WorldWideScience

Sample records for acrylic polymers

  1. 40 CFR 721.324 - Alkoxylated acrylate polymer (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkoxylated acrylate polymer (generic... Substances § 721.324 Alkoxylated acrylate polymer (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as alkoxylated acrylate polymer...

  2. Electrochemical characterization of aminated acrylic conducting polymer

    Energy Technology Data Exchange (ETDEWEB)

    Rashid, Norma Mohammad [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Lestari Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor Darul Ehsan (Malaysia); Heng, Lee Yook [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Lestari Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor Darul Ehsan (Malaysia); Southeast Asia Disaster Prevention Research Initiative, Lestari Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor Darul Ehsan (Malaysia); Ling, Tan Ling [Southeast Asia Disaster Prevention Research Initiative, Lestari Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor Darul Ehsan (Malaysia)

    2015-09-25

    New attempt has been made to synthesize aminated acrylic conducting polymer (AACP) using precursor of phenylvinylsulfoxide (PVS). The process was conducted via the integration of microemulsion and photopolymerization techniques. It has been utilized for covalent immobilization of amino groups by the adding of N-achryiloxisuccinimide (NAS). Thermal eliminating of benzene sulfenic acids from PVS has been done at 250 °C to form electroactive polyacetylene (PA) segment. Characterization of AACP has been conducted using fourier transform infrared (FTIR), scanning electron microscopy (SEM) and linear sweep cyclic voltammetry (CV). A range of 0.3-1.25μm particle size obtained from SEM characterization. A quasi-reversible system performed as shown in electrochemical study.

  3. Microstructure and properties of styrene acrylate polymer cement concrete

    NARCIS (Netherlands)

    Zhao Su

    1995-01-01

    The paper systematically describes the evolution of the microstructure of a styrene acrylate polymer cement concrete in relation to its mechanical properties and durability. The results presented and discussed at the present paper involve the interaction of the polymer dispersion with portland cemen

  4. 40 CFR 180.1162 - Acrylate polymers and copolymers; exemption from the requirement of a tolerance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Acrylate polymers and copolymers... RESIDUES IN FOOD Exemptions From Tolerances § 180.1162 Acrylate polymers and copolymers; exemption from the requirement of a tolerance. (a) Acrylate polymers and copolymers are exempt from the requirement of...

  5. Poly(styrene-acrylic acid) magnetic polymer microspheres

    Institute of Scientific and Technical Information of China (English)

    Yanling CHENG; Liuqiang MA; Ruohui LI

    2008-01-01

    Magnetic polymer microspheres have been considered as a kind of new biopolymer materials with great advantages in bioseparation engineering and biome-dicine engineering because they have not only polymer functional groups but also magnetic characteristics. Styrene-acrylic acid copolymer (p(S-AA)) magnetic microspheres were synthesized by dispersion polymeriza-tion with Fe3O4 as core and p(S-AA) as shell. The micro-spheres were characterized by SEM, size analysis, molecular weight and solid content measurement. All of them indicate that the microspheres are small in size, nar-row in distribution, stable in chemistry and rich in func-tional groups on their surface.

  6. Plant oil-based shape memory polymer using acrylic monolith

    Directory of Open Access Journals (Sweden)

    T. Tsujimoto

    2015-09-01

    Full Text Available This article deals with the synthesis of a plant oil-based material using acrylic monolith. An acrylic monolith bearing oxirane groups was prepared via simple technique that involved the dissolution of poly(glycidyl methacrylate-comethyl methacrylate (PGMA in ethanolic – aqueous solution by heating and subsequent cooling. The PGMA monolith had topologically porous structure, which was attributed to the phase separation of the polymer solution. The PGMA monolith was impregnated by epoxidized soybean oil (ESO containing thermally-latent catalyst, and the subsequent curing produced a crosslinked material with relatively good transparency. The Young’s modulus and the tensile strength of polyESO/PGMA increased compared with the ESO homopolymer. The strain at break of polyESO/PGMA was larger than that of the ESO homopolymer and crosslinked PGMA. Furthermore, polyESO/PGMA exhibited good shape memory-recovery behavior.

  7. Use of Acrylic Acid Sodium Acrylate Polymer to Maintain Cocoa Seed Viability

    Directory of Open Access Journals (Sweden)

    Pudji Rahardjo

    2010-08-01

    Full Text Available The main problem of cocoa seed storage is moisture content of the seeds because cocoa seeds will germinate if cocoa seeds moisture content is high. The objective of this research is to maintain the cocoa seeds viability in storage using acrylic acid sodium acrylate polymer (AASAP. The function of AASAP is to absorb humidity in storage due to their ability to retain water and to prevent water loss. The experiment was conducted in a laboratory of Indonesian Coffee and Cocoa Research Institute and in Kaliwining Experimental Garden. This experiment was arranged by factorial randomized complete design, in wich AASAP dosages 0%; 0.1% (0.1 g/100 seeds; 0.2% (0.2 g/100 seeds, 0.3% (0.3 g/100 seeds, 0,4% (0,4g/100 seeds, combined with seeds storage period 1, 2, 3 and 4 weeks. The experiment used 3 replications and each repli cation used 100 seeds. Parameter of observation consisted of percentage of seeds germinated in storage, percentage of seeds infected by fungi in storage, seeds moisture content, percentage of seeds germination after storage, and early growth of cocoa seedlings. The results of the experiment showed that AASAP application with some dosages cocoa seeds storage cause to germinate in storage during 2 weeks. AASAP application with some dosages in cocoa seeds storage for 2 weeks would not result in infection by fungi and did not significantly affect seed germination after storage for 1, 2 and 4 weeks, and percentage of germination of cocoa seed after storage for 3 weeks decreased with increase dosage of AASAP. Higher dosage of AASAP would reduce early growth of cocoa seedling. Key words : Theobroma cacao, seed, acrylic acid sodium acrylate, seed storage, viabilty.

  8. Studies on the hydrolysis of biocompatible acrylic polymers having aspirin-moieties.

    Science.gov (United States)

    Gu, Z W; Li, F M; Feng, X D; Voong, S T

    1983-01-01

    Both the homogeneous and heterogeneous hydrolysis of five new acrylic polymers having aspirin-moieties, i.e. polymers of beta-(acetylsalicylyloxy)ethyl methacrylate, beta-(acetylsalicylyloxy) propyl methacrylate,beta-(acetylsalicylyloxy) ethyl acrylate, beta-hydroxy-gamma-(acetylsalicylyloxy) propyl methacrylate, beta-hydroxy-gamma-(acetylsalicylyloxy) propyl acrylate were investigated in acidic or alkaline medium at 30 degrees C or 60 degrees C, respectively. It was observed that the chief hydrolyzed product is always aspirin with minor amount of salicylic acid.

  9. Novel polymer coatings based on plasma polymerized 2-methoxyethyl acrylate

    DEFF Research Database (Denmark)

    Wu, Zhenning; Jiang, Juan; Benter, Maike

    2008-01-01

    plasma system[4]. The system named SoftPlasma™ is equipped with unique three-phase pulsed AC voltage. Low energy plasma polymerization has almost no thermal load for sensitive polymer materials[5]. Plasma polymerized coatings are highly cross-linked, pin-hole free and provide hydrophilic or hydrophobic...... properties[4-6]. We have exploited these possibilities and prepared plasma polymerized 2-methoxyethyl acrylate (PPMEA) coatings on various polymer substrates. The PPMEA coatings were optimized using various plasma polymerization conditions and characterized by X-ray photoelectron spectroscopy......, Fouriertransform infrared spectroscopy, Atomic force spectroscopy and Water contact-angle measurements. The microstructures ofPPMEA coatings with different thicknesses were also studied. For practical applications in mind, the coating stability was tested in different media (air, water, acetone, phosphate...

  10. Characteristics and mechanisms of acrylate polymer damage to maize seedlings.

    Science.gov (United States)

    Chen, Xian; Mao, Xiaoyun; Lu, Qin; Liao, Zongwen; He, Zhenli

    2016-07-01

    Superabsorbent acrylate polymers (SAPs) have been widely used to maintain soil moisture in agricultural management, but they may cause damage to plants, and the mechanisms are not well understood. In this study, seed germination, soil pot culture, hydroponic experiments, and SAPs degradation were conducted to investigate damage characteristics and mechanisms associated with SAPs application. The Results showed that SAPs inhibited maize growth and altered root morphology (irregular and loose arrangement of cells and breakage of cortex parenchyma), and the inhibitory effects were enhanced at higher SAPs rates. After 1h SAP hydrogels treatment, root malondialdehyde (MDA) content was significantly increased, while superoxide dismutase (SOD) and catalase (CAT) content were significantly decreased. Hydroponics experiment indicated that root and shoot growth was inhibited at 2.5mgL(-1) acrylic acid (AA), and the inhibition was enhanced with increasing AA rates. This effect was exacerbated by the presence of Na(+) at a high concentration in the hydrogels. Release and degradation of AA were enhanced at higher soil moisture levels. A complete degradation of AA occurred between 15 and 20 days after incubation (DAI), but it took longer for Na(+) concentration to decrease to a safe level. These results indicate that high concentration of both AA and Na(+) present in the SAPs inhibits plant growth. The finding of this study may provide a guideline for appropriate application of SAPs in agriculture.

  11. SYNTHESIS AND PROPERTIES OF POLYURETHANE ACRYLATE/EPOXY RESIN INTERPENETRATING POLYMER NETWORKS

    Institute of Scientific and Technical Information of China (English)

    SHI Youheng; NIE Xuzong

    1988-01-01

    In this paper, a series of interpenetrating polymer networks (IPNs) based on polyurethane acrylate and epoxy resin was prepared by simultaneous photoinitiating by both free-radical and cationic polymerization.The effects of the polyurethane acrylate prepolymer's molecular weight, various components ratio and polymerization methods on IPN's dynamic mechanical and mechanical properties were investigated.

  12. SYNTHESIS OF BIOCOMPATIBLE ACRYLIC POLYMERS HAVING ASPIRIN-MOIETIES

    Institute of Scientific and Technical Information of China (English)

    LI Fumian; GU Zhongwei; FENG Xinde(S. T. Voong)

    1983-01-01

    Several new monomers, β-(acetylsalicylyloxy)ethyl methacrylate, β-(acetylsalicylyloxy)propyl methacrylate, β-(acetylsalicylyloxy)ethyl acrylate, β-hydroxy-γ-(acetylsalicylyloxy)propyl methacrylate, β-hydroxy-γ-(acetylsalicylyloxy)propyl acrylate have been synthesized from aspirin with corresponding hydroxyalkyl or glycidyl acrylates, and then polymerized by free radical initiator.

  13. Influence of Reactive Diluent on UV-curing of Acrylate Terminated Hyperbranched Polymers

    Institute of Scientific and Technical Information of China (English)

    TANG Li-ming; FANG Yu; YAN Liang; FU Zhi-wei

    2004-01-01

    A Aeries of hydroxylic hyperbranched polymers were derived from 2,2-bis(methylol) propionic acid and tris (methylol) propane reacted with acrylic acid to various extents. The obtained acrylated hyperbranched polymers alone or with a monofunctional diluent, isobornylene acrylate(IBOA) were further cured by UV radiation. The cured films based on the modified polymers alone all demonstrated poor mechanical properties due to their high network densities and low moving ability of polymer chains. For the composite systems, the cured films demonstrated improved mechanical properties due to the low network densities and high chain moving ability. With more IBOA included in the systems, acrylate groups can react to a higher extent during the curing process.

  14. Polymer coating comprising 2-methoxyethyl acrylate units synthesized by surface-initiated atom transfer radical polymerization

    DEFF Research Database (Denmark)

    2011-01-01

    Source: US2012184029A The present invention relates to preparation of a polymer coating comprising or consisting of polymer chains comprising or consisting of units of 2-methoxyethyl acrylate synthesized by Surface-Initiated Atom Transfer Radical Polymerization (SI ATRP) such as ARGET SI ATRP...... or AGET SI ATRP and uses of said polymer coating....

  15. 21 CFR 177.2000 - Vinylidene chloride/methyl acrylate/methyl methacrylate polymers.

    Science.gov (United States)

    2010-04-01

    ... methacrylate polymers. 177.2000 Section 177.2000 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF...: POLYMERS Substances for Use as Basic Components of Single and Repeated Use Food Contact Surfaces § 177.2000 Vinylidene chloride/methyl acrylate/methyl methacrylate polymers. The vinylidene chloride/methyl...

  16. Acoustic Performance of Resilient Materials Using Acrylic Polymer Emulsion Resin

    Directory of Open Access Journals (Sweden)

    Haseog Kim

    2016-07-01

    Full Text Available There have been frequent cases of civil complaints and disputes in relation to floor impact noises over the years. To solve these issues, a substantial amount of sound resilient material is installed between the concrete slab and the foamed concrete during construction. A new place-type resilient material is made from cement, silica powder, sodium sulfate, expanded-polystyrene, anhydrite, fly ash, and acrylic polymer emulsion resin. Its physical characteristics such as density, compressive strength, dynamic stiffness, and remanent strain are analyzed to assess the acoustic performance of the material. The experimental results showed the density and the dynamic stiffness of the proposed resilient material is increased with proportional to the use of cement and silica powder due to the high contents of the raw materials. The remanent strain, related to the serviceability of a structure, is found to be inversely proportional to the density and strength. The amount of reduction in the heavyweight impact noise is significant in a material with high density, high strength, and low remanent strain. Finally, specimen no. R4, having the reduction level of 3 dB for impact ball and 1 dB for bang machine in the single number quantity level, respectively, is the best product to obtain overall acoustic performance.

  17. Strategic design and fabrication of acrylic shape memory polymers

    Science.gov (United States)

    Park, Ju Hyuk; Kim, Hansu; Ryoun Youn, Jae; Song, Young Seok

    2017-08-01

    Modulation of thermomechanics nature is a critical issue for an optimized use of shape memory polymers (SMPs). In this study, a strategic approach was proposed to control the transition temperature of SMPs. Free radical vinyl polymerization was employed for tailoring and preparing acrylic SMPs. Transition temperatures of the shape memory tri-copolymers were tuned by changing the composition of monomers. X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy analyses were carried out to evaluate the chemical structures and compositions of the synthesized SMPs. The thermomechanical properties and shape memory performance of the SMPs were also examined by performing dynamic mechanical thermal analysis. Numerical simulation based on a finite element method provided consistent results with experimental cyclic shape memory tests of the specimens. Transient shape recovery tests were conducted and optical transparence of the samples was identified. We envision that the materials proposed in this study can help develop a new type of shape-memory devices in biomedical and aerospace engineering applications.

  18. PHOTORESPONSIVE BEHAVIOR OF AZOBENZENE-BASED (METH)ACRYLIC (CO)POLYMERS IN THIN-FILMS

    NARCIS (Netherlands)

    HAITJEMA, HJ; VONMORGEN, GL; TAN, YY; CHALLA, G

    1994-01-01

    The reversible photoisomerization and the thermal isomerization of azobenzene-based (Az.b.) groups covalently bound to (meth)acrylic (co)polymers were investigated in thin films. For the amorphous polymers it was found that a broad range of the thermal cis --> trans isomerization rates could be obta

  19. Properties of Low Surface Energy Fluorocarbon Polymers with Fluoro-acrylic Resins

    Institute of Scientific and Technical Information of China (English)

    LIU Xiusheng; WANG Can; LIU Lanxuan; LI Jian; GAO Wanzhen

    2008-01-01

    The low surface energy fluorocarbon polymer from the synthesized fluoro-acrylic resins was developed. Then the molecule orientation principle of nonpolar and polar functional groups in the polymers was analyzed. And the contact angles of pure water drops on the surfaces of various fluoro-monomer homopolymers and interpolymers were measured. So the relation of polymers' fluoro-content with the surface energy was determined. The distribution of fluoric functional groups in the polymers was investigated. And the test results show that though the total fluorine content of the fluorocarbon polymers is relative few, their surface energy is really low due to the enrichment of fluoro-chains on the polymers surface.

  20. Electrochemical characterization of poly(ethylene-co-methyl acrylate)-based gel polymer electrolytes for lithim-ion polymer batteries

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Won [Samsung Advanced Inst. of Technology, Daejon (Korea). Electrochemistry Lab.

    2000-04-01

    Gel polymer electrolytes (GPE) composed of poly(ethylene-co-methyl acrylate) copolymer, LiBF{sub 4}-EC/EMC/PC, and silanized fumed silica are prepared. The ionic conductivity reaches 5.8x10{sup -4} S cm{sup -1} in the GPE containing 22% poly(ethylene-co-methyl acrylate), 65% LiBF{sub 4}-EC/EMC/PC and 13% silanized fumed silica at room temperature. GPEs are free-standing films and are used to prepare thin films for rechargeable lithium-ion polymer cells. Lithium-ion polymer cells, which consist of mesophase carbon fibre anode, poly(ethylene-co-methyl acrylate)-based GPE and LiCoO{sub 2} cathode, are assembled, and their charge-discharge cycling characteristics are investigated. (orig.)

  1. Gel polymer electrolytes based on nanofibrous polyacrylonitrile–acrylate for lithium batteries

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dul-Sun [Department of Chemical and Biological Engineering, Research Institute for Green Energy Convergence Technology, Gyeongsang National University, 900 Gajwa-dong, Jinju 660-701 (Korea, Republic of); Woo, Jang Chang [Department of Textile Engineering, Inha University, 100 Inharo, Nam-gu Incheon 402-751 (Korea, Republic of); Youk, Ji Ho, E-mail: youk@inha.ac.kr [Department of Textile Engineering, Inha University, 100 Inharo, Nam-gu Incheon 402-751 (Korea, Republic of); Manuel, James [Department of Chemical and Biological Engineering, Research Institute for Green Energy Convergence Technology, Gyeongsang National University, 900 Gajwa-dong, Jinju 660-701 (Korea, Republic of); Ahn, Jou-Hyeon, E-mail: jhahn@gnu.ac.kr [Department of Chemical and Biological Engineering, Research Institute for Green Energy Convergence Technology, Gyeongsang National University, 900 Gajwa-dong, Jinju 660-701 (Korea, Republic of); Department of Materials Engineering and Convergence Technology, Gyeongsang National University, 900 Gajwa-dong, Jinju 660-701 (Korea, Republic of)

    2014-10-15

    Graphical abstract: - Highlights: • Nanofibrous polyacrylonitrile–acrylate membranes were prepared by electrospinning. • Trimethylolpropane triacrylate was used as a crosslinking agent of fibers. • The GPE based on PAN–acrylate (1/0.5) showed good electrochemical properties. - Abstract: Nanofibrous membranes for gel polymer electrolytes (GPEs) were prepared by electrospinning a mixture of polyacrylonitrile (PAN) and trimethylolpropane triacrylate (TMPTA) at weight ratios of 1/0.5 and 1/1. TMPTA is used to achieve crosslinking of fibers thereby improving mechanical strength. The average fiber diameters increased with increasing TMPTA concentration and the mechanical strength was also improved due to the enhanced crosslinking of fibers. GPEs based on electrospun membranes were prepared by soaking them in a liquid electrolyte of 1 M LiPF{sub 6} in ethylene carbonate (EC)/dimethyl carbonate (DMC) (1:1, v/v). The electrolyte uptake and ionic conductivity of GPEs based on PAN and PAN–acrylate (weight ratio; 1/1 and 1/0.5) were investigated. Ionic conductivity of GPEs based on PAN–acrylate was the highest for PAN/acrylate (1/0.5) due to the proper swelling of fibers and good affinity with liquid electrolyte. Both GPEs based on PAN and PAN–acrylate membranes show good oxidation stability, >5.0 V vs. Li/Li{sup +}. Cells with GPEs based on PAN–acrylate (1/0.5) showed remarkable cycle performance with high initial discharge capacity and low capacity fading.

  2. Scientific Opinion on the safety evaluation of the active substance, acrylic acid, sodium salt, co-polymer with acrylic acid, methyl ester, methacrylic acid, 2 hydroxypropylester, and acrylic acid cross-linked for use in active food contact materials

    Directory of Open Access Journals (Sweden)

    EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF

    2013-04-01

    Full Text Available This scientific opinion of the EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids deals with the safety evaluation of the acrylic acid, sodium salt, co-polymer with acrylic acid, methyl ester, methacrylic acid, 2 hydroxypropylester, and acrylic acid cross-linked (CAS No. 117675-55-5, FCM Substance No 1022, to be used as liquid absorber in the form of fibres in absorbent pads for the packaging of fresh or frozen meat, poultry, and fish as well as fresh fruits and vegetables. The Panel considered that migration is not expected when the absorption capacity of the pads is not exceeded. Therefore no exposure from the consumption of the packed food is expected. The Panel also considered that none of these starting substances and the cross-linked polymer gives rise to concern for genotoxicity. Therefore the CEF Panel concluded that the use of the substance acrylic acid, sodium salt, co-polymer with acrylic acid, methyl ester, methacrylic acid, 2 hydroxypropylester, and acrylic acid cross-linked does not raise a safety concern when used as fibres in absorber pads for the packaging of fresh or frozen meat, poultry, fish, fruits and vegetables under conditions under which the absorption capacity of the pads is not exceeded and mechanical release of the fibres from the pads is excluded.

  3. Salicylic acid-releasing polyurethane acrylate polymers as anti-biofilm urological catheter coatings.

    Science.gov (United States)

    Nowatzki, Paul J; Koepsel, Richard R; Stoodley, Paul; Min, Ke; Harper, Alan; Murata, Hironobu; Donfack, Joseph; Hortelano, Edwin R; Ehrlich, Garth D; Russell, Alan J

    2012-05-01

    Biofilm-associated infections are a major complication of implanted and indwelling medical devices like urological and venous catheters. They commonly persist even in the presence of an oral or intravenous antibiotic regimen, often resulting in chronic illness. We have developed a new approach to inhibiting biofilm growth on synthetic materials through controlled release of salicylic acid from a polymeric coating. Herein we report the synthesis and testing of a ultraviolet-cured polyurethane acrylate polymer composed, in part, of salicyl acrylate, which hydrolyzes upon exposure to aqueous conditions, releasing salicylic acid while leaving the polymer backbone intact. The salicylic acid release rate was tuned by adjusting the polymer composition. Anti-biofilm performance of the coatings was assessed under several biofilm forming conditions using a novel combination of the MBEC Assay™ biofilm multi-peg growth system and bioluminescence monitoring for live cell quantification. Films of the salicylic acid-releasing polymers were found to inhibit biofilm formation, as shown by bioluminescent and GFP reporter strains of Pseudomonas aeruginosa and Escherichia coli. Urinary catheters coated on their inner lumens with the salicylic acid-releasing polymer significantly reduced biofilm formation by E. coli for up to 5 days under conditions that simulated physiological urine flow. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  4. Nanoparticles containing ketoprofen and acrylic polymers prepared by an aerosol flow reactor method.

    Science.gov (United States)

    Eerikäinen, Hannele; Peltonen, Leena; Raula, Janne; Hirvonen, Jouni; Kauppinen, Esko I

    2004-09-23

    The purpose of this study was to outline the effects of interactions between a model drug and various acrylic polymers on the physical properties of nanoparticles prepared by an aerosol flow reactor method. The amount of model drug, ketoprofen, in the nanoparticles was varied, and the nanoparticles were analyzed for particle size distribution, particle morphology, thermal properties, IR spectroscopy, and drug release. The nanoparticles produced were spherical, amorphous, and had a matrix-type structure. Ketoprofen crystallization was observed when the amount of drug in Eudragit L nanoparticles was more than 33% (wt/wt). For Eudragit E and Eudragit RS nanoparticles, the drug acted as an effective plasticizer resulting in lowering of the glass transition of the polymer. Two factors affected the preparation of nanoparticles by the aerosol flow reactor method, namely, the solubility of the drug in the polymer matrix and the thermal properties of the resulting drug-polymer matrix.

  5. Designing of superporous cross-linked hydrogels containing acrylic-based polymer network

    Directory of Open Access Journals (Sweden)

    Ray Debajyoti

    2008-01-01

    Full Text Available Biodegradable cross-linked polymer, 2-hydroxyethyl methacrylate-co-acrylic acid was synthesized by free radical polymerization technique using N,N"-methylene-bis-acrylamide as cross-linker and benzoyl peroxide as reaction initiator. FT-IR, 1 H-NMR, scanning electron microscopy (SEM, and thermogravimetric analysis (TGA studies of the copolymer along with homopolymers were carried out. FT-IR studies showed no interactions on copolymerization. SEM studies of the copolymer were carried out and mean particle size was found to be 50 µm. TGA analysis indicated an increase in thermal stability by cross-linking the polymer network. Swelling behavior of the copolymer showed more swelling by increasing pH of the medum and the prepared polymer was found to be biodegradable. The prepared cross-linked polymer system holds good for further drug delivery studies in connection to its super swelling and biodegradability.

  6. Preparation and characterization of high salts polymer electrolyte based on poly(lithium acrylate)

    Institute of Scientific and Technical Information of China (English)

    TANG Ai-dong; HUANG Ke-long; PAN Chun-yue; LU Cui-hong

    2005-01-01

    Novel polymer electrolytes were prepared by highly mixing poly(lithium acrylate)(PPALi) with eutectic lithium salts of lithium acetate and lithium nitrate.Poly(lithium acrylate) was preparaed by inverse emulsion polymerization from crylic acid and LiOH.Phase transition temperatures were measured for all the eutectic lithium of binary system samples as a function of the concentration of Li(CH3 COO),and the mixtures exhibit the lowest phase transition temperatures of (448±2) K at about 50% (mass fraction) Li(CH3 COO).Thermogravimetry(TG)and X-ray diffraction(XRD) analysis indicate the formation of a novel polymer-salt complex.The highest conductivity(approximately 4.97 ×10-5S·cm-1) is found at room temperature with the electrolyte composition of eutectic mixture of about 80% (mass fraction),poly(lithium acrylate) 20% under quickly cooling condition,which is 150%higher than that under natural cooling condition.

  7. Hydrophobic acrylic hard coating by surface segregation of hyper-branched polymers

    Science.gov (United States)

    Haraguchi, Masayuki; Hirai, Tomoyasu; Ozawa, Masaaki; Miyaji, Katsuaki; Tanaka, Keiji

    2013-02-01

    The ability of hyperbranched polymers (HBPs) to preferentially segregate to the surface of its matrix owing to its unique structure makes it a good candidate as a surface modifier. One particular challenge in its application as an efficient surface modifier, however, is its possible elimination from the surface due to the lack of attachments between a HBP (modifier) and its host material (polymer matrix). Here, we present a novel approach to efficiently prevent the removal of HBPs from the surface of its host material by directly reacting a HBP containing fluoroalkyl segments (F-HBP) to a multi-functional acrylate monomer prior to curing. We also have characterized surface structure and wettability of the acrylic hard coating material by X-ray photoelectron spectroscopic and contact angle measurements, respectively. The results show that since F-HBP was segregated at the surface, the surface became hydrophobic and more stable. Thus, we claim that our approach results in the formation of a water-repellent acrylic hard coating material.

  8. Effect of acrylic polymers on physical parameters of spheronized pellets using an aqueous coating system

    Directory of Open Access Journals (Sweden)

    Akhter Afsana

    2009-01-01

    Full Text Available The aim of this study was to develop ambroxol hydrochloride sustained release pellets by an extrusion-spheronization technique and subsequent coating with acrylic polymers. Acrylic polymers like Eudragit RL 30 D, Eudragit RS 30 D and Eudragit NE 30 D were used as release retarding coating polymers. The release retarding capability of these polymers was also investigated. In each case, 10% polymer on dry basis was loaded. The flow property, surface roughness as well as the drug release behavior of the pellets was found to be the subject of types of polymers. About 35% drug was released at the first hour in 0.1N HCl media (pH 1.2 from Eudragit RL 30 D-coated pellets but from Eudragit RS 30 D and Eudragit NE 30 D-coated pellets, only 13.75 and 2.43% drug was released, respectively. In buffer media (pH 6.8, about 54% drug was released at the first hour from Eudragit RL 30 D-coated pellets but only 64% drug was released at 10 h. From Eudragit RL 30 D- and Eudragit NE 30 D-coated pellets only 7.28 and 1.14% drug was released at 1 h, respectively, but about 5.14 and 5.86 h was required for 50% drug release from these two polymers and about 80% drug was released at 10 h. The functional groups present in the polymeric films played a significant role on in vitro release kinetics of the drug from the coated pellets. Different kinetic models like zero order, first order and Higuchi were used for fitting the drug release pattern. The Higuchi model was the best fitted for ambroxol release from the coated pellets. The drug release mechanism was derived with Korsmeyer equation.

  9. Preparation and drug-loading properties of Fe3O4/Poly(styrene-co-acrylic acid) magnetic polymer nanocomposites

    Science.gov (United States)

    Lu, Wensheng; Shen, Yuhua; Xie, Anjian; Zhang, Weiqiang

    2013-11-01

    Fe3O4/poly(styrene-co-acrylic acid) magnetic polymer nanocomposites were synthesized by the dispersion polymerization method using styrene as hard monomer, acrylic acid as functional monomer, Fe3O4 nanoparticles modified with oleic acid as core, and poly(styrene-co-acrylic acid) as shell. Drug-loading properties of magnetic polymer nanocomposites with curcumin as a model drug were also studied. The results indicated that magnetic polymer nanocomposites with monodisperse were obtained, the particle size distribution was 50-120 nm, and the average size was about 100 nm. The contents of poly(styrene-co-acrylic acid) and Fe3O4 nanoparticles in magnetic polymer nanocomposites were 74% and 24.7%, respectively. The drug-loading capacity and entrapment efficiency were 2.5% and 44.4%, respectively. The saturation magnetization of magnetic polymer nanocomposites at 300 K was 20.2 emu/g without coercivity and remanence. The as-prepared magnetic polymer nanocomposites have not only lots of functional carboxyl groups but also stronger magnetic response, which might have potential applications in drug carrier and targeted drug release.

  10. Multi-walled carbon nanotubes/polymer composites in absence and presence of acrylic elastomer (ACM).

    Science.gov (United States)

    Kumar, S; Rath, T; Mahaling, R N; Mukherjee, M; Khatua, B B; Das, C K

    2009-05-01

    Polyetherimide/Multiwall carbon nanotube (MWNTs) nanocomposites containing as-received and modified (COOH-MWNT) carbon nanotubes were prepared through melt process in extruder and then compression molded. Thermal properties of the composites were characterized by thermo-gravimetric analysis (TGA). Field emission scanning electron microscopy (FESEM) images showed that the MWNTs were well dispersed and formed an intimate contact with the polymer matrix without any agglomeration. However the incorporation of modified carbon nanotubes formed fascinating, highly crosslinked, and compact network structure throughout the polymer matrix. This showed the increased adhesion of PEI with modified MWNTs. Scanning electron microscopy (SEM) also showed high degree of dispersion of modified MWNTs along with broken ends. Dynamic mechanical analysis (DMA) results showed a marginal increase in storage modulus (E') and glass transition temperature (T(g)) with the addition of MWNTs. Increase in tensile strength and impact strength of composites confirmed the use the MWNTs as possible reinforcement agent. Both thermal and electrical conductivity of composites increased, but effect is more pronounced on modification due to formation of network of carbon nanotubes. Addition of acrylic elastomer to developed PEI/MWNTs (modified) nanocomposites resulted in the further increase in thermal and electrical properties due to the formation of additional bond between MWNTs and acrylic elastomers at the interface. All the results presented are well corroborated by SEM and FESEM studies.

  11. Brown Coal Dewatering Using Poly (Acrylamide-Co-Potassium Acrylic Based Super Absorbent Polymers

    Directory of Open Access Journals (Sweden)

    Sheila Devasahayam

    2015-09-01

    Full Text Available With the rising cost of energy and fuel oils, clean coal technologies will continue to play an important role during the transition to a clean energy future. Victorian brown coals have high oxygen and moisture contents and hence low calorific value. This paper presents an alternative non evaporative drying technology for high moisture brown coals based on osmotic dewatering. This involves contacting and mixing brown coal with anionic super absorbent polymers (SAP which are highly crossed linked synthetic co-polymers based on a cross-linked copolymer of acryl amide and potassium acrylate. The paper focuses on evaluating the water absorption potential of SAP in contact with 61% moisture Loy Yang brown coal, under varying SAP dosages for different contact times and conditions. The amount of water present in Loy Yang coal was reduced by approximately 57% during four hours of SAP contact. The extent of SAP brown coal drying is directly proportional to the SAP/coal weight ratio. It is observed that moisture content of fine brown coal can readily be reduced from about 59% to 38% in four hours at a 20% SAP/coal ratio.

  12. Effect of an acrylic resin combined with an antimicrobial polymer on biofilm formation

    Directory of Open Access Journals (Sweden)

    Juliê Marra

    2012-12-01

    Full Text Available OBJECTIVES: The purpose of this study was to evaluate the antimicrobial activity of an acrylic resin combined with an antimicrobial polymer poly (2-tert-butylaminoethyl methacrylate (PTBAEMA to inhibit Staphylococcus aureus, Streptococcus mutans and Candida albicans biofilm formation. MATERIAL AND METHODS: Discs of a heat-polymerized acrylic resin were produced and divided according to PTBAEMA concentration: 0 (control, 10 and 25%. The specimens were inoculated (10(7 CFU/mL and incubated at 37ºC for 48 h. After incubation, the wells were washed and each specimen was sonicated for 20 min. Replicate aliquots of resultant suspensions were plated at dilutions at 37ºC for 48 h. The number of colony-forming units (CFU was counted and expressed as log (CFU+1/mL and analyzed statistically with α=.05. RESULTS: The results showed that 25% PTBAEMA completely inhibited S. aureus and S. mutans biofilm formation. A significant reduction of log (CFU+1/mL in count of S. aureus (control: 7.9±0.8A; 10%: 3.8±3.3B and S. mutans (control: 7.5±0.7A; 10%: 5.1±2.7B was observed for the group containing 10% PTBAEMA (Mann-Whitney, p0.05, P=0.079. CONCLUSIONS: Acrylic resin combined with 10 and 25% of PTBAEMA showed significant antimicrobial activity against S. aureus and S. mutans biofilm, but it was inactive against the C. albicans biofilm.

  13. ABS polymer electroless plating through a one-step poly(acrylic acid) covalent grafting.

    Science.gov (United States)

    Garcia, Alexandre; Berthelot, Thomas; Viel, Pascal; Mesnage, Alice; Jégou, Pascale; Nekelson, Fabien; Roussel, Sébastien; Palacin, Serge

    2010-04-01

    A new, efficient, palladium- and chromium-free process for the electroless plating of acrylonitrile-butadiene-styrene (ABS) polymers has been developed. The process is based on the ion-exchange properties of poly(acrylic acid) (PAA) chemically grafted onto ABS via a simple and one-step method that prevents using classical surface conditioning. Hence, ABS electroless plating can be obtained in three steps, namely: (i) the grafting of PAA onto ABS, (ii) the copper Cu(0) seeding of the ABS surface, and (iii) the nickel or copper metallization using commercial-like electroless plating bath. IR, XPS, and SEM were used to characterize each step of the process, and the Cu loading was quantified by atomic absorption spectroscopy. This process successfully compares with the commercial one based on chromic acid etching and palladium-based seed layer, because the final metallic layer showed excellent adhesion with the ABS substrate.

  14. The effect of acrylic latex-based polymer on cow blood adhesive resins for wood composites

    Science.gov (United States)

    Yan, J.; Lin, H. L.; Feng, G. Z.; Gunasekaran, S.

    2016-07-01

    In this paper, alkali-modified cow blood adhesive (BA) and blood adhesive/acrylic latex-based adhesive (BA/ALB) were prepared. The physicochemical and adhesion properties of cow blood adhesive such as UV- visible spectra, particle size, viscosity were evaluated; share strength, water resistance were tested. UV- visible spectra indicates that the strong bonding strength of BA/ALB appeared after incorporating; the particle size of adhesive decreased with the increase of ALB concentration, by mixing ALB and BA, hydrophilic polymer tends locate or extand the protein chains and provide stability of the particles; viscosity decreased as shear rate increased in concordance with a pseudoplastic behavior; both at dry and soak conditions, BA and ALB/BA show significant difference changes when mass fraction of ALB in blend adhesive was over 30% (p latex-based adhesive significantly increased the strength and water resistance of the resulting wood.

  15. Review of Preparation and Properties of Polymers from Copolymerization of Aprotic Acrylic Monomers with Protic Acrylic Monomers

    Science.gov (United States)

    1988-07-01

    STRATEGIES APPLICABLE TO POLYMER RESEARCH: DETERMINATION OF HOMOPOLYMER AND COPOLYMER CHEMICAL ABSTRACT SERVICE (CAS) NUMBERS THROUGH DIALOG...8217 APPENDIX A DATA BASE LITERATURE REVIEW STRATEGIES APPLICABLE TO POLYMER RESEARCH: DETERMINATION OF HOMOPOLYMER AND COPOLYMER CHEMICAL ABSTRACT SERVICE

  16. Star polymers by ATRP of styrene and acrylates employing multifunctional initiators

    DEFF Research Database (Denmark)

    Jankova, Katja Atanassova; Bednarek, Melania; Hvilsted, Søren

    2005-01-01

    weight distributions (PDI ... ligand. Under these conditions, higher conversions were possible still maintaining low PDI signaling controlled star growth. Multiarm stars of poly(n-butyl acrylate) and poly(n-hexyl acrylate) with controlled characteristics have also been prepared....

  17. Regulation of the Contribution of Integrin to Cell Attachment on Poly(2-Methoxyethyl Acrylate (PMEA Analogous Polymers for Attachment-Based Cell Enrichment.

    Directory of Open Access Journals (Sweden)

    Takashi Hoshiba

    Full Text Available Cell enrichment is currently in high demand in medical engineering. We have reported that non-blood cells can attach to a blood-compatible poly(2-methoxyethyl acrylate (PMEA substrate through integrin-dependent and integrin-independent mechanisms because the PMEA substrate suppresses protein adsorption. Therefore, we assumed that PMEA analogous polymers can change the contribution of integrin to cell attachment through the regulation of protein adsorption. In the present study, we investigated protein adsorption, cell attachment profiles, and attachment mechanisms on PMEA analogous polymer substrates. Additionally, we demonstrated the possibility of attachment-based cell enrichment on PMEA analogous polymer substrates. HT-1080 and MDA-MB-231 cells started to attach to poly(butyl acrylate (PBA and poly(tetrahydrofurfuryl acrylate (PTHFA, on which proteins could adsorb well, within 1 h. HepG2 cells started to attach after 1 h. HT-1080, MDA-MB-231, and HepG2 cells started to attach within 30 min to PMEA, poly(2-(2-methoxyethoxy ethyl acrylate-co-butyl acrylate (30:70 mol%, PMe2A and poly(2-(2-methoxyethoxy ethoxy ethyl acrylate-co-butyl acrylate (30:70 mol%, PMe3A, which suppress protein adsorption. Moreover, the ratio of attached cells from a cell mixture can be changed on PMEA analogous polymers. These findings suggested that PMEA analogous polymers can be used for attachment-based cell enrichment.

  18. Development and characterization of high refractive index and high scattering acrylate polymer layers

    Science.gov (United States)

    Eiselt, Thomas; Gomard, Guillaume; Preinfalk, Jan; Gleissner, Uwe; Lemmer, Uli; Hanemann, Thomas

    2016-04-01

    The aim is to develop a polymer layer which has the ability to diffuse light homogeneously and exhibit a high refractive index. The mixtures are containing an acrylate casting resin, benzylmethacrylate, phenanthrene and other additives. Phenanthrene is employed to increase the refractive index. The mixtures are first rheologically characterized and then polymerized with heat and UV radiation. For the refractive index measurements the polymerized samples require a planar surface without air bubbles. To produce flat samples a special construction consisting of a glass plate, a teflon sheet, a silicone ring (PDMS mold), another teflon sheet and another glass plate is developed. Glue clamps are used to fix this construction together. Selected samples have a refractive index of 1.585 at 20°C at a wavelength of 589nm. A master mixture with a high refractive index is taken for further experiments. Nano scaled titanium dioxide is added and dispersed into the master mixture and then spin coated on a glass substrate. These layers are optically characterized. The specular transmission and the overall transmission are measured to investigate the degree of scattering, which is defined as the haze. Most of the presented layers express the expected haze of over 50%.

  19. Development and characterization of adjustable refractive index scattering epoxy acrylate polymer layers

    Science.gov (United States)

    Eiselt, Thomas; Preinfalk, Jan; Gleißner, Uwe; Lemmer, Uli; Hanemann, Thomas

    2016-09-01

    This work presents different polymer diffusing films for optical components. In optical applications it is sometimes important to have a film with an adjusted refractive index, scattering properties and a low surface roughness. These diffusing films can be used to increase the efficiency of optical components like organic light emitting diodes (OLEDs). In this study three different epoxy acrylate mixtures containing Syntholux 291 EA, bisphenol a glycerolate dimethacrylate, Sartomer SR 348 L are characterized and optimized with different additives. The adjustable refractive index of the material is achieved with a chemical doping by 9-vinylcarbazole. Titanium nanoparticles in the mixtures generate light scattering and increase the refractive index additionally. To prevent sedimentation and agglomeration of these nanoparticles, a stabilization agent [2-(2-methoxyethoxy)ethoxy]acetic acid is added to the mixture. Other ingredients are a UV-starter and thermal starter for the radical polymerization. A high power stirrer (ultraturrax) is used to mix and disperse all chemical substances together to a homogenous mixture. The viscosity behavior of the mixtures is an important property for the selection of the production method and gets characterized. After the mixing, the monomer mixture is applied on glass substrates by blade coating or screen printing. To initiate the chain growing (polymerization) the produced films are irradiated for 10 minutes long with UV light (UV LED Spot Hönle, 405 nm). After this step a final post bake from the layers in the oven (150°C, 30 min.) is operated. Light transmission measurements (UV-Vis) of the polymer matrix and roughness measurements complement the characterization.

  20. Insulin release from islets of Langerhans entrapped in a poly(N-isopropylacrylamide-co-acrylic acid) polymer gel.

    Science.gov (United States)

    Vernon, B; Kim, S W; Bae, Y H

    1999-01-01

    A copolymer of N-isopropylacrylamide (98 mol% in feed) and acrylic acid, poly(N-isopropylacrylamide-co-acrylic acid) (P(NIPAAm-co-AAc)), was prepared by free radical polymerization for development of a thermally reversible polymer to entrap islets of Langerhans for a refillable biohybrid artificial pancreas. A 5 wt% solution of the polymer in Hanks' balanced salt solution forms a gel at 37 degrees C that exhibits no syneresis. Diffusion of fluorescein isothiocyanate (FITC) dextrans having molecular weights of 4400 and 70000 were used to evaluate mass transport in the gel at 37 degrees C. Insulin secretion from islets in the polymer gel was also investigated in both static and dynamic systems. The polymer gel exhibited excellent diffusion of FITC dextran 4400 and FITC dextran 70000 with diffusion ratios, D/D0 (ratio of diffusion in the gel to diffusion in water), of 0.20+/-0.04 and 0.35+/-0.17, respectively. Human islets entrapped in the polymer gel showed prolonged insulin secretion in response to basal (5.5 mM) glucose concentration compared to free human islets. Rat islets showed prolonged insulin secretion in response to high (16.5 mM) glucose concentrations compared to free rat islets. Rat islets in the polymer gel maintained insulin secretion in response to the higher glucose concentration for over 26 days. Rat islets entrapped by the polymer also released higher quantities of insulin more rapidly in response to changes in concentrations of glucose and other stimulants than rat islets entrapped in an alginate control. These results suggest that this material would provide adequate diffusion for rapid insulin release in an application as a synthetic extracellular matrix for a biohybrid artificial pancreas.

  1. Preparation and drug-loading properties of Fe{sub 3}O{sub 4}/Poly(styrene-co-acrylic acid) magnetic polymer nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Wensheng [School of Chemistry and Chemical Engineering, Anhui University, Hefei 230039 (China); Coordination Chemistry Institute, School of Chemistry and Chemical Engineering and Life Science, Chaohu University, Chaohu 238000 (China); Shen, Yuhua, E-mail: s_yuhua@163.com [School of Chemistry and Chemical Engineering, Anhui University, Hefei 230039 (China); Xie, Anjian [School of Chemistry and Chemical Engineering, Anhui University, Hefei 230039 (China); Zhang, Weiqiang [School of Chemistry and Chemical Engineering, Anhui University, Hefei 230039 (China); Coordination Chemistry Institute, School of Chemistry and Chemical Engineering and Life Science, Chaohu University, Chaohu 238000 (China)

    2013-11-15

    Fe{sub 3}O{sub 4}/poly(styrene-co-acrylic acid) magnetic polymer nanocomposites were synthesized by the dispersion polymerization method using styrene as hard monomer, acrylic acid as functional monomer, Fe{sub 3}O{sub 4} nanoparticles modified with oleic acid as core, and poly(styrene-co-acrylic acid) as shell. Drug-loading properties of magnetic polymer nanocomposites with curcumin as a model drug were also studied. The results indicated that magnetic polymer nanocomposites with monodisperse were obtained, the particle size distribution was 50–120 nm, and the average size was about 100 nm. The contents of poly(styrene-co-acrylic acid) and Fe{sub 3}O{sub 4} nanoparticles in magnetic polymer nanocomposites were 74% and 24.7%, respectively. The drug-loading capacity and entrapment efficiency were 2.5% and 44.4%, respectively. The saturation magnetization of magnetic polymer nanocomposites at 300 K was 20.2 emu/g without coercivity and remanence. The as-prepared magnetic polymer nanocomposites have not only lots of functional carboxyl groups but also stronger magnetic response, which might have potential applications in drug carrier and targeted drug release.

  2. Antibacterial properties of a self-cured acrylic resin composed of a polymer coated with a silver-containing organic composite antibacterial agent.

    Science.gov (United States)

    Kiriyama, Takashi; Kuroki, Kenjiro; Sasaki, Keisuke; Tomino, Masahumi; Asakura, Masaki; Kominami, Yoshiko; Takahashi, Yoshihumi; Kawai, Tatsushi

    2013-01-01

    A novel antibacterial polymer, coated with a silver-containing organic composite antibacterial agent, was dispersed in a self-cured acrylic resin. Residual viable cell count of each oral bacterial and fungal species cultivated on acrylic resin specimens containing the antibacterial polymer was significantly decreased when compared to those cultivated on specimens prepared from untreated polymer. A strong inverse correlation was found between the amount of eluted silver ions and the residual viable cell count of all species grown on the antibacterial polymer: the lower the viable cell count, the higher the amount of eluted silver ions. This clearly indicated the antibacterial activity of silver ions. As the content of organic composite antibacterial agent added to the polymer increased from 0.5% to 1.5% in 0.5% increments, amount of eluted silver ions significantly increased with each 0.5% increment to exert greater antibacterial effect.

  3. Recrystallization of water in non-water-soluble (meth)acrylate polymers is not rare and is not devitrification.

    Science.gov (United States)

    Gemmei-Ide, Makoto; Ohya, Atsushi; Kitano, Hiromi

    2012-02-16

    Change in the state of water sorbed into four kinds of non-water-soluble poly(meth)acrylates with low water content by temperature (T) perturbation was examined on the basis of T variable mid-infrared (MIR) spectroscopy. Many studies using differential scanning calorimetry suggested that there was no change in the state. T dependence of their MIR spectra, however, clearly demonstrated various changes in the state. Furthermore, recrystallization, which was crystallization during heating, was observed in all four polymers. The recrystallization observed in this study was not devitrification, which is the change in the state from glassy water to crystalline water, but vapor deposition during heating (vapor re-deposition). There were only two reports about recrystallization of water in a non-water-soluble polymer before this report; therefore, it might be considered to be a rare phenomenon. However, as demonstrated in this study, it is not a rare phenomenon. Recrystallization (vapor re-deposition) of water in the polymer matrices is related to a balance between flexibility and strength of the electrostatic interaction sites of polymer matrices but might not be related to the biocompatibility of polymers.

  4. Chelating compounds as potential flash rust inhibitors and melamine & aziridine cure of acrylic colloidal unimolecular polymers (CUPs)

    Science.gov (United States)

    Mistry, Jigar Kishorkumar

    Waterborne coatings on ferrous substrates usually show flash rusting which decreases the adhesion of the coating and the corrosion products can form a stain. Chelating compounds were investigated as potential flash rust inhibitors. Compounds being evaluated include amine alcohols, diamines and sulfur containing amines. A new corrosion inhibitor 2,5-bis(thioaceticacid)-1,3,4-thiadiazole (H2ADTZ) was synthesized and its performance characteristics were evaluated. It was noted that the observed structure of 1,3,4-thiadiazolidine-2,5-dithione (also known as 2,5-dimercapto-1,3,4-thiadiazole (DMTD or DMcT)) has been previously reported in three different tautomeric forms including -dithiol and -dithione. The relative stability of each form as well as the synthesis and characterization of the structures of mono- and dialkylated forms of 5-mercapto-1,3,4-thiadiazole-2(3H)-thione (MTT) were examined. The methods of X-ray crystallography, NMR spectroscopy and ab-initio electronic structure calculations were combined to understand the reactivity and structure of each compound. Polymers were synthesized with a 1:7 or 1:8 ratio of acrylic acid to acrylate monomers to produce an acid rich resin. The polymers were reduced and solvent stripped to produce Colloidal Unimolecular Polymers (CUPs). These particles are typically 3-9 nanometers in diameter depending upon the molecular weight. They were then formulated into a clear coating with either a melamine (bake) or an aziridine (ambient cure) and then cured. The melamine system was solvent free, a near zero VOC and the aziridine system was very low to near zero VOC. The coatings were evaluated for their MEK resistance, adhesion, hardness, gloss, flexibility, wet adhesion, abrasion and impact resistance properties.

  5. Interpenetrating polymer network (IPN) nanogels based on gelatin and poly(acrylic acid) by inverse miniemulsion technique: synthesis and characterization.

    Science.gov (United States)

    Koul, Veena; Mohamed, Raja; Kuckling, Dirk; Adler, Hans-Jürgen P; Choudhary, Veena

    2011-04-01

    Novel interpenetrating polymer network (IPN) nanogels composed of poly(acrylic acid) and gelatin were synthesised by one pot inverse miniemulsion (IME) technique. This is based on the concept of nanoreactor and cross-checked from template polymerization technique. Acrylic acid (AA) monomer stabilized around the gelatin macromolecules in each droplet was polymerized using ammonium persulfate (APS) and tetramethyl ethylene diamine (TEMED) in 1:5 molar ratio and cross-linked with N,N-methylene bisacrylamide (BIS) to form semi-IPN (sIPN) nanogels, which were sequentially cross-linked using glutaraldehyde (Glu) to form IPNs. Span 20, an FDA approved surfactant was employed for the formation of homopolymer, sIPN and IPN nanogels. Formation of stable gelatin-AA droplets were observed at 2% surfactant concentration. Dynamic light scattering (DLS) and scanning electron microscopy (SEM) studies of purified nanogels showed small, spherical IPN nanogels with an average diameter of 255 nm. In contrast, sIPN prepared using the same method gave nanogels of larger size. Fourier-transform infrared (FT-IR) spectroscopy, SEM, DLS, X-ray photoelectron spectroscopy (XPS) and zeta potential studies confirm the interpenetration of the two networks. Leaching of free PAA chains in sIPN upon dialysis against distilled water leads to porous nanogels. The non-uniform surface of IPN nanogels seen in transmission electron microscopy (TEM) images suggests the phase separation of two polymer networks. An increase of N/C ratio from 0.07 to 0.17 (from PAA gel to IPN) and O/C ratio from 0.22 to 0.37 (from gelatin gel to IPN) of the nanogels by XPS measurements showed that both polymer components at the nanogel surface are interpenetrated. These nanogels have tailoring properties in order to use them as high potential drug delivery vehicles for cancer targeting.

  6. Amino-functionalized (meth)acryl polymers by use of a solvent-polarity sensitive protecting group (Br-t-BOC).

    Science.gov (United States)

    Ritter, Helmut; Tabatabai, Monir; Herrmann, Markus

    2016-01-01

    We describe the synthesis of bromo-tert-butyloxycarbonyl (Br-t-BOC)-amino-protected monomers 2-((1-bromo-2-methylpropan-2-yl)oxycarbonylamino)ethyl (meth)acrylate 3a,b. For this purpose, 2-isocyanatoethyl (meth)acrylate 1a,b was reacted with 1-bromo-2-methylpropan-2-ol (2a). The free radical polymerization of (Br-t-BOC)-aminoethyl (meth)acrylates 3a,b yielded poly((Br-t-BOC)-aminoethyl (meth)acrylate) 6a,b bearing protected amino side groups. The subsequent solvolysis of the Br-t-BOC function led to the new polymers poly(2-aminoethyl (meth)acrylate) 8a,b with protonated free amino groups. The monomers and the resulting polymers were thoroughly characterized by (1)H NMR, IR, GPC and DSC methods. The kinetics of the deprotection step was followed by (1)H NMR spectroscopy. The solvent polarity and neighboring group effects on the kinetics of deprotection are discussed.

  7. Preparation and characterization of poly(lithium acrylate-arcylonitrile)/LiClO4-LiNO3-LiBr solid polymer electrolytes

    Institute of Scientific and Technical Information of China (English)

    PAN Chun-yue; YUAN Yun-lan; CHEN Zhen-hua; XU Xian-hua; ZHANG Jian

    2005-01-01

    Through orthogonal experiment, a new type of LiClO4-LiNO3-LiBr eutectic salt with optimum mole ratio of n(LiClO4):n(LiNO3):n(LiBr)=1.6:3.8:1.0 was prepared. The poly(lithium acrylate-acrylonitrile)/LiClO4-LiNO3-LiBr solid polymer electrolytes were prepared with poly(lithium acrylate-acrylonitrile) and LiClO4-LiNO3-LiBr eutectic salts. The effect of LiClO4-LiNO3-LiBr eutectic salts content on the conductivity of solid polymer electrolytes was studied by alternating current impedance method, and the structures of eutectic salts and solid polymer electrolytes were characterized by differential thermal analysis, infrared spectroscopy and X-ray diffractometry. The results show that the room temperature conductivity of LiClO4-LiNO3-LiBr eutectic salts reaches 3.11×10-4 S·cm-1. The poly(lithium acrylate-acrylonitrile)/LiClO4-LiNO3-LiBr solid polymer electrolytes possess the highest room temperature conductivity at 70% LiClO4-LiNO3-LiBr eutectic salts content, and exhibit lower glass transition temperature of 75 ℃ compared with that of poly(lithium acrylate-acrylonitrile) of 105 ℃. A complex may be formed in the solid polymer electrolytes from the differential thermal analysis and infrared spectroscopy analysis. X-ray diffraction results show that the poly(lithium acrylate-acrylonitrile) can suppress the crystallization of eutectic salts in this system.

  8. Preparation of hybrid thiol-acrylate emulsion-templated porous polymers by interfacial copolymerization of high internal phase emulsions.

    Science.gov (United States)

    Langford, Caitlin R; Johnson, David W; Cameron, Neil R

    2015-05-01

    Emulsion-templated highly porous polymers (polyHIPEs), containing distinct regions differing in composition, morphology, and/or properties, are prepared by the simultaneous polymerization of two high internal phase emulsions (HIPEs) contained within the same mould. The HIPEs are placed together in the mould and subjected to thiol-acrylate photopolymerization. The resulting polyHIPE material is found to contain two distinct semicircular regions, reflecting the composition of each HIPE. The original interface between the two emulsions becomes a copolymerized band between 100 and 300 μm wide, which is found to be mechanically robust. The separate polyHIPE layers are distinguished from one another by their differing average void diameter, chemical composition, and extent of contraction upon drying.

  9. Acrylate-endcapped polymer precursors: effect of chemical composition on the healing efficiency of active concrete cracks

    Science.gov (United States)

    Araújo, Maria; Van Tittelboom, Kim; Dubruel, Peter; Van Vlierberghe, Sandra; De Belie, Nele

    2017-05-01

    The repair of cracks in concrete is an unavoidable practice since these cracks endanger the durability of the structure. Inspired by nature, the self-healing concept has been widely investigated in concrete as a promising solution to solve the limitations of manual repair. This self-healing functionality may be realized by the incorporation of encapsulated healing agents in concrete. Depending on the nature of the cracks, different healing agents can be used. For structures subjected to repeated loads, elastic materials should be considered to cope with the crack opening and closing movement. In this study, various acrylate-endcapped polymer precursors were investigated for their suitability to heal active cracks. The strain capacity of the polymers was assessed by means of visual observation together with water flow tests after widening of the healed cracks in a stepwise manner. A strain of at least 50% could be sustained by epoxy- and siloxane-based healing agents. For polyester- and urethane/poly(propylene glycol)-based precursors, failure occurred at 50% elongation due to detachment of the polymer from the crack walls. However, for urethane/poly(propylene glycol)-based healing agent, debonding was limited to some local spots. The resistance of the polymerized healing agents against degradation in the strong alkaline environment characteristic for concrete has also been evaluated, with the urethane/poly(propylene glycol)-based precursor showing the best performance to withstand degradation.

  10. The influence of polymer topology on pharmacokinetics: differences between cyclic and linear PEGylated poly(acrylic acid) comb polymers.

    Science.gov (United States)

    Chen, Bo; Jerger, Katherine; Fréchet, Jean M J; Szoka, Francis C

    2009-12-16

    Water-soluble polymers for the delivery of chemotherapeutic drugs passively target solid tumors as a consequence of reduced renal clearance and the enhanced permeation and retention (EPR) effect. Elimination of the polymers in the kidney occurs due to filtration through biological nanopores with a hydrodynamic diameter comparable to the polymer. Therefore we have investigated chemical features that may broadly be grouped as "molecular architecture" such as: molecular weight, chain flexibility, number of chain ends and branching, to learn how they impact polymer elimination. In this report we describe the synthesis of four pairs of similar molecular weight cyclic and linear polyacrylic acid polymers grafted with polyethylene glycol (23, 32, 65, 114 kDa) with low polydispersities using ATRP and "click" chemistry. The polymers were radiolabeled with (125)I and their pharmacokinetics and tissue distribution after intravenous injection were determined in normal and C26 adenocarcinoma tumored BALB/c mice. Cyclic polymers above the renal threshold of 30 kDa had a significantly longer elimination time (between 10 and 33% longer) than did the comparable linear polymer (for the 66 kDa cyclic polymer, t(1/2,beta)=35+/-2 h) and a greater area under the serum concentration versus time curve. This resulted in a greater tumor accumulation of the cyclic polymer than the linear polymer counterpart. Thus water-soluble cyclic comb polymers join a growing list of polymer topologies that show greatly extended circulation times compared to their linear counterparts and provide alternative polymer architecture for use as drug carriers.

  11. The effect of extended polymer chains on the properties of transparent multi-walled carbon nanotubes/poly(methyl methacrylate/acrylic acid) film.

    Science.gov (United States)

    Huang, Yuan-Li; Tien, Hsi-Wen; Ma, Chen-Chi M; Yu, Yi-Hsiuan; Yang, Shin-Yi; Wei, Ming-Hsiung; Wu, Sheng-Yen

    2010-05-07

    Optically transparent and electrically conductive thin films composed of multi-walled carbon nanotube (MWCNT) reinforced polymethyl methacrylate/acrylic acid (PMMA/AA) were fabricated using a wire coating technique. Poly(acrylic acid) controls the level of MWCNT dispersion in aqueous mixtures and retains the well-dispersed state in the polymer matrix after solidification resulting from extended polymer chains by adjusting the pH value. The exfoliating the MWCNT bundles by extended polymer chains results in the excellent dispersion of MWCNT. It causes a lower surface electrical resistance at the same MWCNT content. The hydrophilic functional groups (-COO( - )NA( + )) also caused a decrease in the crystallization of PMMA and led to an increase in the transmittance.

  12. Novel Polymers Based on Atom Transfer Radical Polymerization of 2-Methoxyethyl Acrylate

    DEFF Research Database (Denmark)

    Bednarek, Melania; Jankova Atanasova, Katja; Hvilsted, Søren

    2007-01-01

    Atom transfer radical polymerization (ATRP) has been employed in the polymerization of 2-methoxyethyl acrylate (MEA) initiated by ethyl 2-bromoisobutyrate in bulk or in toluene solution at 90– 95 C with the catalytic systems Cu(I)Br/PMDETA or HMTETA. Kinetics investigations revealed that ATRP...... macroinitiators, however, for the latter the controlled conditions were somehow difficult to maintain. The amphiphilic behavior of the diblock copolymers lead to phase separation resulting in two glass transition temperatures as detected by DSC. Contact angle (Y) investigations with water on PMEA, PMMA...

  13. Feasibility of Crosslinked Acrylic Shape Memory Polymer for a Thrombectomy Device

    Directory of Open Access Journals (Sweden)

    Andrea D. Muschenborn

    2014-01-01

    Full Text Available Purpose. To evaluate the feasibility of utilizing a system of SMP acrylates for a thrombectomy device by determining an optimal crosslink density that provides both adequate recovery stress for blood clot removal and sufficient strain capacity to enable catheter delivery. Methods. Four thermoset acrylic copolymers containing benzyl methacrylate (BzMA and bisphenol A ethoxylate diacrylate (Mn∼512, BPA were designed with differing thermomechanical properties. Finite element analysis (FEA was performed to ensure that the materials were able to undergo the strains imposed by crimping, and fabricated devices were subjected to force-monitored crimping, constrained recovery, and bench-top thrombectomy. Results. Devices with 25 and 35 mole% BPA exhibited the highest recovery stress and the highest brittle response as they broke upon constrained recovery. On the contrary, the 15 mole% BPA devices endured all testing and their recovery stress (5 kPa enabled successful bench-top thrombectomy in 2/3 times, compared to 0/3 for the devices with the lowest BPA content. Conclusion. While the 15 mole% BPA devices provided the best trade-off between device integrity and performance, other SMP systems that offer recovery stresses above 5 kPa without increasing brittleness to the point of causing device failure would be more suitable for this application.

  14. Printing continuously graded interpenetrating polymer networks of acrylate/epoxy by manipulating cationic network formation during stereolithography

    Directory of Open Access Journals (Sweden)

    W. Li

    2016-12-01

    Full Text Available Ultra-violet (UV laser assisted stereolithography is used to print graded interpenetrating polymer networks (IPNs by controlling network formation. Unlike the traditional process where structural change in IPNs is achieved by varying the feeding ratio of monomers or polymer precursors, in this demonstration property is changed by controlled termination of network formation. A photo-initiated process is used to construct IPNs by a combination of radical and cationic network formation in an acrylate/epoxy system. The extent of the cationic network formation is used to control the final properties of the system. Rapid-Scan Fourier Transformation Infrared Spectroscopy (RS-FTIR is used to track the curing kinetics of the two networks and identify key parameters to control the final properties. Atomic force microscopy (AFM and differential scanning calorimetry (DSC confirm the formation of homogenous IPNs, whereas nano-indentation indicates that properties vary with the extent of cationic network formation. The curing characteristics are used to design and demonstrate printing of graded IPNs that show two orders of magnitude variation in mechanical properties in the millimeter scale.

  15. 76 FR 77709 - Butyl acrylate-methacrylic acid-styrene polymer; Tolerance Exemption

    Science.gov (United States)

    2011-12-14

    ... integral part of its composition the atomic elements carbon, hydrogen, and oxygen. 3. The polymer does not contain as an integral part of its composition, except as impurities, any element other than those listed... recordkeeping requirements. Dated: November 29, 2011. Lois Rossi, Director, Registration Division, Office...

  16. Application of Targeted Molecular and Material Property Optimization to Bacterial Attachment-Resistant (Meth)acrylate Polymers.

    Science.gov (United States)

    Adlington, Kevin; Nguyen, Nam T; Eaves, Elizabeth; Yang, Jing; Chang, Chien-Yi; Li, Jianing; Gower, Alexandra L; Stimpson, Amy; Anderson, Daniel G; Langer, Robert; Davies, Martyn C; Hook, Andrew L; Williams, Paul; Alexander, Morgan R; Irvine, Derek J

    2016-09-12

    Developing medical devices that resist bacterial attachment and subsequent biofilm formation is highly desirable. In this paper, we report the optimization of the molecular structure and thus material properties of a range of (meth)acrylate copolymers which contain monomers reported to deliver bacterial resistance to surfaces. This optimization allows such monomers to be employed within novel coatings to reduce bacterial attachment to silicone urinary catheters. We show that the flexibility of copolymers can be tuned to match that of the silicone catheter substrate, by copolymerizing these polymers with a lower Tg monomer such that it passes the flexing fatigue tests as coatings upon catheters, that the homopolymers failed. Furthermore, the Tg values of the copolymers are shown to be readily estimated by the Fox equation. The bacterial resistance performance of these copolymers were typically found to be better than the neat silicone or a commercial silver containing hydrogel surface, when the monomer feed contained only 25 v% of the "hit" monomer. The method of initiation (either photo or thermal) was shown not to affect the bacterial resistance of the copolymers. Optimized synthesis conditions to ensure that the correct copolymer composition and to prevent the onset of gelation are detailed.

  17. Compatibilization efficiency of carboxylated nitrile rubber and epoxy pre-polymer in nitrile/acrylic rubber blends

    Directory of Open Access Journals (Sweden)

    Micheli L. Celestin

    2013-01-01

    Full Text Available An investigation has been made of the effects from a compatibilizer, viz. carboxylated nitrile rubber (XNBR, on several properties of nitrile rubber (NBR and acrylic rubber (ACM blends, including curing characteristics, mechanical, dynamic mechanical and dielectric properties. The presence of XNBR until 10 phr resulted in an improvement of the ultimate tensile properties, especially elongation at break. The mechanical properties associated to the volume fraction of rubber in the network (Vr and torque values suggest the co-vulcanization phenomenon imparted by the compatibilization. The oil resistance of NBR/ACM (50:50 wt. (% blends (compatibilized and non compatibilized was similar to that observed for pure ACM and significantly higher than NBR. The addition of small amounts of epoxy pre-polymer in combination with XNBR resulted in an additional improvement of the tensile properties. The dynamic mechanical and dielectric properties of the blends were also investigated. The loss modulus values of the compatibilized blends were significantly lower indicating an increase of the elastic characteristics. All blends presented two dielectric relaxation peaks confirming the heterogeneity of the compatibilized blends

  18. SYNTHESIS AND CHARACTERIZATION OF AN ACRYLATE POLYMER CONTAINING CHLORINE-1,3-DIOXALANE GROUPS IN SIDE CHAINS

    Institute of Scientific and Technical Information of China (English)

    Zulfiye (I)lter; Ferhat Alhanl(ι); Fatih Do(g)an; (I)smet Kaya

    2012-01-01

    Poly[2-(4-chlorophenyl)-l,3-dioxolan-4-yl]methyl acrylate,poly(CPhDMA),was synthesized with radical polymerization process using 2,2′-azobisisobutyronitrile as radical initiator in 1,4-dioxane at 60℃.The structure of poly(CPhDMA) was confirmed by means of UV-Vis,FT-IR,1H-NMR,and 13C-NMR spectral techniques.The molecular weight distribution values of the polymer were determined with gel permeation chromatography (GPC).The number-average molecular weight (Mn),weight-average molecular weight (Mw) and polydispersity index (PDI) values of poly(CPhDMA) were determined to be 10300,21600 and 2.097,respectively.The thermal degradation kinetics of the polymer was investigated by using TG/DTG-DTA and DSC analyses at different heating rates in dynamic nitrogen atmosphere.The apparent activation energy values obtained by Flynn-Wall-Ozawa and Friedman methods were found to be 91.68 and 85.23 kJ mol-1,respectively,for thermal decomposition of poly(CPhDMA).Also,the thermal degradation activation energy value of poly(CPhDMA) was calculated by using the Kissinger method based on the DTG,DTA and DSC data.Then the mechanism function of it was determined by master plots method.Finally,electrical and optical properties of poly(CPhDMA) were determined by four-point probe and UV-Vis techniques,respectively.

  19. Synthesis and characterization of polyether urethane acrylate -LiCF{sub 3}SO{sub 3}-based polymer electrolytes by UV-curing in lithium batteries

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Cheon Soo; Kim, Bo Hyun; Kim, Keon [Korea Univ., Seoul (Korea). Dept. of Chemistry

    1999-11-01

    The prepolymers of polyether urethane acrylate (PEUA) were synthesized from polyether polyol (polyethylene glycol (PEG) or polypropylene glycol (PPG)), diisocyanate (hexamethylene diisocyanate (HMDI) or toluene, 2,4-diisocyanate (TDI)), and the caprolactone-modified hydroxyethyl acrylate (FA2D) using the catalyst (dibutyltin dilaurate (DBTDL)) by stepwise addition reaction. Lithium triflate (LiCF{sub 3}SO{sub 3}) was dissolved in PEUA prepolymers, and plasticizer (propylene carbonate (PC)) was added into prepolymer and salt mixtures. Then photoinitiator (Irgacure 184) was also dissolved in the mixtures. Thin films were prepared by casting on the glass plate, and then by curing the plasticized prepolymer and salt mixtures under UV radiation. Electrochemical and electrical properties of PEUA-LiCF{sub 3}SO{sub 3}-based polymer electrolytes were evaluated and discussed to be used in lithium batteries. (orig.)

  20. Synthesis and characterization of polyether urethane acrylate-LiCF 3SO 3-based polymer electrolytes by UV-curing in lithium batteries

    Science.gov (United States)

    Kim, Cheon-Soo; Kim, Bo-Hyun; Kim, Keon

    The prepolymers of polyether urethane acrylate (PEUA) were synthesized from polyether polyol (polyethylene glycol (PEG) or polypropylene glycol (PPG)), diisocyanate (hexamethylene diisocyanate (HMDI) or toluene 2,4-diisocyanate (TDI)), and the caprolactone-modified hydroxyethyl acrylate (FA2D) using the catalyst (dibutyltin dilaurate (DBTDL)) by stepwise addition reaction. Lithium triflate (LiCF 3SO 3) was dissolved in PEUA prepolymers, and plasticizer (propylene carbonate (PC)) was added into prepolymer and salt mixtures. Then photoinitiator (Irgacure 184) was also dissolved in the mixtures. Thin films were prepared by casting on the glass plate, and then by curing the plasticized prepolymer and salt mixtures under UV radiation. Electrochemical and electrical properties of PEUA-LiCF 3SO 3-based polymer electrolytes were evaluated and discussed to be used in lithium batteries.

  1. Boron subphthalocyanine polymers by facile coupling to poly(acrylic acid-ran-styrene) copolymers synthesized by nitroxide-mediated polymerization and the associated problems with autoinitiation.

    Science.gov (United States)

    Lessard, Benoît H; Bender, Timothy P

    2013-04-12

    Boron subphthalocyanines (BsubPcs) are macrocyclic aromatic small molecules containing a chelated boron atom. BsubPcs have interesting optoelectronic and physical properties, justifying their use in various organic electronic devices such as organic solar cells and organic light-emitting diodes. However, our group has only recently reported the first incorporation of a BsubPc moiety into a polymer using a two-step post-polymerization procedure. This communication outlines the use of acrylic acid as a method for obtaining carboxylic acid functional copolymers for the facile coupling to BsubPc post polymerization. In addition, the observations and the proposed mechanism of a side product unique to the copolymerization of acrylic acid and styrene due to autoinitiation are presented.

  2. Extending framework based on the linear coordination polymers: Alternative chains containing lanthanum ion and acrylic acid ligand

    Science.gov (United States)

    Li, Hui; Guo, Ming; Tian, Hong; He, Fei-Yue; Lee, Gene-Hsiang; Peng, Shie-Ming

    2006-11-01

    One-dimensional alternative chains of two lanthanum complexes: [La( L1) 3(CH 3OH)(H 2O) 2]·5H 2O ( L1=anion of α-cyano-4-hydroxycinnamic acid ) 1 and [La( L2) 3(H 2O) 2]·3H 2O ( L2=anion of trans-3-(4-methyl-benzoyl)-acrylic acid) 2 were synthesized and structurally characterized by single-crystal X-ray diffraction, element analysis, IR and thermogravimetric analysis. The crystal structure data are as follows for 1: C 31H 36LaN 3O 17, triclinic, P-1, a=9.8279(4) Å, b=11.8278(5) Å, c=17.8730(7) Å, α=72.7960(10)°, β=83.3820(10)°, γ=67.1650(10)º, Z=2, R1=0.0377, wR2=0.0746; for 2: C 33H 37LaO 14, triclinic, P-1, a=8.7174(5) Å, b=9.9377(5) Å, c=21.153(2) Å, α=81.145(2)°, β=87.591(2)°, γ=67.345(5)°, Z=2, R1=0.0869, wR2=0.220. 1 is a rare example of the alternative chain constructed by syn-syn and anti-syn coordination mode of carboxylato ligand arranged along the chain alternatively. La(III) ions in 2 are linked by two η3-O bridges and four bridges (two η2-O and two η3-O) alternatively. Both of the linear coordination polymers grow into two- and three-dimensional networks by packing through extending hydrogen-bond network directed by ligands.

  3. Extended release promethazine HCl using acrylic polymers by freeze-drying and spray-drying techniques: formulation considerations

    Directory of Open Access Journals (Sweden)

    Ruchi Tiwari

    2009-12-01

    Full Text Available The present study investigated a novel extended release system of promethazine hydrochloride (PHC with acrylic polymers Eudragit RL100 and Eudragit S100 in different weight ratios (1:1 and 1: 5, and in combination (0.5+1.5, using freeze-drying and spray-drying techniques. Solid dispersions were characterized by Fourier-transformed infrared spectroscopy (FT-IR, differential scanning calorimetry (DSC, Powder X-ray diffractometry (PXRD, Nuclear magnetic resonance (NMR, Scanning electron microscopy (SEM, as well as solubility and in vitro dissolution studies in 0.1 N HCl (pH 1.2, double-distilled water and phosphate buffer (pH 7.4. Adsorption tests from drug solution to solid polymers were also performed. A selected solid dispersion system was developed into capsule dosage form and evaluated for in vitro dissolution studies. The progressive disappearance of drug peaks in thermotropic profiles of spray-dried dispersions were related to increasing amount of polymers, while SEM studies suggested homogenous dispersion of drug in polymer. Eudragit RL100 had a greater adsorptive capacity than Eudragit S100, and thus its combination in (0.5+1.5 for S100 and RL 100 exhibited a higher dissolution rate with 97.14% drug release for twelve hours. Among different formulations, capsules prepared by combination of acrylic polymers using spray-drying (1:0.5 + 1.5 displayed extended release of drug for twelve hours with 96.87% release followed by zero order kinetics (r²= 0.9986.O presente trabalho compreendeu estudo de um novo sistema de liberação prolongada de cloridrato de prometazina (PHC com polímeros acrílicos Eudragit RL100 e Eudragit S100 em diferentes proporções em massa (1:1 e 1:5 e em combinação (0,5+1,5, utilizando técnicas de liofilização e de secagem por aspersão As dispersões sólidas foram caracterizadas por espectrofotometria no infravermelho por transformada de Fourier (FT-IR, calorimetria diferencial de varredura (DSC, difratometria

  4. Thiolated and S-protected hydrophobically modified cross-linked poly(acrylic acid)--a new generation of multifunctional polymers.

    Science.gov (United States)

    Bonengel, Sonja; Haupstein, Sabine; Perera, Glen; Bernkop-Schnürch, Andreas

    2014-10-01

    The aim of this study was to create a novel multifunctional polymer by covalent attachment of l-cysteine to the polymeric backbone of hydrophobically modified cross-linked poly(acrylic acid) (AC1030). Secondly, the free thiol groups of the resulting thiomer were activated using 2-mercaptonicotinic acid (2-MNA) to provide full reactivity and stability. Within this study, 1167.36 μmol cysteine and 865.72 μmol 2-MNA could be coupled per gram polymer. Studies evaluating mucoadhesive properties revealed a 4-fold extended adherence time to native small intestinal mucosa for the thiomer (AC1030-cysteine) as well as an 18-fold prolonged adhesion for the preactivated thiomer (AC1030-Cyst-2-MNA) compared to the unmodified polymer. Modification of the polymer led to a higher tablet stability concerning the thiomer and the S-protected thiomer, but a decelerated water uptake could be observed only for the preactivated thiomer. Neither the novel conjugates nor the unmodified polymer showed severe toxicity on Caco-2 cells. Evaluation of emulsification capacity proofed the ability to incorporate lipophilic compounds like medium chain triglycerides and the preservation of the emulsifying properties after the modifications. According to these results thiolated AC1030 as well as the S-protected thiolated polymer might provide a promising tool for solid and semisolid formulations in pharmaceutical development.

  5. Stability effect of cholesterol-poly(acrylic acid) in a stimuli-responsive polymer-liposome complex obtained from soybean lecithin for controlled drug delivery.

    Science.gov (United States)

    Simões, M G; Alves, P; Carvalheiro, Manuela; Simões, P N

    2017-04-01

    The development of polymer-liposome complexes (PLCs), in particular for biomedical applications, has grown significantly in the last decades. The importance of these studies comes from the emerging need in finding intelligent controlled release systems, more predictable, effective and selective, for applications in several areas, such as treatment and/or diagnosis of cancer, neurological, dermatological, ophthalmic and orthopedic diseases, gene therapy, cosmetic treatments, and food engineering. This work reports the development and characterization of a pH sensitive system for controlled release based on PLCs. The selected hydrophilic polymer was poly(acrylic acid) (PAA) synthesized by atom transfer radical polymerization (ATRP) with a cholesterol (CHO) end-group to improve the anchoring of the polymer into the lipid bilayer. The polymer was incorporated into liposomes formulated from soybean lecithin and stearylamine, with different stearylamine/phospholipid and polymer/phospholipid ratios (5, 10 and 20%). The developed PLCs were characterized in terms of particle size, polydispersity, zeta potential, release profiles, and encapsulation efficiency. Cell viability studies were performed to assess the cytotoxic potential of PLCs. The results showed that the liposomal formulation with 5% of stearylamine and 10% of polymer positively contribute to the stabilization of the complexes. Afterwards, the carboxylic acid groups of the polymer present at the surface of the liposomes were crosslinked and the same parameters analyzed. The crosslinked complexes showed to be more stable at physiologic conditions. In addition, the release profiles at different pHs (2-12) revealed that the obtained complexes released all their content at acidic conditions. In summary, the main accomplishments of this work are: (i) innovative synthesis of cholesterol-poly(acrylic acid) (CHO-PAA) by ATRP; (ii) stabilization of the liposomal formulation by incorporation of stearylamine and CHO

  6. SYNTHESIS OF SOAP-FREE ACRYLIC HYDROSOLS

    Institute of Scientific and Technical Information of China (English)

    Li Jia; Zong-hui Liu; De-qing Wei

    2002-01-01

    Poly(methyl methacrylate/ethyl acrylate/acrylic acid) hydrosols were prepared by employing soap-freepolymerization, and (acrylic acid/butyl acrylate) oligomer was used as the polymeric surfactant. The effect of reactioncondition on the morphology and particle size of the hydrosols was investigated. The minimum amount of acrylic acid in thehydrosols is 2%. The maximum weight average molecular weight (Mw) of polymer that assures soap-free emulsionconversion into hydrosol is about 1.2 × 105-1.3 × 105. The particle transforming process was investigated, and an obviouschange of particle diameter and morphology was observed.

  7. Preparation, thermal properties and thermal reliabilities of microencapsulated n-octadecane with acrylic-based polymer shells for thermal energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Xiaolin [Advanced Materials Institute and Clearer Production Key Laboratory, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Key Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Haidian District, Beijing 100084 (China); Song, Guolin; Chu, Xiaodong; Li, Xuezhu [Advanced Materials Institute and Clearer Production Key Laboratory, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Tang, Guoyi, E-mail: tanggy@tsinghua.edu.cn [Advanced Materials Institute and Clearer Production Key Laboratory, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Key Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Haidian District, Beijing 100084 (China)

    2013-01-10

    Highlights: Black-Right-Pointing-Pointer n-Octadecane was encapsulated by p(butyl methacrylate) (PBMA) and p(butyl acrylate). Black-Right-Pointing-Pointer Microcapsules using divinylbenzene as crosslinking agent have better quality. Black-Right-Pointing-Pointer Microcapsule with butyl methacrylate-divinylbenzene has highest latent heat. Black-Right-Pointing-Pointer Microcapsule with butyl methacrylate-divinylbenzene has greatest thermal stability. Black-Right-Pointing-Pointer Phase change temperatures and enthalpies of the microcapsules varied little after thermal cycle. - Abstract: Microencapsulation of n-octadecane with crosslinked p(butyl methacrylate) (PBMA) and p(butyl acrylate) (PBA) as shells for thermal energy storage was carried out by a suspension-like polymerization. Divinylbenzene (DVB) and pentaerythritol triacrylate (PETA) were employed as crosslinking agents. The surface morphologies of the microencapsulated phase change materials (microPCMs) were studied by scanning electron microscopy (SEM). Thermal properties, thermal reliabilities and thermal stabilities of the as-prepared microPCMs were investigated by differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). The microPCMs prepared by using DVB exhibit greater heat capacities and higher thermal stabilities compared with those prepared by using PETA. The thermal resistant temperature of the microPCM with BMA-DVB polymer was up to 248 Degree-Sign C. The phase change temperatures and latent heats of all the as-prepared microcapsules varied little after 1000 thermal cycles.

  8. Relationship between the Composition of Polymer of n-Alkyl Substituted Acrylate and Vinyl Amine and Their Performance on Pour Point Depression

    Institute of Scientific and Technical Information of China (English)

    Jiang Qingzhe; Luo Fangmin; Song Zhaozheng; Ke Ming

    2005-01-01

    Polymer of n-alkyl substituted acrylate (PA) with the alkyl side chains C16- 30 were synthesized.Their crystallinity, solubility and effect on pour point depression were studied. Results showed that only carbon atoms located far away from polar groups of PA pour point depressants participated in crystallization.When the number of carbon atoms that participated in crystallization is about three fourths of the average carbon number of wax in crude, the effect of PA is the best. The molecular weight distribution of PA pour point depressant has little influence on the effect of pour point depression, and the average molecular weight of PA in the range of (1.5- 2.2)× 104 shows the best effect. The introduction of polar groups into the molecule of PA can improve its performance. However, a too high content of polar groups in PA would cause deterioration, and even lead to loss of PA's performance for pour point depression.

  9. Time-resolved EPR investigation of potential model systems for acrylate polymer main chain radicals based on esters of Kemp's tri-acid.

    Science.gov (United States)

    Lebedeva, Natalia V; Gorelik, Elena V; Magnus-Aryitey, Damaris; Hill, Terence E; Forbes, Malcolm D E

    2009-05-14

    Methyl esters of Kemp's tri-acid and cyclohexanetricarboxylic acid are structurally similar to acrylate polymers, having the same functionalities and stereoregularities as poly(methylmethacrylate) and poly(methylacrylate), respectively. The photochemistry and free radicals from these model systems have been studied using time-resolved electron paramagnetic resonance spectroscopy with laser flash photolysis at 248 nm. Chemically induced electron spin polarization from the triplet mechanism (net emission) is observed. Well-resolved spectra are obtained at all temperatures for the model system radicals, which are determined to be in the slow motion condition, that is, there is no interconversion of chair conformations. The temperature dependence of the spectra is minimal; some hyperfine lines shift as the temperature increases, but without much broadening. Density functional theory calculations are presented and discussed in support of the experimental data.

  10. Interactions of silica nanoparticles with poly(ethylene oxide) and poly(acrylic acid): effect of the polymer molecular weight and of the surface charge.

    Science.gov (United States)

    Joksimovic, R; Prévost, S; Schweins, R; Appavou, M-S; Gradzielski, M

    2013-03-15

    The properties and the structure of polymer-modified silica nanoparticles were investigated by several characterization methods, with an emphasis on scattering techniques. Both bare and amino functionalized nanoparticles were used. To determine the effect of the charge, the polymer used was either nonionic poly(ethylene oxide) (PEO) or partially deprotonated poly(acrylic acid) (PAA). The particles coated with PEO were investigated by small-angle neutron scattering using the method of external contrast variation to observe the polymer coverage. The quantity adsorbed was found to be increasing with the molecular weight, and the surface type, bare or aminated, did not have a significant influence on the quantity adsorbed. The adsorption of PAA on positively charged aminated particles was investigated by dynamic light scattering and zeta potential measurements. A charge reversal, from positive to negative, was induced by the presence of PAA. Through the derivation of the structure factor, small-angle X-ray scattering provided significant information on the formation of aggregates at low PAA concentrations.

  11. Mitigation of biofilm formation on corrugated cardboard fresh produce packaging surfaces using a novel thiazolidinedione derivative integrated in acrylic emulsion polymers

    Directory of Open Access Journals (Sweden)

    Michael eBrandwein

    2016-02-01

    Full Text Available Various surfaces associated with the storage and packing of food are known to harbor distinct bacterial pathogens. Conspicuously absent among the plethora of studies implicating food packaging materials and machinery is the study of corrugated cardboard packaging, the worldwide medium for transporting fresh produce. In this study, we observed the microbial communities of three different store-bought fruits and vegetables, along with their analogue cardboard packaging using high throughput sequencing technology. We further developed an anti-biofilm polymer meant to coat corrugated cardboard surfaces and mediate bacterial biofilm growth on said surfaces. Integration of a novel thiazolidinedione derivative into the acrylic emulsion polymers was assessed using Energy Dispersive X-ray Spectrometry analysis and surface topography was visualized and quantified on corrugated cardboard surfaces. Biofilm growth was measured using q-PCR targeting the gene encoding 16s rRNA. Additionally, architectural structure of the biofilm was observed using SEM. The uniform integration of the thiazolidinedione derivative TZD-6 was confirmed, and it was determined via q-PCR to reduce biofilm growth by ~80% on tested surfaces. A novel and effective method for reducing microbial load and preventing contamination on food packaging is thereby proposed.

  12. Mitigation of Biofilm Formation on Corrugated Cardboard Fresh Produce Packaging Surfaces Using a Novel Thiazolidinedione Derivative Integrated in Acrylic Emulsion Polymers.

    Science.gov (United States)

    Brandwein, Michael; Al-Quntar, Abed; Goldberg, Hila; Mosheyev, Gregory; Goffer, Moshe; Marin-Iniesta, Fulgencio; López-Gómez, Antonio; Steinberg, Doron

    2016-01-01

    Various surfaces associated with the storage and packing of food are known to harbor distinct bacterial pathogens. Conspicuously absent among the plethora of studies implicating food packaging materials and machinery is the study of corrugated cardboard packaging, the worldwide medium for transporting fresh produce. In this study, we observed the microbial communities of three different store-bought fruits and vegetables, along with their analog cardboard packaging using high throughput sequencing technology. We further developed an anti-biofilm polymer meant to coat corrugated cardboard surfaces and mediate bacterial biofilm growth on said surfaces. Integration of a novel thiazolidinedione derivative into the acrylic emulsion polymers was assessed using Energy Dispersive X-ray Spectrometry (EDS) analysis and surface topography was visualized and quantified on corrugated cardboard surfaces. Biofilm growth was measured using q-PCR targeting the gene encoding 16s rRNA. Additionally, architectural structure of the biofilm was observed using SEM. The uniform integration of the thiazolidinedione derivative TZD-6 was confirmed, and it was determined via q-PCR to reduce biofilm growth by ~80% on tested surfaces. A novel and effective method for reducing microbial load and preventing contamination on food packaging is thereby proposed.

  13. Preparation and characterization of Zn(II ion-imprinted polymer based on salicylic acrylate for recovery of Zn(II ions

    Directory of Open Access Journals (Sweden)

    Ebrahim Ahmadi

    Full Text Available Abstract This work describes the synthesis of new ion-imprinted polymers (IIPs for selective solid phase extraction of Zn(II ions from aqueous samples. IIPs were synthesized by copolymerization of salicylic acrylate (SA as a functional monomer and ethylene glycol dimethacrylate (EGDMA as a crosslinker in the presence of 2,2’-azobisisobutyronitrile (AIBN as an initiator. The template ions were removed from IIPs particles by leaching with 0.1 M Ethylenediaminetetraacetic acid (EDTA which leaves cavities in the particles with the capability of selective extraction of the Zn(II ions. The monomer and the polymer after synthesis have been characterized by 1H NMR, 13C NMR and FT-IR studies. The effect of the pH on the extraction efficiency of Zn(II ions was studied and optimized in pH around 6. The selectivity of the synthesized IIPs was studied in the presence of Co(II, Cd(II and Ni(II ions, and the IIPs showed higher affinity for Zn(II in the presence of other interfering ions.

  14. Synthesis of polymer materials by low energy electron beam. IV. EB-polymerized urethane-acrylate, -methacrylate and -acrylamide

    Science.gov (United States)

    Ando, Masayuki; Uryu, Toshiyuki

    The structure and properties before and after electron beam (EB) irradiation were investigated using urethane prepolymers with different terminal groups of 2-hydroxyethyl acrylate (HEA), 2-hydroxyethyl methacrylate (HEMA) and N-hydroxymethyl acrylamide (HMAAm). The prepolymers were synthesized by reaction of HEA, HEMA and HMAAm with the isocyanate-capped intermediate, which was obtained by reaction of poly(butylene adipate)diol (PBAD) with 4,4'-diphenylmethane diisocyanate. The resulting urethane-acrylate (UA-251M), -methacrylate (UMA-251M) and -acrylamide (UNAA-251M) had the crystallinity arising from PBAD moieties, and UA-251M and UMA-251M had higher crystallinity than UNAA-251M. IR results indicated that UNAA-251M was larger in the fraction of free NH stretching absorption than UA-251M and UMA-251M regardless of the number of NH group per a molecule. Accordingly, it was assumed that the difference in crystallinity was attributed to the polarity of terminal group. Hence, the rate of gel formation for UA-251M and UMA-251M was higher than that of UNAA-251M. The crystallinity based on PBAD of the prepolymers was remained also after EB irradiation. Spherulitic texture was observed on the EB-polymerized gel film surfaces for UA-251M and UMA-251M, while it was almost destroyed for UNAA-251M. Mechanical properties of UA-251M and UMA-251M gel films were much superior to those of UNAA-251M gel film according to the phase structure. Especially, UMA-251M gel film represented most excellent mechanical properties. Schematic models of the phase structure for UA-251M, UMA-251M and UNAA-251M were suggested from all experimental results.

  15. In situ preparation of powder and the sorption behaviors of molecularly imprinted polymers through the complexation between polymer ion of methyl methacrylate/acrylic acid and Ca++ ion.

    Science.gov (United States)

    Chough, Sung Hyo; Park, Kwang Ho; Cho, Seung Jin; Park, Hye Ryoung

    2014-09-02

    Molecularly imprinted polymer (MIP) powders were prepared using a simple complexation strategy between the polymer carboxylate groups and template molecule followed by metal cation cross-linking of residual polymer carboxylates. Polymer powders were formed in situ by templating carboxylic acid containing polymers with 4-ethylaniline (4-EA), followed by addition of an aqueous CaCl2 solution. The solution remained homogeneous. The powders were prepared by precipitation by slowly adding a non-solvent, H2O, to the mixture. The resulting particles were very porous with uptake capacity that approached the theoretical value. We suggest two types of complexes are formed between the template, 4-EA, and polymer. The isolated entry type forms well defined cavities for the template with high specific selectivity, while the adjacent entry type forms wider binding sites without specific sorption for isomeric molecules. To evaluate conditions for forming materials with high affinity and selectivity, three MIPs were prepared containing 0.5, 1.0, and 1.5 equivalents of template to the base polymer. The MIP containing 0.5 eq showed higher specific selectivity to 4-EA, but the MIP containing 1.5 eq had noticeably lower selectivity. The lower selectivity is attributed to poorly formed binding sites with little selective sorption to any isomer when the higher ratio of template was used. However at the lower ratio of template the isolated entry is preferably formed to produce well defined binding cavities with higher selectivity to template.

  16. Poly(meth)acrylate-based coatings.

    Science.gov (United States)

    Nollenberger, Kathrin; Albers, Jessica

    2013-12-05

    Poly(meth)acrylate coatings for pharmaceutical applications were introduced in 1955 with the launch of EUDRAGIT(®) L and EUDRAGIT(®) S, two types of anionic polymers. Since then, by introducing various monomers into their polymer chains and thus altering their properties, diverse forms with specific characteristics have become available. Today, poly(meth)acrylates function in different parts of the gastrointestinal tract and/or release the drug in a time-controlled manner. This article reviews the properties of various poly(meth)acrylates and discusses formulation issues as well as application possibilities.

  17. Ultrafast synthesis of ultrahigh molar mass polymers by metal-catalyzed living radical polymerization of acrylates, methacrylates, and vinyl chloride mediated by SET at 25 degrees C.

    Science.gov (United States)

    Percec, Virgil; Guliashvili, Tamaz; Ladislaw, Janine S; Wistrand, Anna; Stjerndahl, Anna; Sienkowska, Monika J; Monteiro, Michael J; Sahoo, Sangrama

    2006-11-01

    Conventional metal-catalyzed organic radical reactions and living radical polymerizations (LRP) performed in nonpolar solvents, including atom-transfer radical polymerization (ATRP), proceed by an inner-sphere electron-transfer mechanism. One catalytic system frequently used in these polymerizations is based on Cu(I)X species and N-containing ligands. Here, it is reported that polar solvents such as H(2)O, alcohols, dipolar aprotic solvents, ethylene and propylene carbonate, and ionic liquids instantaneously disproportionate Cu(I)X into Cu(0) and Cu(II)X(2) species in the presence of a diversity of N-containing ligands. This disproportionation facilitates an ultrafast LRP in which the free radicals are generated by the nascent and extremely reactive Cu(0) atomic species, while their deactivation is mediated by the nascent Cu(II)X(2) species. Both steps proceed by a low activation energy outer-sphere single-electron-transfer (SET) mechanism. The resulting SET-LRP process is activated by a catalytic amount of the electron-donor Cu(0), Cu(2)Se, Cu(2)Te, Cu(2)S, or Cu(2)O species, not by Cu(I)X. This process provides, at room temperature and below, an ultrafast synthesis of ultrahigh molecular weight polymers from functional monomers containing electron-withdrawing groups such as acrylates, methacrylates, and vinyl chloride, initiated with alkyl halides, sulfonyl halides, and N-halides.

  18. Physically cross-linked polymer binder based on poly(acrylic acid) and ion-conducting poly(ethylene glycol-co-benzimidazole) for silicon anodes

    Science.gov (United States)

    Lim, Sanghyun; Lee, Kukjoo; Shin, Inseop; Tron, Artur; Mun, Junyoung; Yim, Taeeun; Kim, Tae-Hyun

    2017-08-01

    The practical applications of Si electrodes in lithium-ion batteries are limited since they undergo large changes in volume during charge and discharge, and consequently become highly deteriorated. A novel binder system holding silicon particles together and preventing disintegration of the electrode during operation hence needs to be developed to enable reliable cycleability. In the current work, such a new polymer binder system, based on poly(acrylic acid) (PAA) and poly(ethylene glycol-co-benzimidazole) (PEGPBI), is developed for silicon anodes. The physical crosslinking using acid-base interactions between PAA and PBI, together with the ion-conducting PEG group, yields physical properties for the resulting PAA-PEGPBI-based anodes that are better than those of electrodes based on the currently available PAA binder, and yields good cell performances. A Si-based electrode with high loading levels of 1.0-1.3 mg cm-2 (0.7-0.91 Si mg cm-2) is reliably manufactured using specifically PAA-PEGPBI-2, which is made with 2 wt% of PEGPBI relative to PAA, and shows a very high capacity value of 1221 mAh g-1 at a rate of 0.5 C after 50 cycles, and a high capacity value of more than 1600 mAh g-1 at a high rate of 2 C.

  19. Pyrolysis of carbonaceous particles and properties of Carbonaceous-g-Poly (acrylic acid-co-acrylamide superabsorbent polymer for agricultural applications

    Directory of Open Access Journals (Sweden)

    Ghazali S.

    2016-01-01

    Full Text Available Utilisation of fertilizer and water are very important in determining the production of agriculture nowadays. The excessive use of fertilizer in plantation somehow could leads to environmental pollution. The present study reported a synthesis of controlled release water retention (CRWR fertilizer coating with superabsorbent polymer (SAPs. Superabsorbent polymer (SAPs are polymers that have ability to absorb and retain large amounts of water relative to their own mass. The presence of coating layer of SAPs on fertilizer granules was believed could reduce excessive used of fertilizer by controlling their dissolution rates and also reduce the environmental pollution. In this study, the effect on the addition of carbonaceous filler in SAPs on the water absorbency was also be compared with control SAPs (without carbonaceous particles. In this study, the carbonaceous filler were obtained from pyrolysis process of empty fruit bunch (EFB biomass. The synthesized of SAPs and carbonaceous-SAPs were carried out via solution polymerization technique by using monomer of poly(acrylic acid (AA, acrylamide (AM, cross linker, methylene bisacrylamide (MBA and initiator, ammonium peroxodisulfate (APS that partially neutralized with sodium hydroxide (NaOH. The CRWR fertilizer was later be prepared by coated the fertilizer granule with SAPs and carbonaceous-SAPs. The water absorbency, morphology and the bonding formation of both CRWR fertilizer were investigated by using tea-beg method, Scanning Electron Microscopy (SEM and Fourier Transform Infrared Spectrophotometer (FTIR, respectively. Moreover, the water retention studies was conducted in order to investigate the efficiency of CRWR coated with SAP and carbonaceous-SAP in retaining the water content in different soil (organic and top soil. Based on the results, the CRWR fertilizer that was coated with carbonaceous-SAP had higher water absorbency value than the CRWR fertilizer without carbonaceous-SAP. Meanwhile

  20. Unusually Stable Hysteresis in the pH-Response of Poly(Acrylic Acid) Brushes Confined within Nanoporous Block Polymer Thin Films.

    Science.gov (United States)

    Weidman, Jacob L; Mulvenna, Ryan A; Boudouris, Bryan W; Phillip, William A

    2016-06-01

    Stimuli-responsive soft materials are a highly studied field due to their wide-ranging applications; however, only a small group of these materials display hysteretic responses to stimuli. Moreover, previous reports of this behavior have typically shown it to be short-lived. In this work, poly(acrylic acid) (PAA) chains at extremely high grafting densities and confined in nanoscale pores displayed a unique long-lived hysteretic behavior caused by their ability to form a metastable hydrogen bond network. Hydraulic permeability measurements demonstrated that the conformation of the PAA chains exhibited a hysteretic dependence on pH, where different effective pore diameters arose in a pH range of 3 to 8, as determined by the pH of the previous environment. Further studies using Fourier transform infrared (FTIR) spectroscopy demonstrated that the fraction of ionized PAA moieties depended on the thin film history; this was corroborated by metal adsorption capacity, which demonstrated the same pH dependence. This hysteresis was shown to be persistent, enduring for days, in a manner unlike most other systems. The hypothesis that hydrogen bonding among PAA units contributed to the hysteretic behavior was supported by experiments with a urea solution, which disrupted the metastable hydrogen bonded state of PAA toward its ionized state. The ability of PAA to hydrogen bond within these confined pores results in a stable and tunable hysteresis not previously observed in homopolymer materials. An enhanced understanding of the polymer chemistry and physics governing this hysteresis gives insight into the design and manipulation of next-generation sensors and gating materials in nanoscale applications.

  1. A Lithium/Polysulfide Battery with Dual-Working Mode Enabled by Liquid Fuel and Acrylate-Based Gel Polymer Electrolyte.

    Science.gov (United States)

    Liu, Ming; Ren, Yuxun; Zhou, Dong; Jiang, Haoran; Kang, Feiyu; Zhao, Tianshou

    2017-01-25

    The low density associated with low sulfur areal loading in the solid-state sulfur cathode of current Li-S batteries is an issue hindering the development of this type of battery. Polysulfide catholyte as a recyclable liquid fuel was proven to enhance both the energy density and power density of the battery. However, a critical barrier with this lithium (Li)/polysulfide battery is that the shuttle effect, which is the crossover of polysulfides and side deposition on the Li anode, becomes much more severe than that in conventional Li-S batteries with a solid-state sulfur cathode. In this work, we successfully applied an acrylate-based gel polymer electrolyte (GPE) to the Li/polysulfide system. The GPE layer can effectively block the detrimental diffusion of polysulfides and protect the Li metal from the side passivation reaction. Cathode-static batteries utilizing 2 M catholyte (areal sulfur loading of 6.4 mg cm(-2)) present superior cycling stability (727.4 mAh g(-1) after 500 cycles at 0.2 C) and high rate capability (814 mAh g(-1) at 2 C) and power density (∼10 mW cm(-2)), which also possess replaceable and encapsulated merits for mobile devices. In the cathode-flow mode, the Li/polysulfide system with catholyte supplied from an external tank demonstrates further improved power density (∼69 mW cm(-2)) and stable cycling performance. This novel and simple Li/polysulfide system represents a significant advancement of high energy density sulfur-based batteries for future power sources.

  2. Biodegradability of chitosan-polyvinylalcohol-acrylic acid superabsorbent polymers%壳聚糖-聚乙烯醇-丙烯酸高吸水树脂的生物降解性能研究

    Institute of Scientific and Technical Information of China (English)

    陈嘉恒; 吴国杰; 廖宗祺; 陈倩瑜

    2013-01-01

    采用培养基培养方法,考察了黑曲霉(Aspergillus flavus)和白僵菌(Beauveria bassiana)利用壳聚糖-聚乙烯醇-丙烯酸高吸水树脂中碳源的生长情况,并对高吸水树脂作为未来生物农药白僵菌的载体进行了初步探索。扫描电镜分析表明,壳聚糖-聚乙烯醇-丙烯酸高吸水树脂具有一定的生物降解性。%The growth of Aspergillus flavus and Beauveria bassiana was examined in the medium with the carbon source of Chitosan-polyvinylalcohol-Acrylic acid Superabsorbent Polymers .The use of superabsor-bent polymers as a vector for biopesticide beauveria bassiana was prospected .The scanning electron mi-croscope analysis showed that Chitosan-polyvinylalcohol-Acrylic acid Superabsorbent Polymers possesses certain biodegradability .

  3. Synthesis of Superabsorbent Polymer of Cassava Starch Grafting Acrylic Acid%木薯淀粉-丙烯酸接枝共聚合成高吸水性树脂

    Institute of Scientific and Technical Information of China (English)

    樊红日; 张立颖; 黎洪; 尹丽

    2011-01-01

    [ Objective] The research aimed to study the synthesis of superabsorbent polymer by cassava starch. [ Method] Using acrylic acid and cassava starch as raw material, ammonium persulfate and anhydrous sodium sulfite as initiator, superabsorbent polymer was synthesized by aqueous solution polymerization. The effect of monomer-starch ratio, reaction temperature, reaction time, acrylic acid and its neutralization degree and the initiators dosage on the water absorption of the product were investigated. [ Result ] Water absorbency in deionized water and salt water of 0.9% NaCl were 1 844 g/g and 224 g/g respectively at room temperature within 1 h. [ Conclusion ] The study provided scientific basis for preparing superabsorbent polymer with acrylic acid and cassava starch.%[目的]研究木薯淀粉合成高吸水性树脂.[方法]以木薯淀粉和丙烯酸单体为原料,过硫酸铵-亚硫酸钠为引发剂,通过水溶液聚合法制得淀粉基高吸水性树脂.考察了淀粉与单体配比、反应温度、反应时间、中和度和引发剂用量等因素对产品吸水率的影响.[结果]得出产品在室温下1 h内吸去离子水1 844 g/g、0.9%NaCl盐水224 g/g.[结论]该研究为以木薯淀粉与丙烯酸为原料制备高吸水树脂提供科学依据.

  4. 21 CFR 177.1310 - Ethylene-acrylic acid copolymers.

    Science.gov (United States)

    2010-04-01

    ... (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use as... this section are not applicable to ethylene-acrylic acid copolymers used in food-packaging adhesives... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene-acrylic acid copolymers. 177.1310...

  5. Biodegradable polymers by reactive blending trans-esterification of thermoplastic starch with poly (vinyl acetate) and poly (vinyl acetate-co-butyl acrylate)

    CSIR Research Space (South Africa)

    Vargha, V

    2005-04-01

    Full Text Available Wheat starch was reacted with poly (vinyl acetate) and with poly (vinyl acetate-co-butyl acrylate) in an internal mixer at 150 _C in the absence of catalyst, and in the presence of sodium carbonate, zinc-acetate and titanium (IV) but oxide...

  6. 苯丙乳液在添加PAE/CMC增强剂的浆料中的施胶性能%Internal Sizing of the Stock Containing PAE/CMC Dual-polymer Strengthening System with Styrene-acrylic Emulsion

    Institute of Scientific and Technical Information of China (English)

    张万彬; 王高升; 许骥

    2011-01-01

    In this paper, the efficiency of styrene-acrylic emulsion as internal size was discussed when both cationic polyelectrolyte polyamid-eamine epichlorohydrine (PAE) and anionic poly-electrolyte carboxymethyl cellulose(CMC) were added as strength additives in the paper-making process. The added amount of styrene-acrylic emulsion had a remarkable effect on internal sizing and paper strength. When the dosages of PAE and CMC were constant, and breaking length increased while tear index decreased. Raised amount of PAE could improve sizing degree, but CMC had an adverse effect on sizing degree. Therefore, when PAE/CMC dual-polymer strengthening system and styrene-acrylic emulsion are added simultaneously into stock, electric charge ratio of PAE and CMC is the key factor influencing the internal sizing efficiency of styrene-acrylic emulsion. Sizing degree rapidly increases with the increase of charge ratio of PAE to CMC in the range of 1. 5 to 4.0, then begin to level off. The sizing degree is 90% of the control sample when the charge ratio of PAE to CMC is 8. 0.%针对扬声器纸盆、纸浆餐盒等抗水性要求高的模塑产品,研究了在阳离子聚酰胺-环氧氯丙烷树脂(PAE)和羧甲基纤维素(CMC)组成的PAE/CMC二元增强体系中苯丙乳液浆内施胶效果.结果表明,在PAE/CMC二元增强体系中,PAE与CMC的电荷比影响苯丙乳液施胶效果,当PAE与CMC的电荷比在1.5 ~4.0之间,随着PAE和CMC的电荷比的增加,纸张施胶度快速增加,继续增加PAE与CMC的电荷比,纸张施腔度变化趋缓,当PAE与CMC的电荷比为8.0时,继续增加PAE与CMC的电荷比,纸张的施胶度基本不变.

  7. Pyrolysis of carbonaceous particles and properties of Carbonaceous-g-Poly (acrylic acid-co-acrylamide) superabsorbent polymer for agricultural applications

    OpenAIRE

    Ghazali S.; Jamari S; Noordin N.; Tan K.M.

    2016-01-01

    Utilisation of fertilizer and water are very important in determining the production of agriculture nowadays. The excessive use of fertilizer in plantation somehow could leads to environmental pollution. The present study reported a synthesis of controlled release water retention (CRWR) fertilizer coating with superabsorbent polymer (SAPs). Superabsorbent polymer (SAPs) are polymers that have ability to absorb and retain large amounts of water relative to their own mass. The presence of coati...

  8. Pyrolysis of carbonaceous particles and properties of Carbonaceous-g-Poly (acrylic acid-co-acrylamide) superabsorbent polymer for agricultural applications

    OpenAIRE

    Ghazali S.; Jamari S.; Noordin N.; Tan K.M.

    2016-01-01

    Utilisation of fertilizer and water are very important in determining the production of agriculture nowadays. The excessive use of fertilizer in plantation somehow could leads to environmental pollution. The present study reported a synthesis of controlled release water retention (CRWR) fertilizer coating with superabsorbent polymer (SAPs). Superabsorbent polymer (SAPs) are polymers that have ability to absorb and retain large amounts of water relative to their own mass. The presence of coati...

  9. 21 CFR 177.1340 - Ethylene-methyl acrylate copolymer resins.

    Science.gov (United States)

    2010-04-01

    ... (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use as... no more than 25 weight percent of polymer units derived from methyl acrylate. (b) The finished food... ethylene-methyl acrylate copolymer resins used in food-packaging adhesives complying with § 175.105 of...

  10. Acrylate Systemic Contact Dermatitis.

    Science.gov (United States)

    Sauder, Maxwell B; Pratt, Melanie D

    2015-01-01

    Acrylates, the 2012 American Contact Dermatitis Society allergen of the year, are found in a range of products including the absorbent materials within feminine hygiene pads. When fully polymerized, acrylates are nonimmunogenic; however, if not completely cured, the monomers can be potent allergens.A 28-year-old woman is presented, who had her teeth varnished with Isodan (Septodont, Saint-Maur-des-Fossés, France) containing HEMA (2-hydroxyethyl methacrylate) with no initial reaction. Approximately 1 month later, the patient developed a genital dermatitis secondary to her feminine hygiene pads. The initial reaction resolved, but 5 months later, the patient developed a systemic contact dermatitis after receiving a second varnishing.The patient was dramatically patch test positive to many acrylates. This case demonstrates a reaction to likely unpolymerized acrylates within a feminine hygiene pad, as well as broad cross-reactivity or cosensitivity to acrylates, and possibly a systemic contact dermatitis with systemic re-exposure to unpolymerized acrylates.

  11. The Effect of Water Acrylate Dispersion on the Properties of Polymer-Carbon Nanotube Composites / Wpływ Wodnej Dyspersji Akrylanowej Na Właściwości Kompozytów Polimer-Nanorurki Węglowe

    Directory of Open Access Journals (Sweden)

    Zygoń P.

    2015-12-01

    Full Text Available The paper presents properties of polymer composites reinforced with carbon nanotubes (CNT containing various mixtures of dispersion. Acrylates of different particle size and viscosity were used to produce composites. The mechanical strength of composites was determined by three-point bending tests. The roughness parameter of composites was determined with a profilometer and compared with the roughness parameter determined via atomic force microscopy (AFM. Also X-ray studies (phase composition analysis, crystallite sizes determination were carried out on these composites. Measurements of the surface topography using the Tapping Mode method were performed, acquiring the data on the height and on the phase imaging. The change of intensity, crystallite size and half-value width of main reflections originating from carbon within the composites have been determined using the X-ray analysis. The density of each obtained composite was determined as well as the resistivity at room temperature. The density of composites is quite satisfactory and ranges from 0.27 to 0.35 g/cm3. Different composites vary not only in strength but also in density. Different properties were achieved by the use of various dispersions. Carbon nanotubes constituting the reinforcement for a polymer composite improve the mechanical properties and conductivity composite.

  12. In situ generation of silver nanoparticles in poly(vinyl alcohol)/poly(acrylic acid) polymer membranes in the absence of reducing agent and their effect on pervaporation of a water/acetic acid mixture

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhard, Shvshankar; Kwon, Yong Sung; Moon, MyungJun; Shon, Min Young [Dept. of Industrial Chemistry, Pukyong National University, Busan (Korea, Republic of); Park, You In; Nam, Seung Eun [Center for membranes, Korea Research Institute of Chemical Technology, Daejeon (Korea, Republic of)

    2016-12-15

    The in situ generation of silver nanoparticles in a poly(vinyl alcohol)/poly(acrylic acid) (PVA/PAA) polymer matrix in the absence of any additional reducing agent is reported and tends to the membrane fabrication using solution-casting. Its effect on the separation of a water/acetic acid mixture by pervaporation is described. The results of UV spectroscopy, scanning electron microscopy, and scanning electron microscopy/energy-dispersive X-ray spectroscopy analyses showed that the silver nanoparticles were successfully prepared and well dispersed in the polymer matrix. The increased hydrophilicity of the PVA/PAA membrane due to the presence of silver nanoparticles was confirmed by Fourier transform infrared spectroscopy, contact angle measurements, and membrane absorption studies. Pervaporation data for composite membranes showed a three-fold increase in the flux value, while the initially decreased separation factor subsequently showed a constant value. Overall, the pervaporation data suggested that the presence of silver nanoparticles benefited the dehydration process.

  13. Preparation and application of the sol-gel-derived acrylate/silicone co-polymer coatings for headspace solid-phase microextraction of 2-chloroethyl ethyl sulfide in soil.

    Science.gov (United States)

    Liu, Mingming; Zeng, Zhaorui; Fang, Huaifang

    2005-05-27

    Three types of novel acrylate/silicone co-polymer coatings, including co-poly(methyl acrylate/hydroxy-terminated silicone oil) (MA/OH-TSO), co-poly(methyl methacrylate/OH-TSO) (MMA/OH-TSO) and co-poly(butyl methacrylate/OH-TSO) (BMA/OH-TSO), were prepared for the first time by sol-gel method and cross-linking technology and subsequently applied to headspace solid-phase microextraction (HS-SPME) of 2-chloroethyl ethyl sulfide (CEES), a surrogate of mustard, in soil. The underlying mechanisms of the coating process were discussed and confirmed by IR spectra. The selectivity of the three types of sol-gel-derived acrylate/silicone coated fibers was studied, and the BMA/OH-TSO coated fibers exhibited the highest extraction ability to CEES. The concentration of BMA and OH-TSO in sol solution was optimized, and the BMA/OH-TSO (3:1)-coated fibers possessed the highest extraction efficiency. Compared with commercially available polyacrylate (PA) fiber, the sol-gel-derived BMA/OH-TSO (3:1) fibers showed much higher extraction efficiency to CEES. Therefore, the BMA/OH-TSO (3:1)-coated fibers were chosen for the analysis of CEES in soil matrix. The reproducibility of coating preparation was satisfactory, with the RSD 2.39% within batch and 3.52% between batches, respectively. The coatings proved to be quite stable at high temperature (to 350 degrees C) and in different solvents (organic or inorganic), thus their lifetimes (to 150 times) are longer than conventional fibers. Extraction parameters, such as the volume of water added to the soil, extraction temperature and time, and the ionic strength were optimized. The linearity was from 0.1 to 10 microg/g, the limit of detection (LOD) was 2.7 ng/g, and the RSD was 2.19%. The recovery of CEES was 88.06% in agriculture soil, 92.61% in red clay, and 101.95% in sandy soil, respectively.

  14. STUDY ON POLYMER-RARE EARTH METAL ION COMPLEXES I. FLUORESCENT PROPERTIES OF POLY(ACRYLIC ACID-CO-4-VINYLPYRIDINE)-RARE EARTH METAL COMPLEXES

    Institute of Scientific and Technical Information of China (English)

    LU Hong; FANG Shibi; JIANG Yingyan

    1987-01-01

    A kind of copolymer of acrylic acid and vinylpyridine was synthesized and the fluorescent properties of the complexes of the copolymer with Eu3+ or Tb3+ were studied. It was found that the fluorescence intensity of the complexes of the copolymer with Eu3+ was 20 times as high as that of the complexes of polyacrylic acid with Eu3+ and twice as high as that of the complexes of polyvinylpyridine with Eu3+. The effects of the composition of the copolymer and the content of Eu3+ or Tb3+ in the complexes were studied.The fluorescence lifetime of the complexes was measured and it was found that two or more kinds of energy transfer mechanism existed.

  15. Occupational fingertip eczema from acrylates in a manicurist

    Directory of Open Access Journals (Sweden)

    Denitza Zheleva

    2015-04-01

    Full Text Available Occupational hand eczema due to acrylates present in the workplace is a disease frequently reported among dentists, printers, and fiberglass workers. Acrylate monomers are used in the production of a great variety of polymers, including nail cosmetics. Our case report demonstrates a rare clinical presentations of allergic contact dermatitis from acrylic nails. Our patient was working as a manicurist and the diagnostic analyses revealed sensitation to some of the (meth acrylate compounds of her new nail cosmetics. Sculptured artificial acrylic and UV-hardened nails s are widely used in developed countries and they are gaining more and more popularity. We expect an increase in the number of cases of contact allergic dermatitis among manicurists and customers.

  16. Evaluation of Polyethylene Glycol Mono-acrylate/Acrylate/Organosilicone Functional Polymer Synthesis and Its Coating Performance%聚乙二醇单丙烯酸酯/丙烯酸酯/有机硅功能聚合物合成及其涂层性能评价

    Institute of Scientific and Technical Information of China (English)

    于世长; 王巧玲

    2016-01-01

    In order to reduce the low surface energy of functional coatings, three acryloyl oxygen radicals isopropyl silane monomer, polyethylene glycol single methyl ether, butyl acrylate, ethyl methacrylate andγ-methyl acryloxy trimethyl silane are selected as monomers to prepare copolymer with low surface energy and organic silicon function. The appropriate monomer ratio, molecular weight and glass transition temperature are obtained through the properties characterization of the polymers. The optimal formula was obtained through the evaluation on the contact angle, adhesion strength, water resistance and antifouling property of coatings.%为了降低功能涂层的低表面能,选择丙烯酰氧基三异丙基硅烷单体与聚乙二醇单甲醚、丙烯酸丁酯、甲基丙烯酸乙酯、γ-甲基丙烯酰氧基三甲基硅烷作为共聚单体,制备低表面能有机硅功能共聚物。通过聚合物性能表征,得到适宜的单体配比、分子量和玻璃化温度。通过对涂层接触角、附着强度、耐水性、防污性评价,得出涂层最佳配方。

  17. Relations structure-propriétés et résistance à l’endommagement de vernis acrylate photo-polymérisables pour substrats thermoplastiques : évaluation de monomères bio-sourcés et de nano-charges

    OpenAIRE

    2013-01-01

    The aim of this work was to develop 100% solids photo-polymerizable acrylate coatings, intended to protect thermoplastic pieces made of polycarbonate against mechanical damage, in particular scratches. The relationships between the composition, the structure and the properties of these coatings were examined. For this purpose the morphology, the thermomechanical properties and the scratch resistance of the materials, assessed by micro-scratch tests, were studied. The kinetics of the polymer n...

  18. 含氟丙烯酸酯共聚乳液合成及性能研究%Synthesis and Properties of Fluorinated Acrylate Co-polymers

    Institute of Scientific and Technical Information of China (English)

    李真; 李文秀

    2012-01-01

    以甲基丙烯酸甲酯(MMA)、丙烯酸丁酯(BA)和全氟烷基丙烯酸酯等为主要原料,丙二醇为分子量调节剂,采用非离子阴离子复合乳化剂、氧化还原引发体系、超声微乳化技术,不同的加料方式制备出系列含氟丙烯酸酯乳液,并利用衰减全反射红外光谱(ATR-FTIR)对含氟丙烯酸酯共聚乳液胶膜进行了表征。采用接触角测定方法研究了含氟共聚乳液对织物整理后的表面性能变化,结果显示:乳液整理后的纯棉无纺布的拒水拒醇性大大提高,对水的接触角达到127o左右,对醇的最大接触角达到112o。乳液整理后的PP无纺布拒醇性明显改善,接触角达到101o左右。但拒水性能未见明显提高。%The series fluorinated acrylate copolymers were prepared by selected BA, MMA, AA and fluorinated monomer as the main raw materials, propylene glycol as the molecular regulator, an anion compound emulsifier, redox initiator system, with different way of feeding and pre-emulsificatiou of using ultrasonic wave technology. And the film of fluorine containing acrylate copolymer emulsion were characterized by using attenuated total reflection infrared spectrometry (ATR-FTIR). The change of surface properties of after textile finishing were measured by using the contact angle methods with containing fluorine copolymerization emulsion. The results showed that after emulsion finishing the property of water-repellency or alcohol-repellency of pure cotton non-woven fabric was greatly improved, and the contact angles of the treated cotton non-woven fabrics for water and for ethanol reached 127~ and 112~, respectively. The ethanol-repellent property of the treated PP non-woven fabrics was improved from spread to 101~ of the contact angles reached for ethanol. But water-repellent performance did not see obviously improved.

  19. Group Contribution Analysis of the Damping Behavior of Homopolymers, Statistical Copolymers, and Interpenetrating Polymer Networks Based on Acrylic, Vinyl, and Styrenic Mers,

    Science.gov (United States)

    1987-01-01

    Viscoelastomer (Rheovibron DDV-III-C type, Toyo Baldwin Co. Ltd.) coupled with a computer and a plotter (assembled by Imass, Inc.) was 10 used to...537, McGraw-Hill, New York, 1986-87. 45. R. F. Boyer, in "Encyclopedia of Polymer Sceince and Technology," Supplement Vol. 2, p. 745, N. M. Bikales

  20. 溶胶-凝胶法制备含氟聚丙烯酸酯/SiO2杂化材料%Study On Fluoro-Acrylate Polymer/SiO2 Hybrids Prepared by Sol-Gel Process

    Institute of Scientific and Technical Information of China (English)

    钱斯文; 吴文健; 王建方; 刘长利; 张学骜

    2008-01-01

    Silica sols were synthesized by an acid-catalyzed sol-gel process,and fluoro-acrylate polymer/SiO2 hybrid materials were prepared by silica sols in-situ polymerized with acrylate monomers.The structure,morphologies and surface chemical composition of the hybrid system was characterized by FT-IR,FESEM and XPS.It was found that in the hybrid system,SiO2 subsisted in networks,and covalent linked with organic components.The effects of morphology,distribution and interfacial conditions of inorganic disperse phase on the surface,thermal and mechanical properties of hybrids were investigated.The result showed that with the increase of SiO2 content,the water contact angle,thermal stability and hardness of the hybrids were enhanced,but the adhesion of the hybrid coatings increased firstly and then decreased.%用酸催化溶胶-凝胶法制得SiO2溶胶,与丙烯酸酯单体原位聚合,制备了含氟聚丙烯酸酯/SiO2杂化材料.通过红外光谱、场发射扫描电镜、X射线光电子能谱对杂化材料的结构、形态及表面化学组成进行了表征,表明SiO2在杂化体系中以Si-O网络的形式存在,并且与有机相之间有良好键合.并研究了SiO2相的形态、分布和界面状况对杂化材料的表面性能、热学性能和力学性能的影响.测试结果证实,随着SiO2含量的增加,杂化材料的疏水性、热稳定性和硬度都逐渐增强,附着力则是先增大后减小.

  1. The effect of the ratio of two acrylic polymers on the in vitro release kinetics of ketoprofen from pellets prepared by extrusion and spheronisation technique.

    Science.gov (United States)

    Kibria, Golam; Ul-Jalil, Reza

    2008-04-01

    The aim of this study was to investigate the effect of physico-chemical properties of the polymers on the release profile of ketoprofen from the pellets dosage form. Ammonio Methacrylate Copolymer Type A (Eudragit RL 30 D) & Ammonio Methacrylate Copolymer Type B (Eudragit RS 30 D) were used as release rate retarding polymers. The drug containing core pellets were prepared by extrusion spheronisation technique and subsequently coated with 15% (w/w) polymer load of the combination of Eudragit RL 30 D & Eudragit RS 30 D having ratio 1:0, 4:1, 3:2, 1:1, 2:3, 1:4, 0:1 respectively. Significant differences were found among the drug release profile from different formulations. It was revealed that Eudragit RL 30 D has the effect to increase the initial drug release more significantly where as Eudragit RS 30 D has the effect to minimize the initial drug release but increase the terminal drug release more significantly. In acid media about 50% drug was released from pellets coated only with Eudragit RL 30 D where as only 5% drug was released in case of Eudragit RS 30 D but maximum 10% drug was released from pellets when coated with the combination of Eudragit RL 30 D & Eudragit RS 30 D. In buffer media, evidence of burst release was observed for the pellets coated with Eudragit RL 30 D & Eudragit RS 30 D having ratio of 1:0, 4:1, 3:2 respectively. It was also observed that drug release increases sharply as well as the release best fit to the zero order release kinetics when pellets coated with 1:1 ratio of Eudragit RL 30 D & Eudragit RS and follows Higuchi's release kinetics when ratio was 1:0 & 3:2. The results generated in this study showed that proper selection of polymeric materials based on their physico-chemical properties is important in designing sustained release pellets dosage form with suitable dissolution profile.

  2. BARRIER PROPERTY AND STRUCTURE OF ACRYLONITRILE/ACRYLIC COPOLYMERS

    Institute of Scientific and Technical Information of China (English)

    YANG Zhenghua; LI Yuesheng

    1997-01-01

    A series of acrylonitrile (AN) copolymers with methyl acrylate (MA) or ethyl acrylate (EA) as comonomer (5-23 wt%) was prepared by free-radical copolymerization. The permeability coefficients of the copolymers to oxygen and carbon dioxide were measured at 1.0 MPa and at 30 ℃, and those to water vapor also measured at 100% relative humidity and at 30 ℃. All the AN/acrylic copolymers are semicrystalline. As the acrylate content increase, the permeability coefficients of the copolymers to oxygen and carbon dioxide are increased progressively, but those to water vapor are decreased progressively. The gas permeability coefficients of the polymers were correlated with free-volume fractions or the ratio of free volume to cohesive energy.

  3. STUDY OF THE MOLECULAR MOTION AND COMPATIBILITY IN AB-CROSSLINKED POLYMER BASED ON POLYURETHANE AND POLYSTYRENE-co-ACRYLIC ACID BY SOLID STATE HIGH RESOLUTION NMR

    Institute of Scientific and Technical Information of China (English)

    JIA Mingchun; SHEN Lianfang; QIAN Baogong; ZHANG Baozhen; YAO Shuren

    1994-01-01

    The 13C T1s of -CH3 side group in PPU/P(St-co-AA), AB-crosslinked polymers (i. e.ABCP) was studied by using high resolution solid state NMR. The rotation motion of -CH3 side group in PPU was analyzed by means of the average spectral density functions of internal rotation. The results showed that the rotation of the -CH3 side group is related closely to the compatibility between the two components. The compatibility was studied by analyzing the proton spin-lattice relaxation in rotating frame, spin-spin relaxation and spin-diffusion. The results showed that the hydrogen bonds between the components play a major role in determining the compatibility. Through spin diffusion studying, the soft phase domain size was calculated. By studying proton spin-spin relaxation, the content of each component in each phase and that of each phase in the samples can be obtained. The result shows that the content of interphase is related closely to the compatibility.

  4. Treatment of wastewater containing nickel ions by polymer enhanced ultrafiltration with copolymer of acrylic acid-maleic acid%丙烯酸-马来酸共聚物强化超滤处理含镍废水

    Institute of Scientific and Technical Information of China (English)

    郜国英; 韦玉青; 邱运仁

    2012-01-01

    The treatment of wastewater containing nickel ions by polymer enhanced ultrafiltration was studied using copolymer of acrylic acid-maleic acid (PMA-100) as complexing agent. Effects of mass ratio of polymer to metal (mp/Mm). Ph, salt concentration, transmembrane pressure and time on the retention of nickel ions were investigated. The results show that the retention of nickel ions depends strongly on Ph and increases with the increase of Ph in the range from 3 to 7 at a certain mp//Nm, and increases with the Mp/Mm at a certain Ph. The retention can arrive at over 99% at Ph=6.0 and Mp/Mm =7. The retention of nickel ions decreases slightly with the addition of sodium chloride or sodium sulfate.%以丙烯酸-马来酸共聚物(PMA-100)为络合剂,研究聚合物络合金属离子的强化超滤处理含镍废水,研究聚合物与金属离子质量比(mp/mM)、溶液pH、盐浓度、操作压力、运行时间等对镍离子截留率的影响.研究结果表明:溶液pH对金属离子截留率影响很大,在一定mp/mM下,pH在3~7的范围内,适当提高溶液pH有利于镍离子的截留;在一定pH下,镍离子的截留率R随mp/mM的增加而增加;溶液pH=6.0,mp/mM=7时,镍离子的截留率可达到99%以上;NaCl和Na2SO4的存在使镍离子的截留率有所降低.

  5. Acrylic mechanical bond tests

    Energy Technology Data Exchange (ETDEWEB)

    Wouters, J.M.; Doe, P.J.

    1991-02-01

    The tensile strength of bonded acrylic is tested as a function of bond joint thickness. 0.125 in. thick bond joints were found to posses the maximum strength while the acceptable range of joints varied from 0.063 in. to almost 0.25 in. Such joints are used in the Sudbury Neutrino Observatory.

  6. Hyperbranched urethane-acrylates

    Directory of Open Access Journals (Sweden)

    Tasić Srba

    2004-01-01

    Full Text Available The synthesis, characterization and UV-curing of hyperbranched urethaneacrylates (HB-UA were investigated in this study. They were evaluated as oli-gomers in model UV curable coatings. HB-UAs were synthesized by reaction of an aliphatic hyperbranched polyester of the second generation (HBRG2 and an isocyanate adduct, obtained by the reaction of isophoronediisocyana-te and different hydroxy alkyl acrylates. Their thermal properties and viscosities depend on the degree of modification of HBRG2 and the type of hydroxy alkyl acrylate used. The introduction of a flexible alkoxylated spacer between the HBP core and acrylate end groups reduces steric hindrance by moving the cross linkable acrylate groups away from the HBP core and increase its reactivity. Due to the presence of abstractable H-atoms in the α-position to the ether links, HB-UAs based on poly(ethylene oxide monoacrylate are very reactive and do not show oxygen inhibition. The obtained coatings combine a high cross linking density with flexible segments between the cross links, which results in a good compromise between hardness and flexibility and have the potential to be used in different UV-curing applications.

  7. The role of sodium-poly(acrylates) with different weight-average molar mass in phosphate-free laundry detergent builder systems

    OpenAIRE

    Milojević, Vladimir S.; Ilić-Stojanović, Snežana; id_orcid 0000-0003-2416-8281; Nikolić, Ljubiša; Nikolić, Vesna; Stamenković, Jakov; Stojiljković, Dragan

    2013-01-01

    In this study, the synthesis of sodium-poly(acrylate) was performed by polymerization of acrylic acid in the water solution with three different contents of potassium-persulphate as an initiator. The obtained polymers were characterized by using HPLC and GPC analyses in order to define the purity and average molar mass of poly(acrylic acid). In order to investigate the influence of sodium-poly(acrylate) as a part of carbonate/zeolite detergent builder system, secondary washing characteristics...

  8. Epoxy-acrylic core-shell particles by seeded emulsion polymerization.

    Science.gov (United States)

    Chen, Liang; Hong, Liang; Lin, Jui-Ching; Meyers, Greg; Harris, Joseph; Radler, Michael

    2016-07-01

    We developed a novel method for synthesizing epoxy-acrylic hybrid latexes. We first prepared an aqueous dispersion of high molecular weight solid epoxy prepolymers using a mechanical dispersion process at elevated temperatures, and we subsequently used the epoxy dispersion as a seed in the emulsion polymerization of acrylic monomers comprising methyl methacrylate (MMA) and methacrylic acid (MAA). Advanced analytical techniques, such as scanning transmission X-ray microscopy (STXM) and peak force tapping atomic force microscopy (PFT-AFM), have elucidated a unique core-shell morphology of the epoxy-acrylic hybrid particles. Moreover, the formation of the core-shell morphology in the seeded emulsion polymerization process is primarily attributed to kinetic trapping of the acrylic phase at the exterior of the epoxy particles. By this new method, we are able to design the epoxy and acrylic polymers in two separate steps, and we can potentially synthesize epoxy-acrylic hybrid latexes with a broad range of compositions.

  9. Waterborne hyperbranched alkyd-acrylic resin obtained by mini emulsion polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Murillo, Edwin, E-mail: edwinalbertomurillo@gmail.com [Grupo de Investigacion en Materiales Polimericos (GIMAPOL), Universidad Francisco de Paula Santander, San Jose de Cucuta (Colombia); Lopez, Betty [Grupo de Investigacion en Ciencia de los Materiales, Universidad de Antioquia, Calle, Medellin (Colombia)

    2016-10-15

    Four waterborne hyper branched alkyd-acrylic resins (HBRAA) were synthesized by mini emulsion polymerization from a hyper branched alkyd resin (HBR), methyl methacrylate (MMA), butyl acrylate (BA) and acrylic acid (AA), by using benzoyl peroxide (BPO) and ammonium persulfate (AP) as initiators. The reaction between HBR and acrylic monomers was evidenced by differential scanning calorimetric (DSC), nuclear magnetic resonance (NMR) and gel permeation chromatography (GPC). The conversion percentage, glass transition temperature (T{sub g}), content of acrylic polymer (determined by soxhlet extraction) and molecular weight increased with the content of acrylic monomers used in the synthesis. The main structure formed during the synthesis was the HBRAA. The analysis by dynamic light scattering (DLS) showed that the particle size distribution of HBRAA2, HBRAA3 and HBRAA4 resins were mainly mono modal. The film properties (gloss, flexibility, adhesion and drying time) of the HBRAA were good. (author)

  10. STUDY ON ACRYLAMIDE-SODIUM ACRYLATE COPOLYMER GELS

    Institute of Scientific and Technical Information of China (English)

    ZHOU Maotang; LI Qian; XU Jiping

    1990-01-01

    Acrylamide-sodium acrylate copolymer hydrogels have been obtained by radiation techniques.Two different methods have been used to introduce -COONa groups into polymer chains of the gels: (1) by partial hydrolysis of acrylamide homopolymer gel; (2) by direct copolymerization and crosslinking of acrylamide and sodium acrylate in aqueous solutions. It was found that the gels obtained in different ways had different properties, the swelling character of the gels obtained by partial hydrolysis were more sensitive to pH of swelling aqueous media. In order to explain these differences,13 C-NMR techniques were used to investigate the sequence distribution of monomer units of both gels.

  11. Rheology of Supramolecular Polymers

    DEFF Research Database (Denmark)

    Shabbir, Aamir

    efficient processes or biomedical areas. Design and development of supramolecular polymers using ionic, hydrogen bonding or transition metal complexes with tailored properties requires deep understanding of dynamics both in linear and non-linear deformations. While linear rheology is important to understand......) hydrogen bonding polymers, and (b) ionic bonding polymers (hereafter termed as ionomers). We study linear and non-linear rheology fora model system of entangled pure poly(n-butyl acrylate), PnBA, homopolymer andfour poly(acrylic acid), PnBA-PAA, copolymers with varying AA side groups synthesizedvia...

  12. Modification of hydrophobic polypeptide-based film by blending with hydrophilic poly(acrylic acid)

    OpenAIRE

    Guoquan Zhu; Fagang Wang; Qiaochun Gao; Yuying Liu

    2013-01-01

    In this study, a series of poly(γ-benzyl L-glutamate)/poly(acrylic acid) (PBLG/PAA) polymer blend films were prepared by casting the polymer blend solution in dimethylsulfoxide (DMSO). The structure and morphology of the polymer blend film were investigated by Fourier Transform Infrared Spectroscopy (FT-IR) and Scanning Electron Microscopy (SEM). Thermal, mechanical, and chemical properties of PBLG/PAA polymer blend films were studied by Differential Scanning Calorimetry (DSC), Thermogra...

  13. Electroactive behavior assessment of poly(acrylic acid)-graphene oxide composite hydrogel in the detection of cadmium

    NARCIS (Netherlands)

    Bejarano-Jimenez, A.; Escobar-Barrios, V.A.; Kleijn, J.M.; Oritz-Ledon, C.A.; Chazaro-Ruiz, L.F.

    2014-01-01

    Super absorbent polymers of acrylic acid-graphene oxide (PAA-GO) were synthesized with different percentage of chemical neutralization (0, 10, and 20%) of the acrylic acid monomer before its polymerization. The influence of their swelling and adsorption/desorption capacity of cadmium ions in aqueous

  14. PHOTOINDUCED GRAFTING OF ACRYLIC AND ALLYL MONOMERS ON POLYETHYLENE SURFACE

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhenfeng; HU Xingzhou; YAN Qing

    1995-01-01

    Photoinduced grafting of acrylic and allyl monomers on polyethylene surface was generally studied by using benzophenone (BP) as a photoinitiator. The grafting process was carried out either in vapor-phase or in solution of the monomers. In the vapor-phase reaction with a filter used to cut off the short wavelength UV light, allyl amine is the most reactive of the four monomers used and acrylic amide is comparatively more reactive than acrylic acid and allyl alcohol. Acetone, as a solvent and carrier for initiator and monomers, however, shows its reactivity to participate the reaction. The solution grafting with a filter is much faster than the corresponding vapor-phase reaction, and a fully covered surface by the grafted polymer can be achieved in this way.

  15. [Acrylic resin removable partial dentures

    NARCIS (Netherlands)

    Baat, C. de; Witter, D.J.; Creugers, N.H.J.

    2011-01-01

    An acrylic resin removable partial denture is distinguished from other types of removable partial dentures by an all-acrylic resin base which is, in principle, solely supported by the edentulous regions of the tooth arch and in the maxilla also by the hard palate. When compared to the other types of

  16. Covalent Functionalization of Multiwalled Carbon Nanotubes with Poly(acrylic acid)

    Institute of Scientific and Technical Information of China (English)

    LIU, Yan-Xin; DU, Zhong-Jie; LI, Yan; ZHANG, Chen; LI, Hang-Quan

    2006-01-01

    Covalent functionalization of multiwalled carbon nanotubes (MWNT) with poly(acrylic acid) has been successfully achieved via grafting of poly(acryloyl chloride) on nanotube surface by esterification reaction of acyl chloride-bound polymer with hydroxyl functional groups present on acid-oxidized MWNT and hydrolysis of polymer attached to nanotubes. Polymer-functionalized MWNT could possess remarkably high solubility in water, and their aqueous solution was very stable without any observable black deposit for a long time. Characterizations of such functionalized MWNT samples using Fourier transform infrared spectrometer, transmission electron microscopy and nuclear magnetic resonance techniques indicated that poly(acrylic acid) was covalently attached to the surface of MWNT.

  17. Synthesis and properties of acrylic copolymers for ocular implants

    Science.gov (United States)

    Reboul, Adam C.

    There is a need for flexible polymers with higher refractive index and extended UV absorbing properties for improved intraocular lenses (IOLs). This research was devoted to the synthesis of new acrylic copolymers for foldable IOLs and to studies concerning IOL polymer properties. New polymers were synthesized from phenylated acrylates copolymerized with N-vinyl carbazole derivatives using bulk free radical addition methods. The copolymers had low Tg values, high refractive index, and were flexible. The N-vinyl carbazole derivatives were characterized by NMR and copolymers were characterized by DSC, UV-Vis, and refractometry. New phenothiazine based UV absorbers with high extinction coefficients were also synthesized for incorporation into ocular materials. Patent disclosures on UV absorbers and high refractive index polymers were prepared. A so called "glistening" phenomenon that occurs in all foldable intraocular lenses currently in clinical use is poorly understood and was studied. Research on this microvoid forming behavior included studies and development of methods to inhibit glistening in low Tg acrylic based copolymers. Glistenings were characterized using SEM and optical microscopy. A novel technique for inhibiting glistening was found and a patent disclosure was prepared.

  18. The Influence of the Constitution of Acrylate Copolymers on Electrochromic Properties of Their Pan Composite Coatings

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Several polyacrylate matrixes were prepared with monomers such as methyl methacrylate,KH-570,acrylic acid and butyl acrylate,and the electrochromic behavior of their soluble Pan composite coatings was also studied by electrochemical analysis and spectrophotometry.It shows that the constitution of the polymer matrixes have great effects on the electrochromic process and the color change of the composite coatings.When the matrix consists of acrylic acid unit,Pan of both interior and exterior composite possesses the same electrochemical reactivity,shorter responding time and wider color-changing range.But it is contrary when matrixes contain no acrylic acid.Furthermore,the composite containing acrylic acid units has still electrochemical reactivity in distilled water instead of LiClO4-PC electrolyte.

  19. Influence of Solvent Conditons on Average Relative Molecular Weight of Polyoctadecyl Acrylate

    Institute of Scientific and Technical Information of China (English)

    JiangQingzhe; SongZhaozheng; KeMing; ZhaoMifu

    2005-01-01

    Polymerization of octodecyl acrylate is studied in four solvents -- carbon tetrachloride, chloroform,methylbenzene and tetrachloroethane. Experimental results indicate that the sequence of chain transfer constants in solvents is: carbon tetrachloride>chloroform>methylbenzene>tetrachloroethane in the polymerization of octadecyl acrylate. Influences of four solvents on solubility of polyoctadecyl acrylate prove not the same. In chloroform,polyoctadecyl acrylate shows the highest relative viscosity and the lowest chain termination rate constant. In higher conversion, the average relative molecular weight of polyoctadecyl acrylate depends mainly on the chain transfer constant of the solvent. Under the circumstance of monomer conversion higher than 30%, the viscosity effect induced by polymeric molecular shape in the solvents have a strong influence on the relative molecular weight of the polymer obtained.

  20. BSA Hybrid Synthesized Polymer

    Institute of Scientific and Technical Information of China (English)

    Zong Bin LIU; Xiao Pei DENG; Chang Sheng ZHAO

    2006-01-01

    Bovine serum albumin (BSA), a naturally occurring biopolymer, was regarded as a polymeric material to graft to an acrylic acid (AA)-N-vinyl pyrrolidone (NVP) copolymer to form a biomacromolecular hybrid polymer. The hybrid polymer can be blended with polyethersulfone (PES) to increase the hydrophilicity of the PES membrane, which suggested that the hybrid polymer might have a wide application in the modification of biomaterials.

  1. Acrylated chitosan for mucoadhesive drug delivery systems.

    Science.gov (United States)

    Shitrit, Yulia; Bianco-Peled, Havazelet

    2017-01-30

    A new mucoadhesive polymer was synthesized by conjugating chitosan to poly(ethylene glycol)diacrylate (PEGDA) via the Michael type reaction. The product was characterized using NMR. Higher PEGDA grafting efficacy was observed with low molecular weight PEGDA (0.7kDa), compared to long 10kDa PEGDA. The acrylation percentage was calculated based on the reaction of ninhydrin with chitosan, and supported the qualitative NMR findings. The adhesive properties were studied by tensile test and rotating system involving detachment of polymer tablets from a fresh intestine sample. Chitosan modified with high molecular weight PEGDA presented improvement in mucoadhesive properties compared to both non-modified and thiolated chitosan. On the molecular level, rheology measurements of polymer/mucin mixtures provided additional evidence of strong interaction between modified chitosan and mucin glycoproteins. This new polymer shows promise as a useful polymeric carrier matrix for delivery systems, which could provide prolonged residence time of the vehicle on the mucosa surface. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Acrylic Acid and Esters Will Be Oversupply

    Institute of Scientific and Technical Information of China (English)

    Zheng Chengwang

    2007-01-01

    @@ Drastic capacity growth The production capacity of acrylic acid in China has grown drastically in recent years. With the completion of the 80 thousand t/a acrylic acid and 130 thous and t/a acrylic ester project in Shenyang Paraffin Chemical Industrial Co., Ltd., (CCR2006,No. 31) the capacity of acrylic acid in China has reached 882 thousand t/a.

  3. Effect of post-polymerization heat treatments on the cytotoxicity of two denture base acrylic resins

    OpenAIRE

    Janaina Habib Jorge; Eunice Teresinha Giampaolo; Carlos Eduardo Vergani; Ana Lúcia Machado; Ana Cláudia Pavarina; Iracilda Zeppone Carlos

    2006-01-01

    INTRODUCTION: Most denture base acrylic resins have polymethylmethacrylate in their composition. Several authors have discussed the polymerization process involved in converting monomer into polymer because adequate polymerization is a crucial factor in optimizing the physical properties and biocompatibility of denture base acrylic resins. To ensure the safety of these materials, in vitro cytotoxicity assays have been developed as preliminary screening tests to evaluate material biocompatibil...

  4. Preparation and Property of Acrylic Acid Rare Earth Complex and Its Hydrosilylation

    Institute of Scientific and Technical Information of China (English)

    Zhang Ming; Chen Haiyan; Chen Xiaosong; Dai Shaojun; Inoue Shinich; Okamoto Hiroshi

    2004-01-01

    Acrylic acid rare earth complex was prepared. Its chemical composition was determined by chemical and elemental analysis, and its structure as well as properties was characterized using IR, Fluorescence and UV spectrum, and its solubility was also investigated. Meanwhile a kind of elastic functional polymer with rare earth units in the side chains was produced. It is confirmed by IR spectrum that the Si-H bonds really react with acrylic acid rare earth.

  5. EFFECTS OF PHENOL RESIN ADDITIVE ON DYNAMIC MECHANICAL PROPERTIES OF ACRYLATE RUBBER AND ITS BLENDS

    Institute of Scientific and Technical Information of China (English)

    Chi-fei Wu

    2003-01-01

    The dynamic mechanical properties of a new blend system consisting of phenol resin and polar polymer (acrylate rubber and/or chlorinated polypropylene) were investigated. It was found that the addition of phenol resin to acrylate rubber and its incompatible blend can cause a remarkable improvement in the temperature dependence of the loss tangent. As a result, the present blends are very good damping materials.

  6. Synthesis and Properties of IPN Hydrogels Based on Konjac Glucomannan and Poly(acrylic acid)

    Institute of Scientific and Technical Information of China (English)

    Bing LIU; Zhi Lan LIU; Ren Xi ZHUO

    2006-01-01

    Novel interpenetrating polymer network (IPN) hydrogels based on konjac glucomannan (KGM) and poly(acrylic acid) (PAA) were prepared by polymerization and cross-linking of acrylic acid (AA) in the pre-fabricated KGM gel. The IPN gel was analyzed by FT-IR. The studies on the equilibrium swelling ratio of IPN hydrogels revealed their sensitive response to environmental pH value. The results of in vitro degradation showed that the IPN hydrogels retain the enzymatic degradation character of KGM.

  7. Facile Fabrication of Gradient Surface Based on (meth)acrylate Copolymer Films

    Science.gov (United States)

    Zhang, Y.; Yang, H.; Wen, X.-F.; Cheng, J.; Xiong, J.

    2016-08-01

    This paper describes a simple and economic approach for fabrication of surface wettability gradient on poly(butyl acrylate - methyl methacrylate) [P (BA-MMA)] and poly(butyl acrylate - methyl methacrylate - 2-hydroxyethyl methacrylate) [P (BA-MMA-HEMA)] films. The (meth)acrylate copolymer [including P (BA-MMA) and P (BA-MMA-HEMA)] films are hydrolyzed in an aqueous solution of NaOH and the transformation of surface chemical composition is achieved by hydrolysis in NaOH solution. The gradient wetting properties are generated based on different functional groups on the P (BA-MMA) and P (BA-MMA-HEMA) films. The effects of both the surface chemical and surface topography on wetting of the (meth)acrylate copolymer film are discussed. Surface chemical composition along the materials length is determined by XPS, and surface topography properties of the obtained gradient surfaces are analyzed by FESEM and AFM. Water contact angle system (WCAs) results show that the P (BA-MMA-HEMA) films provide a larger slope of the gradient wetting than P (BA-MMA). Moreover, this work demonstrates that the gradient concentration of chemical composition on the poly(meth) acrylate films is owing to the hydrolysis processes of ester group, and the hydrolysis reactions that have negligible influence on the surface morphology of the poly(meth) acrylate films coated on the glass slide. The gradient wettability surfaces may find broad applications in the field of polymer coating due to the compatibility of (meth) acrylate polymer.

  8. Characterization of methacrylated alginate and acrylic monomers as versatile SAPs.

    Science.gov (United States)

    Mignon, Arn; Vermeulen, Jolien; Graulus, Geert-Jan; Martins, José; Dubruel, Peter; De Belie, Nele; Van Vlierberghe, Sandra

    2017-07-15

    Superabsorbent polymers (SAPs) based on polysaccharides, especially alginate, could offer a valuable solution in a plethora of applications going from drug delivery to self-healing concrete. This has already been proven with both calcium alginate and methacrylated alginate combined with acrylic acid. In this manuscript, the effect of varying the degree of methacrylation and use of a combination of acrylic acid and acrylamide is investigated to explore the effects on the relevant SAP characteristics. The materials showed high gel fractions and a strong swelling capacity up to 630gwater/gSAP, especially for superabsorbent polymers with a low degree of substitution. The SAPs also showed only a limited hydrolysis in aqueous and cement filtrate solutions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Two decades of occupational (meth)acrylate patch test results and focus on isobornyl acrylate

    NARCIS (Netherlands)

    Christoffers, Wietske A; Coenraads, Pieter Jan; Schuttelaar, Marie-Louise A

    2013-01-01

    BACKGROUND: Acrylates constitute an important cause of occupational contact dermatitis. Isobornyl acrylate sensitization has been reported in only 2 cases. We encountered an industrial process operator with occupational contact dermatitis caused by isobornyl acrylate. OBJECTIVES: (i) To investigate

  10. Conformational Transition of Poly (Acrylic Acid) Detected by Microcantilever Sensing

    Institute of Scientific and Technical Information of China (English)

    LI Kai; LIU Hong; ZHANG Qing-Chuan; XUE Chang-Guo; WU Xiao-Ping

    2007-01-01

    Poly (acrylic acid) (PAA) chains are grafted on one side of a microcantilever by the self-assembled method and the deflections of the microcantilever are detected as a function of medium pH from 3 to 11. It is found that when the pH varies, the microcantilever deflects because of the changing surface stress. By analysing the electrostatic repulsive effect, the surface stress change is related to the conformation transition of PAA from a collapse state to a swelling state. This method offers the interaction information among the polymer chains during the conformational transition and affords an alternative way to study conformational change of polymers.

  11. Poly(amide-graft-acrylate) interfacial compounds

    Science.gov (United States)

    Zamora, Michael Perez

    Graft copolymers with segments of dissimilar chemistries have been shown to be useful in a variety of applications as surfactants, compatibilizers, impact modifiers, and surface modifiers. The most common route to well defined graft copolymers is through the use of macromonomers, polymers containing a reactive functionality and thus capable of further polymerization. However, the majority of the studies thus far have focused on the synthesis of macromonomers capable of reacting with vinyl monomers to form graft copolymers. This study focused on the synthesis of macromonomers capable of participating in condensation polymerizations. A chain transfer functionalization method was utilized. Cysteine was evaluated as a chain transfer agent for the synthesis of amino acid functionalized poly(acrylate) and poly(methacrylate) macromonomers. Low molar mass, functionalized macromonomers were produced. These macromonomers were proven to be capable of reacting with amide precursors to form poly(amide-g-acrylate) graft copolymers. Macromonomers and graft copolymers were characterized by gel permeation chromatography (GPC), Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR) spectroscopy, elemental analysis (EA), inductively coupled plasma (ICP), and differential scanning calorimetry (DSC). The second part of this research involved poly(dimethacrylate) dental restorative materials. Volumetric shrinkage during the cure of these resins results in a poor interface between the resin and the remaining tooth structure, limiting the lifetime of these materials. Cyclic anhydrides were incorporated into common monomer compositions used in dental applications. Volume expansion from the ring opening hydrolysis of these anhydrides was shown to be feasible. The modified dental resins were characterized by swelling, extraction and ultraviolet spectroscopy (UV), and density measurements. Linear poLymers designed to model the crosslinked dental resins were

  12. Effect of Grafted Hydroquinone on the Acid-Base Properties of Poly(acrylic acid) in the Presence of Copper (II)

    OpenAIRE

    Nabila Bensacia; Saâd Moulay; François Garin; Ioana Fechete; Anne Boos

    2015-01-01

    Potentiometric titration of poly(acrylic acid) and hydroquinone-functionalized poly(acrylic acid) was conducted in the presence of copper (II). The effects of hydroquinone functionalizing and copper (II) complexing on the potentiometric titration of poly(acrylic acid) were studied in an ionic environment and in its absence. Henderson-Hasselbalch equation was applied to assess its validity for this titration. Coordination number and the stability constants of the copper- (II-)complexed polymer...

  13. The Modification of the Acrylate Emulsion for Water-Based Coatings

    Institute of Scientific and Technical Information of China (English)

    Chen Wei-Feng; Fa-Ai Zhang

    2005-01-01

    @@ 1Introduction The developments of the environment friendly materials and technology are largely promoted recently.There also come some new kinds of coatings including water-based coating, powder coating, high-solid coating and UV-cured coating[1]. The emulsion polymerization is the main method for preparing the polymer for coatings. One of the most widely used polymers is acrylate resin which is not well in some properties, such as weather resistance, endurance and water resistance[2]. We hope to improve the various properties of the acrylic emulsion by adding silicone made from tetraethyl orthosilicate(TEOS), making it better applied in coating field.

  14. Bonding auto-polymerising acrylic resin to acrylic denture teeth.

    LENUS (Irish Health Repository)

    Nagle, Susan

    2009-09-01

    This study investigated the effect of surface treatments on the shear bond strength of an auto-polymerising acrylic resin cured to acrylic denture teeth. The surface treatments included a combination of grit-blasting and\\/or wetting the surface with monomer. Samples were prepared and then stored in water prior to shear testing. The results indicated that the application of monomer to the surface prior to bonding did not influence the bond strength. Grit blasting was found to significantly increase the bond strength.

  15. Emulsion polymerization of polystyrene-co-acrylic acid with Cu2O incorporation

    Science.gov (United States)

    Fahmiati, Sri; Harmami, Sri Budi; Meliana, Yenny; Haryono, Agus

    2017-01-01

    In this research, poly(styrene-co-acrylic acid-Cu) was prepared via emulsion polymerization.Cu contents were varied as 10%, 15% and 20% and mol ratio of styrene to acrylic acid as 1:1 and 2:1. Structure and surface of poly(styrene-co-acrylic acid-Cu) were characterized by FTIR (Fourier Transformed Infra Red), NMR (Nuclear Magnetic Resonance), and SEM/EDX (Scanning Electron Microcope/ Energy Dispersive X-Ray) spectroscopy. The NMR spectra showed that the polymer was formed, however FTIR spectra showed that there were still unreacted monomers. SEM-EDX confirmed that copper (Cu) was dispersed uniformly on poly(styrene-co-acrylic acid-Cu) matrix.

  16. Research of the reinforcement of butyl hydroxy film and the inhibition of the thermal decomposition of AP based on acrylic polymer%丙烯酸类聚合物对丁羟胶片补强/抑制AP热分解研究

    Institute of Scientific and Technical Information of China (English)

    黎超华; 邓剑如; 张习龙; 张智威; 徐然

    2014-01-01

    针对丁羟推进剂高强度、低燃速的性能要求,设计合成了新型补强降速双效助剂。选用丙烯酸、丙烯酸羟乙酯、丙烯酸丁酯、三乙胺为原料,合成了新型聚丙烯酸酯聚合物,并对其结构进行了表征,证明所合成的化合物为设计目标化合物。利用所合成的目标化合物,研究了助剂对推进剂基体力学性能和AP热分解性能的影响。结果表明,该助剂可明显提高推进剂基体交联密度,从而达到提高推进剂基体力学性能的目的,助剂的加入可使AP的高温分解峰达到380℃,明显抑制AP热分解,可产生降低推进剂燃速的效果。%Based on the high⁃strength,low burning rate performance requirements of hydroxy⁃terminated polybutadiene( HTPB) propellant,a new⁃style reinforced and low burning rate dual functional additives was designed and synthesized.Acrylic acid,hydroxy⁃ethyl acrylate,butyl acrylate and triethylamine were used as ingredients to synthesize a new type polyacrylic ester polymer.To prove the synthetic compounds were the designed target compounds,series of characterization were carried out for the structure. The syn⁃thetic target compounds were used to study the influence of additive on mechanical properties of the propellant substrate and the thermal decomposition of AP.The results show that the additives can obviously increase the crosslink density,which can significantly improve propellant substrate mechanical strength.The add of dual functional additives can make the high temperature stage decompo⁃sition of AP reach 380 ℃,which can obviously inhibit the thermal decomposition of AP,so as to reduce propellant burning rate.

  17. Gum ghatti and poly(acrylamide-co-acrylic acid) based biodegradable hydrogel-evaluation of the flocculation and adsorption properties

    CSIR Research Space (South Africa)

    Mittal, H

    2015-10-01

    Full Text Available The main aim of this study was to develop a biodegradable flocculent and adsorbent based on the graft co-polymer of the Gum ghatti (Gg) with the co-polymer mixture of acrylamide (AAM) and acrylic acid (AA) using the microwave assisted graft co...

  18. 40 CFR 721.2805 - Acrylate ester.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Acrylate ester. 721.2805 Section 721... Acrylate ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as an acrylate ester (PMN P-96-824) is subject to reporting under...

  19. Isobornyl acrylate contact allergy: Rare or underdiagnosed?

    NARCIS (Netherlands)

    Christoffers, W.A.; Coenraads, P.J.; Schuttelaar, M.L.A.

    2012-01-01

    Background: Allergic contact dermatitis to isobornyl acrylate has been reported in only two cases in literature. Therefore, isobornyl acrylate is not part of a (meth) acrylates patch test series. At our department an industrial worker presented with therapy-resistant hand eczema and sensitizations f

  20. 芭蕉芋淀粉接枝丙烯酸制备高吸水性树脂的研究%Preparation and properties of super absorbent polymer based on Canna edulis Ker starch grafted by acrylic acid

    Institute of Scientific and Technical Information of China (English)

    顾千辉; 黄赣辉; 顾振宇

    2011-01-01

    在氮气保护的环境下,以芭蕉芋淀粉为原料,引发剂为过硫酸铵,交联剂是N,N-亚甲基双丙烯酰胺,采用水溶液聚合法制备芭蕉芋淀粉接枝丙烯酸高吸水性树脂。研究单体用量、引发剂和交联剂用量以及单体中和度等因素对吸水性能的影响。%The high water absorbing resin was studied,which was prepared by using N,N-methylene-bisacrylamide as cross-linking agent,through graft copolymerization of canna edulis ker starch with acrylic acid initiated by ammonium persulfate and then drying under co

  1. Optimization of cellulose acrylate and grafted 4-vinylpyridine and 1-vinylimidazole synthesis

    Directory of Open Access Journals (Sweden)

    Bojanić Vaso

    2010-01-01

    Full Text Available Optimization of cellulose acrylate synthesis by reaction with sodium cellulosate and acryloyl chloride was carried out. Optimal conditions for conducting the synthesis reaction of cellulose acrylate were as follows: the molar ratio of cellulose/potassium-t-butoxide/acryloyl chloride was 1:3:10 and the optimal reaction time was 10 h. On the basis of elemental analysis with optimal conditions for conducting the reaction of cellulose acrylate, the percentage of substitution of glucose units in cellulose Y = 80.7%, and the degree of substitution of cellulose acrylate DS = 2.4 was determined. The grafting reaction of acrylate vinyl monomers onto cellulose in acetonitrile with initiator azoisobutyronitrile (AIBN in a nitrogen atmosphere was performed, by mixing for 5 h at acetonitrile boiling temperature. Radical copolymerization of synthesized cellulose acrylate and 4-vinylpyridine, 1-vinylimidazole, 1-vinyl-2-pyrrolidinone and 9-vinylcarbazole, cellulose-poly-4-vinylpyridine (Cell-PVP, cellulose-poly-1- vinylimidazole (Cell-PVIm and cellulose-poly-1-vinyl-2-pyrrolidinone (Cell-P1V2P and cellulose-poly-9-vinylcarbazole (Cell-P9VK were synthesized. Acrylate cellulose and cellulose grafted copolymers were confirmed by IR spectroscopy, based on elementary analysis and the characteristics of grafted copolymers of cellulose were determined. The mass share of grafted copolymers, X, the relationship of derivative parts/cellulose vinyl group, Z, and the degree of grafting copolymers of cellulose (mass% were determined. In reaction of methyl iodide and cellulose-poly-4-vinylpyridine (Cell-PVP the cellulose-1-methyl-poly-4-vinylpyridine iodide (Cell-1-Me-PVPJ was synthesized. Cellulose acrylate and grafted copolymers were obtained with better thermal, electrochemical and ion-emulation properties for bonding of noble metals Au, Pt, Pd from water solutions. The synthesis optimization of cellulose acrylate was applied as a model for the synthesis of grafted

  2. Manejo Microbiológico dos Grânulos de Polímero Acrílico Usados na Prevenção da Dengue/Microbiological Management of Polymer Granule Acrylic Used in the Prevention of Dengue Fever

    Directory of Open Access Journals (Sweden)

    Dante Togeiro Bastos Filgueiras

    2015-06-01

    Full Text Available Objetivos: Efetuar o manejo microbiológico dos grânulos de polímero acrílico usados na prevenção da Dengue. Materiais e Métodos: Para a determinação da presença ou ausência de coliformes totais e fecais, e de E. coli, foram realizadas avaliações utilizando metodologia do kit Colitest®. Foram elaborados cinco recipientes com mudas de planta simulando as condições naturais de vasos de polímero acrílico. Utilizaram-se cinco diferentes grânulos de polímero acrílico adquiridos comercialmente. De tais recipientes foram colhidas sete amostras em dias sucessivos. A leitura foi feita com auxílio de uma lâmpada de ondas longas de 365nm, após realizou-se prova de Indol. Resultado: Em relação ao grupo amostragem, em 11,5% não houve crescimento bacteriano, em 17,2% houve presença de E.coli e em 71,3% coliformes totais, constatando altos índices de contaminação. Discussão: Não há na literatura científica trabalhos semelhantes, porém trabalhos analisando águas de outras fontes evidenciam que a água proveniente dos vasos dos grânulos tem maior potencial de contaminação. Conclusão: Os resultados obtidos permitiram identificar altas taxas de crescimento bacteriano, evidenciando grande risco de contaminação. As informações oferecidas nos rótulos não se encontram nos padrões estabelecidos pela ANVISA. O estudo é de grande importância por efetuar controle de qualidade microbiológico visando à segurança do consumidor em um produto usado na profilaxia do dengue. Objectives: To make the microbiological management of acrylic polymer granule used in the prevention of Dengue fever. Materials and Methods: For the determination of the presence or absence of total and faecal coliform and E. coli, evaluations were performed with the use of the kit Colitest® methodology. Five vases were prepared to plant seedlings simulating the natural conditions of acrylic polymer vases. Five different acrylic polymer granule acquired

  3. Synthesis of acrylic and allylic bifunctional cross-linking monomers derived from PET waste

    Science.gov (United States)

    Cruz-Aguilar, A.; Herrera-González, A. M.; Vázquez-García, R. A.; Navarro-Rodríguez, D.; Coreño, J.

    2013-06-01

    An acrylic and two novel allylic monomers synthesized from bis (hydroxyethyl) terephthalate, BHET, are reported. This was obtained by glycolysis of post-consumer PET with boiling ethylene glycol. The bifunctional monomer bis(2-(acryloyloxy)ethyl) terephthalate was obtained from acryloyl chloride, while the allylic monomers 2-(((allyloxi)carbonyl)oxy) ethyl (2-hydroxyethyl) terephthalate and bis(2-(((allyloxi)carbonyl)oxy)ethyl) terephthalate, from allyl chloroformate. Cross-linking was studied in bulk polymerization using two different thermal initiators. Monomers were analyzed by means of 1H NMR and the cross-linked polymers by infrared spectroscopy. Gel content higher than 90% was obtained for the acrylic monomer. In the case of the mixture of the allylic monomers, the cross-linked polymer was 80 % using BPO initiator, being this mixture 24 times less reactive than the acrylic monomer.

  4. 21 CFR 177.1990 - Vinylidene chloride/methyl acrylate copolymers.

    Science.gov (United States)

    2010-04-01

    ... SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances... producing, manufacturing, processing, preparing, treating, packaging, transporting, or holding food... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Vinylidene chloride/methyl acrylate copolymers....

  5. SYNTHESIS AND CATALYTIC ACTIVITY OF PLATINUM COMPLEX OF ACRYLATE TERPOLYMER WITH Se,N BIDENTATE LIGAND

    Institute of Scientific and Technical Information of China (English)

    MengLingzhi; QiLiangwei; 等

    1998-01-01

    Acrylate terpolymer-bound Se,N bidentate ligand was synthesized from the side chain chlorine of copolymer and β-dimethylamino-β′-hydroxyl-diethyl selenoether.The polymer-supported platinum complex exhibited high catalytic activity in the hydrosilylation of olefins with triethoxysilane.

  6. Synthesis and Application of a New Acrylic Ester Resin for Recycling SIPA from its Water Solution

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    A new acrylic ester polymer YWB-7 resin was prepared and characterized. The properties of YWB-7 resin were compared with those of the commercial Amberlite XAD-7, Diaion HP2MG and hypercrosslinked macroporous polymer NDA-150 resins. Both surface area and micropore area of YWB-7 resin were bigger than those of XAD-7 resin and HP2MG resin. The YWB-7 resin was successfully employed to recycle 5-sodiosulfoisophthalic acids (SIPA) from its solutions with and without methanol.

  7. Effect of Grafted Hydroquinone on the Acid-Base Properties of Poly(acrylic acid in the Presence of Copper (II

    Directory of Open Access Journals (Sweden)

    Nabila Bensacia

    2015-01-01

    Full Text Available Potentiometric titration of poly(acrylic acid and hydroquinone-functionalized poly(acrylic acid was conducted in the presence of copper (II. The effects of hydroquinone functionalizing and copper (II complexing on the potentiometric titration of poly(acrylic acid were studied in an ionic environment and in its absence. Henderson-Hasselbalch equation was applied to assess its validity for this titration. Coordination number and the stability constants of the copper- (II-complexed polymers were determined, and results showed the formation of mostly monodentate and bidentate copper- (II-polymer complexes.

  8. Real-time monitoring of the penetration of amphiphilic acrylate copolymer in leather using a fluorescent copolymer as tracer.

    Science.gov (United States)

    Du, Jin-Xia; Shi, Lu; Peng, Bi-Yu

    2015-12-01

    A fluorescent tracer, poly (acrylic-co-stearyl acrylate-co-3-acryloyl fluorescein) [poly (AA-co-SA-co-Ac-Flu)], used for real-time monitoring the penetration of amphiphilic acrylate copolymer, poly (acrylic-co-stearyl acrylate) [poly (AA-co-SA)], in leather was synthesized by radical polymerization of acrylic, stearyl acrylate and fluorescent monomer, 3-acryloyl fluorescein (Ac-Flu). The structure, molecular weight, introduced fluorescent group content and fluorescent characteristics of the fluorescent tracer and target copolymer, amphiphilic acrylate copolymer, were also characterized. The results show that the tracer presents the similar structural characteristics to the target and enough fluorescence intensity with 1.68 wt % of the fluorescent monomer introduced amount. The vertical section of the leather treated with the target copolymer mixing with 7% of the tracer exhibits evident fluorescence, and the change of fluorescence intensity along with the vertical section with treating time increasing can reflect the penetration depth of the target copolymer. The introduction of the fluorescent group in polymer structure through copolymerization with a limited amount of fluorescent monomer, Ac-Flu, is an effective way to make a tracer to monitor the penetration of the target in leather, which provides a new thought for the penetration research of syntans such as vinyl copolymer materials in leather manufacture.

  9. Thermal preparation of chitosan-acrylic acid superabsorbent: optimization, characteristic and water absorbency.

    Science.gov (United States)

    Ge, Huacai; Wang, Senkang

    2014-11-26

    Chitosan-acrylic acid superabsorbent polymer was successfully prepared by the thermal reaction without using initiator and crosslinker in air. The effects of some reaction variables on the water absorbency of this polymer were investigated by orthogonal tests, and the optimal conditions were described. The influences of temperature, time, ratio of the reactants and neutralization degree of acrylic acid on the reaction were further studied. These polymers were also prepared in nitrogen atmosphere and by using a radical initiator and compared against thermal reaction obtained polymers. The structures of the polymers were characterized by FT-IR, TGA, XRD, (13)C NMR and elemental analyses. The results showed that the thermal reaction product of acrylic acid with chitosan might form N-carboxyethyl grafted and amide-linked polymer and this product could absorb water 644 times its own dry weight. The possible mechanism for the thermal reaction was further suggested. The purpose of this research was to explore the friendly synthesized method of the superabsorbent.

  10. The electrospinning of the copolymer of styrene and butyl acrylate for its application as oil absorbent.

    Science.gov (United States)

    Xu, Naiku; Cao, Jipeng; Lu, Yuyao

    2016-01-01

    Electrospun polystyrene materials have been employed as oil absorbents, but they have visible drawbacks such as poor strength at low temperature and unreliable integrity because of brittleness and insufficient cohesive force among fibers. Butyl acrylate can polymerize into flexible chains, and its polymer can be used as elastomer and adhesive material. Thereby it is possible to obtain the material that has better performance in comparison with electrospun polystyrene material through the electrospinning of the copolymer of styrene and butyl acrylate. In this work, a polymer was synthesized through suspension polymerization by using styrene and butyl acrylate as comonomers. The synthesis of the copolymer of styrene and butyl acrylate was verified through dissolution and hydrolysis experimental data; as well through nuclear magnetic resonance spectrometry. The viscous flow activation energy of the solution consisting of copolymer and N, N-dimethylformamide was determined via viscosity method and then adopted to establish the entanglement characteristics of butyl acrylate's chain segments. Finally, in order to electrospin the copolymer solution into fibrous membrane, the effects of monomer feed ratio and spinning parameters were investigated. The prepared fibrous membrane was found to have a potential use as oil absorbent.

  11. Synthesis of Fluorinated Polymers and Evaluation of Wettability.

    Science.gov (United States)

    Kimura, Tamami; Kasuya, Maria Carmelita; Hatanaka, Kenichi; Matsuoka, Koji

    2016-03-17

    Two kinds of fluorinated polymers were synthesized: an acrylate polymer having a fluorinated triethylene glycol as a pendant group (2a) and a fluoroalkyl acrylate polymer (2b). The contact angle of these fluorinated polymers against water, non-fluorinated alcohols and fluorinated alcohols were evaluated. As compared with the fluoroalkyl polymer (2b), fluoroethylene glycol polymer (2a) showed smaller contact angle against water and non-fluorinated alcohols. This supports the proposition that changing the alkyl chain into the ethylene glycol-type chain gave some interaction between etheric oxygen and water or non-fluorinated alcohols. In addition, fluoroalkyl acrylate polymer (2b) showed remarkably low values of critical surface tension.

  12. Synthesis of Fluorinated Polymers and Evaluation of Wettability

    Directory of Open Access Journals (Sweden)

    Tamami Kimura

    2016-03-01

    Full Text Available Two kinds of fluorinated polymers were synthesized: an acrylate polymer having a fluorinated triethylene glycol as a pendant group (2a and a fluoroalkyl acrylate polymer (2b. The contact angle of these fluorinated polymers against water, non-fluorinated alcohols and fluorinated alcohols were evaluated. As compared with the fluoroalkyl polymer (2b, fluoroethylene glycol polymer (2a showed smaller contact angle against water and non-fluorinated alcohols. This supports the proposition that changing the alkyl chain into the ethylene glycol-type chain gave some interaction between etheric oxygen and water or non-fluorinated alcohols. In addition, fluoroalkyl acrylate polymer (2b showed remarkably low values of critical surface tension.

  13. Shade Guide for the Fabrication of Acrylic Denture Based on Mucosal Colour

    Science.gov (United States)

    Da Costa, Godwin Clovis; Aras, Meena Ajay

    2017-01-01

    This article highlights the use of a simple and convenient shade guide system which not only helps in choosing the shade tab that matches with the colour of the mucosa, but, also helps in the fabrication of the precise shade of acrylic resin for making the denture. The shade guide is fabricated by mixing specified quantities of various colours of acrylic polymer in order to obtain various shade tabs. The method for fabrication of the shade guide and the clinical procedure has been discussed. PMID:28384988

  14. Vinyl Acetate/butyl acrylate/acrylate Research of Ternary Soap-free Emulsion Polymerization

    Directory of Open Access Journals (Sweden)

    Xiao Li-guang

    2016-01-01

    Full Text Available Through the vinyl acetate/butyl acrylate/acrylic acrylic emulsion preparation without soap vinegar, with solid content, gel, emulsion stability and film forming properties and tensile strength as the main index to study the effect of raw materials on the properties of emulsion. Through the infrared spectrometer soap-free emulsion for microscopic analysis research. Study of the ternary soap-free vinegar acrylic emulsion with good performance.

  15. Study of antifungal effect of acrylic denture base polymers irradiated by riboflavin-UV%核黄素-紫外线照射对义齿基托抗菌的研究

    Institute of Scientific and Technical Information of China (English)

    王志平; 谭建国; 刘晓强

    2013-01-01

    Objective:The purpose of this study was to verify the antifungal effectiveness of riboflavin-UV light irradiation.And evaluate the change of the Candida albicans adhesion,surface morphology and the flexural strength about the acrylic resin denture base that irradiated by riboflavin-UV light.Methods:C.albicans cell suspension which contained riboflavin (0,0.5%,1%) in the wells (24-well microtiter plates) was irradiated by UV light in a seal box.After irradiated for 15minand 30min,the C.albicans cell suspension was taken out and diluted,followed by incubation.The number of colonies was counted And compared between the negative control and the positive control (1% Sodium hypochlorite).The antifungal rate (AR) was calculated with the average value through 3 repeated trials.Acrylic resin specimen disks (n=27) with smooth surfaces were made and divided into three groups (n=9):control group; UV-A group; RF+UV-A group.Six disks from each group were incubated with C.albicans before the adherence test.The number of adhered C.albicans was evaluated.The surface morphology was observed by SEM.Twenty-four cuboid-shaped specimens with smooth surfaces were made and divided into three groups (n=8):control group; UV-A group; RF+UV-A group:The flexural strengths were test and the effects of these treatments on the flexural strength were evaluated.Results:The antifungal effectiveness of UV light irradiation was significant (P<0.05).Between the groups of UV light and 1% riboflavin-UV light,there were significantly differences (P<0.05).Between the groups of 1% Sodium hypochlorite and 1% riboflavin-UV light,there was no significant difference (P>0.05).There was no obvious changes in the attachment ofCandida albicans and the surface morphology about the specimens,and the average flexural strength of the 3 group specimens had no significant difference (P>0.05).Conclusion:The antifungal effectiveness of UV light irradiation was showed to be significant.With riboflavin

  16. Synthesis and characterization of partially fluorinated poly(acryl) ionomers for polymer electrolyte membrane fuel cells and ESR-spectroscopic investigation of the radically induced degradation of model compounds; Synthese und Charakterisierung teilfluorierter Poly(acryl)-Ionomere als Polymerelektrolytmembranen fuer Brennstoffzellen und ESR-spektroskopische Untersuchung der radikalinduzierten Degradation von Modellverbindungen

    Energy Technology Data Exchange (ETDEWEB)

    Schoenberger, Frank

    2008-07-09

    In the first part of this work different strategies for the design of sulfonated partially fluorinated poly(aryl)s are developed and synthetically realized. The applied concept is that partially fluorinated poly(aryl)s are distinguished from the nonfluorinated ones by an enhanced acidity. Moreover they possess higher bond dissociation energies of both the C-F bonds and any adjacent C-H bonds which should be associated with a gain in radical stability and thus in chemical and thermal stability. In order to investigate the influence of the chemical structure of (partially fluorinated) monomeric building blocks, homo-polymers with different structural units (with aromatic C-F bonds, C(CF3)2-bridged and/or CF3-substituted phenylene rings) are synthesized by polycondensation and structurally characterized (elemental analysis, NMR spectroscopy, gel permeation chromatography). Established organic reactions, such as the Balz-Schiemann reaction, Suzuki reaction and Ullmann's biaryl synthesis, are applied for the synthesis of the specific monomers. After sulfonation of the homo-polymers (ionically crosslinked) membranes are prepared and characterized in terms of suitability as polymer electrolyte membrane in fuel cells (ion-exchange capacity, proton conductivity, thermal and chemical stability, water uptake, dimensional change). Both the chemical nature of the monomers and their constitution in the ionomer are important for the properties of the resulting membranes. Therefore microphase-separated multiblock-co-ionomers based on hydrophilic (sulfonated) and hydrophobic (partially fluorinated) telechelic macromonomers are prepared and characterized. Both the influence of the block length and the chemical nature of the used monomers on the membrane properties are comparatively investigated. On the basis of the findings gained in this part of the work, the advantages and disadvantages of partially fluorinated ionomer membranes are analyzed and discussed. The second part of

  17. Preparation of an imogolite/poly(acrylic acid) hybrid gel.

    Science.gov (United States)

    Lee, Hoik; Ryu, Jungju; Kim, Donghyun; Joo, Yongho; Lee, Sang Uck; Sohn, Daewon

    2013-09-15

    Many efforts in the field of hydrogels have been focused toward increasing the mechanical strength of the gel using inorganic materials. In this study, we synthesized a hydrogel that has excellent mechanical properties using surface-modified inorganic nanofibers composed of imogolite (Al2SiO3(OH)4), which is a hydrated aluminum silicate that has a hollow tube structure. Gamma ray radiation generates peroxide radicals on the nanofibers (imogolite), resulting in an additive free hybrid hydrogel. Structural optimization was carried out by changing the composition of imogolite and poly(acrylic acid). Chemical bonding between the nanofiber and the polymer was simulated by a cluster model and characterized by wide area Raman spectroscopy. The results indicate that imogolite embedded in a polymer matrix can align along the direction of an elongational force, as confirmed by small angle X-ray scattering (SAXS).

  18. Synthesis and Characterization of Waterborne Fluoropolymers Prepared by the One-Step Semi-Continuous Emulsion Polymerization of Chlorotrifluoroethylene, Vinyl Acetate, Butyl Acrylate, Veova 10 and Acrylic Acid

    Directory of Open Access Journals (Sweden)

    Hongzhu Liu

    2017-01-01

    Full Text Available Waterborne fluoropolymer emulsions were synthesized using the one-step semi-continuous seed emulsion polymerization of chlorotrifluoroethylene (CTFE, vinyl acetate (VAc, n-butyl acrylate (BA, Veova 10, and acrylic acid (AA. The main physical parameters of the polymer emulsions were tested and analyzed. Characteristics of the polymer films such as thermal stability, glass transition temperature, film-forming properties, and IR spectrum were studied. Meanwhile, the weatherability of fluoride coatings formulated by the waterborne fluoropolymer and other coatings were evaluated by the quick ultraviolet (QUV accelerated weathering test, and the results showed that the fluoropolymer with more than 12% fluoride content possessed outstanding weather resistance. Moreover, scale-up and industrial-scale experiments of waterborne fluoropolymer emulsions were also performed and investigated.

  19. Synthesis and Characterization of Waterborne Fluoropolymers Prepared by the One-Step Semi-Continuous Emulsion Polymerization of Chlorotrifluoroethylene, Vinyl Acetate, Butyl Acrylate, Veova 10 and Acrylic Acid.

    Science.gov (United States)

    Liu, Hongzhu; Bian, Jiming; Wang, Zhonggang; Hou, Chuan-Jin

    2017-01-22

    Waterborne fluoropolymer emulsions were synthesized using the one-step semi-continuous seed emulsion polymerization of chlorotrifluoroethylene (CTFE), vinyl acetate (VAc), n-butyl acrylate (BA), Veova 10, and acrylic acid (AA). The main physical parameters of the polymer emulsions were tested and analyzed. Characteristics of the polymer films such as thermal stability, glass transition temperature, film-forming properties, and IR spectrum were studied. Meanwhile, the weatherability of fluoride coatings formulated by the waterborne fluoropolymer and other coatings were evaluated by the quick ultraviolet (QUV) accelerated weathering test, and the results showed that the fluoropolymer with more than 12% fluoride content possessed outstanding weather resistance. Moreover, scale-up and industrial-scale experiments of waterborne fluoropolymer emulsions were also performed and investigated.

  20. Radiation Induced Grafting of Acrylate onto Waste Rubber: The Effect of Monomer Type

    Directory of Open Access Journals (Sweden)

    Shirajuddin Siti Salwa M.

    2017-01-01

    Full Text Available The effect of three different acrylate group monomers, namely n-butyl acrylate, methacrylic acid and tripropylene glycol diacrylate of radiation induced grafting onto waste rubber was studied. The electron beam accelerator operated at voltage of 2MeV was used to irradiate the waste rubber at 10 kGy and 100 kGy absorbed radiation dose, respectively. The formation of grafting was observed from the increase in the grafting yield and confirmed by Transformed Infra-Red Spectroscopy results. According to the result obtained, only tripropylene glycol diacrylate was selected to graft onto waste rubber. The carbonyl bond from acrylate groups was seen at 1726 cm-1 band which confirmed the presence of TPGDA in the polymer matrix. This indicates the successful preparation of the TPGDA-grafted waste rubber via radiation induced grafting techniques.

  1. Polymer microspheres with structured surfaces

    NARCIS (Netherlands)

    Wagdare, N.A.; Baggerman, J.; Marcelis, A.T.M.; Boom, R.M.; Rijn, van C.J.M.

    2011-01-01

    Microspheres from polymethyl methacrylate (PMMA) and Eudragit FS 30D (a commercial copolymer of poly(methyl acrylate-co-methyl methacrylate-co-methacrylic acid) 7:3:1) were prepared using microsieve emulsification. A mixture of these polymers in dichloromethane (DCM) was dispersed into water, leadin

  2. Synthesis of water-soluble acryl terpolymers and their anticorrosion properties on mild steel in 1 mol·L-1 HCl

    Institute of Scientific and Technical Information of China (English)

    R. Geethanjali; S. Subhashini

    2016-01-01

    Two water soluble acryl terpolymers containing polyvinyl alcohol, acrylamide/acrylic acid and vinyl sulphonic acid (VSA) were synthesized by free radical polymerization in aqueous medium. The morphological structure of the polymers were analysed using FTIR and 1H NMR, while the thermal properties were analysed by TGA and DSC. The inhibitive action of the terpolymers on corrosion of mid-steel in 1 mol·L−1 HCl was studied using gravimetric, potentiodynamic polarisation and electrochemical impedance spectroscopy (EIS) at 303 K. Both the polymers provided inhibition efficiency around 90%which clearly demonstrate that the grafted poly-mers have effective corrosion inhibiting ability on MS corrosion.

  3. Electrically conducting silver/guar gum/poly(acrylic acid) nanocomposite.

    Science.gov (United States)

    Abdel-Halim, E S; Al-Deyab, Salem S

    2014-08-01

    This article describes the synthesis of an electrically conducting silver/guar gum/poly(acrylic acid) nanocomposite hydrogel. The synthesis process started with grafting acrylic acid monomers onto the natural polymer guar gum by the use of ammonium persulphate as a free radical initiator in acid medium. Guar gum/poly(acrylic acid) graft copolymer was separated from the polymerization medium, purified and subjected to crosslinking treatment, using alkaline epichlorohydrin as a crosslinking agent. Silver nitrate solution was added during the crosslinking treatment in varying concentrations, that the reaction conditions affect crosslinking of guar gum/poly(acrylic acid) graft copolymer to a hydrogel, as well as reduction of silver nitrate to silver nanoparticles, giving rise to the formation of silver/guar gum/poly(acrylic acid) nanocomposite. Factors affecting the grafting reaction as well as those affecting the crosslinking/reduction treatment were optimized. The so synthesized nanocomposite hydrogel samples were fully characterized, regarding their contents of silver nanoparticles and swelling ratio. The electrical conductivity of the nanocomposite hydrogel was studied and it was found to be affected by the swelling ratio of the hydrogel as well as its content of silver nanoparticles.

  4. Comparison of impact strength of acrylic resin reinforced with kevlar and polyethylene fibres.

    Science.gov (United States)

    Kamath, G; Bhargava, K

    2002-01-01

    The present study was done to evaluate the impact strengths of heat-activated acrylic resins reinforced with Kevlar fibres, polyethylene fibres and unreinforced heat activated acrylic resin. Each of three groups had 25 specimens. Brass rods of uniform length of 40 mm and diameter of 8 mm were used to prepare the moulds. A combination of long fibres (40 mm length) and short fibres (6 mm length) were used. The total amount of fibres incorporated was limited to 2% by weight of the resin matrix. Short and long fibres of equal weight were incorporated. The short fibres were mixed with polymer and monomer and packed into the mould, while, the long axis of the specimen, perpendicular to the applied force. The specimens were then processed. Impact strength testing was done on Hounsfield's impact testing machine. Kevlar fibre reinforced heat activated acrylic resin specimens recorded higher mean impact strength of 0.8464 Joules, while polyethylene fibres reinforced heat activated acrylic resin recorded mean impact strength of 0.7596 joules. The unreinforced heat activated acrylic resin recorded mean impact strength of 0.3440 Joules.

  5. Selective modification of polylactide by introducing acrylate groups: IR spectroscopy, gel permeation chromatography, and differential thermal analysis

    Science.gov (United States)

    Shashkova, V. T.; Matveeva, I. A.; Glagolev, N. N.; Zarkhina, T. S.; Timashev, P. S.; Bagratashvili, V. N.; Solov'eva, A. B.

    2016-10-01

    One-stage modification of polylactide has been performed to obtain the acrylate derivatives of the polymer capable of further polymerization and preparation of cross-linked polymer materials suitable for creating implants. The reaction mechanism was determined by IR spectroscopy, gel permeation chromatography, and differential thermal analysis. It was shown for the first time that the reaction path changes depending on the ratio of components so that the desired product polylactide acrylate forms with a ~90% yield only in the presence of large (approximately tenfold) excesses of the isocyanate and acrylate components; at the equimolar ratio of components generally used in urethane formation, a mixture of the desired product (~30%), oligourethane diacrylates, and unchanged polylactide forms.

  6. Deep UV patterning of acrylic masters for molding biomimetic dry adhesives

    Science.gov (United States)

    Sameoto, D.; Menon, C.

    2010-11-01

    We present a novel fabrication method for the production of biomimetic dry adhesives that allows enormous variation in fiber shapes and sizes. The technology is based on deep-UV patterning of commercial acrylic with semi-collimated light available from germicidal lamps, and combined careful processing conditions, material selection and novel developer choices to produce relatively high-aspect-ratio fibers with overhanging caps on large areas. These acrylic fibers are used as a master mold for subsequent silicone rubber negative mold casting. Because the bulk acrylic demonstrates little inherent adhesion to silicone rubbers, the master molds created in this process do not require any surface treatments to achieve high-yield demolding of interlocked structures. Multiple polymers can be cast from silicone rubber negative molds and this process could be used to structure smart materials on areas over multiple square feet. Using direct photopatterning of acrylic allows many of the desired structures for biomimetic dry adhesives to be produced with relative ease compared to silicon-based molding processes, including angled fibers and hierarchical structures. Optimized fiber shapes for a variety of polymers can be produced using this process, and adhesion measurements on a well-characterized polyurethane, ST-1060, are used to determine the effect of fiber geometry on adhesion performance.

  7. Asphaltenes-based polymer nano-composites

    Science.gov (United States)

    Bowen, III, Daniel E

    2013-12-17

    Inventive composite materials are provided. The composite is preferably a nano-composite, and comprises an asphaltene, or a mixture of asphaltenes, blended with a polymer. The polymer can be any polymer in need of altered properties, including those selected from the group consisting of epoxies, acrylics, urethanes, silicones, cyanoacrylates, vulcanized rubber, phenol-formaldehyde, melamine-formaldehyde, urea-formaldehyde, imides, esters, cyanate esters, allyl resins.

  8. Surface Modification of PDMS and Plastics with Zwitterionic Polymers.

    Science.gov (United States)

    Tanaka, Mutsuo; Kurosawa, Shigeru

    2017-07-01

    Surface modification of PDMS, polycarbonate, and acrylic resin was examined using various methacryl polymers bearing sulfobetaine, phosphoryl choline, and oligoethylene glycol units. We have found that zwitterionic polymers are adsorbed on the PDMS surface treated with plasma. The surface of PDMS is stable to keep high hydrophilicity after a month of the modification. On the other hand, one of sulfobetaine polymers showed distinguished adsorption behavior in the case of polycarbonate surface treated with plasma. Suppression effect for nonspecific adsorption of BSA was evaluated using polycarbonate and acrylic resin modified with the polymers. The modified surfaces showed suppression effect for nonspecific adsorption of BSA compared with the surface only treated with plasma.

  9. Thermodynamic Interactions between Polystyrene and Long-Chain Poly(n-Alkyl Acrylates) Derived from Plant Oils.

    Science.gov (United States)

    Wang, Shu; Robertson, Megan L

    2015-06-10

    Vegetable oils and their fatty acids are promising sources for the derivation of polymers. Long-chain poly(n-alkyl acrylates) and poly(n-alkyl methacrylates) are readily derived from fatty acids through conversion of the carboxylic acid end-group to an acrylate or methacrylate group. The resulting polymers contain long alkyl side-chains with around 10-22 carbon atoms. Regardless of the monomer source, the presence of alkyl side-chains in poly(n-alkyl acrylates) and poly(n-alkyl methacrylates) provides a convenient mechanism for tuning their physical properties. The development of structured multicomponent materials, including block copolymers and blends, containing poly(n-alkyl acrylates) and poly(n-alkyl methacrylates) requires knowledge of the thermodynamic interactions governing their self-assembly, typically described by the Flory-Huggins interaction parameter χ. We have investigated the χ parameter between polystyrene and long-chain poly(n-alkyl acrylate) homopolymers and copolymers: specifically we have included poly(stearyl acrylate), poly(lauryl acrylate), and their random copolymers. Lauryl and stearyl acrylate were chosen as model alkyl acrylates derived from vegetable oils and have alkyl side-chain lengths of 12 and 18 carbon atoms, respectively. Polystyrene is included in this study as a model petroleum-sourced polymer, which has wide applicability in commercially relevant multicomponent polymeric materials. Two independent methods were employed to measure the χ parameter: cloud point measurements on binary blends and characterization of the order-disorder transition of triblock copolymers, which were in relatively good agreement with one another. The χ parameter was found to be independent of the alkyl side-chain length (n) for large values of n (i.e., n > 10). This behavior is in stark contrast to the n-dependence of the χ parameter predicted from solubility parameter theory. Our study complements prior work investigating the interactions between

  10. 21 CFR 573.120 - Acrylamide-acrylic acid resin.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Acrylamide-acrylic acid resin. 573.120 Section 573... Food Additive Listing § 573.120 Acrylamide-acrylic acid resin. Acrylamide-acrylic acid resin... acrylamide with partial hydrolysis, or by copolymerization of acrylamide and acrylic acid with the greater...

  11. Monolithic F-16 Uniform Thickness Stretched Acrylic Canopy Transparency Program

    Science.gov (United States)

    1984-01-01

    Thermoforming Finite Strain Analysis Finite Element Modeling Mooney Formulation Tensile Testing Acrylic Material Properties F-16 Transparency Thinning Uniform...OF ACRYLIC TENSILE SPECIMEN ...... 8 MARC ANALYSIS OF ACRYLIC HEMISPHERE ............ 12 IV ACRYLIC MATERIAL PROPERTIES AT THERMOFORMING TEMPERATURES...properties (necessary for finite element stress analysis work) were generated at temperatures in the range of thermoforming . A finite element code

  12. Oral drug delivery system based on interpolymer complex formation between poly(acrylic acid) and poly(vinyl pyrrolidone-co-vinyl acetate)

    CSIR Research Space (South Africa)

    Germishuizen, A

    2005-07-01

    Full Text Available system based on interpolymer complex formation between poly(acrylic acid) and poly(vinyl pyrrolidone-co-vinyl acetate) 13 July 2005 André Germishuizen Supporting the Manufacturing and Materials Industry in its quest for global competitiveness CSIR... approved polymers square4 Polyacids - crosslinked poly(acrylic acid) (PAA) - poly(methacrylic acid) (PMAA) - poly(vinyl acetate phthalate) (PVAP) - cellulose acetate phthalate (CAP) square4 Polybases - poly(vinyl pyrrolidone-co-vinyl acetate) (PVP...

  13. Photo-Reversible Supramolecular Hydrogels Assembled by α-Cyclodextrin and Azobenzene Substituted Poly(acrylic acid)s

    NARCIS (Netherlands)

    Wang, Mingwei; Zhang, Xiaojun; Li, Li; Wang, Junyou; Wang, Jie; Ma, Jun; Yuan, Zhenyu; Lincoln, Stephen F.; Guo, Xuhong

    2016-01-01

    Photo-reversible supramolecular hydrogels based on the mixture of α-cyclodextrin (α-CD) and azobenzene (Azo) substituted poly(acrylic acid) s were prepared. Effects of substitution degree of Azo, polymer concentration and tethered chain length on the reversible sol-gel transition of these

  14. Photoinduced Graft-Polymerization of Acrylic Acid on Polyethylene and Polypropylene Surfaces: Comparative Study Using IR-ATR Spectroscopy

    Science.gov (United States)

    Gorbachev, A. A.; Tretinnikov, O. N.; Shkrabatovskaya, L. V.; Prikhodchenko, L. K.

    2014-11-01

    Photoinduced graft-polymerization of acrylic acid on the surface of polyethylene and polypropylene films containing a photoinitiator pre-adsorbed from a thin layer of non-de-aerated aqueous monomer solution was investigated. Data about the monomer conversion and grafting depth as functions of the UV irradiation time and polymer nature were obtained using IR-ATR spectroscopy.

  15. Photo-Reversible Supramolecular Hydrogels Assembled by α-Cyclodextrin and Azobenzene Substituted Poly(acrylic acid)s

    NARCIS (Netherlands)

    Wang, Mingwei; Zhang, Xiaojun; Li, Li; Wang, Junyou; Wang, Jie; Ma, Jun; Yuan, Zhenyu; Lincoln, Stephen F.; Guo, Xuhong

    2016-01-01

    Photo-reversible supramolecular hydrogels based on the mixture of α-cyclodextrin (α-CD) and azobenzene (Azo) substituted poly(acrylic acid) s were prepared. Effects of substitution degree of Azo, polymer concentration and tethered chain length on the reversible sol-gel transition of these mixture

  16. Occupational respiratory disease caused by acrylates.

    Science.gov (United States)

    Savonius, B; Keskinen, H; Tuppurainen, M; Kanerva, L

    1993-05-01

    Acrylates are compounds used in a variety of industrial fields and their use is increasing. They have many features which make them superior to formerly used chemicals, regarding both their industrial use and their possible health effects. Contact sensitization is, however, one of their well known adverse health effects but they may also cause respiratory symptoms. We report on 18 cases of respiratory disease, mainly asthma, caused by different acrylates, 10 cases caused by cyanoacrylates, four by methacrylates and two cases by other acrylates.

  17. [Comparative analysis of tissue reaction to acrylic resin materials in studies on Wistar strain rats].

    Science.gov (United States)

    Sobolewska, E

    1999-01-01

    observed during a period of 6 weeks, they were weighed every two weeks and no loss in body mass was noted (Tab. 1). After 6 weeks the rats were anaesthetised with ether and dissectioned. Biopsy specimens were taken from the buccal mucosa, porotid gland and lymphatic cervical nodes around the plates in order to make histological specimens. Blood samples were also taken to carry out blood cell counts and liver tests to determine eventual systemic toxicity of the studied acrylics. Histological specimens were stained with hematoxylin and eosin. In borne cases in order to precisely assess the intercellular substance other staining methods were used such as van Gieson, PAS and silvering of precollagen fibres on reticulum. Prepared specimens were assessed in a light microscope in magnification of 80 to 400. Basing on specimens of the control group an analysis of tissue reaction to the particular tested acrylic resin material was carried out. It was ascertained that the most irritative properties to the rat buccal mucosa were caused by self-cure acrylic material--Vertex S.C. This polymer caused in all rats in the tested group a reactive hypertrophy of cervical lymphatic nodes (Tab. 2 and Fig. 3). The least damaging effect on the surrounding tissues was caused by heat-cured acrylic resin material Superacryl (Fig. 4). The tested materials had no damaging effect on the rat parotid gland and did not have a toxic action on the internal organs.

  18. Properties of solvent-borne acrylic pressure-sensitive adhesives synthesized by a simple approach

    Directory of Open Access Journals (Sweden)

    2009-12-01

    Full Text Available Acrylic polymers are widely used for fabricating pressure-sensitive adhesives (PSAs with the inherent unique advantages of transparency and superior intrinsic adhesive properties over other polymer-based adhesives. In this study, we have developed and evaluated a method of obtaining by radical copolymerization PSAs for liquid crystalline (LCD applications. Various factors including the amount of monomers, amount of cross-linker, coating weight, dwell time and thermal treatment are investigated for further optimizing the properties of acrylic polymer based PSAs to meet the emerging strict requirements for practical uses related mainly to holding powder and peel strength. The results illustrate that novel crosslinking reagents coupled with the thermal treatment at 70°C can make the resultant PSAs with the improved adhesive properties. The coating weight variation from 10 to 40 g/m2 can significantly enhance the peel strength from 4.0 g/25 mm to 12.5 g/25 mm with about 310% increment. If the dwell time of PSAs with cross-linking reagent is more than 10 hrs, the peel strength can be reduced down to a suitable value to meet the criterion for use. Therefore, acrylic PSAs with peel strength less than 20 g/25 mm and holding power above 120 hrs were successfully synthesized by elaborately designing the reaction system, which are practically applicable for advanced industrial applications.

  19. Gel time of calcium acrylate grouting material

    Institute of Scientific and Technical Information of China (English)

    韩同春

    2004-01-01

    Calcium acrylate is a polymerized grout, and can polymerize in an aqueous solution. The polymerizationreaction utilizes ammonium persulfate as a catalyst and sodium thiosulfate as the activator. Based on the theory of reactionkinetics, this study on the relation between gel time and concentration of activator and catalyst showed that gel time ofcalcium acrylate is inversely proportional to activator and catalyst concentration. A formula of gel time is proposed, and anexample is provided to verify the proposed formula.

  20. Gel time of calcium acrylate grouting material

    Institute of Scientific and Technical Information of China (English)

    韩同春

    2004-01-01

    Calcium acrylate is a polymerized grout, and can polymerize in an aqueous solution. The polymerization reaction utilizes ammonium persulfate as a catalyst and sodium thiosulfate as the activator. Based on the theory of reaction kinetics, this study on the relation between gel time and concentration of activator and catalyst showed that gel time of calcium acrylate is inversely proportional to activator and catalyst concentration. A formula of gel time is proposed, and an example is provided to verify the proposed formula.

  1. Rapid Output Growth of Special Acrylic Esters

    Institute of Scientific and Technical Information of China (English)

    Wang Lianzhi

    2007-01-01

    @@ Acrylic esters are usually classified into general-purpose varieties and special varieties. The production and application of general-purpose varieties is already quite matured in the world and their output growth tends to be flat. Owing to the development of coatings, electronics, automobiles,textiles, printing and construction sectors, especially the application of radiation curing technology in various sectors, special acrylic esters have developed rapidly.

  2. Solubility of dense CO2 in two biocompatible acrylate copolymers

    Directory of Open Access Journals (Sweden)

    A. R. C. Duarte

    2006-06-01

    Full Text Available Biocompatible polymers and copolymers are frequently being used as part of controlled delivery systems. These systems can be prepared using a "clean and environment friendly" technology like supercritical fluids. One great advantage of this process is that compressed carbon dioxide has excellent plasticizing properties and can swell most biocompatible polymeric matrixes, thus promoting drug impregnation processes. Mass sorption of two acrylate biocompatible copolymers contact with supercritical carbon dioxide is reported. Equilibrium solubility of dense carbon dioxide in poly(methylmethacrylate-co-ethylhexylacrylate and poly(methylmethacrylate-co-ethylhexylacrylate-co-ethyleneglycoldimethacrylate was studied by a static method at 10.0 MPa and 313 K. The reticulated copolymer had Fickean behavior and its diffusion coefficient was calculated, under operating conditions.

  3. Scintillation properties of acrylate based plastic scintillator by photoploymerization method

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Hwan [Dept. of Radiological Science, Cheongju University, Cheongju (Korea, Republic of); Lee, Joo Il [Dept. of of Radiology, Daegu Health College, Daegu (Korea, Republic of)

    2016-12-15

    In this study, we prepared and characterized a acrylate based UV-curable plastic scintillator. It was used co-polymers TMPTA, DHPA and Ultima GoldTM LLT organic scintillator. The emission spectrum of the plastic scintillator was located in the range of 380⁓520 nm, peaking at 423 nm. And the scintillator is more than 50% transparent in the range of 400⁓ 800 nm. The emission spectrum is well match to the quantum efficiency of photo-multiplier tube and the fast decay time of the scintillation is 12 ns, approximately. This scintillation material provides the possibility of combining 3D printing technology, and then the applications of the plastic scintillator may be expected in human dosimetry etc.

  4. Swelling Behaviors of Polyaniline-Poly(Acrylic Acid) Hydrogels

    Institute of Scientific and Technical Information of China (English)

    ZHANG You-wei; ZHAO Jiong-xin; LI Xiao-feng; TAO Yong; WU Cheng-xun

    2005-01-01

    Using poly(acrylic acid) (PAA) aqueous solution, NaOH aqueous solution, aniline(An) and ammonim persulfate(APS), PAn-PAA hydrogels with a semi-interpenetrating structure connected by physical interlocks, chemical ion bonds and hydrogen bonds wcre prepared. The swelling properties of the hydrogels in solutions of different pH values(adjusted by adding NaOH or HCl) were studied. All the hydrogels prepared have similar swelling curves (the curves of equilibrium swelling ratio vs. pH value) and reach their maximum swelling at pH of 8 - 10. The maximum swelling ratio of the hydrogels is dependent on composition, including molecular weight of PAA, polymer content of the hydrogel,and molar ratios of AA to An, APS to An, and NaOH to AA.And the compositional dependence of the swelling capacity of PAn-PAA hydrogels was also studied.

  5. Influência da adição da goma arábica em filmes isolados de polímero acrílico: estudo das propriedades de intumescimento e de permeabilidade Influence of arabic gum in acrylic polymer isolated films: study of swelling properties and permeability

    Directory of Open Access Journals (Sweden)

    Victor Gustavo Santos Gabas

    2003-12-01

    Full Text Available Goma arábica associada ao polímero acrílico Eudragit RS30D® na formação de filmes isolados foram obtidos e investigados como material potencialmente adequado à liberação modificada de fármacos. Foram preparadas dispersões aquosas de 4% (p/v e o citrato de trietila (20% massa polímero acrílico foi usado como plastificante. Dispersões foram vertidas em placa de Nylon revestida com Teflon® e colocadas em estufa a 60 ºC. A determinação do índice de intumescimento (Ii% em fluidos de simulação gástrica (FSG e intestinal (FSI, além da permeabilidade ao vapor d'água (TVA foram avaliadas. As dispersões propostas apresentaram habilidades filmogênicas. O polissacarídeo favoreceu, proporcionalmente à sua concentração, o grau de hidratação e a permeabilidade ao vapor d'água dos filmes formados. Estas particularidades observadas sugerem que os filmes constituídos por estas associações garantem acessibilidade com maior intensidade, quando comparado ao polimetacrilato individualmente, condição essa indispensável para uma biodegradação efetiva, em especial às regiões distais do trato gastrintestinal.Arabic gum combined with polymeric acrylic Eudragit RS30D® in isolated films for film coating, were obtained and investigated as potential material adapted for drug delivery systems. They were prepared aqueous dispersions of 4% (p/v, the triethyl citrate (20% w/w of the methacrylate polymer it was used with plasticizer. Sample of dispersions were poured over plate of Nylon covered with Teflon and placed in an air circulated oven at 60 ºC. Determination of the swelling index (Is% in fluids of gastric (SGF or intestinal simulation or intestinal (SIF, and the permeability to the water vapour (TVA were investigated. An increase in the amount of added polysaccharide favored the degree of hydration/swelling and permeability of the formed films. These observed particularities suggest that the films constituted by these

  6. Oxygen sensitivity of photoluminescence intensity of Pt complex dispersed in fluorinated acrylate for pressure sensitive paint applications

    Science.gov (United States)

    Kwak, Jae Su; Choi, Yong Gyu

    2014-09-01

    Oxygen-sensitive photoluminescence intensity of a new combination of luminophore and matrix has been investigated for use in pressure sensitive paint applications. In consideration of oxygen permeability as well as optical transparency and structural stability, a fluorinated acrylate polymer is chosen as matrix in this study, where PtTFPP complex is dispersed and acts as luminophore responsible for the oxygen quenching. Processing conditions as to spin-coat films of the fluorinated acrylate doped with the PtTFPP are described. Pressure dependence of the photoluminescence emission of such spin-coat films is explained in connection with luminophore concentration, film thickness and types of substrate.

  7. Fluorescently Labeled Branched Polymers and Thermal Responsive Nanoparticles for Live Cell Imaging

    NARCIS (Netherlands)

    Zhou, D.; Ma, Y.; Poot, Andreas A.; Dijkstra, Pieter J.; Feijen, Jan

    2012-01-01

    Branched poly(methoxy-PEG acrylate) and thermally responsive poly(methoxy-PEG acrylate)-block-poly(N-isopropylacrylamide) are synthesized by RAFT polymerization. After reduction, these polymers are fluorescently labeled by reacting the free thiol groups with N-(5-fluoresceinyl)maleimide. As shown by

  8. Acrylated poly(3,4-propylenedioxythiophene) for enhancement of lifetime and optical properties for single-layer electrochromic devices.

    Science.gov (United States)

    Otley, Michael T; Alamer, Fahad Alhashmi; Zhu, Yumin; Singhaviranon, Ashwin; Zhang, Xiaozheng; Li, Mengfang; Kumar, Amrita; Sotzing, Gregory A

    2014-02-12

    We utilized our in situ method for the one-step assembly of single-layer electrochromic devices (ECDs) with a 3,4-propylenedioxythiophene (ProDOT) acrylate derivative, and long-term stability was achieved. By coupling the electroactive monomer to the cross-linkable polymer matrix, preparation of the electrochromic ProDOT polymer can occur followed by UV cross-linking. Thus, we achieve immobilization of the unreacted monomer, which prevents any degradative processes from occurring at the counter electrode. This approach eliminated spot formation in the device and increased stability to over 10 000 cycles when compared to 500 cycles with conventional ProDOT devices wherein the monomer is not immobilized. The acrylated electrochromic polymer exhibits similar electrochromic properties as conventional ProDOT devices, such as photopic contrast (48% compared to 46%) and switch speed (both 2 s). This method can be applied to any one-layer electrochromic system where improved stability is desired.

  9. Hydrophobically modified polyelectrolytes I. Dilute solution properties of fluorocarbon-containingpoly(acrylic acid)

    Institute of Scientific and Technical Information of China (English)

    ZHOU, Hui(周晖); SONG, Guo-Qiang(宋国强); ZHANG, Yun-Xiang(章云祥); DIEING, Reinhold; MA, Lian; HAEUSSLING, Lukas

    2000-01-01

    Dilute solution viscosity of fluorocarbon-containing hydrophobically modified poly(acrylic acid) was measured in aqueous solutions of various NaCl concentrations. The intrinsic viscosity ([η]) and Huggins coefficient (kH) were evaluated using Huggins equations. It is found that, at low NaCl concentration, the modified polymers exhibit values of intrinsic viscosity ( [η] ) and Huggins coefficient (kH) similar to those of unmodified polymers. For both of the modified and unmodified polymers, the intrinsic viscosity decreases with increase of NaCl concentration, while the Huggins coefficient increases upon addition of NaCl. But the variation of [η] and kH is more significant for the modified polymers, which reflects the enhanced intra- and intermolecular hydrophobic association at higher NaCl concentration.

  10. Positron beam analysis of polymer/metal interfaces under stress

    NARCIS (Netherlands)

    Galindo, RE; van Veen, A; Garcia, AA; Schut, H; De Hosson, JTM; Triftshauser, W; Kogel, G; Sperr, P

    2001-01-01

    The polymers Epoxy and Poly(Methyl MethAcrylate) spin coated on Interstitial Free (IF) steel were subjected to external stresses and studied using the Delft Variable Energy Positron (VEP) beam facility. The polymer/metal interface was identified using an S-W map. After tensile experiments vacancy fo

  11. Acrylic polymer nanocomposite resins for water borne coating applications

    NARCIS (Netherlands)

    Nobel, M.L.

    2007-01-01

    Due to environmental and safety regulations the use of volatile organic components (VOC's) containing lacquers for exterior automotive purposes is under growing pressure. As a consequence there is a demand for more environmentally friendly alternatives like water borne coatings, high solid coatings,

  12. Preparation and Charcterization of Konjac Superabsorbent Polymer

    Institute of Scientific and Technical Information of China (English)

    JIANG Fatang; LI Wanfen; ZHAN Xiaohui; CHEN Guofeng; ZHOU Jun; HUANG Jing; ZHANG Shenghua

    2006-01-01

    A superabsorbent polymer was prepared by grafting sodium acrylate (SA) onto Konjac flour using potassium persulfate (KPS) and N, N'-methylene bis acrylamide (MBA) as an initiator and crosslinker , respectively. The effect of various preparation conditions on its water absorbency was investigated. When the Konjac Flour content was 3.0 g , the acrylic acid ( AA ) content was 30.0 g, the amount of initiator was 0.150 g, the neutralization degree of monomer was 85% , the reaction temperature was 60 ℃ and the amount of crosslinker was 0.025 g, the polymer's absorbency was 750 times in pure water and 279 times in tap water at ambient temperature. It had also high water retention. The graft efficiency reached 67%. The analyses of FT-IR and SEM indicate that sodium acrylate is grafted on the polysaccharides of Konjac flour.

  13. Kekuatan transversa resin akrilik hybrid setelah penambahan glass fiber dengan metode berbeda (The transverse strength of the hybrid acrylic resin after glass fiber reinforcement with different method

    Directory of Open Access Journals (Sweden)

    Intan Nirwana

    2006-03-01

    Full Text Available Different types of fibers have been added to acrylic resin materials to improve their mechanical properties. The purpose of this study was to know the transverse strength of the hybrid acrylic resins after glass fiber reinforcement with difference method. This study used rectangular specimens of 65 mm in length, 10 mm in width and 2.5 mm in thickness. There were 3 groups consisting of 6 specimens each, hybrid acrylic resin without glass fiber (control, glass fibers dipped in methyl methacrylate monomer for 15 minutes before being reinforced into hybrid acrylic resin (first method, glass fibers reinforced into a mixture of polymer powder and monomer liquid after the hybrid acrylic resin was mixed directly (second method. All of the specimens were cured for 20 minutes at 100° C. Transverse strength was measured using Autograph. The statistical analyses using one way ANOVA and LSD test showed that there were significant differences in transverse strength (p < 0.05 among the groups. The means of transverse strength were 94,94; 118,27; and 116,34 MPa. It meant that glass fibers reinforcement into hybrid acrylic resin enhanced their transverse strength compared with control. Glass fiber reinforcement into hybrid acrylic resin with differenciate method didn’t enhance their transverse strength.

  14. Synthesis and Ionic Conductivity of Network Polymer Electrolytes with Internal Plasticizers

    Institute of Scientific and Technical Information of China (English)

    Jun Jie KANG; Shi Bi FANG

    2004-01-01

    Network polymer electrolytes with free oligo(oxyethylene) chains as internal plasticizers were prepared by cross-linking poly(ethylene glycol) acrylates. The effects of salt concentration and properties of internal plasticizers on ionic conductivity were studied.

  15. In-line determination of the conversion in acrylate coatings after UV curing using near-infrared reflection spectroscopy

    Science.gov (United States)

    Scherzer, Tom; Müller, Sabine; Mehnert, Reiner; Volland, Arne; Lucht, Hartmut

    2005-07-01

    Near-infrared (NIR) reflection spectroscopy was used to determine the conversion of acrylic double bonds after UV photopolymerization. Quantitative analysis of the spectra was performed with chemometric methods using FTIR spectroscopy for calibration. Moreover, it was shown that the calibration of the PLS algorithm can also be performed directly to specific properties of the coatings such as their hardness which responds extremely sensitively even to small changes of the conversion. In-line monitoring of the conversion by NIR spectroscopy was carried out for acrylate coatings with a thickness of some micrometers applied to polymer foils and panels and for thick layers of UV-curable adhesives on the basis of acrylic hot-melts. The effect of changes of the irradiation dose, the emission spectrum of the UV source and other parameters on the conversion was studied.

  16. Photochemistry of acrylates at 222 nm

    Science.gov (United States)

    Knolle, Wolfgang; Naumov, Sergej; Madani, Mohamed; von Sonntag, Clemens

    2005-07-01

    Excimer lamps as monochromatic UV sources with an intense short-wavelength emission (especially KrCl∗, 222 nm) allow a photoinitiator-free initiation of the acrylate polymerisation. Laser photolysis (KrCl∗ excimer laser, pulse width 20 ns, up to 5 mJ per pulse) gives rise to similar transient spectra (λmax ≈ 280 nm) for all acrylates studied. As the rather unspecific spectra do not allow conclusions as to the main reaction channel, a product study has been performed by GC-MS following steady-state photolysis of acrylate solutions in acetonitrile, methanol and n-hexane. Somewhat unexpected, α-cleavage seems to be a main reaction channel, and quantum chemical calculations show that such a reaction can occur from either the excited singlet state or the unrelaxed triplet state, but not from the relaxed triplet state that is observed spectroscopically. A reaction scheme accounting for the observed products is presented.

  17. Concepts for stereoselective acrylate insertion

    KAUST Repository

    Neuwald, Boris

    2013-01-23

    Various phosphinesulfonato ligands and the corresponding palladium complexes [{((PaO)PdMeCl)-μ-M}n] ([{( X1-Cl)-μ-M}n], (PaO) = κ2- P,O-Ar2PC6H4SO2O) with symmetric (Ar = 2-MeOC6H4, 2-CF3C6H4, 2,6-(MeO)2C6H3, 2,6-(iPrO)2C 6H3, 2-(2′,6′-(MeO)2C 6H3)C6H4) and asymmetric substituted phosphorus atoms (Ar1 = 2,6-(MeO)2C6H 3, Ar2 = 2′-(2,6-(MeO)2C 6H3)C6H4; Ar1 = 2,6-(MeO)2C6H3, Ar2 = 2-cHexOC 6H4) were synthesized. Analyses of molecular motions and dynamics by variable temperature NMR studies and line shape analysis were performed for the free ligands and the complexes. The highest barriers of ΔGa = 44-64 kJ/mol were assigned to an aryl rotation process, and the flexibility of the ligand framework was found to be a key obstacle to a more effective stereocontrol. An increase of steric bulk at the aryl substituents raises the motional barriers but diminishes insertion rates and regioselectivity. The stereoselectivity of the first and the second methyl acrylate (MA) insertion into the Pd-Me bond of in situ generated complexes X1 was investigated by NMR and DFT methods. The substitution pattern of the ligand clearly affects the first MA insertion, resulting in a stereoselectivity of up to 6:1 for complexes with an asymmetric substituted phosphorus. In the consecutive insertion, the stereoselectivity is diminished in all cases. DFT analysis of the corresponding insertion transition states revealed that a selectivity for the first insertion with asymmetric (P aO) complexes is diminished in the consecutive insertions due to uncooperatively working enantiomorphic and chain end stereocontrol. From these observations, further concepts are developed. © 2012 American Chemical Society.

  18. HIGH SOLIDS-CONTENT NANOSIZE POLYMER LATEXES MADE BY A MODIFIED EMULSION COPOLYMERIZATION

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yuying; GUO Tianying; HAO Guangjie; SONG Maodao; Zhang Banghua

    2003-01-01

    Polymer nanoparticles were prepared in the methyl methacrylate (MMA)/buty lmethacrylate (BA) emulsion copolymerization process by a modified microemulsion copolymerization method. 2-Hydroxyethyl methacrylate(HEMA), acrylate (AA) and methyl acrylate (MAA) were used as reactive cosurfactants. With this process high polymer: surfactant weight ratios (40:1 or greater),relatively concentrated (~30wt. %) latexes and small (~60nm) particle diameters were obtained.Properties of the latexes were characterized by TEM, DSC, dynamic light scattering, and IR spectroscopy.

  19. 40 CFR 721.329 - Halogenated benzyl ester acrylate (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Halogenated benzyl ester acrylate... Specific Chemical Substances § 721.329 Halogenated benzyl ester acrylate (generic). (a) Chemical substance... halogenated benzyl ester acrylate (PMN P-90-1527) is subject to reporting under this section for...

  20. 40 CFR 721.10180 - Trifunctional acrylic ester (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Trifunctional acrylic ester (generic... Specific Chemical Substances § 721.10180 Trifunctional acrylic ester (generic). (a) Chemical substance and... acrylic ester (PMN P-04-692) is subject to reporting under this section for the significant new...

  1. 21 CFR 175.210 - Acrylate ester copolymer coating.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Acrylate ester copolymer coating. 175.210 Section... COATINGS Substances for Use as Components of Coatings § 175.210 Acrylate ester copolymer coating. Acrylate ester copolymer coating may safely be used as a food-contact surface of articles intended for...

  2. 21 CFR 176.110 - Acrylamide-acrylic acid resins.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Acrylamide-acrylic acid resins. 176.110 Section 176... Substances for Use Only as Components of Paper and Paperboard § 176.110 Acrylamide-acrylic acid resins. Acrylamide-acrylic acid resins may be safely used as components of articles intended for use in producing...

  3. Amylase catalyzed synthesis of glycosyl acrylates and their polymerization

    NARCIS (Netherlands)

    Kloosterman, Wouter M.J.; Jovanovic, Danijela; Brouwer, Sander; Loos, Katja

    2014-01-01

    The enzymatic synthesis of novel (di)saccharide acrylates from starch and 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate and 4-hydroxybutyl acrylate (2-HEA, 2-HEMA and 4-HBA) catalyzed by various commercially available amylase preparations is demonstrated. Both liquefaction and saccharificatio

  4. Investigation of Acrylic Acid at High Pressure using Neutron Diffraction

    DEFF Research Database (Denmark)

    Johnston, Blair F.; Marshall, William G.; Parsons, Simon

    2014-01-01

    This article details the exploration of perdeuterated acrylic acid at high pressure using neutron diffraction. The structural changes that occur in acrylic acid-d4 are followed via diffraction and rationalised using the Pixel method. Acrylic acid undergoes a reconstructive phase transition to a n...

  5. Peel/seal properties of poly(ethylene methyl acrylate)/polybutene-1 blend films

    Science.gov (United States)

    Mohammdi, Seyedeh Raziyeh; Ajji, Abdellah; Tabatabaei, Seyed H.

    2015-05-01

    Nowadays, the possibility to easy open a food package is of great interest both from the consumer and food producers' perspective. In this study, the peel/seal properties of poly (ethylene methyl acrylate) (EMA)/polybutene-1 (PB-1) blend films were investigated. Three blends of EMA/PB-1 with different methyl acrylate (MA) content were prepared using cast extrusion process. Differential Scanning Calorimetry (DSC) was used to investigate the thermal behavior as well as the crystalinity of the blends. The effect of polymer matrix on the crystalline structure of PB-1 was studied using Wide Angle X-ray Diffraction (WAXD) and DSC. T-peel tests were carried out on the heat sealed films at various seal temperatures. The effect of MA content and heat seal temperature on peel/seal properties (i.e. peel initiation temperature, temperature window of sealability and peel strength) of the films were studied.

  6. Dispersion and film-forming properties of poly(acrylic acid)-stabilized carbon nanotubes.

    Science.gov (United States)

    Saint-Aubin, Karell; Poulin, Philippe; Saadaoui, Hassan; Maugey, Maryse; Zakri, Cécile

    2009-11-17

    We present a detailed study of the influence of pH on the dispersion and film-forming properties of poly(acrylic acid)-stabilized carbon nanotubes. Poly(acrylic acid) (PAA) is a weak polyelectrolyte, with a pH-responsive behavior in aqueous solution. We obtain quantitative UV-visible measurements to show that the amount of polyelectrolyte in optimal pH conditions is weak, showing a good efficiency of the polymer as a carbon nanotube dispersing agent. The best dispersion conditions are achieved at pH 5, a value close to the pK(a) of PAA. Apart from this tenuous pH value, the PAA is not efficient at stabilizing nanotubes and atomic force microscopy allows us to explain the delicate balance between the PAA adsorption and the suspension stability. This study finally permits optimal conditions for making homogeneous and conductive composite films to be determined.

  7. Peel/seal properties of poly(ethylene methyl acrylate)/polybutene-1 blend films

    Energy Technology Data Exchange (ETDEWEB)

    Mohammdi, Seyedeh Raziyeh; Ajji, Abdellah; Tabatabaei, Seyed H. [Department of Chemical Engineering, École Polytechnique de Montréal, Montréal, Québec, H3C3A7 (Canada)

    2015-05-22

    Nowadays, the possibility to easy open a food package is of great interest both from the consumer and food producers’ perspective. In this study, the peel/seal properties of poly (ethylene methyl acrylate) (EMA)/polybutene-1 (PB-1) blend films were investigated. Three blends of EMA/PB-1 with different methyl acrylate (MA) content were prepared using cast extrusion process. Differential Scanning Calorimetry (DSC) was used to investigate the thermal behavior as well as the crystalinity of the blends. The effect of polymer matrix on the crystalline structure of PB-1 was studied using Wide Angle X-ray Diffraction (WAXD) and DSC. T-peel tests were carried out on the heat sealed films at various seal temperatures. The effect of MA content and heat seal temperature on peel/seal properties (i.e. peel initiation temperature, temperature window of sealability and peel strength) of the films were studied.

  8. 溶剂条件对聚丙烯酸十八酯的平均相对分子质量的影响%Influence of Solvent Conditons on Average Relative Molecular Weight of Polyoctadecyl Acrylate

    Institute of Scientific and Technical Information of China (English)

    蒋庆哲; 宋昭峥; 柯明; 赵密福

    2005-01-01

    Polymerization of octodecyl acrylate is studied in four solvents - carbon tetrachloride, chloroform,methylbenzene and tetrachloroethane. Experimental results indicate that the sequence of chain transfer constants in solvents is: carbon tetrachloride>chloroform>methylbenzene>tetrachloroethane in the polymerization of octadecyl acrylate. Influences of four solvents on solubility of polyoctadecyl acrylate prove not the same. In chloroform,polyoctadecyl acrylate shows the highest relative viscosity and the lowest chain termination rate constant. In higher conversion, the average relative molecular weight of polyoctadecyl acrylate depends mainly on the chain transfer constant of the solvent. Under the circumstance of monomer conversion higher than 30%, the viscosity effect induced by polymeric molecular shape in the solvents have a strong influence on the relative molecular weight of the polymer obtained.

  9. Self-initiation of UV photopolymerization reactions using tetrahalogenated bisphenol A (meth)acrylates.

    Science.gov (United States)

    Pelras, Théophile; Knolle, Wolfgang; Naumov, Sergej; Heymann, Katja; Daikos, Olesya; Scherzer, Tom

    2017-02-17

    The potential of tetrachlorinated and tetrabrominated bisphenol A diacrylates and dimethacrylates for self-initiation of a radical photopolymerization was investigated. The kinetics of the photopolymerization of an acrylic model varnish containing halogenated monomers was studied by real-time FTIR spectroscopy, whereas the formation of reactive species and secondary products was elucidated by laser flash photolysis and product analysis by GC-MS after steady-state photolysis. The interpretation of the experimental data and the analysis of possible reaction pathways were assisted by quantum chemical calculations. It was shown that all halogenated monomers lead to a significant acceleration of the photopolymerization kinetics at a minimum concentration of 5 wt%. Steady-state and laser flash photolysis measurements as well as quantum chemical calculations showed that brominated and chlorinated samples do not follow the same pathway to generate radical species. Whereas chlorinated (meth)acrylates may cleave only at the C-O bonds of the carboxyl groups resulting in acrolein and oxyl radicals for initiation, brominated monomers may cleave either at the C-O bonds or at the C-Br bonds delivering aryl and bromine radicals. The quantum yields for the photolysis of the halogenated monomers were found to be in the order of 0.1 for acrylates and 0.2 for methacrylates (with an estimated error of 25%), independently of the attached Br and Cl halogens. Finally, the trihalogenated bisphenol A di(meth)acrylate radicals and the acrolein radicals were found to show the highest efficiencies for the reaction with another acrylic double bond leading to the formation of a polymer network.

  10. Cisplatin-incorporated nanoparticles of poly(acrylic acid-co-methyl methacrylate copolymer

    Directory of Open Access Journals (Sweden)

    Lee KD

    2013-08-01

    Full Text Available Kyung Dong Lee,1,* Young-Il Jeong,2,* Da Hye Kim,3,4 Gyun-Taek Lim,2 Ki-Choon Choi5 1Department of Oriental Medicine Materials, Dongshin University, Naju, South Korea; 2Department of Polymer Engineering, Chonnam National University, Gwangju, South Korea; 3Faculty of Life and Environmental Science, Shimane University, Matsue, Japan; 4United Graduate School of Agricultural Sciences, Tottori University, Tottori, Japan; 5Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration, Cheonan, South Korea *These authors contributed equally to this work Background: Although cisplatin is extensively used in the clinical field, its intrinsic toxicity limits its clinical use. We investigated nanoparticle formations of poly(acrylic acid-co-methyl methacrylate (PAA-MMA incorporating cisplatin and their antitumor activity in vitro and in vivo. Methods: Cisplatin-incorporated nanoparticles were prepared through the ion-complex formation between acrylic acid and cisplatin. The anticancer activity of cisplatin-incorporated nanoparticles was assessed with CT26 colorectal carcinoma cells. Results: Cisplatin-incorporated nanoparticles have small particle sizes of less than 200 nm with spherical shapes. Drug content was increased according to the increase of the feeding amount of cisplatin and acrylic acid content in the copolymer. The higher acrylic acid content in the copolymer induced increase of particle size and decrease of zeta potential. Cisplatin-incorporated nanoparticles showed a similar growth-inhibitory effect against CT26 tumor cells in vitro. However, cisplatin-incorporated nanoparticles showed improved antitumor activity against an animal tumor xenograft model. Conclusion: We suggest that PAA-MMA nanoparticles incorporating cisplatin are promising carriers for an antitumor drug-delivery system. Keywords: cisplatin, nanoparticle, poly(acrylic acid-co-methyl methacrylate, ion complexes

  11. Antifungal Effect of Henna against Candida albicans Adhered to Acrylic Resin as a Possible Method for Prevention of Denture Stomatitis.

    Science.gov (United States)

    Nawasrah, Amal; AlNimr, Amani; Ali, Aiman A

    2016-05-23

    Denture stomatitis is a very common disease affecting the oral mucosa of denture wearers. The aim of this study was to measure the antifungal effect of henna against Candida albicans adhered to acrylic resin as a possible method for prevention of denture stomatitis. One-hundred-eighty acrylic plates were prepared of heat-cured acrylic denture resin. The specimens were divided into six groups of 30 samples each. The first group was only polymer and monomer following the conventional manufacturer instruction for processing complete dentures. The other five groups were processed by adding different concentration of Yamani henna powder (Harazi) to the polymer in a concentration of henna: polymer 1%, 2.5%, 5%, 7.5% and 10%, respectively. Samples were incubated in artificial saliva rich with Candida albicans at 37 °C, and the effect of henna on Candida albicans was evaluated in two different methods: semi-quantitative slide count and a culture-based quantitative assay (quantitative). Variation in the number of live Candida was observed with the increase in the concentration of Yamani henna powder. It was observed that the variation in live Candida, between control group and group B (concentration of Yamani henna powder was 1%), was statistically significant with a p-value of 0.0001. Similarly, variations in live Candida were significant, when the concentration of powder was 7.5% or 10% in contrast with control group and p-values were 0.0001 and 0.001 respectively. Adding henna to acrylic resin denture could be effective in controlling Candida albicans proliferation on the denture surface; however, its effects on the physical properties of acrylic resin denture need further studies.

  12. Antifungal Effect of Henna against Candida albicans Adhered to Acrylic Resin as a Possible Method for Prevention of Denture Stomatitis

    Directory of Open Access Journals (Sweden)

    Amal Nawasrah

    2016-05-01

    Full Text Available Denture stomatitis is a very common disease affecting the oral mucosa of denture wearers. The aim of this study was to measure the antifungal effect of henna against Candida albicans adhered to acrylic resin as a possible method for prevention of denture stomatitis. One-hundred-eighty acrylic plates were prepared of heat-cured acrylic denture resin. The specimens were divided into six groups of 30 samples each. The first group was only polymer and monomer following the conventional manufacturer instruction for processing complete dentures. The other five groups were processed by adding different concentration of Yamani henna powder (Harazi to the polymer in a concentration of henna: polymer 1%, 2.5%, 5%, 7.5% and 10%, respectively. Samples were incubated in artificial saliva rich with Candida albicans at 37 °C, and the effect of henna on Candida albicans was evaluated in two different methods: semi-quantitative slide count and a culture-based quantitative assay (quantitative. Variation in the number of live Candida was observed with the increase in the concentration of Yamani henna powder. It was observed that the variation in live Candida, between control group and group B (concentration of Yamani henna powder was 1%, was statistically significant with a p-value of 0.0001. Similarly, variations in live Candida were significant, when the concentration of powder was 7.5% or 10% in contrast with control group and p-values were 0.0001 and 0.001 respectively. Adding henna to acrylic resin denture could be effective in controlling Candida albicans proliferation on the denture surface; however, its effects on the physical properties of acrylic resin denture need further studies.

  13. In Situ Synthesis of Reduced Graphene Oxide-Reinforced Silicone-Acrylate Resin Composite Films Applied in Erosion Resistance

    Directory of Open Access Journals (Sweden)

    Yang Cao

    2015-01-01

    Full Text Available The reduced graphene oxide reinforced silicone-acrylate resin composite films (rGO/SAR composite films were prepared by in situ synthesis method. The structure of rGO/SAR composite films was characterized by Raman spectrum, atomic force microscope, scanning electron microscopy, and thermogravimetric analyzer. The results showed that the rGO were uniformly dispersed in silicone-acrylate resin matrix. Furthermore, the effect of rGO loading on mechanical properties of composite films was investigated by bulge test. A significant enhancement (ca. 290% and 320% in Young’s modulus and yield stress was obtained by adding the rGO to silicone-acrylate resin. At the same time, the adhesive energy between the composite films and metal substrate was also improved to be about 200%. Moreover, the erosion resistance of the composite films was also investigated as function of rGO loading. The rGO had great effect on the erosion resistance of the composite films, in which the Rcorr (ca. 0.8 mm/year of composite film was far lower than that (28.7 mm/year of pure silicone-acrylate resin film. Thus, this approach provides a novel route to investigate mechanical stability of polymer composite films and improve erosion resistance of polymer coating, which are very important to be used in mechanical-corrosion coupling environments.

  14. Acrylic Tanks for Stunning Chemical Demonstrations

    Science.gov (United States)

    Mirholm, Alexander; Ellervik, Ulf

    2009-01-01

    We describe the use of acrylic tanks (400 x 450 x 27 mm) for visualization of chemical demonstrations in aqueous solutions. Examples of well-suited demonstrations are oscillating reactions, pH indicators, photochemical reduction of Lauth's violet, and chemoluminiscent reactions. (Contains 1 figure.)

  15. ACRYLATE-AMIDE FOAM CARDIOVASCULAR PROSTHESES.

    Science.gov (United States)

    thoracic and abdominal aorta. The use of a composite construction utilizing acrylate-amide foam is being evaluated in prostheses for mitral valve ...bleeding. The success of the initial experimental work has led to a clinical trial in which 99 replacement , bypass, or patch-angioplasty procedures... replacement , superior vena cava patch venoplasty, and esophageal replacement . (Author)

  16. Probe Tack of Model Acrylic Adhesives

    Science.gov (United States)

    Lakrout, Hamed; Creton, Costantino; Ahn, Dongchan; Shull, Kenneth R.

    1998-03-01

    In a probe tack test, a flat punch comes in contact with a thin layer of elastomer deposited on a substrate. The punch is then removed from the substrate at a constant crosshead velocity. In these conditions, the adhesive layer is highly constrained and extensive cavitation will occur when a negative hydrostatic pressure is applied. Commercial latexes of Poly2-EthylHexyl Acrylate (PEHA) and homemade Polyn-ButylAcrylate have been tested and characterized by dynamic mechanical measurements. Tests have been performed using several temperatures and debonding rates. Stress vs. strain curves have been related to debonding mechanisms through video observation. For both of these acrylic adhesives, temperature and debonding rate have opposite effects on adhesion energy and maximum stress of debonding, behavior which is typical for a viscoelastic system. In case of the PEHA, the addition of 2.5% of acrylic acid did not affect the rheological properties. However the type of the fracture changed from cohesive to adhesive. Moreover the growth of the cavities changed from viscous fingering of few cavities to circular growth of numerous small cavities.

  17. Surface energy-tunable iso decyl acrylate based molds for low pressure-nanoimprint lithography

    Science.gov (United States)

    Tak, Hyowon; Tahk, Dongha; Jeong, Chanho; Lee, Sori; Kim, Tae-il

    2017-10-01

    We presented surface energy-tunable nanoscale molds for unconventional lithography. The mold is highly robust, transparent, has a minimized haze, does not contain additives, and is a non-fluorinated isodecyl acrylate and trimethylolpropane triacrylate based polymer. By changing the mixing ratio of the polymer components, the cross-linking density, mechanical modulus, and surface energy (crucial factors in low pressure ((1–2) × 105 N m‑2) low pressure-nanoimprint lithography (LP-NIL)), can be controlled. To verify these properties of the molds, we also characterized the surface energy by measuring the contact angles and calculating the work of adhesion among the wafer, polymer film, and mold for successful demolding in nanoscale structures. Moreover, the molds showed high optical clarity and precisely tunable mechanical and surface properties, capable of replicating sub-100 nm patterns by thermal LP-NIL and UV-NIL.

  18. Large Acrylic Spherical Windows In Hyperbaric Underwater Photography

    Science.gov (United States)

    Lones, Joe J.; Stachiw, Jerry D.

    1983-10-01

    Both acrylic plastic and glass are common materials for hyperbaric optical windows. Although glass continues to be used occasionally for small windows, virtually all large viewports are made of acrylic. It is easy to uderstand the wide use of acrylic when comparing design properties of this plastic with those of glass, and glass windows are relatively more difficult to fabricate and use. in addition there are published guides for the design and fabrication of acrylic windows to be used in the hyperbaric environment of hydrospace. Although these procedures for fabricating the acrylic windows are somewhat involved, the results are extremely reliable. Acrylic viewports are now fabricated to very large sizes for manned observation or optical quality instrumen tation as illustrated by the numerous acrylic submersible vehicle hulls for hu, an occupancy currently in operation and a 3600 large optical window recently developed for the Walt Disney Circle Vision under-water camera housing.

  19. The use of dielectric spectroscopy for the characterisation of the precipitation of hydrophobically modified poly(acrylic-acid) with divalent barium ions

    DEFF Research Database (Denmark)

    Christensen, Peter Vittrup; Keiding, Kristian

    2009-01-01

    The use of dielectric spectroscopy as a monitor for coagulation processes was investigated. Hydrophobically modified poly(acrylic-acid) polymers were used as model macromolecules and coagulated with barium ions. The coagulation process was quantified using a photometric dispersion analyser, thereby...

  20. ACCELERATED THERMAL AGEING OF ACRYLIC COPOLYMERS, CYCLOHEXANONE-BASED AND UREA-ALDEHYDE RESINS USED IN PAINTINGS CONSERVATION

    OpenAIRE

    Farmakalidis, Helen Velonika; Douvas, Antonios M.; Karatasios, Ioannis; Sotiropoulou, Sophia; Boyatzis, Stamatis; Argitis, Panagiotis; Chryssoulakis, Yannis; Kilikoglou, Vassilis

    2016-01-01

    The monitoring of performance characteristics of resins was always an issue for the conservation community, since the stability of the art objects depends on the service life of conservation materials used. Among the resins commonly applied in the field of paintings conservation, four of the most popular ones, Paraloid B72, Primal AC33 (acrylic polymers), Ketone Resin N (cyclohexanone) and Laropal A81 (ureaaldehyde) were selected to be comparatively studied under accelerated ageing conditions...

  1. METHACRYLATE AND ACRYLATE ALLERGY IN DENTAL STUDENTS.

    Directory of Open Access Journals (Sweden)

    Maya Lyapina

    2013-09-01

    Full Text Available A multitude of acrylic monomers is used in dentistry, and when dental personnel, patients or students of dental medicine become sensitized, it is of great importance to identify the dental ;acrylic preparations to which the sensitized individual can be exposed. Numerous studies confirm high incidence of sensitization to (meth acrylates in dentatal professionals, as well as in patients undergoing dental treatment and exposed to resin-based materials. Quite a few studies are available aiming to evaluate the incidence of sensitization in students of dental medicineThe purpose of the study is to evaluate the incidence of contact sensitization to some (meth acrylates in students of dental medicine at the time of their education, in dental professionals (dentists, nurses and attendants and in patients, the manifestation of co-reactivity.A total of 139 participants were included in the study, divided into four groups: occupationally exposed to (methacrylates and acrylic monomers dental professionals, 3-4 year-of-education students of dental medicine, 6th year–of-education students of dental medicine and patients with suspected or established sensitization to acrylates, without occupational exposure. All of them were patch-tested with methyl methacrylate (MMA, triethyleneglycol dimethacrylate (TREGDMA, ethyleneglycol dimethacrylate (EGDMA, 2,2-bis[4-(2-hydroxy-3-methacryloxypropoxy phenyl]propane (bis-GMA, 2-hydroxyethyl methacrylate (2-HEMA, and tetrahidrofurfuril metacrylate. The overall sensitization rates to methacrylates in the studied population are comparative high – from 25.9% for MMA to 31.7% for TREGDMA. Significantly higher incidence of sensitization in the group of 3-4 course students compared to the one in the group of dental professionals for MMA and TREGDMA was observed. Highest was the incidence of sensitization to ethyleneglycol dimethacrylate, BIS-GMA, 2-HEMA and tetrahydrofurfuryl methacrylate in the group of patients, with

  2. Structure and properties of poly(benzyl acrylate) synthesized under microwave energy

    Energy Technology Data Exchange (ETDEWEB)

    Oberti, Tamara G. [Instituto de Investigaciones Fisicoquimicas Teoricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata-CONICET Casilla de Correo 16, Sucursal 4, 1900 La Plata (Argentina); Laboratorio de Estudio de Compuestos Organicos (LADECOR), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 1900 La Plata (Argentina); Schiavoni, M. Mercedes [Laboratorio de Estudio de Compuestos Organicos (LADECOR), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 1900 La Plata (Argentina); Cortizo, M. Susana [Instituto de Investigaciones Fisicoquimicas Teoricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata-CONICET Casilla de Correo 16, Sucursal 4, 1900 La Plata (Argentina)], E-mail: gcortizo@inifta.unlp.edu.ar

    2008-05-15

    Benzyl acrylate was polymerized under microwave irradiation using radical initiation (benzoyl peroxide, BP). The effect of the concentration of BP and power irradiation on the conversion, average molecular weights and the polydispersity index (M{sub w}/M{sub n}) were investigated. The {sup 1}H NMR and {sup 13}C NMR spectra analysis showed tendency to syndiotacticity and branched polymers were obtained at high conversion of reactions. A significant enhancement of the rates of polymerization and similar thermodynamic behavior, as compared with those obtained under thermal conditions was found.

  3. Incorporation of antimicrobial macromolecules in acrylic denture base resins: a research composition and update.

    Science.gov (United States)

    Sivakumar, Indumathi; Arunachalam, Kuthalingam Subbiah; Sajjan, Suresh; Ramaraju, Alluri Venkata; Rao, Bheemalingeshwara; Kamaraj, Bindu

    2014-06-01

    Contemporary research in acrylic denture base materials focuses on the development of a novel poly(methyl methacrylate) (PMMA) resin with antimicrobial properties. Although PMMA resin has fulfilled all the requirements of an ideal denture base material, its susceptibility to microbial colonization in the oral environment is a formidable concern to clinicians. Many mechanisms including the absence of ionic charge in the methyl methacrylate resins, hydrophobic interactions, electrostatic interactions, and mechanical attachment have been found to contribute to the formation of biofilm. The present article outlines the basic categories of potential antimicrobial polymer (polymeric biocides) formulations (modified PMMA resins) and considers their applicability, biological status, and usage potential over the coming years.

  4. Polymer composite principles applied to hair styling gels.

    Science.gov (United States)

    Wade Rafferty, Denise; Zellia, Joseph; Hasman, Daniel; Mullay, John

    2008-01-01

    A novel approach is taken to understand the mechanical performance of fixative-treated hair tresses. Polymer composite principles are applied to explain the performance. Examples are given for polyacrylate-2 crosspolymer that show that the choice of neutralizer affects the film properties of anionic acrylic polymers by plasticization or by hardening through ionic (physical) crosslinking. The effect of these changes in the polymer film on the composite properties was determined by mechanical stiffness and high-humidity curl retention testing. It is shown that both adhesion to the hair and polymer cohesion are important in determining fixative polymer performance. The implications of the results for the formulation of fixative systems are discussed.

  5. Preparation of self-crosslinked acrylate emulsion with high elasticity and its rheological properties

    Institute of Scientific and Technical Information of China (English)

    CHEN Li-jun; WU Feng-qin; LI Dong-shuang; YANG Jian; LI Rong-xian

    2008-01-01

    Using butyl acrylate (BA), methyl methacrylate (MMA), methacrylic acid (MAA) and mixed emulsifier as raw materials, the self-crosslinked emulsion was prepared via pre-emulsified and semi-continuous seeded emulsion polymerization technology in the presence of N-hydroxymethyl acrylamide and poly solidum maleate. The influence of mass ratio of BA to MMA, amount of N-hydroxymethyl acrylamide and poly solidum maleate on the rheological properties of the self-crosslinked emulsion was studied. Possible cross-linked mechanism of self-crosslinked monomer was investigated. And the relationship between emulsion viscosity and shear rate was investigated. The results show that the self-crosslinked acrylate emulsion with high elasticity can be synthesized when the mass fractions of BA is 60%, MMA is 40%, and added amount of N-hydroxymethyl acrylamide is 2.5%-3.0% and added amount of poly solidum maleate is 0.3%-0.4%. The self-crosslinkage process of N-hydroxymethyl acrylamide involves two steps. One is copolymer zation of N-hydroxymethyl acrylamide and acrylate, the other is cross-linkage among polymer molecules via condensation reaction of methylol. The emulsion is of rheological properties of pseudo-plastic fluid and belongs to non-Newtonian fluid.

  6. Removal of acrylic coatings from works of art by means of nanofluids: understanding the mechanism at the nanoscale

    Science.gov (United States)

    Baglioni, Michele; Rengstl, Doris; Berti, Debora; Bonini, Massimo; Giorgi, Rodorico; Baglioni, Piero

    2010-09-01

    Conservation of works of art often involves the inappropriate application of synthetic polymers. We have proposed the use of alternative methodologies for conservation and formulated innovative cleaning nanostructured systems to remove previously applied polymer films and grime from painted surfaces. In particular, a novel ``micellar system'' composed of water, SDS, 1-pentanol, ethyl acetate and propylene carbonate was recently formulated and successfully used to remove acrylic and vinyl/acrylic copolymers from Mesoamerican wall paintings in the archeological site of Cholula, Mexico. This contribution reports on the mechanism of the interaction process that takes place between the nanostructured fluid and the polymer coating at the nanoscale. The structural properties of the ``micellar solution'' and of the polymer film are investigated before, during and after the interaction process using several surface and solution techniques. Rather than a classical detergency mechanism, we demonstrate that micelles act as solvent containers and interact with the polymer film leading to its swelling and detachment from the surface and to its segregation in a liquid droplet, which phase-separates from the aqueous bulk. After the removal process the micelles become smaller in size and undergo a structural re-arrangement due to the depletion of the organic solvents. These findings can be framed in an interaction mechanism which describes the removal process, opening up new perspectives in the design and formulation of new cleaning systems specifically tailored for intervention on particular conservation issues.

  7. PREPARATION OF POLY(ETHYLENEGLYCOL-co-ACRYLIC ACID) MICROSPHERES WITH DIVINYLBENZNE AS CROSSLINKER BY DISTILLATION-PRECIPITATION POLYMERIZATION

    Institute of Scientific and Technical Information of China (English)

    Zhao Dai; Xin-lin Yang; Wen-qiang Huang

    2007-01-01

    Monodisperse poly(poly(ethyleneglycol) methyl ether acrylate-co-acrylic acid) (poly(PEGMA-co-AA))microspheres were prepared by distillation-precipitation polymerization with divinylbenzene (DVB) as crosslinker with 2,2'-azobisisobutyronitrile (AIBN) as initiator in neat acetonitrile without stirring. Under various reaction conditions, four distinct morphologies including the sol, microemulsion, microgels and microspheres were formed during the distillation of the solvent from the reaction system. A 2D morphological map was established as a function of crosslinker concentration and the polar monomer AA concentration, in comonomer feed in the transition between the morphology domains. The effect of the covalent crosslinker DVB on the morphology of the polymer network was investigated in detail at AA fraction of 40 vol%.The ratios of acid to ethylene oxide units presenting in the comonomers dramatically affected the polymer-polymer interaction and hence the morphology of the resultant polymer network. The covalent crosslinking by DVB and the hydrogen bonding crosslinking between two acid units as well as between the acid and ethylene oxide unit played key roles in the formation of monodisperse polymer microspheres.

  8. Controlled Transdermal Iontophoresis by Polypyrrole/Poly(Acrylic Acid) Hydrogel

    Science.gov (United States)

    Chansai, Phithupha; Sirivat, Anuvat

    2008-03-01

    Transdermal drug delivery system delivers a drug into a body at desired site and rate. The conductive polymer-hydrogel blend between polypyrrole (PPy) doped with anionic drug and poly(acrylic acid) (PAA) were developed as a matrix/carrier of drug for the transdermal drug delivery in which the characteristic releases depend on the electrical field applied. The PAA films and their blend films were prepared by solution casting using ethylene glycol dimethacrylate (EGDMA) as a crosslinking agent. A mechanical blending of PPy particles and PAA matrix was then carried out. Drug diffusions in the blended PPy/PAA hydrogel and the non-blended one were investigated and determined by using a modified Franz-diffusion cell with an acetate buffer, pH 5.5, at 37 0C, for a period of 48 hours to determine the effects of crosslinking ratio and electric field strength. Amounts of the released drug were measured by UV-Visible spectrophotometry. The diffusion coefficient of drug was determined through the Higuchi equation via different conditions, with and without an electric field. Moreover, thermal properties and electrical conductivity of the polypyrrole and drug-loaded polypyrrole were investigated by means of the thermogravimetric analysis and by using a two-point probe meter, respectively.

  9. Synthesis, characterization and antimicrobial activity of important heterocyclic acrylic copolymers

    Directory of Open Access Journals (Sweden)

    2008-10-01

    Full Text Available The acrylate monomer, 7-acryloyloxy-4-methyl coumarin (AMC has been synthesized by reacting 7-hydroxy-4-methyl coumarin, with acryloyl chloride in the presence of NaOH at 0–5°C. Copolymers of 7-acryloyloxy-4-methyl coumarin (AMC with vinyl acetate (VAc were synthesized in DMF (dimethyl formamide solution at 70±1°C using 2,2′-azobisisobutyronitrile (AIBN as an initiator with different monomer-to-monomer ratios in the feed. The copolymers were characterized by Fourier transform infra red (FTIR spectroscopy. The copolymer composition was evaluated by 1H-NMR (proton nuclear magnetic resonance and was further used to determine reactivity ratios. The monomer reactivity ratios for AMC (M1-VAc (M2 pair were determined by the application of conventional linearization methods such as Fineman-Ross (r1 = 0.6924; r2 = 0.6431, Kelen-Tüdõs (r1 = 0.6776; r2 = 0.6374 and extended Kelen-Tüdõs (r1 = 0.6657; r2 = 0.6256. Thermo gravimetric analysis showed that thermal decomposition of the copolymers occurred in single stage in the temperature range of 263–458°C. The molecular weights of the polymers were determined using gel permeation chromatography. The homo and copolymers were tested for their antimicrobial properties against selected microorganisms.

  10. Pulse radiolysis of aqueous solutions of ethyl acrylate and hydroxy ethyl acrylate

    Science.gov (United States)

    Safrany, A.; Biro, A.; Wojnarovits, L.

    1993-10-01

    Ethyl- and hydroxy ethyl acrylate show high reactivities with hydrated electron and hydroxyl radical intermediates of water radiolysis. The electron adduct reversibly protonate with pK values of 5.7 and 7.3. The adducts may take part in irreversible protonation at the β carbon atom forming α-carboxyl alkyl radicals. Same type of radical forms in reaction of acrylates with OH: at low concentration the adduct mainly disappear in self termination reactions. Above 5 mmol dm -1 the signals showed the startup of oligomerization.

  11. Acrylic Rubber Latex in Ferrocement for Strengthening Reinforced Concrete Beams

    Directory of Open Access Journals (Sweden)

    D. R. Kumar

    2010-01-01

    Full Text Available Problem statement: In India, the early deterioration of reinforced concrete structures has become a big social problem in recent years. An essential research is needed for the development of effective repair materials and their execution systems comes to an important issue from the viewpoint of the longevity of infrastructures at present. Ferrocement laminates are introduced to enhance the overall performance of Reinforced Concrete (RC structures and these days the use of it is a promising technology for increasing the flexural strength of deficient reinforced concrete members. Approach: The repair system aims to provide quantitative repair enhancement as well as extending the life of deteriorated concrete members. This research in particular inspired the initiation of the present work which aimed to develop a material with unique properties and a very wide range of practical applications. The mechanical properties of mortar through difference in polymer content with Acrilic Latex by ferrocement among three different volume fractions of mesh reinforcement were studied. Following the encouraging progress made in the formulation and evaluation of the polymer modified repair mortar, tests were carried out involving the application of the reinforced repair material to the soffit of the reinforced concrete beams of 3 m length. Results: The levels of damage of the original beams prior to repair did not affect the ultimate load of the strengthened beams tested. The performance of the strengthened beams was compared to the control beams with respect to cracking, deflection and ultimate strength which confirm preeminent results. Conclusion: This accomplished the fact that acrylic rubber latex modified ferrocement is a doable alternative strengthening component for the rehabilitation of reinforced concrete structures. Further developments in these systems will create dramatic improvement into the field of rehabilitation of old privileged structures.

  12. Poly(acrylic acid)-directed synthesis of colloidally stable single domain magnetite nanoparticles via partial oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Altan, Cem L. [Department of Chemical Engineering, Yeditepe University, Istanbul 34755 (Turkey); Laboratory of Materials and Interface Chemistry & Soft Matter cryoTEM Research Unit, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven 5600 MB (Netherlands); Gurten, Berna [Department of Chemical Engineering, Yeditepe University, Istanbul 34755 (Turkey); Sadza, Roel [Laboratory of Materials and Interface Chemistry & Soft Matter cryoTEM Research Unit, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven 5600 MB (Netherlands); Yenigul, Elcin [Department of Chemical Engineering, Yeditepe University, Istanbul 34755 (Turkey); Sommerdijk, Nico A.J.M., E-mail: n.sommerdijk@tue.nl [Laboratory of Materials and Interface Chemistry & Soft Matter cryoTEM Research Unit, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven 5600 MB (Netherlands); Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven 5600 MB (Netherlands); Bucak, Seyda, E-mail: seyda@yeditepe.edu.tr [Department of Chemical Engineering, Yeditepe University, Istanbul 34755 (Turkey)

    2016-10-15

    Octahedral, single domain magnetite nanoparticles with average size of ~55 nm were synthesized through oxidative aging of a ferrous hydroxide (Fe(OH){sub 2}) precursor at high pH in water. The synthesis was also carried out in the presence of the hydrophilic polymer poly(acrylic acid). Presence of the polymer changed the particle morphology from octahedral to spherical while average size decreased to 40–50 nm. Although these particles have a tendency to precipitate due to their high magnetic moment, dispersions of these particles were obtained in the presence of this particular polymer which made the particles stable in water for several days making them suitable for various biotechnological applications such as cell separation owing to their low toxicity. - Highlights: • Stable, single domain magnetite nanoparticles are synthesized via partial oxidation. • Particles are readily stabilized in water by a biocompatible polymer. • Steric barrier is essential for the stabilization of large magnetite nanoparticles.

  13. Physical and structural characteristics of acrylated poly(ethylene glycol)-alginate conjugates.

    Science.gov (United States)

    Davidovich-Pinhas, Maya; Bianco-Peled, Havazelet

    2011-07-01

    Transmucosal delivery of therapeutic agents is a non-invasive approach that utilizes human entry paths such as the nasal, buccal, rectal and vaginal routes. Mucoadhesive polymers have the ability to adhere to the mucus layer covering those surfaces and by that promote drug release, targeting and absorption. We have recently demonstrated that acrylated polymers display enhanced mucoadhesive properties due to their ability to covalently attach to mucus type glycoproteins. We have synthesized an acrylated poly(ethylene glycol)-alginate conjugate (alginate-PEGAc), a molecule which combines the gelation ability of alginate with the mucoadhesion properties arising from both the characteristics of poly(ethylene glycol) and the acrylate functionality. In the current investigation we introduce an in-depth characterization of the thermal, mechanical and structural properties of alginate-PEGAc aimed at gaining a better knowledge of its structure-function relations. The thermal stability, evaluated by thermal gravimetric analysis and differential scanning calorimetry, was compared with that of alginate and the intermediate product thiolated alginate. Dehydration at temperatures up to 200 °C was detected for all samples, followed by distinctive decomposition steps arising from the decomposition of the polymer backbone and side-chains. The nanostructure of the solutions and gels was evaluated from small angle X-ray scattering patterns, to which the "broken rod linked by flexible chain" model was fitted, and from rheology measurements. The maxima arising from electrostatic repulsion between the highly charged alginate chains was diminished for both modified alginate samples, suggesting that modification led to electrostatic screening. Alginate, thiolated alginate and alginate-PEGAc cross-linked with calcium ions demonstrated similar scattering patterns. However, different scattering intensities, gel strengths, and gelation kinetics were observed, suggesting a decrease in the

  14. SYNTHESIS OF NOVEL LIQUID CRYSTALLINE POLY(METH)ACRYLATES CONTAINING SILOXANE SPACER AND TERPHENYLENE MESOGENIC UNIT

    Institute of Scientific and Technical Information of China (English)

    Zhi-qian Zang; Yu-fei Luo; Dong Zhang; Xin-hua Wan; Qi-feng Zhou

    2000-01-01

    Novel side-chain liquid-crystalline poly(meth)acrylates were synthesized using 1-(3-hydroxyl-propyl)-3-[(4"cyano-p-terphenyloxycarbonyl)alkyl]-1, 1,3,3-tetramethyldisiloxane as the key intermediate. The polymers used a disiloxane moiety as decoupling spacer with cyano-p-terphenyl as mesogenic unit. The products were characterized by NMR, GPC,DSC and polarizing optical microscopy. All the polymers with cyano-p-terphenyl mesogens formed a stable mesophase.However, if the mesogenic unit is replaced by cyano-p-biphenyl, the liquid crystalline character will be lost. The results also showed that the decoupling is incomplete even if a complex and very flexible decoupling spacer is deliberately incorporated to obtain the highest possible decoupling effect.

  15. Process for patterning features in poly(acrylic acid) for microelectronic applications

    Science.gov (United States)

    Feng, Ying; Smith, Connor S.; Burkett, Susan L.

    2017-05-01

    A method for patterning micro-scale features in a poly(acrylic acid) (PAA) film for engineering applications has been developed. Because PAA is a water-soluble polymer, careful attention has to be given during the development portion of the photolithographic process. To obtain well-defined patterns, development time was reduced by half following a regular photolithography exposure step. The remaining photoresist, and the PAA underneath it, were removed using a plasma ash process. After stripping the photoresist, polygonal windows such as triangles, rectangles, squares, pentagons, hexagons, heptagons, and octagons were created. This plasma ash process for patterning micro-scale features in PAA holds potential for fabrication of polymer microstructures, sacrificial layer micromolding, and patterned substrate micromolding. As a proof of concept, we applied these patterns to a solder-based self-assembly process to form 3D polyhedra.

  16. Poly(acrylic acid)-stabilized colloidal gold nanoparticles: synthesis and properties.

    Science.gov (United States)

    Jans, Hilde; Jans, Karolien; Lagae, Liesbet; Borghs, Gustaaf; Maes, Guido; Huo, Qun

    2010-11-12

    Combining the intriguing optical properties of gold nanoparticles with the inherent physical and dynamic properties of polymers can give rise to interesting hybrid nanomaterials. In this study, we report the synthesis of poly(acrylic acid) (PAA)-capped gold nanoparticles. The polyelectrolyte-wrapped gold nanoparticles were fully characterized and studied via a combination of techniques, i.e. UV-vis and infrared spectroscopy, dark field optical microscopy, SEM imaging, dynamic light scattering and zeta potential measurements. Although PAA-capped nanoparticles have been previously reported, this study revealed some interesting aspects of the colloidal stability and morphological change of the polymer coating on the nanoparticle surface in an electrolytic environment, at various pH values and at different temperatures.

  17. Synthesis of acrylate guar-gum for delivery of bio-active molecules

    Indian Academy of Sciences (India)

    Ajeet Kumar; Arnab De; Subho Mozumdar

    2015-08-01

    Modification of natural polymers by graft copolymerization is a promising technique as it functionalizes these biopolymer to their potential, imparting desirable properties onto them. Grafting with vinyl monomers is the route for modifying the properties of the naturally occurring guar-gum for their better industrial exploitation and development of various commercial products. Acrylated guar-gum chain is synthesized and analysed using Fourier transform infrared, differential scanning calorimetry and X-ray diffraction techniques to gain an insight into the particle size and structural features. Chlorpyrifos is then entrapped into the polymer, and its release is studied under various conditions. Critical factors influencing the size, entrapment efficiency and release behaviour of entrapped chlorpyrifos have been studied.

  18. Poly(acrylic acid) coating induced 2-line ferrihydrite nanoparticle transport in saturated porous media

    Science.gov (United States)

    Xiang, Aishuang; Yan, Weile; Koel, Bruce E.; Jaffé, Peter R.

    2013-07-01

    Iron oxide and iron nanoparticles (NPs) have been used effectively for environmental remediation, but are limited in their applications by strong retention in groundwater-saturated porous media. For example, delivery of NPs to large groundwater reservoirs would require large numbers of injection wells. To address this problem, we have explored polymer coatings as a surface engineering strategy to enhance transport of oxide nanoparticles in porous media. We report here on our studies of 2-line ferrihydrite NPs and the influence of poly (acrylic acid) (PAA) polymer coatings on the colloidal stability and transport in natural sand-packed column tests simulating flow in groundwater-saturated porous media. Measurements were also made of zeta potential, hydrodynamic diameter, and polymer adsorption and desorption properties. The coated NPs have a diameter range of 30-500 nm. We found that NP transport was improved by PAA coating and that the transport properties could be tuned by adjusting the polymer concentration. Our results demonstrate that a high stability of oxide particles and improved transport can be achieved in groundwater-saturated porous media by introducing negatively charged polyelectrolytes and optimizing polymer concentrations.

  19. Poly(acrylic acid) coating induced 2-line ferrihydrite nanoparticle transport in saturated porous media

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Aishuang [Princeton University, Chemical and Biological Engineering Department (United States); Yan, Weile [Texas Tech University, Civil and Environmental Engineering (United States); Koel, Bruce E., E-mail: bkoel@princeton.edu [Princeton University, Chemical and Biological Engineering Department (United States); Jaffe, Peter R., E-mail: jaffe@princeton.edu [Princeton University, Civil and Environmental Engineering Department (United States)

    2013-07-15

    Iron oxide and iron nanoparticles (NPs) have been used effectively for environmental remediation, but are limited in their applications by strong retention in groundwater-saturated porous media. For example, delivery of NPs to large groundwater reservoirs would require large numbers of injection wells. To address this problem, we have explored polymer coatings as a surface engineering strategy to enhance transport of oxide nanoparticles in porous media. We report here on our studies of 2-line ferrihydrite NPs and the influence of poly (acrylic acid) (PAA) polymer coatings on the colloidal stability and transport in natural sand-packed column tests simulating flow in groundwater-saturated porous media. Measurements were also made of zeta potential, hydrodynamic diameter, and polymer adsorption and desorption properties. The coated NPs have a diameter range of 30-500 nm. We found that NP transport was improved by PAA coating and that the transport properties could be tuned by adjusting the polymer concentration. Our results demonstrate that a high stability of oxide particles and improved transport can be achieved in groundwater-saturated porous media by introducing negatively charged polyelectrolytes and optimizing polymer concentrations.

  20. Synthesis and characterization of poly(2-ethylhexyl acrylate) prepared via atom transfer radical polymerization, reverse atom transfer radical polymerization and radical polymerization

    Indian Academy of Sciences (India)

    Dhruba Jyoti Haloi; Bishnu Prasad Koiry; Prithwiraj Mandal; Nikhil Kumar Singha

    2013-07-01

    This investigation reports a comparative study of poly(2-ethylhexyl acrylate) (PEHA) prepared via atom transfer radical polymerization (ATRP), reverse atom transfer radical polymerization (RATRP) and conventional free radical polymerization (FRP). The molecular weights and the molecular weight distributions of the polymers were measured by gel permeation chromatography (GPC) analysis. Structural characterization of the polymers was carried out by 1H NMR and MALDI-TOF-MS analyses. Thermal properties of the polymers were evaluated by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The polymerization results and the thermal properties of PEHAs prepared via ATRP, RATRP and FRP were compared.

  1. Development of thiolated poly(acrylic acid) microparticles for the nasal administration of exenatide.

    Science.gov (United States)

    Millotti, Gioconda; Vetter, Anja; Leithner, Katharina; Sarti, Federica; Shahnaz Bano, Gul; Augustijns, Patrick; Bernkop-Schnürch, Andreas

    2014-12-01

    The purpose of this study was to develop a microparticulate formulation for nasal delivery of exenatide utilizing a thiolated polymer. Poly(acrylic acid)-cysteine (PAA-cys) and unmodified PAA microparticles loaded with exenatide were prepared via coprecipitation of the drug and the polymer followed by micronization. Particle size, drug load and release of incorporated exenatide were evaluated. Permeation enhancing properties of the formulations were investigated on excised porcine respiratory mucosa. The viability of the mucosa was investigated by histological studies. Furthermore, ciliary beat frequency (CBF) studies were performed. Microparticles displayed a mean size of 70-80 µm. Drug encapsulation was ∼80% for both thiolated and non-thiolated microparticles. Exenatide was released from both thiolated and non-thiolated particles in comparison to exenatide in buffer only within 40 min. As compared to exenatide dissolved in buffer only, non-thiolated and thiolated microparticles resulted in a 2.6- and 4.7-fold uptake, respectively. Histological studies performed before and after permeation studies showed that the mucosa is not damaged during permeation studies. CBF studies showed that the formulations were cilio-friendly. Based on these results, poly(acrylic acid)-cysteine-based microparticles seem to be a promising approach starting point for the nasal delivery of exenatide.

  2. Characterization and identification of acrylic binding media: influence of UV light on the ageing process.

    Science.gov (United States)

    Pintus, Valentina; Schreiner, Manfred

    2011-03-01

    This study characterizes and identifies two different acrylic binding media such as Plextol® D498 and Primal® AC33, which are widely used in modern and contemporary art. In order to investigate their fast photooxidative deterioration when exposed to ultraviolet (UV) light, ageing studies on these materials were carried out. For this purpose, pure synthetic materials but also mixed with different inorganic pigments were identified and characterized before and after UV exposure by means of pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). Particular attention was paid to the comparison of two different analytical methods: (1) single-shot method based on a pyrolysis for the analysis of polymers and (2) double-shot method, which allows a unique combination of thermal desorption for the analysis of volatile compounds and pyrolysis of the polymers themselves. These analyses have been complemented by Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR) studies. The comparison of the results obtained from unaged samples and UV-aged clearly showed material alterations as well as the formation of new products, which were recorded by FTIR-ATR. Generally, these changes were more pronounced when the acrylic binding media were mixed with pigments. The double-shot technique of Py-GC/MS additionally allowed the detection of the phenolic antioxidant in unaged Plextol® D498, but no oxidation products could be identified by Py-GC/MS in all samples.

  3. Monomers, polymers and articles containing the same from sugar derived compounds

    Science.gov (United States)

    Gallagher, James; Reineke, Theresa; Hillmyer, Marc A.

    2016-11-29

    Disclosed herein are monomers formed by reacting a sugar derived compound(s) comprising a lactone and two hydroxyls with a compound(s) comprising an isocyanate and an acrylate or methacrylate. Polymers formed from such monomers, and articles formed from the polymers are also disclosed.

  4. Monomers, polymers and articles containing the same from sugar derived compounds

    Energy Technology Data Exchange (ETDEWEB)

    Gallagher, James; Reineke, Theresa; Hillmyer, Marc A.

    2016-11-29

    Disclosed herein are monomers formed by reacting a sugar derived compound(s) comprising a lactone and two hydroxyls with a compound(s) comprising an isocyanate and an acrylate or methacrylate. Polymers formed from such monomers, and articles formed from the polymers are also disclosed.

  5. Polymer films

    Science.gov (United States)

    Granick, Steve; Sukhishvili, Svetlana A.

    2004-05-25

    A film contains a first polymer having a plurality of hydrogen bond donating moieties, and a second polymer having a plurality of hydrogen bond accepting moieties. The second polymer is hydrogen bonded to the first polymer.

  6. Polymer films

    Science.gov (United States)

    Granick, Steve; Sukhishvili, Svetlana A.

    2008-12-30

    A film contains a first polymer having a plurality of hydrogen bond donating moieties, and a second polymer having a plurality of hydrogen bond accepting moieties. The second polymer is hydrogen bonded to the first polymer.

  7. Comparison of Candida Albicans Adherence to Conventional Acrylic Denture Base Materials and Injection Molding Acrylic Materials

    Directory of Open Access Journals (Sweden)

    Masoomeh Aslanimehr

    2017-03-01

    Full Text Available Statement of the Problem: Candida species are believed to play an important role in initiation and progression of denture stomatitis. The type of the denture material also influences the adhesion of candida and development of stomatitis. Purpose: The aim of this study was comparing the adherence of candida albicans to the conventional and injection molding acrylic denture base materials. Materials and Method: Twenty injection molding and 20 conventional pressure pack acrylic discs (10×10×2 mm were prepared according to their manufacturer’s instructions. Immediately before the study, samples were placed in sterile water for 3 days to remove residual monomers. The samples were then sterilized using an ultraviolet light unit for 10 minutes. 1×108 Cfu/ml suspension of candida albicans ATCC-10231 was prepared from 48 h cultured organism on sabouraud dextrose agar plates incubated at 37oC. 100 μL of this suspension was placed on the surface of each disk. After being incubated at 37oC for 1 hour, the samples were washed with normal saline to remove non-adherent cells. Attached cells were counted using the colony count method after shaking at 3000 rmp for 20 seconds. Finally, each group was tested for 108 times and the data were statistically analyzed by t-test. Results: Quantitative analysis revealed that differences in colony count average of candida albicans adherence to conventional acrylic materials (8.3×103 comparing to injection molding acrylic resins (6×103 were statistically significant (p<0.001. Conclusion: Significant reduction of candida albicans adherence to the injection acrylic resin materials makes them valuable for patients with high risk of denture stomatitis.

  8. Comparison of Candida Albicans Adherence to Conventional Acrylic Denture Base Materials and Injection Molding Acrylic Materials

    Science.gov (United States)

    Aslanimehr, Masoomeh; Rezvani, Shirin; Mahmoudi, Ali; Moosavi, Najmeh

    2017-01-01

    Statement of the Problem: Candida species are believed to play an important role in initiation and progression of denture stomatitis. The type of the denture material also influences the adhesion of candida and development of stomatitis. Purpose: The aim of this study was comparing the adherence of candida albicans to the conventional and injection molding acrylic denture base materials. Materials and Method: Twenty injection molding and 20 conventional pressure pack acrylic discs (10×10×2 mm) were prepared according to their manufacturer’s instructions. Immediately before the study, samples were placed in sterile water for 3 days to remove residual monomers. The samples were then sterilized using an ultraviolet light unit for 10 minutes. 1×108 Cfu/ml suspension of candida albicans ATCC-10231 was prepared from 48 h cultured organism on sabouraud dextrose agar plates incubated at 37oC. 100 μL of this suspension was placed on the surface of each disk. After being incubated at 37oC for 1 hour, the samples were washed with normal saline to remove non-adherent cells. Attached cells were counted using the colony count method after shaking at 3000 rmp for 20 seconds. Finally, each group was tested for 108 times and the data were statistically analyzed by t-test. Results: Quantitative analysis revealed that differences in colony count average of candida albicans adherence to conventional acrylic materials (8.3×103) comparing to injection molding acrylic resins (6×103) were statistically significant (pcandida albicans adherence to the injection acrylic resin materials makes them valuable for patients with high risk of denture stomatitis. PMID:28280761

  9. Cytocompatible antifungal acrylic resin containing silver nanoparticles for dentures

    Directory of Open Access Journals (Sweden)

    Acosta-Torres LS

    2012-09-01

    Full Text Available Laura Susana Acosta-Torres,1 Irasema Mendieta,2 Rosa Elvira Nuñez-Anita,3 Marcos Cajero-Juárez,3 Víctor M Castaño41National School of Higher Education, School of Dentistry - Leon Unit, National Autonomus University of Mexico (UNAM, Leon, Guanajuato, 2Neurobiology Institute, National Autonomus University of Mexico (UNAM, Juriquilla, Queretaro, 3Animal Biotechnology Laboratory, Faculty of Veterinary Medicine at San Nicolas de Hidalgo, Michoacán University, Michoacán, 4Molecular Materials Department, Applied Physics and Advanced Technology Center, National Autonomus University of Mexico (UNAM, Juriquilla, Queretaro, MexicoBackground: Inhibition of Candida albicans on denture resins could play a significant role in preventing the development of denture stomatitis. The safety of a new dental material with antifungal properties was analyzed in this work.Methods: Poly(methyl methacrylate [PMMA] discs and PMMA-silver nanoparticle discs were formulated, with the commercial acrylic resin, Nature-CrylTM, used as a control. Silver nanoparticles were synthesized and characterized by ultraviolet-visible spectroscopy, dispersive Raman spectroscopy, and transmission electron microscopy. The antifungal effect was assessed using a luminescent microbial cell viability assay. Biocompatibility tests were carried out using NIH-3T3 mouse embryonic fibroblasts and a Jurkat human lymphocyte cell line. Cells were cultured for 24 or 72 hours in the presence or absence of the polymer formulations and analyzed using three different tests, ie, cellular viability by 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay, and cell proliferation by enzyme-linked immunosorbent assay BrdU, and genomic DNA damage (Comet assay. Finally, the samples were evaluated mechanically, and the polymer-bearing silver nanoparticles were analyzed microscopically to evaluate dispersion of the nanoparticles.Results: The results show that PMMA-silver nanoparticle discs

  10. Artificial saliva effect on toxic substances release from acrylic resins

    Directory of Open Access Journals (Sweden)

    Kostić Milena

    2015-01-01

    Full Text Available Background/Aim. Acrylic-based resins are intensively used in dentistry practice as restorative or denture-base materials. The purpose of this study was to analyze the surface structure of denture base resins and the amount of released potentially toxic substances (PTS immediately upon polymerization and incubation in different types of artificial saliva. Methods. Storage of acrylic samples in two models of artificial saliva were performed in a water bath at the temperature of 37 ± 1°C. Analysis of the surface structure of samples was carried out using scanning electronic microscopy analysis immediately after polymerization and after the 30-day incubation. The amounts of PTS per day, week and month extracts were measured using high-pressure liquid chromatography. Results. Surface design and amount of PTS in acrylic materials were different and depended on the types and duration of polymerization. The surfaces of tested acrylates became flatter after immersing in solutions of artificial saliva. The degree of acrylic materials release was not dependent on the applied model of artificial saliva. Conclusion. In order to improve biological features of acrylic resin materials, it was recommended that dentures lined with soft or hard coldpolymerized acrylates should be kept at least 1 to 7 days in water before being given to a patient. So, as to reach high degree of biocompatibility preparation of prosthetic restorations from heat-polymerized acrylate was unnecessary. [Projekat Ministarstva nauke Republike Srbije, br. 41017

  11. 40 CFR 721.8082 - Polyester polyurethane acrylate.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Polyester polyurethane acrylate. 721... Substances § 721.8082 Polyester polyurethane acrylate. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as polyester polyurethane...

  12. Proton microbeam irradiation effects on PtBA polymer

    Indian Academy of Sciences (India)

    J Kamila; S Roy; K Bhattacharjee; B Rout; B N Dev; R Guico; J Wang; A W Haberl; P Ayyub; P V Satyam

    2006-04-01

    Proton beam lithography has made it possible to make various types of 3D-structures in polymers. Usually PMMA, SU-8, PS polymers have been used as resist materials for lithographic purpose. Microbeam irradiation effects on poly-tert-butyl-acrylate (PtBA) polymer using 2.0 MeV proton microbeam are reported. Preliminary results on pattern formation on PtBA are carried out as a function of fluence. After writing the pattern, a thin layer of Ge is deposited. Distribution of Ge in pristine and ion beam patterned surface of PtBA polymer is studied using the optical and secondary electron microscopic experimental methods.

  13. Antibiotic-loaded acrylic cement: current concepts.

    Science.gov (United States)

    Buchholz, H W; Elson, R A; Heinert, K

    1984-11-01

    Antibiotic-loaded acrylic cement has been used routinely since 1972 at the authors' hospitals, where a series of some 22,000 joint arthroplasty operations was performed from 1964-1983. The current status of the material is presented with up-to-date follow-up statistics on prophylactic therapy and on established deep infections. The results of 869 exchange arthroplasties are compared with results published in 1981. In the future, results will be presented in the form of survival curves. The method by which survival tables and curves are constructed is critical. Investigators should use survival curves for ease of comparison and because of the wide range of possibilities in an analysis of covariable factors. A retrospective actuarial analysis was made of 825 one-stage reimplantations in which antibiotic-loaded acrylic cement was used for infected total hip arthroplasties. Staphylococcus aureus was the most commonly encountered organism. Failure rates of prostheses infected by S. aureus, S. species, and anaerobic corynebacteria did not differ statistically. A factor that significantly contributed to failure of this method of treatment was Pseudomonas infection. By actuarial analysis five years after operation, a success (survival) rate of 77% was calculated.

  14. Polymer glass transitions switch electron transfer in individual molecules

    NARCIS (Netherlands)

    Siekierzycka, J.R.; Hippius, C.; Würthner, F.; Williams, R.M.; Brouwer, A.M.

    2010-01-01

    Essentially complete photoinduced electron transfer quenching of the fluorescence of a perylene−calixarene compound occurs in poly(methyl acrylate) and poly(vinyl acetate) above their glass transition temperatures (T-g), but the fluorescence is completely recovered upon cooling the polymer matrix to

  15. Allergic contact dermatitis from acrylic nails in a flamenco guitarist.

    Science.gov (United States)

    Alcántara-Nicolás, F A; Pastor-Nieto, M A; Sánchez-Herreros, C; Pérez-Mesonero, R; Melgar-Molero, V; Ballano, A; De-Eusebio, E

    2016-12-01

    Acrylates are molecules that are well known for their strong sensitizing properties. Historically, many beauticians and individuals using store-bought artificial nail products have developed allergic contact dermatitis from acrylates. More recently, the use of acrylic nails among flamenco guitarists to strengthen their nails has become very popular. A 40-year-old non-atopic male patient working as a flamenco guitarist developed dystrophy, onycholysis and paronychia involving the first four nails of his right hand. The lesions were confined to the fingers where acrylic materials were used in order to strengthen his nails to play the guitar. He noticed improvement whenever he stopped using these materials and intense itching and worsening when he began reusing them. Patch tests were performed and positive results obtained with 2-hydroxyethyl methacrylate (2-HEMA), 2-hydroxyethyl acrylate (2-HEA), ethyleneglycol-dimethacrylate (EGDMA) and 2-hydroxypropyl methacrylate (2-HPMA). The patient was diagnosed with occupational allergic contact dermatitis likely caused by acrylic nails. Artificial nails can contain many kinds of acrylic monomers but most cases of contact dermatitis are induced by 2-HEMA, 2-HPMA and EGDMA. This is the first reported case of occupational allergic contact dermatitis from acrylates in artificial nails in a professional flamenco guitar player. Since the practice of self-applying acrylic nail products is becoming very popular within flamenco musicians, we believe that dermatology and occupational medicine specialists should be made aware of the potentially increasing risk of sensitization from acrylates in this setting. © The Author 2016. Published by Oxford University Press on behalf of the Society of Occupational Medicine. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Biocompatibility of acrylic resin after being soaked in sodium hypochlorite

    Directory of Open Access Journals (Sweden)

    Nike Hendrijatini

    2009-06-01

    Full Text Available Background: Acrylic resin as basic material for denture will stay on oral mucosa for a very long time. The polymerization of acrylic resin can be performed by conventional method and microwave, both produce different residual monomer at different toxicity. Acrylic resin can absorb solution, porous and possibly absorb disinfectantt as well, that may have toxic reaction with the tissue. Sodium Hypochlorite as removable denture disinfectant can be expected to be biocompatible to human body. The problem is how biocompatible acrylic resin which has been processed by conventional method and microwave method after being soaked in sodium hypochlorite solution. Purpose: The aim of this study was to understand in vitro biocompatibility of acrylic resin which has polimerated by conventional method and microwave after being soaked in sodium hypochlorite using tissue culture. Methods: Four groups of acrylic resin plate were produced, the first group was acrylic resin plate with microwave polymeration and soaked in sodium hypochlorite, the second group was acrylic resin plate with microwave polymeration but not soaked, the thirdwas one with conventional method and soaked and the last group was one with conventional method but not soaked, and in 1 control group. Each group consists of 7 plates. Biocompatibility test was performed in-vitro on each material using fibroblast tissue culture (BHK-21 cell-line. Result: The percentage between living cells and dead cells from materials which was given acrylic plate was wounted. The data was analyzed statistically with T test. Conclusion: The average value of living cells is higher in acrylic resin poimerization using microwave method compared to conventional method, in both soaked and non soaked (by sodium hypochlorite group. This means that sodium hypochlorite 0.5% was biocompatible to the mouth mucosa as removable denture disinfectant for 10 minutes soaking and washing afterwards.

  17. Chitosan-graft-poly(n-butyl acrylate) copolymer: Synthesis and characterization of a natural/synthetic hybrid material.

    Science.gov (United States)

    Anbinder, Pablo; Macchi, Carlos; Amalvy, Javier; Somoza, Alberto

    2016-07-10

    Two chitosan polymers with different deacetylation degree and molecular weight were subjected to grafting reactions with the aim to enhance the properties of these bio-based materials. Specifically, n-butyl acrylate in different proportions was grafted onto two different deacetylation degree (DD%) chitosan using radical initiation in a surfactant free emulsion system. Infrared spectroscopy was used to confirm grafting and products grafting percentage and efficiency were evaluated against acrylate/chitosan ratio and DD%. Thermal and structural properties and the behavior against water of the raw and grafted biopolymers were studied using several experimental techniques: differential scanning calorimetry, transmission electron microscopy, dynamic light scattering, water swelling, contact angle and positron annihilation lifetime spectroscopy. The influence of the grafting process on the morphological and physicochemical properties of the prepared natural/synthetic hybrid materials is discussed.

  18. Comparative Analysis of Electromagnetic Response of PVA/MWCNT and Styrene-Acrylic Copolymer/MWCNT Composites

    Science.gov (United States)

    Plyushch, A. O.; Paddubskaya, A. G.; Kuzhir, P. P.; Maksimenko, S. A.; Ivanova, T.; Merijs-Meri, R.; Bitenieks, J.; Zicans, J.; Suslyaev, V. I.; Pletnev, M. A.

    2016-06-01

    The present paper focuses on electromagnetic response of polymeric composites with different concentrations of multiwall carbon nanotubes in the radio (20 Hz - 1 MHz) and microwave (26-36 GHz) frequency ranges. Widely available polymeric materials, such as PVA latex (polyvinyl acetate) and styrene-acrylic copolymer, were used as a matrix. Analysis of the experimental data demonstrated that in electromagnetic shielding applications one should give preference to the styrene-acrylic copolymer, as far as application of this matrix type allows reducing the percolation threshold in such composites. As a result, it allows reaching the necessary level of shielding at a lower filler concentration, while unique properties of the chosen polymer allow expanding the range of applications for the new materials.

  19. Synthesis, characterization, and swelling behaviors of salt-sensitive maize bran-poly(acrylic acid) superabsorbent hydrogel.

    Science.gov (United States)

    Zhang, Mingyue; Cheng, Zhiqiang; Zhao, Tianqi; Liu, Mengzhu; Hu, Meijuan; Li, Junfeng

    2014-09-01

    A novel composite hydrogel was prepared via UV irradiation copolymerization of acrylic acid and maize bran (MB) in the presence of composite initiator (2,2-dimethoxy-2-phenylacetophenone and ammonium persulfate) and cross-linker (N,N'-methylenebis(acrylamide)). Under the optimized conditions, maize bran-poly(acrylic acid) was obtained (2507 g g(-1) in distilled water and 658 g g(-1) in 0.9 wt % NaCl solution). Effects of granularity, salt concentration, and various cations and anions on water absorbency were investigated. It was found that swelling was extremely sensitive to the ionic strength and cation and anion type. Swelling kinetics and water diffusion mechanism in distilled water were also discussed. Moreover, the product showed excellent water retention capability under the condition of high temperature or high pressure. The salt sensitivity, good water absorbency, and excellent water retention capability of the hydrogels give this intelligentized polymer wide potential applications.

  20. Fabrication and Characterization of Gd-DTPA-Loaded Chitosan-Poly(Acrylic Acid) Nanoparticles for Magnetic Resonance Imaging.

    Science.gov (United States)

    Ahmed, Arsalan; Zhang, Chao; Guo, Jian; Hu, Yong; Jiang, Xiqun

    2015-08-01

    Gd-DTPA-loaded chitosan-poly(acrylic acid) nanoparticles (Gd-DTPA@CS-PAA NPs) were formulated based on the reaction system of water-soluble polymer-monomer pairs of acrylic acid in chitosan solution followed by sorption of Gd-DTPA. Morphological investigations revealed the spherical shape of these NPs with about 220 nm particle size. These NPs showed charge reversal characteristic in acidic solution. In vitro and in vivo magnetic characteristics of these NPs were explored to estimate their utilization in targeted enhanced magnetic resonance imaging. Relaxation studies showed that these NPs possessed pH susceptible relaxation properties, which could introduce in vivo-specific distribution of contrast agent. MRI experiment showed that these nanoparticles had better results in contrast enhancement, and the concentration of contrast agent increased in liver and brain with increment in time. Thus, these NPs could maintain in vivo long circulation and high relaxation rate and were suitable agents for magnetic resonance imaging.

  1. Polymer photodegradation initiated by ZnO nanoparticles

    Science.gov (United States)

    Denisyuk, I. Yu.; Pozdnyakova, S. A.; Koryakina, I. G.; Uspenskaya, M. V.; Volkova, K. V.

    2016-11-01

    The photodegradation initiated by semiconductor nanoparticles in an acrylic photocurable polymer doped with p-ZnO nanoparticles has been investigated. A mechanism and formula of the photoinduced chemical reaction stimulated by primary photochemical processes of water photolysis on the surface of semiconductor ZnO nanoparticles are proposed. The mass loss in this reaction reaches 12%, which confirms the validity of photodegradation for polymer waste disposal.

  2. Comparison of the Retinal Straylight in Pseudophakic Eyes with PMMA, Hydrophobic Acrylic, and Hydrophilic Acrylic Spherical Intraocular Lens

    Directory of Open Access Journals (Sweden)

    Ya-wen Guo

    2014-01-01

    Full Text Available Purpose. To investigate the intraocular straylight value after cataract surgery. Methods. In this study, 76 eyes from 62 patients were subdivided into three groups. A hydrophobic acrylic, a hydrophilic acrylic, and a PMMA IOL were respectively, implanted in 24 eyes, 28 eyes, and 24 eyes. Straylight was measured using C-Quant at 1 week and 1 month postoperatively in natural and dilated pupils. Results. The hydrophilic acrylic IOLs showed significantly lower straylight values than those of the hydrophobic acrylic IOLs in dilated pupils at 1 week and 1 month after surgery (P0.05. Moreover, no significant difference was found in straylight between natural and dilated pupils in each group at 1 week and 1 month postoperatively (P>0.05. Conclusions. Although the hydrophobic acrylic IOL induced more intraocular straylight, straylight differences among the 3 IOLs were minimal. Pupil size showed no effect on intraocular straylight; the intraocular straylight was stable 1 week after surgery.

  3. Polymer and Polymer Gel of Liquid Crystalline Semiconductors

    Institute of Scientific and Technical Information of China (English)

    Teppei Shimakawa; Naoki Yoshimoto; Jun-ichi Hanna

    2004-01-01

    It prepared a polymer and polymer gel of a liquid crystalline (LC) semiconductor having a 2-phenylnaphthalene moiety and studied their charge carrier transport properties by the time-of-flight technique. It is found that polyacrylate having the mesogenic core moiety of 2-phenylnaphtalene (PNP-acrylate) exhibited a comparable mobility of 10-4cm2/Vs in smectic A phase to those in smectic A (SmA) phase of small molecular liquid crystals with the same core moiety, e.g., 6-(4'-octylphenyl)- 2-dodecyloxynaphthalene (8-PNP-O12), and an enhanced mobility up to 10-3cm2/Vs in the LC-glassy phase at room temperature, when mixed with a small amount of 8-PNP-O12. On the other hand, the polymer gel consisting of 20 wt %-hexamethylenediacrylate (HDA)-based cross-linked polymer and 8-PNP-O12 exhibited no degraded mobility when cross-linked at the mesophase. These results indicate that the polymer and polymer composite of liquid crystalline semiconductors provide us with an easy way to realize a quality organic semiconductor thin film for the immediate device applications.

  4. Aqueous film coating to reduce recrystallization of guaifenesin from hot-melt extruded acrylic matrices.

    Science.gov (United States)

    Bruce, Caroline D; Fegely, Kurt A; Rajabi-Siahboomi, Ali R; McGinity, James W

    2010-02-01

    This study investigated the effect of aqueous film coating on the recrystallization of guaifenesin from acrylic, hot-melt extruded matrix tablets. After hot-melt extrusion, matrix tablets were film-coated with either hypromellose or ethylcellulose. The effects of the coating polymer, curing and storage conditions, polymer weight gain, and core guaifenesin concentration on guaifenesin recrystallization were investigated. The presence of either film coating on the guaifenesin-containing tablets was found to prolong the onset time of drug crystallization. The coating polymer was the most important factor determining the delay in the onset of crystallization, with the more hydrophilic polymer, hypromellose, having a higher solubilization potential for the guaifenesin and delaying crystallization for longer period (3 or 6 months in tablets stored at 40 degrees C or 25 degrees C, respectively) than the more hydrophobic ethylcellulose, which displayed a lower solubilization potential for guaifenesin (crystal growth on tablets cured for 2 hours at 60 degrees C occurred within 3 weeks, whereas uncoated tablets displayed surface crystal growth after 30 minutes). Crystal morphology was also affected by the film coating. Elevated temperatures during both curing and storage, incomplete film coalescence, and high core drug concentrations all contributed to an earlier onset of crystal growth.

  5. Synthesis of Reinforced Polyacrylate and Polyepoxide Polymers

    Science.gov (United States)

    Salmi, Aicha; Meziani, Amina; Zahouily, Khalid; Benfarhi, Said

    Nanocomposite polymers have drawn increased attention over the two last decades because of their distinct characteristics in particular superior mechanical and barrier properties. In this paper we present our results on the synthesis and the biodegradability of nanocomposite materials, made of silicate platelets (montmorillonite and beidellite) dispersed in a crosslinked polyurethane -acrylate and polyepoxide matrix. The compatibility polymer-clay has been optimized by surface modification of clay. The treatment of clay was confirmed by FTIR spectroscopy and X-ray diffraction. The nanocomposite materials were synthetized by photoinduced polymerization (UV lamp and solar UV). The study of curing kinetics obtained show that the addition of organophilic clay has little effect on the conversion of acrylates while in the epoxyde, the effect is more pronounced because a some of the protons generated by the photo-initiator is neutralized by the negative charges dispersed onto clay surface. The polymer nanocomposites obtained are transparent, slightly or insoluble in organic solvents. Moreover we have demonstrated that the polyurethane -acrylate is biodegradable and the intimate association of the reinforcement and the organic matrix at the molecular level decrease this biodegradability.

  6. Hyperbranched Acrylated Aromatic Polyester Used as a Modifier in UV-Curable Epoxy Acrylate Resins

    Institute of Scientific and Technical Information of China (English)

    KOU,Hui-Guang; ASIF,Anila; SHI,Wen-Fang

    2003-01-01

    The viscosity, the shrinkage degree and the photoplymerization rate of the epoxy acrylate (EB600 ) blended with hyperbranched acrylated aromatic polyester ( HAAPE ) were investigated. The addition of HAAPE into EB600 largely reduces the viscosity of the blend formulation and the shrinkage degree. For example, EB600resin with 50% weight fraction of HAAPE has the 1250 cps of the viscosity and 2.0% of shrinkage degree, while the pure EB600 resin has 3000 cps of the viscosity and 10.5% of shrinkage degree. The photopolymerization rate of the rein is also promoted by HAAPE addition. The good miscibility between HAAPE and EB600 was also observed from the dynamic mechanical analysis. The tensile, flexural and compressive strength, and the thermal properties of the UVcured films are greatly improved.

  7. Poly(acrylic acid)-directed synthesis of colloidally stable single domain magnetite nanoparticles via partial oxidation

    Science.gov (United States)

    Altan, Cem L.; Gurten, Berna; Sadza, Roel; Yenigul, Elcin; Sommerdijk, Nico A. J. M.; Bucak, Seyda

    2016-10-01

    Octahedral, single domain magnetite nanoparticles with average size of ~55 nm were synthesized through oxidative aging of a ferrous hydroxide (Fe(OH)2) precursor at high pH in water. The synthesis was also carried out in the presence of the hydrophilic polymer poly(acrylic acid). Presence of the polymer changed the particle morphology from octahedral to spherical while average size decreased to 40-50 nm. Although these particles have a tendency to precipitate due to their high magnetic moment, dispersions of these particles were obtained in the presence of this particular polymer which made the particles stable in water for several days making them suitable for various biotechnological applications such as cell separation owing to their low toxicity.

  8. Thermoresponsive Photonic Crystal: Synergistic Effect of Poly(N-isopropylacrylamide)-co-acrylic Acid and Morpho Butterfly Wing.

    Science.gov (United States)

    Xu, Dongdong; Yu, Huanan; Xu, Qun; Xu, Guiheng; Wang, Kaixi

    2015-04-29

    In this work, we report a simple method to fabricate smart polymers engineered with hierarchical photonic structures of Morpho butterfly wing to present high performance that are capable of color tunability over temperature. The materials were assembled by combining functional temperature responsivity of poly(N-isopropylacrylamide)-co-acrylic acid (PNIPAm-co-AAc) with the biological photonic crystal (PC) structure of Morpho butterfly wing, and then the synergistic effect between the functional polymer and the natural PC structure was created. Their cooperativity is instantiated in the phase transition of PNIPAm-co-AAc (varying with the change of temperature) that can alter the nanostructure of PCs, which further leads to the reversible spectrum response property of the modified hierarchical photonic structures. The cost-effective biomimetic technique presented here highlights the bright prospect of fabrication of more stimuli-responsive functional materials via coassembling smart polymers and biohierarchical structures, and it will be an important platform for the development of nanosmart biomaterials.

  9. Poly(lauryl acrylate) and poly(stearyl acrylate) grafted multiwalled carbon nanotubes for polypropylene composites

    DEFF Research Database (Denmark)

    Daugaard, Anders Egede; Jankova Atanasova, Katja; Hvilsted, Søren

    2014-01-01

    in loading after 12 h of polymerization. The modified nanomaterials were melt mixed into polypropylene composites with very low filler loading (0.3 wt%), whereafter both the thermal and electrical properties were investigated by DSC and dielectric resonance spectroscopy. The electrical properties were found...... to be substantially improved, where poly(lauryl acrylate) was found to be the superior surface modification, resulting in a conductive composite....

  10. COMPARATIVE ANALYSIS OF WATER SORPTION BY DIFFERENT ACRYLIC MATERIALS

    Directory of Open Access Journals (Sweden)

    Milena Kostić

    2014-06-01

    Full Text Available Acrylic materials are used daily for the production of mobile dental restorations and orthodontic appliances. The presence of residual monomer, as a product of incomplete polymerisation of material, results in more porous structure of the material, which greatly reduces the mechanical and physical quality of the acrylic restorations and increases the absorption of liquids. The aim of this study was to examine the water absorption of different types of resin material. In the study it was assumed that the cold polymerized acrylates show a greater potential for absorbing fluid from the environment in relation to the hot polymerized acrylic. The study included two hot and two cold polymerized acrylates, and cold polymerized acrylate impregnated with aesthetic pearls. In order to determine the degree of water absorption, the mass of the samples was measured before and after one day, seven days and thirty days of immersion in a water bath of body temperature. The tested hot and cold polymerized acrylates after immersion in water bath showed standard values of water absorption. The degree of water absorption was not significantly influenced by the type and manner of polymerisation. Water absorption values were significantly higher after seven days and thirty days of water storage relative to the observational period of one day.

  11. Flexible, stretchable electroadhesives based on acrylic elastomers

    Science.gov (United States)

    Duduta, Mihai; Wood, Robert J.; Clarke, David R.

    2016-04-01

    Controllable adhesion is a requirement for a wide variety of applications including robotic manipulation, as well as locomotion including walking, crawling and perching. Electroadhesives have several advantages such as reversibility, low power consumption and controllability based on applied voltage. Most demonstrations of electroadhesive devices rely on fairly rigid materials, which cannot be stretched reversibly, as needed in some applications. We have developed a fast and reliable method for building soft, stretchable electroadhesive pads based on acrylic elastomers and electrodes made of carbon nanotubes. The devices produced were tested pre-deformation and in a stretched configuration. The adhesive force was determined to be in the 0.1 - 3.0 N/cm2 range, depending on the adhering surface. The electroadhesive devices were integrated with pre-stretched dielectric elastomer actuators to create a device in which the adhesion force could be tuned by changes in either the applied voltage or total area.

  12. Preparation of porous carboxymethyl chitosan grafted poly (acrylic acid) superabsorbent by solvent precipitation and its application as a hemostatic wound dressing.

    Science.gov (United States)

    Chen, Yu; Zhang, Yong; Wang, Fengju; Meng, Weiwei; Yang, Xinlin; Li, Peng; Jiang, Jianxin; Tan, Huimin; Zheng, Yongfa

    2016-06-01

    The volume phase transition of a hydrogel initiated by shrinking may result in complex patterns on its surface. Based on this unique property of hydrogel, we have developed a novel solvent precipitation method to prepare a kind of novel superabsorbent polymers with excellent hemostatic properties. A porous carboxymethyl chitosan grafted poly (acrylic acid) (CMCTS-g-PAA) superabsorbent polymer was prepared by precipitating CMCTS-g-PAA hydrogel with ethanol. Its potential application in hemostatic wound dressing was investigated. The results indicate that the modified superabsorbent polymer is non-cytotoxic. It showed a high swelling capacity and better hemostatic performance in the treatments of hemorrhage model of ear artery, arteria cruralis and spleen of the New Zealand white rabbit than the unmodified polymer and other commonly used clinic wound dressings. The hemostatic mechanism of the porous CMCTS-g-PAA polymer was also discussed.

  13. Conversion of Lignocellulosic Biomass to Ethanol and Butyl Acrylate

    Energy Technology Data Exchange (ETDEWEB)

    Binder, Thomas [Archer Daniels Midland Company, Decatur, IL (United States); Erpelding, Michael [Archer Daniels Midland Company, Decatur, IL (United States); Schmid, Josef [Archer Daniels Midland Company, Decatur, IL (United States); Chin, Andrew [Archer Daniels Midland Company, Decatur, IL (United States); Sammons, Rhea [Archer Daniels Midland Company, Decatur, IL (United States); Rockafellow, Erin [Archer Daniels Midland Company, Decatur, IL (United States)

    2015-04-10

    Conversion of Lignocellulosic Biomass to Ethanol and Butyl Acrylate. The purpose of Archer Daniels Midlands Integrated Biorefinery (IBR) was to demonstrate a modified acetosolv process on corn stover. It would show the fractionation of crop residue to distinct fractions of cellulose, hemicellulose, and lignin. The cellulose and hemicellulose fractions would be further converted to ethanol as the primary product and a fraction of the sugars would be catalytically converted to acrylic acid, with butyl acrylate the final product. These primary steps have been demonstrated.

  14. Develop Roll-to-Roll Manufacturing Process of ZrO2 Nanocrystals/Acrylic Nanocomposites for High Refractive Index Applications

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Pooran C [ORNL; Compton, Brett G [ORNL; Li, Jianlin [ORNL; Jellison Jr, Gerald Earle [ORNL; Duty, Chad E [ORNL

    2015-04-01

    The purpose of this Cooperative Research and Development Agreement (CRADA) was to develop and evaluate ZrO2/acrylic nanocomposite coatings for integrated optoelectronic applications. The formulations engineered to be compatible with roll-to-roll process were evaluated in terms of optical and dielectric properties. The uniform distribution of the ZrO2 nanocrystals in the polymer matrix resulted in highly tunable refractive index and dielectric response suitable for advanced photonic and electronic device applications.

  15. Studies on the antifungal activities of the novel synthesized chelating co-polymer emulsion lattices and their silver complexes

    Directory of Open Access Journals (Sweden)

    Abd-El-Ghaffar M.A.

    2008-01-01

    Full Text Available The novel binary chelating co-polymers of butyl acrylate with itaconic and maleic acids were prepared by emulsion polymerization process. The chelating co-polymers of butyl acrylate-co-itaconic acid (BuA/IA and butyl acrylate-co-maleic acid (BuA/MA and their silver complexes were characterized and identified using IR spectroscopy and differential scanning calorimetry (DSC measurements. The biological activities of these compounds were studied against various types of fungal species. The dose and the rate of leached silver ions were controlled by the type of the co-polymers used and the solubility in the medium. The results provided laboratory support for the concept that the polymers containing chemically bound biocide are useful for controlling microbial growth. The silver uptake by strains of different fungal species was studied to determine their difference in behavior to the antifungal activities of these compounds. The uptake strategy was examined by transmission electron microscopy (TEM.

  16. Polymer fractionation

    Energy Technology Data Exchange (ETDEWEB)

    Hadermann, A. F.

    1985-04-09

    Soluble polymers are fractionated according to molecular weight by cryogenically comminuting the polymer and introducing the polymer particles, while still in the active state induced by cryogenic grinding, into a liquid having a solvent power selected to produce a coacervate fraction containing high molecular weight polymer species and a dilute polymer solution containing lower molecular weight polymer species. The coacervate may be physically separated from the solution and finds use in the production of antimisting jet fuels and the like.

  17. Biodegradable Polymers

    OpenAIRE

    Isabelle Vroman; Lan Tighzert

    2013-01-01

    Biodegradable materials are used in packaging, agriculture, medicine and other areas. In recent years there has been an increase in interest in biodegradable polymers. Two classes of biodegradable polymers can be distinguished: synthetic or natural polymers. There are polymers produced from feedstocks derived either from petroleum resources (non renewable resources) or from biological resources (renewable resources). In general natural polymers offer fewer advantages than synthetic polymers. ...

  18. Performance behavior of modified cellulosic fabrics using polyurethane acrylate copolymer.

    Science.gov (United States)

    Zuber, Mohammad; Shah, Sayyed Asim Ali; Jamil, Tahir; Asghar, Muhammad Irfan

    2014-06-01

    The surface of the cellulosic fabrics was modified using self-prepared emulsions of polyurethane acrylate copolymers (PUACs). PUACs were prepared by varying the molecular weight of polycaprolactone diol (PCL). The PCL was reacted with isophorone diisocyanate (IPDI) and chain was extended with 2-hydroxy ethyl acrylate (HEA) to form vinyl terminated polyurethane (VTPU) preploymer. The VTPU was further co-polymerized through free radical polymerization with butyl acrylate in different proportions. The FT-IR spectra of monomers, prepolymers and copolymers assured the formation of proposed PUACs structure. The various concentrations of prepared PUACs were applied onto the different fabric samples using dip-padding techniques. The results revealed that the application of polyurethane butyl acrylate copolymer showed a pronounced effect on the tear strength and pilling resistance of the treated fabrics.

  19. Rare linking hydrogels based on acrylic acid and carbohydrate esters

    Directory of Open Access Journals (Sweden)

    U. Akhmedov

    2012-09-01

    Full Text Available The process of copolymerization of acrylic acid and esters poliallil sucrose; pentaerythritol and sorbitol, some of its laws are identified. The kinetic regularities of copolymerization and the optimum conditions of synthesis was established.

  20. A Hydrogen Ion-Selective Sensor Based on Non-Plasticised Methacrylic-acrylic Membranes

    Directory of Open Access Journals (Sweden)

    Musa Ahmad

    2002-08-01

    Full Text Available A methacrylic-acrylic polymer was synthesised for use as a non-plasticised membrane for hydrogen ion-selective sensor incorporating tridodecylamine as an ionophore. The copolymer consisted of methyl methacrylate and n-butyl acrylate monomers in a ratio of 2:8. Characterisation of the copolymer using FTNMR demonstrated that the amount of each monomer incorporated during solution polymerisation was found to be similar to the amount used in the feed before polymerisation. The glass transition temperature of the copolymer determined by differential scanning calorimetry was -30.9 ºC. Potentiometric measurements conducted showed a linear pH response range of 4.3 – 9.6 with the response slope of 56.7 mV/decade. The selectivity of the sensors towards hydrogen ions was similar to other plasticiser based membrane electrodes and the logarithmic selectivity coefficients for discrimination against interference cations is close to –9.7. However, the incorporation of a lipophilic anion as membrane additive is essential in ensuring optimum performance of the hydrogen ion sensor.

  1. Prediction of the "in vivo" mechanical behavior of biointegrable acrylic macroporous scaffolds.

    Science.gov (United States)

    Vikingsson, L; Antolinos-Turpin, C M; Gómez-Tejedor, J A; Gallego Ferrer, G; Gómez Ribelles, J L

    2016-04-01

    This study examines a biocompatible scaffold series of random copolymer networks P(EA-HEA) made of Ethyl Acrylate, EA, and 2-Hydroxyl Ethyl Acrylate, HEA. The P(EA-HEA) scaffolds have been synthesized with varying crosslinking density and filled with a Poly(Vinyl Alcohol), PVA, to mimic the growing cartilaginous tissue during tissue repair. In cartilage regeneration the scaffold needs to have sufficient mechanical properties to sustain the compression in the joint and, at the same time, transmit mechanical signals to the cells for chondrogenic differentiation. Mechanical tests show that the elastic modulus increases with increasing crosslinking density of P(EA-HEA) scaffolds. The water plays an important role in the mechanical behavior of the scaffold, but highly depends on the crosslinking density of the proper polymer. Furthermore, when the scaffold with hydrogel is tested it can be seen that the modulus increases with increasing hydrogel density. Even so, the mechanical properties are inferior than those of the scaffolds with water filling the pores. The hydrogel inside the pores of the scaffolds facilitates the expulsion of water during compression and lowers the mechanical modulus of the scaffold. The P(EA-HEA) with PVA shows to be a good artificial cartilage model with mechanical properties close to native articular cartilage.

  2. Influence of Initiator on Synthesis and Properties of Polyurethane-acrylate Hybrid Emulsion

    Institute of Scientific and Technical Information of China (English)

    HU Guowen; SHEN Huifang; FIU Heqing; CHEN Huanqin

    2008-01-01

    The prepolymer polyurethanes(PUs)based on isophorone diisocyanate(IPDI),poly(propylene glycol)(PPG),1,4-butanedioi(BDO)and dimethylopropionic acid(DMPA)were synthesized at 75-80℃ for 7-8 hours,using dibutyltin dilauate(DBTDL)as catalyzer,and polyturethane-acrylate hybrid emulsion was prepared after methyl methacrylate(MMA)was polymerized,using potassium persulfate and azobisisobutyronitrile(AIBN)as initiator,respectively.The influences of these factors such as the kind of initiator,the feed method of initiator and the addition of initiator on properties of polyurethane-acrylate were studied.The FTIR and GPC of aqueous polyurethane were analyzed.The FTIR spectra show that the degree of microphase-separate between the soft segments and rigid segments is high.The analysis of molecular weights stated that molecular weights increased most significantly after amine was added.The experimental results reveal that the appearance of emulsion is excellent,the film is harder and the water absorption radio of the film is less when oil-solubility AIBN is used as initiator.The semi-continuous can increase the molecular weight of polymer and the optimum amount of the initiator was 3% for MMA.

  3. The Reinforcement Effect of Nano-Zirconia on the Transverse Strength of Repaired Acrylic Denture Base

    Directory of Open Access Journals (Sweden)

    Mohammed Gad

    2016-01-01

    Full Text Available Objective. The aim of this study was to evaluate the effect of incorporation of glass fiber, zirconia, and nano-zirconia on the transverse strength of repaired denture base. Materials and Methods. Eighty specimens of heat polymerized acrylic resin were prepared and randomly divided into eight groups (n=10: one intact group (control and seven repaired groups. One group was repaired with autopolymerized resin while the other six groups were repaired using autopolymerized resin reinforced with 2 wt% or 5 wt% glass fiber, zirconia, or nano-zirconia particles. A three-point bending test was used to measure the transverse strength. The results were analyzed using SPSS and repeated measure ANOVA and post hoc least significance (LSD test (P≤0.05. Results. Among repaired groups it was found that autopolymerized resin reinforced with 2 or 5 wt% nano-zirconia showed the highest transverse strength (P≤0.05. Repairs with autopolymerized acrylic resin reinforced with 5 wt% zirconia showed the lowest transverse strength value. There was no significant difference between the groups repaired with repair resin without reinforcement, 2 wt% zirconia, and glass fiber reinforced resin. Conclusion. Reinforcing of repair material with nano-zirconia may significantly improve the transverse strength of some fractured denture base polymers.

  4. The Reinforcement Effect of Nano-Zirconia on the Transverse Strength of Repaired Acrylic Denture Base.

    Science.gov (United States)

    Gad, Mohammed; ArRejaie, Aws S; Abdel-Halim, Mohamed Saber; Rahoma, Ahmed

    2016-01-01

    Objective. The aim of this study was to evaluate the effect of incorporation of glass fiber, zirconia, and nano-zirconia on the transverse strength of repaired denture base. Materials and Methods. Eighty specimens of heat polymerized acrylic resin were prepared and randomly divided into eight groups (n = 10): one intact group (control) and seven repaired groups. One group was repaired with autopolymerized resin while the other six groups were repaired using autopolymerized resin reinforced with 2 wt% or 5 wt% glass fiber, zirconia, or nano-zirconia particles. A three-point bending test was used to measure the transverse strength. The results were analyzed using SPSS and repeated measure ANOVA and post hoc least significance (LSD) test (P ≤ 0.05). Results. Among repaired groups it was found that autopolymerized resin reinforced with 2 or 5 wt% nano-zirconia showed the highest transverse strength (P ≤ 0.05). Repairs with autopolymerized acrylic resin reinforced with 5 wt% zirconia showed the lowest transverse strength value. There was no significant difference between the groups repaired with repair resin without reinforcement, 2 wt% zirconia, and glass fiber reinforced resin. Conclusion. Reinforcing of repair material with nano-zirconia may significantly improve the transverse strength of some fractured denture base polymers.

  5. The Effect of Reactives Diluents to the Physical Properties of Acrylated Palm Oil Based Polyurethane Coatings

    Directory of Open Access Journals (Sweden)

    Onn Munirah

    2016-01-01

    Full Text Available The development of polyurethane with hydroxyl access in a molecule leads to a new alternative of low toxicity green product. Palm oil is one of the major commodities in Malaysia. The potential of palm oil to be used as coatings raw material such as alkyd is limited due to low unsaturated side on fatty acid chains. To overcome this limitation, palm oil was modified through transesterification process to produce polyol. Acrylated isocyanate (urethane oligomer was then grafted onto polyol to produce polyurethane with vinylic ends. The polyurethane was formulated with different cross-linkers (reactive diluents and cured under UV radiation. The effect of three different diluents; monoacrylate, diacrylate and triacrylate on the properties of cured polymer were studied in this research. Fourier Transform Infrared (FTIR, Hydroxyl Value Titration, Gel Content, and Volatile Organic Compound (VOC were used for characterization. Physical testing performed were Pencil Hardness and Pull-Off Adhesion test. Novel palm oil-based polyurethane coatings have been found to have good properties with mono acrylate functionality.

  6. Synthesis and properties of acrylate latex modified by vinyl alkoxy siloxane

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Acrylate latex modified by vinyl triisopropoxy silane (C-1706) was synthesized by seeded emulsion polymerization with anionic emulsifier sodium dodecyl sulphonate(SDS) and nonionic emulsifier OP-10 as the multiple emulsifiers at (78±2) ℃. The effects of different factors, such as the emulsifier, C-1706 monomer and its feeding manner on the properties of aciylate latex modified by C-1706 were investigated. The particle size distribution and the structure, the configuration, the weather durability and stain resistance of copolymer latex were characterized by particle size analyzer, Fourier transform infrared spectroscopy (FT-IR), transmission electron microscope(TEM), scanning electron microscope(SEM) and ultraviolet aging instrument respectively. The results show that SDS to OP-10 as multiple emulsifiers can lead to coordinated efficiency, the optimal emulsifier dosage is 2.4%-3.2%(mass fraction), and the mass ratio of SDS to OP-10 is 1:1- 1:2. The seeded emulsion polymerization can effectively introduce a organic-siloxane bonding in a macromolecule inter polymer, and the obtained acrylate latex modified by organic-siloxane possesses narrow distribution of particle size with mean diameter of 51.8-76.6 nm and has the excellent properties in weather durability and stain-resistance especially.

  7. Nonionic Polymerizable Emulsifier in High-Solids-Content Acrylate Emulsion Polymerization

    Institute of Scientific and Technical Information of China (English)

    LU Deping; HUANG Hongzhi; SHEN Ling; XIE Jin; GUAN Rong

    2012-01-01

    Stable high-solids-content acrylate emulsion were obtained with a nonionic polymerizable emulsifier allyloxy nonylphenoxy poly (ethyleneoxy) (10) ether (ANPEO10),and a conventional emulsifier OP-10 as a reference sample.1H NMR proves that the polymerizable emulsifier ANPEO10 has been incorporated into the resulted acrylate polymers.TEM demonstrates that there are some differences in the particle morphologies.AFM proves that the polymerizable emulsifier ANPEO10 migrating to the surface of the emulsion film was much less than the conventional emulsifier OP-10.The polymerizable emulsifier ANPEO10 can enhance the adhesion with glass plate compared to the conventional emulsifier.Furthermore,with increasing amount of emulsifier,the surface free energy of the films first decreased and then increased,and the adhesion with glass plate is initially enhanced and then attenuated.The water-resistance and solvent-resistance of the films prepared by the polymerizable emulsifier ANPEO10 are superior to those prepared by the conventional emulsifier OP-10.

  8. Preparation and characterization of acrylic acid-grafted poly (vinyl alcohol) hydrogel actuators using γ-ray irradiation

    Energy Technology Data Exchange (ETDEWEB)

    An, Sung Jun; Lim, Youn Mook; Gwon, Hui Jeong; Kim, Yun Hye; Youn, Min Ho; Nho, Young Chang [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Han, Dong Hyun; Kim, Chong Yeal [Dept. of Radiation Science AND Technology, Graduate School of Chonbuk National University, Jeonju (Korea, Republic of)

    2008-01-15

    Active polymer gels expand and contract in response to certain environmental stimuli, such as the application of an electric field or a change in the pH level of the surroundings. This ability to achieve large, reversible deformations with no external mechanical loading has generated much interest in the use of these gels as biomimetic actuators and artificial muscles. In this study, poly (vinyl alcohol)(PVA) grafted acrylic acid monomer (PVA-g-AAc) hydrogels were prepared by {sup 60}Co γ-ray irradiation and their properties such as degree of grafting and weight swelling in electrostimulation as an artificial muscle and actuator were investigated.

  9. Electrochemical synthesis of polyaniline/poly(2-acryl-amido-2-methyl-1-propane-sulfonic acid) composite

    Energy Technology Data Exchange (ETDEWEB)

    Lapkowski, M. (Inst. of Physical Chemistry and Technology of Polymers, Silesian Technical Univ., Gliwice (Poland))

    1993-03-22

    Conducting polyaniline/poly(2-acryl-amido-2-methyl-1-propane sulfonic acid) (PANi/PAMPS) composite films were synthesized electrochemically on platinum electrodes using a 10% aqueous PAMPS solution as the electrolyte. The electrochemical properties of the resulting polymer are similar to those observed for polyaniline doped with classical non-polymeric anions. PANi/PAMPS exhibits high cycling stability within the potential range of the first redox couple, but it undergoes degradation when the potential range characteristic of the second redox couple is reached. The degradation occurs independently of the electrolytic medium (HCl or 10% aqueous PAMPS). (orig.)

  10. Nucleophilic Addition of Reactive Dyes on Amidoximated Acrylic Fabrics

    OpenAIRE

    2014-01-01

    Seven reactive dyes judiciously selected based on chemical structures and fixation mechanisms were applied at 2% owf of shade on amidoximated acrylic fabrics. Amidoximated acrylic fabric has been obtained by a viable amidoximation process. The dyeability of these fabrics was evaluated with respect to the dye exhaustion, fixation, and colour strength under different conditions of temperature and dyeing time. Nucleophilic addition type reactive dyes show higher colour data compared to nucleophi...

  11. Antimicrobial activity of poly(acrylic acid) block copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Gratzl, Günther, E-mail: guenther.gratzl@jku.at [Johannes Kepler University Linz, Institute for Chemical Technology of Organic Materials, Altenberger Str. 69, 4040 Linz (Austria); Paulik, Christian [Johannes Kepler University Linz, Institute for Chemical Technology of Organic Materials, Altenberger Str. 69, 4040 Linz (Austria); Hild, Sabine [Johannes Kepler University Linz, Institute of Polymer Science, Altenberger Str. 69, 4040 Linz (Austria); Guggenbichler, Josef P.; Lackner, Maximilian [AMiSTec GmbH and Co. KG, Leitweg 13, 6345 Kössen, Tirol (Austria)

    2014-05-01

    The increasing number of antibiotic-resistant bacterial strains has developed into a major health problem. In particular, biofilms are the main reason for hospital-acquired infections and diseases. Once formed, biofilms are difficult to remove as they have specific defense mechanisms against antimicrobial agents. Antimicrobial surfaces must therefore kill or repel bacteria before they can settle to form a biofilm. In this study, we describe that poly(acrylic acid) (PAA) containing diblock copolymers can kill bacteria and prevent from biofilm formation. The PAA diblock copolymers with poly(styrene) and poly(methyl methacrylate) were synthesized via anionic polymerization of tert-butyl acrylate with styrene or methyl methacrylate and subsequent acid-catalyzed hydrolysis of the tert-butyl ester. The copolymers were characterized via nuclear magnetic resonance spectroscopy (NMR), size-exclusion chromatography (SEC), Fourier transform infrared spectroscopy (FTIR), elemental analysis, and acid–base titrations. Copolymer films with a variety of acrylic acid contents were produced by solvent casting, characterized by atomic force microscopy (AFM) and tested for their antimicrobial activity against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. The antimicrobial activity of the acidic diblock copolymers increased with increasing acrylic acid content, independent of the copolymer-partner, the chain length and the nanostructure. - Highlights: • Acrylic acid diblock copolymers are antimicrobially active. • The antimicrobial activity depends on the acrylic acid content in the copolymer. • No salts, metals or other antimicrobial agents are needed.

  12. Application of reactive acrylate microgels in water-base coatings

    Institute of Scientific and Technical Information of China (English)

    SA Sheng-shu; ZHANG Bao-hua; YANG Qing; WANG Xia-qin; MAO Zhi-ping

    2009-01-01

    Reactive acrylate microgels with different reactive groups such as carboxyl, hydroxide groups had excellent prop-erties such as quick-dry, low viscosity, high adhesion and hardness, which made them extensively used in preparing paints or in coating-modification. Reactive acrylate microgels were prepared by emulsion co-polymerization with zwitterions surfactant, anionic surfactant and nonionic surfactant as co-emulsifier. The water-base baking paints made from reactive acrylate micro-gels and melamine-formaldehyde resin had excellent combination properties. The aluminium powder can be well-dispersed in the paints. The influences of monomer components on the properties of the water-base baking paints were discussed in this paper. And the baking paints were also compared with the marketing solvent acrylate baking paints. It was found that the water-base acrylate amino baking paints had better combination properties than the organic solvent acrylate baking paints, which means that the water-base baking paints had a bright marketing future.

  13. Poly(meth)acrylates obtained by cascade reaction.

    Science.gov (United States)

    Popescu, Dragos; Keul, Helmut; Moeller, Martin

    2011-04-04

    Preparation, purification, and stabilization of functional (meth)acrylates with a high dipole moment are complex, laborious, and expensive processes. In order to avoid purification and stabilization of the highly reactive functional monomers, a concept of cascade reactions was developed comprising enzymatic monomer synthesis and radical polymerization. Transacylation of methyl acrylate (MA) and methyl methacrylate (MMA) with different functional alcohols, diols, and triols (1,2,6-hexanetriol and glycerol) in the presence of Novozyme 435 led to functional (meth)acrylates. After the removal of the enzyme by means of filtration, removal of excess (meth)acrylate and/or addition of a new monomer, e.g., 2-hydroxyethyl (meth)acrylate the (co)polymerization via free radical (FRP) or nitroxide mediated radical polymerization (NMP) resulted in poly[(meth)acrylate]s with predefined functionalities. Hydrophilic, hydrophobic as well as ionic repeating units were assembled within the copolymer. The transacylation of MA and MMA with diols and triols carried out under mild conditions is an easy and rapid process and is suitable for the preparation of sensitive monomers.

  14. Stabilizing effects of estertins mercaptide (methyl acrylate) for PVC degradation

    Science.gov (United States)

    Zhang, S. H.; Liu, T. M.; Li, J. L.; Wang, C. R.; Li, C.; Wang, Z. Q.

    2016-07-01

    The thermal and UV light (ultraviolet light) stability of PVC films with estertins mercaptide (methyl acrylate), methyltins mercaptide and the compound consisted of estertins mercaptide (methyl acrylate) and hydrotalcite (2:2.5) were investigated by ageing in a circulation oven at 190 °C and irradiating with 72W UV light for 96h, respectively, and then the yellowness and transmission rate were tested by Color Quest XE. Hydrotalcite was proved to have good synergies with estertins mercaptide (methyl acrylate) on improving the thermal stability and UV light stability. The retarding effects of the heat stabilizers to PVC degradation were tested by TGA from 50°C to 600°C. The results show that temperature of HCl evolution from PVC film was improved obviously by compounding with estertins mercaptide(methyl acrylate) and hydrotalcite and estertins mercaptide(methyl acrylate) was found to have a better long term stability. Sn4+ consistence of water and seawater in which films before and after UV light irradiation were soaked for 60 days was analyzed by ICP; the results indicate that the Sn4+ consistence from the films with estertins mercaptide(methyl acrylate) as thermal stabilizer was lower than that from the film with methyltins mercaptide. The crosslink moderately by UV irradiation for PVC films can hold back the dissolution of organotin heat stabilizers from PVC products into water and seawater.

  15. Tuning of thermally induced sol-to-gel transitions of moderately concentrated aqueous solutions of doubly thermosensitive hydrophilic diblock copolymers poly(methoxytri(ethylene glycol) acrylate)-b-poly(ethoxydi(ethylene glycol) acrylate-co-acrylic acid).

    Science.gov (United States)

    Jin, Naixiong; Zhang, Hao; Jin, Shi; Dadmun, Mark D; Zhao, Bin

    2012-03-15

    We report in this article a method to tune the sol-to-gel transitions of moderately concentrated aqueous solutions of doubly thermosensitive hydrophilic diblock copolymers that consist of two blocks exhibiting distinct lower critical solution temperatures (LCSTs) in water. A small amount of weak acid groups is statistically incorporated into the lower LCST block so that its LCST can be tuned by varying solution pH. Well-defined diblock copolymers, poly(methoxytri(ethylene glycol) acrylate)-b-poly(ethoxydi(ethylene glycol) acrylate-co-acrylic acid) (PTEGMA-b-P(DEGEA-co-AA)), were prepared by reversible addition-fragmentation chain transfer polymerization and postpolymerization modification. PTEGMA and PDEGEA are thermosensitive water-soluble polymers with LCSTs of 58 and 9 °C, respectively, in water. A 25 wt % aqueous solution of PTEGMA-b-P(DEGEA-co-AA) with a molar ratio of DEGEA to AA units of 100:5.2 at pH = 3.24 underwent multiple phase transitions upon heating, from a clear, free-flowing liquid (sol-to-gel transition temperature (T(sol-gel)) shifted to higher values, while the gel-to-sol transition (T(gel-sol)) and the clouding temperature (T(clouding)) of the sample remained essentially the same. These transitions and the tunability of T(sol-gel) originated from the thermosensitive properties of two blocks of the diblock copolymer and the pH dependence of the LCST of P(DEGEA-co-AA), which were confirmed by dynamic light scattering and differential scanning calorimetry studies. Using the vial inversion test method, we mapped out the C-shaped sol-gel phase diagrams of the diblock copolymer in aqueous buffers in the moderate concentration range at three different pH values (3.24, 5.58, and 5.82, all measured at ~0 °C). While the upper temperature boundaries overlapped, the lower temperature boundary shifted upward and the critical gelation concentration increased with the increase of pH. The AA content in PTEGMA-b-P(DEGEA-co-AA) was found to have a significant

  16. Emulsion Polymerization of Etyl Acrylate: The Effect of Surfactant, Initiator Concentration and PolymerizationTechnique on Particle Size Distribution

    Directory of Open Access Journals (Sweden)

    Nitri Arinda

    2009-04-01

    Full Text Available Emulsion polymerization was conducted using ethyl acrylate monomer. Theeffect of sodium lauryl sulfate concentration, ammonium persulfate concentration, the various of polymerizationtechniques and feeding time to the conversion, particle size and its distribution were observed. The purpose of thisresearch is to obtain the optimum condition of ethyl acrylate homopolymer with particle size around 100 nm, to get theparticle size distribution monodisperse and to get solid content value of the experiment closed to its theoretical value.The optimum condition then could be applied in shell polymerization of core-shell polymers. The results of the researchshowed that semicontinuous technique obtained optimum sodium lauryl sulfate concentration at 20 CMC (criticalmicelle concentration and ammonium persulfate concentration is 3%. By using batch technique that the biggestparticle size is 123 nm with conversion 95.8% and monodisperse. The shorter of feeding time the more monomer ofethyl acrylate being polymerized, it is showed by the higher conversion up to 94.4% and the bigger particle size is107.9 nm.

  17. Chemical modification of magnetite nanoparticles and preparation of acrylic-base magnetic nanocomposite particles via miniemulsion polymerization

    Science.gov (United States)

    Mahdieh, Athar; Mahdavian, Ali Reza; Salehi-Mobarakeh, Hamid

    2017-03-01

    Nowadays, magnetic nanocomposite particles have attracted many interests because of their versatile applications. A new method for chemical modification of Fe3O4 nanoparticles with polymerizable groups is presented here. After synthesis of Fe3O4 nanoparticles by co-precipitation method, they were modified sequentially with 3-aminopropyl triethoxysilane (APTES), acryloyl chloride (AC) and benzoyl chloride (BC) and all were characterized by FTIR, XRD, SEM and TGA analyses. Then the modified magnetite nanoparticles with unsaturated acrylic groups were copolymerized with methyl methacrylate (MMA), butyl acrylate (BA) and acrylic acid (AA) through miniemulsion polymerization. Although several reports exist on preparation of magnetite-base polymer particles, but the efficiency of magnetite encapsulationwith reasonable content and obtaining final stable latexes with limited aggregation ofFe3O4 are still important issues. These were considered here by controlling reaction parameters. Hence, a seriesofmagneticnanocomposites latex particlescontaining different amounts of Fe3O4 nanoparticles (0-10 wt%) were prepared with core-shell morphology and diameter below 200 nm and were characterized by FT-IR, DSC and TGA analyses. Their morphology and size distribution were studied by SEM, TEM and DLS analyses too. Magnetic properties of all products were also measuredby VSM analysis and the results revealed almost superparamagnetic properties for the obtained nanocomposite particles.

  18. SYNTHESIS OF POLYACRYLAMIDE WITH PENDANT POLY(BUTYL ACRYLATE) CHAINS USING THE MACROMER TECHNIQUE AND STUDIES ON THEIR PROPERTIES

    Institute of Scientific and Technical Information of China (English)

    Hong-quan Xie; Gui-ying Liao; Yu Gao

    2004-01-01

    An amphiphilic graft polymer, (PAM-g-PBA), polyacrylamide (PAM) having poly(n-butyl acrylate) (PBA) side chains, was obtained by radical copolymerization of acrylamide with PBA macromer in solution. The macromer was synthesized by free radical polymerization of butyl acrylate in the presence of different amounts of thioglycolic acid as the chain transfer agent, followed by termination with glycidyl methacrylate. The reactivity ratio and effects of copolymerization conditions on the conversion of macromer or grafting efficiency were studied. The crude products were purified by extraction with toluene and water successively. Thc purified graft copolymer was characterized by IR, DSC and TEM. PAM-g-PBA can bring about microphase separation and exhibits good emulsifying properties and water absorbency. PAM-g-PBA exhibits a very good compatibilizing effect on the acrylic rubber/poly(vinyl chloride) blends. 2%-3% of the graft copolymer is enough for enhancing the tensile strength of the blends. The tensile strength of the blends is more than twice that without the compatibilizer. DSC and SEM demonstrated the enhancement of compatibility in the presence of the graft copolymer.

  19. Analysis of Mechanical and Thermogravimetric Properties of Composite Materials Based on PVA/MWCNT and Styrene-Acrylic Copolymer/MWCNT

    Science.gov (United States)

    Volynets, N. I.; Poddubskaya, O. G.; Demidenko, M. I.; Lyubimov, A. G.; Kuzhir, P. P.; Suslyaev, V. I.; Pletnev, M. A.; Zicans, Janis

    2017-08-01

    Mechanical and thermogravimetric properties of polymer composite materials with various concentrations of multiwalled carbon nanotubes effectively shielding radiation in the radio frequency (20 Hz - 1 MHz) and microwave (26-36 GHz) frequency ranges are studied. As a matrix, widely available polymeric materials, such as polyvinyl acetate and styrene-acrylate, were used in the form of dispersions. From the analysis of the obtained experimental data, it was shown that the introduction of carbon nanotubes into the polymer matrix makes it possible to increase mechanical properties and thermal stability of composite materials.

  20. Advances in acrylic-alkyd hybrid synthesis and characterization

    Science.gov (United States)

    Dziczkowski, Jamie

    2008-10-01

    In situ graft acrylic-alkyd hybrid resins were formed by polymerizing acrylic and acrylic-mixed monomers in the presence of alkyds by introduction of a free radical initiator to promote graft formation. Two-dimensional NMR, specifically gradient heteronuclear multiple quantum coherence (gHMQC), was used to clarify specific graft sites of the hybrid materials. Both individual and mixed-monomer systems were produced to determine any individual monomer preferences and to model current acrylic-alkyd systems. Different classes of initiators were used to determine any initiator effects on graft location. The 2D-NMR results confirm grafting at doubly allylic hydrogens located on the fatty acid chains and the polyol segment of the alkyd backbone. The gHMQC spectra show no evidence of grafting across double bonds on either pendant fatty acid groups or THPA unsaturation sites for any of the monomer or mixed monomer systems. It was also determined that choice of initiator has no effect on graft location. In addition, a design of experiments using response surface methodology was utilized to obtain a better understanding of this commercially available class of materials and relate both the chemical and physical properties to one another. A Box-Behnkin design was used, varying the oil length of the alkyd phase, the degree of unsaturation in the polyester backbone, and acrylic to alkyd ratio. Acrylic-alkyd hybrid resins were reduced with an amine/water mixture. Hydrolytic stability was tested and viscoelastic properties were obtained to determine crosslink density. Cured films were prepared and basic coatings properties were evaluated. It was found that the oil length of the alkyd is the most dominant factor for final coatings properties of the resins. Acrylic to alkyd ratio mainly influences the resin properties such as acid number, average molecular weight, and hydrolytic stability. The degree of unsaturation in the alkyd backbone has minimal effects on resin and film

  1. Characterization of cure in model photocrosslinking acrylate systems: Relationships among tensile properties, Tg and ultraviolet dose

    Energy Technology Data Exchange (ETDEWEB)

    Rakas, M.A. [Loctite Corp., Rocky Hill, CT (United States)

    1996-10-01

    The extent of cure of a thermosetting polymer is governed largely by polymerization kinetics and the difference between the polymerization temperature and the material`s ultimate glass transition temperature (Tg). For prepolymers which cure when exposed to ultraviolet (UV) radiation, other factors which strongly determine the extent of cure are the UV intensity and exposure time, and the interrelationship between the optical absorbance of the photoinitiator (PI) and the rate of formation of excited state PI radicals. Beers` Law can be used to understand the relationship between the PI`s molar absorptivity, its concentration, and adhesive film thickness. Many adhesives users are more concerned with bulk properties such as tensile modulus and Tg rather than a numerical measurement of degree of cure. Therefore, this research employed model acrylate formulations and determined changes in tensile properties and Tg as a function of film thickness and UV dose. These results enabled correlation of bulk and photoinitiator properties.

  2. Carbon nanotubes and carbon onions for modification of styrene-acrylate copolymer based nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Merijs-Meri, Remo; Zicans, Janis; Ivanova, Tatjana; Bitenieks, Juris [Institute of Polymer Materials, Riga Technical University, Azenes street 14/24, LV-1048, Riga (Latvia); Kuzhir, Polina; Maksimenko, Sergey [Institute of Nuclear Problems, Belarus State University, Bobruiskaya str. 11, 220030, Minsk (Belarus); Kuznetsov, Vladimir; Moseenkov, Sergey [Boreskov Institute of Catalyst Siberian branch of RAS, pr. Lavrentieva 5, 630090, Novosibirsk (Russian Federation)

    2014-05-15

    Styrene acrylate polymer (SAC) nanocomposites with various carbon nanofillers (multiwalled carbon nanotubes MWCNTs and onion like carbon OLC) are manufactured by means of latex based routes. Concentration of the carbon nanofillers is changed in a broad interval starting from 0.01 up to 10 wt. %. Elastic, dielectric and electromagnetic properties of SAC nanocomposites are investigated. Elastic modulus, electrical conductivity and electromagnetic radiation absorption of the investigated SAC nanocomposites increase along with rising nanofiller content. The effect of the addition of anisometric MWCNTs on the elastic properties of the composite is higher than in the case of the addition of OLC. Higher electrical conductivity of the OLC containing nanocomposites is explained with the fact that reasonable agglomeration of the nanofiller can promote the development of electrically conductive network. Efficiency of the absorption of electromagnetic radiation depends on the development of conductive network within the SAC matrix.

  3. Dielectric properties of solution-grown-undoped and acrylic-acid-doped ethyl cellulose

    Indian Academy of Sciences (India)

    P K Khare; Sandeep K Jain

    2000-02-01

    Dielectric capacities and losses were measured, in the temperature (50–170°C) and frequency (01–100 kHz range), for undoped and acrylic acid (AA) doped ethyl cellulose (EC) films (thickness about 20 m) with progressive increase in the concentration of dopant in the polymer matrix. The variation of capacity with temperature is attributed to thermal expansion in the lower temperature region to the orientation of dipolar molecules in the neighbourhood of glass transition temperature () and random thermal motion of molecules above . The dielectric losses exhibit a broad peak. Doping with AA is found to affect the magnitude and position of the peak. AA is found to have a two-fold action. Firstly, it enhances the chain mobility and secondly, it increases the dielectric loss by forming charge transfer complexes.

  4. Linear Viscoelasticity of Spherical SiO 2 Nanoparticle-Tethered Poly(butyl acrylate) Hybrids

    KAUST Repository

    Goel, Vivek

    2010-12-01

    The melt state linear viscoelastic properties of spherical silica nanoparticles with grafted poly(n-butyl acrylate) chains of varying molecular weight were probed using linear small amplitude dynamic oscillatory measurements and complementary linear stress relaxation measurements. While the pure silica-tethered-polymer hybrids with no added homopolymer exhibit solid-like response, addition of matched molecular weight free matrix homopolymer chains to this hybrid, at low concentrations of added homopolymer, maintains the solid-like response with a lowered modulus that can be factored into a silica concentration dependence and a molecular weight dependence. While the silica concentration dependence of the modulus is strong, the dependence on molecular weight is weak. On the other hand, increasing the amount of added homopolymer changes the viscoelastic response to that of a liquid with a relaxation time that scales exponentially with hybrid concentration. © 2010 American Chemical Society.

  5. Loading rate effects on the fracture of Ni/Au nano-coated acrylic particles

    Directory of Open Access Journals (Sweden)

    Z. L. Zhang

    2012-03-01

    Full Text Available Mechanical failure of monodisperse Ni/Au coated acrylic particles has been investigated by individual compression tests using nanoindentation-based technique equipped with a flat diamond punch. We have found that both fracture property and morphology of particles depend on the compression loading rate. The breaking strain of the metal coating decreases with increasing loading rate, while the breaking stress increases. Two obvious fracture patterns with cracking in meridian or latitude direction are identified according to the loading rate, and attributed respectively to tension- or bendingdominated deformation of the coating. The findings reported here give a significant guiding to the manufacture design of metal coated polymer particles for Anisotropic Conductive Adhesive (ACA packaging.

  6. Bonding durability between acrylic resin adhesives and titanium with surface preparations.

    Science.gov (United States)

    Yanagida, Hiroaki; Minesaki, Yoshito; Matsumura, Kousuke; Tanoue, Naomi; Muraguchi, Koichi; Minami, Hiroyuki

    2017-01-31

    The purpose of the present study was to evaluate the efficacy of pretreatment on the bonding durability between titanium casting and two acrylic adhesives. Cast titanium disk specimens treated with four polymer-metal bonding systems as follow: 1) air-abraded with 50-70 μm alumina, 2) 1)+Alloy Primer, 3) 1)+M.L. Primer and 4) tribochemical silica/silane coating system (Rocatec System). The specimens were bonded with M bond or Super-bond C&B adhesive. The shear bond strengths were determined before and after thermocycling (20,000 cycles). The surface characteristics after polishing, and for the 1) and 4) preparations were determined. The bond strengths for all combinations significantly decreased after thermocycling. The combination of Super-bond C&B adhesive and 2) led to significantly higher bond strength than the other preparations after thermocycling. The maximum height of the profile parameters for the polishing group was lower than other preparations.

  7. Free Volume Structure of Acrylic-Type Dental Nanocomposites Tested with Annihilating Positrons

    Science.gov (United States)

    Shpotyuk, Olha; Ingram, Adam; Shpotyuk, Oleh

    2016-11-01

    Positron annihilation spectroscopy in lifetime measuring mode exploring conventional fast-fast coincidence ORTEC system is employed to characterize free volume structure of commercially available acrylic-type dental restorative composite Charisma® (Heraeus Kulzer GmbH, Germany). The measured lifetime spectra for uncured and light-cured composites are reconstructed from unconstrained x3-term fitting and semi-empirical model exploring x3-x2-coupling decomposition algorithm. The governing channel of positron annihilation in the composites studied is ascribed to mixed positron-Ps trapping, where Ps decaying in the third component is caused entirely by input from free-volume holes in polymer matrix, while the second component is defined by free positron trapping in interfacial free-volume holes between filler nanoparticles and surrounded polymer matrix. Microstructure scenario of the photopolymerization shrinkage includes cross-linking of structural chains in polymer matrix followed by conversion of bound positron-electron (positronium) traps in positron-trapping interfacial free-volume voids in a vicinity of agglomerated filler nanoparticles.

  8. A MORPHOLOGICAL STUDY OF POLY(DIVINYLBENZENE-co-ACRYLIC ACID) IN CROSSLINKING PRECIPITATION POLYMERIZATION

    Institute of Scientific and Technical Information of China (English)

    Feng Bai; Xin-lin Yang; Wen-qiang Huang

    2006-01-01

    Divinylbenzene-80 (DVB-80) and polar monomer acrylic acid (AA) having hydrogen bonding at a total monomer loading of 5 vol% were precipitated-copolymerized in a variety of organic solvents with 2,2'-azobis(isobutyronitrile) (AIBN) as initiator. The experiments were investigated from a two-dimensional matrix, i.e., the actual crosslinking degree of DVB varying from 0 to 80% and the solvent composition varying from 0 to 100% of toluene mixture with acetonitrile, when the mixture of acetonitrile and toluene was used as the reaction solvent. Under various reaction conditions, six distinct morphologies including soluble polymers, swellable microgels, coagulum, irregular microparticles, and nano-/micrometer microspheres were formed and the structures of these polymer architectures were described. A morphological map was utilized to discuss the effects of both crosslinking degree of DVB and composition of solvent on the transitions between morphology domains. The results demonstrated that the microspheres are formed by an internal contraction due to the marginal solvency of the continuous phase and the crosslinking of the polymer network through the covalent bonding from DVB as well as the interchain hydrogen-bonding between the carboxylic acid units.

  9. Design and Characterization of Diclofenac Diethylamine Transdermal Patch using Silicone and Acrylic Adhesives Combination

    Directory of Open Access Journals (Sweden)

    Dandigi M Panchaxari

    2013-01-01

    Full Text Available Background and purpose of the studyThe objective of the study was to develop and characterize Diclofenac Diethylamine (DDEA transdermal patch using Silicone and acrylic adhesives combination.MethodsModified solvent evaporation method was employed for casting of film over Fluoropolymer coated polyester release liner. Initial studies included solubilization of drug in the polymers using solubilizers. The formulations with combination of adhesives were attempted to combine the desirable features of both the adhesives. The effect of the permeation enhancers on the drug permeation were studied using pig ear skin. All the optimized patches were subjected to adhesion, dissolution and stability studies. A 7-day skin irritancy test on albino rabbits and an in vivo anti-inflammatory study on wistar rats by carrageenan induced paw edema method were also performed.ResultsThe results indicated the high percent drug permeation (% CDP-23.582 and low solubility nature (1% of Silicone adhesive and high solubility (20% and low% CDP (10.72% of acrylic adhesive. The combination of adhesives showed desirable characteristics for DDEA permeation with adequate% CDP and sufficient solubility. Release profiles were found to be dependent on proportion of polymer and type of permeation enhancer. The anti-inflammatory study revealed the sustaining effect and high percentage inhibition of edema of C4/OLA (99.68%. The acute skin irritancy studies advocated the non-irritant nature of the adhesives used.ConclusionIt was concluded that an ideal of combination of adhesives would serve as the best choice, for fabrication of DDEA patches, for sustained effect of DDEA with better enhancement in permeation characteristics and robustness.

  10. Design and characterization of diclofenac diethylamine transdermal patch using silicone and acrylic adhesives combination.

    Science.gov (United States)

    Panchaxari, Dandigi M; Pampana, Sowjanya; Pal, Tapas; Devabhaktuni, Bhavana; Aravapalli, Anil Kumar

    2013-01-07

    The objective of the study was to develop and characterize Diclofenac Diethylamine (DDEA) transdermal patch using Silicone and acrylic adhesives combination. Modified solvent evaporation method was employed for casting of film over Fluoropolymer coated polyester release liner. Initial studies included solubilization of drug in the polymers using solubilizers. The formulations with combination of adhesives were attempted to combine the desirable features of both the adhesives. The effect of the permeation enhancers on the drug permeation were studied using pig ear skin. All the optimized patches were subjected to adhesion, dissolution and stability studies. A 7-day skin irritancy test on albino rabbits and an in vivo anti-inflammatory study on wistar rats by carrageenan induced paw edema method were also performed. The results indicated the high percent drug permeation (% CDP-23.582) and low solubility nature (1%) of Silicone adhesive and high solubility (20%) and low% CDP (10.72%) of acrylic adhesive. The combination of adhesives showed desirable characteristics for DDEA permeation with adequate % CDP and sufficient solubility. Release profiles were found to be dependent on proportion of polymer and type of permeation enhancer. The anti-inflammatory study revealed the sustaining effect and high percentage inhibition of edema of C4/OLA (99.68%). The acute skin irritancy studies advocated the non-irritant nature of the adhesives used. It was concluded that an ideal of combination of adhesives would serve as the best choice, for fabrication of DDEA patches, for sustained effect of DDEA with better enhancement in permeation characteristics and robustness.

  11. Design and characterization of diclofenac diethylamine transdermal patch using silicone and acrylic adhesives combination

    Directory of Open Access Journals (Sweden)

    Panchaxari Dandigi M

    2013-01-01

    Full Text Available Abstract Background and purpose of the study The objective of the study was to develop and characterize Diclofenac Diethylamine (DDEA transdermal patch using Silicone and acrylic adhesives combination. Methods Modified solvent evaporation method was employed for casting of film over Fluoropolymer coated polyester release liner. Initial studies included solubilization of drug in the polymers using solubilizers. The formulations with combination of adhesives were attempted to combine the desirable features of both the adhesives. The effect of the permeation enhancers on the drug permeation were studied using pig ear skin. All the optimized patches were subjected to adhesion, dissolution and stability studies. A 7-day skin irritancy test on albino rabbits and an in vivo anti-inflammatory study on wistar rats by carrageenan induced paw edema method were also performed. Results The results indicated the high percent drug permeation (% CDP-23.582 and low solubility nature (1% of Silicone adhesive and high solubility (20% and low% CDP (10.72% of acrylic adhesive. The combination of adhesives showed desirable characteristics for DDEA permeation with adequate % CDP and sufficient solubility. Release profiles were found to be dependent on proportion of polymer and type of permeation enhancer. The anti-inflammatory study revealed the sustaining effect and high percentage inhibition of edema of C4/OLA (99.68%. The acute skin irritancy studies advocated the non-irritant nature of the adhesives used. Conclusion It was concluded that an ideal of combination of adhesives would serve as the best choice, for fabrication of DDEA patches, for sustained effect of DDEA with better enhancement in permeation characteristics and robustness.

  12. Leakage current and stability of acrylic elastomer subjected to high DC voltage

    Science.gov (United States)

    Hammami, S.; Jean-Mistral, C.; Jomni, F.; Gallot-Lavallée, O.; Rain, P.; Yangui, B.; Sylvestre, A.

    2015-04-01

    Dielectric elastomers such as 3M VHB4910 acrylate film have been widely used for electromechanical energy conversion such as actuators, sensors and generators, due to their lightweight, high efficiency, low cost and high energy density. Mechanical and electric properties of such materials have been deeply investigated according to various parameters (temperature, frequency, pre-stress, nature of the compliant electrodes…). Models integrating analytic laws deduced from experiments increase their accuracy. Nevertheless, leakage current and electrical breakdown reduce the efficiency and the lifetime of devices made with these polymers. These two major phenomena are not deeply investigated in the literature. Thus, this paper describes the current-voltage characteristics of acrylate 3M VHB4910 and investigates the stability of the current under high electric field (kV) for various temperatures (from 20°C to 80°C) and over short (300 s) and long (12h) periods. Experimental results show that, with gold electrodes at ambient temperature, the current decreases with time to a stable value corresponding to the conduction current. This decrease occurs during 6 hours, whereas in the literature values of current at short time (less than 1 hour) are generally reported. This decrease can be explained by relaxations mechanisms in the polymer. Schottky emission and Poole-Frenkel emission are both evaluated to explain the leakage current. It emerges from this study that the Schottky effect constitutes the main mechanism of electric current in the 3M VHB4910. For high temperatures, the steady state is reached quickly. To end, first results on the leakage current changes for pre-stretch VHB4910 complete this study.

  13. Determination of gelation doses of gamma-irradiated hydrophilic polymers by different methods

    Science.gov (United States)

    Yiǧit, Fatma; Tekin, Niket; Erkan, Sevin; Güven, Olgun

    1994-04-01

    Poly(acrylic acid) and poly(vinyl pyrrolidone) are hydrophilic polymers. Poly(acrylic acid) is a polyelectrolyte which ionizes in water to produce an electrically conducting medium. Therefore, the gelation dose of poly(acrylic acid) can be determined by conductometric titration, simple titration and the measurement of pH. The conventional techniques of determining gelation dose are very time and material consuming especially for poly(acrylic acid) and subject to serious errors due to its electrolytic behavior. In this study, it has been shown that the gelation dose of poly(acrylic acid) can be determined by conductimetric and titrimetric methods with NaOH and measuring pH of aqueous solution of γ-irradiated polymer. In order to develop new, simpler and rapid methods for the determination of gelation dose of PVP, its complexation with gallic acid in dilute aqueous solution has been used. The complex formation between gallic acid and irradiated PVP in aqueous solutions is followed by UV-vis spectroscopy. The reliability of the dose value found, 120 kGy for poly(acrylic acid) and 140 kGy for poly(vinyl pyrrolidone), are also verified by viscometric and solubility measurements.

  14. Biodegradable Polymers

    Directory of Open Access Journals (Sweden)

    Isabelle Vroman

    2009-04-01

    Full Text Available Biodegradable materials are used in packaging, agriculture, medicine and other areas. In recent years there has been an increase in interest in biodegradable polymers. Two classes of biodegradable polymers can be distinguished: synthetic or natural polymers. There are polymers produced from feedstocks derived either from petroleum resources (non renewable resources or from biological resources (renewable resources. In general natural polymers offer fewer advantages than synthetic polymers. The following review presents an overview of the different biodegradable polymers that are currently being used and their properties, as well as new developments in their synthesis and applications.

  15. Polymer electronics

    CERN Document Server

    Hsin-Fei, Meng

    2013-01-01

    Polymer semiconductor is the only semiconductor that can be processed in solution. Electronics made by these flexible materials have many advantages such as large-area solution process, low cost, and high performance. Researchers and companies are increasingly dedicating time and money in polymer electronics. This book focuses on the fundamental materials and device physics of polymer electronics. It describes polymer light-emitting diodes, polymer field-effect transistors, organic vertical transistors, polymer solar cells, and many applications based on polymer electronics. The book also disc

  16. Clinical Aspects of Combination of Ceramic and Acrylic Occlusal Surfaces

    Directory of Open Access Journals (Sweden)

    Z. Ozhohan

    2017-03-01

    Full Text Available The objective of the research was to develop and substantiate the methods of constructing the occlusal surfaces when manufacturing aesthetic fixed restorations through the combination of different materials. Materials and methods. The study included 65 patients with ceramic and acrylic occlusal surfaces of aesthetic fixed dental prostheses. Group I included 21 patients with a combination of ceramic and acrylic occlusal surfaces. Group II included 22 patients with a combination of ceramic occlusal surfaces. Group III included 22 patients with a combination of acrylic occlusal surfaces. The patients were observed 3, 6 and 12 months after prosthetic repair. Results. The greatest increase in the occlusal contact surface area of fixed restorations was observed in Group I, that is, when combining dental prostheses with ceramic and acrylic occlusal surfaces. Considering uneven abrasion of the occlusal surfaces, we do not recommend to combine different materials when veneering the occlusal surface of the antagonistic teeth. Conclusions. This study demonstrated the important role of the correct combination of materials when veneering the occlusal surfaces. Physical and chemical properties of materials, namely the abrasion resistance play a significant role in the long-term denture functioning. The smallest increase in the occlusal contact surface area was observed in Group II when combining ceramic occlusal surfaces. It was due to a good abrasion resistance of ceramics as compared to acrylic resin as well as the presence of the glazed layer which prevents the premature abrasion of the occlusal surfaces of the antagonistic teeth due to lower surface roughness. The combination of acrylic resin and ceramics when constructing the occlusal surfaces of fixed restorations in Group I demonstrated the highest rate of the increase in the occlusal contact surface area – 9.93%. It was due to a low hardness of acrylic resin and its high surface roughness. In

  17. Stainless steel grafting of hyperbranched polymer brushes with an antibacterial activity: synthesis, characterization, and properties.

    Science.gov (United States)

    Ignatova, Milena; Voccia, Samule; Gabriel, Sabine; Gilbert, Bernard; Cossement, Damien; Jerome, Robert; Jerome, Christine

    2009-01-20

    Two strategies were used for the preparation of hyperbranched polymer brushes with a high density of functional groups: (a) the cathodic electrografting of stainless steel by poly[2-(2-chloropropionate)ethyl acrylate] [poly(cPEA)], which was used as a macroinitiator for the atom transfer radical polymerization of an inimer, 2-(2-bromopropionate)ethyl acrylate in the presence or absence of heptadecafluorodecyl acrylate, (b) the grafting of preformed hyperbranched poly(ethyleneimine) onto poly(N-succinimidyl acrylate) previously electrografted onto stainless steel. The hyperbranched polymer, which contained either bromides or amines, was quaternized because the accordingly formed quaternary ammonium or pyridinium groups are known for antibacterial properties. The structure, chemical composition, and morphology of the quaternized and nonquaternized hyperbranched polymer brushes were characterized by ATR-FTIR reflectance, Raman spectroscopy, X-ray photoelectron spectroscopy, and atomic force microscopy. The peeling test confirmed that the grafted hyperbranched polymer films adhered much more strongly to stainless steel than the nongrafted solvent-cast films. The quaternized hyperbranched polymer brushes were more effective in preventing both protein adsorption and bacterial adhesion than quaternary ammonium containing poly(cPEA) primary films, more likely because of the higher hydrophilicity and density of cationic groups.

  18. Mechanical properties of a waterborne pressure-sensitive adhesive with a percolating poly(acrylic acid)-based diblock copolymer network: effect of pH.

    Science.gov (United States)

    Gurney, Robert S; Morse, Andrew; Siband, Elodie; Dupin, Damien; Armes, Steven P; Keddie, Joseph L

    2015-06-15

    Copolymerizing an acrylic acid comonomer is often beneficial for the adhesive properties of waterborne pressure-sensitive adhesives (PSAs). Here, we demonstrate a new strategy in which poly(acrylic acid) (PAA) is distributed as a percolating network within a PSA film formed from a polymer colloid. A diblock copolymer composed of PAA and poly(n-butyl acrylate) (PBA) blocks was synthesized using reversible addition-fragmentation chain transfer (RAFT) polymerization and adsorbed onto soft acrylic latex particles prior to their film formation. The thin adsorbed shells on the particles create a percolating network that raises the elastic modulus, creep resistance and tensile strength of the final film. When the film formation occurs at pH 10, ionomeric crosslinking occurs, and high tack adhesion is obtained in combination with high creep resistance. The results show that the addition of an amphiphilic PAA-b-PBA diblock copolymer (2.0 wt.%) to a soft latex provides a simple yet effective means of adjusting the mechanical and adhesive properties of the resulting composite film.

  19. Preparing high-density polymer brushes by mechanically assisted polymer assembly (MAPA)

    Science.gov (United States)

    Wu, Tao; Efimenko, Kirill; Genzer, Jan

    2001-03-01

    We introduce a novel method of modifying the surface properties of materials. This technique, called MAPA (="mechanically assisted polymer assembly"), is based on: 1) chemically attaching polymerization initiators to the surface of an elastomeric network that has been previously stretched by a certain length, Δx, and 2) growing end-anchored macromolecules using surface initiated ("grafting from") atom transfer living radical polymerization. After the polymerization, the strain is removed from the substrate, which returns to its original size causing the grafted macromolecules to stretch away from the substrate and form a dense polymer brush. We demonstrate the feasibility of the MAPA method by preparing high-density polymer brushes of poly(acryl amide), PAAm. We show that, as expected, the grafting density of the PAAm brushes can be increased by increasing Δx. We demonstrate that polymer brushes with extremely high grafting densities can be successfully prepared by MAPA.

  20. Effect of time and temperature exposition in the crystallinity degree of sulfonated poly-(styrene acrylic acid) (PSAA-S)

    Energy Technology Data Exchange (ETDEWEB)

    Duarte, G.W.; Becker, E.B.; Silva, L.; Naspolini, A.M.; Consenso, E.C.; Paula, M.M.S.; Fiori, M.A., E-mail: glau_bn@hotmail.co [University of Extreme South of Santa Catarina Criciuma, SC (Brazil). Dept. of Materials Engineering; Silveira, F.Z. [Federal University of Santa Catarina (UFSC), Florianopolis, SC (Brazil). Dept. of Chemical Engineering

    2010-07-01

    Polymers with special properties have been increasingly applied in the development of technological devices. For example, polymeric materials with special electric properties, such as sulfonated poly-(styrene-acrylic acid) - PSAA-S, are of great interest for showing different conductivities depending on the environment where they are applied. The special properties of PSAA are obtained only after sulfonation step in acidic media. The present work aimed to evaluate the effect of time and temperature exposition in the crystallinity degree of PSAA-S, through a statistical experimental factorial planning. The samples of PSAA-S were submitted to FT-IR and DRX tests. The results showed that the temperature and the time of exposition are significant factors in the crystallinity degree of PSAA-S, considering that the crystal lattices created during the polymerization are damaged by the action of time and temperature at which the polymer is exposed. (author)

  1. Synthesis, characterization and electrical properties of Fe3O4/poly(vinyl alcohol-co-acrylic acid) nanocomposites

    Science.gov (United States)

    P, Jayakrishnan; Ramesan, M. T.

    2014-10-01

    This work focused on the synthesis of magnetite (Fe3O4)/poly(vinyl alcohol-co-acrylic acid) nanocomposite by in situ polymerization. The composite were characterized by FT-IR spectroscopy, XRD, SEM, TGA, AC and DC conductivity measurements. The spectroscopic studies revealed the molecular interaction between the polymer and nanocomposites. SEM, XRD indicated the uniform dispersion of nanoparticle inside the molecular chain of copolymer. TGA studies indicated the excellent thermal stability of copolymer nanocomposites. AC and DC conductivity of nanocomposites were higher than that of the copolymer and conductivity values were significantly increased with increase in concentration of metal oxide nanoparticles. These properties suggest that the polymer composite can be used as multifunctional material for nanoelectronics.

  2. Large deformation micromechanics of particle filled acrylics at elevated temperatures

    Science.gov (United States)

    Gunel, Eray Mustafa

    The main aim of this study is to investigate stress whitening and associated micro-deformation mechanism in thermoformed particle filled acrylic sheets. For stress whitening quantification, a new index was developed based on image histograms in logarithmic scale of gray level. Stress whitening levels in thermoformed acrylic composites was observed to increase with increasing deformation limit, decreasing forming rate and increasing forming temperatures below glass transition. Decrease in stress whitening levels above glass transition with increasing forming temperature was attributed to change in micro-deformation behavior. Surface deformation feature investigated with scanning electron microscopy showed that source of stress whitening in thermoformed samples was a combination of particle failure and particle disintegration depending on forming rate and temperature. Stress whitening level was strongly correlated to intensity of micro-deformation features. On the other hand, thermoformed neat acrylics displayed no surface discoloration which was attributed to absence of micro-void formation on the surface of neat acrylics. Experimental damage measures (degradation in initial, secant, unloading modulus and strain energy density) have been inadequate in describing damage evolution in successive thermoforming applications on the same sample at different levels of deformation. An improved version of dual-mechanism viscoplastic material model was proposed to predict thermomechanical behavior of neat acrylics under non-isothermal conditions. Simulation results and experimental results were in good agreement and failure of neat acrylics under non-isothermal conditions ar low forming temperatures were succesfully predicted based on entropic damage model. Particle and interphase failure observed in acrylic composites was studied in a multi-particle unit cell model with different volume fractions. Damage evolution due to particle failure and interphase failure was simulated

  3. Preparation and properties of acrylic acid grafted starch based UV-curing degradable superabsorbent polymer%丙烯酸接枝淀粉基可降解紫外光固化高吸水性树脂的制备与性能

    Institute of Scientific and Technical Information of China (English)

    贺倩; 郭文迅

    2011-01-01

    A degradable superabsorbent resin was prepared by acrylic acid grafted starch with unsaturated polyester-urea amide as a cross-linking agent,a membrane was prepared by the resin,in the condition of UV-curing without adding any photo-initiator.The influence of absorbency rate of the resin,the dosage of cross-linking agent and the UV-curing time on the absorbency were discussed.The results showed that the product had good absorbency ability to different solutions,and the absorbency rate was the fast.Water absorbency in distilled water,tap water,0.9% NaCl,0.9% KC1 solution were 905,350,100,120 g/g,respectively.Moreover,water absorbency in distilled water can reach 200 g/g in 10 min.The degradation originate from surface and evolve towards inside gradually.%以丙烯酸接枝淀粉为基体,不饱和聚酯酰胺脲树脂为交联剂制备出一种可降解高吸水性树脂,该树脂小加任何光引发剂即可紫外光固化成膜.研究了树脂的吸水速率及交联剂的加入量、光同化时间对产品吸水率的影响.结果表明,该高吸水性树脂对不同溶液均具有较好的吸收能力,吸水速度较快,在蒸馏水、自来水、0.9%NaCl溶液、0.9%KCl溶液中的吸水率分别为905,350,100,120g/g;10 min内对蒸馏水的吸收倍率达200 g.该高吸水性树脂的降解从表面开始,逐渐向里面降解.

  4. Impact Delamination and Fracture in Aluminum/Acrylic Sandwich Plates

    Science.gov (United States)

    Liaw, Benjamin; Zeichner, Glenn; Liu, Yanxiong; Bowles, Kenneth J. (Technical Monitor)

    2000-01-01

    Impact-induced delamination and fracture in 6061-T6 aluminum/cast acrylic sandwich plates adhered by epoxy were generated in an instrumented drop-weight impact machine. Although only a small dent was produced on the aluminum side when a hemispherical penetrator tup was dropped onto it from a couple of inches, a large ring of delamination at the interface was observed. The delamination damage was often accompanied by severe shattering in the acrylic substratum. Damage patterns in the acrylic layer include radial and ring cracks and, together with delamination at the interface, may cause peeling-off of acrylic material from the sandwich plate. Theory of stress-wave propagation can be used to explain these damage patterns. The impact tests were conducted at various temperatures. The results also show clearly that temperature effect is very important in impact damage. For pure cast acrylic nil-ductile transition (NDT) occurs between 185-195 F. Excessive impact energy was dissipated into fracture energy when tested at temperature below this range or through plastic deformation when tested at temperature above the NDT temperature. Results from this study will be used as baseline data for studying fiber-metal laminates, such as GLARE and ARALL for advanced aeronautical and astronautical applications.

  5. Acrylic Resin Cytotoxicity for Denture Base--Literature Review.

    Science.gov (United States)

    Goiato, Marcelo C; Freitas, Emily; dos Santos, Daniela; de Medeiros, Rodrigo; Sonego, Mariana

    2015-01-01

    Acrylic resin is a widely used material in clinical practice, and a satisfactory biocompatibility is essential. When the resin polymerization reaction is incomplete, residual monomers are released into the oral cavity. The aim of this study was to evaluate, through a literature review, the cytotoxicity caused by the denture base acrylic resin used, and its components. The selection of published studies was performed on the Pubmed database from January 2008 to July 2013. The keywords used were: "cytotoxicity and acrylic resins", "cytotoxicity and denture base resins" and "cytotoxicity and oral prosthesis". Inclusion criteria were: in vitro studies and literature reviews published in English that evaluated the acrylic resin cytotoxicity for denture base and its components. Studies with no reference to the search strategy were excluded. A total of 182 articles were found. Among these, only 13 were included for writing this review. The MTT test is the most common test used to evaluate acrylic resin cytotoxicity. Auto-polymerized resin is more cytotoxic than heat-polymerized resin because of its higher quantity of residual monomers which cause cell and tissue changes in the oral mucosa. However, more studies are necessary for the development of biocompatible materials.

  6. Synthesis and Characterization of Encapsulated Nanosilica Particles with an Acrylic Copolymer by in Situ Emulsion Polymerization Using Thermoresponsive Nonionic Surfactant

    Directory of Open Access Journals (Sweden)

    Daryoosh Vashaee

    2013-08-01

    Full Text Available Nanocomposites of encapsulated silica nanoparticles were prepared by in situ emulsion polymerization of acrylate monomers. The synthesized material showed good uniformity and dispersion of the inorganic components in the base polymer, which enhances the properties of the nanocomposite material. A nonionic surfactant with lower critical solution temperature (LCST was used to encapsulate the silica nanoparticles in the acrylic copolymer matrix. This in situ method combined the surface modification and the encapsulation in a single pot, which greatly simplified the process compared with other conventional methods requiring separate processing steps. The morphology of the encapsulated nanosilica particles was investigated by dynamic light scattering (DLS and transmission electron microscopy (TEM, which confirmed the uniform distribution of the nanoparticles without any agglomerations. A neat copolymer was also prepared as a control sample. Both the neat copolymer and the prepared nanocomposite were characterized by Fourier transform infrared spectroscopy (FTIR, thermal gravimetric analyses (TGA, dynamic mechanical thermal analysis (DMTA and the flame resistance test. Due to the uniform dispersion of the non-agglomerated nanoparticles in the matrix of the polymer, TGA and flame resistance test results showed remarkably improved thermal stability. Furthermore, DMTA results demonstrated an enhanced storage modulus of the nanocomposite samples compared with that of the neat copolymer, indicating its superior mechanical properties.

  7. Synthesis of a proline-modified acrylic acid copolymer in supercritical CO2 for glass-ionomer dental cement applications.

    Science.gov (United States)

    Moshaverinia, Alireza; Roohpour, Nima; Darr, Jawwad A; Rehman, Ihtesham U

    2009-06-01

    Supercritical (sc-) fluids (such as sc-CO(2)) represent interesting media for the synthesis of polymers in dental and biomedical applications. Sc-CO(2) has several advantages for polymerization reactions in comparison to conventional organic solvents. It has several advantages in comparison to conventional polymerization solvents, such as enhanced kinetics, being less harmful to the environment and simplified solvent removal process. In our previous work, we synthesized poly(acrylic acid-co-itaconic acid-co-N-vinylpyrrolidone) (PAA-IA-NVP) terpolymers in a supercritical CO(2)/methanol mixture for applications in glass-ionomer dental cements. In this study, proline-containing acrylic acid copolymers were synthesized, in a supercritical CO(2) mixture or in water. Subsequently, the synthesized polymers were used in commercially available glass-ionomer cement formulations (Fuji IX commercial GIC). Mechanical strength (compressive strength (CS), diametral tensile strength (DTS) and biaxial flexural strength (BFS)) and handling properties (working and setting time) of the resulting modified cements were evaluated. It was found that the polymerization reaction in an sc-CO(2)/methanol mixture was significantly faster than the corresponding polymerization reaction in water and the purification procedures were simpler for the former. Furthermore, glass-ionomer cement samples made from the terpolymer prepared in sc-CO(2)/methanol exhibited higher CS and DTS and comparable BFS compared to the same polymer synthesized in water. The working properties of glass-ionomer formulations made in sc-CO(2)/methanol were comparable and better than the values of those for polymers synthesized in water.

  8. LF-NMR study of effect the octadecylamine addition in the copolymerization process between acrylic acid and styrene monomers; Estudo por RMN de baixo campo do efeito da adicao de octadecilamina na copolimerizacao dos monomeros de acido acrilico e estireno

    Energy Technology Data Exchange (ETDEWEB)

    Pedroza, Oscar J.O.; Tavares, Maria I.B. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Macromoleculas Professora Eloisa Mano]. E-mail: oscarjop@ima.ufrj.br, mibt@ima.ufrj.br

    2005-07-01

    The copolymer content at least two monomer units that are the repetitive unities in the polymeric chains. The use of Low Field Nuclear Magnetic Resonance (LF-NMR), MARAN ultra 23, was applied to measure the proton spin-lattice relaxation time values. The process of copolymerization between the acrylic acid (A) and the styrene (S) monomers was studied with the addition of the octadecylamine (D) in the acrylic acid monomer. These materials were submitted at reflux by 24 hours. After this process the polymerization was carried out at room temperature. The values of the relaxation parameter are showed in Table 1. The co polymerizations between acrylic acid and styrene monomers were influenced by the octadecylamine addition. The results showed that an increase in the amine concentration promotes flexibility in the final material. This can be explained in terms of chains size after amine addition, which promotes an increasing in the free space among the polymer chains. (author)

  9. Transport in Porous Media of Poly(Acrylic Acid) Coated Ferrihydrite Nanoparticles

    Science.gov (United States)

    Jaffe, P. R.; Xiang, A.; Koel, B. E.

    2012-12-01

    Augmentation of soils with iron to enhance biological processes such as uranium reduction via iron reducing bacteria, e.g., Geobacter sp., might be achieved via the injection of iron nanoparticles into the subsurface. The challenge is to make these nanoparticles transportable in the subsurface while not affecting the iron bioavailability. Poorly crystallized 2-line ferrihydrite iron oxide nanoparticles were synthesized and coated with different amounts of poly(acrylic acid) polymers (Na-PAA6K or Na-PAA140K). Analyses were then performed on these particles, including sorption/desorption of the polymer onto the iron nanoparticles, particle size, zeta potential, transport in sand and soil columns, and bioavailabity of the Fe(III) in the absence and presence of the coating to iron reducing organisms. Results showed that at pH values of environmental relevance, the zeta potential of the particles varied from about 3 mV (pH=8.2) for the non-coated particles to about -30 mV for the particles coated with the polymers to their highest sorption capacity. The coated particle diameter was shown to be in the range of 200 nm. Column transport experiments showed that for the highest polymer coating the nanoparticle breakthrough was virtually identical to that of bromide, while significant filtration was observed for particles with an intermediate coating, and complete particle removal via filtration was observed for the non-coated particles. These results held for sand as well as for soil, which had been previously characterized, from a field site at Rifle, CO. Bioavailability experiments showed no difference in the iron reduction rate between the untreated and treated nanoparticles. These results show that it is possible to manufacture iron nanoparticles to enhance biological iron reduction, and that the transport properties of these treated particles is tunable so that a desired retention in the porous medium can be achieved.

  10. Poly(met)acrylates as reducers of pour point of Brazilian crude oil; Poli(met)acrilatos como redutores de ponto de fluidez de petroleo cru brasileiro

    Energy Technology Data Exchange (ETDEWEB)

    Cesar-Oliveira, Maria Aparecida Ferreira; Zawadzki, Sonia Faria [Parana Univ., Curitiba, PR (Brazil). Dept. de Quimica. Lab. de Polimeros Sinteticos (LABPOL)]. E-mail: mafco@quimica.ufpr.br; zawadzki@quimica.ufpr.br; Tabak, David [Universidade Federal, Rio de Janeiro, RJ (Brazil). Dept. de Quimica Organica. Lab. de Polimeros e Catalise (LAPOCAT)]. E-mail: dtabak@uninet.com.br; Lucas, Elizabete Fernandes [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Macromoleculas. Lab. de Macromoleculas e Coloides na Industria de Petroleo (LMCP)]. E-mail: elucas@ima.ufrj.br

    2000-07-01

    Several types of crude oil have a large amount of wax, which can crystallize, at low temperatures, reducing the oil flow. Polymeric additives are able to prevent the wax deposition and to reduce the pour point of the oil, what improves the oil flow at low temperatures. Some acrylic polymers containing C{sub 12+} pendant groups are found in the literature as efficient additives for crude oils. Nevertheless, this type of polymer has not yet been used in Brazilian crude oils. In this work, octadecyl acrylate (ODA) was synthesized by transe esterification of methyl acrylate (MA). By using these monomers, several copolymers of MA-ODA (containing different compositions and different molecular weights) were obtained by solution copolymerization. The performance of the copolymers as pour point depressants was verified by using a crude oil from Bacia de Campos, RJ, Brazil. Increasing the ODA content in the copolymer, its efficiency increases and the best results were obtained with the copolymer MA:ODA (36:64). The crude oil containing this copolymer as additive presented a pour point reduction of 26 deg C but the lower the copolymer molecular weight the worse the polymeric additive performance. (author)

  11. Solar collectors. Technical progress report No. 1, September 5, 1978-March 5, 1979. [Listing of glazings, housing materials, acrylic coatings, etching processes and AR coatings

    Energy Technology Data Exchange (ETDEWEB)

    Baum, B.; Gage, M.

    1979-04-27

    A broad information search was carried out in four areas: glazings, housing materials, acrylic coatings, etching processes and AR coatings. An extensive list of all (known) US transparent polymers was developed as well as tables of plastic, ceramic and metallic materials that could conceivably function as a housing. In addition, a compilation was made of commercially available solvent and water-base acrylic coatings for use as a uv protective coating for the glazing. Eighteen transparent polymers were chosen as possible glazings and twelve materials (plastic and wood) as possible housings and exposed in the Weather-Ometer as tensile bars and for the glazings as disks for optical transmission. These same materials were also exposed on our roof to monitor soiling. A variety of solvent and water-base acrylics were selected as protective coatings and ordered. Two commercial films - Tedlar 20 and Halar 500 - with strong absorption in the uv and two commercial films containing uv absorbers - Tedlar UT and Korad 201R - were laminated by several different processes to four promising glazing materials: polyvinyl fluoride (Tedlar), polymethyl methacrylate (Plexiglass), crosslinked ethylene/vinyl acetate and thermoplastic polyester (Llumar). A variety of etching processes were briefly explored and AR coating studies started on the above four glazing films.

  12. Lightweight bonded acrylic facing at the Vitra VSL Factory

    Directory of Open Access Journals (Sweden)

    Matthias Michel

    2013-12-01

    Full Text Available Acrylic glass is omnipresent in the industrialised world; but as a building material most architects, facade planners and engineers are still unfamiliar with this material. In most cases it is applied as a substitute for glass which leads to inappropriate joints and fixtures. During the years of the path toward the digital era, the authors were in the fortunate position to be involved in several unconventional glass and acrylic glass projects.On the basis of their most recent project, the  facade of the Vitra VSL Factory by SANAA Architekten, they describe the development of a facade for which they chose acrylic glass not as a substitute for glass but rather as a conscious material choice. Since the entire facade is it was possible to apply the manufacturing technology of deep-drawing, allowing for very thin wall thicknesses.

  13. Nucleophilic Addition of Reactive Dyes on Amidoximated Acrylic Fabrics

    Directory of Open Access Journals (Sweden)

    Reda M. El-Shishtawy

    2014-01-01

    Full Text Available Seven reactive dyes judiciously selected based on chemical structures and fixation mechanisms were applied at 2% owf of shade on amidoximated acrylic fabrics. Amidoximated acrylic fabric has been obtained by a viable amidoximation process. The dyeability of these fabrics was evaluated with respect to the dye exhaustion, fixation, and colour strength under different conditions of temperature and dyeing time. Nucleophilic addition type reactive dyes show higher colour data compared to nucleophilic substitution ones. FTIR studies further implicate the binding of reactive dyes on these fabrics. A tentative mechanism is proposed to rationalize the high fixation yield obtained using nucleophilic addition type reactive dyes. Also, the levelling and fastness properties were evaluated for all dyes used. Excellent to good fastness and levelling properties were obtained for all samples irrespective of the dye used. The result of investigation offers a new method for a viable reactive dyeing of amidoximated acrylic fabrics.

  14. Nucleophilic addition of reactive dyes on amidoximated acrylic fabrics.

    Science.gov (United States)

    El-Shishtawy, Reda M; El-Zawahry, Manal M; Abdelghaffar, Fatma; Ahmed, Nahed S E

    2014-01-01

    Seven reactive dyes judiciously selected based on chemical structures and fixation mechanisms were applied at 2% of of shade on amidoximated acrylic fabrics. Amidoximated acrylic fabric has been obtained by a viable amidoximation process. The dyeability of these fabrics was evaluated with respect to the dye exhaustion, fixation, and colour strength under different conditions of temperature and dyeing time. Nucleophilic addition type reactive dyes show higher colour data compared to nucleophilic substitution ones. FTIR studies further implicate the binding of reactive dyes on these fabrics. A tentative mechanism is proposed to rationalize the high fixation yield obtained using nucleophilic addition type reactive dyes. Also, the levelling and fastness properties were evaluated for all dyes used. Excellent to good fastness and levelling properties were obtained for all samples irrespective of the dye used. The result of investigation offers a new method for a viable reactive dyeing of amidoximated acrylic fabrics.

  15. Lightweight bonded acrylic facing at the Vitra VSL Factory

    Directory of Open Access Journals (Sweden)

    Matthias

    2013-12-01

    Full Text Available Corresponding author: Matthias Michel, E-mail: michel@imagine-structure.eu Acrylic glass is omnipresent in the industrialised world; but as a building material most architects, facade planners and engineers are still unfamiliar with this material. In most cases it is applied as a substitute for glass which leads to inappropriate joints and fixtures. During the years of the path toward the digital era, the authors were in the fortunate position to be involved in several unconventional glass and acrylic glass projects. On the basis of their most recent project, the facade of the Vitra VSL Factory by SANAA Architekten, they describe the development of a facade for which they chose acrylic glass not as a substitute for glass but rather as a conscious material choice. Since the entire facade is it was possible to apply the manufacturing technology of deep-drawing, allowing for very thin wall thicknesses.

  16. Synthesis and Demulsibility of the Terpolymer Demulsifier of Acryl Resin

    Institute of Scientific and Technical Information of China (English)

    KANG,Wan-Li; MENG,Ling-Wei; ZHANG,Hong-Yan; LIU,Shu-Ren

    2008-01-01

    Terpolymer demulsifier of acryl resin has been synthesized through solution polymerization with water as a dissolvent,potassium persulfate as an initiator and the monomers of methyl methacrylate,butyl acrylate and acrylic acid as starting materials.The effects of the reaction temperature,dripping time,the amount of monomers and initiator on the dehydration rate of the demulsifier were investigated by an orthogonal experiment.It shows that the stronger influence on the dehydration rate among six factors is reaction temperature,dripping time,and amount of catalyst,while monomer has weak influence.The performance of the demulsifier was evaluated under different demulsification time,temperatures and concentrations of the screened demulsifiers.The result shows that the dehydration rate of the demulsifier can reach over 67%,which is better than that by the emulsion polymerization way.

  17. Preparation and Characterization of Acrylic Primer for Concrete Substrate Application

    Directory of Open Access Journals (Sweden)

    El-Sayed Negim

    2016-01-01

    Full Text Available This study dealt with the properties of acrylic primer for concrete substrate using acrylic syrup, made from a methyl methacrylate monomer solution of terpolymers. Terpolymer systems consisting of methyl methacrylate (MMA, 2-ethylhexyl acrylate (2-EHA, and methacrylic acid (MAA with different chemical composition ratios of MMA and 2-EHA were synthesized through bulk polymerization using azobisisobutyronitrile (AIBN as initiator. The terpolymer composition is characterized by FTIR, 1H NMR, DSC, TGA, and SEM. The glass transition temperature and the thermal stability increased with increasing amounts of MMA in the terpolymer backbone. The effect of chemical composition of terpolymers on physicomechanical properties of primer films was investigated. However, increasing the amount of MMA in terpolymer backbone increased tensile and contact angle of primer films while elongation at break, water absorption, and bond strength are decreased. In particular, the primer syrup containing 65% 2-EHA has good bonding strength with concrete substrate around 1.1 MPa.

  18. Elastic modulus and flexural strength comparisons of high-impact and traditional denture base acrylic resins

    Directory of Open Access Journals (Sweden)

    Nour M. Ajaj-ALKordy

    2014-01-01

    Conclusion: Within the limitations of this study, it can be concluded that the high-impact acrylic resin is a suitable denture base material for patients with clinical fracture of the acrylic denture.

  19. Positron annihilation study of acryl amide/poly (metha acrylic acid) membrane

    Science.gov (United States)

    Abdel-Hady, E. E.; Abdel-Hamed, M. O.; Eltoony, M. M.; Hammam, A. M.; Elsharkawy, M. R. M.

    2011-01-01

    Gamma irradiation posses a serious role for casting the membranes. Acryl amide /poly (methacrylic acid) membrane was synthesized under γ-radiation effect. The structure of the membrane was characterized by FTIR, thermo-gravimetric analysis and the scanning electron microscope. The properties of the membranes were also investigated in terms of proton conductivity and positron annihilation lifetime (PAL) parameters. On the basis of the values of the long-lived components in the lifetime spectra, the size of the free volume and their intensity were calculated. The positron lifetime study on these irradiated casted membranes shows that the cross-linking and degradation within the membrane matrix affect the free volume content and hence the microstructure.

  20. Preparation of porous carboxymethyl chitosan grafted poly (acrylic acid) superabsorbent by solvent precipitation and its application as a hemostatic wound dressing

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yu, E-mail: cylsy@163.com [School of Material Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China); Zhang, Yong [School of Life Science, Beijing Institute of Technology, Beijing 100081 (China); Wang, Fengju [School of Material Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China); Meng, Weiwei; Yang, Xinlin [School of Life Science, Beijing Institute of Technology, Beijing 100081 (China); Li, Peng [School of Material Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China); Jiang, Jianxin [State Key Laboratory of Trauma Burns and Combined Injury, The Third Military Medical University, Chongqing 400042 (China); Tan, Huimin [School of Material Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China); Zheng, Yongfa [Guangdong Fuyang Biotechnology Co., Ltd., Heyuan, Guangdong 517000 (China)

    2016-06-01

    The volume phase transition of a hydrogel initiated by shrinking may result in complex patterns on its surface. Based on this unique property of hydrogel, we have developed a novel solvent precipitation method to prepare a kind of novel superabsorbent polymers with excellent hemostatic properties. A porous carboxymethyl chitosan grafted poly (acrylic acid) (CMCTS-g-PAA) superabsorbent polymer was prepared by precipitating CMCTS-g-PAA hydrogel with ethanol. Its potential application in hemostatic wound dressing was investigated. The results indicate that the modified superabsorbent polymer is non-cytotoxic. It showed a high swelling capacity and better hemostatic performance in the treatments of hemorrhage model of ear artery, arteria cruralis and spleen of the New Zealand white rabbit than the unmodified polymer and other commonly used clinic wound dressings. The hemostatic mechanism of the porous CMCTS-g-PAA polymer was also discussed. - Highlights: • The novel solvent precipitation method was developed to prepare the porous superabsorbent polymer. • The swelling rate was promoted and the harmful residual monomer was leached after modification. • The modified polymer showed good biological safety. • It showed good hemostasis to arterial hemorrhage model of the animal. • The hemostatic mechanism of the modified superabsorbent polymer was discussed.

  1. Ultrasonic velocities, densities, and excess molar volumes of binary mixtures of N,N-dimethyl formamide with methyl acrylate, or ethyl acrylate, or butyl acrylate, or 2-ethyl hexyl acrylate at T = 308.15 K

    Energy Technology Data Exchange (ETDEWEB)

    Kondaiah, M. [Department of Physics, Acharya Nagarjuna University, Nagarjuna Nagar 522510, Andhra Pradesh (India); Sravana Kumar, D. [Dr. V.S. Krishna Govt. Degree College, Visakhapatnam, Andhra Pradesh (India); Sreekanth, K. [Department of Physics, Acharya Nagarjuna University, Nagarjuna Nagar 522510, Andhra Pradesh (India); Krishna Rao, D., E-mail: krdhanekula@yahoo.co.in [Department of Physics, Acharya Nagarjuna University, Nagarjuna Nagar 522510, Andhra Pradesh (India)

    2011-12-15

    Highlights: > Positive values of V{sub m}{sup E}, indicate dispersion forces between acrylic esters and DMF. > V{sub m}{sup E} values compared with Redlich-Kister polynomial. > Partial molar volumes data conclude that weak interactions exist in the systems. > Measured velocity values compared with theoretical values obtained by polynomials. - Abstract: Ultrasonic velocities, u, densities, {rho}, of binary mixtures of N,N-dimethyl formamide (DMF) with methyl acrylate (MA), ethyl acrylate (EA), butyl acrylate (BA), and 2-ethyl hexyl acrylate (EHA), including pure liquids, over the entire composition range have been measured at T = 308.15 K. Using the experimental results, the excess molar volume, V{sub m}{sup E}, partial molar volumes, V-bar {sub m,1}, V-bar{sub m,2}, and excess partial molar volumes, V-bar{sub m,1}{sup E}, V-bar{sub m,2}{sup E} have been calculated. Molecular interactions in the systems have been studied in the light of variation of excess values of calculated properties. The excess properties have been fitted to Redlich-Kister type polynomial and the corresponding standard deviations have been calculated. The positive values of V{sub m}{sup E} indicate the presence of dispersion forces between the DMF and acrylic ester molecules. Further theoretical values of sound velocity in the mixtures have been evaluated using various theories and have been compared with experimental sound velocities to verify the applicability of such theories to the systems studied. Theoretical ultrasonic velocity data have been used to study molecular interactions in the binary systems investigated.

  2. Evaluation of Cellular Toxicity of Three Denture Base Acrylic Resins

    OpenAIRE

    Ebrahimi Saravi, M.; M. Vojdani; Bahrani, F

    2012-01-01

    Objective This study aimed to evaluate the cellular toxicity of two newly-released acrylic resins (Futura Gen and GC Reline Hard) in comparison with the conventional heat-cure resin (Meliodent). Materials and Methods: Sample discs from each acrylic resin were placed in 24-well culture plates along with L929 mouse fibroblast cell line. A mixture of the RPMI 1640 medium, antibiotics and 10% FBS was added to the plates and the specimens were incubated in a CO2 incubator. The amount of light abso...

  3. Triphenylphosphine-Catalyzed Michael Addition of Alcohols to Acrylic Compounds

    Institute of Scientific and Technical Information of China (English)

    LIU, Hai-Ling; JIANG, Huan-Feng; WANG, Yu-Gang

    2007-01-01

    A facile triphenylphosphine-catalyzed Michael addition of alcohols to acrylic compounds was described. The reaction was carried out in open air at refluxing temperature in the presence of 10 mol% PPh3. Michael addition of saturated and unsaturated alcohols to acrylonitrile or acrylates has been examined. The reaction gaveβ-alkoxy derivatives with isolated yields of 5%-79%. PPh3 is cheaper and more stable than those trialkylphosphines previously used for the similar reactions, and the products can be easily separated from the reaction mixture via distillation.

  4. Comparison of classical dermatoscopy and acrylic globe magnifier dermatoscopy

    DEFF Research Database (Denmark)

    Lorentzen, Henrik F; Eefsen, Rikke Løvendahl; Weismann, Kaare

    2008-01-01

    Dermatoscopic asymmetry of melanocytic skin lesion is pivotal in most algorithms assessing the probability of melanoma. Larger lesions cannot be assessed by dermatoscopy and the Dermaphot in a single field of vision, but this can be performed using the acrylic globe magnifier. We examined......% confidence interval 83-97%). Sensitivity for melanoma, benign melanocytic naevi and basal cell carcinoma was 100%, 98% and 85%, respectively. Specificity was 95%, 94% and 100% for melanoma, naevi and basal cell carcinoma. Acrylic globe dermatoscopy enables a diagnostic accuracy similar to epiluminescence...

  5. The creep behavior of acrylic denture base resins.

    Science.gov (United States)

    Sadiku, E R; Biotidara, F O

    1996-01-01

    The creep behavior of acrylic dental base resins, at room temperature and at different loading conditions, has been examined. The behaviors of these resins are similar to that of "commercial perspex" at room temperature over a period of 1000 seconds. The pseudo-elastic moduli of the blends of PMMA VC show a significant increase compared with PMMA alone. The addition of the PVC powder to the heat-cured acrylic resin increased the time-dependent elastic modulus. This increase in elastic modulus is advantageous in the production of denture based resins of improv mechanical properties.

  6. PHOTOREFRACTIVE POLYMERS

    NARCIS (Netherlands)

    Morichere, D; Malliaras, G.G; Krasnikov, V.V.; Bolink, H.J; Hadziioannou, G

    1995-01-01

    The use of polymers as photorefractive materials offers many advantages : flexibility in synthesis, doping, processing and low cost. The required functionalities responsible for photorefractivity, namely charge generation, transport, trapping and linear electrooptic effect are given in the polymer w

  7. PHOTOREFRACTIVE POLYMERS

    NARCIS (Netherlands)

    Morichere, D; Malliaras, G.G; Krasnikov, V.V.; Bolink, H.J; Hadziioannou, G

    1995-01-01

    The use of polymers as photorefractive materials offers many advantages : flexibility in synthesis, doping, processing and low cost. The required functionalities responsible for photorefractivity, namely charge generation, transport, trapping and linear electrooptic effect are given in the polymer w

  8. Use of pH-sensitive polymer hydrogels in lead removal from aqueous solution.

    Science.gov (United States)

    Ramírez, Elizabeth; Burillo, S Guillermina; Barrera-Díaz, C; Roa, Gabriela; Bilyeu, Bryan

    2011-08-30

    Three gamma crosslinked polymeric hydrogels were synthesized and evaluated as lead ion sorbents. A crosslinked poly(acrylic acid) hydrogel was compared with two 4-vinylpiridine-grafted poly(acrylic acid) hydrogels (26.74 and 48.1% 4-vinylpiridine). The retention properties for Pb(II) from aqueous solutions of these three polymers were investigated by batch equilibrium procedure. The effects of pH, contact time and Pb(II) concentration were evaluated. The optimal pH range for all polymers was 4-6. The lightly grafted polymer (PAAc-g-4VP at 26.74%) exhibited a Pb(II) removal close to 80% at 5h and above 90% at 24h. The maximum Pb(II) removal was 117.9mg g(-1) of polymer and followed the Freundlich adsorption model. XPS characterization indicates that the carboxyl groups are involved in the Pb(II) removal.

  9. The effect of acrylic resin functionality on the curing process and properties of acrylic-hexamethoxymethylmelamine coatings

    Directory of Open Access Journals (Sweden)

    Prendžov Slobodan J.

    2002-01-01

    Full Text Available In this paper the effect of the functionality of synthesized thermosetting acrylic resins (with hydroxy and carboxy groups and the cure temperature on the process of crosslinking and properties of the coatings was investigated. Methylated melamine resin, characterized by 1H and C NMR was used as the crosslinking agent. The degree of crosslinking was studied by infrared spectroscopy by determining the conversion of functional groups and the sol fraction. On the basis of the results obtained it was found that compositions with lower functionality of the acrylic resin had a higher conversion of functional groups, during which cocondensation reactions occurred (acrylic melamine crosslinks in a wide temperature crosslinking range. Consequently better control of the coating properties was achieved. The degree of crosslinking was in good correlation to the sol fraction content and the resin hardness.

  10. 40 CFR 721.10192 - Amides, coco, N-[3-(dibutylamino)propyl], acrylates.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Amides, coco, N- , acrylates. 721... Substances § 721.10192 Amides, coco, N- , acrylates. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as amides, coco, N- , acrylates (PMN...

  11. CROSS-REACTION PATTERNS IN GUINEA-PIGS SENSITIZED TO ACRYLIC-MONOMERS

    DEFF Research Database (Denmark)

    Clemmensen, S.

    1984-01-01

    The cross-reaction patterns of selected acrylate and methacrylate esters were investigated using the guinea pig maximization test. Methacrylates were less potent sensitizers than acrylates. Cross-sensitization was found between (meth)acrylates with closely related core structures, most extensively...

  12. 40 CFR 721.9640 - Salt of an acrylic acid - acrylamide terpolymer (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Salt of an acrylic acid - acrylamide... Specific Chemical Substances § 721.9640 Salt of an acrylic acid - acrylamide terpolymer (generic). (a... generically as salt of an acrylic acid - acrylamide terpolymer (PMN P-99-817) is subject to reporting under...

  13. Effects of Novel Structure Bonding Materials on Properties of Aeronautical Acrylic

    Directory of Open Access Journals (Sweden)

    LI Zhisheng

    2017-06-01

    Full Text Available Novel structure bonding materials, J-351 epoxy adhesive film with low curing temperature and liquid modified acrylate SY-50s adhesive were chosen and characterized. The effects of adhesives on the mechanical properties of acrylic were studied. The results reveal that both adhesives have excellent bonding properties to acrylic. The stress-solvent crazing value of J-351 is higher than that of SY-50s. With the application of adhesive on the surface, mechanical properties of acrylic are declined. Casting acrylic shows more drastic decline than that of oriented acrylic. Through the characterization of fracture surface, we find that fracture of tensile sample derives from the side with adhesive. Mechanical properties of acrylic are more sensitive to SY-50s, because the liquid adhesive presents integrate bonding interface with acrylic. The interface between J-351 and acrylic is clear, making acrylic insensitive to J-351 film. Edge attachment strength of samples bonded with J-351 are higher than that of samples bonded with SY-50s due to the effects of adhesives on acrylic. J-351 epoxy adhesive film presents preferable application performance in the structure bonding of aeronautical acrylic.

  14. Patterning methods for polymers in cell and tissue engineering.

    Science.gov (United States)

    Kim, Hong Nam; Kang, Do-Hyun; Kim, Min Sung; Jiao, Alex; Kim, Deok-Ho; Suh, Kahp-Yang

    2012-06-01

    Polymers provide a versatile platform for mimicking various aspects of physiological extracellular matrix properties such as chemical composition, rigidity, and topography for use in cell and tissue engineering applications. In this review, we provide a brief overview of patterning methods of various polymers with a particular focus on biocompatibility and processability. The materials highlighted here are widely used polymers including thermally curable polydimethyl siloxane, ultraviolet-curable polyurethane acrylate and polyethylene glycol, thermo-sensitive poly(N-isopropylacrylamide) and thermoplastic and conductive polymers. We also discuss how micro- and nanofabricated polymeric substrates of tunable elastic modulus can be used to engineer cell and tissue structure and function. Such synergistic effect of topography and rigidity of polymers may be able to contribute to constructing more physiologically relevant microenvironment.

  15. Polymer Brushes

    NARCIS (Netherlands)

    Vos, de W.M.; Kleijn, J.M.; Keizer, de A.; Cosgrove, T.; Cohen Stuart, M.A.

    2010-01-01

    A polymer brush can be defined as a dense array of polymers end-attached to an interface that stretch out into the surrounding medium. Polymer brushes have been investigated for the past 30 years and have shown to be an extremely useful tool to control interfacial properties. This review is intended

  16. Shell and core cross-linked poly(L-lysine)/poly(acrylic acid) complex micelles.

    Science.gov (United States)

    Hsieh, Yi-Hsuan; Hsiao, Yung-Tse; Jan, Jeng-Shiung

    2014-12-21

    We report the versatility of polyion complex (PIC) micelles for the preparation of shell and core cross-linked (SCL and CCL) micelles with their surface properties determined by the constituent polymer composition and cross-linking agent. The negatively and positively charged PIC micelles with their molecular structure and properties depending on the mixing weight percentage and polymer molecular weight were first prepared by mixing the negatively and positively charged polyions, poly(acrylic acid) (PAA) and poly(L-lysine) (PLL). The feasibility of preparing SCL micelles was demonstrated by cross-linking the shell of the negatively and positively charged micelles using cystamine and genipin, respectively. The core of the micelles can be cross-linked by silica deposition to stabilize the assemblies. The shell and/or core cross-linked micelles exhibited excellent colloid stability upon changing solution pH. The drug release from the drug-loaded SCL micelles revealed that the controllable permeability of the SCL micelles can be achieved by tuning the cross-linking degree and the SCL micelles exhibited noticeable pH-responsive behavior with accelerated release under acidic conditions. With the versatility of cross-linking strategies, it is possible to prepare a variety of SCL and CCL micelles from PIC micelles.

  17. Tensile bond strength between auto-polymerized acrylic resin and acrylic denture teeth treated with MF-MA solution

    Science.gov (United States)

    2016-01-01

    PURPOSE This study evaluated the effect of chemical surface treatment using methyl formate-methyl acetate (MF-MA) solution on the tensile bond strength between acrylic denture teeth and auto-polymerized acrylic resin. MATERIALS AND METHODS Seventy maxillary central incisor acrylic denture teeth for each of three different brands (Yamahachi New Ace; Major Dent; Cosmo HXL) were embedded with incisal edge downwards in auto-polymerized resin in polyethylene pipes and ground with silicone carbide paper on their ridge lap surfaces. The teeth of each brand were divided into seven groups (n=10): no surface treatment (control group), MF-MA solution at a ratio of 25:75 (v/v) for 15 seconds, 30 seconds, 60 seconds, 120 seconds, 180 seconds, and MMA for 180 seconds. Auto-polymerized acrylic resin (Unifast Trad) was applied to the ground surface and polymerized in a pressure cooker. A tensile strength test was performed with a universal testing machine. Statistical analysis of the results was performed using two-way analysis of variance (ANOVA) and post-hoc Dunnett T3 test (α=.05). RESULTS The surface treatment groups had significantly higher mean tensile bond strengths compared with the control group (P.05), except for the Yamahachi New Ace MF-MA 180-second group (P<.05). CONCLUSION 15-second MF-MA solution can be an alternative chemical surface treatment for repairing a denture base and rebonding acrylic denture teeth with auto-polymerized acrylic resin, for both conventional and cross-linked teeth. PMID:27555897

  18. SYNTHESIS AND CHARACTERISTICS OF GRAFT COPOLYMERS OF POLY (BUTYL ACRYLATE AND CELLULOSE WITH ULTRASONIC PROCESSING AS A MATERIAL FOR OIL ABSORPTION

    Directory of Open Access Journals (Sweden)

    Ping Qu

    2011-11-01

    Full Text Available A series of materials used for oil absorption based on cellulose fiber grafted with butyl acrylate (BuAc have been prepared by radical polymerization under ultrasonic waves processing. Effects of ultrasonic dose for the maximum graft yield were considered. The dependency of optimum conditions for oil absorption rate on parameters such as ultrasonic processing time and ultrasonic power were also determined. Fourier infrared (FT-IR analysis was used to confirm the chemical reaction taking place between cellulose and butyl acrylate. The thermogravimetric behavior of the graft copolymer was characterized by thermogravimetric analysis (TGA. Scanning electron microscope (SEM analysis was used to determine the surface structure of the grafted material. With the increase of the ultrasonic treatment dose, the surface of the ultrasonic processed material became more regular, and the material was transformed into a homogeneous network polymer having a good structure and good adsorbing ability.

  19. Osteoblast response to oxygen functionalised plasma polymer surfaces

    CERN Document Server

    Kelly, J M

    2001-01-01

    Thin organic films with oxygen-carbon functionalities were deposited from plasmas containing vapour of the small organic compounds: allyI alcohol, methyl vinyl ketone and acrylic acid with octadiene. Characterisation of the deposits was carried out using X-ray photoelectron spectroscopy, in conjunction with chemical derivatisation, and this showed that plasma polymers retained high levels of original monomer functionality when the plasmas were sustained at low power for a given monomer vapour flow rate. High levels of attachment of rat osteosarcoma (ROS 17/2.8) cells were observed on surfaces that had high concentrations of hydroxyl and carbonyl functionalities and intermediate concentrations of carboxyl functionality. Cells did not attach to the octadiene plasma polymer. Cell attachment to carboxyl and methyl functionalised self-assembled monolayers increased with increasing concentration of surface carboxyl groups. Adsorption of the extracellular matrix protein fibronectin to acrylic acid/octadiene plasma c...

  20. Diversity screening for novel enzymes degrading synthetic polymers

    DEFF Research Database (Denmark)

    Lezyk, Mateusz Jakub

    The objective of this PhD study was to evaluate the feasibility of enzymatic degradation of synthetic polymers used as binder materials in marine coatings. Enzymatic modification of synthetic polymers like epoxy resin, polyurethanes and various acrylics is desirable in several industrial processes...... is reported. First, a collection of fungal strains was screened for the capability to degrade several compounds of synthetic origin. Strains with the ability to modify colloidal polyester polyurethane, as well as various commercial emulsions of acrylates were identified. Secondly, we have used metagenomic...... and the choice of proper substrates for identification of promising enzyme candidates. Several genes coding for enzymes with the capability to oxidize various natural and synthetic substrates were identified, expressed heterologously and characterized. Three multicopper oxidases (MCOs) were identified encoded...

  1. 腈纶基牛奶纤维与腈纶纤维性能比较%Comparison of the performance of acrylic milk fiber and acrylic fiber

    Institute of Scientific and Technical Information of China (English)

    耿琴玉; 吴佩云

    2012-01-01

    为了比较腈纶基牛奶纤维与腈纶纤维的基本性能,对腈纶基牛奶纤维的表观形态、力学性能、摩擦性能、卷曲弹性等进行了试验.结果表明,腈纶基牛奶纤维的纵向形态有隐条纹和不规则斑点,截面近似圆形并有明显的海岛状凹凸结构和细微孔隙;红外吸收光谱具有羊毛纤维典型的酰胺吸收谱带和腈纶纤维丙烯腈特征谱带;回潮率为4.34%,干、湿态下的断裂强度是腈纶纤维的67%~69%,断裂伸长率是腈纶纤维的1.26~1.27倍;干、湿态初始模量小于腈纶纤维;静、动态摩擦因数也小于腈纶纤维,而卷曲弹性回复率和残留卷曲率均大于腈纶纤维.%In order to compare the basic performance of acrylic milk fiber and acrylic fiber, surface morphology, mechanical properties, friction properties and crimp elasticity of acrylic milk fiber were tested. The results showed that the longitudinal morphology of acrylic milk fiber had hidden stripe and irregular spots, and the section of acrylic milk fiber was nearly circular and had obvious insular concave-convex structure and fine pores. The infrared absorption spectroscopy of acrylic milk fiber had typical amide absorption bands of wool fiber and acrylonitrile absorption bands of acrylic fiber. Moisture regain of acrylic milk fiber was 4.34%, the dry and wet breaking strength of acrylic milk fiber was 67%-69% of acrylic fiber; the elongation of acrylic milk fiber was 1.26-1.27 times of acrylic fiber. Dry and wet initial modulus of acrylic milk fiber were less than those of acrylic fiber. Static and dynamic friction factor of acrylic milk fiber were less than those of acrylic fiber, and the crimp recovery rate and residual crimp rate were larger than acrylic fiber.

  2. Formation of catalytically active gold-polymer microgel hybrids via a controlled in situ reductive process

    NARCIS (Netherlands)

    Agrawal, Garima; Schuerings, Marco Philipp; van Rijn, Patrick; Pich, Andrij

    2013-01-01

    A newly developed N-vinylcaprolactam/acetoacetoxyethyl methacrylate/acrylic acid based microgel displays in situ reductive reactivity towards HAuCl4, forming hybrid polymer-gold nanostructures at ambient temperature without additional reducing agents. The colloidal gold nanostructure is selectively

  3. Removal of Pendant Groups of Vinyl Polymers by Argon Plasma Treatment

    NARCIS (Netherlands)

    Groenewoud, L.M.H.; Terlingen, J.G.A.; Engbers, G.H.M.; Feijen, J.

    1999-01-01

    Poly(acrylic acid) (PAAc) and poly(vinyl chloride) (PVC) were treated with an argon plasma to create unsaturated bonds at the surface. By use of X-ray photoelectron spectroscopy and Fourier transform infrared measurements, it was shown that the pendant groups of these polymers are removed by the arg

  4. Preparation and Characterization of Low Dispersity Anionic Multiresponsive Core-Shell Polymer Nanoparticles

    NARCIS (Netherlands)

    Pinheiro, J.P.; Moura, L.; Fokkink, R.G.; Farinha, J.P.S.

    2012-01-01

    We prepared anionic multistimuli responsive core-shell polymer nanoparticles with very low size dispersity. By using either acrylic acid (AA) or methacrylic acid (MA) as a comonomer in the poly(N-isopropyl acrylamide) (PNIPAM) shell, we are able to change the distribution of negative charges in the

  5. Synthetic approaches towards new polymer systems by the combination of living carbocationic and anionic polymerizations

    DEFF Research Database (Denmark)

    Feldthusen, Jesper; Ivan, Bela; Muller, Axel. H.E.

    1996-01-01

    to incomplete lithiation of this chain end.In another approach a new functionalization method was developed by end-quenching living polyisobutylene with 1,1-diphenylethylene. After transformation of the groups into 2,2-diphenylvinyl end groups and lithiation polymers were synthesized from protected acrylate...

  6. Microstructure of Amorphous and Semi-Crystalline Polymers.

    Science.gov (United States)

    1981-06-07

    were bisphenol-A polycarbonate (P(’), amorphous poly(ethylene terephthalate ) ( PET ). poly(vinyl chloride) (PVC). and polystyrene (PS). The samples were...polystyrene, polyethylene terephthalate and polyvinyl chloride. Appropriately thin samples of these polymers were cast from solutions using the same... polycarbonate , poly(methyl meth- acrylate), poly(ethylene terephthalate ), poly(vinyl chloride) and polystyrene is inconsistent, both in the form and

  7. Lipase-Catalyzed Aza-Michael Reaction on Acrylate Derivatives

    NARCIS (Netherlands)

    Steunenberg, P.; Sijm, M.; Zuilhof, H.; Sanders, J.P.M.; Scott, E.L.; Franssen, M.C.R.

    2013-01-01

    A methodology has been developed for an efficient and selective lipase-catalyzed aza-Michael reaction of various amines (primary and secondary) with a series of acrylates and alkylacrylates. Reaction parameters were tuned, and under the optimal conditions it was found that Pseudomonas stutzeri lipas

  8. Synthesis and Reactivity of Aluminized Fluorinated Acrylic (AIFA) Nanocomposites (Postprint)

    Science.gov (United States)

    2012-06-18

    REACTIVITY OF ALUMINIZED FLUORINATED ACRYLIC (ALFA) NANOCOMPOSITES (POSTPRINT) 5a. CONTRACT NUMBER In-house 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...the nano Al throughout the material, the composite was compounded for 3 min in a DACA Instruments benchtop twin screw extruder at 150 C. The com

  9. Decarboxylation-based traceless linking with aroyl acrylic acids

    DEFF Research Database (Denmark)

    Nielsen, John

    1998-01-01

    beta-Keto carboxylic acids are known to decarboxylate readily. In our pursuit to synthesize beta-indolinyl propiophenones, we have exploited this chemistry as a mean of establishing a traceless handle. 2-Aroyl acrylic acids have been esterified to a trityl resin, after which Michael-type addition...

  10. Oil-acrylic hybrid latexes as binders for waterborne coatings

    NARCIS (Netherlands)

    Hamersveld, van E.M.S.; Es, van J.; German, A.L.; Cuperus, F.P.; Weissenborn, P.; Hellgren, A.C.

    1999-01-01

    The combination of the characteristics of oil, or alkyd, emulsions and acrylic latexes in a waterborne binder has been the object of various studies in the past. Strategies for combining the positive properties of alkyds, e.g. autoxidative curing, gloss and penetration in wood, with the fast drying

  11. Lightweight bonded acrylic facing at the Vitra VSL Factory

    NARCIS (Netherlands)

    Michel, M.T.; Techen, H.

    2013-01-01

    Acrylic glass is omnipresent in the industrialised world; but as a building material most architects, facade planners and engineers are still unfamiliar with this material. In most cases it is applied as a substitute for glass which leads to inappropriate joints and fixtures. During the years of the

  12. SYNTHESIS OF ACRYLIC ESTERS IN PTC: KINETICS AND ECOLOGICAL ASPECTS

    Directory of Open Access Journals (Sweden)

    G.Torosyan

    2013-06-01

    Full Text Available The synthesis of esters of acrylic acids, which are applied for synthesis of polymeric materials by phase transfer catalysis were discussed (PTC, which is very useful for reduction of reaction consumption of materials and power.This method has substantial advantages including high speed of the process, soft condition of reaction and reduced pollution.

  13. Acrylic acid and electric power cogeneration in an SOFC reactor.

    Science.gov (United States)

    Ji, Baofeng; Wang, Jibo; Chu, Wenling; Yang, Weishen; Lin, Liwu

    2009-04-21

    A highly efficient catalyst, MoV(0.3)Te(0.17)Nb(0.12)O, used for acrylic acid (AA) production from propane, was used as an anodic catalyst in an SOFC reactor, from which AA and electric power were cogenerated at 400-450 degrees C.

  14. Design and Synthesis of Novel Fluorine-containing Acrylates

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    A series of novel fluorine-containing acrylates 6a-6g were synthesized via the condensation of ethyl cyanoacetate and trifluoroacetic anhydride, followed by chloridization and the coupling reaction with amines. These new compounds exhibited some biological activity as preliminary bioassay indicated. A plausible reaction mechanism was outlined and discussed.

  15. 21 CFR 173.5 - Acrylate-acrylamide resins.

    Science.gov (United States)

    2010-04-01

    ... additive consists of one of the following: (1) Acrylamide-acrylic acid resin (hydrolyzed polyacrylamide) is... or cane sugar juice and liquor or corn starch hydrolyzate in an amount not to exceed 5 parts per million by weight of the juice or 10 parts per million by weight of the liquor or the corn...

  16. 丙烯酸抗菌涂料的研制%Preparation of Acrylic Antibaterial Coatings

    Institute of Scientific and Technical Information of China (English)

    杨保平; 谭生; 郭军红; 崔锦峰; 杨宏斌; 孙宁宁

    2011-01-01

    The acrylic resin was synthetized with an antibacterial monomer propylene ethyl dimethyl ammonium bromide (PEDAB), MMA, BMA and BA by free radical polymerization. The coating was prepared with the acrylic resin and antibiotic text was detected. Experimental results showed the optimum technological conditions of synthetic resin: temperature 100 ℃, n - butyl alcohol as solvent, and dosage of the initiator (BPO) 1%. The antimicrobial tests showed that the antibacterial rate of polymer was 99% for staphylo-coccus aureus, escherichia coli, pseudomonas aeruginosa, and aspergillus niger when the amount of PEDAB was added 8% by wt. In the process of resin polymerization.%以具有抗菌性的功能单体丙烯酰氧乙基二甲基乙基溴化铵(PEDAB)与甲基丙烯酸甲酯、甲基丙烯酸丁酯及丙烯酸丁酯自由基聚合,合成了丙烯酸树脂.以此树脂配制涂料,并进行抗菌性检测.实验结果表明:合成树脂的最佳工艺条件为:在100 qC以正丁醇为溶剂、引发剂(BPO)的用量为1%.抗菌性检测结果表明在合成树脂过程中功能单体的用量为8%,涂膜对金黄色葡萄球菌、大肠杆菌、绿脓杆菌及黑曲霉的抗菌率均达到99%.

  17. In vitro biomechanical testing of different configurations of acrylic external skeletal fixator constructs.

    Science.gov (United States)

    Tyagi, S K; Aithal, H P; Kinjavdekar, P; Amarpal; Pawde, A M; Srivastava, T; Singh, J; Madhu, D N

    2015-01-01

    To evaluate the in vitro biomechanical properties of four different configurations of acrylic external skeletal fixator constructs. Simulated bone constructs were prepared using two segments of 20 mm ultra-high-density polyethylene rods with a gap of 5 mm. The full pins (1.5 mm) were passed through the proximal and distal segments of ultra-high-density polyethylene rods, in the same plane, parallel to each other in configuration U, and were crossed in the M1, M2 and C configurations at a 90° angle to each other. Configuration U was a single bilateral uniplanar construct, M1 was a double orthogonal bilateral construct, M2 was a double orthogonal bilateral construct with proximal and distal connecting articulations, and C was a double orthogonal bilateral construct with proximal and distal circumferential articulations. Temporary scaffolds of different external skeletal fixator configurations were constructed using commercially available polyvinyl chloride pipes (20 mm) connected and secured to the fixation pins at a fixed distance from the rods. Acrylic powder (polymer) mixed with liquid (monomer) was poured into the pipes and allowed to solidify to form the side bars and rings. The external skeletal fixator constructs were then subjected to axial compression, cranio-caudal three-point bending and torsion (n = 4 each) using a universal testing machine. Mechanical parameters, namely stress, strain, modulus of elasticity, stiffness and bending moment of fixator constructs, were determined from load-displacement curves. Configuration U was the weakest and configuration C was the strongest under all the testing modes. Under compression, the M1, M2 and C configurations were similar. Under bending, a significant difference was observed among the uniplanar, multiplanar and circular configurations with no difference between M1 and M2. However, under torsion, all the external skeletal fixator configurations differed significantly. The freeform external skeletal fixator

  18. Sensitization capacity of acrylated prepolymers in ultraviolet curing inks tested in the guinea pig.

    Science.gov (United States)

    Björkner, B

    1981-01-01

    One commonly used prepolymer in ultraviolet (UV) curing inks is epoxy acrylate. Of 6 men with dermatitis contracted from UV-curing inks, 2 had positive patch test reaction to epoxy acrylate. None reacted to the chemically related bisphenol A dimethacrylate. The sensitization capacity of epoxy acrylate and bisphenol A dimethacrylate performed with the "Guinea pig maximization test" (GPM) shows epoxy acrylate to be an extreme sensitizer and bisphenol A dimethacrylate a moderate sensitizer. Cross-reaction between the two substances occurs. The epoxy resin oligomer MW 340 present in the epoxy acrylate also sensitized some animals.

  19. Nanopigmented Acrylic Resin Cured Indistinctively by Water Bath or Microwave Energy for Dentures

    Directory of Open Access Journals (Sweden)

    L. S. Acosta-Torres

    2014-01-01

    Full Text Available The highlight of this study was the synthesis of nanopigmented poly(methyl methacrylate nanoparticles that were further processed using a water bath and/or microwave energy for dentures. The experimental acrylic resins were physicochemically characterized, and the adherence of Candida albicans and biocompatibility were assessed. A nanopigmented acrylic resin cured by a water bath or by microwave energy was obtained. The acrylic specimens possess similar properties to commercial acrylic resins, but the transverse strength and porosity were slightly improved. The acrylic resins cured with microwave energy exhibited reduced C. albicans adherence. These results demonstrate an improved noncytotoxic material for the manufacturing of denture bases in dentistry.

  20. Acetylenic polymers for hair styling products.

    Science.gov (United States)

    Martiny, S

    2002-06-01

    This paper looks at the basic requirements of hair styling products from a consumer's perspective before moving onto a very brief outline of the various chemistries available to the formulator. It then discusses the manufacture of vinyl pyrrolidone from acetylene. The properties of polyvinyl pyrrolidone are described, followed by the features and benefits of some vinyl pyrrolidone copolymers and terpolymers. The instrumental analysis of the hold, flexibility, tack and combing properties of polymer films is discussed in some detail, along with the effect of application type on these measurable properties concentrating upon vinyl caprolactam/vinyl pyrrolidone/dimethylaminopropyl methacrylamide acrylates copolymer.

  1. ANTI-BIOFOULING BY DEGRADATION OF POLYMERS

    Institute of Scientific and Technical Information of China (English)

    Chun-feng Ma; Hong-jun Yang; Guang-zhao Zhang

    2012-01-01

    Copolymers of methyl methacrylate (MMA) and acrylate terminated poly(ethylene oxide-co-ethylene carbonate)(PEOC) macromonomer (PEOCA) were synthesized,and the degradation of the polymers was investigated by use of quartz crystal microbalance with dissipation (QCM-D).It is shown that the polymeric surface exhibits degradation in seawater depending on the content of the side chains.Field tests in seawater show that the surface constructed by the copolymer can effectively inhibit marine biofouling because it can be self-renewed due to degradation of the copolymer.

  2. Thiomers: a new generation of mucoadhesive polymers.

    Science.gov (United States)

    Bernkop-Schnürch, Andreas

    2005-11-03

    Thiolated polymers or designated thiomers are mucoadhesive basis polymers, which display thiol bearing side chains. Based on thiol/disulfide exchange reactions and/or a simple oxidation process disulfide bonds are formed between such polymers and cysteine-rich subdomains of mucus glycoproteins building up the mucus gel layer. Thiomers mimic therefore the natural mechanism of secreted mucus glycoproteins, which are also covalently anchored in the mucus layer by the formation of disulfide bonds-the bridging structure most commonly encountered in biological systems. So far the cationic thiomers chitosan-cysteine, chitosan-thiobutylamidine as well as chitosan-thioglycolic acid and the anionic thiomers poly(acylic acid)-cysteine, poly(acrylic acid)-cysteamine, carboxy-methylcellulose-cysteine and alginate-cysteine have been generated. Due to the immobilization of thiol groups on mucoadhesive basis polymers, their mucoadhesive properties are 2- up to 140-fold improved. The higher efficacy of this new generation of mucoadhesive polymers in comparison to the corresponding unmodified mucoadhesive basis polymers could be verified via various in vivo studies on various mucosal membranes in different animal species and in humans. The development of first commercial available products comprising thiomers is in progress. Within this review an overview of the mechanism of adhesion and the design of thiomers as well as delivery systems comprising thiomers and their in vivo performance is provided.

  3. Effects of composition and layer thickness of a butyl acrylate/acrylic acid copolymer on the adhesion properties

    Energy Technology Data Exchange (ETDEWEB)

    Ghim, Deoukchen; Kim, Jung Hyeun [University of Seoul, Seoul (Korea, Republic of)

    2016-02-15

    Acrylic pressure-sensitive adhesives are synthesized by solution copolymerization using n-butyl acrylate and acrylic acid (AA) in ethyl acetate anhydrous. The copolymer composition is controlled for good adhesive properties by varying AA content. The monomer conversion is measured by the gravimetric method and FTIR technique. The adhesive layer thickness is measured by scanning electron microscopy, and the adhesive properties are evaluated with loop tack, 180 .deg. peel, and holding time measurements. The peel force increases with increasing the AA content up to 3 wt% and decreases at the AA content higher than 3 wt%, but the tack force decreases with increasing the AA content. The holding time increases with increasing the AA content, and it shows a similar trend with the T{sub g} of adhesives. The increase of layer thickness improves tack and peel forces, but it weakens the holding power. A tape thickness of about 20 μm shows well-balanced properties at 3 wt% AA content in the acrylic copolymer system.

  4. Photo-polymerized microarchitectural constructs prepared by microstereolithography (muSL) using liquid acrylate-end-capped trimethylene carbonate-based prepolymers.

    Science.gov (United States)

    Kwon, Il Keun; Matsuda, Takehisa

    2005-05-01

    Precision microarchitectural constructs made of acrylated trimethylene carbonate (TMC)-based liquid prepolymers were photo-polymerized using a custom-designed microstereolithographic apparatus. In this study, three different photo-polymerizable liquid prepolymers were prepared by the polymerization of TMC with a low molecular weight poly(ethylene glycol) (PEG) (mol. wt. 200 or 1000); designated as PEG200 or PEG1000, respectively or trimethylolpropane (TMP) as an initiator, and subsequently end-capped with an acrylate group. As a result of layer-by-layer photo-irradiation of the prepolymer with a movable ultraviolet light pen driven by computer-aided design, a three-dimensional (3D) micropillar array, a microbank array, a microcone array, and multi-microtunnels formed on a platform plate or a glass plate were precisely fabricated. The PEG-based polymers exhibited a very low cell adhesion potential, whereas the TMP-based hydrophobic polymer exhibited high cell adhesion and proliferation potentials. The microbank array, which consisted of a plate made of the TMP-based polymer and microbanks made of the PEG200-based polymer, caused cell adhesion and proliferation only on the plate. Upon the implantation of microcone arrays under the subcutis of rats, the photo-polymerized construct made of the poorly swellable PEG200-based polymer exhibited only surface erosion and limited drug loading and releasing potentials. On the other hand, the photo-polymerized construct made of the highly swellable PEG1000-based polymer exhibited not only surface erosion but also bulk erosion and high drug loading and releasing potentials. In this paper, we discuss their potential biomedical applications.

  5. Photocured PEO-based solid polymer electrolyte and its application to lithium-polymer batteries

    Science.gov (United States)

    Kang, Yongku; Kim, Hee Jung; Kim, Eunkyoung; Oh, Bookeun; Cho, Jae Hyun

    A solid polymer electrolyte (SPE) based on polyethylene oxide (PEO) is prepared by photocuring of polyethylene glycol acrylates. The conductivity is greatly enhanced by adding low molecular weight poly(ethylene glycol) dimethylether (PEGDME). The maximum conducticity is 5.1×10 -4 S cm -1 at 30°C. These electrolytes display oxidation stability up to 4.5 V against a lithium reference electrode. Reversible electrochemical plating/stripping of lithium is observed on a stainless steel electrode. Li/SPE/LiMn 2O 4 as well as C(Li)/SPE/LiCoO 2 cells have been fabricated and tested to demonstrate the applicability of the resulting polymer electrolytes in lithium-polymer batteries.

  6. Obtention and characterization of acrylic acid-i-polyethylene organometallic copolymers with Mo, Fe, Co, Zn, and Ni; Obtencion y caracterizacion de copolimeros organometalicos de acido acrilico-i-polietileno, con Mo, Fe, Co, Zn y Ni

    Energy Technology Data Exchange (ETDEWEB)

    Dorantes, G.; Urena, F.; Lopez, R. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico); Lopez, R. [Universidad Autonoma del Estado de Mexico (Mexico)

    1997-07-01

    In this study a graft acrylic acid (AA) in low density polyethylene (PEBD) copolymers were prepared, using as reaction initiator, gamma radiation at different doses. These copolymers were coordinated with molybdenum, cobalt, iron, zinc and nickel. the obtained polymeric materials were characterized by conventional analysis techniques. It was studied the measurement parameter variation of the positron annihilation when they inter activated with this type of materials and so obtaining information about microstructure of these polymers. (Author)

  7. STAR POLYMERS

    OpenAIRE

    Ch. von Ferber; Yu.Holovatch

    2002-01-01

    It is our great pleasure to present a collection of papers devoted to theoretical, numerical, and experimental studies in the field of star polymers. Since its introduction in the early 80-ies, this field has attracted increasing interest and has become an important part of contemporary polymer physics. While research papers in this field appear regularly in different physical and chemical journals, the present collection is an attempt to join together the studies of star polymers showing the...

  8. pH effects on the complexation, miscibility and radiation-induced crosslinking in poly(acrylic acid)-poly(vinyl alcohol) blends.

    Science.gov (United States)

    Nurkeeva, Zauresh S; Mun, Grigoriy A; Dubolazov, Artem V; Khutoryanskiy, Vitaliy V

    2005-05-23

    The effect of pH on the complexation of poly(acrylic acid) with poly(vinyl alcohol) in aqueous solution, the miscibility of these polymers in the solid state and the possibility for crosslinking the blends using gamma radiation has been studied. It is demonstrated that the complexation ability of poly(vinyl alcohol) with respect to poly(acrylic acid) is relatively low in comparison with some other synthetic non-ionic polymers. The precipitation of interpolymer complexes was observed below the critical pH of complexation (pH(crit1)), which characterizes the transition between a compact hydrophobic polycomplex and an extended hydrophilic interpolymer associate. Films prepared by casting from aqueous solutions at different pH values exhibited a transition from miscibility to immiscibility at a certain critical pH, pH(crit2), above which hydrogen bonding is prevented. It is shown here that gamma radiation crosslinking of solid blends is efficient and only results in the formation of hydrogel films for blends prepared between pH(crit1) and pH(crit2). The yield of the gel fraction and the swelling properties of the films depended on the absorbed radiation dose and the polymer ratio. [Diagram: see text] SEM image of an equimolar PAA-PVA blend cast from a pH 4.6 solution.

  9. Geometry Constrained N-(5,6,7-Trihydroquinolin-8-ylidenearylaminopalladium Dichloride Complexes: Catalytic Behavior toward Methyl Acrylate (MA, Methyl Acrylate-co-Norbornene (MA-co-NB Polymerization and Heck Coupling

    Directory of Open Access Journals (Sweden)

    Yanning Zeng

    2016-12-01

    Full Text Available A new pair of plladium complexes (Pd4 and Pd5 ligated with constrained N-(5,6,7-trihydroquinolin-8-ylidenearylamine ligands have been prepared and well characterized by 1H-, 13C-NMR and FTIR spectroscopies as well as elemental analysis. The molecular structure of Pd4 and Pd5 in solid state have also been determined by X-ray diffraction, showing slightly distorted square planar geometry around the palladium metal center. All complexes Pd1–Pd5 are revealed highly efficient catalyst in methyl acrylate (MA polymerization as well as methyl acrylate/norbornene (MA/NB copolymerization. In the case of MA polymerization, as high as 98.4% conversion with high molecular weight up to 6282 kg·mol−1 was achieved. Likewise, Pd3 complex has good capability to incorporate about 18% NB content into MA polymer chains. Furthermore, low catalyst loadings (0.002 mol % of Pd4 or Pd5 are able to efficiently mediate the coupling of haloarenes with styrene affording up to 98% conversion.

  10. Polymer Chemistry

    Science.gov (United States)

    Williams, Martha; Roberson, Luke; Caraccio, Anne

    2010-01-01

    This viewgraph presentation describes new technologies in polymer and material chemistry that benefits NASA programs and missions. The topics include: 1) What are Polymers?; 2) History of Polymer Chemistry; 3) Composites/Materials Development at KSC; 4) Why Wiring; 5) Next Generation Wiring Materials; 6) Wire System Materials and Integration; 7) Self-Healing Wire Repair; 8) Smart Wiring Summary; 9) Fire and Polymers; 10) Aerogel Technology; 11) Aerogel Composites; 12) Aerogels for Oil Remediation; 13) KSC's Solution; 14) Chemochromic Hydrogen Sensors; 15) STS-130 and 131 Operations; 16) HyperPigment; 17) Antimicrobial Materials; 18) Conductive Inks Formulations for Multiple Applications; and 19) Testing and Processing Equipment.

  11. Chemically Cross-Linked Poly(acrylic-co-vinylsulfonic Acid Hydrogel for the Delivery of Isosorbide Mononitrate

    Directory of Open Access Journals (Sweden)

    Talib Hussain

    2013-01-01

    Full Text Available We report synthesis, characterization, and drug release attributes of a series of novel pH-sensitive poly(acrylic-co-vinylsulfonic acid hydrogels. These hydrogels were prepared by employing free radical polymerization using ethylene glycol dimethacrylate (EGDMA and benzyl peroxide (BPO as cross-linker and initiator, respectively. Effect of acrylic acid (AA, polyvinylsulfonic acid (PVSA, and EGDMA on prepared hydrogels was investigated. All formulations showed higher swelling at high pHs and vice versa. Formulations containing higher content of AA and EGDMA show reduced swelling, but one with higher content of PVSA showed increased swelling. Hydrogel network was characterized by determining structural parameters and loaded with isosorbide mononitrate. FTIR confirmed absence of drug polymer interaction while DSC and TGA demonstrated molecular dispersion of drug in a thermally stable polymeric network. All the hydrogel formulations exhibited a pH dependent release of isosorbide mononitrate which was found to be directly proportional to pH of the medium and PVSA content and inversely proportional to the AA contents. Drug release data were fitted to various kinetics models. Results indicated that release of isosorbide mononitrate from poly(AA-co-VSA hydrogels was non-Fickian and that the mechanism was diffusion-controlled.

  12. Swelling properties of cassava starch grafted with poly (potassium acrylate-co-acrylamide) superabsorbent hydrogel prepared by ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Barleany, Dhena Ria, E-mail: dbarleany@yahoo.com; Ulfiyani, Fida; Istiqomah, Shafina; Rahmayetty [Department of Chemical Engineering, University of Sultan Ageng Tirtayasa, Cilegon, Banten (Indonesia); Heriyanto, Heri; Erizal [Centre for Application of Isotopes and Radiation, Jakarta (Indonesia)

    2015-12-29

    Natural and synthetic hydrophylic polymers can be phisically or chemically cross-linked in order to produce hydrogels. Starch based hydrogels grafted with copolymers from acrylic acid or acrylamide have become very popular for water absorbent application. Superabsorbent hydrogels made from Cassava starch grafted with poly (potassium acrylate-co-acrylamide) were prepared by using of ϒ-irradiation method. Various important parameters such as irradiation doses, monomer to Cassava starch ratio and acrylamide content were investigated. The addition of 7,5 % w w{sup −1} acrylamide into the reaction mixture generated a starch graft copolymer with a water absorption in distilled water as high as 460 g g{sup −1} of its dried weight. The effectivity of hydrogel as superabsorbent for aqueous solutions of NaCl and urea was evaluated. The obtained hydrogel showed the maximum absorptions of 317 g g{sup −1} and 523 g g{sup −1} for NaCl and urea solution, respectively (relative to its own dry weight). The structure of the graft copolymer was analyzed by using Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscope (SEM)

  13. Controlled release of diclofenac sodium from pH-responsive carrageenan-g-poly(acrylic acid) superabsorbent hydrogel

    Indian Academy of Sciences (India)

    Hossein Hosseinzadeh

    2010-07-01

    In this paper, controlled release of diclofenac sodium (DS) from pH-sensitive carrageenan-gpoly(acrylic acid) superabsorbent hydrogels was investigated. The hydrogels were prepared by graft copolymerization of acrylic acid (AA) onto kappa-carrageenan, using ammonium persulfate (APS) as a free radical initiator in the presence of methylene bisacrylamide (MBA) as a crosslinker. Infrared spectroscopy was carried out to confirm the chemical structure of the hydrogel. Moreover, morphology of the samples was examined by scanning electron microscopy (SEM). The synthesized hydrogels were subjected to equilibrium swelling studies in simulated gastric and intestinal fluids (SGF and SIF). Hydrogels containing drug DS, at different drug-to-polymer ratios, were prepared by direct adsorption method. The loading yield was found to depend on both the impregnation time and the amount of encapsulated drug. In vitro drug-release studies in different buffer solutions showed that the most important parameter affecting the drug-release behaviour of hydrogels is the pH of the solution. The mechanism involved in release was Fickian ( ≤ 0.43, = 0.348) and Super Case II kinetics ( > 1, = 1.231) at pH 1.2 and 7.4, respectively.

  14. Preparation and self-sterilizing properties of Ag@TiO{sub 2}–styrene–acrylic complex coatings

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xiang-dong; Chen, Feng; Yang, Jin-tao, E-mail: yangjt@zjut.edu.cn; Yan, Xiao-hui; Zhong, Ming-qiang, E-mail: zhongmingqiang@hotmail.com

    2013-04-01

    In this study, we report a simple and cost-effective method for self-sterilized complex coatings obtained by Ag@TiO{sub 2} particle incorporation into styrene–acrylic latex. The Ag@TiO{sub 2} particles were prepared via a coupling agent modification process. The composite latices characterized by transmission electron microscopy (TEM) study were highly homogeneous at the nanometric scale, and the Ag@TiO{sub 2} particles were well dispersed and exhibited an intimate contact between both the organic and inorganic components. The Ag@TiO{sub 2} nanoparticles significantly enhanced the absorption in the visible region and engendered a good heat-insulating effect of the complex coatings. Moreover, the Ag@TiO{sub 2} nanoparticle incorporation into this polymer matrix renders self-sterilized nanocomposite materials upon light excitation, which are tested against Escherichia coli and Staphylococcus aureus. The complex coatings display an impressive performance in the killing of all micro-organisms with a maximum for a Ag@TiO{sub 2} loading concentration of 2–5 wt.%. The weathering endurance of the complex coating was also measured. - Highlights: ► We prepared Ag@TiO{sub 2}–styrene–acrylic complex latex in one pot. ► Good antibacterial performances of complex coatings were observed. ► The complex coating was resistant to weathering after 48 h. ► The complex coating exhibits good heat-insulating effect.

  15. Influence of Methacrylic-Acrylic Copolymer Composition on Plasticiser-free Optode Films for pH Sensors

    Directory of Open Access Journals (Sweden)

    Musa Ahmad

    2003-03-01

    Full Text Available In this work we have examined the use of plasticiser-free polymeric films incorporating a proton selective chromoionophore for optical pH sensor. Four types of methacrylic-acrylic copolymers containing different compositions of n-butyl acrylate (nBA and methyl methacrylate (MMA were synthesised for use as optical sensor films. The copolymers were mixed with appropriate amounts of chromoionophore (ETH5294 and a lipophilic salt before spin coated on glass slides to form films for the evaluation of pH response using spectrophotometry. Co-polymer films with high nBA content gave good response and the response time depended on the film thickness. A preliminary evaluation of the optical films of high nBA content with pHs from 2 - 14 showed distinguishable responses from pH 5 - 9. However, the adhesion of the pH sensitive film was good for copolymers with higher content of MMA but not for films with high nBA.

  16. Large Core Planar 1 x 2 Optical Power Splitter with Acrylate and Epoxy Resin Waveguides on Polydimetylsiloxane Substrate

    Directory of Open Access Journals (Sweden)

    V. Prajzler

    2014-04-01

    Full Text Available Fabrication process of multimode 1x2 optical rectangular planar power splitter suitable for low-cost short distance optical network is presented. The splitters were designed by beam propagation method for standard input/output plastic optical fibre. Materials used for the splitter were: UV acrylate photopolymer polymer or epoxy resin for optical core waveguide layers and Y-groove substrate for the core layer was poly(methyl methacrylate or polydimetylsiloxane made by replication process on poly(methyl methacrylate pattern. The insertion losses of 1x2 splitters with acrylate waveguide layers were around 2.7 dB at 532 nm and 4.1 dB at 650 nm and those for epoxy resin waveguide layer were around 3.7 dB at 850 nm. The 1x2 splitters were tested by signal transmission being connected to the internet network by using optoelectronic switches and we achieved the maximum possible transmission data rate as provided by the computer network.

  17. Swelling properties of cassava starch grafted with poly (potassium acrylate-co-acrylamide) superabsorbent hydrogel prepared by ionizing radiation

    Science.gov (United States)

    Barleany, Dhena Ria; Ulfiyani, Fida; Istiqomah, Shafina; Heriyanto, Heri; Rahmayetty, Erizal

    2015-12-01

    Natural and synthetic hydrophylic polymers can be phisically or chemically cross-linked in order to produce hydrogels. Starch based hydrogels grafted with copolymers from acrylic acid or acrylamide have become very popular for water absorbent application. Superabsorbent hydrogels made from Cassava starch grafted with poly (potassium acrylate-co-acrylamide) were prepared by using of ϒ-irradiation method. Various important parameters such as irradiation doses, monomer to Cassava starch ratio and acrylamide content were investigated. The addition of 7,5 % w w-1 acrylamide into the reaction mixture generated a starch graft copolymer with a water absorption in distilled water as high as 460 g g-1 of its dried weight. The effectivity of hydrogel as superabsorbent for aqueous solutions of NaCl and urea was evaluated. The obtained hydrogel showed the maximum absorptions of 317 g g-1 and 523 g g-1 for NaCl and urea solution, respectively (relative to its own dry weight). The structure of the graft copolymer was analyzed by using Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscope (SEM).

  18. EFFECTS OF ω-ACRYLOYL POLY(ETHYLENE OXIDE) MACROMONOMER ON EMULSIFIER-FREE EMULSION COPOLYMERIZATION OF METHYL METHACRYLATE AND n-BUTYL ACRYLATE

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    Well-defined nonionic hydrophilic ω-acryloyl poly(ethylene oxide) macromonomer (PEO-A) has been prepared by living anionic polymerization of ethylene oxide with diphenyl methyl potassium as the initiator and acryloyl chloride as the reaction terminating agent. The polymer was characterized by FTIR and SEC. The emulsifier-free emulsion polymerization of methyl methacrylate (MMA) and n-butyl acrylate (BA) containing various concentrations of PEO-A was studied. In all cases stable emulsion coplymerizations of MMA and BA were obtained. The stabilizing effect was found to be dependent on the molecular weight and the feed amount of the macromonomer.

  19. Physicochemical properties of poly(lactic acid-co-glycolic acid film modified via blending with poly(butyl acrylate-co-methyl methacrylate

    Directory of Open Access Journals (Sweden)

    Guoquan Zhu

    2013-01-01

    Full Text Available A series of poly(lactic acid-co-glycolic acid (PLGA/poly(butyl acrylate-co-methyl methacrylate (P(BA-co-MMA blend films with different P(BA-co-MMA mole contents were prepared by casting the polymer blend solution in chloroform. Surface morphologies of the PLGAP(BA-co-MMA blend films were studied by scanning electron microscopy (SEM. Thermal, mechanical, and chemical properties of PLGAP(BA-co-MMA blend films were investigated by differential scanning calorimeter (DSC, thermogravimetric analysis (TGA, tensile tests, and surface contact angle tests. The introduction of P(BA-co-MMA could modify the properties of PLGA films.

  20. Thermo- and pH-sensitive gel membranes based on poly-(acryloyl-L-proline methyl ester)-graft-poly(acrylic acid) for selective permeation of metal ions

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Shin; Ohashi, Hitoshi; Maekawa, Yasunari; Katakai, Ryoichi; Yoshida, Masaru E-mail: katsu@taka.jaeri.go.jp

    2005-04-01

    Thermo- and pH-responsive gel membranes were synthesized by {gamma}-ray grafting of pH-responsive poly(acrylic acid) (AAc) onto thermo-responsive polymer gel of acryloyl-L-proline methyl ester (A-ProOMe). The gel membranes of poly(A-ProOMe) with 15 mol% graft chains of AAc exhibited both thermo- and pH-responses. Under the condition (pH 6.0, 30 deg. C) in which the thermo-sensitive unit shrinks and the pH-sensitive unit swells, the selective permeation of Li ion over Co and Ni ions can be achieved.

  1. Bistable electroactive polymer for refreshable Braille display with improved actuation stability

    Science.gov (United States)

    Niu, Xiaofan; Brochu, Paul; Stoyanov, Hristiyan; Yun, Sung Ryul; Pei, Qibing

    2012-04-01

    Poly(t-butyl acrylate) is a bistable electroactive polymer (BSEP) capable of rigid-to-rigid actuation. The BSEP combines the large-strain actuation of dielectric elastomers with shape memory property. We have introduced a material approach to overcome pull-in instability in poly(t-butyl acrylate) that significantly improves the actuation lifetime at strains greater than 100%. Refreshable Braille display devices with size of a smartphone screen have been fabricated to manifest a potential application of the BSEP. We will report the testing results of the devices by a Braille user.

  2. Positronium as a probe of sorption states of vapor molecules in polymers

    Science.gov (United States)

    Ito, Yasuo; Sanches, Victor; Tanaka, Kazuhiro; Okamoto, Ken-Ichi

    1994-12-01

    Positron lifetime measurements were performed for two different polymers (low density polyethylene and a polyimide 6FDA-TMPD) during sorption of various vapors (n-hexane, cyclohexane, benzene, acrylic acid, methyl acrylate). The vapor sorption affected the long-lived component (ortho-positronium component) in a systematic way regardless of the kind of vapor, i.e. for the polyethylene both the lifetime and the intensity of the long-lived component were enhanced, while for the polyimide they were decreased significantly. These different effects are interpreted in terms of the different aggregation states, i.e. rubbery for the polyethylene and glassy for the polyimide.

  3. Biofunctional polymers prepared by ionizing radiation; Polimeros biofuncionais preparados pela radiacao ionizante

    Energy Technology Data Exchange (ETDEWEB)

    Martellini, Flavia; Rodas, Andrea C.D.; Higa, Olga Z. [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil); Queiroz, Alvaro A.A. de [Escola Federal de Engenharia de Itajuba, MG (Brazil)

    1995-12-31

    Polymeric systems with biomedical and biochemical properties can be obtained by radiation induced polymerization. Those systems exhibit a pharmaceutical or biocatalytic activity if drugs or enzymes are immobilized in the polymer matrices. This work deals with the synthesis by gamma radiation of acrylic monomers and paracetamol, a drug with analgesic and anti thermic action, which can be used as medication in drug delivery systems. Besides, polyethylene and polypropylene radiation grafted with a hydrogel containing carboxylic groups (acrylic acid), showed to be a suitable substrate for the enzyme coupling, such as urease and glucose oxidase. The grafted matrices allow the immobilization of any biocomponent with protein structure. (author). 8 refs., 4 figs.

  4. Utilization of Cassava Starch in Copolymerisation of Superabsorbent Polymer Composite (SAPC

    Directory of Open Access Journals (Sweden)

    Akhmad Zainal Abidin

    2014-09-01

    Full Text Available Cassava starch was used as the main chain in the copolymerization of a superabsorbent polymer composite (SAPC based on acrylic acid and bentonite. The SAPC was synthesized through graft polymerization using nano-sized bentonite as reinforcement. The variables in this experiment were: bentonite concentration, acrylic acid to starch weight ratio, concentration of initiator, and cross linker. The product was characterized using FTIR, SEM and TGA-DSC. The results show that the polymerization reactions involved processes of incorporating starch chains as polymer backbone and grafting acrylic acid monomers onto it. The use of cassava starch in the polymerisation produced a very short reaction time (10-15 minutes, which led to SAPC production with higher efficiency and lower cost. Bentonite interacts with monomers via hydrogen and weak bonding, thus improving the thermal properties of the product. The maximum absorbance capacity obtained was at an acrylic acid to starch weight ratio of 5 and a concentration of initiator, cross linker and bentonite of 0.5, 0.05 and 2 weight percent, respectively. The product is suitable for agricultural and medical applications as well as common superabsorbent polymer applications.

  5. Study on Tough Blends of Polylactide and Acrylic Impact Modifier

    Directory of Open Access Journals (Sweden)

    Xiaoli Song

    2014-02-01

    Full Text Available Acrylic impact modifiers (ACRs with different soft/hard monomer ratios (mass ratios were prepared by semi-continuous seed emulsion copolymerization using the soft monomer butyl acrylate and the hard monomer methyl methacrylate, which were used to toughen polylactide (PLA. The effect of soft/hard ACR monomer ratio on the mechanical properties of PLA/ACR blends was investigated. The results showed that the impact strength and the elongation at break of PLA/ACR blends increased with increasing soft/hard ACR monomer ratio, while the tensile and flexural strengths of PLA had little change. The impact strength of PLA/ACR blends could be increased about 4 times more than that of pure PLA when the soft/hard monomer ratio of ACR was 90/10, which was the optimal ratio for good mechanical properties of PLA. Additionally, the possible mechanism of ACR toughening in PLA was discussed through impact fracture phase morphology analysis.

  6. Reactivity Ratios of Diethyldiallylammonium Chloride with Acrylamide or Acrylic Acid

    Institute of Scientific and Technical Information of China (English)

    Li Hua LIU; Zhi Qiang LIU; Zhu Qing GONG

    2006-01-01

    The compositions of copolymers of diethyldiallylammonium chloride (DEDAAC) with acrylamide (AM), acrylic acid (AA) or sodium acrylic acid (NaAA) at low conversion were determined by elemental analysis, and the reactivity ratios of monomers in copolymerization were obtained by Kelen-Tudos method. The results showed that the reactivity ratios rDE and rAM are 0.31 and 5.27 for DEDAAC with AM, rDE and rAA are 0.28 and 5.15 for DEDAAC with AA, and rDE and rNaAA are 0.40 and 3.97 for DEDAAC with NaAA, respectively. The copolymerizations for DEDAAC with AM, AA or NaAA are non-ideal copolymerization and the products are random copolymers.

  7. Polymerization of acrylic acid using atmospheric pressure DBD plasma jet

    Science.gov (United States)

    Bashir, M.; Bashir, S.

    2016-08-01

    In this paper polymerization of acrylic acid was performed using non thermal atmospheric pressure plasma jet technology. The goal of this study is to deposit organic functional coatings for biomedical applications using a low cost and rapid growth rate plasma jet technique. The monomer solution of acrylic acid was vaporized and then fed into the argon plasma for coating. The discharge was powered using a laboratory made power supply operating with sinusoidal voltage signals at a frequency of 10 kHz. The optical emission spectra were collected in order to get insight into the plasma chemistry during deposition process. The coatings were characterized using Fourier transform infrared spectroscopy, atomic force microscopy and growth rates analysis. A high retention of carboxylic functional groups of the monomer was observed at the surface deposited using this low power technique.

  8. Stronger multilayer acrylic dielectric elastomer actuators with silicone gel coatings

    Science.gov (United States)

    Lau, Gih-Keong; La, Thanh-Giang; Sheng-Wei Foong, Ervin; Shrestha, Milan

    2016-12-01

    Multilayer dielectric elastomer actuators (DEA) perform worst off than single-layer DEAs due to higher susceptibility to electro-thermal breakdown. This paper presents a hot-spot model to predict the electro-thermal breakdown field of DEAs and its dependence on thermal insulation. To inhibit the electrothermal breakdown, silicone gel coating was applied as barrier coating to multilayer acrylic DEA. The gel coating helps suppress the electro-thermally induced puncturing of DEA membrane at the hot spot. As a result, the gel-coated DEAs, in either a single layer or a multilayer stack, can produce 30% more isometric stress change as compared to those none-coated. These gel-coated acrylic DEAs show great potential to make stronger artificial muscles.

  9. Softec HD hydrophilic acrylic intraocular lens: biocompatibility and precision

    Directory of Open Access Journals (Sweden)

    Ladan Espandar

    2011-01-01

    Full Text Available Ladan Espandar1, Shameema Sikder2, Majid Moshirfar31Department of Ophthalmology, Tulane University, New Orleans, LA, USA; 2Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, USA; 3John A Moran Eye Center, University of Utah, Salt Lake City, UT, USAAbstract: Intraocular lens development is driven by higher patient expectations for ideal visual outcomes. The recently US Food and Drug Administration-approved Softec HD™ lens is an aspheric, hydrophilic acrylic intraocular lens (IOL. The hydrophilic design of the lens is optimized to address dysphotopsia while maintaining biocompatibility, optical clarity, resistance to damage, and resistance to biocontamination. Aspheric lenses decrease postoperative spherical aberration. The addition of the Softec lens provides clinicians with another option for IOL placement; however, randomized comparative studies of this lens to others already on the market remain to be completed.Keywords: hydrophilic acrylic intraocular lens, Softec HD intraocular lens, aspheric intraocular lens, IOL

  10. Rheological behavior of acrylic paint blends based on polyaniline

    Directory of Open Access Journals (Sweden)

    Alex da Silva Sirqueira

    Full Text Available Abstract The rheological properties of acrylic paints and polyaniline (PAni blends, with different contents of PAni doped by dodecyl benzene sulphonic acid (DBSA and, dispersed by mechanical stirrer and ultrasonic, were investigated by controlled shear rate testing ramps. The results showed that the commercial acrylic paint had tended to deliver the required stability on the blends, in order to avoid sedimentation process. All samples exhibited non-Newtonian flow behavior (shear thinning, increasing PAni content the flow behavior index (n decreased (0.41 to 0.11 and power law model were used to fitted the experimental curves. The results showed that the addition of PAni-DBSA affects the viscoelastic behavior of the mixtures due to the interactions between the components in the mixture. The best properties were obtained for samples 90/10 wt % dispersed by ultrasonic, indicating the feasibility of the usage as a conducting paint.

  11. Electrical permittivity of Ni and NiZn ferrite-polymer composites

    Energy Technology Data Exchange (ETDEWEB)

    Razzitte, A.C. [Laboratorio de Fisicoquimica de Materiales Ceramicos Electronicos (LAFMACEL), Departamento de Quimica, Universidad de Buenos Aires, Paseo Colon 850, Capital Fedcral 1063, Buenos Aires (Argentina)]. E-mail: arazzit@fi.uba.ar; Fano, W.G. [Departamento de Electronica, Facultad.de Ingenieria, Universidad de Buenos Aires, Paseo Colon 850, Capital Fedcral 1063, Buenos Aires (Argentina); Jacobo, S.E. [Laboratorio de Fisicoquimica de Materiales Ceramicos Electronicos (LAFMACEL), Departamento de Quimica, Universidad de Buenos Aires, Paseo Colon 850, Capital Fedcral 1063, Buenos Aires (Argentina)

    2004-12-31

    Electrical properties of polymers, well known for their insulating properties, may be improved by adding various functional fillers. Polymer-ferrite composites have been a subject of recent extensive research. Electric properties of such composites depend on the size, shape and amount of added filler in general. When polymer-ferrite composites are particularly used as electromagnetic wave absorbers and EMI shielding materials, it is very important to explain the variation of permeability and permittivity in the measured frequency ranges. In this paper, acrylic-Ni ferrite composites and acrylic-NiZn ferrite composites were used. The effects of the weight fraction of ferrite on the frequency dispersion characteristics of the complex permittivity are studied.

  12. Polymers & People

    Science.gov (United States)

    Lentz, Linda; Robinson, Thomas; Martin, Elizabeth; Miller, Mary; Ashburn, Norma

    2004-01-01

    Each Tuesday during the fall of 2002, teams of high school students from three South Carolina counties conducted a four-hour polymer institute for their peers. In less than two months, over 300 students visited the Charleston County Public Library in Charleston, South Carolina, to explore DNA, nylon, rubber, gluep, and other polymers. Teams of…

  13. Insights on the biodegradation of acrylic reline resins

    OpenAIRE

    Neves, Maria Cristina Bettencourt, 1976-

    2012-01-01

    Tese de doutoramento, Medicina Dentária (Reabilitação Oral), Universidade de Lisboa, Faculdade de Medicina Dentária, 2012 Acrylic reline resins are extensively used in dentistry, since they readapt dentures to the continuous reabsorbed underlying tissues. Since present in the oral cavity for long periods of time, these materials are objective of the biodegradation phenomena, which represents the change on their chemical, physical and mechanical properties due to the oral environment condit...

  14. Late opacification of a hydrophilic acrylic intraocular lens

    Directory of Open Access Journals (Sweden)

    Al-Bdour Muawyah

    2008-01-01

    Full Text Available Cataract extraction and intraocular lens implantation is considered to be a safe procedure in most cases. However, the new advances in the surgical technique namely phacoemulsification and hence the increased use of foldable intraocular lenses have given rise to new complications including late opacification of intraocular lenses. In this case we report late opacification of a foldable hydrophilic acrylic intraocular lens and the surgical technique for its exchange.

  15. Softec HD hydrophilic acrylic intraocular lens: biocompatibility and precision

    OpenAIRE

    Ladan Espandar; Shameema Sikder; Majid Moshirfar

    2011-01-01

    Ladan Espandar1, Shameema Sikder2, Majid Moshirfar31Department of Ophthalmology, Tulane University, New Orleans, LA, USA; 2Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, USA; 3John A Moran Eye Center, University of Utah, Salt Lake City, UT, USAAbstract: Intraocular lens development is driven by higher patient expectations for ideal visual outcomes. The recently US Food and Drug Administration-approved Softec HD™ lens is an aspheric, hydrophilic acrylic intraocular le...

  16. Hemocompatibility of Chitosan/poly(acrylic acid) Grafted Polyurethane Tubing

    OpenAIRE

    Lee, Hyun-Su; Tomczyk, Nancy; Kandel, Judith; Composto, Russell J.; Eckmann, David M.

    2013-01-01

    The activation and adhesion of platelets or whole blood exposed to chitosan (CH) grafted surfaces is used to evaluate the hemocompatibility of biomaterials. The biomaterial surfaces are polyurethane (PU) tubes grafted with an inner poly(acrylic acid) (PAA) and an outer CH or quaternary ammonium modified CH (CH-Q) brush. The CH, CH-Q and PAA grafted layers were characterized by ellipsometry and fluorescence microscopy. Material wear tests demonstrate that CH (CH-Q) is stably grafted onto PU tu...

  17. Electrical Properties of n-Butyl Acrylate-Grafted Polyethylene

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C.R.; Oh, W.J.; Suh, K.S. [Korea University (Korea, Republic of)

    1997-04-01

    The electrical properties of n-butyl acrylate-grafted polyethylene (PE-g-nBA) were investigated. In PE-g-nBA, hetero charge founded in LDPE slightly increased due to the nBA grafting. Conduction currents decreased with the increase of nBA graft ratio. AC breakdown strength increased and water treeing length decreased with the increase of graft ratio in PE-g-nBA. (author). 4 refs., 6 figs.

  18. Study on Preparation Fluorine-containing and Properties of Acrylic Emulsion%含氟丙烯酸酯乳液的制备及性能研究

    Institute of Scientific and Technical Information of China (English)

    王伟; 孙祥山; 刘彦军

    2012-01-01

    以全氟辛基丙烯酸乙酯为主要单体,制备了核壳型含氟丙烯酸酯乳液,采用红外光谱和激光粒度对聚合物进行了表征,并对纯棉织物进行了拒水拒油整理,研究了聚合方法、整理工艺对纯棉织物表面拒水拒油性能的影响,通过SEM对整理后织物表面进行了分析。结果表明含氟丙烯酸酯乳液作为织物整理剂整理后的织物具有良好的拒水拒油性。%Core/shell structure fluorine-containing acrylic emulsion was prepared by using perfluoroalkyl octyl ethyl acrylate as main monomer. The polymer was characterized by using infrared spectroscopy and laser particle size analyzer and cotton textile was finished with water and oil repellent finishment. The influence of polymerization process and finishing technology to the properties of water and oil repellent finishment were studied. The textile surface was analyzed by SEM after finishing. The results show that the fluorine- containing acrylic emulsion textile finishing agent has good water-repellent and oil-repellent properties.

  19. Acrylic microspheres-based optosensor for visual detection of nitrite.

    Science.gov (United States)

    Noor, Nur Syarmim Mohamed; Tan, Ling Ling; Heng, Lee Yook; Chong, Kwok Feng; Tajuddin, Saiful Nizam

    2016-09-15

    A new optosensor for visual quantitation of nitrite (NO2(-)) ion has been fabricated by physically immobilizing Safranine O (SO) reagent onto a self-adhesive poly(n-butyl acrylate) [poly(nBA)] microspheres matrix, which was synthesized via facile microemulsion UV lithography technique. Evaluation and optimization of the optical NO2(-) ion sensor was performed with a fiber optic reflectance spectrophotometer. Scanning electron micrograph showed well-shaped and smooth spherical morphology of the poly(nBA) microspheres with a narrow particles size distribution from 0.6 μm up to 1.8 μm. The uniform size distribution of the acrylic microspheres promoted homogeneity of the immobilized SO reagent molecules on the microspheres' surfaces, thereby enhanced the sensing response reproducibility (<5% RSD) with a linear range obtained from 10 to 100 ppm NO2(-) ion. The micro-sized acrylic immobilization matrix demonstrated no significant barrier for diffusion of reactant and product, and served as a good solid state ion transport medium for reflectometric nitrite determination in food samples.

  20. Slow- Release Fertilizer Formulation Using Acrylic and Chitosan Coating

    Directory of Open Access Journals (Sweden)

    Lili Handayani

    2015-01-01

    Full Text Available The low-efficiency problem in fertilizer application can be overcome by controlling fertilizer solubility, i.e. by rendering the fertilizer to be released gradually; such material is also known as slow-release fertilizer (SRF. This research was aimed to formulate SRF by coating technique using acrylic and chitosan as the coating material, and to evaluate fertilizer resistance to too fast disintegration, and rate of nutrient release method. The results demonstrated that fertilizer formulation containing N, P, K, Fe, Cu, and Zn with granulation technique yielded 74% of granules with 2-5 mm in diameter. The SRFs (formulated fertilizer with acrylic or chitosan coating were more resistant to water pounding than non-SRF. Furthermore, shaking test with distilled water or 2% citric acid, or by percolation test with distilled water showed that the SRFs had lower nutrient solubility than the non-SRFs. The results of shaking test also specifically indicated that coating with acrylic made the fertilizer more resistant to the citric acid,suggesting that this coating material would be more suitable in acidic soils. The SRFs formulated with the addition of chitosan during blending of micronutrients prior to mixing with macronutrients, granulation, and final coating exhibited lower nutrient solubility than the SRFs without the pre-coating chitosan addition.

  1. Acrylate Functionalized Tetraalkylammonium Salts with Ionic Liquid Properties

    Directory of Open Access Journals (Sweden)

    Silvia Janietz

    2012-05-01

    Full Text Available Acrylate functionalized ionic liquids based on tetraalkylammonium salts with terminal acrylates- and methylacrylates were synthesized. Melting points and ionic conductivity of twenty compounds in six groups were determined. Within one group the effect of three different counterions was investigated and discussed. The groups differ in cationic structure elements because of their functional groups such as acrylate and methacrylate, alkyl residues at the nitrogen and number of quaternary ammonium atoms within the organic cation. The effect of these cationic structure elements has been examined concerning the compiled parameters with a view to qualifying them as components for solid state electrolytes. The newly synthesized ionic liquids were characterized by NMR and FTIR analysis. The exchange of halide ions like bromide as counter ions to weakly coordinating [PF6], [OTf] or [TFSI] reduces the melting points significantly and leads to an ion conductivity of about 10−4 S/cm at room temperature. In the case of the dicationic ionic liquid, an ion conductivity of about 10−3 S/cm was observed.

  2. [Modern polymers in matrix tablets technology].

    Science.gov (United States)

    Zimmer, Łukasz; Kasperek, Regina; Poleszak, Ewa

    2014-01-01

    Matrix tablets are the most popular method of oral drug administration, and polymeric materials have been used broadly in matrix formulations to modify and modulate drug release rate. The main goal of the system is to extend drug release profiles to maintain a constant in vivo plasma drug concentration and a consistent pharmacological effect. Polymeric matrix tablets offer a great potential as oral controlled drug delivery systems. Cellulose derivatives, like hydroxypropyl methylcellulose (HPMC) are often used as matrix formers. However, also other types of polymers can be used for this purpose including: Kollidon SR, acrylic acid polymers such as Eudragits and Carbopols. Nevertheless, polymers of natural origin like: carragens, chitosan and alginates widely used in the food and cosmetics industry are now coming to the fore of pharmaceutical research and are used in matrix tablets technology. Modern polymers allow to obtain matrix tablets by 3D printing, which enables to develop new formulation types. In this paper, the polymers used in matrix tablets technology and examples of their applications were described.

  3. Piezoelectric Nanoparticle-Polymer Composite Materials

    Science.gov (United States)

    McCall, William Ray

    Herein we demonstrate that efficient piezoelectric nanoparticle-polymer composite materials can be synthesized and fabricated into complex microstructures using sugar-templating methods or optical printing techniques. Stretchable foams with excellent tunable piezoelectric properties are created by incorporating sugar grains directly into polydimethylsiloxane (PDMS) mixtures containing barium titanate (BaTiO3 -- BTO) nanoparticles and carbon nanotubes (CNTs), followed by removal of the sugar after polymer curing. Porosities and elasticity are tuned by simply adjusting the sugar/polymer mass ratio and the electrical performance of the foams showed a direct relationship between porosity and the piezoelectric outputs. User defined 2D and 3D optically printed piezoelectric microstructures are also fabricated by incorporating BTO nanoparticles into photoliable polymer solutions such as polyethylene glycol diacrylate (PEGDA) and exposing to digital optical masks that can be dynamically altered. Mechanical-to-electrical conversion efficiency of the optically printed composite is enhanced by chemically altering the surface of the BTO nanoparticles with acrylate groups which form direct covalent linkages with the polymer matrix under light exposure. Both of these novel materials should find exciting uses in a variety of applications including energy scavenging platforms, nano- and microelectromechanical systems (NEMS/MEMS), sensors, and acoustic actuators.

  4. Combined Effect of Chain Extension and Supramolecular Interactions on Rheological and Adhesive Properties of Acrylic Pressure-Sensitive Adhesives.

    Science.gov (United States)

    Callies, Xavier; Herscher, Olivier; Fonteneau, Cécile; Robert, Alexis; Pensec, Sandrine; Bouteiller, Laurent; Ducouret, Guylaine; Creton, Costantino

    2016-12-07

    A new approach for the elaboration of low molecular weight pressure-sensitive adhesives based on supramolecular chemistry is explored. The synthesis of model systems coupled with probe-tack tests and rheological experiments highlights the influence of the transient network formed by supramolecular bonds on the adhesion energy. The first step of our approach consists of synthesizing poly(butyl acrylate-co-glycidyl methacrylate) copolymers from a difunctional initiator able to self-associate by four hydrogen bonds between urea groups. Linear copolymers with a low dispersity (Mn = 10 kg/mol, Ip adhesive performance can be optimized by modifying the strength of "stickers" (via the structure of the supramolecular initiator, for instance) and the polymer network (e.g., via the length and level of branching of the copolymer chains) in order to approach commercial PSA-like properties (high debonding energy and clean removal).

  5. Designed drug-release systems having various breathable polyurethane film-backed hydrocolloid acrylated adhesive layers for moisture healing.

    Science.gov (United States)

    Chang, Ching-Hsien; Liu, Hsia-Wei; Huang, Ching-Cheng

    2014-01-01

    A series of designed drug-release systems were prepared and established for clear moisture healing. These systems were designed to have an interpenetrating polymer network (IPN) structure, which contained a breathable polyurethane film, hydrocolloidlayer, and polyacrylate adhesive layer. Breathable polyurethane film (2000 g/m(2)/24 hr) with high moisture permeability was employed as a base for new drug-release systems or wound dressings. All drug-release systems having a polyurethane film-backed hydrocolloid acrylated adhesive layer showed an increase of water uptakes with increasing time. After 114 hours, high water uptakes of drug-release systems with 20% hydrocolloid components were observed in the values of 160, 1100, and 1870% for different additional hydrocolloid components of carboxymethylcellulose, sodium alginate, and carbomer U10, respectively. New drug-release systems of polyurethane film-backed hydrocolloid/adhesive layers could be designed and established for wound care managements.

  6. Photocurable biodegradable liquid copolymers: synthesis of acrylate-end-capped trimethylene carbonate-based prepolymers, photocuring, and hydrolysis.

    Science.gov (United States)

    Matsuda, Takehisa; Kwon, Il Keun; Kidoaki, Satoru

    2004-01-01

    Various photocurable liquid biodegradable trimethylene carbonate (TMC)-based (co)oligomers were prepared by ring-opening (co)polymerization of TMC with or without L-lactide (LL) using low molecular weight poly(ethylene glycol) (PEG) (mol wt 200, 600, or 1000) or trimethylolpropane (TMP) as an initiator. Resultant (co)oligomers were pastes, viscous liquids, or liquids at room temperature, depending on the monomer composition and monomer/initiator ratio. Liquid (co)oligomers were subsequently end-capped with acrylate groups. Upon visible-light irradiation in the presence of camphorquinone as a radical generator, rapid liquid-to-solid transformation occurred to produce photocured solid. The photocuring yield increased with photoirradiation time, photointensity, and camphorquinone concentration. The photocured polymers derived from low molecular weight PEG (PEG200) and TMP exhibited much reduced hydrolysis potential compared with PEG1000-derived polymers in terms of weight loss, water uptake, and swelling depth. Force-distance curve measurements by nanoindentation using atomic force microscopy clearly showed that Young's moduli of the photocured polymer films decreased with increasing hydrolysis time. Their potential biomedical applications are discussed.

  7. Metal sorption and swelling characters of acrylic acid and sodium alginate based hydrogels synthesized by gamma irradiation

    Science.gov (United States)

    Nizam El-Din, Horia M.; Abou Taleb, Manal F.; El-Naggar, Abdel Wahab M.

    2008-06-01

    Hydrophilic hydrogels based on poly(acrylic acid) as synthetic polymer and sodium alginates as natural polymer (AG) were prepared by gamma irradiation. The AAc/AG hydrogels were characterized by X-ray diffraction (XRD) and thermogravimetric analysis (TGA). The effect of temperature and pH on the degree of swelling in water was studied. In addition, the metal sorption affinity of the prepared hydrogels for Cu+2, Co+2 and Ni+2 was investigated. The XRD spectroscopic analysis indicates the formation of interpenetrating polymer networks. The TGA study showed that the hydrogels based on AAc/AG hydrogels at different ratios displayed lower thermal stability than PAAc hydrogel. The kinetic study of swelling in water showed that PAAc and AAc/AG hydrogels reached the equilibrium swelling state after five hours. However, AAc/AG hydrogels showed degree of swelling in water greater than PAAc hydrogel. The degree of swelling of AAc/AG hydrogels was affected by temperature, it increases within the temperature range 25-40 °C and displayed pH sensitivity within the range 5.5-9 depending on composition. The metal sorption study showed that PAAc hydrogel possessed higher affinity for Cu+2 ions than AAc/AG hydrogels, whereas AAc/AG hydrogels showed higher affinity for Co+2 and Ni+2 ions than PAAc hydrogel.

  8. Influence of miscibility phenomenon on crystalline polymorph transition in poly(vinylidene fluoride)/acrylic rubber/clay nanocomposite hybrid.

    Science.gov (United States)

    Abolhasani, Mohammad Mahdi; Naebe, Minoo; Jalali-Arani, Azam; Guo, Qipeng

    2014-01-01

    In this paper, intercalation of nanoclay in the miscible polymer blend of poly(vinylidene fluoride) (PVDF) and acrylic rubber(ACM) was studied. X-ray diffraction was used to investigate the formation of nanoscale polymer blend/clay hybrid. Infrared spectroscopy and X-ray analysis revealed the coexistence of β and γ crystalline forms in PVDF/Clay nanocomposite while α crystalline form was found to be dominant in PVDF/ACM/Clay miscible hybrids. Flory-Huggins interaction parameter (B) was used to further explain the miscibility phenomenon observed. The B parameter was determined by combining the melting point depression and the binary interaction model. The estimated B values for the ternary PVDF/ACM/Clay and PVDF/ACM pairs were all negative, showing both proper intercalation of the polymer melt into the nanoclay galleries and the good miscibility of PVDF and ACM blend. The B value for the PVDF/ACM blend was almost the same as that measured for the PVDF/ACM/Clay hybrid, suggesting that PVDF chains in nanocomposite hybrids interact with ACM chains and that nanoclay in hybrid systems is wrapped by ACM molecules.

  9. Relationships between the morphology, swelling and mechanical properties of poly(dimethyl siloxane)/poly(acrylic acid) interpenetrating networks.

    Science.gov (United States)

    Jalili, K; Abbasi, F; Oskoee, S S; Alinejad, Z

    2009-10-01

    A limitation in the use of hydrophilic polymers as implantable devices is their inherently poor mechanical strength. Using interpenetrating polymer networks (IPNs) consisting of both hydrophilic and hydrophobic networks is an effective method of strengthening these polymers. In this work, a series of poly(dimethyl siloxane) (PDMS)/poly(acrylic acid) (PAAc) sequential IPNs were synthesized and their properties, including swelling, morphology, and mechanical strength, were investigated. A reinforcing effect of the addition of PAAc to PDMS was observed at a concentration of 20 wt%, where this component had a bimodal size distribution. All of the IPNs exhibited rubbery behavior in the swollen state. Phase inversion in the IPNs occurred at about 60 wt% of PAAc. However, the swelling data showed that the phase inversion in the swollen state occurred at PAAc contents lower than those for dry IPNs. The improved cell behavior, reported in previous works for PDMS/PAAc IPNs with about 20 wt% PAAc, can, in addition to the increased surface wettability, be attributed to the bimodality of PAAc particles size distribution in the IPN.

  10. Poly(acrylic acid)-grafted poly(N-isopropyl acrylamide) networks: preparation, characterization and hydrogel behavior.

    Science.gov (United States)

    Yu, Rentong; Zheng, Sixun

    2011-01-01

    Poly(acrylic acid)-grafted poly(N-isopropylacrylamide) co-polymer networks (PNIPAAm-g-PAA) were prepared via the reversible addition-fragmentation transfer (RAFT) polymerization of N-isopropyl- acrylamide (NIPAAm) with trithiocarbonate-terminated PAA as a macromolecular chain-transfer agent in the presence of N,N-methylenebisacrylamide. The PNIPAAm-g-PAA co-polymer networks were characterized by means of Fourier transform infrared spectroscopy, differential scanning calorimetry and small-angle X-ray scattering. It is found that the PNIPAAm-g-PAA co-polymer networks were microphase-separated, in which the microdomains of PNIPAAm-PAA interpolymer complexes were dispersed into the PNIPAAm matrix. The PNIPAAm-g-PAA hydrogels displayed a dual response to temperature and pH values. The thermoresponsive properties of PNIPAAm-g-PAA networks were investigated. Below the volume phase transition temperatures, the PNIPAAm-g-PAA hydrogels possessed much higher swelling ratios than control PNIPAAm hydrogel. In terms of swelling, deswelling and reswelling tests, it is judged that the PNIPAAm-g-PAA hydrogels displayed faster response to the external temperature changes than control PNIPAAm hydrogel. The improved thermoresponsive properties of hydrogels are ascribed to the formation of PAA-grafted PNIPAAm networks, in which the water-soluble PAA chains behave as the hydrophiphilic tunnels and allow water molecules to go through and, thus, to accelerate the diffusion of water molecules.

  11. Transport of poly(acrylic acid) coated 2-line ferrihydrite nanoparticles in saturated aquifer sediments for environmental remediation

    Science.gov (United States)

    Xiang, Aishuang; Zhou, Sheng; Koel, Bruce E.; Jaffé, Peter R.

    2014-04-01

    Groundwater remediation using iron oxide and zero-valent iron nanoparticles (NPs) can be effective, but is limited in many applications due to the NP strong retention in groundwater-saturated porous media after injection, the passivation of the porous surface, and the high cost of nanomaterials versus macro scale iron. In this study, we investigated transport of bare and polymer-coated 2-line ferrihydrite NPs (30-300 nm) in saturated aquifer sediments. The influence of poly(acrylic acid) (PAA) polymer coatings was studied on the colloidal stability and transport in sediments packed column tests simulating groundwater flow in saturated sediments. In addition, the influence of calcium cations was investigated by transport measurements using sediments with calcium concentrations in the aqueous phase ranging from 0.5 (typical for most sediments) to 2 mM. Measurements were also made of zeta potential, hydrodynamic diameter, polymer adsorption and desorption properties, and bio-availability of PAA-coated NPs. We found that NP transport through the saturated aquifer sediments was improved by PAA coating and that the transport properties could be tuned by adjusting the polymer concentration. We further discovered that PAA coatings enhanced NP transport, compared to bare NPs, in all calcium-containing experiments tested, however, the presence of calcium always exhibited a negative effect on NP transport. In tests of bioavailability, the iron reduction rate of the coated and bare NPs by Geobacter sulfurreducens was the same, which shows that the PAA coating does not significantly reduce NP Fe(III) bioavailability. Our results demonstrate that much improved transport of iron oxide NP can be achieved in saturated aquifer sediments by introducing negatively charged polyelectrolytes and optimizing polymer concentrations, and furthermore, these coated NPs retain their bioavailability that is needed for applications in bio-environmental remediation.

  12. On the stability of the polymer brushes formed by adsorption of Ionomer Complexes on hydrophilic and hydrophobic surfaces

    NARCIS (Netherlands)

    Brzozowska, A. M.; Spruijt, E.; de Keizer, A.; Stuart, M. A. Cohen; Norde, W.

    2011-01-01

    We have studied the effect of normal forces and shear forces on the stability and functionality of a polymer brush layer formed upon adsorption of polymeric micelles on hydrophilic and hydrophobic surfaces. The micelles consist of oppositely charged polyelectrolyte blocks (poly(acrylic acid) and pol

  13. PREPARATION AND PROPERTIES OF THERMOSETTING ACRYLIC COATINGS USING TITANIUM-OXO-CLUSTER AS A CURING AGENT

    Institute of Scientific and Technical Information of China (English)

    Kun Xu; Shu-xue Zhou; Li-min Wu

    2009-01-01

    Thermosetting acrylic coatings were prepared by using carboxyl acid group-containing acrylic oligomer and curing with titanium-oxo-clusters which were first pre-hydrolyzed from titanium n-butoxide. The curing ability of the titanium-oxo-cluster was examined using a microdielectric analytical (DEA) curing monitor, Fourier transformed infrared spectroscopy (FTIR), and Soxhlet extraction experiments, and the properties of the resulted coatings were investigated with pendulum hardness tester, dynamic mechanical analysis (DMA), thermogravimetric analysis (TGA) and ultraviolet-visible spectrometer. The effect of titania-oxo-cluster in leading acrylic oligomers to form thermosetting acrylic coatings was confirmed. An increasing pendulum hardness and modulus of acrylic coatings with increasing titania content was observed, which resulted from the increment of crosslinking degree rather than of the titania content. The thermosetting acrylic/titania coatings also showed better thermal stability and higher UV-blocking properties than those coatings using organic curing agent.

  14. Development of palm oil-based UV-curable epoxy acrylate and urethane acrylate resins for wood coating application

    Energy Technology Data Exchange (ETDEWEB)

    Tajau, Rida; Mahmood, Mohd Hilmi; Salleh, Mek Zah; Salleh, Nik Ghazali Nik [Radiation Processing Technology Division, Malaysian Nuclear Agency (Nuclear Malaysia), Bangi, 43000 Kajang, Selangor (Malaysia); Ibrahim, Mohammad Izzat [Faculty of Science, University of Malaya (UM), 50603 Kuala Lumpur (Malaysia); Yunus, Nurulhuda Mohd [Faculty of Science and Technology, National University Malaysia (UKM), 43600 Bangi, Selangor (Malaysia)

    2014-02-12

    The trend of using renewable sources such as palm oil as raw material in radiation curing is growing due to the demand from the market to produce a more environmental friendly product. In this study, the radiation curable process was done using epoxy acrylate and urethane acrylate resins which are known as epoxidised palm olein acrylate (EPOLA) and palm oil based urethane acrylate (POBUA), respectively. The purpose of the study was to investigate curing properties and the application of this UV-curable palm oil resins for wood coating. Furthermore, the properties of palm oil based coatings are compared with the petrochemical-based compound such as ebecryl (EB) i.e. EB264 and EB830. From the experiment done, the resins from petrochemical-based compounds resulted higher degree of crosslinking (up to 80%) than the palm oil based compounds (up to 70%), where the different is around 10-15%. The hardness property from this two type coatings can reached until 50% at the lower percentage of the oligomer. However, the coatings from petrochemical-based have a high scratch resistance as it can withstand at least up to 3.0 Newtons (N) compared to the palm oil-based compounds which are difficult to withstand the load up to 1.0 N. Finally, the test on the rubber wood substrate showed that the coatings containing benzophenone photoinitiator give higher adhesion property and their also showed a higher glosiness property on the glass substrate compared to the coatings containing irgacure-819 photoinitiator. This study showed that the palm oil coatings can be a suitable for the replacement of petrochemicals compound for wood coating. The palm oil coatings can be more competitive in the market if the problems of using high percentage palm oil oligomer can be overcome as the palm oil price is cheap enough.

  15. Development of palm oil-based UV-curable epoxy acrylate and urethane acrylate resins for wood coating application

    Science.gov (United States)

    Tajau, Rida; Ibrahim, Mohammad Izzat; Yunus, Nurulhuda Mohd; Mahmood, Mohd Hilmi; Salleh, Mek Zah; Salleh, Nik Ghazali Nik

    2014-02-01

    The trend of using renewable sources such as palm oil as raw material in radiation curing is growing due to the demand from the market to produce a more environmental friendly product. In this study, the radiation curable process was done using epoxy acrylate and urethane acrylate resins which are known as epoxidised palm olein acrylate (EPOLA) and palm oil based urethane acrylate (POBUA), respectively. The purpose of the study was to investigate curing properties and the application of this UV-curable palm oil resins for wood coating. Furthermore, the properties of palm oil based coatings are compared with the petrochemical-based compound such as ebecryl (EB) i.e. EB264 and EB830. From the experiment done, the resins from petrochemical-based compounds resulted higher degree of crosslinking (up to 80%) than the palm oil based compounds (up to 70%), where the different is around 10-15%. The hardness property from this two type coatings can reached until 50% at the lower percentage of the oligomer. However, the coatings from petrochemical-based have a high scratch resistance as it can withstand at least up to 3.0 Newtons (N) compared to the palm oil-based compounds which are difficult to withstand the load up to 1.0 N. Finally, the test on the rubber wood substrate showed that the coatings containing benzophenone photoinitiator give higher adhesion property and their also showed a higher glosiness property on the glass substrate compared to the coatings containing irgacure-819 photoinitiator. This study showed that the palm oil coatings can be a suitable for the replacement of petrochemicals compound for wood coating. The palm oil coatings can be more competitive in the market if the problems of using high percentage palm oil oligomer can be overcome as the palm oil price is cheap enough.

  16. Taichi-inspired rigid-flexible coupling cellulose-supported solid polymer electrolyte for high-performance lithium batteries

    OpenAIRE

    Zhang, Jianjun; Yue, Liping; Hu, Pu; Liu, Zhihong; Qin, Bingsheng; Zhang, Bo; Wang, Qingfu; DING, GUOLIANG; Zhang, Chuanjian; Zhou, Xinhong; Yao, Jianhua; Cui, Guanglei; Chen, Liquan

    2014-01-01

    Inspired by Taichi, we proposed rigid-flexible coupling concept and herein developed a highly promising solid polymer electrolyte comprised of poly (ethylene oxide), poly (cyano acrylate), lithium bis(oxalate)borate and robust cellulose nonwoven. Our investigation revealed that this new class solid polymer electrolyte possessed comprehensive properties in high mechanical integrity strength, sufficient ionic conductivity (3 × 10−4 S cm−1) at 60°C and improved dimensional thermostability (up to...

  17. Color stability, water sorption and cytotoxicity of thermoplastic acrylic resin for non metal clasp denture

    OpenAIRE

    Jang, Dae-Eun; Lee, Ji-Young; Jang, Hyun-Seon; Lee, Jang-Jae; Son, Mee-Kyoung

    2015-01-01

    PURPOSE The aim of this study was to compare the color stability, water sorption and cytotoxicity of thermoplastic acrylic resin for the non-metal clasp dentures to those of thermoplastic polyamide and conventional heat-polymerized denture base resins. MATERIALS AND METHODS Three types of denture base resin, which are conventional heat-polymerized acrylic resin (Paladent 20), thermoplastic polyamide resin (Bio Tone), thermoplastic acrylic resin (Acrytone) were used as materials for this study...

  18. Influence of Zwitterions on Thermomechanical Properties and Morphology of Acrylic Copolymers: Implications for Electroactive Applications

    Science.gov (United States)

    2011-09-30

    properties of ethyl acrylate and n-butyl acrylate ( nBA )-based sulfobetaine-containing copolymers.10,11 They found that the incorporation of...ammonio]-1-propanesulfonate (SBMA), a zwitterionic mono- mer. Copolymerization of both charge-containing monomers with nBA elucidates the influence of...3-[[2-(methacryloyloxy)ethyl]- (dimethyl)ammonio]-1-propanesulfonate (SBMA), was generously provided by Raschig GmbH. n-Butyl acrylate ( nBA , Alfa

  19. Preparation of Poly(acrylic acid) Hydrogel by Radiation Crosslinking and Its Application for Mucoadhesives

    OpenAIRE

    Young-Chang Nho; Jong-Seok Park; Youn-Mook Lim

    2014-01-01

    A mucoadhesive drug delivery system can improve the effectiveness of a drug by maintaining the drug concentration and allowing targeting and localization of the drug at a specific site. Acrylic-based hydrogels have been used extensively as a mucoadhesive system owing to their flexibility and excellent bioadhesion. In this experiment, poly(acrylic acid) was selected to prepare the bioadhesive hydrogel adhering to mucosal surfaces using a radiation process. Poly(acrylic acid) was dissolved in ...

  20. Effect of Atmospheric Pressure Glow Discharge Treatment on Polymerization of Acrylic Fabric and Its Printing Behavior

    Directory of Open Access Journals (Sweden)

    D M El-Zeer

    2014-03-01

    Full Text Available Acrylic fibers have been treated by atmospheric pressure glow discharge (APGD plasma in open air to enhance surface antistatic properties. The treated surfaces are investigated by scanning electron microscopy (SEM, Fourier-Transition Infrared Spectroscopy (FTIR and Atomic Force Microscope (AFM. Plasma treatment of acrylic fabric has been found to increase the surface roughness, modify the nature and density of surface functionalities, and drastically improve the wettability and antistatic ability of acrylic fibers.

  1. Polymerization rate and mechanism of ultrasonically initiated emulsion polymerization of n-butyl acrylate.

    Science.gov (United States)

    Xia, Hesheng; Wang, Qi; Liao, Yongqin; Xu, Xi; Baxter, Steven M; Slone, Robert V; Wu, Shuguang; Swift, Graham; Westmoreland, David G

    2002-07-01

    The factors affecting the induction period and polymerization rate in ultrasonically initiated emulsion polymerization of n-butyl acrylate (BA) were investigated. The induction period takes only an instant in ultrasonically initiated emulsion polymerization of BA without any added initiator by enhancing the N2 flow rate. Increasing temperature, power output and SDS concentration, decreasing the monomer concentration results in further decreasing induction period and enhanced polymerization rate. Under optimized reaction conditions the conversion of BA reaches 92% in 11 min. The polymerization rate can be controlled by varying reaction parameters. The apparatus of ultrasonically initiated semi-continuous and continuous emulsion polymerization were set up and the feasibility was first studied. Based on the experimental results, a free radical polymerization mechanism for ultrasonically initiated emulsion polymerization was proposed, including the sources of the radicals, the process of radical formation, the locus of polymerization and the polymerization process. Compared with conventional emulsion polymerization, where the radicals come from thermal decomposition of a chemical initiator, ultrasonically initiated emulsion polymerization has attractive features such as no need for a chemical initiator, lower reaction temperature, faster polymerization rate, and higher molecular weight of the polymer prepared.

  2. Synthesis and characterization of polycaprolactone/acrylic acid (PCL/AA) hydrogel for controlled drug delivery

    Indian Academy of Sciences (India)

    Nazar Mohammad Ranjha; Jahanzeb Mudassir; Sajid Majeed

    2011-12-01

    In the present work biodegradable pH-sensitive polycaprolactone/acrylic acid (PCL/AA) hydrogels have been developed using ethylene glycol dimethacrylate (EGDMA) as a cross-linker and benzoyl peroxide as initiator. For these prepared hydrogels swelling studies, sol–gel fraction analysis and porosity measurements were performed. Results show that swelling of the hydrogels decreases on increasing the concentration of PCL and EGDMA, however swelling of hydrogels increases on increasing the concentration of AA. Results of sol–gel fraction analysis show that gel fraction increases on increasing concentration of monomer AA, polymer PCL as well as cross-linker EGDMA. As far as porosity is concerned, it increases on increasing the concentration of AA and PCL while porosity decreases on increasing the concentration of EGDMA. Hydrogels were characterized by measuring diffusion coefficient () and equilibrium water content (EWC). Network formation, morphology and crystallinity of PCL/AA hydrogels were investigated using FTIR, SEM and XRD, respectively. Tramadol hydrochloride was loaded as model drug and its release pattern was analysed using various kinetic models like zero order, first order, Higuchi and Peppas. Results indicated that most of the samples followed non-Fickian release mechanism.

  3. Plasma-induced graft-polymerization of polyethylene glycol acrylate on polypropylene substrates

    Science.gov (United States)

    Zanini, S.; Orlandi, M.; Colombo, C.; Grimoldi, E.; Riccardi, C.

    2009-08-01

    A detailed study of argon plasma-induced graft-polymerization of polyethylene glycol acrylate (PEGA) on polypropylene (PP) substrates (membranes and films) is presented. The process consists of four steps: (a) plasma pre-activation of the PP substrates; (b) immersion in a PEGA solution; (c) argon plasma-induced graft-polymerization; (d) washing and drying of the samples. Influence of the solution and plasma parameters on the process efficiency evaluated in terms of amount of grafted polymer, coverage uniformity and substrates wettability, are investigated. The plasma-induced graft-polymerization of PEGA is then followed by sample weighting, water droplet adsorption time and contact angle measurements, attenuated total reflection infrared spectroscopy (ATR-IR), X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) analyses. The stability of the obtained thin films was evaluated in water and in phosphate buffer saline (PBS) at 37 °C. Results clearly indicates that plasma-induced graft-polymerization of PEGA is a practical methodology for anti-fouling surface modification of materials.

  4. Thermodynamics of coil-hyperbranched poly(styrene-b-acrylated epoxidized soybean oil) block copolymers

    Science.gov (United States)

    Lin, Fang-Yi; Hohmann, Austin; Hernández, Nacú; Cochran, Eric

    Here we present the phase behavior of a new type of coil-hyperbranched diblock copolymer: poly(styrene- b-acrylated epoxidized soybean oil), or PS-PAESO. PS-PAESO is an example of a biorenewable thermoplastic elastomer (bio-TPE). To date, we have shown that bio-TPEs can be economical commercial substitutes for their petrochemically derived analogues--such as poly(styrene- b-butadiene- b-styrene) (SBS)--in a range of applications including pressure sensitive adhesives and bitumen modification. From a polymer physics perspective, PS-PAESO is an interesting material in that it couples a linear coil-like block with a highly branched block. Thus in contrast to the past five decades of studies on linear AB diblock copolymers, coil-hyperbranched block copolymers are relatively unknown to the community and can be expected to deviate substantially from the standard ``universal'' phase behavior in the AB systems. To explore these new materials, we have constructed a library of PS-PAESO materials spanning a range of molecular weight and composition values. The phase transition behavior and the morphology information will be interpreted by isochronal temperature scanning in dynamic shear rheology, small angle X-ray scattering and the corresponding transmission electron microscopy.

  5. CONFORMATIONAL CHARACTERISTICS OF POLY(ACRYLIC ACID) AND POLY(METHACRYLIC ACID)

    Institute of Scientific and Technical Information of China (English)

    HE Ziru; YANG Xiaozhen; ZHAO Delu; XU Mao; HAN Dong; YE Meiling; SHI Lianghe

    1997-01-01

    A full-relaxation optimization of molecule and the Dreiding force field are employed to obtain the geometry parameters and the conformational energy surfaces of meso or racemic dyad of poly(acrylic acid) (PAA) and poly(methacrylic acid) (PMAA). Three different carbonyl-bond orientations of side-groups resulted in the differences in depth of potential wells in their energetic contours for a meso or a racemic dyad.These discrepancies are interpreted as a result of various fine structures corresponding to grid search conformations as well as thereby different interactions. The analysis on the most stable conformations of PMAA confirmed that the ester groups are nearly perpendicular to the plane defined by the two adjacent skeletal bonds but may possibly change their relative orientations to meet the requirement of lower energy during the conformational state transition. For each polymer, two global energy maps of a meso and a racemic dyad were finally constructed from the superposition of energy data for the three kinds of side-group orientations by the Boltzmann factors. From an ensemble average, the proposed scheme with three rotational isomeric states (RIS) allowed us to access the experimentally unperturbed dimensions of PAA chain via the configurational statistical mechanics. Although the calculation was based on the short-range, local interactions, it was interested to note that the experimental characteristic ratios just fell within the range calculated for atactic chains.

  6. Superabsorbent biphasic system based on poly(lactic acid) and poly(acrylic acid)

    Science.gov (United States)

    Sartore, Luciana; Pandini, Stefano; Baldi, Francesco; Bignotti, Fabio

    2016-05-01

    In this research work, biocomposites based on crosslinked particles of poly(acrylic acid), commonly used as superabsorbent polymer (SAP), and poly-L-lactic acid (PLLA) were developed to elucidate the role of the filler (i.e., polymeric crosslinked particles) on the overall physico-mechanical behavior and to obtain superabsorbent thermoplastic products. Samples prepared by melt-blending of components in different ratios showed a biphasic system with a regular distribution of particles, with diameter ranging from 5 to 10 μm, within the PLLA polymeric matrix. The polymeric biphasic system, coded PLASA i.e. superabsorbent poly(lactic acid), showed excellent swelling properties, demonstrating that cross-linked particles retain their superabsorbent ability, as in their free counterparts, even if distributed in a thermoplastic polymeric matrix. The thermal characteristics of the biocomposites evidence enhanced thermal stability in comparison with neat PLLA and also mechanical properties are markedly modified by addition of crosslinked particles which induce regular stiffening effect. Furthermore, in aqueous environments the particles swell and are leached from PLLA matrix generating very high porosity. These new open-pore PLLA foams, produced in absence of organic solvents and chemical foaming agents, with good physico-mechanical properties appear very promising for several applications, for instance in tissue engineering for scaffold production.

  7. Preparation and Biophysical Characterization of Poly(amidoamine) Dendrimer-Poly(acrylic acid) Graft.

    Science.gov (United States)

    Dung, Tran Huu; Do, Le Thanh; Loan, Ta Thi; Yoo, Hoon

    2015-01-01

    A series of PAMAM dendrimer generation 5-poly(acrylic acid) grafts were prepared to evaluate the potential use of dendritic grafts as a drug encapsulated nanocarrier. The structural features of the synthesized polymer graft were identified by FT-IR and 1H-NMR spectra and the biophysical properties were characterized by measuring its particle size and zeta potential. The prepared dendrimer G5-PAA grafts had particle size in the range of 600 to 900 nm and the size increased proportionally with the number of PAA on dendrimer surface. The electrostatic property of the dendrimer G5-PAA, carried out by HPLC reversed phase column analysis and the measurement of zeta potential, revealed that both migration time and zeta potential were dependent on the number of grafted PAA. The number of free amino groups on dendrimer G5-PAA, determined quantitatively by fluorescamine assay, was in a reverse order with the reaction mole ratio of dendrimer to PAA. In addition, dendrimer G5-PAA showed a pH-dependent solubility in aqueous solution with characteristic pH region of solubility, depending on the dendrimer generation. The observed biophysical properties indicate that PAMAM dendrimer G5-PAA is promising as a drug encapsulated nanocarrier.

  8. A novel poly(acrylic acid-co-acrylamide)/diatomite composite flocculant with outstanding flocculation performance.

    Science.gov (United States)

    Xu, Kun; Liu, Yao; Wang, Yang; Tan, Ying; Liang, Xuecheng; Lu, Cuige; Wang, Haiwei; Liu, Xiusheng; Wang, Pixin

    2015-01-01

    Series of anionic flocculants with outstanding flocculation performance, poly(acrylic acid-co-acrylamide)/diatomite composite flocculants (PAAD) were successfully prepared through aqueous solution copolymerization and applied to flocculate from oil-field fracturing waste-water. The structure of PAAD was characterized by Fourier transform infra-red spectroscopy, (13)C nuclear magnetic resonance and X-ray diffraction tests, and its properties were systematically evaluated by viscometer, thermogravimetry analysis and flocculation measurements. Furthermore, the influences of various reaction parameters on the apparent viscosity of flocculant solution were studied, and the optimum synthesis condition was determined. The novel composite flocculants exhibited outstanding flocculation properties. Specifically, the dosage of composite flocculants that could make the transmittance of treated wastewater exceed 90% was only approximately 12-35 ppm, which was far lower than that of conventional flocculants. Meanwhile, the settling time was lower than 5 s, which was similar to that of conventional flocculants. This was because PAAD flocculants had a higher absorption capacity, and larger chain extending space than conventional linear flocculants, which could refrain from the entanglement of linear polymer chains and significantly improve flocculation capacity.

  9. Injectable biocompatible and biodegradable pH-responsive hollow particle gels containing poly(acrylic acid): the effect of copolymer composition on gel properties.

    Science.gov (United States)

    Halacheva, Silvia S; Adlam, Daman J; Hendow, Eseelle K; Freemont, Tony J; Hoyland, Judith; Saunders, Brian R

    2014-05-12

    The potential of various pH-responsive alkyl (meth)acrylate ester- and (meth)acrylic acid-based copolymers, including poly(methyl methacrylate-co-acrylic acid) (PMMA-AA) and poly(n-butyl acrylate-co-methacrylic acid) (PBA-MAA), to form pH-sensitive biocompatible and biodegradable hollow particle gel scaffolds for use in non-load-bearing soft tissue regeneration have been explored. The optimal copolymer design criteria for preparation of these materials have been established. Physical gels which are both pH- and redox-sensitive were formed only from PMMA-AA copolymers. MMA is the optimal hydrophobic monomer, whereas the use of various COOH-containing monomers, e.g., MAA and AA, will always induce a pH-triggered physical gelation. The PMMA-AA gels were prepared at physiological pH range from concentrated dispersions of swollen, hollow, polymer-based particles cross-linked with either cystamine (CYS) or 3,3'-dithiodipropionic acid dihydrazide (DTP). A linear relationship between particle swelling ratios, gel elasticity, and ductility was observed. The PMMA-AA gels with lower AA contents feature lower swelling ratios, mechanical strengths, and ductilities. Increasing the swelling ratio (e.g., through increasing AA content) decreased the intraparticle elasticity; however, intershell contact and gel elasticity were found to increase. The mechanical properties and performance of the gels were tuneable upon varying the copolymers' compositions and the structure of the cross-linker. Compared to PMMA-AA/CYS, the PMMA-AA/DTP gels were more elastic and ductile. The biodegradability and cytotoxicity of the new hollow particle gels were tested for the first time and related to their composition, mechanical properties, and morphology. The new PMMA-AA/CYS and PMMA-AA/DTP gels have shown good biocompatibility, biodegradability, strength, and interconnected porosity and therefore have good potential as a tissue repair agent.

  10. Synthesis and Characterization of Molecular Imprinting Polymer Microspheres of Piperine: Extraction of Piperine from Spiked Urine

    Science.gov (United States)

    Roland, Rachel Marcella

    2016-01-01

    Molecularly imprinted polymer (MIP) microspheres for Piperine were synthesized by precipitation polymerization with a noncovalent approach. In this research Piperine was used as a template, acrylic acid as a functional monomer, ethylene glycol dimethacrylate as a cross-linker, and 2,2′-azobisisobutyronitrile (AIBN) as an initiator and acetonitrile as a solvent. The imprinted and nonimprinted polymer particles were characterized by using Fourier transform infrared spectroscopy (FT-IR) and Scanning Electron Microscopy (SEM). The synthesized polymer particles were further evaluated for their rebinding efficiency by batch binding assay. The highly selected imprinted polymer for Piperine was MIP 3 with a composition (molar ratio) of 0.5 : 3 : 8, template : monomer : cross-linker, respectively. The MIP 3 exhibits highest binding capacity (84.94%) as compared to other imprinted and nonimprinted polymers. The extraction efficiency of highly selected imprinted polymer of Piperine from spiked urine was above 80%. PMID:28018704

  11. Organometallic Polymers.

    Science.gov (United States)

    Carraher, Charles E., Jr.

    1981-01-01

    Reactions utilized to incorporate a metal-containing moiety into a polymer chain (addition, condensation, and coordination) are considered, emphasizing that these reactions also apply to smaller molecules. (JN)

  12. Polymers All Around You!

    Science.gov (United States)

    Gertz, Susan

    Background information on natural polymers, synthetic polymers, and the properties of polymers is presented as an introduction to this curriculum guide. Details are provided on the use of polymer products in consumer goods, polymer recycling, polymer densities, the making of a polymer such as GLUEP, polyvinyl alcohol, dissolving plastics, polymers…

  13. Rapid cellular internalization of multifunctional star polymers prepared by atom transfer radical polymerization.

    Science.gov (United States)

    Cho, Hong Y; Gao, Haifeng; Srinivasan, Abiraman; Hong, Joanna; Bencherif, Sidi A; Siegwart, Daniel J; Paik, Hyun-Jong; Hollinger, Jeffrey O; Matyjaszewski, Krzysztof

    2010-09-13

    Poly(ethylene glycol) (PEG) star polymers containing GRGDS (Gly-Arg-Gly-Asp-Ser) peptide sequences on the star periphery were synthesized by atom transfer radical polymerization (ATRP) of poly(ethylene glycol) methyl ether methacrylate (PEGMA), GRGDS modified poly(ethylene glycol) acrylate (GRGDS-PEG-Acryl), fluorescein o-methacrylate (FMA), and ethylene glycol dimethacrylate (EGDMA) via an "arm-first" method. Star polymers were approximately 20 nm in diameter, as measured by dynamic light scattering and atomic force microscopy. Conjugation of FMA to the stars was confirmed by fluorescence microscopy, and successful attachment of GRGDS segments to the star periphery was confirmed by (1)H NMR spectroscopy. Both fluorescent PEG star polymers with and without peripheral GRGDS peptide segments were cultured with MC3T3-E1.4 cells. These star polymers were biocompatible with ≥ 90% cell viability after 24 h of incubation. Cellular uptake of PEG star polymers in MC3T3-E1.4 cells was observed by confocal microscopy. Rapid uptake of PEG star polymers with GRGDS peptides (∼ 100% of FITC-positive cells in 15 min measured by flow cytometry) was observed, suggesting enhanced delivery potential of these functional star polymers.

  14. The Effect of Nano-Morphology Modification Using an Amphiphilic Polymer on the Proton Conductivity of Composite Membrane for a Polymer Membrane-Based Fuel Cell.

    Science.gov (United States)

    Roh, Sung-Hee; Rho, Seon-Gyun; Kim, Sang-Chai; Kim, Ju-Young; Jung, Ho-Young

    2016-02-01

    The effect of morphology modification using an amphiphilic polymer on the proton conductivity of composite membrane for a polymer membrane-based fuel cell was investigated. The proton conductivity of each composite membrane was analyzed by the electrochemical impedance spectroscopy (EIS). The morphological change was confirmed by scanning electron microscope (SEM). In the composite membrane, the proton conductive component was sulfonated poly(ether ether ketone) (sPEEK), while the nonconductive component was poly(vinylidenedifluoride) and the amphiphilic polymer as a compatibilizer was urethane acrylate non-ionomer (UAN). UAN as a compatibilizer improved the interfacial stability between sPEEK and PVdF polymers, even though two polymers were apparently immiscible. The homogeneous distribution of sPEEK and PVdF domains in the composite membrane was obtained with the introduction of UAN due to the amphiphilicity. Therefore, it was found that the proton conductivity of the composite membrane increased with the incorporation of UAN as a compatibilizer.

  15. Modificação de polímeros termorrígidos por separação de fases induzida por reação química: Sistema éter diglicidílico do Bisfenol-A e trietilenotetramina com copolímeros acrílicos Modification of thermosetting polymers by induced phase separation by chemical reaction: Diglycidyl ether of Bisphenol-A and triethylenetetramine with acrylic copolymers

    Directory of Open Access Journals (Sweden)

    Garcia Filiberto González

    2008-03-01

    Full Text Available O comportamento da separação de fases e da gelificação do sistema do éter diglicidílico do Bisfenol-A com trietilenotetramina modificado com diferentes copolímeros acrílicos foi estudado. As massas moleculares e as concentrações de grupos carboxílicos nos copolímeros provocaram mudanças significativas na morfologia e provocaram ligeiras mudanças para a observação da separação de fases. Contudo, não mudaram de maneira significativa os tempos de gelificação e não afetaram a velocidade da reação. O sistema modificado com os copolímeros acrílicos mostrou o efeito de retardação cinética. A morfologia foi relacionada com a aderência ao cisalhamento, em juntas de aço-aço, através de ensaios de resistência mecânica usando juntas de cisalhamento simples, as que foram produzidas com o sistema modificado com os copolímeros acrílicos segundo a norma ASTM D 1002. Amostras com a fase dispersa apresentando morfologia com partículas de diâmetro médio menor que 0,10 µm mostraram o melhor desempenho de aderência ao cisalhamento para as massas moleculares dos copolímeros estudadas. Entretanto, um melhor comportamento mecânico para as concentrações de grupos carboxílicos nos copolímeros acrílicos foi observado para a morfologia com distribuição de tamanhos de partículas na faixa de 0,20 a 0,52 µm.The cloud point and the gel time behavior of an epoxy system based on diglycidyl ether of Bisphenol-A with triethylenetetramine modified with different acrylic copolymers were studied. The molecular weights and the concentration of carboxyl groups in the copolymers affected the morphology and the cloud point, but did not affect the gel times and reaction rates significantly. The system modified with the acrylic copolymers exhibited kinetic retardation effects. The morphology was related to adherence to the lap shear in steel-steel joints, through mechanical resistance essays using a single-lap-joint, which was produced

  16. Thermal and mechanical properties of palm oil-based polyurethane acrylate/clay nanocomposites prepared by in-situ intercalative method and electron beam radiation

    Energy Technology Data Exchange (ETDEWEB)

    Salih, A. M. [Department of Chemistry, Faculty of Science, University Putra Malaysia 43400, UPM, Serdang, Selangor, Malaysia and Department of Radiation Processing, Sudan Atomic Energy Commission, Khartoum 1111 (Sudan); Ahmad, Mansor Bin; Ibrahim, Nor Azowa [Department of Chemistry, Faculty of Science, University Putra Malaysia 43400, UPM, Serdang, Selangor (Malaysia); Dahlan, Khairul Zaman Hj Mohd [Polycomposite Sdn Bhd, No.75-2, Jalan TKS 1, Taman Kajang Sentral, 43000 Kajang, Selangor (Malaysia); Tajau, Rida [Radiation Processing Technology Division, Nuclear Malaysia, Bangi, 43000 Kajang, Selangor (Malaysia); Mahmood, Mohd Hilmi [No. 107, Jalan 2, Taman Kajang Baru, Sg Jelok, 43000 Kajang, Selangor (Malaysia); Yunus, Wan Md. Zin Wan [Department of Chemistry, Centre for Defence Foundation Studies, National Defence University of Malaysia, 57000, Sungai Besi Camp, Kuala Lumpur (Malaysia)

    2014-02-12

    Palm oil based-polyurethane acrylate (POBUA)/clay nanocomposites were prepared via in-situ intercalative polymerization using epoxidized palm oil acrylate (EPOLA) and 4,4' methylene diphenyl diisocyante (MDI). Organically modified Montmorillonite (ODA-MMT) was incorporated in EPOLA (1, 3 and 5%wt), and then subjected to polycondensation reaction with MDI. Nanocomposites solid films were obtained successfully by electron beam radiation induced free radical polymerization (curing). FTIR results reveal that the prepolymer was obtained successfully, with nanoclay dispersed in the matrix. The intercalation of the clay in the polymer matrix was investigated by XRD and the interlayer spacing of clay was found to be increased up to 37 Å, while the structure morphology of the nanocomposites was investigated by TEM and SEM. The nanocomposites were found to be a mixture of exfoliated and intercalated morphologies. The thermal stability of the nanocomposites was significantly increased by incorporation of nanoclay into the polymer matrix. DSC results reveal that the Tg was shifted to higher values, gradually with increasing the amount of filler in the nanocomposites. Tensile strength and Young's modulus of the nanocomposites showed remarkable improvement compared to the neat POBUA.

  17. Advanced analytical methods for the structure elucidation of polystyrene-b-poly(n-butyl acrylate) block copolymers prepared by reverse iodine transfer polymerisation

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Trevor Gavin; Pfukwa, Helen; Pasch, Harald, E-mail: hpasch@sun.ac.za

    2015-09-10

    Reverse iodine transfer polymerisation (RITP) is a living radical polymerisation technique that has shown to be feasible in synthesising segmented styrene-acrylate copolymers. Polymers synthesised via RITP are typically only described regarding their bulk properties using nuclear magnetic resonance spectroscopy and size exclusion chromatography. To fully understand the complex composition of the polymerisation products and the RITP reaction mechanism, however, it is necessary to use a combination of advanced analytical methods. In the present RITP procedure, polystyrene was synthesised first and then used as a macroinitiator to synthesise polystyrene-block-poly(n-butyl acrylate) (PS-b-PBA) block copolymers. For the first time, these PS-b-PBA block copolymers were analysed by a combination of SEC, in situ{sup 1}H NMR and HPLC. {sup 1}H NMR was used to determine the copolymer composition and the end group functionality of the samples, while SEC and HPLC were used to confirm the formation of block copolymers. Detailed information on the living character of the RITP process was obtained. - Highlights: • Comprehensive analysis of novel block copolymers. • Polymers were prepared for the first time by reverse iodine transfer polymerisation. • Combination of SEC, NMR, kinetic NMR, HPLC and comprehensive 2D-HPLC was used. • Detailed information about complex molecular composition and polymerisation kinetics was obtained.

  18. Synthesis and properties of a novel bio-based polymer from modified soybean oil

    Science.gov (United States)

    Li, Y. T.; Yang, L. T.; Zhang, H.; Tang, Z. J.

    2017-02-01

    Maleated acrylated epoxidized soybean oil (MAESO) was prepared by acrylated epoxidized soybean oil (AESO) and maleic anhydride. AESO were obtained by the reaction of epoxidized soybean oil (ESO) with acrylic acid as the ring-opening reagent. The polymer was prepared by MAESO react with styrene. The structures of the products were studied by Fourier transformation infrared spectrometer (FT-IR), and were consistent with the theoretical structures. Swelling experiment indicated that the crosslinking degree increased with increasing epoxy value of ESO. Thermal properties was tested by thermo-gravimetric analysis (TG) and differential scanning calorimetry analysis (DSC), indicating that glass transition temperature (Tg) of the polymer increased with increasing epoxy value of ESO, and thermal stability of polymer have a good correlation with the crosslinking degree. Mechanical properties analysis presented that tensile strength and impact strength affected by epoxy value of ESO. With the increase of epoxy value, the tensile strength increase, while the impact strength decrease. The property of the polymer ranged from elastomer to plastic character depended on the functionality of the ESO.

  19. PREPARATION AND PROPERTIES OF SILICONE-ACRYLATE COPOLYMER LATEX

    Institute of Scientific and Technical Information of China (English)

    Mu-jie Yang; Wei Zhang

    2004-01-01

    Silicone-acrylate copolymer latex was prepared through three different polymerization processes, i.e., the batch process, preemulsified monomer addition and the monomer addition process. The results revealed that the monomer addition process is a desirable approach to produce narrow particle size distribution latex with higher polymerization conversion and less amount of coagulum. The effect of silicone content on the glossiness and water absorption of latex film was investigated and the results showed that the glossiness of latex film is improved up to a silicone content of 10% of total monomers, but becomes impaired thereafter, whereas water absorption is reduced accordingly.

  20. THE IMPORTANCE OF COAGULATION BATH IN ACRYLIC FIBER PRODUCTION

    Directory of Open Access Journals (Sweden)

    İsmail TİYEK

    2005-03-01

    Full Text Available In the production of acrylic fibers using wet-spinning method, fiber formation takes places in the coagulation bath. Therefore, physical properties of the fibers, produced by the wet-spinning method, is affected by coagulation bath conditions. For this reason, coagulation bath parameters have to be checked very well. In this paper, both the physical events such as diffusion and phase transition, occured in the coagulation bath, and some coagulation bath parameters that affect these physical events are studied. Furthermore, it is tried to express their affects on the physical characteristics of the fibers.

  1. Dimensional accuracy and stability of acrylic resin denture bases.

    Science.gov (United States)

    Huggett, R; Zissis, A; Harrison, A; Dennis, A

    1992-10-01

    Proponents of injection molding systems have claimed a number of benefits over conventional press-pack dough molding systems. The aim of this study was to evaluate a recently developed injection (dry heat) procedure of processing compared with press-pack dough molding utilizing three curing cycles. The dimensional accuracy and stability of acrylic resin bases produced by the two molding procedures were compared. Dimensional changes were assessed over a period of 4 months using an optical comparator. The results demonstrate that baseplates produced by the injection molding procedure exhibit less shrinkage than those produced by the conventional press-pack procedures.

  2. Lead titanate/cyclic carbonate dependence on ionic conductivity of ferro/acrylate blend polymer composites

    Energy Technology Data Exchange (ETDEWEB)

    Jayaraman, R. [Department of Physics, GTN Arts and Science College, Dindigul (India); Vickraman, P., E-mail: vrsvickraman@yahoo.com; Subramanian, N. M. V.; Justin, A. Simon [Department of Physics, Gandhigram Rural Institute- Deemed University, Gandhigram (India)

    2016-05-23

    Impedance, XRD, DSC and FTIR studies had been carried out for PVdF-co-HFP/LIBETI based system for three plasticizer (EC/DMC) – filler (PbTiO3) weight ratios. The enhanced conductivity 4.18 × 10{sup −5} Scm{sup −1} was noted for 57.5 wt% −7.5 wt% plasticizer – filler. while blending PEMA to PVdF-co-HFP respectively 7.5: 22.5 wt % (3/7), 15 wt%: 15 wt % (5/5) and 22.5wt %: 7.5 wt % (7/3), the improved conductivity was noted for 3/7 ratio 1.22 × 10{sup −5} S cm{sup −1} and its temperature dependence abide Arrhenius behavior. The intensity of peaks in XRD diffractogram registered dominance of lead titanate, from 2θ = 10° to 80° and absence of VdF crystallites (α+β phase) was noted. In DSC studies, the presence of the exotherm events, filler effect was distinctively seen exhibiting recrystallization of VdF crystallites. In blending PEMA, however, no trace of exotherms was found suggestive of PEMA better inhibiting recrystallization. FTIR study confirmed molecular interactions of various constituents in the vibrational band 500 – 1000 cm{sup −1} both in pristine PVdF-co-HFP and PEMA blended composites with reference to C-F stretching, C-H stretching and C=O carbonyl bands.

  3. Lead titanate/cyclic carbonate dependence on ionic conductivity of ferro/acrylate blend polymer composites

    Science.gov (United States)

    Jayaraman, R.; Vickraman, P.; Subramanian, N. M. V.; Justin, A. Simon

    2016-05-01

    Impedance, XRD, DSC and FTIR studies had been carried out for PVdF-co-HFP/LIBETI based system for three plasticizer (EC/DMC) - filler (PbTiO3) weight ratios. The enhanced conductivity 4.18 × 10-5 Scm-1 was noted for 57.5 wt% -7.5 wt% plasticizer - filler. while blending PEMA to PVdF-co-HFP respectively 7.5: 22.5 wt % (3/7), 15 wt%: 15 wt % (5/5) and 22.5wt %: 7.5 wt % (7/3), the improved conductivity was noted for 3/7 ratio 1.22 × 10-5 S cm-1 and its temperature dependence abide Arrhenius behavior. The intensity of peaks in XRD diffractogram registered dominance of lead titanate, from 2θ = 10° to 80° and absence of VdF crystallites (α+β phase) was noted. In DSC studies, the presence of the exotherm events, filler effect was distinctively seen exhibiting recrystallization of VdF crystallites. In blending PEMA, however, no trace of exotherms was found suggestive of PEMA better inhibiting recrystallization. FTIR study confirmed molecular interactions of various constituents in the vibrational band 500 - 1000 cm-1 both in pristine PVdF-co-HFP and PEMA blended composites with reference to C-F stretching, C-H stretching and C=O carbonyl bands.

  4. ASPECTS OF THERMODYNAMICS OF POLYMER MIXTURES

    Institute of Scientific and Technical Information of China (English)

    CHAI Zhikuan

    1987-01-01

    In this brief review article some aspects of the thermodynamics of polymer mixtures are discussed,mainly based on the author's research. The studies of poly (methyl methacrylate)/chlorinated polyethylene (CPE), poly (butyl acrylate)/CPE and CPE/CPE (different chlorine content) mixture verify the "dissimilarity" and "similarity" principles for predicting miscibility of polymer mixtures. The sign of heat of mixing of oligomeric analogues is not sufficient in predicting the miscibility. The Flory equation of state theory has been applied to simulate the phase boundaries of polymer mixtures. The empirical entropy parameter Q12 plays an important role in the calculation, this reduces the usefulness of the theory. With energy parameter X12 ≠ 0 and Q12 ≠ 0 the spinodals so calculated are reasonable compared to experiments.A hole model was suggested for the statistics of polymer mixtures. The new hole theory combines the features of both the Flory equation of state theory and the Sanchez lattice fluid theory and can be reduced to them under some conditions.

  5. Ultrasonic Assessment of Impact-Induced Damage and Microcracking in Polymer Matrix Composites

    Science.gov (United States)

    Liaw, Benjamin; Zeichner, Glenn; Liu, Yanxiong; Bowles, Kenneth J. (Technical Monitor)

    2000-01-01

    The main objective of this NASA FAR project is to conduct ultrasonic assessment of impact-induced damage and microcracking in polymer matrix composites at various temperatures. It is believed that the proposed study of impact damage assessment on polymer matrix composites will benefit several NASA's missions and current interests, such as ballistic impact testing of composite fan containment and high strain rate deformation modeling of polymer matrix composites. Currently, impact-induced delamination and fracture in 6061-T6 aluminum/cast acrylic sandwich plates adhered by epoxy were generated in an instrumented drop-weight impact machine. Although only a small dent was produced on the aluminum side when a hemispherical penetrator tup was dropped onto it from a couple of inches, a large ring of delamination at the interface was observed. The delamination damage was often accompanied by severe shattering in the acrylic substratum. Damage patterns in the acrylic layer include radial and ring cracks and, together with delamination at the interface, may cause peeling-off of acrylic material from the sandwich plate. Theory of stress-wave propagation can be used to explain these damage patterns. The impact tests were conducted at various temperatures. The results also show clearly that temperature effect is very important in impact damage. For pure cast acrylic nil-ductile transition (NDT) occurs between 185-195 F Excessive impact energy was dissipated into fracture energy when tested at temperature below this range or through plastic deformation when tested at temperature above the NDT temperature. Results from this study will be used as baseline data for studying fiber-metal laminates, such as GLARE and ARALL for advanced aeronautical and astronautical applications.

  6. Molecularly imprinted polymers with assistant recognition polymer chains for bovine serum albumin

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A new protein molecularly imprinted polymer (MIP) was prepared with grafting polyvinyl alcohol as assistant recognition polymer chains (ARPCs). The ARPCs and acrylamide monomers were interpenetrated and then polymerized on the surface of macroporous acrylate adsorbent spheres. The template BSA was removed by treatment with 2.00 mol L-1 potassium chloride (KCl) solution and the adsorbed proteins were detected with sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). 0.150, 0.500, and 2.00 mol L-1 KCl solutions were used as eluent to wash the adsorbed proteins. The SDS-PAGE results show that proteins washed out with 2.00 mol L-1KCl solution were from nonspecific adsorption of macroporous acrylate adsorbent spheres, and proteins washed out with 0.500 mol L-1KC1 solution were specific proteins imprinted by MIP resins. MIP resins with ARPCs had better recognition to the target proteins than that without ARPCs. The adsorption capacity of MIP resins immobilized ARPCs to the template BSA was about 80-100 μg g-1 when it was used for the adsorption of proteins mixture, and the specific adsorption of the target protein was obviously increased.

  7. Use of an acrylic mold for mortise view improvement in ankle fractures: a feasibility study

    NARCIS (Netherlands)

    Donken, C.C.; Verhofstad, M.H.J.; Edwards, M.J.R.; Schoemaker, M.C.; Laarhoven, C.J.H.M. van

    2011-01-01

    We investigated an acrylic mold for use in obtaining ankle radiographs in 31 consecutive patients with ankle fracture. The radiologic examination consisted of routine lateral and mortise views, with the same views procured with the use of the acrylic mold to position the ankle. Radiographic evidence

  8. 40 CFR 721.465 - Alkoxylated alkylpolyol acrylates, adduct with alkylamine (generic).

    Science.gov (United States)

    2010-07-01

    ..., adduct with alkylamine (generic). 721.465 Section 721.465 Protection of Environment ENVIRONMENTAL... Significant New Uses for Specific Chemical Substances § 721.465 Alkoxylated alkylpolyol acrylates, adduct with... substances identified generically as alkoxylated alkylpolyol acrylates, adduct with alkylamine (PMNs...

  9. Formation of Methyl Acrylate from CO 2 and Ethylene via Methylation of Nickelalactones

    KAUST Repository

    Bruckmeier, Christian

    2010-05-24

    The nickel-induced coupling of ethylene and CO2 represents a promising pathway toward acrylates. To overcome the high bond dissociation energies of the M-O moieties, we worked out an in situ methylation of nickelalactones to realize the β-hydride elimination and the liberation of the acrylate species. © 2010 American Chemical Society.

  10. Biocatalytic Synthesis of Maltodextrin-Based Acrylates from Starch and alpha-Cyclodextrin

    NARCIS (Netherlands)

    Kloosterman, Wouter M. J.; Spoelstra-van Dijk, Gerda; Loos, Katja

    2014-01-01

    Novel 2-(beta-maltooligooxy)-ethyl (meth) acrylate monomers are successfully synthesized by CGTase from Bacillus macerans catalyzed coupling of 2-(beta-glucosyloxy)-ethyl acrylate and methacrylate with a-cyclodextrin or starch. HPLC-UV analysis shows that the CGTase catalyzed reaction yields 2-(beta

  11. Use of an acrylic mold for mortise view improvement in ankle fractures: a feasibility study

    NARCIS (Netherlands)

    Donken, C.C.; Verhofstad, M.H.J.; Edwards, M.J.R.; Schoemaker, M.C.; Laarhoven, C.J.H.M. van

    2011-01-01

    We investigated an acrylic mold for use in obtaining ankle radiographs in 31 consecutive patients with ankle fracture. The radiologic examination consisted of routine lateral and mortise views, with the same views procured with the use of the acrylic mold to position the ankle. Radiographic evidence

  12. Neutral, anionic, cationic, and zwitterionic diblock copolymers featuring poly(2-methoxyethyl acrylate) hydrophobic segments

    DEFF Research Database (Denmark)

    Javakhishvili, Irakli; Jankova Atanasova, Katja; Hvilsted, Søren

    2013-01-01

    Amphiphilic diblock copolymers incorporating hydrophobic poly(2-methoxyethyl acrylate) (PMEA) and hydrophilic neutral poly(ethylene glycol) monomethyl ether (mPEG), anionic poly(acrylic acid) (PAA) and poly(methacrylic acid) (PMAA), cationic poly(2-dimethylaminoethyl methacrylate) (PDMAEMA), and ...

  13. Novel diamantane polymer platform for enhanced etch resistance

    Science.gov (United States)

    Padmanaban, Munirathna; Chakrapani, Srinivasan; Lin, Guanyang; Kudo, Takanori; Parthasarathy, Deepa; Rahman, Dalil; Anyadiegwu, Clement; Antonio, Charito; Dammel, Ralph R.; Liu, Shenggao; Lam, Frederick; Waitz, Anthony; Yamagchi, Masao; Maehara, Takayuki

    2007-03-01

    The dominant current 193 nm photoresist platform is based on adamantane derivatives. This paper reports on the use of derivatives of diamantane, the next higher homolog of adamantane, in the diamondoid series, as monomers in photoresists. Due to their low Ohnishi number and incremental structural parameter (ISP), such molecules are expected to enhance dry etch stability when incorporated into polymers for resist applications. Starting from the diamantane parent, cleavable and non-cleavable acrylate/methacrylate derivatives of diamantane were obtained using similar chemical steps as for adamantane derivatization. This paper reports on the lithographic and etch performance obtained with a number of diamantane-containing monomers, such as 9-hydroxy-4-diamantyl methacrylate (HDiMA), 2-ethyl-2- diamantyl methacrylate (EDiMA), and 2-methyl-2-diamantyl methacrylate (MDiMA). The etch advantage, dry and wet lithographic performance of some of the polymers obtained from these diamantane-containing polymers are discussed.

  14. Polymer filters for ultraviolet-excited integrated fluorescence sensing

    Science.gov (United States)

    Dandin, Marc; Abshire, Pamela; Smela, Elisabeth

    2012-09-01

    Optical filters for blocking ultraviolet (UV) light were fabricated by doping various polymer hosts with a UV absorbing chromophore. The polymers were polydimethylsiloxane (PDMS), a silicone elastomer frequently used in microfluidics, SU-8, a photopatternable epoxy, and Humiseal 1B66, an acrylic coating used for moisture protection of integrated circuits. The chromophore was 2-(2‧-hydroxy-5‧-methylphenyl) benzotriazole (BTA), which has a high extinction coefficient between 300 nm and 400 nm. We demonstrate filters 5 µm thick that exhibit high ultraviolet rejection (nearly -40 dB at 342 nm) yet pass visible light (near 0 dB above 400 nm), making them ideal for ultraviolet-excited fluorescence sensing within microsystems. The absorbance of the BTA depended on the host polymer. These filters are promising for integrated fluorescence spectroscopy in bioanalytical platforms because they can be patterned by dry etching, molding or exposure to ultraviolet light.

  15. Ionic site imaging in polymer membranes for water filtration applications

    Science.gov (United States)

    Rothe, Deborah Ruth

    The morphologies of ionic domains within poly(styrene-co-acrylic acid) (SAA) copolymers and sulfonated biphenyl sulfone (BPS) copolymers neutralized with Cu(II) were investigated using scanning transmission electron microscopy (STEM) and X-ray scattering. The ionic domain size for the SAA copolymers was independent of acid content while the BPS copolymers revealed an increase in ionic aggregate diameter with increasing sulfonate content. STEM imaging revealed large ionic groups in the higher sulfonate-containing polymer. It was the higher sulfonate material which had high water flux but poorer salt rejection properties. Additional analysis of the BPS copolymers with differential scanning calorimetry (DSC) did not show a detectable glass transition temperature (Tg), suggesting a distribution of ionic interactions which tethered polymer chains, restricting their mobility and governed thermal behavior. These results suggest the heterogeneous distribution of large ionic domains within the BPS polymer that may facilitate salt transport through the membrane via overlapping ion rich regions.

  16. Effect of Beverages on the Hardness and Tensile Bond Strength of Temporary Acrylic Soft Liners to Acrylic Resin Denture Base

    Directory of Open Access Journals (Sweden)

    Safari A.

    2013-12-01

    Full Text Available Statement of Problem: Two potential problems commonly identified with a denture base incorporating a resilient liner are failure of the bond between acrylic resin and soft liner material, and loss of resiliency of the soft liner over time. Since patients may drink different beverages, it is important to evaluate their effects on physical properties of soft lining materials.Purpose: The objective of this in vitro study was to evaluate the effect of different beverages on the hardness of two temporary acrylic-based soft lining materials and their bond strength to the denture base resin.Materials and Method: For the hardness test; a total of 80 rectangular specimens (40mm×10mm×3mm were fabricated from a heat-polymerized polymethylmethacrylate. Two commercially auto-polymerized acrylic resin-based resilient liners; Coe-Soft and Visco-gel were prepared according to the manufacturers’ instructions and applied on the specimens. For the tensile test, 160 cylindrical specimens (30mm×10mm were prepared. The liners were added between specimens with a thickness of 3 mm. The specimens of both soft liners were divided into 4 groups (n=10 and immersed in distilled water as the control group, Coca-Cola, 8% and 50% ethanol. All groups were stored in separate containers at 37oC for 12 days. All beverages were changed daily. The hardness was determined using a Shore A durometer and tensile bond strength was determined in a ZwickRoell testing machine at a cross-head speed of 5mm/min. The results were analyzed using two-way ANOVA.Results: There was no significant interaction between the soft liners and the drinks for both hardness (p= 0.748 and bond strength (p= 0.902. There were statistically signifi-cant differences between all drinks for both hardness (p< 0.001 and bond strength (p< 0.05.Conclusion: Within the limitations of this study, it seems that drinking Coca-Cola and alcoholic beverages would not be potentially causing any problems for the temporary

  17. Plasma polymerization of acrylic acid onto polystyrene by cyclonic plasma at atmospheric pressure

    Science.gov (United States)

    Chang, Yi-Jan; Lin, Chin-Ho; Huang, Chun

    2016-01-01

    The cyclonic atmospheric-pressure plasma is developed for chamberless deposition of poly(acrylic acid) film from argon/acrylic acid mixtures. The photoemission plasma species in atmospheric-pressure plasma polymerization was identified by optical emission spectroscopy (OES). The OES diagnosis data and deposition results indicated that in glow discharge, the CH and C2 species resulted from low-energy electron-impact dissociation that creates deposition species, but the strong CO emission lines are related to nondeposition species. The acrylic acid flow rate is seen as the key factor affecting the film growth. The film surface analysis results indicate that a smooth, continuous, and uniform surface of poly(acrylic acid) films can be formed at a relatively low plasma power input. This study reveals the potential of chamberless film growth at atmospheric pressure for large-area deposition of poly(acrylic acid) films.

  18. Measurement of Optical Attenuation in Acrylic Light Guides for a Dark Matter Detector

    CERN Document Server

    Bodmer, M; Gold, M; Loomba, D; Matthews, J A J; Rielage, K

    2013-01-01

    Acrylic is a common material used in dark matter and neutrino detectors for light guides, transparent vessels, and neutron shielding, creating an intermediate medium between the target volume and photodetectors. Acrylic has low absorption within the visible spectrum and has a high capture cross section for neutrons. The natural radioactivity in photodetectors is a major source of background neutrons for low background detectors making the use of acrylic attractive for shielding and background reduction. To test the optical properties of acrylic we measured the transmittance and attenuation length of fourteen samples of acrylic from four different manufacturers. Samples were evaluated at five different wavelengths between 375 nm and 632 nm. We found that all samples had excellent transmittance at wavelengths greater than 550 nm. Transmittance was found to decrease below 550 nm. As expected, UV-absorbing samples showed a sharp decrease in transmittance below 425 nm compared to UV-transmitting samples. We report...

  19. UV-crosslinkable photoreactive self-adhesive hydrogels based on acrylics

    Directory of Open Access Journals (Sweden)

    Czech Zbigniew

    2016-06-01

    Full Text Available Hydrogels are a unique class of macromolecular networks that can hold a large fraction of an aqueous solvent within their structure. They are suitable for biomedical area including controlled drug delivery and for technical applications as self-adhesive materials for bonding of wet surfaces. This paper describes photoreactive self-adhesive hydrogels based on acrylics crosslinked using UV radiation. They are prepared in ethyl acetate through radical polymerization of monomers mixture containing 2-ethylhexyl acrylate (2-EHA, butyl acrylate (BA, acrylic acid (AA and copolymerizable photoinitiator 4-acryloyloxy benzophenone (ABP at presence of radical starter 2.2’-azobis-diisobutyronitrile AIBN. The synthesized acrylic copolymers were determined by viscosity and GPC analysis and later modified using ethoxylated amines. 4-acryloyloxy benzophenone (ABP was used as crosslinking monomer. After UV crosslinking the properties of these novel synthesized hydrogels, such as tack, peel adhesion, shears strength, elongation and water adsorption were also studied.

  20. UV degradation of the optical properties of acrylic for neutrino and dark matter experiments

    Energy Technology Data Exchange (ETDEWEB)

    Littlejohn, B; Heeger, K M; Wise, T [Physics Department, University of Wisconsin, Madison, WI, 53706 (United States); Gettrust, E; Lyman, M [Madison West High School, Madison, WI, 53726 (United States)], E-mail: littlejohn@wisc.edu

    2009-09-15

    UV-transmitting (UVT) acrylic is a commonly used light-propagating material in neutrino and dark matter detectors as it has low intrinsic radioactivity and exhibits low absorption in the detectors' light producing regions, from 350 nm to 500 nm. Degradation of optical transmittance in this region lowers light yields in the detector, which can affect energy reconstruction, resolution, and experimental sensitivities. We examine transmittance loss as a result of short- and long-term UV exposure for a variety of UVT acrylic samples from a number of acrylic manufacturers. Significant degradation peaking at 343 nm was observed in some UVT acrylics with as little as three hours of direct sunlight, while others exhibited softer degradation peaking at 310 nm over many days of exposure to sunlight. Based on their measured degradation results, safe time limits for indoor and outdoor UV exposure of UVT acrylic are formulated.

  1. The transverse strength of acrylic resin after Coleus amboinicus, Lour extract solution immersion

    Directory of Open Access Journals (Sweden)

    Devi Rianti

    2006-12-01

    Full Text Available A laboratoric experimental study was conducted on the transverse strength of acrylic resin after Coleus amboinicus, Lour extract solution immersion. The aim of this study is to know the difference of acrylic resin transverse strengths caused by immersion time variations in a concentrate solution. The study was carried out on unpolished acrylic resin plates with 65 × 10 × 2,5 mm dimension; solution with 15% Coleus amboinicus, Lour extract, and 30, 60, 90 days immersion times to measure the transverse strength and sterilized aquadest was used as control. Acrylic resin plates transverse strength was measured using Autograph AG-10 TE. The data was analyzed using One-Way Anova and LSD with 5% degree of significance. The result showed that longer immersion time will decrease the transverse strength of the acrylic resin plates. After 90 days immersion time, the transverse strength decrease is still above the recommended standard transverse strength.

  2. Comparison of Phaconit Rollable IOL with Acrylic Foldable IOL.

    Science.gov (United States)

    Parihar, Jks; Vats, D P; Gupta, R P; Bera, T R; Phooken, R; Singh, A

    2007-01-01

    Phaconit or ultra micro incision phacoemulsification cataract surgery involves phacoemulsification through a 0.9 millimetre sleeveless phaco tip and irrigating chopper followed by implantation of a rollable intraocular lens. The procedure leads to negligible astigmatism and faster visual recovery as compared to phacoemulsification with a foldable intraocular lens. This prospective study analysed 80 cases of sub millimetre phaconit surgery with implantation of rollable intraocular lenses(IOL) in 40 cases and acrylic foldable IOL in the remaining 40 cases. Evaluation of efficacy and adaptability of procedure, equipment settings, operative constraints, postoperative complications, keratometric and topographic evaluation of induced astigmatism with visual outcome and patient's rehabilitation were studied. The intraoperative complications were surge/ chamber collapse in 16 (20%), iris chaffing in one and corneal burns in two cases. All cases had an induced astigmatism of less than or equal to ± 0.25 D in four to six weeks after rollable IOL and ± 0.5 D to ± 0.75 D after acrylic IOL implantation. All patients had best-corrected visual acuity of 6/6 by third post operative day. Phaconit with rollable IOL is a perfect blend of surgical skill, application of technology and ultra thin IOL.

  3. Wet air oxidation of epoxy acrylate monomer industrial wastewater.

    Science.gov (United States)

    Yang, Shaoxia; Liu, Zhengqian; Huang, Xiaohui; Zhang, Beiping

    2010-06-15

    Epoxy acrylate monomer industrial wastewater contained highly concentrated and toxic organic compounds. The wet air oxidation (WAO) and catalytic wet air oxidation (CWAO) were used to eliminate pollutants in order to examine the feasibility of the WAO/CWAO as a pre-treatment method for the industrial wastewater. The results showed that in the WAO 63% chemical oxygen demand (COD) and 41% total organic carbon (TOC) removals were achieved and biological oxygen demand (BOD(5))/COD ratio increased from 0.13 to 0.72 after 3h reaction at 250 degrees C, 3.5MPa and the initial concentration of 100g(COD)/L. Among homogenous catalysts (Cu(2+), Fe(2+), Fe(3+) and Mn(2+) salts), Cu(2+) salt exhibited better performance. CuO catalyst was used in the CWAO of the wastewater, COD and TOC conversion were 77 and 54%, and good biodegradability was achieved. The results proved that the CWAO was an effective pre-treatment method for the epoxy acrylate monomer industrial wastewater.

  4. Graft copolymerization of acrylic acid onto polyamide fibers

    Science.gov (United States)

    Makhlouf, Chahira; Marais, Stéphane; Roudesli, Sadok

    2007-04-01

    The grafting of acrylic acid (AA) monomer (CH 2dbnd CH sbnd COOH) on polyamide 6.6 monofilaments (PA 6.6) using benzoyl peroxide (BPO) as initiator was carried out in order to enhance the hydrophilic nature of fibers. The grafting rate depends on the AA concentration, the BPO concentration, the time and the temperature of reaction. The best conditions for optimum rate of grafting were obtained with a AA concentration of 0.5 M, a BPO concentration of 0.03 M, a reaction temperature of T = 85 °C and a reaction time of 120 mn. The fiber surface has been investigated by many experimental techniques of characterization such as Fourier transform infrared spectroscopy (FTIR), calorimetric analysis (DSC), scanning electron microscopy (SEM), and contact angle measurements. The effect of grafting of acrylic acid onto PA 6.6 fibers on their moisture and mechanical resistances was analyzed from water sorption and elongation at break measurements. The analysis of the experimental data shows clearly the efficiency of the grafting reaction used, leading to a significant increase of the hydrophilic character of the PA 6.6 surface.

  5. Color difference threshold determination for acrylic denture base resins.

    Science.gov (United States)

    Ren, Jiabao; Lin, Hong; Huang, Qingmei; Liang, Qifan; Zheng, Gang

    2015-01-01

    This study aimed to set evaluation indicators, i.e., perceptibility and acceptability color difference thresholds, of color stability for acrylic denture base resins for a spectrophotometric assessing method, which offered an alternative to the visual method described in ISO 20795-1:2013. A total of 291 disk specimens 50±1 mm in diameter and 0.5±0.1 mm thick were prepared (ISO 20795-1:2013) and processed through radiation tests in an accelerated aging chamber (ISO 7491:2000) for increasing times of 0 to 42 hours. Color alterations were measured with a spectrophotometer and evaluated using the CIE L*a*b* colorimetric system. Color differences were calculated through the CIEDE2000 color difference formula. Thirty-two dental professionals without color vision deficiencies completed perceptibility and acceptability assessments under controlled conditions in vitro. An S-curve fitting procedure was used to analyze the 50:50% perceptibility and acceptability thresholds. Furthermore, perceptibility and acceptability against the differences of the three color attributes, lightness, chroma, and hue, were also investigated. According to the S-curve fitting procedure, the 50:50% perceptibility threshold was 1.71ΔE00 (r(2)=0.88) and the 50:50% acceptability threshold was 4.00 ΔE00 (r(2)=0.89). Within the limitations of this study, 1.71/4.00 ΔE00 could be used as perceptibility/acceptability thresholds for acrylic denture base resins.

  6. Dissociative photoionization of ethyl acrylate: Theoretical and experimental insights

    Science.gov (United States)

    Song, Yanlin; Chen, Jun; Ding, Mengmeng; Wei, Bin; Cao, Maoqi; Shan, Xiaobin; Zhao, Yujie; Huang, Chaoqun; Sheng, Liusi; Liu, Fuyi

    2015-08-01

    The photoionization and dissociation of ethyl acrylate have been investigated by time-of-flight mass spectrometer with tunable vacuum ultraviolet (VUV) source in the range of 9.0-20.0 eV. The photoionization mass spectrum (PIMS) for ethyl acrylate and photoionization efficiency (PIE) curves for its major fragment ions: C5H7O2+, C4H5O2+, C3H5O2+, C3H4O+, C3H3O+, C2H5O+, C2H3O+, C2H5+ and C2H4+ have been obtained. The formation channels of main fragments are predicted by Gaussian 09 program at G3B3 level and examined via their dissociation energies from experimental results. Based on our analysis, nine main dissociative photoionization channels are proposed: C5H7O2+ + H, C4H5O2+ + CH3, C3H5O2+ + C2H3, C3H4O+ + C2H4O, C3H3O+ + C2H5O, C2H5O+ + C3H3O, C2H3O+ + C3H5O, C2H5+ + C3H3O2, C2H4+ + C3H4O2, respectively. The results of this work lead to a better understanding of photochemistry in the environment.

  7. Biocompatibility of alendronate-loaded acrylic cement for vertebroplasty

    Directory of Open Access Journals (Sweden)

    T Calvo-Fernández

    2010-10-01

    Full Text Available This paper reports a biological evaluation of a non-resorbable acrylic cement loaded with alendronate for the treatment of osteoporotic vertebral compression fractures. The cement formulation was based on polymethyl methacrylate and acrylic monomers; one of these had covalently linked vitamin E residues. The same cement in the absence of alendronate was used as a control. The setting of the charged cement presented a maximum polymerization temperature of 44ºC, a setting time of 24 min, a residual monomer content lower than 3 wt.%, a compressive strength of 99±10 MPa and an elastic modulus of 1.2±0.2 GPa. Cytotoxicity studies using human osteoblast cultures revealed that the leachable substances of the alendronate loaded cement collected between 1 and 7 days decreased cell viability to values lower than 80%. However, morphological changes and cellular damage in cells produced by the extracts decreased with the leak time. Cell adhesion and growth on charged cement was significantly lower than on the control. Implantation of the cement paste in the intra-femoral cavity of rabbits showed that initially the osteogenic activity was evident for the cement charged with alendronate, and the osteosynthesis process took place mainly in the trabeculae and was manifested by the presence of a non-mineralised osseous spicule. The interface between material and adjacent bone tissue was initially characterized by a variable fibrous response that in many cases it appeared reduced to thin connective tissue after a 24-week-period.

  8. Antimocrobial Polymer

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, William F. (Utica, OH); Huang, Zhi-Heng (Walnut Creek, CA); Wright, Stacy C. (Columbus, GA)

    2005-09-06

    A polymeric composition having antimicrobial properties and a process for rendering the surface of a substrate antimicrobial are disclosed. The composition comprises a crosslinked chemical combination of (i) a polymer having amino group-containing side chains along a backbone forming the polymer, (ii) an antimicrobial agent selected from quaternary ammonium compounds, gentian violet compounds, substituted or unsubstituted phenols, biguanide compounds, iodine compounds, and mixtures thereof, and (iii) a crosslinking agent containing functional groups capable of reacting with the amino groups. In one embodiment, the polymer is a polyamide formed from a maleic anhydride or maleic acid ester monomer and alkylamines thereby producing a polyamide having amino substituted alkyl chains on one side of the polyamide backbone; the crosslinking agent is a phosphine having the general formula (A)3P wherein A is hydroxyalkyl; and the antimicrobial agent is chlorhexidine, dimethylchlorophenol, cetyl pyridinium chloride, gentian violet, triclosan, thymol, iodine, and mixtures thereof.

  9. Polymer inflation

    CERN Document Server

    Hassan, Syed Moeez; Seahra, Sanjeev S

    2014-01-01

    We consider the semi-classical dynamics of a free massive scalar field in a homogeneous and isotropic cosmological spacetime. The scalar field is quantized using the polymer quantization method assuming that it is described by a gaussian coherent state. For quadratic potentials, the semi-classical equations of motion yield a universe that has an early "polymer inflation" phase which is generic and almost exactly de Sitter, followed by a epoch of slow-roll inflation. We compute polymer corrections to the slow roll formalism, and discuss the probability of inflation in this model using a physical Hamiltonian arising from time gauge fixing. These results show the extent to which a quantum gravity motivated quantization method affects early universe dynamics.

  10. Thin film of Poly(acrylic acid-co-allyl acrylate as a Sacrificial Protective Layer for Hydrophilic Self Cleaning Glass

    Directory of Open Access Journals (Sweden)

    Jānis Lejnieks

    2010-05-01

    Full Text Available Poly(acrylic acid-co-allyl acrylate statistical copolymers were synthesized in a controlled manner in two steps: first tert.butyl acrylate and allyl acrylate were polymerized via atom transfer radical polymerization (ATRP and afterwords the tert.butyl protective groups were removed via hydrolysis. Samples of self cleaning glass (SCG were coated with thin films of poly(acrylic acid-co-allyl acrylate and cross-linked afterwards by UV irradiation (in the presence of a photoinitiator and an accelerator. Solution cast thin films were transparent and homogeneous before and after UV cross-linking. The irradiated samples were found to be hydrophilic (Θ < 20° and water insoluble. The coating prevented the spontaneous hydrophobization of the SCG by residual silicon exhaled from the sealing material. The TiO2 photocatalyst that covers the glass surface was found to strip the protective coating. The rate of the photooxidation process was measured by IR spectroscopy. The real field performance of the protective coating was also tested.

  11. Bond strength of acrylic teeth to denture base resin after various surface conditioning methods before and after thermocycling

    NARCIS (Netherlands)

    Saavedra, Guilherme; Valandro, Luz Felipe; Leite, Fabiola Pessoa; Amaral, Regina; Oezcan, Mutlu; Bottino, Marco A.; Kimpara, Estevao T.

    2007-01-01

    This study aimed to evaluate the durability of adhesion between acrylic teeth and denture base acrylic resin. The base surfaces of 24 acrylic teeth were flatted and submitted to 4 surface treatment methods: SM1 (control): No SM; SM2: application of a methyl methacrylate-based bonding agent (Vitacol)

  12. Fouling of microfiltration membranes by organic polymer coagulants and flocculants: controlling factors and mechanisms.

    Science.gov (United States)

    Wang, Sen; Liu, Charles; Li, Qilin

    2011-01-01

    Organic polymers are commonly used as coagulants or flocculants in pretreatment for microfiltration (MF). These high molecular weight compounds are potential membrane foulants when carried over to the MF filters. This study examined fouling of three MF membranes of different materials by three commonly used water treatment polymers: poly(diallyldimethylammonium) chloride (pDADMAC), polyacrylamide (PAM), and poly(acrylic acid-co-acrylamide (PACA) with a wide range of molecular weights. The effects of polymer molecular characteristics, membrane surface properties, solution condition and polymer concentration on membrane fouling were investigated. Results showed severe fouling of microfiltration membranes at very low polymer concentrations, suggesting that residual polymers carried over from the coagulation/flocculation basin can contribute significantly to membrane fouling. The interactions between polymers and membranes depended strongly on the molecular size and charge of the polymer. High molecular weight, positively charged polymers caused the greatest fouling. Blockage of membrane pore openings was identified as the main fouling mechanism with no detectable internal fouling in spite of the small molecular size of the polymers relative to the membrane pore size. Solution conditions (e.g., pH and calcium concentration) that led to larger polymer molecular or aggregate sizes resulted in greater fouling.

  13. Diels-Alder Trapping of Photochemically Generated o-Quinodimethane Intermediates: An Alternative Route to Photocured Polymer Film Development

    Science.gov (United States)

    Tyson, Daniel S.; Ilhan, Faysal; Meador, Mary Ann B.; Smith, Dee Dee; Scheiman, Daniel A.; Meador, Michael A.

    2004-01-01

    Photolysis of o-methylphenyl ketones generates bis-o-quinodimethane intermediates that can be trapped in situ by dienophiles through Diels-Alder cycloadditions. This well-known photochemical process is applied to a series of six new photoreactive monomers containing bis-(o-methylphenyl ketone) functionalities combined with diacrylate and triacrylate ester monomers for the development of acrylic ester copolymer blends. Irradiation of cyclohexanone solutions of the bis-(o-methylphenyl ketone)s and acrylate esters produce thin polymer films. Solid state 13C NMR data indicated 47- 100% reaction of the bis-(o-methylphenyl ketone)s, depending on experimental conditions, to yield the desired products. DSC and TGA analyses were performed to determine the glass transition temperature, T,, and onset of decomposition, Td, of the resulting polymer films. A statistical Design of Experiments approach was used to obtain a systematic understanding of the effects of experimental variables on the extent of polymerization and the final polymer properties.

  14. Polymer electronics

    CERN Document Server

    Geoghegan, Mark

    2013-01-01

    Polymer electronics is the science behind many important new developments in technology, such as the flexible electronic display (e-ink) and many new developments in transistor technology. Solar cells, light-emitting diodes, and transistors are all areas where plastic electronics is likely to, or is already having, a serious impact on our daily lives. With polymer transistors and light-emitting diodes now being commercialised, there is a clear need for a pedagogic text thatdiscusses the subject in a clear and concise fashion suitable for senior undergraduate and graduate students. The content

  15. Enhancing antibiofouling performance of Polysulfone (PSf) membrane by photo-grafting of capsaicin derivative and acrylic acid

    Science.gov (United States)

    Wang, Jian; Sun, Haijing; Gao, Xueli; Gao, Congjie

    2014-10-01

    Biofouling is a critical issue in membrane water and wastewater treatment. Herein, antibiofouling PSf membrane was prepared by UV-assisted graft polymerization of acrylic acid (AA) and a capsaicin derivative, N-(5-methyl-3-tert-butyl-2-hydroxy benzyl) acrylamide (MBHBA), on PSf membrane. AA and MBHBA were used as hydrophilic monomer and antibacterial monomer separately. The membranes were characterized by FTIR-ATR, contact angle, SEM, AFM, cross-flow filtration unit, antifouling and antibacterial measurements. Verification of MBHBA and AA that photo-chemically grafted onto the PSf membrane surface is confirmed by carbonyl stretching vibration at ∼1655 cm-1 and ∼1730 cm-1, separately. The increasing AA concentration accelerates the graft-polymerization of MBHBA and resulted in a more hydrophilic surface. Consequently, antifouling property of the membranes was improved on a large level. The flux recovery rate can achieve 100% during the cyclic test, which may be attributed to the more hydrophilic and smooth surface, as well as the decreased membrane pore size. Most importantly, the presence of AA in graft co-polymer does not affect the antibacterial activity of MBHBA. That may be induced by the increasing chain length and flexibility of the grafted polymer chains.

  16. New poly(dimethylsiloxane)/poly(perfluorooctylethyl acrylate) block copolymers: structure and order across multiple length scales in thin films

    KAUST Repository

    Martinelli, Elisa

    2011-01-01

    Three sets of a new class of low surface tension block copolymers were synthesized consisting of a poly(dimethylsiloxane) (PDMS) block and a poly(perfluorooctylethyl acrylate) (AF8) block. The polymers were prepared using a bromo-terminated PDMS macroinitiator, to which was attached an AF8 block grown using atom transfer radical polymerization (ATRP) in such a designed way that the molecular weight and composition of the two polymer blocks were regularly varied. The interplay of both the phase separated microstructure and the mesomorphic character of the fluorinated domains with their effect on surface structure was evaluated using a suite of analytical tools. Surfaces of spin-coated and thermally annealed films were assessed using a combination of X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure (NEXAFS) studies. Both atomic force microscopy (AFM) measurements and grazing incidence small angle X-ray scattering (GISAXS) studies were carried out to evaluate the microstructure of the thin films. Even in block copolymers in which the PDMS block was the majority component, a significant presence of the lower surface energy AF8 block was detected at the film surface. Moreover, the perfluorooctyl helices of the AF8 repeat units were highly oriented at the surface in an ordered, tilted smectic structure, which was compared with those of the bulk powder samples using wide-angle X-ray powder diffraction (WAXD) studies. © 2011 The Royal Society of Chemistry.

  17. Surface degradation of CeO2 stabilized acrylic polyurethane coated thermally treated jack pine during accelerated weathering

    Science.gov (United States)

    Saha, Sudeshna; Kocaefe, Duygu; Boluk, Yaman; Pichette, Andre

    2013-07-01

    The thermally treated wood is a new value-added product and is very important for the diversification of forestry products. It drew the attention of consumers due to its attractive dark brown color. However, it loses its color when exposed to outside environment. Therefore, development of a protective coating for this value added product is necessary. In the present study, the efficiency of CeO2 nano particles alone or in combination with lignin stabilizer and/or bark extracts in acrylic polyurethane polymer was investigated by performing an accelerated weathering test. The color measurement results after accelerated weathering demonstrated that the coating containing CeO2 nano particles was the most effective whereas visual assessment suggested the coating containing CeO2 nano particles and lignin stabilizer as the most effective coating. The surface polarity changed for all the coatings during weathering and increase in contact angle after weathering suggested cross linking and reorientation of the polymer chain during weathering. The surface chemistry altered during weathering was evaluated by ATR-FTIR analysis. It suggested formation of different carbonyl byproducts during weathering. The chain scission reactions of the urethane linkages were not found to be significant during weathering.

  18. Radiation cured epoxy acrylate composites based on graphene, graphite oxide and functionalized graphite oxide with enhanced properties.

    Science.gov (United States)

    Guo, Yuqiang; Bao, Chenlu; Song, Lei; Qian, Xiaodong; Yuan, Bihe; Hu, Yuan

    2012-03-01

    Epoxy acrylate (EA) composites containing graphite oxide (GO), graphene and nitrogen-double bond functionalized graphite oxide (FGO) were fabricated using UV-radiation and electron beam radiation via in-situ polymerization. Graphene and FGO were homogenously dispersed in EA matrix and enhanced properties, including thermal stability, flame retardancy, electrical conductivity and reduced deleterious gas releasing in thermo decomposition were obtained. Microscale combustion colorimeter results illustrated improved flame retardancy; EA/FGO composites achieved a 29.7% reduction in total heat release (THR) when containing only 0.1% FGO and a 38.6% reduction in peak-heat release rate (PHRR) when containing 3% FGO. The onset decomposition temperatures were delayed and the maximum decomposition values were reduced, according to thermogravimetric analysis which indicated enhanced thermal stabilities. The electrical conductivity was increased by 6 orders of magnitude (3% graphene) and the deleterious gas released during the thermo decomposition was reduced with the addition of all the graphite samples. This study represented a new approach to functionalize GO with flame retardant elements and active curable double bond to achieve better dispersion of GO into polymer matrix to obtain nanocomposites and paved a way for achieving graphene-based materials with high-performance of graphene in enhancement of flame retardancy of polymers for practical applications.

  19. Synthesis of silica coated zinc oxide–poly(ethylene-co-acrylic acid) matrix and its UV shielding evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Ramasamy, Mohankandhasamy [Division of Bionanotechnology, Gachon University, Seongnam 461-701 (Korea, Republic of); Kim, Yu Jun; Gao, Haiyan [Department of Polymer Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Yi, Dong Kee, E-mail: vitalis@mju.ac.kr [Department of Chemistry, Myongji University, Yongin 449-728 (Korea, Republic of); An, Jeong Ho, E-mail: jhahn1us@skku.edu [Department of Polymer Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2014-03-01

    Graphical abstract: - Highlights: • Well layer thickness controlled silica shell was made on ZnO nanoparticles. • PEAA, an interfacial agent is used to make nanocomposite–polymer matrix by twin-screw extruder. • Si-ZnO/PEAA matrix is highly stable and UV protective as compared to ZnO/PEAA matrix. • Nanoparticle embedded polymer matrix is suggested to make UV shielding fabrics with Nylon4. - Abstract: Silica coated zinc oxide nanoparticles (Si-ZnO NPs) (7 nm thick) were synthesized successfully and melt blended with poly(ethylene-co-acrylic acid) (PEAA resin) to improving ultraviolet (UV) shielding of zinc oxide nanoparticles (ZnO NPs). The photostability of both the ZnO NPs and Si-ZnO NPs were analyzed by the difference in photoluminescence (PL) and by methylene blue (MB) degradation. Photo-degradation studies confirmed that Si-ZnO NPs are highly photostable compared to ZnO NPs. The melt blended matrices were characterized by field emission scanning electron microscopy interfaced with energy dispersive X-ray spectroscopy (FE-SEM-EDX). The UV shielding property was analyzed from the transmittance spectra of UV–visible (UV–vis) spectroscopy. The results confirmed fine dispersion of thick Si-ZnO NPs in the entire resin matrix. Moreover, the Si-ZnO/PEAA showed about 97% UV shielding properties than the ZnO/PEAA.

  20. Poly(Acrylic acid–Based Hybrid Inorganic–Organic Electrolytes Membrane for Electrical Double Layer Capacitors Application

    Directory of Open Access Journals (Sweden)

    Chiam-Wen Liew

    2016-05-01

    Full Text Available Nanocomposite polymer electrolyte membranes (NCPEMs based on poly(acrylic acid(PAA and titania (TiO2 are prepared by a solution casting technique. The ionic conductivity of NCPEMs increases with the weight ratio of TiO2.The highest ionic conductivity of (8.36 ± 0.01 × 10−4 S·cm−1 is obtained with addition of 6 wt % of TiO2 at ambient temperature. The complexation between PAA, LiTFSI and TiO2 is discussed in Attenuated total reflectance-Fourier Transform Infrared (ATR-FTIR studies. Electrical double layer capacitors (EDLCs are fabricated using the filler-free polymer electrolyte or the most conducting NCPEM and carbon-based electrodes. The electrochemical performances of fabricated EDLCs are studied through cyclic voltammetry (CV and galvanostatic charge-discharge studies. EDLC comprising NCPEM shows the specific capacitance of 28.56 F·g−1 (or equivalent to 29.54 mF·cm−2 with excellent electrochemical stability.