WorldWideScience

Sample records for acrf millimeter wave

  1. Communication at millimeter waves

    Science.gov (United States)

    Kamal, A. K.; Christopher, P. F.

    The advantage and disadvantages of millimeter waves for terrestrial and satellite communications are enumerated. Atmospheric attenuation is discussed in detail, with brief attention given to signal loss in particulates, sandstorms, snow, hail, and fog. Short closed forms are then found for gaseous attenuation on ground-satellite paths. An exponential rain loss probability density function is used in generating atmospheric loss at arbitrary required availability. It is pointed out that this loss (as a function of frequency) can be used to pick optimum carrier frequencies as a function of location, required availability, elevation angle, and system cost. An estimate is made of the rate-of-change of millimeter wave device availability. Special attention is given to GaAs FETs, not only because they will be useful, but because one phase of their millimeter wave performance is predictable: their noise performance as a function of frequency can be estimated with the aid of a Fukui equation.

  2. Compressive passive millimeter wave imager

    Science.gov (United States)

    Gopalsami, Nachappa; Liao, Shaolin; Elmer, Thomas W; Koehl, Eugene R; Heifetz, Alexander; Raptis, Apostolos C

    2015-01-27

    A compressive scanning approach for millimeter wave imaging and sensing. A Hadamard mask is positioned to receive millimeter waves from an object to be imaged. A subset of the full set of Hadamard acquisitions is sampled. The subset is used to reconstruct an image representing the object.

  3. Millimeter Wave Alternate Route Study.

    Science.gov (United States)

    1981-04-01

    A0-AI02 303 HARRIS CORP MELBOURNE FL GOVERNMENT COMMUNICATION ST--ETC FIG 17/2.1 MILLIMETER WAVE ALENT ROUTE STUDT.(U) APR W C ADAMS J J PAN, W C...481-487. 4-7 abm ADAOO0 303 HARRIS CORP MELBOURNE FL GOVERNMENT COMMUNICATION S -ETC F/G 17/2.1 MILLIMETER WAVE ALTERNATE ROUTE STUDY.(U) APR 81 W C...7-21L’j r AD-A102 303 HARRIS CORP MELBOURNE FL GOVERNMENT COMMUNICATION ST--ETC F/A 17/2.1 MILLIMETER WAVE ALTERNATE ROUTE STUDY(U) APR 81 W C ADAMS

  4. Topics in millimeter wave technology

    CERN Document Server

    Button, Kenneth

    1988-01-01

    Topics in Millimeter Wave Technology, Volume 1 presents topics related to millimeter wave technology, including fin-lines and passive components realized in fin-lines, suspended striplines, suspended substrate microstrips, and modal power exchange in multimode fibers. A miniaturized monopulse assembly constructed in planar waveguide with multimode scalar horn feeds is also described. This volume is comprised of five chapters; the first of which deals with the analysis and synthesis techniques for fin-lines as well as the various passive components realized in fin-line. Tapers, discontinuities,

  5. Millimeter-wave antenna measurement

    NARCIS (Netherlands)

    Akkermans, J.A.G.; Dijk, R. van; Herben, M.H.A.J.

    2007-01-01

    A novel approach is presented to accurately measure the scattering parameters as well as the radiation pattern of planar antennas that operate in the millimeter-wave frequency band. To avoid interconnection problems, RF probes have been used to connect to the antenna. These RF probes are normally us

  6. Millimeter-wave imaging sensor

    Science.gov (United States)

    Wilson, W. J.; Howard, R. J.; Ibbott, A. C.; Parks, G. S.; Ricketts, W. B.

    1986-01-01

    A scanning 3-mm radiometer system has been built and used on a helicopter to produce moderate-resolution (0.5 deg) images of the ground. This millimeter-wave sensor can be used for a variety of remote-sensing applications and produces images through clouds, smoke, and dust when visual and IR sensors are not usable. The system is described and imaging results are presented.

  7. Advanced millimeter wave chemical sensor.

    Energy Technology Data Exchange (ETDEWEB)

    Gopalsami, N.

    1999-03-24

    This paper discusses the development of an advanced millimeter-wave (mm-wave) chemical sensor and its applications for environmental monitoring and arms control treaty verification. The purpose of this work is to investigate the use of fingerprint-type molecular rotational signatures in the mm-wave spectrum to sense airborne chemicals. The mm-wave spectrum to sense airborne chemicals. The mm-wave sensor, operating in the frequency range of 220-300 GHz, can work under all weather conditions and in smoky and dusty environments. The basic configuration of the mm-wave sensor is a monostatic swept-frequency radar consisting of a mm-wave sweeper, a hot-electron-bolometer or Schottky barrier detector, and a trihedral reflector. The chemical plume to be detected is situated between the transmitter/detector and the reflector. Millimeter-wave absorption spectra of chemicals in the plume are determined by measuring the swept-frequency radar return signals with and without the plume in the beam path. The problem of pressure broadening, which hampered open-path spectroscopy in the past, has been mitigated in this work by designing a fast sweeping source over a broad frequency range. The heart of the system is a Russian backward-wave oscillator (BWO) tube that can be tuned over 220-350 GHz. Using the Russian BWO tube, a mm-wave radar system was built and field-tested at the DOE Nevada Test Site at a standoff distance of 60 m. The mm-wave system detected chemical plumes very well; the detection sensitivity for polar molecules like methyl chloride was down to a concentration of 12 ppm.

  8. Frequency hopping millimeter wave reflectometer

    Science.gov (United States)

    Cupido, L.; Sánchez, J.; Estrada, T.

    2004-10-01

    Reflectometry techniques are employed to study density fluctuations in fusion plasmas either using one channel or two channels with slightly different frequencies, to probe simultaneously closely spaced plasma layers (for radial correlation studies). The present article describes a novel system with increasing measuring capability utilizing only one single frequency that can be hopped during the discharge. This broadband fast hopping mm-wave reflectometer (BFHR) has been developed for both ASDEX upgrade (Max Plank Institute-Garching-Germany) and TJ-II stellarator (CIEMAT-Spain). The BFHR incorporates frequency synthesizers at microwave frequencies multiplied into the millimeter-wave range and uses heterodyne detection for sensitive phase and amplitude measurements.

  9. Millimeter-wave Instrumentation Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Millimeter-wave Instrumentation Test Facility conducts basic research in propagation phenomena, remote sensing, and target signatures. The facility has a breadth...

  10. Millimeter Wave Spectrum of Nitromethane

    Science.gov (United States)

    Ilyushin, V.

    2016-06-01

    A new study of the millimeter wave spectrum of nitromethane CH_3NO_2 is reported. The new measurements covering the frequency range from 49 GHz to 236 GHz have been carried out using spectrometer in IRA NASU (Ukraine). The transitions belonging to the m ≤ 8 torsional states have been analyzed using the RAM36 program, which has been modified for this study to take into account the quadrupole hyperfine structure due to presence of the nitrogen atom. The dataset consisting of 5838 microwave line frequencies and including transitions with J up to 50 was fit using a model consisting of 93 parameters and weighted root-mean-square deviation of 0.89 has been achieved. In the talk the details of this new study will be discussed. V. Ilyushin, Z. Kisiel, L. Pszczólkowski, H. Mäder, J. T. Hougen J. Mol. Spectrosc. 259 (2010) 26-38.

  11. Millimeter-wave antennas configurations and applications

    CERN Document Server

    du Preez, Jaco

    2016-01-01

    This book comprehensively reviews the state of the art in millimeter-wave antennas, traces important recent developments and provides information on a wide range of antenna configurations and applications. While fundamental theoretical aspects are discussed whenever necessary, the book primarily focuses on design principles and concepts, manufacture, measurement techniques, and practical results. Each of the various antenna types scalable to millimeter-wave dimensions is considered individually, with coverage of leaky-wave and surface-wave antennas, printed antennas, integrated antennas, and reflector and lens systems. The final two chapters address the subject from a systems perspective, providing an overview of supporting circuitry and examining in detail diverse millimeter-wave applications, including high-speed wireless communications, radio astronomy, and radar. The vast amount of information now available on millimeter-wave systems can be daunting for researchers and designers entering the field. This b...

  12. Experimental millimeter-wave satellite communications system

    Science.gov (United States)

    Suzuki, Yoshiaki; Shimada, Masaaki; Arimoto, Yoshinori; Shiomi, Tadashi; Kitazume, Susumu

    This paper describes an experimental system of millimeter-wave satellite communications via Japan's Engineering Test Satellite-VI (ETS-VI) and a plan of experiments. Two experimental missions are planned using ETS-VI millimeter-wave (43/38 GHz bands) transponder, considering the millimeter-wave characteristics such as large transmission capacity and possibility to construct a small earth station with a high gain antenna. They are a personal communication system and an inter-satellite communication system. Experimental system including the configuration and the fundamental functions of the onboard transponder and the outline of the experiments are presented.

  13. Infrared and millimeter waves v.14 millimeter components and techniques, pt.V

    CERN Document Server

    Button, Kenneth J

    1985-01-01

    Infrared and Millimeter Waves, Volume 14: Millimeter Components and Techniques, Part V is concerned with millimeter-wave guided propagation and integrated circuits. In addition to millimeter-wave planar integrated circuits and subsystems, this book covers transducer configurations and integrated-circuit techniques, antenna arrays, optoelectronic devices, and tunable gyrotrons. Millimeter-wave gallium arsenide (GaAs) IMPATT diodes are also discussed. This monograph is comprised of six chapters and begins with a description of millimeter-wave integrated-circuit transducers, focusing on vario

  14. Millimeter-wave receiver design for plasma diagnostics

    DEFF Research Database (Denmark)

    Leipold, Frank; Hansen, S. K.; Jacobsen, Asger Schou;

    2016-01-01

    Scattered millimeter waves entering from the collective Thomson scattering diagnostic at ASDEX Upgrade fusion device are generally elliptically polarized. In order to convert the millimeter waves to linearly polarized waves (required for the detector), birefringent window assemblies (sapphire) have...

  15. Millimeter-wave antenna system

    Science.gov (United States)

    Evans, J.; Gould, W. I., Jr.

    1973-01-01

    Parabolic reflectors fabricated from Carbon Fiber Reinforced Plastic (CFRP) composite material will not distort their shape by more than 3 percent of millimeter wavelength, despite large temperature differences on reflector surfaces. CFRP has zero thermal expansion. It is derived from charred polyacrylonitrite plastic filaments that are combined with epoxy resin.

  16. Millimeter Wave Radar Clutter Program

    Science.gov (United States)

    1989-10-30

    millirneier-weve "~wort analyzer hajift scscarernmr. *Rep. an ’outasaanding ftiactncal eniginiveringl profesor is the Ls-ied Stati of 022872- 1 T...along the aft direction from a Rayleigh-distributed or exponentially distmbuted at an incidence ingle of 40" relative to normal incidence ensemble...millimeters 3 with the model behavior in Fig. 2 indicates that slope I Equatons (13a) to (13c) can be combined into a , ingle (extinction coeffic’-nt

  17. Sub-millimeter wave frequency heterodyne detector system

    Science.gov (United States)

    Siegel, Peter H. (Inventor); Dengler, Robert (Inventor); Mueller, Eric R. (Inventor)

    2010-01-01

    The present invention relates to sub-millimeter wave frequency heterodyne imaging systems. More specifically, the present invention relates to a sub-millimeter wave frequency heterodyne detector system for imaging the magnitude and phase of transmitted power through or reflected power off of mechanically scanned samples at sub-millimeter wave frequencies.

  18. Infrared and millimeter waves v.15 millimeter components and techniques, pt.VI

    CERN Document Server

    Button, Kenneth J

    1986-01-01

    Infrared and Millimeter Waves, Volume 15: Millimeter Components and Techniques, Part VI is concerned with millimeter-wave guided propagation and integrated circuits. This book covers low-noise receiver technology for near-millimeter wavelengths; dielectric image-line antennas; EHF satellite communications (SATCOM) terminal antennas; and semiconductor antennas for millimeter-wave integrated circuits. A scanning airborne radiometer for 30 and 90 GHz and a self-oscillating mixer are also described. This monograph is comprised of six chapters and begins with a discussion on the design of low-n

  19. Considerations for millimeter wave printed antennas

    Science.gov (United States)

    Pozar, D. M.

    1983-01-01

    Calculated data are presented on the performance of printed antenna elements on substrates which may be electrically thick, as would be the case for printed antennas at millimeter wave frequencies. Printed dipoles and microstrip patch antennas on polytetrafluoroethylene (PTFE), quartz, and gallium arsenide substrates are considered. Data are given for resonant length, resonant resistance, bandwidth, loss due to surface waves, loss due to dielectric heating, and mutual coupling. Also presented is an optimization procedure for maximizing or minimizing power launched into surface waves from a multielement printed antenna array. The data are calculated by a moment method solution.

  20. Dielectric Measurements of Millimeter-Wave Materials

    Science.gov (United States)

    Afsar, M. N.

    1984-12-01

    It is no longer necessary to use extrapolated microwave dielectric data when designing millimeter-wave components, devices, and systems. Precision measurements can now be made to generate highly accurate millimeter-wave (5 to 1/2 mm) continuous spectra on complex refractive index, complex dielectric permittivity, and loss tangent for a variety of materials such as common ceramics, semiconductors, crystalline, and glassy materials. The continuous spectra reveal an increase in dielectric loss with increase in frequency in this wavelength range for most materials. Reliable measurements also reveal that the method of preparation of nominally identical specimens can change the dielectric losses by many factors. These broad-band measurements were carried out employing dispersive Fourier transform spectroscopy applied to a modular two-beam polarization interferometer. Data obtained with Fabry-Perot open resonator methods at wavelengths of 5 mm and longer will also be compared.

  1. Superconducting submillimeter and millimeter wave detectors

    Energy Technology Data Exchange (ETDEWEB)

    Nahum, M.

    1992-10-20

    The series of projects described in this dissertation was stimulated by the discovery of high temperature superconductivity. Our goal was to develop useful applications which would be competitive with the current state of technology. The high-[Tc] microbolometer was developed into the most sensitive direct detector of millimeter waves, when operated at liquid nitrogen temperatures. The thermal boundary resistance of thin YBa[sub 2]Cu[sub 3]0[sub 7-[delta

  2. Field analysis and CAD millimeter wave VCO

    Science.gov (United States)

    Jiang, Xiao-Hong; Hong, Wei

    1992-12-01

    In this paper, the CAD of millimeter wave VCO is investigated based on a frequency-domain harmonic balance technique, where the external-circuit mutual impedances looking outside from two active devices are calculated in terms of a rigorous definition and a mixed technique of modes expansion, Galerkin method and collocation method. The CAD results are in agreement with the experimental results, which shows the raliability of the presented model and optimisation.

  3. The University of Texas Millimeter Wave Observatory

    CERN Document Server

    Bout, Paul A Vanden; Loren, Robert B

    2013-01-01

    This is an account of the Millimeter Wave Observatory, a 4.9 meter diameter antenna facility that pioneered continuum observations of planets and interstellar molecular spectroscopy from 1971 to 1988. The circumstances of its founding, development of its instrumentation, and major research contributions are discussed. The MWO role in training of personnel in this new field is illustrated by a listing of student and postdoctoral observers, with titles of PhD theses that included MWO data.

  4. Millimeter and submillimeter wave antenna structure

    Science.gov (United States)

    Rebiez, Gabriel M. (Inventor); Rutledge, David B. (Inventor)

    1989-01-01

    An integrated circuit antenna structure for transmitting or receiving millimeter and/or submillimeter wave radiation having an antenna relatively unimpaired by the antenna mounting arrangment is disclosed herein. The antenna structure of the present invention includes a horn disposed on a substrate for focusing electromagnetic energy with respect to an antenna. The antenna is suspended relative to the horn to receive or transmit the electromagnetic energy focused thereby.

  5. Millimeter-wave antenna design

    Science.gov (United States)

    Leighton, R. B.

    1977-01-01

    Problems and opportunities are discussed for adapting certain design features and construction techniques, developed for producing high accuracy ground based radio dishes, to producing milimeter wave dishes for space use. Specifically considered is a foldable telescope of 24 m aperture and 9.6 m focal length, composed of 37 rigid hexagonal panels, which will fit within the 4.5 m diameter x 18 m long payload limits of space shuttle. As here conceived, the telescope would be a free flyer with its own power and pointing systems. Some of the structural design features and construction procedures are considered.

  6. An Overview of Millimeter Wave Communications for Military Applications

    Directory of Open Access Journals (Sweden)

    A. S. Bains

    1993-01-01

    Full Text Available The use of millimeter wave for Defence communications can offer a number of benefits to the user. Apart from the benefit of wider capacity, millimeter wave also offers ability to provide secure and survivable communication in the presence of enemy threats. In this paper, some of the important benefits for Defence communication are reviewed. An overview of millimeter wave military communication applications, technology development, present status and trends are also given.

  7. Millimeter-wave receivers for wireless communications

    Science.gov (United States)

    Overmiller, Brock Morgan

    The modern communications environment is becoming an increasingly crowded place, resulting in rapidly increasing demands on current technology. Military and civilian operations require the ability to locate and decode all communication signals in the environment. However, developments in RADAR (RAdio Detection And Ranging) and communications technology are making it harder to effectively identify and maintain bandwidth usage for everyone. Millimeter waves--waves measured between one millimeter to one centimeter in wavelength--have only recently been explored as a new technology to replace the augment receiver architectures. These small wavelengths introduce many engineering challenges, such as: large atmospheric losses, poor sensitivity, and expensive electronic equipment. With growing developments in Microwave Photonics, low-noise RF amplifiers and high-speed modulators have demonstrated the ability to design RF communication links in the millimeter wave regime to counter such problems. However, despite these developments, toward a cost-effective, spatial division multiplexing (SDM) receiver concept has not proved capable of being implemented as part of the next generation 5G wireless network infrastructure. To this end, we present a novel receiver architecture utilizing an optically addressed phased-array millimeter wave receiver based on optical-upconversion and signal recovery. This receiver is capable of geolocation and spatial multiplexing of multiple Tunable Optically Paired Source (TOPS) communication signals in its scene. Operating at 35 GHz, the receiver up-converts the received RF onto an optical sideband, which, to our advantage, contains all of the frequency, amplitude, and phase information of the received signals. Subsequent optical processing allows routing of the sideband to a free space detector port. Photomixing a coherent optical local oscillator (LO) with the optical sideband performs heterodyne down-conversion to an Intermediate Frequency (IF

  8. Recent Advances in Millimeter-Wave NRD-Guide Circuits

    Science.gov (United States)

    Yoneyama, Tsukasa

    Though millimeter wave applications have attracted much attention in recent years, they have not yet been put to practical use. The major reason for the failure may be a large transmission loss peculiar to the short wavelength. In order to overcome the inconvenience, it may be promising to introduce the technology of millimeter-wave NRD-guide circuits. In this technology, not only NRD-guide but also Gunn diodes and Schottky diodes play the important role in high bit-rate millimeter-wave applications. A variety of practical millimeter wave wireless systems have been proposed and fabricated. Performances and applications of them are discussed in detail as well.

  9. The Millimeter Wave Spectrum of Linalool

    Science.gov (United States)

    Evans, Corey J.; Allpress, Stephanie M.; Godfrey, Peter D.; McNaughton, Don

    2012-06-01

    The millimeter wave spectrum (48-72 GHz) of linalool has been recorded for the first time. Over 40 conformers of S-(+) and R-(-)-linalool have been investigated using computational chemistry techniques, with 10 conformers predicted to be within 400 cm-1 of the lowest lying isomer at the B3LYP/aug-cc-pVTZ level of theory. The observed lines can be assigned to two conformers of (S)-(+)-linalool. Precise rotational and centrifugal distortion constants have been determined for both conformers.

  10. Full spectrum millimeter-wave modulation.

    Science.gov (United States)

    Macario, Julien; Yao, Peng; Shi, Shouyuan; Zablocki, Alicia; Harrity, Charles; Martin, Richard D; Schuetz, Christopher A; Prather, Dennis W

    2012-10-01

    In recent years, the development of new lithium niobate electro-optic modulator designs and material processing techniques have contributed to support the increasing need for faster optical networks by considerably extending the operational bandwidth of modulators. In an effort to provide higher bandwidths for future generations of networks, we have developed a lithium niobate electro-optic phase modulator based on a coplanar waveguide ridged structure that operates up to 300 GHz. By thinning the lithium niobate substrate down to less than 39 µm, we are able to eliminate substrate modes and observe optical sidebands over the full millimeter-wave spectrum.

  11. Millimeter wave dosimetry of human skin.

    Science.gov (United States)

    Alekseev, S I; Radzievsky, A A; Logani, M K; Ziskin, M C

    2008-01-01

    To identify the mechanisms of biological effects of mm waves it is important to develop accurate methods for evaluating absorption and penetration depth of mm waves in the epidermis and dermis. The main characteristics of mm wave skin dosimetry were calculated using a homogeneous unilayer model and two multilayer models of skin. These characteristics included reflection, power density (PD), penetration depth (delta), and specific absorption rate (SAR). The parameters of the models were found from fitting the models to the experimental data obtained from measurements of mm wave reflection from human skin. The forearm and palm data were used to model the skin with thin and thick stratum corneum (SC), respectively. The thin SC produced little influence on the interaction of mm waves with skin. On the contrary, the thick SC in the palm played the role of a matching layer and significantly reduced reflection. In addition, the palmar skin manifested a broad peak in reflection within the 83-277 GHz range. The viable epidermis plus dermis, containing a large amount of free water, greatly attenuated mm wave energy. Therefore, the deeper fat layer had little effect on the PD and SAR profiles. We observed the appearance of a moderate SAR peak in the therapeutic frequency range (42-62 GHz) within the skin at a depth of 0.3-0.4 mm. Millimeter waves penetrate into the human skin deep enough (delta = 0.65 mm at 42 GHz) to affect most skin structures located in the epidermis and dermis.

  12. Universal Millimeter-Wave Radar Front End

    Science.gov (United States)

    Perez, Raul M.

    2010-01-01

    A quasi-optical front end allows any arbitrary polarization to be transmitted by controlling the timing, amplitude, and phase of the two input ports. The front end consists of two independent channels horizontal and vertical. Each channel has two ports transmit and receive. The transmit signal is linearly polarized so as to pass through a periodic wire grid. It is then propagated through a ferrite Faraday rotator, which rotates the polarization state 45deg. The received signal is propagated through the Faraday rotator in the opposite direction, undergoing a further 45 of polarization rotation due to the non-reciprocal action of the ferrite under magnetic bias. The received signal is now polarized at 90deg relative to the transmit signal. This signal is now reflected from the wire grid and propagated to the receive port. The horizontal and vertical channels are propagated through, or reflected from, another wire grid. This design is an improvement on the state of the art in that any transmit signal polarization can be chosen in whatever sequence desired. Prior systems require switching of the transmit signal from the amplifier, either mechanically or by using high-power millimeter-wave switches. This design can have higher reliability, lower mass, and more flexibility than mechanical switching systems, as well as higher reliability and lower losses than systems using high-power millimeter-wave switches.

  13. Integrated design and simulation for millimeter-wave antenna systems

    Science.gov (United States)

    Cwik, T.; Katz, D. S.; Villegas, F. J.

    2000-01-01

    In this paper the development and application of MODTool (Millimeter-wave Optics Design), a design tool that efficiently integrates existing millimeter-wave optics design software with a solid body modeler and thermal/structural analysis packages, will be discussed.

  14. Solid-State Millimeter-Wave Source Study: A Study of Two Novel Concepts for Generation of CW Millimeter Waves.

    Science.gov (United States)

    1981-09-01

    AD-AI13 460 ROCKWELL INTERNATIONJAL DOWNEY CA SATEL ITE SYSTEMS DIV F/6 9/ SOLID-STATE MILLIMETER-WAVE SOURCE STUDY : A STUDY OF TWO NOVEL -- ETC(U...NA[ B11RIA ~ H ,A DR’ ’. 7.4 C79-606.12/501 SOLID-STATE MILLIMETER-WAVE SOURCE STUDY : A STUDY OF TWO NOVEL CONCEPTS FOR GENERATION OF CW MILLIMETER...ACCESSION NO, IENT’S CATALOG NUMBER 4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED Solid State Millimeter-Wave Source Study : A Study Final

  15. The Millimeter-wave Bolometric Interferometer (MBI)

    Science.gov (United States)

    Gault, Amanda C.; Ade, P. A. R.; Bierman, E.; Bunn, E. F.; Hyland, P. O.; Keating, B. G.; Korotkov, A. L.; Malu, S. S.; O'Sullivan, C.; Piccirillo, L.; Timbie, P. T.; Tucker, G. S.

    2009-01-01

    We report on the design and tests of a prototype of the Millimeter-wave Bolometric Interferometer (MBI). MBI is designed to make sensitive measurements of the polarization of the cosmic microwave background (CMB). It combines the differencing capabilities of an interferometer with the high sensitivity of bolometers at millimeter wavelengths. The prototype, which we call MBI-4, views the sky directly through four corrugated horn antennas. MBI ultimately will have 1000 antennas. These antennas have low sidelobes and nearly symmetric beam patterns, so spurious instrumental polarization from reflective optics is avoided. The MBI-4 optical band is defined by filters with a central frequency of 90 GHz. The set of baselines, determined by placement of the four antennas, results in sensitivity to CMB polarization fluctuations over the multipole range l = 150 - 270. The signals are combined with a Fizeau beam combiner and interference fringes are detected by an array of spiderweb bolometers. In order to separate the visibility signals from the total power detected by each bolometer, the phase of the signal from each antenna is modulated by a ferrite-based waveguide phase shifter. Initial tests and observations have been made at Pine Bluff Observatory (PBO) outside Madison, WI. This work was supported by NASA grants NAG5-12758, NNX07AG82G, the Rhode Island Space Grant and the Wisconsin Space Grant.

  16. An Alternative Millimeter Wave Oscillator using a Dielectric Puck in the Whispering Gallery Mode Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A majority of millimeter wave based systems used for space exploration, communications and research, require a millimeter wave oscillator. These oscillators have...

  17. Contact Whiskers for Millimeter Wave Diodes

    Science.gov (United States)

    Kerr, A. R.; Grange, J. A.; Lichtenberger, J. A.

    1978-01-01

    Several techniques are investigated for making short conical tips on wires (whiskers) used for contacting millimeter-wave Schottky diodes. One procedure, using a phosphoric and chromic acid etching solution (PCE), is found to give good results on 12 microns phosphor-bronze wires. Full cone angles of 60 degrees-80 degrees are consistently obtained, compared with the 15 degrees-20 degrees angles obtained with the widely used sodium hydroxide etch. Methods are also described for cleaning, increasing the tip diameter (i.e. blunting), gold plating, and testing the contact resistance of the whiskers. The effects of the whisker tip shape on the electrical resistance, inductance, and capacitance of the whiskers are studied, and examples given for typical sets of parameters.

  18. Millimeter wave spectra of carbonyl cyanide ⋆

    Science.gov (United States)

    Bteich, S.B.; Tercero, B.; Cernicharo, J.; Motiyenko, R.A.; Margulès, L.; Guillemin, J.-C.

    2016-01-01

    Context More than 30 cyanide derivatives of simple organic molecules have been detected in the interstellar medium, but only one dicarbonitrile has been found and that very recently. There is still a lack of high-resolution spectroscopic data particularly for dinitriles derivatives. The carbonyl cyanide molecule is a new and interesting candidate for astrophysical detection. It could be formed by the reaction of CO and CN radicals, or by substitution of the hydrogen atom by a cyano group in cyanoformaldehyde, HC(=O)CN, that has already been detected in the interstellar medium. Aims The available data on the rotational spectrum of carbonyl cyanide is limited in terms of quantum number values and frequency range, and does not allow accurate extrapolation of the spectrum into the millimeter-wave range. To provide a firm basis for astrophysical detection of carbonyl cyanide we studied its millimeter-wave spectrum. Methods The rotational spectrum of carbonyl cyanide was measured in the frequency range 152 - 308 GHz and analyzed using Watson’s A- and S-reduction Hamiltonians. Results The ground and first excited state of v5 vibrational mode were assigned and analyzed. More than 1100 distinct frequency lines of the ground state were fitted to produce an accurate set of rotational and centrifugal distortion constants up to the eighth order. The frequency predictions based on these constants should be accurate enough for astrophysical searches in the frequency range up to 500 GHz and for transition involving energy levels with J ≤ 100 and Ka ≤ 42. Based on the results we searched for interstellar carbonyl cyanide in available observational data without success. Thus, we derived upper limits to its column density in different sources. PMID:27738349

  19. High-Gradient, Millimeter Wave Accelerating Structure

    CERN Document Server

    Kuzikov, S V; Peskov, N Yu

    2015-01-01

    The millimeter wave all-metallic accelerating structure, aimed to provide more than 100 MeV/m gradient and fed by feeding RF pulses of 20-30 ns duration, is proposed. The structure is based on a waveguide with small helical corrugation. Each section of 10-20 wavelengths long has big circular cross-section aperture comparable with wavelength. Because short wavelength structures are expected to be critical to wakefields excitation and emittance growth, we suggest to combine in one structure properties of a linear accelerator and a cooling damping ring simultaneously. It provides acceleration of straight on-axis beam as well as cooling of this beam due to the synchrotron radiation of particles in strong non-synchronous transverse fields. These properties are provided by specific slow eigen mode which consists of two partial waves, TM01 and TM11. Simulations show that shunt impedance can be as high as 100 MOhm/m. Results of the first low-power tests with 30 GHz accelerating section are analyzed.

  20. Millimeter Wave Metal-Insulator-Metal Detector/Mixer Diode.

    Science.gov (United States)

    1983-12-01

    AO-A138 391 MILLIMETER WAVE METAL-INSULATOR- METAL DETECTOR /MIXER 1/1 DIODE(VI NORTH CAROLIN A AGRICULTURAL A NO TECHNI CA L STATE UNIV GREENSRO. C TV...163-A I V AFWAL-TR-83-1179 MILLIMETER WAVE METAL-INSULATOR- METAL DETECTOR /MIXER DIODE CHUNG YU NORTH CAROLINA A&T STATE UNIVERSITY GREENSBORO, NORTH...TITLE (ad subsorle.I S. TYPE CrjflT&PEO OER MILLIMETER WAVE May, 1981--July, 1983 METAL-INSULATOR- METAL DETECTOR /MIXER G. PERFORMING ORG. REPORT

  1. Superconducting submillimeter and millimeter wave detectors

    Energy Technology Data Exchange (ETDEWEB)

    Nahum, M.

    1992-10-20

    The series of projects described in this dissertation was stimulated by the discovery of high temperature superconductivity. Our goal was to develop useful applications which would be competitive with the current state of technology. The high-{Tc} microbolometer was developed into the most sensitive direct detector of millimeter waves, when operated at liquid nitrogen temperatures. The thermal boundary resistance of thin YBa{sub 2}Cu{sub 3}0{sub 7-{delta}} films was subsequently measured and provided direct evidence for the bolometric response of high-{Tc} films to fast (ns) laser pulses. The low-{Tc} microbolometer was developed and used to make the first direct measurements of the frequency dependent optical efficiency of planar lithographed antennas. The hot-electron microbolometer was invented less than a year prior to the writing of this dissertation. Our analysis, presented here, indicates that it should be possible to attain up to two orders of magnitude higher sensitivity than that of the best available direct detectors when operated at the same temperature. The temperature readout scheme for this device could also be used to measure the intrinsic interaction between electrons and phonons in a metal with a sensitivity that is five orders of magnitude better than in previous measurements. Preliminary measurements of quasiparticle trapping effects at the interface between a metal and a superconductor are also presented.

  2. The Millimeter-Wave Bolometric Interferometer

    Science.gov (United States)

    Korotkov, Andrei; Ade, P. A.; Ali, S.; Bierman, E.; Bunn, E. F.; Calderon, C.; Gault, A. C.; Hyland, P. O.; Keating, B. G.; Kim, J.; Malu, S. S.; Mauskopf, P. D.; Murphy, J. A.; O'Sullivan, C.; Piccirillo, L.; Timbie, P. T.; Tucker, G. S.; Wandelt, B. D.

    2006-12-01

    We report on the status of the Millimeter-Wave Bolometric Interferometer (MBI), an instrument designed for polarization measurements of the cosmic microwave background (CMB). MBI combines the differencing capabilities of an interferometer with the high sensitivity of bolometers. The design of the ground-based four-channel version of the instrument with 7-degree-FOV corrugated horns (MBI-4) and first measurements results are discussed. Corrugated horn antennas with low sidelobes and nearly symmetric beam patterns minimize spurious instrumental polarization. The MBI-4 optical band is limited by filters with a central frequency of 90 GHz. The antenna separation is chosen so the instrument is sensitive over the multipole range l=150-270. In MBI-4, the signals from antennas are combined with a quasi-optical Fizeau beam combiner and interference fringes are detected by an array of spider-web bolometers with NTD germanium thermistors. In order to separate the visibility signals from the total power detected by each bolometer, the phase of the signal from each antenna is modulated by a ferrite-based waveguide phase shifter. First observations will be from the Pine Bluff Observatory outside Madison, WI. The project is supported by NASA.

  3. Millimeter-wave detection of landmines

    Science.gov (United States)

    Öztürk, Hilmi; Nazli, Hakki; Yeǧin, Korkut; Biçak, Emrullah; Sezgin, Mehmet; Daǧ, Mahmut; Turetken, Bahattin

    2013-06-01

    Millimeter wave absorption relative to background soil can be used for detection landmines with little or no metal content. At these frequencies, soil and landmine absorb electromagnetic energy differently. Stepped frequency measurements from 20 GHz to 60 GHz were used to detect buried surrogate landmines in the soil. The targets were 3 cm and 5 cm beneath the soil surface and coherent transmission and reflection was used in the experimental setup. The measurement set-up was mounted on a handheld portable device, and this device was on a rail for accurate displacement such that the rail could move freely along the scan axis. Measurements were performed with network analyzer and scattering data in frequency domain were recorded for processing, namely for inverse Fourier Transform and background subtraction. Background subtraction was performed through a numerical filter to achieve higher contrast ratio. Although the numerical filter used was a simple routine with minimal computational burden, a specific detection method was applied to the background subtracted GPR data, which was based on correlation summation of consecutive A-scan signals in a predefined window length.

  4. Progress in millimeter-wave imaging

    Science.gov (United States)

    Wikner, David A.

    2011-03-01

    The field of millimeter-wave (MMW) imaging has progressed significantly over the last two decades. The most obvious evidence of this is the widespread use of MMW full-body scanners, now commonly found in airports. The path to this point has been the result of the work of a wide range of experts from many scientific and engineering disciplines. This article represents one perspective of this progress. The development of MMW imagers, and all their associated component technologies, image processing techniques, clever engineering, etc. has been driven by a relatively small number of interesting applications. It has been known for about 70 years that RF energy can be used to "see" through things like clouds and detect, for example, hostile aircraft. As the RF frequency goes up to 35, 100, or 340 GHz, it becomes possible to image through obscurants with much improved resolution. However, as frequency increases, attenuation increases as well, so selecting the right frequency for the application is an important point. The challenge of seeing through obscurants such as fog, smoke and dust drives one towards a MMW imaging solution. Typical applications include guiding aircraft through low visibility conditions, detecting nearby watercraft in the fog, and searching for concealed weapons. So, while these capabilities have been demonstrated numerous times over the years, the practical and affordable implementation of the systems to accomplish these goals is where the real story lies.

  5. Millimeter-wave gyrotron traveling-wave tube amplifiers

    CERN Document Server

    Du, Chao-Hai

    2014-01-01

    A gyrotron traveling-wave amplifier (gyro-TWT) with the high-power and broad-band capabilities is considered as a turn-on key for next generation high-resolution radar. The book presents comprehensive theory, methods, and physics related to gyro-TWT. The most challenging problem of instability competition has been for the first time addressed in a focused and systematic way, and reported via concise states and vivid pictures. The book is likely to meet the interest of researchers and engineers in radar and microwave technology, who would like to study the gyro-TWTs and to promote its application in millimeter-wave radars.   Chao-Hai Du is a research professor, and Pu-Kun Liu is a full professor, at Peking University, Beijing, P. R. China.

  6. Development and application of millimeter-wave imaging radar

    Energy Technology Data Exchange (ETDEWEB)

    Mase, Atsushi; Kogi, Yuichiro; Yamamoto, Akihide; Ohashi, Masamichi; Osako, Shuhei [Kyushu Univ., Advanced Science and Technology Center for Cooperative Research, Kasuga, Fukuoka (Japan); Bruskin, Leonid G. [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Hojo, Hitoshi [Tsukuba Univ., Plasma Research Center, Tsukuba, Ibaraki (Japan)

    2002-05-01

    Significant advances in microwave and millimeter wave technology have enabled the development of a new generation of imaging diagnostics in this frequency region. Millimeter wave imaging radar is expected to be one of the most promising diagnostic methods for this purpose. It consists of a frequency-modulated continuous wave or pulsed wave as a probe beam and quasi-optical focusing optics followed by a planar-type detector array. We have started to develop a diagnostic system for the achievement of imaging radar. Representative experimental results obtained with related diagnostic systems are presented. (author)

  7. Study of Novel Slow Wave Circuit for Miniaturized Millimeter Wave Helical Traveling Wave Tube

    Science.gov (United States)

    Li, Bin; Zhu, Xiaofang; Liao, Li; Yang, Zhonghai; Zeng, Baoqing; Yao, Lieming

    2006-07-01

    Two kinds of novel helical slow wave circuit, supported by Chemical Vapor Deposition (CVD) diamond, are presented. They are applying in miniaturized millimeter wave helical traveling wave tube. Cold test characteristic of these circuits are simulated by MAFIA code. Higher performances are achieved with smaller size, compared with conventional circuit supported by BeO rods. The nonlinear analysis is implemented by Beam and Wave Interaction (BWI) module, which is a part of TWTCAD Integrated Framework. Results have been found to be consistent with the expectation. It should be wider apply in microwave and millimeter wave vacuum electronic devices.

  8. Amplifier based broadband pixel for sub-millimeter wave imaging

    Science.gov (United States)

    Sarkozy, Stephen; Drewes, Jonathan; Leong, Kevin M. K. H.; Lai, Richard; Mei, X. B. (Gerry); Yoshida, Wayne; Lange, Michael D.; Lee, Jane; Deal, William R.

    2012-09-01

    Broadband sub-millimeter wave technology has received significant attention for potential applications in security, medical, and military imaging. Despite theoretical advantages of reduced size, weight, and power compared to current millimeter wave systems, sub-millimeter wave systems have been hampered by a fundamental lack of amplification with sufficient gain and noise figure properties. We report a broadband pixel operating from 300 to 340 GHz, biased off a single 2 V power supply. Over this frequency range, the amplifiers provide > 40 dB gain and mobility transistor technology, based on a sub-50 nm gate and indium arsenide composite channel with a projected maximum oscillation frequency fmax>1.0 THz. The first sub-millimeter wave-based images using active amplification are demonstrated as part of the Joint Improvised Explosive Device Defeat Organization Longe Range Personnel Imager Program. This development and demonstration may bring to life future sub-millimeter-wave and THz applications such as solutions to brownout problems, ultra-high bandwidth satellite communication cross-links, and future planetary exploration missions.

  9. Millimeter Wave Radiations Affect Membrane Hydration in Phosphatidylcholine Vesicles

    Directory of Open Access Journals (Sweden)

    Giuseppe Chidichimo

    2013-07-01

    Full Text Available A clear understanding of the response of biological systems to millimeter waves exposure is of increasing interest for the scientific community due to the recent convincing use of these radiations in the ultrafast wireless communications. Here we report a deuterium nuclear magnetic resonance spectroscopy (2H-NMR investigation on the effects of millimeter waves in the 53–78 GHz range on phosphocholine bio-mimetic membranes. Millimeter waves significantly affect the polar interface of the membrane causing a decrease of the heavy water quadrupole splitting. This effect is as important as inducing the transition from the fluid to the gel phase when the membrane exposure occurs in the neighborhood of the transition point. On the molecular level, the above effect can be well explained by membrane dehydration induced by the radiation.

  10. Near-Field Cross Section Imaging of Wideband Millimeter Wave

    Directory of Open Access Journals (Sweden)

    Kan Yingzhi

    2016-01-01

    Full Text Available Near-field millimeter wave imaging has been a hot topic recent years for its importance applications in the area of anti-terrorism. The penetrating characteristic of millimeter wave is of significant importance to security, such as the concealed weapons detection, ground-penetrating radar imaging, through-barrier imaging and so on. Cross section imaging is a basic aspect for near-field millimeter wave imaging, which includes antenna array distribution and wideband signal processing. This paper utilizes back projection method in space area to realize ultra-band nearfield cross section imaging. We induce two dimensional direction integral formulas to obtain the reconstruction image of the near-field imaging area, and the simulation results validate the effectiveness of this imaging algorithm.

  11. Millimeter Wave Spectroscopy for Breast Cancer Diagnostics and Detection

    Science.gov (United States)

    Korolev, Konstantin; Chen, Shu; Afsar, Mohammed; Naber, Stephen

    2009-03-01

    Broad-band millimeter wave transmittance measurements of normal and tumorous (cancerous) human breast tissue samples have been acquired in--vitro by employing a free-space, quasi-optical spectrometer. Freshly excised breast tissues were prepared and preserved in 10% neutral-buffered formalin solution before testing. Significant differences in the transmittance profiles have been found between the normal and tumorous tissues. It has been found that despite the inhomogeneity and variable structure and composition of each single tissue, the tumorous specimens consistently manifest much higher absorption level of millimeter wave radiation than the normal ones. It has been shown that free space, quasi-optical spectrometer is capable of contributing valuable insights into the dielectric properties of normal and tumorous human breast tissues and aiding in further developments of millimeter wave spectroscopy and mammography for the breast cancer diagnostics and detection.

  12. Microwave and millimeter-wave remote sensing for security applications

    CERN Document Server

    Nanzer, Jeffrey

    2012-01-01

    Microwave and millimeter-wave remote sensing techniques are fast becoming a necessity in many aspects of security as detection and classification of objects or intruders becomes more difficult. This groundbreaking resource offers you expert guidance in this burgeoning area. It provides you with a thorough treatment of the principles of microwave and millimeter-wave remote sensing for security applications, as well as practical coverage of the design of radiometer, radar, and imaging systems. You learn how to design active and passive sensors for intruder detection, concealed object detection,

  13. Millimeter Wave Absorber for Secure Identification

    CERN Document Server

    Skirlo, Scott A; Nasr, Magued; Heimbeck, Martin S; Joannopoulos, John D; Soljacic, Marin; Everitt, Henry O; Domash, Lawrence

    2016-01-01

    We demonstrate thin, flexible, metamaterial films with a strong, narrowband, polarization- and angle-insensitive absorption designed for wavelengths near one millimeter. These structures, fabricated by photolithography on a commercially available, copper-backed polyimide substrate, are nearly indistinguishable to the unaided human eye but can be easily observed by imaging at the resonance frequency of the film. We demonstrate that these patterns can be used to mark or barcode objects for secure identification with a terahertz imaging system.

  14. CMOS front ends for millimeter wave wireless communication systems

    CERN Document Server

    Deferm, Noël

    2015-01-01

    This book focuses on the development of circuit and system design techniques for millimeter wave wireless communication systems above 90GHz and fabricated in nanometer scale CMOS technologies. The authors demonstrate a hands-on methodology that was applied to design six different chips, in order to overcome a variety of design challenges. Behavior of both actives and passives, and how to design them to achieve high performance is discussed in detail. This book serves as a valuable reference for millimeter wave designers, working at both the transistor level and system level.   Discusses advantages and disadvantages of designing wireless mm-wave communication circuits and systems in CMOS; Analyzes the limitations and pitfalls of building mm-wave circuits in CMOS; Includes mm-wave building block and system design techniques and applies these to 6 different CMOS chips; Provides guidelines for building measurement setups to evaluate high-frequency chips.  

  15. Digitally assisted analog beamforming for millimeter-wave communication

    NARCIS (Netherlands)

    Kokkeler, A.B.J.; Smit, G.J.M.

    2015-01-01

    The paper addresses the research question on how digital beamsteering algorithms can be combined with analog beamforming in the context of millimeter-wave communication for next generation (5G) cellular systems. Key is the use of coarse quantisation of the individual antenna signals next to the anal

  16. Dayem bridge Josephson junctions. [for millimeter wave mixer

    Science.gov (United States)

    Barr, D. W.; Mattauch, R. J.

    1977-01-01

    The Josephson junction shows great promise as a millimeter wave mixer element. This paper discusses the physical mixing process from a first-order mathematical approach. Design and fabrication of such structures tailored for use in a 80-120 GHz mixer application is presented. Testing of the structures and a discussion of their interpretation is presented.

  17. A Robust Waveguide Millimeter-Wave Noise Source

    Science.gov (United States)

    Ehsan, Negar; Piepmeier, Jeffrey R.; Solly, Michael; Macmurphy, Shawn; Lucey, Jared; Wollack, Edward

    2015-01-01

    This paper presents the design, fabrication, and characterization of a millimeter-wave noise source for the 160- 210 GHz frequency range. The noise source has been implemented in an E-split-block waveguide package and the internal circuitry was developed on a quartz substrate. The measured excess noise ratio at 200 GHz is 9.6 dB.

  18. Millimeter wave VAlidation STandard (mm-VAST) antenna. Abstract

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.

    This document outlines the background, objectives and the main results of the project “Millimeter wave VAlidation STandard (mm-VAST) antenna” completed by the Technical University of Denmark (DTU) in collaboration with Danish company TICRA for the European Space Agency (ESA) under ESA contract no...

  19. External calibration technique of millimeter-wave cloud radar

    Science.gov (United States)

    Wen, Tao; Zhao, Zeng-Liang; Yao, Zhi-Gang; Han, Zhi-Gang; Guo, Lin-Da

    2016-10-01

    The millimeter-wave cloud radar can provide a large number of fine and reliable information for the inversion of cloud macro and micro parameters. A key link of using the millimeter-wave cloud radar to detect the cloud is that the radar must be calibrated. Due to the precision components and severe environment of millimeter-wave cloud radar, subtle changes may take place in the operation process of cloud radar, unless the cloud radar is calibrated regularly. Although the calibration system inside the cloud radar can track and monitor the main working parameters and correct the detection results, it fails to consider the characteristics of the antenna and the mutual influence among different components of cloud radar. Therefore, the external calibration for cloud radar system is very important. Combined with the actual situation of cloud radar under domestic onboard platform, this paper builds a complete external calibration technique process of cloud radar based on the calm sea, providing the theoretical support for the external calibration experiments of the airborne and even satellite-borne millimeter-wave cloud radar developed by our country.

  20. Spatial Stationarity of Ultrawideband and Millimeter Wave Radio Channels

    DEFF Research Database (Denmark)

    Yi, Tan; Nielsen, Jesper Ødum; Pedersen, Gert F.

    2016-01-01

    For radio channels with broad bandwidth resource, such as those often used for ultrawideband (UWB) and millimeter wave (mmwave) systems, the Wide-Sense Stationary Uncorrelated Scattering (WSSUS) and spatial stationary assumptions are more critical than typical cellular channels with very limited...

  1. Experimental Study for the Different Methods of Generating Millimeter Waves

    Directory of Open Access Journals (Sweden)

    Aamer Jamal Albaghdadi

    2014-08-01

    Full Text Available In this paper a analytical comparison and experimental implementation of different methods used in generating a low phase noise millimeter wave signals is presented. Four techniques were experimented and compared, Multiplication, phase lock loop (PLL, Injection locking (IL, and Injection locking with phase lock loop (ILPLL. The comparison and experimental results of a laboratory discussed.

  2. Millimeter wave VAlidation STandard (mm-VAST) antenna

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.

    This document summarizes the main results of the project “Millimeter wave VAlidation STandard (mm-VAST) antenna” completed by the Technical University of Denmark (DTU) in collaboration with Danish company TICRA for the European Space Agency (ESA) under ESA contract no. 4000109866/13/NL/MH....

  3. AC/RF Superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Ciovati, Gianluigi [JLAB

    2015-02-01

    This contribution provides a brief introduction to AC/RF superconductivity, with an emphasis on application to accelerators. The topics covered include the surface impedance of normal conductors and superconductors, the residual resistance, the field dependence of the surface resistance, and the superheating field.

  4. 77 FR 3386 - Export and Reexport License Requirements for Certain Microwave and Millimeter Wave Electronic...

    Science.gov (United States)

    2012-01-24

    ... Requirements for Certain Microwave and Millimeter Wave Electronic Components: Correction AGENCY: Bureau of... of microwave and millimeter wave electronic components. The two components are packaged high electron... reexports to all destinations other than Canada of two types of microwave and millimeter wave...

  5. 77 FR 1017 - Export and Reexport License Requirements for Certain Microwave and Millimeter Wave Electronic...

    Science.gov (United States)

    2012-01-09

    ... Requirements for Certain Microwave and Millimeter Wave Electronic Components AGENCY: Bureau of Industry and... reexports to all destinations other than Canada of two types of microwave and millimeter wave electronic... microwave and millimeter wave electronic components. The two components are packaged high electron...

  6. Nondestructive millimeter wave imaging and spectroscopy using dielectric focusing probes

    Energy Technology Data Exchange (ETDEWEB)

    Hejase, Jose A.; Shane, Steven S.; Park, Kyoung Y.; Chahal, Premjeet [Terahertz Systems Laboratory (TeSLa) - Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48823 (United States)

    2014-02-18

    A tool for interrogating objects over a wide band of frequencies with subwavelength resolution at small standoff distances (near field region) in the transmission mode using a single source and detector measurement setup in the millimeter wave band is presented. The design utilizes optics like principles for guiding electromagnetic millimeter waves from large cross-sectional areas to considerably smaller sub-wavelength areas. While plano-convex lenses can be used to focus waves to a fine resolution, they usually require a large stand-off distance thus resulting in alignment and spacing issues. The design procedure and simulation analysis of the focusing probes are presented in this study along with experimental verification of performance and imaging and spectroscopy examples. Nondestructive evaluation will find benefit from such an apparatus including biological tissue imaging, electronic package integrity testing, composite dielectric structure evaluation for defects and microfluidic sensing.

  7. Millimeter-wave/THz FMCW radar techniques for sensing applications

    Science.gov (United States)

    Mirando, D. Amal; Higgins, Michael D.; Wang, Fenggui; Petkie, Douglas T.

    2016-10-01

    Millimeter-wave and terahertz continuous-wave radar systems have been used to measure physiological signatures for biometric applications and for a variety of non-destructive evaluation applications, such as the detection of defects in materials. Sensing strategies for the simplest homodyne systems, such as a Michelson Interferometer, can be enhanced by using Frequency Modulated Continuous Wave (FMCW) techniques. This allows multiple objects or surfaces to be range resolved while monitoring the phase of the signal in a particular range bin. We will discuss the latest developments in several studies aimed at demonstrating how FMCW techniques can enhance mmW/THz sensing applications.

  8. High performance millimeter-wave microstrip circulators and isolators

    Science.gov (United States)

    Shih, Ming; Pan, J. J.

    1990-01-01

    Millimeter wave systems, phased array antennas, and high performance components all require wideband circulators (and isolators) to perform diplexing and switching, to improve isolation and Voltage Standing Wave Ratio (VSWR), and to construct IMPATT diode reflection amplifiers. Presently, most of the millimeter-wave circulators and isolators are available in the configurations of waveguide or stripline, both of which suffer from the shortcomings of bulky size/weight, narrow bandwidth, and poor compatibility with monolithic millimeter-wave integrated circuits (MMIC). MMW microstrip circulators/isolators can eliminate or improve these shortcomings. Stub-tuned microstrip circulator configuration were developed utilizing the electromagnetic fields perturbation technique, the adhesion problems of microstrip metallization on new ferrite substrate were overcome, the fabrication, assembly, packaging techniques were improved, and then successfully designed, fabricated a Ka band circulator which has isolation and return loss of greater than 16dB, insertion loss less than 0.7dB. To assess the steady and reliable performance of the circulator, a temperature cycling test was done over the range of -20 to +50 C for 3 continuous cycles and found no significant impact or variation of circulator performance.

  9. WDM Phase-Modulated Millimeter-Wave Fiber Systems

    DEFF Research Database (Denmark)

    Yu, Xianbin; Prince, Kamau; Gibbon, Timothy Braidwood

    2012-01-01

    This chapter presents a computer simulation case study of two typical WDM phase-modulated millimeter-wave systems. The phase-modulated 60 GHz fiber multi-channel transmission systems employ single sideband (SSB) and double sideband subcarrier modulation (DSB-SC) schemes and present one of the lat......This chapter presents a computer simulation case study of two typical WDM phase-modulated millimeter-wave systems. The phase-modulated 60 GHz fiber multi-channel transmission systems employ single sideband (SSB) and double sideband subcarrier modulation (DSB-SC) schemes and present one...... of the latest research efforts in the rapidly emerging Radio-over-Fiber (RoF) application space for in-house access networks....

  10. RF to millimeter wave integration and module technologies

    Science.gov (United States)

    Vähä-Heikkilä, T.

    2015-04-01

    Radio Frequency (RF) consumer applications have boosted silicon integrated circuits (IC) and corresponding technologies. More and more functions are integrated to ICs and their performance is also increasing. However, RF front-end modules with filters and switches as well as antennas still need other way of integration. This paper focuses to RF front-end module and antenna developments as well as to the integration of millimeter wave radios. VTT Technical Research Centre of Finland has developed both Low Temperature Co-fired Ceramics (LTCC) and Integrated Passive Devices (IPD) integration platforms for RF and millimeter wave integrated modules. In addition to in-house technologies, VTT is using module and component technologies from other commercial sources.

  11. Photonic Technologies for Millimeter- and Submillimeter-Wave Signals

    Directory of Open Access Journals (Sweden)

    B. Vidal

    2012-01-01

    Full Text Available Fiber optic components offer a competitive implementation for applications exploiting the millimeter-wave and THz regimes due to their capability for implementing broadband, compact, and cost-effective systems. In this paper, an outline of the latest technology developments and applications of fiber-optic-based technologies for the generation, transmission, and processing of high-frequency radio signals is provided.

  12. Detection of Ammonia in Liquids Using Millimeter Wave Spectroscopy

    Directory of Open Access Journals (Sweden)

    Hilmi Ozturk

    2012-01-01

    Full Text Available Detection of ammonia plays a vital role for counter-bioterrorism applications. Using millimeter wave absorption measurements, ammonia dissolved in water solution is analyzed and compared to water-only solution. The inversion of ammonia molecule results in split rotational spectral lines and transitions of these lines can be detected. Two-port measurements were carried out with vector network analyzer and measurements revealed that ammonia presence can be identified, especially between 30–35 GHz.

  13. Planar Millimeter-Wave Antennas: A Comparative Study

    Directory of Open Access Journals (Sweden)

    K. Pitra

    2011-04-01

    Full Text Available The paper describes the design and the experimental verification of three types of wideband antennas. Attention is turned to the bow-tie antenna, the Vivaldi antenna and the spiral antenna designed for the operation at millimeter waves. Bandwidth, input impedance, gain, and directivity pattern are the investigated parameters. Antennas are compared considering computer simulations in CST Microwave Studio and measured data.

  14. System analysis for millimeter-wave communication satellites

    Science.gov (United States)

    Holland, L. D.; Hilsen, N. B.; Gallagher, J. J.; Stevens, G.

    1980-01-01

    Research and development needs for millimeter-wave space communication systems are presented. Assumed propagation fade statistics are investigated along with high data rate diversity link and storage. The development of reliable ferrite switches, and high performance receivers and transmitters is discussed, in addition to improved tolerance of dish and lens fabrication for the antennas. The typical cost for using a simplex voice channel via a high capacity 40/50 GHz satellite is presented.

  15. Image processing techniques for passive millimeter-wave imaging

    Science.gov (United States)

    Lettington, Alan H.; Gleed, David G.

    1998-08-01

    We present our results on the application of image processing techniques for passive millimeter-wave imaging and discuss possible future trends. Passive millimeter-wave imaging is useful in poor weather such as in fog and cloud. Its spatial resolution, however, can be restricted due to the diffraction limit of the front aperture. Its resolution may be increased using super-resolution techniques but often at the expense of processing time. Linear methods may be implemented in real time but non-linear methods which are required to restore missing spatial frequencies are usually more time consuming. In the present paper we describe fast super-resolution techniques which are potentially capable of being applied in real time. Associated issues such as reducing the influence of noise and improving recognition capability will be discussed. Various techniques have been used to enhance passive millimeter wave images giving excellent results and providing a significant quantifiable increase in spatial resolution. Examples of applying these techniques to imagery will be given.

  16. Millimeter wave, high-resolution, holographic surveillance system

    Energy Technology Data Exchange (ETDEWEB)

    McMakin, D.L.; Sheen, D.M.; Collins, H.D.; Hall, T.E.; Smith, R.R.; Droppo, J.G. Jr.

    1993-12-01

    Millimeter wave holographic imaging systems capable of imaging through clothing to detect contraband, metal, plastic, or ceramic weapons may provided a practical solution to personnel inspection needs in mass transportation centers. Traditional inspection systems, such as metal detectors and x-ray imaging systems, have limitations for the detection of concealed weapons. metal detectors are limited because they cannot detect plastic weapons and x-ray imaging systems are limited in use due to radiological health considerations. A prototype millimeter wave holographic surveillance system has been developed and demonstrated at the Pacific Northwest Laboratory (PNL). The prototype millimeter wave holographic surveillance system developed at PNL consists of a sequentially switched 2 {times} 64 element array coupled to a 35 GHz bi-static transceiver. The sequentially switched array of antennas can be used to obtain the holographic data at high speed by electonically sequencing the antennas along one dimension and performing a mechanical scan along the other dimension. A one-dimensional mechanical scan be be performed in about one second. The prototype system scans an aperture of 0.75 by 2.05. This system has been demonstrated and images have been obtained on volunteers at Sea-Tac International airport in Seattle, Washington.

  17. Millimeter-wave propagation through a controlled dust environment

    Science.gov (United States)

    Wikner, David

    2007-04-01

    A one-week experiment was conducted to determine the millimeter-wave transmission loss due to dust. Transmission data was collected at 35, 94, and 217 GHz through a recirculating dust tunnel. Dust clouds of various densities were measured during the experiment. The millimeter-wave measurements were non-coherent, using transmitting sources on one side of the dust tunnel and antenna/detectors on the other. The hardware was designed to minimize noise and drift. Even so, it was found that the transmission loss across the 1-m dust tunnel at high dust densities was lower than could be measured accurately with the equipment. Therefore, the results given are limited to system noise and represent maximum transmission losses at the various frequencies. The results show losses less than 0.02 and 0.08 dB for 94 and 217 GHz respectively across one meter of dust with density 3000 mg/m 3. The actual losses are lower and a long baseline interferometer will be required to determine the loss values precisely. Despite the limitations of the experiment, the data show that millimeter-wave imager performance will not be significantly impacted by even a very dense dust cloud.

  18. Millimeter-wave photonic downconvertors: theory and demonstrations

    Science.gov (United States)

    Logan, Ronald T., Jr.; Gertel, Eitan

    1995-10-01

    In this paper, theoretical and experimental results for wideband photonic downconversion systems operating from microwave frequencies through millimeter-wave frequencies are presented. The system consists of a low phase-noise optical heterodyne local oscillator (LO) generator derived froma two-frequency diode-pumped Nd:YAG laser, a millimeter-wave Mach-Zehnder modulator, and a high-speed photodiode. The sum and difference frequency products between the optical LO and the input RF signal are generated upon photodetection. An analysis of photonic heterodyne downconversion is presented, and preliminary experimental downconversion results at Ka-band are presented that are in good agreement with the theoretical prediction of 6 dB conversion loss. Due to the high degree of correlation between the phase fluctuations of the laser modes, the phase noise is much lower than that of previous heterodyne sources, which were typically too noisy for many applications. The free- running optical LO has measured phase noise better than L(1 kHz) equals -90 dBc/Hz at X-band, limited by the measuring system. Finally, novel microwave and millimeter-wave system architectures with enhanced performance and flexibility are discussed, and compared to conventional downlink systems employing electronic mixers.

  19. Millimeter wave Diagnostic Capability on TCV

    Science.gov (United States)

    Porte, Laurie; Alberti, Stefano; Coda, Stefano; Duval, Basil; Fontana, Matteo; Goodman, Timothy; Molina-Cabrera, Pedro; SPC Team

    2016-10-01

    TCV has a large set of millimetre wave diagnostics. Two 24 channel ECE heterodyne radiometers have been installed. Each has a line of sight perpendicular to the toroidal magnetic field. One radiometer views from the high-field side (HFS) while the second views from the low-field-side (LFS). Each device has two mixers and local oscillators and their associated IF instrumentation and video detection. In addition, a six channel correlation ECE (CECE) radiometer has been installed for measuring electron temperature fluctuations. The CECE radiometer has a high gain antenna that can be rotated in both the toroidal and poloidal planes. All of the radiometers can be attached to a vertical line of sight allowing measurement of ECE signals generated by supra-thermal electrons. A millimetre-wave transmission diagnostic is being commissioned for the measurement of the absorption of the ECRH power. A 300 GHz interferometer has been installed. It is optimised for use at density below 4x1019 m-3. Finally, a short pulse reflectometer is being installed and Doppler backscattering measurements have been made. All of these diagnostic systems will be described and their potential use will be detailed. This work partially funded by the Swiss National Science Foundation.

  20. Millimeter Wave and Terahertz Communications: Feasibility and Challenges%Millimeter Wave and Terahertz Communications: Feasibility and Challenges

    Institute of Scientific and Technical Information of China (English)

    Phil Pietraski; David Britz; Arnab Roy; Ravi Pragada; Gregg Charlton

    2012-01-01

    In this paper, the challenges with and motivations for developing millimeter wave and terahertz communications are described. A high-bye candidate architecture is presented, and use cases highlighting the potential applicability of high-frequency links are discussed. Mobility challenges at these higher frequencies are also discussed. Difficulties that arise as a result of high carrier frequencies and higher path loss can be overcome by practical, higher-gain antennas that have the added benefit of reducing intercell interference. Simulation methodology and results are given. The results show that millimeter wave coverage is possible in large, outdoor spaces, and only a reasonable number of base stations are needed. Network throughput can exceed 25 Gbit/s, and cell-edge user throuqhput can reach aDoroximatelv 100 Mbit/s.

  1. Compressive and Adaptive Millimeter-wave SAR

    CERN Document Server

    Mrozack, Alex; Marks, Daniel L; Richard, Jonathan; Everitt, Henry O; Brady, David J

    2014-01-01

    We apply adaptive sensing techniques to the problem of locating sparse metallic scatterers using high-resolution, frequency modulated continuous wave W-band RADAR. Using a single detector, a frequency stepped source, and a lateral translation stage, inverse synthetic aperture RADAR reconstruction techniques are used to search for one or two wire scatterers within a specified range, while an adaptive algorithm determined successive sampling locations. The two-dimensional location of each scatterer is thereby identified with sub-wavelength accuracy in as few as 1/4 the number of lateral steps required for a simple raster scan. The implications of applying this approach to more complex scattering geometries are explored in light of the various assumptions made.

  2. Detecting Extrasolar Planets With Millimeter-Wave Observatories

    Science.gov (United States)

    1996-01-01

    Do nearby stars have planetary systems like our own? How do such systems evolve? How common are such systems? Proposed radio observatories operating at millimeter wavelengths could start answering these questions within the next 6-10 years, according to scientists at the National Radio Astronomy Observatory (NRAO). Bryan Butler, Robert Brown, Richard Simon, Al Wootten and Darrel Emerson, all of NRAO, presented their findings today to the American Astronomical Society meeting in San Antonio, TX. Detecting planets circling other stars is a particularly difficult task, and only a few such planets have been discovered so far. In order to answer fundamental questions about planetary systems and their origin, scientists need to find and study many more extrasolar planets. According to the NRAO scientists, millimeter-wavelength observatories could provide valuable information about extrasolar planetary systems at all stages of their evolution. "With instruments planned by 2005, we could detect planets the size of Jupiter around a solar-type star out to a distance of 100 light-years," said Robert Brown, Associate Director of NRAO. "That means," he added, "that we could survey approximately 2,000 stars of different types to learn if they have planets this size." Millimeter waves occupy the portion of the electromagnetic spectrum between radio microwaves and infrared waves. Telescopes for observing at millimeter wavelengths utilize advanced electronic equipment similar to that used in radio telescopes observing at longer wavelengths. Millimeter-wave observatories offer a number of advantages in the search for extrasolar planets. Planned multi-antenna millimeter-wave telescopes can provide much higher resolving power, or ability to see fine detail, than current optical or infrared telescopes. Millimeter-wave observations would not be degraded by interference from the "zodiacal light" reflected by interplanetary dust, either in the extrasolar system or our own solar system

  3. Millimeter-wave and terahertz integrated circuit antennas

    Science.gov (United States)

    Rebeiz, Gabriel M.

    1992-01-01

    This paper presents a comprehensive review of integrated circuit antennas suitable for millimeter and terahertz applications. A great deal of research was done on integrated circuit antennas in the last decade and many of the problems associated with electrically thick dielectric substrates, such as substrate modes and poor radiation patterns, have been understood and solved. Several new antennas, such as the integrated horn antenna, the dielectric-filled parabola, the Fresnel plate antenna, the dual-slot antenna, and the log-periodic and spiral antennas on extended hemispherical lenses, have resulted in excellent performance at millimeter-wave frequencies, and are covered in detail in this paper. Also, a review of the efficiency definitions used with planar antennas is given in detail in the appendix.

  4. Millimeter-wave waveguiding using photonic band structures

    Science.gov (United States)

    Eliyahu, Danny; Sadovnik, Lev S.; Manasson, Vladimir A.

    2000-07-01

    Current trends in device miniaturization and integration, especially in the development of microwave monolithic integrated circuits, calls for flexible, arbitrarily shaped and curved interconnects. Standard dielectric waveguides and microstrip lines are subject to prohibitive losses and their functionality is limited because of their unflexible structures. The problem is addressed by confining the wave- guiding path in a substrate with a Photonic Band Gap structure in a manner that will result in the guided mode being localized within the band gap. Two devices implementing Photonic Band Structures for millimeter waves confinement are presented. The first waveguide is a linear defect in triangular lattice created in a silicon slab (TE mode). The structure consists of parallel air holes of circular cross sections. The silicon was laser drilled to create the 2D crystal. The second device consists of alumina rods arranged in a triangular lattice, surrounded by air and sandwiched between two parallel metal plates (TM mode). Electromagnetic wave (W-band) confinement was obtained in both devices for straight and bent waveguides. Three branch waveguides (intersecting line defects) was studied as well. Measurements confirmed the lowloss waveguide confinement property of the utilizing Photonic Band Gap structure. This structure can find applications in power combiner/splitter and other millimeter wave devices.

  5. Design and development of a multifunction millimeter wave sensor

    Science.gov (United States)

    Nadimi, Sayyid Abdolmajid

    1998-11-01

    The millimeter-wave (MMW) spectrum (30-300 GHz) offers a unique combination of features that are advantageous when retrieving information about the environment. Due to small wavelengths involved, physically small antennas may be used to obtain very high gains (>50 dB) and resulting high spatial resolutions. Moreover, some features have scattering and emission behaviors that are more sensitive at MMW wavelengths than at microwave wavelengths. Examples include, water vapor (H2O). fog, haze, clouds, ozone (O 3) molecules, and chlorine monoxide (ClO) have rotational spectra in this region. The 75-110 GHz (W-band) atmospheric window is relatively quiet, and it can supply spectral information that can be useful in identifying and quantifying pollutants. Information such as the size and concentration of particulate pollutants can be obtained using radar techniques at W-band. Although there have been some activities at millimeter wave frequencies over very narrow bandwidths, there is a great need for wider bandwidth instruments for studying scattering and emission behaviors. To address this need and provide a versatile system for laboratory studies of electromagnetic phenomena at millimeter-wave frequencies, a multifunctionmillimeter- wave sensor has been designed and developed. This instrument is an active/passive wide band sensor operating in the 75-110 GHz region of the millimeter wave spectrum in four primary modes: (1)As a spectrometer measuring absorption over the entire 75-110 GHz region. (2)As a radiometer measuring blackbody emissions over the entire 75-110 GHz region. (3)As a pulse radar over a 500 MHz bandwidth centered around 93.1 GHz with a peak power of 200 mW. (4)As a step frequency radar when used in combination with a network analyzer over selected 9 GHz bandwidth segments (75-84, 84-93, 93-102, and 102-110) of the 75-110 GHz region. Measurements were performed on two volume fraction (15% and 20%) dense random media targets using this system. The results

  6. On the mechanisms of interaction of low-intensity millimeter waves with biological objects

    Energy Technology Data Exchange (ETDEWEB)

    Betskii, O.V.

    1994-07-01

    The interaction of low-intensity millimeter-band electromagnetic waves with biological objects is examined. These waves are widely used in medical practice as a means of physiotherapy for the treatment of various human disorders. Principal attention is given to the mechanisms through which millimeter waves act on the human organism.

  7. Investigation of the Millimeter-Wave Plasma Assisted CVD Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Vikharev, A; Gorbachev, A; Kozlov, A; Litvak, A; Bykov, Y; Caplan, M

    2005-07-21

    A polycrystalline diamond grown by the chemical vapor deposition (CVD) technique is recognized as a unique material for high power electronic devices owing to unrivaled combination of properties such as ultra-low microwave absorption, high thermal conductivity, high mechanical strength and chemical stability. Microwave vacuum windows for modern high power sources and transmission lines operating at the megawatt power level require high quality diamond disks with a diameter of several centimeters and a thickness of a few millimeters. The microwave plasma-assisted CVD technique exploited today to produce such disks has low deposition rate, which limits the availability of large size diamond disk windows. High-electron-density plasma generated by the millimeter-wave power was suggested for enhanced-growth-rate CVD. In this paper a general description of the 30 GHz gyrotron-based facility is presented. The output radiation of the gyrotron is converted into four wave-beams. Free localized plasma in the shape of a disk with diameter much larger than the wavelength of the radiation is formed in the intersection area of the wave-beams. The results of investigation of the plasma parameters, as well as the first results of diamond film deposition are presented. The prospects for commercially producing vacuum window diamond disks for high power microwave devices at much lower costs and processing times than currently available are outlined.

  8. Handbook of RF, microwave, and millimeter-wave components

    CERN Document Server

    Smolskiy, Sergey M; Kochemasov, Victor N

    2012-01-01

    This unique and comprehensive resource offers you a detailed treatment of the operations principles, key parameters, and specific characteristics of active and passive RF, microwave, and millimeter-wave components. The book covers both linear and nonlinear components that are used in a wide range of application areas, from communications and information sciences, to avionics, space, and military engineering. This practical book presents descriptions and clear examples and of the best materials and products used in the field, including laminates, prepregs, substrates; microstrip, coaxial and wa

  9. Millimeter and Submillimeter-Wave Integrated Horn Antenna Schottky Receivers.

    Science.gov (United States)

    Ali-Ahmad, Walid Youssef

    1993-01-01

    Fundamental Schottky-diode mixers are currently used in most millimeter-wave receivers above 100GHz. The mixers use either a whisker-contacted diode or a planar Schottky diode suspended in a machined waveguide with an appropriate RF matching network. However, waveguide mounts are very expensive to machine for frequencies above 200GHz. Also, the whisker-contacted structure is not compatible with integrated mixers which represent the leading technology used for millimeter- and submillimeter-wave applications such as plasma diagnostics imaging arrays, radiometers, and anti-collision radars. In this work, a novel quasi-integrated horn antenna has been used for the receiver antenna. This antenna has a high gain and a high Gaussian coupling efficiency (97%), similar to machined scalar feed horns, but with the advantage of being easily fabricated up to at least 1.5THz. The quasi-integrated horn antenna is based on the integrated horn antenna structure. The integrated horn antenna consists of a pyramidal cavity with a 70^circ flare angle etched anisotropically in silicon. The cavity focuses the incoming energy on dipole-probe suspended on a membrane inside the horn. The integrated horn antenna does not suffer from dielectric losses or substrate mode losses since the feeding dipole antenna is integrated on a very thin dielectric layer. The mixer circuit, along with the feed dipole, are both integrated on the membrane wafer. The mixer diode is the University of Virginia surface channel planar diode which has a low parasitic capacitance. The diode is epoxied directly at the dipole apex without the need for an RF matching network, and with no mixer tuning required. At 92GHz,the DSB antenna-mixer conversion loss and noise temperature are 5.5dB and 770K, respectively. This represents the best reported results to this date for a quasi-optical mixer with a planar diode, at room temperature. At 335GHz, the DSB antenna-mixer noise temperature is 1750K and it is within 1dB of the

  10. Broadband notch filter design for millimeter-wave plasma diagnostics

    DEFF Research Database (Denmark)

    Furtula, Vedran; Michelsen, Poul; Leipold, Frank;

    2010-01-01

    Notch filters are integrated in plasma diagnostic systems to protect millimeter-wave receivers from intensive stray radiation. Here we present a design of a notch filter with a center frequency of 140 GHz, a rejection bandwidth of ∼ 900 MHz, and a typical insertion loss below 2 dB in the passband...... of ±9 GHz. The design is based on a fundamental rectangular waveguide with eight cylindrical cavities coupled by T-junction apertures formed as thin slits. Parameters that affect the notch performance such as physical lengths and conductor materials are discussed. The excited resonance mode...

  11. A millimeter and sub-millimeter wave frequency selective surface beamsplitter for geostationary orbit microwave radiometers

    Institute of Scientific and Technical Information of China (English)

    Cui Guang-Bin; Zhao Hai-Bo; Zhang Yong-Fang; Miao Jun-Gang

    2012-01-01

    We report the design of three frequency selective surface (FSS) filters used on the FengYun-4 (FY-4) microwave satellite,which separate five-frequency bands in the frequency range of 50-429 GHz with the insertion loss less than 0.4 dB,and separation between adjacent channels more than 20 dB for either TE or TM incidence.Firstly,we briefly introduce the disadvantages of two types of FSS filter: waveguide-array FSS and printed FSS,which are commonly employed in the millimeter and sub-millimeter wave band.In order to meet the insertion loss requirement and specified spectral transmission response,we adopt a filter composed of two closely spaced freestanding metal plates,which contains an array of resonant ring slot elements.Computer simulation technology (CST) is used to optimize the structural dimensions of the resonant unit and interlayer separation.Numerical results show that these FSS filters exhibit transmission loss of less than 0.4 dB and separation between adjacent channels of more than 20 dB.Simulated transmission coefficients are in close agreement with the required specification,and even exceed the performance specifications.

  12. Reflective measurement of water concentration using millimeter wave illumination

    Science.gov (United States)

    Sung, Shijun; Bennett, David; Taylor, Zachary; Bajwa, Neha; Tewari, Priyamvada; Maccabi, Ashkan; Culjat, Martin; Singh, Rahul; Grundfest, Warren

    2011-04-01

    THz and millimeter wave technology have shown the potential to become a valuable medical imaging tool because of its sensitivity to water and safe, non-ionizing photon energy. Using the high dielectric constant of water in these frequency bands, reflectionmode THz sensing systems can be employed to measure water content in a target with high sensitivity. This phenomenology may lead to the development of clinical systems to measure the hydration state of biological targets. Such measurements may be useful in fast and convenient diagnosis of conditions whose symptoms can be characterized by changes in water concentration such as skin burns, dehydration, or chemical exposure. To explore millimeter wave sensitivity to hydration, a reflectometry system is constructed to make water concentration measurements at 100 GHz, and the minimum detectable water concentration difference is measured. This system employs a 100 GHz Gunn diode source and Golay cell detector to perform point reflectivity measurements of a wetted polypropylene towel as it dries on a mass balance. A noise limited, minimum detectable concentration difference of less than 0.5% by mass can be detected in water concentrations ranging from 70% to 80%. This sensitivity is sufficient to detect hydration changes caused by many diseases and pathologies and may be useful in the future as a diagnostic tool for the assessment of burns and other surface pathologies.

  13. Art Painting Diagnostic Before Restoration with Terahertz and Millimeter Waves

    Science.gov (United States)

    Guillet, Jean-Paul; Roux, M.; Wang, K.; Ma, X.; Fauquet, F.; Balacey, H.; Recur, B.; Darracq, F.; Mounaix, P.

    2017-01-01

    Art painting diagnostic is commonly performed using electromagnetic waves at wavelengths from terahertz to X-ray. These former techniques are essential in conservation and art history research, but they could be also very useful for restoring artwork. While most studies use time domain imaging technique, in this study, a painting has been investigated using both time domain imaging (TDI) and frequency-modulated continuous wave (FMCW) system in the millimeter frequency range. By applying these systems to a painting of the eighteenth century, we detect and analyze the structure of some defects. This study underlines the differences between FMCW and TDI. We present the advantages and disadvantages of each technique on a real artwork.

  14. Microwave and Millimeter-Wave Signal Power Generation

    DEFF Research Database (Denmark)

    Hadziabdic, Dzenan

    Among the major limitations in high-speed communications and highresolution radars is the lack of efficient and powerful signal sources with low distortion. Microwave and millimeter-wave (mm-wave) signal power is needed for signal transmission. Progress in signal generation stems largely from...... the application of novel materials like galliumnitride (GaN) and silicon-carbide (SiC) and fabrication of indiumphosphide (InP) based transistors. One goal of this thesis is to assess GaN HEMT technology with respect to linear efficient signal power generation. While most reports on GaN HEMT high-power devices...... concentrate on single-tone performance, this study also encompasses two-tone intermodulation distortion measurements. An 8GHz two-stage power amplifier (PA) MMIC was developed. Harmonic tuning was performed to enhance the power-added efficiency (PAE). The transistors were biased in deep class-AB where low...

  15. Art Painting Diagnostic Before Restoration with Terahertz and Millimeter Waves

    Science.gov (United States)

    Guillet, Jean-Paul; Roux, M.; Wang, K.; Ma, X.; Fauquet, F.; Balacey, H.; Recur, B.; Darracq, F.; Mounaix, P.

    2017-04-01

    Art painting diagnostic is commonly performed using electromagnetic waves at wavelengths from terahertz to X-ray. These former techniques are essential in conservation and art history research, but they could be also very useful for restoring artwork. While most studies use time domain imaging technique, in this study, a painting has been investigated using both time domain imaging (TDI) and frequency-modulated continuous wave (FMCW) system in the millimeter frequency range. By applying these systems to a painting of the eighteenth century, we detect and analyze the structure of some defects. This study underlines the differences between FMCW and TDI. We present the advantages and disadvantages of each technique on a real artwork.

  16. A millimeter-wave tunneLadder TWT

    Science.gov (United States)

    Jacquez, A.; Karp, A.; Wilson, D.; Scott, A.

    1988-01-01

    A millimeter wave traveling wave tube was developed using a dispersive, high impedance forward interaction structure based on a ladder, with non-space harmonic interaction, for a tube with high gain per unit length and high efficiency. The TunneLadder interaction structure combines ladder properties modified to accommodate Pierce gun beam optics in a radially magnetized permanent magnet focusing structure. The development involved the fabrication of chemically milled, shaped ladders diffusion brazed to diamond cubes which are in turn active-diffusion brazed to each ridge of a doubly ridged waveguide. Cold test data are presented, representing the omega-beta and impedance characteristics of the modified ladder circuit. These results were used in small and large signal computer programs to predict TWT gain and efficiency. Actual data from tested tubes verify the predicted performance while providing broader bandwidth than expected.

  17. Millimeter wave and terahertz dielectric properties of biological materials

    Science.gov (United States)

    Khan, Usman Ansar

    Broadband dielectric properties of materials can be employed to identify, detect, and characterize materials through their unique spectral signatures. In this study, millimeter wave, submillimeter wave, and terahertz dielectric properties of biological substances inclusive of liquids, solids, and powders were obtained using Dispersive Fourier Transform Spectroscopy (DFTS). Two broadband polarizing interferometers were constructed to test materials from 60 GHz to 1.2 THz. This is an extremely difficult portion of the frequency spectrum to obtain a material's dielectric properties since neither optical nor microwave-based techniques provide accurate data. The dielectric characteristics of liquids such as cyclohexane, chlorobenzene, benzene, ethanol, methanol, 1,4 dioxane, and 10% formalin were obtained using the liquid interferometer. Subsequently the solid interferometer was utilized to determine the dielectric properties of human breast tissues, which are fixed and preserved in 10% formalin. This joint collaboration with the Tufts New England Medical Center demonstrated a significant difference between the dielectric response of tumorous and non-tumorous breast tissues across the spectrum. Powders such as anthrax, flour, talc, corn starch, dry milk, and baking soda have been involved in a number of security threats and false alarms around the globe in the last decade. To be able to differentiate hoax attacks and serious security threats, the dielectric properties of common household powders were also examined using the solid interferometer to identify the powders' unique resonance peaks. A new sample preparation kit was designed to test the powder specimens. It was anticipated that millimeter wave and terahertz dielectric characterization will enable one to clearly distinguish one powder from the other; however most of the powders had relatively close dielectric responses and only Talc had a resonance signature recorded at 1.135 THz. Furthermore, due to

  18. Passive front-ends for wideband millimeter wave electronic warfare

    Science.gov (United States)

    Jastram, Nathan Joseph

    This thesis presents the analysis, design and measurements of novel passive front ends of interest to millimeter wave electronic warfare systems. However, emerging threats in the millimeter waves (18 GHz and above) has led to a push for new systems capable of addressing these threats. At these frequencies, traditional techniques of design and fabrication are challenging due to small size, limited bandwidth and losses. The use of surface micromachining technology for wideband direction finding with multiple element antenna arrays for electronic support is demonstrated. A wideband tapered slot antenna is first designed and measured as an array element for the subsequent arrays. Both 18--36 GHz and 75--110 GHz amplitude only and amplitude/phase two element direction finding front ends are designed and measured. The design of arrays using Butler matrix and Rotman lens beamformers for greater than two element direction finding over W band and beyond using is also presented. The design of a dual polarized high power capable front end for electronic attack over an 18--45 GHz band is presented. To combine two polarizations into the same radiating aperture, an orthomode transducer (OMT) based upon a new double ridge waveguide cross section is developed. To provide greater flexibility in needed performance characteristics, several different turnstile junction matching sections are tested. A modular horn section is proposed to address flexible and ever changing operational requirements, and is designed for performance criteria such as constant gain, beamwidth, etc. A multi-section branch guide coupler and low loss Rotman lens based upon the proposed cross section are also developed. Prototyping methods for the herein designed millimeter wave electronic warfare front ends are investigated. Specifically, both printed circuit board (PCB) prototyping of micromachined systems and 3D printing of conventionally machined horns are presented. A 4--8 GHz two element array with

  19. Photonic generation of high quality frequency-tunable millimeter wave and terahertz wave

    Institute of Scientific and Technical Information of China (English)

    Yu Ji; Yah Li; Fangzheng Zhang; Jian Wu; Xiaobing Hong; Kun Xu; Wei Li; Jintong Lin

    2012-01-01

    A scheme for the photonic generation of frequency-tunable millimeter wave and terahertz wave signals based on a highly flat optical frequency comb is proposed and demonstrated experimentally.The frequency comb is generated using two cascaded phase modulators (PMs) and an electro-absorption modulator (EAM).The frequency comb covers a 440-GHz frequency range,with 40-GHz comb spacing and less than 2-dB amplitude variation. By filtering out two of the comb lines with 50 dB out of the band suppression ratio,high frequency-purity and low phase noise millimeter wave or terahertz wave signals are successfully generated,with frequencies ranging from 40 to 440 GHz.

  20. The fourth-generation Water Vapor Millimeter-Wave Spectrometer

    Science.gov (United States)

    Gomez, R. Michael; Nedoluha, Gerald E.; Neal, Helen L.; McDermid, I. Stuart

    2012-02-01

    For 20 years the Naval Research Laboratory has been making continuous water vapor profile measurements at 22.235 GHz with the Water Vapor Millimeter-Wave Spectrometer (WVMS) instruments, with the program expanding from one to three instruments in the first 6 years. Since the initial deployments there have been gradual improvements in the instrument design which have improved data quality and reduced maintenance requirements. Recent technological developments have made it possible to entirely redesign the instrument and improve not only the quality of the measurements but also the capability of the instrument. We present the fourth-generation instrument now operating at Table Mountain, California, which incorporates the most recent advances in microwave radiometry. This instrument represents the most significant extension of our measurement capability to date, enabling us to measure middle atmospheric water vapor from ˜26-80 km.

  1. Modeling Human Blockers in Millimeter Wave Radio Links

    Institute of Scientific and Technical Information of China (English)

    Jonathan S. Lu; Daniel Steinbach; Patrick Cabrol; Philip Pietraski

    2012-01-01

    In this paper, we investigate the loss caused by multiple humans blocking millimeter wave frequencies. We model human blockers as absorbing screens of infinite height with two knife-edges, We take a physical optics approach to computing the diffraction around the absorbing screens, This approach differs to the geometric optics approach described in much of the literature. The blocking model is validated by measuring the gain from multiple-human blocking configurations on an indoor link. The blocking gains predicted using Piazzi ' s numerical integration method (a physical optics method) agree well with measurements taken from approximately 2.7 dB to -50 dB. Thereofre, this model is suitable for real human blockers, The mean prediction error for the method is approximately -1.2 dB, and the standard deviation is approximately 5 dB.

  2. Millimeter Wave Scattering from Neutral and Charged Water Droplets

    CERN Document Server

    Heifetz, Alexander; Liao, Shaolin; Gopalsami, N Sami; Raptis, A C Paul

    2010-01-01

    We investigated 94GHz millimeter wave (MMW) scattering from neutral and charged water mist produced in the laboratory with an ultrasonic atomizer. Diffusion charging of the mist was accomplished with a negative ion generator (NIG). We observed increased forward and backscattering of MMW from charged mist, as compared to MMW scattering from an uncharged mist. In order to interpret the experimental results, we developed a model based on classical electrodynamics theory of scattering from a dielectric sphere with diffusion-deposited mobile surface charge. In this approach, scattering and extinction cross-sections are calculated for a charged Rayleigh particle with effective dielectric constant consisting of the volume dielectric function of the neutral sphere and surface dielectric function due to the oscillation of the surface charge in the presence of applied electric field. For small droplets with (radius smaller than 100nm), this model predicts increased MMW scattering from charged mist, which is qualitative...

  3. Design of Receiver Used for Passive Millimeter Wave Imaging System

    Directory of Open Access Journals (Sweden)

    Cheng Zheng

    2013-07-01

    Full Text Available As millimeter wave (MMW electronic technologies have matured, the MMW imaging using for human security inspection is emerging as an effective approach to imaging through obscuring materials, such as clothing for concealed weapons detection or plastic mines. This paper introduces temperature sensitivity firstly and then the fringe-washing functions are derived which decide the structure the antenna array and the receivers of the system BHU-2D. Finally, the fringe-washing functions and their phases are calculated from the frequency responses of 24-receiver, they all show good consistency of the receivers which also can be proved from the test results of receivers. From the final imaging of our system, the 1-2K temperature sensitivity is realized successfully.

  4. A MILLIMETER WAVE MICROSTRIP PATCH ANTENNA WITH CPW FEED

    Directory of Open Access Journals (Sweden)

    GARIMA SANYAL

    2013-01-01

    Full Text Available In this work a coplanar waveguide fed rectangular microstrip patch antenna with U slot at 40 Ghz is designed and simulated. Simulated results are presented by using Ansoft HFSS 13 software, a full wave electromagnetic field simulator for arbitrary 3D volumetric passive device modeling that takes advantage of the familiar Microsoft Windows graphical user interface.The patch element is been placed on FR4 Epoxy substrate with relative permittivity 4.4 at a height of 1.8 mm. The gain of the proposed antenna is 5dB.This antenna is smallsize,cheap,compact,easy to fabricate ,achieve return loss of -17.8dB at 40GHz which ranges to -25 dB at 10 0GHz and good VSWR.The approach presented in this paper offers major advantages in millimeter waveapplications as in radar communication.

  5. Probe impedance measurements for millimeter-wave integrated horn antennas

    Science.gov (United States)

    Guo, Yong; Chiao, Jung-Chih; Potter, Kent A.; Rutledge, David B.

    1993-01-01

    In order to achieve an impedance-matched millimeter-wave integrated horn antenna mixer array, the characteristics of the antenna probes inside the horn must be known. This paper describes impedance measurements for various probes in low-frequency model horns of two different types: (1) a 3 x 3 array made of aluminum by electric discharge machining and (2) a half horn made of copper sheet placed on a big copper-clad circuit board that was used as an image plane. The results of measurements indicate that the presence of the horn increases the effective length of the probe element, in agreement with reports of Guo et al. (1991) and theoretical analysis of Eleftheriades et al. (1991). It was also found that the resonant frequencies can be controlled by changing the length of the probes or by loading the probes.

  6. Boring and Sealing Rock with Directed Energy Millimeter-Waves

    Science.gov (United States)

    Woskov, P.; Einstein, H. H.; Oglesby, K.

    2015-12-01

    Millimeter-wave directed energy is being investigated to penetrate into deep crystalline basement rock formations to lower well costs and to melt rocks, metals, and other additives to seal wells for applications that include nuclear waste storage and geothermal energy. Laboratory tests have established that intense millimeter-wave (MMW) beams > 1 kW/cm2 can melt and/ or vaporize hard crystalline rocks. In principle this will make it possible to create open boreholes and a method to seal them with a glass/ceramic liner and plug formed from the original rock or with other materials. A 10 kW, 28 GHz commercial (CPI) gyrotron system with a launched beam diameter of about 32 mm was used to heat basalt, granite, limestone, and sandstone specimens to temperatures over 2500 °C to create melts and holes. A calibrated 137 GHz radiometer view, collinear with the heating beam, monitored real time peak rock temperature. A water load surrounding the rock test specimen primarily monitored unabsorbed power at 28 GHz. Power balance analysis of the laboratory observations shows that the temperature rise is limited by radiative heat loss, which would be expected to be trapped in a borehole. The analysis also indicates that the emissivity (absorption efficiency) in the radiated infrared range is lower than the emissivity at 28 GHz, giving the MMW frequency range an important advantage for rock melting. Strength tests on one granite type indicated that heating the rock initially weakens it, but with exposure to higher temperatures the resolidified black glassy product regains strength. Basalt was the easiest to melt and penetrate, if a melt leak path was provided, because of its low viscosity. Full beam holes up to about 50 mm diameter (diffraction increased beam size) were achieved through 30 mm thick basalt and granite specimens. Laboratory experiments to form a seal in an existing hole have also been carried out by melting rock and a simulated steel casing.

  7. Development and testing of a fast Fourier transform high dynamic-range spectral diagnostics for millimeter wave characterization

    NARCIS (Netherlands)

    Thoen, D. J.; Bongers, W. A.; Westerhof, E.; Oosterbeek, J. W.; M.R. de Baar,; van den Berg, M. A.; van Beveren, V.; Burger, A.; Goede, A. P. H.; Graswinckel, M. F.; Hennen, B.A.; Schüller, F. C.

    2009-01-01

    A fast Fourier transform (FFT) based wide range millimeter wave diagnostics for spectral characterization of scattered millimeter waves in plasmas has been successfully brought into operation. The scattered millimeter waves are heterodyne downconverted and directly digitized using a fast analog-digi

  8. Interferometric millimeter wave and THz wave doppler radar

    Science.gov (United States)

    Liao, Shaolin; Gopalsami, Nachappa; Bakhtiari, Sasan; Raptis, Apostolos C.; Elmer, Thomas

    2015-08-11

    A mixerless high frequency interferometric Doppler radar system and methods has been invented, numerically validated and experimentally tested. A continuous wave source, phase modulator (e.g., a continuously oscillating reference mirror) and intensity detector are utilized. The intensity detector measures the intensity of the combined reflected Doppler signal and the modulated reference beam. Rigorous mathematics formulas have been developed to extract bot amplitude and phase from the measured intensity signal. Software in Matlab has been developed and used to extract such amplitude and phase information from the experimental data. Both amplitude and phase are calculated and the Doppler frequency signature of the object is determined.

  9. Beamforming Based Full-Duplex for Millimeter-Wave Communication.

    Science.gov (United States)

    Liu, Xiao; Xiao, Zhenyu; Bai, Lin; Choi, Jinho; Xia, Pengfei; Xia, Xiang-Gen

    2016-07-21

    In this paper, we study beamforming based full-duplex (FD) systems in millimeter-wave (mmWave) communications. A joint transmission and reception (Tx/Rx) beamforming problem is formulated to maximize the achievable rate by mitigating self-interference (SI). Since the optimal solution is difficult to find due to the non-convexity of the objective function, suboptimal schemes are proposed in this paper. A low-complexity algorithm, which iteratively maximizes signal power while suppressing SI, is proposed and its convergence is proven. Moreover, two closed-form solutions, which do not require iterations, are also derived under minimum-mean-square-error (MMSE), zero-forcing (ZF), and maximum-ratio transmission (MRT) criteria. Performance evaluations show that the proposed iterative scheme converges fast (within only two iterations on average) and approaches an upper-bound performance, while the two closed-form solutions also achieve appealing performances, although there are noticeable differences from the upper bound depending on channel conditions. Interestingly, these three schemes show different robustness against the geometry of Tx/Rx antenna arrays and channel estimation errors.

  10. Beamforming Based Full-Duplex for Millimeter-Wave Communication

    Directory of Open Access Journals (Sweden)

    Xiao Liu

    2016-07-01

    Full Text Available In this paper, we study beamforming based full-duplex (FD systems in millimeter-wave (mmWave communications. A joint transmission and reception (Tx/Rx beamforming problem is formulated to maximize the achievable rate by mitigating self-interference (SI. Since the optimal solution is difficult to find due to the non-convexity of the objective function, suboptimal schemes are proposed in this paper. A low-complexity algorithm, which iteratively maximizes signal power while suppressing SI, is proposed and its convergence is proven. Moreover, two closed-form solutions, which do not require iterations, are also derived under minimum-mean-square-error (MMSE, zero-forcing (ZF, and maximum-ratio transmission (MRT criteria. Performance evaluations show that the proposed iterative scheme converges fast (within only two iterations on average and approaches an upper-bound performance, while the two closed-form solutions also achieve appealing performances, although there are noticeable differences from the upper bound depending on channel conditions. Interestingly, these three schemes show different robustness against the geometry of Tx/Rx antenna arrays and channel estimation errors.

  11. Miniaturized MMIC-Based Millimeter-Wave Frequency Synthesizers for Space Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — MMIC technology provides the technology base to reduce the size and weight of microwave and millimeter wave (MMW) equipment on board airborne and space-based...

  12. Research on metal-plated cellulose nitrate flakes and their infrared / millimeter wave characteristics

    Science.gov (United States)

    Ye, Shu-qin; Zhu, Chen-guang; Wang, Li-hong; Ou'yang, De-hua; Pan, Gong-pei

    2016-10-01

    Copper-plated and silver-plated cellulose nitrate flakes, which were prepared by using chemical plating technology, were used to jam infrared detector and millimeter-wave radar. It was tested for the conductivity and infrared jamming performance of plating and also the RCS (Radar Cross Section) performance of millimeter-wave radar. Test results showed that the prepared metal-plated cellulose nitrate flakes have obvious conductivity, and infrared total radiation energy of silver plating and copper plating had approximately increased 32% and 21% respectively. Through determination, the millimeter-wave reflecting property and RCS of silver-plated cellulose nitrate flakes were higher than that of copper-plated cellulose nitrate flakes. Therefore, silver-plated cellulose nitrate flakes can be used as an effective infrared / millimeter wave composite jamming material.

  13. The influence of punctural millimeter wave therapy on clinical presentation of patients with essential hypertention

    Directory of Open Access Journals (Sweden)

    Kotenko К.V.

    2013-12-01

    Full Text Available Aim: to estimate the influence of punctural millimeter wave therapy on clinical presentation. Material and methods. This study includes 102 patients with essential hypertension the I and II stage. Patients were divided into three equal groups depending on the method of treatment: some of them received procedures of punctural millimeter wave therapy, some of them received these procedures as the "placebo" and those who had not received specified procedures. Dynamics of clinical symptomatology and condition of eye bottom vessels was estimated. It was shown that addition of punctural millimeter wave therapy in complex therapy of patients with essential hypertension promotes the expressed regress of clinical symptomatology and state normalization the retinal vessels at these patients. Results. Addition of punctural millimeter wave therapy into the complex therapy was shown to lead to pronounced regress of clinical symptoms. Conclusion. The received results allow to recommend this method to be used in clinical practice for treating patients with essential hypertension.

  14. A Temporal Millimeter Wave Propagation Model for Tunnels Using Ray Frustum Techniques and FFT

    Directory of Open Access Journals (Sweden)

    Choonghyen Kwon

    2014-01-01

    Full Text Available A temporal millimeter wave propagation model for tunnels is presented using ray frustum techniques and fast Fourier transform (FFT. To directly estimate or simulate effects of millimeter wave channel properties on the performance of communication services, time domain impulse responses of demodulated signals should be obtained, which needs rather large computation time. To mitigate the computational burden, ray frustum techniques are used to obtain frequency domain transfer function of millimeter wave propagation environment and FFT of equivalent low pass signals are used to retrieve demodulated waveforms. This approach is numerically efficient and helps to directly estimate impact of tunnel structures and surfaces roughness on the performance of millimeter wave communication services.

  15. Comments on ferrite phase shifter configurations for the millimeter wave region

    Science.gov (United States)

    Reuss, M. L., Jr.

    1982-09-01

    In the microwave region of the electromagnetic spectrum, electronically controllable ferrite phase shifters have demonstrated their value as components and as control elements for switches and attenuators. As the need for control components operating in the lower millimeter wave region increases, it is a reasonable approach to scale successful microwave ferrite configurations into the lower millimeter wave region (30 GHz to 140 GHz). However, many problems are encountered when attempting to scale efficient microwave ferrite configurations, particularly latching ferrite configurations, into the millimeter wave region. It is the objective of this report to review several ferrite configurations with the intent that consideration of these configurations may stimulate development of practical millimeter wave configurations. Ferrite phase shifter configurations that will be the subject of comment include the toroidal (dual slab), dual mode, Bush-Reggia-Spencer, and single slab configurations. Comments are also presented on a circulator used as a phase shifter.

  16. Near-field millimeter-wave imaging for weapon detection

    Energy Technology Data Exchange (ETDEWEB)

    Sheen, D.M.; McMakin, D.L.; Collins, H.D.; Hall, T.E.

    1992-11-01

    Various millimeter-wave imaging systems capable of imaging through clothing for the detection of contraband metal, plastic, or ceramic weapons, have been developed at PNL. Two dimensional scanned holographic systems, developed at 35, 90, and 350 GHz, are used to obtain high resolution images of metal and plastic targets concealed by clothing. Coherent single-frequency amplitude and phase data, which is gathered over a two-dimensional scanned aperture, is reconstructed to the target plane using a holographic wavefront reconstruction technique. Practical weapon detection systems require high-speed scanning. To achieve this goal, a 35 GHz linear sequentially switched array has been built and integrated into a high speed linear scanner. This system poses special challenges on calibration / signal processing of the holographic system. Further, significant improvements in speed are required to achieve real time operation. Toward this goal, a wideband scanned system which allows for a two-dimensional image formation from a one-dimensional scanned (or array) system has been developed . Signal / image processing techniques developed and implemented for this technique are a variation on conventional synthetic aperture radar (SAR) techniques which eliminate far-field and narrow bandwidth requirements. Performance of this technique is demonstrated with imaging results obtained from a K[sub a]-band system.

  17. Near-field millimeter-wave imaging for weapon detection

    Energy Technology Data Exchange (ETDEWEB)

    Sheen, D.M.; McMakin, D.L.; Collins, H.D.; Hall, T.E.

    1992-11-01

    Various millimeter-wave imaging systems capable of imaging through clothing for the detection of contraband metal, plastic, or ceramic weapons, have been developed at PNL. Two dimensional scanned holographic systems, developed at 35, 90, and 350 GHz, are used to obtain high resolution images of metal and plastic targets concealed by clothing. Coherent single-frequency amplitude and phase data, which is gathered over a two-dimensional scanned aperture, is reconstructed to the target plane using a holographic wavefront reconstruction technique. Practical weapon detection systems require high-speed scanning. To achieve this goal, a 35 GHz linear sequentially switched array has been built and integrated into a high speed linear scanner. This system poses special challenges on calibration / signal processing of the holographic system. Further, significant improvements in speed are required to achieve real time operation. Toward this goal, a wideband scanned system which allows for a two-dimensional image formation from a one-dimensional scanned (or array) system has been developed . Signal / image processing techniques developed and implemented for this technique are a variation on conventional synthetic aperture radar (SAR) techniques which eliminate far-field and narrow bandwidth requirements. Performance of this technique is demonstrated with imaging results obtained from a K{sub a}-band system.

  18. Passive millimeter-wave cross polarization imaging and phenomenology

    Science.gov (United States)

    Stein, E. Lee, Jr.; Schuetz, Christopher A.; Martin, Richard D.; Samluk, Jesse P.; Wilson, John P.; Mackrides, Daniel G.; Murakowski, Janusz A.; Murakowski, Maciej; Prather, Dennis W.

    2009-05-01

    Passive millimeter-wave (mmW) imaging has many specific defense, security and safety applications, due to the fact that all terrestrial bodies above absolute zero are emissive, and these wavelengths are not scattered by normal obscurants such as haze, fog, smoke, dust, sandstorms, clouds, or fabrics. We have previously demonstrated results from the construction of a 94 GHz passive mmW far-field imaging system utilizing optical upconversion, which imaged in only horizontal polarization. The effective radiometric temperature of an object is a combination of the object's surface and scattered radiometric temperatures. The surface radiometric temperature is a function of the object's emissivity, which is polarization dependent. Imaging with radiometric temperature data from both polarizations will allow a greater identification of the scene being imaged, and allow the recognition of subtle features which were not previously observable. This additional functionality is accomplished through the installation of added equipment and programming on our system, thus allowing the simultaneous data collection of imagery in both polarizations. Herein, we present our experimental procedures, results and passive mmW images obtained by using our far-field imaging system, a brief discussion of the phenomenology observed through the application of these techniques, as well as the preliminary details regarding our work on a 3-D passive mmW simulator capable of true physical polarization dependent effective emissivity and reflectivity rendering, based on the open-source Blender engine.

  19. Future applications of millimeter waves for space communications

    Science.gov (United States)

    Rusch, Roger J.

    1996-12-01

    The past 30 years have witnessed the introduction and phenomenal improvement of digital communications services. Several characteristics emerge when looking at the trends. First, capacity and capability of communications networks are growing rapidly. Next, local and personal access to digital services is expanding. Finally, ordinary 4 kHz analog voice lines are now providing 28.8 kbps digital services in the home. Only 15 years ago, this data rate was 300 bps, a growth factor of 96 in 15 years or 36 percent per year. In addition, clever data compression techniques have reduced the data rates required for speech and video, and we now have the ability to provide video conferencing on computers using existing terrestrial networks. As the world makes greater use of wireless communications, hundreds of satellites are orbiting in space to provide fixed and mobile services. Because of the large number of satellites, the geostationary orbit is heavily used. More sophisticated satellites could be designed, but a simpler solution is to move to higher frequencies offered by millimeter wave bands. Dozens of US companies are currently developing systems that will provide high data services to the world.

  20. Compressive sensing for direct millimeter-wave holographic imaging.

    Science.gov (United States)

    Qiao, Lingbo; Wang, Yingxin; Shen, Zongjun; Zhao, Ziran; Chen, Zhiqiang

    2015-04-10

    Direct millimeter-wave (MMW) holographic imaging, which provides both the amplitude and phase information by using the heterodyne mixing technique, is considered a powerful tool for personnel security surveillance. However, MWW imaging systems usually suffer from the problem of high cost or relatively long data acquisition periods for array or single-pixel systems. In this paper, compressive sensing (CS), which aims at sparse sampling, is extended to direct MMW holographic imaging for reducing the number of antenna units or the data acquisition time. First, following the scalar diffraction theory, an exact derivation of the direct MMW holographic reconstruction is presented. Then, CS reconstruction strategies for complex-valued MMW images are introduced based on the derived reconstruction formula. To pursue the applicability for near-field MMW imaging and more complicated imaging targets, three sparsity bases, including total variance, wavelet, and curvelet, are evaluated for the CS reconstruction of MMW images. We also discuss different sampling patterns for single-pixel, linear array and two-dimensional array MMW imaging systems. Both simulations and experiments demonstrate the feasibility of recovering MMW images from measurements at 1/2 or even 1/4 of the Nyquist rate.

  1. Low-Intensity Electromagnetic Millimeter Waves for Pain Therapy

    Directory of Open Access Journals (Sweden)

    Taras I. Usichenko

    2006-01-01

    Full Text Available Millimeter wave therapy (MWT, a non-invasive complementary therapeutic technique is claimed to possess analgesic properties. We reviewed the clinical studies describing the pain-relief effect of MWT. Medline-based search according to review criteria and evaluation of methodological quality of the retrieved studies was performed. Of 13 studies, 9 of them were randomized controlled trials (RCTs, only three studies yielded more than 3 points on the Oxford scale of methodological quality of RCTs. MWT was reported to be effective in the treatment of headache, arthritic, neuropathic and acute postoperative pain. The rapid onset of pain relief during MWT lasting hours to days after, remote to the site of exposure (acupuncture points, was the most characteristic feature in MWT application for pain relief. The most commonly used parameters of MWT were the MW frequencies between 30 and 70 GHz and power density up to 10 mW cm−2. The promising results from pilot case series studies and small-size RCTs for analgesic/hypoalgesic effects of MWT should be verified in large-scale RCTs on the effectiveness of this treatment method.

  2. The millimeter wave tunneling-rotational spectrum of phenol

    Science.gov (United States)

    Kolesniková, L.; Daly, A. M.; Alonso, J. L.; Tercero, B.; Cernicharo, J.

    2013-07-01

    The millimeter wave spectra of phenol in the vibrational ground state and the first excited states of the bending and torsion vibrational modes have been studied in the frequency regions of 140-170 GHz and 280-360 GHz. The internal rotation of the hydroxyl group is responsible for the observed tunneling splitting into two substates (vt, vb)+ and (vt, vb)- and more than 3500 distinct tunneling-rotational bR- and bQ-type transitions between them were measured and analyzed. Furthermore, accidental near degeneracies of the (±) and (-) energy levels were observed in case of the ground state and the vb = 1 excited state and the analysis using a two-state effective Hamiltonian including tunneling-rotational Coriolis-like terms was performed. The analysis of the microwave data provided very precise values of the spectroscopic constants necessary for the astrophysical search of phenol. We report a tentative detection for this molecule in the IRAM 30m line survey of Orion KL.

  3. Millimeter Wave Tunneling-Rotational Spectrum of Phenol

    Science.gov (United States)

    Kolesnikova, L.; Daly, A. M.; Alonso, J. L.; Tercero, B.; Cernicharo, J.

    2013-06-01

    The millimeter wave spectra of phenol in the vibrational ground state and the first excited states of the bending and torsion vibrational modes have been studied in the frequency regions of 140 - 170 GHz and 280 - 360 GHz. The internal rotation of the hydroxyl group is responsible for the observed tunneling splitting into two substates (v_{t}, v_{b})^{+} and (v_{t}, v_{b})^{-} and more than 3500 distinct tunneling-rotational ^{b}R- and ^{b}Q-type transitions between them were measured and analyzed. Furthermore, accidental near degeneracies of the (+) and (-) energy levels were observed in case of the ground state and the v_{b} = 1 excited state and the analysis using a two-state effective Hamiltonian including tunneling-rotational Coriolis terms was performed. The spectroscopic constants for the first excited states of the bending and the torsion vibrational modes have been determined for the first time. The analysis of the microwave data provided very precise values of the spectroscopic constants necessary for the astrophysical search of phenol. We report a tentative detection for this molecule in the IRAM 30m line survey of Orion KL.

  4. Near millimeter wave imaging/multi-beam integrated antennas

    Science.gov (United States)

    Yngvesson, K. Sigfrid; Schaubert, Daniel H.; Stephan, Karl D.; Pozar, David M.; Sollner, T. C. L. Gerhard; Parrish, Peter T.

    1986-01-01

    Some preliminary results on a mixer design which is suitable for integration with tapered slot antennas have been obtained and published. This mixer design was tested both in a 4 to 10 GHz model, and (slightly modified) at 94 GHz. The latter utilized the same Hewlett-Packard beam-lead diodes which were used as detector diodes in the linearly tapered slot antennas (LTSA) arrays. These diodes are the most rugged to be found, and generally survive well on the flexible Kapton substrates. The 4 to 10 GHz version of this mixer has less than 6 dB conversion loss over an octave bandwidth. It uses a slot ring in a balanced configuration, and requires the LO to be fed through a separate port. A different design for a mixer which may be integrated with an LTSA antenna element is discussed. This mixer was tested at 38 GHz with the same HP beam-lead diodes, and has less than 10 dB conversion loss. Further work on mixers has emphasized theoretical modeling, using a computer program, which takes into account the effect of excess noise of Schottky-barrier diodes for the first time. Calculated results agree quantitatively with measured results on millimeter wave mixers.

  5. Millimeter wave sensor requirements for maritime small craft identification

    Science.gov (United States)

    Krapels, Keith; Driggers, Ronald G.; Garcia, Jose; Boettcher, Evelyn; Prather, Dennis; Schuetz, Chrisopher; Samluk, Jesse; Stein, Lee; Kiser, William; Visnansky, Andrew; Grata, Jeremy; Wikner, David; Harris, Russ

    2009-09-01

    Passive millimeter wave (mmW) imagers have improved in terms of resolution sensitivity and frame rate. Currently, the Office of Naval Research (ONR), along with the US Army Research, Development and Engineering Command, Communications Electronics Research Development and Engineering Center (RDECOM CERDEC) Night Vision and Electronic Sensor Directorate (NVESD), are investigating the current state-of-the-art of mmW imaging systems. The focus of this study was the performance of mmW imaging systems for the task of small watercraft / boat identification field performance. First mmW signatures were collected. This consisted of a set of eight small watercrafts; at 5 different aspects, during the daylight hours over a 48 hour period in the spring of 2008. Target characteristics were measured and characteristic dimension, signatures, and Root Sum Squared of Target's Temperature (RRSΔT) tabulated. Then an eight-alternative, forced choice (8AFC) human perception experiment was developed and conducted at NVESD. The ability of observers to discriminate between small watercraft was quantified. Next, the task difficulty criterion, V50, was quantified by applying this data to NVESD's target acquisition models using the Targeting Task Performance (TTP) metric. These parameters can be used to evaluate sensor field performance for Anti-Terrorism / Force Protection (AT/FP) and navigation tasks for the U.S. Navy, as well as for design and evaluation of imaging passive mmW sensors for both the U.S. Navy and U.S. Coast Guard.

  6. New millimeter-wave access for JET reflectometry and ECE

    Energy Technology Data Exchange (ETDEWEB)

    Cupido, L. [EURATOM-IST Association, Centro de Fusao Nuclear, Instituto Superior Tecnico, 1049-001 Lisbon (Portugal)]. E-mail: cupido@mail.ua.pt; Luna, E. de la [Laboratorio Nacional de Fusion, Asociacion EURATOM-CIEMAT, 28040 Madrid (Spain); Antonucci, C. [Close Support Unit-EURATOM, Culham Science Centre, Abingdon OX14 3DB (United Kingdom)] (and others)

    2005-11-15

    Millimeter-wave diagnostics at JET, mainly reflectometry, are employing state of art electronics, but are limited in performance by the existing waveguides and antenna system that are inadequate and obsolete. The use of long run waveguides with high losses and non-optimized antennas (in some cases, not pointing to relevant plasma positions) lead to difficult measurement conditions for reflectometry. The new access system presented in this article has been designed to improve the performance of reflectometry measurements and enable the installation of antennas for oblique viewing ECE. These two new antennae will allow the Ece radiation to be collected at different angles with respect to the magnetic field. This set-up, known as oblique ECE , is expected to be extremely useful in improving the interpretation of ECE temperature measurements in all fusion experiments with significant additional heating. For reflectometry, there is an urgent need to improve the edge density measurements as both the lithium beam and Thomson scattering exhibit limitations of resolution at lower densities. The project proposal states that the expected improvement in reflectometry S/N ratio is 30 dB. If realized, this will allow broad band reflectometry, for the measurement of the electron density profile, for the first time in JET.

  7. Conformal Antenna Array for Millimeter-Wave Communications: Performance Evaluation

    CERN Document Server

    Semkin, V; Kyro, M; Kolmonen, V-M; Luxey, C; Ferrero, F; Devillers, F; Raisanen, A V

    2015-01-01

    In this paper, we study the influence of the radius of a cylindrical supporting structure on radiation properties of a conformal millimeter-wave antenna array. Bent antenna array structures on cylindrical surfaces may have important applications in future mobile devices. Small radii may be needed if the antenna is printed on the edges of mobile devices and in items which human beings are wearing, such as wrist watches, bracelets and rings. The antenna under study consists of four linear series-fed arrays of four patch elements and is operating at 58.8 GHz with linear polarization. The antenna array is fabricated on polytetrafluoroethylene substrate with thickness of 0.127 mm due to its good plasticity properties and low losses. Results for both planar and conformal antenna arrays show rather good agreement between simulation and measurements. The results show that conformal antenna structures allow achieving large angular coverage and may allow beam-steering implementations if switches are used to select betw...

  8. Seamless Optical Fiber-Wireless Millimeter- Wave Transmission Link for Access Networks

    DEFF Research Database (Denmark)

    Pang, Xiaodan; Lebedev, Alexander; Vegas Olmos, Juan José;

    2013-01-01

    This paper presents an experimental demonstration of a millimeter-wave wireless bridge in the W-band for transparent broadband fiber access in the sub-urban areas, where full fiber connections are impracticable.......This paper presents an experimental demonstration of a millimeter-wave wireless bridge in the W-band for transparent broadband fiber access in the sub-urban areas, where full fiber connections are impracticable....

  9. REMOTE DETECTION OF RADIOACTIVE PLUMES USING MILLIMETER WAVE TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Barnowski, R.; Chien; H.; Gopalsami, N.

    2009-01-01

    The reprocessing of spent nuclear fuel, a common method for manufacturing weapons-grade special nuclear materials, is accompanied by the release of fi ssion products trapped within the fuel. One of these fi ssion products is a radioactive isotope of Krypton (Kr-85); a pure β- emitter with a half-life of 10.72 years. Due to its chemical neutrality and relatively long half life, nearly all of the Kr-85 is released into the surrounding air during reprocessing, resulting in a concentration of Kr-85 near the source that is several orders of magnitude higher than the typical background (atmospheric) concentrations. This high concentration of Kr-85 is accompanied by a proportionately high increase in air ionization due to the release of beta radiation from Kr-85 decay. Millimeter wave (MMW) sensing technology can be used to detect the presence of Kr-85 induced plumes since a high concentration of ions in the air increases the radar cross section due to a combination of atmospheric phenomena. Possible applications for this technology include the remote sensing of reprocessing activities across national borders bolstering global anti-proliferation initiatives. The feasibility of using MMW radar technology to uniquely detect the presence of Kr-85 can be tested using commercial ion generators or sealed radioactive sources in the laboratory. In this paper we describe our work to derive an ion dispersion model that will describe the spatial distribution of ions from Kr-85 and other common lab sources. The types and energies of radiation emitted by isotopes Co-60 and Cs-137 were researched, and these parameters were incorporated into these dispersion models. Our results can be compared with the results of MMW detection experiments in order to quantify the relationship between radar cross section and air ionization as well as to further calibrate the MMW detection equipment.

  10. Peering inside microplasmas sustained by microwaves, millimeter waves and beyond

    Science.gov (United States)

    Hopwood, Jeffrey

    2016-09-01

    Atmospheric microplasmas are experimentally investigated over a range of excitation frequency from 0.5 to 12 GHz. A validated fluid model correctly predicts the measured electron density in this band of operation. This model is then extended to predict plasma behavior up to 0.4 THz. At constant power (0.25 W), the central electron density increases to 5x1014 cm-3 as the microwave frequency increases toward the electron energy dissipation frequency of 5 GHz (in argon). Above 5 GHz, the argon plasma density remains approximately constant, but the electrode voltage decreases to less than 5 volts in amplitude. This is remarkable in that the microwave potential is less than the excitation potential of argon. In the millimeter wave band, we observe series resonance between the plasma inductance and sheath capacitance at 30 GHz. The parallel resonance results in strong electron oscillation within the microplasma at the position where the electron plasma frequency is equal to the excitation frequency ( 200 GHz). Crossing resonance boundaries changes the nature of the microplasma impedance between capacitive, resistive, and inductive. In addition to linear behavior, we also present models and measurements of microplasma nonlinearity. Nonlinearity generates harmonic plasma currents and is due primarily to dynamic sheath expansion and electron conduction currents. In total, the microplasma provides a rich variety of electromagnetic behaviors that can be incorporated into plasma-reconfigurable metamaterials and photonic crystals. This work was supported by the Air Force Office of Scientific Research under Award No. FA9550-14-10317 with Dr. Mitat Birkan as the program manager.

  11. Passive millimeter-wave camera with interferometric processing

    Science.gov (United States)

    Nohmi, Hitoshi; Ohnishi, Seiki; Kujubu, Osamu

    2006-05-01

    A proto-type passive millimeter-wave (MMW) camera with interferometric processing has been developed. The purpose is to confirm the feasibility of the interferometric MMW camera and to study the characteristics of MMW images. In this paper, the principle and the feature of the interferometric MMW camera is described. Also, the hardware configuration and the image processing algorithm are presented. This proto-type camera is comprised of the minimum configuration as an interferometric imager which consists of two sets of a W-band front end with a horn antenna, a receiver, and an A/D converter, a high-speed processing hardware, and a computer. The position of these two antennas with W-band front-end moves on the precision linear slider in horizontal and vertical axis. The coherently amplified two channel signals are digitized and processed in the hardware processor. The process is comprised of phase error compensation, correlation of all combination of each axis data, and integration to improve the signal to noise ratio. The computer input the integrated data to make an image by matched filter processing. The integration time is from 1mS to 10S depending on required integration gain. The maximum synthesized antenna aperture size is 1m for horizontal axis and 50cm for vertical axis. Because it takes certain time to receive by the moving antennas, only the targets without motion are imaged by this proto-type camera. The processed images will be shown. Also, future plan for a real-time camera using this technique is presented.

  12. Millimeter-wave electronically scanned reflectarray optimization and analysis

    Science.gov (United States)

    Hedden, Abigail S.; Dietlein, Charles R.; Wikner, David A.

    2012-06-01

    The development of millimeter-wave scanning reflectarrays and phased arrays provides an important path to enabling electronic scanning capabilities at high frequencies. This technology could be used to eliminate the mechanical scanners that are currently used with radar imaging systems. In this work, we analyze properties of wafer-scale two-dimensional rectangular lattice arrays that can be used with a confocal imager for 220 GHz electronic scanning of meter-sized fields of regard at 50 m. Applications include covert imaging of hidden anomalies. We examine tradeoffs between overall system size and array complexity and analyze properties of reflectarrays compatible with a system design that was chosen based on these considerations. The effects of phase quantization are considered in detail for arrays with 1- and 2- bit phase shifters and the results are compared in terms of impacts to image quality. Beam pointing accuracy, main beam energy fraction, and the number and intensity of quantization lobes that appear over the scan ranges of interest are compared. Our results indicate that arrays with 1- and 2-bit phase quantization achieve similar main beam energy efficiencies over the desired scan range. Without restricting the scan range, 1-bit phase quantization is insufficient, resulting in maximum errors that are comparable to the required minimum scan angle. Two-bit phase quantization is preferable, resulting in pointing angle errors of at most 15 % of the diffraction-limited beam-size. Both 1- and 2-bit phase quantization cases result in lobes appearing above our threshold, indicating that spurious returns are a problem that will require further attention.

  13. Impact of the Collisional Plasma on the Propagation of Millimeter Waves

    Institute of Scientific and Technical Information of China (English)

    袁忠才; 时家明; 汪家春; 许波

    2004-01-01

    The plasma generated in the low-altitude atmosphere is of high collision frequencies.In this paper, the transmission coefficients of millimeter(MM) waves normally incident upon the plasma with high collision frequencies are calculated and analyzed. The experimental results of reflection and attenuation are presented for the eight-millimeter waves propagating through the plasma. Both the calculated experimental results indicate that the MM-waves concerned are attenuated significantly and reflected weakly, when propagating through the plasma of high collision frequencies.

  14. Linearly Tapered Slot Antenna Radiation Characteristics at Millimeter-Wave Frequencies

    Science.gov (United States)

    Simons, Rainee N.; Lee, Richard Q.

    1998-01-01

    An endfire travelling wave antenna, such as, a linearly tapered slot antenna (LTSA) is a viable alternative to a patch antenna at millimeter-wave frequencies because of its simple design and ease of fabrication. This paper presents the radiation characteristics of LTSA at higher millimeter-wave frequencies. The measured radiation patterns are observed to be well behaved and symmetric with the main beam in the endfire direction. The measured gain is about 10 dB. The LTSAs have potential wireless applications at 50 GHz, 77 GHz, and 94 GHz.

  15. The effect of millimeter waves at the yeast Saccharomyces cerevisiae during heliogeophysical disturbances

    Science.gov (United States)

    Rogacheva, Svetlana M.; Babaeva, Milena I.

    2013-02-01

    The isolated and combined effect of heliogeophysical factors and low intensive electromagnetic radiation of millimeter diapason at the metachromasia reaction of the yeast Saccharomyces cerevisiae was studied. It was established that longterm influence of EMR 65 GHz induced changes in the response of cells towards heliogeomagnetic disturbance. On our opinion millimeter waves may reduce the effect of heliogeophysical factors on living organisms because of destabilization of the intracellular water structure.

  16. Millimeter-Wave Integrated Circuit Design for Wireless and Radar Applications

    DEFF Research Database (Denmark)

    Johansen, Tom Keinicke; Krozer, Viktor; Vidkjær, Jens;

    2006-01-01

    This paper describes a quadrature voltage-controlled oscillator (QVCO), frequency doubler, and sub-harmonic mixer (SHM) for a millimeter-wave (mm-wave) front-end implemented in a high-speed InP DHBT technology. The QVCO exhibits large tuning range from 38 to 47.8 GHz with an output power around -15...

  17. Design and modeling of InP DHBT power amplifiers at millimeter-wave frequencies

    DEFF Research Database (Denmark)

    Yan, Lei; Johansen, Tom K.

    2012-01-01

    In this paper, the design and modeling of InP DHBT based millimeter-wave(mm-wave) power amplifiers is described. This includes the modeling of InP DHBT devices and layout parasitics. An EM-circuit co-simulation approach is described to allow all parasitics to be modeled for accurate circuit...

  18. Millimeter wave case study of operational deployments: retail, airport, military, courthouse, and customs

    Science.gov (United States)

    Tryon, Gary V.

    2008-04-01

    In the wake of the September 11, 2001 terrorist attack on America, our security and defense industry was instantly tasked with delivering technologies that could be used to help prevent future terrorist activities. The general public world wide is asking for solutions that will foster a safe society and travel environment. Our best defenses rest in our talents within a free open society to prevent dangerous individuals from boarding planes, entering buildings, courthouses, transportations hubs and military bases with weapons capable of causing damage and bodily harm in the first place. Passive millimeter wave (PMMW) whole body imaging systems are based upon the principle that every physical entity emits, reflects, and/or absorbs electromagnetic energy. The term "passive" means that this approach does not bombard the test subject with energy radiation to further induce the discovery of hidden objects. PMMW whole body imaging systems focus on the human body's natural emission and reflection of millimeter wavelength energy. In physics, "millimeter waves" (MMW) are defined as extremely high-frequency (30-300 GHz) electromagnetic oscillations. On the electromagnetic spectrum these waves are just larger than infrared waves, but smaller than radio waves. The wavelength of a MMW is between 1 millimeter and 10 millimeters. That is approximately the thickness of a large paperclip up to the diameter of an "AAA" battery.

  19. Roles of rare earth oxide additives in millimeter-wave sintering of AlN

    Institute of Scientific and Technical Information of China (English)

    Yukio Makino; Takashi Yoshioka; Hiromi Nakano; Toshiyuki Ueno; Shoji Miyake

    2008-01-01

    Roles of rare earth oxide (RE2O3) additives in millimeter-wave(MM) sintering of AlN were investigated from the standpoints of phase diagram, heating characteristics of rare earth oxides, and morphology of intergranular oxide phase. In the millimeter-wave sintering of AlN, densification temperature decreased with the decrease of the ionic radius of rare earth ion and was closely related with the eutectic temperature in the RE2O3-Al2O3 binary system. The lowest densification temperature in the millimeter-wave sintering of AlN with Yb2O3 additive was attributed to the largest heating rate of Yb2O3·Al2O3 binary oxide under millimeter-wave radiation. Furthermore, the lowest densification temperature could be attained while selecting the Yb2O3 content so as to form the intergranular phase with the eutectic composition in the Yb2O3-Al2O3 binary system. The result showed good agreement with the above mentioned during the sintering of Si3N4 with Yb2O3-Al2O3 additive. From TEM observation, it was verified that film-like intergranular oxide phase formed under millimeter-wave radiation was favorable for attaining high thermal conductivity in the Yb2O3 added AlNs.

  20. Measuring Water Vapor and Ash in Volcanic Eruptions with a Millimeter-Wave Radar/Imager

    CERN Document Server

    Bryan, Sean; Vanderkluysen, Loÿc; Groppi, Christopher; Paine, Scott; Bliss, Daniel W; Aberle, James; Mauskopf, Philip

    2016-01-01

    Millimeter-wave remote sensing technology can significantly improve measurements of volcanic eruptions, yielding new insights into eruption processes and improving forecasts of drifting volcanic ash for aviation safety. Radiometers can measure water vapor density and temperature inside eruption clouds, improving on existing measurements with infrared cameras that are limited to measuring the outer cloud surface. Millimeter-wave radar can measure the 3D mass flow of volcanic ash inside eruption plumes and drifting fine ash clouds, offering better sensitivity than existing weather radar measurements and the unique ability to measure ash particle size in-situ. Here we present sensitivity calculations in the context of developing the WAMS (Water and Ash Millimeter-wave Spectrometer) instrument. WAMS, a radar/radiometer system constructed with off-the-shelf components, would be able to measure water vapor and ash throughout an entire eruption cloud, a unique capability.

  1. A passive millimeter-wave imaging system for concealed weapons and explosives detection (Invited Paper)

    Science.gov (United States)

    Kolinko, Vladimir G.; Lin, Shiow-Hwa; Shek, Alex; Manning, Will; Martin, Chris; Hall, Max; Kirsten, Oskar; Moore, Joshua; Wikner, David A.

    2005-05-01

    This paper describes a passive millimeter-wave image scanner that leverages technologies previously developed for a video-rate passive millimeter-wave camera (PMC) [1, 2]. The imager has a prime focus elliptical frequency scanned antenna operating in the 75-93 GHz millimeter-wave band, a low noise receiver and a vertical beam former that allows the instantaneous capture of 128 pixel (vertical) column images in 1/30th of a second, with 2-3 K sensitivity. Two dimensional images are created by mechanically rotating the antenna, which produces a 128x60 raster image in 2 seconds. By integrating (averaging) images over a longer time period, we have demonstrated a sub-degree temperature resolution. This sensor has proven itself as a low cost tool for studying the potential of W-band passive imaging for various applications.

  2. Telecommunication service markets through the year 2000 in relation to millimeter wave satellite systems

    Science.gov (United States)

    Stevenson, S. M.

    1979-01-01

    NASA is currently conducting a series of millimeter wave satellite system and market studies to develop 30/20 GHz satellite system concepts that have commercial potential for the period 1980-2000. The results of the market studies to-date focusing on the overall demand forecasts and distributions by geographic location, distance, and user category are discussed. Tables are presented indicating baseline market forecast voice and video services, data service category, impacted baseline forecast, and traffic/distance distribution voice services. It is concluded that the total market and system activity will be influential in determining the potential role of millimeter wave systems in the overall transmission needs of the nation, and the amount of the total forecasted traffic suitable for millimeter wave systems.

  3. Ultra-Wideband Array in PCB for Millimeter-Wave 5G and ISM

    Science.gov (United States)

    Novak, Markus H.; Volakis, John L.; Miranda, Felix A.

    2017-01-01

    Next generation 5G mobile architectures will take advantage of the millimeter-wave spectrum to deliver unprecedented bandwidth. Concurrently, there is a need to consolidate numerous disparate allocations into a single, multi-functional array. Existing arrays are either narrow-band, prohibitively expensive or cannot be scaled to these frequencies. In this paper, we present the first ultra-wideband millimeter-wave array to operate across the six 5G and ISM bands spanning 24-71 GHz. Critically, the array is realized using low-cost PCB. The design concept and optimized layout are presented, and fabrication and measurement considerations are discussed.

  4. Photonic Implementation of 4-QAM/QPSK Electrical Modulation at Millimeter-Wave Frequency

    DEFF Research Database (Denmark)

    Yu, Xianbin; Jensen, Jesper Bevensee; Tafur Monroy, Idelfonso

    2008-01-01

    We propose a photonic method for generating millimeter-wave 4-QAM/QPSK modulated signals. The method is based on optical phase modulation by multilevel electrical signals and optical carrier-suppression. Simulation results are presented for 2.5 Gsymbol/s 4-QAM and QPSK signals at a 36 GHz carrier....... Furthermore, this method can be extended to generate millimeter-wave m-PSK signals and can be incorporated into broadband radio-over-fiber systems to support wireless/ wireline converged access network....

  5. Double-side fabrication process and millimeter wave response of intrinsic Josephson junctions

    Institute of Scientific and Technical Information of China (English)

    WU JingBo; YI DongChao; GU ZhengHao; KANG Lin; XU WeiWei; CHEN Jian; WU PeiHeng

    2009-01-01

    We adopted double-side fabrication process to prepare intrinsic Josephson junctions (IJJs) based on Bi2Sr2CaCu2O8-x(BSCCO) single crystals. Using crystal cleavage and double-side argon ion milling, we have successfully fabricated very uniform IJJs with the thickness of single crystal slice less than 200 nm. Using quasi-optical system, the response of the IJJs to millimeter wave radiation was studied. With applied magnetic field perpendicular to a-b plane, we have observed Shapiro steps under millimeter wave radiation, and the Josephson oscillation of each junction was phase-locking.

  6. Threat detection in desert environment with passive millimeter-wave sensor

    Science.gov (United States)

    Wilson, John P.; Schuetz, Christopher A.; Martin, Richard D.; Dillon, Thomas E.; Murakowski, Maciej; Prather, Dennis W.

    2011-06-01

    A new technique for improvised explosive device (IED) creation uses an explosive device buried in foam and covered in a layer of dirt. These devices are difficult to detect visually, however, their material characteristics make them detectable by passive millimeter-wave (pmmW) sensors. Results are presented from a test using a mock IED and an outdoor set-up consisting of two mock IEDs on a dirt background. The results show that the mock IEDs produces a millimeter-wave signature which is distinguishable from the background surrounding the mock IEDs. Simulations based on the measured data are presented and a design for a future vehicle mounted sensor is shown.

  7. Integrated Wide-Band Millimeter Wave Imaging System

    Science.gov (United States)

    2007-11-02

    in the diffractive lens on the order of few millimeters, which is within the capability of modem fabrication tools. In this case, a CNC router is...240mm, containing 5 zones, as shown in Figure 5. Figure 5. MMW lens fabricated by CNC router machine. To characterize the lens, we built a mmW...operating wavelength different fabrication precision is required to fabricate lenses for different wavelengths. For example, we use a 1.6 mm router bit

  8. Millimeter And Submillimeter-Wave Integrated Circuits On Quartz

    Science.gov (United States)

    Mehdi, Imran; Mazed, Mohammad; Siegel, Peter; Smith, R. Peter

    1995-01-01

    Proposed Quartz substrate Upside-down Integrated Device (QUID) relies on UV-curable adhesive to bond semiconductor with quartz. Integrated circuits including planar GaAs Schottky diodes and passive circuit elements (such as bandpass filters) fabricated on quartz substrates. Circuits designed to operate as mixers in waveguide circuit at millimeter and submillimeter wavelengths. Integrated circuits mechanically more robust, larger, and easier to handle than planar Schottky diode chips. Quartz substrate more suitable for waveguide circuits than GaAs substrate.

  9. Radio Frequency Radiation of Millimeter Wave Length: An Evaluation of Potential Occupational Safety Issues Relating to Surface Heating

    Science.gov (United States)

    2016-06-14

    frequency. Although most systems operate at low powers, certain military and commercial applications operate at much higher powers, suggesting the...Paper------------------------------- RADIO FREQUENCY RADIATION OF MILLIMETER WAVE LENGTH: POTENTIAL OCCUPATIONAL...is being developed that makes use of the millimeter wave (MMW) range (30-300 GHz) of the radio frequency region of the electromagnetic spectrum. As

  10. High resolution millimeter wave digitally controlled oscillator with reconfigurable distributed metal capacitor passive resonators

    NARCIS (Netherlands)

    Wu, W.; Long, J.R.; Staszewski, B.

    2014-01-01

    A novel and useful millimeter-wave digitally controlled oscillator (DCO) that achieve a tuning range greater than 10% and fine frequency resolution less than 1 MHz. Switched metal capacitors are distributed across a passive resonator for tuning the oscillation frequency. To obtain sub-MHz frequency

  11. A Continuous Millimeter-Wave Imaging Scanner for Art Conservation Science

    Directory of Open Access Journals (Sweden)

    Ayesha Younus

    2011-01-01

    Full Text Available A monochromatic continuous millimeter-wave imaging system coupled with an infrared temperature sensor has been used to investigate artistic objects such as painting artworks or antiquities preserved at the museum of Aquitaine. Especially, 2D and 3D analyses have been performed in order to reveal the internal structure of a nearly 3500-year-old sealed Egyptian jar.

  12. Millimeter-Wave Thermal Analysis Development and Application to GEN IV Reactor Materials

    Energy Technology Data Exchange (ETDEWEB)

    Wosko, Paul; Sundram, S. K.

    2012-10-16

    New millimeter-wave thermal analysis instrumentation has been developed and studied for characterization of materials required for diverse fuel and structural needs in high temperature reactor environments such as the Next Generation Nuclear Plant (NGNP). A two-receiver 137 GHz system with orthogonal polarizations for anisotropic resolution of material properties has been implemented at MIT. The system was tested with graphite and silicon carbide specimens at temperatures up to 1300 ºC inside an electric furnace. The analytic and hardware basis for active millimeter-wave radiometry of reactor materials at high temperature has been established. Real-time, non contact measurement sensitivity to anisotropic surface emissivity and submillimeter surface displacement was demonstrated. The 137 GHz emissivity of reactor grade graphite (NBG17) from SGL Group was found to be low, ~ 5 %, in the 500 – 1200 °C range and increases by a factor of 2 to 4 with small linear grooves simulating fracturing. The low graphite emissivity would make millimeter-wave active radiometry a sensitive diagnostic of graphite changes due to environmentally induced stress fracturing, swelling, or corrosion. The silicon carbide tested from Ortek, Inc. was found to have a much higher emissivity at 137 GHz of ~90% Thin coatings of silicon carbide on reactor grade graphite supplied by SGL Group were found to be mostly transparent to millimeter-waves, increasing the 137 GHz emissivity of the coated reactor grade graphite to about ~14% at 1250 ºC.

  13. Engineering Rules for Optical Generation and Detection of High Speed Wireless Millimeter-wave Band Signals

    DEFF Research Database (Denmark)

    Caballero Jambrina, Antonio; Zibar, Darko; Sambaraju, Rakesh

    2011-01-01

    We analyze the design requirements for 40 Gbit/s wireless generation and detection in the millimeter-wave band, combining baseband optical I/Q modulation and coherent detection with wireless optical heterodyning generation and single-side band electro-optical modulation....

  14. A Novel Reconfigurable Ultra-broadband Millimeter-wave Photonic Harmonic Down-converter

    DEFF Research Database (Denmark)

    Pang, Xiaodan; Zhao, Ying; Deng, Lei;

    2011-01-01

    We propose a novel ultra-broadband reconfigurable photonic harmonic mixer functioning as a millimeter-wave downconverter for multigigabit wireless applications. Based on frequency conversion implemented by an optical frequency comb generator, the photonic mixer is able to operate up to 100GHz...

  15. Millimeter wave satellite communication studies. Results of the 1981 propagation modeling effort

    Science.gov (United States)

    Stutzman, W. L.; Tsolakis, A.; Dishman, W. K.

    1982-12-01

    Theoretical modeling associated with rain effects on millimeter wave propagation is detailed. Three areas of work are discussed. A simple model for prediction of rain attenuation is developed and evaluated. A method for computing scattering from single rain drops is presented. A complete multiple scattering model is described which permits accurate calculation of the effects on dual polarized signals passing through rain.

  16. Note: three-dimensional stereolithography for millimeter wave and terahertz applications.

    Science.gov (United States)

    Macor, A; de Rijk, E; Alberti, S; Goodman, T; Ansermet, J-Ph

    2012-04-01

    Metal-coated polymers shaped by 3D stereolithography are introduced as a new manufacturing method for passive components for millimeter to terahertz electromagnetic waves. This concept offers increased design capabilities and flexibilities while shortening the manufacturing process of complex shapes, e.g., corrugated horns, mirrors, etc. Tests at 92.5, 140, and 170 GHz are reported.

  17. Review on Millimeter Wave Antennas- Potential Candidate for 5G Enabled Applications

    Directory of Open Access Journals (Sweden)

    M. A. Matin

    2016-12-01

    Full Text Available The millimeter wave (mmWave band is considered as the potential candidate for high speed communication services in 5G networks due to its huge bandwidth. Moreover, mmWave frequencies lead to miniaturization of RF front end including antennas. In this article, we provide an overview of recent research achievements of millimeter-wave antenna design along with the design considerations for compact antennas and antennas in package/on chip, mostly in the 60 GHz band is described along with their inherent benefits and challenges. A comparative analysis of various designs is also presented. The antennas with wide bandwidth, high-gain, compact size and low profile with easiness of integration in-package or on-chip with other components are required for 5G enabled applications.

  18. The Chromospheric Solar Millimeter-wave Cavity; a Common Property in the Semi-empirical Models

    CERN Document Server

    Victor, De la Luz; Emanuele, Bertone

    2014-01-01

    The semi-empirical models of the solar chromosphere are useful in the study of the solar radio emission at millimeter - infrared wavelengths. However, current models do not reproduce the observations of the quiet sun. In this work we present a theoretical study of the radiative transfer equation for four semi- empirical models at these wavelengths. We found that the Chromospheric Solar Milimeter-wave Cavity (CSMC), a region where the atmosphere becomes locally optically thin at millimeter wavelengths, is present in the semi-empirical models under study. We conclude that the CSMC is a general property of the solar chromosphere where the semi-empirical models shows temperature minimum.

  19. Design of a Dielectric Rod Waveguide Antenna Array for Millimeter Waves

    Science.gov (United States)

    Rivera-Lavado, Alejandro; García-Muñoz, Luis-Enrique; Generalov, Andrey; Lioubtchenko, Dmitri; Abdalmalak, Kerlos-Atia; Llorente-Romano, Sergio; García-Lampérez, Alejandro; Segovia-Vargas, Daniel; Räisänen, Antti V.

    2016-09-01

    In this manuscript, the use of dielectric rod waveguide (DRW) antennas in the millimeter and sub-millimeter wave range is presented as a solution for covering two issues: getting more radiated power and filling a technological gap problem in the terahertz band, namely a fully electronic beam steering. A 4x4 element array working at 100 GHz fed by a rectangular waveguide is manufactured and measured for showing its capabilities. This topology can be used as a cost-affordable alternative to dielectric lenses in photomixer-based terahertz sources.

  20. Design of a Dielectric Rod Waveguide Antenna Array for Millimeter Waves

    Science.gov (United States)

    Rivera-Lavado, Alejandro; García-Muñoz, Luis-Enrique; Generalov, Andrey; Lioubtchenko, Dmitri; Abdalmalak, Kerlos-Atia; Llorente-Romano, Sergio; García-Lampérez, Alejandro; Segovia-Vargas, Daniel; Räisänen, Antti V.

    2017-01-01

    In this manuscript, the use of dielectric rod waveguide (DRW) antennas in the millimeter and sub-millimeter wave range is presented as a solution for covering two issues: getting more radiated power and filling a technological gap problem in the terahertz band, namely a fully electronic beam steering. A 4x4 element array working at 100 GHz fed by a rectangular waveguide is manufactured and measured for showing its capabilities. This topology can be used as a cost-affordable alternative to dielectric lenses in photomixer-based terahertz sources.

  1. Quantum-limited detection of millimeter waves using superconducting tunnel junctions

    Energy Technology Data Exchange (ETDEWEB)

    Mears, C.A.

    1991-09-01

    The quasiparticle tunneling current in a superconductor-insulator- superconductor (SIS) tunnel junction is highly nonlinear. Such a nonlinearity can be used to mix two millimeter wave signals to produce a signal at a much lower intermediate frequency. We have constructed several millimeter and sub-millimeter wave SIS mixers in order to study high frequency response of the quasiparticle tunneling current and the physics of high frequency mixing. We have made the first measurement of the out-of-phase tunneling currents in an SIS tunnel junction. We have developed a method that allows us to determine the parameters of the high frequency embedding circuit by studying the details of the pumped I-V curve. We have constructed a 80--110 GHz waveguide-based mixer test apparatus that allows us to accurately measure the gain and added noise of the SIS mixer under test. Using extremely high quality tunnel junctions, we have measured an added mixer noise of 0.61 {plus_minus} 0.36 quanta, which is within 25 percent of the quantum limit imposed by the Heisenberg uncertainty principle. This measured performance is in excellent agreement with that predicted by Tucker`s theory of quantum mixing. We have also studied quasioptically coupled millimeter- and submillimeter-wave mixers using several types of integrated tuning elements. 83 refs.

  2. Quantum-limited detection of millimeter waves using superconducting tunnel junctions

    Energy Technology Data Exchange (ETDEWEB)

    Mears, C.A.

    1991-09-01

    The quasiparticle tunneling current in a superconductor-insulator- superconductor (SIS) tunnel junction is highly nonlinear. Such a nonlinearity can be used to mix two millimeter wave signals to produce a signal at a much lower intermediate frequency. We have constructed several millimeter and sub-millimeter wave SIS mixers in order to study high frequency response of the quasiparticle tunneling current and the physics of high frequency mixing. We have made the first measurement of the out-of-phase tunneling currents in an SIS tunnel junction. We have developed a method that allows us to determine the parameters of the high frequency embedding circuit by studying the details of the pumped I-V curve. We have constructed a 80--110 GHz waveguide-based mixer test apparatus that allows us to accurately measure the gain and added noise of the SIS mixer under test. Using extremely high quality tunnel junctions, we have measured an added mixer noise of 0.61 {plus minus} 0.36 quanta, which is within 25 percent of the quantum limit imposed by the Heisenberg uncertainty principle. This measured performance is in excellent agreement with that predicted by Tucker's theory of quantum mixing. We have also studied quasioptically coupled millimeter- and submillimeter-wave mixers using several types of integrated tuning elements. 83 refs.

  3. Traveling-Wave Tube Amplifier Second Harmonic as Millimeter-Wave Beacon Source for Atmospheric Propagation Studies

    Science.gov (United States)

    Simons, Rainee N.; Wintucky, Edwin G.

    2014-01-01

    This paper presents the design and test results of a CW millimeter-wave satellite beacon source, based on the second harmonic from a traveling-wave tube amplifier and utilizes a novel waveguide multimode directional coupler. A potential application of the beacon source is for investigating the atmospheric effects on Q-band (37-42 GHz) and V/W-band (71- 76 GHz) satellite-to-ground signals.

  4. Millimeter-Wave Evolution for 5G Cellular Networks

    Science.gov (United States)

    Sakaguchi, Kei; Tran, Gia Khanh; Shimodaira, Hidekazu; Nanba, Shinobu; Sakurai, Toshiaki; Takinami, Koji; Siaud, Isabelle; Strinati, Emilio Calvanese; Capone, Antonio; Karls, Ingolf; Arefi, Reza; Haustein, Thomas

    Triggered by the explosion of mobile traffic, 5G (5th Generation) cellular network requires evolution to increase the system rate 1000 times higher than the current systems in 10 years. Motivated by this common problem, there are several studies to integrate mm-wave access into current cellular networks as multi-band heterogeneous networks to exploit the ultra-wideband aspect of the mm-wave band. The authors of this paper have proposed comprehensive architecture of cellular networks with mm-wave access, where mm-wave small cell basestations and a conventional macro basestation are connected to Centralized-RAN (C-RAN) to effectively operate the system by enabling power efficient seamless handover as well as centralized resource control including dynamic cell structuring to match the limited coverage of mm-wave access with high traffic user locations via user-plane/control-plane splitting. In this paper, to prove the effectiveness of the proposed 5G cellular networks with mm-wave access, system level simulation is conducted by introducing an expected future traffic model, a measurement based mm-wave propagation model, and a centralized cell association algorithm by exploiting the C-RAN architecture. The numerical results show the effectiveness of the proposed network to realize 1000 times higher system rate than the current network in 10 years which is not achieved by the small cells using commonly considered 3.5 GHz band. Furthermore, the paper also gives latest status of mm-wave devices and regulations to show the feasibility of using mm-wave in the 5G systems.

  5. Analysis of π-mode Stopband in an Asymmetric Millimeter-Wave Helical Slow-Wave Structure

    Science.gov (United States)

    Datta, S. K.; Kumar, Lalit; Basu, B. N.

    2008-11-01

    A simple closed form formula for the estimation of π-mode stopband in an azimuthally asymmetric helical slow-wave structure (SWS) was developed following coupled-mode analysis of multiple reflections of the degenerate space-harmonic modes from the support rod discontinuities. The method incorporates the effects of circuit loss, and accrues the accuracy of 3D electromagnetic analysis by allowing the use of dispersion characteristics obtainable from any standard electromagnetic modeling. The formula is simple and amenable to easy computation, even using a scientific calculator, and without resorting to exhaustive and time-intensive numerical computation, and at the same time, without sacrificing the accuracy in results. The analysis was benchmarked against published results and excellent agreement observed. The analysis was further used for demonstrating the stopband phenomenon for a typical millimeter-wave helical slow-wave structure. Compared to low frequency structures, the stopband phenomenon for a millimeter-wave structure was found to be more pronounced, and an interesting inference was drawn as to how asymmetry induced stopband might be made to advantage in combating π-mode instabilities in a millimeter-wave traveling-wave tube.

  6. Generation of microwave and millimeter-wave based on po-larization scrambler and polarization maintaining fiber

    Institute of Scientific and Technical Information of China (English)

    SHI Yuan-yuan; NING Ti-gang; LI Jing; PEI Li; QI Chun-hui

    2009-01-01

    A new method is proposed to generate microwave and millimeter-wave by using polarization scrambler and polarization maintaining fiber (PMF), which is based on the coupling and the interaction between the two polarizations of the initial non-chirp Gaussian optical pulse in PMF. The expressions of the microwave and millimeter-wave are derived by couple-mode theory. Moreover, the feasibility is analyzed simulatedly. At last, 0-120 GHz microwave and millimeter-wave can be produced by adjusting system parameter or input pulse duration. The project is of great simplicity, stability and high export efficiency.

  7. Studies of Millimeter-Wave Atmospheric Noise Above Mauna Kea

    CERN Document Server

    Sayers, J; Ade, P A R; Aguirre, J E; Bock, J J; Edgington, S F; Glenn, J; Goldin, A; Haig, D; Lange, A E; Laurent, G T; Mauskopf, P D; Nguyen, H T; Rossinot, P; Schlaerth, J

    2009-01-01

    We report measurements of the fluctuations in atmospheric emission (atmospheric noise) above Mauna Kea recorded with Bolocam at 143 and 268 GHz from the Caltech Submillimeter Observatory (CSO). The 143 GHz data were collected during a 40 night observing run in late 2003, and the 268 GHz observations were made in early 2004 and early 2005 over a total of 60 nights. Below 0.5 Hz, the data time-streams are dominated by atmospheric noise in all observing conditions. The atmospheric noise data are consistent with a Kolmogorov-Taylor (K-T) turbulence model for a thin wind-driven screen, and the median amplitude of the fluctuations is 260 mK^2 rad^(-5/3) at 143 GHz and 5900 mK^2 rad^(-5/3) at 268 GHz. Comparing our results with previous ACBAR data, we find that the normalization of the power spectrum of the atmospheric noise fluctuations is a factor of 120 larger above Mauna Kea than above the South Pole at millimeter wavelengths. Most of this difference is due to the fact that the atmosphere above the South Pole is...

  8. NIKA: A Millimeter-Wave Kinetic Inductance Camera

    CERN Document Server

    Monfardini, A; Bideaud, A; Désert, F X; Yates, S J C; Benoit, A; Baryshev, A M; Baselmans, J J A; Doyle, S; Klein, B; Roesch, M; Tucker, C; Ade, P; Calvo, M; Camus, P; Giordano, C; Guesten, R; Hoffmann, C; Leclercq, S; Mauskopf, P; Schuster, K F

    2010-01-01

    Current generation millimeter wavelength detectors suffer from scaling limits imposed by complex cryogenic readout electronics. To circumvent this it is imperative to investigate technologies that intrinsically incorporate strong multiplexing. One possible solution is the Kinetic-Inductance Detector (KID). In order to assess the potential of this nascent technology, a prototype instrument optimized for the 2 mm atmospheric window was constructed. Known as the N\\'eel IRAM KIDs Array (NIKA), it was recently tested at the Institute for Millimetric Radio Astronomy (IRAM) 30-meter telescope at Pico Veleta, Spain. The measurement resulted in the imaging of a number of sources, including planets, quasars, and galaxies. The images for Mars, radio star MWC349, quasar 3C345, and galaxy M87 are presented. From these results, the optical NEP was calculated to be around $1 \\times 10^{-15}$ W$ / $Hz$^{1/2}$. A factor of 10 improvement is expected to be readily feasible by improvements in the detector materials and reductio...

  9. Challenges and Techniques in Measurements of Noise, Cryogenic Noise and Power in Millimeter-Wave and Submillimeter-Wave Amplifiers

    Science.gov (United States)

    Samoska, Lorene

    2014-01-01

    We will present the topic of noise measurements, including cryogenic noise measurements, of Monolithic Microwave Integrated Circuit (MMIC) and Sub-Millimeter-Wave Monolithic Microwave Integrated Circuit (S-MMIC) amplifiers, both on-wafer, and interfaced to waveguide modules via coupling probes. We will also present an overview of the state-of-the-art in waveguide probe techniques for packaging amplifier chips, and discuss methods to obtain the lowest loss packaging techniques available to date. Linearity in noise measurements will be discussed, and experimental methods for room temperature and cryogenic noise measurements will be presented. We will also present a discussion of power amplifier measurements for millimeter-wave and submillimeter-wave amplifiers, and the tools and hardware needed for this characterization.

  10. Millimeter wave imaging system modeling: spatial frequency domain calculation versus spatial domain calculation.

    Science.gov (United States)

    Qi, Feng; Tavakol, Vahid; Ocket, Ilja; Xu, Peng; Schreurs, Dominique; Wang, Jinkuan; Nauwelaers, Bart

    2010-01-01

    Active millimeter wave imaging systems have become a promising candidate for indoor security applications and industrial inspection. However, there is a lack of simulation tools at the system level. We introduce and evaluate two modeling approaches that are applied to active millimeter wave imaging systems. The first approach originates in Fourier optics and concerns the calculation in the spatial frequency domain. The second approach is based on wave propagation and corresponds to calculation in the spatial domain. We compare the two approaches in the case of both rough and smooth objects and point out that the spatial frequency domain calculation may suffer from a large error in amplitude of 50% in the case of rough objects. The comparison demonstrates that the concepts of point-spread function and f-number should be applied with careful consideration in coherent millimeter wave imaging systems. In the case of indoor applications, the near-field effect should be considered, and this is included in the spatial domain calculation.

  11. Propagation characteristics for millimeter and quasi-millimeter waves by using three Japanese geostationary satellites

    Science.gov (United States)

    Hayashi, R.; Furuhama, Y.; Fugono, N.; Otsu, Y.

    1980-11-01

    experiments carried out by using ETS-II, CS, BS and ECS, and propagation characteristics of radio waves mainly above 10 GHz at the main station (Kashima Branch, RRL).

  12. Millimeter-wave Imaging Systems with Aperture Synthesis Techniques

    DEFF Research Database (Denmark)

    Löffler, Torsten; Krozer, Viktor; Zhurbenko, Vitaliy;

    2010-01-01

    The paper describes development of a millimetre-wave imaging system using multi-element aperture filling techniques [1]. Such imaging systems are increasingly demonstrated for security applications and in particular standoff imaging of persons and bonding flaw and defect detection [2]. The major...

  13. The imaging algorithm of millimeter-wave forward-looking SAR

    Science.gov (United States)

    Chen, Lei; Li, Xingguang; Chen, Dianren

    2017-01-01

    It is studied a new type millimeter-wave forward-looking synthetic aperture radar (SAR) imaging algorithm in this paper, analyzes the imaging principle, echo model of point target is given, deduced the forward-looking synthetic aperture radar RD imaging algorithm, and using MATLAB imaging simulation of point target in 6, a point target simulation results from the peak of 64 * 64 slice contour and azimuth, distance to the envelope of the imaging results were analyzed, found that the distance and azimuth focusing effect is good and the side lobe does not appear distorted and tilted, proved that the system of the millimeter wave synthetic aperture radar imaging of forward-looking , simulation results demonstrate the validity of the system.

  14. Risks of exposure to ionizing and millimeter-wave radiation from airport whole-body scanners.

    Science.gov (United States)

    Moulder, John E

    2012-06-01

    Considerable public concern has been expressed around the world about the radiation risks posed by the backscatter (ionizing radiation) and millimeter-wave (nonionizing radiation) whole-body scanners that have been deployed at many airports. The backscatter and millimeter-wave scanners currently deployed in the U.S. almost certainly pose negligible radiation risks if used as intended, but their safety is difficult-to-impossible to prove using publicly accessible data. The scanners are widely disliked and often feared, which is a problem made worse by what appears to be a veil of secrecy that covers their specifications and dosimetry. Therefore, for these and future similar technologies to gain wide acceptance, more openness is needed, as is independent review and regulation. Publicly accessible, and preferably peer-reviewed evidence is needed that the deployed units (not just the prototypes) meet widely-accepted safety standards. It is also critical that risk-perception issues be handled more competently.

  15. Wafer scale millimeter-wave integrated circuits based on epitaxial graphene in high data rate communication

    Science.gov (United States)

    Habibpour, Omid; He, Zhongxia Simon; Strupinski, Wlodek; Rorsman, Niklas; Zirath, Herbert

    2017-02-01

    In recent years, the demand for high data rate wireless communications has increased dramatically, which requires larger bandwidth to sustain multi-user accessibility and quality of services. This can be achieved at millimeter wave frequencies. Graphene is a promising material for the development of millimeter-wave electronics because of its outstanding electron transport properties. Up to now, due to the lack of high quality material and process technology, the operating frequency of demonstrated circuits has been far below the potential of graphene. Here, we present monolithic integrated circuits based on epitaxial graphene operating at unprecedented high frequencies (80–100 GHz). The demonstrated circuits are capable of encoding/decoding of multi-gigabit-per-second information into/from the amplitude or phase of the carrier signal. The developed fabrication process is scalable to large wafer sizes.

  16. Passive Frequency Selective Surface Array as a Diffuser for Destroying Millimeter Wave Coherence

    Directory of Open Access Journals (Sweden)

    Saiful Islam

    2008-01-01

    Full Text Available This paper presents the design, construction, and testing of grounded frequency selective surface (FSS array as a diffuser for destroying millimeter wave coherence which is used to eliminate speckle in active millimeter wave imaging. To create stochastically independent illumination patterns, we proposed a diffuser based on random-phase distributions obtained by changing the incident frequency. The random-phase diffuser was obtained by mixing up the phase relations between the cells of a deterministic function (e.g., beam splitter. The slot length of FSS is the main design parameter used to optimize the phase shifting properties of the array. The critical parameters of the diffuser array design, such as phase relation with slot lengths, losses, and bandwidth, are discussed. We designed the FSS arrays with finite integral technique (FIT, fabricated by etching technique, and characterized the S-parameters with a free-space MVNA, and measured the radiation patterns with a BWO in motorized setup.

  17. Optical Synthesis of Terahertz and Millimeter-Wave Frequencies with Discrete Mode Diode Lasers

    CERN Document Server

    O'Brien, Stephen; Bitauld, David; Brandonisio, Nicola; Amann, Andreas; Phelan, Richard; Kelly, Brian; O'Gorman, James

    2010-01-01

    It is shown that optical synthesis of terahertz and millimeter-wave frequencies can be achieved using two-mode and mode-locked discrete mode diode lasers. These edge-emitting devices incorporate a spatially varying refractive index profile which is designed according to the spectral output desired of the laser. We first demonstrate a device which supports two primary modes simultaneously with high spectral purity. In this case sinusoidal modulation of the optical intensity at terahertz frequencies can be obtained. Cross saturation of the material gain in quantum well lasers prevents simultaneous lasing of two modes with spacings in the millimeter-wave region. We show finally that by mode-locking of devices that are designed to support a minimal set of four primary modes, we obtain a sinusoidal modulation of the optical intensity in this frequency region.

  18. Soft Computing Methods for Microwave and Millimeter-Wave Design Problems

    CERN Document Server

    Chauhan, Narendra; Mittal, Ankush

    2012-01-01

    The growing commercial market of Microwave/ Millimeter wave industry over the past decade has led to the explosion of interests and opportunities for the design and development of microwave components.The design of most microwave components requires the use of commercially available electromagnetic (EM) simulation tools for their analysis. In the design process, the simulations are carried out by varying the design parameters until the desired response is obtained. The optimization of design parameters by manual searching is a cumbersome and time consuming process. Soft computing methods such as Genetic Algorithm (GA), Artificial Neural Network (ANN) and Fuzzy Logic (FL) have been widely used by EM researchers for microwave design since last decade. The aim of these methods is to tolerate imprecision, uncertainty, and approximation to achieve robust and low cost solution in a small time frame.  Modeling and optimization are essential parts and powerful tools for the microwave/millimeter wave design. This boo...

  19. DTU-ESA millimeter-wave validation standard antenna (mm-vast) – performance verification

    DEFF Research Database (Denmark)

    Pivnenko, Sergey; Kim, Oleksiy S.; Breinbjerg, Olav;

    2015-01-01

    A new multi-frequency Validation Standard (VAST) antenna covering upper microwave (K/Ka) and millimeter wave (Q/V) bands, and thus called mmVAST, was developed in cooperation between DTU and TICRA under contract from the European Space Agency. In this paper, the mechanical and electrical requirem......A new multi-frequency Validation Standard (VAST) antenna covering upper microwave (K/Ka) and millimeter wave (Q/V) bands, and thus called mmVAST, was developed in cooperation between DTU and TICRA under contract from the European Space Agency. In this paper, the mechanical and electrical...... requirements as well as the design and manufacturing of the mm-VAST antenna are briefly presented. The focus is then given to the details of conducted mechanical and electrical tests aimed at verifying the performance of the manufactured antenna and to the obtained measurement results....

  20. The involvement of cutaneous receptors in the biological effects of electromagnetic millimeter waves

    Directory of Open Access Journals (Sweden)

    Anton Emil

    2014-01-01

    Full Text Available The involvement of peripheral nerve terminations in the mechanisms of action of electromagnetic millimeter waves (mmW was assessed. It is currently thought that mmW could be used in noninvasive complementary therapy because of their analgesic effect. However, the mechanisms of their antinociceptive effect and non-ionizing radiation are the subjects of controversy. The mechanisms of interaction of mmW and the cutaneous tissue have not been elucidated. We observed mast cell degranulation at the place of mmW action, a decrease of chronaxie and Turck reflex time, an increase in the number of afferent impulses after sciatic nerve at stimulation, as well as an increase electrocardiogram R-R interval of isolated frog heart after application of mmW. Based on these investigations, we propose that electromagnetic waves of millimeter length modify, through indirect mechanisms, the excitability and reactivity of peripheral nerve terminations.

  1. Application of Implicit Space Mapping in the Design of Hammerhead Filter in Millimeter-Wave Band

    Directory of Open Access Journals (Sweden)

    Fuqun Zhong

    2012-03-01

    Full Text Available In this study, we present advances in microwave and millimeter-wave device modeling exploiting the Space Mapping (SM technology. New SM-based modeling techniques are used that are easy to implement entirely in the Agilent ADS framework. The implicit space mapping algorithm is applied to the design of hammerhead filter in millimeter-wave band. The validity of this method is confirmed by comparison with fullwave EM simulation result and measured data. Based on the proposed method, a filter was designed and fabricated on a substrate with thickness of 0.254 mm and dielectric constant of 2.2. The experimental results show good agreement with simulated results. It is proved that the accuracy can be achieved using the implicit space mapping algorithm, and the design efficiency can be greatly improved.

  2. 36th Annual International Conference on Infrared Millimeter and Terahertz Waves

    Energy Technology Data Exchange (ETDEWEB)

    Mittleman, Daniel M. [Rice University

    2011-12-31

    The Major Topic List of the 2011 conference featured a category entitled “IR, millimeter-wave, and THz spectroscopy,” another entitled “Gyro-Oscillators and Amplifiers, Plasma Diagnostics,” and a third called “Free Electron Lasers and Synchrotron Radiation.” Topical areas of interest to meeting participants include millimeter-wave electronics, high-power sources, high-frequency communications systems, and terahertz sensing and imaging, all of which are prominent in the research portfolios of the DOE. The development and study of new materials, components, and systems for use in the IR, THz, and MMW regions of the spectrum are of significant interest as well. a series of technical sessions were organized on the following topics: terahertz metamaterials and plasmonics; imaging techniques and applications; graphene spectroscopy; waveguide concepts; gyrotron science and technology; ultrafast terahertz measurements; and quantum cascade lasers.

  3. Glass Melt Emissivity, Viscosity, and Foaming Monitoring with Millimeter-Waves

    Energy Technology Data Exchange (ETDEWEB)

    Woskov, Paul P.; Sundaram, S.K.; Daniel, William E.; Hadidi, Kamal; Bromberg, Leslie; Miller, Don; Rogers, L.A.

    2003-09-10

    Nuclear waste glass processing efficiencies, improved melter control to anomalies such as foaming, and environmental compliance would be facilitated by the availability of on-line monitoring technologies. It has been shown that the millimeter-wave (MMW) range of the electromagnetic spectrum (0.3-10 mm) is ideally suited to hot melter environments by having wavelengths long enough to penetrate optically obscure views yet short enough to provide spatial resolution with reliable refractory quasi-optical components. A thermal return reflection (TRR) method has been developed that allows a millimeter-wave pyrometer to determine emissivity by returning a portion of the thermal emission as a probe. Melt glass viscosities in the range 20 -2000 Poise and specific gravities have been measured by rates of flow and displacements inside hollow MMW ceramic waveguides immersed into the melts. Glass foaming has been observed by detecting the melt surface swelling followed by the increase in surface emissivity after gases break the surface.

  4. Uncorrelated Phase Noise Analysis for Millimeter-Wave Radiometer Imager Frequency Synthesizer

    Directory of Open Access Journals (Sweden)

    Jin Zhang

    2013-09-01

    Full Text Available In this paper, a nontrivial uncorrelated phase noise analysis is proposed for frequency synthesizer of a passive millimeter-wave Synthetic Aperture Interferometric Radiometer (SAIR imager named BHU-2D-U designed for concealed weapon detections on human bodies with high imaging rates. This synthesizer provides local oscillators both for millimeter-wave front-ends and intermediate frequency IQ demodulators for the receivers. The influence of synthesizer uncorrelated phase noise in different offset frequency ranges on the visibility phase errors have been systematically investigated with phase noise mismatch requirements drawn. Integrated RMS phase error has been applied to establish uncorrelated phase noise requirements for visibility error control. Measurement results have proved that uncorrelated phase noise does exist among synthesizer output pairs, and the previously defined requirements are achieved with imaging results proposed. In conclusion, the uncorrelated phase noise effects on SAIR visibility errors have been concretized to phase noise design requirements, which have been realized by synthesizer design.

  5. Uniplanar Millimeter-Wave Log-Periodic Dipole Array Antenna Fed by Coplanar Waveguide

    Directory of Open Access Journals (Sweden)

    Guohua Zhai

    2013-01-01

    Full Text Available A uniplanar millimeter-wave broadband printed log-periodic dipole array (PLPDA antenna fed by coplanar waveguide (CPW is introduced. This proposed structure consists of several active dipole elements, feeding lines, parallel coupled line, and the CPW, which are etched on a single metallic layer of the substrate. The parallel coupled line can be optimized to act as a transformer between the CPW and the PLPDA antenna. Meanwhile, this transform performs the task of a balun to achieve a wideband, low cost, low loss, simple directional antenna. The uniplanar nature makes the antenna suitable to be integrated into modern printed communication circuits, especially the monolithic millimeter-wave integrated circuits (MMIC. The antenna has been carefully examined and measured to present the return loss, far-field patterns, and antenna gain.

  6. Design of a 10-Gb/s satellite downlink at millimeter-wave frequencies

    Science.gov (United States)

    Ridgway, Richard W.; Nippa, David W.; Yen, Stephen; Barnum, Thomas J.

    2011-03-01

    System requirements, including carrier frequency, transmitted power and antenna gain are presented for a 10 Gb/s satellite downlink operating at millimeter-wave frequencies. Telecommunications-grade optical components and a high-speed photodiode are used to generate and modulate millimeter-wave carrier frequencies between 90 GHz and 100 GHz at data rates in excess of 10 Gb/s. Experimental results are presented that determine the minimum received power level needed for error-free wireless data transmission. Commercially available W-band power amplifiers are shown to increase the transmitted power level and extend the error-free propagation distance to distances of 10 km. Experimental results and documented atmospheric attenuation values for clouds, fog and rain are used to estimate link budgets for a wireless downlink located on a low-earth-orbiting satellite operating at an altitude of 350 km.

  7. Wafer scale millimeter-wave integrated circuits based on epitaxial graphene in high data rate communication

    Science.gov (United States)

    Habibpour, Omid; He, Zhongxia Simon; Strupinski, Wlodek; Rorsman, Niklas; Zirath, Herbert

    2017-01-01

    In recent years, the demand for high data rate wireless communications has increased dramatically, which requires larger bandwidth to sustain multi-user accessibility and quality of services. This can be achieved at millimeter wave frequencies. Graphene is a promising material for the development of millimeter-wave electronics because of its outstanding electron transport properties. Up to now, due to the lack of high quality material and process technology, the operating frequency of demonstrated circuits has been far below the potential of graphene. Here, we present monolithic integrated circuits based on epitaxial graphene operating at unprecedented high frequencies (80–100 GHz). The demonstrated circuits are capable of encoding/decoding of multi-gigabit-per-second information into/from the amplitude or phase of the carrier signal. The developed fabrication process is scalable to large wafer sizes. PMID:28145513

  8. Passive millimeter-wave imagery of helicopter obstacles in a sand environment

    Science.gov (United States)

    Wikner, David A.

    2006-05-01

    Operation of military helicopters in a dusty environment challenges pilots with reduced visibility. Passive millimeter-wave (MMW) imaging has the potential to be used in these environments to image through dust cloud obscurants. The millimeter-wave phenomenology of the sand environment and the obstacles present in that environment are explored in this work. A 93 GHz polarimetric passive MMW imager was used to characterize an obstacle-rich sand environment and the results are presented. It is shown that there is a strong polarimetric signature present for both sand and cinder block between 10 and 30 degrees depression angles. Also shown is the phenomenology associated with shadows on sand. It was determined that berms and ditches can be very difficult to detect using even a sensitive MMW radiometer. The results can be used to model the performance of passive MMW imaging systems in a sandy environment.

  9. The Chromospheric Solar Millimeter-wave Cavity, as a Result of the Temperature Minimum Region

    CERN Document Server

    De la Luz, V; Lara, A

    2012-01-01

    We present a detailed theoretical analysis of the local radio emission at the lower part of the solar atmosphere. To accomplish this, we have used a numerical code to simulate the emission and transport of high frequency electromagnetic waves from 2 GHz up to 10 THz. As initial conditions we used three well know chromospheric models. In this way, the generated synthetic spectra allows us to study the local emission and absorption processes with high resolution in both altitude and frequency. Associated with the temperature minimum predicted by these models we found that the local optical depth at millimeter wavelengths remains constant, producing an optically thin layer which is surrounded by two layers of high local emission. We call this structure the Chromospheric Solar Millimeter-wave Cavity (CSMC). The CSMC shows the complexity of the relationship between the theoretical temperature profile and the observed brightness temperature and may help to understand the dispersion of the observed brightness temper...

  10. Toward the development of an image quality tool for active millimeter wave imaging systems

    Science.gov (United States)

    Barber, Jeffrey; Weatherall, James C.; Greca, Joseph; Smith, Barry T.

    2015-05-01

    Preliminary design considerations for an image quality tool to complement millimeter wave imaging systems are presented. The tool is planned for use in confirming operating parameters; confirmation of continuity for imaging component design changes, and analysis of new components and detection algorithms. Potential embodiments of an image quality tool may contain materials that mimic human skin in order to provide a realistic signal return for testing, which may also help reduce or eliminate the need for mock passengers for developmental testing. Two candidate materials, a dielectric liquid and an iron-loaded epoxy, have been identified and reflection measurements have been performed using laboratory systems in the range 18 - 40 GHz. Results show good agreement with both laboratory and literature data on human skin, particularly in the range of operation of two commercially available millimeter wave imaging systems. Issues related to the practical use of liquids and magnetic materials for image quality tools are discussed.

  11. Photonic generation of frequency-quadrupling millimeter-wave signals using polarization property

    Science.gov (United States)

    Zhu, Min; Tang, Xianfeng; Xi, Lixia; Zhang, Wenbo; Zhang, Xiaoguang

    2016-03-01

    We propose and analyze a photonic method of generating frequency-quadrupling millimeter-wave signal. This scheme is realized by using a single LiNbO3 intensity modulator (IM) and a Faraday mirror based transverse-electrical and transverse-magnetic mode converter in a Sagnac loop without using an optical filter or an electrical microwave phase shifter. Making use of the intrinsic polarization dependence and the velocity phenomenon of the IM, a special double sideband modulation is implemented, which ensures that the optical carrier can be effectively cancelled employing polarization manipulation. A linear polarizer is used as the polarization selection element to choose the second-order sidebands from the modulated light. After beating at the photodiode, a frequency-quadrupled millimeter-wave signal with >30 dB radio frequency spurious suppression ratio is generated. The imperfection of the devices is considered when estimating the system performance.

  12. Planar millimeter wave radar frontend for automotive applications

    OpenAIRE

    2003-01-01

    A fully integrated planar sensor for 77 GHz automotive applications is presented. The frontend consists of a transceiver multichip module and an electronically steerable microstrip patch array. The antenna feed network is based on a modified Rotman-lens and connected to the array in a multilayer approach offering higher integration. Furthermore, the frontend comprises a phase lock loop to allow proper frequency-modulated continuous wave (FMCW) radar operation. The latest experimental results ...

  13. Broadband millimeter-wave electro-optic modulator using multi-patch antennas for pico-cell radar networks

    Science.gov (United States)

    Wijayanto, Yusuf Nur; Kanno, Atsushi; Kawanishi, Tetsuya

    2015-01-01

    An electro-optic (EO) modulator using multi patch antennas is proposed for broadband millimeter-wave bands in pico-cell radar networks. The proposed device is composed of multi patch antennas with a gap fabricated on a LiNbO3 crystal bonded with a low-k dielectric material. Multiple millimeter-wave operational frequencies can be received by the multi patch antennas and converting directly to lightwave signals through the Pockel effects of the LiNbO3 crystal. By adjusting the metal patch size for receiving with relatively close millimeter-wave frequencies, the bandwidth of the EO modulator can be enlarged. Based on that, bandwidth of over 30% in millimeter-wave bands can be achieved using the proposed device.

  14. Experimental study of millimeter wave-induced differentiation of bone marrow mesenchymal stem cells into chondrocytes.

    Science.gov (United States)

    Wu, Guang-Wen; Liu, Xian-Xiang; Wu, Ming-Xia; Zhao, Jin-Yan; Chen, Wen-Lie; Lin, Ru-Hui; Lin, Jiu-Mao

    2009-04-01

    Low power millimeter wave irradiation is widely used in clinical medicine. We describe the effects of this treatment on cultured mesenchymal stem cells (MSCs) and attempted to identify the underlying mechanism. Cells cultured using the whole marrow attachment culture method proliferated dispersedly or in clones. Flow cytometric analyses showed that the MSCs were CD90 positive, but negative for CD45. The negative control group (A) did not express detectable levels of Cbfa1 or Sox9 mRNA at any time point, while cells in the millimeter wave-induced groups (B and C) increasingly expressed both genes after the fourth day post-induction. Statistical analysis showed that starting on the fourth day post-induction, there were very significant differences in the expression of Cbfa1 and Sox9 mRNA between groups A and B as well as A and C at any given time point, between treated groups B and C after identical periods of induction, and within each treated group at different induction times. Transition electron microscopy analysis showed that the rough endoplasmic reticulum of cells in the induced groups was richer and more developed than in cells of the negative control group, and that the shape of cells shifted from long-spindle to near ellipse. Toluidine blue staining revealed heterochromia in the cytoplasm and extracellular matrix of cells in the induced groups, whereas no obvious heterochromia was observed in negative control cells. Induced cells also exhibited positive immunohistochemical staining of collagen II, in contrast to the negative controls. These results show that millimeter wave treatment successfully induced MSCs to differentiate as chondrocytes and the extent of differentiation increased with treatment duration. Our findings suggest that millimeter wave irradiation can be employed as a novel non-drug inducing method for the differentiation of MSCs into chondrocytes.

  15. A Millimeter Wave Colgate Structure Dielectric Antenna with the built-in Diode Frequency Multiplier

    OpenAIRE

    2003-01-01

    The dielectric antennas in millimeter wave region are very useful for the broadband mobile applications with small power dissipation. The colgate structure which is the one of the dielectric leakage antenna, should be longer in the size. We designed. the 'squeezed colgate type antenna and show that the antenna have low antenna directivities. This paper show the experiments of the antenna performance. Moreover the diode frequency multiplier is adapted to the dielectric antenna.

  16. Waveform over fiber: DSP-aided coherent fiber-wireless transmission using millimeter and terahertz waves

    Science.gov (United States)

    Kanno, Atsushi; Tien Dat, Pham; Kuri, Toshiaki; Hosako, Iwao; Kawanishi, Tetsuya; Yoshida, Yuki; Kitayama, Ken-ichi

    2015-01-01

    In this paper, we describe seamless networks based on millimeter and terahertz wave radio links using waveform transfer over optical fibers. Coherent optical transceivers with digital signal processing provide transmission impairment compensation in both optical and radio sections, where devices for the signal processing are implemented at edges of the links. Waveforms, which include the modulation formats, the symbol rates, etc., are maintained in the entire links, to reduce transmission latency and energy consumption in the network.

  17. On-Wafer Characterization of Millimeter-Wave Antennas for Wireless Applications

    Science.gov (United States)

    Simons, Rainee N.; Lee, Richard Q.

    1998-01-01

    The paper demonstrates a de-embedding technique and a direct on-substrate measurement technique for fast and inexpensive characterization of miniature antennas for wireless applications at millimeter-wave frequencies. The technique is demonstrated by measurements on a tapered slot antenna (TSA). The measured results at Ka-Band frequencies include input impedance, mutual coupling between two TSAs and absolute gain of TSA.

  18. Acute ocular injuries caused by 60-Ghz millimeter-wave exposure.

    Science.gov (United States)

    Kojima, Masami; Hanazawa, Masahiro; Yamashiro, Yoko; Sasaki, Hiroshi; Watanabe, Soichi; Taki, Masao; Suzuki, Yukihisa; Hirata, Akimasa; Kamimura, Yoshitsugu; Sasaki, Kazuyuki

    2009-09-01

    The goal of this study was to examine the clinical course of 60-GHz millimeter-wave induced damages to the rabbit eye and to report experimental conditions that allow reproducible induction of these injuries. The eyes of pigmented rabbits (total number was 40) were irradiated with 60-GHz millimeter-waves using either a horn antenna or one of two lens antennas (6 and 9 mm diameter; phi6, phi9) Morphological changes were assessed by slit-lamp microscopy. Additional assessments included corneal fluorescein staining, iris fluorescein angiography, and lens epithelium light microscopy. Under the standardized eye-antenna positioning, the three antennas caused varying damages to the eyelids or eyeglobes. The most reproducible injuries without concurrent eyelid edema and corneal desiccation were achieved using the phi6 lens antenna: irradiation for 6 min led to an elevation of the corneal surface temperature (reaching 54.2 +/- 0.9 degrees C) plus corneal edema and epithelial cell loss. Furthermore, mitotic cells appeared in the pupillary area of the lens epithelium. Anterior uveitis also occurred resulting in acute miosis (from 6.6 +/- 1.4 to 2.2 +/- 1.4 mm), an increase in flares (from 6.7 +/- 0.9 to 334.3 +/- 130.8 photons per second), and iris vasodilation or vessel leakage. These findings indicate that the three types of millimeter-wave antennas can cause thermal injuries of varying types and levels. The thermal effects induced by millimeter-waves can apparently penetrate below the surface of the eye.

  19. Low Phase Noise SiGe Push-Push Oscillators for Millimeter Wave Frequencies

    OpenAIRE

    2008-01-01

    In this thesis low phase noise SiGe HBT monolithically integrated push-push oscillators for millimeter wave frequency generation are investigated. Nonlinear simulation methods for oscillator signal and noise analysis and device physics at high currents and high voltages are discussed. Push-push oscillators with output frequencies from 63 GHz up to 280 GHz were designed and after fabrication in an external foundry investigated experimentally. For automotive radar applications a VCO with a cent...

  20. Development and Testing of a Refractory Millimeter-Wave Absorbent Heat Exchanger

    Science.gov (United States)

    Lambot, Thomas; Myrabo, Leik; Murakami, David; Parkin, Kevin

    2014-01-01

    Central to the Millimeter-Wave Thermal Launch System (MTLS) is the millimeter-wave absorbent heat exchanger. We have developed metallic and ceramic variants, with the key challenge being the millimeter-wave absorbent coatings for each. The ceramic heat exchanger came to fruition first, demonstrating for the first time 1800 K peak surface temperatures under illumination by a 110 GHz Gaussian beam. Absorption efficiencies of up to 80 are calculated for mullite heat exchanger tubes and up to 50 are calculated for alumina tubes. These are compared with estimates based on stratified layer and finite element analyses. The problem of how to connect the 1800 K end of the ceramic tubes to a graphite outlet manifold and nozzle is solved by press fitting, or by threading the ends of the ceramic tubes and screwing them into place. The problem of how to connect the ceramic tubes to a metallic or nylon inlet pipe is solved by using soft compliant PTFE and PVC tubes that accommodate thermal deformations of the ceramic tubes during startup and operation. We show the resulting heat exchangers in static tests using argon and helium as propellants.

  1. Content-Based Multi-Channel Network Coding Algorithm in the Millimeter-Wave Sensor Network

    Directory of Open Access Journals (Sweden)

    Kai Lin

    2016-07-01

    Full Text Available With the development of wireless technology, the widespread use of 5G is already an irreversible trend, and millimeter-wave sensor networks are becoming more and more common. However, due to the high degree of complexity and bandwidth bottlenecks, the millimeter-wave sensor network still faces numerous problems. In this paper, we propose a novel content-based multi-channel network coding algorithm, which uses the functions of data fusion, multi-channel and network coding to improve the data transmission; the algorithm is referred to as content-based multi-channel network coding (CMNC. The CMNC algorithm provides a fusion-driven model based on the Dempster-Shafer (D-S evidence theory to classify the sensor nodes into different classes according to the data content. By using the result of the classification, the CMNC algorithm also provides the channel assignment strategy and uses network coding to further improve the quality of data transmission in the millimeter-wave sensor network. Extensive simulations are carried out and compared to other methods. Our simulation results show that the proposed CMNC algorithm can effectively improve the quality of data transmission and has better performance than the compared methods.

  2. RF Performance of Layer-Structured Broadband Passive Millimeter-Wave Imaging System

    Directory of Open Access Journals (Sweden)

    Kunio Sakakibara

    2016-01-01

    Full Text Available Low profile and simple configuration are advantageous for RF module in passive millimeter-wave imaging system. High sensitivity over broad operation bandwidth is also necessary to detect right information from weak signal. We propose a broadband layer-structured module with low profile, simple structure, and ease of manufacture. This module is composed of a lens antenna and a detector module that consists of a detector circuit and a broadband microstrip-to-waveguide transition. The module forms a layer structure as a printed substrate with detector circuit is fixed between two metal plates with horn antennas and back-short waveguides. We developed a broadband passive millimeter-wave imaging module composed of a lens antenna and a detector module in this work. The gain and the antenna efficiency were measured, and the broadband operation was observed for the lens antenna. For the detector module, peak sensitivity was 8100 V/W. Furthermore, the detector module recognized a difference in the absorber’s temperature. The designs of the lens antenna and the detector module are presented and the RF performances of these components are reported. Finally, passive millimeter-wave imaging of a car, a human, and a metal plate in clothes is demonstrated in this paper.

  3. Millimeter-Wave Heterodyne Six-Port Receiver: New Implementation and Demodulation Results

    Institute of Scientific and Technical Information of China (English)

    D Hammou; E. Moldovan; S.O. Tatu

    2011-01-01

    This paper presents a new implementation of a millimeter-wave heterodyne receiver based on six-port technology. The six-port model is implemented in Advanced Design System (ADS) using S-parameter measurements for realistic advanced simulation of a short-range 60 GHz wireless link. Millimeter-wave frequency conversion is performed using a six-port down-converter. The second frequency conversion is performed using conventional means because of low IF. A comparison between the proposed receiver and a conventional balanced millimeter-wave mixer shows that the proposed receiver improves conversion loss and I/Q phase stability over the local oscillator (LO) and RF power ranges. The results of demodulating a V-band quadrature phase-shift keying (QPSK) signal at a high data rate of 100 Mb/s-1 Gb/s are discussed. The results of a bit error rate (BER) and error vector magnitude (EVM) analysis prove that the proposed architecture can be successfully used for wireless link transmission up to 10 m.

  4. A Phase Noise Analysis Method for Millimeter-Wave Passive Imager BHU-2D-U Frequency Synthesizer

    OpenAIRE

    Jin Zhang; Cheng Zheng; Xianxun Yao; Baohua Yang

    2013-01-01

    A nontrivial phase noise analysis method is proposed for frequency synthesizer of a passive millimeter-wave synthetic aperture interferometric radiometer (SAIR) imager for concealed weapon detections on human bodies with high imaging rates. The frequency synthesizer provides local oscillator signals for both millimeter-wave front ends and intermediate frequency IQ demodulators for the SAIR system. The influence of synthesizer phase noise in different offset frequency ranges on the visibility ...

  5. Millimeter-Wave Wireless Power Transfer Technology for Space Applications

    Science.gov (United States)

    Chattopadhyay, Goutam; Manohara, Harish; Mojarradi, Mohammad M.; Vo, Tuan A.; Mojarradi, Hadi; Bae, Sam Y.; Marzwell, Neville

    2008-01-01

    In this paper we present a new compact, scalable, and low cost technology for efficient receiving of power using RF waves at 94 GHz. This technology employs a highly innovative array of slot antennas that is integrated on substrate composed of gold (Au), silicon (Si), and silicon dioxide (SiO2) layers. The length of the slots and spacing between them are optimized for a highly efficient beam through a 3-D electromagnetic simulation process. Antenna simulation results shows a good beam profile with very low side lobe levels and better than 93% antenna efficiency.

  6. Development and testing of a fast Fourier transform high dynamic-range spectral diagnostics for millimeter wave characterization

    Energy Technology Data Exchange (ETDEWEB)

    Thoen, D. J.; Bongers, W. A.; Westerhof, E.; Baar, M. R. de; Berg, M. A. van den; Beveren, V. van; Goede, A. P. H.; Graswinckel, M. F.; Schueller, F. C. [Association EURATOM-FOM, Trilateral Euregio Cluster, FOM-Institute for Plasma Physics Rijnhuizen, P.O. Box 1207, 3430 BE Nieuwegein (Netherlands); Oosterbeek, J. W.; Buerger, A. [Association EURATOM-FZJ, Institut fuer Energieforschung-Plasmaphysik, Forschungszentrum Juelich GMBH, 52425 Juelich (Germany); Hennen, B. A. [Association EURATOM-FOM, Trilateral Euregio Cluster, FOM-Institute for Plasma Physics Rijnhuizen, P.O. Box 1207, 3430 BE Nieuwegein (Netherlands); Control Systems Technology Group, Eindhoven University of Technology, P.O. Box 513, NL-5600 MB Eindhoven (Netherlands)

    2009-10-15

    A fast Fourier transform (FFT) based wide range millimeter wave diagnostics for spectral characterization of scattered millimeter waves in plasmas has been successfully brought into operation. The scattered millimeter waves are heterodyne downconverted and directly digitized using a fast analog-digital converter and a compact peripheral component interconnect computer. Frequency spectra are obtained by FFT in the time domain of the intermediate frequency signal. The scattered millimeter waves are generated during high power electron cyclotron resonance heating experiments on the TEXTOR tokamak and demonstrate the performance of the diagnostics and, in particular, the usability of direct digitizing and Fourier transformation of millimeter wave signals. The diagnostics is able to acquire 4 GHz wide spectra of signals in the range of 136-140 GHz. The rate of spectra is tunable and has been tested between 200 000 spectra/s with a frequency resolution of 100 MHz and 120 spectra/s with a frequency resolution of 25 kHz. The respective dynamic ranges are 52 and 88 dB. Major benefits of the new diagnostics are a tunable time and frequency resolution due to postdetection, near-real time processing of the acquired data. This diagnostics has a wider application in astrophysics, earth observation, plasma physics, and molecular spectroscopy for the detection and analysis of millimeter wave radiation, providing high-resolution spectra at high temporal resolution and large dynamic range.

  7. Strong Scattering of High Power Millimeter Waves in Tokamak Plasmas with Tearing Modes

    DEFF Research Database (Denmark)

    Westerhof, E.; Nielsen, Stefan Kragh; Oosterbeek, J.W.;

    2009-01-01

    In tokamak plasmas with a tearing mode, strong scattering of high power millimeter waves, as used for heating and noninductive current drive, is shown to occur. This new wave scattering phenomenon is shown to be related to the passage of the O point of a magnetic island through the high power...... heating beam. The density determines the detailed phasing of the scattered radiation relative to the O-point passage. The scattering power depends strongly nonlinearly on the heating beam power. ©2009 The American Physical Society...

  8. Characteristics of Off-Chip Millimeter-Wave Radiation from Serial Josephson Junction Arrays

    Institute of Scientific and Technical Information of China (English)

    WANG Zheng; FAN Bin; ZHAO Xin-Jie; YUE Hong-Wei; HE Ming; JI Lu; YAN Shao-Lin; FANG Lan; Klushin A. M.

    2011-01-01

    @@ We investigate the self-emissions from serial high-temperature superconductor bicrystal Josephson junction ar- rays embedded in a quasi-optical resonator.A bicrystal substrate is used as a dielectric resonator antenna, which increases the coupling strength between the junction array and the electromagnetic (EM) wave.Both three-dimension (3D) electromagnetic simulations and experiments are performed.Strong ofT-chip radiations axe measured from the junction array at 78 GHz and 78 K.The proposed method and the experimental results are important for millimeter wave applications in junction arrays.

  9. Models of millimeter-wave emission from dust in the coma of Comet 67P

    Science.gov (United States)

    Kareta, Theodore R.; Schloerb, F. Peter

    2017-01-01

    The spacecraft Rosetta ended its mission on September 30th, 2016 after spending more than 2 years studying Comet 67P/Churyumov-Gerasimenko. The comet is constantly emitting gas and ejecting dust as it moves through the inner solar system, and understanding the properties of the gas and dust can help us better understand the comet and its origins. We present the results of a Monte Carlo simulation of dust production developed for comparison with millimeter and submillimeter data obtained by the Microwave Instrument for the Rosetta Orbiter (MIRO). The MIRO instrument measures the millimeter-wave continuum emission from the comet at two wavelengths, 0.53 mm and 1.59 mm. During the months around the August 2015 perihelion of the comet, a small emission excess was observed above the sunlit limb of the comet. The excess emission extends many beam widths off the dayside limb and is a persistent feature for months of observations. No excess is observed above the nightside limb, and given the known strong day-night asymmetry of gas production from the nucleus, we interpret the observed continuum excess on the day side to result from thermal emission from dust. A full treatment of the millimeter-wave emission from the large dust particles observed by MIRO must include many effects, including acceleration of dust particles by outflowing gas and the integration of millimeter-wave emission from a broad range of particle sizes. Our model also incorporates an accurate cometary shape model to demonstrate how dust production might vary with solar illumination over the surface. We find that the complex shape of 67P can lead to asymmetric structures in the distribution of the coma dust, with significant enhancements occurring where large areas of the nucleus have similar orientations with respect to the Sun.

  10. Integrated horn antennas for millimeter-wave applications

    Science.gov (United States)

    Rebeiz, Gabriel M.; Katehi, Linda P. B.; Ali-Ahmad, Walid Y.; Eleftheriades, George V.; Ling, Curtis C.

    1992-02-01

    The development of integrated horn antennas since their introduction in 1987 is reviewed. The integrated horn is fabricated by suspending a dipole antenna, on a thin dielectric membrane, in a pyramidal cavity etched in silicon. Recent progress has resulted in optimized low- and high-gain designs, with single and double polarization for remote-sensing and communication applications. A full-wave analysis technique has resulted in an integrated antenna with performance comparable to that of waveguide-fed corrugated-horn antennas. The integrated horn design can be extended to large arrays, for imaging and phased-array applications, while leaving plenty of room for the RF and IF processing circuitry. Theoretical and experimental results at microwave frequencies and at 90 GHz, 240 GHz, and 802 GHz are presented.

  11. Integrated Balanced BPSK Modulator for Millimeter Wave Systems

    Directory of Open Access Journals (Sweden)

    Asok De

    2007-10-01

    Full Text Available This paper details the design of integrated balanced PSK modulator using finline coplanar line hybrid junction. The PSK signal output is in suspended stripline with incident wave carrier in finline. Schottky barrier Diode MA4E2037 has been used for modulation. The balanced configuration offers high isolation between the carrier input port and the modulated carrier output port and thus the pulse width variations and amplitude deviations are suppressed. An insertion loss imbalance of ±1.5 dB with an average loss of 2 dB in the two switching states has been achieved over 38.9 to 40 GHz. The phase imbalance is ±10 degrees with phase switching from 180 to 199 degrees As the PSK output signal is in suspended stripline, two BPSK modulators can be easily combined together to work as QPSK modulator.

  12. Proof-of-Concept of a Millimeter-Wave Integrated Heterogeneous Network for 5G Cellular.

    Science.gov (United States)

    Okasaka, Shozo; Weiler, Richard J; Keusgen, Wilhelm; Pudeyev, Andrey; Maltsev, Alexander; Karls, Ingolf; Sakaguchi, Kei

    2016-08-25

    The fifth-generation mobile networks (5G) will not only enhance mobile broadband services, but also enable connectivity for a massive number of Internet-of-Things devices, such as wireless sensors, meters or actuators. Thus, 5G is expected to achieve a 1000-fold or more increase in capacity over 4G. The use of the millimeter-wave (mmWave) spectrum is a key enabler to allowing 5G to achieve such enhancement in capacity. To fully utilize the mmWave spectrum, 5G is expected to adopt a heterogeneous network (HetNet) architecture, wherein mmWave small cells are overlaid onto a conventional macro-cellular network. In the mmWave-integrated HetNet, splitting of the control plane (CP) and user plane (UP) will allow continuous connectivity and increase the capacity of the mmWave small cells. mmWave communication can be used not only for access linking, but also for wireless backhaul linking, which will facilitate the installation of mmWave small cells. In this study, a proof-of-concept (PoC) was conducted to demonstrate the practicality of a prototype mmWave-integrated HetNet, using mmWave technologies for both backhaul and access.

  13. Proof-of-Concept of a Millimeter-Wave Integrated Heterogeneous Network for 5G Cellular

    Directory of Open Access Journals (Sweden)

    Shozo Okasaka

    2016-08-01

    Full Text Available The fifth-generation mobile networks (5G will not only enhance mobile broadband services, but also enable connectivity for a massive number of Internet-of-Things devices, such as wireless sensors, meters or actuators. Thus, 5G is expected to achieve a 1000-fold or more increase in capacity over 4G. The use of the millimeter-wave (mmWave spectrum is a key enabler to allowing 5G to achieve such enhancement in capacity. To fully utilize the mmWave spectrum, 5G is expected to adopt a heterogeneous network (HetNet architecture, wherein mmWave small cells are overlaid onto a conventional macro-cellular network. In the mmWave-integrated HetNet, splitting of the control plane (CP and user plane (UP will allow continuous connectivity and increase the capacity of the mmWave small cells. mmWave communication can be used not only for access linking, but also for wireless backhaul linking, which will facilitate the installation of mmWave small cells. In this study, a proof-of-concept (PoC was conducted to demonstrate the practicality of a prototype mmWave-integrated HetNet, using mmWave technologies for both backhaul and access.

  14. Carbon loaded Teflon (CLT): a power density meter for biological experiments using millimeter waves.

    Science.gov (United States)

    Allen, Stewart J; Ross, James A

    2007-01-01

    The standard technique for measurement of millimeter wave fields utilizes an open-ended waveguide attached to a HP power meter. The alignment of the waveguide with the propagation (K) vector is critical to making accurate measurements. Using this technique, it is difficult and time consuming to make a detailed map of average incident power density over areas of biological interest and the spatial resolution of this instrument does not allow accurate measurements in non-uniform fields. For biological experiments, it is important to know the center field average incident power density and the distribution over the exposed area. Two 4 ft x 4 ft x 1/32 inch sheets of carbon loaded Teflon (CLT) (one 15% carbon and one 25% carbon) were procured and a series of tests to determine the usefulness of CLT in defining fields in the millimeter wavelength range was initiated. Since the CLT was to be used both in the laboratory, where the environment was well controlled, and in the field, where the environment could not be controlled, tests were made to determine effects of change in environmental conditions on ability to use CLT as a millimeter wave dosimeter. The empirical results of this study indicate CLT to be an effective dosimeter for biological experiments both in the laboratory and in the field.

  15. THE CHROMOSPHERIC SOLAR MILLIMETER-WAVE CAVITY ORIGINATES IN THE TEMPERATURE MINIMUM REGION

    Energy Technology Data Exchange (ETDEWEB)

    De la Luz, Victor [Instituto Nacional de Astrofisica, Optica y Electronica, Tonantzintla, Puebla, Mexico, Apdo. Postal 51 y 216, 72000 (Mexico); Raulin, Jean-Pierre [CRAAM, Universidade Presbiteriana Mackenzie, Sao Paulo, SP 01302-907 (Brazil); Lara, Alejandro [Instituto de Geofisica, Universidad Nacional Autonoma de Mexico, Mexico 04510 (Mexico)

    2013-01-10

    We present a detailed theoretical analysis of the local radio emission at the lower part of the solar atmosphere. To accomplish this, we have used a numerical code to simulate the emission and transport of high-frequency electromagnetic waves from 2 GHz up to 10 THz. As initial conditions, we used VALC, SEL05, and C7 solar chromospheric models. In this way, the generated synthetic spectra allow us to study the local emission and absorption processes with high resolution in both altitude and frequency. Associated with the temperature minimum predicted by these models, we found that the local optical depth at millimeter wavelengths remains constant, producing an optically thin layer that is surrounded by two layers of high local emission. We call this structure the Chromospheric Solar Millimeter-wave Cavity (CSMC). The temperature profile, which features temperature minimum layers and a subsequent temperature rise, produces the CSMC phenomenon. The CSMC shows the complexity of the relation between the theoretical temperature profile and the observed brightness temperature and may help us to understand the dispersion of the observed brightness temperature in the millimeter wavelength range.

  16. Safety Aspect Analysis of Helmet Mounted Millimeter Wave Radio

    Directory of Open Access Journals (Sweden)

    K. Nageswari

    1999-07-01

    Full Text Available Measurements of millimetric wave (MMW power density from two-helmet-mounted MMW radiating horn antennas were made at various distances on the three axes. These three axes are representing three planes: (i in the direction of propagation (Z-axis, (ii horizontal axis perpendicular to the direction of propagation (Y-axis, i.e., 15 cm to the left or right of Z-axis, and (iii vertical axis (X-axis also perpendicular to the direction of propagation and extending up and down an imaginary central reference line passing through the centre of the horn and the centre of the microwave measuring probe. Measurements were also made inside the helmet close to the metallic plate at 17 locations and 10 cm away from it. The Narda-8723 broadband isotropic microwave probe [frequency of operation (0.3-40 GHz power density range 0.05-100 mW/cm1 was placed at various distance points marked at 15 nm intervals and also at distances of relevance on Z-axis. For each of the distance points on Z-axis, measurements were taken at 7 probe locations on X-axis. For Y-axis measurements, 4 probe locations were selected (on vertical or X-axis. The results revealed no leakage of microwave power inside the helmets. In the transmitting mode of operation, there was a great variability of microwave power emitted closest to the horn antennas (2.5-5.0 mW / 2 and 6.0-105 mW /cm2 for helmet Nos.11 and2, respectively. As the distance from the antenna increased in the direction of propagation, the power density dropped to 0.04 m W / cm2 or 0.075 m W / cm{ maximum value at 1 m. As the values recorded are within American National Standards Institute (ANSI safety guidelines (10mW/cm2 at 35 GHz.

  17. A millimeter-wave WDM-ROF system based on supercontinuum technique

    Institute of Scientific and Technical Information of China (English)

    YUAN Quan-xin; YIN Xiao-li; XIN Xiang-jun; YU Chong-xiu; CHEN Yu-lu; MU Bo

    2011-01-01

    In this paper,a new millimeter-wave (mm-wave) wavelength division multiplexing (WDM) system based on radio-overfiber (ROF) technology is proposed.In this approach a multi-wavelength light source is obtained by supercontinuum (SC)technique,and mm-wave signals are obtained by using optical heterodyning method.We experimentally demonstrate the generation of optical carriers for 6-WDM channels,obtain 40 GHz mm-wave signals by employing optical heterodyne technique,and successfully achieve low error rate transmission of 2.5 Gbit/s in WDM channels over a distance of 25 km in a G.652 fiber.The experimental results verify that the proposed solution is feasible and cost effective.

  18. Millimeter and submillimeter wave spectroscopy of higher energy conformers of 1,2-propanediol

    Science.gov (United States)

    Zakharenko, O.; Bossa, J.-B.; Lewen, F.; Schlemmer, S.; Müller, H. S. P.

    2017-03-01

    We have performed a study of the millimeter/submillimeter wave spectrum of four higher energy conformers of 1,2-propanediol. The present analysis of rotational transitions carried out in the frequency range 38-400 GHz represents a significant extension of previous microwave work. The new data were combined with previously-measured microwave transitions and fitted using a Watson's S-reduced Hamiltonian. The final fits were within experimental accuracy, and included spectroscopic parameters up to sixth order of angular momentum, for the ground states of the four higher energy conformers following previously studied ones: g‧Ga, gG‧g‧, aGg‧ and g‧Gg. The present analysis provides reliable frequency predictions for astrophysical detection of 1,2-propanediol by radio telescope arrays at millimeter wavelengths.

  19. Planar millimeter wave radar frontend for automotive applications

    Directory of Open Access Journals (Sweden)

    J. Grubert

    2003-01-01

    Full Text Available A fully integrated planar sensor for 77 GHz automotive applications is presented. The frontend consists of a transceiver multichip module and an electronically steerable microstrip patch array. The antenna feed network is based on a modified Rotman-lens and connected to the array in a multilayer approach offering higher integration. Furthermore, the frontend comprises a phase lock loop to allow proper frequency-modulated continuous wave (FMCW radar operation. The latest experimental results verify the functionality of this advanced frontend design featuring automatic cruise control, precrash sensing and cut-in detection. These promising radar measurements give reason to a detailed theoretical investigation of system performance. Employing commercially available MMIC various circuit topologies are compared based on signal-tonoise considerations. Different scenarios for both sequential and parallel lobing hint to more advanced sensor designs and better performance. These improvements strongly depend on the availability of suitable MMIC and reliable packaging technologies. Within our present approach possible future MMIC developments are already considered and, thus, can be easily adapted by the flexible frontend design. Es wird ein integrierter planarer Sensor für 77 GHz Radaranwendungen vorgestellt. Das Frontend besteht aus einem Sende- und Empfangs-Multi-Chip-Modul und einer elektronisch schwenkbaren Antenne. Das Speisenetzwerk der Antenne basiert auf einer modifizierten Rotman- Linse. Für eine kompakte Bauweise sind Antenne und Speisenetzwerk mehrlagig integriert. Weiterhin umfasst das Frontend eine Phasenregelschleife für eine präzise Steuerung des frequenzmodulierten Dauerstrichradars. Die aktuellen Messergebnisse bestätigen die Funktionalit¨at dieses neuartigen Frontend-Designs, das automatische Geschwindigkeitsregelung, Kollisionswarnung sowie Nahbereichsüberwachung ermöglicht. Die Qualität der Messergebnisse hat weiterf

  20. Planar millimeter wave radar frontend for automotive applications

    Science.gov (United States)

    Grubert, J.; Heyen, J.; Metz, C.; Stange, L. C.; Jacob, A. F.

    2003-05-01

    A fully integrated planar sensor for 77 GHz automotive applications is presented. The frontend consists of a transceiver multichip module and an electronically steerable microstrip patch array. The antenna feed network is based on a modified Rotman-lens and connected to the array in a multilayer approach offering higher integration. Furthermore, the frontend comprises a phase lock loop to allow proper frequency-modulated continuous wave (FMCW) radar operation. The latest experimental results verify the functionality of this advanced frontend design featuring automatic cruise control, precrash sensing and cut-in detection. These promising radar measurements give reason to a detailed theoretical investigation of system performance. Employing commercially available MMIC various circuit topologies are compared based on signal-tonoise considerations. Different scenarios for both sequential and parallel lobing hint to more advanced sensor designs and better performance. These improvements strongly depend on the availability of suitable MMIC and reliable packaging technologies. Within our present approach possible future MMIC developments are already considered and, thus, can be easily adapted by the flexible frontend design. Es wird ein integrierter planarer Sensor für 77 GHz Radaranwendungen vorgestellt. Das Frontend besteht aus einem Sende- und Empfangs-Multi-Chip-Modul und einer elektronisch schwenkbaren Antenne. Das Speisenetzwerk der Antenne basiert auf einer modifizierten Rotman- Linse. Für eine kompakte Bauweise sind Antenne und Speisenetzwerk mehrlagig integriert. Weiterhin umfasst das Frontend eine Phasenregelschleife für eine präzise Steuerung des frequenzmodulierten Dauerstrichradars. Die aktuellen Messergebnisse bestätigen die Funktionalit¨at dieses neuartigen Frontend-Designs, das automatische Geschwindigkeitsregelung, Kollisionswarnung sowie Nahbereichsüberwachung ermöglicht. Die Qualität der Messergebnisse hat weiterführende theoretische

  1. Reflection imaging in the millimeter-wave range using a video-rate terahertz camera

    Science.gov (United States)

    Marchese, Linda E.; Terroux, Marc; Doucet, Michel; Blanchard, Nathalie; Pancrati, Ovidiu; Dufour, Denis; Bergeron, Alain

    2016-05-01

    The ability of millimeter waves (1-10 mm, or 30-300 GHz) to penetrate through dense materials, such as leather, wool, wood and gyprock, and to also transmit over long distances due to low atmospheric absorption, makes them ideal for numerous applications, such as body scanning, building inspection and seeing in degraded visual environments. Current drawbacks of millimeter wave imaging systems are they use single detector or linear arrays that require scanning or the two dimensional arrays are bulky, often consisting of rather large antenna-couple focal plane arrays (FPAs). Previous work from INO has demonstrated the capability of its compact lightweight camera, based on a 384 x 288 microbolometer pixel FPA with custom optics for active video-rate imaging at wavelengths of 118 μm (2.54 THz), 432 μm (0.69 THz), 663 μm (0.45 THz), and 750 μm (0.4 THz). Most of the work focused on transmission imaging, as a first step, but some preliminary demonstrations of reflection imaging at these were also reported. In addition, previous work also showed that the broadband FPA remains sensitive to wavelengths at least up to 3.2 mm (94 GHz). The work presented here demonstrates the ability of the INO terahertz camera for reflection imaging at millimeter wavelengths. Snapshots taken at video rates of objects show the excellent quality of the images. In addition, a description of the imaging system that includes the terahertz camera and different millimeter sources is provided.

  2. A Wing Pod-based Millimeter Wave Cloud Radar on HIAPER

    Science.gov (United States)

    Vivekanandan, Jothiram; Tsai, Peisang; Ellis, Scott; Loew, Eric; Lee, Wen-Chau; Emmett, Joanthan

    2014-05-01

    One of the attractive features of a millimeter wave radar system is its ability to detect micron-sized particles that constitute clouds with lower than 0.1 g m-3 liquid or ice water content. Scanning or vertically-pointing ground-based millimeter wavelength radars are used to study stratocumulus (Vali et al. 1998; Kollias and Albrecht 2000) and fair-weather cumulus (Kollias et al. 2001). Airborne millimeter wavelength radars have been used for atmospheric remote sensing since the early 1990s (Pazmany et al. 1995). Airborne millimeter wavelength radar systems, such as the University of Wyoming King Air Cloud Radar (WCR) and the NASA ER-2 Cloud Radar System (CRS), have added mobility to observe clouds in remote regions and over oceans. Scientific requirements of millimeter wavelength radar are mainly driven by climate and cloud initiation studies. Survey results from the cloud radar user community indicated a common preference for a narrow beam W-band radar with polarimetric and Doppler capabilities for airborne remote sensing of clouds. For detecting small amounts of liquid and ice, it is desired to have -30 dBZ sensitivity at a 10 km range. Additional desired capabilities included a second wavelength and/or dual-Doppler winds. Modern radar technology offers various options (e.g., dual-polarization and dual-wavelength). Even though a basic fixed beam Doppler radar system with a sensitivity of -30 dBZ at 10 km is capable of satisfying cloud detection requirements, the above-mentioned additional options, namely dual-wavelength, and dual-polarization, significantly extend the measurement capabilities to further reduce any uncertainty in radar-based retrievals of cloud properties. This paper describes a novel, airborne pod-based millimeter wave radar, preliminary radar measurements and corresponding derived scientific products. Since some of the primary engineering requirements of this millimeter wave radar are that it should be deployable on an airborne platform

  3. Diagnosis and Treatment of Neurological Disorders by Millimeter-Wave Stimulation

    Science.gov (United States)

    Siegel, Peter H.; Pikov, Victor

    2011-01-01

    Increasingly, millimeter waves are being employed for telecomm, radar, and imaging applications. To date in the U.S, however, very few investigations on the impact of this radiation on biological systems at the cellular level have been undertaken. In the beginning, to examine the impact of millimeter waves on cellular processes, researchers discovered that cell membrane depolarization may be triggered by low levels of integrated power at these high frequencies. Such a situation could be used to advantage in the direct stimulation of neuronal cells for applications in neuroprosthetics and diagnosing or treating neurological disorders. An experimental system was set up to directly monitor cell response on exposure to continuous-wave, fixed-frequency, millimeter-wave radiation at low and modest power levels (0.1 to 100 safe exposure standards) between 50 and 100 GHz. Two immortalized cell lines derived from lung and neuronal tissue were transfected with green fluorescent protein (GFP) that locates on the inside of the cell membrane lipid bi-layer. Oxonol dye was added to the cell medium. When membrane depolarization occurs, the oxonal bound to the outer wall of the lipid bi-layer can penetrate close to the inner wall where the GFP resides. Under fluorescent excitation (488 nm), the normally green GFP (520 nm) optical signal quenches and gives rise to a red output when the oxonol comes close enough to the GFP to excite a fluorescence resonance energy transfer (FRET) with an output at 620 nm. The presence of a strong FRET signature upon exposures of 30 seconds to 2 minutes at 5-10 milliwatts per square centimeter RF power at 50 GHz, followed by a return to the normal 520-nm GFP signal after a few minutes indicating repolarization of the membrane, indicates that low levels of RF energy may be able to trigger non-destructive membrane depolarization without direct cell contact. Such a mechanism could be used to stimulate neuronal cells in the cortex without the need for

  4. Multi-Band Multi-Tone Tunable Millimeter-Wave Frequency Synthesizer For Satellite Beacon Transmitter

    Science.gov (United States)

    Simons, Rainee N.; Wintucky, Edwin G.

    2016-01-01

    This paper presents the design and test results of a multi-band multi-tone tunable millimeter-wave frequency synthesizer, based on a solid-state frequency comb generator. The intended application of the synthesizer is in a satellite beacon transmitter for radio wave propagation studies at K-band (18 to 26.5 GHz), Q-band (37 to 42 GHz), and E-band (71 to 76 GHz). In addition, the architecture for a compact beacon transmitter, which includes the multi-tone synthesizer, polarizer, horn antenna, and power/control electronics, has been investigated for a notional space-to-ground radio wave propagation experiment payload on a small satellite. The above studies would enable the design of robust high throughput multi-Gbps data rate future space-to-ground satellite communication links.

  5. Module integration and amplifier design optimization for optically enabled passive millimeter-wave imaging

    Science.gov (United States)

    Wright, Andrew A.; Martin, Richard D.; Schuetz, Christopher A.; Shi, Shouyuan; Zhang, Yifei; Yao, Peng; Shreve, Kevin P.; Dillon, Thomas E.; Mackrides, Daniel G.; Harrity, Charles E.; Prather, Dennis W.

    2016-05-01

    This paper will discuss the development of a millimeter-wave (mm-wave) receiver module used in a sparse array passive imaging system. Using liquid crystal polymer (LCP) technology and low power InP low noise amplifiers (LNA), enables the integration of the digital circuitry along with the RF components onto a single substrate significantly improves the size, weight, power, and cost (SWaP-C) of the mm-wave receiver module compared to previous iterations of the module. Also comparing with previous generation modules, the operating frequency has been pushed from 77 GHz to 95 GHz in order to improve the resolution of the captured image from the sparse array imaging system.

  6. Random-Access Technique for Self-Organization of 5G Millimeter-Wave Cellular Communications

    Directory of Open Access Journals (Sweden)

    Jasper Meynard Arana

    2016-01-01

    Full Text Available The random-access (RA technique is a key procedure in cellular networks and self-organizing networks (SONs, but the overall processing time of this technique in millimeter-wave (mm-wave cellular systems with directional beams is very long because RA preambles (RAPs should be transmitted in all directions of Tx and Rx beams. In this paper, two different types of preambles (RAP-1 and RAP-2 are proposed to reduce the processing time in the RA stage. After analyzing the correlation property, false-alarm probability, and detection probability of the proposed RAPs, we perform simulations to show that the RAP-2 is suitable for RA in mm-wave cellular systems with directional beams because of the smaller processing time and high detection probability in multiuser environments.

  7. A high-sensitivity 135 GHz millimeter-wave imager by compact split-ring-resonator in 65-nm CMOS

    Science.gov (United States)

    Li, Nan; Yu, Hao; Yang, Chang; Shang, Yang; Li, Xiuping; Liu, Xiong

    2015-11-01

    A high-sensitivity 135 GHz millimeter-wave imager is demonstrated in 65 nm CMOS by on-chip metamaterial resonator: a differential transmission-line (T-line) loaded with split-ring-resonator (DTL-SRR). Due to sharp stop-band introduced by the metamaterial load, high-Q oscillatory amplification can be achieved with high sensitivity when utilizing DTL-SRR as quench-controlled oscillator to provide regenerative detection. The developed 135 GHz mm-wave imager pixel has a compact core chip area of 0.0085 mm2 with measured power consumption of 6.2 mW, sensitivity of -76.8 dBm, noise figure of 9.7 dB, and noise equivalent power of 0.9 fW/√{HZ } Hz. Millimeter-wave images has been demonstrated with millimeter-wave imager integrated with antenna array.

  8. Human Skin as Arrays of Helical Antennas in the Millimeter and Submillimeter Wave Range

    Science.gov (United States)

    Feldman, Yuri; Puzenko, Alexander; Ben Ishai, Paul; Caduff, Andreas; Agranat, Aharon J.

    2008-03-01

    Recent studies of the minute morphology of the skin by optical coherence tomography showed that the sweat ducts in human skin are helically shaped tubes, filled with a conductive aqueous solution. A computer simulation study of these structures in millimeter and submillimeter wave bands show that the human skin functions as an array of low-Q helical antennas. Experimental evidence is presented that the spectral response in the sub-Terahertz region is governed by the level of activity of the perspiration system. It is also correlated to physiological stress as manifested by the pulse rate and the systolic blood pressure.

  9. Carrier suppression in quadruple frequency modulation by cascaded optical external modulators for millimeter-wave generation

    Institute of Scientific and Technical Information of China (English)

    Xue Feng; Wei Zhang; Xiaoming Liu

    2009-01-01

    The optical carrier suppression in optical quadruple frequency modulation by cascaded external modulators is investigated theoretically and experimentally. Theoretical analysis demonstrates that the optical carrier suppression ratio is related with not only the initial phase difference of electrical signals applied on the two modulators, but also the optical phase shift between the two modulators. The maximum suppression ratio can be achieved when the total phase difference is equal to nπ+π/2(n=1,2…),which is verified by experiments. By properly controlling the total phase shift, 40-GHz millimeter-wave is generated by using a 10-GHz radio frequency (RF) source and the modulators.

  10. Gravitational Wave Signatures of Dark Matter Sub-Millimeter Primordial Black Holes

    CERN Document Server

    Davoudiasl, Hooman

    2016-01-01

    We entertain the possibility that primordial black holes of mass $\\sim (10^{24} - 10^{26})$ g, with sub-millimeter Schwarzschild radii, constitute all or a significant fraction of cosmic dark matter, as allowed by various constraints. In case such primordial black holes get captured in orbits around neutron stars or astrophysical black holes in our galactic neighborhood, gravitational waves from the resulting "David & Goliath" binaries could be detectable at Advanced LIGO or Advanced Virgo from days to years, for a range of possible parameters. The proposed Einstein Telescope would further expand the reach for dark matter primordial black holes in this search mode.

  11. Telecommunication service markets through the year 2000 in relation to millimeter wave satellite systems

    Science.gov (United States)

    Stevenson, S. M.

    1979-01-01

    NASA is currently conducting a series of millimeter wave satellite system market studies to develop 30/20 GHz satellite system concepts that have commercial potential. Four contractual efforts were undertaken: two parallel and independent system studies and two parallel and independent market studies. The marketing efforts are focused on forecasting the total domestic demand for long haul telecommunications services for the 1980-2000 period. Work completed to date and reported in this paper include projections of: geographical distribution of traffic; traffic volume as a function of urban area size; and user identification and forecasted demand.

  12. Application of MIMO technology for next-generation optical and millimeter-wave interconnects

    Science.gov (United States)

    Fan, Shu-Hao; Guidotti, Daniel; Chang, Gee-Kung

    2012-01-01

    Millimeter-wave wireless interconnects is an emerging technology for ultra-short-reach off-chip transmission, providing spatial flexibility and power-efficient high-speed data transportation. Integrated with carrier-over-fiber technology, we propose a low-phase-noise multi-wireless-transceiver architecture to improve the bit-error-rate performance of conventional wireless interconnects. Multiplexing schemes, including frequency division multiplexing, spatial multiplexing, and beam isolation, can be facilitated by carrier-over-fiber techniques. We introduce a potential application of the multi-input-multi-output high-speed analog multiplexing with open-loop analog circuits and digital feedback.

  13. Three-dimensional passive millimeter-wave imaging and depth estimation

    Science.gov (United States)

    Yeom, Seokwon; Lee, Dong-Su; Lee, Hyoung; Son, Jung-Young; Guschin, Vladimir P.

    2010-04-01

    We address three-dimensional passive millimeter-wave imaging (MMW) and depth estimation for remote objects. The MMW imaging is very useful for the harsh environment such as fog, smoke, snow, sandstorm, and drizzle. Its penetrating property into clothing provides a great advantage to security and defense systems. In this paper, the featurebased passive MMW stereo-matching process is proposed to estimate the distance of the concealed object under clothing. It will be shown that the proposed method can estimate the distance of the concealed object.

  14. A selective pyroelectric detector of millimeter-wave radiation with an ultrathin resonant meta-absorber

    Science.gov (United States)

    Paulish, A. G.; Kuznetsov, S. A.

    2016-11-01

    The results of experimental investigations of spectral and amplitude-frequency characteristics for a discrete wavelength-selective pyroelectric detector operating in the millimetric band are presented. The high spectral selectivity is attained due to integrating the detector with a resonant meta-absorber designed for a close-to-unity absorptivity at 140 GHz. It is demonstrated that the use of this meta-absorber provides an opportunity to construct small-sized and inexpensive multispectral polarization-sensitive systems for radiation detection in the range of millimeter and submillimeter waves.

  15. Target identification and navigation performance modeling of a passive millimeter wave imager.

    Science.gov (United States)

    Jacobs, Eddie L; Furxhi, Orges

    2010-07-01

    Human task performance using a passive interferometric millimeter wave imaging sensor is modeled using a task performance modeling approach developed by the U.S. Army Night Vision and Electronic Sensors Directorate. The techniques used are illustrated for an imaging system composed of an interferometric antenna array, optical upconversion, and image formation using a shortwave infrared focal plane array. Two tasks, target identification and pilotage, are modeled. The effects of sparse antenna arrays on task performance are considered. Applications of this model include system trade studies for concealed weapon identification, navigation in fog, and brownout conditions.

  16. Millimeter Wave on Chip Antenna Using Dogbone Shape Artificial Magnetic Conductor

    Directory of Open Access Journals (Sweden)

    Guo Qing Luo

    2013-01-01

    Full Text Available An artificial magnetic conductor (AMC applied in millimeter wave on chip antenna design based on a standard 0.18 μm CMOS technology is studied. The AMC consisting of two-dimensional periodic dogbone shape elements is constructed at one metal layer of the CMOS structure. After its performance has been completely investigated, it has been used in an on chip dipole antenna design as an artificial background to enhance efficiency of the dipole antenna. The result shows that 0.72 dB gain has been achieved at 75 GHz when the AMC is constructed by a 4*6 dogbone array.

  17. Bandwidth enhancement using Polymeric Grid Array Antenna for millimeter-wave application

    Science.gov (United States)

    Muhamad, Wan Asilah Wan; Ngah, Razali; Jamlos, Mohd Faizal; Soh, Ping Jack; Ali, Mohd Tarmizi

    2017-01-01

    A new grid array antenna designed on a polymeric polydimethylsiloxane (PDMS) substrate is presented. A good relative permittivity of the PDMS substrate increases the antenna bandwidth. The PDMS surface is also hardened to protect the proposed grid array antenna's radiating element. A SMA coaxial connector is used to feed the 36 × 35 mm2 antenna from its bottom. A bandwidth enhancement of 72.1% is obtained compared to conventional antenna. Besides, its efficiency is increased up to 70%. The simulated and measured results agreed well and the proposed antenna is validated to suit millimeter-wave applications.

  18. Ka-band Dielectric Waveguide Antenna Array for Millimeter Wave Active Imaging System

    Science.gov (United States)

    Fang, Weihai; Fei, Peng; Nian, Feng; Yang, Yujie; Feng, Keming

    2014-11-01

    Ka-band compact dielectric waveguide antenna array for active imaging system is given. Antenna array with WR28 metal waveguide direct feeding is specially designed with small size, high gain, good radiation pattern, easy realization, low insertion loss and low mutual coupling. One practical antenna array for 3-D active imaging system is shown with theoretic analysis and experimental results. The mutual coupling of transmitting and receiving units is less than -30dB, the gain from 26.5GHz to 40GHz is (12-16) dB. The results in this paper provide guidelines for the designing of millimeter wave dielectric waveguide antenna array.

  19. Liquid Crystal-Reconfigurable Antenna Concepts for Space Applications at Microwave and Millimeter Waves

    Directory of Open Access Journals (Sweden)

    A. Gaebler

    2009-01-01

    Full Text Available Novel approaches of tunable devices for millimeter wave applications based on liquid crystal (LC are presented. In the first part of the paper, a novel concept of a tunable LC phase shifter realized in Low Temperature Cofired Ceramics technology is shown while the second part of the paper deals with a tunable high-gain antenna based on an LC tunable reflectarray. The reflectarray features continuously beam scanning in between ±25∘. Also first investigations on radiation hardness of LCs are carried out, indicating that LCs might be suitable for space applications.

  20. Design of InP DHBT power amplifiers at millimeter-wave frequencies using interstage matched cascode technique

    DEFF Research Database (Denmark)

    Yan, Lei; Johansen, Tom Keinicke

    2013-01-01

    In this paper, the design of InP DHBT based millimeter-wave(mm-wave) power amplifiers(PAs) using an interstage matched cascode technique is presented. The output power of a traditional cascode is limited by the early saturation of the common-base(CB) device. The interstage matched cascode can be ...

  1. Connectivity Analysis of Millimeter-Wave Device-to-Device Networks with Blockage

    Directory of Open Access Journals (Sweden)

    Haejoon Jung

    2016-01-01

    Full Text Available We consider device-to-device (D2D communications in millimeter-wave (mm Wave for the future fifth generation (5G cellular networks. While the mm Wave systems can support multiple D2D pairs simultaneously through beamforming with highly directional antenna arrays, the mm Wave channel is significantly more susceptible to blockage compared to microwave; mm Wave channel studies indicate that if line-of-sight (LoS paths are blocked, reliable mm Wave communications may not be achieved for high data-rate applications. Therefore, assuming that an outage occurs in the absence of the LoS path between two wireless devices by obstructions, we focus on connectivity of the mm Wave D2D networks. We consider two types of D2D communications: direct and indirect schemes. The connectivity performances of the two schemes are investigated in terms of (i the probability to achieve a fully connected network PFC and (ii the average number of reliably connected devices γ. Through analysis and simulation, we show that, as the network size increases, PFC and γ decrease. Also, PFC and γ decrease, when the blockage parameter increases. Moreover, simulation results indicate that the hybrid direct and indirect scheme can improve both PFC and γ up to about 35% compared to the nonhybrid scheme.

  2. An Overview of Signal Processing Techniques for Millimeter Wave MIMO Systems

    Science.gov (United States)

    Heath, Robert W.; Gonzalez-Prelcic, Nuria; Rangan, Sundeep; Roh, Wonil; Sayeed, Akbar M.

    2016-04-01

    Communication at millimeter wave (mmWave) frequencies is defining a new era of wireless communication. The mmWave band offers higher bandwidth communication channels versus those presently used in commercial wireless systems. The applications of mmWave are immense: wireless local and personal area networks in the unlicensed band, 5G cellular systems, not to mention vehicular area networks, ad hoc networks, and wearables. Signal processing is critical for enabling the next generation of mmWave communication. Due to the use of large antenna arrays at the transmitter and receiver, combined with radio frequency and mixed signal power constraints, new multiple-input multiple-output (MIMO) communication signal processing techniques are needed. Because of the wide bandwidths, low complexity transceiver algorithms become important. There are opportunities to exploit techniques like compressed sensing for channel estimation and beamforming. This article provides an overview of signal processing challenges in mmWave wireless systems, with an emphasis on those faced by using MIMO communication at higher carrier frequencies.

  3. Design of a Millimeter-Wave Concentrator for Beam Reception in High-Power Wireless Power Transfer

    Science.gov (United States)

    Fukunari, Masafumi; Wongsuryrat, Nat; Yamaguchi, Toshikazu; Nakamura, Yusuke; Komurasaki, Kimiya; Koizumi, Hiroyuki

    2016-10-01

    This study examined the performance of a developed taper-tube concentrator for 94-GHz millimeter-wave beam reception during wireless power transfer. The received energy is converted into kinetic energy of a working gas in the tube to drive an engine or thruster. The concentrator, which is assumed to have mirror reflection of millimeter waves in it, is designed to be shorter than conventional tapered waveguides of millimeter waves. A dimensionless design law of a concentrator is proposed based on geometric optics theory. Because the applicability of geometric optics theory is unclear, the ratio of its bore diameter to its wavelength was set as small compared to those in other possible applications. Then, the discrepancy between the designed and measured power reception was examined. Results show that the maximum discrepancy was as low as 7 % for the bore-to-wavelength ratio of 20 at the narrow end of the concentrator.

  4. Use of Gaussian Beam Tracing in the Design of Millimeter-Wave Diagnostics on ITER

    Science.gov (United States)

    Joo, Heeseok; Bitter, Manfred; Tobias, Ben; Park, Hyeon; Zolfaghari, Ali

    2016-10-01

    When the wavelength of the radiation being studied is comparable to the size optical components, the diffraction effect cannot be ignored. Gaussian beam tracing (GBT) can be used by treating the propagation of the light as a beam with certain size rather than a ray used in geometrical optics when analyzing the optics of millimeter-wave diagnostics. Gaussian optics is an effective way to represent diffraction effect because of its ability to show the beam size and the intensity that could be altered from diffraction. GBT has been used in two millimeter-wave diagnostics suited to ITER geometry. The first is in a design of a Gaussian telescope for correction of transmission line misalignment in the ITER LFS reflectometer due to motion of the vessel during heating to operating temperature from room temperature. The second is a new concept of using spherical mirrors for electron cyclotron emission imaging (ECEI) and assessing its promise of a more realistic method of ECEI in ITER than previous idea of using a cylindrical mirror that requires large access ports that can be exposed to intense neutron radiation. The spherical mirror promises a smaller aperture on the first wall of ITER. The simulation of GBT of the two applications are analyzed and discussed. This work is supported by US DOE Contract No. DE-AC02-09CH11466.

  5. Recollections of Tucson Operations The Millimeter-Wave Observatory of the National Radio Astronomy Observatory

    CERN Document Server

    Gordon, M A

    2005-01-01

    This book is a personal account of the evolution of millimeter-wave astronomy at the National Radio Astronomy Observatory. It begins with the construction of the hugely successful, but flawed, 36 ft radio telescope on Kitt Peak, Arizona, and continues through the funding of its ultimate successor, the Atacama Large Millimeter-wave Array (ALMA), being constructed on a 5.000 m (16.500 ft) site in northern Chile. The book describes the behind-the-scene activities of the NRAO Tucson staff. These include the identification and solution of technical problems, the scheduling and support of visiting astronomers, and the preparations and the politics of the proposal to replace the 36 ft telescope with a 25 m telescope on Mauna Kea, Hawaii. The book also describes the installation of a new 12 m surface and the involvement of the Tucson staff in the ALMA project. Finally, it describes events leading to the closing of the 36 ft telescope and, eventually, of the NRAO offices in Tucson.

  6. A new millimeter-wave observation of the weakly bound CO-N2 complex

    Science.gov (United States)

    Surin, L. A.; Potapov, A.; Müller, H. S. P.; Schlemmer, S.

    2015-01-01

    New millimeter-wave transitions of the CO-N2 van der Waals complex have been observed using the intracavity OROTRON jet spectrometer in the frequency range of 103-159 GHz. For the less abundant form, CO-paraN2, a total of 37 rotational transitions were assigned to three K = 0-0, 0-1, 2-1 subbands connecting the (jCO, jN2) = (1, 1) and (jCO, jN2) = (0, 1) internal rotor states. The upper K = 0 and K = 2 "stacks" of rotational levels were probed for the first time here by millimeter-wave spectroscopy following a recent infrared study by Rezaei et al. (2013). The observation of new subbands fixes with higher precision not only these upper K = 0 and K = 2 but also lower K = 1(f) levels, not linked with other stacks in earlier rotational studies. For the more abundant form, CO-orthoN2, five new P-branch rotational transitions of the K = 0-0 "CO bending" subband are reported, thus extending previous measurements. Nuclear quadrupole hyperfine structure due to the presence of two equivalent 14N nuclei was partly resolved and analyzed to give additional information about the angular orientation of the N2 molecule in the complex.

  7. Study of transmission line attenuation in broad band millimeter wave frequency range

    Energy Technology Data Exchange (ETDEWEB)

    Pandya, Hitesh Kumar B. [ITER-India, IPR, Gandhinagar, Gujarat (India); Austin, M. E. [Institute for Fusion Studies, the University of Texas at Austin, Austin, Texas (United States); Ellis, R. F. [Laboratory for Plasma and Fusion Energy Studies, University of Maryland, College Park, Maryland 20742 (United States)

    2013-10-15

    Broad band millimeter wave transmission lines are used in fusion plasma diagnostics such as electron cyclotron emission (ECE), electron cyclotron absorption, reflectometry and interferometry systems. In particular, the ECE diagnostic for ITER will require efficient transmission over an ultra wide band, 100 to 1000 GHz. A circular corrugated waveguide transmission line is a prospective candidate to transmit such wide band with low attenuation. To evaluate this system, experiments of transmission line attenuation were performed and compared with theoretical loss calculations. A millimeter wave Michelson interferometer and a liquid nitrogen black body source are used to perform all the experiments. Atmospheric water vapor lines and continuum absorption within this band are reported. Ohmic attenuation in corrugated waveguide is very low; however, there is Bragg scattering and higher order mode conversion that can cause significant attenuation in this transmission line. The attenuation due to miter bends, gaps, joints, and curvature are estimated. The measured attenuation of 15 m length with seven miter bends and eighteen joints is 1 dB at low frequency (300 GHz) and 10 dB at high frequency (900 GHz), respectively.

  8. Distance Dependence of Path Loss for Millimeter Wave Inter-Vehicle Communications

    Directory of Open Access Journals (Sweden)

    M. Fujise

    2004-12-01

    Full Text Available Millimeter-wave path loss between two cars was measured to obtainthe general applicable distance for inter-vehicle communication systemsin real environments. An abrupt and substantial increase in path lossdue to interruption, curves, and different-lane traveling has been amajor concern in inter-vehicle communications. The path lossmeasurements were carried out using 60-GHz CW radiowaves and standardhorn antennas on metropolitan highways and regular roads. Because thepropagation loss is traffic-dependent, the highways were classifiedinto uncrowded and crowded highways, and the regular roads wereclassified into uncrowded and crowded roads. The path loss for thehighways exhibited 2nd-power-law attenuation and that for the regularroads exhibited 1st-power-law attenuation with an increase ininter-vehicle distance. Additional losses of 15 dB for the highways and5 dB for the regular roads were observed when the inter-vehicledistance was more than approximately 30 m. Thus, we were able todemonstrate millimeter-wave inter-vehicle communications at aninter-vehicle distance of more than 100 m.

  9. High-K ZST material for microwave and millimeter wave applications

    Science.gov (United States)

    Ioachim, A.; Ramer, R.; Toacsan, M. I.; Banciu, M. G.; Nedelcu, L.; Ghetu, D.; Stoica, G.; Annino, G.; Cassettari, M.; Martinelli, M.

    2004-02-01

    Wireless communications systems require new materials with special properties in specific frequency bands. The investigations on ZST type ceramics, (Zr0.8Sn0.2)TiO4, presented in this paper, recommend this materials for applications in microwaves and millimeter waves. The ZST materials were prepared using a standard solid-state reaction technology. The samples morphology, phase-composition and microstructure investigations were performed by using the scanning electron microscopy (SEM), and energy-disperse X-ray spectrometry (EDX). The crystalline phases were identified by X-ray diffractometry (XRD). The electromagnetic properties were investigated on ZST resonators by using a Computer Aided Measurement (CAM) in microwaves, combining a HP 8757C network analyzer and a HP 8350B sweep oscillator. The dielectric characteristics at millimeter waves were analyzed by investigation of the Whispering Gallery Modes on ZST disks. The low level NiO doping provides ZST materials with temperature coefficient τf in the range (-2 - +4) ppm/°C and decreases the dielectric loss. Materials with high values of the Qf product up to 50,000 and a dielectric constant about 36 at microwave frequencies were obtained. ZST dielectric resonators and substrates for hybrid integrated circuits with dimensions 1" x 1" and thickness in the range 0.6 - 1 mm were manufactured.

  10. A framework of passive millimeter-wave imaging simulation for typical ground scenes

    Science.gov (United States)

    Yan, Luxin; Ge, Rui; Zhong, Sheng

    2009-10-01

    Passive millimeter-wave (PMMW) imaging offers advantages over visible and IR imaging in having better all weather performance. However the PMMW imaging sensors are state-of-the-art to date, sometimes it is required to predict and evaluate the performance of a PMMW sensor under a variety of weather, terrain and sensor operational conditions. The PMMW scene simulation is an efficient way. This paper proposes a framework of the PMMW simulation for ground scenes. Commercial scene modeling software, Multigen and Vega, are used to generate the multi-viewpoint and multi-scale description for natural ground scenes with visible images. The background and objects in the scene are classified based on perceptive color clusters and mapped with different materials. Further, the radiometric temperature images of the scene are calculated according to millimeter wave phenomenology: atmospheric propagation and emission including sky temperature, weather conditions, and physical temperature. Finally, the simulated output PMMW images are generated by applying the sensor characteristics such as the aperture size, data sample scheme and system noise. Tentative results show the simulation framework can provide reasonable scene's PMMW image with high fidelity.

  11. Ultra wide band millimeter wave holographic ``3-D`` imaging of concealed targets on mannequins

    Energy Technology Data Exchange (ETDEWEB)

    Collins, H.D.; Hall, T.E.; Gribble, R.P. [Pacific Northwest Lab., Richland, WA (United States). Acoustics & Electromagnetic Imaging Group

    1994-08-01

    Ultra wide band (chirp frequency) millimeter wave ``3-D`` holography is a unique technique for imaging concealed targets on human subjects with extremely high lateral and depth resolution. Recent ``3-D`` holographic images of full size mannequins with concealed weapons illustrate the efficacy of this technique for airport security. A chirp frequency (24 GHz to 40 GHz) holographic system was used to construct extremely high resolution images (optical quality) using polyrod antenna in a bi-static configuration using an x-y scanner. Millimeter wave chirp frequency holography can be simply described as a multi-frequency detection and imaging technique where the target`s reflected signals are decomposed into discrete frequency holograms and reconstructed into a single composite ``3-D`` image. The implementation of this technology for security at airports, government installations, etc., will require real-time (video rate) data acquisition and computer image reconstruction of large volumetric data sets. This implies rapid scanning techniques or large, complex ``2-D`` arrays and high speed computing for successful commercialization of this technology.

  12. First Eigenmode Transmission by High Efficient CSI Estimation for Multiuser Massive MIMO Using Millimeter Wave Bands

    Directory of Open Access Journals (Sweden)

    Kazuki Maruta

    2016-07-01

    Full Text Available Drastic improvements in transmission rate and system capacity are required towards 5th generation mobile communications (5G. One promising approach, utilizing the millimeter wave band for its rich spectrum resources, suffers area coverage shortfalls due to its large propagation loss. Fortunately, massive multiple-input multiple-output (MIMO can offset this shortfall as well as offer high order spatial multiplexing gain. Multiuser MIMO is also effective in further enhancing system capacity by multiplexing spatially de-correlated users. However, the transmission performance of multiuser MIMO is strongly degraded by channel time variation, which causes inter-user interference since null steering must be performed at the transmitter. This paper first addresses the effectiveness of multiuser massive MIMO transmission that exploits the first eigenmode for each user. In Line-of-Sight (LoS dominant channel environments, the first eigenmode is chiefly formed by the LoS component, which is highly correlated with user movement. Therefore, the first eigenmode provided by a large antenna array can improve the robustness against the channel time variation. In addition, we propose a simplified beamforming scheme based on high efficient channel state information (CSI estimation that extracts the LoS component. We also show that this approximate beamforming can achieve throughput performance comparable to that of the rigorous first eigenmode transmission. Our proposed multiuser massive MIMO scheme can open the door for practical millimeter wave communication with enhanced system capacity.

  13. First Eigenmode Transmission by High Efficient CSI Estimation for Multiuser Massive MIMO Using Millimeter Wave Bands.

    Science.gov (United States)

    Maruta, Kazuki; Iwakuni, Tatsuhiko; Ohta, Atsushi; Arai, Takuto; Shirato, Yushi; Kurosaki, Satoshi; Iizuka, Masataka

    2016-07-08

    Drastic improvements in transmission rate and system capacity are required towards 5th generation mobile communications (5G). One promising approach, utilizing the millimeter wave band for its rich spectrum resources, suffers area coverage shortfalls due to its large propagation loss. Fortunately, massive multiple-input multiple-output (MIMO) can offset this shortfall as well as offer high order spatial multiplexing gain. Multiuser MIMO is also effective in further enhancing system capacity by multiplexing spatially de-correlated users. However, the transmission performance of multiuser MIMO is strongly degraded by channel time variation, which causes inter-user interference since null steering must be performed at the transmitter. This paper first addresses the effectiveness of multiuser massive MIMO transmission that exploits the first eigenmode for each user. In Line-of-Sight (LoS) dominant channel environments, the first eigenmode is chiefly formed by the LoS component, which is highly correlated with user movement. Therefore, the first eigenmode provided by a large antenna array can improve the robustness against the channel time variation. In addition, we propose a simplified beamforming scheme based on high efficient channel state information (CSI) estimation that extracts the LoS component. We also show that this approximate beamforming can achieve throughput performance comparable to that of the rigorous first eigenmode transmission. Our proposed multiuser massive MIMO scheme can open the door for practical millimeter wave communication with enhanced system capacity.

  14. Precipitating Snow Retrievals from Combined Airborne Cloud Radar and Millimeter-Wave Radiometer Observations

    Science.gov (United States)

    Grecu, Mircea; Olson, William S.

    2008-01-01

    An algorithm for retrieving snow over oceans from combined cloud radar and millimeter-wave radiometer observations is developed. The algorithm involves the use of physical models to simulate cloud radar and millimeter-wave radiometer observations from basic atmospheric variables such as hydrometeor content, temperature, and relative humidity profiles and is based on an optimal estimation technique to retrieve these variables from actual observations. A high-resolution simulation of a lake-effect snowstorm by a cloud-resolving model is used to test the algorithm. That is, synthetic observations are generated from the output of the cloud numerical model, and the retrieval algorithm is applied to the synthetic data. The algorithm performance is assessed by comparing the retrievals with the reference variables used in synthesizing the observations. The synthetic observation experiment indicates good performance of the retrieval algorithm. The algorithm is also applied to real observations from the Wakasa Bay field experiment that took place over the Sea of Japan in January and February 2003. The application of the retrieval algorithm to data from the field experiment yields snow estimates that are consistent with both the cloud radar and radiometer observations.

  15. Advanced ceramics sintering using high-power millimeter-wave radiation

    Energy Technology Data Exchange (ETDEWEB)

    Setsuhara, Y.; Kamai, M.; Kinoshita, S.; Abe, N.; Miyake, S. [Osaka Univ. (Japan). Welding Research Inst.; Saji, T. [Fujidempa Kogyo Co., Ltd., Ibaraki (Japan)

    1996-12-31

    The results of ceramics sintering experiments using high-power millimeter-wave radiation are reported. Sintering of silicon nitride with 5% Al{sub 2}O{sub 3} and 5% Y{sub 2}O{sub 3} was performed in a multi-mode applicator using a 10-kW 28-GHz gyrotron in CW operation. It was found that the silicon nitride samples sintered with 28 GHz radiation at 1,650 C for 30 min reached to as high as theoretical density (TD), while the conventionally sintered samples at 1700 C for 60 min resulted in the density as low as 90% TD. Focusing experiments of millimeter-wave radiation from the high-power pulsed 60-GHz gyrotron have been performed using a quasi-optical antenna system (two-dimensional ellipso-parabolic focusing antenna system) to demonstrate the feasibility of the power density of as high as 100 kW/cm{sup 2}. Typical heating characteristics using the focused beam were made clear for this system. It was found that the densification of yttria-stabilized zirconia (ZrO{sub 2}-8mol%Y{sub 2}O{sub 3}) samples to as high as 97% TD was obtained from the sintering with focused 60 GHz beam in pulse operation with a 10-ms pulse duration at a 0.5Hz repetition. The densification temperature for the zirconia could be lowered by 200 C than that expected conventionally.

  16. Indirect subharmonic optical injection locking of a millimeter-wave IMPATT oscillator

    Science.gov (United States)

    Herczfeld, Peter R.; Daryoush, Afshin S.; Rosen, Arye; Sharma, Arvind K.; Contarino, V. M.

    1986-12-01

    Large aperture phased-array antennas operating at millimeter-wave frequencies are designed for space-based communications and imaging. Array elements are composed of active transmit-receive (T/R) modules that are phase and frequency synchronized to a reference signal at the central processing unit by a fiber-optic (FO) distribution network. The implementation of FO links, synchronizing the millimeter-wave local oscillators (LO's) imposes a great challenge. This paper presents results of indirect optical injection locking of a free-running 38-GHz (Ka-band) IMPATT oscillator over the locking range of 2-132 MHz, depending on the injected power level (amplifier gain). In the experiment, the nonlinearity of both the laser diode and the IMPATT oscillator is exploited to achieve 12th subharmonic injection locking. The overall system FM noise degradation of the reference signal is 16 dB at 500-Hz offset. The FM noise degradation is dominated by the theoretical limit of 20log N, where N is the frequency multiplication factor used in subharmonic injection locking. Methods by which optical injection locking may be extended into 60 and 90 GHz are demonstrated.

  17. Indoor Operations by FMCW Millimeter Wave SAR Onboard Small UAS: A Simulation Approach

    Directory of Open Access Journals (Sweden)

    Antonio Fulvio Scannapieco

    2016-01-01

    Full Text Available A dedicated system simulator is presented in this paper for indoor operations onboard small Unmanned Aerial Systems (UAS by a novel millimeter wave radar sensor. The sensor relies on the principle of Synthetic Aperture Radar (SAR applied to a Frequency Modulated Continuous Wave (FMCW radar system. Input to the simulator are both design parameters for Synthetic Aperture Radar (SAR, which should be able to cope with the stringent requirements set by indoor operations, and information about platform navigation and observed scene. The scene generation task is described in detail. This is based on models for point target response on either a completely absorbing background or fluctuating background and ray tracing (RT techniques. Results obtained from scene processing are finally discussed, giving further insights on expected results from high-resolution observation of an assigned control volume by this novel SAR sensor.

  18. Chaotic millimeter wave generation in a helical-waveguide gyro-TWT with delayed feedback

    Science.gov (United States)

    Ginzburg, N. S.; Rozental, R. M.; Sergeev, A. S.; Zotova, I. V.; Tarakanov, V. P.

    2016-10-01

    We demonstrate the possibility of chaotic millimeter wave generation in broadband helical-waveguide gyrotron travelling wave tubes (gyro-TWTs) by introducing external delayed feedback. It is shown that for the realization of "developed" chaos the amplitude characteristic of the amplifier should have the maximum slope in the overdrive regime upon saturation. This can be achieved by proper choosing of cyclotron resonance detuning. According to the time-domain averaged model and 3D particle-in-cell simulations with the parameters of the experimentally realized 35 GHz gyro-TWT, the power of chaotic generation can achieve 50 kW for an electron mean efficiency of about 7% and a spectrum width of 3-4 GHz.

  19. Printed circuit board impedance matching step for microwave (millimeter wave) devices

    Science.gov (United States)

    Pao, Hsueh-Yuan; Aguirre, Jerardo; Sargis, Paul

    2013-10-01

    An impedance matching ground plane step, in conjunction with a quarter wave transformer section, in a printed circuit board provides a broadband microwave matching transition from board connectors or other elements that require thin substrates to thick substrate (>quarter wavelength) broadband microwave (millimeter wave) devices. A method of constructing microwave and other high frequency electrical circuits on a substrate of uniform thickness, where the circuit is formed of a plurality of interconnected elements of different impedances that individually require substrates of different thicknesses, by providing a substrate of uniform thickness that is a composite or multilayered substrate; and forming a pattern of intermediate ground planes or impedance matching steps interconnected by vias located under various parts of the circuit where components of different impedances are located so that each part of the circuit has a ground plane substrate thickness that is optimum while the entire circuit is formed on a substrate of uniform thickness.

  20. Photonic methods of millimeter-wave generation based on Brillouin fiber laser

    Science.gov (United States)

    Al-Dabbagh, R. K.; Al-Raweshidy, H. S.

    2016-05-01

    In optical communication link, generation and delivering millimeter-wave (mm-waves) in radio over fiber (RoF) systems has limitation due to fiber non-linearity effects. To solve this problem, photonic methods of mm-wave generation based on characterizations of Brillouin fiber laser are proposed in this work for the first time. Three novel photonic approaches for mm-wave generation methods based on Brillouin fiber laser and phase modulator are proposed and demonstrated by simulation. According to our theoretical analysis and simulation, mm-waves with frequency up to 80 GHz and good signal to noise ratio (SNR) up to 90 dB are generated by new and cost effective methods of generation that make them suitable for applications of the fifth generation (5G) networks. The proposed configurations increase the stability and the quality of the mm-wave generation system by using a single laser source as a pump wave and the fiber non-linearity effects are reduced. A key advantage of this research is that proposed a number of very simple generation methods and cost effective which only use standard components of optical telecommunications. Stimulated Brillouin Scattering (SBS) effect that exists in the optical fiber is studied with the characterization of phase modulator. An all optically stable mm-wave carriers are achieved successfully in the three different methods with different frequencies from 20 GHz up to 80 GHz. Simulation results show that all these carriers have low phase noise, good SNR ranging between 60 and 90 dB and tuning capability in comparison with previous methods reported. This makes them suitable for mm-wave transmission in RoF systems to transmit data in the next generation networks.

  1. Initial test and evaluation of the millimeter-wave holographic surveillance system

    Science.gov (United States)

    McMakin, Douglas L.; Sheen, David M.; Schur, Anne; Harris, Wyllona M.; Piepel, Gregory F.

    1997-01-01

    A test and evaluation pilot study was conducted in January 1996 at Sea-Tac International Airport in Seattle, Washington to determine the initial effectiveness of the Millimeter- wave Holographic Weapons Surveillance System. This is a new personnel surveillance systems for the detection of concealed metal, plastic, and ceramic weapons and other threatening materials. Two different frequency bands were used in the study: Ku band and Ka band. Over 7000 Millimeter-wave (MM-wave) holographic images were obtained on 21 different models. The 7000 images were used to produce simulated real-time surveillance system videos. The videos were constructed by obtaining 36 images of the models at 10 degree increments for 360 degree coverage. A library of two hundred videos were produced for this pilot study: 100 at Ku band and 100 at Ka band. The videos contained either a threat or no threat. The threats were concealed at different locations on the models. Various innocuous items and different clothing combinations were also used n the construction of these videos. Twenty-nine certified Sea-Tac screeners were used in the initial test and evaluation of this new surveillance technology. Each screener viewed 160 MM-wave videos: 80 Ku band and 80 Ka band. The ratio of non- threat to threat videos per band was three to one. Test and evaluation software was developed to collect data from the screeners on-line for the type and location of threat detected. The primary measures of screener performance used to evaluate this new technology included, the probability of detection, the probability of a false alarm, measures of screener sensitivity and bias, and threat detection time.

  2. Use of picosecond optical pulses and FET's integrated with printed circuit antennas to generate millimeter wave radiation

    Science.gov (United States)

    Ni, D. C.; Plant, D. V.; Fetterman, H. R.; Matloubian, M.

    1991-03-01

    Millimeter-wave radiation has been generated from FETs and high electron mobility transistors (HEMTs), integrated with printed circuit antennas and illuminated with picosecond optical pulses. Modulation of the millimeter waves was achieved by applying a swept RF signal to the transistor gate. Using this technique, tunable electrical sidebands were added to the optically generated carrier providing a method of transmitting information. The technique also provides increased resolution for use in spectroscopic applications. Heterodyne detection demonstrated that the system continuously generated tunable radiation, constrained by the high-gain antenna, from 45 to 75 GHz.

  3. W波段的毫米波通信%W-band millimeter wave communication

    Institute of Scientific and Technical Information of China (English)

    许育铭; 张自然; 肖江南; 余建军

    2014-01-01

    由于其载波频率更高,W 波段可支持更大的带宽和更高的传输速率。因为大气损耗小,W波段信号能够进行远距离传输。进行了 W波段信号的链路分析,开展了 W波段毫米波通信实验的研究。由光生毫米波方法测得 W 波段传输系统的频率响应在10 dB 变化范围内,然后采用电生毫米波系统,进行距离分别为0.8 km,1.2 km及4.4 km的 W波段信号的无线传输实验。测得的接收功率分别为-19.77 dBm,-30.85 dBm及-38.61 dBm,验证了 W波段信号的远距离传输特性。%Due-to-high-carrier-frequency,-W-band-can-support-higher-bandwidth-and-transmission-rate.-The-signal-at-W-band-can-be-delivered-over-long-distance-because-of-small-atmospheric-loss.-Therefore,-the-transmission-link-of-W-band-signal-is-analyzed-and-the-W-band-millimeter-wave-communication-is-researched.-The-frequency-response-of-W-band-transmission-system-is-measured-by-photonic-millimeter-wave-method-and-the-measured-results-indicate-that-it-has-a-change-range-of-10-dB.-By-adopting-electric-millimeter-wave-system,-the-signal-at-W-band-is-transmitted-over-0.8-km,1.2-km-and-4.4-km-wireless-distances,-respectively.-The-received-power-is--19.77-dBm,-30.85-dBm-and--38.61-dBm-respectively.-Experiments-confirm-the-W-band-transmission-characteristics-over-long-distance.

  4. Photonic generation of linearly chirped millimeter wave based on comb-spacing tunable optical frequency comb

    Science.gov (United States)

    Xia, Zongyang; Xie, Weilin; Sun, Dongning; Shi, Hongxiao; Dong, Yi; Hu, Weisheng

    2013-12-01

    We demonstrated a photonic approach to generate a phase-continuous frequency-linear-chirped millimeter-wave (mm-wave) signal with high linearity based on continuous-wave phase modulated optical frequency comb and cascaded interleavers. Through linearly sweeping the frequency of the radio frequency (RF) driving signal, high-order frequency-linear-chirped optical comb lines are generated and then extracted by the cascaded interleavers. By beating the filtered high-order comb lines, center frequency and chirp range multiplied linear-chirp microwave signals are generated. Frequency doubled and quadrupled linear-chirp mm-wave signals of range 48.6 to 52.6 GHz and 97.2 to 105.2 GHz at chirp rates of 133.33 and 266.67 GHz/s are demonstrated with the ±1st and ±2nd optical comb lines, respectively, while the RF driving signal is of chirp range 24.3 to 26.3 GHz and chirp time 30 ms.

  5. Determination of the Phase Centers of Millimeter-Wave Horn Antennas Using a Holographic Interference Technique

    Science.gov (United States)

    McAuley, Ian; Murphy, J. Anthony; McCarthy, Darragh; Gradziel, Marcin; Mahon, Ronan; O'Sullivan, Creidhe; Trappe, Neil

    2016-04-01

    In this paper, we discuss how a holographic interference technique can be applied in the experimental determination of the phase centers of non-standard horn antennas in the millimeter-waveband. The phase center is the point inside the horn from which the radiation appears to emanate when viewed from the far-field, and knowing its location is necessary for optimizing coupling efficiencies to quasi-optical systems. For non-standard horn designs, and other feed structures, the phase center may be difficult to reliably predict by simulation, in which case, before committing to antenna manufacture, there is a requirement for it to be determined experimentally. Although the phase center can be recovered by direct phase measurement of the far-field beam pattern, this usually involves expensive instrumentation such as a vector network analyzer for millimeter wave horn antennas. In this paper, we describe one inexpensive alternative, which is based on measuring the interference pattern in intensity between the radiation from the horn of interest and a reference beam derived from the same coherent source in an off-axis holography setup. The accuracy of the approach is improved by comparison with the interference pattern of a well-understood standard horn (such as a corrugated conical horn) in the same experimental setup. We present an example of the technique applied to a profiled smooth-walled horn antenna, which has been especially designed for cosmic microwave background (CMB) polarization experiments.

  6. Generation and distribution of a wide-band continuously tunable millimeter-wave signal with an optical external modulation technique

    Science.gov (United States)

    Qi, Guohua; Yao, Jianping; Seregelyi, J.; Paquet, S.; Belisle, C.

    2005-10-01

    A new technique to generate and distribute a wide-band continuously tunable millimeter-wave signal using an optical external modulator and a wavelength-fixed optical notch filter is proposed. The optical intensity modulator is biased to suppress the odd-order optical sidebands. The wavelength-fixed optical notch filter is then used to filter out the optical carrier. Two second-order optical sidebands are obtained at the output of the notch filter. A millimeter-wave signal that has four times the frequency of the microwave drive signal is generated by beating the two second-order optical sidebands at a photodetector. Since no tunable optical filter is used, the system is easy to implement. A system using an LiNbO3 intensity modulator and a fiber Bragg grating filter is built. A stable and high spectral purity millimeter-wave signal tunable from 32 to 50 GHz is obtained by tuning the microwave drive signal from 8 to 12.5 GHz. The integrity of the generated millimeter-wave signal is maintained after transmission over a 25-km standard single-mode fiber. Theoretical analysis on the harmonic suppression with different modulation depths and filter attenuations is also discussed.

  7. Millimeter-wave response and linewidth of Josephson oscillations in YBa2Cu3O7 step-edge junctions

    DEFF Research Database (Denmark)

    Divin, Yu. Ya.; Andreev, A. V.; Fischer, Gerd Michael

    1993-01-01

    We have studied the response of YBa2Cu3O7 step-edge junctions to low-intensity millimeter-wave radiation in the temperature range from 4 to 80 K. The linewidth of the Josephson oscillations derived from the resonant part of the response at voltages V congruent-to (h/2e)f is shown to be determined...

  8. Generation of Intense Low-Frequency Collimated Sound Beams by Nonlinear Acoustics and Detection by a Millimeter-Wave Vibrometer

    Science.gov (United States)

    2010-10-01

    millimeter wave interferometer for remote vibration sensing, M. Smith, J. Scales, M. Weiss, B. Zadler, in press, Journal of Applied Physics List of...PIERS). Enhancing the nonlinear conversion in ultrasonic parametric arrays, to be submitted to Journal of Applied Physics . (d) Manuscripts Number of

  9. Effects of atmospheric turbulence on microwave and millimeter wave satellite communications systems. [attenuation statistics and antenna design

    Science.gov (United States)

    Devasirvatham, D. M. J.; Hodge, D. B.

    1981-01-01

    A model of the microwave and millimeter wave link in the presence of atmospheric turbulence is presented with emphasis on satellite communications systems. The analysis is based on standard methods of statistical theory. The results are directly usable by the design engineer.

  10. Limitations in distance and frequency due to chromatic dispersion in fibre-optic microwave and millimeter-wave links

    DEFF Research Database (Denmark)

    Gliese, Ulrik Bo; Nielsen, Søren Nørskov

    1996-01-01

    Chromatic dispersion significantly limits the distance and/or frequency in fibre-optic microwave and millimeter-wave links based on direct detection due to a decrease of the carrier to noise ratio. The limitations in links based on coherent remote heterodyne detection, however, are far less...

  11. An Off-Grid Turbo Channel Estimation Algorithm for Millimeter Wave Communications.

    Science.gov (United States)

    Han, Lingyi; Peng, Yuexing; Wang, Peng; Li, Yonghui

    2016-09-22

    The bandwidth shortage has motivated the exploration of the millimeter wave (mmWave) frequency spectrum for future communication networks. To compensate for the severe propagation attenuation in the mmWave band, massive antenna arrays can be adopted at both the transmitter and receiver to provide large array gains via directional beamforming. To achieve such array gains, channel estimation (CE) with high resolution and low latency is of great importance for mmWave communications. However, classic super-resolution subspace CE methods such as multiple signal classification (MUSIC) and estimation of signal parameters via rotation invariant technique (ESPRIT) cannot be applied here due to RF chain constraints. In this paper, an enhanced CE algorithm is developed for the off-grid problem when quantizing the angles of mmWave channel in the spatial domain where off-grid problem refers to the scenario that angles do not lie on the quantization grids with high probability, and it results in power leakage and severe reduction of the CE performance. A new model is first proposed to formulate the off-grid problem. The new model divides the continuously-distributed angle into a quantized discrete grid part, referred to as the integral grid angle, and an offset part, termed fractional off-grid angle. Accordingly, an iterative off-grid turbo CE (IOTCE) algorithm is proposed to renew and upgrade the CE between the integral grid part and the fractional off-grid part under the Turbo principle. By fully exploiting the sparse structure of mmWave channels, the integral grid part is estimated by a soft-decoding based compressed sensing (CS) method called improved turbo compressed channel sensing (ITCCS). It iteratively updates the soft information between the linear minimum mean square error (LMMSE) estimator and the sparsity combiner. Monte Carlo simulations are presented to evaluate the performance of the proposed method, and the results show that it enhances the angle detection

  12. An Off-Grid Turbo Channel Estimation Algorithm for Millimeter Wave Communications

    Directory of Open Access Journals (Sweden)

    Lingyi Han

    2016-09-01

    Full Text Available The bandwidth shortage has motivated the exploration of the millimeter wave (mmWave frequency spectrum for future communication networks. To compensate for the severe propagation attenuation in the mmWave band, massive antenna arrays can be adopted at both the transmitter and receiver to provide large array gains via directional beamforming. To achieve such array gains, channel estimation (CE with high resolution and low latency is of great importance for mmWave communications. However, classic super-resolution subspace CE methods such as multiple signal classification (MUSIC and estimation of signal parameters via rotation invariant technique (ESPRIT cannot be applied here due to RF chain constraints. In this paper, an enhanced CE algorithm is developed for the off-grid problem when quantizing the angles of mmWave channel in the spatial domain where off-grid problem refers to the scenario that angles do not lie on the quantization grids with high probability, and it results in power leakage and severe reduction of the CE performance. A new model is first proposed to formulate the off-grid problem. The new model divides the continuously-distributed angle into a quantized discrete grid part, referred to as the integral grid angle, and an offset part, termed fractional off-grid angle. Accordingly, an iterative off-grid turbo CE (IOTCE algorithm is proposed to renew and upgrade the CE between the integral grid part and the fractional off-grid part under the Turbo principle. By fully exploiting the sparse structure of mmWave channels, the integral grid part is estimated by a soft-decoding based compressed sensing (CS method called improved turbo compressed channel sensing (ITCCS. It iteratively updates the soft information between the linear minimum mean square error (LMMSE estimator and the sparsity combiner. Monte Carlo simulations are presented to evaluate the performance of the proposed method, and the results show that it enhances the angle

  13. Ultra-Wideband Phased Array for Millimeter-Wave 5G and ISM

    Science.gov (United States)

    Novak, Markus H.; Volakis, John L.; Miranda, Felix A.

    2016-01-01

    Growing mobile data consumption has prompted the exploration of the millimeter-wave spectrum for large bandwidth, high speed communications. However, the allocated bands are spread across a wide swath of spectrum: fifth generation mobile architecture (5G): 28, 38, 39, 64-71 GHz, as well as Industrial, Scientific, and Medical bands (ISM): 24 and 60 GHz. Moreover, high gain phased arrays are required to overcome the significant path loss associated with these frequencies. Further, it is necessary to incorporate several of these applications in a single, small size and low cost platform. To this end, we have developed a scanning, Ultra-Wideband (UWB) array which covers all 5G, ISM, and other mm-W bands from 24-72 GHz. Critically, this is accomplished using mass-production Printed Circuit Board (PCB) fabrication.

  14. Concealed objects detection based on FWT in active millimeter-wave images

    Science.gov (United States)

    Du, Kun; Zhang, Lu; Chen, Wei; Wan, Guolong; Fu, Ruoran

    2017-01-01

    Active millimeter-wave (MMW) near-filed human imaging is a means for concealed objects detection. A method of concealed objects detection based on fast wavelet transforms (FWT) in the usage of active MMW images is presented as a result of image characteristics, which includes high resolution, characteristics varying in different parts of the human, imaging influenced among human, concealed objects and other objects, and different textures of concealed objects. Images segmentation utilizing results of edge detection based on FWT is conducted and preliminary segmentation results can be obtained. Some kinds of concealed objects according to comparing gray value of concealed objects to human average gray value can be detected in this paper. The experiments of concealed objects on images of actual acquisition are conducted with a result of accurate rate 80.92% and false alarm rate 11.78%, illustrating the effectiveness of the method proposed in this paper.

  15. Fourier transform microwave and millimeter wave spectroscopy of quinazoline, quinoxaline, and phthalazine

    Science.gov (United States)

    McNaughton, Don; Godfrey, Peter D.; Jahn, Michaela K.; Dewald, David A.; Grabow, Jens-Uwe

    2011-04-01

    The pure rotational spectra of the bicyclic aromatic nitrogen heterocycle molecules, quinazoline, quinoxaline, and phthalazine, have been recorded and assigned in the region 13-87 GHz. An analysis, guided by ab initio molecular orbital predictions, of frequency-scanned Stark modulated, jet-cooled millimeter wave absorption spectra (48-87 GHz) yielded a preliminary set of rotational and centrifugal distortion constants. Subsequent spectral analysis at higher resolution was carried out with Fourier transform microwave (FT-MW) spectroscopy (13-18 GHz) of a supersonic rotationally cold molecular beam. The high spectral resolution of the FT-MW instrument provided an improved set of rotational and centrifugal distortion constants together with nitrogen quadrupole coupling constants for all three species. Density functional theory calculations at the B3LYP/6-311+G** level of theory closely predict rotational constants and are useful in predicting quadrupole coupling constants and dipole moments for such species.

  16. A dual-band millimeter-wave kinetic inductance camera for the IRAM 30-meter telescope

    CERN Document Server

    Monfardini, A; Bideaud, A; Swenson, L J; Roesch, M; Desert, F X; Doyle, S; Endo, A; Cruciani, A; Ade, P; Baryshev, A M; Baselmans, J J A; Bourrion, O; Calvo, M; Camus, P; Ferrari, L; Giordano, C; Hoffmann, C; Leclercq, S; Macias-Perez9, J; Mauskopf, P; Schuster, K F; Tucker, C; Vescovi, C; Yates, S J C

    2011-01-01

    Context. The Neel IRAM KIDs Array (NIKA) is a fully-integrated measurement system based on kinetic inductance detectors (KIDs) currently being developed for millimeter wave astronomy. In a first technical run, NIKA was successfully tested in 2009 at the Institute for Millimetric Radio Astronomy (IRAM) 30-meter telescope at Pico Veleta, Spain. This prototype consisted of a 27-42 pixel camera imaging at 150 GHz. Subsequently, an improved system has been developed and tested in October 2010 at the Pico Veleta telescope. The instrument upgrades included dual-band optics allowing simultaneous imaging at 150 GHz and 220 GHz, faster sampling electronics enabling synchronous measurement of up to 112 pixels per measurement band, improved single-pixel sensitivity, and the fabrication of a sky simulator to replicate conditions present at the telescope. Results. The new dual-band NIKA was successfully tested in October 2010, performing in-line with sky simulator predictions. Initially the sources targeted during the 2009...

  17. Effects of Millimeter-Wave Electromagnetic Radiation on the Experimental Model of Migraine.

    Science.gov (United States)

    Sivachenko, I B; Medvedev, D S; Molodtsova, I D; Panteleev, S S; Sokolov, A Yu; Lyubashina, O A

    2016-02-01

    Effects of millimeter-wave electromagnetic radiation (40 GHz frequency, 0.01 mW power) on the spontaneous fi ring of convergent neurons of the spinal trigeminal nucleus and their responses to electrical stimulation of the dura mater were studied in neurophysiological experiments on rats. Irradiation of the area of cutaneous receptive fields of spinal trigeminal nucleus reversibly inhibited both spontaneous discharges and activity induced by electrical stimulation of the dura mater. The second and third exposures to electromagnetic radiation with an interval of 10 min were ineffective. These results suggest that suppression of neuronal excitability in the spinal trigeminal ganglion can be a mechanism of the anti-migraine effects of electromagnetic radiation observed in clinical practice.

  18. Novel design for microstrip to stripline transitions for millimeter-wave application in LTCC

    Science.gov (United States)

    Xu, Xin; Huang, Qi-bo; Zhu, Zheng-xian; Xu, Hui; Zhang, Bo

    2014-11-01

    This paper presents two transitions between microstrip and stripline in Low Temperature Co-fired Ceramic technology, including a vertical transition and a coplanar transition for millimeter-wave application. These interconnects are simulated and optimized by a three-dimensional electromagnetic field simulator. Simulation results show that the return loss of microstrip to stripline vertical transition is less than -22 dB, and insertion losses are greater than 0.5 dB up to 35 GHz, and greater than 1 dB up to 40 GHz. Similarly, the return loss of the coplanar transition is less than -32 dB and insertion loss is better than 0.5 dB. LTCC test structures were fabricated and the performance of all transitions was successfully validated by scattering parameter measurements up to 40 GHz.

  19. Millimeter-Wave Ultra-Wideband Six-Port Receiver Using Cross-Polarized Antennas

    Directory of Open Access Journals (Sweden)

    Wu Ke

    2009-01-01

    Full Text Available This paper presents a new low-cost millimeter-wave ultra-wideband (UWB transceiver architecture operating over V-band from 60 to 64 GHz. Since the local oscillator (LO power required in the operation of six-port receiver is generally low (compared to conventional one using diode mixers, the carrier recovery or LO synchronization is avoided by using second transmission path and cross-polarized antennas. The six-port model used in system simulation is based on -parameters measurements of a rectangular waveguide hybrid coupler. The receiver architecture is validated by comparisons between transmitter and receiver bit sequences and bit error rate results of 500 Mb/s pseudorandom QPSK signal.

  20. Millimeter-Wave Ultra-Wideband Six-Port Receiver Using Cross-Polarized Antennas

    Directory of Open Access Journals (Sweden)

    Serioja O. Tatu

    2009-01-01

    Full Text Available This paper presents a new low-cost millimeter-wave ultra-wideband (UWB transceiver architecture operating over V-band from 60 to 64 GHz. Since the local oscillator (LO power required in the operation of six-port receiver is generally low (compared to conventional one using diode mixers, the carrier recovery or LO synchronization is avoided by using second transmission path and cross-polarized antennas. The six-port model used in system simulation is based on S-parameters measurements of a rectangular waveguide hybrid coupler. The receiver architecture is validated by comparisons between transmitter and receiver bit sequences and bit error rate results of 500 Mb/s pseudorandom QPSK signal.

  1. Definition Study for Space Shuttle Experiments Involving Large, Steerable Millimeter-Wave Antenna Arrays

    Science.gov (United States)

    Levis, C. A.

    1976-01-01

    The potential uses and techniques for the shuttle spacelab Millimeter Wave Large Aperture Antenna Experiment (MWLAE) are documented. Potential uses are identified: applications to radio astronomy, the sensing of atmospheric turbulence by its effect on water vapor line emissions, and the monitoring of oil spills by multifrequency radiometry. IF combining is preferable to RF combining with respect to signal to noise ratio for communications receiving antennas of the size proposed for MWLAE. A design approach using arrays of subapertures is proposed to reduce the number of phase shifters and mixers for uses which require a filled aperture. Correlation radiometry and a scheme utilizing synchronous Dicke switches and IF combining are proposed as potential solutions.

  2. Total power millimeter-wave spectrometer for measurements of dust opacity at cryogenic temperatures.

    Science.gov (United States)

    Potapov, Alexey; Lewen, Frank; Mutschke, Harald; Mohr, Pierre; Schlemmer, Stephan

    2014-07-01

    A highly sensitive total power millimeter-wave spectrometer has been built to investigate the opacity of important interstellar-dust analogues in the 10-300 K temperature range. The key elements of the spectrometer are a frequency agile synthesizer followed by a microwave amplifier and a subsequent frequency multiplier. In a first step, the frequency range of 72-120 GHz is covered by the spectrometer, and a room temperature Schottky detector is employed as a detector. A newly developed two channel (sample/reference) copper sample holder is cryogenically cooled for the 10-300 K range. Here we present the technical details of the spectrometer including examples of the obtained results. The analysis of these results will be published elsewhere.

  3. Cylindrical Three-Dimensional Millimeter-Wave Imaging via Compressive Sensing

    Directory of Open Access Journals (Sweden)

    Guoqiang Zhao

    2015-01-01

    Full Text Available Millimeter-wave (MMW imaging techniques have been used for the detection of concealed weapons and contraband carried by personnel. However, the future application of the new technology may be limited by its large number of antennas. In order to reduce the complexity of the hardware, a novel MMW imaging method based on compressive sensing (CS is proposed in this paper. The MMW images can be reconstructed from the significantly undersampled backscattered data via the CS approach. Thus the number of antennas and the cost of system can be further reduced than those based on the traditional imaging methods that obey the Nyquist sampling theorem. The effectiveness of the proposed method is validated by numerical simulations as well as by real measured data of objects.

  4. On the performance of millimeter wave-based RF-FSO links with HARQ feedback

    KAUST Repository

    Makki, Behrooz

    2016-12-24

    This paper studies the performance of hybrid radio-frequency (RF) and free-space optical (FSO) links in the cases with and without hybrid automatic repeat request (HARQ). Considering millimeter wave (mmwave) characteristics in the RF link and pointing errors in the FSO link, we derive closed-form expressions for the message decoding probabilities as well as the throughput and the outage probability of the RF-FSO setups. We also evaluate the effect of various parameters such as power amplifiers efficiency, different transmission techniques in the FSO link, pointing errors in the FSO link as well as different coherence times/symbol rates of the RF and the FSO links on the throughput and outage probability. The results show the efficiency of the RF-FSO links in different conditions. Moreover, the HARQ can effectively improve the outage probability/energy efficiency, and compensate the effect of hardware impairments in RF-FSO links.

  5. Effects of Millimeter Waves Radiation on Cell Membrane - A Brief Review

    Science.gov (United States)

    Ramundo-Orlando, Alfonsina

    2010-12-01

    The millimeter waves (MMW) region of the electromagnetic spectrum, extending from 30 to 300 GHz in terms of frequency (corresponding to wavelengths from 10 mm to 1 mm), is officially used in non-invasive complementary medicine in many Eastern European countries against a variety of diseases such gastro duodenal ulcers, cardiovascular disorders, traumatism and tumor. On the other hand, besides technological applications in traffic and military systems, in the near future MMW will also find applications in high resolution and high-speed wireless communication technology. This has led to restoring interest in research on MMW induced biological effects. In this review emphasis has been given to the MMW-induced effects on cell membranes that are considered the major target for the interaction between MMW and biological systems.

  6. BCB-Si Based Wide Band Millimeter Wave Antenna Fed by Substrate Integrated Waveguide

    Directory of Open Access Journals (Sweden)

    Hamsakutty Vettikalladi

    2013-01-01

    Full Text Available A benzocyclobutene (BCB silicon (Si based wideband antenna for millimeter wave applications is presented. The antenna consists of multilayer with one layer of BCB and the remaining three layers of Si. A patch is etched on the Si substrate above the air gap, which is excited through a slot. This architecture of slot, air gap, and patch will produce wide bandwidth by merging each one of resonances. The simulated results show that the antenna provides an S11<-10 dB bandwidth of 9.7 GHz (17% starting from 51.5 GHz to 61.2 GHz around 57 GHz central frequency. The antenna provides a maximum gain of 8.9 dBi with an efficiency of 70%.

  7. Sparse Multi-Static Arrays for Near-Field Millimeter-Wave Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Sheen, David M.

    2013-12-31

    This paper describes a novel design technique for sparse multi-static linear arrays. The methods described allow the development of densely sampled linear arrays suitable for high-resolution near-field imaging that require dramatically fewer antenna and switch elements than the previous state of the art. The techniques used are related to sparse array techniques used in radio astronomy applications, but differ significantly in design due to the transmit-receive nature of the arrays, and the application to linear arrays that achieve dense uniform sampling suitable for high-resolution near-field imaging. As many as 3 to 5 or more samples per antenna can be obtained, compared to 1 sample per antenna for the current state of the art. This could dramatically reduce cost and improve performance over current active millimeter-wave imaging systems.

  8. Bandwidth enhancement of a multilayered polymeric comb array antenna for millimeter-wave applications

    Science.gov (United States)

    Muhamad, Wan Asilah Wan; Ngah, Razali; Jamlos, Mohd Faizal; Soh, Ping Jack; Ali, Mohd Tarmizi; Narbudowicz, Adam

    2017-01-01

    This paper introduces a new multilayered polymeric comb array antenna fabricated on a polydimethylsiloxane (PDMS) dielectric substrate. PDMS is selected due to its excellent electrical and mechanical properties such as low permittivity, water resistance and robustness. The polymeric comb array antenna consists of a zigzag array aligned at -90° with respect to the radiating patch with full ground plane. The radiating patch is embedded inside the PDMS substrate while the coaxial connector is located at the bottom of the transmission line. The proposed antenna functions from 22.649 to 27.792 GHz. Simulated and measured reflection coefficients and radiation patterns agreed well. A maximum gain of 9.856 dB is recorded at 25 GHz, indicating suitability for implementation in millimeter-wave applications.

  9. Characteristic analysis of aspheric quasi-optical lens antenna in millimeter-wave radiometer imaging system.

    Science.gov (United States)

    Kim, Won-Gyum; Moon, Nam-Won; Singh, Manoj Kumar; Kim, Hwang-Kyeom; Kim, Yong-Hoon

    2013-02-20

    Quasi-optical imaging systems require low blurring effect and large depth of focus (DOF) to get an acceptable sharpness of the image. To reduce aberration-limited blurring, the aspheric convex plano lenses with an aperture diameter of 350 mm are designed in W-band. We analyzed theoretically and experimentally the millimeter-wave band lens characteristics, such as beam spot size, spatial resolution (SR), and DOF, via f-number. It is first used to verify the DOF through f-number in the system-level test with the developed W-band radiometer imaging system. We have confirmed that the larger f-number of quasi-optical lens leads to a larger DOF but a lower SR.

  10. DTU-ESA millimeter-wave validation standard antenna – requirements and design

    DEFF Research Database (Denmark)

    Pivnenko, Sergey; Kim, Oleksiy S.; Breinbjerg, Olav;

    2014-01-01

    stability over a given operational temperature range. In addition, VAST antennas must possess electrical characteristics that are typical for satellite antennas and challenging to measure. A multi-band millimeter-wave VAST (mm-VAST) antenna for the K/Ka-bands and Q/V bands is currently under development......Inter-comparisons and validations of antenna measurement ranges are useful tools allowing the detection of various problems in the measurement procedures, thus leading to improvements of the measurement accuracy and facilitating better understanding of the measurement techniques. The maximum value...... from a validation campaign is achieved when a dedicated Validation Standard (VAST) antenna specifically designed for this purpose is available. The driving requirements to VAST antennas are their mechanical stability with respect to any orientation of the antenna in the gravity field and thermal...

  11. Dielectric Resonator Antennas: Basic Concepts, Design Guidelines, and Recent Developments at Millimeter-Wave Frequencies

    Directory of Open Access Journals (Sweden)

    S. Keyrouz

    2016-01-01

    Full Text Available An up-to-date literature overview on relevant approaches for controlling circuital characteristics and radiation properties of dielectric resonator antennas (DRAs is presented. The main advantages of DRAs are discussed in detail, while reviewing the most effective techniques for antenna feeding as well as for size reduction. Furthermore, advanced design solutions for enhancing the realized gain of individual DRAs are investigated. In this way, guidance is provided to radio frequency (RF front-end designers in the selection of different antenna topologies useful to achieve the required antenna performance in terms of frequency response, gain, and polarization. Particular attention is put in the analysis of the progress which is being made in the application of DRA technology at millimeter-wave frequencies.

  12. Demonstration of a passive, low-noise, millimeter-wave detector array for imaging

    Science.gov (United States)

    Wikner, David; Grossman, Erich

    2009-05-01

    The design of a millimeter-wave (MMW) camera is presented. The camera is meant to serve as a demonstration platform for a new 32-channel MMW detector array that requires no pre-amplification prior to detection. The Army Research Laboratory (ARL) and National Institute of Standards and Technology (NIST) have worked with the Defense Advanced Research Projects Agency and several contractors for four years to develop an affordable MMW detector array technology suitable for use in a large staring array. The camera described uses one particular embodiment of detector array that resulted from the program. This paper reviews the design of the MMW optics that will be used to form imagery with the linear array and the tradeoffs made in that design. Also presented are the results of laboratory tests of the detector array that were made at both ARL and NIST.

  13. A balloon-borne millimeter-wave telescope for cosmic microwave background anisotropy measurements

    CERN Document Server

    Fixsen, D J; Cottingham, D A; Folz, W C; Inman, C A; Kowitt, M S; Meyer, S; Page, L A; Puchalla, J L; Ruhl, J E; Silverberg, R F

    1995-01-01

    We report on the characteristics and design details of the Medium Scale Anisotropy Measurement (MSAM), a millimeter-wave, balloon-borne telescope that has been used to observe anisotropy in the Cosmic Microwave Background Radiation (CMBR) on 0\\fdg5 angular scales. The gondola is capable of determining and maintaining absolute orientation to a few arcminutes during a one-night flight. Emphasis is placed on the optical and pointing performance as well as the weight and power budgets. We also discuss the total balloon/gondola mechanical system. The pendulation from this system is a ubiquitous perturbation on the pointing system. A detailed understanding in these areas is needed for developing the next generation of balloon-borne instruments.

  14. A two-dimensionally focusing, quasi-optical antenna for millimeter-wave scattering in plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Idehara, T.; Tatsukawa, T. (Faculty of Engineering, Fukui University, Fukui 910, Japan (JP)); Brand, G.F.; Fekete, P.W.; Moore, K.J. (School of Physics, University of Sydney, NSW 2006 (Australia))

    1990-06-01

    A two-dimensionally focusing, quasi-optical antenna having one elliptical reflector and one parabolic reflector has been built for use with a tunable gyrotron in order to carry out millimeter-wave scattering measurements on the TORTUS tokamak plasma at the University of Sydney. The advantages of this antenna are the following: (1) The elliptical reflector focuses the radiation beam in the toroidal direction, while the parabolic reflector focuses in the direction of major radius. This gives excellent two-dimensional focusing in the plasma region, and consequently excellent spatial resolution. (2) The focal point can be easily swept along the direction of major radius in the whole plasma region, simply by changing the angle of the parabolic reflector by a small amount. These features have been demonstrated experimentally using the tunable gyrotron source, GYROTRON III, and in computations of the radiated fields.

  15. Effects of millimeter wave carbon fibers on filter-feeding freshwater invertebrates.

    Science.gov (United States)

    Soucek, David J; Dickinson, Amy; Cropek, Donald M

    2010-05-01

    The purpose of our study was to investigate the sub-lethal effects of millimeter wave carbon fibers (MWCF), a military obscurant, on filter-feeding freshwater invertebrates. We observed decreased survival, reproduction, and oxygen consumption in Daphnia magna at realistic loading rates. In experiments with the Asiatic clam (Corbicula fluminea), soft tissue dry weight and tissue condition index were not significantly different among control and MWCF exposed treatments; however, using a (15)N labeled alga as food, we observed decreased nitrogen turnover in tissues of clams exposed to MWCF, suggesting lower filtering or ingestion rates. Our findings combined with previous demonstrations of MWCF toxicity to green algae suggest that over a period of several months, bivalve growth may be inhibited, and cladoceran populations may be even more strongly affected by MWCF. Given that these fibers are persistent, further experiments should be conducted to determine the longer-term effects of contamination of water bodies with MWCF.

  16. Millimeter-wave imaging diagnostics systems on the EAST tokamak (invited)

    Science.gov (United States)

    Zhu, Y. L.; Xie, J. L.; Yu, C. X.; Zhao, Z. L.; Gao, B. X.; Chen, D. X.; Liu, W. D.; Liao, W.; Qu, C. M.; Luo, C.; Hu, X.; Spear, A. G.; Luhmann, N. C.; Domier, C. W.; Chen, M.; Ren, X.; Tobias, B. J.

    2016-11-01

    Millimeter-wave imaging diagnostics, with large poloidal span and wide radial range, have been developed on the EAST tokamak for visualization of 2D electron temperature and density fluctuations. A 384 channel (24 poloidal × 16 radial) Electron Cyclotron Emission Imaging (ECEI) system in F-band (90-140 GHz) was installed on the EAST tokamak in 2012 to provide 2D electron temperature fluctuation images with high spatial and temporal resolution. A co-located Microwave Imaging Reflectometry (MIR) will be installed for imaging of density fluctuations by December 2016. This "4th generation" MIR system has eight independent frequency illumination beams in W-band (75-110 GHz) driven by fast tuning synthesizers and active multipliers. Both of these advanced millimeter-wave imaging diagnostic systems have applied the latest techniques. A novel design philosophy "general optics structure" has been employed for the design of the ECEI and MIR receiver optics with large aperture. The extended radial and poloidal coverage of ECEI on EAST is made possible by innovations in the design of front-end optics. The front-end optical structures of the two imaging diagnostics, ECEI and MIR, have been integrated into a compact system, including the ECEI receiver and MIR transmitter and receiver. Two imaging systems share the same mid-plane port for simultaneous, co-located 2D fluctuation measurements of electron density and temperature. An intelligent remote-control is utilized in the MIR electronics systems to maintain focusing at the desired radial region even with density variations by remotely tuning the probe frequencies in about 200 μs. A similar intelligent technique has also been applied on the ECEI IF system, with remote configuration of the attenuations for each channel.

  17. Towards 5G: A Photonic Based Millimeter Wave Signal Generation for Applying in 5G Access Fronthaul

    Science.gov (United States)

    Alavi, S. E.; Soltanian, M. R. K.; Amiri, I. S.; Khalily, M.; Supa'At, A. S. M.; Ahmad, H.

    2016-01-01

    5G communications require a multi Gb/s data transmission in its small cells. For this purpose millimeter wave (mm-wave) RF signals are the best solutions to be utilized for high speed data transmission. Generation of these high frequency RF signals is challenging in electrical domain therefore photonic generation of these signals is more studied. In this work, a photonic based simple and robust method for generating millimeter waves applicable in 5G access fronthaul is presented. Besides generating of the mm-wave signal in the 60 GHz frequency band the radio over fiber (RoF) system for transmission of orthogonal frequency division multiplexing (OFDM) with 5 GHz bandwidth is presented. For the purpose of wireless transmission for 5G application the required antenna is designed and developed. The total system performance in one small cell was studied and the error vector magnitude (EVM) of the system was evaluated.

  18. An open-styled dielectric-lined azimuthally periodic circular waveguide for a millimeter wave traveling-wave tube

    Institute of Scientific and Technical Information of China (English)

    Liu Yang; Wei Yan-Yu; Xu Jin; Yin Hai-Rong; Yue Ling-Na; Gong Yu-Bin; Wang Wen-Xiang

    2012-01-01

    An open-styled dielectric-lined azimuthally periodic circular waveguide (ODLAP-CW) for a millimeter-wave traveling-wave tube (TWT) is proposed,which is a modified form of a dielectric-lined azimuthally periodic circular waveguide (DLAP-CW).The slow-wave characteristics of the open-styled DLAP-CW are studied by using the spatial harmonics method,which includes normalized phase velocity and interaction impedance.The complicated dispersion equations are numerically solved with MATLAB and the results are in good agreement with the simulation results obtained from HFSS.The influence of structural parameters on the RF properties is investigated based on our theory.The numerical results show that the optimal thickness of the metal rod can increase the interaction impedance,with the dielectric constant held fixed.Finally,the slow-wave characteristics and transmission properties of an open-styled structure are compared with those of the DLAP-CW.The results validate that the mode competition is eliminated in the improved structure with only a slight influence on the dispersion characteristics,which may significantly improve the stability of an open-styled DLAP-CW-based TWT,and the interaction efficiency is also improved.

  19. Millimeter-wave circuits and pulse compression radar baseband/analog signal processing blocks in silicon processes

    OpenAIRE

    2012-01-01

    The power dissipation and cost of the next generation pulse radar beamforming systems needs to be reduced for the imaging and surveillance sensors. This research work aims at developing and innovating the next generation, mobile hand-held, high performance radar systems for outdoor surveillance applications, i.e. pedestrian detection sensor. Integrating the low cost millimeter-wave (mm-wave) imaging array platforms with advanced analog/ baseband signal processing on silicon is proposed for re...

  20. Millimeter Wave MIMO Channel Estimation Using Overlapped Beam Patterns and Rate Adaptation

    Science.gov (United States)

    Kokshoorn, Matthew; Chen, He; Wang, Peng; Li, Yonghui; Vucetic, Branka

    2017-02-01

    This paper is concerned with the channel estimation problem in Millimeter wave (mmWave) wireless systems with large antenna arrays. By exploiting the inherent sparse nature of the mmWave channel, we first propose a fast channel estimation (FCE) algorithm based on a novel overlapped beam pattern design, which can increase the amount of information carried by each channel measurement and thus reduce the required channel estimation time compared to the existing non-overlapped designs. We develop a maximum likelihood (ML) estimator to optimally extract the path information from the channel measurements. Then, we propose a novel rate-adaptive channel estimation (RACE) algorithm, which can dynamically adjust the number of channel measurements based on the expected probability of estimation error (PEE). The performance of both proposed algorithms is analyzed. For the FCE algorithm, an approximate closed-form expression for the PEE is derived. For the RACE algorithm, a lower bound for the minimum signal energy-to-noise ratio required for a given number of channel measurements is developed based on the Shannon-Hartley theorem. Simulation results show that the FCE algorithm significantly reduces the number of channel estimation measurements compared to the existing algorithms using non-overlapped beam patterns. By adopting the RACE algorithm, we can achieve up to a 6dB gain in signal energy-to-noise ratio for the same PEE compared to the existing algorithms.

  1. Metamaterial CRLH Antennas on Silicon Substrate for Millimeter-Wave Integrated Circuits

    Directory of Open Access Journals (Sweden)

    Gheorghe Ioan Sajin

    2012-01-01

    Full Text Available The paper presents two composite right/left-handed (CRLH coplanar waveguide (CPW zeroth-order resonant (ZOR antennas which were designed, processed, and electrically characterized for applications in the millimetric wave frequency range. Two CRLH antennas were developed for f=27 GHz and f=38.5, GHz, respectively. The CRLH antenna on f=27 GHz shows a return loss of RL<−18.78 dB at f=26.88 GHz. The −3 dB radiation characteristic beamwidth was approximately 37° and the gain was Gi=2.82 dBi. The CRLH antenna on f=38.5 GHz has a return loss of RL<−38.5 dB at f=38.82 GHz and the −3 dB radiation characteristic beamwidth of approximately 17°. The gains were Gi=1.08 dBi at f=38 GHz and Gi=1.2 dBi at f=38.6 GHz. The maximum measured gain was Gi=1.75 dBi at f=38.2 GHz. It is, upon the authors' knowledge, the first report of millimeter wave CRLH antennas on silicon substrate in CPW technique for use in mm-wave monolithic integrated circuit.

  2. Multiplexed Millimeter Wave Communication with Dual Orbital Angular Momentum (OAM) Mode Antennas.

    Science.gov (United States)

    Hui, Xiaonan; Zheng, Shilie; Chen, Yiling; Hu, Yiping; Jin, Xiaofeng; Chi, Hao; Zhang, Xianmin

    2015-05-19

    Communications using the orbital angular momentum (OAM) of radio waves have attracted much attention in recent years. In this paper, a novel millimeter-wave dual OAM mode antenna is cleverly designed, using which a 60 GHz wireless communication link with two separate OAM channels is experimentally demonstrated. The main body of the dual OAM antenna is a traveling-wave ring resonator using two feeding ports fed by a 90° hybrid coupler. A parabolic reflector is used to focus the beams. All the antenna components are fabricated by 3D printing technique and the electro-less copper plating surface treatment process. The performances of the antenna, such as S-parameters, near-fields, directivity, and isolation between the two OAM modes are measured. Experimental results show that this antenna can radiate two coaxially propagating OAM modes beams simultaneously. The multiplexing and de-multiplexing are easily realized in the antennas themselves. The two OAM mode channels have good isolation of more than 20 dB, thus ensuring the reliable transmission links at the same time.

  3. A Tutorial on Optical Feeding of Millimeter-Wave Phased Array Antennas for Communication Applications

    Directory of Open Access Journals (Sweden)

    Ivan Aldaya

    2015-01-01

    Full Text Available Given the interference avoidance capacity, high gain, and dynamical reconfigurability, phased array antennas (PAAs have emerged as a key enabling technology for future broadband mobile applications. This is especially important at millimeter-wave (mm-wave frequencies, where the high power consumption and significant path loss impose serious range constraints. However, at mm-wave frequencies the phase and amplitude control of the feeding currents of the PAA elements is not a trivial issue because electrical beamforming requires bulky devices and exhibits relatively narrow bandwidth. In order to overcome these limitations, different optical beamforming architectures have been presented. In this paper we review the basic principles of phased arrays and identify the main challenges, that is, integration of high-speed photodetectors with antenna elements and the efficient optical control of both amplitude and phase of the feeding current. After presenting the most important solutions found in the literature, we analyze the impact of the different noise sources on the PAA performance, giving some guidelines for the design of optically fed PAAs.

  4. Development and Short-Range Testing of a 100 kW Side-Illuminated Millimeter-Wave Thermal Rocket

    Science.gov (United States)

    Bruccoleri, Alexander; Eilers, James A.; Lambot, Thomas; Parkin, Kevin

    2015-01-01

    The objective of the phase described here of the Millimeter-Wave Thermal Launch System (MTLS) Project was to launch a small thermal rocket into the air using millimeter waves. The preliminary results of the first MTLS flight vehicle launches are presented in this work. The design and construction of a small thermal rocket with a planar ceramic heat exchanger mounted along the axis of the rocket is described. The heat exchanger was illuminated from the side by a millimeter-wave beam and fed propellant from above via a small tank containing high pressure argon or nitrogen. Short-range tests where the rocket was launched, tracked, and heated with the beam are described. The rockets were approximately 1.5 meters in length and 65 millimeters in diameter, with a liftoff mass of 1.8 kilograms. The rocket airframes were coated in aluminum and had a parachute recovery system activated via a timer and Pyrodex. At the rocket heat exchanger, the beam distance was 40 meters with a peak power intensity of 77 watts per square centimeter. and a total power of 32 kilowatts in a 30 centimeter diameter circle. An altitude of approximately 10 meters was achieved. Recommendations for improvements are discussed.

  5. Development of a Millimeter-Wave Beam Position and Profile Monitor for Transmission Efficiency Improvement in an ECRH System

    Directory of Open Access Journals (Sweden)

    Shimozuma T.

    2015-01-01

    Full Text Available In a high power Electron Cyclotron Resonance Heating (ECRH system, a long-distance and low-loss transmission system is required to realize effective heating of nuclear fusion-relevant plasmas. A millimeter-wave beam position and profile monitor, which can be used in a high-power, evacuated, and cooled transmission line, is proposed, designed, manufactured, and tested. The beam monitor consists of a reflector, Peltier-device array and a heat-sink. It was tested using simulated electric heater power or gyrotron output power. The data obtained from the monitor were well agreed with the heat source position and profile. The methods of data analysis and mode-content analysis of a propagating millimeter-wave in the corrugated wave-guide are proposed.

  6. Development of a Millimeter-Wave Beam Position and Profile Monitor for Transmission Efficiency Improvement in an ECRH System

    Science.gov (United States)

    Shimozuma, T.; Kobayashi, S.; Ito, S.; Ito, Y.; Kubo, S.; Yoshimura, Y.; Nishiura, M.; Igami, H.; Takahashi, H.; Mizuno, Y.; Okada, K.; Mutoh, T.

    2015-03-01

    In a high power Electron Cyclotron Resonance Heating (ECRH) system, a long-distance and low-loss transmission system is required to realize effective heating of nuclear fusion-relevant plasmas. A millimeter-wave beam position and profile monitor, which can be used in a high-power, evacuated, and cooled transmission line, is proposed, designed, manufactured, and tested. The beam monitor consists of a reflector, Peltier-device array and a heat-sink. It was tested using simulated electric heater power or gyrotron output power. The data obtained from the monitor were well agreed with the heat source position and profile. The methods of data analysis and mode-content analysis of a propagating millimeter-wave in the corrugated wave-guide are proposed.

  7. Synergy between middle infrared and millimeter-wave limb sounding of atmospheric temperature and minor constituents

    Science.gov (United States)

    Cortesi, Ugo; Del Bianco, Samuele; Ceccherini, Simone; Gai, Marco; Dinelli, Bianca Maria; Castelli, Elisa; Oelhaf, Hermann; Woiwode, Wolfgang; Höpfner, Michael; Gerber, Daniel

    2016-05-01

    Synergistic exploitation of redundant and complementary information from independent observations of the same target remains a major issue in atmospheric remote sounding and increasing attention is devoted to investigate optimized or innovative methods for the combination of two or more measured data sets. This paper focuses on the synergy between middle infrared and millimeter-wave limb sounding measurements of atmospheric composition and temperature and reports the results of a study conducted as part of the preparatory activities of the PREMIER (Process Exploration through Measurements of Infrared and millimeter-wave Emitted Radiation) mission candidate to the Core Missions of the European Space Agency (ESA) Earth Explorer 7. The activity was based on data acquired by the MIPAS-STR (Michelson Interferometer for Passive Atmospheric Sounding - STRatospheric aircraft) and MARSCHALS (Millimetre-wave Airborne Receivers for Spectroscopic CHaracterisation in Atmospheric Limb Sounding) instruments on-board the high-altitude research aircraft M-55 Geophysica during the flight of the PremierEx (PREMIER Experiment) campaign on 10 March 2010 from Kiruna, Sweden, for observation of the Arctic upper troposphere and lower stratosphere. The cloud coverage observed along the flight provided representative test cases to evaluate the synergy in three different scenarios: low clouds in the first part, no clouds in the central part and high tropospheric clouds at the end. The calculation of synergistic profiles of four atmospheric targets (i.e., O3, HNO3, H2O and temperature) was performed using a posteriori combination of individual retrieved profiles, i.e., Level 2 (L2) data rather than simultaneous inversion of observed radiances, i.e., Level 1 (L1) data. An innovative method of data fusion, based on the Measurement Space Solution (MSS) was applied along with the standard approach of inversion of MARSCHALS spectral radiances using MIPAS-STR retrieval products as a priori

  8. A high-temperature superconducting millimeter wave detecting system based on pulse tube cryocooler

    Science.gov (United States)

    Chen, Jian; Wu, Peiheng; Nakajima, Kensuke; Yamashita, Tsutomu

    2004-10-01

    A millimeter (mm) wave broadband video detecting system using high temperature superconducting (HTS) junction and compact pulse tube cryocooler (PTC) has been studied. The lowest attainable temperature of the PTC is 42K and the operating temperature (T) can be adjusted by changing the pressure difference in the compressor. By measuring the linewidth of the Josephson oscillation as well as the dynamic range of the Josephson detector, it is found that the PTC has no excess noise compared with other kinds of cryostats such as liquid helium cryostats, and is very suitable for the applications in the mm wave detecting system. Furthermore, to improve the sensitivity of the system, the coupling efficiency of the system has been studied in detail. It is found that the coupling efficiency increases with the increase of RN linearly, and is better than 1% for RN of 1.7 Ohm. A sensitivity of about 318V/W has been obtained for the system based on the PTC and a junction with RN=1.7 Ohm and ICRN =1mV.

  9. High power millimeter wave experiment of ITER relevant electron cyclotron heating and current drive system.

    Science.gov (United States)

    Takahashi, K; Kajiwara, K; Oda, Y; Kasugai, A; Kobayashi, N; Sakamoto, K; Doane, J; Olstad, R; Henderson, M

    2011-06-01

    High power, long pulse millimeter (mm) wave experiments of the RF test stand (RFTS) of Japan Atomic Energy Agency (JAEA) were performed. The system consists of a 1 MW/170 GHz gyrotron, a long and short distance transmission line (TL), and an equatorial launcher (EL) mock-up. The RFTS has an ITER-relevant configuration, i.e., consisted by a 1 MW-170 GHz gyrotron, a mm wave TL, and an EL mock-up. The TL is composed of a matching optics unit, evacuated circular corrugated waveguides, 6-miter bends, an in-line waveguide switch, and an isolation valve. The EL-mock-up is fabricated according to the current design of the ITER launcher. The Gaussian-like beam radiation with the steering capability of 20°-40° from the EL mock-up was also successfully proved. The high power, long pulse power transmission test was conducted with the metallic load replaced by the EL mock-up, and the transmission of 1 MW/800 s and 0.5 MW/1000 s was successfully demonstrated with no arcing and no damages. The transmission efficiency of the TL was 96%. The results prove the feasibility of the ITER electron cyclotron heating and current drive system.

  10. Direct single-shot observation of millimeter wave superradiance in Rydberg-Rydberg transitions

    CERN Document Server

    Grimes, David D; Barnum, Timothy J; Zhou, Yan; Yelin, Susanne F; Field, Robert W

    2016-01-01

    We have directly detected millimeter wave (mm-wave) free space superradiant emission from Rydberg states ($n \\sim 30$) of barium atoms in a single shot. We trigger the cooperative effects with a weak initial pulse and detect with single-shot sensitivity and 20 ps time resolution, which allows measurement and shot-by-shot analysis of the distribution of decay rates, time delays, and time-dependent frequency shifts. Cooperative line shifts and decay rates are observed that exceed values that would correspond to the Doppler width of 250 kHz by a factor of 20 and the spontaneous emission rate of 50 Hz by a factor of $10^5$. The initial superradiant output pulse is followed by evolution of the radiation-coupled many-body system toward complex long-lasting emission modes. A comparison to a mean-field theory is presented which reproduces the quantitative time-domain results, but fails to account for either the frequency-domain observations or the long-lived features.

  11. FGG-NUFFT-Based Method for Near-Field 3-D Imaging Using Millimeter Waves.

    Science.gov (United States)

    Kan, Yingzhi; Zhu, Yongfeng; Tang, Liang; Fu, Qiang; Pei, Hucheng

    2016-09-19

    In this paper, to deal with the concealed target detection problem, an accurate and efficient algorithm for near-field millimeter wave three-dimensional (3-D) imaging is proposed that uses a two-dimensional (2-D) plane antenna array. First, a two-dimensional fast Fourier transform (FFT) is performed on the scattered data along the antenna array plane. Then, a phase shift is performed to compensate for the spherical wave effect. Finally, fast Gaussian gridding based nonuniform FFT (FGG-NUFFT) combined with 2-D inverse FFT (IFFT) is performed on the nonuniform 3-D spatial spectrum in the frequency wavenumber domain to achieve 3-D imaging. The conventional method for near-field 3-D imaging uses Stolt interpolation to obtain uniform spatial spectrum samples and performs 3-D IFFT to reconstruct a 3-D image. Compared with the conventional method, our FGG-NUFFT based method is comparable in both efficiency and accuracy in the full sampled case and can obtain more accurate images with less clutter and fewer noisy artifacts in the down-sampled case, which are good properties for practical applications. Both simulation and experimental results demonstrate that the FGG-NUFFT-based near-field 3-D imaging algorithm can have better imaging performance than the conventional method for down-sampled measurements.

  12. FGG-NUFFT-Based Method for Near-Field 3-D Imaging Using Millimeter Waves

    Directory of Open Access Journals (Sweden)

    Yingzhi Kan

    2016-09-01

    Full Text Available In this paper, to deal with the concealed target detection problem, an accurate and efficient algorithm for near-field millimeter wave three-dimensional (3-D imaging is proposed that uses a two-dimensional (2-D plane antenna array. First, a two-dimensional fast Fourier transform (FFT is performed on the scattered data along the antenna array plane. Then, a phase shift is performed to compensate for the spherical wave effect. Finally, fast Gaussian gridding based nonuniform FFT (FGG-NUFFT combined with 2-D inverse FFT (IFFT is performed on the nonuniform 3-D spatial spectrum in the frequency wavenumber domain to achieve 3-D imaging. The conventional method for near-field 3-D imaging uses Stolt interpolation to obtain uniform spatial spectrum samples and performs 3-D IFFT to reconstruct a 3-D image. Compared with the conventional method, our FGG-NUFFT based method is comparable in both efficiency and accuracy in the full sampled case and can obtain more accurate images with less clutter and fewer noisy artifacts in the down-sampled case, which are good properties for practical applications. Both simulation and experimental results demonstrate that the FGG-NUFFT-based near-field 3-D imaging algorithm can have better imaging performance than the conventional method for down-sampled measurements.

  13. Design and development of high linearity millimeter wave traveling-wave tube for satellite communications

    Institute of Scientific and Technical Information of China (English)

    何俊; 黄明光; 李现霞; 李海强; 赵磊; 赵建东; 李跃; 赵石雷

    2015-01-01

    The linearity of the traveling-wave tube is a very important characteristic for a modern communication system. To improve the linearity of the traveling-wave tube at no expense of the saturated output power and overall efficiency, a modified pitch profile combined with a small adjustment of operating parameters is proposed. The optimal design of the helix circuit is evaluated theoretically by a large signal analysis, and the experimental test is also carried out to make a comparison of performance between the novel and original designed traveling-wave tubes. The experiments show that the saturated output powers and efficiencies of these two tubes are close to each other, while the linearity of the traveling-wave tube is obviously improved. The total phase shift and AM/PM conversion at saturation of the novel tube, averaged over the operating band, are only 30.6◦/dB and 2.5◦/dB, respectively, which are 20.1◦/dB and 1.6◦/dB lower than those of the original tube, respectively. Moreover, the third-order intermodulation of the novel tube is up to 2.2 dBc lower than that of the original tube.

  14. Generation of millimeter-wave sub-carrier optical pulse by using a Fabry-Perot interferometer

    Institute of Scientific and Technical Information of China (English)

    Qing Ye; Ronghui Qu; Zujie Fang

    2007-01-01

    A novel scheme is proposed to transform a Gaussian optical pulse to a millimeter-wave (mm-wave) frequency modulation pulse by using a Fabry-Perot interferometer (FPI) for radio-over-fiber (ROF) system.It is shown that modulation frequency of mm-wave is determined by the optical path of the Fabry-Perot (F-P) cavity, and amplitude decay time and energy transfer efficiency are related to the reflectivity of the F-P cavity mirror. The effect of pulse train extension on inter-symbol interference is also discussed.

  15. Millimeter wave treatment induces apoptosis via activation of the mitochondrial-dependent pathway in human osteosarcoma cells.

    Science.gov (United States)

    Wu, Guangwen; Chen, Xuzheng; Peng, Jun; Cai, Qiaoyan; Ye, Jinxia; Xu, Huifeng; Zheng, Chunsong; Li, Xihai; Ye, Hongzhi; Liu, Xianxiang

    2012-05-01

    Millimeter wave (MW) is an electromagnetic wave with a wavelength between 1 and 10 mm and a frequency of 30-300 GHz that causes multiple biological effects and has been used as a major component in physiotherapies for the clinical treatment of various types of diseases including cancers. However, the precise molecular mechanism of the anticancer activity of millimeter wave remains to be elucidated. In the present study, we investigated the cellular effects of the MW in the U-2OS human osteosarcoma cell line. Our results showed that MW induced cell morphological changes and reduced cell viability in a dose- and time-dependent manner suggesting that MW inhibited the growth of U-2OS cells as demonstrated. Hoechst 33258 staining and Annexin V/propidium iodide double staining exhibited the typical nuclear features of apoptosis and increased the proportion of apoptotic Annexin V-positive cells in a dose-dependent manner, respectively. In addition, MW treatment caused loss of plasma membrane asymmetry, release of cytochrome c, collapse of mitochondrial membrane potential, activation of caspase-9 and -3, and increase of the ratio of pro-apoptotic Bax to anti-apoptotic Bcl-2. Taken together, the results indicate that the U-2OS cell growth inhibitory activity of MW was due to mitochondrial-mediated apoptosis, which may partly explain the anticancer activity of millimeter wave treatment.

  16. Laboratory microwave, millimeter wave and far-infrared spectra of dimethyl sulfide

    Science.gov (United States)

    Jabri, A.; Van, V.; Nguyen, H. V. L.; Mouhib, H.; Kwabia Tchana, F.; Manceron, L.; Stahl, W.; Kleiner, I.

    2016-05-01

    Context. Dimethyl sulfide, CH3SCH3 (DMS), is a nonrigid, sulfur-containing molecule whose astronomical detection is considered to be possible in the interstellar medium. Very accurate spectroscopic constants were obtained by a laboratory analysis of rotational microwave and millimeter wave spectra, as well as rotation-torsional far-infrared (FIR) spectra, which can be used to predict transition frequencies for a detection in interstellar sources. Aims: This work aims at the experimental study and theoretical analysis of the ground torsional state and ground torsional band ν15 of DMS in a large spectral range for astrophysical use. Methods: The microwave spectrum was measured in the frequency range 2-40 GHz using two Molecular Beam Fourier Transform MicroWave (MB-FTMW) spectrometers in Aachen, Germany. The millimeter spectrum was recorded in the 50-110 GHz range. The FIR spectrum was measured for the first time at high resolution using the FT spectrometer and the newly built cryogenic cell at the French synchrotron SOLEIL. Results: DMS has two equivalent methyl internal rotors with a barrier height of about 730 cm-1. We performed a fit, using the XIAM and BELGI-Cs-2Tops codes, that contained the new measurements and previous transitions reported in the literature for the ground torsional state νt = 0 (including the four torsional species AA, AE, EA and EE) and for the ground torsional band ν15 = 1 ← 0 (including only the AA species). In the microwave region, we analyzed 584 transitions with J ≤ 30 of the ground torsional state νt = 0 and 18 transitions with J ≤ 5 of the first excited torsional state νt = 1. In the FIR range, 578 transitions belonging to the torsional band ν15 = 1 ← 0 with J ≤ 27 were assigned. Totally, 1180 transitions were included in a global fit with 21 accurately determined parameters. These parameters can be used to produce a reliable line-list for an astrophysical detection of DMS. Full Tables B.1 and C.1, and Table E.1 are

  17. Design of continuous long slot leaky-wave antenna for millimeter wave application

    Institute of Scientific and Technical Information of China (English)

    Lü Shanwei; Zhang Yan; Liu Juan; Zhang Jiangling

    2007-01-01

    A simple and efficient design scheme of the continuous long slot leaky-wave antenna is developed. The key steps involved in the scheme are summarized. First, the cut-off frequencies of slot waveguides with different slot offsets are obtained by 3D finite-difference time-domain (FDTD) method. Second, the attenuation function αra is estimated by the aperture distribution, and the attenuation function αrs is determined by the slot radiation.Finally, the attenuation function αra is combined with the attenuation function αrs by the coefficient K. And an example in Ka band is presented. Moreover, the return loss of the E-plane Tee-junction (ET) and the radiation pattern of leaky-wave antenna are simulated. The scheme is verified by comparing with the experimental result.

  18. New Radiation Input/Output Systems for Millimeter-Wave Gyrotron Traveling-Wave Tubes

    Science.gov (United States)

    Denisov, G. G.; Bogdashov, A. A.; Gachev, I. G.; Mishakin, S. V.; Samsonov, S. V.

    2016-03-01

    We consider in detail the method allowing one to input and output the microwave radiation produced by an elecrovacuum amplifier through the same barrier window, which was proposed earlier, in the context of its application in a traveling-wave tube based on a waveguide with a helically corrugated surface. Special attention is given to the splitter of differently polarized radiation, and the results of studying this splitter at wavelengths of about 6 and 1 mm theoretically and experimentally are presented.

  19. Design of an electronically tunable millimeter wave Gyrotron Backward Wave Oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Caplan, M.

    1987-01-01

    A non-linear self-consistent computer simulation code is used to analyze the saturated output of the Gyrotron Backward Wave Oscillator (Gyro BWO) which can be used as a tunable driver for a 250 GHz FEL amplifier. Simulations show that the Gyrotron BWO using a Pierce/Wiggler gun configuration can produce at least 10 kW of microwave power over the range 249 GHz to 265 GHz by varying beam voltage alone.

  20. Optical generation of millimeter-wave pulses using a fiber Bragg grating in a fiber-optics system.

    Science.gov (United States)

    Ye, Qing; Qu, Ronghui; Fang, Zujie

    2007-04-10

    A scheme is proposed to transform an optical pulse into a millimeter-wave frequency modulation pulse by using a weak fiber Bragg grating (FBG) in a fiber-optics system. The Fourier transformation method is used to obtain the required spectrum response function of the FBG for the Gaussian pulse, soliton pulse, and Lorenz shape pulse. On the condition of the first-order Born approximation of the weak fiber grating, the relation of the refractive index distribution and the spectrum response function of the FBG satisfies the Fourier transformation, and the corresponding refractive index distribution forms are obtained for single-frequency modulation and linear-frequency modulation millimeter-wave pulse generation. The performances of the designed fiber gratings are also studied by a numerical simulation method for a supershort pulse transmission.

  1. Relation between Events in the Millimeter-wave Core and Gamma-ray Outbursts in Blazar Jets

    CERN Document Server

    Marscher, A P; Agudo, I; MacDonald, N R; Scott, T L

    2012-01-01

    Analysis of comprehensive monitoring of 34 gamma-ray bright quasars, BL Lac objects, and radio galaxies reveals a close connection between events in the millimeter-wave emission imaged with the VLBA at 43 GHz and flares at gamma-ray and lower frequencies. Roughly 2/3 of the flares are coincident with the appearance of a new superluminal knot and/or a flare in the millimeter-wave "core'" located parsecs from the central engine. This presents a theoretical challenge to explain how the gamma-ray flux can often be variable on intra-day time-scales. Possible answers to this include very narrow opening angles of the jet, small volume filling factors of the highest energy electrons, chaotic magnetic fields, and turbulent velocity fields relative to the mean jet flow.

  2. System Coverage and Capacity Analysis on Millimeter-Wave Band for 5G Mobile Communication Systems with Massive Antenna Structure

    Directory of Open Access Journals (Sweden)

    Jun Suk Kim

    2014-01-01

    Full Text Available The use of a millimeter-wave band defined as a 30–300 GHz range is significant element for improving performance of 5th generation (5G mobile communication systems. However, since the millimeter-wave signal has peculiar propagation characteristics especially toward non-line-of-sight regions, the system architecture and antenna structure for 5G mobile communications should be designed to overcome these propagation limitations. For realization of the 5G mobile communications, electronics and telecommunications research institute (ETRI is developing central network applying various massive antenna structures with beamforming. In this paper, we have introduced the central network and evaluated the system coverage and capacity through C++ language-based simulations with real geospatial information.

  3. Noncontact millimeter-wave real-time detection and tracking of heart rate on an ambulatory subject.

    Science.gov (United States)

    Mikhelson, Ilya V; Lee, Philip; Bakhtiari, Sasan; Elmer, Thomas W; Katsaggelos, Aggelos K; Sahakian, Alan V

    2012-09-01

    This paper presents a solution to an aiming problem in the remote sensing of vital signs using an integration of two systems. The problem is that to collect meaningful data with a millimeter-wave sensor, the antenna must be pointed very precisely at the subject's chest. Even small movements could make the data unreliable. To solve this problem, we attached a camera to the millimeter-wave antenna, and mounted this combined system on a pan/tilt base. Our algorithm initially finds a subject's face and then tracks him/her through subsequent frames, while calculating the position of the subject's chest. For each frame, the camera sends the location of the chest to the pan/tilt base, which rotates accordingly to make the antenna point at the subject's chest. This paper presents a system for concurrent tracking and data acquisition with results from some sample scenarios.

  4. Three-dimensional super-wideband micro-antenna for high-resolution millimeter-wave medical imaging.

    Science.gov (United States)

    Mirbeik, Amir; Tavassoli, Vahid; Ayazi, Farrokh; Tavassolian, Negar

    2014-01-01

    This paper reports on a novel super-wideband micro-hemispherical antenna with application in millimeter-wave medical imaging. The antenna is composed of a hemispherical shell suspended above a substrate and can be fabricated using a fabrication technology originally developed for micron-scale electromechanical resonators. The antenna exhibits a wide fractional bandwidth of more than 80% (from 64 GHz to 150 GHz) and a high gain of 8.6 dBi at its center frequency. Radiation parameters of the antenna are characterized and the effect of its super-wideband behavior on pulsed millimeter-wave imaging is demonstrated. Finally, a preliminary array configuration composed of two antennas placed side-by-side in the vicinity of a skin-mimicking target is evaluated and the ability to fully detect the target has been demonstrated.

  5. Basic antenna transmitting characteristics using an extrapolation range measurement technique at a millimeter-wave band at NMIJ/AIST.

    Science.gov (United States)

    Yamamoto, Tetsuya

    2007-06-01

    A novel test fixture operating at a millimeter-wave band using an extrapolation range measurement technique was developed at the National Metrology Institute of Japan (NMIJ). Here I describe the measurement system using a Q-band test fixture. I measured the relative insertion loss as a function of antenna separation distance and observed the effects of multiple reflections between the antennas. I also evaluated the antenna gain at 33 GHz using the extrapolation technique.

  6. Comparison of Blood Pressure and Thermal Responses in Rats Exposed to Millimeter Wave Energy or Environmental Heat

    Science.gov (United States)

    2005-12-22

    nerve injury rats exhibit millimeter wave length: potential occupational safety issues relating to surface thermal hyperalgesia on an automated...May 2006 1 Journal Article I Aug 2005 - May 2006 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Comparison of Blood Pressure and Thermal Responses in Rats...Z39.18 5-1 •ATEThENTA SHOCK, Vol. 25, No. 6, pp. 625-632, 2006 Approved for Public Release Distribution Unlimited COMPARISON OF BLOOD PRESSURE AND THERMAL

  7. Tunable millimeter-wave frequency synthesis up to 100 GHz by dual-wavelength Brillouin fiber laser.

    Science.gov (United States)

    Gross, Michael C; Callahan, Patrick T; Clark, Thomas R; Novak, Dalma; Waterhouse, Rodney B; Dennis, Michael L

    2010-06-21

    We demonstrate the generation of microwave and millimeter-wave frequencies from 26 to 100 GHz by heterodyning the output modes of a dual-wavelength fiber laser based on stimulated Brillouin scattering. The output frequency is tunable in steps of 10.3 MHz, equal to the free spectral range of the resonator. The noise properties of the beat frequency indicate a microwave linewidth of <2 Hz. We discuss potential for operation into the terahertz regime.

  8. Measuring the carrier lifetime by using a quasi-optical millimeter- and THz-wave system

    Science.gov (United States)

    Choe, Mun Seok; Sawant, Ashwini; Lee, Kyu-Sup; Yu, Nan Ei; Choi, EunMi

    2017-02-01

    The existing method for contactless measurement of the photoconductivity decay time is limited in terms of sample selection according to the injection level or doping density. To solve this problem and improve the measurement sensitivity, we developed a quasi-optical photoconductivity decay (QO-PCD) technique based on millimeter- and terahertz-wave technology. A semi-insulating silicon (Si) wafer was used in a proof-of-concept experiment with the proposed QO-PCD system to find the initial excess carrier density and carrier lifetime based on the Drude-Zener model with a single decay function. The initial excess carrier density and carrier lifetime were measured to be 1.5 × 1015 cm-3 and 30.6 μs, respectively, in semi-insulating Si wafer (460 μm thickness). A 2D areal measurement of the decay time of the Si wafer was experimentally obtained. The proposed QO-PCD technique can provide more reliable and sensitive carrier lifetime measurement data for semiconductor wafers, which may impact the fields of photovoltaic solar cells and power electronics.

  9. Novel Micromachined Coplanar Waveguide Transmission Lines for Application in Millimeter-Wave Circuits

    Science.gov (United States)

    Park, Jae-Hyoung; Baek, Chang-Wook; Jung, Sanghwa; Kim, Hong-Teuk; Kwon, Youngwoo; Kim, Yong-Kweon

    2000-12-01

    In this paper, novel micromachined coplanar waveguide(CPW) transmission lines for application in millimeter-wave circuits are proposed. Two types of transmission lines with the length of 1 cm are fabricated and the measured characteristics are compared with those of the conventional CPW transmission line. One is the elevated CPW(ECPW) transmission line and the other is the overlay CPW(OCPW) line. These transmission lines are composed of 3-μm-thick electroplated gold lines with overhanging parts. By elevating the metal lines from the substrate using micromachining technology, the conductor and substrate dielectric loss can be reduced and easily integrated with conventional monolithic microwave integrated circuits. Compared with the conventional CPW line showing 2.65 dB/cm insertion loss at 50 GHz, the loss can be reduced to 1.9 dB/cm and 1.25 dB/cm at 50 GHz in the case of the ECPW and OCPW transmission lines, respectively. Also, the OCPW transmission line shows that the insertion loss does not vary with the change of the characteristic impedance. As shown in the measured and simulated results, the insertion loss is maintained below 1.4 dB/cm over wide impedance ranges.

  10. The high resolution spectrum of methyltrioxorhenium reinvestigated with new infrared and millimeter-wave measurements

    CERN Document Server

    Asselin, Pierre; Huet, Thérèse; Margulès, Laurent; Motiyenko, Roman; Hendricks, Richard; Tarbutt, Michael; Tokunaga, Sean; Darquié, Benoît

    2016-01-01

    Following our first paper about high resolution spectroscopy of methyltrioxorhenium (MTO) [Stoeffler et al. PCCP, 13, 854, (2011)], the present study reports a deeper investigation of the ground state, and Re=O antisymmetric (nu\\_as) and symmetric (nu\\_s) stretching excited states of both CH3(187Re)O3 and CH3(185Re)O3 isotopologues, thanks to new devices implemented within our consortium. We carry out high resolution millimeter-wave (MMW) and infrared (IR) spectroscopy in room temperature absorption cells, in a pulsed supersonic jet and in a cryogenic buffer gas cell. This collection of sensitive spectrometers enables us to probe both levels of a vibrational transition in low and room temperature gaseous environments. We thus report a new series of measurements providing particularly accurate rotational and rovibrational data for such a large and heavy organometallic molecule that is solid at room temperature.The combination of the new MMW and IR data leads to an improvement of the rovibrational model of MTO:...

  11. Design and manufacture of planar GaAs Gunn diode for millimeter wave application

    Science.gov (United States)

    Huang, Jie; Yang, Hao; Tian, Chao; Dong, Jun-Rong; Zhang, Hai-Ying; Guo, Tian-Yi

    2010-12-01

    GaAs-based planar Gunn diodes with AlGaAs hot electron injector have been successfully developed to be used as a local oscillator of 76 GHz in monolithic millimeter-wave integrated circuits. We designed two kinds of structure diode, one has a fixed distance between the anode and cathode, but has variational cathode area, the other has a fixed cathode area, but has different distances between two electrodes. The fabrication of Gunn diode is performed in accordance with the order of operations: cathode defining, mesa etching, anode defining, isolation, passivation, via hole and electroplating. A peak current density of 29.5 kA/cm2 is obtained. And the characteristics of negative differential resistance and the asymmetry of the current—voltage curve due to the AlGaAs hot electron injector are discussed in detail. It is demonstrated that the smaller size of active area corresponds to the smaller current, and the shorter distance between anode and cathode also corresponds to the lower threshold voltage and higher peak current, and hot electron injector can effectively enhance the radio frequency conversion efficiency and output power.

  12. First lasing of the KAERI millimeter-wave free electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Lee, B.C.; Jeong, Y.U.; Cho, S.O. [Korea Atomic Energy Research Institute, Taejon (Korea, Democratic People`s Republic of)] [and others

    1995-12-31

    The millimeter-wave FEL program at KAERI aims at the generation of high-power CW laser beam with high efficiency at the wavelength of 3{approximately}10 mm for the application in plasma heating and in power beaming. In the first oscillation experiment, the FEL has lased at the wavelength of 10 mm with the pulsewidth of 10{approximately}30 {mu}s. The peak power is about 1 kW The FEL is driven by a recirculating electrostatic accelerator having tandem geometry. The energy and the current of the electron beam are 400 keV and 2 A, respectively. The FEL resonator is located in the high-voltage terminal and is composed of a helical undulator, two mesh mirrors, and a cylindrical waveguide. The parameters of the permanent-magnet helical undulator are : period = 32 mm, number of periods = 20, magnetic field = 1.3 kG. At present, with no axial guiding magnetic field only 15 % of the injected beam pass through the undulator. Transport ratio of the electron beam through the undulator is very sensitive to the injection parameters such as the diameter and the divergence of the electron beam Simulations show that, with unproved injection condition, the FEL can generate more than 50 kW of average power in CW operation. Details of the experiments, including the spectrum measurement and the recirculation of electron beam, are presented.

  13. CROSS-TRACK THREE APERTURES MILLIMETER WAVE SAR SIDE-LOOKING THREE-DIMENSIONAL IMAGING

    Institute of Scientific and Technical Information of China (English)

    Teng Xiumin; Li Daojing; Li Liechen; Liu Bo; Pan Zhouhao

    2012-01-01

    The airborne cross-track three apertures MilliMeter Wave (MMW) Synthetic Aperture Radar (SAR) side-looking three-Dimensional (3D) imaging is investigated in this paper.Three apertures are distributed along the cross-track direction,and three virtual phase centers will be obtained through one-input and three-output.These three virtual phase centers form a sparse array which can be used to obtain the cross-track resolution.Because the cross-track array is short,the cross-track resolution is low.When the system works in side-looking mode,the cross-track resolution and height resolution will be coupling,and the low cross-track resolution will partly be transformed into the height uncertainty.The beam pattern of the real aperture is used as a weight to improve the Peak to SideLobe Ratio (PSLR) and Integrated SideLobe Ratio (ISLR) of the cross-track sparse array.In order to suppress the high cross-track sidelobes,a weighting preprocessing method is proposed.The 3D images of a point target and a simulation scene are achieved to verify the feasibility of the proposed method.And the imaging result of the real data obtained by the cross-track three-baseline MMW InSAR prototype is presented as a beneficial attempt.

  14. Monolithic millimeter-wave diode array beam controllers: Theory and experiment

    Science.gov (United States)

    Sjogren, L. B.; Liu, H.-X. L.; Wang, F.; Liu, T.; Wu, W.; Qin, X.-H.; Chung, E.; Domier, C. W.; Luhmann, N. C., Jr.; Maserjian, J.

    1992-01-01

    In the current work, multi-function beam control arrays have been fabricated and have successfully demonstrated amplitude control of transmitted beams in the W and D bands (75-170 GHz). While these arrays are designed to provide beam control under DC bias operation, new designs for high-speed electronic and optical control are under development. These arrays will fill a need for high-speed watt-level beam switches in pulsed reflectometer systems under development for magnetic fusion plasma diagnostics. A second experimental accomplishment of the current work is the demonstration in the 100-170 GHz (D band) frequency range of a new technique for the measurement of the transmission phase as well as amplitude. Transmission data can serve as a means to extract ('de-embed') the grid parameters; phase information provides more complete data to assist in this process. Additional functions of the array beam controller yet to be tested include electronically controlled steering and focusing of a reflected beam. These have application in the areas of millimeter-wave electronic scanning radar and reflectometry, respectively.

  15. 60-GHz Millimeter-wave Over Fiber with Directly Modulated Dual-mode Laser Diode

    Science.gov (United States)

    Tsai, Cheng-Ting; Lin, Chi-Hsiang; Lin, Chun-Ting; Chi, Yu-Chieh; Lin, Gong-Ru

    2016-06-01

    A directly modulated dual-mode laser diode (DMLD) with third-order intermodulation distortion (IMD3) suppression is proposed for a 60-GHz millimeter-wave over fiber (MMWoF) architecture, enabling new fiber-wireless communication access to cover 4-km single-mode-fiber (SMF) and 3-m wireless 16-QAM OFDM transmissions. By dual-mode injection-locking, the throughput degradation of the DMLD is mitigated with saturation effect to reduce its threshold, IMD3 power and relative intensity noise to 7.7 mA, ‑85 dBm and ‑110.4 dBc/Hz, respectively, providing huge spurious-free dynamic range of 85.8 dB/Hz2/3. This operation suppresses the noise floor of the DMLD carried QPSK-OFDM spectrum by 5 dB. The optical receiving power is optimized to restrict the power fading effect for improving the bit error rate to 1.9 × 10‑3 and the receiving power penalty to 1.1 dB. Such DMLD based hybrid architecture for 60-GHz MMW fiber-wireless access can directly cover the current optical and wireless networks for next-generation indoor and short-reach mobile communications.

  16. Millimeter Wave Fabry-Perot Resonator Antenna Fed by CPW with High Gain and Broadband

    Directory of Open Access Journals (Sweden)

    Xue-Xia Yang

    2016-01-01

    Full Text Available A novel millimeter wave coplanar waveguide (CPW fed Fabry-Perot (F-P antenna with high gain, broad bandwidth, and low profile is reported. The partially reflective surface (PRS and the ground form the F-P resonator cavity, which is filled with the same dielectric substrate. A dual rhombic slot loop on the ground acts as the primary feeding antenna, which is fed by the CPW and has broad bandwidth. In order to improve the antenna gain, metal vias are inserted surrounding the F-P cavity. A CPW-to-microstrip transition is designed to measure the performances of the antenna and extend the applications. The measured impedance bandwidth of S11 less than −10 dB is from 34 to 37.7 GHz (10.5%, and the gain is 15.4 dBi at the center frequency of 35 GHz with a 3 dB gain bandwidth of 7.1%. This performance of the antenna shows a tradeoff among gain, bandwidth, and profile.

  17. Simplified human model and pedestrian simulation in the millimeter-wave region

    Science.gov (United States)

    Han, Junghwan; Kim, Seok; Lee, Tae-Yun; Ka, Min-Ho

    2016-02-01

    The 24 GHz and 77 GHz radar sensors have been studied as a strong candidate for advanced driver assistance systems(ADAS) because of their all-weather capability and accurate range and radial velocity measuring scheme. However, developing a reliable pedestrian recognition system hasmany obstacles due to the inaccurate and non-trivial radar responses at these high frequencies and the many combinations of clothes and accessories. To overcome these obstacles, many researchers used electromagnetic (EM) simulation to characterize the radar scattering response of a human. However, human simulation takes so long time because of the electrically huge size of a human in the millimeter-wave region. To reduce simulation time, some researchers assumed the skin of a human is the perfect electric conductor (PEC) and have simulated the PEC human model using physical optics (PO) algorithm without a specific explanation about how the human body could be modeled with PEC. In this study, the validity of the assumption that the surface of the human body is considered PEC in the EM simulation is verified, and the simulation result of the dry skin human model is compared with that of the PEC human model.

  18. New instrumentation for the 1.2m Southern Millimeter Wave Telescope (SMWT)

    Science.gov (United States)

    Vasquez, P.; Astudillo, P.; Rodriguez, R.; Monasterio, D.; Reyes, N.; Finger, R.; Mena, F. P.; Bronfman, L.

    2016-07-01

    Here we describe the status of the upgrade program that is being performed to modernize the Southern 1.2m Wave Telescope. The Telescope was built during early ´80 to complete the first Galactic survey of Molecular Clouds in the CO(1-0) line. After a fruitful operation in CTIO the telescope was relocated to the Universidad de Chile, Cerro Calán Observatory. The new site has an altitude of 850m and allows observations in the millimeter range throughout the year. The telescope was upgraded, including a new building to house operations, new control system, and new receiver and back-end technologies. The new front end is a sideband-separating receiver based on a HEMT amplifier and sub-harmonic mixers. It is cooled with Liquid Nitrogen to diminish its noise temperature. The back-end is a digital spectrometer, based on the Reconfigurable Open Architecture Computing Hardware (ROACH). The new spectrometer includes IF hybridization capabilities to avoid analog hybrids and, therefore, improve the sideband rejection ratio of the receiver.

  19. Oversampling advances in millimeter-wave scan imaging using inexpensive neon indicator lamp detectors

    Science.gov (United States)

    Levanon, Assaf; Kopeika, Natan S.; Yitzhaky, Yitzhak; Abramovich, Amir; Rozban, Daniel; Joseph, Hezi; Aharon, Avihai; Belenky, Alex; Gefen, Michael; Yadid-Pecht, Orly

    2013-06-01

    In recent years, much effort has been invested to develop room temperature inexpensive, but sensitive, millimeter wave (MMW) and terahertz (THz) detectors that can be used as pixels in focal plane arrays, which is important for real-time imaging. A new 18×2 neon indicator lamp MMW/THz scanner was developed. The components of the camera include horizontally shifted two-column glow discharge detectors in a scanning array. The detectors, costing about 50 cents each, are wired to a preprocessing card, a VLSI board, and a motor for scanner movement. A description of the VLSI Verilog programmable hardware of the new scanner, the physical architecture, the software user interface, and imaging results at 97 GHz are presented. At this stage, the emphasis is focused on the lamp exposure time and spatial resolution when the scanning is performed horizontally. In the future it is planned to expose all pixels simultaneously for real-time imaging. New software capabilities allow the application of digital image enhancement algorithms. Fast scanning permits obtaining images in 1 to 5 s. Oversampling yields a sharper edge response and a higher signal-to-noise ratio.

  20. Demonstration of Passive W-Band Millimeter Wave Imaging Using Optical Upconversion Detection Methodology with Applications

    Science.gov (United States)

    Samluk, Jesse P.; Schuetz, Christopher A.; Dillon, Thomas; Martin, Richard D.; Stein, E. Lee; Mackrides, Daniel G.; Wilson, John; Robbins, Andrew; Shi, Shouyuan; Chen, Caihua; Yao, Peng; Shireen, Rownak; Macario, Julien; Prather, Dennis W.

    2012-11-01

    Millimeter wave (mmW) imaging has enjoyed a measure of success due to the unique properties of imaging in this spectral region, some of which are still being discovered. For example, a key advantage of mmW imaging is the ability to penetrate through various atmospheric obscurants, including fog, dust, sand, and smoke, due to its longer wavelengths as compared to visible or infrared imaging. Various methods of imaging with mmW energy exist, such as direct detection, downconversion, and upconversion, where this manuscript focuses on the latter. Until now, passive imaging using an optical upconversion method was limited to Q-band frequencies due to the lack of commercially available parts, namely a sufficiently high frequency optical modulator. To overcome this limitation, a custom-built modulator using in-house fabrication facilities was realized to allow imaging within the W-band frequency range (75-110 GHz). Therefore, in this manuscript we report new results of passive imaging in the W-band frequency range using a unique optical upconversion technique, where the higher frequency operation allows for greater detail in the imagery thus collected.

  1. Realization of a video-rate distributed aperture millimeter-wave imaging system using optical upconversion

    Science.gov (United States)

    Schuetz, Christopher; Martin, Richard; Dillon, Thomas; Yao, Peng; Mackrides, Daniel; Harrity, Charles; Zablocki, Alicia; Shreve, Kevin; Bonnett, James; Curt, Petersen; Prather, Dennis

    2013-05-01

    Passive imaging using millimeter waves (mmWs) has many advantages and applications in the defense and security markets. All terrestrial bodies emit mmW radiation and these wavelengths are able to penetrate smoke, fog/clouds/marine layers, and even clothing. One primary obstacle to imaging in this spectrum is that longer wavelengths require larger apertures to achieve the resolutions desired for many applications. Accordingly, lens-based focal plane systems and scanning systems tend to require large aperture optics, which increase the achievable size and weight of such systems to beyond what can be supported by many applications. To overcome this limitation, a distributed aperture detection scheme is used in which the effective aperture size can be increased without the associated volumetric increase in imager size. This distributed aperture system is realized through conversion of the received mmW energy into sidebands on an optical carrier. This conversion serves, in essence, to scale the mmW sparse aperture array signals onto a complementary optical array. The side bands are subsequently stripped from the optical carrier and recombined to provide a real time snapshot of the mmW signal. Using this technique, we have constructed a real-time, video-rate imager operating at 75 GHz. A distributed aperture consisting of 220 upconversion channels is used to realize 2.5k pixels with passive sensitivity. Details of the construction and operation of this imager as well as field testing results will be presented herein.

  2. Study on Millimeter-Wave Vivaldi Rectenna and Arrays with High Conversion Efficiency

    Directory of Open Access Journals (Sweden)

    Guan-Nan Tan

    2016-01-01

    Full Text Available A novel Vivaldi rectenna operated at 35 GHz with high millimeter wave to direct current (MMW-to-DC conversion efficiency is presented and the arrays are investigated. The measured conversion efficiency is 51.6% at 35 GHz and the efficiency higher than 30% is from 33.2 GHz to 36.6 GHz when the input MMW power is 79.4 mW. The receiving Vivaldi antenna loaded with metamaterial units has a high gain of 10.4 dBi at 35 GHz. A SIW- (substrate integrated waveguide- to-microstrip transition is designed not only to integrate the antenna with the rectifying circuit directly but also to provide the DC bypass for the rectifying circuit. When the power density is 8.7 mW/cm2, the received MMW power of the antenna is 5.6 mW, and the maximum conversion efficiency of the rectenna element is 31.5%. The output DC voltage of the element is nearly the same as that of the parallel array and is about half of the series array. The DC power obtained by the 1 × 2 rectenna arrays is about two times as much as that of the element. The conversion efficiencies of the arrays are very close to that of the element. Large scale arrays could be expended for collecting more DC power.

  3. Dual-Double Slot Antennas Fabricated with Single Superconducting Film for Millimeter Wave Camera

    Science.gov (United States)

    Naruse, Masato; Nitta, Tom; Karatsu, Kenichi; Sekine, Msakazu; Sekiguchi, Shigeyuki; Sekimoto, Yutaro; Noguchi, Takashi; Taino, Tohru; Myoren, Hiroaki

    2016-02-01

    We propose an entirely plane-structure camera for millimeter wave astronomy, in order to reduce production cost and time. The camera is composed of a silicon lens-let, antennas, feed lines, and detectors made from the same superconducting aluminum film on a silicon substrate. A couple of double-slot antennas are located the same focal plane of a small substrate lens to enhance the packing density of detectors and observation efficiency. To achieve high sensitivity, we adapted a microwave kinetic inductance detector as a photon sensor, which consists of a superconducting microresonator. We examined the optical performance of the camera attached to a silicon lens array at 220 GHz in a 0.3 K cryostat. The measured beams were in good agreement with the calculations within the dynamic range of the setup (20 dB). Polarization misalignments between the dual-double slot antenna were less than 2∘, and cross-polarization level was around -7 dB. The relatively high cross-polarization would be explained by an antenna crosstalk mediated by quasiparticle diffusion.

  4. Measurements of Antenna Surface for Millimeter-Wave Space Radio Telescope

    CERN Document Server

    Kamegai, Kazuhisa; Doi, Akihiro; Sato, Eiichi

    2011-01-01

    In the construction of a space radio telescope, it is essential to use materials with a low noise factor and high mechanical robustness for the antenna surface. We present the results of measurements of the reflection performance of two candidates for antenna surface materials for use in a radio telescope installed in a new millimeter-wave astronomical satellite, ASTRO-G. To estimate the amount of degradation caused by fluctuations in the thermal environment in the projected orbit of the satellite, a thermal cycle test was carried out for two candidates, namely, copper foil carbon fiber reinforced plastic (CFRP) and aluminum-coated CFRP. At certain points during the thermal cycle test, the reflection loss of the surfaces was measured precisely by using a radiometer in the 41-45 GHz band. In both candidates, cracks appeared on the surface after the thermal cycle test, where the number density of the cracks increased as the thermal cycle progressed. The reflection loss also increased in proportion to the number...

  5. Capturing atmospheric effects on 3D millimeter wave radar propagation patterns

    Science.gov (United States)

    Cook, Richard D.; Fiorino, Steven T.; Keefer, Kevin J.; Stringer, Jeremy

    2016-05-01

    Traditional radar propagation modeling is done using a path transmittance with little to no input for weather and atmospheric conditions. As radar advances into the millimeter wave (MMW) regime, atmospheric effects such as attenuation and refraction become more pronounced than at traditional radar wavelengths. The DoD High Energy Laser Joint Technology Offices High Energy Laser End-to-End Operational Simulation (HELEEOS) in combination with the Laser Environmental Effects Definition and Reference (LEEDR) code have shown great promise simulating atmospheric effects on laser propagation. Indeed, the LEEDR radiative transfer code has been validated in the UV through RF. Our research attempts to apply these models to characterize the far field radar pattern in three dimensions as a signal propagates from an antenna towards a point in space. Furthermore, we do so using realistic three dimensional atmospheric profiles. The results from these simulations are compared to those from traditional radar propagation software packages. In summary, a fast running method has been investigated which can be incorporated into computational models to enhance understanding and prediction of MMW propagation through various atmospheric and weather conditions.

  6. Cavity-Backed Angled-Dipole Antennas for Millimeter-Wave Wireless Applications

    Directory of Open Access Journals (Sweden)

    Son Xuat Ta

    2016-01-01

    Full Text Available A cavity-backed angled-dipole antenna is proposed for millimeter-wave wireless applications. The angled-dipole radiator is built on both sides of an RT/Duroid 5880 substrate (εr=2.2 and fed by a parallel-plate transmission line. The cavity-backed reflector is utilized to improve the radiation characteristics of the angled dipole, such as gain, back-radiation, symmetric pattern, and similar 3 dB beamwidth in the E- and H-planes. The design, with a cavity aperture of 0.5λ28-GHz×0.5λ28-GHz, results in a S11<-10 dB bandwidth of 26.7–30.6 GHz, a gain of 6.6–8.0 dB, and a similar 3 dB beamwidth of approximately 70° for both the E- and H-planes. Eight-element linear arrays with the proposed antenna having a center-to-center spacing of 5.6 mm (0.52λ28-GHz are characterized, fabricated, and measured. By applying nonuniform power distribution across excitations, the array achieves a scan angle up to 40° and a sidelobe level below −15 dB.

  7. A millimeter-wave integrated-circuit antenna based on the Fresnel zone plate

    Science.gov (United States)

    Gouker, Mark A.; Smith, Glenn S.

    1992-05-01

    A moderate-gain, easily constructed, millimeter-wave IC antenna based on the Fresnel zone plate has been developed. The gain and beamwidth of the antenna can be varied by adjusting the diameter and focal length of the zone plate. A theory is developed which accurately predicts the on-axis gain, beamwidth, and sidelobe levels of antennas with zone-plate focal lengths greater than 8-9 lambda. Graphs are presented to aid in the design of other IC zone-plate antennas. The performance of the antenna without the reflector and lambda/4 spacer was investigated. The gain of the antenna with nothing behind the zone plate is found to approach that of the fully configured antenna with the lambda/4 spacer and reflector. The reflection from the open rings which is responsible for this phenomenon is enhanced as the dielectric constant of the substrate is increased. Thus, on substrates with high permittivity the reflector and lambda/4 spacer may not be necessary.

  8. Status of SuperSpec: A Broadband, On-Chip Millimeter-Wave Spectrometer

    CERN Document Server

    Hailey-Dunsheath, S; Barry, P S; Bradford, C M; Chattopadhyay, G; Day, P; Doyle, S; Hollister, M; Kovacs, A; LeDuc, H G; Mauskopf, P; McKenney, C M; Monroe, R; O'Brient, R; Padin, S; Reck, T; Swenson, L; Tucker, C E; Zmuidzinas, J

    2015-01-01

    SuperSpec is a novel on-chip spectrometer we are developing for multi-object, moderate resolution (R = 100 - 500), large bandwidth (~1.65:1) submillimeter and millimeter survey spectroscopy of high-redshift galaxies. The spectrometer employs a filter bank architecture, and consists of a series of half-wave resonators formed by lithographically-patterned superconducting transmission lines. The signal power admitted by each resonator is detected by a lumped element titanium nitride (TiN) kinetic inductance detector (KID) operating at 100-200 MHz. We have tested a new prototype device that is more sensitive than previous devices, and easier to fabricate. We present a characterization of a representative R=282 channel at f = 236 GHz, including measurements of the spectrometer detection efficiency, the detector responsivity over a large range of optical loading, and the full system optical efficiency. We outline future improvements to the current system that we expect will enable construction of a photon-noise-lim...

  9. Sparse sampling and enhanced axial resolution in millimeter-wave holographic imaging

    Science.gov (United States)

    Fernandez-Cull, Christy; Wikner, David A.; Mattheiss, Michael; Mait, Joseph N.; Brady, David

    2010-04-01

    This paper describes an active millimeter-wave (MMW) holographic imaging system used for the study of compressive measurement for concealed weapons detection. We record a digitized on-axis, Gabor hologram using a single pixel incoherent receiver that is translated at the detector plane to form an image composite. Capturing measurements in the MMW regime can be costly since receiver circuits are expensive and scanning systems can be plagued by their long data acquisition times. Thus, we leverage recent advances in compressive sensing with a traditional holographic method in order to estimate a 3D (x,y,z) object distribution from a 2D recorded image composite. To do this, we minimize a convex quadratic function using total variation (TV) regularization. Gabor holograms are recorded of semi-transparent objects, in the MMW, mimicking weapons and other objects. We present preliminary results of 3D reconstructions of objects at various depths estimated from a 2D recorded hologram. We compare backpropagation results with our decompressive inference algorithm. A possible application includes remote concealed weapons detection at security checkpoints.

  10. Acquisition cost analysis for the near term military application of laser versus millimeter wave for satellite crosslink communications

    Science.gov (United States)

    Marlow, S. W.

    1983-12-01

    Two alternative satellite communication technologies have evolved independently of each other and now seem to be in direct competition for limited R&D dollars. In an attempt to identify which technology is best, this study concentrates on one aspect of satellite communications - intersatellite crosslinks which are capable of processing one to ten megabits of data per second. The analysis effort is further limited to comparisons of procurement costs and factors which influence these costs. The RCA PRICE Model is used to estimate costs of crosslink subsystems. Extensive review of the literature, as well as design estimates from experts, is necessary to provide the PRICE Model with sufficient details to produce a credible cost figure. A modified Delphi method is used to aggregate the estimates of the experts. From the cost comparison of laser versus millimeter wave crosslink systems, it seems that millimeter wave with its more mature technology has the cost advantage. However, as laser technology reaches a level of maturity close to that of millimeter wave, the difference in procurement costs should become minimal. There are eleven technical, operational, and cost factors which must be analyzed to adequately determine which technology is best. Procurement cost analysis by itself does not determine which technology should be continued or stopped.

  11. Electromagnetic Field Behavior in Dispersive Isotropic Negative Phase Velocity/Negative Refractive Index Guided Wave Structures Compatible with Millimeter-Wave Monolithic Integrated Circuits

    Directory of Open Access Journals (Sweden)

    Clifford M. Krowne

    2007-01-01

    Full Text Available A microstrip configuration has been loaded with a dispersive isotropic left-handed medium (LHM substrate and studied regarding its high frequency millimeter-wave behavior near 100 GHz. This has been accomplished using a full-wave integral-equation anisotropic Green's function code configured to run for isotropy. Never before seen electromagnetic field distributions are produced, unlike anything found in normal media devices, using this ab initio solver. These distributions are made in the cross-sectional dimension, with the field propagating in the perpendicular direction. It is discovered that the LHM distributions are so radically different from ordinary media used as a substrate that completely new electronic devices based upon the new physics become a real possibility. The distinctive dispersion diagram for the dispersive medium, consisting of unit cells with split ring resonator-rod combinations, is provided over the upper millimeter-wave frequency regime.

  12. CAD of Millimeter Wave Frequency Multipliers: AN Experimental and Theoretical Investigation of the Heterostructure Barrier Varactor

    Science.gov (United States)

    Jones, John Robert

    Prominent applications at millimeter and submillimeter wavelengths include atmospheric/oceanic/terrestrial remote sensing, radio astronomy, vehicular sensing and communication, and high performance/covert communication, and require light, compact, and reliable solid-state radiation sources. Current fundamental sources have limited maximum frequencies and output powers. Harmonic generation (frequency multiplication) using a nonlinear reactance device is a proven means of achieving higher frequency radiation. Quasi-optical power combining from an array of such devices is an emerging method for achieving higher output powers. With these two techniques in mind, the major goals of this research were (1) the development of accurate and fully self-consistent computer-aided analysis and design techniques for millimeter wave frequency multiplier devices and circuits, and (2) the design, fabrication, and testing of planar Heterostructure Barrier Varactor (HBV) frequency triplers. Large-signal time- and temperature-dependent numerical device simulators have been developed for generic HBV and Schottky Barrier Varactor (SBV) structures. These simulators are based on the drift-diffusion equations, and self-consistently combine current transport through the device bulk with current across the abrupt heterointerfaces or metal-semiconductor interface. Given the importance of both the nonlinear device and its embedding circuit, the device simulators have been combined with a novel harmonic-balance circuit analysis technique. The combined numerical device/harmonic -balance circuit simulators have been compared to published experimental r.f. results, as well as to harmonic-balance results utilizing equivalent circuit device models. These comparisons show that significantly improved correlation to experimental data is obtained by using physics-based numerical device models in place of the standard quasi -static equivalent circuit device models. Prototype planar four barrier rm Ga

  13. Microwave and Millimeter-Wave Radiometric Studies of Temperature, Water Vapor and Clouds

    Energy Technology Data Exchange (ETDEWEB)

    Westwater, Edgeworth

    2011-05-06

    The importance of accurate measurements of column amounts of water vapor and cloud liquid has been well documented by scientists within the Atmospheric Radiation Measurement (ARM) Program. At the North Slope of Alaska (NSA), both microwave radiometers (MWR) and the MWRProfiler (MWRP), been used operationally by ARM for passive retrievals of the quantities: Precipitable Water Vapor (PWV) and Liquid Water Path (LWP). However, it has been convincingly shown that these instruments are inadequate to measure low amounts of PWV and LWP. In the case of water vapor, this is especially important during the Arctic winter, when PWV is frequently less than 2 mm. For low amounts of LWP (< 50 g/m{sup 2}), the MWR and MWRP retrievals have an accuracy that is also not acceptable. To address some of these needs, in March-April 2004, NOAA and ARM conducted the NSA Arctic Winter Radiometric Experiment - Water Vapor Intensive Operational Period at the ARM NSA/Adjacent Arctic Ocean (NSA/AAO) site. After this experiment, the radiometer group at NOAA moved to the Center for Environmental Technology (CET) of the Department of Electrical and Computer Engineering of the University of Colorado at Boulder. During this 2004 experiment, a total of 220 radiosondes were launched, and radiometric data from 22.235 to 380 GHz were obtained. Primary instruments included the ARM MWR and MWRP, a Global Positioning System (GPS), as well as the CET Ground-based Scanning Radiometer (GSR). We have analyzed data from these instruments to answer several questions of importance to ARM, including: (a) techniques for improved water vapor measurements; (b) improved calibration techniques during cloudy conditions; (c) the spectral response of radiometers to a variety of conditions: clear, liquid, ice, and mixed phase clouds; and (d) forward modeling of microwave and millimeter wave brightness temperatures from 22 to 380 GHz. Many of these results have been published in the open literature. During the third year of

  14. Broadband sub-millimeter wave amplifer module with 38dB gain and 8.3dB noise figure

    Science.gov (United States)

    Sarkozy, S.; Leong, K.; Lai, R.; Leakey, R.; Yoshida, W.; Mei, X.; Lee, J.; Liu, P.-H.; Gorospe, B.; Deal, W. R.

    2011-05-01

    Broadband sub-millimeter wave technology has received significant attention for potential applications in security, medical, and military imaging. Despite theoretical advantages of reduced size, weight, and power compared to current millimeter-wave systems, sub-millimeter-wave systems are hampered by a fundamental lack of amplification with sufficient gain and noise figure properties. We report on the development of a sub-millimeter wave amplifier module as part of a broadband pixel operating from 300-350 GHz, biased off of a single 2V power supply. Over this frequency range, > 38 dB gain and antenna and diode detector. The low noise amplifier Sub-Millimeter-wave Monolithic Integrated Circuit (SMMIC) was originally developed under the DARPA SWIFT and THz Electronics programs and is based on sub 50 nm Indium Arsenide Composite Channel (IACC) transistor technology with a projected maximum oscillation frequency fmax > 1.0 THz. This development and demonstration may bring to life future sub-millimeter-wave and THz applications such as solutions to brown-out problems, ultra-high bandwidth satellite communication cross-links, and future planetary exploration missions.

  15. Micronuclei in peripheral blood and bone marrow cells of mice exposed to 42 GHz electromagnetic millimeter waves.

    Science.gov (United States)

    Vijayalaxmi; Logani, Mahendra K; Bhanushali, Ashok; Ziskin, Marvin C; Prihoda, Thomas J

    2004-03-01

    The genotoxic potential of 42.2 +/- 0.2 GHz electromagnetic millimeter-wave radiation was investigated in adult male BALB/c mice. The radiation was applied to the nasal region of the mice for 30 min/day for 3 consecutive days. The incident power density used was 31.5 +/- 5.0 mW/cm2. The peak specific absorption rate was calculated as 622 +/- 100 W/kg. Groups of mice that were injected with cyclophosphamide (15 mg/kg body weight), a drug used in the treatment of human malignancies, were also included to determine if millimeter-wave radiation exposure had any influence on drug-induced genotoxicity. Concurrent sham-exposed and untreated mice were used as controls. The extent of genotoxicity was assessed from the incidence of micronuclei in polychromatic erythrocytes of peripheral blood and bone marrow cells collected 24 h after treatment. The results indicated that the incidence of micronuclei in 2000 polychromatic erythrocytes was not significantly different among untreated, millimeter wave-exposed, and sham-exposed mice. The group mean incidences were 6.0 +/- 1.6, 5.1 +/- 1.5 and 5.1 +/- 1.3 in peripheral blood and 9.1 +/- 1.1, 9.3 +/- 1.6 and 9.1 +/- 1.6 in bone marrow cells, respectively. Mice that were injected with cyclophosphamide exhibited significantly increased numbers of micronuclei, 14.6 +/- 2.7 in peripheral blood and 21.3 +/- 3.9 in bone marrow cells (Pwave-exposed and sham-exposed mice; the mean incidences were 14.3 +/- 2.8 and 15.4 +/- 3.0 in peripheral blood and 23.5 +/- 2.3 and 22.1 +/- 2.5 in bone marrow cells, respectively. Thus there was no evidence for the induction of genotoxicity in the peripheral blood and bone marrow cells of mice exposed to electromagnetic millimeter-wave radiation. Also, millimeter-wave radiation exposure did not influence cyclophosphamide-induced micronuclei in either type of cells.

  16. Deep Geothermal Drilling Using Millimeter Wave Technology. Final Technical Research Report

    Energy Technology Data Exchange (ETDEWEB)

    Oglesby, Kenneth [Impact Technologies LLC, Tulsa, OK (United States); Woskov, Paul [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States); Einstein, Herbert [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States); Livesay, Bill [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States)

    2014-12-30

    Conventional drilling methods are very mature, but still have difficulty drilling through very deep,very hard and hot rocks for geothermal, nuclear waste entombment and oil and gas applications.This project demonstrated the capabilities of utilizing only high energy beams to drill such rocks,commonly called ‘Direct Energy Drilling’, which has been the dream of industry since the invention of the laser in the 1960s. A new region of the electromagnetic spectrum, millimeter wave (MMW) wavelengths at 30-300 giga-hertz (GHz) frequency was used to accomplish this feat. To demonstrate MMW beam drilling capabilities a lab bench waveguide delivery, monitoring and instrument system was designed, built and tested around an existing (but non-optimal) 28 GHz frequency, 10 kilowatt (kW) gyrotron. Low waveguide efficiency, plasma generation and reflected power challenges were overcome. Real-time monitoring of the drilling process was also demonstrated. Then the technical capability of using only high power intense millimeter waves to melt (with some vaporization) four different rock types (granite, basalt, sandstone, limestone) was demonstrated through 36 bench tests. Full bore drilling up to 2” diameter (size limited by the available MMW power) was demonstrated through granite and basalt samples. The project also demonstrated that MMW beam transmission losses through high temperature (260°C, 500oF), high pressure (34.5 MPa, 5000 psi) nitrogen gas was below the error range of the meter long path length test equipment and instruments utilized. To refine those transmission losses closer, to allow extrapolation to very great distances, will require a new test cell design and higher sensitivity instruments. All rock samples subjected to high peak temperature by MMW beams developed fractures due to thermal stresses, although the peak temperature was thermodynamically limited by radiative losses. Therefore, this limited drill rate and rock strength data were not able to be

  17. Modular Low-Heater-Power Cathode/Electron Gun Assembly for Microwave and Millimeter Wave Traveling Wave Tubes

    Science.gov (United States)

    Wintucky, Edwin G.

    2000-01-01

    A low-cost, low-mass, electrically efficient, modular cathode/electron gun assembly has been developed by FDE Inc. of Beaverton, Oregon, under a Small Business Innovation Research (SBIR) contract with the NASA Glenn Research Center at Lewis Field. This new assembly offers significant improvements in the design and manufacture of microwave and millimeter wave traveling-wave tubes (TWT's) used for radar and communications. It incorporates a novel, low-heater-power, reduced size and mass, high-performance barium dispenser type thermionic cathode and provides for easy integration of the cathode into a large variety of conventional TWT circuits. Among the applications are TWT's for Earth-orbiting communication satellites and for deep space communications, where future missions will require smaller spacecraft, higher data transfer rates (higher frequencies and radiofrequency output power), and greater electrical efficiency. A particularly important TWT application is in the microwave power module (a hybrid microwave/millimeter wave amplifier consisting of a low-noise solid-state driver, a small TWT, and an electronic power conditioner integrated into a single compact package), where electrical efficiency and thermal loading are critical factors and lower cost is needed for successful commercialization. The design and fabrication are based on practices used in producing cathode ray tubes (CRT's), which is one of the most competitive and efficient manufacturing operations in the world today. The approach used in the design and manufacture of thermionic cathodes and electron guns for CRT's has been optimized for fully automated production, standardization of parts, and minimization of costs. It is applicable to the production of similar components for microwave tubes, with the additional benefits of low mass and significantly lower cathode heater power (less than half that of dispenser cathodes presently used in TWT s). Modular cathode/electron gun assembly. The modular

  18. Superconducting Resonator Spectrometer for Millimeter- and Submillimeter-Wave Astrophysics Project

    Data.gov (United States)

    National Aeronautics and Space Administration — "We propose to develop a novel ultra-compact spectrograph-on-a-chip for the submillimeter and millimeter waveband. SuperSpec uses planar lithographed superconducting...

  19. Design and Fabrication of Millimeter Wave Hexagonal Nano-Ferrite Circulator on Silicon CMOS Substrate

    Science.gov (United States)

    Oukacha, Hassan

    The rapid advancement of Complementary Metal Oxide Semiconductor (CMOS) technology has formed the backbone of the modern computing revolution enabling the development of computationally intensive electronic devices that are smaller, faster, less expensive, and consume less power. This well-established technology has transformed the mobile computing and communications industries by providing high levels of system integration on a single substrate, high reliability and low manufacturing cost. The driving force behind this computing revolution is the scaling of semiconductor devices to smaller geometries which has resulted in faster switching speeds and the promise of replacing traditional, bulky radio frequency (RF) components with miniaturized devices. Such devices play an important role in our society enabling ubiquitous computing and on-demand data access. This thesis presents the design and development of a magnetic circulator component in a standard 180 nm CMOS process. The design approach involves integration of nanoscale ferrite materials on a CMOS chip to avoid using bulky magnetic materials employed in conventional circulators. This device constitutes the next generation broadband millimeter-wave circulator integrated in CMOS using ferrite materials operating in the 60GHz frequency band. The unlicensed ultra-high frequency spectrum around 60GHz offers many benefits: very high immunity to interference, high security, and frequency re-use. Results of both simulations and measurements are presented in this thesis. The presented results show the benefits of this technique and the potential that it has in incorporating a complete system-on-chip (SoC) that includes low noise amplifier, power amplier, and antenna. This system-on-chip can be used in the same applications where the conventional circulator has been employed, including communication systems, radar systems, navigation and air traffic control, and military equipment. This set of applications of

  20. Millimeter-Wave Wireless LAN and Its Extension toward 5G Heterogeneous Networks

    Science.gov (United States)

    Sakaguchi, Kei; Mohamed, Ehab Mahmoud; Kusano, Hideyuki; Mizukami, Makoto; Miyamoto, Shinichi; Rezagah, Roya E.; Takinami, Koji; Takahashi, Kazuaki; Shirakata, Naganori; Peng, Hailan; Yamamoto, Toshiaki; Nanba, Shinobu

    Millimeter-wave (mmw) frequency bands, especially 60 GHz unlicensed band, are considered as a promising solution for gigabit short range wireless communication systems. IEEE standard 802.11ad, also known as WiGig, is standardized for the usage of the 60 GHz unlicensed band for wireless local area networks (WLANs). By using this mmw WLAN, multi-Gbps rate can be achieved to support bandwidth-intensive multimedia applications. Exhaustive search along with beamforming (BF) is usually used to overcome 60 GHz channel propagation loss and accomplish data transmissions in such mmw WLANs. Because of its short range transmission with a high susceptibility to path blocking, multiple number of mmw access points (APs) should be used to fully cover a typical target environment for future high capacity multi-Gbps WLANs. Therefore, coordination among mmw APs is highly needed to overcome packet collisions resulting from un-coordinated exhaustive search BF and to increase the total capacity of mmw WLANs. In this paper, we firstly give the current status of mmw WLANs with our developed WiGig AP prototype. Then, we highlight the great need for coordinated transmissions among mmw APs as a key enabler for future high capacity mmw WLANs. Two different types of coordinated mmw WLAN architecture are introduced. One is the distributed antenna type architecture to realize centralized coordination, while the other is an autonomous coordination with the assistance of legacy Wi-Fi signaling. Moreover, two heterogeneous network (HetNet) architectures are also introduced to efficiently extend the coordinated mmw WLANs to be used for future 5th Generation (5G) cellular networks.

  1. Additive Effects of Millimeter Waves and 2-Deoxyglucose Co-Exposure on the Human Keratinocyte Transcriptome

    Science.gov (United States)

    Soubere Mahamoud, Yonis; Aite, Meziane; Martin, Catherine; Zhadobov, Maxim; Sauleau, Ronan; Le Dréan, Yves

    2016-01-01

    Millimeter Waves (MMW) will be used in the next-generation of high-speed wireless technologies, especially in future Ultra-Broadband small cells in 5G cellular networks. Therefore, their biocompatibilities must be evaluated prior to their massive deployment. Using a microarray-based approach, we analyzed modifications to the whole genome of a human keratinocyte model that was exposed at 60.4 GHz-MMW at an incident power density (IPD) of 20 mW/cm2 for 3 hours in athermic conditions. No keratinocyte transcriptome modifications were observed. We tested the effects of MMWs on cell metabolism by co-treating MMW-exposed cells with a glycolysis inhibitor, 2-deoxyglucose (2dG, 20 mM for 3 hours), and whole genome expression was evaluated along with the ATP content. We found that the 2dG treatment decreased the cellular ATP content and induced a high modification in the transcriptome (632 coding genes). The affected genes were associated with transcriptional repression, cellular communication and endoplasmic reticulum homeostasis. The MMW/2dG co-treatment did not alter the keratinocyte ATP content, but it did slightly alter the transcriptome, which reflected the capacity of MMW to interfere with the bioenergetic stress response. The RT-PCR-based validation confirmed 6 MMW-sensitive genes (SOCS3, SPRY2, TRIB1, FAM46A, CSRNP1 and PPP1R15A) during the 2dG treatment. These 6 genes encoded transcription factors or inhibitors of cytokine pathways, which raised questions regarding the potential impact of long-term or chronic MMW exposure on metabolically stressed cells. PMID:27529420

  2. Path loss analysis in millimeter wave cellular systems for urban mobile communications

    Science.gov (United States)

    Rajagopalan, Ramesh; Hoffman, Mitchell

    2016-09-01

    The proliferation in the number of mobile devices and developments in cellular technology has led to an ever increasing demand for mobile data. The global bandwidth shortage facing wireless carriers today has motivated research for fifth generation (5G) cellular systems. In recent years, millimeter wave (mmW) frequencies between 30 and 300 GHz are being considered as a promising technology for 5G systems. Such systems can offer superior user experience by providing data rates that exceed one Gigabit per second and latencies lower than a millisecond. However, there is little research about cellular mmW propagation in densely populated urban environments. Understanding the radio channel is a primary requirement for optimal design of mmW systems. Radio propagation in mmW systems faces significant challenges due to rapidly varying channel conditions and intermittent connectivity. In this paper, we study the propagation of mmW spectrum in an urban environment. We use a statistical model to simulate an urban environment with diverse building distributions. We perform extensive simulations to analyze the path loss behavior for both line of sight (LOS) and non line of sight (NLOS) conditions for 28 GHZ and 73 GHZ mmW frequencies. We observe that the path loss approximates a logarithmic fit for both LOS and NLOS environments. Our simulations show that the omnidirectional free space path loss is approximately 30 dB higher for mmW systems compared to current 3G PP cellular systems. To address this challenge, we propose using highly directional horn antennas with beam forming for reducing the path loss.

  3. Experimental methods of indoor millimeter-wave radiometric imaging for personnel concealed contraband detection

    Science.gov (United States)

    Hu, Taiyang; Xiao, Zelong; Li, Hao; Lv, Rongchuan; Lu, Xuan

    2014-11-01

    The increasingly emerging terrorism attacks and violence crimes around the world have posed severe threats to public security, so carrying out relevant research on advanced experimental methods of personnel concealed contraband detection is crucial and meaningful. All of the advantages of imaging covertly, avoidance of interference with other systems, intrinsic property of being safe to persons under screening , and the superior ability of imaging through natural or manmade obscurants, have significantly combined to enable millimeter-wave (MMW) radiometric imaging to offer great potential in personnel concealed contraband detection. Based upon the current research status of MMW radiometric imaging and urgent demands of personnel security screening, this paper mainly focuses on the experimental methods of indoor MMW radiometric imaging. The reverse radiation noise resulting from super-heterodyne receivers seriously affects the image experiments carried out at short range, so both the generation mechanism and reducing methods of this noise are investigated. Then, the benefit of sky illumination no longer exists for the indoor radiometric imaging, and this leads to the decrease in radiometric temperature contrast between target and background. In order to enhance the radiometric temperature contrast for improving indoor imaging performance, the noise illumination technique is adopted in the indoor imaging scenario. In addition, the speed and accuracy of concealed contraband detection from acquired MMW radiometric images are usually restricted to the deficiencies in traditional artificial interpretation by security inspectors, thus an automatic recognition and location algorithm by integrating improved Fuzzy C-means clustering with moment invariants is put forward. A series of original results are also presented to demonstrate the significance and validity of these methods.

  4. Monitoring millimeter wave stray radiation during ECRH operation at ASDEX Upgrade

    Directory of Open Access Journals (Sweden)

    Wagner D.

    2012-09-01

    Full Text Available Due to imperfection of the single path absorption, ECRH at ASDEX Upgrade (AUG is always accompanied by stray radiation in the vacuum vessel. New ECRH scenarios with O2 and X3 heating schemes extend the operational space, but they have also the potential to increase the level of stray radiation. There are hazards for invessel components. Damage on electric cables has already been encountered. It is therefore necessary to monitor and control the ECRH with respect to the stray radiation level. At AUG a system of Sniffer antennas equipped with microwave detection diodes is installed. The system is part of the ECRH interlock circuit. We notice, however, that during plasma operation the variations of the Sniffer antenna signal are very large. In laboratory measurements we see variations of up to 20 dB in the directional sensitivity and we conclude that an interference pattern is formed inside the copper sphere of the antenna. When ECRH is in plasma operation at AUG, the plasma is acting as a phase and mode mixer for the millimeter waves and thus the interference pattern inside the sphere changes with the characteristic time of the plasma dynamics. In order to overcome the difficulty of a calibrated measurement of the average stray radiation level, we installed bolometer and pyroelectric detectors, which intrinsically average over interference structures due to their large active area. The bolometer provides a robust calibration but with moderate temporal resolution. The pyroelectric detector provides high sensitivity and a good temporal resolution, but it raises issues of possible signal drifts in long pulses.

  5. Millimeter-wave radiometric measurements of a treeline and building for aircraft obstacle avoidance

    Science.gov (United States)

    Wikner, David A.

    2003-08-01

    Passive millimeter-wave (MMW) imagers have the potential to be used on low-flying aircraft for terrain-following / terrain-avoidance during low-visibility conditions. This potential exists because of the inherent nature of MMW radiation that allows it to penetrate many visible and IR obscurants such as fog, clouds, and smoke. The phenomenology associated with this application, however, has not been fully explored. Specifically, the radiometric signatures of the various obstacles that might be encountered during a low-altitude flight need to be thoroughly understood. The work described in this paper explores the 93-GHz passive signature of a deciduous treeline and a concrete/glass building. The data were taken from the roof of a 4-story building to simulate the view of a low-flying aircraft. The data were collected over many months with an ARL-built Stokes-vector radiometer. This radiometer is a single-beam system that raster scans over a scene to collect a calibrated 93-GHz image. The data show the effects of weather and tree lifecycle on the 93-GHz brightness temperature contrast between the horizon sky and the obstacles. For the case of trees, it is shown that the horizon sky brightness temperature is greater than that of the trees when the leaves are on because of the reflective properties of the leaves. This made the trees quite detectable to our system during the late spring, summer, and early fall. Concrete buildings are inherently low-contrast obstacles because their vertical nature reflects the horizon behind the sensor and can easily mimic the forward horizon sky. Solar loading can have a large effect on building signatures.

  6. Millimeter wave spectroscopic measurements of stratospheric and mesospheric constituents over the Italian Alps: stratospheric ozone

    Directory of Open Access Journals (Sweden)

    V. Romaniello

    2007-06-01

    Full Text Available Measurements of rotational lines emitted by middle atmospheric trace gases have been carried out from the Alpine station of Testa Grigia (45.9°N, 7.7°E, elev. 3500 m by means of a Ground-Based Millimeter-wave Spectrometer (GBMS. Observations of species such as O3, HNO3, CO, N2O, HCN, and HDO took place during 4 winter periods, from February 2004 to March 2007, for a total of 116 days of measurements grouped in about 18 field campaigns. By studying the pressure-broadened shape of emission lines the vertical distribution of the observed constituents is retrieved within an altitude range of ?17-75 km, constrained by the 600 MHz pass band and the 65 kHz spectral resolution of the back-end spectrometer. This work discusses the behavior of stratospheric O3 during the entire period of operation at Testa Grigia. Mid-latitude O3 columnar content as estimated using GBMS measurements can vary by large amounts over a period of very few days, with the largest variations observed in December 2005, February 2006, and March 2006, confirming that the northern winter of 2005-2006 was characterized by a particularly intense planetary wave activity. The largest rapid variation from maximum to minimum O3 column values over Testa Grigia took place in December 2006 and reached a relative value of 72% with respect to the average column content for that period. During most GBMS observation times much of the variability is concentrated in the column below 20 km, with tropospheric weather systems and advection of tropical tropospheric air into the lower stratosphere over Testa Grigia having a large impact on the observed variations in column contents. Nonetheless, a wide variability is also found in middle stratospheric GBMS O3 measurements, as expected for mid-latitude ozone. We find that O3 mixing ratios at ?32 km are very well correlated with the solar illumination experienced by air masses over the previous ?15 days, showing that already at 32 km

  7. Millimeter-Wave Imaging of Person-Borne Improvised Explosive Devices

    Science.gov (United States)

    Fernandes, Justin Leigh

    With the recent rise in casualties and threat of casulties resulting from person-borne improvised explosive devices (PBIEDs) there is an urgent need for building imaging systems to perform standoff and portal detection of such threats. An optimum system that fulfills the requirements of PBIED detection must be low cost and have a high probability of detection with low probability of false alarm. A standoff detection system must also be portable while a portal imaging system can be stationary. Currently there are a variety of modalities being researched to perform standoff detection of PBIED's including: backscatter X-ray imaging, infrared imaging, optical detection, terahertz imaging, video analytics, and millimeter-wave (MMW) imaging. MMW imaging is a perferable modality for full body imaging of PBIEDs for many reasons. MMWs can propagate through the atmosphere and clothing with very little attenuation, while at the same time do not cause damage to human skin tissue. MMWs are small enough to build physical and synthetic aperture systems small enough to have a realistic physical system footprint while also providing excellent cross-range resolution. Present technology is available to generate very wideband coherent MMWsignals, which can be used to generate very high resolution images of targets at both standoff (> 15 meters) and portal (< 1 meter) distances. Due to the large expense of building MMW imaging systems there is a large need to accurately model such systems numerically. With a forward model complex geometries, novel sensor and system configurations can be tested with minimal cost and overhead. Models also allow researchers to carry out extremely precise and repeatable analyses that have the ability to give extraordinary insight to scattering processes. The finite difference method in the frequency domain (FDFD) is a forward model which yields itself as an excellent method to analyze the scattering at MMW frequencies. However, due to the matrix inversion

  8. Design and implementation of a 150 GHz single-channel millimeter wave interferometer on Joint TEXT tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Feng, X. D.; Zhuang, G.; Yang, Z. J.; Gao, L.; Hu, X. W. [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2013-04-15

    A simple, single-channel millimeter-wave interferometer system has been designed, fabricated, and installed on the J-TEXT tokamak. For the plasma density anticipated on J-TEXT, a solid-state source operating at 150 GHz has been chosen to minimize errors due to both vibration along the beam path and refraction in the plasma. The new aspect of the interferometer design is to use a subharmonic mixer for detection with a frequency doubled 150 GHz source. It employs a single source which is bias-tuned and modulated with a sawtooth wave form up to 100 kHz in order to generate the intermediate frequency. The 12.5 GHz voltage-controlled oscillator is multiplied to 75 GHz before a final doubler raises it to 150 GHz. A portion of the 75 GHZ power is used for the local oscillator (LO) and is directly connected to the LO input of the subharmonic mixer. The phase is evaluated by a digital phase comparator using a software-based algorithm. Detection noise limits the minimum resolvable phase change with the interferometer to {+-}0.05 fringe, which corresponds to an averaged electron density change along the chord of {+-}1.1 Multiplication-Sign 10{sup 17} m{sup -2}. The maximum measurable electron density is expected to be {approx}9 Multiplication-Sign 10{sup 19} m{sup -3}. A comparison of preliminary results from the millimeter wave interferometer with that from the far-infrared hydrogen cyanide laser (wavelength of 337 {mu}m) interferometer shows good agreement during the pulse flat-top period. The millimeter wave interferometer system will be used as a part of the density feedback control system in the future.

  9. Design and implementation of a 150 GHz single-channel millimeter wave interferometer on Joint TEXT tokamak.

    Science.gov (United States)

    Feng, X D; Zhuang, G; Yang, Z J; Gao, L; Hu, X W

    2013-04-01

    A simple, single-channel millimeter-wave interferometer system has been designed, fabricated, and installed on the J-TEXT tokamak. For the plasma density anticipated on J-TEXT, a solid-state source operating at 150 GHz has been chosen to minimize errors due to both vibration along the beam path and refraction in the plasma. The new aspect of the interferometer design is to use a subharmonic mixer for detection with a frequency doubled 150 GHz source. It employs a single source which is bias-tuned and modulated with a sawtooth wave form up to 100 kHz in order to generate the intermediate frequency. The 12.5 GHz voltage-controlled oscillator is multiplied to 75 GHz before a final doubler raises it to 150 GHz. A portion of the 75 GHZ power is used for the local oscillator (LO) and is directly connected to the LO input of the subharmonic mixer. The phase is evaluated by a digital phase comparator using a software-based algorithm. Detection noise limits the minimum resolvable phase change with the interferometer to ±0.05 fringe, which corresponds to an averaged electron density change along the chord of ±1.1 × 10(17) m(-2). The maximum measurable electron density is expected to be ∼9 × 10(19) m(-3). A comparison of preliminary results from the millimeter wave interferometer with that from the far-infrared hydrogen cyanide laser (wavelength of 337 μm) interferometer shows good agreement during the pulse flat-top period. The millimeter wave interferometer system will be used as a part of the density feedback control system in the future.

  10. Harmonic analysis approach to the 'TunneLadder' - A modified Karp circuit for millimeter-wave TWTA's

    Science.gov (United States)

    Kosmahl, H. G.; Palmer, R. W.

    1982-05-01

    A field approach to the summed harmonic analysis of the TunneLadder structure, or modified forward-wave Karp circuit, is developed by combining TM(01) and TE(11) modes. Results suggest the suitability of this structure as a high-impedance, about 1-% bandwidth circuit, millimeter-wave forward-wave-type amplifier that is voltage tunable over about a 5-% frequency range and has excellent power handling ability. Theory gives good agreement with experimental results obtained by Karp in omega-beta dispersion and predicts qualitatively the appearances of the antisymmetric mode discussed and of the so called Hightron mode that was discussed earlier in White, Enderby and Birdsall (1964), and Enderby (1964), in addition to the desired symmetric mode.

  11. Harmonic analysis approach to the 'TunneLadder' - A modified Karp circuit for millimeter-wave TWTA's

    Science.gov (United States)

    Kosmahl, H. G.; Palmer, R. W.

    1982-01-01

    A field approach to the summed harmonic analysis of the TunneLadder structure, or modified forward-wave Karp circuit, is developed by combining TM(01) and TE(11) modes. Results suggest the suitability of this structure as a high-impedance, about 1-% bandwidth circuit, millimeter-wave forward-wave-type amplifier that is voltage tunable over about a 5-% frequency range and has excellent power handling ability. Theory gives good agreement with experimental results obtained by Karp in omega-beta dispersion and predicts qualitatively the appearances of the antisymmetric mode discussed and of the so called Hightron mode that was discussed earlier in White, Enderby and Birdsall (1964), and Enderby (1964), in addition to the desired symmetric mode.

  12. A hybrid MAC protocol design for energy-efficient very-high-throughput millimeter wave, wireless sensor communication networks

    Science.gov (United States)

    Jian, Wei; Estevez, Claudio; Chowdhury, Arshad; Jia, Zhensheng; Wang, Jianxin; Yu, Jianguo; Chang, Gee-Kung

    2010-12-01

    This paper presents an energy-efficient Medium Access Control (MAC) protocol for very-high-throughput millimeter-wave (mm-wave) wireless sensor communication networks (VHT-MSCNs) based on hybrid multiple access techniques of frequency division multiplexing access (FDMA) and time division multiplexing access (TDMA). An energy-efficient Superframe for wireless sensor communication network employing directional mm-wave wireless access technologies is proposed for systems that require very high throughput, such as high definition video signals, for sensing, processing, transmitting, and actuating functions. Energy consumption modeling for each network element and comparisons among various multi-access technologies in term of power and MAC layer operations are investigated for evaluating the energy-efficient improvement of proposed MAC protocol.

  13. Real-time dual-band wireless videos in millimeter-wave radio-over-fiber system

    Science.gov (United States)

    Cheng, Lin; Liu, Cheng; Dong, Ze; Wang, Jing; Zhu, Ming; Chang, Gee-Kung

    2013-12-01

    A dual-band converged radio-over-fiber (RoF) access system at 60-GHz and 100-GHz millimeter-wave (mm-wave) is proposed. Real-time end-to-end delivery of two channels of independent high-definition (HD) video services simultaneously carried on 60-GHz and 100-GHz radios is demonstrated for the first time. PRBS data transmission with equivalent data rate and format is also tested to characterize the system performance. The analysis of the spectrum from the beating signal indicates the entire 60-GHz band and the W-band can be retrieved without interference. The real-time HD video display and error-free (BER < 10-9) data transmission demonstrate the feasibility of the proposed wireless access system using converged fiber-optic and mm-wave RoF techniques.

  14. High-purity 60GHz band millimeter-wave generation based on optically injected semiconductor laser under subharmonic microwave modulation.

    Science.gov (United States)

    Fan, Li; Xia, Guangqiong; Chen, Jianjun; Tang, Xi; Liang, Qing; Wu, Zhengmao

    2016-08-08

    Based on an optically injected semiconductor laser (OISL) operating at period-one (P1) nonlinear dynamical state, high-purity millimeter-wave generation at 60 GHz band is experimentally demonstrated via 1/4 and 1/9 subharmonic microwave modulation (the order of subharmonic is with respect to the frequency fc of the acquired 60 GHz band millimeter-wave but not the fundamental frequency f0 of P1 oscillation). Optical injection is firstly used to drive a semiconductor laser into P1 state. For the OISL operates at P1 state with a fundamental frequency f0 = 49.43 GHz, by introducing 1/4 subharmonic modulation with a modulation frequency of fm = 15.32 GHz, a 60 GHz band millimeter-wave with central frequency fc = 61.28 GHz ( = 4fm) is experimentally generated, whose linewidth is below 1.6 kHz and SSB phase noise at offset frequency 10 kHz is about -96 dBc/Hz. For fm is varied between 13.58 GHz and 16.49 GHz, fc can be tuned from 54.32 GHz to 65.96 GHz under matched modulation power Pm. Moreover, for the OISL operates at P1 state with f0 = 45.02 GHz, a higher order subharmonic modulation (1/9) is introduced into the OISL for obtaining high-purity 60 GHz band microwave signal. With (fm, Pm) = (7.23 GHz, 13.00 dBm), a microwave signal at 65.07 GHz ( = 9fm) with a linewidth below 1.6 kHz and a SSB phase noise less than -98 dBc/Hz is experimentally generated. Also, the central frequency fc can be tuned in a certain range through adjusting fm and selecting matched Pm.

  15. Microwave and millimeter wave dielectric permittivity and magnetic permeability of epsilon-gallium-iron-oxide nano-powders

    Energy Technology Data Exchange (ETDEWEB)

    Chao, Liu, E-mail: liu.chao@tufts.edu; Afsar, Mohammed N. [Department of Electrical and Computer Engineering, Tufts University, Medford, Massachusetts 02155 (United States); Ohkoshi, Shin-ichi [Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2015-05-07

    In millimeter wave frequency range, hexagonal ferrites with high uniaxial anisotropic magnetic fields are used as absorbers. These ferrites include M-type barium ferrite (BaFe{sub 12}O{sub 19}) and strontium ferrite (SrFe{sub 12}O{sub 19}), which have natural ferromagnetic resonant frequency range from 40 GHz to 60 GHz. However, the higher frequency range lacks suitable materials that support the higher frequency ferromagnetic resonance. A series of gallium-substituted ε-iron oxides (ε-Ga{sub x}Fe{sub 2−x}O{sub 3}) are synthesized, which have ferromagnetic resonant frequencies appearing over the frequency range of 30 GHz to 150 GHz. The ε-Ga{sub x}Fe{sub 2−x}O{sub 3} is synthesized by the sol-gel method. The particle sizes are observed to be smaller than 100 nm. In this paper, in-waveguide transmission and reflection method and the free space magneto-optical approach have been employed to study these newly developed ε-Ga{sub x}Fe{sub 2−x}O{sub 3} particles in millimeter waves. These techniques enable to obtain precise transmission spectra to determine the dielectric and magnetic properties of both isotropic and anisotropic ferrites in the microwave and millimeter wave frequency range from single set of direct measurements. The complex dielectric permittivity and magnetic permeability spectra of ε-Ga{sub x}Fe{sub 2−x}O{sub 3} are shown in this paper. Strong ferromagnetic resonances at different frequencies determined by the x parameter are found.

  16. Innovative systems for cultural heritage conservation. Millimeter wave application for non-invasive monitoring and treatment of works of art.

    Science.gov (United States)

    Bruno, Bisceglia; De Leo, Roberto; Pastore, Anna Pia; von Gratowski, Svetlana; Meriakri, Viatcheslav

    2011-01-01

    A novel non invasive technique and a suitable apparatus for disinfestation of artworks is introduced. Non destructive and non invasive techniques are often irreplaceable in order to preserve and restore cultural heritage objects in its structure and shape. Although many techniques are available for art and archaeological works the non invasive methods are preferred as they leave the object untouched after treatment. Environmental parameters, such as humidity, can damage culture heritage objects and also results in spring up variety of pests and other micro-organisms. Non-invasive monitoring of these damage and also disinfestation treatments and drying with help of electromagnetic waves are preferred as they keep the object untouched after treatment. Application of millimeter waves for solving this problem is discussed here. Millimeter waves have high spatial resolution and absorption in water as well as in bio-objects that are usually moist and at the same time minimal interaction with dry culture heritage objects by itself. Different phases of the microwaves treatment (MW) of artworks are described, some results are shown and discussed. Many biological forms don't survive over a certain temperature, called lethal temperature which, for most xylophages is about 53-55 degrees C, while for moulds and funguses is between 65 and 70 degrees C. In order to evaluate the management of disinfestation of works of art, incident power, temperature, exposure time were monitored. The monitoring of temperature is essential in order to prevent damages. A computer simulation allows to predict and monitor the heating process.

  17. Corrugated waveguide mode purifier for TEM output in a dual-mode operation overmoded coaxial millimeter-wave generator

    Science.gov (United States)

    Bai, Zhen; Zhang, Jun; Zhong, Huihuang; Zhang, Dian

    2017-01-01

    A coaxial corrugated waveguide mode purifier is designed for a dual-mode operation overmoded coaxial millimeter-wave generator. With the purifier, the mixed TEM and TM01 modes output are purified into a pure TEM mode. Particle-in-cell (PIC) simulation shows that the purifier would not decrease the total output power of the generator, and plays an independent role to the upstream structure. Effects of mode composition ratio and phase difference on the purification ability of the purifier are also researched by both electromagnetism and PIC simulations, which show that the purifier has a certain tolerance for both the mode composition ratio and phase difference.

  18. Multi-frequency force-detected electron spin resonance in the millimeter-wave region up to 150 GHz

    Science.gov (United States)

    Ohmichi, E.; Tokuda, Y.; Tabuse, R.; Tsubokura, D.; Okamoto, T.; Ohta, H.

    2016-07-01

    In this article, a novel technique is developed for multi-frequency force-detected electron spin resonance (ESR) in the millimeter-wave region. We constructed a compact ESR probehead, in which the cantilever bending is sensitively detected by a fiber-optic Fabry-Perot interferometer. With this setup, ESR absorption of diphenyl-picrylhydrazyl radical (<1 μg) was clearly observed at multiple frequencies of up to 150 GHz. We also observed the hyperfine splitting of low-concentration Mn2+ impurities(˜0.2%) in MgO.

  19. Low noise Millimeter-wave and THz Receivers, Imaging Arrays, Switches in Advanced CMOS and SiGe Processes /

    OpenAIRE

    Uzunkol, Mehmet

    2013-01-01

    The thesis presents advanced millimeter-wave and THz receivers, imaging arrays, switches and detectors in CMOS and SiGe BiCMOS technologies. First, an in-depth analysis of a SiGe BiCMOS on-off keying (OOK) receiver composed of a low noise SiGe amplifier and an OOK detector is presented. The analysis indicates that the bias circuit and bias current have a substantial impact on the receiver and should be optimized for best performance. Also, the LO leakage from the transmitter can have a detrim...

  20. Wide-Bandwidth, Wide-Beamwidth, High-Resolution, Millimeter-Wave Imaging for Concealed Weapon Detection

    Energy Technology Data Exchange (ETDEWEB)

    Sheen, David M.; Fernandes, Justin L.; Tedeschi, Jonathan R.; McMakin, Douglas L.; Jones, Anthony M.; Lechelt, Wayne M.; Severtsen, Ronald H.

    2013-06-12

    Active millimeter-wave imaging is currently being used for personnel screening at airports and other high-security facilities. The lateral resolution, depth resolution, clothing penetration, and image illumination quality obtained from next-generation systems can be significantly enhanced through the selection the aperture size, antenna beamwidth, center frequency, and bandwidth. In this paper, the results of an extensive imaging trade study are presented using both planar and cylindrical three-dimensional imaging techniques at frequency ranges of 10-20 GHz, 10 – 40 GHz, 40 – 60 GHz, and 75 – 105 GHz

  1. The Application of the FDTD Method to Millimeter-Wave Filter Circuits Including the Design and Analysis of a Compact Coplanar

    Science.gov (United States)

    Oswald, J. E.; Siegel, P. H.

    1994-01-01

    The finite difference time domain (FDTD) method is applied to the analysis of microwave, millimeter-wave and submillimeter-wave filter circuits. In each case, the validity of this method is confirmed by comparison with measured data. In addition, the FDTD calculations are used to design a new ultra-thin coplanar-strip filter for feeding a THz planar-antenna mixer.

  2. Absorbing coatings for high power millimeter-wave devices and matched loads

    Energy Technology Data Exchange (ETDEWEB)

    Bin, W., E-mail: wbin@ifp.cnr.it [Istituto di Fisica del Plasma, Consiglio Nazionale delle Ricerche, EURATOM-ENEA/CNR Association, Milano (Italy); Bruschi, A.; Cirant, S. [Istituto di Fisica del Plasma, Consiglio Nazionale delle Ricerche, EURATOM-ENEA/CNR Association, Milano (Italy); Muzzini, V. [Istituto di Biologia Agro-ambientale e Forestale, Consiglio Nazionale delle Ricerche, Area di Ricerca di Roma 1, Monterotondo, Rome (Italy); Simonetto, A.; Spinicchia, N. [Istituto di Fisica del Plasma, Consiglio Nazionale delle Ricerche, EURATOM-ENEA/CNR Association, Milano (Italy); Angella, G. [Istituto per l’Energetica e le Interfasi, Consiglio Nazionale delle Ricerche, Milano (Italy); Dell’Era, F. [Istituto di Fisica del Plasma, Consiglio Nazionale delle Ricerche, EURATOM-ENEA/CNR Association, Milano (Italy); Gantenbein, G.; Leonhardt, W. [Institut für Hochleistungsimpuls-und Mikrowellentechnik, Karlsruhe Institute of Technology, Association EURATOM-KIT, Karlsruhe (Germany); Nardone, A. [Istituto di Fisica del Plasma, Consiglio Nazionale delle Ricerche, EURATOM-ENEA/CNR Association, Milano (Italy); Samartsev, A.; Schmid, M. [Institut für Hochleistungsimpuls-und Mikrowellentechnik, Karlsruhe Institute of Technology, Association EURATOM-KIT, Karlsruhe (Germany)

    2013-10-15

    Highlights: ► An overview of the activity at IFP-CNR concerning the absorbing coatings is presented. ► The application of the absorbing ceramics to the IFP-CNR matched loads is described. ► B{sub 4}C is presented as a promising material for power absorption in the EC frequency range. ► The most important high power validation tests performed on coatings are described. ► Some results from simulations of the absorption capability of a double layer coating are shown. -- Abstract: In the electron cyclotron frequency range the handling of high power is critical. In some cases an unpredictable amount of stray radiation can reach some components or accumulate in localized regions, with risk of damages caused by thermal overloads, and any uncontrolled reflection represents a danger for the sources. A possibility to mitigate the problem consists in covering some regions exposed to radiation with absorbers. Enhanced absorption of stray radiation lowers requirements on active protection systems in microwave diagnostics. The released heat can be extracted by dedicated cooling systems. The chromium oxide (Cr{sub 2}O{sub 3}), largely tested at IFP-CNR, has been routinely used as internal coating for matched loads. The performances of a variable thickness coating has been tested at high power at Karlsruhe Institute of Technology (KIT), with a 140 GHz gyrotron of the W7-X ECRH system and an averaged power density absorbed at the coating surface higher than 1 MW/m{sup 2} for 3 min. Also boron carbide (B{sub 4}C) has been tested at low power and patented as a millimeter-wave absorber. In the paper, the results of some tests performed on these coatings are given, together with some simulations of the absorption capability based on low power measurements on samples. Finally, some calculations are presented for a coating obtained combining together Cr{sub 2}O{sub 3} and B{sub 4}C.

  3. The Extended Parabolic Equation Method and Implication of Results for Atmospheric Millimeter-Wave and Optical Propagation

    Science.gov (United States)

    Manning, Robert M.

    2004-01-01

    The extended wide-angle parabolic wave equation applied to electromagnetic wave propagation in random media is considered. A general operator equation is derived which gives the statistical moments of an electric field of a propagating wave. This expression is used to obtain the first and second order moments of the wave field and solutions are found that transcend those which incorporate the full paraxial approximation at the outset. Although these equations can be applied to any propagation scenario that satisfies the conditions of application of the extended parabolic wave equation, the example of propagation through atmospheric turbulence is used. It is shown that in the case of atmospheric wave propagation and under the Markov approximation (i.e., the -correlation of the fluctuations in the direction of propagation), the usual parabolic equation in the paraxial approximation is accurate even at millimeter wavelengths. The methodology developed here can be applied to any qualifying situation involving random propagation through turbid or plasma environments that can be represented by a spectral density of permittivity fluctuations.

  4. Development of a Propagating Millimeter-Wave Beam Position and Profile Monitor in the Oversize Corrugated Waveguide Used in an ECRH System

    Science.gov (United States)

    Shimozuma, Takashi; Kobayashi, Sakuji; Ito, Satoshi; Ito, Yasuhiko; Kubo, Shin; Yoshimura, Yasuo; Nishiura, Masaki; Igami, Hiroe; Takahashi, Hiromi; Mizuno, Yoshinori; Okada, Kohta; Mutoh, Takashi

    2016-01-01

    In a high-power electron cyclotron resonance heating (ECRH) system for plasma heating, a long-distance and low-loss transmission system of the millimeter wave is required. A real-time monitor of the millimeter-wave beam position and its intensity profile, which can be used in a high-power, evacuated, and cooled transmission line, is proposed, designed, manufactured, and tested. The beam-position and profile monitor (BPM) consists of a reflector, Peltier-device array, and a heat-sink, which is installed in the reflector-plate of a miterbend. The BPM was tested using both simulated electric heater power and high-power gyrotron output power. The profile obtained from the monitor using the gyrotron output was well agreed with the burn patter on a thermal sensitive paper. Methods of data analysis and mode-content analysis of a propagating millimeter-wave in the corrugated waveguide are proposed.

  5. Simultaneous measurement of temperature and emissivity of lunar regolith simulant using dual-channel millimeter-wave radiometry.

    Science.gov (United States)

    McCloy, J S; Sundaram, S K; Matyas, J; Woskov, P P

    2011-05-01

    Millimeter wave (MMW) radiometry can be used for simultaneous measurement of emissivity and temperature of materials under extreme environments (high temperature, pressure, and corrosive environments). The state-of-the-art dual channel MMW passive radiometer with active interferometric capabilities at 137 GHz described here allows for radiometric measurements of sample temperature and emissivity up to at least 1600 °C with simultaneous measurement of sample surface dynamics. These capabilities have been used to demonstrate dynamic measurement of melting of powders of simulated lunar regolith and static measurement of emissivity of solid samples. The paper presents the theoretical background and basis for the dual-receiver system, describes the hardware in detail, and demonstrates the data analysis. Post-experiment analysis of emissivity versus temperature allows further extraction from the radiometric data of millimeter wave viewing beam coupling factors, which provide corroboratory evidence to the interferometric data of the process dynamics observed. These results show the promise of the MMW system for extracting quantitative and qualitative process parameters for industrial processes and access to real-time dynamics of materials behavior in extreme environments.

  6. A two-stream plasma electron microwave source for high-power millimeter wave generation, phase 1

    Science.gov (United States)

    Guest, Gareth E.; Dandl, Raphael A.

    1989-03-01

    A novel high power millimeter/microwave source is proposed in which one or more pairs of interpenetrating streams of electrons, flowing through a background plasma in a static magnetic field are used to generate a hot-electron plasma that is confined in a mirror-like magnetic field. Energy stored in the anisotropic, hot-electron plasma is then used to amplify pulses of unstable plasma waves to large amplitude by selective deactivation of mechanisms that stabilize the hot-electron plasma during the energy accumulation phase when the density of hot electrons is rapidly increased through the beam-plasma interaction. The Phase 1 program has yielded a design for an experimental arrangement capable of verifying the key aspects of this novel source concept, as well as a theoretical framework for interpreting the empirical Phase 2 results produced by the experimental device and extrapolating those results to evaluate the suitability of the proposed source to meet the requirements of various high power microwave and millimeter wave defense and industrial applications. The experiments will be carried out in a timely and cost-effective way by employing the AMPHED (a CW magetic mirror) experimental facility at Applied Microwave Plasma Concepts (AMPC).

  7. Stabilisation dopant-dependent facilitation in ionic conductivity on millimeter-wave irradiation heating of zirconia-based ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Kishimoto, Akira, E-mail: kishim-a@cc.okayama-u.ac.jp; Hasunuma, Hideki; Teranishi, Takashi; Hayashi, Hidetaka

    2015-11-05

    Ionic conductivity was measured on scandia-, calcia-, and gadolinia-stabilised zirconia ceramics under quasi-millimeter-wave (MMW) irradiation heating and conventional heating. Conductivity enhancement was evaluated for these ceramics and compared with our previous report on yttria- and ytterbia-stabilised zirconia ceramics (YSZ and YbSZ, respectively). The ionic conduction for the various cation-substituted zirconia ceramics was enhanced under MMW irradiation heating. In the case of scandia-stabilisation, the optimal composition demonstrating maximum ionic conductivity was 12-mol% zirconia (ScSZ) under MMW irradiation heating, which was larger than under conventional heating. Such an optimal composition shift was similar to results for YSZ ceramics. These results are discussed in terms of the activation energies for vacancy–ion dissociation and ion transfer. - Highlights: • Under millimeter-wave irradiation heating ionic conductivity of zirconia ceramics was examined. • The optimal composition in scandium stabilized zirconia ceramics shifted the higher doping side. • MMW irradiation heated ScSZ showed the highest ionic conductivity value in zirconia ceramics ever reported. • The activation process was examined in relation to the non-thermal effects.

  8. Compound Antenna for Millimeter Wave/Infrared Imaging%毫米波/红外成像复合天线

    Institute of Scientific and Technical Information of China (English)

    郝沛明; 孔祥蕾; 林莉; 阎秀芬; 卞南华

    2000-01-01

    在导弹武器装备中,信号接收系统或红外成像系统,即接收天线是非常重要的。本文对毫米波/红外成像复合天线研制的每个主要环节进行了系统地分析,它包括四部分:光学成像系统、毫米波探测器、光学扫描器和红外探测器。描述了光学成像系统和光学扫描系统的设计方法,光学系统是由两个非球面反射镜所组成,并给出了光学系统设计的各种数据。%It is very important for systems of signal receiving or infrared imaging in missile weaponry. Each key link for developing compound antenna of millimeter wave/infrared imaging is systemically analyzed in this paper. It includes four parts: an infrared imaging system, a millimeter wave detector, an optical scanner and an infrared detector. The designed method of optical imaging system and optical scanner have been described. This optical system consists of two aspherical mirrors i.e. Cassegrain system, the designed datas have been given.

  9. Enabling compact MMIC-based frontends for millimeter-wave imaging radar and radiometry at 94 and 210 GHz

    Science.gov (United States)

    Kallfass, Ingmar; Tessmann, Axel; Leuther, Arnulf; Kuri, Michael; Riessle, Markus; Zink, Martin; Massler, Hermann; Schlechtweg, Michael; Ambacher, Oliver

    2008-10-01

    We report on MMIC-based analog frontend components for imaging radar and radiometry at high millimeter-wave frequencies. The MMICs are realized in our metamorphic HEMT technology. In W-band, the focus is on analog frontends with multi-pixel capability. A compact four-channel receiver module based on four single-chip heterodyne receiver MMICs achieves a noise figure of 4.2 dB and a conversion gain of 7 dB. A W-band five-to-one switch MMIC with less than 3.5 dB insertion loss addresses four antenna ports and uses an integrated reference termination for pixel normalization. Both components operate in a frequency range from 75 to 100 GHz, making them suitable for broadband imaging systems with high geometrical resolution. After an overview of MMIC amplifier performance over the entire millimeter-wave frequency range, we present a chip set for imaging radar at 210 GHz, comprising linear and frequency-translating circuits.

  10. A wideband on-chip millimeter-wave patch antenna in 0.18 μm CMOS

    Science.gov (United States)

    Xiangyu, Meng; Baoyong, Chi; Haikun, Jia; Lixue, Kuang; Wen, Jia; Zhihua, Wang

    2013-10-01

    A wideband on-chip millimeter-wave patch antenna in 0.18 μm CMOS with a low-resistivity (10 Ω·bm) silicon substrate is presented. The wideband is achieved by reducing the Q factor and exciting the high-order radiation modes with size optimization. The antenna uses an on-chip top layer metal as the patch and a probe station as the ground plane. The on-chip ground plane is connected to the probe station using the inner connection structure of the probe station for better performance. The simulated S11 is less than -10 dB over 46-95 GHz, which is well matched with the measured results over the available 40-67 GHz frequency range from our measurement equipment. A maximum gain of -5.55 dBi with 4% radiation efficiency at a 60 GHz point is also achieved based on Ansoft HFSS simulation. Compared with the current state-of-the-art devices, the presented antenna achieves a wider bandwidth and could be used in wideband millimeter-wave communication and image applications.

  11. Sources of and Remedies for Removing Unwanted Reflections in Millimeter Wave Images of Complex SOFI-Covered Space Shuttle Structures

    Science.gov (United States)

    Kharkovsky, S.; Zoughi, R.; Hepburn, Frank L.

    2007-01-01

    In the recent years, continuous-wave near-field and lens-focused millimeter wave imaging systems have been effectively used to demonstrate their utility for producing high-resolution images of metallic structures covered with spay on foam insulation (SOFI) such as the Space Shuttle external fuel tank. However, for some specific structures a certain interference -pattern may be superimposed on the produced images. There are methods by which the influence of this unwanted interference can be reduced, such as the incorporation of an incidence .angle and the proper use of signal polarization. This paper presents the basics of this problem and describes the use of the methods for reducing this unwanted influence through specific examples.

  12. Analysis of performance of three- and five-stack achromatic half-wave plates at millimeter wavelengths

    CERN Document Server

    Matsumura, Tomotake; Johnson, Bradley R; Jones, Terry J; Jonnalagadda, Prashanth

    2008-01-01

    We study the performance of achromatic half-wave plates (AHWP) as a function of their construction parameters, the detection bandwidth of a power detector operating in the millimeter wave band, and the spectral shape of the incident radiation. We focus particular attention on the extraction of the degree of incident polarization and its orientation angle from the intensity measured as a function of AHWP rotation angle, which we call the IVA (intensity versus angle). We quantify the phase offset of the IVA and point to potential systematic errors in the extraction of this offset in cases where the incident spectrum is not sufficiently well known. We show how the phase offset and modulation efficiency of the AHWP depend on the relative angles between the plates in the stack and find that high modulation efficiency can be achieved with alignment accuracy of few degrees.

  13. Linear Analysis of Folded Double-Ridged Waveguide Slow-Wave Structure for Millimeter Wave Traveling Wave Tube

    Institute of Scientific and Technical Information of China (English)

    HE Jun; WEI Yan-Yu; GONG Yu-Bin; WANG Wen-Xiang

    2009-01-01

    A novel slow-wave structure (SWS), the folded double-ridged waveguide structure, is presented and its linear gain properties are investigated. The perturbed dispersion equation is derived and the small signal growth rate is calculated for dimensions of the ridge-loaded region and the parameters of the electron beam. The novel structure has potential applications in the production of high power and broad band radiation. For a cold beam, the linear theory predicts a gain of 1.1-1.27dB/period and a 3-dB small-signal gain bandwidth of 30% in W-band. A comparison between the folded double-ridged waveguide SWS and folded waveguide SWS (FWSWS) shows that with the same physical parameters, the novel SWS has an advantage over the FWSWS on the bandwidth and electron efficiency.

  14. ACRF Instrumentation Status: New, Current, and Future July 2007

    Energy Technology Data Exchange (ETDEWEB)

    JC Liljegren

    2007-07-01

    The purpose of this report is to provide a concise but comprehensive overview of ACRF instrumentation status. The report is divided into four sections: (1) new instrumentation in the process of being acquired and deployed, (2) existing instrumentation and progress on improvements or upgrades, (3) proposed future instrumentation, and (4) SBIR instrument development.

  15. 基于电光调制的毫米波辐射计研究%Millimeter-wave radiometer based on electro-optic modulation

    Institute of Scientific and Technical Information of China (English)

    张跃东; 江月松; 何云涛; 邓士光

    2011-01-01

    研究了一种通过电光调制将毫米波信号加载到光载波上进行处理的毫米波辐射计。天线接收的毫米波信号由电光调制器(EOM)调制加载到光载波的边带上,并通过光纤传输该信号;利用光纤布拉格光栅(FBG)滤波器滤掉载波分量,滤波后保留的边带分量信号由光电探测器(PD)探测。为提高探测灵敏度,使用锁相放大器对PD输出的信号进行检测。分析了采用光学方法处理毫米波信号时的能量转换效率和噪声特性。使用50GHz毫米波信号源对毫米波信号进行了探测实验,测量了实验系统中的能量转换效率和噪声等效功率,并分析了改进探测灵敏度的方法。设%A millimeter-wave radiometer using electro-optic modulation and photodetection is presented.The millimeter-wave energy collected by the antenna is transferred to the sidebands of the optical carrier by an electro-optic modulator,and then transmitted through the optical fiber.Fiber Bragg grating filters are subsequently used to suppress the optical carrier and a photo-detector is used to detect the energy in the remaining sideband.The output signal of the photo-detector is detected by a lock-in amplifier to improve the sensitivity.The energy conversion efficiency and noise characteristics in the millimeter-wave signal processing are discussed.The millimeter-wave detection experiment based on this technique was implemented using a 50 GHz millimeter-wave source.The conversion efficiency and the noise equivalent power were measured.The methods for improving the sensitivity were proposed.A millimeter-wave radiometric detection system was designed.The detection experimental results show that this millimeter-wave signal processing method is effective for millimeter-wave radiometer.

  16. Radio Capacity Estimation for Millimeter Wave 5G Cellular Networks Using Narrow Beamwidth Antennas at the Base Stations

    Directory of Open Access Journals (Sweden)

    AlMuthanna Turki Nassar

    2015-01-01

    Full Text Available This paper presents radio frequency (RF capacity estimation for millimeter wave (mm-wave based fifth-generation (5G cellular networks using field-level simulations. It is shown that, by reducing antenna beamwidth from 65° to 30°, we can enhance the capacity of mm-wave cellular networks roughly by 3.0 times at a distance of 220 m from the base station (BS. This enhancement is far much higher than the corresponding enhancement of 1.2 times observed for 900 MHz and 2.6 GHz microwave networks at the same distance from the BS. Thus the use of narrow beamwidth transmitting antennas has more pronounced benefits in mm-wave networks. Deployment trials performed on an LTE TDD site operating on 2.6 GHz show that 6-sector site with 27° antenna beamwidth enhances the quality of service (QoS roughly by 40% and more than doubles the overall BS throughput (while enhancing the per sector throughput 1.1 times on average compared to a 3-sector site using 65° antenna beamwidth. This agrees well with our capacity simulations. Since mm-wave 5G networks will use arbitrary number of beams, with beamwidth much less than 30°, the capacity enhancement expected in 5G system when using narrow beamwidth antennas would be much more than three times observed in our simulations.

  17. Multi-Band (K- Q- and E-Band) Multi-Tone Millimeter-Wave Frequency Synthesizer for Radio Wave Propagation Studies

    Science.gov (United States)

    Simons, Rainee N.; Wintucky, Edwin G.

    2014-01-01

    This paper presents the design and test results of a multi-band multi-tone millimeter-wave frequency synthesizer, based on a solid-state frequency comb generator. The intended application of the synthesizer is in a space-borne transmitter for radio wave atmospheric studies at K-band (18 to 26.5 GHz), Q-band (37 to 42 GHz), and E-band (71 to 76 GHz). These studies would enable the design of robust multi-Gbps data rate space-to-ground satellite communication links. Lastly, the architecture for a compact multi-tone beacon transmitter, which includes a high frequency synthesizer, a polarizer, and a conical horn antenna, has been investigated for a notional CubeSat based space-to-ground radio wave propagation experiment.

  18. Measurement and simulation of ionic current as a means of quantifying effects of therapeutic millimeter wave radiation

    Science.gov (United States)

    Slovinsky, William Stanley

    A "millimeter wave" (MMW) is an electromagnetic oscillation with a wavelength between 1 and 10 mm, and a corresponding frequency of 30 to 300 GHz. In the spectrum of electromagnetic radiation, this band falls above the frequencies of radio waves and microwaves, and below that of infrared radiation. Since the 1950s, frequencies in this regime have been used for short range communications and beginning in the 1970s, a form of therapy known as "millimeter wave therapy" (MWT) , or microwave resonance therapy, in some publications. This form of therapy has been widely used in the republics of the former Soviet Union (FSU). As of 1995, it is estimated that more than one thousand medical centers in the FSU have performed MWT and more than three million patients have received this method of treatment. Despite the abundant use of this form of medicine, very little is known about the mechanisms by which it works. Early accounts of use are limited to Soviet government documents, largely unavailable to the scientific public, and limited translations and oral accounts from FSU scientists and literature reviews . This anecdotal body of evidence lacks the scrutiny of peer-reviewed journal publications. In order to gain more widespread acceptance in Western medicine, the pathway through which this regime of the electromagnetic radiation spectrum affects the human body must be rigorously mapped and quantified. Despite the anecdotal nature of a large portion of the existing research on biological MMW effects, a common link is the idea of an interaction occurring at the skin level, which is transduced into a signal used at a remote location in the body. This study explores a possible mechanism for the generation of this signal. The effects of therapeutic frequency MMW on the ionic currents through two different types of ion transport channels were studied, and the results are discussed with emphasis on how they relate to possible changes in nerve signals used by the body for

  19. Millimeter-Wave Broadband Anti-Reflection Coatings Using Laser Ablation of Sub-Wavelength Structures

    CERN Document Server

    Matsumura, Tomotake; Wen, Qi; Hanany, Shaul; Koch, Jürgen; Suttman, Oliver; Schütz, Viktor

    2016-01-01

    We report on the first use of laser ablation to make sub-millimeter, broad-band, anti-reflection coatings (ARC) based on sub-wavelength structures (SWS) on alumina and sapphire. We used a 515 nm laser to produce pyramid-shaped structures with pitch of about 320 \\mu m and total height of near 800 \\mu m. Transmission measurements between 70 and 140 GHz are in agreement with simulations using electromagnetic propagation software. The simulations indicate that SWS ARC with the fabricated shape should have a fractional bandwidth response of $\\Delta \

  20. Recent developments in Fresnel zone plate antennas at microwave/millimeter wave

    Science.gov (United States)

    Wiltse, James C.

    1998-10-01

    The Fresnel zone plate antenna is an example of an optical analogy that has been transferred to microwave/millimeter wavelength use. The latter case has seen extensive research and application, and in the past dozen years more than seventy relevant papers have been published on a worldwide basis. These studies have dealt with either lens or reflector designs, and have quantified many parameters, such as gain, antenna patterns, efficiency, bandwidth, and structural options. The most recent designs have dealt with high efficiency or dual band configurations. This report will summarize the many advances of the past few years, and will provide some parametric design tradeoffs.

  1. Properties of the Coherent Radiation Emitted from Photonic Crystal in the Millimeter Wave Region III(III. Accelerator, Synchrotron Radiation, and Instrumentation)

    OpenAIRE

    2006-01-01

    Coherent radiation emitted from a Photonic crystal of a cylindrical tube of Teflon with periodic grooves is observed in the millimeter wave region. The observed spectra show a sharp peak at frequency of 4.625cm^. The inter-bunch coherence of the radiation is confirmed with an interferometer.

  2. Proceedings SPIE: Conference Digest, International Conference on Infrared and Millimeter Waves (18th) Held in Colchester, United Kingdom on 6-10 September 1993. Volume 2104

    Science.gov (United States)

    1993-09-10

    of output electron emey and axial velocity on Output power 150 kW the root mama electron oyclotmon frequency to accelerator Efficiency 32% ftequeny...the malignant tumors was discussed. 380 W4. 3 DRO-Autodyne Spectrometer for Investigation of Interaction of Millimeter Electromagnetic Waves with

  3. Quadruple-frequency millimeter-wave generation using second-order rational harmonic mode-locking technique

    Institute of Scientific and Technical Information of China (English)

    Fei Huang; Xue Feng; Xiaoming Liu

    2008-01-01

    A novel method for generating quadruple-frequency millimeter-wave (MMW) by using an actively mode- locked fiber ring laser is proposed and demonstrated. In this approach, the optical Mach-Zehnder intensity modulator (MZM) is biased to suppress the odd-order optical sidebands, the fiber laser operates in the second-order rational harmonic mode, and a fiber Bragg grating (FBG) notch filter is used to block the optical carrier. When the MZM is driven by a fixed radio-frequency (RF) source of 10 GHz, a stable MMW signal of 40 GHz with the phase noise better than -76 dBc/Hz at 1-kHz offset is generated.

  4. Measurements of Antenna Surface for a Millimeter-Wave Space Radio Telescope II; Metal Mesh Surface for Large Deployable Reflector

    CERN Document Server

    Kamegai, Kazuhisa

    2012-01-01

    Large deployable antennas with a mesh surface woven by fine metal wires are an important technology for communications satellites and space radio telescopes. However, it is difficult to make metal mesh surfaces with sufficient radio-frequency (RF) performance for frequencies higher than millimeter waves. In this paper, we present the RF performance of metal mesh surfaces at 43 GHz. For this purpose, we developed an apparatus to measure the reflection coefficient, transmission coefficient, and radiative coefficient of the mesh surface. The reflection coefficient increases as a function of metal mesh surface tension, whereas the radiative coefficient decreases. The anisotropic aspects of the reflection coefficient and the radiative coefficient are also clearly seen. They depend on the front and back sides of the metal mesh surface and the rotation angle. The transmission coefficient was measured to be almost constant. The measured radiative coefficients and transmission coefficients would cause significant degr...

  5. Upgraded millimeter-wave interferometer for measuring the electron density during the beam extraction in the negative ion source

    Science.gov (United States)

    Tokuzawa, T.; Kisaki, M.; Nagaoka, K.; Tsumori, K.; Ito, Y.; Ikeda, K.; Nakano, H.; Osakabe, M.; Takeiri, Y.; Kaneko, O.

    2016-11-01

    The upgraded millimeter-wave interferometer with the frequency of 70 GHz is installed on a large-scaled negative ion source. Measurable line-averaged electron density is from 2 × 1015 to 3 × 1018 m-3 in front of the plasma grid. Several improvements such as the change to shorter wavelength probing with low noise, the installation of special ordered horn antenna, the signal modulation for a high accuracy digital phase detection, the insertion of insulator, and so on, are carried out for the measurement during the beam extraction by applying high voltage. The line-averaged electron density is successfully measured and it is found that it increases linearly with the arc power and drops suddenly at the beam extraction.

  6. Millimeter-Wave Microstrip Antenna Array Design and an Adaptive Algorithm for Future 5G Wireless Communication Systems

    Directory of Open Access Journals (Sweden)

    Cheng-Nan Hu

    2016-01-01

    Full Text Available This paper presents a high gain millimeter-wave (mmW low-temperature cofired ceramic (LTCC microstrip antenna array with a compact, simple, and low-profile structure. Incorporating minimum mean square error (MMSE adaptive algorithms with the proposed 64-element microstrip antenna array, the numerical investigation reveals substantial improvements in interference reduction. A prototype is presented with a simple design for mass production. As an experiment, HFSS was used to simulate an antenna with a width of 1 mm and a length of 1.23 mm, resonating at 38 GHz. Two identical mmW LTCC microstrip antenna arrays were built for measurement, and the center element was excited. The results demonstrated a return loss better than 15 dB and a peak gain higher than 6.5 dBi at frequencies of interest, which verified the feasibility of the design concept.

  7. Millimeter Wave Antenna with Mounted Horn Integrated on FR4 for 60 GHz Gbps Communication Systems

    Directory of Open Access Journals (Sweden)

    Waleed Tariq Sethi

    2013-01-01

    Full Text Available A compact high gain and wideband millimeter wave (MMW antenna for 60 GHz communication systems is presented. The proposed antenna consists of a multilayer structure with an aperture coupled microstrip patch and a surface mounted horn integrated on FR4 substrate. The proposed antenna contributes impedance bandwidth of 8.3% (57.4–62.4 GHz. The overall antenna gain and directivity are about 11.65 dBi and 12.51 dBi, which make it suitable for MMW applications and short-range communications. The proposed antenna occupies an area of 7.14 mm × 7.14 mm × 4 mm. The estimated efficiency is 82%. The proposed antenna finds application in V-band communication systems.

  8. Millimeter Wave and Terahertz Spectra and Global Fit of Torsion-Rotation Transitions in the Ground, First and Second Excited Torsional States of 13CH3OH Methanol

    CERN Document Server

    Xua, Li-Hong; Hao, Yun; Mueller, H S P; Endres, C P; Lewen, F; Schlemmer, S; Menten, K M

    2014-01-01

    Methanol is observed in a wide range of astrophysical sources throughout the universe, and comprehensive databases of the millimeter and THz spectra of CH3OH and its principal isotopologues represent important tools for the astronomical community. A previous combined analysis of microwave and millimeter wave spectra of 13CH3OH together with Fourier transform far-infrared spectra was limited to the first two torsional states, v_t = 0 and 1, for J values up to 20. The limits on frequency and quantum number coverage have recently been extended by new millimeter and THz measurements on several different spectrometers in the Cologne laboratory in the frequency windows 34-70 GHz, 75-120 GHz, 240-340 GHz, 360-450 GHz and 1.12-1.50 THz. With the new data, the global treatment has now been expanded to include the first three torsional states for J values up to 30. The current 13CH3OH data set contains about 2,300 microwave, millimeter-wave, sub-millimeter and THz lines and about 17,100 Fourier-transform far-infrared l...

  9. Optically tunable microwave, millimeter-wave and submillimeter-wave utilizing single-mode Fabry-Pérot laser diode subject to optical feedback.

    Science.gov (United States)

    Wu, Jian-Wei; Nakarmi, Bikash; Won, Yong Hyub

    2016-02-01

    In this paper, we use optical feedback injection technique to generate tunable microwave, millimeter-wave and submillimeter-wave signals using single-mode Fabry-Pérot laser diode. The beat frequency of the proposed generator ranges from 30.4 GHz to 3.40 THz. The peak power ratio between two resonating modes at the output spectrum of can be less than 0.5 dB by judiciously selecting feedback wavelength. In the stabilization test, the peak fluctuation of photonic signal is as low as 0.19 dB within half hour. Aside from locking regions, where the laser is easily locked by the injection beam, the side-mode suppression ratio is well over 25 dB with the maximum value of 36.6 dB at 30.4 GHz beat frequency. In addition, the minimum beat frequency interval between two adjacent photonic signals is as low as 10 GHz.

  10. Microcontroller-based binary integrator for millimeter-wave radar experiments.

    Science.gov (United States)

    Eskelinen, Pekka; Ruoskanen, Jukka; Peltonen, Jouni

    2010-05-01

    An easily on-site reconfigurable multiple binary integrator for millimeter radar experiments has been constructed of static random access memories, an eight bit microcontroller, and high speed video operational amplifiers. The design uses a raw comparator path and two adjustable m-out-of-n chains in a wired-OR configuration. Standard high speed memories allow the use of pulse widths below 100 ns. For eight pulse repetition intervals it gives a maximum improvement of 6.6 dB for stationary low-level target echoes. The doubled configuration enhances the capability against fluctuating targets. Because of the raw comparator path, also single return pulses of relatively high amplitude are processed.

  11. Large Metasurface Aperture for Millimeter Wave Computational Imaging at the Human-Scale

    Science.gov (United States)

    Gollub, J. N.; Yurduseven, O.; Trofatter, K. P.; Arnitz, D.; F. Imani, M.; Sleasman, T.; Boyarsky, M.; Rose, A.; Pedross-Engel, A.; Odabasi, H.; Zvolensky, T.; Lipworth, G.; Brady, D.; Marks, D. L.; Reynolds, M. S.; Smith, D. R.

    2017-02-01

    We demonstrate a low-profile holographic imaging system at millimeter wavelengths based on an aperture composed of frequency-diverse metasurfaces. Utilizing measurements of spatially-diverse field patterns, diffraction-limited images of human-sized subjects are reconstructed. The system is driven by a single microwave source swept over a band of frequencies (17.5–26.5 GHz) and switched between a collection of transmit and receive metasurface panels. High fidelity image reconstruction requires a precise model for each field pattern generated by the aperture, as well as the manner in which the field scatters from objects in the scene. This constraint makes scaling of computational imaging systems inherently challenging for electrically large, coherent apertures. To meet the demanding requirements, we introduce computational methods and calibration approaches that enable rapid and accurate imaging performance.

  12. Effective generation of optical quadruple frequency millimeter-wave based on fiber laser using injection rational harmonic mode-locked technique

    Institute of Scientific and Technical Information of China (English)

    Wei Zhang; Xue Feng; Fei Huang; Xiaoming Liu

    2009-01-01

    A method to generate the optical quadruple frequency millimeter-wave with high power efficiency is pro-posed and demonstrated based on the combination of the injection 2nd-order rational harmonic mode-locked fiber ring laser technique and the fiber grating notch filter. In this approach, the fiber Bragg grating notch filter is inserted into the laser cavity to prevent the undesired optical carrier, so that the pump power can be converted to 2nd-order harmonic wave more efficiently. In our experiment, the power efficiency of optical quadruple frequency millimeter-wave (40 GHz) generation is ten folds of that of our previous method based only on the rational harmonic mode-locked technique.

  13. Atmospheric Radiation Measurement Climate Research Facility (ACRF) Annual Report 2007

    Energy Technology Data Exchange (ETDEWEB)

    LR Roeder

    2007-12-01

    This annual report describes the purpose and structure of the program, and presents key accomplishments in 2007. Notable achievements include: • Successful review of the ACRF as a user facility by the DOE Biological and Environmental Research Advisory Committee. The subcommittee reinforced the importance of the scientific impacts of this facility, and its value for the international research community. • Leadership of the Cloud Land Surface Interaction Campaign. This multi-agency, interdisciplinary field campaign involved enhanced surface instrumentation at the ACRF Southern Great Plains site and, in concert with the Cumulus Humilis Aerosol Processing Study sponsored by the DOE Atmospheric Science Program, coordination of nine aircraft through the ARM Aerial Vehicles Program. • Successful deployment of the ARM Mobile Facility in Germany, including hosting nearly a dozen guest instruments and drawing almost 5000 visitors to the site. • Key advancements in the representation of radiative transfer in weather forecast models from the European Centre for Medium-Range Weather Forecasts. • Development of several new enhanced data sets, ranging from best estimate surface radiation measurements from multiple sensors at all ACRF sites to the extension of time-height cloud occurrence profiles to Niamey, Niger, Africa. • Publication of three research papers in a single issue (February 2007) of the Bulletin of the American Meteorological Society.

  14. High power, high efficiency millimeter wavelength traveling wave tubes for high rate communications from deep space

    Science.gov (United States)

    Dayton, James A., Jr.

    1991-01-01

    The high-power transmitters needed for high data rate communications from deep space will require a new class of compact, high efficiency traveling wave tubes (TWT's). Many of the recent TWT developments in the microwave frequency range are generically applicable to mm wave devices, in particular much of the technology of computer aided design, cathodes, and multistage depressed collectors. However, because TWT dimensions scale approximately with wavelength, mm wave devices will be physically much smaller with inherently more stringent fabrication tolerances and sensitivity to thermal dissipation.

  15. MIRO Observations of Millimeter-wave Emission from Large Dust Particles in the Coma of 67P/Churyumov-Gerasimenko

    Science.gov (United States)

    Schloerb, F. Peter; Gulkis, Samuel; Biver, Nicolas; von Allmen, Paul; Beaudin, Gerard; Bockelee-Morvan, Dominique; Choukroun, Mathieu; Crovisier, Jacques; Davidsson, Bjorn; Encrenaz, Pierre; Encrenaz, Therese A.; Frerking, Margaret; Hartogh, Paul; Ip, Wing-Huen; Janssen, Michael A.; Jarchow, Christopher; Kareta, Teddy; Lellouch, Emmanuel; Leyrat, Cedric; Rezac, Ladislav; Spilker, Thomas R.

    2016-10-01

    We present observations of dust emission from comet 67P/Churyumov-Gerasimenko obtained by the Microwave Instrument for the Rosetta Orbiter (MIRO). MIRO is a millimeter-wave instrument with two continuum channels at wavelengths of 0.53 mm and 1.59 mm. The instrument has a 30cm-diameter antenna which provides resolution of about 217m and 690m at the respective wavelengths for a spacecraft-comet distance of 100km. During the months around the August 2015 perihelion of comet 67P, a small continuum emission excess was observed above the sunlit limb of the comet. The excess emission extends many beam widths off the dayside limb and is a persistent feature for months of observations. No excess above the noise limit of the instrument is observed above the nightside limb, and given the known strong day-night asymmetry of gas production from the nucleus, we interpret the observed continuum excess on the day side to result from thermal emission from dust. Typical antenna temperatures of the emission over the day side at a distance of 4 km from the center of the nucleus (approximately 2 km above the surface) are approximately 1K in both the submillimeter-wave (0.53 mm) and millimeter-wave (1.59 mm) channels, corresponding to likely dust column densities of ~0.1 kg m-2. The typical relative brightness of the 0.53 mm emission to the 1.59 mm emission is approximately 1.2. This result is most consistent with particle size distributions which extend up to radii of at least several centimeters and/or flatter particle size distributions than those often attributed to cometary dust. Maps of the emission show that the column density of dust decreases with distance from the nucleus following a power law with b-1.6 - b-2.0, where b is the impact parameter of the beam with respect to the nucleus. Models of dust outflow, in which particles are accelerated by the drag force of the outflowing gas, predict a column density falloff according to b-1.2. We find that to achieve the observed

  16. Low Noise Titanium Nitride KIDs for SuperSpec: A Millimeter-Wave On-Chip Spectrometer

    CERN Document Server

    Hailey-Dunsheath, S; Barry, P S; Bradford, C M; Chapman, S; Che, G; Glenn, J; Hollister, M; Kovács, A; LeDuc, H G; Mauskopf, P; McKenney, C; O'Brient, R; Padin, S; Reck, T; Shiu, C; Tucker, C E; Wheeler, J; Williamson, R; Zmuidzinas, J

    2015-01-01

    SuperSpec is a novel on-chip spectrometer we are developing for multi-object, moderate resolution (R = 100 - 500), large bandwidth (~1.65:1) submillimeter and millimeter survey spectroscopy of high-redshift galaxies. The spectrometer employs a filter bank architecture, and consists of a series of half-wave resonators formed by lithographically-patterned superconducting transmission lines. The signal power admitted by each resonator is detected by a lumped element titanium nitride (TiN) kinetic inductance detector (KID) operating at 100 - 200 MHz. We have tested a new prototype device that achieves the targeted R = 100 resolving power, and has better detector sensitivity and optical efficiency than previous devices. We employ a new method for measuring photon noise using both coherent and thermal sources of radiation to cleanly separate the contributions of shot and wave noise. We report an upper limit to the detector NEP of $1.4\\times10^{-17}$ W Hz$^{-1/2}$, within 10% of the photon noise limited NEP for a gr...

  17. Concentric Parallel Combining Balun for Millimeter-Wave Power Amplifier in Low-Power CMOS with High-Power Density

    Science.gov (United States)

    Han, Jiang-An; Kong, Zhi-Hui; Ma, Kaixue; Yeo, Kiat Seng; Lim, Wei Meng

    2016-11-01

    This paper presents a novel balun for a millimeter-wave power amplifier (PA) design to achieve high-power density in a 65-nm low-power (LP) CMOS process. By using a concentric winding technique, the proposed parallel combining balun with compact size accomplishes power combining and unbalance-balance conversion concurrently. For calculating its power combination efficiency in the condition of various amplitude and phase wave components, a method basing on S-parameters is derived. Based on the proposed parallel combining balun, a fabricated 60-GHz industrial, scientific, and medical (ISM) band PA with single-ended I/O achieves an 18.9-dB gain and an 8.8-dBm output power at 1-dB compression and 14.3-dBm saturated output power ( P sat) at 62 GHz. This PA occupying only a 0.10-mm2 core area has demonstrated a high-power density of 269.15 mW/mm2 in 65 nm LP CMOS.

  18. Application of the planar-scanning technique to the near-field dosimetry of millimeter-wave radiators.

    Science.gov (United States)

    Zhao, Jianxun; Lu, Hongmin; Deng, Jun

    2015-02-01

    The planar-scanning technique was applied to the experimental measurement of the electric field and power flux density (PFD) in the exposure area close to the millimeter-wave (MMW) radiator. In the near-field region, the field and PFD were calculated from the plane-wave spectrum of the field sampled on a scan plane far from the radiator. The measurement resolution was improved by reducing the spatial interval between the field samples to a fraction of half the wavelength and implementing multiple iterations of the fast Fourier transform. With the reference to the results from the numerical calculation, an experimental evaluation of the planar-scanning measurement was made for a 50 GHz radiator. Placing the probe 1 to 3 wavelengths from the aperture of the radiator, the direct measurement gave the near-field data with significant differences from the numerical results. The planar-scanning measurement placed the probe 9 wavelengths away from the aperture and effectively reduced the maximum and averaged differences in the near-field data by 70.6% and 65.5%, respectively. Applied to the dosimetry of an open-ended waveguide and a choke ring antenna for 60 GHz exposure, the technique proved useful to the measurement of the PFD in the near-field exposure area of MMW radiators.

  19. Distortion of millimeter-wave absorption in biological media due to presence of thermocouples and other objects.

    Science.gov (United States)

    Alekseev, S I; Ziskin, M C

    2001-09-01

    Specific absorption rate (SAR) distributions in the vicinity of a thermocouple or air bubble in water and in the presence of hair or sweat duct in skin were calculated using analytical and two-dimensional impedance methods. The objects were exposed to uniform 42.25 GHz plane electromagnetic fields. Insertion of a 0.1-mm thermocouple or similarly sized air bubble into water produced a strong localized disturbance of the otherwise uniform SAR distribution. However, the average of SAR values immediately surrounding the thermocouple was close to the undisturbed uniform average SAR. This allows measuring the average SAR during exposure of both unbounded and bounded media using calibrated small thermocouples (up to 0.1 mm). The SAR distribution in the vicinity of a hair was qualitatively similar to that produced by an air bubble. The maximal value of SAR was more than three times higher than the overall average SAR value in the skin. Sweat ducts produced a smaller disturbance of the millimeter-wave (mm-wave) field.

  20. WSPEC: A Waveguide Filter-Bank Focal Plane Array Spectrometer for Millimeter Wave Astronomy and Cosmology

    Science.gov (United States)

    Bryan, Sean; Aguirre, James; Che, George; Doyle, Simon; Flanigan, Daniel; Groppi, Christopher; Johnson, Bradley; Jones, Glenn; Mauskopf, Philip; McCarrick, Heather; Monfardini, Alessandro; Mroczkowski, Tony

    2016-07-01

    Imaging and spectroscopy at (sub-)millimeter wavelengths are key frontiers in astronomy and cosmology. Large area spectral surveys with moderate spectral resolution (R=50-200) will be used to characterize large-scale structure and star formation through intensity mapping surveys in emission lines such as the CO rotational transitions. Such surveys will also be used to study the the Sunyaev Zeldovich (SZ) effect, and will detect the emission lines and continuum spectrum of individual objects. WSPEC is an instrument proposed to target these science goals. It is a channelizing spectrometer realized in rectangular waveguide, fabricated using conventional high-precision metal machining. Each spectrometer is coupled to free space with a machined feed horn, and the devices are tiled into a 2D array to fill the focal plane of the telescope. The detectors will be aluminum lumped-element kinetic inductance detectors (LEKIDs). To target the CO lines and SZ effect, we will have bands at 135-175 and 190-250 GHz, each Nyquist-sampled at R≈ 200 resolution. Here, we discuss the instrument concept and design, and successful initial testing of a WR10 (i.e., 90 GHz) prototype spectrometer. We recently tested a WR5 (180 GHz) prototype to verify that the concept works at higher frequencies, and also designed a resonant backshort structure that may further increase the optical efficiency. We are making progress towards integrating a spectrometer with a LEKID array and deploying a prototype device to a telescope for first light.

  1. Characterization of the Millimeter-Wave Polarization of Centaurus A with QUaD

    CERN Document Server

    Ade, P; Bowden, M; Brown, M L; Cahill, G; Castro, P G; Church, S; Culverhouse, T; Friedman, R B; Ganga, K; Gear, W K; Gupta, S; Hinderks, J; Kovac, J; Lange, A E; Leitch, E; Melhuish, S J; Memari, Y; Murphy, J A; Orlando, A; O'Sullivan, C; Piccirillo, L; Pryke, C; Rajguru, N; Rusholme, B; Schwarz, R; Taylor, A N; Thompson, K L; Turner, A H; Wu, E Y S

    2009-01-01

    Centaurus (Cen) A represents one of the best candidates for an isolated, compact, highly polarized source that is bright at typical cosmic microwave background (CMB) experiment frequencies. We present measurements of the 4 degree by 2 degree region centered on Cen A with QUaD, a CMB polarimeter whose absolute polarization angle is known to 0.5 degrees. Simulations are performed to assess the effect of misestimation of the instrumental parameters on the final measurement, and systematic errors due to the field's background structure and temporal variability from Cen A's nuclear region are determined. The total (Q, U) of the inner lobe region is (1.00 +/- 0.07 (stat.) +/- 0.04 (sys.), -1.72 +/- 0.06 +/- 0.05) Jy at 100 GHz and (0.80 +/- 0.06 +/- 0.06, -1.40 +/- 0.07 +/- 0.08) Jy at 150 GHz, leading to polarization angles and total errors of -30.0 +/- 1.1 degrees and -29.1 +/- 1.7 degrees. These measurements will allow the use of Cen A as a polarized calibration source for future millimeter experiments.

  2. WSPEC: A waveguide filter-bank focal plane array spectrometer for millimeter wave astronomy and cosmology

    CERN Document Server

    Bryan, Sean; Che, George; Doyle, Simon; Flanigan, Daniel; Groppi, Christopher; Johnson, Bradley; Jones, Glenn; Mauskopf, Philip; McCarrick, Heather; Monfardini, Alessandro; Mroczkowski, Tony

    2015-01-01

    Imaging and spectroscopy at (sub-)millimeter wavelengths are key frontiers in astronomy and cosmology. Large area spectral surveys with moderate spectral resolution (R=50-200) will be used to characterize large scale structure and star formation through intensity mapping surveys in emission lines such as the CO rotational transitions. Such surveys will also be used to study the SZ effect, and will detect the emission lines and continuum spectrum of individual objects. WSPEC is an instrument proposed to target these science goals. It is a channelizing spectrometer realized in rectangular waveguide, fabricated using conventional high-precision metal machining. Each spectrometer is coupled to free space with a machined feed horn, and the devices are tiled into a 2D array to fill the focal plane of the telescope. The detectors will be aluminum Lumped-Element Kinetic Inductance Detectors (LEKIDs). To target the CO lines and SZ effect, we will have bands at 135-175 GHz and 190-250 GHz, each Nyquist-sampled at R~200...

  3. Integrated Electron-tunneling Refrigerator and TES Bolometer for Millimeter Wave Astronomy

    Science.gov (United States)

    Silverberg, R. F.; Benford, D. J.; Chen, T. C.; Chervenak, J.; Finkbeiner, F.; Moseley, S. H.; Duncan, W.; Miller, N.; Schmidt, D.; Ullom, J.

    2005-01-01

    We describe progress in the development of a close-packed array of bolometers intended for use in photometric applications at millimeter wavelengths from ground- based telescopes. Each bolometer in the may uses a proximity-effect Transition Edge Sensor (TES) sensing element and each will have integrated Normal-Insulator-Superconductor (NIS) refrigerators to cool the bolometer below the ambient bath temperature. The NIS refrigerators and acoustic-phonon-mode-isolated bolometers are fabricated on silicon. The radiation-absorbing element is mechanically suspended by four legs, whose dimensions are used to control and optimize the thermal conductance of the bolometer. Using the technology developed at NIST, we fabricate NIS refrigerators at the base of each of the suspension legs. The NIS refrigerators remove hot electrons by quantum-mechanical tunneling and are expected to cool the biased (approx.10 pW) bolometers to <170 mK while the bolometers are inside a pumped 3He-cooled cryostat operating at approx.280 mK. This significantly lower temperature at the bolometer allows the detectors to approach background-limited performance despite the simple cryogenic system.

  4. Wide-Band Airborne Microwave and Millimeter-Wave Radiometers to Provide High-Resolution Wet-Tropospheric Path Delay Corrections for Coastal and Inland Water Altimetry

    Science.gov (United States)

    Reising, Steven C.; Kangaslahti, Pekka; Brown, Shannon T.; Tanner, Alan B.; Padmanabhan, Sharmila; Parashare, Chaitali; Montes, Oliver; Dawson, Douglas E.; Gaier, Todd C.; Khayatian, Behrouz; Bosch-Lluis, Xavier; Nelson, Scott P.; Johnson, Thaddeus; Hadel, Victoria; Gilliam, Kyle L.; Razavi, Behzad

    2013-04-01

    Current satellite ocean altimeters include nadir-viewing, co-located 18-34 GHz microwave radiometers to measure wet-tropospheric path delay. Due to the area of the surface instantaneous fields of view (IFOV) at these frequencies, the accuracy of wet path retrievals is substantially degraded near coastlines, and retrievals are not provided over land. Retrievals are flagged as not useful about 40 km from the world's coastlines. A viable approach to improve their capability is to add wide-band millimeter-wave window channels at 90 to 170 GHz, yielding finer spatial resolution for a fixed antenna size. In addition, NASA's Surface Water and Ocean Topography (SWOT) mission in formulation (Phase A) is planned for launch in late 2020. The primary objectives of SWOT are to characterize ocean sub-mesoscale processes on 10-km and larger scales in the global oceans, and to measure the global water storage in inland surface water bodies and the flow rate of rivers. Therefore, an important new science objective of SWOT is to transition satellite radar altimetry into the coastal zone. The addition of millimeter-wave channels near 90, 130 and 166 GHz to current Jason-class radiometers is expected to improve retrievals of wet-tropospheric delay in coastal areas and to enhance the potential for over-land retrievals. The Ocean Surface Topography Science Team Meeting recommended in 2012 to add these millimeter-wave channels to the Jason Continuity of Service (CS) mission. To reduce the risks associated with wet-tropospheric path delay correction over coastal areas and fresh water bodies, we are developing an airborne radiometer with 18.7, 23.8 and 34.0 GHz microwave channels, as well as millimeter-wave window channels at 90, 130 and 166 GHz, and temperature sounding above 118 as well as water vapor sounding below 183 GHz for validation of wet-path delay. For nadir-viewing space-borne radiometers with no moving parts, two-point internal calibration sources are necessary, and the

  5. First On-Wafer Power Characterization of MMIC Amplifiers at Sub-Millimeter Wave Frequencies

    Science.gov (United States)

    Fung, A. K.; Gaier, T.; Samoska, L.; Deal, W. R.; Radisic, V.; Mei, X. B.; Yoshida, W.; Liu, P. S.; Uyeda, J.; Barsky, M.; Lai, R.

    2008-01-01

    Recent developments in semiconductor technology have enabled advanced submillimeter wave (300 GHz) transistors and circuits. These new high speed components have required new test methods to be developed for characterizing performance, and to provide data for device modeling to improve designs. Current efforts in progressing high frequency testing have resulted in on-wafer-parameter measurements up to approximately 340 GHz and swept frequency vector network analyzer waveguide measurements to 508 GHz. On-wafer noise figure measurements in the 270-340 GHz band have been demonstrated. In this letter we report on on-wafer power measurements at 330 GHz of a three stage amplifier that resulted in a maximum measured output power of 1.78mW and maximum gain of 7.1 dB. The method utilized demonstrates the extension of traditional power measurement techniques to submillimeter wave frequencies, and is suitable for automated testing without packaging for production screening of submillimeter wave circuits.

  6. Comparison between two ground-based millimeter wave radiometers at IRF Kiruna and Aura/MLS for the winter/spring season 2013

    Science.gov (United States)

    Raffalski, Uwe; Ryan, Niall J.; Walker, Kaley A.; Gross, Jochen

    2016-04-01

    The Swedish Institute of Space Physics in Kiruna (67.8N/20.4E) operates two millimeter wave radiometers for atmospheric remote sensing of strato-mesospheric ozone, the Swedish KIruna Millimeter wave RAdiometer and, since November 2012, the German MIllimeter wave RAdiometer 2, installed by the Karlsruhe Institute of Technology, KIT. In this study we compare ozone measurements by KIMRA and MIRA2 at 230 GHz and 273 GHz, respectively. Additionally data from Aura/MLS (Microwave Limb Sounder) is used to compare the ground-based data set with the satellite data. The ozone concentration profiles are retrieved using an optimal estimation inversion technique, covering an altitude range of ~16 - 56 km, with an altitude resolution of, at best, 8 km. From this comparison it can be seen that KIMRA has a rather strong +/- 1ppmv bias in the altitude range of ~20-35 km, most likely due to standing wave features. However, both data sets compare quite well with the Aura/MLS data. This shows that even in the future ground-based remote sensing radiometry is a powerful tool for longterm ozone monitoring covering several solar cycles over many decades.

  7. A Survey on Small Size Diodes For Microwave And Millimeter Wave Frequency Region

    Directory of Open Access Journals (Sweden)

    Rahul Ranjan, Prashant Kumar, Neha Singh

    2014-06-01

    Full Text Available This paper attempts to present a collection of microwave and millimetre wave semiconductor diodes. These semiconductor diodes are operates at microwave frequencies and millimetre frequencies. The invention of these semiconductor diodes led to almost complete replacement of vacuum devices which are bulky and large in size. Because of small size a large number of diodes can integrate on a single chip and this arrangement forms very large-scale integrated circuits which led to solid-state replacement on computer switching circuits. This paper surveys characteristics, applications, advantages and disadvantages of microwave and millimetre wave semiconductor devices.

  8. 毫米波微带天线阵列设计%Design of a millimeter wave microstrip antenna array

    Institute of Scientific and Technical Information of China (English)

    于慧娟

    2016-01-01

    A circular aperture millimeter wave series and parallel fed microstrip antenna array was proposed. The antenna was designed with rectangular microstrip patch which was fed by slot-coupled to increase the bandwidth. A series-fed microstrip antenna array was selected in order to use the antenna aperture area effectively and decrease the net complexity. At the same time, according to design of the circular aperture millimeter wave micro-strip antenna array, the part array was series and parallel fed to increase the bandwidth of the microstrip antenna. Results show that the bandwidth of the antenna is about 5%. The simulation result of the antenna’s gain is better than 30.6 dBi in working band. The beam width is about 4.0°×3.5° and the side lobe level is lower than –13 dB. Multi beam and phased array functions can be realized with the antenna array and the net.%设计了一个圆口径串并联混合馈电的毫米波微带天线阵列。该天线采用矩形微带工字型缝隙贴片耦合馈电的方法展宽带宽。为了有效利用天线口径面积,减小网络复杂度,选取串联微带天线阵列形式。同时为了展宽带宽,根据设计的圆形口径阵列,将部分子阵采用串并联混合馈电的形式,得到带宽为5%的毫米波微带天线阵列。仿真表明,该天线在工作频带内增益大于30.6 dBi,波束宽度为4.0°×3.5°,副瓣电平低于–13 dB。该天线阵面与网络配合,可以实现多波束或相控阵的功能。

  9. Real-Time Detection and Tracking of Vital Signs with an Ambulatory Subject Using Millimeter-Wave Interferometry

    Science.gov (United States)

    Mikhelson, Ilya V.

    Finding a subject's heart rate from a distance without any contact is a difficult and very practical problem. This kind of technology would allow more comfortable patient monitoring in hospitals or in home settings. It would also allow another level of security screening, as a person's heart rate increases in stressful situations, such as when lying or hiding malicious intent. In addition, the fact that the heart rate is obtained remotely means that the subject would not have to know he/she is being monitored at all, adding to the efficacy of the measurement. Using millimeter-wave interferometry, a signal can be obtained that contains composite chest wall motion made up of component motions due to cardiac activity, respiration, and interference. To be of use, these components have to be separated from each other by signal processing. To do this, the quadrature and in-phase components of the received signal are analyzed to get a displacement waveform. After that, processing can be done on that waveform in either the time or frequency domains to find the individual heartbeats. The first method is to find the power spectrum of the displacement waveform and to look for peaks corresponding to heartbeats and respiration. Another approach is to examine the signal in the time domain using wavelets for multiresolution analysis. One more method involves studying the statistics of the wavelet-processed signal. The final method uses a heartbeat model along with probabilistic processing to find heartbeats. For any of the above methods to work, the millimeter-wave sensor has to be accurately pointed at the subject's chest. However, even small subject motions can render the rest of the gathered data useless as the antenna may have lost its aim. To combat this, a color and a depth camera are used with a servo-pan/tilt base. My program finds a face in the image and subsequently tracks that face through upcoming frames. The pan/tilt base adjusts the aim of the antenna depending on

  10. Requirements for Bend Insensitive Fiber in Millimeter-Wave Fronthaul Systems

    DEFF Research Database (Denmark)

    Rommel, Simon; Cavalcante, Lucas Costa Pereira; Vegas Olmos, Juan José;

    2015-01-01

    The impact of fiber bending on mm-wave radioover-fiber transmission is investigated and the need for bend insensitive fiber for front-haul installation confirmed. A 70m Wband hybrid photonic-wireless link including bend insensitive fiber is demonstrated with BER

  11. Development of Signal Processing Algorithms for High Resolution Airborne Millimeter Wave FMCW SAR

    NARCIS (Netherlands)

    Meta, A.; Hoogeboom, P.

    2005-01-01

    For airborne earth observation applications, there is a special interest in lightweight, cost effective, imaging sensors of high resolution. The combination of Frequency Modulated Continuous Wave (FMCW) technology and Synthetic Aperture Radar (SAR) techniques can lead to such a sensor. In this paper

  12. The DTU-ESA Millimeter-Wave Validation Standard Antenna – Manufacturing and Testing

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.; Pivnenko, Sergey; Breinbjerg, Olav;

    2015-01-01

    A new precision tool for antenna test range qualification and inter-comparisons at mm-waves – the mm-VAST antenna – is under development at the Technical University of Denmark (DTU) in collaboration with TICRA under a European Space Agency (ESA) contract. The DTU-ESA mm-VAST antenna will facilitate...

  13. Design, fabrication and characterization of In 0.23Ga 0.77As-channel planar Gunn diodes for millimeter wave applications

    Science.gov (United States)

    Li, Chong; Khalid, Ata; Paluchowski Caldwell, Sonia H.; Holland, Martin C.; Dunn, Geoff M.; Thayne, Iain G.; Cumming, David R. S.

    2011-10-01

    We present detailed design, fabrication and characterization of In 0.23Ga 0.77As-based planar Gunn diodes in this paper. The devices have AlGaAs/InGaAs/AlGaAs heterojunctions that were grown on a semi-insulating GaAs wafer using molecular beam epitaxy technology. Electron beam lithography was used to define anode and cathode terminal patterns. Devices with various anode-cathode separations (e.g. 4-1.4 μm) were fabricated on the same chip. Spectrum measurements showed oscillation frequencies between 36 GHz and 118 GHz in the fundamental transit-time mode of operation. These devices show great potential as millimeter wave and sub-millimeter wave signal sources for their small size, MMIC compatibility and lithographically controlled oscillation frequencies.

  14. Millimeter Wave Spectrum of the Weakly Bound Complex CH2═CHCN·H2O: Structure, Dynamics, and Implications for Astronomical Search.

    Science.gov (United States)

    Calabrese, Camilla; Vigorito, Annalisa; Maris, Assimo; Mariotti, Sergio; Fathi, Pantea; Geppert, Wolf D; Melandri, Sonia

    2015-12-03

    The weakly bound 1:1 complex between acrylonitrile (CH2═CHCN) and water has been characterized spectroscopically in the millimeter wave range (59.6-74.4 GHz) using a Free Jet Absorption Millimeter Wave spectrometer. Precise values of the rotational and quartic centrifugal distortion constants have been obtained from the measured frequencies of the normal and isotopically substituted water moiety (DOH, DOD, H(18)OH). Structural parameters have been estimated from the rotational constants and their differences among isotopologues: the complex has a planar structure with the two subunits held together by a O-H···N (2.331(3) Å) and a C-H···O (2.508(4) Å) interaction. The ab initio intermolecular binding energy, obtained at the counterpoise corrected MP2/aug-cc-pVTZ level of calculation, is De = 24.4 kJ mol(-1).

  15. Adaptive photonic-assisted M²-QAM millimeter-wave synthesis in multi-antenna radio-over-fiber system using M-ASK modulation.

    Science.gov (United States)

    Zhang, Qi; Yu, Jianjun; Li, Xinying; Xin, Xiangjun

    2014-11-01

    A novel method for generating an adaptive photonic-assisted M2-quadrature amplitude modulation (M2-QAM) millimeter-wave signal in a multiantenna radio-over-fiber system using M-ray amplitude-shift keying (M-ASK) modulation is proposed and experimentally demonstrated. It takes full advantage of high-density small cells without introducing additional complexity into remote antenna units (RAUs) or mobile users. The 4, 8, and 12 Gb/s 4QAM millimeter-wave signals are obtained from two independent 2, 4, and 6 Gb/s on-off-keying 40 GHz channels, respectively. The experimental results show that a double bit rate can be received without additional digital signal processing in RAUs and mobile users. The results, including the constellation diagrams and bit error rate, show that the transmitted signals are received successfully.

  16. A Millimeter-Wave Cavity-Backed Suspended Substrate Stripline Antenna

    Science.gov (United States)

    Simons, Rainee N.

    1999-01-01

    Future generation satellite communication systems in near-Earth orbit will operate at frequencies in the higher mm-wave frequency bands. These satellite systems require low-profile, high gain, light weight and low cost antennas for communications to and from Earth as well as for inter-satellite links (ISL). At higher mm-wave frequencies, the conductor loss of conventional microstrip line is high and consequently the feed network loss of patch antenna arrays is also high. The high loss lowers the array efficiency, and in addition lowers the G/T ratio in a receiving array. Recently a radial line slot antenna array has been demonstrated to have high gain and efficiency at 60 GHz. In this paper, the design, fabrication and characterization of a V-Band (50-75 GHz), cavity backed, circular aperture antenna with suspended substrate stripline (SSS) feed is presented.

  17. Millimeter-wave spectroscopy of syn formyl azide (HC(O)N3) in seven vibrational states

    Science.gov (United States)

    Walters, Nicholas A.; Amberger, Brent K.; Esselman, Brian J.; Woods, R. Claude; McMahon, Robert J.

    2017-01-01

    Millimeter-wave spectra for formyl azide (HC(O)N3) were obtained from 240 to 360 GHz at ambient temperature. For the ground state of syn formyl azide, over 1500 independent rotational transitions were measured and least-squares fit to a complete S-reduced 8th order centrifugal distortion/rigid rotor Hamiltonian. The decomposition of formyl azide was monitored over a period of several hours, the half-life (t½ = 30 min) was determined, and its decomposition products were investigated. Transitions from five vibrational satellites of syn formyl azide (ν9, ν12, 2ν9, ν9 + ν12, and ν11) were observed, measured, and least-squares fit to complete or nearly complete octic centrifugally-distorted, single-state S-reduced models. A less complete single-state fit of 3ν9 (509.3 cm-1) was obtained from an unperturbed subset of its assignable transitions. This state is apparently coupled to the fundamental ν8 (489.4 cm-1) and the overtone 2ν12 (503.6 cm-1), but the coupling remains unanalyzed. Anharmonic CCSD(T)/ANO1 estimates of the vibrational frequencies of syn formyl azide were in close agreement with previously published experimental and computational values. Experimentally determined vibration-rotation interaction (αi) values were in excellent agreement with coupled-cluster predicted αi values for the fundamentals ν9, ν12, and ν11.

  18. Constraints on the High-l Power Spectrum of Millimeter-wave Anisotropies from APEX-SZ

    CERN Document Server

    Reichardt, C L; Ade, P A R; Basu, K; Bender, A N; Bertoldi, F; Cho, H -M; Chon, G; Dobbs, M; Ferrusca, D; Halverson, N W; Holzapfel, W L; Horellou, C; Johansson, D; Johnson, B R; Kennedy, J; Kneissl, R; Lanting, T; Lee, A T; Lueker, M; Mehl, J; Menten, K M; Nord, M; Pacaud, F; Richards, P L; Schaaf, R; Schwan, D; Spieler, H; Weiss, A; Westbrook, B

    2009-01-01

    We present measurements of the angular power spectrum of millimeter wave anisotropies with the APEX-SZ instrument. APEX-SZ has mapped 0.8 square degrees of sky at a frequency of 150 GHz with an angular resolution of 1'. These new measurements significantly improve the power constraints at 150 GHz over the range of angular multipoles 3000 < l < 10,000, limiting the total astronomical anisotropy in a flat band power to be less than 105 microK^2 at 95% CL. We expect both submillimeter-bright, dusty galaxies and secondary CMB anisotropies from the Sunyaev-Zel'dovich effect (SZE) to significantly contribute to the observed power. Subtracting the SZE power spectrum expected for sigma_8=0.8 and masking bright sources, the best fit value for the remaining power is C_l = 1.1^{+0.9}_{-0.8} x 10^{-5} micro K^2 (1.7^{+1.4}_{-1.3} Jy^2 sr^{-1}). This agrees well with model predictions for power due to submillimeter-bright, dusty galaxies. Simultaneously fitting for the amplitude of the SZE power spectrum and a Poiss...

  19. The millimeter wave spectrum of methyl cyanate: a laboratory study and astronomical search in space ⋆,⋆⋆

    Science.gov (United States)

    Kolesniková, L.; Alonso, J. L.; Bermúdez, C.; Alonso, E. R.; Tercero, B.; Cernicharo, J.; Guillemin, J.-C.

    2016-01-01

    Aims The recent discovery of methyl isocyanate (CH3NCO) in Sgr B2(N) and Orion KL makes methyl cyanate (CH3OCN) a potential molecule in the interstellar medium. The aim of this work is to fulfill the first requirement for its unequivocal identification in space, i.e. the availability of transition frequencies with high accuracy. Methods The room-temperature rotational spectrum of methyl cyanate was recorded in the millimeter wave domain from 130 to 350 GHz. All rotational transitions revealed A-E splitting owing to methyl internal rotation and were globally analyzed using the ERHAM program. Results The data set for the ground torsional state of methyl cyanate exceeds 700 transitions within J″ = 10 – 35 and Ka″=0−13 and newly derived spectroscopic constants reproduce the spectrum close to the experimental uncertainty. Spectral features of methyl cyanate were then searched for in Orion KL, Sgr B2(N), B1-b, and TMC-1 molecular clouds. Upper limits to the column density of methyl cyanate are provided. PMID:27721514

  20. Diamond Based DDR IMPATTs: Prospects and Potentiality as Millimeter-Wave Source at 94 GHz Atmospheric Window

    Directory of Open Access Journals (Sweden)

    A. Acharyya

    2013-06-01

    Full Text Available Large-signal simulation is carried out in this paper to investigate the prospects and potentiality of Double-Drift Region (DDR Impact Avalanche Transit Time (IMPATT device based on semiconducting type-IIb diamond as millimeter-wave source operating at 94 GHz atmospheric window frequency. Large-signal simulation method developed by the authors and presented in this paper is based on non-sinusoidal voltage excitation. The simulation is carried out to obtain the large-signal characteristics such as RF power output, DC to RF conversion efficiency etc. of DDR diamond IMPATT device designed to operate at 94 GHz. The results show that the device is capable of delivering a peak RF power output of 7.01 W with 10.18% DC to RF conversion efficiency for a bias current density of 6.0×10^8 A m^-2 and voltage modulation of 60% at 94 GHz; whereas for the same voltage modulation 94 GHz DDR Si IMPATT can deliver only 693.82 mW RF power with 8.74 efficiency for the bias current density of 3.4×10^8 A m^-2.

  1. Performance Evaluation of 5G Millimeter-Wave Cellular Access Networks Using a Capacity-Based Network Deployment Tool

    Directory of Open Access Journals (Sweden)

    Michel Matalatala

    2017-01-01

    Full Text Available The next fifth generation (5G of wireless communication networks comes with a set of new features to satisfy the demand of data-intensive applications: millimeter-wave frequencies, massive antenna arrays, beamforming, dense cells, and so forth. In this paper, we investigate the use of beamforming techniques through various architectures and evaluate the performance of 5G wireless access networks, using a capacity-based network deployment tool. This tool is proposed and applied to a realistic area in Ghent, Belgium, to simulate realistic 5G networks that respond to the instantaneous bit rate required by the active users. The results show that, with beamforming, 5G networks require almost 15% more base stations and 4 times less power to provide more capacity to the users and the same coverage performances, in comparison with the 4G reference network. Moreover, they are 3 times more energy efficient than the 4G network and the hybrid beamforming architecture appears to be a suitable architecture for beamforming to be considered when designing a 5G cellular network.

  2. Finite-Difference Time-Domain Modeling of Free Induction Decay Signal in Chirped Pulse Millimeter Wave Spectroscopy

    Science.gov (United States)

    Heifetz, Alexander; Bakhtiari, Sasan; Chien, Hual-Teh; Prozument, Kirill; Gray, Stephen K.; Williams, Richard M.

    2016-06-01

    We have developed computational electrodynamics model of free induction decay (FID) signal in chirped pulse millimeter wave (CPMMW) spectroscopy. The computational model is based on finite-difference time-domain (FDTD) solution of Maxwell's equations in 1-D. Molecular medium is represented by two-level system derived using density matrix (DM) formulation. Each cell in the grid is assigned an independent set of DM equations, and thus acts as an independent source of induced polarization. Computer simulations with our 1-D model have shown that FID signal is propagating entirely in the forward direction. Intensity of FID radiation increases linearly along the cell length. These results can be explained analytically by considering phases of electromagnetic field radiated by each independent region of induced polarization. We show that there is constructive interference in the forward in forward direction, and destructive interference in backscattering direction. Results in this study are consistent with experimental observations that FID has been measured in the forward scattering direction, but not in backscattering direction.

  3. A CubeSat for Calibrating Ground-Based and Sub-Orbital Millimeter-Wave Polarimeters (CalSat)

    CERN Document Server

    Johnson, Bradley R; Drysdale, Timothy D; Kalman, Andrew; Fujikawa, Steve; Keating, Brian; Kaufman, Jon

    2015-01-01

    We describe a low-cost, open-access, CubeSat-based calibration instrument that is designed to support ground-based and sub-orbital experiments searching for various polarization signals in the cosmic microwave background (CMB). All modern CMB polarization experiments require a robust calibration program that will allow the effects of instrument-induced signals to be mitigated during data analysis. A bright, compact, and linearly polarized astrophysical source with polarization properties known to adequate precision does not exist. Therefore, we designed a space-based millimeter-wave calibration instrument, called CalSat, to serve as an open-access calibrator, and this paper describes the results of our design study. The calibration source on board CalSat is composed of five "tones" with one each at 47.1, 80.0, 140, 249 and 309 GHz. The five tones we chose are well matched to (i) the observation windows in the atmospheric transmittance spectra, (ii) the spectral bands commonly used in polarimeters by the CMB c...

  4. Millimeter waves or extremely high frequency electromagnetic fields in the environment: what are their effects on bacteria?

    Science.gov (United States)

    Soghomonyan, Diana; Trchounian, Karen; Trchounian, Armen

    2016-06-01

    Millimeter waves (MMW) or electromagnetic fields of extremely high frequencies at low intensity is a new environmental factor, the level of which is increased as technology advance. It is of interest that bacteria and other cells might communicate with each other by electromagnetic field of sub-extremely high frequency range. These MMW affected Escherichia coli and many other bacteria, mainly depressing their growth and changing properties and activity. These effects were non-thermal and depended on different factors. The significant cellular targets for MMW effects could be water, cell plasma membrane, and genome. The model for the MMW interaction with bacteria is suggested; a role of the membrane-associated proton FOF1-ATPase, key enzyme of bioenergetic relevance, is proposed. The consequences of MMW interaction with bacteria are the changes in their sensitivity to different biologically active chemicals, including antibiotics. Novel data on MMW effects on bacteria and their sensitivity to different antibiotics are presented and discussed; the combined action of MMW and antibiotics resulted with more strong effects. These effects are of significance for understanding changed metabolic pathways and distinguish role of bacteria in environment; they might be leading to antibiotic resistance in bacteria. The effects might have applications in the development of technique, therapeutic practices, and food protection technology.

  5. Remote Cloud Sensing Intensive Observation Period (RCS-IOP) millimeter-wave radar calibration and data intercomparison

    Energy Technology Data Exchange (ETDEWEB)

    Sekelsky, S.M.; Firda, J.M.; McIntosh, R.E. [Univ. of Massachusetts, Amherst, MA (United States)] [and others

    1996-04-01

    During April 1994, the University of Massachusetts (UMass) and the Pennsylvania State University (Penn State) fielded two millimeter-wave atmospheric radars in the Atmospheric Radiation Measurement Remote Cloud Sensing Intensive Operation Period (RCS-IOP) experiment. The UMass Cloud Profiling Radar System (CPRS) operates simultaneously at 33.12 GHz and 94.92 GHz through a single antenna. The Penn State radar operates at 93.95 GHz and has separate transmitting and receiving antennas. The two systems were separated by approximately 75 meters and simultaneously observed a variety of cloud types at verticle incidence over the course of the experiment. This abstract presents some initial results from our calibration efforts. An absolute calibration of the UMass radar was made from radar measurements of a trihedral corner reflector, which has a known radar cross-section. A relative calibration of between the Penn State and UMass radars is made from the statistical comparison of zenith pointing measurements of low altitude liquid clouds. Attenuation is removed with the aid of radiosonde data, and the difference in the calibration between the UMass and Penn State radars is determined by comparing the ratio of 94-GHz and 95-GHz reflectivity values to a model that accounts for parallax effects of the two antennas used in the Penn State system.

  6. 146-GHz millimeter-wave radio-over-fiber photonic wireless transmission system.

    Science.gov (United States)

    Fice, M J; Rouvalis, E; van Dijk, F; Accard, A; Lelarge, F; Renaud, C C; Carpintero, G; Seeds, A J

    2012-01-16

    We report the experimental implementation of a wireless transmission system with a 146-GHz carrier frequency which is generated by optical heterodyning the two modes from a monolithically integrated quantum dash dual-DFB source. The monolithic structure of the device and the inherent low noise characteristics of quantum dash gain material allow us to demonstrate the transmission of a 1 Gbps ON-OFF keyed data signal with the two wavelengths in a free-running state at 146-GHz carrier wave frequency. The tuning range of the device fully covers the W-band (75 - 110 GHz) and the F-band (90 - 140 GHz).

  7. A Monolithic Double-balanced Upconverter for millimeter-wave Point-to-Multipoint Distribution Systems

    OpenAIRE

    Ang, K S; Robertson, I.D.

    2000-01-01

    The design and performance of a monolithic double-balanced upconverter for mm-wave point-to- multipoint distribution systems are presented. Individual building blocks including the LO /RF balun, IF balun,LO /RF power amplifier,and the double- balanced mixer are also fabricated and tested.The complete upconverter,measuring 3x3.2mm,upconverts the 3 -5GHz IF to 40.5 -43.5GHz band with 20 dBm output power.

  8. DTU-ESA millimeter-wave VAlidation STandard antenna (mm-VAST) - detailed design

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.; Pivnenko, Sergey; Breinbjerg, Olav;

    2015-01-01

    A design of a well-characterized, mechanically and thermally stable multi-frequency VAlidation STandard antenna for mm-wave frequencies (mm-VAST) developed in an ESA project is presented. The antenna will facilitate inter-comparison and validation of antenna measurement ranges at K/Ka and Q/V bands...... in response to on-going deployment of satellite communication services at 20/30 GHz (K/Ka-band) as well as future commercial use of the 40/50 GHz bands (Q/V-band)....

  9. Validation experiment of a numerically processed millimeter-wave interferometer in a laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Kogi, Y., E-mail: kogi@fit.ac.jp; Higashi, T.; Matsukawa, S. [Department of Information Electronics, Fukuoka Institute of Technology, Fukuoka 811-0295 (Japan); Mase, A. [Art, Science and Technology Center for Cooperative Research, Kyushu University, Kasuga, Fukuoka 816-0811 (Japan); Kohagura, J.; Yoshikawa, M. [Plasma Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan); Nagayama, Y.; Kawahata, K. [National Institute for Fusion Science, Toki, Gifu 509-5202 (Japan); Kuwahara, D. [Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588 (Japan)

    2014-11-15

    We propose a new interferometer system for density profile measurements. This system produces multiple measurement chords by a leaky-wave antenna driven by multiple frequency inputs. The proposed system was validated in laboratory evaluation experiments. We confirmed that the interferometer generates a clear image of a Teflon plate as well as the phase shift corresponding to the plate thickness. In another experiment, we confirmed that quasi-optical mirrors can produce multiple measurement chords; however, the finite spot size of the probe beam degrades the sharpness of the resulting image.

  10. Validation experiment of a numerically processed millimeter-wave interferometer in a laboratory.

    Science.gov (United States)

    Kogi, Y; Higashi, T; Matsukawa, S; Mase, A; Kohagura, J; Nagayama, Y; Kawahata, K; Kuwahara, D; Yoshikawa, M

    2014-11-01

    We propose a new interferometer system for density profile measurements. This system produces multiple measurement chords by a leaky-wave antenna driven by multiple frequency inputs. The proposed system was validated in laboratory evaluation experiments. We confirmed that the interferometer generates a clear image of a Teflon plate as well as the phase shift corresponding to the plate thickness. In another experiment, we confirmed that quasi-optical mirrors can produce multiple measurement chords; however, the finite spot size of the probe beam degrades the sharpness of the resulting image.

  11. Millimeter-wave Line Ratios and Sub-beam Volume Density Distributions

    Science.gov (United States)

    Leroy, Adam K.; Usero, Antonio; Schruba, Andreas; Bigiel, Frank; Kruijssen, J. M. Diederik; Kepley, Amanda; Blanc, Guillermo A.; Bolatto, Alberto D.; Cormier, Diane; Gallagher, Molly; Hughes, Annie; Jiménez-Donaire, Maria J.; Rosolowsky, Erik; Schinnerer, Eva

    2017-02-01

    We explore the use of mm-wave emission line ratios to trace molecular gas density when observations integrate over a wide range of volume densities within a single telescope beam. For observations targeting external galaxies, this case is unavoidable. Using a framework similar to that of Krumholz & Thompson, we model emission for a set of common extragalactic lines from lognormal and power law density distributions. We consider the median density of gas that produces emission and the ability to predict density variations from observed line ratios. We emphasize line ratio variations because these do not require us to know the absolute abundance of our tracers. Patterns of line ratio variations have the potential to illuminate the high-end shape of the density distribution, and to capture changes in the dense gas fraction and median volume density. Our results with and without a high-density power law tail differ appreciably; we highlight better knowledge of the probability density function (PDF) shape as an important area. We also show the implications of sub-beam density distributions for isotopologue studies targeting dense gas tracers. Differential excitation often implies a significant correction to the naive case. We provide tabulated versions of many of our results, which can be used to interpret changes in mm-wave line ratios in terms of adjustments to the underlying density distributions.

  12. Millimeter-Wave Phaseless Antenna Measurement Based on a Modified Off-Axis Holography Setup

    Science.gov (United States)

    Arboleya, Ana; Ala-Laurinaho, Juha; Laviada, Jaime; Álvarez, Yuri; Las-Heras, Fernando; Räisänen, Antti V.

    2016-02-01

    A novel scheme for planar near-field phaseless antenna measurement based on off-axis holography is presented. Separation of the image terms of the hologram is artificially increased by multiplexing the measurements of two sub-sampled holograms generated with two 180° phase-shifted reference waves. Combination of both sub-sampled holograms produces replicas of the image terms at half a period distance of the originals in the spectral domain, while the amplitude of the original image terms is highly reduced, easing the filtering process of the desired replica. The higher separation of the image terms reduces overlapping making the method suitable also for the characterization of medium and low gain antennas in the near-field. As the separation is artificially increased, the reference antenna can be placed close to the antenna under test allowing to reduce the scan distance and the sensitivity to scan axis errors. Nevertheless, spatial multiplexing requires the retrieved data to be spatially low-pass filtered to remove the effect of the aliasing. Mirror reflection is used for illuminating the acquisition plane with the reference wave, being the phase shift achieved by means of a mechanical displacement of the mirror. The effect of the location of the reference antenna on the position and shape of the image terms and their replicas has been studied through numerical simulations for a setup in the W-band. Experimental validation of the method is presented for the characterization of three different antennas at 94 GHz.

  13. Millimeter-wave silicon-based ultra-wideband automotive radar transceivers

    Science.gov (United States)

    Jain, Vipul

    Since the invention of the integrated circuit, the semiconductor industry has revolutionized the world in ways no one had ever anticipated. With the advent of silicon technologies, consumer electronics became light-weight and affordable and paved the way for an Information-Communication-Entertainment age. While silicon almost completely replaced compound semiconductors from these markets, it has been unable to compete in areas with more stringent requirements due to technology limitations. One of these areas is automotive radar sensors, which will enable next-generation collision-warning systems in automobiles. A low-cost implementation is absolutely essential for widespread use of these systems, which leads us to the subject of this dissertation---silicon-based solutions for automotive radars. This dissertation presents architectures and design techniques for mm-wave automotive radar transceivers. Several fully-integrated transceivers and receivers operating at 22-29 GHz and 77-81 GHz are demonstrated in both CMOS and SiGe BiCMOS technologies. Excellent performance is achieved indicating the suitability of silicon technologies for automotive radar sensors. The first CMOS 22-29-GHz pulse-radar receiver front-end for ultra-wideband radars is presented. The chip includes a low noise amplifier, I/Q mixers, quadrature voltage-controlled oscillators, pulse formers and variable-gain amplifiers. Fabricated in 0.18-mum CMOS, the receiver achieves a conversion gain of 35-38.1 dB and a noise figure of 5.5-7.4 dB. Integration of multi-mode multi-band transceivers on a single chip will enable next-generation low-cost automotive radar sensors. Two highly-integrated silicon ICs are designed in a 0.18-mum BiCMOS technology. These designs are also the first reported demonstrations of mm-wave circuits with high-speed digital circuits on the same chip. The first mm-wave dual-band frequency synthesizer and transceiver, operating in the 24-GHz and 77-GHz bands, are demonstrated. All

  14. MEMS-based redundancy ring for low-noise millimeter-wave front-end

    Science.gov (United States)

    Pons, Patrick; Dubuc, David; Flourens, Federic; Saddaoui, Mohammad; Melle, Samuel; Tackacs, Alex; Tao, Junwu; Aubert, Herve; Boukabache, Ali; Paillot, T.; Blondy, Pierre; Vendier, Olivier; Grenier, Katia M.; Plana, Robert

    2004-08-01

    This paper reports on the investigation of the potentialities of the MEMS technologies to develop innovative microsystem for millimetre wave communication essentially for space applications. One main issue deals with the robustness and the reliability of the equipment as it may difficult to replace or to repair them when a satellite has been launched. One solution deals with the development of redundancy rings that are making the front end more robust. Usually, the architecture of such system involves waveguide or diode technologies, which present severe limitations in term of weight, volume and insertion loss. The concept considered in this paper is to replace some key elements of such system by MEMS based devices (Micromachined transmission lines, switches) in order to optimize both the weight and the microwave performance of the module. A specific technological process has been developed consisting in the fabrication of the devices on a dielectric membrane on air suspended in order to improve the insertion loss and the isolation. To prove the concept, building blocks have been already fabricated and measured (i.e micromachined transmission and filter featuring very low insertion loss, single pole double through circuits to address the appropriate path of the redundancy ring). We have to outline that MEMS technology have allowed a simplification of the architecture and a different system partitioning which gives more degree of freedom for the system designer. Furthermore, it has been conducted an exhaustive reliability study in order to identify the failure mechanisms. Again, from the results obtained, we have proposed an original topology for the SPDT circuit that takes into account the reliability behaviour of the MEMS devices and that allow to prevent most of the failure mechanisms reported so far (mainly related to the dielectric charging effect). Finally, the active device (millimetre wave low noise amplifier) will be reported on the MEMS based chip using

  15. Preliminary Study of a Millimeter Wave FMCW InSAR for UAS Indoor Navigation

    Science.gov (United States)

    Scannapieco, Antonio F.; Renga, Alfredo; Moccia, Antonio

    2015-01-01

    Small autonomous unmanned aerial systems (UAS) could be used for indoor inspection in emergency missions, such as damage assessment or the search for survivors in dangerous environments, e.g., power plants, underground railways, mines and industrial warehouses. Two basic functions are required to carry out these tasks, that is autonomous GPS-denied navigation with obstacle detection and high-resolution 3D mapping with moving target detection. State-of-the-art sensors for UAS are very sensitive to environmental conditions and often fail in the case of poor visibility caused by dust, fog, smoke, flames or other factors that are met as nominal mission scenarios when operating indoors. This paper is a preliminary study concerning an innovative radar sensor based on the interferometric Synthetic Aperture Radar (SAR) principle, which has the potential to satisfy stringent requirements set by indoor autonomous operation. An architectural solution based on a frequency-modulated continuous wave (FMCW) scheme is proposed after a detailed analysis of existing compact and lightweight SAR. A preliminary system design is obtained, and the main imaging peculiarities of the novel sensor are discussed, demonstrating that high-resolution, high-quality observation of an assigned control volume can be achieved. PMID:25621606

  16. Design and implementation of a multichannel millimeter wave interferometer for the Compact Toroidal Hybrid experiment

    Energy Technology Data Exchange (ETDEWEB)

    Miller, M. C.; Hanson, J. D.; Hartwell, G. J.; Knowlton, S. F.; Maurer, D. A.; Stevenson, B. A. [Physics Department, Auburn University, Auburn, Alabama 36849 (United States)

    2012-10-15

    A three-channel 1 mm wave interferometer has been designed, assembled, and installed on the Compact Toroidal Hybrid torsatron (CTH). The interferometer design makes novel use of a subharmonic mixer for detection, which simplifies alignment. It employs a single electronically tunable source that is repetitively chirped using a sawtooth waveform of frequency up to 1 MHz. The 15.25 GHz drive oscillator is multiplied in two stages to 122 GHz before a final doubler stage brings it to 244 GHz. Local oscillator (LO) power at 122 GHz is directed through waveguide to the LO input of the subharmonic mixer of each viewing chord, simplifying alignment. Phase detection is performed by directly digitizing the amplified mixer outputs at 50 MHz and processing them with a software algorithm. Initial measurements made with the central chord of the new interferometer agree with those from the existing 4 mm system at low densities. The 1 mm system performs well in current-driven discharges reaching densities over 10{sup 19} m{sup -3}, whereas the lower frequency interferometer is found to be less reliable due to loss of fringes. This is a critical improvement for experiments studying the onset, avoidance, and vacuum magnetic transform dependence of disruptions in the CTH device.

  17. Millimeter-wave fixed-tuned subharmonic mixers with planar Schottky diodes

    Institute of Scientific and Technical Information of China (English)

    Yao Changfei; Zhou Ming; Luo Yunsheng; Wang Yigang; Xu Conghai

    2012-01-01

    Two different frequency bandwidth subharmonic mixers (SHM) using planar Schottky mixing diodes are discussed and fabricated.Full-wave analysis is carried out to find the optimum diode embedding impedances with a lumped port for modeling the nonlinear junction.The SHM circuit is divided into several different parts and each part is optimized using the calculated diode impedances.The divided parts are then combined and optimized together.The exported S-parameter files of the global circuit are used for conversion loss (CL) discussion.For the 150 GHz SHM,the lowest measured CL is 10.7 dB at 153 GHz,and typical CL is 12.5 dB in the frequency range of 135-165 GHz.The lowest measured CL of the 180 GHz SHM is 5.8 dB at 240 GHz,and typical CL is 13.5 dB and 11.5 dB in the frequency range of 165-200 GHz and 210-240 GHz,respectively.

  18. Large-signal characterization of DDR silicon IMPATTs operating in millimeter-wave and terahertz regime

    Science.gov (United States)

    Acharyya, Aritra; Chakraborty, Jit; Das, Kausik; Datta, Subir; De, Pritam; Banerjee, Suranjana; Banerjee, J. P.

    2013-10-01

    The authors have carried out the large-signal characterization of silicon-based double-drift region (DDR) impact avalanche transit time (IMPATT) devices designed to operate up to 0.5 THz using a large-signal simulation method developed by the authors based on non-sinusoidal voltage excitation. The effect of band-to-band tunneling as well as parasitic series resistance on the large-signal properties of DDR Si IMPATTs have also been studied at different mm-wave and THz frequencies. Large-signal simulation results show that DDR Si IMPATT is capable of delivering peak RF power of 633.69 mW with 7.95% conversion efficiency at 94 GHz for 50% voltage modulation, whereas peak RF power output and efficiency fall to 81.08 mW and 2.01% respectively at 0.5 THz for same voltage modulation. The simulation results are compared with the experimental results and are found to be in close agreement.

  19. Preliminary Study of a Millimeter Wave FMCW InSAR for UAS Indoor Navigation

    Directory of Open Access Journals (Sweden)

    Antonio F. Scannapieco

    2015-01-01

    Full Text Available Small autonomous unmanned aerial systems (UAS could be used for indoor inspection in emergency missions, such as damage assessment or the search for survivors in dangerous environments, e.g., power plants, underground railways, mines and industrial warehouses. Two basic functions are required to carry out these tasks, that is autonomous GPS-denied navigation with obstacle detection and high-resolution 3Dmapping with moving target detection. State-of-the-art sensors for UAS are very sensitive to environmental conditions and often fail in the case of poor visibility caused by dust, fog, smoke, flames or other factors that are met as nominal mission scenarios when operating indoors. This paper is a preliminary study concerning an innovative radar sensor based on the interferometric Synthetic Aperture Radar (SAR principle, which has the potential to satisfy stringent requirements set by indoor autonomous operation. An architectural solution based on a frequency-modulated continuous wave (FMCW scheme is proposed after a detailed analysis of existing compact and lightweight SAR. A preliminary system design is obtained, and the main imaging peculiarities of the novel sensor are discussed, demonstrating that high-resolution, high-quality observation of an assigned control volume can be achieved.

  20. Preliminary study of a millimeter wave FMCW InSAR for UAS indoor navigation.

    Science.gov (United States)

    Scannapieco, Antonio F; Renga, Alfredo; Moccia, Antonio

    2015-01-22

    Small autonomous unmanned aerial systems (UAS) could be used for indoor inspection in emergency missions, such as damage assessment or the search for survivors in dangerous environments, e.g., power plants, underground railways, mines and industrial warehouses. Two basic functions are required to carry out these tasks, that is autonomous GPS-denied navigation with obstacle detection and high-resolution 3Dmapping with moving target detection. State-of-the-art sensors for UAS are very sensitive to environmental conditions and often fail in the case of poor visibility caused by dust, fog, smoke, flames or other factors that are met as nominal mission scenarios when operating indoors. This paper is a preliminary study concerning an innovative radar sensor based on the interferometric Synthetic Aperture Radar (SAR) principle, which has the potential to satisfy stringent requirements set by indoor autonomous operation. An architectural solution based on a frequency-modulated continuous wave (FMCW) scheme is proposed after a detailed analysis of existing compact and lightweight SAR. A preliminary system design is obtained, and the main imaging peculiarities of the novel sensor are discussed, demonstrating that high-resolution, high-quality observation of an assigned control volume can be achieved.

  1. Technical overview of the millimeter-wave imaging reflectometer on the DIII-D tokamak (invited).

    Science.gov (United States)

    Muscatello, C M; Domier, C W; Hu, X; Kramer, G J; Luhmann, N C; Ren, X; Riemenschneider, P; Spear, A; Tobias, B J; Valeo, E; Yu, L

    2014-11-01

    The two-dimensional mm-wave imaging reflectometer (MIR) on DIII-D is a multi-faceted device for diagnosing electron density fluctuations in fusion plasmas. Its multi-channel, multi-frequency capabilities and high sensitivity permit visualization and quantitative diagnosis of density perturbations, including correlation length, wavenumber, mode propagation velocity, and dispersion. The two-dimensional capabilities of MIR are made possible with 12 vertically separated sightlines and four-frequency operation (corresponding to four radial channels). The 48-channel DIII-D MIR system has a tunable source that can be stepped in 500 μs increments over a range of 56 to 74 GHz. An innovative optical design keeps both on-axis and off-axis channels focused at the cutoff surface, permitting imaging over an extended poloidal region. The integrity of the MIR optical design is confirmed by comparing Gaussian beam calculations to laboratory measurements of the transmitter beam pattern and receiver antenna patterns. Measurements are presented during the density ramp of a plasma discharge to demonstrate unfocused and focused MIR signals.

  2. Self-contained sub-millimeter wave rectifying antenna integrated circuit

    Science.gov (United States)

    Siegel, Peter H. (Inventor)

    2004-01-01

    The invention is embodied in a monolithic semiconductor integrated circuit in which is formed an antenna, such as a slot dipole antenna, connected across a rectifying diode. In the preferred embodiment, the antenna is tuned to received an electromagnetic wave of about 2500 GHz so that the device is on the order of a wavelength in size, or about 200 microns across and 30 microns thick. This size is ideal for mounting on a microdevice such as a microrobot for example. The antenna is endowed with high gain in the direction of the incident radiation by providing a quarter-wavelength (30 microns) thick resonant cavity below the antenna, the cavity being formed as part of the monolithic integrated circuit. Preferably, the integrated circuit consists of a thin gallium arsenide membrane overlying the resonant cavity and supporting an epitaxial Gallium Arsenide semiconductor layer. The rectifying diode is a Schottky diode formed in the GaAs semiconductor layer and having an area that is a very small fraction of the wavelength of the 2500 GHz incident radiation. The cavity provides high forward gain in the antenna and isolation from surrounding structure.

  3. Technical overview of the millimeter-wave imaging reflectometer on the DIII-D tokamak (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Muscatello, C. M., E-mail: cmuscate@ucdavis.edu; Domier, C. W.; Hu, X.; Luhmann, N. C.; Ren, X.; Riemenschneider, P.; Spear, A.; Valeo, E.; Yu, L. [Department of Electrical and Computer Engineering, University of California Davis, 347 Memorial Un, Davis, California 95616 (United States); Kramer, G. J.; Tobias, B. J. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

    2014-11-15

    The two-dimensional mm-wave imaging reflectometer (MIR) on DIII-D is a multi-faceted device for diagnosing electron density fluctuations in fusion plasmas. Its multi-channel, multi-frequency capabilities and high sensitivity permit visualization and quantitative diagnosis of density perturbations, including correlation length, wavenumber, mode propagation velocity, and dispersion. The two-dimensional capabilities of MIR are made possible with 12 vertically separated sightlines and four-frequency operation (corresponding to four radial channels). The 48-channel DIII-D MIR system has a tunable source that can be stepped in 500 μs increments over a range of 56 to 74 GHz. An innovative optical design keeps both on-axis and off-axis channels focused at the cutoff surface, permitting imaging over an extended poloidal region. The integrity of the MIR optical design is confirmed by comparing Gaussian beam calculations to laboratory measurements of the transmitter beam pattern and receiver antenna patterns. Measurements are presented during the density ramp of a plasma discharge to demonstrate unfocused and focused MIR signals.

  4. Millimeter-Wave Line Ratios and Sub-beam Volume Density Distributions

    CERN Document Server

    Leroy, Adam K; Schruba, Andreas; Bigiel, Frank; Kruijssen, J M Diederik; Kepley, Amanda; Blanc, Guillermo A; Bolatto, Alberto D; Cormier, Diane; Gallagher, Molly; Hughes, Annie; Jimenez-Donaire, Maria J; Rosolowsky, Erik; Schinnerer, Eva

    2016-01-01

    We explore the use of mm-wave emission line ratios to trace molecular gas density when observations integrate over a wide range of volume densities within a single telescope beam. For observations targeting external galaxies, this case is unavoidable. Using a framework similar to that of Krumholz and Thompson (2007), we model emission for a set of common extragalactic lines from lognormal and power law density distributions. We consider the median density of gas producing emission and the ability to predict density variations from observed line ratios. We emphasize line ratio variations, because these do not require knowing the absolute abundance of our tracers. Patterns of line ratio variations have the prospect to illuminate the high-end shape of the density distribution, and to capture changes in the dense gas fraction and median volume density. Our results with and without a high density power law tail differ appreciably; we highlight better knowledge of the PDF shape as an important area. We also show th...

  5. Discovery of Millimeter-Wave Excess Emission in Radio-Quiet Active Galactic Nuclei

    CERN Document Server

    Behar, Ehud; Laor, Ari; Horesh, Assaf; Stevens, Jamie; Tzioumis, Tasso

    2015-01-01

    The physical origin of radio emission in Radio Quiet Active Galactic Nuclei (RQ AGN) remains unclear, whether it is a downscaled version of the relativistic jets typical of Radio Loud (RL) AGN, or whether it originates from the accretion disk. The correlation between 5 GHz and X-ray luminosities of RQ AGN, which follows $L_R = 10^{-5}L_X$ observed also in stellar coronae, suggests an association of both X-ray and radio sources with the accretion disk corona. Observing RQ AGN at higher (mm-wave) frequencies, where synchrotron self absorption is diminished, and smaller regions can be probed, is key to exploring this association. Eight RQ AGN, selected based on their high X-ray brightness and variability, were observed at 95 GHz with the CARMA and ATCA telescopes. All targets were detected at the $1-10$ mJy level. Emission excess at 95~GHz of up to $\\times 7$ is found with respect to archival low-frequency steep spectra, suggesting a compact, optically-thick core superimposed on the more extended structures that...

  6. New movable plate for efficient millimeter wave vertical on-chip antenna

    KAUST Repository

    Marnat, Loic

    2013-04-01

    A new movable plate concept is presented in this paper to realize mm-wave vertical on-chip antennas through MEMS based post-processing steps in a CMOS compatible process. By virtue of its vertical position, the antenna is isolated from the lossy Si substrate and hence performs with a better efficiency as compared to the horizontal position. In addition, the movable plate concept enables polarization diversity by providing both horizontal and vertical polarizations on the same chip. Through a first iteration fractal bowtie antenna design, dual band (60 and 77 GHz) operation is demonstrated in both horizontal and vertical positions without any change in dimensions or use of switches for two different mediums (Si and air). To support the movable plate concept, the transmission line and antenna are designed on a flexible polyamide, where the former has been optimized to operate in the bent position. The design is highly suitable for compact, low cost and efficient SoC solutions. © 1963-2012 IEEE.

  7. Transcriptome analysis reveals the contribution of thermal and the specific effects in cellular response to millimeter wave exposure.

    Science.gov (United States)

    Habauzit, Denis; Le Quément, Catherine; Zhadobov, Maxim; Martin, Catherine; Aubry, Marc; Sauleau, Ronan; Le Dréan, Yves

    2014-01-01

    Radiofrequency radiations constitute a new form of environmental pollution. Among them, millimeter waves (MMW) will be widely used in the near future for high speed communication systems. This study aimed therefore to evaluate the biocompatibility of MMW at 60 GHz. For this purpose, we used a whole gene expression approach to assess the effect of acute 60 GHz exposure on primary cultures of human keratinocytes. Controls were performed to dissociate the electromagnetic from the thermal effect of MMW. Microarray data were validated by RT-PCR, in order to ensure the reproducibility of the results. MMW exposure at 20 mW/cm2, corresponding to the maximum incident power density authorized for public use (local exposure averaged over 1 cm2), led to an increase of temperature and to a strong modification of keratinocyte gene expression (665 genes differentially expressed). Nevertheless, when temperature is artificially maintained constant, no modification in gene expression was observed after MMW exposure. However, a heat shock control did not mimic exactly the MMW effect, suggesting a slight but specific electromagnetic effect under hyperthermia conditions (34 genes differentially expressed). By RT-PCR, we analyzed the time course of the transcriptomic response and 7 genes have been validated as differentially expressed: ADAMTS6, NOG, IL7R, FADD, JUNB, SNAI2 and HIST1H1A. Our data evidenced a specific electromagnetic effect of MMW, which is associated to the cellular response to hyperthermia. This study raises the question of co-exposures associating radiofrequencies and other environmental sources of cellular stress.

  8. Transcriptome analysis reveals the contribution of thermal and the specific effects in cellular response to millimeter wave exposure.

    Directory of Open Access Journals (Sweden)

    Denis Habauzit

    Full Text Available Radiofrequency radiations constitute a new form of environmental pollution. Among them, millimeter waves (MMW will be widely used in the near future for high speed communication systems. This study aimed therefore to evaluate the biocompatibility of MMW at 60 GHz. For this purpose, we used a whole gene expression approach to assess the effect of acute 60 GHz exposure on primary cultures of human keratinocytes. Controls were performed to dissociate the electromagnetic from the thermal effect of MMW. Microarray data were validated by RT-PCR, in order to ensure the reproducibility of the results. MMW exposure at 20 mW/cm2, corresponding to the maximum incident power density authorized for public use (local exposure averaged over 1 cm2, led to an increase of temperature and to a strong modification of keratinocyte gene expression (665 genes differentially expressed. Nevertheless, when temperature is artificially maintained constant, no modification in gene expression was observed after MMW exposure. However, a heat shock control did not mimic exactly the MMW effect, suggesting a slight but specific electromagnetic effect under hyperthermia conditions (34 genes differentially expressed. By RT-PCR, we analyzed the time course of the transcriptomic response and 7 genes have been validated as differentially expressed: ADAMTS6, NOG, IL7R, FADD, JUNB, SNAI2 and HIST1H1A. Our data evidenced a specific electromagnetic effect of MMW, which is associated to the cellular response to hyperthermia. This study raises the question of co-exposures associating radiofrequencies and other environmental sources of cellular stress.

  9. Rotational study of the CH{sub 4}–CO complex: Millimeter-wave measurements and ab initio calculations

    Energy Technology Data Exchange (ETDEWEB)

    Surin, L. A., E-mail: surin@ph1.uni-koeln.de [I. Physikalisches Institut, University of Cologne, Zülpicher St. 77, 50937 Cologne (Germany); Institute of Spectroscopy, Russian Academy of Sciences, Fizicheskaya St. 5, 142190 Troitsk, Moscow (Russian Federation); Tarabukin, I. V.; Panfilov, V. A. [Institute of Spectroscopy, Russian Academy of Sciences, Fizicheskaya St. 5, 142190 Troitsk, Moscow (Russian Federation); Schlemmer, S. [I. Physikalisches Institut, University of Cologne, Zülpicher St. 77, 50937 Cologne (Germany); Kalugina, Y. N. [Department of Optics and Spectroscopy, Tomsk State University, 36 Lenin Ave., 634050 Tomsk (Russian Federation); Faure, A.; Rist, C. [University Grenoble Alpes, IPAG, F-38000 Grenoble (France); CNRS, IPAG, F-38000 Grenoble (France); Avoird, A. van der, E-mail: A.vanderAvoird@theochem.ru.nl [Theoretical Chemistry, Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen (Netherlands)

    2015-10-21

    The rotational spectrum of the van der Waals complex CH{sub 4}–CO has been measured with the intracavity OROTRON jet spectrometer in the frequency range of 110–145 GHz. Newly observed and assigned transitions belong to the K = 2–1 subband correlating with the rotationless j{sub CH4} = 0 ground state and the K = 2–1 and K = 0–1 subbands correlating with the j{sub CH4} = 2 excited state of free methane. The (approximate) quantum number K is the projection of the total angular momentum J on the intermolecular axis. The new data were analyzed together with the known millimeter-wave and microwave transitions in order to determine the molecular parameters of the CH{sub 4}–CO complex. Accompanying ab initio calculations of the intermolecular potential energy surface (PES) of CH{sub 4}–CO have been carried out at the explicitly correlated coupled cluster level of theory with single, double, and perturbative triple excitations [CCSD(T)-F12a] and an augmented correlation-consistent triple zeta (aVTZ) basis set. The global minimum of the five-dimensional PES corresponds to an approximately T-shaped structure with the CH{sub 4} face closest to the CO subunit and binding energy D{sub e} = 177.82 cm{sup −1}. The bound rovibrational levels of the CH{sub 4}–CO complex were calculated for total angular momentum J = 0–6 on this intermolecular potential surface and compared with the experimental results. The calculated dissociation energies D{sub 0} are 91.32, 94.46, and 104.21 cm{sup −1} for A (j{sub CH4} = 0), F (j{sub CH4} = 1), and E (j{sub CH4} = 2) nuclear spin modifications of CH{sub 4}–CO, respectively.

  10. A CubeSat for Calibrating Ground-Based and Sub-Orbital Millimeter-Wave Polarimeters

    Science.gov (United States)

    Johnson, Bradley

    2016-06-01

    We describe a low-cost, open-access, CubeSat-based calibration instrument that is designed to support ground-based and sub-orbital experiments searching for various polarization signals in the cosmic microwave background (CMB). All modern CMB polarization experiments require a robust calibration program that will allow the effects of instrument-induced signals to be mitigated during data analysis. A bright, compact, and linearly polarized astrophysical source with polarization properties known to adequate precision does not exist. Therefore, we designed a space-based millimeter-wave calibration instrument, called CalSat, to serve as an open-access calibrator, and this paper describes the results of our design study. The calibration source on board CalSat is composed of five "tones'" with one each at 47.1, 80.0, 140, 249 and 309 GHz. The five tones we chose are well matched to (i) the observation windows in the atmospheric transmittance spectra, (ii) the spectral bands commonly used in polarimeters by the CMB community, and (iii) The Amateur Satellite Service bands in the Table of Frequency Allocations used by the Federal Communications Commission. CalSat will be placed in a polar orbit allowing visibility from observatories in the Northern Hemisphere, such as Mauna~Kea in Hawaii and Summit Station in Greenland, and the Southern Hemisphere, such as the Atacama Desert in Chile and the South Pole. CalSat also will be observable by balloon-borne instruments launched from a range of locations around the world. This global visibility makes CalSat the only source that can be observed by all terrestrial and sub-orbital observatories, thereby providing a universal standard that permits comparison between experiments using appreciably different measurement approaches.

  11. The CARMA Paired Antenna Calibration System: Atmospheric Phase Correction for Millimeter Wave Interferometry and its Application to Mapping the Ultraluminous Galaxy Arp 193

    CERN Document Server

    Zauderer, B Ashley; Vogel, Stuart N; Carpenter, John M; Peréz, Laura M; Lamb, James W; Woody, David P; Bock, Douglas C -J; Carlstrom, John E; Culverhouse, Thomas L; Curley, Roger; Leitch, Erik M; Plambeck, Richard L; Pound, Marc W; Marrone, Daniel P; Muchovej, Stephen J; Mundy, Lee G; Teng, Stacy H; Teuben, Peter J; Volgenau, Nikolaus H; Wright, Melvyn C H; Wu, Dalton

    2014-01-01

    Phase fluctuations introduced by the atmosphere are the main limiting factor in attaining diffraction limited performance in extended interferometric arrays at millimeter and submillimeter wavelengths. We report the results of C-PACS, the Combined Array for Research in Millimeter-Wave Astronomy Paired Antenna Calibration System. We present a systematic study of several hundred test observations taken during the 2009-2010 winter observing season where we utilize CARMA's eight 3.5-m antennas to monitor an atmospheric calibrator while simultaneously acquiring science observations with 6.1-m and 10.4-m antennas on baselines ranging from a few hundred meters to ~2 km. We find that C-PACS is systematically successful at improving coherence on long baselines under a variety of atmospheric conditions. We find that the angular separation between the atmospheric calibrator and target source is the most important consideration, with consistently successful phase correction at CARMA requiring a suitable calibrator locate...

  12. Investigating dust trapping in transition disks with millimeter-wave polarization

    Science.gov (United States)

    Pohl, A.; Kataoka, A.; Pinilla, P.; Dullemond, C. P.; Henning, Th.; Birnstiel, T.

    2016-08-01

    Context. Spatially resolved polarized (sub-)mm emission has been observed for example in the protoplanetary disk around HL Tau. Magnetically aligned grains are commonly interpreted as the source of polarization. However, self-scattering by large dust grains with a high enough albedo is another polarization mechanism, which is becoming a compelling method independent of the spectral index to constrain the dust grain size in protoplanetary disks. Aims: We study the dust polarization at mm wavelengths in the dust trapping scenario proposed for transition disks, when a giant planet opens a gap in the disk. We investigate the characteristic polarization patterns and their dependence on disk inclination, dust size evolution, planet position, and observing wavelength. Methods: We combine two-dimensional hydrodynamical simulations of planet-disk interactions with self-consistent dust growth models. These size-dependent dust density distributions are used for follow-up three-dimensional radiative transfer calculations to predict the polarization degree at ALMA bands due to scattered thermal emission. Results: Dust self-scattering has been proven to be a viable mechanism for producing polarized mm-wave radiation. We find that the polarization pattern of a disk with a planetary gap after 1 Myr of dust evolution shows a distinctive three-ring structure. Two narrow inner rings are located at the planet gap edges. A third wider ring of polarization is situated in the outer disk beyond 100 au. For increasing observing wavelengths, all three rings change their position slightly, where the innermost and outermost rings move inward. This distance is detectable when comparing the results at ALMA bands 3, 6, and 7. Within the highest polarized intensity regions the polarization vectors are oriented in the azimuthal direction. For an inclined disk there is an interplay between polarization originating from a flux gradient and inclination-induced quadrupole polarization. For

  13. RF Design of Antenna System for Geosynchronous Orbit Millimeter and Sub-millimeter Wave Detector%静止轨道毫米波与亚毫米波探测仪天线电性能设计

    Institute of Scientific and Technical Information of China (English)

    周卫来; 张新刚

    2013-01-01

    Antenna system of millimeter and sub-millimeter wave detector is one key technique for the application of mi-crowave remote sensing in Geosynchronous Orbit (GEO). In this paper,the scheme design of antenna system is presented, the related calculated result of RF performance is provided,and uncertainties budget is also considered. Finally the design of feeding network is also provided.%静止轨道毫米波与亚毫米波探测仪天线系统是静止轨道微波遥感的关键技术之一,文章对天线系统方案进行了设计,给出了天线电性能仿真分析结果,并考虑了天线的形面及装配校准误差对天线电性能的影响程度,同时对天线的馈电系统方案进行了设计。

  14. Real time three-dimensional space video rate sensors for millimeter waves imaging based very inexpensive plasma LED lamps

    Science.gov (United States)

    Levanon, Assaf; Yitzhaky, Yitzhak; Kopeika, Natan S.; Rozban, Daniel; Abramovich, Amir

    2014-10-01

    In recent years, much effort has been invested to develop inexpensive but sensitive Millimeter Wave (MMW) detectors that can be used in focal plane arrays (FPAs), in order to implement real time MMW imaging. Real time MMW imaging systems are required for many varied applications in many fields as homeland security, medicine, communications, military products and space technology. It is mainly because this radiation has high penetration and good navigability through dust storm, fog, heavy rain, dielectric materials, biological tissue, and diverse materials. Moreover, the atmospheric attenuation in this range of the spectrum is relatively low and the scattering is also low compared to NIR and VIS. The lack of inexpensive room temperature imaging systems makes it difficult to provide a suitable MMW system for many of the above applications. In last few years we advanced in research and development of sensors using very inexpensive (30-50 cents) Glow Discharge Detector (GDD) plasma indicator lamps as MMW detectors. This paper presents three kinds of GDD sensor based lamp Focal Plane Arrays (FPA). Those three kinds of cameras are different in the number of detectors, scanning operation, and detection method. The 1st and 2nd generations are 8 × 8 pixel array and an 18 × 2 mono-rail scanner array respectively, both of them for direct detection and limited to fixed imaging. The last designed sensor is a multiplexing frame rate of 16x16 GDD FPA. It permits real time video rate imaging of 30 frames/ sec and comprehensive 3D MMW imaging. The principle of detection in this sensor is a frequency modulated continuous wave (FMCW) system while each of the 16 GDD pixel lines is sampled simultaneously. Direct detection is also possible and can be done with a friendly user interface. This FPA sensor is built over 256 commercial GDD lamps with 3 mm diameter International Light, Inc., Peabody, MA model 527 Ne indicator lamps as pixel detectors. All three sensors are fully supported

  15. Experimental Verification on Remote Detectability of Concealed Radioactive Material Based on the Plasma Discharge Delay Time using High-Power Millimeter-Wave

    Science.gov (United States)

    Kim, Dongsung; Yu, Dongho; Sawant, Ashwini; Choe, Mun Seok; Lee, Ingeun; Choi, Eunmi

    2016-10-01

    We experimentally demonstrate a remote detection method of a radioactive source by plasma breakdown using high-power millimeter-wave source, gyrotron. A number of free electrons near the radioactive source are much higher than those of without the radioactive source (roughly 10 particles/cm3) owing to the interaction of air molecules and strong gamma rays generated by radioactive material. The RF wave beam is focused in ambient air, and the plasmas discharge occurs involving random delay time which means a time interval between the RF wave and a fluorescent light caused by the plasma. We observed that the delay time decreased significantly due to the high density of free electrons in Ar plasma with an existence of Co60 radioactive material. This technique of delay time measurement shows 1000 times more sensitive than a method of detectable mass equation to identify the existence of radioactive source remotely. It is the first experimental verification of radioactive material detection using a high power gyrotron. This study shows that a remote detection of radioactive material based on analysis of precise delay time measurement could be feasible by using a high power millimeter/THz wave gyrotron. NRF-2013R1A1A2061062, NRF-2012-Global Ph.D. Fellowship Program.

  16. Design, Analysis, and Characterization of Metamaterial Quasi-Optical Components for Millimeter-Wave Automotive Radar

    Science.gov (United States)

    Nguyen, Vinh Ngoc

    metamaterials show material properties closely matching those predicted by full-wave simulations. Due to the high losses associated with resonant metamaterials, I shift my focus to non-resonant metamaterials. I discuss the design, fabrication, and testing of non-resonant metamaterials for fabrication on multilayer LCP printed circuit boards (PCBs). I then use these non-resonant metamaterials in a W-band planar metamaterial GRIN lens. Radiation pattern measurements show that this lens functions as a strong collimating element. Using similar lens design methods, I design a metamaterial GRIN lens from polytetrafluoroethylene-based (PTFE-based) non-resonant metamaterials. This GRIN lens is designed to match a target dielectric lens's radiation characteristics across a +/-6° field of view. Measurements at automotive radar frequencies show that this lens has approximately the same radiation characteristics as the target lens across the desired field of view. Finally, I describe the development of electrically reconfigurable metamaterials using thin-film silicon semiconductors. These silicon-based reconfigurable metamaterials were developed in close collaboration with several other researchers. My major contribution to the development of these reconfigurable metamaterials consisted of the initial metamaterial design. The Jokerst research group fabricated this initial design while TRI-NA characterized the fabricated metamaterial experimentally. Measurements showed approximately 8% variation in transmission under a 5 Volt DC bias. This variation in transmission closely matched the variation in transmission predicted by coupled electronic-electromagnetic simulation run by Yaroslav Urzhumov, one of other contributors to the development of the reconfigurable metamaterial.

  17. Full-duplex bidirectional transmission of 10-Gb/s millimeter-wave QPSK signal in E-band optical wireless link.

    Science.gov (United States)

    Fang, Yuan; Yu, Jianjun; Chi, Nan; Xiao, Jiangnan

    2014-01-27

    We experimentally demonstrated full-duplex bidirectional transmission of 10-Gb/s millimeter-wave (mm-wave) quadrature phase shift keying (QPSK) signal in E-band (71-76 GHz and 81-86 GHz) optical wireless link. Single-mode fibers (SMF) are connected at both sides of the antenna for uplink and downlink which realize 40-km SMF and 2-m wireless link for bidirectional transmission simultaneously. We utilized multi-level modulation format and coherent detection in such E-band optical wireless link for the first time. Mm-wave QPSK signal is generated by photonic technique to increase spectrum efficiency and received signal is coherently detected to improve receiver sensitivity. After the coherent detection, digital signal processing is utilized to compensate impairments of devices and transmission link.

  18. 毫米波辐照下大鼠脑电的长程相关性%Long-range correlations of electroencephalogram in rats irradiated by millimeter wave

    Institute of Scientific and Technical Information of China (English)

    谢涛嵘; 裴剑; 李芬; 张杰; 齐红星; 陈树德; 乔登江

    2011-01-01

    通过脑电长程相关性的分析,定量研究了35 GHz毫米波辐照大鼠时产生的应激反应.通过退趋势分析法,得到反映高频成分的标度指数.显示在辐照前该成分具有布朗噪声的特性,辐照时具有长程相关性;而反映低频成分的标度指数显示在辐照前该成分具有长程相关性,辐照时成为布朗噪声.引进应激指标参量低频成份标度指标数/高频成份标度指标数,用其值的平均变化率来衡量大鼠在35 GHz毫米波作用下应激反应的剧烈程度.通过计算得到辐照时应激指标参量增加了49.9%±13.6%,说明35 GHz毫米波辐照使得大鼠脑电的高频部分变得更加有序,而低频成分变得更加无序,表明大鼠受35 GHz毫米波辐照而产生了剧烈应激反应.%A quantitative study was conducted on stress reaction in rat induced by 35 GHz millimeter wave.Long-range correlations analysis of the rat electroencephalogram(EEG) was investigated.The scaling exponents α1 and α2 were calculated by detrended fluctuation analysis(DFA) method.The exponent α1 shows that the high frequency EEG component is characterized by Brownian noise before irradiated by 35 GHz millimeter wave while it has long-range correlations during irradiation.The exponent α2 shows that the low frequency EEG component has long-range correlations before irradiation while it is characterized by Brownian noise during irradiation.Introducing stress parameter k(k=α2/α1 ), the average change rate of k was used to evaluate the intensity of stress in rat evoked by 35 GHz millimeter wave.The k increases 49.9% ±13.6% during irradiation, which indicates that the high frequency EEG component becomes more ordered and the low frequency EEG component becomes more disordered,showing the acute stress irt rat induced by 35 GHz millimeter wave.

  19. Design of a ×4 subharmonic sub-millimeter wave diode mixer, based on an analytic expression for small-signal conversion admittance parameters

    DEFF Research Database (Denmark)

    Michaelsen, Rasmus Schandorph; Johansen, Tom Keinicke; Krozer, Viktor

    2013-01-01

    Instead of using frequency multipliers before a fundamental mixer, subharmonic mixers can be used. In order to develop novel subharmonic mixer architectures it is necessary to know the exact signal phase at the nonlinear element. The purpose of this paper is to generalize the description...... of the small-signal admittance in a Schottky-diode mixer where the phase can be set arbitrarily. It is shown that only for the case of a fundamental frequency mixer this admittance becomes a purely real valued conductance. To test the theory a ×4 subharmonic sub-millimeter wave mixer is designed and simulated...

  20. Millimeter wave imaging at up to 40 frames per second using an optoelectronic photo-injected Fresnel zone plate lens antenna

    Science.gov (United States)

    Robertson, Duncan A.; Gallacher, Thomas F.; Søndenâ, Rune; Macfarlane, David G.

    2016-05-01

    Optoelectronic methods are promising for rapid and highly reconfigurable beam steering across the microwave to the terahertz range. In particular, the photo-injected Fresnel zone plate antenna (piFZPA) offers high speed, wide angle, precise beam steering with good beam quality, to enable video rate millimeter wave imagery with no moving parts. We present a piFZPA demonstrator based on a commercial digital light projector (DLP) and high power laser which achieves steering rates up to 17,500 beams per second at 94 and 188 GHz. We also demonstrate radar imaging at 94 GHz at frame rates of 40 Hz (2D PPI) and 7 Hz (3D volumetric).

  1. Generation of FCC-compliant and background-free millimeter-wave ultrawideband signal based on nonlinear polarization rotation in a highly nonlinear fiber.

    Science.gov (United States)

    Li, Wei; Wang, Wen Ting; Sun, Wen Hui; Liu, Jian Guo; Zhu, Ning Hua

    2014-05-05

    We propose a novel approach to generating millimeter-wave (MMW) ultrawideband (UWB) signal based on nonlinear polarization rotation (NPR) in a highly nonlinear fiber (HNLF). The MMW UWB signal is background-free by eliminating the baseband frequency components using an optical filter. The proposed scheme is theoretically analyzed and experimentally verified. The generated MMW UWB signal centered at 25.5 GHz has a 10-dB bandwidth of 7 GHz from 22 to 29 GHz, which fully satisfies the spectral mask regulated by the Federal Communications Commission (FCC).

  2. Optoelectronic cross-injection locking of a dual-wavelength photonic integrated circuit for low-phase-noise millimeter-wave generation.

    Science.gov (United States)

    Kervella, Gaël; Van Dijk, Frederic; Pillet, Grégoire; Lamponi, Marco; Chtioui, Mourad; Morvan, Loïc; Alouini, Mehdi

    2015-08-01

    We report on the stabilization of a 90-GHz millimeter-wave signal generated from a fully integrated photonic circuit. The chip consists of two DFB single-mode lasers whose optical signals are combined on a fast photodiode to generate a largely tunable heterodyne beat note. We generate an optical comb from each laser with a microwave synthesizer, and by self-injecting the resulting signal, we mutually correlate the phase noise of each DFB and stabilize the beatnote on a multiple of the frequency delivered by the synthesizer. The performances achieved beat note linewidth below 30 Hz.

  3. Rotational study of the NH{sub 3}–CO complex: Millimeter-wave measurements and ab initio calculations

    Energy Technology Data Exchange (ETDEWEB)

    Surin, L. A., E-mail: surin@ph1.uni-koeln.de [I. Physikalisches Institut, University of Cologne, Zülpicher Str. 77, 50937 Cologne (Germany); Institute of Spectroscopy, Russian Academy of Sciences, Fizicheskaya Str. 5, 142190 Troitsk, Moscow (Russian Federation); Potapov, A.; Schlemmer, S. [I. Physikalisches Institut, University of Cologne, Zülpicher Str. 77, 50937 Cologne (Germany); Dolgov, A. A.; Tarabukin, I. V.; Panfilov, V. A. [Institute of Spectroscopy, Russian Academy of Sciences, Fizicheskaya Str. 5, 142190 Troitsk, Moscow (Russian Federation); Kalugina, Y. N. [Department of Optics and Spectroscopy, Tomsk State University, 36 Lenin av., 634050 Tomsk (Russian Federation); Faure, A. [Université de Grenoble Alpes, IPAG, F-38000 Grenoble (France); CNRS, IPAG, F-38000 Grenoble (France); Avoird, A. van der, E-mail: A.vanderAvoird@theochem.ru.nl [Theoretical Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen (Netherlands)

    2015-03-21

    The rotational spectrum of the van der Waals complex NH{sub 3}–CO has been measured with the intracavity OROTRON jet spectrometer in the frequency range of 112–139 GHz. Newly observed and assigned transitions belong to the K = 0–0, K = 1–1, K = 1–0, and K = 2–1 subbands correlating with the rotationless (j{sub k}){sub NH3} = 0{sub 0} ground state of free ortho-NH{sub 3} and the K = 0–1 and K = 2–1 subbands correlating with the (j{sub k}){sub NH3} = 1{sub 1} ground state of free para-NH{sub 3}. The (approximate) quantum number K is the projection of the total angular momentum J on the intermolecular axis. Some of these transitions are continuations to higher J values of transition series observed previously [C. Xia et al., Mol. Phys. 99, 643 (2001)], the other transitions constitute newly detected subbands. The new data were analyzed together with the known millimeter-wave and microwave transitions in order to determine the molecular parameters of the ortho-NH{sub 3}–CO and para-NH{sub 3}–CO complexes. Accompanying ab initio calculations of the intermolecular potential energy surface (PES) of NH{sub 3}–CO has been carried out at the explicitly correlated coupled cluster level of theory with single, double, and perturbative triple excitations and an augmented correlation-consistent triple zeta basis set. The global minimum of the five-dimensional PES corresponds to an approximately T-shaped structure with the N atom closest to the CO subunit and binding energy D{sub e} = 359.21 cm{sup −1}. The bound rovibrational levels of the NH{sub 3}–CO complex were calculated for total angular momentum J = 0–6 on this intermolecular potential surface and compared with the experimental results. The calculated dissociation energies D{sub 0} are 210.43 and 218.66 cm{sup −1} for ortho-NH{sub 3}–CO and para-NH{sub 3}–CO, respectively.

  4. Effects of acute millimeter wave exposure on the expression of substance P and c-fos in rat spinal cord

    Directory of Open Access Journals (Sweden)

    Yan-wen ZHANG

    2013-04-01

    Full Text Available Objective  To observe the expression changes in substance P (SP and c-fos in rat spinal cord after acute millimeter-wave (MMW exposure, and explore the mechanism of thermal hyperalgesia at the spinal level. Methods  The back skin of SD rats was exposed to 35 GHz MMW (40W/cm2 for 0s (control group, 30s, 1min, or 3min. The corresponding segment of the spinal cord was taken at 0min, 5min, 10min, 1h and 3h after MMW irradiation for total RNA and protein extraction. The expressions of SP and c-fos mRNA were measured by real-time RT-PCR, and the expression of c-fos protein was detected by Western blotting. Results  No significant difference was found between the control group and irradiation groups in SP and c-fos mRNA expression in the corresponding segment of spinal cord after MMW irradiation for 30s. After MMW irradiation for 1min, the SP and c-fos mRNA expressions in the corresponding segment of spinal cord increased significantly at 10min time point, and then decreased to the level of control group. After MMW irradiation for 3min, the SP and c-fos mRNA expression in the corresponding segment of spinal cord increased significantly at 5min, 10min and 1h time points, and decreased to the level of control group at 3h. No significant change was found in c-fos protein expression in the corresponding segment of spinal cord after MMW irradiation for 30s and 1min. After MMW irradiation for 3min, the c-fos protein expression in the corresponding segment of spinal cord increased significantly at 5min and 10min time point, and then decreased to the level of control group. Conclusion  The increase of SP expression in rat skin after MMW irradiation may be related to the increase of SP and c-fos expressions in the corresponding segment of the spinal cord induced by thermal pain stimulation.

  5. A Multifrequency Notch Filter for Millimeter Wave Plasma Diagnostics based on Photonic Bandgaps in Corrugated Circular Waveguides

    Directory of Open Access Journals (Sweden)

    Wagner D.

    2015-01-01

    Full Text Available Sensitive millimeter wave diagnostics need often to be protected against unwanted radiation like, for example, stray radiation from high power Electron Cyclotron Heating applied in nuclear fusion plasmas. A notch filter based on a waveguide Bragg reflector (photonic band-gap may provide several stop bands of defined width within up to two standard waveguide frequency bands. A Bragg reflector that reflects an incident fundamental TE11 into a TM1n mode close to cutoff is combined with two waveguide tapers to fundamental waveguide diameter. Here the fundamental TE11 mode is the only propagating mode at both ends of the reflector. The incident TE11 mode couples through the taper and is converted to the high order TM1n mode by the Bragg structure at the specific Bragg resonances. The TM1n mode is trapped in the oversized waveguide section by the tapers. Once reflected at the input taper it will be converted back into the TE11 mode which then can pass through the taper. Therefore at higher order Bragg resonances, the filter acts as a reflector for the incoming TE11 mode. Outside of the Bragg resonances the TE11 mode can propagate through the oversized waveguide structure with only very small Ohmic attenuation compared to propagating in a fundamental waveguide. Coupling to other modes is negligible in the non-resonant case due to the small corrugation amplitude (typically 0.05·λ0, where λ0 is the free space wavelength. A Bragg reflector for 105 and 140 GHz was optimized by mode matching (scattering matrix simulations and manufactured by SWISSto12 SA, where the required mechanical accuracy of ± 5 μm could be achieved by stacking stainless steel rings, manufactured by micro-machining, in a high precision guiding pipe. The two smooth-wall tapers were fabricated by electroforming. Several measurements were performed using vector network analyzers from Agilent (E8362B, ABmm (MVNA 8-350 and Rohde&Schwarz (ZVA24 together with frequency multipliers. The

  6. Millimeter Wave Seeker Technology

    Science.gov (United States)

    2007-11-02

    have been reported to date.4 One type uses a distributed oscillator approach in which the active devices (MESFET, IMPATT, Gunn diodes , etc) are...Impact Ionization Avalanche Transit Time) diode is a well known two terminal device for power generation at MMW frequencies. The state of the art for...of active devices Low voltage dc biasing supplies (ម volts) TABLE 2. Performance of IMPATT Diodes (35 GHz). State-of-the-art RF performance 14

  7. Focusing millimeter wave radar for radial gap measurements in power plant combustion turbines; Fokussierendes Radarverfahren im Millimeterwellenbereich zur Radialspaltmessung in Kraftwerksturbinen

    Energy Technology Data Exchange (ETDEWEB)

    Schicht, Andreas

    2011-07-11

    In this work a method for spatially resolved radial gap measurements in power plant combustion turbines by means of an autofocusing imaging radar technique in the millimeter wave range was developed and verified experimentally. The radial gap measurement has been subject of engineering studies for many years, as a reliable, simple solution does not seem to be possible due to the given boundary conditions. These include on the one hand the adverse measurement conditions such as high temperature and pressure, corrosive atmosphere and high speed of motion. On the other hand, the geometrical structure of the rotor blades at their tips turns out to be a key problem for the distance measurement. In particular, the blade tip is composed of small extended portions forming thin ribs of only a few millimeters width. Many established distance sensors like e. g. capacitive sensors cannot detect the correct tip clearance of the blade edge independently from other structures on the blade end only due to their large surface area and thus their lack of spatial resolution. The problem of small structure sizes is overcome by choosing a synthetic aperture radar (SAR) in the millimeter wave range capable of resolving the edges of a typical blade tip. The clearance is determined by measuring the reflection at the blade tip while passing by the antenna, subsequently focusing the data by means of a matched filter operation and interpreting the phase of the blade edge reflection according to the CW radar principle. For this, an autofocus approach was developed, which provides an estimate of the clearance as a first result, which is utilized to overcome the phase ambiguity and thus to increase the measurement range. The autofocus algorithm applies a weighted phase gradient of the point-like blade edge reflection as cost function and sensitive indicator for the focal quality.

  8. THE LARGE MILLIMETER TELESCOPE

    Directory of Open Access Journals (Sweden)

    D. H. Hughes

    2009-01-01

    Full Text Available This paper, presented on behalf of the Large Millimeter Telescope (LMT project team, describes the status and near-term plans for the telescope and its initial instrumentation. The LMT is a bi-national collaboration between M xico and the USA, led by the Instituto Nacional de Astrof sica, ptica y Electr nica (INAOE and the University of Massachusetts at Amherst, to construct, commission and operate a 50 m diameter millimeterwave radio telescope. Construction activities are nearly complete at the LMT site, at an altitude of 4600 m on the summit of Sierra Negra, an extinct volcano in the Mexican state of Puebla. Full movement of the telescope, under computer control in both azimuth and elevation, has been achieved. First-light at centimeter wavelengths on astronomical sources was obtained in November 2006. Installation of precision surface segments for millimeter-wave operation is underway, with the inner 32 m diameter of the surface now complete and ready to be used to obtain rst-light at millimeter wavelengths in 2008. Installation of the remainder of the re ector will continue during the next year and be completed in 2009 for nal commissioning of the antenna. The full LMT antenna, out ted with its initial complement of scienti c instruments, will be a world-leading scienti c research facility for millimeter-wave astronomy.

  9. Transmission of Duobinary Signal in Optical 40 GHz Millimeter-Wave Radio-Over-Fiber Systems Utilizing Dual-Arm LiNbO3 Mach-Zehnder Modulator for Downstream

    Science.gov (United States)

    Dong-Nhat, Nguyen; Malekmohammadi, Amin

    2016-06-01

    In this paper, for the first time transmission of 2.5 Gb/s duobinary signal is investigated for the downlink direction in 40 GHz optical millimeter-wave generation or up-conversion, utilizing a dual-arm LiNb{O}_3 Mach-Zehnder modulator based on different modulation schemes, namely double- and single-sideband (DSB and SSB) and optical carrier suppression (OCS). The up-converted optical millimeter-wave employing OCS modulation scheme indicates the highest back-to-back received optical power and the smallest power penalty after long propagation in the single-mode fiber, in comparison to DSB and SSB. Directly modulated laser in association with OCS modulation scheme has been used to generate duobinary optical millimeter-wave signal in order to minimize the cost and complexity of the system.

  10. Photon noise from chaotic and coherent millimeter-wave sources measured with horn-coupled, aluminum lumped-element kinetic inductance detectors

    CERN Document Server

    Flanigan, Daniel; Jones, Glenn; Johnson, Bradley R; Ade, Peter; Araujo, Derek; Bradford, Kristi; Cantor, Robin; Che, George; Day, Peter K; Doyle, Simon; Kjellstrand, Carl Bjorn; LeDuc, Henry G; Limon, Michele; Luu, Vy; Mauskopf, Philip; Miller, Amber; Mroczkowski, Tony; Tucker, Carole; Zmuidzinas, Jonas

    2015-01-01

    We report photon-noise limited performance of horn-coupled, aluminum lumped-element kinetic inductance detectors at millimeter wavelengths. The detectors are illuminated by a millimeter-wave source that uses an active multiplier chain to produce radiation between 140 and 160 GHz. We feed the multiplier with either amplified broadband noise or a continuous-wave tone from a microwave signal generator. We demonstrate that the detector response over a 40 dB range of source power is well-described by a simple model that considers the number of quasiparticles. The detector noise-equivalent power (NEP) is dominated by photon noise when the absorbed power is greater than approximately 1 pW, which corresponds to $\\mathrm{NEP} \\approx 2 \\times 10^{-17} \\; \\mathrm{W} \\; \\mathrm{Hz}^{-1/2}$, referenced to absorbed power. At higher source power levels we observe the relationships between noise and power expected from the photon statistics of the source signal: $\\mathrm{NEP} \\propto P$ for broadband (chaotic) illumination ...

  11. Millimeter wave characteristics of intrinsic Josephson junctions with planar equiangular spiral antenna in misaligned Tl2Ba2CaCu2O8 thin film

    Science.gov (United States)

    Liu, X.; Wang, P.; Xie, W.; Ma, L. J.; Zhao, X. J.; He, M.; Ji, L.; Zhang, X.

    2015-12-01

    An intrinsic Josephson junctions (IJJs) microbridge with planar equiangular spiral antenna (PESA) is proposed and studied by simulation and experiment. This IJJs circuit is simulated firstly to obtain the minimum of reflection coefficient and pattern. Secondly, IJJs with PESA are fabricated on misaligned Tl2Ba2CaCu2O8 superconducting film. The millimeter wave characteristics are investigated by a Febry-Pérot resonator, which consists of a spherical mirror antenna and a plane mirror. At 37.4 GHz, the IJJs and the millimeter wave show an optimum coupling, which deviate from the simulation for only 0.004 GHz. In addition, the extent of the coupling between IJJs and the resonator is discussed at different angle for the polarization direction of the spherical mirror antenna with the microbridge. The result shows that the strongest coupling is obtained at 0-30° angle. Good conformance of measurements and simulations illustrate the effectiveness of our design in strong coupling between sample and resonator.

  12. Gain and far-field patterns for phase-correcting Fresnel zone plate antennas at millimeter-wave and terahertz frequencies

    Science.gov (United States)

    Wiltse, James C.

    2007-04-01

    The Fresnel zone plate lens antenna, which provides advantages compared to a normal paraboloidal or spherical lens, has been extensively investigated in the millimeter-wave and terahertz regions. The advantages include reduced weight, volume, and attenuation and simplicity of design. The principal disadvantage is that the zone plate sometimes provides reduced gain compared to a true lens. Particularly at high millimeter-wave or terahertz frequencies the low loss of the zone plate more than compensates for the reduced directivity. This paper investigates the gains and far-field patterns for a number of cases and gives both the analysis and numerical results for the examples. These cases have dealt with large-angle designs, where the focal length (F) and diameter (D) are comparable (F/D = 0.3 to 2.5), unlike the typical optical examples. The antenna patterns are found to have beamwidths and first sidelobes that are similar to what one would obtain with a standard lens, given the same aperture illumination. Appropriate feed designs are also described. For best aperture efficiency the illumination taper is about 10 dB, and this gives first sidelobe levels of about -24dB for a circular aperture. Far-out average sidelobes are not as low as for a true lens, and this is where the gain is affected.

  13. Free space millimeter wave-coupled electro-optic high speed nonlinear polymer phase modulator with in-plane slotted patch antennas.

    Science.gov (United States)

    Park, D H; Pagán, V R; Murphy, T E; Luo, J; Jen, A K-Y; Herman, W N

    2015-04-06

    We report in-plane slotted patch antenna-coupled electro-optic phase modulators with a carrier-to-sideband ratio (CSR) of 22 dB under an RF power density of 120 W/m(2) and a figure of merit of 2.0 W(-1/2) at the millimeter wave frequencies of 36-37 GHz based on guest-host type of second-order nonlinear polymer SEO125. CSR was improved more than 20 dB by using a SiO(2) protection layer. We demonstrate detection of 3 GHz modulation of the RF carrier. We also derive closed-form expressions for the modulated phase of optical wave and carrier-to-sideband ratio. Design, simulation, fabrication, and experimental results are discussed.

  14. Hybrid integration of synthesized dielectric image waveguides in substrate integrated circuit technology and its millimeter wave applications

    Science.gov (United States)

    Patrovsky, Andreas

    -band (75 GHz to 110 GHz), a transition from rectangular waveguide to SIIG was developed. Another transition to either microstrip or CPW is essential to enable coplanar probe measurements and to achieve compatibility with monolithic millimeter wave integrated circuits (MMICs). Microstrip and image guide have very different requirements for the substrate thickness, for which reason efforts were concentrated on a wideband transition between the SIIG and CPW. The designed transition shows good broadband performance and minimal radiation loss. Other transitions from the SIIG to the Substrate Integrated Waveguide (SIW) are also presented in the context of substrate integrated circuits (SICs). The latter technology combines planar transmission lines and originally non-planar waveguide structures that are synthesized in planar form on a common substrate. High alignment precision is a direct consequence, which eliminates the necessity for additional tuning. As an open dielectric waveguide technology with very small transmission loss, the SIIG is particularly suitable for antennas and corresponding feed lines. The similarity of the SIIG with other dielectric waveguides and especially with the image guide suggests a knowledge transfer from known dielectric antennas. A planar SIIG rod antenna was designed and fabricated, as a derivative of the established polyrod antenna. The structural shape is simple and compact, and it provides a medium gain in the range of 10 dBi to 15 dBi. A second developed type, an SIIG traveling-wave linear array antenna, is frequency-steerable through broadside due to special radiation elements. The novel design of a slab-mode antenna forms an endfire beam by a planar lens configuration. In addition, all of those dielectric-based antennas are highly efficient. Being synthesized on a planar substrate, the SIIG can be combined in a hybrid way with other waveguide structures on the same substrate in so-called substrate integrated circuits (SICs). It joins the

  15. A CMOS millimeter-wave transceiver embedded in a semi-confocal Fabry-Perot cavity for molecular spectroscopy.

    Science.gov (United States)

    Drouin, Brian J; Tang, Adrian; Schlecht, Erich; Brageot, Emily; Gu, Q Jane; Ye, Y; Shu, R; Frank Chang, Mau-Chung; Kim, Y

    2016-08-21

    The extension of radio frequency complementary metal oxide semiconductor (CMOS) circuitry into millimeter wavelengths promises the extension of spectroscopic techniques in compact, power efficient systems. We are now beginning to use CMOS millimeter devices for low-mass, low-power instrumentation capable of remote or in situ detection of gas composition during space missions. We have chosen to develop a Flygare-Balle type spectrometer, with a semi-confocal Fabry-Perot cavity to amplify the pump power of a mm-wavelength CMOS transmitter that is directly coupled to the planar mirror of the cavity. We have built a pulsed transceiver system at 92-105 GHz inside a 3 cm base length cavity and demonstrated quality factor up to 4680, allowing for modes with 20 MHz bandwidth, with a sufficient cavity amplification factor for mW class transmitters. This work describes the initial gas measurements and outlines the challenges and next steps.

  16. A CMOS millimeter-wave transceiver embedded in a semi-confocal Fabry-Perot cavity for molecular spectroscopy

    Science.gov (United States)

    Drouin, Brian J.; Tang, Adrian; Schlecht, Erich; Brageot, Emily; Gu, Q. Jane; Ye, Y.; Shu, R.; Frank Chang, Mau-chung; Kim, Y.

    2016-08-01

    The extension of radio frequency complementary metal oxide semiconductor (CMOS) circuitry into millimeter wavelengths promises the extension of spectroscopic techniques in compact, power efficient systems. We are now beginning to use CMOS millimeter devices for low-mass, low-power instrumentation capable of remote or in situ detection of gas composition during space missions. We have chosen to develop a Flygare-Balle type spectrometer, with a semi-confocal Fabry-Perot cavity to amplify the pump power of a mm-wavelength CMOS transmitter that is directly coupled to the planar mirror of the cavity. We have built a pulsed transceiver system at 92-105 GHz inside a 3 cm base length cavity and demonstrated quality factor up to 4680, allowing for modes with 20 MHz bandwidth, with a sufficient cavity amplification factor for mW class transmitters. This work describes the initial gas measurements and outlines the challenges and next steps.

  17. A Comparison of Fundamental Noise in Kinetic Inductance Detectors and Transition Edge Sensors for Millimeter-wave Applications

    CERN Document Server

    Lowitz, A E; Golwala, S R; Timbie, P T

    2014-01-01

    Kinetic inductance detectors (KIDs) show promise as a competitive technology for astronomical observations over a wide range of wavelengths. We are interested in comparing the fundamental limitations to the sensitivity of KIDs with that of transition edge sensors (TESs) at millimeter wavelengths, specifically over the wavelengths required for studies of the Cosmic Microwave Background (CMB). We calculate the total fundamental noise arising from optical and thermal excitations in TESs and KIDs for a variety of bath temperatures and optical loading scenarios for applications at millimeter wavelengths. Special consideration is given to the case of ground-based observations of 100 GHz radiation with a 100 mK bath temperature, conditions consistent with the planned second module of the QUBIC telescope, a CMB instrument. Under these conditions, a titanium nitride KID with optimized critical temperature pays a few percent noise penalty compared to a typical optimized TES.

  18. Preparation, Characterization, and Millimeter Wave Attenuation of Carbon Fibers Coated with Ni-Cu-P and Ni-Co-P Alloys

    Science.gov (United States)

    Ye, Mingquan; Li, Zhitao; Wang, Chen; Han, Aijun

    2015-12-01

    Composite carbon fibers (CFs) coated with Ni-X-P (X = Cu, Co, none) alloys were prepared by electroless plating. The morphology, crystal structure, elemental composition, and millimeter wave (MMW) attenuation performance of the alloy-coated CFs were characterized by scanning electron microscopy, x-ray diffractometry, energy-dispersive spectrometry, and microwave attenuation. CFs were coated with a layer of alloy particles. The P content in the Ni-Cu-P or Ni-Co-P-coated alloy was lower than that in the Ni-P alloy, and coating alloy Ni-P was amorphous. Coating alloys exhibited crystal characteristics after Cu or Co introduction. MMW-attenuation performance of alloy-coated CFs showed that the 3 and 8 mm wave-attenuation effects of CF/Ni-Cu-P and CF/Ni-Co-P were better than those of CF/Ni-P and CFs. The 8 mm wave-attenuation values and their increases were larger than those of the 3 mm wave. The MMW-attenuation performance is attributable to the alloy bulk resistivity and P content. The 3 mm wave-attenuation effects of wavelength-coated CF samples were slightly larger than those of the half wavelength samples. An optimal weight gain value existed for the MMW-attenuation performance of alloy-coated CFs.

  19. Novel Low-Cost, Low-Power Miniature Thermionic Cathode Developed for Microwave/Millimeter Wave Tube and Cathode Ray Tube Applications

    Science.gov (United States)

    Wintucky, Edwin G.

    1999-01-01

    A low cost, small size and mass, low heater power, durable high-performance barium dispenser thermionic cathode has been developed that offers significant advancements in the design, manufacture, and performance of the electron sources used in vacuum electronic devices--such as microwave (and millimeter wave) traveling-wave tubes (TWT's)--and in display devices such as high-brightness, high-resolution cathode ray tubes (CRT's). The lower cathode heater power and the reduced size and mass of the new cathode are expected to be especially beneficial in TWT's for deep space communications, where future missions are requiring smaller spacecraft, higher data transfer rates (higher frequencies and radiofrequency output power), and greater electrical efficiency. Also expected to benefit are TWT's for commercial and government communication satellites, for both low and geosynchronous Earth orbit, with additional benefits offered by lower cost and potentially higher cathode current loading. A particularly important TWT application is in the microwave power module (MPM), which is a hybrid microwave (or millimeter wave) amplifier consisting of a low-noise solid state driver, a vacuum power booster (small TWT), and an electronic power conditioner integrated into a single compact package. The attributes of compactness and potentially high electrical efficiency make the MPM very attractive for many commercial and government (civilian and defense) applications in communication and radar systems. The MPM is already finding application in defense electronic systems and is under development by NASA for deep space communications. However, for the MPM to become competitive and commercially successful, a major reduction in cost must be achieved.

  20. 毫米波近程主动扫描成像研究%Research on Millimeter wave Near-field active Imaging

    Institute of Scientific and Technical Information of China (English)

    曹志翔; 时华峰; 纪泽栋; 王园; 金雷

    2011-01-01

    文章介绍了一套Ka波段毫米波近程成像系统。振荡器产生频率为35GHz的毫米波,通过透镜天线照射到目标各点进行扫描,检测目标各点回波信号的强弱,采集信号并传输数据给计算机,最终得到目标各点的反射特性,做成毫米波图像。成像原理,即对低噪放和检波放大模块进行了性能测试,利用成像系统对携有金属锉刀的人体模型进行了成像实验得到可辨别的图像。此系统可用于机场,车站,码头的安全检查中。%This paper introduces the ka-band millimeter wave near-field imaging system. The oscillator gives the millimeter wave with the frequency of 35GHz. The wave transmits by the lens antenna and irradiates the target points. The system detects the strength of the each point' s echo, samples the signal and transmits the date to the computer for obtaining the imaging. It states the imaging theory, tests the LNA and the detector and is used for imaging the artificial model which carries the metal. The imaging shows the shape of the metal, so it demonstrates that the system can be used for security check in the airports, the stations and the wharfs.