2e1-null mice displayed a susceptibility to lung toxicity of styrene similar to that of the wild-type animals; however, Cyp2f2-null mice were resistant to styrene-induced pulmonary toxicity. In conclusion, both P450 2E1 and P450 2F2 are responsible for the metabolic activation of styrene. The latter enzyme plays an important role in styrene-induced pulmonary toxicity. Both styrene oxide and 4-vinylphenol are suggested to participate in the development of lung injury induced by styrene.

  19. Regenerated thermosetting styrene-co-acrylonitrile sandwich ...

    Indian Academy of Sciences (India)

    waste SAN foam and obtaining high physical performance. The jute ... as high impact strength, which limited applications in our daily life. In order to solve the problem, fibres were often introduced to ... ited Company (China) were used as the reinforcement. The ... test piece was weighed on electronic balance (accurate to.

  20. Styrene and Azo-Styrene Based Colorimetric Sensors for Highly Selective Detection of Cyanide

    OpenAIRE

    Prestiani, Agustina Eka; Purwono, Bambang

    2017-01-01

    A novel styrene (1) and azo-styrene (2) based chemosensor from vanillin has been successfully synthesized. Sensor 1 was obtained by one step Knoevenagel condensation of Ultrasound method and sensor 2 by coupling diazo and Knoevenagel condensation reaction. Both of sensors showed high sensitivity and selectivity to detect CN- in aqueous media, even the presence of other anions, such as F-, Cl-, Br-, I-, CO32-, SO42-, H2PO4-, and AcO-. Colorimetric sensing of sensor 1 is inclined to be deproton...

  1. High throughput HPLC-ESI(-)-MS/MS methodology for mercapturic acid metabolites of 1,3-butadiene: Biomarkers of exposure and bioactivation.

    Science.gov (United States)

    Kotapati, Srikanth; Esades, Amanda; Matter, Brock; Le, Chap; Tretyakova, Natalia

    2015-11-05

    1,3-Butadiene (BD) is an important industrial and environmental carcinogen present in cigarette smoke, automobile exhaust, and urban air. The major urinary metabolites of BD in humans are 2-(N-acetyl-L-cystein-S-yl)-1-hydroxybut-3-ene/1-(N-acetyl-L-cystein-S-yl)-2-hydroxybut-3-ene (MHBMA), 4-(N-acetyl-L-cystein-S-yl)-1,2-dihydroxybutane (DHBMA), and 4-(N-acetyl-L-cystein-S-yl)-1,2,3-trihydroxybutyl mercapturic acid (THBMA), which are formed from the electrophilic metabolites of BD, 3,4-epoxy-1-butene (EB), hydroxymethyl vinyl ketone (HMVK), and 3,4-epoxy-1,2-diol (EBD), respectively. In the present work, a sensitive high-throughput HPLC-ESI(-)-MS/MS method was developed for simultaneous quantification of MHBMA and DHBMA in small volumes of human urine (200 μl). The method employs a 96 well Oasis HLB SPE enrichment step, followed by isotope dilution HPLC-ESI(-)-MS/MS analysis on a triple quadrupole mass spectrometer. The validated method was used to quantify MHBMA and DHBMA in urine of workers from a BD monomer and styrene-butadiene rubber production facility (40 controls and 32 occupationally exposed to BD). Urinary THBMA concentrations were also determined in the same samples. The concentrations of all three BD-mercapturic acids and the metabolic ratio (MHBMA/(MHBMA+DHBMA+THBMA)) were significantly higher in the occupationally exposed group as compared to controls and correlated with BD exposure, with each other, and with BD-hemoglobin biomarkers. This improved high throughput methodology for MHBMA and DHBMA will be useful for future epidemiological studies in smokers and occupationally exposed workers. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. Polyacrylamide polymers derived from acrylonitrile without intermediate isolation

    Energy Technology Data Exchange (ETDEWEB)

    Norton, C.J.; Falk, D.O.

    1977-04-05

    Hydrolyzed and neutralized acrylonitrile is polymerized in solution without isolation to produce a high molecular weight polyacrylamide useful for mobility control in secondary recovery of petroleum. The polyacrylamide optionally may be hydrolyzed, methylolated, and sulfomethylated to further enhance its water-thickening properties. This procedure reduces the cost of making polyacrylamide. (5 claims)

  3. Acrylonitrile-methyl Methacrylate Copolymer Films Containing Microencapsulated n-Octadecane

    Institute of Scientific and Technical Information of China (English)

    LI Jun; HAN Na; ZHANG Xing-xiang

    2006-01-01

    Acrylonitrile-methyl methacrylate copolymer was synthesized in aqueous solution by Redox. The copolymer was mixed with 10 - 40 wt% of microencapsulated n-octadecane (MicroPCMs) in water. Copolymer films containing MicroPCMs were cast at room temperature in N, N-Dimethylformamide solution. The copolymer of acrylonitrile-methyl methacrylate and the copolymer films containing MicroPCMs were characterized by using Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC), Thermogravimetric Analyzer (TG), X-ray Diffrac tion (XRD) and Scanning Electron Microscopy (SEM), etc.The microcapsules in the films are evenly distributed in the copolymer matrix. The heat-absorbing temperatures and heat-evolving temperatures of the films are almost the same as that of the MicroPCMs, respectively, and fluctuate in a slight range. In addition, the enthalpy efficiency of MicroPCMs rises with the contents of MicroPCMs increasing.The crystallinity of the film increases with the contents of MicroPCMs increasing.

  4. Biofiltration of Air/Styrene and Air/Styrene/Acetone mixtures in a bubble column reactor

    OpenAIRE

    Vieira, Ana

    2009-01-01

    The goal of this work was the treatment of polluted waste gases in a bubble column reactor (BCR), in order to determinate the maximum value of reactor’s efficiency (RE), varying the inlet concentration (C in) of the pollutants. The gaseous mixtures studied were: (i) air with styrene and (ii) air with styrene and acetone. The liquid phase used to contain the biomass in the reactor was a basal salt medium (BSM), fundamental for the microorganisms’ development. The reactor used in this pro...

  5. Positron annihilation lifetime study of interfaces in ternary polymer blends

    International Nuclear Information System (INIS)

    Meghala, D; Ramya, P; Pasang, T; Raj, J M; Ranganathaiah, C; Williams, J F

    2013-01-01

    A new method based on positron lifetime spectroscopy is developed to characterize individual interfaces in ternary polymer blends and hence determine the composition dependent miscibility level. The method owes its origin to the Kirkwood-Risemann-Zimm (KRZ) model for the evaluation of the hydrodynamic interaction parameters (α ij ) which was used successfully for a binary blend with a single interface. The model was revised for the present work for ternary polymer blends to account for three interfaces. The efficacy of this method is shown for two ternary blends namely poly(styrene-co-acrylonitrile)/poly (ethylene-co-vinylacetate)/poly(vinyl chloride) (SAN/EVA/PVC) and polycaprolactone /poly(styrene-co-acrylonitrile)/poly(vinyl chloride) (PCL/SAN/PVC) at different compositions. An effective hydrodynamic interaction parameter, α eff , was introduced to predict the overall miscibility of ternary blends.

  6. Helbredsrisici ved eksponering for styren i glasfiberplastindustrien

    DEFF Research Database (Denmark)

    Kolstad, Henrik Albert; Ebbehøj, Nielse; Bonde, Jens Peter

    2012-01-01

    or relevant exposure levels. We recommend reconsideration of the current Danish threshold limit value of 25 ppm, biological monitoring of styrene exposed workers, and epidemiological analyses of styrene exposure levels and long-term health effects among employees of the Danish reinforced plastics industry....

  7. COPOLYMER BLENDS OF STYRENE AND ORTHO-FLUOROSTYRENE

    NARCIS (Netherlands)

    TENBRINKE, G; KARASZ, FE

    1991-01-01

    The traditional method, using differential scanning calorimetry, to study phase behaviour in blends containing styrene and fluorinated styrene is hampered by the fact that the glass transition temperatures of fluorinated polystyrenes are almost independent of the degree of fluorination. To deal with

  8. Investigation of surface halide modification of nitrile butadiene rubber

    Science.gov (United States)

    Sukhareva, K. V.; Mikhailov, I. A.; Andriasyan, Yu O.; Mastalygina, E. E.; Popov, A. A.

    2017-12-01

    The investigation is devoted to the novel technology of surface halide modification of rubber samples based on nitrile butadiene rubber (NBR). 1,1,2-trifluoro-1,2,2-trichlorethane was used as halide modifier. The developed technology is characterized by production stages reduction to one by means of treating the rubber compound with a halide modifier. The surface halide modification of compounds based on nitrile butadiene rubber (NBR) was determined to result in increase of resistance to thermal oxidation and aggressive media. The conducted research revealed the influence of modification time on chemical resistance and physical-mechanical properties of rubbers under investigation.

  9. 40 CFR 80.55 - Measurement methods for benzene and 1,3-butadiene.

    Science.gov (United States)

    2010-07-01

    ... accomplished by bag sampling as used for total hydrocarbons determination. This procedure is detailed in 40 CFR 86.109. (b) Benzene and 1,3-butadiene must be analyzed by gas chromatography. Expected values for benzene and 1,3-butadiene in bag samples for the baseline fuel are 4.0 ppm and 0.30 ppm respectively. At...

  10. Optimization of process parameters for acrylonitrile removal by a low-cost adsorbent using Box-Behnken design

    International Nuclear Information System (INIS)

    Kumar, Arvind; Prasad, B.; Mishra, I.M.

    2008-01-01

    In the present work, acrylonitrile removal from wastewater was investigated using an agri-based adsorbent-sugarcane bagasse fly ash (BFA). The effect of such parameters as adsorbent dose (w), temperature (T) and time of contact (t) on the sorption of acrylonitrile by BFA was investigated using response surface methodology (RSM) based on Box-Behnken surface statistical design at an initial acrylonitrile concentration, C 0 = 100 mg/l as a fixed input parameter. The results of RSM indicate that the proposed models predict the responses adequately within the limits of input parameters being used. The isotherm shows a two-step adsorption, well represented by a two-step Langmuir isotherm equation. Thermodynamic parameters indicate the sorption process to be spontaneous and exothermic

  11. CYP2E1 Metabolism of Styrene Involves Allostery

    Science.gov (United States)

    Hartman, Jessica H.; Boysen, Gunnar

    2012-01-01

    We are the first to report allosterism during styrene oxidation by recombinant CYP2E1 and human liver microsomes. At low styrene concentrations, oxidation is inefficient because of weak binding to CYP2E1 (Ks = 830 μM). A second styrene molecule then binds CYP2E1 with higher affinity (Kss = 110 μM) and significantly improves oxidation to achieve a kcat of 6.3 nmol · min−1 · nmol CYP2E1−1. The transition between these metabolic cycles coincides with reported styrene concentrations in blood from exposed workers; thus, this CYP2E1 mechanism may be relevant in vivo. Scaled modeling of the in vitro-positive allosteric mechanism for styrene metabolism to its in vivo clearance led to significant deviations from the traditional model based on Michaelis-Menten kinetics. Low styrene levels were notably much less toxic than generally assumed. We interrogated the allosteric mechanism using the CYP2E1-specific inhibitor and drug 4-methylpyrazole, which we have shown binds two CYP2E1 sites. From the current studies, styrene was a positive allosteric effector on 4-methylpyrazole binding, based on a 10-fold increase in 4-methylpyrazole binding affinity from Ki 0.51 to Ksi 0.043 μM. The inhibitor was a negative allosteric effector on styrene oxidation, because kcat decreased 6-fold to 0.98 nmol · min−1 · nmol CYP2E1−1. Consequently, mixtures of styrene and other molecules can induce allosteric effects on binding and metabolism by CYP2E1 and thus mitigate the efficiency of their metabolism and corresponding effects on human health. Taken together, our elucidation of mechanisms for these allosteric reactions provides a powerful tool for further investigating the complexities of CYP2E1 metabolism of drugs and pollutants. PMID:22807108

  12. Effect of Printing Parameters on Tensile, Dynamic Mechanical, and Thermoelectric Properties of FDM 3D Printed CABS/ZnO Composites

    Directory of Open Access Journals (Sweden)

    Yah Yun Aw

    2018-03-01

    Full Text Available Fused deposition modelling (FDM has been widely used in medical appliances, automobile, aircraft and aerospace, household appliances, toys, and many other fields. The ease of processing, low cost and high flexibility of FDM technique are strong advantages compared to other techniques for thermoelectric polymer composite fabrication. This research work focuses on the effect of two crucial printing parameters (infill density and printing pattern on the tensile, dynamic mechanical, and thermoelectric properties of conductive acrylonitrile butadiene styrene/zinc oxide (CABS/ZnO composites fabricated by FDM technique. Results revealed significant improvement in tensile strength and Young’s modulus, with a decrease in elongation at break with infill density. Improvement in dynamic storage modulus was observed when infill density changed from 50% to 100%. However, the loss modulus and damping factor reduced gradually. The increase of thermal conductivity was relatively smaller compared to the improvement of electrical conductivity and Seebeck coefficient, therefore, the calculated figure of merit (ZT value increased with infill density. Line pattern performed better than rectilinear, especially in tensile properties and electrical conductivity. From the results obtained, FDM-fabricated CABS/ZnO showed much potential as a promising candidate for thermoelectric application.

  13. Evaluation on the stability of Hg in ABS disk CRM during measurements by wavelength dispersive X-ray fluorescence spectrometry.

    Science.gov (United States)

    Ohata, Masaki; Kidokoro, Toshihiro; Hioki, Akiharu

    2012-01-01

    The stability of Hg in an acrylonitrile-butadiene-styrene disk certified reference material (ABS disk CRM, NMIJ CRM 8116-a) during measurements by wavelength dispersion X-ray fluorescence (WD-XRF) analysis was evaluated in this study. The XRF intensities of Hg (L(α)) and Pb (L(α)) as well as the XRF intensity ratios of Hg (L(α))/Pb (L(α)) observed under different X-ray tube current conditions as well as their irradiation time were examined to evaluate the stability of Hg in the ABS disk CRM. The observed XRF intensities and the XRF intensity ratios for up to 32 h of measurements under 80 mA of X-ray tube current condition were constant, even though the surface of the ABS disk CRM was charred by the X-ray irradiation with high current for a long time. Moreover, the measurements on Hg and Pb in the charred disks by an energy dispersive XRF (ED-XRF) spectrometer showed constant XRF intensity ratios of Hg (L(α))/Pb (L(α)). From these results, Hg in the ABS disk CRM was evaluated to be sufficiently stable for XRF analysis.

  14. Low-Frequency Noise Reduction by Earmuffs with Flax Fibre-Reinforced Polypropylene Ear Cups

    Directory of Open Access Journals (Sweden)

    Linus Yinn Leng Ang

    2018-01-01

    Full Text Available Soldiers and supporting engineers are frequently exposed to high low-frequency (<500 Hz cabin noise in military vehicles. Despite the use of commercial hearing protection devices, the risk of auditory damage is still imminent because the devices may not be optimally customised for such applications. This study considers flax fibre-reinforced polypropylene (Flax-PP as an alternative to the material selection for the ear cups of commercial earmuffs, which are typically made of acrylonitrile butadiene styrene (ABS. Different weaving configurations (woven and nonwoven and various noise environments (pink noise, cabin booming noise, and firing noise were considered to investigate the feasibility of the proposed composite earmuffs for low-frequency noise reduction. The remaining assembly components of the earmuff were kept consistent with those of a commercial earmuff, which served as a benchmark for results comparison. In contrast to the commercial earmuff, the composite earmuffs were shown to be better in mitigating low-frequency noise by up to 16.6 dB, while compromising midfrequency acoustical performance. Consequently, the proposed composite earmuffs may be an alternative for low-frequency noise reduction in vehicle cabins, at airports, and at construction sites involving heavy machineries.

  15. Throttleable GOX/ABS launch assist hybrid rocket motor for small scale air launch platform

    Science.gov (United States)

    Spurrier, Zachary S.

    Aircraft-based space-launch platforms allow operational flexibility and offer the potential for significant propellant savings for small-to-medium orbital payloads. The NASA Armstrong Flight Research Center's Towed Glider Air-Launch System (TGALS) is a small-scale flight research project investigating the feasibility for a remotely-piloted, towed, glider system to act as a versatile air launch platform for nano-scale satellites. Removing the crew from the launch vehicle means that the system does not have to be human rated, and offers a potential for considerable cost savings. Utah State University is developing a small throttled launch-assist system for the TGALS platform. This "stage zero" design allows the TGALS platform to achieve the required flight path angle for the launch point, a condition that the TGALS cannot achieve without external propulsion. Throttling is required in order to achieve and sustain the proper launch attitude without structurally overloading the airframe. The hybrid rocket system employs gaseous-oxygen and acrylonitrile butadiene styrene (ABS) as propellants. This thesis summarizes the development and testing campaign, and presents results from the clean-sheet design through ground-based static fire testing. Development of the closed-loop throttle control system is presented.

  16. Formation of reflective and conductive silver film on ABS surface via covalent grafting and solution spray

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Dexin; Zhang, Yan [School of Mechanical and Automotive Engineering, South China University of Technology, 381 Wushan, Guangzhou 510640 (China); Bessho, Takeshi [Higashifuji Technical Center, Toyota Motor Corporation, 1200 Mishuku, Susono, Shizuoka 410-1193 (Japan); Kudo, Takahiro; Sang, Jing; Hirahara, Hidetoshi; Mori, Kunio [Faculty of Engineering, Iwate University, 4-3-5 Ueda, Morioka 020-8551 (Japan); Kang, Zhixin, E-mail: zxkang@scut.edu.cn [School of Mechanical and Automotive Engineering, South China University of Technology, 381 Wushan, Guangzhou 510640 (China)

    2015-09-15

    Highlights: • A pure and homogenous silver film was deposited by spray-style plating technique. • The mechanism of covalent bonding between coating and substrate was studied. • The silver coating is highly reflective and conductive. • UV light was used to activate the ABS surface with triazine azide derivative. - Abstract: Conductive and reflective silver layers on acrylonitrile butadiene styrene (ABS) plastics have been prepared by photo grafting of triazine azides upon ultraviolet activation, self-assembling of triazine dithiols and silver electroless plating by solution spray based on silver mirror reaction. The as-prepared silver film exhibited excellent adhesion with ABS owing to covalent bonds between coating and substrate, and the detailed bonding mechanism have been investigated by X-ray photoelectron spectroscopy (XPS). X-ray diffraction (XRD) result revealed that silver film on ABS was pure and with a nanocrystalline structure. Atomic force microscope (AFM) analysis demonstrated that massive silver particles with sizes varying from 80 to 120 nm were deposited on ABS and formed a homogenous and smooth coating, resulting in highly reflective surface. Furthermore, silver maintained its unique conductivity even as film on ABS surface in term of four-point probe method.

  17. TiO2 thin-films on polymer substrates and their photocatalytic activity

    International Nuclear Information System (INIS)

    Yang, Jae-Hun; Han, Yang-Su; Choy, Jin-Ho

    2006-01-01

    We have developed dip-coating process for TiO 2 -thin film on polymer substrates (acrylonitrile-butadiene-styrene polymer: ABS, polystyrene: PS). At first, a monodispersed and transparent TiO 2 nano-sol solution was prepared by the controlled hydrolysis of titanium iso-propoxide in the presence of acetylacetone and nitric acid catalyst at 80 deg. C. Powder X-ray diffraction patterns of the dried particles are indicative of crystalline TiO 2 with anatase-type structure. According to the XRD and transmission electron microscopy (TEM) studies, the mean particle size was estimated to be ca. 5 nm. The transparent thin films on ABS and PS substrates were fabricated by dip-coating process by changing the processing variables, such as the number of dip-coating and TiO 2 concentration in nano-sol solution. Scanning electron microscopic (SEM) analysis for the thin film samples reveals that the acetylacetone-modified TiO 2 nano-sol particles are effective for enhancing the interfacial adherence between films and polymeric substrates compared to the unmodified one. Photocatalytic degradation of methylene blue (MB) on the TiO 2 thin-films has also been systematically investigated

  18. Effect of Printing Parameters on Tensile, Dynamic Mechanical, and Thermoelectric Properties of FDM 3D Printed CABS/ZnO Composites.

    Science.gov (United States)

    Aw, Yah Yun; Yeoh, Cheow Keat; Idris, Muhammad Asri; Teh, Pei Leng; Hamzah, Khairul Amali; Sazali, Shulizawati Aqzna

    2018-03-22

    Fused deposition modelling (FDM) has been widely used in medical appliances, automobile, aircraft and aerospace, household appliances, toys, and many other fields. The ease of processing, low cost and high flexibility of FDM technique are strong advantages compared to other techniques for thermoelectric polymer composite fabrication. This research work focuses on the effect of two crucial printing parameters (infill density and printing pattern) on the tensile, dynamic mechanical, and thermoelectric properties of conductive acrylonitrile butadiene styrene/zinc oxide (CABS/ZnO composites fabricated by FDM technique. Results revealed significant improvement in tensile strength and Young's modulus, with a decrease in elongation at break with infill density. Improvement in dynamic storage modulus was observed when infill density changed from 50% to 100%. However, the loss modulus and damping factor reduced gradually. The increase of thermal conductivity was relatively smaller compared to the improvement of electrical conductivity and Seebeck coefficient, therefore, the calculated figure of merit (ZT) value increased with infill density. Line pattern performed better than rectilinear, especially in tensile properties and electrical conductivity. From the results obtained, FDM-fabricated CABS/ZnO showed much potential as a promising candidate for thermoelectric application .

  19. Perancangan Dashboard Mobil Pedesaan Multiguna

    Directory of Open Access Journals (Sweden)

    Nurul Madinah

    2013-09-01

    Full Text Available Mobil GEA yang merupakan mobil nasional akan dikembangkan menjadi mobil pedesaan multiguna. Salah satu bagian dalam mobil GEA yang menjadi perhatian adalah dashboard. Selama ini dashboard mobil GEA diproduksi secara manual, yaitu menggunakan proses wet lay-up dengan bahan komposit. Rencana ke depan produksi mobil pedesaan multiguna adalah produksi massa. Untuk memenuhi kebutuhan tersebut dirancang proses cetakan injeksi plastik (injection molding untuk pembuatan dashboard mobil pedesaan multiguna. Dibuat dua buah konsep dashboard, yaitu konsep A dan konsep B yang mengacu pada list of requirements. Simulasi pembebanan dan proses injection molding dengan material acrylonitrile butadiene styrene dilakukan pada kedua konsep tersebut. Beban yang diberikan adalah beban statis sebesar 100 N pada bagian atas dashboard dan 50 N pada masing-masing laci dashboard. Dari hasil perancangan, khususnya proses scoring ditetapkan konsep B sebagai alternatif dashboard untuk mobil pedesaan multiguna. Dari hasil simulasi pembebanan yang dilakukan, didapatkan nilai tegangan maksimal yang terjadi pada dashboard adalah 1.35 MPa dengan defleksi sebesar 0.237 mm. Sedangkan dari hasil simulasi proses injection molding didapatkan waktu produksi tiap dashboard adalah 246 detik (4.1 menit dengan gaya cekam maksimal 2370 ton.

  20. Formation of reflective and conductive silver film on ABS surface via covalent grafting and solution spray

    International Nuclear Information System (INIS)

    Chen, Dexin; Zhang, Yan; Bessho, Takeshi; Kudo, Takahiro; Sang, Jing; Hirahara, Hidetoshi; Mori, Kunio; Kang, Zhixin

    2015-01-01

    Highlights: • A pure and homogenous silver film was deposited by spray-style plating technique. • The mechanism of covalent bonding between coating and substrate was studied. • The silver coating is highly reflective and conductive. • UV light was used to activate the ABS surface with triazine azide derivative. - Abstract: Conductive and reflective silver layers on acrylonitrile butadiene styrene (ABS) plastics have been prepared by photo grafting of triazine azides upon ultraviolet activation, self-assembling of triazine dithiols and silver electroless plating by solution spray based on silver mirror reaction. The as-prepared silver film exhibited excellent adhesion with ABS owing to covalent bonds between coating and substrate, and the detailed bonding mechanism have been investigated by X-ray photoelectron spectroscopy (XPS). X-ray diffraction (XRD) result revealed that silver film on ABS was pure and with a nanocrystalline structure. Atomic force microscope (AFM) analysis demonstrated that massive silver particles with sizes varying from 80 to 120 nm were deposited on ABS and formed a homogenous and smooth coating, resulting in highly reflective surface. Furthermore, silver maintained its unique conductivity even as film on ABS surface in term of four-point probe method

  1. Air-soil exchange of organochlorine pesticides in a sealed chamber.

    Science.gov (United States)

    Yang, Bing; Han, Baolu; Xue, Nandong; Zhou, Lingli; Li, Fasheng

    2015-01-01

    So far little is known about air-soil exchange under any sealed circumstances (e.g., in plastic and glass sheds), which however has huge implications for the soil-air-plant pathways of persistent organic pollutants including organochlorine pesticides (OCPs). A newly designed passive air sampler was tested in a sealed chamber for measuring the vertical concentration profiles of gaseous phase OCPs (hexachlorocyclohexanes (HCHs) and dichlorodiphenyltrichloroethanes (DDTs)). Air was sampled at 5, 15, and 30 cm above ground level every 10th day during a 60-day period by deploying polyurethane foam cylinders housed in acrylonitrile butadiene styrene-covered cartridges. Concentrations and compositions of OCPs along the vertical sections indicated a clear relationship with proximity to the mixture of HCHs and DDTs which escapes from the soils. In addition, significant positive correlations were found between air temperatures and concentrations of HCHs and DDTs. These results indicated revolatilization and re-deposition being at or close to dynamic pseudo-equilibrium with the overlying air. The sampler used for addressing air-soil exchange of persistent organic pollutants in any sealed conditions is discussed. Copyright © 2014. Published by Elsevier B.V.

  2. Wetting of polymer melts on coated and uncoated steel surfaces

    Science.gov (United States)

    Vera, Julie; Contraires, Elise; Brulez, Anne-Catherine; Larochette, Mathieu; Valette, Stéphane; Benayoun, Stéphane

    2017-07-01

    A comparative study of the wetting of three different commercial polymer melts on various coated and uncoated steel surfaces is described in this report. The wettability of steel and coatings (three different titanium nitride coatings, TiN, TiNOx, TiNOy, a chromium coating, CrN, and a diamond-like carbon coating, DLC) used for mold in polymer processing is determined at different temperatures between 25 °C and 120 °C. Contact angle measurements of melted polypropylene (PP), Acrylonitrile Butadiene Styrene (ABS) and Polycarbonate (PC) on steel and on the different coatings were performed to investigate the wetting behavior under closer-to-processing conditions. Recommendations for good measurement conditions were proposed. Moreover, the surface free energy of each melt polymer was determined. The works of adhesion between all polymers and all substrates were established. Among all tested polymers, the lowest value of the works of adhesion is calculated for ABS and for PC thereafter, and the highest value is calculated for PP. These results will be particularly important for such applications as determining the extent to which these polymers can contribute to the replication quality in injection molding.

  3. Development of suitable plastic standards for X-ray fluorescence analysis

    Energy Technology Data Exchange (ETDEWEB)

    Mans, Christian [University of Applied Sciences Muenster, Department of Chemical Engineering, Advanced Analytical Chemistry, Stegerwaldstr. 39, 48565 Steinfurt (Germany)], E-mail: c.mans@fh-muenster.de; Hanning, Stephanie [University of Applied Sciences Muenster, Department of Chemical Engineering, Advanced Analytical Chemistry, Stegerwaldstr. 39, 48565 Steinfurt (Germany)], E-mail: hanning@fh-muenster.de; Simons, Christoph [University of Applied Sciences Muenster, Department of Chemical Engineering, Advanced Analytical Chemistry, Stegerwaldstr. 39, 48565 Steinfurt (Germany)], E-mail: simons@fh-muenster.de; Wegner, Anne [University of Applied Sciences Muenster, Department of Chemical Engineering, Advanced Analytical Chemistry, Stegerwaldstr. 39, 48565 Steinfurt (Germany)], E-mail: awegner@fh-muenster.de; Janssen, Anton [University of Applied Sciences Muenster, Department of Chemical Engineering, Advanced Analytical Chemistry, Stegerwaldstr. 39, 48565 Steinfurt (Germany)], E-mail: janssena@fh-muenster.de; Kreyenschmidt, Martin [University of Applied Sciences Muenster, Department of Chemical Engineering, Advanced Analytical Chemistry, Stegerwaldstr. 39, 48565 Steinfurt (Germany)], E-mail: martin.kreyenschmidt@fh-muenster.de

    2007-02-15

    For the adoption of the EU directive 'Restriction on use of certain Hazardous Substances' and 'Waste Electrical and Electronic Equipment' using X-ray fluorescence analysis suitable standard materials are required. Plastic standards based on acrylonitrile-butadiene-styrene terpolymer, containing the regulated elements Br, Cd, Cr, Hg and Pb were developed and produced as granulates and solid bodies. The calibration materials were not generated as a dilution from one master batch but rather the element concentrations were distributed over nine independent calibration samples. This was necessary to enable inter-elemental corrections and empirical constant mass absorption coefficients. The produced standard materials are characterized by a homogenous element distribution, which is more than sufficient for X-ray fluorescence analysis. Concentrations for all elements except for Br could be determined by Inductively Coupled Plasma Atomic Emission Spectroscopy after microwave assisted digestion. The concentration of Br was determined by use of Neutron Activation Analysis at Hahn-Meitner-Institute in Berlin, Germany. The correlation of the X-ray fluorescence analysis measurements with the values determined using Inductively Coupled Plasma Atomic Emission Spectroscopy and Neutron Activation Analysis showed a very good linearity.

  4. Carbon Nanotube Chopped Fiber for Enhanced Properties in Additive Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Menchhofer, Paul A [ORNL; Lindahl, John M [ORNL; JohnsonPhD, DR Joseph E. [Nanocomp Technologies, Inc.

    2016-06-06

    Nanocomp Technologies, Inc. is working with Oak Ridge National Laboratory to develop carbon nanotube (CNT) composite materials and evaluate their use in additive manufacturing (3D printing). The first phase demonstrated feasibility and improvements for carbon nanotube (CNT)- acrylonitrile butadiene styrene (ABS) composite filaments use in additive manufacturing, with potential future work centering on further improvements. By focusing the initial phase on standard processing methods (developed mainly for the incorporation of carbon fibers in ABS) and characterization techniques, a basis of knowledge for the incorporation of CNTs in ABS was learned. The ability to understand the various processing variables is critical to the successful development of these composites. From the degradation effects on ABS (caused by excessive temperatures), to the length of time the ABS is in the melt state, to the order of addition of constituents, and also to the many possible mixing approaches, a workable flow sequence that addresses each processing step is critical to the final material properties. Although this initial phase could not deal with each of these variables in-depth, a future study is recommended that will build on the lessons learned for this effort.

  5. Influence of frequently used industrial solvents and monomers of plastics on xenobiotic metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Gut, I. (Institut Hygieny a Epidemiologie, Prague (Czechoslovakia))

    1983-11-01

    In male Wistar rats, inhalation of benzene, toluene, or styrene induced a dose-dependent increase of the in vitro hepatic microsomal metabolism of benzene, but toluene metabolism and microsomal cytochrome P-450 level were little affected. In phenobarbital pretreated rats the solvents induced increased biotransformation of benzene metabolism toluene, but relatively less than in controls, and benzene and toluene inhalation actually caused an apparent destruction of cytochrome P-450. In vivo rates of metabolism of toluene and styrene were in good agreement with the in vitro hepatic microsomal biotransformation of benzene or toluene, but benzene metabolism not due to inhibition of benzene metabolism in vivo caused by benzene metabolites. In simultaneously administered two solvents, toluene, styrene or xylene markedly inhibited metabolism of benzene-/sup 14/C, but toluene-/sup 14/C metabolsim was little affected by coadministered benzene, styrene or xylene. Various industrial solvents inhibited metabolism of acrylonitrile along the oxidative pathway leading to thiocyanate, but actually increased the rate of the conjugative pathway beginning with cyanoethylation of glutathion and the final products. Various derivatives of benzene had low inhibiting effect on antipyrine metabolism and clinical significance of such effect is of little significance. Inhibition of benzene metabolism by toluene followed in significantly decreased myelotoxicity of benzene, but the modification of acrylonitrile metabolism and pharmacokinetics by organic solvents given at low doses markedly increased lethal effects of acrylonitrile. The prediction of in vivo rates of metabolism based on the in vitro rates of hepatic microsomal metabolism is therefore possible, provided the inhibiting potency of the xenobiotic and/or its metabolites, self-induction of their metabolism, as well as differences in their pharmacokinetics are considered.

  6. Exposure to styrene and chronic health effects

    DEFF Research Database (Denmark)

    Kolstad, Henrik; Juel, K; Olsen, J H

    1995-01-01

    To study the occurrence of non-malignant diseases and solid cancers in workers exposed to styrene in the Danish reinforced plastics industry.......To study the occurrence of non-malignant diseases and solid cancers in workers exposed to styrene in the Danish reinforced plastics industry....

  7. Occupational asthma in the furniture industry: is it due to styrene?

    Science.gov (United States)

    Oner, Ferda; Mungan, Dilşad; Numanoglu, Numan; Demirel, Yavuz

    2004-01-01

    Styrene, a volatile monomer, has been reported as a cause of occupational asthma in a few case reports. The aim of this study was to investigate the risk for asthma in relation to exposure to styrene in a large number of workers. A total of 47 workers with a history of exposure to styrene were included in the study. To establish whether asthma was present, each patient underwent a clinical interview, pulmonary function testing and bronchial challenge with methacholine. Specific bronchial challenges with styrene and serial peak expiratory flow (PEF) measurement at home and at work were carried out in subjects with a diagnosis of asthma to evaluate the relationship between their asthma and exposure to styrene in the workplace. Among the 47 subjects, 5 workers had given a history of work-related symptoms, and 3 of them had a positive methacholine challenge test. Specific bronchial challenges with styrene and serial PEF measurement were subsequently carried out in these 3 subjects. Although provocation tests with styrene were negative in the 3 workers, 1 worker had PEF rate records compatible with occupational asthma. We established one patient with occupational asthma from a group of people who have excessive styrene exposure. This finding may be suggestive but is not conclusive about the causative role of styrene in occupational asthma. Since styrene is a frequently used substance in the furniture industry, it is worth performing further studies to investigate the relationship between styrene and occupational asthma. Copyright 2004 S. Karger AG, Basel

  8. Synthesis and Characterization of Solution and Melt Processible Poly(Acrylonitrile-Co-Methyl Acrylate) Statistical Copolymers

    Science.gov (United States)

    Pisipati, Padmapriya

    Polyacrylonitrile (PAN) and its copolymers are used in a wide variety of applications ranging from textiles to purification membranes, packaging material and carbon fiber precursors. High performance polyacrylonitrile copolymer fiber is the most dominant precursor for carbon fibers. Synthesis of very high molecular weight poly(acrylonitrile-co-methyl acrylate) copolymers with weight average molecular weights of at least 1.7 million g/mole were synthesized on a laboratory scale using low temperature, emulsion copolymerization in a closed pressure reactor. Single filaments were spun via hybrid dry-jet gel solution spinning. These very high molecular weight copolymers produced precursor fibers with tensile strengths averaging 954 MPa with an elastic modulus of 15.9 GPa (N = 296). The small filament diameters were approximately 5 im. Results indicated that the low filament diameter that was achieved with a high draw ratio, combined with the hybrid dry-jet gel spinning process lead to an exponential enhancement of the tensile properties of these fibers. Carbon fibers for polymer matrix composites are currently derived from polyacrylonitrile copolymer fiber precursors where solution spinning accounts for ˜40 % of the total fiber production cost. To expand carbon fiber applications into the automotive industry, the cost of the carbon fiber needs to be reduced from 8 to ˜3-5. In order to develop an alternative melt processing route several benign plasticizers have been investigated. A low temperature, persulfate-metabisulfite initiated emulsion copolymerization was developed to synthesize poly(acrylonitrile-co-methyl acrylate) copolymers with acrylonitrile contents between 91-96 wt% with a molecular weight range of 100-200 kg/mol. This method was designed for a potential industrial scale up. Furthermore, water was investigated as a potential melting point depressant for these copolymers. Twenty-five wt% water lead to a decrease in the Tm of a 93/7 wt/wt % poly(acrylonitrile

  9. JCSC_129_08_1319_1325_SI.doc

    Indian Academy of Sciences (India)

    Table S1 The G˚ (kcal/mol) and G‡ (kcal/mol) values of the DA reactions of styrenes with 2-aza-1,3-butadiene in two paths leading to two regioisomers and in the absence and presence of BF3 catalyst 2. Figure S1 The optimized structures of 2-aza-1,3-butadiene (in the absence and presence of BF3 catalyst) and ...

  10. Stabilization of wood and lignocellulose materials

    International Nuclear Information System (INIS)

    Pesek, M.; Dedek, V.; Plander, E.; Jarkovsky, J.

    1973-01-01

    A method is described consisting in impregnation of wood or of lignocellulose materials with a mixture containing the unsaturated monomers styrene and acrylnitrile, organic solvents and swelling agents, and 1,3-butadiene and/or 2-chloro-1,3-butadiene and/or 1,3-cyclopentadiene at an amount of 40 volume per cent in the initial mixture. Polymerization is effected by ionizing radiation. (B.S.)

  11. Crystallization analysis fractionation of poly(ethylene-co-styrene) produced by metallocene catalysts

    KAUST Repository

    Kamal, Muhammad Shahzad

    2013-06-06

    Ethylene homo polymer and ethylene-styrene copolymers were synthesized using Cp2ZrCl2 (1)/methyl aluminoxane (MAO) and rac-silylene-bis (indenyl) zirconium dichloride (2)/MAO catalyst systems by varying styrene concentration and reaction conditions. Crystallization analysis fractionation (CRYSTAF), DSC, FTIR and 1H NMR spectroscopy were used for characterizing the synthesized polymers. Interestingly, styrene was able to increase the activity of 1/MAO and 2/MAO catalyst systems at low concentrations, but at higher concentrations the activity decreases. The 1/MAO system at low and high pressure was unable to incorporate styrene, and the final product was pure polyethylene. On the other hand, with 2/MAO polymerization of ethylene and styrene yielded copolymer containing both styrene and ethylene. Results obtained from CRYSTAF and DSC reveal that on using 1/MAO system at high pressure, the resulting polymer in the presence of styrene has similar crystallinity as the polymer produced without styrene. Using both 1/MAO at low pressure and 2/MAO leads to decrease in crystallinity with increase in styrene concentration, even though the former does not incorporate styrene. © 2013 Springer-Verlag Berlin Heidelberg.

  12. Copolymerization of propene and styrene using a zirconocene - methylaluminoxane initiator system

    International Nuclear Information System (INIS)

    Rabagliati, F.M.; Rodriguez, F.J.; Quijada, R.; Galland, G.B.

    2009-01-01

    The copolymerization of propene with styrene has been tested using the rac-Et(Ind) 2 ZrCl 2 -methylaluminoxane initiator system. The various proportion of styrene in initial feed showed an important effect on the polymerization activity. Low contents of styrene in the reaction produced a considerable fall in the activity. Respect to thermal behavior, it is noted that obtained propene/styrene copolymers showed Tm values slightly lower than the corresponding polypropene one. NMR spectroscopy allowed to confirm that the copolymer composition includes a very low incorporation of styrene in polypropylene chains. (author)

  13. Preparation of poly(acrylonitrile-butyl acrylate) gel electrolyte for lithium-ion batteries

    International Nuclear Information System (INIS)

    Tian Zheng; He Xiangming; Pu Weihua; Wan Chunrong; Jiang Changyin

    2006-01-01

    Poly(acrylonitrile-butyl acrylate) gel polymer electrolyte was prepared for lithium ion batteries. The preparation started with synthesis of poly(acrylonitrile-butyl acrylate) by radical emulsion polymerization, followed by phase inversion to produce microporous membrane. Then, the microporous gel polymer electrolytes (MGPEs) was prepared with the microporous membrane and LiPF 6 in ethylene carbonate/diethyl carbonate. The dry microporous membrane showed a fracture strength as high as 18.98 MPa. As-prepared gel polymer electrolytes presented ionic conductivity in excess of 3.0 x 10 -3 S cm -1 at ambient temperature and a decomposition voltage over 6.6 V. The results showed that the as-prepared gel polymer electrolytes were promising materials for Li-ion batteries

  14. Bacterial degradation of styrene in waste gases using a peat filter

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, M.; Reittu, A. [Kuopio Univ. (Finland). Dept. of Environmental Sciences; Wright, A. von; Suihko, M.L. [VTT Biotechnology and Food Research (Finland); Martikainen, P.J. [Kuopio Univ. (Finland). Dept. of Environmental Sciences]|[National Public Health Inst., Lab. of Environmental Microbiology, Kuopio (Finland)

    1997-12-31

    A biofiltration process was developed for styrene-containing off-gases using peat as filter material. The average styrene reduction ratio after 190 days of operation was 70% (max. 98%) and the mean styrene elimination capacity was 12 g m{sup -3} h{sup -1} (max. 30 g m{sup -3} h{sup -1}). Efficient styrene degradation required addition of nutrients to the peat, adjustment of the pH to a neutral level and efficient control of the humidity. Maintenance of the water balance was easier in a down-flow than in an up-flow process, the former consequently resulting in much better filtration efficiency. The optimum operation temperature was around 23 C, but the styrene removal was still satisfactory at 12 C. Seven different bacterial isolates belonging to the genera Tsukamurella, Pseudomonas, Sphingomonas, Xanthomonas and an unidentified genus in the {gamma} group of the Proteobacteria isolated from the microflora of active peat filter material were capable of styrene degradation. The isolates differed in their capacity to decompose styrene to carbon dioxide and assimilate it to biomass. No toxic intermediate degradation products of styrene were detected in the filter outlet gas or in growing cultures of isolated bacteria. The use of these isolates in industrial biofilters is beneficial at low styrene concentrations and is safe from both the environmental and public health points of view. (orig.)

  15. Bacterial degradation of styrene in waste gases using a peat filter.

    Science.gov (United States)

    Arnold, M; Reittu, A; von Wright, A; Martikainen, P J; Suihko, M L

    1997-12-01

    A biofiltration process was developed for styrene-containing off-gases using peat as filter material. The average styrene reduction ratio after 190 days of operation was 70% (max. 98%) and the mean styrene elimination capacity was 12 g m-3 h-1 (max. 30 g m-3 h-1). Efficient styrene degradation required addition of nutrients to the peat, adjustment of the pH to a neutral level and efficient control of the humidity. Maintenance of the water balance was easier in a down-flow than in an up-flow process, the former consequently resulting in much better filtration efficiency. The optimum operation temperature was around 23 degrees C, but the styrene removal was still satisfactory at 12 degrees C. Seven different bacterial isolates belonging to the genera Tsukamurella, Pseudomonas, Sphingomonas, Xanthomonas and an unidentified genus in the gamma group of the Proteobacteria isolated from the microflora of active peat filter material were capable of styrene degradation. The isolates differed in their capacity to decompose styrene to carbon dioxide and assimilate it to biomass. No toxic intermediate degradation products of styrene were detected in the filter outlet gas or in growing cultures of isolated bacteria. The use of these isolates in industrial biofilters is beneficial at low styrene concentrations and is safe from both the environmental and public health points of view.

  16. Using graphene/styrene-isoprene-styrene copolymer composite thin film as a flexible microstrip antenna for the detection of heptane vapors

    Science.gov (United States)

    Olejnik, Robert; Matyas, Jiri; Slobodian, Petr; Riha, Pavel

    2018-03-01

    Most portable devices, such as mobile phones or tablets, use antennas made of copper. This paper demonstrates the possible use of antenna constructed from electrically conductive polymer composite materials for use in those applications. The method of preparation and the properties of the graphene/styrene-isoprene-styrene copolymer as flexible microstrip antenna are described in this contribution. Graphene/styrene-isoprene-styrene copolymer toluene solution was prepared by means of ultrasound and the PET substrate was dip coated to reach a fine thin film. The main advantages of using PET as a substrate are low weight and flexibility. The final size of the flexible microstrip antenna was 10 × 25 mm with thickness of 0.48 mm (PET substrate 0.25 mm) with a weight of 0.110 g. The resulting antenna operates at a frequency of 1.8 GHz and gain ‑40.02 dB.

  17. Is 3D printing safe? Analysis of the thermal treatment of thermoplastics: ABS, PLA, PET, and nylon.

    Science.gov (United States)

    Wojtyła, Szymon; Klama, Piotr; Baran, Tomasz

    2017-06-01

    The fast development of low-cost desktop three-dimensional (3D) printers has made those devices widely accessible for goods manufacturing at home. However, is it safe? Users may belittle the effects or influences of pollutants (organic compounds and ultrafine particles) generated by the devices in question. Within the scope of this study, the authors attempt to investigate thermal decomposition of the following commonly used, commercially available thermoplastic filaments: acrylonitrile-butadiene-styrene (ABS), polylactic acid (PLA), polyethylene terephthalate (PET), and nylon. Thermogravimetric analysis has shown the detailed thermal patterns of their behavior upon increasing temperature in neutral atmosphere, while GC analysis of organic vapors emitted during the process of heating thermoplastics have made it possible to obtain crucial pieces of information about the toxicity of 3D printing process. The conducted study has shown that ABS is significantly more toxic than PLA. The emission of volatile organic compounds (VOC) has been in the range of 0.50 µmol/h. Styrene has accounted for more than 30% of total VOC emitted from ABS, while for PLA, methyl methacrylate has been detected as the predominant compound (44% of total VOCs emission). Moreover, the authors have summarized available or applicable methods that can eliminate formed pollutants and protect the users of 3D printers. This article summarizes theoretical knowledge on thermal degradation of polymers used for 3D printers and shows results of authors' investigation, as well as presents forward-looking solutions that may increase the safety of utilization of 3D printers.

  18. Toxicological responses in SW mice exposed to inhaled pyrolysates of polymer/tobacco mixtures and blended tobacco.

    Science.gov (United States)

    Werley, Michael S; Lee, K Monika; Lemus-Olalde, Ranulfo

    2009-12-01

    Modern cigarette manufacturing is highly automated and produces millions of cigarettes per day. The potential for small inclusions of non-cigarette materials such as wood, cardboard packaging, plastic, and other materials exists as a result of bulk handling and high-speed processing of tobacco. Many non-tobacco inclusions such as wood, paper, and cardboard would be expected to yield similar pyrolysis products as a burning cigarette. The aircraft industry has developed an extensive literature on the pyrolysis products of plastics, however, that have been reported to yield toxic by-products upon burning, by-products that have been lethal in animals and humans upon acute exposure under some exposure conditions. Some of these smoke constituents have also been reported in cigarette smoke. Five synthetic polymers, nylon 6, acrylonitrile-butadiene-styrene (ABS), nylon 12, nylon 6,6, and acrylonitrile-butadiene (AB), and the natural polymer wool were evaluated by adding them to tobacco at a 3, 10, and 30% inclusion level and then pyrolyzing the mixture. The validated smoke generation and exposure system have been described previously. We used the DIN 53-436 tube furnace and nose-only exposure chamber in combination to conduct exposures in Swiss-Webster mice. Potentially useful biological endpoints for predicting hazards in humans included sensory irritation and pulmonary irritation, respiratory function, clinical signs, body weights, bronchoalveolar lavage (BAL) fluid analysis, carboxyhemoglogin, blood cyanide concentrations, and histopathology of the respiratory tract. Chemical analysis of selected smoke constituents in the test atmosphere was also performed in order to compare the toxicological responses with exposure to the test atmospheres. Under the conditions of these studies, biological responses considered relevant and useful for prediction of effects in humans were found for sensory irritation, body weights, BAL fluid analysis, and histopathology of the nose

  19. Investigation of the interfacial bonding in composite propellants. 1,3,5-Trisubstituted isocyanurates as universal bonding agents

    Directory of Open Access Journals (Sweden)

    GORDANA S. USCUMLIC

    2006-05-01

    Full Text Available A series of 1,3,5-trisubstituted isocyanurates (substituents: CH2CH2OH, CH2CH=CH2 and CH2CH2COOH was synthesized according to a modified literature procedure. Experimental investigations included modification of the synthetic procedure in terms of the starting materials, solvents, temperature, isolation techniques, as well as purification and identification of the products. All the synthesized isocyanurates were identified by their melting point and FTIR, 1H NMR and UV spectroscopic data. Fourier transform infrared spectrophotometry was also used to study the interaction between ammonium perchlorate, hydroxyl terminated poly(butadiene, carboxyl terminated poly(butadiene, poly(butadiene-co-acrylonitrile, poly(propylene ether, cyclotrimethylenetrinitramine and the compounds synthesized in this work, which can serve as bonding agents. The results show that tris(2-hydroxyethylisocyanurate is a universal bonding agent for the ammonium perchlorate/carboxyl terminated poly(butadiene/cyclotrimethylenetrinitramine composite propellant system.

  20. 40 CFR Table 6 to Subpart Jjj of... - Known Organic HAP Emitted From the Production of Thermoplastic Products

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 11 2010-07-01 2010-07-01 true Known Organic HAP Emitted From the... HAP Emitted From the Production of Thermoplastic Products Thermoplastic product/Subcategory Organic HAP/chemical name(CAS No.) Acet-aldehyde (75-07-0) Acrylo-nitrile (107-13-1) 1,3 Buta-diene (106-99-0...

  1. Use of rice straw and radiation-modified maize starch/acrylonitrile in the treatment of wastewater

    International Nuclear Information System (INIS)

    Abdel-Aal, S.E.; Gad, Y.H.; Dessouki, A.M.

    2006-01-01

    Graft copolymerization of acrylonitrile onto maize starch by a simultaneous irradiation technique using gamma-rays as the initiator was studied with regard to the various parameters of importance: the monomer-to-maize starch ratio and total dose (kGy). The water absorption of the modified maize starch was measured. The starch modified by acrylonitrile gives low water absorbance. Conversion of the copolymer to the amidoxime form gives high swelling. The gel (%) and the grafting efficiency were measured. An investigation was carried out to study the adsorption of basic violet 7, basic blue 3, direct yellow 50 and acid red 37 from aqueous solutions by the water-insoluble modified starch containing amidoxime groups and rice straw. The effects of initial pH of the solution, pollutant concentration and treatment time on the adsorption were studied and it was found that the maximum adsorption was at 1:2 (starch/acrylonitrile) at irradiation dose 30 kGy

  2. Reversible addition-fragmentation chain transfer polymerization of 2-chloro-1,3-butadiene

    OpenAIRE

    Pullan, Nikki; Liu, Max; Topham, Paul D.

    2013-01-01

    Controlled polymerization of 2-chloro-1,3-butadiene using reversible addition–fragmentation chain transfer (RAFT) polymerization has been demonstrated for the first time. 2-Chloro-1,3-butadiene, more commonly known as chloroprene, has significant industrial relevance as a crosslinked rubber, with uses ranging from adhesives to integral automotive components. However, problems surrounding the inherent toxicity of the lifecycle of the thiourea-vulcanized rubber have led to the need for control ...

  3. Review of old chemistry and new catalytic advances in the on-purpose synthesis of butadiene.

    Science.gov (United States)

    Makshina, Ekaterina V; Dusselier, Michiel; Janssens, Wout; Degrève, Jan; Jacobs, Pierre A; Sels, Bert F

    2014-11-21

    Increasing demand for renewable feedstock-based chemicals is driving the interest of both academic and industrial research to substitute petrochemicals with renewable chemicals from biomass-derived resources. The search towards novel platform chemicals is challenging and rewarding, but the main research activities are concentrated on finding efficient pathways to produce familiar drop-in chemicals and polymer building blocks. A diversity of industrially important monomers like alkenes, conjugated dienes, unsaturated carboxylic acids and aromatic compounds are thus targeted from renewable feedstock. In this context, on-purpose production of 1,3-butadiene from biomass-derived feedstock is an interesting example as its production is under pressure by uncertainty of the conventional fossil feedstock. Ethanol, obtained via fermentation or (biomass-generated) syngas, can be converted to butadiene, although there is no large commercial activity today. Though practised on a large scale in the beginning of the 20th century, there is a growing worldwide renewed interest in the butadiene-from-ethanol route. An alternative route to produce butadiene from biomass is through direct carbohydrate and gas fermentation or indirectly via the dehydration of butanediols. This review starts with a brief discussion on the different feedstock possibilities to produce butadiene, followed by a comprehensive summary of the current state of knowledge regarding advances and achievements in the field of the chemocatalytic conversion of ethanol and butanediols to butadiene, including thermodynamics and kinetic aspects of the reactions with discussions on the reaction pathways and the type of catalysts developed.

  4. Variation of long periodicity in blends of styrene butadiene, styrene ...

    Indian Academy of Sciences (India)

    relationship between long periodicity and concentration of blends. These parameters are ... tential customers for conducting polymers [10]. 2. ... Theory. The linear paracrystalline model of polymer morphology of blends comprises stacks.

  5. Variation of long periodicity in blends of styrene butadiene, styrene ...

    Indian Academy of Sciences (India)

    Instituto de Macromoleculas, Universidade Federal do Rio de Janeiro, Centro de Tecnologia, Bl. J, Ilha do Fundo, 21945-970, Rio de Jeneiro, RJ, Brazil; Department of Physics, Yuvaraja's College, University of Mysore, Mysore 570 005, India; Department of Studies in Physics, University of Mysore, Manasagangothri, ...

  6. On the catalytic gas phase oxidation of butadiene to furan

    Energy Technology Data Exchange (ETDEWEB)

    Kubias, B.; Rodemerck, U. [Institut fuer Angewandte Chemie Berlin-Adlershof e.V., Berlin (Germany); Ritschl, F.; Meisel, M. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Chemie

    1998-12-31

    Applying the thermochemical selectivity criterion of Hadnett et al. It is shown that the selectivity of the furan formation is not limited by a too low strength of the C-H bonds in furan when compared with the C-H bond dissociation energy in the educt molecule butadiene. In the oxidation of butadiene on a CsH{sub 2}PMo{sub 12}O{sub 40} catalyst a maximum yield of 22 mol% furan has been obtained. To improve this comparatively low furan yield oxidation activity of the catalyst must be lowered to prevent the consecutive reaction to maleic anhydride. (orig.)

  7. Copper-catalyzed radical carbooxygenation: alkylation and alkoxylation of styrenes.

    Science.gov (United States)

    Liao, Zhixiong; Yi, Hong; Li, Zheng; Fan, Chao; Zhang, Xu; Liu, Jie; Deng, Zixin; Lei, Aiwen

    2015-01-01

    A simple copper-catalyzed direct radical carbooxygenation of styrenes is developed utilizing alkyl bromides as radical resources. This catalytic radical difunctionalization accomplishes both alkylation and alkoxylation of styrenes in one pot. A broad range of styrenes and alcohols are well tolerated in this transformation. The EPR experiment shows that alkyl halides could oxidize Cu(I) to Cu(II) in this transformation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Radiation-induced in-source polymerization of acrylonitrile in urea canal complex

    International Nuclear Information System (INIS)

    Yoshii, Fumio; Abe, Toshihiko; Kobayashi, Yasushi.

    1975-01-01

    Effect of reaction conditions on the radiation-induced in-source polymerization of acrylonitrile in urea canal complex and the properties of obtained polyacrylonitriles were investigated. The results were discussed in comparison with previously reported of the post-polymerization experiments. 1) Rate of polymerization and viscosity (eta sub(sp)/C) were the highest when the molar ratio of acrylonitrile to urea in canal complex was unity. Similar results were also obtained in the post-polymerization. However, eta sub(sp)/C exhibited different behavior on polymerization time in comparison with post-polymerization. 2) The initial rate (Rsub(p)) of polymerization is proportional to the dose rate (I) at low dose rate, but at high dose rates (above 2x10 5 r/hr) makes Rsub(p) proportional to Isup(0.5). 3) Molecular weight distribution become broader with increasing polymerization time and is broad as compared with those obtained by the post-polymerization. G-value of initiation of polymerization decreased with increasing polymerization time. These value was larger than the that obtained in the post-polymerization. 4) The stereoregularity of the polyacrylonitriles was independent of the molar ratio of acrylonitrile to urea in the canal complex and conversion. 5) The appearance of the polyacrylonitriles observed by the scanning electron microscope changed from curled string to extended one as the polymerization proceed. 6) Infrared spectrum revealed the ketenimine and cyclization structure in the polyacrylonitriles obtained below -100 0 C. The content of these abnormal structures increased with increasing conversion. (auth.)

  9. Morphology-properties relationship on nanocomposite films based on poly(styrene-block-diene-block-styrene copolymers and silver nanoparticles

    Directory of Open Access Journals (Sweden)

    2011-02-01

    Full Text Available A comparative study on the self-assembled nanostructured morphology and the rheological and mechanical properties of four different triblock copolymers, based on poly(styrene-block-diene-block-styrene and poly(styrene-block-diene-block-styrene matrices, and of their respective nanocomposites with 1 wt% silver nanoparticles, is reported in this work. In order to obtain well-dispersed nanoparticles in the block copolymer matrix, dodecanethiol was used as surfactant, showing good affinity with both nanoparticles and the polystyrene phase of the matrices as predicted by the solubility parameters calculated based on Hoftyzer and Van Krevelen theory. The block copolymer with the highest PS content shows the highest tensile modulus and tensile strength, but also the smallest elongation at break. When silver nanoparticles treated with surfactant were added to the block copolymer matrices, each system studied shows higher mechanical properties due to the good dispersion and the good interface of Ag nanoparticles in the matrices. Furthermore, it has been shown that semiempirical models such as Guth and Gold equation and Halpin-Tsai model can be used to predict the tensile modulus of the analyzed nanocomposites.

  10. Preparation of poly(acrylonitrile-butyl acrylate) gel electrolyte for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Tian Zheng [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); He Xiangming [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China)]. E-mail: hexm@tsinghua.edu.cn; Pu Weihua [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Wan Chunrong [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Jiang Changyin [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China)

    2006-10-25

    Poly(acrylonitrile-butyl acrylate) gel polymer electrolyte was prepared for lithium ion batteries. The preparation started with synthesis of poly(acrylonitrile-butyl acrylate) by radical emulsion polymerization, followed by phase inversion to produce microporous membrane. Then, the microporous gel polymer electrolytes (MGPEs) was prepared with the microporous membrane and LiPF{sub 6} in ethylene carbonate/diethyl carbonate. The dry microporous membrane showed a fracture strength as high as 18.98 MPa. As-prepared gel polymer electrolytes presented ionic conductivity in excess of 3.0 x 10{sup -3} S cm{sup -1} at ambient temperature and a decomposition voltage over 6.6 V. The results showed that the as-prepared gel polymer electrolytes were promising materials for Li-ion batteries.

  11. Subcellular distribution of styrene oxide in rat liver

    International Nuclear Information System (INIS)

    Pacifici, G.M.; Cuoci, L.; Rane, A.

    1984-01-01

    The subcellular distribution of ( 3 H)-styrene-7,8-oxide was studied in the rat liver. The compound was added to liver homogenate to give a final concentration of 2 X 10(-5); 2 X 10(-4) and 2 X 10(-3) M. Subcellular fractions were obtained by differential centrifugation. Most of styrene oxide (59-88%) was associated with the cytosolic fraction. Less than 15 percent of the compound was retrieved in each of the nuclear, mitochondrial and microsomal fractions. A considerable percentage of radioactivity was found unextractable with the organic solvents, suggesting that styrene oxide reacted with the endogenous compounds. The intracellular distribution of this epoxide was also studied in the perfused rat liver. Comparable results with those previously described were obtained. The binding of styrene oxide to the cytosolic protein was investigated by equilibrium dialysis and ultrafiltration. Only a small percentage of the compound was bound to protein

  12. Distribution of [1-14C]acrylonitrile in rat and monkey

    International Nuclear Information System (INIS)

    Sandberg, E.Ch.; Slanina, P.

    1980-01-01

    The distribution of [1- 14 C]acrylonitrile (ACN) in rat and monkey has been studied by whole-body autoradiography, after being administered orally and intravenously to rats and orally to monkeys. Uptake of radioactivity was seen in the blood, liver, kidney, lung, adrenal cortex and stomach mucosa. (Auth.)

  13. Evaluation of active sampling strategies for the determination of 1,3-butadiene in air

    Science.gov (United States)

    Vallecillos, Laura; Maceira, Alba; Marcé, Rosa Maria; Borrull, Francesc

    2018-03-01

    Two analytical methods for determining levels of 1,3-butadiene in urban and industrial atmospheres were evaluated in this study. Both methods are extensively used for determining the concentration of volatile organic compounds in the atmosphere and involve collecting samples by active adsorptive enrichment on solid sorbents. The first method uses activated charcoal as the sorbent and involves liquid desorption with carbon disulfide. The second involves the use of a multi-sorbent bed with two graphitised carbons and a carbon molecular sieve as the sorbent, with thermal desorption. Special attention was paid to the optimization of the sampling procedure through the study of sample volume, the stability of 1,3-butadiene once inside the sampling tube and the humidity effect. In the end, the thermal desorption method showed better repeatability and limits of detection and quantification for 1,3-butadiene than the liquid desorption method, which makes the thermal desorption method more suitable for analysing air samples from both industrial and urban atmospheres. However, sampling must be performed with a pre-tube filled with a drying agent to prevent the loss of the adsorption capacity of the solid adsorbent caused by water vapour. The thermal desorption method has successfully been applied to determine of 1,3-butadiene inside a 1,3-butadiene production plant and at three locations in the vicinity of the same plant.

  14. Comparative study of the monomer grafting: ethylene, acetylene, 1,3-butadiene and estyrene in the matrix of recycled polytetrafluoroethylene (PTFE); Estudo comparativo da enxertia dos monomeros: etileno, acetileno, 1,3-butadieno e estireno na matriz de politetrafluoroetileno (PTFE) reciclado

    Energy Technology Data Exchange (ETDEWEB)

    Ikari, Carolina T.; Rosner, Gerhardyne O.; Oliveira, Ana C.F. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Quimica e Meio Ambiente (CQMA); Faculdades Oswaldo Cruz, Sao Paulo, SP (Brazil); Ferreto, Helio F.R.; Lima, Luiz F.C.P.; Lugao, Ademar B., E-mail: hferreto@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Quimica e Meio Ambiente (CQMA); Moreira, Otavio M. [Faculdades Oswaldo Cruz, Sao Paulo, SP (Brazil)

    2009-07-01

    In this study it is used the recycled polytetrafluoroethylene (PTFE), that with the gamma radiation under inert atmosphere or in presence of air, it is obtained free radicals and a posterior the monomer grafting (ethylene, acetylene, styrene or 1.3 butadiene), obtaining the copolymer polytetrafluoroethylene-g-monomer. It is studied the obtention of the polymer by two methods: by direct way, via grafting, where the polymer is irradiated in presence of monomer, and via grafting when the polymer is irradiated in absence of monomer and under inert or air. The characterization of the copolymer was performed by the techniques of infrared region absorption spectroscopy with Fourier transformation (FTIR), thermogravimetric (TGA) and derivative thermogravimetry (DTG), and percentage of mass grafting (DOG)

  15. Morphology and contact angle studies of poly(styrene-co-acrylonitrile modified epoxy resin blends and their glass fibre reinforced composites

    Directory of Open Access Journals (Sweden)

    2007-06-01

    Full Text Available In this study, the surface characteristics of blends and composites of epoxy resin were investigated. Poly(styrene-co-acylonitrile (SAN was used to modify diglycedyl ether of bisphenol-A (DGEBA type epoxy resin cured with diamino diphenyl sulfone (DDS and the modified epoxy resin was used as the matrix for fibre reinforced composites (FRP’s. E-glass fibre was used as the fibre reinforcement. The scanning electron micrographs of the fractured surfaces of the blends and composites were analyzed. Morphological analysis revealed different morphologies such as dispersed, cocontinuous and phase-inverted structures for the blends. Contact angle studies were carried out using water and methylene iodide at room temperature. The solid surface energy was calculated using harmonic mean equations. Blending of epoxy resin increases its contact angle. The surface free energy, work of adhesion, interfacial free energy, spreading coefficient and Girifalco-Good’s interaction parameter were changed significantly in the case of blends and composites. The incorporation of thermoplastic and glass fibre reduces the wetting and hydrophilicity of epoxy resin.

  16. Features of radiation chemical processes in ethylene-styrene copolymers

    International Nuclear Information System (INIS)

    Leshchenko, S.S.; Mal'tseva, A.P.; Iskakov, L.I.; Karpov, V.L.

    1976-01-01

    A study was made of statistical copolymers of ethylene with styrene to determine their structure and properties and radio-chemical transformations. The styrene content of the copolymers ranged from 1 to 85 mole%. The investigation covered non-irradiated copolymers and those irradiated with doses of 1-1000Mrad at room temperature and at liquid nitrogen temperature. It is shown that styrene units present in the CES inhibited all radio-chemical processes compared with PE irradiated under similar conditions. It is suggested that the radiation resistance of CES with styrene contents up to 10 mole % increases in the course of irradiation as a result of the formation of structures with a high degree of conjugation which are more capable of scattering absorbed energy than in the case of phenyl rings by themselves. The most promising of the CES examined is the one with a styrene content of 5 mole %. The mechanical properties of this copolymer are similar to those of PE, and its radiation resistance rises under service conditions in the presence of ionizing radiation

  17. Determination of Selected Volatiles in Cigarette Mainstream Smoke. The CORESTA 2009 Collaborative Study and Recommended Method

    Directory of Open Access Journals (Sweden)

    Intorp M

    2014-12-01

    Full Text Available A recommended method has been developed and published by CORESTA, applicable to the quantification of selected volatiles (1,3-butadiene, isoprene, acrylonitrile, benzene, and toluene in the gas phase of cigarette mainstream smoke. The method involved smoke collection in impinger traps and detection and measurement using gas chromatography/mass spectrometry techniques.

  18. Radiation resistance of ethylene-styrene copolymers

    International Nuclear Information System (INIS)

    Matsumoto, Kaoru; Ikeda, Masaaki; Ohki, Yoshimichi; Kusama, Yasuo; Harashige, Masahiro; Yazaki, Fumihiko.

    1988-01-01

    In this paper, the radiation resistance of ethylene-styrene copolymer, a polymeric resin developed newly by the authors, is reported. Resin examined were five kinds of ethylene-styrene copolymers: three random and two graft copolymers with different styrene contents. Low-density polyethylene was used as a reference. The samples were irradiated by 60 Co γ-rays to total absorbed doses up to 10 MGy. The mechanical properties of the smaples were examined. Infrared spectroscopy, differential scanning calorimetry and X-ray scattering techniques were used to examine the morphology of the samples. The random copolymers are soft and easy to extend, because benzene rings which exisist highly at random hinder the crystallization. As for the radiation resistance, they are highly resistant to γ-rays in the aspects of carbonyl group formation, gel formation, and elongation. Further, they show even better radiation resistance when proper additives were compounded in. The graft copolymers are hard to extend, because they consist of segregated polystyrene and polyethylene regions which are connected with each other. The tensile strength of irradiated graft copolymers does not decrease below that of unirradiated copolymers, up to a total dose of 10 MGy. As a consequence, it can be said that ethylene-styrene copolymers have good radiation resistance owing to the so-called 'sponge' effect of benzene rings. (author)

  19. Poly(acrylonitrile)chitosan composite membranes for urease immobilization.

    Science.gov (United States)

    Gabrovska, Katya; Georgieva, Aneliya; Godjevargova, Tzonka; Stoilova, Olya; Manolova, Nevena

    2007-05-10

    (Poly)acrylonitrile/chitosan (PANCHI) composite membranes were prepared. The chitosan layer was deposited on the surface as well as on the pore walls of the base membrane. This resulted in the reduction of the pore size of the membrane and in an increase of their hydrophilicity. The pore structure of PAN and PANCHI membranes were determined by TEM and SEM analyses. It was found that the average size of the pore under a selective layer base PAN membrane is 7 microm, while the membrane coated with 0.25% chitosan shows a reduced pore size--small or equal to 5 microm and with 0.35% chitosan--about 4 microm. The amounts of the functional groups, the degree of hydrophilicity and transport characteristics of PAN/Chitosan composite membranes were determined. Urease was covalently immobilized onto all kinds of PAN/chitosan composite membranes using glutaraldehyde. Both the amount of bound protein and relative activity of immobilized urease were measured. The highest activity (94%) was measured for urease bound to PANCHI2 membranes (0.25% chitosan). The basic characteristics (pH(opt), pH(stability), T(opt), T(stability), heat inactivation and storage stability) of immobilized urease were determined. The obtained results show that the poly(acrylonitrile)chitosan composite membranes are suitable for enzyme immobilization.

  20. Determination of the Mechanical Properties of Rubber by FT-NIR

    OpenAIRE

    Pornprasit, Rattapol; Pornprasit, Philaiwan; Boonma, Pruet; Natwichai, Juggapong

    2016-01-01

    Mechanical tests, for example, tensile and hardness tests, are usually used to evaluate the properties of rubber materials. In this work, mechanical properties of selected rubber materials, that is, natural rubber (NR), styrene butadiene rubber (SBR), nitrile butadiene rubber (NBR), and ethylene propylene diene monomer (EPDM), were evaluated using a near infrared (NIR) spectroscopy technique. Here, NR/NBR and NR/EPDM blends were first prepared. All of the samples were then scanned using a FT-...

  1. Influence of Adhesive System on Performance of SiO/C Lithium-ion Battery

    Directory of Open Access Journals (Sweden)

    Teng Xin

    2015-01-01

    Full Text Available Silicon based anode material is turning into the research hot point of lithium-ion battery material field due to Si inside supporting higher capacity. Furthermore binder applied as major accessory material of anode system could bring anode material & current collector together, thus the influence given by binder system to battery performance becomes the key point. The paper describes the procedure of adopting commercial LiCoO2 SiO/C as composite material & electrolyte, with using styrene butadiene rubber and acrylic acid copolymer as binder to figure out lithium-ion battery with 2.5Ah, which is testified to present better performance on cold temperature & cycle life plus having a little bit swelling compared with the lithium-ion battery using only styrene butadiene rubber as binder.

  2. Asymmetric PS-block-(PS-co-PB)-block-PS block copolymers: morphology formation and deformation behaviour

    International Nuclear Information System (INIS)

    Adhikari, Rameshwar; Huy, Trinh An; Buschnakowski, Matthias; Michler, Goerg H; Knoll, Konrad

    2004-01-01

    Morphology formation and deformation behaviour of asymmetric styrene/butadiene triblock copolymers (total polystyrene (PS) content ∼70%) consisting of PS outer blocks held apart by a styrene-co-butadiene random copolymer block (PS-co-PB) each were investigated. The techniques used were differential scanning calorimetry, transmission electron microscopy, uniaxial tensile testing and Fourier-transform infrared spectroscopy. A significant shift of the phase behaviour relative to that of a neat symmetric triblock copolymer was observed, which can be attributed to the asymmetric architecture and the presence of PS-co-PB as a soft block. The mechanical properties and the microdeformation phenomena were mainly controlled by the nature of their solid-state morphology. Independent of morphology type, the soft phase was found to deform to a significantly higher degree of orientation when compared with the hard phase

  3. New Star-Branched Poly(acrylonitrile) Architectures : ATRP Synthesis and Solution Properties

    NARCIS (Netherlands)

    Pitto, Valentina; Voit, Brigitte I.; Loontjens, Ton J.A.; Benthem, Rolf A.T.M. van

    2004-01-01

    Atom transfer radical polymerization (ATRP) has been chosen as ‘‘living’’/controlled free radical polymerization system to synthesize a number of novel poly(acrylonitrile) (PAN) architectures. The reaction conditions for the synthesis of linear samples with control over molar mass and molar mass

  4. Conceptual process design of extractive distillation processes for ethylbenzene/styrene separation

    NARCIS (Netherlands)

    Jongmans, Mark; Hermens, E.; Raijmakers, M.; Maassen, J.I.W.; Schuur, Boelo; de Haan, A.B.

    2012-01-01

    In the current styrene production process the distillation of the close-boiling ethylbenzene/styrene mixture to obtain an ethylbenzene impurity level of 100 ppm in styrene accounts for 75–80% of the energy requirements. The future target is to reach a level of 1–10 ppm, which will increase the

  5. Synaptic contacts impaired by styrene-7,8-oxide toxicity

    International Nuclear Information System (INIS)

    Corsi, P.; D'Aprile, A.; Nico, B.; Costa, G.L.; Assennato, G.

    2007-01-01

    Styrene-7,8-oxide (SO), a chemical compound widely used in industrial applications, is a potential hazard for humans, particularly in occupational settings. Neurobehavioral changes are consistently observed in occupationally exposed individuals and alterations of neurotransmitters associated with neuronal loss have been reported in animal models. Although the toxic effects of styrene have been extensively documented, the molecular mechanisms responsible for SO-induced neurotoxicity are still unclear. A possible dopamine-mediated effect of styrene neurotoxicity has been previously demonstrated, since styrene oxide alters dopamine neurotransmission in the brain. Thus, the present study hypothesizes that styrene neurotoxicity may involve synaptic contacts. Primary striatal neurons were exposed to styrene oxide at different concentrations (0.1-1 mM) for different time periods (8, 16, and 24 h) to evaluate the dose able to induce synaptic impairments. The expression of proteins crucial for synaptic transmission such as Synapsin, Synaptophysin, and RAC-1 were considered. The levels of Synaptophysin and RAC-1 decreased in a dose-dependent manner. Accordingly, morphological alterations, observed at the ultrastructural level, primarily involved the pre-synaptic compartment. In SO-exposed cultures, the biochemical cascade of caspases was activated affecting the cytoskeleton components as their target. Thus the impairments in synaptic contacts observed in SO-exposed cultures might reflect a primarily morphological alteration of neuronal cytoskeleton. In addition, our data support the hypothesis developed by previous authors of reactive oxygen species (ROS) initiating events of SO cytotoxicity

  6. In vitro and in vivo genotoxicity of 1,3-butadiene and metabolites.

    OpenAIRE

    Arce, G T; Vincent, D R; Cunningham, M J; Choy, W N; Sarrif, A M

    1990-01-01

    1,3-Butadiene and two major genotoxic metabolites 3,4-epoxybutene (EB) and 1,2:3,4-diepoxybutane (DEB) were used as model compounds to determine if genetic toxicity findings in animal and human cells can aid in extrapolating animal toxicity data to man. Sister chromatid exchange (SCE) and micronucleus induction results indicated 1,3-butadiene was genotoxic in the bone marrow of the mouse but not the rat. This paralleled the chronic bioassays which showed mice to be more susceptible than rats ...

  7. Stability of tetraphenyl butadiene thin films in liquid xenon

    International Nuclear Information System (INIS)

    Sanguino, P.; Balau, F.; Botelho do Rego, A.M.; Pereira, A.; Chepel, V.

    2016-01-01

    Tetraphenyl butadiene (TPB) is widely used in particle detectors as a wavelength shifter. In this work we studied the stability of TPB thin films when immersed in liquid xenon (LXe). The thin films were deposited on glass and quartz substrates by thermal evaporation. Morphological and chemical surface properties were monitored before and after immersion into LXe by scanning electron microscopy and X-ray photoelectron spectroscopy. No appreciable changes have been detected with these two methods. Grain size and surface chemical composition were found to be identical before and after submersion into LXe. However, the film thickness, measured via optical transmission in the ultraviolet–visible wavelength regions, decreased by 1.6 μg/cm 2 (24%) after immersion in LXe during 20 h. These results suggest the necessity of using a protective thin film over the Tetraphenyl butadiene when used as a wavelength shifter in LXe particle detectors. - Highlights: • Stability of tetraphenyl butadiene (TPB) thin films immersed in liquid xenon (LXe). • Thermally evaporated TPB thin films were immersed in LXe for 20 h. • Film morphology and chemical surface properties remained unchanged. • Surface density of the films decreased by 1.6 μg/cm 2 (24%) after immersion in LXe. • For using in LXe particle detectors, TPB films should be protected with a coating.

  8. A testing program to evaluate the effects of simulant mixed wastes on plastic transportation packaging components

    International Nuclear Information System (INIS)

    Nigrey, P.J.; Dickens, T.G.

    1997-01-01

    Based on regulatory requirements for Type A and B radioactive material packaging, a Testing Program was developed to evaluate the effects of mixed wastes on plastic materials which could be used as liners and seals in transportation containers. The plastics evaluated in this program were butadiene-acrylonitrile copolymer (Nitrile rubber), cross-linked polyethylene, epichlorohydrin, ethylene-propylene rubber (EPDM), fluorocarbons, high-density polyethylene (HDPE), butyl rubber, polypropylene, polytetrafluoroethylene, and styrene-butadiene rubber (SBR). These plastics were first screened in four simulant mixed wastes. The liner materials were screened using specific gravity measurements and seal materials by vapor transport rate (VTR) measurements. For the screening of liner materials, Kel-F, HDPE, and XLPE were found to offer the greatest resistance to the combination of radiation and chemicals. The tests also indicated that while all seal materials passed exposure to the aqueous simulant mixed waste, EPDM and SBR had the lowest VTRs. In the chlorinated hydrocarbon simulant mixed waste, only Viton passed the screening tests. In both the simulant scintillation fluid mixed waste and the ketone mixture waste, none of the seal materials met the screening criteria. Those materials which passed the screening tests were subjected to further comprehensive testing in each of the simulant wastes. The materials were exposed to four different radiation doses followed by exposure to a simulant mixed waste at three temperatures and four different exposure times (7, 14, 28, 180 days). Materials were tested by measuring specific gravity, dimensional, hardness, stress cracking, VTR, compression set, and tensile properties. The second phase of this Testing Program involving the comprehensive testing of plastic liner has been completed and for seal materials is currently in progress

  9. Effects of simulant mixed waste on EPDM and butyl rubber

    International Nuclear Information System (INIS)

    Nigrey, P.J.; Dickens, T.G.

    1997-11-01

    The authors have developed a Chemical Compatibility Testing Program for the evaluation of plastic packaging components which may be used in transporting mixed waste forms. In this program, they have screened 10 plastic materials in four liquid mixed waste simulants. These plastics were butadiene-acrylonitrile copolymer (Nitrile) rubber, cross-linked polyethylene, epichlorohydrin rubber, ethylene-propylene (EPDM) rubber, fluorocarbons (Viton and Kel-F trademark), polytetrafluoro-ethylene (Teflon), high-density polyethylene, isobutylene-isoprene copolymer (Butyl) rubber, polypropylene, and styrene-butadiene (SBR) rubber. The selected simulant mixed wastes were (1) an aqueous alkaline mixture of sodium nitrate and sodium nitrite; (2) a chlorinated hydrocarbon mixture; (3) a simulant liquid scintillation fluid; and (4) a mixture of ketones. The screening testing protocol involved exposing the respective materials to approximately 3 kGy of gamma radiation followed by 14-day exposures to the waste simulants at 60 C. The rubber materials or elastomers were tested using Vapor Transport Rate measurements while the liner materials were tested using specific gravity as a metric. The authors have developed a chemical compatibility program for the evaluation of plastic packaging components which may be incorporated in packaging for transporting mixed waste forms. From the data analyses performed to date, they have identified the thermoplastic, polychlorotrifluoroethylene, as having the greatest chemical compatibility after having been exposed to gamma radiation followed by exposure to the Hanford Tank simulant mixed waste. The most striking observation from this study was the poor performance of polytetrafluoroethylene under these conditions. In the evaluation of the two elastomeric materials they have concluded that while both materials exhibit remarkable resistance to these environmental conditions, EPDM has a greater resistance to this corrosive simulant mixed waste

  10. Thermoplastic elastomer IPNs using radiation methods

    International Nuclear Information System (INIS)

    Burford, R.P.; Shirodkar, B.D.

    2000-01-01

    Full text: Styrene swollen, cross-linked TPEs can be thermally processed to give a new class of sequential interpenetrating polymer network (IPN). There are however certain limitations with this procedure, particularly in relation to the thermally initiated polymerization, including: the microscopic texture of the original TPE may be modified, the butadiene component of the TPE may thermally oxidize, safety concerns with monomer vapors at elevated temperatures exist; the concentration of monomer in the swollen TPE may change and be uneven. The method cannot be readily extended to the use of a volatile second monomer, such as butadiene or isoprene. Gamma radiation crosslinking allows uniform penetration and ambient temperatures. We used the multifunctional cross-linker, TMPTA, as this has been shown to work well under these conditions with styrene. Peroxide cross-linked Solprene 475 was swollen in inhibitor-free styrene containing 0, 10 and 33% by weight TMPTA and irradiated at 3 kGy/hr for total doses ranging typically from 50 to 1000 kGy. Hardnesses (Durometer Shore D) increased from 50 to plateau at about 65 units, and tensile strengths are ∼ 10-15 MPa. Initial data indicates breaking strains in the range 20 to 90%. A key observation is that the products were of uniform hardness and appearance, in contrast to many of the thermally prepared materials in the past, which also showed yellowing due to polybutadiene oxidation. Products were stained with osmium tetroxide, ultramicrotomed and observed by TEM. The morphologies of the new materials are more uniform than before, with less evidence of orientation. The previous structures were typically of swollen styrene rich rods in a butadiene matrix, whereas here the TEMs reveal a spongelike texture

  11. The Effect of Uncertainty in Exposure Estimation on the Exposure-Response Relation between 1,3-Butadiene and Leukemia

    Directory of Open Access Journals (Sweden)

    George Maldonado

    2009-09-01

    Full Text Available Abstract: In a follow-up study of mortality among North American synthetic rubber industry workers, cumulative exposure to 1,3-butadiene was positively associated with leukemia. Problems with historical exposure estimation, however, may have distorted the association. To evaluate the impact of potential inaccuracies in exposure estimation, we conducted uncertainty analyses of the relation between cumulative exposure to butadiene and leukemia. We created the 1,000 sets of butadiene estimates using job-exposure matrices consisting of exposure values that corresponded to randomly selected percentiles of the approximate probability distribution of plant-, work area/job group-, and year specific butadiene ppm. We then analyzed the relation between cumulative exposure to butadiene and leukemia for each of the 1,000 sets of butadiene estimates. In the uncertainty analysis, the point estimate of the RR for the first non zero exposure category (>0–<37.5 ppm-years was most likely to be about 1.5. The rate ratio for the second exposure category (37.5–<184.7 ppm-years was most likely to range from 1.5 to 1.8. The RR for category 3 of exposure (184.7–<425.0 ppm-years was most likely between 2.1 and 3.0. The RR for the highest exposure category (425.0+ ppm-years was likely to be between 2.9 and 3.7. This range off RR point estimates can best be interpreted as a probability distribution that describes our uncertainty in RR point estimates due to uncertainty in exposure estimation. After considering the complete probability distributions of butadiene exposure estimates, the exposure-response association of butadiene and leukemia was maintained. This exercise was a unique example of how uncertainty analyses can be used to investigate and support an observed measure of effect when occupational exposure estimates are employed in the absence of direct exposure measurements.

  12. Styrene vapor control systems in FRP yacht plants.

    Science.gov (United States)

    Todd, W F

    1985-01-01

    The production of large (greater than 25-ft) fiber-reinforced plastic (FRP) yachts has presented problems of styrene exposure in excess of the Occupational Safety and Health Administration permissible exposure level (OSHA PEL) of 100 ppm. Also, the National Institute for Occupational Safety and Health (NIOSH) is currently recommending a 10-hour workshift, 40-hour workweek time weighted average (TWA) of 50 ppm for styrene. Meeting this challenge will require a system of engineering, work practice, personal protective equipment, and monitoring control measures. NIOSH has performed a study of the engineering controls in three FRP yacht plants. Work practices and the use of personal protective equipment (PPE) were also considered in the evaluation. The three systems evaluated included a dilution system, a local ventilation system, and a push-pull ventilation system. The cost of constructing and operating these systems was not evaluated in this study. Study results indicated that each type of ventilation system can meet the present PEL of 100 ppm styrene; however, it is not certain that these systems can meet a lower PEL of 50 ppm styrene.

  13. 40 CFR 721.9492 - Polymers of styrene, cyclohexyl methacrylate and substituted methacrylate.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Polymers of styrene, cyclohexyl... Significant New Uses for Specific Chemical Substances § 721.9492 Polymers of styrene, cyclohexyl methacrylate...) The chemical substances identified generically as polymers of styrene, cyclohexyl methacrylate and...

  14. Photophysical processes study for poly (P-substituted styrenes) in solid films and in solutions

    International Nuclear Information System (INIS)

    Al-Hakeem, I.A.

    1985-01-01

    In this work, the absorption and emission spectra of poly (P-NN dimethyl amino styrene), poly (P-Fluoro Styrene), poly (P-CH2OCH3 styrene), poly (P-Methyl (styrene), poly(P-Tertiary butyl styrene) have been studied in solid films and solutions. The effect of added dimethylterph-thalate as a quencher to the fluorescence emission of the polymers used in this work were studied.(5 tabs., 39 figs., 60 refs.)

  15. 40 CFR 721.10151 - Modified styrene, divinylbenzene polymer (generic).

    Science.gov (United States)

    2010-07-01

    ... polymer (generic). 721.10151 Section 721.10151 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10151 Modified styrene, divinylbenzene polymer (generic). (a) Chemical... as modified styrene, divinylbenzene polymer (PMN P-07-642) is subject to reporting under this section...

  16. Occupational Styrene Exposure on Auditory Function Among Adults: A Systematic Review of Selected Workers.

    Science.gov (United States)

    Pleban, Francis T; Oketope, Olutosin; Shrestha, Laxmi

    2017-12-01

    A review study was conducted to examine the adverse effects of styrene, styrene mixtures, or styrene and/or styrene mixtures and noise on the auditory system in humans employed in occupational settings. The search included peer-reviewed articles published in English language involving human volunteers spanning a 25-year period (1990-2015). Studies included peer review journals, case-control studies, and case reports. Animal studies were excluded. An initial search identified 40 studies. After screening for inclusion, 13 studies were retrieved for full journal detail examination and review. As a whole, the results range from no to mild associations between styrene exposure and auditory dysfunction, noting relatively small sample sizes. However, four studies investigating styrene with other organic solvent mixtures and noise suggested combined exposures to both styrene organic solvent mixtures may be more ototoxic than exposure to noise alone. There is little literature examining the effect of styrene on auditory functioning in humans. Nonetheless, findings suggest public health professionals and policy makers should be made aware of the future research needs pertaining to hearing impairment and ototoxicity from styrene. It is recommended that chronic styrene-exposed individuals be routinely evaluated with a comprehensive audiological test battery to detect early signs of auditory dysfunction.

  17. Ultrasonic velocity and absorption study of binary mixtures of cyclohexane with acrylonitrile by interferometric method at different frequencies

    Science.gov (United States)

    Pawar, N. R.; Chimankar, O. P.; Bhandakkar, V. D.; Padole, N. N.

    2012-12-01

    The ultrasonic velocity (u), absorption (α), density (ρ), and viscosity (η) has been measured at different frequencies (1MHz to 10MHz) in the binary mixtures of cyclohexane with acrylonitriile over the entire range of composition at temperature 303K. Vander Waal's constant (b), adiabatic compressibility (βa), acoustic impedance (Z), molar volume (V), free length (Lf), free volume, internal pressure, intermolecular radius and relative association have been also calculated. A special application for acrylonitrile is in the manufacture of carbon fibers. These are produced by paralysis of oriented poly acrylonitrile fibers and are used to reinforce composites for high-performance applications in the aircraft, defense and aerospace industries. Other applications of acrylonitrile are in the production of fatty amines, ion exchange resins and fatty amine amides used in cosmetics, adhesives, corrosion inhibitors and water-treatment resins. Cyclohexane derivatives can be used for the synthesis of pharmaceuticals, dyes, herbicides, plant growth regulator, plasticizers, rubber chemicals, nylon, cyclamens and other organic compounds. In the view of these extensive applications of acrylonitrile and cyclohexane in the engineering process, textile and pharmaceutical industries present study provides qualitative information regarding the nature and strength of interaction in the liquid mixtures through derive parameters from ultrasonic velocity and absorption measurement.

  18. Effect of rubber polarity on selective wetting of carbon nanotubes in ternary blends

    OpenAIRE

    Le, H.H.; Parsaker, M.; Sriharish, M.N.; Henning, S.; Menzel, M.; Wiessner, S.; Das, A.; Do, Q.K.; Heinrich, G.; Radusch, H.J.

    2015-01-01

    Based on atomic force microscopy (AFM) and Fourier transform infrared spectroscopy (FTIR) analysis of the rubber-filler gel (wetting concept) the kinetics of selective wetting of carbon nanotubes (CNTs) in ternary styrene butadiene rubber (SBR)/butadiene rubber (BR)/natural rubber (NR) blends was qualitatively and quantitatively characterized. Almost all CNTs are found to be wetted by the non-polar NR but not by the other non-polar rubber like BR or weakly polar SBR. It was proposed that phos...

  19. Cooperative effects for CYP2E1 differ between styrene and its metabolites

    Science.gov (United States)

    Hartman, Jessica H.; Boysen, Gunnar; Miller, Grover P.

    2014-01-01

    Cooperative interactions are frequently observed in the metabolism of drugs and pollutants by cytochrome P450s; nevertheless, the molecular determinants for cooperativity remain elusive. Previously, we demonstrated that steady-state styrene metabolism by CYP2E1 exhibits positive cooperativity.We hypothesized that styrene metabolites have lower affinity than styrene toward CYP2E1 and limited ability to induce cooperative effects during metabolism. To test the hypothesis, we determined the potency and mechanism of inhibition for styrene and its metabolites toward oxidation of 4-nitrophenol using CYP2E1 Supersomes® and human liver microsomes.Styrene inhibited the reaction through a mixed cooperative mechanism with high affinity for the catalytic site (67 μM) and lower affinity for the cooperative site (1100 μM), while increasing substrate turnover at high concentrations. Styrene oxide and 4-vinylphenol possessed similar affinity for CYP2E1. Styrene oxide behaved cooperatively like styrene, but 4-vinylphenol decreased turnover at high concentrations. Styrene glycol was a very poor competitive inhibitor. Among all compounds, there was a positive correlation with binding and hydrophobicity.Taken together, these findings for CYP2E1 further validate contributions of cooperative mechanisms to metabolic processes, demonstrate the role of molecular structure on those mechanisms and underscore the potential for heterotropic cooperative effects between different compounds. PMID:23327532

  20. 21 CFR 177.2800 - Textiles and textile fibers.

    Science.gov (United States)

    2010-04-01

    ... lauryl sulfate Sodium 2-mercaptobenzothiazole Do. Sodium pentachlorophenate Do. Styrene-butadiene... hydroquinone Dimethylpolysiloxane Ethylenediaminetetraacetic acid, sodium salt 4-Ethyl-4-hexadecyl morpholinium ethyl sulfate For use only as a lubricant in the manufacture of polyethylene terephthalate fibers...

  1. Plasma modification of polypropylene surfaces and its alloying with styrene in situ

    Energy Technology Data Exchange (ETDEWEB)

    Ma Guiqiu, E-mail: magq@tju.edu.cn [School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300072 (China); Liu Ben; Li Chen; Huang Dinghai; Sheng Jing [School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300072 (China)

    2012-01-15

    The treatment of polypropylene surfaces has been studied by dielectric barrier discharges plasma of Ar. The structure and morphology of polypropylene surfaces of Ar plasma modification are characterized by X-ray photoelectron spectroscopy, Fourier transform infrared spectrometers and scanning electron microscope. The modified by plasma treatment of iPP (isotactic polypropylene) surface properties have been examined in a determination of free radicals. The modified active surfaces of polypropylene can induce grafting copolymerization of styrene onto polypropylene. The structure of grafting copolymer is characterized and the grafting percent of styrene onto polypropylene is calculated. The homopolymer of styrene can be formed under grafting copolymerization of styrene onto polypropylene, which follows that the alloying of polypropylene with styrene is achieved in situ.

  2. The surface reactivity of acrylonitrile with oxygen atoms on an analogue of interstellar dust grains

    Science.gov (United States)

    Kimber, Helen J.; Toscano, Jutta; Price, Stephen D.

    2018-06-01

    Experiments designed to reveal the low-temperature reactivity on the surfaces of interstellar dust grains are used to probe the heterogeneous reaction between oxygen atoms and acrylonitrile (C2H3CN, H2C=CH-CN). The reaction is studied at a series of fixed surface temperatures between 14 and 100 K. After dosing the reactants on to the surface, temperature-programmed desorption, coupled with time-of-flight mass spectrometry, reveals the formation of a product with the molecular formula C3H3NO. This product results from the addition of a single oxygen atom to the acrylonitrile reactant. The oxygen atom attack appears to occur exclusively at the C=C double bond, rather than involving the cyano(-CN) group. The absence of reactivity at the cyano site hints that full saturation of organic molecules on dust grains may not always occur in the interstellar medium. Modelling the experimental data provides a reaction probability of 0.007 ± 0.003 for a Langmuir-Hinshelwood style (diffusive) reaction mechanism. Desorption energies for acrylonitrile, oxygen atoms, and molecular oxygen, from the multilayer mixed ice their deposition forms, are also extracted from the kinetic model and are 22.7 ± 1.0 kJ mol-1 (2730 ± 120 K), 14.2 ± 1.0 kJ mol-1 (1710 ± 120 K), and 8.5 ± 0.8 kJ mol-1 (1020 ± 100 K), respectively. The kinetic parameters we extract from our experiments indicate that the reaction between atomic oxygen and acrylonitrile could occur on interstellar dust grains on an astrophysical time-scale.

  3. Binary and ternary LLE data of the system (ethylbenzene + styrene + 1-ethyl-3-methylimidazolium thiocyanate) and binary VLE data of the system (styrene + 1-ethyl-3-methylimidazolium thiocyanate)

    International Nuclear Information System (INIS)

    Jongmans, Mark T.G.; Schuur, Boelo; Haan, André B. de

    2012-01-01

    Highlights: ► LLE data have been measured for the system {ethylbenzene + styrene + [EMIM][SCN]}. ► VLE was determined for the system {styrene + [EMIM][SCN]} at vacuum conditions. ► All experimental data were correlated well with the NRTL model. ► [EMIM][SCN] has a much larger selectivity than the benchmark solvent sulfolane. - Abstract: The distillation of close boiling mixtures may be improved by adding a proper affinity solvent, and thereby creating an extractive distillation process. An example of a close boiling mixture that may be separated by extractive distillation is the mixture ethylbenzene/styrene. The ionic liquid 1-ethyl-3-methylimidazolium thiocyanate ([EMIM][SCN]) is a promising solvent to separate ethylbenzene and styrene by extractive distillation. In this study, (vapour + liquid) equilibrium data have been measured for the binary system (styrene + [EMIM][SCN]) over the pressure range of (3 to 20) kPa and binary and ternary (liquid + liquid) equilibrium data of the system (ethylbenzene + styrene + [EMIM][SCN]) at temperatures (313.2, 333.2 and 353.2) K. Due to the low solubility of ethylbenzene in [EMIM][SCN], it was not possible to measure accurately VLE data of the binary system (ethylbenzene + [EMIM][SCN]) and of the ternary system (ethylbenzene + styrene + [EMIM][SCN]) using the ebulliometer. Because previous work showed that the LLE selectivity is a good measure for the selectivity in VLE, we determined the selectivity with LLE. The selectivity of [EMIM][SCN] to styrene in LLE measurements ranges from 2.1 at high styrene raffinate purity to 2.6 at high ethylbenzene raffinate purity. The NRTL model can properly describe the experimental results. The rRMSD in temperature, pressure and mole fraction for the binary VLE data are respectively (0.1, 0.12 and 0.13)%. The rRMSD is only 0.7% in mole fraction for the LLE data.

  4. Comparing in situ removal strategies for improving styrene bioproduction.

    Science.gov (United States)

    McKenna, Rebekah; Moya, Luis; McDaniel, Matthew; Nielsen, David R

    2015-01-01

    As an important conventional monomer compound, the biological production of styrene carries significant promise with respect to creating novel sustainable materials. Since end-product toxicity presently limits styrene production by previously engineered Escherichia coli, in situ product removal by both solvent extraction and gas stripping were explored as process-based strategies for circumventing its inhibitory effects. In solvent extraction, the addition of bis(2-ethylhexyl)phthalate offered the greatest productivity enhancement, allowing net volumetric production of 836 ± 64 mg/L to be reached, representing a 320 % improvement over single-phase cultures. Gas stripping rates, meanwhile, were controlled by rates of bioreactor agitation and, to a greater extent, aeration. A periodic gas stripping protocol ultimately enabled up to 561 ± 15 mg/L styrene to be attained. Lastly, by relieving the effects of styrene toxicity, new insight was gained regarding subsequent factors limiting its biosynthesis in E. coli and strategies for future strain improvement are discussed.

  5. Fabrication of Composite Filaments with High Dielectric Permittivity for Fused Deposition 3D Printing.

    Science.gov (United States)

    Wu, Yingwei; Isakov, Dmitry; Grant, Patrick S

    2017-10-23

    Additive manufacturing of complex structures with spatially varying electromagnetic properties can enable new applications in high-technology sectors such as communications and sensors. This work presents the fabrication method as well as microstructural and dielectric characterization of bespoke composite filaments for fused deposition modeling (FDM) 3D printing of microwave devices with a high relative dielectric permittivity ϵ = 11 in the GHz frequency range. The filament is composed of 32 vol % of ferroelectric barium titanate (BaTiO 3 ) micro-particles in a polymeric acrylonitrile butadiene styrene (ABS) matrix. An ionic organic ester surfactant was added during formulation to enhance the compatibility between the polymer and the BaTiO 3 . To promote reproducible and robust printability of the fabricated filament, and to promote plasticity, dibutyl phthalate was additionally used. The combined effect of 1 wt % surfactant and 5 wt % plasticizer resulted in a uniform, many hundreds of meters, continuous filament of commercial quality capable of many hours of uninterrupted 3D printing. We demonstrate the feasibility of using the high dielectric constant filament for 3D printing through the fabrication of a range of optical devices. The approach herein may be used as a guide for the successful fabrication of many types of composite filament with varying functions for a broad range of applications.

  6. In Situ Wire Drawing of Phosphate Glass in Polymer Matrices for Material Extrusion 3D Printing

    Directory of Open Access Journals (Sweden)

    J. Gilberto Siqueiros

    2017-01-01

    Full Text Available A strategy to increase the amount of materials available for additive manufacturing platforms such as material extrusion 3D printing (ME3DP is the creation of printable thermoplastic composites. Potential limiters to the incorporation of filler materials into a thermoplastic resin include agglomeration of the filler materials, which can compromise the mechanical properties of the material system and a static morphology of the filler material. A potential solution to these issues is the use of filler materials with low glass transition temperatures allowing for a change in morphology during the extrusion process. Here, we successfully demonstrate the drawing of phosphate glass particles into a wire-like morphology within two polymeric systems: (1 a rubberized acrylonitrile butadiene styrene (ABS blend and (2 polylactic acid (PLA. After applying a normalization process to account for the effect of air gap within the 3D printed test specimens, an enhancement in the mechanical properties was demonstrated where an increase in strength was as high as 21% over baseline specimens. Scanning electron microanalysis was used to characterize the fracture surface and wire drawing efficacy. Factors affecting the ability to achieve wire drawing such as polymer viscosity and print temperature are also highlighted.

  7. Pyrolysis of plastic packaging waste: A comparison of plastic residuals from material recovery facilities with simulated plastic waste

    International Nuclear Information System (INIS)

    Adrados, A.; Marco, I. de; Caballero, B.M.; López, A.; Laresgoiti, M.F.; Torres, A.

    2012-01-01

    Highlights: ► Pyrolysis of plastic waste. ► Comparison of different samples: real waste, simulated and real waste + catalyst. ► Study of the effects of inorganic components in the pyrolysis products. - Abstract: Pyrolysis may be an alternative for the reclamation of rejected streams of waste from sorting plants where packing and packaging plastic waste is separated and classified. These rejected streams consist of many different materials (e.g., polyethylene (PE), polypropylene (PP), polystyrene (PS), polyvinyl chloride (PVC), polyethylene terephthalate (PET), acrylonitrile butadiene styrene (ABS), aluminum, tetra-brik, and film) for which an attempt at complete separation is not technically possible or economically viable, and they are typically sent to landfills or incinerators. For this study, a simulated plastic mixture and a real waste sample from a sorting plant were pyrolyzed using a non-stirred semi-batch reactor. Red mud, a byproduct of the aluminum industry, was used as a catalyst. Despite the fact that the samples had a similar volume of material, there were noteworthy differences in the pyrolysis yields. The real waste sample resulted, after pyrolysis, in higher gas and solid yields and consequently produced less liquid. There were also significant differences noted in the compositions of the compared pyrolysis products.

  8. Prevalence of microplastics in Singapore's coastal marine environment

    Energy Technology Data Exchange (ETDEWEB)

    Ng, K.L. [Division of Environmental Science and Engineering, Faculty of Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576 (Singapore); Obbard, J.P. [Division of Environmental Science and Engineering, Faculty of Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576 (Singapore)]. E-mail esejpo@nus.edu.sg

    2006-07-15

    Microplastics have been recently identified as marine pollutants of significant concern due to their persistence, ubiquity and potential to act as vectors for the transfer and exposure of persistent organic pollutants to marine organisms. This study documents, for the first time, the presence and abundance of microplastics (>1.6 {mu}m) in Singapore's coastal environment. An optimized sampling protocol for the collection and analysis of microplastics was developed, and beach sediments and seawater (surface microlayer and subsurface layer) samples were collected from nine different locations around the coastline. Low density microplastics were separated from sediments by flotation and polymer types were identified using Fourier transform infrared (FTIR) spectrometry. Synthetic polymer microplastics identified in beach sediments included polyethylene, polypropylene, polystyrene, nylon, polyvinyl alcohol and acrylonitrile butadiene styrene. Microplastics were detected in samples from four out of seven beach environments, with the greatest quantity found in sediments from two popular beaches in the eastern part of Singapore. Polyethylene, polypropylene and polystyrene microplastics were also found in the surface microlayer (50-60 {mu}m) and subsurface layer (1 m) of coastal waters. The presence of microplastics in sediments and seawater is likely due to on-going waste disposal practices from industries and recreational activities, and discharge from shipping.

  9. Prevalence of microplastics in Singapore's coastal marine environment

    International Nuclear Information System (INIS)

    Ng, K.L.; Obbard, J.P. . E-mail esejpo@nus.edu.sg

    2006-01-01

    Microplastics have been recently identified as marine pollutants of significant concern due to their persistence, ubiquity and potential to act as vectors for the transfer and exposure of persistent organic pollutants to marine organisms. This study documents, for the first time, the presence and abundance of microplastics (>1.6 μm) in Singapore's coastal environment. An optimized sampling protocol for the collection and analysis of microplastics was developed, and beach sediments and seawater (surface microlayer and subsurface layer) samples were collected from nine different locations around the coastline. Low density microplastics were separated from sediments by flotation and polymer types were identified using Fourier transform infrared (FTIR) spectrometry. Synthetic polymer microplastics identified in beach sediments included polyethylene, polypropylene, polystyrene, nylon, polyvinyl alcohol and acrylonitrile butadiene styrene. Microplastics were detected in samples from four out of seven beach environments, with the greatest quantity found in sediments from two popular beaches in the eastern part of Singapore. Polyethylene, polypropylene and polystyrene microplastics were also found in the surface microlayer (50-60 μm) and subsurface layer (1 m) of coastal waters. The presence of microplastics in sediments and seawater is likely due to on-going waste disposal practices from industries and recreational activities, and discharge from shipping

  10. Establishment and comparison of four constitutive relationships of PC/ABS from low to high uniaxial strain rates

    Science.gov (United States)

    Wang, Haitao; Zhang, Yun; Huang, Zhigao; Tang, Zhongbin; Wang, Yanpei; Zhou, Huamin

    2017-10-01

    The objective of this paper is to accurately predict the rate/temperature-dependent deformation of a polycarbonate (PC) and acrylonitrile-butadiene-styrene (ABS) blend at low, moderate, and high strain rates for various temperatures. Four constitutive models have been employed to predict stress-strain responses of PC/ABS under these conditions, including the DSGZ model, the original Mulliken-Boyce (M-B) model, the modified M-B model, and an adiabatic model named the Wang model. To more accurately capture the large deformation of PC/ABS under the high strain rate loading, the original M-B model is modified by allowing for the evolution of the internal shear strength. All of the four constitutive models above have been implemented in the finite element software ABAQUS/Explicit. A comparison of prediction accuracies of the four constitutive models over a wide range of strain rates and temperatures has been presented. The modified M-B model is observed to be more accurate in predicting the deformation of PC/ABS at high strain rates for various temperatures than the original M-B model, and the Wang model is demonstrated to be the most accurate in simulating the deformation of PC/ABS at low, moderate, and high strain rates for various temperatures.

  11. Separation of mixed waste plastics via magnetic levitation.

    Science.gov (United States)

    Zhao, Peng; Xie, Jun; Gu, Fu; Sharmin, Nusrat; Hall, Philip; Fu, Jianzhong

    2018-06-01

    Separation becomes a bottleneck of dealing with the enormous stream of waste plastics, as most of the extant methods can only handle binary mixtures. In this paper, a novel method that based on magnetic levitation was proposed for separating multiple mixed plastics. Six types of plastics, i.e., polypropylene (PP), acrylonitrile butadiene styrene (ABS), polyamide 6 (PA6), polycarbonate (PC), polyethylene terephthalate (PET), and polytetrafluoroethylene (PTFE), were used to simulate the mixed waste plastics. The samples were mixed and immersed into paramagnetic medium that placed into a magnetic levitation configuration with two identical NdFeB magnets with like-poles facing each other, and Fourier transform infrared (FTIR) spectroscopy was employed to verify the separation outputs. Unlike any conventional separation methods such as froth flotation and hydrocyclone, this method is not limited by particle sizes, as mixtures of different size fractions reached their respective equilibrium positions in the initial tests. The two-stage separation tests demonstrated that the plastics can be completely separated with purities reached 100%. The method has the potential to be industrialised into an economically-viable and environmentally-friendly mass production procedure, since quantitative correlations are determined, and the paramagnetic medium can be reused indefinitely. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Freeform fabrication of tissue-simulating phantom for potential use of surgical planning in conjoined twins separation surgery.

    Science.gov (United States)

    Shen, Shuwei; Wang, Haili; Xue, Yue; Yuan, Li; Zhou, Ximing; Zhao, Zuhua; Dong, Erbao; Liu, Bin; Liu, Wendong; Cromeens, Barrett; Adler, Brent; Besner, Gail; Xu, Ronald X

    2017-09-08

    Preoperative assessment of tissue anatomy and accurate surgical planning is crucial in conjoined twin separation surgery. We developed a new method that combines three-dimensional (3D) printing, assembling, and casting to produce anatomic models of high fidelity for surgical planning. The related anatomic features of the conjoined twins were captured by computed tomography (CT), classified as five organ groups, and reconstructed as five computer models. Among these organ groups, the skeleton was produced by fused deposition modeling (FDM) using acrylonitrile-butadiene-styrene. For the other four organ groups, shell molds were prepared by FDM and cast with silica gel to simulate soft tissues, with contrast enhancement pigments added to simulate different CT and visual contrasts. The produced models were assembled, positioned firmly within a 3D printed shell mold simulating the skin boundary, and cast with transparent silica gel. The produced phantom was subject to further CT scan in comparison with that of the patient data for fidelity evaluation. Further data analysis showed that the produced model reassembled the geometric features of the original CT data with an overall mean deviation of less than 2 mm, indicating the clinical potential to use this method for surgical planning in conjoined twin separation surgery.

  13. Making 3D implants for conservation and restoration of archaeological glass

    Directory of Open Access Journals (Sweden)

    Carmen Díaz-Marín

    2017-05-01

    Full Text Available This article describes the restoration of a glass bowl from the 16th-17thcentury by creating its three-dimensional (3Dmodel. The final purpose is to work with this model in order to avoid damaging situations that are associated with the manipulation of fragile objects. The gap areas, those corresponding to the missing fragments not found in the excavation, were carried out by constructing digital implants. A restricted area of the 3D model has been duplicated in order to accommodate it to confined intervals of the gap. The final implants were printed with acrylonitrile butadiene styrene (ABS filament. These implants replace the lost areas and give stability back to the item by recovering the original morphology. The result can be compared with the outcome obtained by a traditional process, but differs due to the fact that requires minimum manipulation of the item, so it can contribute to preserve and safeguard the restored object. This is a non-invasive method which is offered as an alternative treatment, where the archaeological object is replaced by its virtual model in the steps of the process after 3D data acquisition. Significant differences have not been found in the 3D printing results obtained with the two types of filaments tested (white and clear.

  14. 3D-Printed ABS and PLA Scaffolds for Cartilage and Nucleus Pulposus Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    Derek H. Rosenzweig

    2015-07-01

    Full Text Available Painful degeneration of soft tissues accounts for high socioeconomic costs. Tissue engineering aims to provide biomimetics recapitulating native tissues. Biocompatible thermoplastics for 3D printing can generate high-resolution structures resembling tissue extracellular matrix. Large-pore 3D-printed acrylonitrile butadiene styrene (ABS and polylactic acid (PLA scaffolds were compared for cell ingrowth, viability, and tissue generation. Primary articular chondrocytes and nucleus pulposus (NP cells were cultured on ABS and PLA scaffolds for three weeks. Both cell types proliferated well, showed high viability, and produced ample amounts of proteoglycan and collagen type II on both scaffolds. NP generated more matrix than chondrocytes; however, no difference was observed between scaffold types. Mechanical testing revealed sustained scaffold stability. This study demonstrates that chondrocytes and NP cells can proliferate on both ABS and PLA scaffolds printed with a simplistic, inexpensive desktop 3D printer. Moreover, NP cells produced more proteoglycan than chondrocytes, irrespective of thermoplastic type, indicating that cells maintain individual phenotype over the three-week culture period. Future scaffold designs covering larger pore sizes and better mimicking native tissue structure combined with more flexible or resorbable materials may provide implantable constructs with the proper structure, function, and cellularity necessary for potential cartilage and disc tissue repair in vivo.

  15. 3D-Printed ABS and PLA Scaffolds for Cartilage and Nucleus Pulposus Tissue Regeneration.

    Science.gov (United States)

    Rosenzweig, Derek H; Carelli, Eric; Steffen, Thomas; Jarzem, Peter; Haglund, Lisbet

    2015-07-03

    Painful degeneration of soft tissues accounts for high socioeconomic costs. Tissue engineering aims to provide biomimetics recapitulating native tissues. Biocompatible thermoplastics for 3D printing can generate high-resolution structures resembling tissue extracellular matrix. Large-pore 3D-printed acrylonitrile butadiene styrene (ABS) and polylactic acid (PLA) scaffolds were compared for cell ingrowth, viability, and tissue generation. Primary articular chondrocytes and nucleus pulposus (NP) cells were cultured on ABS and PLA scaffolds for three weeks. Both cell types proliferated well, showed high viability, and produced ample amounts of proteoglycan and collagen type II on both scaffolds. NP generated more matrix than chondrocytes; however, no difference was observed between scaffold types. Mechanical testing revealed sustained scaffold stability. This study demonstrates that chondrocytes and NP cells can proliferate on both ABS and PLA scaffolds printed with a simplistic, inexpensive desktop 3D printer. Moreover, NP cells produced more proteoglycan than chondrocytes, irrespective of thermoplastic type, indicating that cells maintain individual phenotype over the three-week culture period. Future scaffold designs covering larger pore sizes and better mimicking native tissue structure combined with more flexible or resorbable materials may provide implantable constructs with the proper structure, function, and cellularity necessary for potential cartilage and disc tissue repair in vivo.

  16. Three-Dimensional Printing of pH-Responsive and Functional Polymers on an Affordable Desktop Printer.

    Science.gov (United States)

    Nadgorny, Milena; Xiao, Zeyun; Chen, Chao; Connal, Luke A

    2016-10-26

    In this work we describe the synthesis, thermal and rheological characterization, hot-melt extrusion, and three-dimensional printing (3DP) of poly(2-vinylpyridine) (P2VP). We investigate the effect of thermal processing conditions on physical properties of produced filaments in order to achieve high quality, 3D-printable filaments for material extrusion 3DP (ME3DP). Mechanical properties and processing performances of P2VP were enhanced by addition of 12 wt % acrylonitrile-butadiene-styrene (ABS), which reinforced P2VP fibers. We 3D-print P2VP filaments using an affordable 3D printer. The pyridine moieties are cross-linked and quaternized postprinting to form 3D-printed pH-responsive hydrogels. The printed objects exhibited dynamic and reversible pH-dependent swelling. These hydrogels act as flow-regulating valves, controlling the flow rate with pH. Additionally, a macroporous P2VP membrane was 3D-printed and the coordinating ability of the pyridyl groups was employed to immobilize silver precursors on its surface. After the reduction of silver ions, the structure was used to catalyze the reduction of 4-nitrophenol to 4-aminophenol with a high efficiency. This is a facile technique to print recyclable catalytic objects.

  17. Surface functionalization of 3D-printed plastics via initiated chemical vapor deposition

    Directory of Open Access Journals (Sweden)

    Christine Cheng

    2017-08-01

    Full Text Available 3D printing is a useful fabrication technique because it offers design flexibility and rapid prototyping. The ability to functionalize the surfaces of 3D-printed objects allows the bulk properties, such as material strength or printability, to be chosen separately from surface properties, which is critical to expanding the breadth of 3D printing applications. In this work, we studied the ability of the initiated chemical vapor deposition (iCVD process to coat 3D-printed shapes composed of poly(lactic acid and acrylonitrile butadiene styrene. The thermally insulating properties of 3D-printed plastics pose a challenge to the iCVD process due to large thermal gradients along the structures during processing. In this study, processing parameters such as the substrate temperature and the filament temperature were systematically varied to understand how these parameters affect the uniformity of the coatings along the 3D-printed objects. The 3D-printed objects were coated with both hydrophobic and hydrophilic polymers. Contact angle goniometry and X-ray photoelectron spectroscopy were used to characterize the functionalized surfaces. Our results can enable the use of iCVD to functionalize 3D-printed materials for a range of applications such as tissue scaffolds and microfluidics.

  18. Metallization on FDM Parts Using the Chemical Deposition Technique

    Directory of Open Access Journals (Sweden)

    Azhar Equbal

    2014-08-01

    Full Text Available Metallization of ABS (acrylonitrile-butadiene-styrene parts has been studied on flat part surfaces. These parts are fabricated on an FDM (fused deposition modeling machine using the layer-wise deposition principle using ABS as a part material. Electroless copper deposition on ABS parts was performed using two different surface preparation processes, namely ABS parts prepared using chromic acid for etching and ABS parts prepared using a solution mixture of sulphuric acid and hydrogen peroxide (H2SO4/H2O2 for etching. After surface preparations using these routes, copper (Cu is deposited electrolessly using four different acidic baths. The acidic baths used are 5 wt% CuSO4 (copper sulfate with 15 wt% of individual acids, namely HF (hydrofluoric acid, H2SO4 (sulphuric acid, H3PO4 (phosphoric acid and CH3COOH (acetic acid. Cu deposition under different acidic baths used for both the routes is presented and compared based on their electrical performance, scanning electron microscopy (SEM and energy dispersive X-ray spectrometry (EDS. The result shows that chromic acid etched samples show better electrical performance and Cu deposition in comparison to samples etched via H2SO4/H2O2.

  19. Occupational Styrene Exposure Induces Stress-Responsive Genes Involved in Cytoprotective and Cytotoxic Activities

    Science.gov (United States)

    Strafella, Elisabetta; Bracci, Massimo; Staffolani, Sara; Manzella, Nicola; Giantomasi, Daniele; Valentino, Matteo; Amati, Monica; Tomasetti, Marco; Santarelli, Lory

    2013-01-01

    Objective The aim of this study was to evaluate the expression of a panel of genes involved in toxicology in response to styrene exposure at levels below the occupational standard setting. Methods Workers in a fiber glass boat industry were evaluated for a panel of stress- and toxicity-related genes and associated with biochemical parameters related to hepatic injury. Urinary styrene metabolites (MA+PGA) of subjects and environmental sampling data collected for air at workplace were used to estimate styrene exposure. Results Expression array analysis revealed massive upregulation of genes encoding stress-responsive proteins (HSPA1L, EGR1, IL-6, IL-1β, TNSF10 and TNFα) in the styrene-exposed group; the levels of cytokines released were further confirmed in serum. The exposed workers were then stratified by styrene exposure levels. EGR1 gene upregulation paralleled the expression and transcriptional protein levels of IL-6, TNSF10 and TNFα in styrene exposed workers, even at low level. The activation of the EGR1 pathway observed at low-styrene exposure was associated with a slight increase of hepatic markers found in highly exposed subjects, even though they were within normal range. The ALT and AST levels were not affected by alcohol consumption, and positively correlated with urinary styrene metabolites as evaluated by multiple regression analysis. Conclusion The pro-inflammatory cytokines IL-6 and TNFα are the primary mediators of processes involved in the hepatic injury response and regeneration. Here, we show that styrene induced stress responsive genes involved in cytoprotection and cytotoxicity at low-exposure, that proceed to a mild subclinical hepatic toxicity at high-styrene exposure. PMID:24086524

  20. Atom transfer radical copolymerization of styrene and butyl acrylate

    NARCIS (Netherlands)

    Chambard, G.; Klumperman, B.; Matyjaszewski, K.

    2000-01-01

    Atom transfer radical polymerization of styrene and butyl acrylate has been investigated from a kinetic point of view. Attention is focused on the activation of the dormant species as well as on the termination that plays a role in these reactions. It has been shown that the activation of a styrene

  1. Occupational Styrene Exposure on Auditory Function Among Adults: A Systematic Review of Selected Workers

    Directory of Open Access Journals (Sweden)

    Francis T. Pleban

    2017-12-01

    Full Text Available A review study was conducted to examine the adverse effects of styrene, styrene mixtures, or styrene and/or styrene mixtures and noise on the auditory system in humans employed in occupational settings. The search included peer-reviewed articles published in English language involving human volunteers spanning a 25-year period (1990–2015. Studies included peer review journals, case–control studies, and case reports. Animal studies were excluded. An initial search identified 40 studies. After screening for inclusion, 13 studies were retrieved for full journal detail examination and review. As a whole, the results range from no to mild associations between styrene exposure and auditory dysfunction, noting relatively small sample sizes. However, four studies investigating styrene with other organic solvent mixtures and noise suggested combined exposures to both styrene organic solvent mixtures may be more ototoxic than exposure to noise alone. There is little literature examining the effect of styrene on auditory functioning in humans. Nonetheless, findings suggest public health professionals and policy makers should be made aware of the future research needs pertaining to hearing impairment and ototoxicity from styrene. It is recommended that chronic styrene-exposed individuals be routinely evaluated with a comprehensive audiological test battery to detect early signs of auditory dysfunction. Keywords: auditory system, human exposure, ototoxicity, styrene

  2. Control of insects with fumigants at low temperatures: toxicity of mixtures of methyl bromide and acrylonitrile to three species of insects

    Energy Technology Data Exchange (ETDEWEB)

    Bond, E.J.; Buckland, C.T.

    1976-12-15

    Acrylonitrile can be mixed with methyl bromide to increase toxicity so that the quantity of methyl bromide required for control of Sitophilus granarius (L.), Tenebrio molitor L., and Tribolium confusum Jacquelin duval is reduced by one half. Mixtures of methyl bromide and acrylonitrile are considerably more effective at low temperatures than methyl bromide alone.

  3. Natural polymers: an overview

    CSIR Research Space (South Africa)

    John, MJ

    2012-08-01

    Full Text Available The scarcity of natural polymers during the world war years led to the development of synthetic polymers like nylon, acrylic, neoprene, styrene-butadiene rubber (SBR) and polyethylene. The increasing popularity of synthetic polymers is partly due...

  4. Synthesis of soft shell poly(styrene) colloids for filtration experiments

    DEFF Research Database (Denmark)

    Hinge, Mogens

    Separating a solid from a liquid is an important unit operation in many different industries e.g. mining, chemical, pharmaceutical and food industries. Solid liquid separation can roughly be divided into three groups. 1) Separation by gravity forces e.g. sedimentation, centrifugation, 2) Separation...... consisting of a solid poly(styrene) (PS) core with a water swollen shell have been employed in investigating the effect from varying amounts and type of water swollen material on filtration dewatering properties. Three series of model material have been used in this investigation 1) poly......(styrene-co-acrylic acid) core-shell colloids with varying thickness of the poly(acrylic acid) (PAA) shell. 2) poly(styrene-co-acrylic acid) core-shell colloids with varying diameter of the PS core and 3) poly(styrene-co-N-isopropylacrylamide) core-shell colloids with varying thickness of the poly...

  5. Promoting effect of oxygen for hydrogenation of butadiene over Ni/sub 2/P catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Nozaki, F.; Kitoh, T.; Sodesawa, T.

    1980-04-01

    When 0-10 mm Hg of oxygen were added to the reaction of 75 mm Hg butadiene and 225 mm Hg hydrogen over dinickel phosphide in a closed circulation system at 40/sup 0/C, increasing amounts of oxygen caused increasing lengths of induction periods followed by hydrogenation at reaction rates which had a maximum at 3 mm Hg oxygen. This maximum rate was about six times higher than the rate without oxygen addition. Adsorption, temperature-programed desorption, IR spectroscopy, and the product distribution of butadiene deuteration showed that two types of oxygen adsorbed on the dinickel phosphide catalyst; molecular oxygen on nickel, which desorbed on evacuation below 50/sup 0/C and which could be displaced by butadiene, was responsible for the induction period; molecular oxygen on phosphorus atoms, which promoted hydrogen adsorption, was responsible for the increased hydrogenation rate.

  6. Polymerization of lanthanide acrylonitrile complexes.

    Science.gov (United States)

    el-Mossalamy, El-Sayed H; Khalil, Ahmed A

    2002-01-01

    The molecular complexes of some lanthanides scandium (Sc3+), yttrium (Y3+), lanthanum (La3+), gadolinium (Gd3+), cerium (Ce3+) and ytterbium (Yb3) have been studies in dimethyl formamide (DMF) spectrophtometrically equilibrium constants (K), molar extintion coefficient (epsilon), energy of transition (E) and free energy (delta G*) were calculated. The polymerization of acrylonitrile has been studied and investigated in the presence of Sc3+, Y3+, La3+, Gd3+, Ce3+, and Yb3+ ions. The IR spectra of the formed AN-M (III) Br3 polymer complexes show the absence of the C identical to N band and the presence of two new bands corresponding to NH2 and OH groups. Magnetic moment values and the thermal stabilities of homopolymer and the polymer complexes were studied by means of thermogravimetric analysis and the activation energies for degradation were calculated.

  7. Synergetic effect of copper-plating wastewater as a catalyst for the destruction of acrylonitrile wastewater in supercritical water oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Young Ho; Lee, Hong-shik; Lee, Young-Ho [School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, 599 Gwanangno, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Kim, Jaehoon; Kim, Jae-Duck [Supercritical Fluid Research Laboratory, Energy and Environment Research Division, Korea Institute of Science and Technology (KIST), 39-1 Hawolgok-dong, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Lee, Youn-Woo, E-mail: ywlee@snu.ac.kr [School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, 599 Gwanangno, Gwanak-gu, Seoul 151-744 (Korea, Republic of)

    2009-08-15

    A new supercritical water oxidation process for the simultaneous treatment of mixed wastewater containing wastewater from acrylonitrile manufacturing processes and copper-plating processes was investigated using a continuous tubular reactor system. Experiments were carried out at temperatures ranging from 400 to 600 deg. C and a pressure of 25 MPa. The residence time was fixed at 2 s by changing the flow rates of feeds, depending on reaction temperature. The initial total organic carbon (TOC) concentration of the wastewaters and the O{sub 2} concentration at the reactor inlet were kept constant at 0.49 and 0.74 mol/L. It was confirmed that the copper-plating wastewater accelerated the TOC conversion of acrylonitrile wastewater from 17.6% to 67.3% at a temperature of 450 deg. C. Moreover, copper and copper oxide nanoparticles were generated in the process of supercritical water oxidation (SCWO) of mixed wastewater. 99.8% of copper in mixed wastewater was recovered as solid copper and copper oxides at a temperature of 600 deg. C, with their average sizes ranging from 150 to 160 nm. Our study showed that SCWO provides a synergetic effect for simultaneous treatment of acrylonitrile and copper-plating wastewater. During the reaction, the oxidation rate of acrylonitrile wastewater was enhanced due to the in situ formation of nano-catalysts of copper and/or copper oxides, while the exothermic decomposition of acrylonitrile wastewater supplied enough heat for the recovery of solid copper and copper oxides from copper-plating wastewater. The synergetic effect of wastewater treatment by the newly proposed SCWO process leads to full TOC conversion, color removal, detoxification, and odor elimination, as well as full recovery of copper.

  8. Synthesis and Thermal Properties of Acrylonitrile/Butyl Acrylate/Fumaronitrile and Acrylonitrile/Ethyl Hexyl Acrylate/Fumaronitrile Terpolymers as a Potential Precursor for Carbon Fiber

    OpenAIRE

    Jamil, Siti Nurul Ain Md; Daik, Rusli; Ahmad, Ishak

    2014-01-01

    A synthesis of acrylonitrile (AN)/butyl acrylate (BA)/fumaronitrile (FN) and AN/EHA (ethyl hexyl acrylate)/FN terpolymers was carried out by redox polymerization using sodium bisulfite (SBS) and potassium persulphate (KPS) as initiator at 40 °C. The effect of comonomers, BA and EHA and termonomer, FN on the glass transition temperature (Tg) and stabilization temperature was studied using Differential Scanning Calorimetry (DSC). The degradation behavior and char yield were obtained by Thermog...

  9. 1,3-Butadiene: Biomarkers and application to risk assessment

    Czech Academy of Sciences Publication Activity Database

    Swenberg, J. A.; Bordeerat, N. K.; Boysen, G.; Carro, S.; Georgieva, N. I.; Troutman, J. M.; Upton, P. B.; Albertini, R. J.; Vacek, P. M.; Walker, V. E.; Šrám, Radim; Goggin, M.; Tretyakova, N.

    2011-01-01

    Roč. 192, 1-2 (2011), s. 150-154 ISSN 0009-2797 Institutional research plan: CEZ:AV0Z50390512 Keywords : risk assessment * 1,3-butadiene * occupational exposure Subject RIV: DN - Health Impact of the Environment Quality Impact factor: 2.865, year: 2011

  10. Comparison of Extruder Systems for 3D Printer Filament Fabrication

    Science.gov (United States)

    Ramirez, Adriana

    Additive Manufacturing (AM) has grown in popularity over the past thirty years, due to its versatility, short design to product cycle, and capability to fabricate complex geometries, which cannot otherwise be produced. There exist several platforms that are able to print objects composed of different materials, making this technology significant in different fields such as: automotive, aerospace, medical, electronics, amongst others. Though several types of AM technologies are available, the expiration of the patents on fused deposition modeling (FDM) in 2009 has led to a widespread use of this platform in academia and home use settings. Widespread use of FDM-type AM platforms has led to a demand to fabricate feedstock materials for this AM platform. Particularly, in the home do it yourself (DIY) community there has been a widespread interest for users to manufacture their own feedstock filament leading to a large growth in home-use extrusion systems. The low cost of these desktop-grade systems has also made them attractive to academics, but there has not been a widespread effort into determining the efficacy of these small scale extrusion systems as compared to industrial quality extruders which are typically used to manufacture feedstock for FDM platforms. The aim of this study was to compare two extrusion processes: 1) a desktop grade single-screw extruder; and 2) an industrial scale twin-screw extruder. In order to understand differences between their performance and quality of mixing, a rubberized blend of acrylonitrile butadiene styrene (ABS) mixed with styrene ethylene butylene styrene with a maleic anhydride graft (SEBS-g-MA) at different ratios was compounded on each extrusion system. Melt flow index, and mechanical properties were compared. In addition, a raster pattern sensitivity study was performed to evaluate the effect of the extruder system on 3D printed objects. Finally, scanning electron microscopy (SEM) was used to examine the fracture surfaces

  11. Characterization of chemical contaminants generated by a desktop fused deposition modeling 3-dimensional Printer.

    Science.gov (United States)

    Stefaniak, Aleksandr B; LeBouf, Ryan F; Yi, Jinghai; Ham, Jason; Nurkewicz, Timothy; Schwegler-Berry, Diane E; Chen, Bean T; Wells, J Raymond; Duling, Matthew G; Lawrence, Robert B; Martin, Stephen B; Johnson, Alyson R; Virji, M Abbas

    2017-07-01

    Printing devices are known to emit chemicals into the indoor atmosphere. Understanding factors that influence release of chemical contaminants from printers is necessary to develop effective exposure assessment and control strategies. In this study, a desktop fused deposition modeling (FDM) 3-dimensional (3-D) printer using acrylonitrile butadiene styrene (ABS) or polylactic acid (PLA) filaments and two monochrome laser printers were evaluated in a 0.5 m 3 chamber. During printing, chamber air was monitored for vapors using a real-time photoionization detector (results expressed as isobutylene equivalents) to measure total volatile organic compound (TVOC) concentrations, evacuated canisters to identify specific VOCs by off-line gas chromatography-mass spectrometry (GC-MS) analysis, and liquid bubblers to identify carbonyl compounds by GC-MS. Airborne particles were collected on filters for off-line analysis using scanning electron microscopy with an energy dispersive x-ray detector to identify elemental constituents. For 3-D printing, TVOC emission rates were influenced by a printer malfunction, filament type, and to a lesser extent, by filament color; however, rates were not influenced by the number of printer nozzles used or the manufacturer's provided cover. TVOC emission rates were significantly lower for the 3-D printer (49-3552 µg h -1 ) compared to the laser printers (5782-7735 µg h -1 ). A total of 14 VOCs were identified during 3-D printing that were not present during laser printing. 3-D printed objects continued to off-gas styrene, indicating potential for continued exposure after the print job is completed. Carbonyl reaction products were likely formed from emissions of the 3-D printer, including 4-oxopentanal. Ultrafine particles generated by the 3-D printer using ABS and a laser printer contained chromium. Consideration of the factors that influenced the release of chemical contaminants (including known and suspected asthmagens such as styrene and

  12. Ab initio study of styrene isotopomers

    International Nuclear Information System (INIS)

    Zhang Jicheng; Tang Yongjian; Wu Weidong; Wang Hongyan; Zhu Zhenghe

    2002-01-01

    Using Gaussian98W program, the equilibrium geometry molecule structure of styrene has been optimized with HF/6-31G, MP2/6-31G and BLYP/6-31G methods. At same time, using BLYP/6-31G method, the harmonic frequency of styrene and its isotopomers, the bond energy of C-D bond (with ZPE correction), the intensity of IR spectrum are studied, and the modes of harmonic vibrational frequencies are simply discussed. At the same time, the effect of temperature and pressure on the thermodynamics parameter-entropy are studied. The results show that the calculated results are in good agreement with the experimental results

  13. Improved natural rubber composites reinforced with a complex filler network of biobased nanoparticles and ionomer

    Science.gov (United States)

    Biobased rubber composites are renewable and sustainable. Significant improvement in modulus of rubber composite reinforced with hydrophilic filler was achieved with the inclusion of ionomers. Soy particles aided with ionomer, carboxylated styrene-butadiene (CSB), formed a strong complex filler netw...

  14. Polyoxyethylene/styrene - a model system for studying reaction-induced phase separation (RIPS)

    International Nuclear Information System (INIS)

    Sutton, D.; Stanford, J.L.; Ryan, A.J.

    2003-01-01

    Full text: Reaction-induced, phase-separation has been studied in polymer blends. A model crystalline-amorphous system consisted of semi-crystalline polyoxyethylene (POE) dissolved in the monomer styrene, which was employed as a reactive solvent to ease processing. When the styrene was polymerised to polystyrene (PS) in the mould, phase-separation and phase-inversion are induced, and a polymer blend was formed. POE was selected with a molar mass, Mn = 8578 g mol -1 and a polydispersity of 1.19 as determined using GPC. The polymerisation of styrene was initiated using 1 wt-% benzoin methyl ether (BME) and 0.2 wt-% 2,2'-azobisisobutyronitrile (AIBN) under ultra-violet (UV) light. The polymerisation kinetics were determined by monitoring the reduction in the intensity of the C=C stretching vibration band at 1631 cm -1 in the Raman spectrum of styrene. The onset times for the liquid-solid (L-S) phase-separation and crystallisation of POE from styrene/PS were observed using simultaneous small-angle X-ray scattering (SAXS) and wide-angle X-ray scattering (WAXS). Onset times for L-S phase-separation determined from the SAXS data were combined with the styrene polymerisation kinetics to plot the L-S phase-separation data onto a ternary phase diagram for the reactive system POE/styrene/PS at 45 and 50 deg C

  15. Graft-copolymerization of styrene on polypropylene in the solid phase

    NARCIS (Netherlands)

    Beenen, W.; VanderWal, D.; Janssen, L.P.B.M.; Buijtenhuijs, A.; Hogt, A.H.; Wal, Douwe J. v.d.

    The graft-copolymerization of styrene on PP in the solid phase has been studied under various reaction conditions using a radical initiator. Polymerization kinetics were investigated by DSC experiments and reactions in glass ampoules. The conversion rate and grafting efficiency of styrene appeared

  16. Stepwise mechanism of oxidative ammonolysis of propane to acrylonitrile over gallium-antimony oxide catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Osipova, Z.G.; Sokolovskii, V.D.

    1979-03-01

    The stepwise mechanism of oxidative ammonolysis of propane to acrylonitrile over gallium-antimony oxide catalysts GaSb/sub 19/O/sub x/, GaSb/sub 3/Ni/sub 1.5/0/sub x/, and GaSb/sub 2.5/Ni/sub 1.5/PW/sub 0//sub 0.25/O/sub x/ was studied at 450/sup 0/ and 550/sup 0/C by introducing alternating pulses of 0.5Vertical Bar3< propane/0.6Vertical Bar3< ammonia/helium (to reduce the steady-state catalytic surface) and 0.5Vertical Bar3< propane/0.6Vertical Bar3< ammonia/1.86Vertical Bar3< oxygen/helium mixtures into a fluidized-bed catalytic reactor. Over all the catalysts studied, the rates of acrylonitrile formation during the two types of pulses were very similar, but carbon dioxide was formed much faster during the reducing pulses, particularly at 450/sup 0/C. These findings suggested that acrylonitrile is formed by a stepwise redox mechanism involving consecutive interaction of propane and ammonia with the surface oxygen of the catalysts and oxidation of the reduced catalyst surface by gas-phase oxygen. The formation of carbon dioxide proceeds by both stepwise and associative mechanisms, the latter being more important at higher temperatures. The results are similar to published results for ammoxidation of propylene and olefins.

  17. Graft polymerization of styrene onto starch by simultaneous cobalt-60 irradiation

    International Nuclear Information System (INIS)

    Fanta, G.F.; Burr, R.C.; Doane, W.M.; Russell, C.R.

    1977-01-01

    Starch-g-polystyrene copolymers have been prepared by the simultaneous 60 Co irradiation of starch--styrene mixtures, and copolymers have been characterized with respect to weight per cent polystyrene (% add-on) and also the molecular weight and molecular weight distribution of polystyrene grafts. In a typical polymerization, 4g each of starch and styrene were blended with 1 ml water and 1.5 ml of an organic solvent; the resulting semisolid paste was irradiated to a total dose of 1 Mrad. With ethylene glycol, acetonitrile, ethanol, methanol, acetone, and dimethylformamide as the organic solvent, values for % add-on ranged from 24% to 29%. The highest % add-on (43%) and the highest conversion of styrene to grafted polymer (76%) were obtained when the organic solvent was omitted, and water alone was used. When water was also omitted, polymerization of styrene was negligible; however, graft copolymer was formed in the absence of water when either ethylene glycol or ethanol was added. Attempts were unsuccessful to achieve a % add-on greater than 43% by doubling the amount of styrene in the polymerization recipe. Mixtures of equal weights of starch and styrene are relatively nonviscous, but these mixtures thicken when either water or ethylene glycol is blended in. Reasons for this thickening action and the possible influence of thickening on the graft polymerization reaction were explored

  18. Solvent influence during radiation induced grafting of styrene in PVDF

    International Nuclear Information System (INIS)

    Ferreira, Henrique P.; Parra, Duclerc F.; Lugao, Ademar B.

    2013-01-01

    Radiation-induced grafting was studied to produce styrene grafted poly(vinylidene fluoride) (PVDF) membranes. PVDF films with 0.125 mm thickness were irradiated at doses between 5 and 20 kGy in the presence of styrene/N,N-dimethylformamide (DMF), styrene/acetone or styrene/toluene solutions (1:1, v/v) at dose rate of 5 kGy h -1 by simultaneous method, using gamma rays from a Co-60, under nitrogen atmosphere and at room temperature. The films were characterized before and after modification by grafting yield (GY %), infrared spectroscopy (FT-IR), scanning electron microscopy (SEM and EDS), differential scanning calorimetry (DSC) and thermogravimetry (TG/DTG). GY results shows that grafting increases with dose and toluene hinders the grafting, leading to a small GY comparing to DMF and acetone. It was possible to confirm the grafting of styrene by FT-IR due to the new characteristics peaks and by the TG and DSC due to changes in thermal behavior of the grafted material. SEM and EDS show surface and cross-section distribution of the grafting, which takes place on the surface and heterogeneously with toluene as solvent and homogeneously and penetrating into the inner layers of the matrix using DMF and acetone as solvent. (author)

  19. Solvent influence during radiation induced grafting of styrene in PVDF

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Henrique P.; Parra, Duclerc F.; Lugao, Ademar B., E-mail: hp.ferreira@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Radiation-induced grafting was studied to produce styrene grafted poly(vinylidene fluoride) (PVDF) membranes. PVDF films with 0.125 mm thickness were irradiated at doses between 5 and 20 kGy in the presence of styrene/N,N-dimethylformamide (DMF), styrene/acetone or styrene/toluene solutions (1:1, v/v) at dose rate of 5 kGy h{sup -1} by simultaneous method, using gamma rays from a Co-60, under nitrogen atmosphere and at room temperature. The films were characterized before and after modification by grafting yield (GY %), infrared spectroscopy (FT-IR), scanning electron microscopy (SEM and EDS), differential scanning calorimetry (DSC) and thermogravimetry (TG/DTG). GY results shows that grafting increases with dose and toluene hinders the grafting, leading to a small GY comparing to DMF and acetone. It was possible to confirm the grafting of styrene by FT-IR due to the new characteristics peaks and by the TG and DSC due to changes in thermal behavior of the grafted material. SEM and EDS show surface and cross-section distribution of the grafting, which takes place on the surface and heterogeneously with toluene as solvent and homogeneously and penetrating into the inner layers of the matrix using DMF and acetone as solvent. (author)

  20. Morphological and physical characterization of poly(styrene-isobutylene-styrene) block copolymers and ionomers thereof

    Science.gov (United States)

    Baugh, Daniel Webster, III

    Poly(styrene-isobutylene-styrene) block copolymers made by living cationic polymerization using a difunctional initiator and the sequential monomer addition technique were analyzed using curve-resolution software in conjunction with high-resolution GPC. Fractional precipitation and selective solvent extraction were applied to a representative sample in order to confirm the identity of contaminating species. The latter were found to be low molecular weight polystyrene homopolymer, diblock copolymer, and higher molecular weight segmented block copolymers formed by intermolecular electrophilic aromatic substitution linking reactions occurring late in the polymerization of the styrene outer blocks. Solvent-cast films of poly(styrene-isobutylene-styrene) (PS-PIB-PS) block copolymers and block ionomers were analyzed using small-angle X-ray scattering (SAXS) and transmission electron microscopy (TEM). Four block copolymer samples with center block molecular weights of 52,000 g/mol and PS volume fractions (o sbPS) ranging from 0.17 to 0.31 were studied. All samples exhibited hexagonally packed cylinders of PS within the PIB matrix. Cylinder spacing was in the range 32 to 36 nm for most samples, while cylinder diameters varied from 14 to 21 nm. Porod analysis of the scattering data indicated the presence of isolated phase mixing and sharp phase boundaries. PS-PIB-PS block copolymers and ionomers therefrom were analyzed using dynamic mechanical analysis (DMA) and tensile testing. The study encompassed five block copolymer samples with similar PIB center blocks with molecular weights of approx52,000 g/mol and PS weight fractions ranging from 0.127 to 0.337. Ionomers were prepared from two of these materials by lightly sulfonating the PS outer blocks. Sulfonation levels varied from 1.7 to 4.7 mol % and the sodium and potassium neutralized forms were compared to the parent block copolymers. Dynamic mechanical analysis (DMA) of the block copolymer films indicated the existence