Longitudinal ridging test for ACR-1000® fuel sheathing
Energy Technology Data Exchange (ETDEWEB)
Bates, M.; Abbas, S.A.; Chakraborty, K.; Wang, X.; Xu, Z. [Atomic Energy of Canada Limited, Mississauga, Ontario (Canada)
2010-07-01
CANDU® fuel uses thin wall sheathing to reduce neutron absorption, enhance uranium utilization and provide excellent heat transfer between the sheathing and the UO{sub 2} pellets. A large diametral clearance between the fuel pellets and the sheath can result in severe longitudinal ridging under reactor operating conditions. The Advanced CANDU Reactor(ACR-1000®) fuel will also adopt thin wall sheathing. Since the ACR-1000 reference fuel element dimensions and the primary heat transport operating parameters are different compared to the CANDU-6, out-reactor tests were performed for ACR-1000 fuel covering the applicable range of parameters that have an impact on longitudinal ridge formation. This paper presents the range of parameters tested and the test method developed, which are used in predicting critical collapse pressures for longitudinal ridge formation of fuel elements with dimensions spanning both of the ACR-1000 fuel element types. The results from this testing are discussed. (author)
ACR-1000: Operator - based development
International Nuclear Information System (INIS)
Atomic Energy of Canada Limited (AECL) has adapted the successful features of CANDU* reactors to establish Generation III+ Advanced CANDU ReactorTM (ACRTM) technology. The ACR-1000TM nuclear power plant is an evolutionary product, starting with the strong base of CANDU reactor technology, coupled with thoroughly-demonstrated innovative features to enhance economics, safety, operability and maintainability. The ACR-1000 benefits from AECL's continuous-improvement approach to design, that enabled the traditional CANDU 6 product to compile an exceptional track record of on-time, on budget product delivery, and also reliable, high capacity-factor operation. The ACR-1000 engineering program has completed the basic plant design and has entered detailed pre-project engineering and formal safety analysis to prepare the preliminary (non-project-specific) safety case. The engineering program is strongly operator-based, and encompasses much more than traditional pre-project design elements. A team of utility-experienced operations and maintenance experts is embedded in the engineering team, to ensure that all design decisions, at the system and the component level, are taken with the owner-operator interest in mind. The design program emphasizes formal review of operating feedback, along with extensive operator participation in program management and execution. Design attention is paid to layout and access of equipment, to component and material selection, and to ensuring maximum ability for on-line maintenance. This enables the ACR-1000 to offer a three-year interval between scheduled maintenance outages, with a standard 21-day outage duration. SMART CANDUTM technology allows on-line monitoring and diagnostics to further enhance plant operation. Modules of the Advanced CANDU SMART technologies are already being back-fitted to current CANDU plants. As well as reviewing the ACR-1000 design features and their supporting background, the paper describes the status of main program
Methodology for fission product release calculations during an ACR-1000 end-fitting failure event
International Nuclear Information System (INIS)
The ACR-1000® reactor enhances and retains the proven features of the CANDU® design such as the concept of the horizontal fuel channel core. At each end of a fuel channel, there is an end-fitting incorporating a feeder connection through which pressurized coolant enters and leaves the fuel channel, where 12 fuel bundles are inserted. The safety analysis cases include postulated end-fitting failure events to assess the fission product releases from all fuel bundles which would be ejected out of the channel and oxidized in the air-steam environment under decay power. This paper presents the methodology used in assessing the fuel behaviour and the fission product releases during a postulated end-fitting failure in an ACR-1000 reactor. After the end-fitting failure, the 12 fuel bundles are ejected out of the channel and drop onto the fuelling machine vault floor. The fuel bundles are likely heavily damaged by impact and would break into small clusters of elements or fragments. To calculate the fission product releases from an individual fragment, the transient fuel temperature is numerically solved by differential heat equations; the air oxidation model is chosen for the event accordingly; and the fission product inventory and releases are estimated by computer codes ORIGEN-S, CATHENA, ELESTRES and SOURCE-IST. Finally, the total fission product releases from all fragments into containment are calculated. This methodology has been developed for ACR-1000 safety analysis, which is also applicable to CANDU. With the new methodology, the transient releases from up to 150 fission products can be estimated as detail as in fragment. In this paper, a sample calculation is also provided to show the application of the methodology in ACR-1000 safety analysis for end-fitting failure. (author)
ACR-1000 - Designed for constructability
International Nuclear Information System (INIS)
Full text: One of the key aspects to be considered in the delivery of a Nuclear Power Plant is the security of the construction schedule and the need for lower construction costs. Many industries are using skids, modules and prefabrications to enhance construction productivity, reduce schedules and thus reduce costs. The leaders in this regard have traditionally been in the off-shore oil and gas, chemical, refinery and ship building industries. The concept of using modules has been utilized in Nuclear Power Plant design and construction. Atomic Energy of Canada Limited (AECL) has had considerable success at the Qinshan Nuclear Power project in China with the use of modularization, which proved extremely effective in the ability to organize parallel construction activities and shortening the schedule. Extensive use has been made of skids and modules in Japan and this also has proven effective in shortening schedules in the construction of nuclear power plants. Secondary benefits of modularization and prefabrication include decreased site congestion and logistical issues, increased worker safety and better quality control of fabrication. Modules and prefabrication allow work to be shifted to areas where skilled trades are more readily available from a site where skilled trades are very limited. One of the objectives of the ACR-1000 project is to produce a design that allows for a very secure construction schedule. The construction method and strategy, consisting of extensive use of prefabrication and modularization was defined very early in the ACR-1000 conceptual phase of the layout and design process. This has been achieved through a constructability programme that integrates the civil design with site erection and module installation. This approach takes the concept of modularization to an entirely new level, in which the use of modules is built into the design from the start, rather than backfitting modular construction into a conventionally designed plant. This
ACR-1000TM - advanced Candu reactor design
International Nuclear Information System (INIS)
Atomic Energy of Canada Limited (AECL) has developed the Advanced CANDU ReactorTM- 1000 (ACR-1000TM) as an evolutionary advancement of the current CANDU 6TM reactor. This evolutionary advancement is based on AECL's in-depth knowledge of CANDU structures, systems, components and materials, gained during 50 years of continuous construction, engineering and commissioning, as well as on the experience and feedback received from operators of CANDU plants. The ACR design retains the proven strengths and features of CANDU reactors, while incorporating innovations and state-of-the-art technology. These innovations improve economics, inherent safety characteristics, and performance, while retaining the proven benefits of the CANDU family of nuclear power plants. The Canadian nuclear reactor design evolution that has reached today's stage represented by the ACR-1000, has a long history dating back to the early 1950's. In this regard, Canada is in a unique situation, shared only by a very few other countries, where original nuclear power technology has been invented and further developed. The ACR design has been reviewed by domestic and international regulatory bodies, and has been given a positive regulatory opinion about its licensability. The Canadian regulator, the Canadian Nuclear Safety Commission (CNSC) completed the Phase 1 and Phase 2 pre-project design reviews in December 2008 and August 2009, respectively, and concluded that there are no fundamental barriers to licensing the ACR-1000 design in Canada. The final stage of the ACR-1000 design is currently underway and will be completed by fall of 2011, along with the final elements of the safety analyses and probabilistic safety analyses supporting the finalized design. The generic Preliminary Safety Analysis Report (PSAR) for the ACR-1000 was completed in September 2009. The PSAR demonstrates ACR-1000 safety case and compliance with Canadian and international regulatory requirements and expectations. (authors)
International Nuclear Information System (INIS)
It is very well known that the CANDU reactor has positive Coolant Void Reactivity (CVR), which is most important criticisms about CANDU. The most recent innovations based on using a thin absorbent Hafnium shell in the central bundle element were successfully been applied to the Advanced CANDU Reactor (ACR) project. The paper's objective is to analyze elementary lattice cell effects in applying such methods to reduce the CVR. Three basic fuel designs in their corresponding geometries were chosen to be compared: the ACR-1000TM, the RU-43 (developed in INR Pitesti) and the standard CANDU fuel. The bundle geometry influence on void effect was also evaluated. The WIMS calculations proved the Hafnium absorber suitability (in the latest 'shell design') to achieve the negative CVR target with great accuracy for the ACR-1000 fuel bundle design than for the other two projects. (authors)
Static stress analysis of CANFLEX fuel bundles
International Nuclear Information System (INIS)
The static stress analysis of CANFLEX bundles is performed to evaluate the fuel structural integrity during the refuelling service. The structure analysis is carried out by predicting the drag force, stress and displacements of the fuel bundle. By the comparison of strength tests and analysis results, the displacement values are well agreed within 15%. The analysis shows that the CANFLEX fuel bundle keep its structural integrity. 24 figs., 6 tabs., 12 refs. (Author) .new
Hydraulic characteristics of HANARO fuel bundles
Energy Technology Data Exchange (ETDEWEB)
Cho, S.; Chung, H. J.; Chun, S. Y.; Yang, S. K.; Chung, M. K. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)
1997-12-31
This paper presents the hydraulic characteristics measured by using LDV (Laser Doppler Velocimetry) in subchannels of HANARO, KAERI research reactor, fuel bundle. The fuel bundle consists of 18 axially finned rods with 3 spacer grids, which are arranged in cylindrical configuration. The effects of the spacer grids on the turbulent flow were investigated by the experimental results. Pressure drops for each component of the fuel bundle were measured, and the friction factors of fuel bundle and loss coefficients for the spacer grids were estimated from the measured pressure drops. Implications regarding the turbulent thermal mixing were discussed. Vibration test results measured by using laser vibrometer were presented. 9 refs., 12 figs. (Author)
Defueled channel experiments in ZED-2 in support of ACR-1000 ROP analysis
International Nuclear Information System (INIS)
Defueled channel experiments were performed in ZED-2 to help resolve discrepancies between calculated flux detector response during refueling in ACR-1000 according the reactor codes RFSP and MCNP. The data produced from these experiments was later used in a separate Regional-Over-Power (ROP) analysis to verify MCNP and RFSP neutron response predictions during refueling. These experiments provided information on thermal flux distributions interior and exterior to a fueled and defueled channel; and on epithermal absolute flux distributions exterior to the same channel. Critical height and moderator temperature data for fueled and defueled channel conditions were also measured. In addition, standard platinum-clad Inconel Self-Powered Detector (SPD) performance data was obtained. The following reactor physics and SPD parameters were measured in these experiments: C Radial flux distribution inside the channel of interest (fueled and defueled), C Radial flux distribution outside the channel of interest (fueled and defueled), C Epithermal radial flux distribution outside the channel of interest (fueled and defueled), and C SPD response parallel to and normal to the channel of interest (fueled and defueled).
Computational fluid dynamics model for liquid poison injection in the ACR-1000 design
International Nuclear Information System (INIS)
The Advanced CANDU Reactor (ACR-1000) Shutdown System 2 is capable of quickly rendering the reactor core subcritical by injecting a neutron absorbing solution (poison) into the heavy water moderator via injection nozzles. A Computational Fluid Dynamics (CFD) model has been developed to simulate the poison injection into the moderator. This paper presents the model development and preliminary results to demonstrate its feasibility to the ACR-1000 design. The CFD model has been validated against the test data from the CANDU 6 LISS test. Validation tests based on the ACR-1000 design are underway, in which the poison concentration distribution will be measured. (author)
In-pile test of Qinshan PWR fuel bundle
International Nuclear Information System (INIS)
In-pile test of Qinshan Nuclear Power Plant PWR fuel bundle has been conducted in HWRR HTHP Test loop at CIAE. The test fuel bundle was irradiated to an average burnup of 25000 Mwd/tU. The authors describe the structure of (3 x 3-2) test fuel bundle, structure of irradiation rig, fuel fabrication, irradiation conditions, power and fuel burnup. Some comments on the in-pile performance for fuel bundle, fuel rod and irradiation rig were made
TRIGA spent fuel bundles safe storage
International Nuclear Information System (INIS)
TRIGA-SSR is a steady state research and material test reactor that has been in operation since 1980. The original TRIGA fuel was HEU (highly enriched uranium) with a U235 enrichment of 93 per cent. Almost all TRIGA HEU fuel bundles are now burned-up. Part of the spent fuel was loaded and transferred to US, in a Romania - DOE arrangement. The rest of the TRIGA fuel bundles have to be temporarily stored in the TRIGA facility. As the storage conditions had to be established with caution, neutron and thermal hydraulic evaluations of the storage conditions were required. Some criticality evaluations were made based on the SAR (Safety Analysis Report) data. Fuel constant axial temperature approximation effect is usual for criticality computations. TRIGA-SSR fuel bundle geometry and materials model for SCALE5-CSAS module allows the introduction of a fuel temperature dependency for the entire fuel active height, using different materials for each fuel bundle region. Previous RELAP5 thermal hydraulic computations for an axial and radial power distribution in the TRIGA fuel pin were done. Fuel constant temperature approximation overestimates pin factors for every core operating at high temperatures. From the thermal hydraulic point of view the worst condition of the storage grid occurs when the transfer channel is accidentally emptied of water from the pool, or the bundle is handled accidentally to remain in air. All the residual heat from the bundles has to be removed without fuel overheating and clad failure. RELAP5 computer code for residual heat removal was used in the assessment of residual heat removal. We made a couple of evaluations of TRIGA bundle clad temperatures in air cooling conditions, with different residual heat levels. The criticality computations have shown that the spent TRIGA fuel bundles storage grid is strongly sub-critical with k(eff) = 0.5951. So, there is no danger for a criticality accident for this storage grid type. The assessment is done for
Development of nuclear fuel. Development of CANDU advanced fuel bundle
International Nuclear Information System (INIS)
In order to develop CANDU advanced fuel, the agreement of the joint research between KAERI and AECL was made on February 19, 1991. AECL conceptual design of CANFLEX bundle for Bruce reactors was analyzed and then the reference design and design drawing of the advanced fuel bundle with natural uranium fuel for CANDU-6 reactor were completed. The CANFLEX fuel cladding was preliminarily investigated. The fabricability of the advanced fuel bundle was investigated. The design and purchase of the machinery tools for the bundle fabrication for hydraulic scoping tests were performed. As a result of CANFLEX tube examination, the tubes were found to be meet the criteria proposed in the technical specification. The dummy bundles for hydraulic scoping tests have been fabricated by using the process and tools, where the process parameters and tools have been newly established. (Author)
Using Advanced Fuel Bundles in CANDU Reactors
International Nuclear Information System (INIS)
Improving the exit fuel burnup in CANDU reactors was a long-time challenge for both bundle designers and performance analysts. Therefore, the 43-element design together with several fuel compositions was studied, in the aim of assessing new reliable, economic and proliferation-resistant solutions. Recovered Uranium (RU) fuel is intended to be used in CANDU reactors, given the important amount of slightly enriched Uranium (~0.96% w/o U235) that might be provided by the spent LWR fuel recovery plants. Though this fuel has a far too small U235 enrichment to be used in LWR's, it can be still used to fuel CANDU reactors. Plutonium based mixtures are also considered, with both natural and depleted Uranium, either for peacefully using the military grade dispositioned Plutonium or for better using Plutonium from LWR reprocessing plants. The proposed Thorium-LEU mixtures are intended to reduce the Uranium consumption per produced MW. The positive void reactivity is a major concern of any CANDU safety assessment, therefore reducing it was also a task for the present analysis. Using the 43-element bundle with a certain amount of burnable poison (e.g. Dysprosium) dissolved in the 8 innermost elements may lead to significantly reducing the void reactivity. The expected outcomes of these design improvements are: higher exit burnup, smooth/uniform radial bundle power distribution and reduced void reactivity. Since the improved fuel bundles are intended to be loaded in existing CANDU reactors, we found interesting to estimate the local reactivity effects of a mechanical control absorber (MCA) on the surrounding fuel cells. Cell parameters and neutron flux distributions, as well as macroscopic cross-sections were estimated using the transport code DRAGON and a 172-group updated nuclear data library. (author)
Enthalpy and void distributions in subchannels of PHWR fuel bundles
Energy Technology Data Exchange (ETDEWEB)
Park, J. W.; Choi, H.; Rhee, B. W. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)
1998-12-31
Two different types of the CANDU fuel bundles have been modeled for the ASSERT-IV code subchannel analysis. From calculated values of mixture enthalpy and void fraction distribution in the fuel bundles, it is found that net buoyancy effect is pronounced in the central region of the DUPIC fuel bundle when compared with the standard CANDU fuel bundle. It is also found that the central region of the DUPIC fuel bundle can be cooled more efficiently than that of the standard fuel bundle. From the calculated mixture enthalpy distribution at the exit of the fuel channel, it is found that the mixture enthalpy and void fraction can be highest in the peripheral region of the DUPIC fuel bundle. On the other hand, the enthalpy and the void fraction were found to be highest in the central region of the standard CANDU fuel bundle at the exit of the fuel channel. This study shows that the subchannel analysis is very useful in assessing thermal behavior of the fuel bundle that could be used in CANDU reactors. 10 refs., 4 figs., 2 tabs. (Author)
LVRF fuel bundle manufacture for Bruce
Energy Technology Data Exchange (ETDEWEB)
Pant, A. [Zircatec Precision Industries, Port Hope, Ontario (Canada)
2005-12-15
In response to the Power Uprate program at Bruce Power, Zircatec has committed to introduce, by Spring 2006 a new manufacturing line for the production of 43 element Bruce LVRF bundles containing Slightly Enriched Uranium (SEU) with a centre pin of blended dysprosia/urania (BDU). This is a new fuel design and is the first change in fuel design since the introduction of the current 37-element fuel over 20 years ago. Introduction of this new line has involved the introduction of significant changes to an environment that is not used to rapid changes with significant impact. At ZPI we have been able to build on our innovative capabilities in new fuel manufacturing, the strength and experience of our core team, and on our prevailing management philosophy of 'support the doer'. The presentation will discuss some of the novel aspects of this fuel introduction and the mix of innovative and classical project management methods that are being used to ensure that project deliveries are being met. Supporting presentations will highlight some of the issues in more detail. (author)
CHF Enhancement of Advanced 37-Element Fuel Bundles
Directory of Open Access Journals (Sweden)
Joo Hwan Park
2015-01-01
Full Text Available A standard 37-element fuel bundle (37S fuel bundle has been used in commercial CANDU reactors for over 40 years as a reference fuel bundle. Most CHF of a 37S fuel bundle have occurred at the elements arranged in the inner pitch circle for high flows and at the elements arranged in the outer pitch circle for low flows. It should be noted that a 37S fuel bundle has a relatively small flow area and high flow resistance at the peripheral subchannels of its center element compared to the other subchannels. The configuration of a fuel bundle is one of the important factors affecting the local CHF occurrence. Considering the CHF characteristics of a 37S fuel bundle in terms of CHF enhancement, there can be two approaches to enlarge the flow areas of the peripheral subchannels of a center element in order to enhance CHF of a 37S fuel bundle. To increase the center subchannel areas, one approach is the reduction of the diameter of a center element, and the other is an increase of the inner pitch circle. The former can increase the total flow area of a fuel bundle and redistributes the power density of all fuel elements as well as the CHF. On the other hand, the latter can reduce the gap between the elements located in the middle and inner pitch circles owing to the increasing inner pitch circle. This can also affect the enthalpy redistribution of the fuel bundle and finally enhance CHF or dry-out power. In this study, the above two approaches, which are proposed to enlarge the flow areas of the center subchannels, were considered to investigate the impact of the flow area changes of the center subchannels on the CHF enhancement as well as the thermal characteristics by applying a subchannel analysis method.
Filler metals for containers holding irradiated fuel bundles
International Nuclear Information System (INIS)
One of the procedures being considered for the disposal of Canadian deuterium uranium (CANDU) irradiated fuel bundles is to place the bundles in containers, fill the containers with metal, and place them underground. This investigation deals with the selection of the filler metal with particular reference to the reaction rate with, and bonding of the filler metal to, the fuel sheathing (Zircaloy 4) and potential container materials. Lead, zinc, and aluminium alloys were examined as potential filler metals. (U.K.)
Interactive hypermedia training manual for spent-fuel bundle counters
International Nuclear Information System (INIS)
Spent-fuel bundle counters, developed by the Canadian Safeguards Support Program for the International Atomic Energy Agency, provide a secure and independent means of counting the number of irradiated fuel bundles discharged into the fuel storage bays at CANDU nuclear power stations. Paper manuals have been traditionally used to familiarize IAEA inspectors with the operation, maintenance and extensive reporting capabilities of the bundle counters. To further assist inspectors, an interactive training manual has been developed on an Apple Macintosh computer using hypermedia software. The manual uses interactive animation and sound, in conjunction with the traditional text and graphics, to simulate the underlying operation and logic of the bundle counters. This paper presents the key features of the interactive manual and highlights the advantages of this new technology for training
Chop-leach fuel bundle residues densification by melting
Energy Technology Data Exchange (ETDEWEB)
Nelson, R.G.; Griggs, B.
1976-11-01
Two melting processes were investigated for the densification of fuel bundle residues: Industoslag melting and graphite crucible melting. The Industoslag process, with prior decontamination and sorting, can produce ingots of Zircaloy, stainless steel and Inconel of a quality suitable for refabrication and reuse. The process can also melt oxidized mixtures of fuel bundle residues for direct storage. Eutectic mixtures of these materials can be melted in graphite at temperatures of 1300/sup 0/C. Hydrogen absorption experiments with the zirconium-rich alloys show the alloys to be potential tritium reservoirs. 13 figures.
Interconnection of bundled solid oxide fuel cells
Brown, Michael; Bessette, II, Norman F; Litka, Anthony F; Schmidt, Douglas S
2014-01-14
A system and method for electrically interconnecting a plurality of fuel cells to provide dense packing of the fuel cells. Each one of the plurality of fuel cells has a plurality of discrete electrical connection points along an outer surface. Electrical connections are made directly between the discrete electrical connection points of adjacent fuel cells so that the fuel cells can be packed more densely. Fuel cells have at least one outer electrode and at least one discrete interconnection to an inner electrode, wherein the outer electrode is one of a cathode and and anode and wherein the inner electrode is the other of the cathode and the anode. In tubular solid oxide fuel cells the discrete electrical connection points are spaced along the length of the fuel cell.
Study on Unigraphics Drawing Modeling Method for 37-Element and CANFLEX Fuel Bundle
Energy Technology Data Exchange (ETDEWEB)
Jeon, Yu Mi; Park, Joo Hwan
2010-03-15
The CANFLEX bundle contains 43 elements of two different diameters. It has two rings of small diameter elements on the outside, and eight elements (with diameter slightly larger than those in the standard 37-Element bundle) in the center. This larger number of small diameter elements on the outside of the CANFLEX bundle enhances thermo-hydraulic capability, resulting in a higher power capability and an improvement in operating safety margins. As a Result of advanced fuel design for CANFLEX fuel bundles, components consisting of fuel bundles are more complicated. Hence, the detailed modeling of components is inevitable in order to analyze the fuel performance by computational fluid dynamics. In this report, the basic design of the advanced fuel for CANDU reactors was carried out and the methodology for the modeling of fuel bundle were described. Firstly, the components consisting of fuel bundles were separately modeled and saved with different file names. The final feature of fuel bundle was accomplished by an assembling process of components. Since this report developed the modeling methodology based on the Unigraphics program, the basic explanations for the software were given first, and the complete modeling of 37-elements and CANFLEX fuel bundles were provided. The components of CANFLEX fuel bundles were also compared with that of 37-elements fuel bundles. Although, in this report, the modeling methodology is applied only to 37-elements and CANFLEX fuel bundles, this methodology may be applicable to the newly designed fuel bundles which are to be developed in the future
Coupling Systems of Five CARA Fuel Bundles for Atucha I
International Nuclear Information System (INIS)
This paper describe the mechanical design of two options for the coupling systems of five CARA fuel bundles, to be used in the Atucha I nuclear power plant. These systems will be hydraulic tested in a low pressure loop to know their hydraulic loss of pressure
CAT reconstruction and potting comparison of a LMFBR fuel bundle
International Nuclear Information System (INIS)
A standard Liquid Metal Fast Breeder Reactor (LMFBR) subassembly used in the Experimental Breeder Reactor II (EBR-II) was investigated, by remote techniques, for fuel bundle distortion by both nondestructive and destructive methods, and the results from both methods were compared. The non-destructive method employed neutron tomography to reconstruct the locations of fuel elements through the use of a maximum entropy reconstruction algorithm known as MENT. The destructive method consisted of ''potting'' (a technique that embeds and permanently fixes the fuel elements in a solid matrix) the subassembly, and then cutting and polishing the individual sections. The comparison indicated that the tomography reconstruction provided good results in describing the bundle geometry and spacer-wire locations, with the overall resolution being on the order of a spacer-wire diameter. A dimensional consistency check indicated that the element and spacer-wire dimensions were accurately reproduced in the reconstruction
Investigations on flow induced vibration of simulated CANDU fuel bundles in a pipe
International Nuclear Information System (INIS)
In this paper, vibration of a two-bundle string consisting of simulated CANDU fuel bundles subjected to turbulent liquid flow is investigated through numerical simulations and experiments. Large eddy simulation is used to solve the three-dimensional turbulent flow surrounding the fuel bundles for determining fluid excitations. The CFD model includes pipe flow, flow through the inlet fuel bundle along with its two endplates, half of the second bundle and its upstream endplate. The fluid excitation obtained from the fluid model is subsequently fed into a fuel bundle vibration code written in FORTRAN. Fluid structure interaction terms for the fuel elements are approximated using the slender body theory. Simulation results are compared to measurements conducted on the simulated fuel bundles in a testing hydraulic loop. (author)
HLM fuel pin bundle experiments in the CIRCE pool facility
Energy Technology Data Exchange (ETDEWEB)
Martelli, Daniele, E-mail: daniele.martelli@ing.unipi.it [University of Pisa, Department of Civil and Industrial Engineering, Pisa (Italy); Forgione, Nicola [University of Pisa, Department of Civil and Industrial Engineering, Pisa (Italy); Di Piazza, Ivan; Tarantino, Mariano [Italian National Agency for New Technologies, Energy and Sustainable Economic Development, C.R. ENEA Brasimone (Italy)
2015-10-15
Highlights: • The experimental results represent the first set of values for LBE pool facility. • Heat transfer is investigated for a 37-pin electrical bundle cooled by LBE. • Experimental data are presented together with a detailed error analysis. • Nu is computed as a function of the Pe and compared with correlations. • Experimental Nu is about 25% lower than Nu derived from correlations. - Abstract: Since Lead-cooled Fast Reactors (LFR) have been conceptualized in the frame of GEN IV International Forum (GIF), great interest has focused on the development and testing of new technologies related to HLM nuclear reactors. In this frame the Integral Circulation Experiment (ICE) test section has been installed into the CIRCE pool facility and suitable experiments have been carried out aiming to fully investigate the heat transfer phenomena in grid spaced fuel pin bundles providing experimental data in support of European fast reactor development. In particular, the fuel pin bundle simulator (FPS) cooled by lead bismuth eutectic (LBE), has been conceived with a thermal power of about 1 MW and a uniform linear power up to 25 kW/m, relevant values for a LFR. It consists of 37 fuel pins (electrically simulated) placed on a hexagonal lattice with a pitch to diameter ratio of 1.8. The FPS was deeply instrumented by several thermocouples. In particular, two sections of the FPS were instrumented in order to evaluate the heat transfer coefficient along the bundle as well as the cladding temperature in different ranks of sub-channels. Nusselt number in the central sub-channel was therefore calculated as a function of the Peclet number and the obtained results were compared to Nusselt numbers obtained from convective heat transfer correlations available in literature on Heavy Liquid Metals (HLM). Results reported in the present work, represent the first set of experimental data concerning fuel pin bundle behaviour in a heavy liquid metal pool, both in forced and
Post-irradiation examination of the 37M fuel bundle at Chalk River Laboratories (AECL)
Energy Technology Data Exchange (ETDEWEB)
Armstrong, J. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Daniels, T. [Ontario Power Generation, Pickering, Ontario (Canada); Montin, J. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)
2014-03-15
The modified (-element (37M) fuel bundle was designed by Ontario Power Generation (OPG) to improve Critical Heat Flux (CHF) performance in ageing pressure tubes. A modification of the conventional 37-element fuel bundle design, the 37M fuel bundle allows more coolant flow through the interior sub-channels by way of a smaller central element. A demonstration irradiation (DI) of thirty-two fuel bundles was completed in 2011 at OPG's Darlington Nuclear Generating Station to confirm the suitability of the 37M fuel bundles for full core implementation. In support of the DI, fuel elements were examined in the Chalk River Laboratories Hot Cells. Inspection activities included: Bundle and element visual examination; Bundle and element dimensional measurements; Verification of bundle and element integrity; and Internal Gas Volume Measurements. The inspection results for 37M were comparable to that of conventional 37-element CANDU fuel. Fuel performance parameters of the 37M DI fuel bundle and fuel elements were within the range observed for similarly operated conventional 37-element CANDU fuel. Based on these Post Irradiation Examination (PIE) results, 37M fuel performed satisfactorily. (author)
Studies of a larger fuel bundle for the ABWR improved evolutionary reactor
International Nuclear Information System (INIS)
Studies for an Improved Evolutionary Reactor (IER) based on the Advanced Boiling Water Reactor (ABWR) were initiated in 1990. The author summarizes the current status of the core and fuel design. A core and fuel design based on a BWR K-lattice fuel bundle with a pitch larger than the conventional BWR fuel bundle pitch is under investigation. The core and fuel design has potential for improved core design flexibility and improved reactor transient response. Furthermore, the large fuel bundle, coupled with a functional control rod layout, can achieve improvement of operation and maintenance, as well as improvement of overall plant economy
LVRF fuel bundle manufacture for Bruce - project update
Energy Technology Data Exchange (ETDEWEB)
Pant, A. [Zircatec Precision Industries, Port Hope, Ontario (Canada)
2005-07-01
In response to the Power Uprate program at Bruce Power, Zircatec has committed to introduce, by Spring 2006 a new manufacturing line for the production of 43 element Bruce LVRF bundles containing Slightly Enriched Uranium (SEU) with a centre pin of blended dysprosia/urania (BDU). This is a new fuel design and is the first change in fuel design since the introduction of the current 37 element fuel over 20 years ago. Introduction of this new line has involved the introduction of significant changes to an environment that is not used to rapid changes with significant impact. At ZPI we have been able to build on our innovative capabilities in new fuel manufacturing, the strength and experience of our core team, and on our prevailing management philosophy of 'support the doer'. The presentation will discuss some of the novel aspects of this fuel introduction and the mix of innovative and classical project management methods that are being used to ensure that project deliverables are being met. Supporting presentations will highlight some of the issues in more detail. (author)
LVRF fuel bundle manufacture for Bruce - project update
International Nuclear Information System (INIS)
In response to the Power Uprate program at Bruce Power, Zircatec has committed to introduce, by Spring 2006 a new manufacturing line for the production of 43 element Bruce LVRF bundles containing Slightly Enriched Uranium (SEU) with a centre pin of blended dysprosia/urania (BDU). This is a new fuel design and is the first change in fuel design since the introduction of the current 37 element fuel over 20 years ago. Introduction of this new line has involved the introduction of significant changes to an environment that is not used to rapid changes with significant impact. At ZPI we have been able to build on our innovative capabilities in new fuel manufacturing, the strength and experience of our core team, and on our prevailing management philosophy of 'support the doer'. The presentation will discuss some of the novel aspects of this fuel introduction and the mix of innovative and classical project management methods that are being used to ensure that project deliverables are being met. Supporting presentations will highlight some of the issues in more detail. (author)
International Nuclear Information System (INIS)
The CANFLEX1 bundle is being developed jointly by AECL and KAERI as a vehicle for introducing the use of enrichment and advanced fuel cycles in CANDU2 reactors. The bundle design uses smaller diameter fuel elements in the outer ring of a 43-element bundle to reduce the maximum element ratings in a CANDU fuel bundle by 20% compared to the 37-element bundle currently in use. This facilitates burnups of greater than 21,000 MW d/TAU to optimize the economic benefit available from the use of enrichment and advanced fuel cycles. A combination of this lower fuel rating, plus development work underway at Aecl to enhance the thermalhydraulic characteristics of the bundle (including both CHF3 and bundle. This provides extra flexibility in the fuel management procedures required for fuel bundles with higher fissile contents. The different bundle geometry requires flow tests to demonstrate acceptable vibration and fretting behavior of the Conflux bundle. A program to undertake the necessary range of flow tests has started at KAERI, involving the fabrication of the required bundles, and setting up for the actual tests. A program to study the fuel management requirements for slightly enriched (0.9 wt % 235 in total U) Conflux fuel has been undertaken by both Aecl and KAERI staff, and further work has started for higher enrichments. Irradiation testing of the Conflux bundle started in the NUR reactor in 1989, and a second irradiation test is due to start shortly. This paper describes the program, and reviews the status of key parts of the program
International Nuclear Information System (INIS)
Full text: For reprocessing of PHWR fuel, fuel bundles are at present chopped mechanically into small pieces of pins using high tonnage mechanical press before dissolution. The existing method of bundle dismantling is purely mechanical using very high force for chopping. A laser based automated bundle dismantling system is developed. In the system, end-plates of bundle, which holds the fuel pins together, are cut using Nd-YAG laser to separate the bundles into pins. In addition to pin separation, the pins are to be chopped into small pieces using a small mechanical chopper. Since the spent fuel is highly radioactive, all these operations are performed remotely in hot cells. Post irradiation examination also requires dismantling of bundles into pins so that they can select the pins for the further examinations. In both these applications laser dismantling remains the most. important step and this system has been developed and tested. This paper describes the experience gained during the development efforts
Subchannel analysis of CANDU 37-element fuel bundles
International Nuclear Information System (INIS)
The subchannel analysis codes COBRA-IV and ASSERT-4 have been used to predict the mass and enthalpy imbalance within a CANDU 37-element fuel channel under various system conditions. The objective of this study was to assess the various capabilities of the ASSERT code and highlight areas where further validation or development may be needed. The investigation indicated that the ASSERT code has all the basic models required to accurately predict the flow and enthalpy imbalance for complex rod bundles. The study also showed that the code modelling of void drift and diffusion requires refinement to some coefficients and that further validation is needed at high flow rate and high void fraction conditions, where ASSERT and COBRA are shown to predict significantly different trends. The results of a recent refinement of ASSERT modelling are also discussed
Cap assembly for a bundled tube fuel injector
Energy Technology Data Exchange (ETDEWEB)
LeBegue, Jeffrey Scott; Melton, Patrick Benedict; Westmoreland, III, James Harold; Flanagan, James Scott
2016-04-26
A cap assembly for a bundled tube fuel injector includes an impingement plate and an aft plate that is disposed downstream from the impingement plate. The aft plate includes a forward side that is axially separated from an aft side. A tube passage extends through the impingement plate and the aft plate. A tube sleeve extends through the impingement plate within the tube passage towards the aft plate. The tube sleeve includes a flange at a forward end and an aft end that is axially separated from the forward end. A retention plate is positioned upstream from the impingement plate. A spring is disposed between the retention plate and the flange. The spring provides a force so as to maintain contact between at least a portion of the aft end of the tube sleeve and the forward side of the aft plate.
MENT reconstruction and potting comparison of a LMFBR fuel bundle
International Nuclear Information System (INIS)
Since the advent of computer-assisted-tomography (CAT), the CAT techniques have been rapidly expanded to the nuclear industry. A number of investigators have applied these techniques to reconstruct the fuel bundle configuration inside a subassembly with various degrees of resolution; however, there has been little data available on the accuracy of these reconstructions, and no comparisons have been made with the internal structure of actual irradiated subassemblies. Some efforts have utilized pretest mock-ups to calibrate the CAT algorithms, but the resulting mock-up configurations do not necessarily represent an actual subassembly, so an exact comparison has been lacking. The purpose of this paper is to present the results of a comparison between a CAT reconstruction of an irradiated subassembly and the destructive examination of the same subassembly
Automation in inspection of PHWR fuel elements & bundles at Nuclear Fuel Complex
International Nuclear Information System (INIS)
Nuclear Fuel Complex (NFC), Hyderabad, a constituent of Department of Atomic Energy, India manufactures fuel for all Indian nuclear power reactors. Currently NFC manufactures both 19 element & 37 element bundles for catering to the requirement of 220 MWe & 540 MWe PHWRs. In order to meet the growing needs for the Nuclear Fuel, NFC engaged in expansion of the production facilities. This calls for enhanced throughput at various inspection stages keeping in tandem with the production & for achieving this objective, NFC has chosen automation. This paper deals with automation of the inspection line at NFC. (author)
Testing and implementation program for the modified Darlington 37-element fuel bundle
International Nuclear Information System (INIS)
To mitigate the effects of reactor ageing, a design modification to the 37-element fuel is proposed in which the diameter of the centre element will be reduced to 11.5 mm from 13.1 mm. The testing and implementation phase for the 37-element fuel bundle modification is discussed in this paper. The initial plan for testing is to perform a set of out-reactor tests to assess the endurance, acoustic response and cross-flow behaviour of the revised fuel bundle design. The initial schedule outlines activities that will enable OPG to implement full core fuelling of the modified bundle within the next three to four years. (author)
Manufacturing of 37-element fuel bundles for PHWR 540 - new approach
Energy Technology Data Exchange (ETDEWEB)
Arora, U.K.; Sastry, V.S.; Banerjee, P.K.; Rao, G.V.S.H.; Jayaraj, R.N. [Nuclear Fuel Complex, Dept. Atomic Energy, Government of India, Hyderabad (India)
2003-07-01
Nuclear Fuel Complex (NFC), established in early seventies, is a major industrial unit of Department of Atomic Energy. NFC is responsible for the supply of fuel bundles to all the 220 MWe PHWRs presently in operation. For supplying fuel bundles for the forthcoming 540 MWe PHWRs, NEC is dovetailing 37-element fuel bundle manufacturing facilities in the existing plants. In tune with the philosophy of self-reliance, emphasis is given to technology upgradation, higher customer satisfaction and application of modern quality control techniques. With the experience gained over the years in manufacturing 19-element fuel bundles, NEC has introduced resistance welding of appendages on fuel tubes prior to loading of UO{sub 2} pellets, use of bio-degradable cleaning agents, simple diagnostic tools for checking the equipment condition, on line monitoring of variables, built-in process control methods and total productive maintenance concepts in the new manufacturing facility. Simple material handling systems have been contemplated for handling of the fuel bundles. This paper highlights the flow-sheet adopted for the process, design features of critical equipment and the methodology for fabricating the 37-element fuel bundles, 'RIGHT FIRST TIME'. (author)
Manufacturing of 37-element fuel bundles for PHWR 540 - new approach
International Nuclear Information System (INIS)
Nuclear Fuel Complex (NFC), established in early seventies, is a major industrial unit of Department of Atomic Energy. NFC is responsible for the supply of fuel bundles to all the 220 MWe PHWRs presently in operation. For supplying fuel bundles for the forthcoming 540 MWe PHWRs, NEC is dovetailing 37-element fuel bundle manufacturing facilities in the existing plants. In tune with the philosophy of self-reliance, emphasis is given to technology upgradation, higher customer satisfaction and application of modern quality control techniques. With the experience gained over the years in manufacturing 19-element fuel bundles, NEC has introduced resistance welding of appendages on fuel tubes prior to loading of UO2 pellets, use of bio-degradable cleaning agents, simple diagnostic tools for checking the equipment condition, on line monitoring of variables, built-in process control methods and total productive maintenance concepts in the new manufacturing facility. Simple material handling systems have been contemplated for handling of the fuel bundles. This paper highlights the flow-sheet adopted for the process, design features of critical equipment and the methodology for fabricating the 37-element fuel bundles, 'RIGHT FIRST TIME'. (author)
The behaviour of Phenix fuel pin bundle under irradiation
International Nuclear Information System (INIS)
An entire Phenix sub-assembly has been mounted and sectioned after irradiation. The examination of cross-sections revealed the effects of mechanical interaction in the bundle (ovalisations and contacts between clads). According to analysis of the sodium channels, cooling of the pin bundle remained uniform. (author)
Design and fabrication of remote welding system for the fuel bundle assembly
Energy Technology Data Exchange (ETDEWEB)
Kim, S.S.; Lee, J.W.; Park, G.I. [Korea Atomic Energy Research Inst., Daejeon (Korea, Republic of)
2011-07-01
Remote fuel bundle welding equipment in a hot-cell was designed and fabricated. To achieve this, a preliminary investigation of hands-on fuel fabrication outside a hot-cell was conducted with a consideration of the constraints caused by welding in a hot-cell. Some basic experiments were also carried out to improve the end-plate welding process for fuel bundle fabrication. The resistance welding equipment using end-plate welding was also improved. It was found that resistance welding was more suitable for joining an end-plate to end caps in a hot-cell. The optimum conditions for end-plate welding for remote operation were also obtained. Preliminary performances to improve the resistance welding process were also examined, and the resistance welding process was determined to be the best in the hot-cell environment for fuel bundle fabrication. The greatest advantage of fuel bundle welding equipment would be a commercialized welding process in which there is extensive production experience. This paper presents an outline of the developed welding equipment for a fuel bundle fabrication and reviews the conceptual design of remote welding equipment using a master-slave manipulator. The design of the remote welding equipment using the Pro-Engineer method was also reviewed. Furthermore the mechanical considerations and a mock-up simulation test were described. Finally, its performance test results were presented for a mock-up of remote fuel bundle welding equipment. (author)
International Nuclear Information System (INIS)
AHWR Th-LEU of 4.3 weight % 235U enrichment is a fuel design option for its trial irradiation in Indian PHWRs. The important component of this option is the large enhancement in the average discharge burn-up from the core. A parametric study of the 19-element fuel bundle, with natural uranium currently is being used in all operating 220 MWe PHWRs, has been carried out for AHWR Th-LEU fuel material by computer code FUDA MOD2. The important fuel parameters such as fuel temperature, fission gas release, fuel swelling and sheath strain have been analyzed for required fuel performance. With Th-LEU, average discharge burnups of about 25,000 MW-d/TeHE can be achieved. The FUDA code (Fuel Design Analysis code) MOD2 version has been used in the fuel element analysis. The code takes into account the inter-dependence of different parameters like fuel pellet temperatures, pellet expansions, fuel-sheath gap heat transfer, sheath strain and stresses, fission gas release and gas pressures, fuel densification etc. Thermo-mechanical analysis of fuel element having AHWR material is carried out for the bundle power histories reaching up to design burn-up 40000 MWd/TeHE. The resultant parameters such as fuel temperature, sheath plastic strain and fission gas pressure for AHWR fuel element were compared with respective thermo-mechanical parameters for similar fuel bundle element with natural uranium as fuel material. (author)
Behavior of mixed-oxide fuel elements in a tight bundle under duty-cycle conditions
International Nuclear Information System (INIS)
The irradiation behavior of the TOB-10 fuel pins was comparable with that obtained in the single pin tests. There was no significant effect that could be directly attributed to tight bundle configuration. The postirradiation examination data provided information on the axial migration of cesium and its effect on cladding strain. Severe fuel/cladding chemical interaction (FCCI), which resulted in substantial cladding thinning and probably restricted venting of fission gas from the fuel column into the pin plena, apparently caused the earlier-than-expected cladding breaches in the D9-clad pins. No such severe FCCI was noted in the 316SS-clad pins. At the time of test termination, the overall cladding strain from creep and swelling was insufficient to cause bundle closure. Consequently, there would have been minimal pin bundle-duct interaction in the subassembly. Neither of the breaches appeared to be induced by pin bundle-duct interaction. (author)
Overview of methods to increase dryout power in CANDU fuel bundles
Energy Technology Data Exchange (ETDEWEB)
Groeneveld, D.C., E-mail: degroeneveld@gmail.com [Chalk River Laboratories, AECL, Chalk River (Canada); University of Ottawa, Department of Mechanical Engineering, Ottawa (Canada); Leung, L.K.H. [Chalk River Laboratories, AECL, Chalk River (Canada); Park, J.H. [Korean Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2015-06-15
Highlights: • Small changes in bundle geometry can have noticeable effects on the bundle CHF. • Rod spacing devices can results in increases of over 200% in CHF. • CHF enhancement decays exponentially downstream from spacers. • CHF-enhancing bundle appendages also increase the post-CHF heat transfer. - Abstract: In CANDU reactors some degradation in the CCP (critical channel power, or power corresponding to the first occurrence of CHF in any fuel channel) will occur with time because of ageing effects such as pressure-tube diametral creep, increase in reactor inlet-header temperature, increased hydraulic resistance of feeders. To compensate for the ageing effects, various options for recovering the loss in CCP are described in this paper. They include: (i) increasing the bundle heated perimeter, (ii) optimizing the bundle configuration, (iii) optimizing core flow and flux distribution, (iv) reducing the bundle hydraulic resistance, (v) use of CHF-enhancing bundle appendages, (vi) more precise experimentation, and (vii) redefining CHF. The increase in CHF power has been quantified based on experiments on full-scale bundles and subchannel code predictions. The application of several of these CHF enhancement principles has been used in the development of the 43-rod CANFLEX bundle.
System for supporting a bundled tube fuel injector within a combustor
Energy Technology Data Exchange (ETDEWEB)
LeBegue, Jeffrey Scott; Melton, Patrick Benedict; Westmoreland, III, James Harold; Flanagan, James Scott
2016-06-21
A combustor includes an end cover having an outer side and an inner side, an outer barrel having a forward end that is adjacent to the inner side of the end cover and an aft end that is axially spaced from the forward end. An inner barrel is at least partially disposed concentrically within the outer barrel and is fixedly connected to the outer barrel. A fluid conduit extends downstream from the end cover. A first bundled tube fuel injector segment is disposed concentrically within the inner barrel. The bundled tube fuel injector segment includes a fuel plenum that is in fluid communication with the fluid conduit and a plurality of parallel tubes that extend axially through the fuel plenum. The bundled tube fuel injector segment is fixedly connected to the inner barrel.
Research reactor fuel bundle design review by means of hydrodynamic testing
International Nuclear Information System (INIS)
During the design steps of a fuel bundle for a nuclear reactor, some vibration tests are usually necessary to verify the prototype dynamical response characteristics and the structural integrity. To perform these tests, the known hydrodynamic loop facilities are used to evaluate the vibrational response of the bundle under the different flow conditions that may appear in the reactor. This paper describes the tests performed on a 19 plate fuel bundle prototype designed for a low power research reactor. The tests were done in order to know the dynamical characteristics of the plates and also of the whole bundle under different flow rate conditions. The paper includes a description of the test facilities and the results obtained during the dynamical characterization tests and some preliminary comments about the tests under flowing water are also presented. (author)
Total evaluation of in bundle void fraction measurement test of PWR fuel assembly
International Nuclear Information System (INIS)
Nuclear Power Engineering Corporation is performing the various proof or verification tests on safety and reliability of nuclear power plants under the sponsorship of the Ministry of International Trade and Industry. As one program of these Japanese national projects, an in bundle void fraction measurement test of a pressurized water reactor (PWR) fuel assembly was started in 1987 and finished at the end of 1994. The experiments were performed using the 5 x 5 square array rod bundle test sections. The rod bundle test section simulates the partial section and full length of a 17 x 17 type Japanese PWR fuel assembly. A distribution of subchannel averaged void fraction in a rod bundle test section was measured by the gamma-ray attenuation method using the stationary multi beam systems. The additional single channel test was performed to obtain the required information for the calibration of the rod bundle test data and the assessment of the void prediction method. Three test rod bundles were prepared to analyze an axial power distribution effect, an unheated rod effect, and a grid spacer effect. And, the obtained data were used for the assessment of the void prediction method relevant to the subchannel averaged void fraction of PWR fuel assemblies. This paper describes the outline of the experiments, the evaluation of the experimental data and the assessment of void prediction method
Thermalhydraulics of advanced 37-element fuel bundle in crept pressure tubes
Directory of Open Access Journals (Sweden)
Park Joo Hwan
2016-01-01
Full Text Available A CANDU-6 reactor, which has 380 fuel channels of a pressure tube type, is suffering from aging or creep of the pressure tubes. Most of the aging effects for the CANDU primary heat transport system were originated from the horizontal crept pressure tubes. As the operating years of a CANDU reactor proceed, a pressure tube experiences high neutron irradiation damage under high temperature and pressure. The crept pressure tube can deteriorate the Critical Heat Flux (CHF of a fuel channel and finally worsen the reactor operating performance and thermal margin. Recently, the modification of the central subchannel area with increasing inner pitch length of a standard 37-element fuel bundle was proposed and studied in terms of the dryout power enhancement for the uncrept pressure tube since a standard 37-element fuel bundle has a relatively small flow area and high flow resistance at the central region. This study introduced a subchannel analysis for the crept pressure tubes loaded with the inner pitch length modification of a standard 37-element fuel bundle. In addition, the subchannel characteristics were investigated according to the flow area change of the center subchannels for the crept pressure tubes. Also, it was discussed how much the crept pressure tubes affected the thermalhydraulic characteristics of the fuel channel as well as the dryout power for the modification of a standard 37-element fuel bundle.
Temperature Distributions in LMR Fuel Pin Bundles as Modeled by COBRA-IV-I
Wright, Steven A.; Stout, Sherry
2005-02-01
Most pin type reactor designs for space power or terrestrial applications group the fuel pins into a number of relatively large fuel pin bundles or subassemblies. Fuel bundles for terrestrial liquid metal fast breeders reactors typically use 217 - 271 pins per sub-assembly, while some SP100 designs use up to 331 pins in a central subassembly that was surrounded by partial assemblies. Because thermal creep is exponentially related to temperature, small changes in fuel pin cladding temperature can make large differences in the lifetime in a high temperature liquid metal reactor (LMR). This paper uses the COBRA-IV-I computer code to determine the temperature distribution within LMR fuel bundles. COBRA-IV-I uses the sub-channel analysis approach to determine the enthalpy (or temperature) and flow distribution in rod bundles for both steady-state and transient conditions. The COBRA code runs in only a few seconds and has been benchmarked and tested extensively over a wide range of flow conditions. In this report the flow and temperature distributions for two types of lithium cooled space reactor core designs were calculated. One design uses a very tight fuel pin packing that has a pitch to diameter ratio of 1.05 (small wire wrap with a diameter of 392 μm) as proposed in SP100. The other design uses a larger pitch to diameter ratio of 1.09 with a larger more conventional sized wire wrap diameter of 1 mm. The results of the COBRA pin bundle calculations show that the larger pitch-to-diameter fuel bundle designs are more tolerant to local flow blockages, and in addition they are less sensitive to mal-flow distributions that occur near the edges of the subassembly.
Flow-induced vibration and acoustic behaviour of CANFLEX-LVRF bundles in a Bruce B NGS fuel channel
International Nuclear Information System (INIS)
Frequency/temperature sweep tests were performed in a high-temperature/high-pressure test channel to determine the acoustic and flow-induced vibration characteristics of the CANFLEX-LVRF bundle. The vibratory response of CANFLEX-LVRF bundles was compared with that of 37-element fuel bundles under Bruce B NGS fuel channel normal operating conditions. The tests were performed with a 12-bundle string of CANFLEX-LVRF bundles as well as a mixed string for the transition core. The tests showed that the LVRF bundles performed as required without failure or gross geometry changes. The mixed fuel strings behaved in a manner similar to that of a string of CANFLEX-LVRF bundles. (author)
Measurement and CFD calculation of spacer loss coefficient for a tight-lattice fuel bundle
International Nuclear Information System (INIS)
Highlights: • Experiment and CFD analysis evaluated the pressure drop in a spacer grid. • The measurement and CFD errors for the spacer loss coefficient were estimated. • The spacer loss coefficient for the dual-cooled annular fuel bundle was determined. • The CFD prediction agrees with the measured spacer loss coefficient within 8%. - Abstract: An experiment and computational fluid dynamics (CFD) analysis were performed to evaluate the pressure drop in a spacer grid for a dual-cooled annular fuel (DCAF) bundle. The DCAF bundle for the Korean optimum power reactor (OPR1000) is a 12 × 12 tight-lattice rod array with a pitch-to-diameter ratio of 1.08 owing to a larger outer diameter of the annular fuel rod. An experiment was conducted to measure the pressure drop in spacer grid for the DCAF bundle. The test bundle is a full-size 12 × 12 rod bundle with 11 spacer grid. The test condition covers a Reynolds number range of 2 × 104–2 × 105 by changing the temperature and flow rate of water. A CFD analysis was also performed to predict the pressure drop through a spacer grid using the full-size and partial bundle models. The pressure drop and loss coefficient of a spacer grid were predicted and compared with the experimental results. The CFD predictions of spacer pressure drop and loss coefficient agree with the measured values within 8%. The spacer loss coefficient for the DCAF bundle is estimated to be approximately 1.50 at a nominal operating condition of OPR1000, i.e., Re = 4 × 105
Post-irradiation examination of CANDU fuel bundles fuelled with (Th, Pu)O2
International Nuclear Information System (INIS)
AECL has extensive experience with thoria-based fuel irradiations as part of an ongoing R&D program on thorium within the Advanced Fuel Cycles Program. The BDL-422 experiment was one component of the thorium program that involved the fabrication and irradiation testing of six Bruce-type bundles fuelled with (Th, Pu)O2 pellets. The fuel was manufactured in the Recycle Fuel Fabrication Laboratories (RFFL) at Chalk River allowing AECL to gain valuable experience in fabrication and handling of thoria fuel. The fuel pellets contained 86.05 wt. % Th and 1.53 wt. % Pu in (Th, Pu)O2. The objectives of the BDL-422 experiment were to demonstrate the ability of 37-element geometry (Th, Pu)O2 fuel bundles to operate to high burnups up to 1000 MWh/kgHE (42 MWd/kgHE), and to examine the (Th, Pu)O2 fuel performance. This paper describes the post-irradiation examination (PIE) results of BDL-422 fuel bundles irradiated to burnups up to 856 MWh/kgHE (36 MWd/kgHE), with power ratings ranging from 52 to 67 kW/m. PIE results for the high burnup bundles (>1000 MWh/kgHE) are being analyzed and will be reported at a later date. The (Th, Pu)O2 fuel performance characteristics were superior to UO2 fuel irradiated under similar conditions. Minimal grain growth was observed and was accompanied by benign fission gas release and sheath strain. Other fuel performance parameters, such as sheath oxidation and hydrogen distribution, are also discussed. (author)
Input modelling of ASSERT-PV V2R8M1 for RUFIC fuel bundle
International Nuclear Information System (INIS)
This report describes the input modelling for subchannel analysis of CANFLEX-RU (RUFIC) fuel bundle which has been developed for an advanced fuel bundle of CANDU-6 reactor, using ASSERT-PV V2R8M1 code. Execution file of ASSERT-PV V2R8M1 code was recently transferred from AECL under JRDC agreement between KAERI and AECL. SSERT-PV V2R8M1 which is quite different from COBRA-IV-i code has been developed for thermalhydraulic analysis of CANDU-6 fuel channel by subchannel analysis method and updated so that 43-element CANDU fuel geometry can be applied. Hence, ASSERT code can be applied to the subchannel analysis of RUFIC fuel bundle. The present report was prepared for ASSERT input modelling of RUFIC fuel bundle. Since the ASSERT results highly depend on user's input modelling, the calculation results may be quite different among the user's input models. The objective of the present report is the preparation of detail description of the background information for input data and gives credibility of the calculation results
Posttest examination of the VVER-1000 fuel rod bundle CORA-W2
International Nuclear Information System (INIS)
The bundle meltdown experiment CORA-W2, representing the behavior of a Russian type VVER-1000 fuel element, with one B4C/stainless steel absorber rod was selected by the OECD/CSNI as International Standard Problem (ISP-36). The experimental results of CORA-W2 serve as data base for comparison with analytical predictions of the high-temperature material behavior by various code systems. The first part of the experimental results is described in KfK 5363 (1994), the second part is documented in this report which contains the destructive post-test examination results. The metallographical and analytical (SEM/EDX) post-test examinations were performed in Germany and Russia and are summarized in five individual contributions. The upper half of the bundle is completely oxidized, the lower half has kept the fuel rods relatively intact. The post-test examination results show the strong impact of the B4C absorber rod and the stainless steel grid spacers on the ''low-temperature'' bundle damage initiation and progression. The B4C absorber rod completely disappeared in the upper half of the bundle. The multicomponent melts relocated and formed coolant channel blockages on solidification with a maximum extent of about 30% in the lower part of the bundle. At temperatures above the melting point of the ZrNb1 cladding extensive fuel dissolution occurred. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Oh, Dirk Joo; Jeong, Chang Joon; Lee, Kang Moon; Suk, Ho Chun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)
1997-12-31
Fission product release (FPR) assessment for End Fitting Failure (EFF) in CANDU reactor loaded with CANFLEX-natural uranium (NU) fuel bundles has been performed. The predicted results are compared with those for the reactor loaded with standard 37-element bundles. The total channel I-131 release at the end of transient for EFF accident is calculated to be 380.8 TBq and 602.9 TBq for the CANFLEX bundle and standard bundle channel cases, respectively. They are 4.9% and 7.9% of total inventory, respectively. The lower total releases of the CANFLEX bundle O6 channel are attributed to the lower initial fuel temperatures caused by the lower linear element power of the CANFLEX bundle compared with the standard bundle. 4 refs., 1 fig., 4 tabs. (Author)
Results of international standard problem No. 36 severe fuel damage experiment of a VVER fuel bundle
Energy Technology Data Exchange (ETDEWEB)
Firnhaber, M. [Gesellschaft fuer Anlagen-und Reaktorsicherheit, Koeln (Germany); Yegorova, L. [Nuclear Safety Institute of Russian Research Center, Moscow (Russian Federation); Brockmeier, U. [Ruhr-Univ. of Bochum (Germany)] [and others
1995-09-01
International Standard Problems (ISP) organized by the OECD are defined as comparative exercises in which predictions with different computer codes for a given physical problem are compared with each other and with a carefully controlled experimental study. The main goal of ISP is to increase confidence in the validity and accuracy of analytical tools used in assessing the safety of nuclear installations. In addition, it enables the code user to gain experience and to improve his competence. This paper presents the results and assessment of ISP No. 36, which deals with the early core degradation phase during an unmitigated severe LWR accident in a Russian type VVER. Representatives of 17 organizations participated in the ISP using the codes ATHLET-CD, ICARE2, KESS-III, MELCOR, SCDAP/RELAP5 and RAPTA. Some participants performed several calculations with different codes. As experimental basis the severe fuel damage experiment CORA-W2 was selected. The main phenomena investigated are thermal behavior of fuel rods, onset of temperature escalation, material behavior and hydrogen generation. In general, the calculations give the right tendency of the experimental results for the thermal behavior, the hydrogen generation and, partly, for the material behavior. However, some calculations deviate in important quantities - e.g. some material behavior data - showing remarkable discrepancies between each other and from the experiments. The temperature history of the bundle up to the beginning of significant oxidation was calculated quite well. Deviations seem to be related to the overall heat balance. Since the material behavior of the bundle is to a great extent influenced by the cladding failure criteria a more realistic cladding failure model should be developed at least for the detailed, mechanistic codes. Regarding the material behavior and flow blockage some models for the material interaction as well as for relocation and refreezing requires further improvement.
Prediction of temperature distribution in a fast reactor spent fuel bundle
International Nuclear Information System (INIS)
A simple mathematical model is described for predicting temperature distribution in a spent fuel bundle. The model takes into account γ-ray leakage, radiant and conductive heat transports between the various fuel pins arranged in a triangular array and enclosed in a hexagonal shaped tube containing gaseous medium. With the geometry of the fuel bundle the configuration factors between various fuel pins can be calculated. The configuration factors along with the heat generation rates, net γ-ray leakage, surface emissivity, conductivity of the enclosed medium and the temperature of the hexagonal tube can be used to estimate the temperature distribution with the help of the computer code TICOFUSA developed on the basis of this model. (author)
Calculation of power coefficient in CANFLEX-NU fuel bundle
Energy Technology Data Exchange (ETDEWEB)
Min, Byung Joo; Jun, Ji Su; Suk, Ho Chun [Korea Atomic Energy Research Institute, Taejon (Korea)
1999-11-01
Changes in power level affect reactivity due to its dependence on fuel and coolant temperatures. The power coefficient of reactivity is related to the fuel temperature coefficient through the change in fuel temperature per percent change in power. In addition, power level changes are followed by changes in coolant temperature and density which contribute to the reactivity effect. In this report, the power coefficient of CANFLEX-NU was calculated and the result would be compared with that of CANDU-6 reactor which is operating. 8 refs., 43 figs., 2 tabs. (Author)
ASSERT-PV 3.2: Advanced subchannel thermalhydraulics code for CANDU fuel bundles
International Nuclear Information System (INIS)
Highlights: • Introduction to a new version of the Canadian subchannel code, ASSERT-PV 3.2. • Enhanced models for flow-distribution, CHF and post-dryout heat transfer prediction. • Model changes focused on unique features of horizontal CANDU bundles. • Detailed description of model changes for all major thermalhydraulics models. • Discussion on rationale and limitation of the model changes. - Abstract: Atomic Energy of Canada Limited (AECL) has developed the subchannel thermalhydraulics code ASSERT-PV for the Canadian nuclear industry. The most recent release version, ASSERT-PV 3.2 has enhanced phenomenon models for improved predictions of flow distribution, dryout power and CHF location, and post-dryout (PDO) sheath temperature in horizontal CANDU fuel bundles. The focus of the improvements is mainly on modeling considerations for the unique features of CANDU bundles such as horizontal flows, small pitch to diameter ratios, high mass fluxes, and mixed and irregular subchannel geometries, compared to PWR/BWR fuel assemblies. This paper provides a general introduction to ASSERT-PV 3.2, and describes the model changes or additions in the new version to improve predictions of flow distribution, dryout power and CHF location, and PDO sheath temperatures in CANDU fuel bundles
ASSERT-PV 3.2: Advanced subchannel thermalhydraulics code for CANDU fuel bundles
Energy Technology Data Exchange (ETDEWEB)
Rao, Y.F., E-mail: raoy@aecl.ca; Cheng, Z., E-mail: chengz@aecl.ca; Waddington, G.M., E-mail: waddingg@aecl.ca; Nava-Dominguez, A., E-mail: navadoma@aecl.ca
2014-08-15
Highlights: • Introduction to a new version of the Canadian subchannel code, ASSERT-PV 3.2. • Enhanced models for flow-distribution, CHF and post-dryout heat transfer prediction. • Model changes focused on unique features of horizontal CANDU bundles. • Detailed description of model changes for all major thermalhydraulics models. • Discussion on rationale and limitation of the model changes. - Abstract: Atomic Energy of Canada Limited (AECL) has developed the subchannel thermalhydraulics code ASSERT-PV for the Canadian nuclear industry. The most recent release version, ASSERT-PV 3.2 has enhanced phenomenon models for improved predictions of flow distribution, dryout power and CHF location, and post-dryout (PDO) sheath temperature in horizontal CANDU fuel bundles. The focus of the improvements is mainly on modeling considerations for the unique features of CANDU bundles such as horizontal flows, small pitch to diameter ratios, high mass fluxes, and mixed and irregular subchannel geometries, compared to PWR/BWR fuel assemblies. This paper provides a general introduction to ASSERT-PV 3.2, and describes the model changes or additions in the new version to improve predictions of flow distribution, dryout power and CHF location, and PDO sheath temperatures in CANDU fuel bundles.
Candu reactors with thorium fuel cycles
International Nuclear Information System (INIS)
Over the last decade and a half AECL has established a strong record of delivering CANDU 6 nuclear power plants on time and at budget. Inherently flexible features of the CANDU type reactors, such as on-power fuelling, high neutron economy, fuel channel based heat transport system, simple fuel bundle configuration, two independent shut down systems, a cool moderator and a defence-in-depth based safety philosophy provides an evolutionary path to further improvements in design. The immediate milestone on this path is the Advanced CANDU ReactorTM** (ACRTM**), in the form of the ACR-1000TM**. This effort is being followed by the Super Critical Water Reactor (SCWR) design that will allow water-cooled reactors to attain high efficiencies by increasing the coolant temperature above 5500C. Adaptability of the CANDU design to different fuel cycles is another technology advantage that offers an additional avenue for design evolution. Thorium is one of the potential fuels for future reactors due to relative abundance, neutronics advantage as a fertile material in thermal reactors and proliferation resistance. The Thorium fuel cycle is also of interest to China, India, and Turkey due to local abundance that can ensure sustainable energy independence over the long term. AECL has performed an assessment of both CANDU 6 and ACR-1000 designs to identify systems, components, safety features and operational processes that may need to be modified to replace the NU or SEU fuel cycles with one based on Thorium. The paper reviews some of these requirements and the associated practical design solutions. These modifications can either be incorporated into the design prior to construction or, for currently operational reactors, during a refurbishment outage. In parallel with reactor modifications, various Thorium fuel cycles, either based on mixed bundles (homogeneous) or mixed channels (heterogeneous) have been assessed for technical and economic viability. Potential applications of a
A study of coolant thermal mixing within CANDU fuel bundles using ASSERT-PV
International Nuclear Information System (INIS)
This paper presents the results of a study of the thermal mixing of single-phase coolant in 28-element CANDU fuel bundles. The approach taken in the present work is to identify the physical mechanisms contributing to coolant mixing, and to systematically assess the importance of each mechanism. Coupled effects were also considered by flow simulation with mixing mechanisms modelled simultaneously. For the limited range of operating conditions considered and when all mixing mechanisms were modelled simultaneously, the flow was found to be very close to fully mixed. A preliminary model of coolant mixing, suitable for use in the fuel and fuel channel code FACTAR, is also presented. (author)
The demonstration irradiation of the CANFLEX-NU fuel bundle in Wolsong NGS 1
International Nuclear Information System (INIS)
A demonstration irradiation (DI) of 24 CANFLEX-NU fuel bundles in the high power Q07 channel and low power L21 channel of Wolsong Power Generation Station-1 had been successfully conducted jointly by KEPRI/KHNP/KAERI in the period of 2002 July to 2004 January. The tracking of the reactor operation data showed that the reactor has been stably operated during the DI. One CANFLEX bundle irradiated in the Q07 channel had a typical history of high power and high burnup, where the maximum element linear power rating was ∼ 42 kW/m at the burnup of ∼ 50 MWh/kgU and ∼ 35 kW/m at the discharge element burnup of ∼ 210 MWh/kgU. While, another CANFLEX bundles also irradiated in the Q07 channel had a typical history of power ramping, where the maximum element power ramping-up or -down rate was 28 kW/m. The unusual performance and integrity of the CANFLEX elements could not be found in the ELESTRES predictions and also the in-bay visual examinations showed that all the bundles were intact, free of defects and appeared to be in good condition as expected. Therefore, it is concluded that the demonstration irradiation shows the validation of the CANFLEX bundle performance with direct conditions of relevance under the Korean licensing requirements and the KNFC fuel fabrication capability, and provides the rationale for the decision to perform the full-conversion of CANFLEX fuel in WPGS-1. (author)
Development of neural network for analysis of local power distributions in BWR fuel bundles
International Nuclear Information System (INIS)
A neural network model has been developed to learn the local power distributions in a BWR fuel bundle. A two layers neural network with total 128 elements is used for this model. The neural network learns 33 cases of local power peaking factors of fuel rods with given enrichment distribution as the teacher signals, which were calculated by a fuel bundle nuclear analysis code based on precise physical models. This neural network model studied well the teacher signals within 1 % error. It is also able to calculate the local power distributions within several % error for the different enrichment distributions from the teacher signals when the average enrichment is close to 2 %. This neural network is simple and the computing speed of this model is 300 times faster than that of the precise nuclear analysis code. This model was applied to survey the enrichment distribution to meet a target local power distribution in a fuel bundle, and the enrichment distribution with flat power shape are obtained within short computing time. (author)
Status of the demonstration irradiation program of the new fuel bundle CANFLEX-NU in Korea
International Nuclear Information System (INIS)
In the late part of 1999, the Korea Electric Power Corporation has initiated a program CANFLEX-NU (Natural Uranium) fuel in the Wolsong Generating Station (WGS) - no.1 which has been operating since 1983, because the CANFLEX could be used to recover some of a CANDU heat transport system operation margins that had decreased due to The Korea Ministry of Science and Technology (MOST) has recognized the successful demonstration irradiation of 24 CANFLEX bundles at the Pt. Lepreau Generating Station in Canada, as final verification of the CANFLEX design in preparation for full core conversion. Therefore, MOST has pushed and gave a financial support to a KEPRI/KAERI Joint Industrialization Program of CANFLEX-NU Fuel, which will be for 3 years from 2000 November, to validate CANFLEX-NU fuel bundle performance in direct conditions of relevance under the Korean licensing requirements as well as to evaluate the fuel fabrication capability, and to produce a safety analysis report for the full-core implementation. The economic benefits of CANFLEX-NU fuel are directly dependent on the thermalhydraulic performance. Switching from the existing 37-element fuel to the CANFLEX fuel will be largely driven by the economic benefits to be realized. Showing a positive result in the economic evaluation as well as successfully demonstrating the CANFLEX fuel irradiation in WGS-no. 1, the full-core implementation of the fuel at the WGS-no.1 in Korea will proceed by starting the licensing process at around 2003 April because the safety report for the full-core conversion will be ready by 2003 March. This paper describes the status of CANFLEX-NU fuel industrialization program in Korea, as well as the fuel design features. It summarizes the plan of CANFLEX-NU fuel demonstration irradiation at the WGS-no. 1 in Korea and the status of documentation for the demonstration irradiation as well as for the CANFLEX-NU full-core implementation. (author)
Development of neural network simulating power distribution of a BWR fuel bundle
International Nuclear Information System (INIS)
A neural network model is developed to simulate the precise nuclear physics analysis program code for quick scoping survey calculations. The relation between enrichment and local power distribution of BWR fuel bundles was learned using two layers neural network (ENET). A new model is to introduce burnable neutron absorber (Gadolinia), added to several fuel rods to decrease initial reactivity of fresh bundle. The 2nd stages three layers neural network (GNET) is added on the 1st stage network ENET. GNET studies the local distribution difference caused by Gadolinia. Using this method, it becomes possible to survey of the gradients of sigmoid functions and back propagation constants with reasonable time. Using 99 learning patterns of zero burnup, good error convergence curve is obtained after many trials. This neural network model is able to simulate no learned cases fairly as well as the learned cases. Computer time of this neural network model is about 100 times faster than a precise analysis model. (author)
International Nuclear Information System (INIS)
As part of the thermal analysis of a CANDU spent fuel dry storage system, a series of experiment has been conducted using a thermal mock-up of a simulated CANDU spent fuel bundle in a dry storage basket. The experimental system was designed to obtain the maximum fuel rod temperature along with the radial and axial temperature distributions within the fuel bundle. The main purpose of these experiments was to characterize the relevant heat transfer mechanisms in a dry, vertically oriented CANDU spent fuel bundle, and to verify the MAXROT code developed for the thermal analysis of a CANDU spent fuel bundle in a dry storage basket. A total of 48 runs were made with 8 different power inputs to the 37-element heater rod bundle ranging from 5 to 40 W, while using 6 different band heaters power inputs from 0 to 250 W to maintain the basket wall at a desired boundary condition temperature at the steady state. The temperature distribution in a heater rod bundle was measured and recorded at the saturated condition for each set of heater rod power and band heaters power. To characterize the heat transfer mechanism involved, the experimental data were corrected analytically for radiation heat transfer and presented as a Nusselt number correlation in terms of the Rayleigh number of the heater rod bundle. The results show that the Nusselt number remains nearly constant and all the experimental dada fall within a conduction regime. The experimental data were compared with the predictions of the MAXROT code to examine the code's accuracy and validity of assumptions used in the code. The MAXROT code explicitly models each representative fuel rod in a CANDU fuel bundle and couples the conductive and radiative heat transfer of the internal gas between rods. Comparisons between the measured and predicted maximum fuel rod temperatures of the simulated CANDU 37-element spent fuel bundle for all 48 tests show that the MAXROT code slightly over-predicts and the agreement is within 2
International Nuclear Information System (INIS)
Values are given for resistance factors, two phase multipliers and core and chimney void fractions in the fuel and chimney to be used in best estimate calculations of the flow in Dodewaard fuel bundles. The resistance factors are based on single phase experimental data for a mockup of the Dodewaard fuel bundle. The two phase multipliers are determined from two phase measurements of mockups of other fuel bundles for nuclear reactors. This is also true for the in bundle void fractions. The void fractions in the chimney have been validated by measured void fractions in large diameter pipes. The recommended changes to the existing input for calculations are somewhat larger than the uncertainties in the measurements. (author). 37 refs.; 48 figs.; 4 tabs
A Mechanistic Approach for the Prediction of Critical Power in BWR Fuel Bundles
Chandraker, Dinesh Kumar; Vijayan, Pallipattu Krishnan; Sinha, Ratan Kumar; Aritomi, Masanori
The critical power corresponding to the Critical Heat Flux (CHF) or dryout condition is an important design parameter for the evaluation of safety margins in a nuclear fuel bundle. The empirical approaches for the prediction of CHF in a rod bundle are highly geometric specific and proprietary in nature. The critical power experiments are very expensive and technically challenging owing to the stringent simulation requirements for the rod bundle tests involving radial and axial power profiles. In view of this, the mechanistic approach has gained momentum in the thermal hydraulic community. The Liquid Film Dryout (LFD) in an annular flow is the mechanism of CHF under BWR conditions and the dryout modeling has been found to predict the CHF quite accurately for a tubular geometry. The successful extension of the mechanistic model of dryout to the rod bundle application is vital for the evaluation of critical power in the rod bundle. The present work proposes the uniform film flow approach around the rod by analyzing individual film of the subchannel bounded by rods with different heat fluxes resulting in different film flow rates around a rod and subsequently distributing the varying film flow rates of a rod to arrive at the uniform film flow rate as it has been found that the liquid film has a strong tendency to be uniform around the rod. The FIDOM-Rod code developed for the dryout prediction in BWR assemblies provides detailed solution of the multiple liquid films in a subchannel. The approach of uniform film flow rate around the rod simplifies the liquid film cross flow modeling and was found to provide dryout prediction with a good accuracy when compared with the experimental data of 16, 19 and 37 rod bundles under BWR conditions. The critical power has been predicted for a newly designed 54 rod bundle of the Advanced Heavy Water Reactor (AHWR). The selected constitutive models for the droplet entrainment and deposition rates validated for the dryout in tube were
Study of thermal hydraulic behavior of supercritical water flowing through fuel rod bundles
International Nuclear Information System (INIS)
Investigations on thermal-hydraulic behavior in Supercritical Water Reactor (SCWR) fuel assembly have obtained a significant attention in the international SCWR community because of its potential to obtain high thermal efficiency and compact design. Present work deals with CFD analysis to study the flow and heat transfer behavior of supercritical water in 4 metre long 7-pin fuel bundle using commercial CFD package ANSYS CFX for single phase steady state conditions. Considering the symmetric conditions, 1/12th part of the fuel rod bundle is taken as a domain of analysis. RNG K-epsilon model with scalable wall functions is used for modeling the turbulence behavior. Constant heat flux boundary condition is applied at the fuel rod surface. IAPWS equations of state are used to compute thermo-physical properties of supercritical water. Sharp variations in its thermo-physical properties (specific heat, density) are observed near the pseudo-critical temperature causing sharp change in heat transfer coefficient. The pseudo-critical point initially appears in the gaps among heated fuel rods, and then spreads radially outward reaching the adiabatic wall as the flow goes downstream. The enthalpy gain in the centre of the channel is much higher than that in the wall region. Non-uniformity in the circumferential distribution of surface temperature and heat transfer coefficient is observed which is in agreement with published literature. Heat transfer coefficient is high on the rod surface near the tight region and decreases as the distance between rod surfaces increases. (author)
Optimization of thorium-uranium content in a 54-element fuel bundle for use in a CANDU-SCWR
International Nuclear Information System (INIS)
A new 54-element fuel bundle design has been proposed for use in a pressure-tube supercritical water-cooled reactor, a pre-conceptual evolution of existing CANDU reactors. Pursuant to the goals of the Generation IV International Forum regarding advancement in nuclear fuel cycles, optimization of the thorium and uranium content in each ring of fuel elements has been studied with the objectives of maximizing the achievable fuel utilization (burnup) and total thorium content within the bundle, while simultaneously minimizing the linear element ratings and coolant void reactivity. The bundle was modeled within a reactor lattice cell using WIMS-AECL, and the uranium and thorium content in each ring of fuel elements was optimized using a weighted merit function of the aforementioned criteria and a metaheuristic search algorithm. (author)
International Nuclear Information System (INIS)
Vibration characteristics of CANDU fuel bundle and fuel elements is a key parameter considered in the design of a fuel bundle. Out-reactor frequency and temperature sweep tests, under reactor operating conditions, are performed to verify vibration characteristics of CANDU fuel bundles. Several options have been considered in the selection of vibration instrumentation to perform out-reactor frequency and temperature sweep tests. This paper compares the benefits and disadvantages of various vibration instruments and summarizes the rationale behind the selection of instruments used for vibration measurements over a range of temperature and pressure pulsation frequencies. The conclusions are presented from the bench tests performed, which confirm the use of the selected instruments. (author)
Combustor having mixing tube bundle with baffle arrangement for directing fuel
Energy Technology Data Exchange (ETDEWEB)
Hughes, Michael John; McConnaughhay, Johnie Franklin
2016-08-23
A combustor includes a tube bundle that extends radially across at least a portion of the combustor. The tube bundle includes an upstream surface axially separated from a downstream surface, and a plurality of tubes extend from the upstream surface through the downstream surface to provide fluid communication through the tube bundle. A barrier extends radially inside the tube bundle between the upstream and downstream surfaces, and a baffle extends axially inside the tube bundle between the upstream surface and the barrier.
International Nuclear Information System (INIS)
Highlights: • We study and compare Genetic Algorithms (GA) in the fuel bundle burnup optimization of an Indian Pressurized Heavy Water Reactor (PHWR) of 220 MWe. • Two Genetic Algorithm methodologies namely, Penalty Functions based GA and Multi Objective GA are considered. • For the selected problem, Multi Objective GA performs better than Penalty Functions based GA. • In the present study, Multi Objective GA outperforms Penalty Functions based GA in convergence speed and better diversity in solutions. - Abstract: The work carried out as a part of application and comparison of GA techniques in nuclear reactor environment is presented in the study. The nuclear fuel management optimization problem selected for the study aims at arriving appropriate reference discharge burnup values for the two burnup zones of 220 MWe Pressurized Heavy Water Reactor (PHWR) core. Two Genetic Algorithm methodologies namely, Penalty Functions based GA and Multi Objective GA are applied in this study. The study reveals, for the selected problem of PHWR fuel bundle burnup optimization, Multi Objective GA is more suitable than Penalty Functions based GA in the two aspects considered: by way of producing diverse feasible solutions and the convergence speed being better, i.e. it is capable of generating more number of feasible solutions, from earlier generations. It is observed that for the selected problem, the Multi Objective GA is 25.0% faster than Penalty Functions based GA with respect to CPU time, for generating 80% of the population with feasible solutions. When average computational time of fixed generations are considered, Penalty Functions based GA is 44.5% faster than Multi Objective GA. In the overall performance, the convergence speed of Multi Objective GA surpasses the computational time advantage of Penalty Functions based GA. The ability of Multi Objective GA in producing more diverse feasible solutions is a desired feature of the problem selected, that helps the
Advances in the manufacture of clad tubes and components for PHWR fuel bundle
International Nuclear Information System (INIS)
Fuel bundles for Pressurized Heavy Water Reactors (PHWRs) consists of Uranium di-oxide pellets encapsulated into thin wall Zircaloy clad tubes. Other components such as end caps, bearing pads and spacer pads are the integral elements of the fuel bundle. As the fuel assembly is subjected to severe operating conditions of high temperature and pressure in addition to continual irradiation exposure, all the components are manufactured conforming to stringent specifications with respect to chemical composition, mechanical & metallurgical properties and dimensional tolerances. The integrity of each component is ensured by NDE at different stages of manufacture. The manufacturing route for fuel tubes and components comprise of a combination of thermomechanical processing and each process step has marked effect on the final properties. The fuel tubes are manufactured by processing the extruded blanks in four stage cold pilgering with intermediate annealing and final stress relieving operation. The bar material is produced by hot extrusion followed by multi-pass swaging and intermediate annealing. Spacer pads and bearing pads are manufactured by blanking and coining of Zircaloy sheet which is made by a combination of hot and cold rolling operations. Due to the small size and stringent dimensional requirements of these appendages, selection of production route and optimization of process parameters are important. This paper discusses about various measures taken for improving the recoveries and mechanical and corrosion properties of the tube, sheet and bar materials being manufactured at Nuclear Fuel Complex, Hyderabad For the production of clad tubes, modifications at extrusion stage to reduce the wall thickness variation, introduction of ultrasonic testing of extruded blanks, optimization of cold working and heat treatment parameters at various stages of production etc. were done. The finished bar material is subjected to 100% Ultrasonic and eddy current testing to ensure
Energy Technology Data Exchange (ETDEWEB)
Iorgulis, C.; Ciocanescu, M.; Preda, M.; Mladin, M. [Institute of Nuclear Research, Pitesti (Romania)
1998-07-01
In order to meet the increasing demands of terminal flux for the experimental devices which will be loaded with CANDU natural uranium pins (or clusters), is necessary to rise the reactor power up to 21 MW. In this respect we consider in our evaluations a new 6x6 TRIGA fuel bundle geometry (the actual fuel bundle contains 5x5 pins). This paper will contain a comparative analysis regarding: flux and power distribution across the 29 fuel bundles standard core, and managements patters, in order to maximize the discharge fuel burnup and core lifetime. (author)
International Nuclear Information System (INIS)
A 78-element fuel bundle containing a plutonium-thorium fuel mixture has been proposed for a Generation IV pressure tube type supercritical water-cooled reactor. In this work, using a lattice cell model created with the code DRAGON,the lattice pitch, fuel composition (fraction of PuO2 in ThO2) and radial enrichment profile of the 78-element bundle is optimized using a merit function and a metaheuristic search algorithm.The merit function is designed such that the optimal fuel maximizes fuel utilization while minimizing peak element ratings and coolant void reactivity. A radial enrichment profile of 10 wt%, 11 wt% and 20 wt% PuO2 (inner to outer ring) with a lattice pitch of 25.0 cm was found to provide the optimal merit score based on the aforementioned criteria. (author)
FEED 1.6: modelling of hydrogen diffusion and precipitation in fuel bundle zircaloy components
International Nuclear Information System (INIS)
An as-fabricated Zircaloy component in a CANDU® fuel bundle has certain amount of hydrogen. In addition, the Zircaloy component pickups hydrogen during operation, where sheath oxidation occurs on the water side. Hydrogen content in the Zircaloy component will change due to the diffusion under gradients of concentration and temperature. A hydrostatic stress gradient may also have some effect on hydrogen diffusion. When the local concentration of hydrogen exceeds the terminal solid solubility (TSS), hydrides will start to form (i.e., hydride precipitation). Because hydrides have a negative effect on material properties (e.g., lower ductility), the hydrogen content in Zircaloy sheath needs to be limited to ensure that the sheath strength is not affected. The FEED (Finite Element Estimate for Diffusion) code was developed to predict the local hydrogen concentration and formation of hydride. The FEED 1.6 code has the following capabilities: Model transient Hydrogen/Deuterium (H/D) diffusion in Zircaloy components (e.g., fuel sheath, endcap and endcap weld); Model H/D pickup in Zircaloy sheath; Account for the effect of gradients of concentration, temperature and stress; and, Model transient hydride precipitation and re-dissolutions. This paper describes the FEED 1.6 code, including theory, models, and some validation examples. (author)
FEED 1.6: modelling of hydrogen diffusion and precipitation in fuel bundle zircaloy components
Energy Technology Data Exchange (ETDEWEB)
Lai, L.; Xu, Z.; Jiang, Q.; Cheng, G. [Atomic Energy of Canada Limited, Mississauga, Ontario (Canada)
2010-07-01
An as-fabricated Zircaloy component in a CANDU® fuel bundle has certain amount of hydrogen. In addition, the Zircaloy component pickups hydrogen during operation, where sheath oxidation occurs on the water side. Hydrogen content in the Zircaloy component will change due to the diffusion under gradients of concentration and temperature. A hydrostatic stress gradient may also have some effect on hydrogen diffusion. When the local concentration of hydrogen exceeds the terminal solid solubility (TSS), hydrides will start to form (i.e., hydride precipitation). Because hydrides have a negative effect on material properties (e.g., lower ductility), the hydrogen content in Zircaloy sheath needs to be limited to ensure that the sheath strength is not affected. The FEED (Finite Element Estimate for Diffusion) code was developed to predict the local hydrogen concentration and formation of hydride. The FEED 1.6 code has the following capabilities: Model transient Hydrogen/Deuterium (H/D) diffusion in Zircaloy components (e.g., fuel sheath, endcap and endcap weld); Model H/D pickup in Zircaloy sheath; Account for the effect of gradients of concentration, temperature and stress; and, Model transient hydride precipitation and re-dissolutions. This paper describes the FEED 1.6 code, including theory, models, and some validation examples. (author)
International Nuclear Information System (INIS)
Annular fuel elements are foreseen in KNK II as carrier elements for irradiation inserts and test bundles. For the third core a reloadable annular element on position 205 is foreseen, in which replaceable 19-pin test bundles (TOAST) shall be irradiated. The present report deals with the thermal-hydraulic design of the annular carrier element and the test bundle, whereby the test bundle required additional optimization. The code CIA has been used for the calculations. Start of irradiation of the subassembly is planned at the beginning of the third core operation. After optimization of the pin-spacer geometry in the test bundle, design calculations for both bundles were performed, whereby thermal coupling between both was taken into account. The calculated mass-flows and temperature distributions are given for the nominal and the eccentric element configuration. The calculated bundle pressure losses have been corrected according to experimental results
Najeeb, Umair
This thesis experimentally investigates the enhancement of single-phase heat transfer, frictional loss and pressure drop characteristics in a Single Heater Element Loop Tester (SHELT). The heater element simulates a single fuel rod for Pressurized Nuclear reactor. In this experimental investigation, the effect of the outer surface roughness of a simulated nuclear rod bundle was studied. The outer surface of a simulated fuel rod was created with a three-dimensional (Diamond-shaped blocks) surface roughness. The angle of corrugation for each diamond was 45 degrees. The length of each side of a diamond block is 1 mm. The depth of each diamond block was 0.3 mm. The pitch of the pattern was 1.614 mm. The simulated fuel rod had an outside diameter of 9.5 mm and wall thickness of 1.5 mm and was placed in a test-section made of 38.1 mm inner diameter, wall thickness 6.35 mm aluminum pipe. The Simulated fuel rod was made of Nickel 200 and Inconel 625 materials. The fuel rod was connected to 10 KW DC power supply. The Inconel 625 material of the rod with an electrical resistance of 32.3 kO was used to generate heat inside the test-section. The heat energy dissipated from the Inconel tube due to the flow of electrical current flows into the working fluid across the rod at constant heat flux conditions. The DI water was employed as working fluid for this experimental investigation. The temperature and pressure readings for both smooth and rough regions of the fuel rod were recorded and compared later to find enhancement in heat transfer coefficient and increment in the pressure drops. Tests were conducted for Reynold's Numbers ranging from 10e4 to 10e5. Enhancement in heat transfer coefficient at all Re was recorded. The maximum heat transfer co-efficient enhancement recorded was 86% at Re = 4.18e5. It was also observed that the pressure drop and friction factor increased by 14.7% due to the increased surface roughness.
International Nuclear Information System (INIS)
This paper presents the results of a study of the thermal mixing of single-phase coolant in 28-element CANDU fuel bundles under steady-state conditions. The study, which is based on simulations performed using the ASSERT-PV thermal hydraulic code, consists of two main parts. In the first part the various physical mechanisms that contribute to coolant mixing are identified and their impact is isolated via ASSERT-PV simulations. The second part is concerned with development of a preliminary model suitable for use in the fuel and fuel channel code FACTAR to predict the thermal mixing that occurs between flow annuli. (author)
International Nuclear Information System (INIS)
Highlights: • COBTA-SC code shows good suitability for the blockage analysis of SCWR fuel bundle. • Several thermal-hydraulic models are incorporated and evaluated for the flow blockage of SCWR-FQT bundle. • The axial/circumferential heat conduction of fuel and heat transfer correlation are identified as the important models. • The peak cladding temperature can be reduced effectively by the safety measures of SCWR-FQT. - Abstract: Sub-channel code is nowadays the most applied method for safety analysis and thermal-hydraulic simulation of fuel assembly. It plays an indispensable role to predict the detail thermal-hydraulic behavior of the supercritical water-cooled reactor (SCWR) fuel assembly because of the strong non-uniformity within the fuel bundle. Since the coolant shows a strong variation of physical thermal property near the pseudo critical line, the local blockage in an assembly of a SCWR is of importance to safety analysis. Due to the low specific heat of supercritical water with high temperature, the blockage and the subsequent flow reduction at the downstream of the blockage will yield particular high cladding temperature. To analyze the local thermal-hydraulic parameters in the supercritical water reactor-fuel qualification test (SCWR-FQT) fuel bundle with a flow blockage caused by detachment of the wire wrap, the sub-channel code COBRA-SC is unitized. The code is validated by some blockage experiments, and it reveals a good feasibility and accuracy for the SCWR and blockage flow analysis. Some new models, e.g. the axial and circumferential heat conduction model, turbulent mixing models, pressure friction models and heat transfer correlations, are incorporated in COBRA-SC code. And their influence on the cladding temperature and mass flow distribution are evaluated and discussed. Based on the results, the appropriate models for description of the flow blockage phenomenon in SCWR assembly is identified and recommended. A transient analysis of the
International Nuclear Information System (INIS)
Full text of publication follows: Japan Nuclear Cycle Development Institute (JNC) has been developing a numerical simulation system in order to offer methodologies to clarify thermal-hydraulic phenomena in fuel subassemblies of sodium-cooled fast reactors under various operating conditions such as normal operation, transient condition or deformed geometry condition from the viewpoint of the assessment of fuel pin structure integrity. This paper describes the validation study of SPIRAL that is one component code of the numerical simulation system and contributes to detailed simulations of local flow and temperature fields in a wire-wrapped fuel pin bundle. SPIRAL is a multi-dimensional finite element method code that can treat complicated geometries like a fuel pin bundle. For numerical stabilization, one can choose Streamline Upwind Petrov Galerkin method and Balancing Tensor Diffusivity method. Semi-implicit solution scheme (fractional step method) developed by Ramaswamy is used for time integration. As the pressure equation matrix solver, ICCG or Gaussian elimination is applied. Energy conservation equations of coolant and structure are also solved and therefore temperature distributions of both coolant and fuel pins can be calculated. Several turbulence models, high/low Reynolds number isotropic/anisotropic models, were incorporated to the code. The code was parallelized using MPI for enhancing simulation efficiency. Pre-processor is also available for numerical grid generation for wire-wrapped fuel pin bundles by curvilinear coordinate system. Fundamental validity related to solving mass, momentum and energy conservation equations and applicability of turbulence models were confirmed by simulating several basic problems. As typical examples, two kinds of simulations using high Re number models, backward facing step flow and 4- fuel-pin bundle in rectangular duct, are introduced in this paper. The simulation results indicate that RNG k-ε model shows relatively
Directory of Open Access Journals (Sweden)
Paola Costamagna
2015-11-01
Full Text Available This work focuses on a steady-state model developed for an integrated planar solid oxide fuel cell (IP-SOFC bundle. In this geometry, several single IP-SOFCs are deposited on a tube and electrically connected in series through interconnections. Then, several tubes are coupled to one another to form a full-sized bundle. A previously-developed and validated electrochemical model is the basis for the development of the tube model, taking into account in detail the presence of active cells, interconnections and dead areas. Mass and energy balance equations are written for the IP-SOFC tube, in the classical form adopted for chemical reactors. Based on the single tube model, a bundle model is developed. Model validation is presented based on single tube current-voltage (I-V experimental data obtained in a wide range of experimental conditions, i.e., at different temperatures and for different H2/CO/CO2/CH4/H2O/N2 mixtures as the fuel feedstock. The error of the simulation results versus I-V experimental data is less than 1% in most cases, and it grows to a value of 8% only in one case, which is discussed in detail. Finally, we report model predictions of the current density distribution and temperature distribution in a bundle, the latter being a key aspect in view of the mechanical integrity of the IP-SOFC structure.
Zafred, Paolo R.; Gillett, James E.
2012-04-24
A plurality of integral bundle assemblies contain a top portion with an inlet fuel plenum and a bottom portion containing a base support, the base supports a dense, ceramic air exhaust manifold having four supporting legs, the manifold is below and connects to air feed tubes located in a recuperator zone, the air feed tubes passing into the center of inverted, tubular, elongated, hollow electrically connected solid oxide fuel cells having an open end above a combustion zone into which the air feed tubes pass and a closed end near the inlet fuel plenum, where the open end of the fuel cells rest upon and within a separate combination ceramic seal and bundle support contained in a ceramic support casting, where at least one flexible cushion ceramic band seal located between the recuperator and fuel cells protects and controls horizontal thermal expansion, and where the fuel cells operate in the fuel cell mode and where the base support and bottom ceramic air exhaust manifolds carry from 85% to all of the weight of the generator.
Simulation of the fuel rod bundle test QUENCH-03 using the integral code ASTEC V2
Energy Technology Data Exchange (ETDEWEB)
Kruse, Philipp; Koch, Marco K. [Bochum Univ. (Germany). Chair of Energy Systems and Energy Economics
2010-05-15
Failure of the main and emergency cooling-systems can lead to an accident with severe core degradation even with core meltdown. To prevent total meltdown of the uncovered and overheated core reflooding with water is an unavoidable accident management measure. The fast supply of water and the resulting increased available amount of steam can lead to crack formations and break up of the oxide layer of the fuel rods. The additionally exposed surface could result in an increased release of hydrogen due to a supplementary exothermal zirconium- steam-oxidation reaction. Within the frame of the QUENCH test-program - realised by FZK - loss of coolant accidents in LWR (Light Water Reactor) are analysed using an experimental reactor core to determine the produced amount of hydrogen, the so-called hydrogen source term. Additionally, the behaviour of the bundle with different absorber rod and cladding materials is being analysed. Based on the post-test calculations of the QUENCH tests with the severe accident code system ASTEC the capability of the code can be established and evaluated. In the following the post-test calculations of the QUENCH-03 test with ASTEC V2 are discussed. (orig.)
International Nuclear Information System (INIS)
The performance of two ultrasonic systems, remotely operated in high radiation environment, are presented. The first system is used to measure the bearing pad height of radioactive fuel bundles located in the irradiated fuel bays, at Darlington NGS. The system was designed and commissioned to achieve an accuracy of ± 20 μm. The repeatability of results is within ± 10 μm uniformity band. The measurements are independent of testing speed, water temperature, bundle temperature, pencil geometry. Possibilities and limitations of the UT system are also presented and some improved alternatives are proposed. The second system was developed for measuring the crimp height of shield plugs (special iron casting) at Bruce B - Mark Ill development. The accuracy of measurements is ± 50 μm, with a repeatability of ± 25 μm. The results are independent of shield plug thickness variation and ovality, crimp off-set and heavy-water temperature. (author)
Energy Technology Data Exchange (ETDEWEB)
Saltos, N.T.; Christensen, R.N.; Aldemir, T.
1988-10-01
A methodology is presented to determine the transient temperature distributions in fuel bundles under loss-of-coolant accident (LOCA) conditions using a recently developed variational technique for the solution of radial-azimuthal heat conduction in the fuel rods and the modified view factor concept proposed by Uchida and Nakamure to model the radiative heat transfer between the rods. The variational technique is based on the Lebron-Labermont restricted variational principle and represents the temperature distribution in the rods at a given time during the LOCA via parabolic and circular trial functions in the radial and azimuthal directions, respectively. The methodology is implemented to a 4 x 4 boiling water reactor fuel bundle under typical LOCA conditions to investigate the effects of changes in rod heat transfer characteristics and simplifying modeling assumptions on predicted rod temperature distributions. The results show that these effects depend on the rod location in the assembly and LOCA phase under consideration and indicate that same degree of modelling detail may not be necessary for all the rods in the bundle at all times during the LOCA.
International Nuclear Information System (INIS)
Korea Ministry of Science and Technology(MOST) has pushed and given a financial support to a KEPRI/KAERI Joint Industrialization Program of CANFLEX-NU Fuel as one of Korea's National Nuclear Mid- and Long Term R and D Program. The Industrialization Program will be conducted for 3 years from 2000 November to efficiently utilize the CANFLEX fuel technology developed by KAERI and AECL jointly, where the KAERI's works have been conducted under the Korea's national program of the mid- and long-term nuclear R and D programs since 1992. This document is a report to guideline the following activities on the safety assessment for the 24 CANFLEX-NU (CANDU Flexible fuelling-Natural Uranium) fuel bundle demonstration irradiation at Wolsong-1 Generating Station: 'bundle manufacture and QA', 'Fuel handling aspects such as loading fuel, de-fuelling and segregation, and visual in-bay examinations', 'Flasking and shipping', 'Post-irradiation examination', and 'Follow-up documentation to be produced'
International Nuclear Information System (INIS)
The assessment of the RANS(Reynolds-Averaged Navier-Stokes) based turbulence model was conducted to establish the optimal CFD system for turbulent flow and heat transfer in reactor during the first year of the project. The RANS models used in this project are the two-equation models based on the eddy viscosity assumption and the Second-Moment Closure(SMC) models. Since the nuclear fuel assembly loaded in the nuclear reactor is a rod bundle which is square or triangular array, the predictions using the various turbulence models were compared for turbulent flow in bare square and/or triangular rod bundle and the rod bundle with the flow mixing vane. The study for the second year of the project examined the CFD model and the applicability of the CFD code for the turbulent two-phase flow. The numerical predictions of lateral distributions of void fraction, phasic velocities and turbulent kinetic energy were compared against the experimental results for upward and downward bubbly flow in a vertical tube. The boiling flows in vertical tube and rod bundle were also simulated to verify the CFD results
Directory of Open Access Journals (Sweden)
A. Del Nevo
2012-01-01
Full Text Available Accurate prediction of steam volume fraction and of the boiling crisis (either DNB or dryout occurrence is a key safety-relevant issue. Decades of experience have been built up both in experimental investigation and code development and qualification; however, there is still a large margin to improve and refine the modelling approaches. The qualification of the traditional methods (system codes can be further enhanced by validation against high-quality experimental data (e.g., including measurement of local parameters. One of these databases, related to the void fraction measurements, is the pressurized water reactor subchannel and bundle tests (PSBT conducted by the Nuclear Power Engineering Corporation (NUPEC in Japan. Selected experiments belonging to this database are used for the OECD/NRC PSBT benchmark. The activity presented in the paper is connected with the improvement of current approaches by comparing system code predictions with measured data on void production in PWR-type fuel bundles. It is aimed at contributing to the validation of the numerical models of CATHARE 2 code, particularly for the prediction of void fraction distribution both at subchannel and bundle scale, for different test bundle configurations and thermal-hydraulic conditions, both in steady-state and transient conditions.
Solonin, V. I.; Perevezentsev, V. V.
2012-05-01
Random hydrodynamic loads causing vibration of fuel rod bundles in a turbulent flow of coolant are obtained from the results of pressure pulsation measurements carried out over the perimeter of the external row of fuel rods in the bundle of a full-scale mockup of a fuel assembly used in a second-generation VVER-440 reactor. It is shown that the turbulent flow structure is a factor determining the parameters of random hydrodynamic loads and the vibration of fuel rod bundles excited by these loads. The results from a calculation of random hydrodynamic loads are used for estimating the vibration levels of fuel rod bundles used in prospective designs of fuel assemblies for VVER reactors.
International Nuclear Information System (INIS)
Highlights: ► We study sodium flow and temperature development in fuel pin bundles. ► Pin diameter, number of pins, wire wrap and ligament gap are varied as parameters. ► Flow development is achieved within ∼30–40 hydraulic diameters. ► Thermal development is attained only for small pin diameter and less number of pins. ► Wire wrap and ligament gap strongly influence Nusselt number. - Abstract: Simultaneous development of liquid sodium flow and temperature fields in the heat generating pin bundles of reactor has been investigated. Development characteristics are seen to be strongly influenced by pin diameter, number of pins, helical wire-wrap, ligament gap between the last row of pins and hexcan wall and Reynolds number. Flow development is achieved within an axial length of ∼125 hydraulic diameters, for all the pin bundle configurations considered. But temperature development is attained only if the pin diameter is small or the number of pins is less. In the case of large pin diameter with more pins, temperature development could not be achieved even after a length of ∼1000 hydraulic diameters. The reason for this behavior is traced to be the weak communication among sub-channels in tightly packed bundles. It is seen that the pin Nusselt number decreases from center to periphery in a bundle. Also, if the ligament gap is narrow, the Nusselt number is large and more uniform. Flow development length is short if the Reynolds number is large and the converse is true for thermal development length. Helical wire-wrap shortens the thermal entry length and significantly enhances the global Nusselt number. But, its influence on hydrodynamic entry length is not significant
Feasibility evaluation of x-ray imaging for measurement of fuel rod bowing in CFTL test bundles
International Nuclear Information System (INIS)
The Core Flow Test Loop (CFTL) is a high temperature, high pressure, out-of-reactor helium-circulating system. It is designed for detailed study of the thermomechanical performance, at prototypic steady-state and transient operating conditions, of electrically heated rods that simulate segments of core assemblies in the Gas-Cooled Fast Breeder reactor demonstration plant. Results are presented of a feasibility evaluation of x-ray imaging for making measurements of the displacement (bowing) of fuel rods in CFTL test bundles containing electrically heated rods. A mock-up of a representative CFTL test section consisting of a test bundle and associated piping was fabricated to assist in this evaluation
International Nuclear Information System (INIS)
The processes for production of Slightly Enriched Uranium (SEU) dioxide powder and Blended Dysprosium and Uranium (BDU) oxide powder that were developed at laboratory scale at Cameco Technology Development (CTD), were implemented and further optimized to supply to Zircatec Precision Industries (ZPI) the quantities required for manufacturing twenty six Low Void Reactivity (LVRF) CANFLEX fuel bundles. The production of this new fuel was a challenge for CTD and involved significant amount of work to prepare and review documentation, develop and approve new analytical procedures, and go through numerous internal reviews and audits by Bruce Power, CNSC and third parties independent consultants that verified the process and product quality. The audits were conducted by Quality Assurance specialists as well as by Human Factor Engineering experts with the objective to systematically address the role of human errors in the manufacturing of New Fuel and confirm whether or not a credible basis had been established for preventing human errors. The project team successfully passed through these audits. The project management structure that was established during the SEU and BDU blending process development, which included a cross-functional project team from several departments within Cameco, maintained its functionality when Cameco Technology Development was producing the powder for manufacturing Demonstration Irradiation fuel bundles. Special emphasis was placed on the consistency of operating steps and product quality certification, independent quality surveillance, materials segregation protocol, enhanced safety requirements, and accurate uranium accountability. (author)
International Nuclear Information System (INIS)
Each Member States (MS) is responsible for the security and safety of radioactive material during transport, since radioactive material is most vulnerable during transport. The paper presents some aspects on security and safety related to the potential transport of a CANDU Spent Nuclear Fuel (SNF) bundle from NPP CANDU Cernavoda to INR Pitesti. The possible environmental impact and radiological consequences following a potential event during transportation is analyzed, since the protection of the people and the environment is the essential goal to be achieved. Some testing for the package to be used for transportation will be also given. (author)
International Nuclear Information System (INIS)
Fuel irradiation experiments to study fuel behaviors have been performed in the experimental loops of the National Research Universal (NRU) Reactor at Atomic Energy of Canada Limited (AECL) Chalk River Laboratories (CRL) in support of the development of new fuel technologies. Before initiating a fuel irradiation experiment, the experimental proposal must be approved to ensure that the test fuel strings put into the NRU loops meet safety margin requirements in critical heat flux (CHF). The fuel strings in irradiation experiments can have varying degrees of fuel enrichment and burnup, resulting in large variations in radial heat flux distribution (RFD). CHF experiments performed in Freon flow at CRL for full-scale bundle strings with a number of RFDs showed a strong effect of RFD on CHF. A prediction method was derived based on experimental CHF data to account for the RFD effect on CHF. It provides good CHF predictions for various RFDs as compared to the data. However, the range of the tested RFDs in the CHF experiments is not as wide as that required in the fuel irradiation experiments. The applicability of the prediction method needs to be examined for the RFDs beyond the range tested by the CHF experiments. The Canadian subchannel code ASSERT-PV was employed to simulate the CHF behavior for RFDs that would be encountered in fuel irradiation experiments. The CHF predictions using the derived method were compared with the ASSERT simulations. It was observed that the CHF predictions agree well with the ASSERT simulations in terms of CHF, confirming the applicability of the prediction method in fuel irradiation experiments. (author)
Energy Technology Data Exchange (ETDEWEB)
Sepold, L.; Hagen, S.; Hofmann, P.; Schanz, G.
2009-01-15
The CORA experiments carried out in an out-of-pile facility at the Kernforschungszentrum Karlsruhe (KfK), Federal Republic of Germany, are part of the ''Severe Fuel Damage'' (SFD) program. The experimental program is to provide information on the failure mechanisms of Light Water Reactor (LWR) fuel elements in a temperature range from 1200 C to 2000 C and in a few cases up to 2400 C. In the CORA experiments two different bundle configurations are tested: PWR (Pressurized Water Reactor) and BWR (Boiling Water Reactor) bundles. The PWR-type assemblies usually consist of 25 rods with 16 electrically heated fuel rod simulators and nine unheated rods (full-pellet and absorber rods). Bundle CORA-5 contained one Ag/In/Cd - steel absorber rod whereas two absorber rods were used in CORA-12, CORA-15, and CORA-9. The larger bundle CORA-7 contained 5 absorber rods. CORA-12 was terminated by quenching with water from the bottom. In CORA-15 the heated and unheated rods were pressurized to achieve pronounced clad ballooning. Bundle CORA-9 was tested with a system pressure of 1.0 MPa instead of 0.22 MPa. The test bundles were subjected to temperature transients of a slow heatup rate in a steam environment. Thus, an accident sequence is simulated, which may develop from a small-break loss-of-coolant accident of a LWR. The transient phases of the tests were initiated with a temperature ramp rate of 1 K/s. The temperature escalation due to the exothermal zircaloy (Zry)-steam reaction started at about 1100 C, leading the bundles to maximum temperatures of approximately 2000 C. Rod destruction started with the failure of the absorber rod cladding at about 1200 C, i.e. about 250 K below the melting regime of steel. Penetration of the steel cladding was presumably caused by a eutectic interaction between steel and the zircaloy guide tube. The test bundles resulted in severe oxidation and partial melting of the cladding, fuel dissolution by Zry/UO{sub 2} interaction
International Nuclear Information System (INIS)
When performing transient analysis in heterogeneous nuclear reactors loaded with different types of fuel bundles is necessary to model the reactor core by a few representative fuel elements with average properties of a region containing a large number of fuel elements. The properties of these representative fuel bundles are obtained by averaging the thermal-hydraulic properties of the fuel elements contained in each region. In this paper we study the different ways to perform the averaging of the thermal-hydraulic properties that can have an influence on the transient results for licence purposes. Also we study the influence of the different averaging methods on the peak clad temperature (PCT) evolution for a LOCA, and on the critical power ratio (CPR) in the hot channels for a turbine trip transient without bypass credit.
International Nuclear Information System (INIS)
Simultaneous development of flow and temperature fields in the entrance region of fast breeder reactor (FBR) fuel pin bundles with helical spacer wires has been investigated by three-dimensional computational simulations. The Reynolds number, pitch of helical spacer wire and number of pins in the bundle are systematically varied. It is found that the magnitude of mean cross-stream velocity in the fully developed region is inversely proportional to the helical pitch length and it is nearly independent of the number of pins. But, there is a strong correlation between the locations of spacer wire and the peak cross-stream velocity. Flow attains full development at an axial length of 70 times hydraulic diameter in all the cases and this length is found to be unaffected by the helical pitch length. Friction factor is seen to fluctuate periodically over a mean value and the fluctuation over each helical pitch corresponds to a specific position of helical wire. The mean value of the friction factor in the entrance region reduces below the mean value in the fully developed region contrary to that seen in ducted flows. The mean fully developed friction factor is inversely proportional to the helical pitch. But, it is independent of the number of pins in the bundle. The Nusselt number passes through multiple minima before attaining fully developed periodic fluctuations and its development is slower than that of friction factor. For larger number of pins thermal development length is larger. Traditionally, the correlations reported for fully developed flow are considered for core design. But, the present study indicates that this approach is not conservative. Further, the entrance region effects and the oscillations in the fully developed region have to be properly accounted in the core design. Nusselt number exhibits a strong dependence on helical pitch similar to that of friction factor. A correlation for Nusselt number is proposed as a function of helical pitch and other
CFD activities in support of thermal-hydraulic modeling of SFR fuel bundles
International Nuclear Information System (INIS)
Extensive testing and validation work is being performed to assess and validate Computational Fluid Dynamics (CFD) applicability to the simulation of SFR fuel assemblies. The demonstrated robustness of the method allows extending the CFD analysis to distorted fuel configurations, which will inevitably occur during extended fuel operation. The subchannel code COBRA-IV-I-MIT is adopted to evaluate the range of applicability of lumped parameter methods. Comparisons of mixing simulations show some intrinsic limitation in the subchannel methods, but allow confirming its overall applicability to nominal and mildly deformed assembly configurations. For significantly deformed geometries CFD is the recommend approach and is applied in this work. Deformed geometries considered include duct swelling, rod swelling, rod bowing, rod twisting, and various combinations of the simple deformations. While not derived from the realistic analysis of the in-core fuel behavior, the distorted geometries have been designed to embrace all conceptual worst case scenarios. The work focuses on the evaluation of the influence of the deformation on the fuel behavior, rather than on the actual fuel performance. Such approach is driven by the objective of deriving general understanding, and evaluating the applicability of subchannel analysis codes to long life fuel design, possibly in combination with distorted-channel factors derived from the CFD analyses. (author)
International Nuclear Information System (INIS)
A neural network model is under development to predict the local power distribution in a BWR fuel bundle as a high speed simulator of precise nuclear physical analysis model. The relation between 235U enrichment of fuel rods and local peaking factor (LPF) has been learned using a two-layered neural network model ENET. The training signals used were 33 patterns having considered a line symmetry of a 8x8 assembly lattice including 4 water rods. The ENET model is used in the first stage and a new model GNET which learns the change of LPFs caused by burnable neutron absorber Gadolinia, is added to the ENET in the second stage. Using this two-staged model EGNET, total number of training signals can be decreased to 99. These training signals are for zero-burnup cases. The effect of Gadolinia on LPF has a large nonlinearity and the GNET should have three layers. This combined model of EGNET can predict the training signals within 0.02 of LPF error, and the LPF of a high power rod is predictable within 0.03 error for Gadolinia rod distributions different from the training signals when the number of Gadolinia rods is less than 10. The computing speed of EGNET is more than 100 times faster than that of a precise nuclear analysis model, and EGNET is suitable for scoping survey analysis. (author)
Transient non-boiling heat transfer in a fuel rod bundle during accidental power excursions
International Nuclear Information System (INIS)
The physical problem studied is the transient non-boiling heat transfer of a cylindrical fuel rod consisting of fuel, gap, and cladding to a steady, fully developed turbulent flow. The fuel pin is assumed to be located in the interior region of a subassembly with regular triangular or square arrangements. The turbulent velocity field as well as turbulent transport properties are specified as functions of the coordinates normal to the axial flow direction. The heat generation within the fuel may be specified as an arbitrary function of the three spatial coordinates and time. A digital computer program has been developed. On the basis of finite-difference techniques, to solve the governing partial differential equations with their associated subsidiary conditions. Results have been obtained for a series of exponential power transients of interest to safety of liquid-metal and water cooled nuclear reactors. The general physical features of transient convective heat transfer as explored by previous investigators have qualitatively been substantiated by the present analysis. Emphasis has been devoted to investigate the differences of heat-transfer (coefficient) results from multi-region analysis including a realistic fuel rod model and single-region analysis for the coolant region only. A comparison with the engineering relationships for turbulent liquid-metal cooling by Stein, which are an extension of the heat transfer coefficient concept to account for transient heat fluxes, clearly demonstrates that, at the parameters studied, Stein's approach tends to largely overestimate the convective heat transfer at early times
Detail design of test loop for FIV in fuel bundle and preliminary test
Energy Technology Data Exchange (ETDEWEB)
Sim, Woo Gunl; Lee, Wan Young; Kim, Sung Won [Hannam University, Taejeon (Korea)
2002-04-01
It is urgent to develop the analytical model for the structural/mechanical integrity of fuel rod. In general, it is not easy to develop a pure analytical model. Occasionally, experimental results have been utilized for the model.Because of this reason, it is required to design proper test loop. Using the optimized test loop, With the optimized test loop, the dynamic behaviour of the rod will be evaluated and the critical flow velocity, which the rod loses the stability in, will be measured for the design of the rod. To verify the integrity of the fuel rod, it is required to evaluate the dynamic behaviour and the critical flow velocity with the test loop. The test results will be utilized to the design of the rod. Generally, the rod has a ground vibration due to turbulence in wide range of flow velocity and the amplitude of vibration becomes larger by the resonance, in a range of the velocity where occurs vortex. The rod loses stability in critical flow velocity caused by fluid-elastic instability. For the purpose of the present work to perform the conceptional design of the test loop, it is necessary (1) to understand the mechanism of the flow-induced vibration and the related experimental coefficients, (2) to evaluate the existing test loops for improving the loop with design parameters and (3) to decide the design specifications of the major equipments of the loop. 35 refs., 14 figs., 4 tabs. (Author)
International Nuclear Information System (INIS)
In the field of radioactive waste management, the radiotoxicity can be characterized by two different approaches: 1) IAEA, 2004 RS-G-1.7 clearance concept and 2) US, 10CFR20 radioactivity concentration guides in terms of ingestion / inhalation hazard expressed in m3 of water/air. A comparison between the two existing safety concepts was made in the paper. The modeled case was a CANDU natural uranium, 37 elements fuel bundle with a reference burnup of 685 GJ/kgU (7928.24 MWd/tU). The radiotoxicity of the light nuclide inventories, actinide, and fission-products was calculated in the paper. The calculation was made using the ORIGEN-S from ORIGEN4.4a in conjunction with the activation-burnup library and an updated decay data library with clearance levels data in ORIGEN format produced by WIMS-AECL/SCALENEA-1 code system. Both the radioactivity concentration expressed in Curie and Becquerel, and the clearance index and ingestion / inhalation hazard were calculated for the radionuclides contained in 1 kg of irradiated fuel element at shutdown and for 1, 50, 1500 years cooling time. This study required a complex activity that consisted of various phases such us: the acquisition, setting up, validation and application of procedures, codes and libraries. For the validation phase of the study, the objective was to compare the measured inventories of selected actinide and fission products radionuclides in an element from a Pickering CANDU reactor with inventories predicted using a recent version of the ORIGEN-ARP from SCALE 5 coupled with the time dependent cross sections library, CANDU 28.lib, produced by the sequence SAS2H of SCALE 4.4a. In this way, the procedures, codes and libraries for the characterization of radioactive material in terms of radioactive inventories, clearance, and biological hazard factors are being qualified and validated, in support for the safety management of the radioactive wastes
Energy Technology Data Exchange (ETDEWEB)
Stosic, Zoran V. [Framatome ANP GmbH . NBTT, Erlangen (Germany)], e-mail: Zoran.Stosic@Framatome-ANP.de; Stevanovic, Vladimir D. [Framatome ANP GmbH, Erlangen (Germany); Iguchi, Tadashi [Japan Atomic Energy Research Institute (JAERI), Ibaraki (Japan)
2001-07-01
The influence of spatial power generation shape on thermal-hydraulics behaviour of the fuel rod bundle has been investigated. Particularly, the occurrence of the local Boiling Transition has been analysed, indicating that conditions for the Critical Heat Flux (CHF) are reached somewhere within the boiling water channels in the assembly. The two-phase coolant flow within the bundle is represented with the two-fluid model in 3D space. The porous medium concept is applied in the simulation of the two-phase flow through the rod bundle implying nonequilibrium thermal and flow conditions. The governing equations in three-dimensions are discretized with the control volume method. The 3D numerical simulation and analyses of thermal-hydraulics in a complex geometry of an advanced nuclear fuel assembly are performed for conditions of a partial and/or complete rods uncovering indicating occurrence of high quality CHF - Dryout. The obtained results from numerical simulations are compared with experimental Critical Power data obtained from full scale tests. Employed is an electrically heated test rod bundle with real 1:1 geometry. Different radial and axial power distributions are used with wide range of inlet mass flow rates (2 - 19 kg/s) and coolant inlet subcooling (25 - 185 kJ/kg). The coolant pressure, equal to 6.9 MPa, is typical for BWRs conditions. Comparison of the predicted Critical Power values with measured data shows encouraging agreements for all analysed power distributions and the results completely reflect measured two-phase mixture cross flows, steam void distribution and spatial positions of Dryout onsets. Based on performed numerical investigation, an improvement of Dryout criteria is proposed. Dynamic effects of power shape change on spatial thermal hydraulics and hence on CHF occurrence as well as the influence of transfer function on thermal hydraulics under cyclic power and/or flow rate changes are also being analysed. Experiments for such verifications
International Nuclear Information System (INIS)
Highlights: • A 3-D CFD is adopted to simulate transient behaviors in an SFP under the accident. • This model realistically simulates a 17 × 17 bundle, rid of porous media approach. • The loss of external cooling system accident for an SFP is assumed in this paper. • Thermal–hydraulic characteristics in a bundle are strongly influenced by grids. • The results confirm temperature rising rate used in Maanshan NPP is conservative. - Abstract: This paper develops a three-dimensional (3-D) transient computational fluid dynamics (CFD) model to simulate the thermal–hydraulic characteristics in a fuel bundle located in a spent fuel pool (SFP) under the loss of external cooling system accident. The SFP located in the Maanshan nuclear power plant (NPP) is selected herein. Without adopting the porous media approach usually used in the previous CFD works, this model uses a real-geometry simulation of a 17 × 17 fuel bundle, which can obtain the localized distributions of the flow and heat transfer during the accident. These distribution characteristics include several peaks in the axial distributions of flow, pressure, temperature, and Nusselt number (Nu) near the support grids, the non-uniform distribution of secondary flow, and the non-uniform temperature distribution due to flow mixing between rods, etc. According to the conditions adopted in the Procedure 597.1 (MNPP Plant Procedure 597.1, 2010) for the management of the loss-of-cooling event of the spent fuel pool in the Maanshan NPP, the temperature rising rate predicted by the present model can be equivalent to 1.26 K/h, which is the same order as that of 3.5 K/h in the this procedure. This result also confirms that the temperature rising rate used in the Procedure 597.1 for the Maanshan NPP is conservative. In addition, after the loss of external cooling system, there are about 44 h for the operator to repair the malfunctioning system or provide the alternative water source for the pool inventory to
International Nuclear Information System (INIS)
In the CORA experiments test bundles of usually 16 electrically heated fuel rod simulators and nine unheated rods are subjected to temperature transients of a slow heatup rate in a steam environment. Thus, an accident sequence is simulated, which may develop from a small-break loss-of-coolant accident of an LWR. An aim of CORA-2, as a first test of its kind, was also to gain experience in the test conduct and posttest handling of UO2 specimens. CORA-3 was performed as a high-temperature test. The transient phases of CORA-2 and CORA-3 were initiated with a temperature ramp rate of 1 K/s. The temperature escalation due to the exothermal zircaloy(Zry)-steam reaction started at about 1000deg C, leading the bundles to maximum temperatures of 2000deg C and 2400deg C for tests CORA-2 and CORA-3, respectively. The test bundles resulted in severe oxidation and partial melting of the cladding, fuel dissolution by Zry/UO2 interaction, complete Inconel spacer destruction, and relocation of melts and fragments to lower elevations in the bundle, where extended blockages have formed. In both tests the fuel rod destruction set in together with the formation of initial melts from the Inconel/Zry interaction. The lower Zry spacer acted as a catcher for relocated material. In test CORA-2 the UO2 pellets partially disintegrated into fine particles. This powdering occurred during cooldown. There was no physical disintegration of fuel in test CORA-3. (orig./MM)
International Nuclear Information System (INIS)
Design, manufacture and installation of an irradiated fuel bundle discharge counter for the multi-unit CANDU Bruce NGS-B Generating Station involved contributions from the International Atomic Energy Agency (Agency), designers (AECL), contractors, manufacturers, utility and the regulatory agency. The installation at Bruce NGS-B was the first made by the Agency as a retrofit to a multi-unit CANDU reactor approaching its fist critical operation, where the whole project was the responsibility of the Agency and where the original design of the reactor had not had provision for the Agency equipment. The scheduling and integration of the installation into the normal activities involved in starting up a 3 000 MW(e) multi-unit generating station were successfully achieved. The Agency has demonstrated the capability and performance of the fuel discharge counter
International Nuclear Information System (INIS)
Amorphous sputter coatings of Be-free multi-component Zr-based alloys were applied as a novel brazing filler metal for Zircaloy-4 brazing. By applying the homogeneous and amorphous-structured layers coated by sputtering the crystalline targets, the highly reliable joints were obtained with the formation of predominantly grown α-Zr grains owing to a complete isothermal solidification, exhibiting high tensile and fatigue strengths as well as excellent corrosion resistance, which were comparable to those of Zircaloy-4 base metal. The present investigation showed that Be-free and Zr-based multi-component amorphous sputter coatings can offer great potential for brazing Zr alloys and manufacturing fuel rods in CANDU fuel bundle system. (author)
Energy Technology Data Exchange (ETDEWEB)
Nishimura, M.; Kamide, H.; Ohshima, H. [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center
1996-10-01
Temperature distributions in fuel subassemblies of fast reactors interactively affect heat transfer from center to outer region of the core (inter-subassembly heat transfer) and cooling capability of an inter-wrapper flow, as well as maximum cladding temperature. The prediction of temperature distribution in the sub-assembly is, therefore one of the important issues for the reactor safety assessment. To treat the complex phenomena in the core, a multi-dimensional thermal hydraulic analysis is the most promising method. From the studies on the multi-dimensional thermal hydraulic modeling for the fuel sub-assemblies, the modeling have been recommended through the analysis of sodium experiments using driver subassembly test rig PLANDTL-DHX and blanket subassembly test rig CCTL-CFR. Computations of steady states experiments in the test rigs using the above modeling showed quite good agreement to the experimental data. In the present study, the use of this modeling was extended to transient analyses, and its applicability was examined. Firstly, non-dimensional parameters used to determine the mixing factors were modified from the ones based on bundle-averaged values to the ones by local values. Secondly, a new threshold function was derived and introduced to cut off the mixing factor of thermal plumes under inertia force dominant conditions. In the results of this validation, the accuracy was comparable between the modeling and the experimental instrumentation. Thus the present modeling is capable of predicting the thermal hydraulic fields of the wire wrapped fuel pin bundles with inter-subassembly heat transfer under the conditions from rated steady operations to transitions toward natural circulation decay heat removal modes. (J.P.N.)
Heal, Geoffrey
2002-01-01
Biodiversity provides essential services to human societies. Many of these services are provided as public goods, so that they will typically be underprovided both by market mechanisms (because of the impossibility of excluding non-payers from using the services) and by government-run systems (because of the free rider problem). I suggest here that in some cases the public goods provided by biodiversity conservation can be bundled with private goods and their value to consumers captured in th...
International Nuclear Information System (INIS)
This report is a summary of experimental investigations describing the fuel rod behavior in the refilling and reflooding phase of a loss-of-coolant accident of a PWR. The experiments were performed with 5x5 and 7x7 rod bundles, using indirectly electrically heated fuel rod simulators of full length with original PWR-KWU-geometry, original grid spacers and Zircaloy-4-claddings (Type Biblis B). The fuel rod simulators showed a cosine shaped axial power profile in 7 steps and continuous, respectively. The results describe the influence of the different parameters such as bundle size on the maximum coolant channel blockage, that of the cooling on the size of the circumferential strain of the cladding (azimuthal temperature distribution) a cold control rod guide thimble and the flow direction (axial temperature distribution) on the resulting coolant channel blockage. The rewetting behavior of different fuel rod simulators including ballooned and burst Zircaloy claddings is discussed as well as the influence of thermocouples on the cladding temperature history and the rewetting behavior. All results prove the coolability of a PWR in the case of a LOCA. Therefore, it can be concluded that the ECC-criteria established by licensing authorities can be fulfilled. (orig./HP)
International Nuclear Information System (INIS)
COBRA-IV PC is a modified version of COBRA-IV-I, adapted for use with most IBM PC and PC-compatible desktop computers. Like COBRA-IV-I, COBRA-IV PC uses the subchannel analysis approach to determine the enthalpy and flow distribution in rod bundles for both steady-state and transient conditions. The steady-state and transient solution schemes used in COBRA-IIIC are still available in COBRA-IV PC as the implicit solution scheme option. An explicit solution scheme is also available, allowing the calculation of severe transients involving flow reversals, recirculations, expulsions, and reentry flows, with a pressure or flow boundary condition specified. In addition, several modifications have been incorporated into COBRA-IV PC to allow the code to run on the PC. These include a reduction in the array dimensions, the removal of the dump and restart options, and the inclusion of several code modifications by Oregon State University, most notably, a critical heat flux correlation for boiling water reactor fuel and a new solution scheme for cross-flow distribution calculations. 7 refs., 8 figs., 1 tab
International Nuclear Information System (INIS)
The increase of bundle supply has become widespread in several sectors (for instance in telecommunications and energy fields). This paper review relates strategic aspects of bundling. The main purpose of this paper is to analyze profitability of bundling strategies according to the degree of competition and the characteristics of goods. Moreover, bundling can be used as price discrimination tool, screening device or entry barriers. In monopoly case bundling strategy is efficient to sort consumers in different categories in order to capture a maximum of surplus. However, when competition increases, the profitability on bundling strategies depends on correlation of consumers' reservations values. (author)
The effect of radial power profile of DUPIC bundle on CHF
International Nuclear Information System (INIS)
The axial and ring power profiles of DUPIC bundle are much different from those of reference 37-element fuel bundle since a DUPIC fuel bundle is re-fabricated using spent PWR fuel and 2-bundle shift refuelling scheme is proposed to CANDU-6 reactor. In case that the ring power profile of a fuel bundle is altered, the flow and enthalpy distribution of subchannels and the radial position of CHF occurrence will be changed. Similarly, the axial power profile of a fuel channel affects CHF and axial position of CHF occurrence as well as axial enthalpy, quality and pressure distribution. The ring power profile of the DUPIC bundle as increasing burnup is altered and flattened compared to 37-element bundle and each fuel bundle in a fuel channel has a different ring power profile from the other bundles at different axial position in the same fuel channel. Therefore, how to consider the burnup or ring power effect on CHF is very important to DUPIC thermalhydraulic analysis. At present study, thermalhydraulic analysis of the DUPIC bundle was performed in consideration of ring power profile effect on CHF. The subchannel enthalpy, mass flux and CHF distribution for 0 burnup to discharged burnup (18,000 MWD/THM) of DUPIC bundle were evaluated using ASSERT subchannel code. The results were compared to those of 37-element bundle and the compatability of DUPIC bundle with an existing CANDU-6 was presented in a CHF point of view
Bundling in Telecommunications
Begoña García-Mariñoso; Xavier Martinez-Giralt; Pau Olivella
2008-01-01
The paper offers an overview of the literature on bundling in the telecommunications sector and its application in the Spanish market. We argue that the use of bundling in the provision of services is associated to technological reasons. Therefore, there appears no need to regulate bundling activities. However, this is not to say that other related telecom markets should not be scrutinized and regulated, or that the regulator should not pay attention to other bundling-related anticompetitive ...
Coolant mixing in LMFBR rod bundles and outlet plenum mixing transients. Progress report
Energy Technology Data Exchange (ETDEWEB)
Todreas, N.E.; Golay, M.W.; Wold, L.
1981-02-01
Four tasks are reported on: bundle geometry (wrapped and bare rods), subchannel geometry (bare rods), LMFBR outlet plenum flow mixing, and theoretical determination of local temperature fields in LMFBR fuel rod bundles. (DLC)
Biswas, Indranil
2011-01-01
We construct projectivization of a parabolic vector bundle and a tautological line bundle over it. It is shown that a parabolic vector bundle is ample if and only if the tautological line bundle is ample. This allows us to generalize the notion of a k-ample bundle, introduced by Sommese, to the context of parabolic bundles. A parabolic vector bundle $E_*$ is defined to be k-ample if the tautological line bundle ${\\mathcal O}_{{\\mathbb P}(E_*)}(1)$ is $k$--ample. We establish some properties of parabolic k-ample bundles.
Lerman, Eugene
2003-01-01
We define contact fiber bundles and investigate conditions for the existence of contact structures on the total space of such a bundle. The results are analogous to minimal coupling in symplectic geometry. The two applications are construction of K-contact manifolds generalizing Yamazaki's fiber join construction and a cross-section theorem for contact moment maps
Principal noncommutative torus bundles
DEFF Research Database (Denmark)
Echterhoff, Siegfried; Nest, Ryszard; Oyono-Oyono, Herve
2008-01-01
action) and give necessary and sufficient conditions for any non-commutative principal torus bundle being RKK-equivalent to a commutative one. As an application of our methods we shall also give a K-theoretic characterization of those principal torus-bundles with H-flux, as studied by Mathai...... and Rosenberg which possess "classical" T-duals....
Annular burnout data from rod-bundle experiments
International Nuclear Information System (INIS)
Burnout data for annular flow in a rod bundle are presented for both transient and steady-state conditions. Tests were performed at the Oak Ridge National Laboratory in the Thermal Hydraulic Test Facility (THTF), a pressurized-water loop containing an electrically heated 64-rod bundle. The bundle configuration is typical of later generation pressurized-water reactors with 17 x 17 fuel arrays. Both axial and radial power profiles are flat. All experiments were carried out in upflow with subcooled inlet conditions, insuring accurate flow measurement. Conditions within the bundle were typical of those which could be encountered during a nuclear reactor loss-of-coolant accident
Annular burnout data from rod bundle experiments
International Nuclear Information System (INIS)
Burnout data for annular flow in a rod bundle are presented for both transient and steady-state conditions. Tests were performed at the Oak Ridge National Laboratory in the Thermal Hydraulic Test Facility (THTF), a pressurized-water loop containing an electrically heated 64-rod bundle. The bundle configuration is typical of later generation pressurized-water reactors with 17 x 17 fuel arrays. Both axial and radial power profiles are flat. All experiments were carried out in upflow with subcooled inlet conditions, insuring accurate flow measurement. Conditions within the bundle were typical of those which could be encountered during a nuclear reactor loss-of-coolant accident. Level average fluid conditions within the test section were calculated using steady-state mass and energy conservation considerations for the steady-state tests and a transient, homogeneous, equilibrium computer code for the transient tests. Unlike tube dryout, burnout within a rod bundle does not necessarily occur at one distinct axial level. The location of individual rod dryout was determined by scanning rods axially and locating the position where rod superheat increased from approx. =0 to 30 K or greater. Thermocouple instrumentation within the bundle allows the location of dryout to be determined to within approximately +.5 cm for many of the tests
International Nuclear Information System (INIS)
The COBRA-IV-I computer code uses the subchannel analysis approach to determine the enthalpy and flow distribution in rod bundles for both steady-state and transient conditions. The steady-state and transient solution schemes used in COBRA-IIIC are still available in COBRA-IV-I as the implicit solution scheme option. In addition to these techniques, a new explicit solution scheme is now available which allows the calculation of severe transients involving flow reversals, recirculations, expulsion and reentry flows, with a pressure or flow boundary condition specified. Significant storage compaction and reduced running times have been achieved to allow the calculation of problems involving hundreds of subchannels
Numerical model for thermal and mechanical behaviour of a CANDU 37-element bundle
International Nuclear Information System (INIS)
Prediction of transient fuel bundle deformations is important for assessing the integrity of fuel and the surrounding structural components under different operating conditions including accidents. For numerical simulation of the interactions between fuel bundle and pressure tube, a reliable numerical bundle model is required to predict thermal and mechanical behaviour of the fuel bundle assembly under different thermal loading conditions. To ensure realistic representations of the bundle behaviour, this model must include all of the important thermal and mechanical features of the fuel bundle, such as temperature-dependent material properties, thermal viscoplastic deformation in sheath, fuel-to-sheath interactions, endplate constraints and contacts between fuel elements. In this paper, we present a finite element based numerical model for predicting macroscopic transient thermal-mechanical behaviour of a complete 37-element CANDU nuclear fuel bundle under accident conditions and demonstrate its potential for being used to investigate fuel bundle to pressure tube interaction in future nuclear safety analyses. This bundle model has been validated against available experimental and numerical solutions and applied to various simulations involving steady-state and transient loading conditions. (author)
Restrictions of stable bundles
Balaji, V
2011-01-01
The Mehta-Ramanathan theorem ensures that the restriction of a stable vector bundle to a sufficiently high degree complete intersection curve is again stable. We improve the bounds for the "sufficiently high degree" and propose a possibly optimal conjecture.
Energy Technology Data Exchange (ETDEWEB)
Todreas, N.E.; Golay, M.W.; Wolf, L.
1981-02-01
Four tasks are reported: bundle geometry (wrapped and bare rods), subchannel geometry (bare rods), subchannel geometry (bare rods), LMFBR outlet plenum flow mixing, and theoretical determination of local temperature fields in LMFBR fuel rod bundles. (DLC)
Subtleties Concerning Conformal Tractor Bundles
Graham, C Robin
2012-01-01
The realization of tractor bundles as associated bundles in conformal geometry is studied. It is shown that different natural choices of principal bundle with normal Cartan connection corresponding to a given conformal manifold can give rise to topologically distinct associated tractor bundles for the same inducing representation. Consequences for homogeneous models and conformal holonomy are described. A careful presentation is made of background material concerning standard tractor bundles and equivalence between parabolic geometries and underlying structures.
Inertial gas pressure and circumferential ridge sheath strains in CANFLEX-ACR fuel
International Nuclear Information System (INIS)
'Full text:' ACR-1000® fuel is designed to operate with an average exit burnup of up to 20 MWd/kgU. This average exit burnup is in excess of the burnup in current CANDU® designs. The increased burnup will result in higher fission product inventory. This paper reports the evaluation of fuel sheath strains and internal gas pressures during normal operation. The internal gas pressures and sheath strains are assessed using the ELESTRES computer code. Predicted strains and pressures have adequate margin to the relevant acceptance criteria.
DEFF Research Database (Denmark)
Bussink, Barbara E; Holst, Anders Gaarsdal; Jespersen, Lasse;
2013-01-01
AimsTo determine the prevalence, predictors of newly acquired, and the prognostic value of right bundle branch block (RBBB) and incomplete RBBB (IRBBB) on a resting 12-lead electrocardiogram in men and women from the general population.Methods and resultsWe followed 18 441 participants included.......5%/2.3% in women, P Right bundle branch block was associated with significantly...... increased all-cause and cardiovascular mortality in both genders with age-adjusted hazard ratios (HR) of 1.31 [95% confidence interval (CI), 1.11-1.54] and 1.87 (95% CI, 1.48-2.36) in the gender pooled analysis with little attenuation after multiple adjustment. Right bundle branch block was associated...
International Nuclear Information System (INIS)
Highlights: • A fully three-dimensional two-fluid model coupled with heat conduction was outlined. • Two-fluid numerical scheme capability was evaluated against NUPEC PSBT Benchmark. • GMRES, FGMRES, DQGMRES, CGNR, BCG, and TFQMR solvers were tested as iterative schemes. • Candidate Krylov solvers do not introduce deviations to the two-phase flow results. • GMRES, FGMRES, and DQGMRES have a more efficient and stable convergence performance. - Abstract: This paper outlines a fully three-dimensional two-fluid one-pressure model with a semi-implicit finite difference scheme coupled with heat conduction which can be applicable to thermal non-equilibrium two-phase flow field in subchannel geometry of Pressurized Water Reactors (PWR). The system of equations was linearized using the Newton–Raphson method and was collapsed into the pressure equations forming a system of the Poisson type. Then, two-phase flow modeling was combined with Krylov methods as advanced computing techniques to investigate the feasibility of implementing preconditioned Krylov subspace solvers as the numerical scheme to solve pressure equations. Six popular Krylov subspace solvers were considered: GMRES, FGMRES, DQGMRES, CGNR, BCG, and TFQMR combined with the block incomplete LU factorization with a dual truncation strategy (BILUT) preconditioner. These proposed iterative solvers were applied to the constructed linear pressure equations in the inner iteration in combination with the outer-Raphson iteration loop. Evaluation was performed in two stages. First, two-fluid numerical scheme capability was evaluated against OECD/NRC NUPEC PWR Bundle tests (PSBT Benchmark). The results for steady-state (PSBT) bundle show that an overall agreement can be found. At the second stage, convergency, stability, and accuracy of the proposed schemes were studied based on PSBT steady-state data through a comparison of utilized Krylov solvers and the direct inversion method as the pressure solution
Principal -bundles on Nodal Curves
Indian Academy of Sciences (India)
Usha N Bhosle
2001-08-01
Let be a connected semisimple affine algebraic group defined over . We study the relation between stable, semistable -bundles on a nodal curve and representations of the fundamental group of . This study is done by extending the notion of (generalized) parabolic vector bundles to principal -bundles on the desingularization of and using the correspondence between them and principal -bundles on . We give an isomorphism of the stack of generalized parabolic bundles on with a quotient stack associated to loop groups. We show that if is simple and simply connected then the Picard group of the stack of principal -bundles on is isomorphic to ⊕ , being the number of components of .
Directory of Open Access Journals (Sweden)
J. W. Kitchen
1994-01-01
Full Text Available We study bundles of Banach algebras π:A→X, where each fiber Ax=π−1({x} is a Banach algebra and X is a compact Hausdorff space. In the case where all fibers are commutative, we investigate how the Gelfand representation of the section space algebra Γ(π relates to the Gelfand representation of the fibers. In the general case, we investigate how adjoining an identity to the bundle π:A→X relates to the standard adjunction of identities to the fibers.
On projective space bundle with nef normalized tautological line bundle
Yasutake, Kazunori
2011-01-01
In this paper, we study the structure of projective space bundles whose relative anti-canonical line bundle is nef. As an application, we get a characterization of abelian varieties up to finite etale covering.
International Nuclear Information System (INIS)
A hybrid bundle divertor design is presented that produces <0.3% magnetic ripple at the center of the plasma while providing adequate space for the coil shielding and structure for a tokamak fusion test reactor similar to the International Tokamak Reactor and the Engineering Test Facility (with R = 5 m, B = 5 T, and a /SUB wall/ = 1.5 m, in particular). This hybrid divertor consists of a set of quadrupole ''wing'' coils running tangent to the tokamak plasma on either side of a bundle divertor. The wing coils by themselves pull the edge of the plasma out 1.5 m and spread the thickness of the scrape-off layer from 0.1 to 0.7 m at the midplane. The clear aperture of the bundle divertor throat is 1.0 m high and 1.8 m wide. For maintenance or replacement, the hybrid divertor can be disassembled into three parts, with the bundle divertor part pulling straight out between toroidal field coils and the wing coils then sliding out through the same opening
Directory of Open Access Journals (Sweden)
Iosif DUMITRESCU
2015-05-01
Full Text Available In municipal solid waste, aluminum is the main nonferrous metal, approximately 80- 85% of the total nonferrous metals. The income per ton gained from aluminum recuperation is 20 times higher than from glass, steel boxes or paper recuperation. The object of this paper is the design of a 300 kN press for aluminum box bundling.
Sepe, D.
2013-01-01
The obstruction to construct a Lagrangian bundle over a fixed integral affine manifold was constructed by Dazord and Delzant (J Differ Geom 26:223–251, 1987) and shown to be given by ‘twisted’ cup products in Sepe (Differ GeomAppl 29(6): 787–800, 2011). This paper uses the topology of universal Lagr
CANDU bundle junction. Misalignment probability and pressure-drop correlation
International Nuclear Information System (INIS)
The pressure drop over the bundle junction is an important component of the pressure drop in a CANDU (Canada Deuterium Uranium) fuel channel. This component can represent from ∼ 15% for aligned bundles to ∼ 26% for rotationally misaligned bundles, and is dependent on the degree of misalignment. The geometry of the junction increases the mixing between subchannels, and hence improves the thermal performance of the bundle immediately downstream. It is therefore important to model the junction's performance adequately. This paper summarizes a study sponsored by COG (CANDU Owners Group) and an NSERC (National Science and Engineering Research Council) Industrial Research Grant, undertaken, at CRL (Chalk River Laboratories) to identify and develop a bundle-junction model for potential implementation in the ASSERT (Advanced Solution of Subchannel Equations in Reactor Thermalhydraulics) subchannel code. The work reported in this paper consists of two components of this project: an examination of the statistics of bundle misalignment, demonstrating that there are no preferred positions for the bundles and therefore all misalignment angles are equally possible; and, an empirical model for the single-phase pressure drop across the junction as a function of the misalignment angle. The second section of this paper includes a brief literature review covering the experimental, analytical and numerical studies concerning the single-phase pressure drop across bundle junctions. 32 refs., 9 figs
On framed quantum principal bundles
Durdevic, M
1995-01-01
A noncommutative-geometric formalism of framed principal bundles is sketched, in a special case of quantum bundles (over quantum spaces) possessing classical structure groups. Quantum counterparts of torsion operators and Levi-Civita type connections are analyzed. A construction of a natural differential calculus on framed bundles is described. Illustrative examples are presented.
International Nuclear Information System (INIS)
Highlights: → Annular flows w/wo functional spacers are investigated by cold neutron imaging. → Liquid film thickness distribution on fuel pins and on spacer vanes is measured. → The influence of the spacers on the liquid film distributions has been quantified. → The cross-sectional averaged liquid hold-up significantly affected by the spacers. → The sapers affect the fraction of the entrained liquid hold up in the gas core. - Abstract: Dryout of the coolant liquid film at the upper part of the fuel pins of a boiling water reactor (BWR) core constitutes the type of heat transfer crisis relevant for the conditions of high void fractions. It is both a safety concern and a limiting factor in the thermal power and thus for the economy of BWRs. We have investigated adiabatic, air-water annular flows in a scaled-up model of two neighboring subchannels as found in BWR fuel assemblies using cold-neutron tomography. The imaging of the double suchannel has been performed at the ICON beamline at the neutron spallation source SINQ at the Paul Scherrer Institute, Switzerland. Cold-neutron tomography is shown here to be an excellent tool for investigating air-water annular flows and the influence of functional spacers of different geometries on such flows. The high-resolution, high-contrast measurements provide the spatial distributions of the coolant liquid film thickness on the fuel pin surfaces as well as on the surfaces of the spacer vanes. The axial variations of the cross-section averaged liquid hold-up and its fraction in the gas core shows the effect of the spacers on the redistribution of the two phases.
Deformation quantization of principal bundles
Aschieri, Paolo
2016-01-01
We outline how Drinfeld twist deformation techniques can be applied to the deformation quantization of principal bundles into noncommutative principal bundles, and more in general to the deformation of Hopf-Galois extensions. First we twist deform the structure group in a quantum group, and this leads to a deformation of the fibers of the principal bundle. Next we twist deform a subgroup of the group of authomorphisms of the principal bundle, and this leads to a noncommutative base space. Considering both deformations we obtain noncommutative principal bundles with noncommutative fiber and base space as well.
Rudakov, A N
1990-01-01
This volume is devoted to the use of helices as a method for studying exceptional vector bundles, an important and natural concept in algebraic geometry. The work arises out of a series of seminars organised in Moscow by A. N. Rudakov. The first article sets up the general machinery, and later ones explore its use in various contexts. As to be expected, the approach is concrete; the theory is considered for quadrics, ruled surfaces, K3 surfaces and P3(C).
Hirsch, Gregory
2002-01-01
A plurality of glass or metal wires are precisely etched to form the desired shape of the individual channels of the final polycapillary optic. This shape is created by carefully controlling the withdrawal speed of a group of wires from an etchant bath. The etched wires undergo a subsequent operation to create an extremely smooth surface. This surface is coated with a layer of material which is selected to maximize the reflectivity of the radiation being used. This reflective surface may be a single layer of material, or a multilayer coating for optimizing the reflectivity in a narrower wavelength interval. The collection of individual wires is assembled into a close-packed multi-wire bundle, and the wires are bonded together in a manner which preserves the close-pack configuration, irrespective of the local wire diameter. The initial wires are then removed by either a chemical etching procedure or mechanical force. In the case of chemical etching, the bundle is generally segmented by cutting a series of etching slots. Prior to removing the wire, the capillary array is typically bonded to a support substrate. The result of the process is a bundle of precisely oriented radiation-reflecting hollow channels. The capillary optic is used for efficiently collecting and redirecting the radiation from a source of radiation which could be the anode of an x-ray tube, a plasma source, the fluorescent radiation from an electron microprobe, a synchrotron radiation source, a reactor or spallation source of neutrons, or some other source.
Bundling harvester; Nippukorjausharvesteri
Energy Technology Data Exchange (ETDEWEB)
Koponen, K. [Eko-Log Oy, Kuopio (Finland)
1996-12-31
The staring point of the project was to design and construct, by taking the silvicultural point of view into account, a harvesting and processing system especially for energy-wood, containing manually driven bundling harvester, automatizing of the harvester, and automatized loading. The equipment forms an ideal method for entrepreneur`s-line harvesting. The target is to apply the system also for owner`s-line harvesting. The profitability of the system promotes the utilization of the system in both cases. The objectives of the project were: to construct a test equipment and prototypes for all the project stages, to carry out terrain and strain tests in order to examine the usability and durability, as well as the capacity of the machine, to test the applicability of the Eko-Log system in simultaneous harvesting of energy and pulp woods, and to start the marketing and manufacturing of the products. The basic problems of the construction of the bundling harvester have been solved using terrain-tests. The prototype machine has been shown to be operable. Loading of the bundles to form sufficiently economically transportable loads has been studied, and simultaneously, the branch-biomass has been tried to be utilized without loosing the profitability of transportation. The results have been promising, and will promote the profitable utilization of wood-energy
棒束燃料组件特征栅元CFD方法研究%CFD Method Research on Characteristic Cells in Rod Bundle Fuel Assembly
Institute of Scientific and Technical Information of China (English)
陈杰; 陈炳德; 张虹
2011-01-01
Two characteristic cells are in AFA-3G fuel assembly, that is typical cell and control rod guide cell. And there are some rules on the arrangement of mixing vanes. For the two characteristic cells, mixing capability is evaluated axially from the point of the first and second kind of sub-channel with CFD method.Mass mixing and heat mixing are interaction but different with each other. Although the mass mixing in the first kind of sub-channel is stronger, the thermal capability of the two is to some tune from the point of heat transfer. In the experiment research on thermal-hydraulic performance of AFA-3G fuel assembly, the arrangements of mixing vanes should refer to the two spacer grids of characteristic cells.%AFA-3G燃料组件中存在典型栅元和控制棒导向管栅元两种特征栅元,定位格架搅混翼的排列也具有一定的规律性.本文采用计算流体力学(CFD)方法,分别针对两种特征栅元,从第一类子通道和第二类子通道的角度,沿程评价其交混性能.质量交混与热交混紧密联系又相互区别,第一类子通道质量交换较强,但从传热角度,二者性能相当.AFA-3G燃料组件热工水力性能的实验研究中,格架搅混翼的排列方式应分别参照两种特征栅元格架.
Draper, Andrew
2011-04-01
Results of Medicare's ACE demonstration project and Geisinger Health System's ProvenCare initiative provide insight into the challenges hospitals will face as bundled payment proliferates. An early analysis of these results suggests that hospitals would benefit from bringing full automation using clinical IT tools to bear in their efforts to meet these challenges. Other important factors contributing to success include board and physician leadership, organizational structure, pricing methodology for bidding, evidence-based medical practice guidelines, supply cost management, process efficiency management, proactive and aggressive case management, business development and marketing strategy, and the financial management system.
Draper, Andrew
2011-04-01
Results of Medicare's ACE demonstration project and Geisinger Health System's ProvenCare initiative provide insight into the challenges hospitals will face as bundled payment proliferates. An early analysis of these results suggests that hospitals would benefit from bringing full automation using clinical IT tools to bear in their efforts to meet these challenges. Other important factors contributing to success include board and physician leadership, organizational structure, pricing methodology for bidding, evidence-based medical practice guidelines, supply cost management, process efficiency management, proactive and aggressive case management, business development and marketing strategy, and the financial management system. PMID:21548437
Cassou-Nogues, Ph.; Erez, B.; Taylor, M. J.
2004-01-01
We establish comparison results between the Hasse-Witt invariants w_t(E) of a symmetric bundle E over a scheme and the invariants of one of its twists E_{\\alpha}. For general twists we describe the difference between w_t(E) and w_t(E_{\\alpha}) up to terms of degree 3. Next we consider a special kind of twist, which has been studied by A. Fr\\"ohlich. This arises from twisting by a cocycle obtained from an orthogonal representation. We show how to explicitly describe the twist for representatio...
Differential calculi on noncommutative bundles
Pflaum, Markus J.; Schauenburg, Peter
1996-01-01
We introduce a category of noncommutative bundles. To establish geometry in this category we construct suitable noncommutative differential calculi on these bundles and study their basic properties. Furthermore we define the notion of a connection with respect to a differential calculus and consider questions of existence and uniqueness. At the end these constructions are applied to basic examples of noncommutative bundles over a coquasitriangular Hopf algebra.
Fiber Bundles and Parseval Frames
Agrawal, Devanshu; Knisley, Jeff
2015-01-01
Continuous frames over a Hilbert space have a rich and sophisticated structure that can be represented in the form of a fiber bundle. The fiber bundle structure reveals the central importance of Parseval frames and the extent to which Parseval frames generalize the notion of an orthonormal basis.
Bundle Security Protocol for ION
Burleigh, Scott C.; Birrane, Edward J.; Krupiarz, Christopher
2011-01-01
This software implements bundle authentication, conforming to the Delay-Tolerant Networking (DTN) Internet Draft on Bundle Security Protocol (BSP), for the Interplanetary Overlay Network (ION) implementation of DTN. This is the only implementation of BSP that is integrated with ION.
Twisted Vector Bundles on Pointed Nodal Curves
Indian Academy of Sciences (India)
Ivan Kausz
2005-05-01
Motivated by the quest for a good compactification of the moduli space of -bundles on a nodal curve we establish a striking relationship between Abramovich’s and Vistoli’s twisted bundles and Gieseker vector bundles.
Thermal hydraulics of rod bundles: The effect of eccentricity
Energy Technology Data Exchange (ETDEWEB)
Chauhan, Amit K., E-mail: amit_fmlab@yahoo.co.in [Fluid Mechanics Laboratory, Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai 600036 (India); Prasad, B.V.S.S.S., E-mail: prasad@iitm.ac.in [Thermal Turbomachines Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036 (India); Patnaik, B.S.V., E-mail: bsvp@iitm.ac.in [Fluid Mechanics Laboratory, Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai 600036 (India)
2013-10-15
Highlights: • Present CFD investigation explores, whole bundle eccentricity for the first time. • Fluid flow and thermal characteristics in various subchannels are analyzed. • Mass flux distribution is particularly analyzed to study eccentricity effect. • Higher eccentricity resulted in a shoot up in rod surface temperature distribution. • Both tangential and radial flow in rod bundles has resulted due to eccentricity. -- Abstract: The effect of eccentricity on the fluid flow and heat transfer through a 19-rod bundle is numerically carried out. When the whole bundle shifts downwards with respect to the outer (pressure) tube, flow redistribution happens. This in turn is responsible for changes in mass flux, pressure and differential flow development in various subchannels. The heat flux imposed on the surface of the fuel rods and the mass flux through the subchannels determines the coolant outlet temperatures. The simulations are performed for a coolant flow Reynolds number of 4 × 10{sup 5}. For an eccentricity value of 0.7, the mass flux in the bottom most subchannel (l) was found to decrease by 10%, while the surface temperature of the fuel rod in the vicinity of this subchannel increased by 250% at the outlet section. Parameters of engineering interest including skin friction coefficient, Nusselt number, etc., have been systematically explored to study the effect of eccentricity on the rod bundle.
Semiflexible Biopolymers in Bundled Arrangements
Directory of Open Access Journals (Sweden)
Jörg Schnauß
2016-07-01
Full Text Available Bundles and networks of semiflexible biopolymers are key elements in cells, lending them mechanical integrity while also enabling dynamic functions. Networks have been the subject of many studies, revealing a variety of fundamental characteristics often determined via bulk measurements. Although bundles are equally important in biological systems, they have garnered much less scientific attention since they have to be probed on the mesoscopic scale. Here, we review theoretical as well as experimental approaches, which mainly employ the naturally occurring biopolymer actin, to highlight the principles behind these structures on the single bundle level.
The Atiyah Bundle and Connections on a Principal Bundle
Indian Academy of Sciences (India)
Indranil Biswas
2010-06-01
Let be a ∞ manifold and a Lie a group. Let $E_G$ be a ∞ principal -bundle over . There is a fiber bundle $\\mathcal{C}(E_G)$ over whose smooth sections correspond to the connections on $E_G$. The pull back of $E_G$ to $\\mathcal{C}(E_G)$ has a tautological connection. We investigate the curvature of this tautological connection.
CFD analysis of flow and heat transfer in Canadian supercritical water reactor bundle
International Nuclear Information System (INIS)
Highlights: • Flow and heat transfer in SCWR fuel bundle design by AECL is studied using CFD. • Bare-rod bundle geometry is tested at 23.5, 25 and 28 MPa using STAR-CCM+ code. • SST k–ω low-Re model was used to study occurrence of heat transfer deterioration. - Abstract: Within the Gen-IV International Forum, AECL is leading the effort in developing a conceptual design for the Canadian SCWR. AECL proposed a new fuel bundle design with two rings of fuel elements placed between central flow tube and the pressure tube. In line with the scope of the conceptual design, the objective of the present CFD work is to aid in developing a bundle heat transfer correlation for the Canadian SCWR fuel bundle design. This paper presents results from an ongoing effort in determining the conditions favorable for occurrence of HTD in the supercritical bundle flows. In the current investigation, bare-rod bundle geometry was tested for the proposed fuel bundle design at 23.5, 25 and 28 MPa using STAR-CCM+ CFD code. Taking advantage of the design symmetry of the fuel bundle, only 1/32 of the computational domain was simulated. The low-Reynolds number modification of SST k–ω turbulence model along with y+ < 1 was used in the simulations. For lower mass flow simulations, the increase of inlet temperature and operational pressure was found effective in reducing the occurrence of HTD. For higher mass flow simulations, normal heat transfer behaviour was observed except for the lower pressure range (23.5 MPa)
Bundling ecosystem services in Denmark
DEFF Research Database (Denmark)
Turner, Katrine Grace; Odgaard, Mette Vestergaard; Bøcher, Peder Klith;
2014-01-01
We made a spatial analysis of 11 ecosystem services at a 10 km × 10 km grid scale covering most of Denmark. Our objective was to describe their spatial distribution and interactions and also to analyze whether they formed specific bundle types on a regional scale in the Danish cultural landscape....... We found clustered distribution patterns of ecosystem services across the country. There was a significant tendency for trade-offs between on the one hand cultural and regulating services and on the other provisioning services, and we also found the potential of regulating and cultural services...... to form synergies. We identified six distinct ecosystem service bundle types, indicating multiple interactions at a landscape level. The bundle types showed specialized areas of agricultural production, high provision of cultural services at the coasts, multifunctional mixed-use bundle types around urban...
DEFF Research Database (Denmark)
Risum, Niels; Strauss, David; Sogaard, Peter;
2013-01-01
The relationship between myocardial electrical activation by electrocardiogram (ECG) and mechanical contraction by echocardiography in left bundle-branch block (LBBB) has never been clearly demonstrated. New strict criteria for LBBB based on a fundamental understanding of physiology have recently...
Analysis of F/M duty cycle and O/M cost for four-bundle shift refuelling scheme in CANDU6 NPP
International Nuclear Information System (INIS)
A four-bundle shift refuelling method, a refuelling scheme that can reduces local flux peak compared to the current eight-bundle shift refuelling method used in CANDU6 NPP, is analyzed to see how much Fuel Handling System load and management cost increase are required due to the change. The current eight-bundle shift refuelling method requires to refuel eight fuel bundles from a single fuel channel, and to refuel 14 fuel channels in a week on average assuming that the reactor is in a steady state. The four-bundle shift refuelling method increases Fuelling Machine duty cycle and operator load. The study showed that the refuelling scheme change from the eight-to four-bundle shift increases the operation and maintenance cost about 35% from the current figure by conservative estimate and that the Fuel Handling System has enough flexibility to meet the demand of a more frequent refuelling scheme
Kun, Ferenc; Zapperi, Stefano; Herrmann, Hans J.
1999-01-01
We introduce a continuous damage fiber bundle model that gives rise to macroscopic plasticity and compare its behavior with that of dry fiber bundles. Several interesting constitutive behaviors are found in this model depending on the value of the damage parameter and on the form of the disorder distribution. In addition, we compare the behavior of global load transfer models with local load transfer models and study in detail the damage evolution before failure. We emphasize the analogies be...
Simulation of bundle test Quench-12 with integral code MELCOR
International Nuclear Information System (INIS)
The past NRI analyses cover the Quench-01, Quench-03 and Quench-06 with version MELCOR 1.8.5 (including reflood model), and Quench-01 and Quench-11 tests with the latest version MELCOR 1.8.6. The Quench-12 test is specific, because it has different bundle configuration related to the VVER bundle configuration with hexagonal grid of pins and also used E110 cladding material. Specificity of Quench-12 test is also in the used material of fuel rod cladding - E110. The test specificities are a reason for the highest concern, because the VVER reactors are operated in the Czech Republic. The new input model was developed with the taking into account all experience from previous simulations of the Quench bundle tests. The recent version MELCOR 1.8.6 YU2911 was used for the simulation with slightly modified ELHEAT package. Sensitivity studies on input parameters and oxidation kinetics were performed. (author)
The button effect of CANFLEX bundle on the critical heat flux and critical channel power
Energy Technology Data Exchange (ETDEWEB)
Park, Joo Hwan; Jun, Jisu; Suk, Ho Chun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Dimmick, G. R.; Bullock, D. E.; Inch, W. [Atomic Energy of Canada Limited, Ontario (Canada)
1997-12-31
A CANFLEX (CANdu FLEXible fuelling) 43-element bundle has developed for a CANDU-6 reactor as an alternative of 37-element fuel bundle. The design has two diameter elements (11.5 and 13.5 mm) to reduce maximum element power rating and buttons to enhance the critical heat flux (CHF), compared with the standard 37-element bundle. The freon CHF experiments have performed for two series of CANFLEX bundles with and without buttons with a modelling fluid as refrigerant R-134a and axial uniform heat flux condition. Evaluating the effects of buttons of CANFLEX bundle on CHF and Critical Channel Power (CCP) with the experimental results, it is shown that the buttons enhance CCP as well as CHF. All the CHF`s for both the CANFLEX bundles are occurred at the end of fuel channel with the high dryout quality conditions. The CHF enhancement ratio are increased with increase of dryout quality for all flow conditions and also with increase of mass flux only for high pressure conditions. It indicates that the button is a useful design for CANDU operating condition because most CHF flow conditions for CANDU fuel bundle are ranged to high dryout quality conditions. 5 refs., 11 figs. (Author)
Cohomology of line bundles: Applications
Blumenhagen, Ralph; Jurke, Benjamin; Rahn, Thorsten; Roschy, Helmut
2012-01-01
Massless modes of both heterotic and Type II string compactifications on compact manifolds are determined by vector bundle valued cohomology classes. Various applications of our recent algorithm for the computation of line bundle valued cohomology classes over toric varieties are presented. For the heterotic string, the prime examples are so-called monad constructions on Calabi-Yau manifolds. In the context of Type II orientifolds, one often needs to compute cohomology for line bundles on finite group action coset spaces, necessitating us to generalize our algorithm to this case. Moreover, we exemplify that the different terms in Batyrev's formula and its generalizations can be given a one-to-one cohomological interpretation. Furthermore, we derive a combinatorial closed form expression for two Hodge numbers of a codimension two Calabi-Yau fourfold.
Bundle Formation in Biomimetic Hydrogels.
Jaspers, Maarten; Pape, A C H; Voets, Ilja K; Rowan, Alan E; Portale, Giuseppe; Kouwer, Paul H J
2016-08-01
Bundling of single polymer chains is a crucial process in the formation of biopolymer network gels that make up the extracellular matrix and the cytoskeleton. This bundled architecture leads to gels with distinctive properties, including a large-pore-size gel formation at very low concentrations and mechanical responsiveness through nonlinear mechanics, properties that are rarely observed in synthetic hydrogels. Using small-angle X-ray scattering (SAXS), we study the bundle formation and hydrogelation process of polyisocyanide gels, a synthetic material that uniquely mimics the structure and mechanics of biogels. We show how the structure of the material changes at the (thermally induced) gelation point and how factors such as concentration and polymer length determine the architecture, and with that, the mechanical properties. The correlation of the gel mechanics and the structural parameters obtained from SAXS experiments is essential in the design of future (synthetic) mimics of biopolymer networks.
Principal bundles the classical case
Sontz, Stephen Bruce
2015-01-01
This introductory graduate level text provides a relatively quick path to a special topic in classical differential geometry: principal bundles. While the topic of principal bundles in differential geometry has become classic, even standard, material in the modern graduate mathematics curriculum, the unique approach taken in this text presents the material in a way that is intuitive for both students of mathematics and of physics. The goal of this book is to present important, modern geometric ideas in a form readily accessible to students and researchers in both the physics and mathematics communities, providing each with an understanding and appreciation of the language and ideas of the other.
Single and two-phase flow pressure drop for CANFLEX bundle
Energy Technology Data Exchange (ETDEWEB)
Park, Joo Hwan; Jun, Ji Su; Suk, Ho Chun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Dimmick, G. R.; Bullock, D. E. [Atomic Energy of Canada Limited, Ontario (Canada)
1998-12-31
Friction factor and two-phase flow frictional multiplier for a CANFLEX bundle are newly developed and presented in this paper. CANFLEX as a 43-element fuel bundle has been developed jointly by AECL/KAERI to provide greater operational flexibility for CANDU reactor operators and designers. Friction factor and two-phase flow frictional multiplier have been developed by using the experimental data of pressure drops obtained from two series of Freon-134a (R-134a) CHF tests with a string of simulated CANFLEX bundles in a single phase and a two-phase flow conditions. The friction factor for a CANFLEX bundle is found to be about 20% higher than that of Blasius for a smooth circular pipe. The pressure drop predicted by using the new correlations of friction factor and two-phase frictional multiplier are well agreed with the experimental pressure drop data of CANFLEX bundle within {+-} 5% error. 11 refs., 5 figs. (Author)
Exploring Bundling Theory with Geometry
Eckalbar, John C.
2006-01-01
The author shows how instructors might successfully introduce students in principles and intermediate microeconomic theory classes to the topic of bundling (i.e., the selling of two or more goods as a package, rather than separately). It is surprising how much students can learn using only the tools of high school geometry. To be specific, one can…
Reflood Phenomena in a 5 x 5 Ballooned Rod Bundle
Energy Technology Data Exchange (ETDEWEB)
Kim, Byoung Jae; Kim, Jong Rok; Kim, Kihwan; Moon, S. K. [KAERI, Daejeon (Korea, Republic of)
2015-05-15
Various experimental programs were carried out for the coolability of an assembly containing a partial blockage in a group of ballooned fuel rods under LOCA conditions. A review on these experimental programs is well documented in. One key distinguished feature of KAERI research activities is the consideration of local power increase owing to fuel relocation, whereas the past experimental program did not consider the effect of fuel relocation. The purpose of this study is to investigate the reflood phenomena in the partial blocked 5 x 5 rod bundle. A series of the forced reflood tests were performed with/without consideration of local power increase by fuel relocation. The experimental data were evaluated with numerical predictions using MARS code. The flow blockage alone has little effect on the peak wall temperature. However, the local power increase by fuel relocation affects considerably the peak wall temperature and the time period during which high wall temperatures continue.
Reflood Phenomena in a 5 x 5 Ballooned Rod Bundle
International Nuclear Information System (INIS)
Various experimental programs were carried out for the coolability of an assembly containing a partial blockage in a group of ballooned fuel rods under LOCA conditions. A review on these experimental programs is well documented in. One key distinguished feature of KAERI research activities is the consideration of local power increase owing to fuel relocation, whereas the past experimental program did not consider the effect of fuel relocation. The purpose of this study is to investigate the reflood phenomena in the partial blocked 5 x 5 rod bundle. A series of the forced reflood tests were performed with/without consideration of local power increase by fuel relocation. The experimental data were evaluated with numerical predictions using MARS code. The flow blockage alone has little effect on the peak wall temperature. However, the local power increase by fuel relocation affects considerably the peak wall temperature and the time period during which high wall temperatures continue
Fabrication of CANFLEX bundle kit for irradiation test in NRU
Energy Technology Data Exchange (ETDEWEB)
Cho, Moon Sung; Kwon, Hyuk Il; Ji, Chul Goo; Chang, Ho Il; Sim, Ki Seob; Suk, Ho Chun
1997-10-01
CANFLEX bundle kit was prepared at KAERI for the fabrication of complete bundle at AECL. Completed bundle will be used for irradiation test in NRU. Provisions in the `Quality Assurance Manual for HWR Fuel Projects,` `Manufacturing Plan` and `Quality Verification, Inspection and Test Plan` were implemented as appropriately for the preparation of CANFLEX kit. A set of CANFLEX kit consist of 43 fuel sheath of two different sizes with spacers, bearing pads and buttons attached, 2 pieces of end plates and 86 pieces of end caps with two different sizes. All the documents utilized as references for the fabrication such as drawings, specifications, operating instructions, QC instructions and supplier`s certificates are specified in this report. Especially, suppliers` certificates and inspection reports for the purchased material as well as KAERI`s inspection report are integrated as attachments to this report. Attached to this report are supplier`s certificates and KAERI inspection reports for the procured materials and KAERI QC inspection reports for tubes, pads, spacers, buttons, end caps, end plates and fuel sheath. (author). 37 refs.
Bundling Information Goods: Pricing, Profits, and Efficiency
Yannis Bakos; Erik Brynjolfsson
1999-01-01
We study the strategy of bundling a large number of information goods, such as those increasingly available on the Internet, and selling them for a fixed price. We analyze the optimal bundling strategies for a multiproduct monopolist, and we find that bundling very large numbers of unrelated information goods can be surprisingly profitable. The reason is that the law of large numbers makes it much easier to predict consumers' valuations for a bundle of goods than their valuations for the indi...
Failure properties of fiber bundle models
Pradhan, Srutarshi; Chakrabarti, Bikas K.
2003-01-01
We study the failure properties of fiber bundles when continuous rupture goes on due to the application of external load on the bundles. We take the two extreme models: equal load sharing model (democratic fiber bundles) and local load sharing model. The strength of the fibers are assumed to be distributed randomly within a finite interval. The democratic fiber bundles show a solvable phase transition at a critical stress (load per fiber). The dynamic critical behavior is obtained analyticall...
Coolant mixing in LMFBR rod bundles and outlet plenum mixing transients
Todreas, N. E.; Cheng, S. K.; Basehore, K.
1984-08-01
The thermal hydraulic performance of wire wrapped fuel bundles of LMFBR configuration was investigated. Results obtained included phenomenological models for friction factors, flow split and mixing characteristics; correlations for predicting these characteristics suitable for insertion in design codes; numerical codes for analyzing bundle behavior both of the lumped subchannel and distributed parameter categories and experimental techniques for pressure velocity, flow split, salt conductivity and temperature measurement in water cooled mockups of bundles and subchannels. Flow regimes investigated included laminar, transition and turbulent flow under forced convection and mixed convection conditions. Forced convections conditions are emphasized. Outlet plenum behavior is also investigated.
Quantum principal bundles and corresponding gauge theories
Durdevic, M
1995-01-01
A generalization of classical gauge theory is presented, in the framework of a noncommutative-geometric formalism of quantum principal bundles over smooth manifolds. Quantum counterparts of classical gauge bundles, and classical gauge transformations, are introduced and investigated. A natural differential calculus on quantum gauge bundles is constructed and analyzed. Kinematical and dynamical properties of corresponding gauge theories are discussed.
Higher order jet prolongations type gauge natural bundles over vector bundles
Directory of Open Access Journals (Sweden)
Jan Kurek
2004-05-01
Full Text Available Let $rgeq 3$ and $mgeq 2$ be natural numbers and $E$ be a vector bundle with $m$-dimensional basis. We find all gauge natural bundles ``similar" to the $r$-jet prolongation bundle $J^rE$ of $E$. We also find all gauge natural bundles ``similar" to the vector $r$-tangent bundle $(J^r_{fl}(E,R_0^*$ of $E$.
Quantum bundles and their symmetries
International Nuclear Information System (INIS)
Wave functions in the domain of observables such as the Hamiltonian are not always smooth functions on the classical configuration space Q. Rather, they are often best regarded as functions on a G bundle EG over Q or as sections of an associated bundle. If H is a classical group which acts on Q, its quantum version HG, which acts on EG, is not always H, but an extension of H by G. A powerful and physically transparent construction of EG and HG, where G = U(1) and H1(Q,Z) = 0, has been developed using the path space P. (P consists of paths on Q from a fixed point). In this paper the authors show how to construct EG and HG when G is U(1) or U(1) x π1(Q) and there is no restriction on H1(Q,Z). The method is illustrated with concrete examples, such as a system of charges and monopoles. The method is illustrated with concrete examples, such as a system of charges and monopoles. The authors argue also that P is a sort of superbundle from which a large variety of bundles can be obtained by imposing suitable equivalence relations
Photonic bandgap fiber bundle spectrometer
Hang, Qu; Syed, Imran; Guo, Ning; Skorobogatiy, Maksim
2010-01-01
We experimentally demonstrate an all-fiber spectrometer consisting of a photonic bandgap fiber bundle and a black and white CCD camera. Photonic crystal fibers used in this work are the large solid core all-plastic Bragg fibers designed for operation in the visible spectral range and featuring bandgaps of 60nm - 180nm-wide. 100 Bragg fibers were chosen to have complimentary and partially overlapping bandgaps covering a 400nm-840nm spectral range. The fiber bundle used in our work is equivalent in its function to a set of 100 optical filters densely packed in the area of ~1cm2. Black and white CCD camera is then used to capture spectrally "binned" image of the incoming light at the output facet of a fiber bundle. To reconstruct the test spectrum from a single CCD image we developed an algorithm based on pseudo-inversion of the spectrometer transmission matrix. We then study resolution limit of this spectroscopic system by testing its performance using spectrally narrow test peaks (FWHM 5nm-25nm) centered at va...
Subchannel Analysis for enhancing the fuel performance in CANDU reactor
International Nuclear Information System (INIS)
The effect of the fuel rod geometry in a fuel bundle using the subchannel code ASSERT has been evaluated to design the fuel bundle having the advanced fuel performance. Based on the configuration of standard 37-element fuel bundle, the element diameter of fuel rods in each ring has been changed while that of fuel rods in other rings is kept as the original size. The dryout power of each element in a fuel bundle has been obtained for the modified fuel bundle and compared with that of a standard fuel bundle. From the calculated mixture enthalpy and void fraction of each subchannel, it was found that the modification of element diameter largely affects to the thermal characteristics of the subchannel on the upper region of a modified element by the buoyancy drift effect. The optimized geometry in a fuel bundle has been suggested from the consideration of the change of void reactivity as well as the dryout power of a bundle. The dependency of the transverse interchange model on the present results has been checked by examining the dryout power of a bundle for the different mixing coefficient and buoyancy drift model
Global analysis of bundle behavior in pressurized water reactor specific CORA experiments
International Nuclear Information System (INIS)
At Kernforschungszentrum Karlsruhe, out-of-pile bundle experiments are performed in the CORA facility to investigate the behavior of light water reactor fuel elements during severe fuel damage accidents. To analyze the phenomena observed during the tests, such as claddin failure, oxidation, and deformation, as well as their influence on the post test bundle state, four pressurized water reactor specific tests are selected: CORA-2, CORA-3, CORA-5, and CORA-12. From each of these tests, a detailed global analysis using all the measured temperatures, pressures, and fluid compositions as well as videoscope information has been performed. To describe the post test bundle state quantitatively, axial profiles of the bundle cross-section area, the damage state of the rods, the average cladding oxidation, and the damage to the pellets are measured. The effects of CORA-specific components on the bundle melt progression and the measured axial profiles are identified and assessed. Most of the observations during the tests as well as the post test bundle state can be explained by the established common sequence of phenomena. For a better understanding of the melt progression, some physical phenomena, such as the energy release associated with the double-sided oxidation of the cladding, the melt release, or the melt relocation, must be analyzed in detail
Fabrication of a CANFLEX-RU designed bundle for power ramp irradiation test in NRU
International Nuclear Information System (INIS)
The BDL-443 CANFLEX-RU bundle AKW was fabricated at Korea Atomic Energy Research Institute (KAERI) for power ramp irradiation testing in NRU reactor. The bundle was fabricated with IDR and ADU fuel pellets in adjacent elements and contains fuel pellets enriched to 1.65 wt% 235U in the outer and intermediate rings and also contains pellets enriched to 2.00 wt% 235U in the inner ring. This bundle does not have a center element to allow for insertion on a hanger bar. KAERI produced the IDR pellets with the IDR-source UO2 powder supplied by BNFL. ADU pellets were fabricated and supplied by AECL. Bundle kits (Zircaloy-4 end plates, end plugs, and sheaths with brazed appendages) manufactured at KAERI earlier in 1996 were used for the fabrication of the bundle. The CANFLEX bundle was fabricated successfully at KAERI according to the QA provisions specified in references and as per relevant KAERI drawings and technical specification. This report covers the fabrication activities performed at KAERI. Fabrication processes performed at AECL will be documented in a separate report
CANDU RU fuel manufacturing basic technology development and advanced fuel verification tests
International Nuclear Information System (INIS)
A PHWR advanced fuel named the CANFLEX fuel has been developed through a KAERI/AECL joint Program. The KAERI made fuel bundle was tested at the KAERI Hot Test Loop for the performance verification of the bundle design. The major test activities were the fuel bundle cross-flow test, the endurance fretting/vibration test, the freon CHF test, and the fuel bundle heat-up test. KAERI also has developing a more advanced PHWR fuel, the CANFLEX-RU fuel, using recovered uranium to extend fuel burn-up in the CANDU reactors. For the purpose of proving safety of the RU handling techniques and appraising feasibility of the CANFLEX-RU fuel fabrication in near future, a physical, chemical and radiological characterization of the RU powder and pellets was performed. (author). 54 refs., 46 tabs., 62 figs
CANDU RU fuel manufacturing basic technology development and advanced fuel verification tests
Energy Technology Data Exchange (ETDEWEB)
Chung, Chang Hwan; Chang, S.K.; Hong, S.D. [and others
1999-04-01
A PHWR advanced fuel named the CANFLEX fuel has been developed through a KAERI/AECL joint Program. The KAERI made fuel bundle was tested at the KAERI Hot Test Loop for the performance verification of the bundle design. The major test activities were the fuel bundle cross-flow test, the endurance fretting/vibration test, the freon CHF test, and the fuel bundle heat-up test. KAERI also has developing a more advanced PHWR fuel, the CANFLEX-RU fuel, using recovered uranium to extend fuel burn-up in the CANDU reactors. For the purpose of proving safety of the RU handling techniques and appraising feasibility of the CANFLEX-RU fuel fabrication in near future, a physical, chemical and radiological characterization of the RU powder and pellets was performed. (author). 54 refs., 46 tabs., 62 figs.
Bundling and joint marketing by rival firms
Jeitschko, Thomas D.; Jung, Yeonjei; Kim, Jaesoo
2014-01-01
We study joint marketing arrangements by competing firms who engage in price discrimination between consumers who patronize only one firm (single purchasing) and those who purchase from both competitors (bundle purchasers). Two types of joint marketing are considered. Firms either commit to a component-price that applies to bundle-purchasers and then firms set stand-alone prices for single purchasers; or firms commit to a rebate off their stand alone price that will be applied to bundle-purch...
Damping Properties of the Hair Bundle
Baumgart, Johannes; Kozlov, Andrei S.; Risler, Thomas; Hudspeth, A. James
2015-01-01
The viscous liquid surrounding a hair bundle dissipates energy and dampens oscillations, which poses a fundamental physical challenge to the high sensitivity and sharp frequency selectivity of hearing. To identify the mechanical forces at play, we constructed a detailed finite-element model of the hair bundle. Based on data from the hair bundle of the bullfrog's sacculus, this model treats the interaction of stereocilia both with the surrounding liquid and with the liquid in the narrow gaps b...
General frame structures on quantum principal bundles
Durdevic, M
1996-01-01
A noncommutative-geometric generalization of the classical formalism of frame bundles is developed, incorporating into the theory of quantum principal bundles the concept of the Levi-Civita connection. The construction of a natural differential calculus on quantum principal frame bundles is presented, including the construction of the associated differential calculus on the structure group. General torsion operators are defined and analyzed. Illustrative examples are presented.
Statistical Constitutive Equation of Aramid Fiber Bundles
Institute of Scientific and Technical Information of China (English)
熊杰; 顾伯洪; 王善元
2003-01-01
Tensile impact tests of aramid (Twaron) fiber bundles were carried om under high strain rates with a wide range of 0. 01/s～1000/s by using MTS and bar-bar tensile impact apparatus. Based on the statistical constitutive model of fiber bundles, statistical constitutive equations of aramid fiber bundles are derived from statistical analysis of test data at different strain rates. Comparison between the theoretical predictions and experimental data indicates statistical constitutive equations fit well with the experimental data, and statistical constitutive equations of fiber bundles at different strain rates are valid.
Parallel transport on principal bundles over stacks
Collier, Brian; Lerman, Eugene; Wolbert, Seth
2016-09-01
In this paper we introduce a notion of parallel transport for principal bundles with connections over differentiable stacks. We show that principal bundles with connections over stacks can be recovered from their parallel transport thereby extending the results of Barrett, Caetano and Picken, and Schreiber and Waldorf from manifolds to stacks. In the process of proving our main result we simplify Schreiber and Waldorf's original definition of a transport functor for principal bundles with connections over manifolds and provide a more direct proof of the correspondence between principal bundles with connections and transport functors.
Energy Technology Data Exchange (ETDEWEB)
Beaud, F. [Electricite de France (EDF), 78 - Chatou (France)
1997-12-31
A model predicting the fluid-elastic forces in a bundle of circular cylinders subjected to axial flow is presented in this paper. Whereas previously published models were limited to circular flow channel, the present one allows to take a rectangular flow external boundary into account. For that purpose, an original approach is derived from the standard method of images. This model will eventually be used to predict the fluid-structure coupling between the flow of primary coolant and a fuel assemblies in PWR nuclear reactors. It is indeed of major importance since the flow is shown to induce quite high damping and could therefore mitigate the incidence of an external load like a seismic excitation on the dynamics of the assemblies. The proposed model is validated on two cases from the literature but still needs further comparisons with the experiments being currently carried out on the EDF set-up. The flow has been shown to induce an approximate 12% damping on a PWR fuel assembly, at nominal reactor conditions. The possible grid effect on the fluid-structure coupling has been neglected so far but will soon be investigated at EDF. (author). 16 refs.
Jacobi Structures on Affine Bundles
Institute of Scientific and Technical Information of China (English)
J. GRABOWSKI; D. IGLESIAS; J. C. MARRERO; E. PADR(O)N; P. URBA(N)SKI
2007-01-01
We study affine Jacobi structures (brackets) on an affine bundle π: A→M, i.e. Jacobi brackets that close on affine functions. We prove that if the rank of A is non-zero, there is a one-to- one correspondence between affine Jacobi structures on A and Lie algebroid structures on the vector bundle A+=∪p∈M Aff(Ap, R) of affine functionals. In the case rank A = 0, it is shown that there is a one-to-one correspondence between affins Jacobi structures on A and local Lie algebras on A+. Some examples and applications, also for the linear case, are discussed. For a special type of affine Jacobi structures which are canonically exhibited (strongly-affine or affine-homogeneous Jacobi structures) over a real vector space of finite dimension, we describe the leaves of its characteristic foliation as the orbits of an affine representation. These afline Jacobi structures can be viewed as an analog of the Kostant-Arnold-LiouviUe linear Poisson structure on the dual space of a real finite-dimensional Lie algebra.
Experimental studies on in-bundle ECCS injection for Advanced Heavy Water Reactor
International Nuclear Information System (INIS)
The Advanced Heavy Water Reactor (AHWR) being designed at BARC is an innovative reactor with Thorium utilization as its major objective. It has many advanced passive safety features. One such feature is passive injection of emergency coolant after postulated Loss of Coolant Accident (LOCA). A novel feature of this injection scheme is that the injection does not take place in the header/plenum as in other reactors, but directly in to the bundle. For this purpose, the fuel cluster incorporates a central water rod which communicates with the ECCS header. The water rod extends along full length of the fuel cluster. In event of LOCA in the Main Heat Transport (MHT) system, ECC water flows from the accumulator to the water rod through ECCS header. The water flows into the bundle through holes in the water rod. The AHWR fuel cluster has fuel pins arranged in three concentric rings (of 12, 18 and 24 pins) around the central rod. While it is ensured that water does reach the fuel cluster, whether it reaches the outer ring of pins is needs investigation as the pins are closely spaced (1-3 mm gap between adjacent rods). The objective of the present experiments is to determine under what conditions (ECC flow and decay heat), the ECC water is able to rewet and cool all the fuel pins. The experiments have been done in a short, instrumented fuel bundle simulating the geometry of the AHWR fuel cluster
Reflood experiments in rod bundles with flow blockages due to clad ballooning
Energy Technology Data Exchange (ETDEWEB)
Moon, S.K.; Kim, J.; Kim, K.; Kim, B.J.; Park, J.K.; Youn, Y.J.; Choi, H.S.; Song, C.H. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2016-07-15
Clad ballooning and the resulting partial flow blockage are one of the major thermal-hydraulic concerns associated with the coolability of partially blocked cores during a loss-of-coolant accident (LOCA). Several in-pile tests have shown that fuel relocation causes a local power accumulation and a high thermal coupling between the clad and fuel debris in the ballooned regions. However, previous experiments in the 1980s did not take into account the fuel relocation phenomena and resulting local power increase in the ballooned regions. The present paper presents the results of systematic investigations on the coolability of rod bundles with flow blockages. The experiments were mainly performed in 5 x 5 rod bundles, 2 x 2 rod bundles and other test facilities. The experiments include a reflood heat transfer, single-phase convective heat transfer, flow redistributions phenomena, and droplet break-up behavior. The effects of the fuel relocation and resulting local power increase were investigated using a 5 x 5 rod bundle. The fuel relocation phenomena increase the peak cladding temperature.
Anatomic Double-bundle ACL Reconstruction
V.M. Schreiber; C.F. van Eck; F.H. Fu
2010-01-01
Rupture of the anterior cruciate ligament (ACL) is one of the most frequent forms of knee trauma. The traditional surgical treatment for ACL rupture is single-bundle reconstruction. However, during the past few years there has been a shift in interest toward double-bundle reconstruction to closely r
The Verlinde formula for Higgs bundles
Andersen, Jørgen Ellegaard; Pei, Du
2016-01-01
We propose and prove the Verlinde formula for the quantization of the Higgs bundle moduli spaces and stacks for any simple and simply-connected group. This generalizes the equivariant Verlinde formula for the case of $SU(n)$ proposed previously by the second and third author. We further establish a Verlinde formula for the quantization of parabolic Higgs bundle moduli spaces and stacks.
Principal Bundles on the Projective Line
Indian Academy of Sciences (India)
V B Mehta; S Subramanian
2002-08-01
We classify principal -bundles on the projective line over an arbitrary field of characteristic ≠ 2 or 3, where is a reductive group. If such a bundle is trivial at a -rational point, then the structure group can be reduced to a maximal torus.
Fock modules and noncommutative line bundles
Landi, Giovanni
2016-09-01
To a line bundle over a noncommutative space there is naturally associated a Fock module. The algebra of corresponding creation and annihilation operators is the total space algebra of a principal U(1) -bundle over the noncommutative space. We describe the general construction and illustrate it with examples.
Damping Properties of the Hair Bundle
Baumgart, Johannes; Kozlov, Andrei S.; Risler, Thomas; Hudspeth, A. J.
2011-11-01
The viscous liquid surrounding a hair bundle dissipates energy and dampens oscillations, which poses a fundamental physical challenge to the high sensitivity and sharp frequency selectivity of hearing. To identify the mechanical forces at play, we constructed a detailed finite-element model of the hair bundle. Based on data from the hair bundle of the bullfrog's sacculus, this model treats the interaction of stereocilia both with the surrounding liquid and with the liquid in the narrow gaps between the individual stereocilia. The investigation revealed that grouping stereocilia in a bundle dramatically reduces the total drag. During hair-bundle deflections, the tip links potentially induce drag by causing small but very dissipative relative motions between stereocilia; this effect is offset by the horizontal top connectors that restrain such relative movements at low frequencies. For higher frequencies the coupling liquid is sufficient to assure that the hair bundle moves as a unit with a low total drag. This work reveals the mechanical characteristics originating from hair-bundle morphology and shows quantitatively how a hair bundle is adapted for sensitive mechanotransduction.
Parameter design and optimization of tight-lattice rod bundles
International Nuclear Information System (INIS)
Thin rod bundles with tight lattice are arranged according to the equilateral triangle grid, as the proportion of fuel is large, and the power density of core is high. Based on the analysis of the performance of core, the ABV-6M reactor is taken as the example, and two objective functions, power density and flow rate of coolant are proposed for optimization calculation. Diameter and pitch of rod are optimized by using GA method respectively. The results, which are considered to be safety in security checking, show that tight lattice is effective for improving the power density and other performances of the reactor core. (author)
Line bundle embeddings for heterotic theories
Energy Technology Data Exchange (ETDEWEB)
Groot Nibbelink, Stefan [Muenchen Univ. (Germany). Arnold Sommerfeld Center for Theoretical Physics; Ruehle, Fabian [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2016-03-15
In heterotic string theories consistency requires the introduction of a non-trivial vector bundle. This bundle breaks the original ten-dimensional gauge groups E{sub 8} x E{sub 8} or SO(32) for the supersymmetric heterotic string theories and SO(16) x SO(16) for the non-supersymmetric tachyon-free theory to smaller subgroups. A vast number of MSSM-like models have been constructed up to now, most of which describe the vector bundle as a sum of line bundles. However, there are several different ways of describing these line bundles and their embedding in the ten-dimensional gauge group. We recall and extend these different descriptions and explain how they can be translated into each other.
Requirements for disordered actomyosin bundle contractility
Lenz, Martin
2011-01-01
Actomyosin contractility is essential for biological force generation, and is well understood in highly ordered structures such as striated muscle. In vitro experiments have shown that non-sarcomeric bundles comprised only of F-actin and myosin thick filaments can also display contractile behavior, which cannot be described by standard muscle models. Here we investigate the microscopic symmetries underlying this process in large non-sarcomeric bundles with long actin filaments. We prove that contractile behavior requires non-identical motors that generate large enough forces to probe the nonlinear elastic behavior of F-actin. A simple disordered bundle model demonstrates a contraction mechanism based on these assumptions and predicts realistic bundle deformations. Recent experimental observations of F-actin buckling in in vitro contractile bundles support our model.
Double Fell bundles and Spectral triples
Martins, Rachel A D
2007-01-01
As a natural and canonical extension of Kumjian's Fell bundles over groupoids \\cite{fbg}, we give a definition for a double Fell bundle (a double category) over a double groupoid. We show that finite dimensional double category Fell line bundles tensored with their dual with $S^o$-reality satisfy the finite real spectral triples axioms but not necessarily orientability. This means that these product bundles with noncommutative algebras can be regarded as noncommutative compact manifolds more general than real spectral triples as they are not necessarily orientable. By construction, they unify the noncommutative geometry axioms and hence provide an algebraic enveloping structure for finite spectral triples to give the Dirac operator $D$ new algebraic and geometric structures that are otherwise missing in the transition from Fredholm operator to Dirac operator. The Dirac operator in physical applications as a result becomes less ad hoc. The new noncommutative space we present is a complex line bundle over a dou...
Line bundle embeddings for heterotic theories
Nibbelink, Stefan Groot
2016-01-01
In heterotic theories consistency requires the introduction of a non-trivial vector bundle. This bundle breaks the original ten-dimensional gauge groups E_8 x E_8 or SO(32) for the supersymmetric heterotic theories and SO(16) x SO(16) for the non-supersymmetric tachyon-free theory to smaller subgroups. A vast number of MSSM-like models have been constructed up to now, most of which describe the vector bundle as a sum of line bundles. However, there are several different ways of describing these line bundles and their embedding in the ten-dimensional gauge group. We recall and extend these different descriptions and explain how they can be translated into each other.
On Harder–Narasimhan Reductions for Higgs Principal Bundles
Indian Academy of Sciences (India)
Arijit Dey; R Parthasarathi
2005-05-01
The existence and uniqueness of – reduction for the Higgs principal bundles over nonsingular projective variety is shown. We also extend the notion of – reduction for (, )-bundles and ramified -bundles over a smooth curve.
Energy Technology Data Exchange (ETDEWEB)
Pavlovichev, A.M.
2001-06-19
The report presents calculation results of isotopic composition of irradiated fuel performed for the Quad Cities-1 reactor bundle with UO{sub 2} and MOX fuel. The MCU-REA code was used for calculations. The code is developed in Kurchatov Institute, Russia. The MCU-REA results are compared with the experimental data and HELIOS code results.
FLASHPOINT - a tool to routinely calculate the heat load in the irradiated fuel bays
Energy Technology Data Exchange (ETDEWEB)
Vyskocil, E.; Morrison, C.; Gifford, E.; Inglot, A.; Kozlowski, K.; Gocmanac, M. [AMEC NSS, Reactor and Radiation Physics, Toronto, Ontario (Canada); Parlatan, Y. [Ontario Power Generation, Safety Analysis Improvement Project Dept., Pickering, Ontario (Canada); Alabasha, H. [Bruce Power, Nuclear Safety Analysis and Support, Toronto, Ontario (Canada)
2013-07-01
At the recommendation of the World Association of Nuclear Operators (WANO), a tool was developed as an enhancement of NuFLASH (Nuclear Fuel Location and Storage History) in order to routinely calculate the Irradiated Fuel Bay (IFB) heat load. It uses information stored in NuFLASH regarding the location and details of spent fuel bundle properties to calculate the decay power on a bundle by bundle basis and then sum the decay powers of all bundles in a particular IFB. FLASHPOINT employs a two-step approximation of the bundle irradiation history based on the record of the life cycle for each individual fuel bundle. The primary parameter affecting the decay power of any individual irradiated CANDU fuel bundle following its discharge from core is the period of time elapsed since the bundle last operated at power within the reactor. The remaining factors influencing the decay power of an individual fuel bundle concern the irradiation history of that bundle while in core. The accuracy of the FLASHPOINT methodology has been assessed primarily through comparison of results obtained using the two step history representation implemented in FLASHPOINT against results from a more detailed ORIGEN-S calculation of the decay heat based on the SORO power history for a randomly selected sample of bundles. The results for individual bundles and the aggregate group are presented and the accuracy of the two-step approximation is demonstrated to be acceptable. (author)
Prioritary omalous bundles on Hirzebruch surfaces
Aprodu, Marian; Marchitan, Marius
2016-01-01
An irreducible algebraic stack is called unirational if there exists a surjective morphism, representable by algebraic spaces, from a rational variety to an open substack. We prove unirationality of the stack of prioritary omalous bundles on Hirzebruch surfaces, which implies also the unirationality of the moduli space of omalous H-stable bundles for any ample line bundle H on a Hirzebruch surface (compare with Costa and Miro-Ŕoig, 2002). To this end, we find an explicit description of the duals of omalous rank-two bundles with a vanishing condition in terms of monads. Since these bundles are prioritary, we conclude that the stack of prioritary omalous bundles on a Hirzebruch surface different from P1 ×P1 is dominated by an irreducible section of a Segre variety, and this linear section is rational (Ionescu, 2015). In the case of the space quadric, the stack has been explicitly described by N. Buchdahl. As a main tool we use Buchdahl's Beilinson-type spectral sequence. Monad descriptions of omalous bundles on hypersurfaces in P4, Calabi-Yau complete intersection, blowups of the projective plane and Segre varieties have been recently obtained by A.A. Henni and M. Jardim (Henni and Jardim, 2013), and monads on Hirzebruch surfaces have been applied in a different context in Bartocci et al. (2015).
Singular hermitian metrics on vector bundles
De Cataldo, M A A
1997-01-01
We introduce a notion of singular hermitian metrics (s.h.m.) for holomorphic vector bundles and define positivity in view of $L^2$-estimates. Associated with a suitably positive s.h.m. there is a (coherent) sheaf 0-th kernel of a certain $d''$-complex. We prove a vanishing theorem for the cohomology of this sheaf. All this generalizes to the case of higher rank known results of Nadel for the case of line bundles. We introduce a new semi-positivity notion, $t$-nefness, for vector bundles, establish some of its basic properties and prove that on curves it coincides with ordinary nefness. We particularize the results on s.h.m. to the case of vector bundles of the form $E=F \\otimes L$, where $F$ is a $t$-nef vector bundle and $L$ is a positive (in the sense of currents) line bundle. As applications we generalize to the higher rank case 1) Kawamata-Viehweg Vanishing Theorem, 2) the effective results concerning the global generation of jets for the adjoint to powers of ample line bundles, and 3) Matsusaka Big Theor...
Predictions of Critical Heat Flux Using the ASSERT-PV Subchannel Code for a CANFLEX Variant Bundle
International Nuclear Information System (INIS)
The ASSERT-PV subchannel code developed by AECL has been applied as a design-assist tool to the advanced CANDU1 reactor fuel bundle. Based primarily on the CANFLEX2 fuel bundle, several geometry changes (such as element sizes and pitchcircle diameters of various element rings) were examined to optimize the dryout power and pressure-drop performances of the new fuel bundle. An experiment was performed to obtain dryout power measurements for verification of the ASSERT-PV code predictions. It was carried out using an electrically heated, Refrigerant-134a cooled, fuel bundle string simulator. The axial power profile of the simulator was uniform, while the radial power profile of the element rings was varied simulating profiles in bundles with various fuel compositions and burn-ups. Dryout power measurements are predicted closely using the ASSERT-PV code, particularly at low flows and low pressures, but are overpredicted at high flows and high pressures. The majority of data shows that dryout powers are underpredicted at low inlet-fluid temperatures but overpredicted at high inlet-fluid temperatures
Deformations of the generalised Picard bundle
International Nuclear Information System (INIS)
Let X be a nonsingular algebraic curve of genus g ≥ 3, and let Mξ denote the moduli space of stable vector bundles of rank n ≥ 2 and degree d with fixed determinant ξ over X such that n and d are coprime. We assume that if g = 3 then n ≥ 4 and if g = 4 then n ≥ 3, and suppose further that n0, d0 are integers such that n0 ≥ 1 and nd0 + n0d > nn0(2g - 2). Let E be a semistable vector bundle over X of rank n0 and degree d0. The generalised Picard bundle Wξ(E) is by definition the vector bundle over Mξ defined by the direct image pMξ *(Uξ x pX*E) where Uξ is a universal vector bundle over X x Mξ. We obtain an inversion formula allowing us to recover E from Wξ(E) and show that the space of infinitesimal deformations of Wξ(E) is isomorphic to H1(X, End(E)). This construction gives a locally complete family of vector bundles over Mξ parametrised by the moduli space M(n0,d0) of stable bundles of rank n0 and degree d0 over X. If (n0,d0) = 1 and Wξ(E) is stable for all E is an element of M(n0,d0), the construction determines an isomorphism from M(n0,d0) to a connected component M0 of a moduli space of stable sheaves over Mξ. This applies in particular when n0 = 1, in which case M0 is isomorphic to the Jacobian J of X as a polarised variety. The paper as a whole is a generalisation of results of Kempf and Mukai on Picard bundles over J, and is also related to a paper of Tyurin on the geometry of moduli of vector bundles. (author)
Geometry of quantum principal bundles, 1
Durdevic, M
1995-01-01
A theory of principal bundles possessing quantum structure groups and classical base manifolds is presented. Structural analysis of such quantum principal bundles is performed. A differential calculus is constructed, combining differential forms on the base manifold with an appropriate differential calculus on the structure quantum group. Relations between the calculus on the group and the calculus on the bundle are investigated. A concept of (pseudo)tensoriality is formulated. The formalism of connections is developed. In particular, operators of horizontal projection, covariant derivative and curvature are constructed and analyzed. Generalizations of the first structure equation and of the Bianchi identity are found. Illustrative examples are presented.
Weak equivalence classes of complex vector bundles
Hông-Vân Lê
2006-01-01
For any complex vector bundle Ek of rank k over a manifold Mm with Chern classes ci Î H2i(Mm, Z) and any non-negative integers l1, . . ., lk we show the existence of a positive number p(m, k) and the existence of a complex vector bundle Êk over Mm whose Chern classes are p(m, k) × li × ci Î H2i(Mm, Z). We also discuss a version of this statement for holomorphic vector bundles over projective algebraic manifolds.
Vector supersymmetry in the universal bundle
International Nuclear Information System (INIS)
We present a vector supersymmetry for Witten-type topological gauge theories, and examine its algebra in terms of a superconnection formalism. When covariant constraints on the supercurvature are chosen, a correspondence is established with the universal bundle construction of Atiyah and Singer. The vector supersymmetry represents a certain shift operator in the curvature of the universal bundle, and can be used to generate the hierarchy of observables in these theories. This formalism should lead to the construction of vector supergravity theories, and perhaps to the gravitational analogue of the universal bundle. (orig.)
Safety analysis report of the irradiation test of Type-B bundle
Energy Technology Data Exchange (ETDEWEB)
Lee, Choong Sung; Lim, I. C.; Lee, B. C.; Ryu, J. S.; Kim, H. R
2000-06-01
The HANARO fuel, U{sub 3}Si-A1, has been developed by AECL and tested in NRU reactor. In the course of the fuel qualification tests, only one case was performed under the higher power condition than maximum linear power which was expected in the design stage. The Korea regulatory body, KINS imposed that HANARO shall be operated at the power level less than 24MW which is 80% of the design full power until HANARO shows the repetitive performance of the fuel at the power condition abov e 112.8KW/m. To resolve this imposition, KAERI designed two types of special test bundles: two non-instrumented(Type-A) and one instrumented(Type-B) test bundles. Two Type-A bundles were irradiated in HANARO: one of them has finished PIE and the other is under PIE. Type-B bundle was loaded in the core during 1.32 day at 1996, but outstanding FIV(flow induced vibration) was observed at the pool top because of long guide tube attached to the top of the bundle. The successful installation of the chimney fastener to fix the guide tube resulted in conducting the irradiation test of Type-B bundle again. The test will start at mid- July, 2000. In order to safely do the Type-B irradiation test, the safety analysis for the nuclear, mechanical and thermal-hydraulic aspects was performed. The reactivity worth and the maximum 1 near power predicted by VENTURE are 6.3mk/k and 121.6kW/m, respectively. Thermal margins for normal and transient conditions using MATRA-h, are assessed to satisfy the safety criteria.
Full conversion of materials and nuclear fuel research and test - TRIGA SSR 14 MW
International Nuclear Information System (INIS)
This article presents the HEU (high enrichment uranium) to LEU (low enrichment uranium) conversion of the TRIGA reactor at the Institute for Nuclear Research (Pitesti, Romania). This process began in 1992 when the first 4 LEU (23% U235 enrichment) fuel bundles integrated the reactor core in replacement of 4 HEU fuel bundles. By March 2004, the mixed reactor core had 18 LEU and 17 HEU fuel bundles by HEU-LEU replacement through successive steps of fueling. In 2006 the conversion process was completed and now we have a standard reactor core of 29 LEU fuel bundles
Institute of Scientific and Technical Information of China (English)
YU Wei-dong; YAN Hao-jing; Ron Postle; Yang Shouren
2002-01-01
Due to the effects of samples and testing conditions on fibre-bundle tensile behaviour, it is necessary to investigate the relationships between experimental factors and tensile properties for the fibre-bumdle tensile tester (TENSOR). The effects of bundle sample preparation, fibre bundle mass and fibre alignment have been tested. The experimental results indicated that (1) the low damage in combing and no free-end fibres in the cut bundle are most important for the sample preparation; (2) the reasonable bundle mass is 400- 700tex, but the tensile properties measured should bemodified with the bundle mass because a small amount of bundle mass causes the scatter results, while the larger is the bundle mass, the more difficult to comb fibres parallel and to clamp fibre evenly; and (3) the fibre irregular arrangement forms a slack bundle resulting in interaction between fibres, which will affect the reproducibility and accuracy of the tensile testing.
Liquid Flow in Shaped Fiber Bundle
Institute of Scientific and Technical Information of China (English)
ZHANG Yan; WANG Hua-ping; CHEN Yue-hua
2006-01-01
By computation and comparison of the critical spreading coefficient parameter, it was found that shaped fiber bundle is better for wetting. Liquid-air interface tension of liquid arising the shaped fiber bundle body is considered as one critical factor besides liquid viscosity, inertia force and liquid-fiber interface tension. Experimental result simulation demonstrated that the liquid-air interface tension is correlated with the geometric size of the liquid arising in body, φ0 (x) and which is affected by the cross sectional shape of fiber and the radius of single fiber. The shaped fiber bundle model is introduced to investigate liquid flow in fiber assembly. The model is generated based on a random function for stochastic forming of fibers in bundle and it is necessary to combine this fundamental model with physical explanation for investigation of liquid flow in fiber assembly.
Mobility of Taxol in Microtubule Bundles
Ross, J.
2003-06-01
Mobility of taxol inside microtubules was investigated using fluorescence recovery after photobleaching (FRAP) on flow-aligned bundles. Bundles were made of microtubules with either GMPCPP or GTP at the exchangeable site on the tubulin dimer. Recovery times were sensitive to bundle thickness and packing, indicating that taxol molecules are able to move laterally through the bundle. The density of open binding sites along a microtubule was varied by controlling the concentration of taxol in solution for GMPCPP samples. With > 63% sites occupied, recovery times were independent of taxol concentration and, therefore, inversely proportional to the microscopic dissociation rate, k_{off}. It was found that 10*k_{off} (GMPCPP) ~ k_{off} (GTP), consistent with, but not fully accounting for, the difference in equilibrium constants for taxol on GMPCPP and GTP microtubules. With taxol along the microtubule interior is hindered by rebinding events when open sites are within ~7 nm of each other.
Quantum Bundle Description of Quantum Projective Spaces
Ó Buachalla, Réamonn
2012-12-01
We realise Heckenberger and Kolb's canonical calculus on quantum projective ( N - 1)-space C q [ C p N-1] as the restriction of a distinguished quotient of the standard bicovariant calculus for the quantum special unitary group C q [ SU N ]. We introduce a calculus on the quantum sphere C q [ S 2 N-1] in the same way. With respect to these choices of calculi, we present C q [ C p N-1] as the base space of two different quantum principal bundles, one with total space C q [ SU N ], and the other with total space C q [ S 2 N-1]. We go on to give C q [ C p N-1] the structure of a quantum framed manifold. More specifically, we describe the module of one-forms of Heckenberger and Kolb's calculus as an associated vector bundle to the principal bundle with total space C q [ SU N ]. Finally, we construct strong connections for both bundles.
Hydrodynamic Experiments for a Flow Distribution of a 61-pin Wire-wrapped Rod Bundle
Energy Technology Data Exchange (ETDEWEB)
Chang, S. K.; Euh, D. J.; Choi, H. S.; Kim, H. M.; Ko, Y. J.; Lee, D. W.; Lee, H. Y.; Choi, S. R. [KAERI, Daejeon (Korea, Republic of)
2015-05-15
Fuel assembly of the SFR (Sodium-cooled Fast breeder Reactor) type reactor generally has wire spacers which are wrapped around each fuel pin helically in axial direction. The configuration of a helical wire spacer guarantees the fuel rods integrity by providing the bundle rigidity, proper spacing between rods and promoting coolant mixing between subchannels. It is important to understand the flow characteristics in such a triangular array wire wrapped rod bundle in a hexagonal duct. The experimental work has been undertaken to quantify the friction and mixing parameters which characterize the flow distribution in subchannels for the KAERI's own bundle geometric configuration. This work presents the hydrodynamic experimental results for the flow distribution and the pressure drop in subchannels of a 61-pin wire wrapped rod bundle which has been fabricated considering the hydraulic similarity of the reference reactor. Hydrodynamic experiments for a 61-pin wire wrapped test assembly has been performed to provide the data of a flow distribution and pressure losses in subchannels for verifying the analysis capability of subchannel analysis codes for a KAERI's own prototype SFR reactor. Three type of sampling probes have been specially designed to conserve the shape of the flow area for each type of subchannels. All 126 subchannels have been measured to identify the characteristics of the flow distribution in a 37-pin rod assembly. Pressure drops at the interior and the edge subchannels have been also measured to recognize the friction losses of each type of subchannels.
A Geometric Approach to Noncommutative Principal Bundles
Wagner, Stefan
2011-01-01
From a geometrical point of view it is, so far, not sufficiently well understood what should be a "noncommutative principal bundle". Still, there is a well-developed abstract algebraic approach using the theory of Hopf algebras. An important handicap of this approach is the ignorance of topological and geometrical aspects. The aim of this thesis is to develop a geometrically oriented approach to the noncommutative geometry of principal bundles based on dynamical systems and the representation theory of the corresponding transformation group.
Parahoric bundles on a compact Riemann surface
Balaji, V
2010-01-01
Let $X$ be a compact Riemann surface of genus $g \\geq 2$. The aim of this paper is to study homomorphisms of certain discrete subgroups of $PSL(2, {\\mathbb R})$ into maximal compact subgroups of semisimple simply connected algebraic groups and relate them to torsors under a Bruhat-Tits group scheme. We also construct the moduli spaces of semistable parahoric bundles. These results generalize the theorem of Mehta and Seshadri on parabolic vector bundles.
Coolant mixing in LMFBR rod bundles and outlet plenum mixing transients. Final report
Energy Technology Data Exchange (ETDEWEB)
Todreas, N.E.; Cheng, S.K.; Basehore, K.
1984-08-01
This project principally undertook the investigation of the thermal hydraulic performance of wire wrapped fuel bundles of LMFBR configuration. Results obtained included phenomenological models for friction factors, flow split and mixing characteristics; correlations for predicting these characteristics suitable for insertion in design codes; numerical codes for analyzing bundle behavior both of the lumped subchannel and distributed parameter categories and experimental techniques for pressure velocity, flow split, salt conductivity and temperature measurement in water cooled mockups of bundles and subchannels. Flow regimes investigated included laminar, transition and turbulent flow under forced convection and mixed convection conditions. Forced convections conditions were emphasized. Continuing efforts are underway at MIT to complete the investigation of the mixed convection regime initiated here. A number of investigations on outlet plenum behavior were also made. The reports of these investigations are identified.
Analysis of steady state combined forced and free convection data in rod bundles
International Nuclear Information System (INIS)
Fuel and blanket assemblies in an LMFBR are subjected to a wide range of power and power gradients during their life in the reactor. To accommodate these changes the assemblies operate in a wide range of flow regimes extending from forced convection, turbulent flow, to mixed convection, laminar flow. At low flow conditions the transverse temperature gradient in an assembly is considerably flattened because of energy redistribution by not only wire-wrap mixing and thermal conduction but also by flow redistribution because of buoyancy-induced crossflow. This has significance in LMFBR design. For the mixed convection regime of bundle operation, the transverse velocity profiles within a bundle change axially because of buoyancy-induced crossflow. It was therefore decided to use the ENERGY II and ENERGY III computer programs for the analysis of the rod bundle mixed convection data
Coolant mixing in LMFBR rod bundles and outlet plenum mixing transients. Final report
International Nuclear Information System (INIS)
This project principally undertook the investigation of the thermal hydraulic performance of wire wrapped fuel bundles of LMFBR configuration. Results obtained included phenomenological models for friction factors, flow split and mixing characteristics; correlations for predicting these characteristics suitable for insertion in design codes; numerical codes for analyzing bundle behavior both of the lumped subchannel and distributed parameter categories and experimental techniques for pressure velocity, flow split, salt conductivity and temperature measurement in water cooled mockups of bundles and subchannels. Flow regimes investigated included laminar, transition and turbulent flow under forced convection and mixed convection conditions. Forced convections conditions were emphasized. Continuing efforts are underway at MIT to complete the investigation of the mixed convection regime initiated here. A number of investigations on outlet plenum behavior were also made. The reports of these investigations are identified
K-Theories for Certain Infinite Rank Bundles
Larrain-Hubach, Andres
2011-01-01
Several authors have recently constructed characteristic classes for classes of infinite rank vector bundles appearing in topology and physics. These include the tangent bundle to the space of maps between closed manifolds, the infinite rank bundles in the families index theorem, and bundles with pseudodifferential operators as structure group. In this paper, we construct the corresponding K-theories for these types of bundles. We develop the formalism of these theories and use their Chern ch...
Effect of left bundle branch block on TIMI frame count
Hatice Tolunay; Ahmet Kasapkara; İsa Öner Yüksel; Nurcan Başar; Ayşe Saatcı Yaşar; Mehmet Bilge
2010-01-01
Aim: Left bundle branch block is an independent risk factorfor cardiac mortality. In this study we aimed to evaluatecoronary blood flow with TIMI frame count in patients with left bundle branch block and angiographically proven normal coronary arteries.Materials and methods: We retrospectively studied 17 patients with left bundle branch block and as a control group 16 patients without left bundle branch block. All patientshad angiographically proven normal coronary arteries.Left bundle branch...
Severe Fuel-Damage Scoping Test post-irradiation examination results
International Nuclear Information System (INIS)
The fuel bundle from the Severe Fuel Damage Scoping Test, conducted in the Power Burst Facility as part of the international Severe Fuel Damage Research Program, was examined posttest. This paper presents the results of the nondestructive portion of the examination, including gross gamma scanning, neutron radiography, and tomographic reconstruction of cross sections through the bundle using the neutron radiographs
Sertification of fuel cladding and grids materials in out of pile conditions
International Nuclear Information System (INIS)
The basic standard specifications for fuel rod cladding and bundle materials, are selected. In this paper the standard specifications of material for Zircaloy and plugs and stainless steel springs of fuel rod cladding are presented. The material specification for a Zircaloy fuel bundle assembly Cgrids) is also given. (author)
Fuel Temperature Characteristics for Fuel Channels using Burnable Poison in the CANDU reactor
International Nuclear Information System (INIS)
Although the CANFLEX RU fuel bundle loaded 11.0 wt% Er2O3 are originally designed focused on the safety characteristics, the fuel temperature characteristics is revealed to be not deteriorated but rather is slightly enhanced by the decreased fuel temperature in the outer ring compared with that of standard 37 fuel bundle. Recently, for an equilibrium CANDU core, the power coefficient was reported to be slightly positive when newly developed Industry Standard Tool set reactor physics codes were used. Therefore, it is required to find a new way to effectively decrease the positive power coefficient of CANDU reactor without seriously compromising the economy. In order to make the power coefficient of the CANDU reactor negative at the operating power, Roh et al. have evaluated the various burnable poison (BP) materials and its loading scheme in terms of the fuel performance and reactor safety characteristics. It was shown that reactor safety characteristics can be greatly improved by the use of the BP in the CANDU reactor. In a view of safety, the fuel temperature coefficient (FTC) is an important safety parameter and it is dependent on the fuel temperature. For an accurate evaluation of the safety-related physics parameters including FTC, the fuel temperature distribution and its correlation with the coolant temperature should be accurately identified. Therefore, we have evaluated the fuel temperature distribution of a CANFLEX fuel bundle loaded with a burnable poison and compared the standard 37 element fuel bundle and CANFELX-NU fuel bundle
An experimental study of water distribution from a jet to a single pin and pin bundles
International Nuclear Information System (INIS)
A knowledge of the water distribution in spray cooling of overheated water reactor fuel bundles is necessary for the proper analysis of heat removal under accident conditions. Results are presented of experiments on the distribution of water from a single horizontal jet to a cold vertical pin and both heated and unheated pin bundles. The flow running down a single cold pin has been determined for a range of jet impact angles, jet flow rates, and jet diameters. This is a critical flowrate above which water detaches from the pin at normal impact and it has been shown that at this critical flowrate the fraction of water flowing down the pin is proportional to the cosine of the impact angle. Tests with a cold six-pin sector of a three-ringed 36 pin bundle showed that distribution of water to the pins was non-uniform and sensitive to both jet orientation and velocity, as may be expected from the single pin results. Experiments on a hot six-pin showed that individual pins quenched at a rate predictable from cold six-pin flow distribution tests and a hot single pin 'calibration' test, once wetting was fully established at the water injection level. Observations made in a 36 pin heated bundle with six water jets confirmed the findings on the smaller bundles. It has also been shown that during delays in the establishment of wetting, the water distribution will be markedly different to that once wetting is established. (author)
International Nuclear Information System (INIS)
Recovered uranium (RU) is a by-product of many light-water reactor (LWR) fuel recycling programs. After fission products and plutonium (Pu) have been removed from spent LWR fuel, RU is left. A fissile content in the RU of 0.9 to 1.0% makes it impossible for reuse in an LWR without re-enrichment, but CANDU reactors have a sufficiently high neutron economy to use RU as fuel. Explicit core-follow simulations were run to analyse the viability of RU as a fuel for existing CANDU 6 cores. The core follow was performed with RFSP, using WIMS-AECL lattice properties. During the core follow, channel powers and bundle powers were tracked to determine the operating envelope for RU in a CANFLEX bundle. The results show that RU fits the operating criteria of a generic CANDU 6 core and is a viable fuel option in CANDU reactors. (author)
Assessment of ASSERT-PV for prediction of post-dryout heat transfer in CANDU bundles
International Nuclear Information System (INIS)
Highlights: • Assessment of the new Canadian subchannel code ASSERT-PV 3.2 for PDO sheath temperature prediction. • CANDU 28-, 37- and 43-element bundle PDO experiments. • Prediction improvement of ASSERT-PV 3.2 over previous code versions. • Sensitivity study of the effect of PDO model options. - Abstract: Atomic Energy of Canada Limited (AECL) has developed the subchannel thermalhydraulics code ASSERT-PV for the Canadian nuclear industry. The recently released ASSERT-PV 3.2 provides enhanced models for improved predictions of subchannel flow distribution, critical heat flux (CHF), and post-dryout (PDO) heat transfer in horizontal CANDU fuel channels. This paper presents results of an assessment of the new code version against PDO tests performed during five full-size CANDU bundle experiments conducted between 1992 and 2009 by Stern Laboratories (SL), using 28-, 37- and 43-element bundles. A total of 10 PDO test series with varying pressure-tube creep and/or bearing-pad height were analyzed. The SL experiments encompassed the bundle geometries and range of flow conditions for the intended ASSERT-PV applications for existing CANDU reactors. Code predictions of maximum PDO fuel-sheath temperature were compared against measurements from the SL PDO tests to quantify the code's prediction accuracy. The prediction statistics using the recommended model set of ASSERT-PV 3.2 were compared to those from previous code versions. Furthermore, separate-effects sensitivity studies quantified the contribution of each PDO model change or enhancement to the improvement in PDO heat transfer prediction. Overall, the assessment demonstrated significant improvement in prediction of PDO sheath temperature in horizontal fuel channels containing CANDU bundles
Assessment of ASSERT-PV for prediction of post-dryout heat transfer in CANDU bundles
Energy Technology Data Exchange (ETDEWEB)
Cheng, Z., E-mail: chengz@aecl.ca; Rao, Y.F., E-mail: raoy@aecl.ca; Waddington, G.M., E-mail: waddingg@aecl.ca
2014-10-15
Highlights: • Assessment of the new Canadian subchannel code ASSERT-PV 3.2 for PDO sheath temperature prediction. • CANDU 28-, 37- and 43-element bundle PDO experiments. • Prediction improvement of ASSERT-PV 3.2 over previous code versions. • Sensitivity study of the effect of PDO model options. - Abstract: Atomic Energy of Canada Limited (AECL) has developed the subchannel thermalhydraulics code ASSERT-PV for the Canadian nuclear industry. The recently released ASSERT-PV 3.2 provides enhanced models for improved predictions of subchannel flow distribution, critical heat flux (CHF), and post-dryout (PDO) heat transfer in horizontal CANDU fuel channels. This paper presents results of an assessment of the new code version against PDO tests performed during five full-size CANDU bundle experiments conducted between 1992 and 2009 by Stern Laboratories (SL), using 28-, 37- and 43-element bundles. A total of 10 PDO test series with varying pressure-tube creep and/or bearing-pad height were analyzed. The SL experiments encompassed the bundle geometries and range of flow conditions for the intended ASSERT-PV applications for existing CANDU reactors. Code predictions of maximum PDO fuel-sheath temperature were compared against measurements from the SL PDO tests to quantify the code's prediction accuracy. The prediction statistics using the recommended model set of ASSERT-PV 3.2 were compared to those from previous code versions. Furthermore, separate-effects sensitivity studies quantified the contribution of each PDO model change or enhancement to the improvement in PDO heat transfer prediction. Overall, the assessment demonstrated significant improvement in prediction of PDO sheath temperature in horizontal fuel channels containing CANDU bundles.
Twistor bundle theory and its application
Institute of Scientific and Technical Information of China (English)
无
2004-01-01
Over an oriented even dimensional Riemannian manifold (M2m, ds2), in terms of the Levi-Civita connection form Ω and the canonical form Θ on the bundle of positive or→ J+(M, ds2) → M. The integrability on an almost complex structure J compatible with the metric and the orientation, is shown to be equivalent to the fact that the corresponding cross section of the twistor bundle is holomorphic with respect to J and the canonical almost complex structure J1 on J+(M, ds2), by using moving frame theory. Moreover, for various metrics and a fixed orientation on M, a canonical bundle isomorphism is established. As a consequence, we generalize a celebrated theorem of LeBrun.
Tangent bundle formulation of a charged gas
Sarbach, Olivier
2013-01-01
We discuss the relativistic kinetic theory for a simple, collisionless, charged gas propagating on an arbitrary curved spacetime geometry. Our general relativistic treatment is formulated on the tangent bundle of the spacetime manifold and takes advantage of its rich geometric structure. In particular, we point out the existence of a natural metric on the tangent bundle and illustrate its role for the development of the relativistic kinetic theory. This metric, combined with the electromagnetic field of the spacetime, yields an appropriate symplectic form on the tangent bundle. The Liouville vector field arises as the Hamiltonian vector field of a natural Hamiltonian. The latter also defines natural energy surfaces, called mass shells, which turn out to be smooth Lorentzian submanifolds. A simple, collisionless, charged gas is described by a distribution function which is defined on the mass shell and satisfies the Liouville equation. Suitable fibre integrals of the distribution function define observable fie...
Feasibility of Accident-Tolerant FCM Replacement Fuel for CANDUs
International Nuclear Information System (INIS)
For enhanced accident tolerance, an innovative fuel concept, the fully ceramic microencapsulated (FCM) fuel based on the particle fuel concept of a gas-cooled reactor, is proposed to replace the conventional UO2 fuel bundle of existing and advanced CANDU reactors. In this study, the feasibility of replacing conventional UO2 fuel bundle with the accident-tolerant FCM fuel bundle has been assessed in view of core neutronics compatibility, accident-tolerance, and fuel cycle management. From the study, it was demonstrated that the FCM replacement fuel can provide resolution to CANDU generic issues by ensuring not only enhanced accident tolerance, but also an improved fuel cycle management. The accident-tolerant FCM fuel concept is proposed for replacing the conventional UO2 fuel bundle in CANDUs. The FCM fuel is shown to be neutronically compatible with existing core and the core residence time can be increased by more than 100 days. Accident-tolerance is remarkably enhanced by key features of the FCM fuel: it is refractory, thermo-mechanically and chemically stable, and fission product retentive. Less fuel feed and discharge obtained with the FCM fuel provide large savings in the spent fuel management burden charge and reduces the burden to the spent fuel storage facility in the long run. The smaller amount of minor actinides in the discharge bundles, together with the fission product retention and corrosion resistant features of the FCM fuel, should facilitate the long-term dry disposals of the spent fuel. From this study, it has been demonstrated that the CANDU FCM fuel is a feasible and viable option for CANDU reactors. The technology readiness level of the FCM fuel design and manufacturing is close to a lead test bundle loading for near-term deployment
Porous Silicon and Denim Fiber Bundle Characterization
Deuro, Randi Ellen
My thesis research aims to characterize and exploit materials in an efficient, rapid, non-destructive manner. Part I of this document summarizes my research on porous silicon (pSi) design, fabrication, and surface modification for use as a novel chemical sensor. The optimization of fabrication process parameters (etching time, etching solution, electrode shape, and the fixing process) on pSi photoluminescence (PL) is presented. I have also investigated the effects of analyte vapors (acetonitrile, toluene, methanol, acetone) on the pSi PL and surface chemistry using luminescence and Fourier-transform infrared (FT-IR) spectroscopy and microscopy methods. The mechanism and benefits of one method of pSi surface modification and protection (ultraviolet (UV) hydrosilylation) will also be presented. Finally, high thorough-put methods of pSi sensor production are described. In Part II of this document, I introduce a novel technique for analyzing and discriminating among denim fiber bundles. An investigation into the benefits of luminescence-based multispectral imaging (LMSI) for denim fiber bundle identification has been conducted. I explore the power of nitromethane (CH 3NO2) based quenching in fiber bundle classification and identify the quenching mechanism. The luminescence spectra (450 - 850 nm) and images from the denim fiber bundles were obtained while exciting at 325 nm or 405 nm. Here, LMSI data were recorded in < 10 s and subsequently assessed by principal component analysis (PCA) and rendered red, green, blue (RGB) component histograms. The results show that LMSI data can be used to rapidly and uniquely classify all the fiber bundle types studied in this research. These non-destructive techniques eliminate extensive sample preparation and allow for rapid multispectral image collection, analysis, and assessment. The quenching data also revealed that the dye molecules within the individual fiber bundles exhibited dramatically different accessibilities to CH 3NO2.
Characteristic classes of quantum principal bundles
Durdevic, M
1995-01-01
A noncommutative-geometric generalization of classical Weil theory of characteristic classes is presented, in the conceptual framework of quantum principal bundles. A particular care is given to the case when the bundle does not admit regular connections. A cohomological description of the domain of the Weil homomorphism is given. Relations between universal characteristic classes for the regular and the general case are analyzed. In analogy with classical geometry, a natural spectral sequence is introduced and investigated. The appropriate counterpart of the Chern character is constructed, for structures admitting regular connections. Illustrative examples and constructions are presented.
Are Medicare bundles in your future?
Mulvany, Chad
2015-08-01
To ensure they are well-positioned for an expansion by the Centers for Medicare & Medicaid Services of bundled payment, hospitals that are not participants in the Bundled Payments for Care Improvement initiative should take the following steps: Understand which organizations in their markets are already participating and which might participate. Understand care utilization patterns within their care delivery networks and how those patterns affect cost per episode. Identify high-quality, cost-efficient postacute care providers and begin collaborating with them to further improve outcomes. Educate discharging physicians about the impact that choices related to postacute settings have on both beneficiary out-of-pocket obligations and overall cost of care.
A bundle of sticks in my garden
Farran, Sue
2012-01-01
The English law of property is often described as a ‘bundle of sticks’ in which each ‘stick’ represents a particular right. Gardens challenge these rights and wreak havoc on the ‘bundle of sticks’. This paper looks at the twenty-first century manifestations of community engagement with ground and explores how ‘gardening’ is undermining concepts of ownership, possession and management of land and how the fence between what is private and what is public is being encroached and challenged by com...
Bundling in semiflexible polymers: A theoretical overview.
Benetatos, Panayotis; Jho, YongSeok
2016-06-01
Supramolecular assemblies of polymers are key modules to sustain the structure of cells and their function. The main elements of these assemblies are charged semiflexible polymers (polyelectrolytes) generally interacting via a long(er)-range repulsion and a short(er)-range attraction. The most common supramolecular structure formed by these polymers is the bundle. In the present paper, we critically review some recent theoretical and computational advances on the problem of bundle formation, and point a few promising directions for future work. PMID:26813628
Yoo, Yon-Sik; Song, Si Young; Yang, Cheol Jung; Ha, Jong Mun; Kim, Yoon Sang
2016-01-01
Purpose The purpose of this study was to compare the clinical outcomes of arthroscopic anatomical double bundle (DB) anterior cruciate ligament (ACL) reconstruction with either selective anteromedial (AM) or posterolateral (PL) bundle reconstruction while preserving a relatively healthy ACL bundle. Materials and Methods The authors evaluated 98 patients with a mean follow-up of 30.8±4.0 months who had undergone DB or selective bundle ACL reconstructions. Of these, 34 cases underwent DB ACL reconstruction (group A), 34 underwent selective AM bundle reconstruction (group B), and 30 underwent selective PL bundle reconstructions (group C). These groups were compared with respect to Lysholm and International Knee Documentation Committee (IKDC) score, side-to-side differences of anterior laxity measured by KT-2000 arthrometer at 30 lbs, and stress radiography and Lachman and pivot shift test results. Pre- and post-operative data were objectively evaluated using a statistical approach. Results The preoperative anterior instability measured by manual stress radiography at 90° of knee flexion in group A was significantly greater than that in groups B and C (all panterior instability measured by KT-2000 arthrometer, pivot shift, or functional scores. Conclusion Selective bundle reconstruction in partial ACL tears offers comparable clinical results to DB reconstruction in complete ACL tears. PMID:27401652
Impact of bundle deformation on CHF: ASSERT-PV assessment of extended burnup Bruce B bundle G85159W
International Nuclear Information System (INIS)
This paper presents a subchannel thermalhydraulic analysis of the effect on critical heat flux (CHF) of bundle deformation such as element bow and diametral creep. The bundle geometry is based on the post-irradiation examination (PIE) data of a single bundle from the Bruce B Nuclear Generating Station, Bruce B bundle G85159W, which was irradiated for more than two years in the core during reactor commissioning. The subchannel code ASSERT-PV IST is used to assess changes in CHF and dryout power due to bundle deformation, compared to the reference, undeformed bundle. (author)
Core analysis during transition from 37-element fuel to CANFLEX-NU fuel in CANDU 6
Energy Technology Data Exchange (ETDEWEB)
Jeong, Chang Joon; Suk, Ho Chun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)
1998-12-31
An 1200-day time-dependent fuel-management for the transition from 37-element fuel to CANFLEX-NU fuel in a CANDU 6 reactor has been simulated to show the compatibility of the CANFLEX-NU fuel with the reactor operation. The simulation calculations were carried out with the RFSP code, provided by cell averaged fuel properties obtained from the POWDERPUFS-V code. The refueling scheme for both fuels was an eight bundle shift at a time. The simulation results show that the maximum channel and bundle powers were maintained below the license limit of the CANDU 6. This indicates that the CANFLEX-NU fuel bundle is compatible with the CANDU 6 reactor operation during the transition period. 3 refs., 2 figs., 1 tab. (Author)
The unintended consequences of bundled payments.
Weeks, William B; Rauh, Stephen S; Wadsworth, Eric B; Weinstein, James N
2013-01-01
Consensus is building that episode-based bundled payments can produce substantial Medicare savings, and the Center for Medicare & Medicaid Innovation's Bundled Payment Initiative endorses this concept. The program generates potential cost savings by reducing the historic cost of time-defined episodes of care, provided through a discount. Although bundled payments can reduce waste primarily in the postacute care setting, concerns arise that, in an effort to maintain income levels that are necessary to cover fixed costs, providers may change their behaviors to increase the volume of episodes. Such actions would mitigate the savings that Medicare might have accrued and may perpetuate the fee-for-service payment mechanism, with episodes of care becoming the new service. Although bundled payments have some advantages over the current reimbursement system, true cost-savings to Medicare will be realized only when the federal government addresses the use issue that underlies much of the waste inherent in the system and provides ample incentives to eliminate capacity and move toward capitation.
Graph Bundling by Kernel Density Estimation
Hurter, C.; Ersoy, O.; Telea, A.
2012-01-01
We present a fast and simple method to compute bundled layouts of general graphs. For this, we first transform a given graph drawing into a density map using kernel density estimation. Next, we apply an image sharpening technique which progressively merges local height maxima by moving the convolved
Optimization of a bundle divertor for FED
International Nuclear Information System (INIS)
Optimal double-T bundle divertor configurations have been obtained for the Fusion Engineering Device (FED). On-axis ripple is minimized, while satisfying a series of engineering constraints. The ensuing non-linear optimization problem is solved via a sequence of quadratic programming subproblems, using the VMCON algorithm. The resulting divertor designs are substantially improved over previous configurations
η-Invariant and Flat Vector Bundles
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
We present an alternate definition of the mod Z component of the AtiyahPatodi-Singer η invariant associated to (not necessary unitary) fiat vector bundles, which identifies explicitly its real and imaginary parts. This is done by combining a deformation of flat connections introduced in a previous paper with the analytic continuation procedure appearing in the original article of Atiyah, Parodi and Singer.
Capacity efficiency of recovery request bundling
DEFF Research Database (Denmark)
Ruepp, Sarah Renée; Dittmann, Lars; Berger, Michael Stübert;
2010-01-01
This paper presents a comparison of recovery methods in terms of capacity efficiency. In particular, a method where recovery requests are bundled towards the destination (Shortcut Span Protection) is evaluated against traditional recovery methods. Our simulation results show that Shortcut Span...
Computations in intersection rings of flag bundles
Grayson, Daniel R; Stillman, Michael E
2012-01-01
Intersection rings of flag varieties and of isotropic flag varieties are generated by Chern classes of the tautological bundles modulo the relations coming from multiplicativity of total Chern classes. In this paper we describe the Groebner bases of the ideals of relations and give applications to computation of intersections, as implemented in Macaulay2.
Interplanetary Overlay Network Bundle Protocol Implementation
Burleigh, Scott C.
2011-01-01
The Interplanetary Overlay Network (ION) system's BP package, an implementation of the Delay-Tolerant Networking (DTN) Bundle Protocol (BP) and supporting services, has been specifically designed to be suitable for use on deep-space robotic vehicles. Although the ION BP implementation is unique in its use of zero-copy objects for high performance, and in its use of resource-sensitive rate control, it is fully interoperable with other implementations of the BP specification (Internet RFC 5050). The ION BP implementation is built using the same software infrastructure that underlies the implementation of the CCSDS (Consultative Committee for Space Data Systems) File Delivery Protocol (CFDP) built into the flight software of Deep Impact. It is designed to minimize resource consumption, while maximizing operational robustness. For example, no dynamic allocation of system memory is required. Like all the other ION packages, ION's BP implementation is designed to port readily between Linux and Solaris (for easy development and for ground system operations) and VxWorks (for flight systems operations). The exact same source code is exercised in both environments. Initially included in the ION BP implementations are the following: libraries of functions used in constructing bundle forwarders and convergence-layer (CL) input and output adapters; a simple prototype bundle forwarder and associated CL adapters designed to run over an IPbased local area network; administrative tools for managing a simple DTN infrastructure built from these components; a background daemon process that silently destroys bundles whose time-to-live intervals have expired; a library of functions exposed to applications, enabling them to issue and receive data encapsulated in DTN bundles; and some simple applications that can be used for system checkout and benchmarking.
Holomorphic Vector Bundle on Hopf Manifolds with Abelian Fundamental Groups
Institute of Scientific and Technical Information of China (English)
Xiang Yu ZHOU; Wei Ming LIU
2004-01-01
Let X be a Hopf manifolds with an Abelian fundamental group. E is a holomorphic vector bundle of rank r with trivial pull-back to W = Cn - {0}. We prove the existence of a non-vanishing section of L(×) E for some line bundle on X and study the vector bundles filtration structure of E. These generalize the results of D. Mall about structure theorem of such a vector bundle E.
Anatomic Double-Bundle Posterior Cruciate Ligament Reconstruction
Chahla, Jorge; Nitri, Marco; Civitarese, David; Dean, Chase S.; Moulton, Samuel G.; LaPrade, Robert F.
2016-01-01
The posterior cruciate ligament (PCL) is known to be the main posterior stabilizer of the knee. Anatomic single-bundle PCL reconstruction, focusing on reconstruction of the larger anterolateral bundle, is the most commonly performed procedure. Because of the residual posterior and rotational tibial instability after the single-bundle procedure and the inability to restore the normal knee kinematics, an anatomic double-bundle PCL reconstruction has been proposed in an effort to re-create the n...
Assessment of ASSERT-PV for prediction of critical heat flux in CANDU bundles
International Nuclear Information System (INIS)
Highlights: • Assessment of the new Canadian subchannel code ASSERT-PV 3.2 for CHF prediction. • CANDU 28-, 37- and 43-element bundle CHF experiments. • Prediction improvement of ASSERT-PV 3.2 over previous code versions. • Sensitivity study of the effect of CHF model options. - Abstract: Atomic Energy of Canada Limited (AECL) has developed the subchannel thermalhydraulics code ASSERT-PV for the Canadian nuclear industry. The recently released ASSERT-PV 3.2 provides enhanced models for improved predictions of flow distribution, critical heat flux (CHF), and post-dryout (PDO) heat transfer in horizontal CANDU fuel channels. This paper presents results of an assessment of the new code version against five full-scale CANDU bundle experiments conducted in 1990s and in 2009 by Stern Laboratories (SL), using 28-, 37- and 43-element (CANFLEX) bundles. A total of 15 CHF test series with varying pressure-tube creep and/or bearing-pad height were analyzed. The SL experiments encompassed the bundle geometries and range of flow conditions for the intended ASSERT-PV applications for CANDU reactors. Code predictions of channel dryout power and axial and radial CHF locations were compared against measurements from the SL CHF tests to quantify the code prediction accuracy. The prediction statistics using the recommended model set of ASSERT-PV 3.2 were compared to those from previous code versions. Furthermore, the sensitivity studies evaluated the contribution of each CHF model change or enhancement to the improvement in CHF prediction. Overall, the assessment demonstrated significant improvement in prediction of channel dryout power and axial and radial CHF locations in horizontal fuel channels containing CANDU bundles
Assessment of ASSERT-PV for prediction of critical heat flux in CANDU bundles
Energy Technology Data Exchange (ETDEWEB)
Rao, Y.F., E-mail: raoy@aecl.ca; Cheng, Z., E-mail: chengz@aecl.ca; Waddington, G.M., E-mail: waddingg@aecl.ca
2014-09-15
Highlights: • Assessment of the new Canadian subchannel code ASSERT-PV 3.2 for CHF prediction. • CANDU 28-, 37- and 43-element bundle CHF experiments. • Prediction improvement of ASSERT-PV 3.2 over previous code versions. • Sensitivity study of the effect of CHF model options. - Abstract: Atomic Energy of Canada Limited (AECL) has developed the subchannel thermalhydraulics code ASSERT-PV for the Canadian nuclear industry. The recently released ASSERT-PV 3.2 provides enhanced models for improved predictions of flow distribution, critical heat flux (CHF), and post-dryout (PDO) heat transfer in horizontal CANDU fuel channels. This paper presents results of an assessment of the new code version against five full-scale CANDU bundle experiments conducted in 1990s and in 2009 by Stern Laboratories (SL), using 28-, 37- and 43-element (CANFLEX) bundles. A total of 15 CHF test series with varying pressure-tube creep and/or bearing-pad height were analyzed. The SL experiments encompassed the bundle geometries and range of flow conditions for the intended ASSERT-PV applications for CANDU reactors. Code predictions of channel dryout power and axial and radial CHF locations were compared against measurements from the SL CHF tests to quantify the code prediction accuracy. The prediction statistics using the recommended model set of ASSERT-PV 3.2 were compared to those from previous code versions. Furthermore, the sensitivity studies evaluated the contribution of each CHF model change or enhancement to the improvement in CHF prediction. Overall, the assessment demonstrated significant improvement in prediction of channel dryout power and axial and radial CHF locations in horizontal fuel channels containing CANDU bundles.
Benchmark Experiments for Natural Convection in Nuclear Fuel Rod Bundles
Jones, Kyle L.; Smith, Barton L
2016-01-01
Natural convection is a phenomenon in which a flow of the fluid surrounding a body is induced by a change in density due to the temperature difference between the body and the fluid. This flow can be highly non-linear and turbulent, generating eddies. The complex interaction between the convective, viscous and buoyant forces requires the use of modern turbulent simulation tools for simulation. The accuracy of these tools, due to non-linearity, is difficult to assess. The present study investi...
Yoo, Yon-Sik; Song, Si Young; Yang, Cheol Jung; Ha, Jong Mun; Kim, Yoon Sang
2016-01-01
Purpose The purpose of this study was to compare the clinical outcomes of arthroscopic anatomical double bundle (DB) anterior cruciate ligament (ACL) reconstruction with either selective anteromedial (AM) or posterolateral (PL) bundle reconstruction while preserving a relatively healthy ACL bundle. Materials and Methods The authors evaluated 98 patients with a mean follow-up of 30.8±4.0 months who had undergone DB or selective bundle ACL reconstructions. Of these, 34 cases underwent DB ACL reconstruction (group A), 34 underwent selective AM bundle reconstruction (group B), and 30 underwent selective PL bundle reconstructions (group C). These groups were compared with respect to Lysholm and International Knee Documentation Committee (IKDC) score, side-to-side differences of anterior laxity measured by KT-2000 arthrometer at 30 lbs, and stress radiography and Lachman and pivot shift test results. Pre- and post-operative data were objectively evaluated using a statistical approach. Results The preoperative anterior instability measured by manual stress radiography at 90° of knee flexion in group A was significantly greater than that in groups B and C (all pACL tears offers comparable clinical results to DB reconstruction in complete ACL tears. PMID:27401652
Geometry of torus bundles in integrable Hamiltonian systems
Lukina, Olga
2008-01-01
Thesis is concerned with global properties of Lagrangian bundles, i.e. symplectic n-torus bundles, as these occur in integrable Hamiltonian systems. It treats obstructions to triviality and concerns with classification of such bundles, as well as with manifestations of global invariants in real-worl
Compactifications of reductive groups as moduli stacks of bundles
DEFF Research Database (Denmark)
Martens, Johan; Thaddeus, Michael
Let G be a reductive group. We introduce the moduli problem of "bundle chains" parametrizing framed principal G-bundles on chains of lines. Any fan supported in a Weyl chamber determines a stability condition on bundle chains. Its moduli stack provides an equivariant toroidal compactification of G...
VECTOR BUNDLE, KILLING VECTOR FIELD AND PONTRYAGIN NUMBERS
Institute of Scientific and Technical Information of China (English)
周建伟
1991-01-01
Let E be a vector bundle over a compact Riemannian manifold M. We construct a natural metric on the bundle space E and discuss the relationship between the killing vector fields of E and M. Then we give a proof of the Bott-Baum-Cheeger Theorem for vector bundle E.
Stability of Picard Bundle Over Moduli Space of Stable Vector Bundles of Rank Two Over a Curve
Indian Academy of Sciences (India)
Indranil Biswas; Tomás L Gómez
2001-08-01
Answering a question of [BV] it is proved that the Picard bundle on the moduli space of stable vector bundles of rank two, on a Riemann surface of genus at least three, with fixed determinant of odd degree is stable.
Energy Technology Data Exchange (ETDEWEB)
Kaipainen, H.; Seppaenen, V.; Rinne, S.
1996-12-31
The conditions on which the bundling of the harvesting residues from spruce regeneration fellings would become profitable were studied. The calculations showed that one of the most important features was sufficient compaction of the bundle, so that the portion of the wood in the unit volume of the bundle has to be more than 40 %. The tests showed that the timber grab loader of farm tractor was insufficient for production of dense bundles. The feeding and compression device of the prototype bundler was constructed in the research and with this device the required density was obtained.The rate of compaction of the dry spruce felling residues was about 40 % and that of the fresh residues was more than 50 %. The comparison between the bundles showed that the calorific value of the fresh bundle per unit volume was nearly 30 % higher than that of the dry bundle. This means that the treatment of the bundles should be done of fresh felling residues. Drying of the bundles succeeded well, and the crushing and chipping tests showed that the processing of the bundles at the plant is possible. The treatability of the bundles was also excellent. By using the prototype, developed in the research, it was possible to produce a bundle of the fresh spruce harvesting residues, the diameter of which was about 50 cm and the length about 3 m, and the rate of compaction over 50 %. By these values the reduction target of the costs is obtainable
Multiwalled carbon nanotube reinforced biomimetic bundled gel fibres.
Kim, Young-Jin; Yamamoto, Seiichiro; Takahashi, Haruko; Sasaki, Naruo; Matsunaga, Yukiko T
2016-08-19
This work describes the fabrication and characterization of hydroxypropyl cellulose (HPC)-based biomimetic bundled gel fibres. The bundled gel fibres were reinforced with multiwalled carbon nanotubes (MWCNTs). A phase-separated aqueous solution with MWCNT and HPC was transformed into a bundled fibrous structure after being injected into a co-flow microfluidic device and applying the sheath flow. The resulting MWCNT-bundled gel fibres consist of multiple parallel microfibres. The mechanical and electrical properties of MWCNT-bundled gel fibres were improved and their potential for tissue engineering applications as a cell scaffold was demonstrated. PMID:27200527
Comparison of ASSERT subchannel code with Marviken bundle data
International Nuclear Information System (INIS)
In this paper ASSERT predictions are compared with the Marviken 6-rod bundle and 36+1 rod bundle. The predictions are presented for two experiments in the 6-rod bundle and four experiments in the 36+1 rod bundle. For low inlet subcooling, the void predictions are in good agreement with the experimental data. For high inlet subcooling, however, the agreement is not as good. This is attributed to the fact that in the high inlet subcooling experiments, single phase turbulent mixing plays a more important role in determining flow conditions in the bundle
Effectiveness of Hair Bundle Motility as the Cochlear Amplifier
Sul, Bora; Iwasa, Kuni H.
2009-01-01
The effectiveness of hair bundle motility in mammalian and avian ears is studied by examining energy balance for a small sinusoidal displacement of the hair bundle. The condition that the energy generated by a hair bundle must be greater than energy loss due to the shear in the subtectorial gap per hair bundle leads to a limiting frequency that can be supported by hair-bundle motility. Limiting frequencies are obtained for two motile mechanisms for fast adaptation, the channel re-closure mode...
Anatomic Double-Bundle Posterior Cruciate Ligament Reconstruction.
Chahla, Jorge; Nitri, Marco; Civitarese, David; Dean, Chase S; Moulton, Samuel G; LaPrade, Robert F
2016-02-01
The posterior cruciate ligament (PCL) is known to be the main posterior stabilizer of the knee. Anatomic single-bundle PCL reconstruction, focusing on reconstruction of the larger anterolateral bundle, is the most commonly performed procedure. Because of the residual posterior and rotational tibial instability after the single-bundle procedure and the inability to restore the normal knee kinematics, an anatomic double-bundle PCL reconstruction has been proposed in an effort to re-create the native PCL footprint more closely and to restore normal knee kinematics. We detail our technique for an anatomic double-bundle PCL reconstruction using Achilles and anterior tibialis tendon allografts. PMID:27284530
Reactor application of an improved bundle divertor
International Nuclear Information System (INIS)
A Bundle Divertor was chosen as the impurity control and plasma exhaust system for the beam driven Demonstration Tokamak Hybrid Reactor - DTHR. In the context of a preconceptual design study of the reactor and associated facility a bundle divertor concept was developed and integrated into the reactor system. The overall system was found feasible and scalable for reactors with intermediate torodial field strengths on axis. The important design characteristics are: the overall average current density of the divertor coils is 0.73 kA for each tesla of toroidal field on axis; the divertor windings are made from super-conducting cables supported by steel structures and are designed to be maintainable; the particle collection assembly and auxiliary cryosorption vacuum pump are dual systems designed such that they can be reactivated alterntively to allow for continuous reactor operation; and the power requirement for energizing and operating the divertor is about 5 MW
Heterotic String Compactification and New Vector Bundles
Lin, Hai; Wu, Baosen; Yau, Shing-Tung
2016-07-01
We propose a construction of Kähler and non-Kähler Calabi-Yau manifolds by branched double covers of twistor spaces. In this construction we use the twistor spaces of four-manifolds with self-dual conformal structures, with the examples of connected sum of n {mathbb{P}2}s. We also construct K3-fibered Calabi-Yau manifolds from the branched double covers of the blow-ups of the twistor spaces. These manifolds can be used in heterotic string compactifications to four dimensions. We also construct stable and polystable vector bundles. Some classes of these vector bundles can give rise to supersymmetric grand unified models with three generations of quarks and leptons in four dimensions.
Venereau polynomials and related fiber bundles
Kaliman, Shulim; ZAIDENBERG, MIKHAIL
2003-01-01
The Venereau polynomials v-n:=y+x^n(xz+y(yu+z^2)), n>= 1, on A4 have all fibers isomorphic to the affine space A3. Moreover, for all n>= 1 the map (v-n, x) : A4 -> A2 yields a flat family of affine planes over A2. In the present note we show that over the punctured plane A2\\0, this family is a fiber bundle. This bundle is trivial if and only if v-n is a variable of the ring C[x][y,z,u] over C[x]. It is an open question whether v1 and v2 are variables of the polynomial ring C[x,y,z,u]. S. Vene...
Covariance and the hierarchy of frame bundles
Estabrook, Frank B.
1987-01-01
This is an essay on the general concept of covariance, and its connection with the structure of the nested set of higher frame bundles over a differentiable manifold. Examples of covariant geometric objects include not only linear tensor fields, densities and forms, but affinity fields, sectors and sector forms, higher order frame fields, etc., often having nonlinear transformation rules and Lie derivatives. The intrinsic, or invariant, sets of forms that arise on frame bundles satisfy the graded Cartan-Maurer structure equations of an infinite Lie algebra. Reduction of these gives invariant structure equations for Lie pseudogroups, and for G-structures of various orders. Some new results are introduced for prolongation of structure equations, and for treatment of Riemannian geometry with higher-order moving frames. The use of invariant form equations for nonlinear field physics is implicitly advocated.
Rod bundle burnout data and correlation comparisons
International Nuclear Information System (INIS)
Rod bundle burnout data from 30 steady-state and 3 transient tests were obtained from experiments performed in the Thermal Hydraulic Test Facility at the Oak Ridge National Laboratory. The tests covered a parameter range relevant to intact core reactor accidents ranging from large break to small break loss-ofcoolant conditions. Instrumentation within the 64-rod test section indicated that burnout occurred over an axial range within the bundle. The distance from the point where the first dry rod was detected to the point where all rods were dry was up to 60 cm in some of the tests. The burnout data should prove useful in developing new correlations for use in reactor thermalhydraulic codes. Evaluation of several existing critical heat flux correlations using the data show that three correlations, the Barnett, Bowring, and Katto correlations, perform similarly and correlate the data better than the Biasi correlation
Deformations of Fell bundles and twisted graph algebras
Raeburn, Iain
2016-11-01
We consider Fell bundles over discrete groups, and the C*-algebra which is universal for representations of the bundle. We define deformations of Fell bundles, which are new Fell bundles with the same underlying Banach bundle but with the multiplication deformed by a two-cocycle on the group. Every graph algebra can be viewed as the C*-algebra of a Fell bundle, and there are are many cocycles of interest with which to deform them. We thus obtain many of the twisted graph algebras of Kumjian, Pask and Sims. We demonstate the utility of our approach to these twisted graph algebras by proving that the deformations associated to different cocycles can be assembled as the fibres of a C*-bundle.
Radiological evidence for the triple bundle anterior cruciate ligament.
MacKay, James W; Whitehead, Harry; Toms, Andoni P
2014-10-01
The anterior cruciate ligament (ACL) has traditionally been described as having two bundles--one anteromedial and one posterolateral. This has been challenged by studies proposing the existence of a third, intermediate, bundle with distinct functional significance, an arrangement that has been described in a number of domesticated animal species. No radiological evidence for the triple bundle ACL has previously been described. A prevalence study was carried out on 73 consecutive human knee magnetic resonance (MR) studies to determine the number of visible bundles, excluding individuals with a history of ACL injury or mucoid degeneration. A triple bundle ACL was demonstrated in 15 out of 73 human knees (20.5%, 95% confidence interval 12.9-31.2%). This is the first radiological description of the human triple bundle ACL. There was MR imaging evidence of a triple bundle ACL in approximately one fifth of human knees in this study. PMID:24890455
Effective freeness of adjoint line bundles
Heier, Gordon
2001-01-01
In this note we establish a new Fujita-type effective bound for the base point freeness of adjoint line bundles on a compact complex projective manifold of complex dimension $n$. The bound we obtain (approximately) differs from the linear bound conjectured by Fujita only by a factor of the cube root of $n$. As an application, a new effective statement for pluricanonical embeddings is derived.
On Complex Supermanifolds with Trivial Canonical Bundle
Groeger, Josua
2016-01-01
We give an algebraic characterisation for the triviality of the canonical bundle of a complex supermanifold in terms of a certain Batalin-Vilkovisky superalgebra structure. As an application, we study the Calabi-Yau case, in which an explicit formula in terms of the Levi-Civita connection is achieved. Our methods include the use of complex integral forms and the recently developed theory of superholonomy.
Uncovering ecosystem service bundles through social preferences.
Directory of Open Access Journals (Sweden)
Berta Martín-López
Full Text Available Ecosystem service assessments have increasingly been used to support environmental management policies, mainly based on biophysical and economic indicators. However, few studies have coped with the social-cultural dimension of ecosystem services, despite being considered a research priority. We examined how ecosystem service bundles and trade-offs emerge from diverging social preferences toward ecosystem services delivered by various types of ecosystems in Spain. We conducted 3,379 direct face-to-face questionnaires in eight different case study sites from 2007 to 2011. Overall, 90.5% of the sampled population recognized the ecosystem's capacity to deliver services. Formal studies, environmental behavior, and gender variables influenced the probability of people recognizing the ecosystem's capacity to provide services. The ecosystem services most frequently perceived by people were regulating services; of those, air purification held the greatest importance. However, statistical analysis showed that socio-cultural factors and the conservation management strategy of ecosystems (i.e., National Park, Natural Park, or a non-protected area have an effect on social preferences toward ecosystem services. Ecosystem service trade-offs and bundles were identified by analyzing social preferences through multivariate analysis (redundancy analysis and hierarchical cluster analysis. We found a clear trade-off among provisioning services (and recreational hunting versus regulating services and almost all cultural services. We identified three ecosystem service bundles associated with the conservation management strategy and the rural-urban gradient. We conclude that socio-cultural preferences toward ecosystem services can serve as a tool to identify relevant services for people, the factors underlying these social preferences, and emerging ecosystem service bundles and trade-offs.
Quantum principal bundles and their characteristic classes
Durdevic, M
1996-01-01
A brief exposition of the general theory of characteristic classes of quantum principal bundles is given. The theory of quantum characteristic classes incorporates ideas of classical Weil theory into the conceptual framework of non-commutative differential geometry. A purely cohomological interpretation of the Weil homomorphism is given, together with a standard geometrical interpretation via quantum invariant polynomials. A natural spectral sequence is described. Some quantum phenomena appearing in the formalism are discussed.
Abelian conformal field theory and determinant bundles
DEFF Research Database (Denmark)
Andersen, Jørgen Ellegaard; Ueno, K.
2007-01-01
Following [10], we study a so-called bc-ghost system of zero conformal dimension from the viewpoint of [14, 16]. We show that the ghost vacua construction results in holomorphic line bundles with connections over holomorphic families of curves. We prove that the curvature of these connections are...... nodal curves. These results are used in [4] to construct modular functors form the conformal field theories given in [14, 16] by twisting with an appropriate factional power of this Abelian theory.......Following [10], we study a so-called bc-ghost system of zero conformal dimension from the viewpoint of [14, 16]. We show that the ghost vacua construction results in holomorphic line bundles with connections over holomorphic families of curves. We prove that the curvature of these connections...... are up to a scale the same as the curvature of the connections constructed in [14, 16]. We study the sewing construction for nodal curves and its explicit relation to the constructed connections. Finally we construct preferred holomorphic sections of these line bundles and analyze their behaviour near...
Bundling harvester; Harvennuspuun automaattisen nippukorjausharvesterin kehittaeminen
Energy Technology Data Exchange (ETDEWEB)
Koponen, K. [Eko-Log Oy, Kuopio (Finland)
1997-12-01
The starting point of the project was to design and construct, by taking the silvicultural point of view into account, a harvesting and processing system especially for energy-wood, containing manually driven bundling harvester, automating of the harvester, and automated loading. The equipment forms an ideal method for entrepreneur`s-line harvesting. The target is to apply the system also for owner`s-line harvesting. The profitability of the system promotes the utilisation of the system in both cases. The objectives of the project were: to construct a test equipment and prototypes for all the project stages, to carry out terrain and strain tests in order to examine the usability and durability, as well as the capacity of the machine, to test the applicability of the Eko-Log system in simultaneous harvesting of energy and pulp woods, and to start the marketing and manufacturing of the products. The basic problems of the construction of the bundling harvester have been solved using terrain-tests. The prototype machine has been shown to be operable. Loading of the bundles to form sufficiently economically transportable loads has been studied, and simultaneously, the branch-biomass has been tried to be utilised without loosing the profitability of transportation. The results have been promising, and will promote the profitable utilisation of wood-energy. (orig.)
DUPIC fuel compatibility assessment
International Nuclear Information System (INIS)
The purpose of this study is to assess the compatibility of DUPIC (Direct Use of Spent PWR Fuel in CANDU Reactors) fuel with the current CANDU 6 reactor, which is one of the technology being developed to utilize the spent PWR fuel in CANDU reactors. The Phase II study of this project includes the analysis of impact on the reactor safety, the development of core design technology, the development of fuel supply technology of optimal composition, and feasibility analysis on localization and license of DUPIC fuel. From the reactor safety analysis results, it is known that DUPIC fuel satisfies the safety limit of reactor containment and public dose for single failure. But, the safety limit may be exceeded for dual failure. Therefore, more analysis is needed for the removal of excessive conservatism in accident analysis methodology and modification of transient fuel behavior analysis methodology. The results of the validation calculations of core design methodology have confirmed that the current core analysis system is acceptable for the feasibility study of the DUPIC fuel compatibility analysis. The results of compatibility and fuel fabrication have shown that DUPIC fuel is technically feasible. For practical use and licensing, however, more research items required in the practical use, fuel rod and bundle design and fuel loading are should be performed. When these items are performed and resolved, the compatibility of the DUPIC fuel is achieved, and, eventually, the possibility of DUPIC fuel licensing can be confirmed
An analytical fiber bundle model for pullout mechanics of root bundles
Cohen, D.; Schwarz, M.; Or, D.
2011-09-01
Roots in soil contribute to the mechanical stability of slopes. Estimation of root reinforcement is challenging because roots form complex biological networks whose geometrical and mechanical characteristics are difficult to characterize. Here we describe an analytical model that builds on simple root descriptors to estimate root reinforcement. Root bundles are modeled as bundles of heterogeneous fibers pulled along their long axes neglecting root-soil friction. Analytical expressions for the pullout force as a function of displacement are derived. The maximum pullout force and corresponding critical displacement are either derived analytically or computed numerically. Key model inputs are a root diameter distribution (uniform, Weibull, or lognormal) and three empirical power law relations describing tensile strength, elastic modulus, and length of roots as functions of root diameter. When a root bundle with root tips anchored in the soil matrix is pulled by a rigid plate, a unique parameter, ?, that depends only on the exponents of the power law relations, dictates the order in which roots of different diameters break. If ? 1, large roots break first. When ? = 1, all fibers break simultaneously, and the maximum tensile force is simply the roots' mean force times the number of roots in the bundle. Based on measurements of root geometry and mechanical properties, the value of ? is less than 1, usually ranging between 0 and 0.7. Thus, small roots always fail first. The model shows how geometrical and mechanical characteristics of roots and root diameter distribution affect the pullout force, its maximum and corresponding displacement. Comparing bundles of roots that have similar mean diameters, a bundle with a narrow variance in root diameter will result in a larger maximum force and a smaller displacement at maximum force than a bundle with a wide diameter distribution. Increasing the mean root diameter of a bundle without changing the distribution's shape increases
Modelling nuclear fuel vibrations in horizontal CANDU reactors
International Nuclear Information System (INIS)
Flow-induced fuel vibrations in the pressure tubes of CANDU reactors are of vital interest to designers because fretting damage may result. Computer simulation is being used to study how bundles vibrate and to identify bundle design features which will reduce vibration and hence fretting. (author)
Thermal-hydraulic analysis of three-dimensional natural convection in a vertical rod bundle
International Nuclear Information System (INIS)
Numerical analyses have been conducted in boundary-fitted coordinates on the problem of three-dimensional natural convection in a vertical rod bundle that consists of a group of seven heated rods and a cold hexagonal enclosure surrounding them. Flow patterns and temperature distributions are obtained for Rayleigh numbers up to 107 with the aspect ratio of vertical to horizontal dimensions being set at the value of unity. Three Rayleigh number regions of different modes of heat transfer, i.e., pseudo-conduction, transitional convection and boundary layer regions, are discussed. The flow structures and the effect of natural convection on local and overall heat transfer rates are presented. It is found that the rods each tend to assume nearly the same average heat flux rate (in the case of isothermal conditions) as the Rayleigh number is increased. The results obtained enhance the basic understanding of buoyancy-induced fluid flow and heat transfer in rod bundles, and in particular the differences that are obtained when different boundary conditions are imposed on the inner cylindrical rods. Natural convection in an enclosed space consisting of a hot vertical rod bundle placed in a cold enclosure has potential applications including storage of heat-generating spent fuel assemblies, and heat removal of a nuclear fuel-pin configuration in a light-water reactor in situations of emergency
Experimental investigation of heat transfer from a 2 × 2 rod bundle to supercritical pressure water
Energy Technology Data Exchange (ETDEWEB)
Wang, Han [State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); Bi, Qincheng, E-mail: qcbi@mail.xjtu.edu.cn [State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); Wang, Linchuan; Lv, Haicai [State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); Leung, Laurence K.H. [Atomic Energy of Canada Limited, Chalk River, Ont., Canada K0J 1J0 (Canada)
2014-08-15
Highlights: • Heat transfer of supercritical water through a 2 × 2 rod bundles is investigated. • Circumferential wall temperature distribution is obtained. • Effects of system parameters on heat transfer characteristics are analyzed. • Heat transfer correlations are compared against the rod bundle test data. - Abstract: Heat transfer experiments with supercritical pressure water flowing vertically upward through a 2 × 2 rod bundle have been performed at Xi’an Jiaotong University. A fuel-assembly simulator with four heated rods was installed inside a square channel with rounded corner. The outer diameter of each heated rod is 8 mm with an effective heated length of 600 mm. The experiments covered the pressure range of 23–28 MPa, mass-flux range of 350–1000 kg/(m{sup 2} s) and heat-flux range on the rod surface of 200–1000 kW/m{sup 2}. Heat transfer characteristics of supercritical pressure water through the bundle were examined with respect to variations of heat flux, system pressure, and mass flux. These characteristics were shown to be similar to those previously observed in tubes or annuli. The experimental data indicate a non-uniform circumferential wall-temperature distribution around the heated rod. A maximum wall temperature was observed at the surface facing the corner gap between the heated rod and the ceramic tube, while the minimum wall temperature was observed at the surface facing the center subchannel. The difference between maximum and minimum wall temperatures varies with heat flux and/or mass flux. Eight heat transfer correlations developed for supercritical water were assessed against the current set of test data. Prediction of the Jackson correlation agrees closely with the experimental Nusselt number. A new correlation has been derived based on Jackson correlation to improve the prediction accuracy of supercritical heat transfer coefficient in a 2 × 2 rod bundle.
Energy Technology Data Exchange (ETDEWEB)
Moon, Kang Hoon; Oezdemir, Erdal; Oh, Seung Jong [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)
2014-10-15
The subchannel code is used to assess the safety of a reactor core at the steady-state and transient conditions. KEPCO Nuclear Fuel (KNF) has been developed new subchannel code, THALES, for PWR core design application. In this study, we are comparing the THALES result with VIPRE-01 code result utilizing bundle test data. VIPRE-01 was developed under EPRI sponsorship and has been used by U.S. PWR commercial nuclear utilities, historically. THALES and VIPRE-01 codes were benchmarked to two kind of bundle test data which were at the steady-state and transient conditions. THALES predicted fluid velocity and temperature profile of bundle test data well and the error rate between THALES and VIPRE-01 was very small.
Rehme, K.
1987-03-01
The velocity, turbulence, and temperature distributions in nuclear fuel element bundles of nuclear reactors were investigated. The mean velocity, the wall shear stresses, and the turbulence were measured in two wall subchannels of a rod bundle of four parallel rods, arranged in a rectangular channel, for three axial planes. A spacer grid was inserted in the rod bundle, for ratios between the distance spacer grid/measuring plane and the hydraulic diameter (LIDh) of 40.4, 32.8 and 16.9. The Reynolds number was 145,000. The results show that the distributions of the velocity and the turbulence are affected by the spacer grid, already for LIDh = 40.4. The effects of the spacer grid increase with decreasing distance to the spacer grid.
Fluid-mixing studies in a hexagonal 217-pin wire-wrapped rod bundle. [LMFBR
Energy Technology Data Exchange (ETDEWEB)
Symolon, P.D.; Todreas, N.E.
1981-02-01
Mixing, pressure drop, and flow split experiments were performed on a 217 pin LMFBR fuel bundle with a pitch to diameter ratio of 1.25 and a lead length of 12 inches. It was found that the turbulent flow data could best be characterized by the energy parameter C/sub 1L/=.106, which is 9% higher than the value from the correlation of Chiu et al. Chiu's correlation was developed on a data base of 61 and 91 pins. The spread of existing data about the correlation is +- 25%, but the error band on our data is expected to be less (approx. +- 10% since injection depth effects were not previously considered). This result is consistent with the concept of increased swirl flow in larger bundles (more pins).
Energy Technology Data Exchange (ETDEWEB)
Debbarma, Ajoy; Pandey, Krishna Murari [National Institute of Technology, Assam (India). Dept. of Mechanical Engineering
2016-03-15
Numerical investigation of the rewetting of single sector fuel assembly of Advanced Heavy Water Reactor (AHWR) has been carried out to exhibit the effect of coolant jet diameters (2, 3 and 4 mm) and jet directions (Model: M, X and X2). The rewetting phenomena with various jet models are compared on the basis of rewetting temperature and wetting delay. Temperature-time curve have been evaluated from rods surfaces at different circumference, radial and axial locations of rod bundle. The cooling curve indicated the presence of vapor in respected location, where it prevents the contact between the firm and fluid phases. The peak wall temperature represents as rewetting temperature. The time period observed between initial to rewetting temperature point is wetting delay. It was noted that as improved in various jet models, rewetting temperature and wetting delay reduced, which referred the coolant stipulation in the rod bundle dominant vapor formation.
Proceedings of the fifth international conference on CANDU fuel. V.1,2
Energy Technology Data Exchange (ETDEWEB)
Lau, J.H. [ed.
1997-07-01
The First International Conference on CANDU Fuel was held in Chalk River in 1986. The CANDU Fuel community has gathered every three years since. The papers presented include topics on international experience, CANFLEX fuel bundles, Fuel design, Fuel modelling, Manufacturing and Quality assurance, Fuel performance and Safety, Fuel cycles and Spent Fuel management. Volume One was published in advance of the conference and Volume Two was printed after the conference.
Proceedings of the fifth international conference on CANDU fuel. V.1,2
International Nuclear Information System (INIS)
The First International Conference on CANDU Fuel was held in Chalk River in 1986. The CANDU Fuel community has gathered every three years since. The papers presented include topics on international experience, CANFLEX fuel bundles, Fuel design, Fuel modelling, Manufacturing and Quality assurance, Fuel performance and Safety, Fuel cycles and Spent Fuel management. Volume One was published in advance of the conference and Volume Two was printed after the conference
A Tannakian approach to dimensional reduction of principal bundles
Álvarez-Cónsul, Luis; García-Prada, Oscar
2016-01-01
Let $P$ be a parabolic subgroup of a connected simply connected complex semisimple Lie group $G$. Given a compact K\\"ahler manifold $X$, the dimensional reduction of $G$-equivariant holomorphic vector bundles over $X\\times G/P$ was carried out by the first and third authors. This raises the question of dimensional reduction of holomorphic principal bundles over $X\\times G/P$. The method used for equivariant vector bundles does not generalize to principal bundles. In this paper, we adapt to equivariant principal bundles the Tannakian approach of Nori, to describe the dimensional reduction of $G$-equivariant principal bundles over $X\\times G/P$, and to establish a Hitchin--Kobayashi type correspondence. In order to be able to apply the Tannakian theory, we need to assume that $X$ is a complex projective manifold.
Monopoles and Modifications of Bundles over Elliptic Curves
Directory of Open Access Journals (Sweden)
Andrey M. Levin
2009-06-01
Full Text Available Modifications of bundles over complex curves is an operation that allows one to construct a new bundle from a given one. Modifications can change a topological type of bundle. We describe the topological type in terms of the characteristic classes of the bundle. Being applied to the Higgs bundles modifications establish an equivalence between different classical integrable systems. Following Kapustin and Witten we define the modifications in terms of monopole solutions of the Bogomolny equation. We find the Dirac monopole solution in the case R × (elliptic curve. This solution is a three-dimensional generalization of the Kronecker series. We give two representations for this solution and derive a functional equation for it generalizing the Kronecker results. We use it to define Abelian modifications for bundles of arbitrary rank. We also describe non-Abelian modifications in terms of theta-functions with characteristic.
Amplitude death of coupled hair bundles with stochastic channel noise
Kim, Kyung-Joong
2014-01-01
Hair cells conduct auditory transduction in vertebrates. In lower vertebrates such as frogs and turtles, due to the active mechanism in hair cells, hair bundles(stereocilia) can be spontaneously oscillating or quiescent. Recently, the amplitude death phenomenon has been proposed [K.-H. Ahn, J. R. Soc. Interface, {\\bf 10}, 20130525 (2013)] as a mechanism for auditory transduction in frog hair-cell bundles, where sudden cessation of the oscillations arises due to the coupling between non-identical hair bundles. The gating of the ion channel is intrinsically stochastic due to the stochastic nature of the configuration change of the channel. The strength of the noise due to the channel gating can be comparable to the thermal Brownian noise of hair bundles. Thus, we perform stochastic simulations of the elastically coupled hair bundles. In spite of stray noisy fluctuations due to its stochastic dynamics, our simulation shows the transition from collective oscillation to amplitude death as inter-bundle coupling str...
Differential geometry of complex vector bundles
Kobayashi, Shoshichi
2014-01-01
Holomorphic vector bundles have become objects of interest not only to algebraic and differential geometers and complex analysts but also to low dimensional topologists and mathematical physicists working on gauge theory. This book, which grew out of the author's lectures and seminars in Berkeley and Japan, is written for researchers and graduate students in these various fields of mathematics. Originally published in 1987. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeto
Riemann Surfaces: Vector Bundles, Physics, and Dynamics
DEFF Research Database (Denmark)
Sikander, Shehryar
We construct quantum representation of a subgroup of the mapping class group of a genus two surface. Our construction relies on realizing this subgroup as the orbifold fundamental group of a Teichmueller curve, pulling back the Hitchin connection to this Tecihmueller curve, and computing...... the monodromy with respect to the pulled back connection. The formula for the representation includes a series with coefficients as iterated integrals. This series is closely related to the cyclotomic version of the Drinfel'd associator. The geodesic flow in the unit the tangent bundle of this Teichmueller...
Compression of a bundle of light rays.
Marcuse, D
1971-03-01
The performance of ray compression devices is discussed on the basis of a phase space treatment using Liouville's theorem. It is concluded that the area in phase space of the input bundle of rays is determined solely by the required compression ratio and possible limitations on the maximum ray angle at the output of the device. The efficiency of tapers and lenses as ray compressors is approximately equal. For linear tapers and lenses the input angle of the useful rays must not exceed the compression ratio. The performance of linear tapers and lenses is compared to a particular ray compressor using a graded refractive index distribution.
Tiling spaces are Cantor set fiber bundles
Sadun, Lorenzo; Williams, R F
2001-01-01
We prove that fairly general spaces of tilings of R^d are fiber bundles over the torus T^d, with totally disconnected fiber. This was conjectured (in a weaker form) in [W3], and proved in certain cases. In fact, we show that each such space is homeomorphic to the d-fold suspension of a Z^d subshift (or equivalently, a tiling space whose tiles are marked unit d-cubes). The only restrictions on our tiling spaces are that 1) the tiles are assumed to be polygons (polyhedra if d>2) that meet full-...
Higher order mechanics on graded bundles
International Nuclear Information System (INIS)
In this paper we develop a geometric approach to higher order mechanics on graded bundles in both, the Lagrangian and Hamiltonian formalism, via the recently discovered weighted algebroids. We present the corresponding Tulczyjew triple for this higher order situation and derive in this framework the phase equations from an arbitrary (also singular) Lagrangian or Hamiltonian, as well as the Euler–Lagrange equations. As important examples, we geometrically derive the classical higher order Euler–Lagrange equations and analogous reduced equations for invariant higher order Lagrangians on Lie groupoids. (paper)
The equivalence of bundling and advance sales
Alexandrov, Alexei; Bedre-Defolie, Özlem
2013-01-01
We show that a monopolist's problem of optimal advance selling strategy can be mathematically transformed into a problem of optimal bundling strategy if four conditions hold: i. consumers and the firm agree on the probability of the states occurring, ii. the firm pre-commits to the spot prices to be charged in the advance selling stage, iii. consumers are risk-neutral, and iv. consumers and the firm do not have time preferences or when they do have time preferences, they discount future at th...
Non-commutative P-1-bundles over commutative schemes
Van den Bergh, Michel
2012-01-01
In this paper we develop the theory of non-commutative P-1-bundles over commutative (smooth) schemes. Such non-commutative P-1-bundles occur in the theory of D-modules but our definition is more general. We can show that every non-commutative deformation of a Hirzebruch surface is given by a non-commutative P-1-bundle over P-1 in our sense.
Bohr--Sommerfeld Lagrangians of moduli spaces of Higgs bundles
DEFF Research Database (Denmark)
Biswas, Indranil; Gammelgaard, Niels Leth; Logares, Marina
Let $X$ be a compact connected Riemann surface of genus at least two. Let $M_H(r,d)$ denote the moduli space of semistable Higgs bundles on $X$ of rank $r$ and degree $d$. We prove that the compact complex Bohr-Sommerfeld Lagrangians of $M_H(r,d)$ are precisely the irreducible components of the n...... of the nilpotent cone in $M_H(r,d)$. This generalizes to Higgs $G$-bundles and also to the parabolic Higgs bundles....
International Nuclear Information System (INIS)
The analysis of alternate CANDU fuels along with natural uranium-based fuel was carried out from the view point of optimal in-core fuel management at approach to refuelling equilibrium. The alternate fuels considered in the present work include thorium containing oxide mixtures (MOX), plutonium-based MOX, and Pressurised Water Reactor (PWR) spent fuel recycled in CANDU reactors (Direct Use of spent PWR fuel in CANDU (DUPIC)); these are compared with the usual natural UO2 fuel. The focus of the study is on the 'Approach to Refuelling Equilibrium' period which immediately follows the initial commissioning of the reactor. The in-core fuel management problem for this period is treated as an optimization problem in which the objective function is the refuelling frequency to be minimized by adjusting the following decision variables: the channel to be refuelled next, the time of the refuelling and the number of fresh fuel bundles to be inserted in the channel. Several constraints are also included in the optimisation problem which is solved using Perturbation Theory. Both the present 37-rod CANDU fuel bundle and the proposed CANFLEX bundle designs are part of this study. The results include the time to reach refuelling equilibrium from initial start-up of the reactor, the average discharge burnup, the average refuelling frequency and the average channel and bundle powers relative to natural UO2. The model was initially tested and the average discharge burnup for natural UO2 came within 2% of the industry accepted 199 MWh/kgHE. For this type of fuel, the optimization exercise predicted the savings of 43 bundles per full power year. In addition to producing average discharge burnups and other parameters for the advanced fuels investigated, the optimisation model also evidenced some problem areas like high power densities for fuels such as the DUPIC. Perturbation Theory has proven itself to be an accurate and valuable optimization tool in predicting the time between
Robust Mapping of Incoherent Fiber-Optic Bundles
Roberts, Harry E.; Deason, Brent E.; DePlachett, Charles P.; Pilgrim, Robert A.; Sanford, Harold S.
2007-01-01
A method and apparatus for mapping between the positions of fibers at opposite ends of incoherent fiber-optic bundles have been invented to enable the use of such bundles to transmit images in visible or infrared light. The method is robust in the sense that it provides useful mapping even for a bundle that contains thousands of narrow, irregularly packed fibers, some of which may be defective. In a coherent fiber-optic bundle, the input and output ends of each fiber lie at identical positions in the input and output planes; therefore, the bundle can be used to transmit images without further modification. Unfortunately, the fabrication of coherent fiber-optic bundles is too labor-intensive and expensive for many applications. An incoherent fiber-optic bundle can be fabricated more easily and at lower cost, but it produces a scrambled image because the position of the end of each fiber in the input plane is generally different from the end of the same fiber in the output plane. However, the image transmitted by an incoherent fiber-optic bundle can be unscrambled (or, from a different perspective, decoded) by digital processing of the output image if the mapping between the input and output fiber-end positions is known. Thus, the present invention enables the use of relatively inexpensive fiber-optic bundles to transmit images.
Bundle formation in parallel aligned polymers with competing interactions
Dutta, Sandipan; Benetatos, P.; Jho, Y. S.
2016-04-01
Aggregation of like-charged polymers is widely observed in biological- and soft-matter systems. In many systems, bundles are formed when a short-range attraction of diverse physical origin like charge bridging, hydrogen bonding or hydrophobic interaction, overcomes the longer-range charge repulsion. In this letter, we present a general mechanism of bundle formation in these systems as the breaking of the translational invariance in parallel aligned polymers with competing interactions of this type. We derive a criterion for finite-sized bundle formation as well as for macroscopic phase separation (formation of infinite bundles).
Steady-flow characteristics of bundle fluid in drawing
Energy Technology Data Exchange (ETDEWEB)
Huh, You; Kim, Jong Seong [Kyunghee University, Suwon (Korea, Republic of)
2006-07-15
Drawing is a mechanical operation attenuating material thickness to an appropriate level for the next processing or end usage. When the input material has a form of bundle or bundles made of very thin and long shaped wires or fibers, this attenuation operation is called 'bundle drawing' or 'drafting'. Bundle drawing is being used widely in manufacturing micro sized wires or staple yarns. However, the bundle processed by this operation has more or less defects in the evenness of linear density. Such irregularities cause many problems not only for the product quality but also for the efficiency of the next successive processes. In this research a mathematical model for the dynamic behavior of the bundle fluid is to be set up on the basis of general physical laws containing physical variables, i.e. linear density and velocity as the dynamic state variables of the bundle fluid. The governing equations resulting from the modeling show that they appear in a slightly different form from what they do in a continuum fluid. Then, the governing equations system is simplified in a steady state and the bundle dynamics is simulated, showing that the shape of the velocity profiles depends on two model parameters. Experiments confirm that the model parameters are to be well adjusted to show a coincidence with the theoretical analysis. The higher the drawing ratio and drawing speed are, the more sensitive becomes the bundle flow to exogenous disturbances.
Confinement-dependent friction in peptide bundles.
Erbaş, Aykut; Netz, Roland R
2013-03-19
Friction within globular proteins or between adhering macromolecules crucially determines the kinetics of protein folding, the formation, and the relaxation of self-assembled molecular systems. One fundamental question is how these friction effects depend on the local environment and in particular on the presence of water. In this model study, we use fully atomistic MD simulations with explicit water to obtain friction forces as a single polyglycine peptide chain is pulled out of a bundle of k adhering parallel polyglycine peptide chains. The whole system is periodically replicated along the peptide axes, so a stationary state at prescribed mean sliding velocity V is achieved. The aggregation number is varied between k = 2 (two peptide chains adhering to each other with plenty of water present at the adhesion sites) and k = 7 (one peptide chain pulled out from a close-packed cylindrical array of six neighboring peptide chains with no water inside the bundle). The friction coefficient per hydrogen bond, extrapolated to the viscous limit of vanishing pulling velocity V → 0, exhibits an increase by five orders of magnitude when going from k = 2 to k = 7. This dramatic confinement-induced friction enhancement we argue to be due to a combination of water depletion and increased hydrogen-bond cooperativity. PMID:23528088
Development boiling to sprinkled tube bundle
Kracík, Petr; Pospíšil, Jiří
2016-03-01
This paper presents results of a studied heat transfer coefficient at the surface of a sprinkled tube bundle where boiling occurs. Research in the area of sprinkled exchangers can be divided into two major parts. The first part is research on heat transfer and determination of the heat transfer coefficient at sprinkled tube bundles for various liquids, whether boiling or not. The second part is testing of sprinkle modes for various tube diameters, tube pitches and tube materials and determination of individual modes' interface. All results published so far for water as the falling film liquid apply to one to three tubes for which the mentioned relations studied are determined in rigid laboratory conditions defined strictly in advance. The sprinkled tubes were not viewed from the operational perspective where there are more tubes and various modes may occur in different parts with various heat transfer values. The article focuses on these processes. The tube is located in a low-pressure chamber where vacuum is generated using an exhauster via ejector. The tube consists of smooth copper tubes of 12 mm diameter placed horizontally one above another.
International Nuclear Information System (INIS)
This report describes the additional materials on the Safety Assessment for the 24 CANFLEX-NU Bundle Demonstration Irradiation at Wolsong-1 Generating Station, which is the answers on the KINS's first questions as a result of the review of the Safety Assessment report. The additional materials cover : 1) Subjects on CANFLEX-NU fuel channel and the selection criteria, 2) Subjects on the evaluation of the discharge fuel with respect to the purpose of the DI, 3) Subjects on the planning of report of the DI results, 4) Subjects on the integrity evaluation of the CANFLEX-NU fuel bundles in the reactor, 5) Subjects on the thermal-hydraulic compatibility of the CANFLEX-NU fuel with the existing 37-element bundles, 6) Subjects on the Input variables of CATHENA code used in the safety analyses, 7) Subjects on the loss of forced circulation, 8) Subjects on the CANFLEX-NU fuel element power under condition of non-LOCA, 9) Subjects on the loss of reactivity control, 10) Subjects on the LOCA. The additional materials are made on the basis of the Safety Assessment for the 24 CANFLEX-NU Bundle Demonstration Irradiation at Wolsong-1 Generating Station(H. C. Suk et. al, KAERI/TR-1864/2001, 2001.6) and Operational Procedure of the Wolsong-1 Generating Station, and so on
Moving towards sustainable thorium fuel cycles
International Nuclear Information System (INIS)
The CANDU reactor has an unsurpassed degree of fuel-cycle flexibility as a consequence of its fuel-channel design, excellent neutron economy, on-power refueling, and simple fuel bundle design. These features facilitate the introduction and full exploitation of thorium fuel cycles in CANDU reactors in an evolutionary fashion. Thoria (ThO2) based fuel offers both fuel performance and safety advantages over urania (UO2) based fuel, due its higher thermal conductivity which results in lower fuel-operating temperatures at similar linear element powers. Thoria fuel has demonstrated lower fission gas release than UO2 under similar operating powers during test irradiations. In addition, thoria has a higher melting point than urania and is far less reactive in hypothetical accident scenarios owing to the fact that it has only one oxidation state. This paper examines one possible strategy for the introduction of thorium fuel cycles into CANDU reactors. In the short term, the initial fissile material would be provided in a heterogeneous bundle of low-enriched uranium and thorium. The medium term scenario uses homogeneous Pu/Th bundles in the CANDU reactor, further increasing the energy derived from the thorium. In the long term, the full energy potential from thorium would be realized through the recycle of the U-233 in the used fuel. With U-233 recycle in CANDU reactors, plutonium would then only be required to top up the fissile content to achieve the desired burnup. (author)
Directory of Open Access Journals (Sweden)
Masataka Deie
2015-01-01
Full Text Available Background. Posterior cruciate ligament (PCL injuries are not rare in acute knee injuries, and several recent anatomical studies of the PCL and reconstructive surgical techniques have generated improved patient results. Now, we have evaluated PCL reconstructions performed by either the single-bundle or double-bundle technique in a patient group followed up retrospectively for more than 10 years. Methods. PCL reconstructions were conducted using the single-bundle (27 cases or double-bundle (13 cases method from 1999 to 2002. The mean age at surgery was 34 years in the single-bundle group and 32 years in the double-bundle group. The mean follow-up period was 12.5 years. Patients were evaluated by Lysholm scoring, the gravity sag view, and knee arthrometry. Results. The Lysholm score after surgery was 89.1±5.6 points for the single-bundle group and 91.9±4.5 points for the double-bundle group. There was no significant difference between the methods in the side-to-side differences by gravity sag view or knee arthrometer evaluation, although several cases in both groups showed a side-to-side difference exceeding 5 mm by the latter evaluation method. Conclusions. We found no significant difference between single- and double-bundle PCL reconstructions during more than 10 years of follow-up.
CFD Simulation of Spent Fuel in a Dry Storage System
International Nuclear Information System (INIS)
The spent fuel pool is expected to be full in few years. It is a serious problem one should not ignore. The dry storage type is considered as the interim storage system in Korea. The system stores spent fuel in a storage canister filled with an inert gas and the canister is cooled by a natural convection system using air or helium, radiation, and conduction. The spent fuel is heated by decay heat. The spent fuel is allowed to cool under a limiting temperature to avoid a fuel failure. Recently, the thermal hydraulic characteristics for a single bundle of the spent fuel were investigated through a CFD simulation. It would be of great interest to investigate the maximum fuel temperature in a dry storage system. The present paper deals with the thermal hydraulic characteristics of spent fuel for a dry storage system using the CFD method. A 3-D thermal flow simulation was carried out to predict the temperature of spent fuel. A dry storage system composed of 32 fuel bundles was modeled. The inlet temperature of the outer bundle is higher and that of inner bundle, however, is higher at the outlet. In a single fuel assembly, a center temperature of the fuel assembly was higher than elsewhere
CFD Simulation of Spent Fuel in a Dry Storage System
Energy Technology Data Exchange (ETDEWEB)
Kwack, Young Kyun; In, Wang Kee; Shin, Chang Hwan; Chun, Tae Hyun; Kook, Dong Hak [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2013-10-15
The spent fuel pool is expected to be full in few years. It is a serious problem one should not ignore. The dry storage type is considered as the interim storage system in Korea. The system stores spent fuel in a storage canister filled with an inert gas and the canister is cooled by a natural convection system using air or helium, radiation, and conduction. The spent fuel is heated by decay heat. The spent fuel is allowed to cool under a limiting temperature to avoid a fuel failure. Recently, the thermal hydraulic characteristics for a single bundle of the spent fuel were investigated through a CFD simulation. It would be of great interest to investigate the maximum fuel temperature in a dry storage system. The present paper deals with the thermal hydraulic characteristics of spent fuel for a dry storage system using the CFD method. A 3-D thermal flow simulation was carried out to predict the temperature of spent fuel. A dry storage system composed of 32 fuel bundles was modeled. The inlet temperature of the outer bundle is higher and that of inner bundle, however, is higher at the outlet. In a single fuel assembly, a center temperature of the fuel assembly was higher than elsewhere.
A thermal-hydraulic code for transient analysis in a channel with a rod bundle
Energy Technology Data Exchange (ETDEWEB)
Khodjaev, I.D. [Research & Engineering Centre of Nuclear Plants Safety, Electrogorsk (Russian Federation)
1995-09-01
The paper contains the model of transient vapor-liquid flow in a channel with a rod bundle of core of a nuclear power plant. The computer code has been developed to predict dryout and post-dryout heat transfer in rod bundles of nuclear reactor core under loss-of-coolant accidents. Economizer, bubble, dispersed-annular and dispersed regimes are taken into account. The computer code provides a three-field representation of two-phase flow in the dispersed-annular regime. Continuous vapor, continuous liquid film and entrained liquid drops are three fields. For the description of dispersed flow regime two-temperatures and single-velocity model is used. Relative droplet motion is taken into account for the droplet-to-vapor heat transfer. The conservation equations for each of regimes are solved using an effective numerical technique. This technique makes it possible to determine distribution of the parameters of flows along the perimeter of fuel elements. Comparison of the calculated results with the experimental data shows that the computer code adequately describes complex processes in a channel with a rod bundle during accident.
CFD Turbulence Study of PWR Spacer-Grids in a Rod Bundle
Directory of Open Access Journals (Sweden)
C. Peña-Monferrer
2014-01-01
the flow dynamics and heat transfer phenomena along the fuel rods. This work presents the analysis of the turbulence effects of a split-type and swirl-type spacer-grid geometries on single phase in a PWR (pressurized water reactor rod bundle. Various computational fluid dynamics (CFD calculations have been performed and the results validated with the experiments of the OECD/NEA-KAERI rod bundle CFD blind benchmark exercise on turbulent mixing in a rod bundle with spacers at the MATiS-H facility. Simulation of turbulent phenomena downstream of the spacer-grid presents high complexity issues; a wide range of length scales are present in the domain increasing the difficulty of defining in detail the transient nature of turbulent flow with ordinary turbulence models. This paper contains a complete description of the procedure to obtain a validated CFD model for the simulation of the spacer-grids. Calculations were performed with the commercial code ANSYS CFX using large eddy simulation (LES turbulence model and the CFD modeling procedure validated by comparison with measurements to determine their suitability in the prediction of the turbulence phenomena.
On the Classification of Complex Vector Bundles of Stable Rank
Indian Academy of Sciences (India)
Constantin Bǎnicǎ; Mihai Putinar
2006-08-01
One describes, using a detailed analysis of Atiyah–Hirzebruch spectral sequence, the tuples of cohomology classes on a compact, complex manifold, corresponding to the Chern classes of a complex vector bundle of stable rank. This classification becomes more effective on generalized flag manifolds, where the Lie algebra formalism and concrete integrability conditions describe in constructive terms the Chern classes of a vector bundle.
Lexical Bundles in L1 and L2 Academic Writing
Chen, Yu-Hua; Baker, Paul
2010-01-01
This paper adopts an automated frequency-driven approach to identify frequently-used word combinations (i.e., "lexical bundles") in academic writing. Lexical bundles retrieved from one corpus of published academic texts and two corpora of student academic writing (one L1, the other L2), were investigated both quantitatively and qualitatively.…
Presenting Lexical Bundles for Explicit Noticing with Schematic Linguistic Representation
Thomson, Haidee Elizabeth
2016-01-01
Lexical bundles are essential for fluency, but their incompleteness is a stumbling block for learners. In this study, two presentation methods to increase awareness of lexical bundles through explicit noticing are explored and compared with incidental exposure. The three conditions in this study were as follows: noticing with schematic linguistic…
Quantum principal bundles as Hopf-Galois extensions
Durdevic, M
1995-01-01
It is shown that every quantum principal bundle with a compact structure group is a Hopf-Galois extension. This property naturally extends to the level of general differential structures, so that every differential calculus over a quantum principal bundle with a compact structure group is a graded-differential variant of the Hopf-Galois extension.
Subanalytic Bundles and Tubular Neighbourhoods of Zero-Loci
Indian Academy of Sciences (India)
Vishwambhar Pati
2003-08-01
We introduce the natural and fairly general notion of a subanalytic bundle (with a finite dimensional vector space of sections) on a subanalytic subset of a real analytic manifold , and prove that when is compact, there is a Baire subset of sections in whose zero-loci in have tubular neighbourhoods, homeomorphic to the restriction of the given bundle to these zero-loci.
Skeleton-Based Edge Bundling for Graph Visualization
Ersoy, Ozan; Hurter, Christophe; Paulovich, Fernando V.; Cantareira, Gabriel; Telea, Alexandru
2011-01-01
In this paper, we present a novel approach for constructing bundled layouts of general graphs. As layout cues for bundles, we use medial axes, or skeletons, of edges which are similar in terms of position information. We combine edge clustering, distance fields, and 2D skeletonization to construct p
On the general elephant conjecture for Mori conic bundles
Prokhorov, Yu G
1996-01-01
Let $f:X\\to S$ be an extremal contraction from a threefolds with terminal singularities onto a surface (so called Mori conic bundle). We study some particular cases of such contractions: quotients of usual conic bundles and index two contractions. Assuming Reid's general elephants conjecture we also obtain a rough classification. We present many examples.
Phase Space Reduction of Star Products on Cotangent Bundles.
N. Kowalzig; N. Neumaier; M. Pflaum
2005-01-01
In this paper we construct star products on Marsden-Weinstein reduced spaces in case both the original phase space and the reduced phase space are (symplectomorphic to) cotangent bundles. Under the assumption that the original cotangent bundle $T^*Q$ carries a symplectic structure of form $\\omega_{B
Parabolic stable Higgs bundles over complete noncompact Riemann surfaces
Institute of Scientific and Technical Information of China (English)
李嘉禹; 王友德
1999-01-01
Let M be an open Riemann surface with a finite set of punctures, a complete Poincar(?)-like metric is introduced near the punctures and the equivalence between the stability of an indecomposable parabolic Higgs bundle, and the existence of a Hermitian-Einstein metric on the bundle is established.
Moduli of Parabolic Higgs Bundles and Atiyah Algebroids
DEFF Research Database (Denmark)
Logares, Marina; Martens, Johan
2010-01-01
In this paper we study the geometry of the moduli space of (non-strongly) parabolic Higgs bundles over a Riemann surface with marked points. We show that this space possesses a Poisson structure, extending the one on the dual of an Atiyah algebroid over the moduli space of parabolic vector bundles...
Helical twist controls the thickness of F-actin bundles
Claessens, M.M.A.E.; Semmrich, C.; Ramos, L.; Bausch, A.R.
2008-01-01
In the presence of condensing agents such as nonadsorbing polymer, multivalent counter ions, and specific bundling proteins, chiral biopolymers typically form bundles with a finite thickness, rather than phase-separating into a polymer-rich phase. Although short-range repulsive interactions or geome
Non-abelian higher gauge theory and categorical bundle
Viennot, David
2012-01-01
A gauge theory is associated with a principal bundle endowed with a connection permitting to define horizontal lifts of paths. The horizontal lifts of surfaces cannot be defined into a principal bundle structure. An higher gauge theory is an attempt to generalize the bundle structure in order to describe horizontal lifts of surfaces. A such attempt is particularly difficult for the non-abelian case. Some structures have been proposed to realize this goal (twisted bundle, gerbes with connection, bundle gerbe, 2-bundle). Each of them uses a category in place of the total space manifold of the usual principal bundle structure. Some of them replace also the structure group by a category (more precisely a Lie crossed module viewed as a category). But the base space remains still a simple manifold (possibly viewed as a trivial category with only identity arrows). We propose a new principal categorical bundle structure, with a Lie crossed module as structure groupoid, but with a base space belonging to a bigger clas...
Bundled slaty cleavage in laminated argillite, north-central minnesota
Southwick, D.L.
1987-01-01
Exceptional bundled slaty cleavage (defined herein) has been found in drill cores of laminated, folded, weakly metamorphosed argillite at several localities in the early Proterozoic Animikie basin of north-central Minnesota. The cleavage domains are more closely spaced within the cleavage bundles than outside them, the mean tectosilicate grain size of siltstone layers, measured normal to cleavage, is less in the cleavage bundles than outside them, and the cleavage bundles are enriched in opaque phases and phyllosilicates relative to extra-bundle segments. These facts suggest that pressure solution was a major factor in bundle development. If it is assumed that opaque phases have been conserved during pressure solution, the modal differences in composition between intra-bundle and extra-bundle segments of beds provide a means for estimating bulk material shortening normal to cleavage. Argillite samples from the central part of the Animikie basin have been shortened a minimum of about 22%, as estimated by this method. These estimates are similar to the shortening values derived from other strain markers in other rock types interbedded with the argillite, and are also consistent with the regional pattern of deformation. ?? 1987.
International Nuclear Information System (INIS)
The ASSERT subchannel code has been developed specifically to model flow and phase distributions within CANDU fuel bundles. ASSERT uses a drift-flux model which permits the phases to have unequal velocities, and can thus model phase separation tendencies which may occur in horizontal flow. The basic principles of ASSERT are outlined, and computed results are compared against data from various experiments for validation purposes. The paper concludes with an example of the use of the code to predict critical heat flux in CANDU geometries
Theories of the dorsal bundle extinction effect.
Mason, S T; Iversen, S D
1979-07-01
Selective destruction of the noradrenaline systems in the rat brain using the neurotoxin 6-hydroxydopamine has been found to cause resistance to extinction in a number of behavioural situations. Several theories concerning the behavioural mechanism altered by the lesion, and hence about the role of noradrenaline in normal brain functioning, are proposed and evaluated. Theories suggesting a role for noradrenaline in activity, perseveration, internal inhibition, frustrative non-reward, motivation, or secondary reinforcement, fail to explain all the available evidence and direct tests of each theory fails to support its predictions. A model which suggests that noreadrenaline is involved in attentional behaviour, specifically in filtering out or learning to ignore irrelevant environmental stimuli, is successful in explaining all available data and direct tests of the lesioned rats' attentional capacity serve to confirm many of the predictions of an attentional theory of the dorsal bundle extinction effect.
Bundled automobile insurance coverage and accidents.
Li, Chu-Shiu; Liu, Chwen-Chi; Peng, Sheng-Chang
2013-01-01
This paper investigates the characteristics of automobile accidents by taking into account two types of automobile insurance coverage: comprehensive vehicle physical damage insurance and voluntary third-party liability insurance. By using a unique data set in the Taiwanese automobile insurance market, we explore the bundled automobile insurance coverage and the occurrence of claims. It is shown that vehicle physical damage insurance is the major automobile coverage and affects the decision to purchase voluntary liability insurance coverage as a complement. Moreover, policyholders with high vehicle physical damage insurance coverage have a significantly higher probability of filing vehicle damage claims, and if they additionally purchase low voluntary liability insurance coverage, their accident claims probability is higher than those who purchase high voluntary liability insurance coverage. Our empirical results reveal that additional automobile insurance coverage information can capture more driver characteristics and driving behaviors to provide useful information for insurers' underwriting policies and to help analyze the occurrence of automobile accidents.
Geometries and applications of active fiber bundles
Giglmayr, Josef
2001-10-01
Active fiber bundles (FBs) are aimed to model photonic switching and processing in 3-D without the restrictions of the photonic technology. The 2-D photonic architectures are assumed to be implemented by networks of directional couplers (DCs) and Mach-Zehnder interferometers (MZIs), respectively. For the implementation several crucial problems are expected: (1) proper operation of the spatial couplers/switches (nonblocking interconnections) and (2) coupling in the interstage interconnection section mainly caused by parallel and crossing fibers/waveguides (WGs). For the design of proper operating switches (refinement of couplers) the application of decoupling concepts of modern control theory is proposed. The final goal is to translate the refined couplers into integrated photonic architectures rather than into additional lightwave circuits (LWCs) which simply would increase the coupling. The decoupling concepts are reviewed. The paper is an attempt to prepare for applying well-known system engineering concepts to the upcoming technology of photonics.
Habibi, Somayeh
2011-01-01
Let $G$ be a reductive algebraic group over a perfect field $k$ and $\\mathcal{G}$ a $G$-bundle over a scheme $X/k$. The main aim of this article is to study the motive associated with $\\mathcal{G}$, inside the Veovodsky Motivic categories. We consider the case that $\\charakt k=0$ (resp. $\\charakt k\\geq 0$), the motive associated to $X$ is geometrically mixed Tate (resp. geometrically cellular) and $\\mathcal{G}$ is locally trivial for the Zariski (resp. \\'etale) topology on $X$ and show that the motive of $\\mathcal{G}$ is a geometrically mixed Tate motive. Moreover for a general $X$ we construct a filtration on the motive associated to $\\mathcal{G}$ in terms of weight polytopes. Along the way we give some applications and examples.
Extendability of parallel sections in vector bundles
Kirschner, Tim
2016-01-01
I address the following question: Given a differentiable manifold M, what are the open subsets U of M such that, for all vector bundles E over M and all linear connections ∇ on E, any ∇-parallel section in E defined on U extends to a ∇-parallel section in E defined on M? For simply connected manifolds M (among others) I describe the entirety of all such sets U which are, in addition, the complement of a C1 submanifold, boundary allowed, of M. This delivers a partial positive answer to a problem posed by Antonio J. Di Scala and Gianni Manno (2014). Furthermore, in case M is an open submanifold of Rn, n ≥ 2, I prove that the complement of U in M, not required to be a submanifold now, can have arbitrarily large n-dimensional Lebesgue measure.
Bundles over Quantum RealWeighted Projective Spaces
Directory of Open Access Journals (Sweden)
Tomasz Brzeziński
2012-09-01
Full Text Available The algebraic approach to bundles in non-commutative geometry and the definition of quantum real weighted projective spaces are reviewed. Principal U(1-bundles over quantum real weighted projective spaces are constructed. As the spaces in question fall into two separate classes, the negative or odd class that generalises quantum real projective planes and the positive or even class that generalises the quantum disc, so do the constructed principal bundles. In the negative case the principal bundle is proven to be non-trivial and associated projective modules are described. In the positive case the principal bundles turn out to be trivial, and so all the associated modules are free. It is also shown that the circle (coactions on the quantum Seifert manifold that define quantum real weighted projective spaces are almost free.
Artificial ciliary bundles with nano fiber tip links
Asadnia, Mohsen; Miao, Jianmin; Triantafyllou, Michael
2015-01-01
Mechanosensory ciliary bundles in fishes are the inspiration for carefully engineered artificial flow sensors. We report the development of a new class of ultrasensitive MEMS flow sensors that mimic the intricate morphology of the ciliary bundles, including the stereocilia, tip links, and the cupula, and thereby achieve threshold detection limits that match the biological example. An artificial ciliary bundle is achieved by fabricating closely-spaced arrays of polymer micro-pillars with gradiating heights. Tip links that form the fundamental sensing elements are realized through electrospinning aligned PVDF piezoelectric nano-fibers that link the distal tips of the polymer cilia. An optimized synthesis of hyaluronic acid-methacrylic anhydride hydrogel that results in properties close to the biological cupula, together with drop-casting method are used to form the artificial cupula that encapsulates the ciliary bundle. In testing, fluid drag force causes the ciliary bundle to slide, stretching the flexible nan...
Superconductivity in an Inhomogeneous Bundle of Metallic and Semiconducting Nanotubes
Directory of Open Access Journals (Sweden)
Ilya Grigorenko
2013-01-01
Full Text Available Using Bogoliubov-de Gennes formalism for inhomogeneous systems, we have studied superconducting properties of a bundle of packed carbon nanotubes, making a triangular lattice in the bundle's transverse cross-section. The bundle consists of a mixture of metallic and doped semiconducting nanotubes, which have different critical transition temperatures. We investigate how a spatially averaged superconducting order parameter and the critical transition temperature depend on the fraction of the doped semiconducting carbon nanotubes in the bundle. Our simulations suggest that the superconductivity in the bundle will be suppressed when the fraction of the doped semiconducting carbon nanotubes will be less than 0.5, which is the percolation threshold for a two-dimensional triangular lattice.
HORIZONTAL LAPLACE OPERATOR IN REAL FINSLER VECTOR BUNDLES
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
A vector bundle F over the tangent bundle TM of a manifold M is said to be a Finsler vector bundle if it is isomorphic to the pull-back π*E of a vector bundle E over M([1]). In this article the authors study the h-Laplace operator in Finsler vector bundles.An h-Laplace operator is defined, first for functions and then for horizontal Finsler forms on E. Using the h-Laplace operator, the authors define the h-harmonic function and h-harmonic horizontal Finsler vector fields, and furthermore prove some integral formulas for the h-Laplace operator, horizontal Finsler vector fields, and scalar fields on E.
Introduction to the theory of fiber bundles and connections I
International Nuclear Information System (INIS)
In lectures 1 and 2 we discuss basic concepts of topology and differential geometry: definition of a topological space and of Hausdorff, compact, connected and paracompact spaces; topological groups and actions of groups on spaces; differentiable manifolds, tangent vectors and 1 forms; partitions of unity and Lie groups. In lecture 3 we present the concept of a fiber bundle and discuss vector bundles and principal bundles. The concept of a connection on a smooth vector bundle is defined in lecture 4, together with the associated concepts of curvature and parallel transport; as an illustration we present the Levi-Civita connection on a Riemannian manifold. Finally, in lecture 5 we define connections on principal bundles and present examples with the Lie groups U(1) and SU(2). For reasons of space the present article only includes lectures 1, 2 and 3. Lectures 4 and 5 will be published in a forthcoming paper. (Author)
Voltage- and calcium-dependent motility of saccular hair bundles
Quiñones, Patricia M.; Meenderink, Sebastiaan W. F.; Bozovic, Dolores
2015-12-01
Active bundle motility, which is hypothesized to supply feedback for mechanical amplification of signals, is thought to enhance sensitivity and sharpen tuning in vestibular and auditory organs. To study active hair bundle motility, we combined high-speed camera recordings of bullfrog sacculi, which were mounted in a two-compartment chamber, and voltage-clamp of the hair cell membrane potential. Using this paradigm, we measured three types of bundle motions: 1) spontaneous oscillations which can be analyzed to measure the physiological operating range of the transduction channel; 2) a sustained quasi-static movement of the bundle that depends on membrane potential; and 3) a fast, transient and asymmetric movement that resets the bundle position and depends on changes in the membrane potential. These data support a role for both calcium and voltage in the transduction-channel function.
The 2-Hilbert Space of a Prequantum Bundle Gerbe
Bunk, Severin; Szabo, Richard J
2016-01-01
We construct a prequantum 2-Hilbert space for any line bundle gerbe whose Dixmier-Douady class is torsion. Analogously to usual prequantisation, this 2-Hilbert space has the category of sections of the line bundle gerbe as its underlying 2-vector space. These sections are obtained as certain morphism categories in Waldorf's version of the 2-category of line bundle gerbes. We show that these morphism categories carry a monoidal structure under which they are semisimple and abelian. We introduce a dual functor on the sections, which yields a closed structure on the morphisms between bundle gerbes and turns the category of sections into a 2-Hilbert space. We discuss how these 2-Hilbert spaces fit various expectations from higher prequantisation. We then extend the transgression functor to the full 2-category of bundle gerbes and demonstrate its compatibility with the additional structures introduced. We discuss various aspects of Kostant-Souriau prequantisation in this setting, including its dimensional reductio...
Fiber bundle model under fluid pressure
Amitrano, David; Girard, Lucas
2016-03-01
Internal fluid pressure often plays an important role in the rupture of brittle materials. This is a major concern for many engineering applications and for natural hazards. More specifically, the mechanisms through which fluid pressure, applied at a microscale, can enhance the failure at a macroscale and accelerate damage dynamics leading to failure remains unclear. Here we revisit the fiber bundle model by accounting for the effect of fluid under pressure that contributes to the global load supported by the fiber bundle. Fluid pressure is applied on the broken fibers, following Biot's theory. The statistical properties of damage avalanches and their evolution toward macrofailure are analyzed for a wide range of fluid pressures. The macroscopic strength of the new model appears to be strongly controlled by the action of the fluid, particularly when the fluid pressure becomes comparable with the fiber strength. The behavior remains consistent with continuous transition, i.e., second order, including for large pressure. The main change concerns the damage acceleration toward the failure that is well modeled by the concept of sweeping of an instability. When pressure is increased, the exponent β characterizing the power-law distribution avalanche sizes significantly decreases and the exponent γ characterizing the cutoff divergence when failure is approached significantly increases. This proves that fluid pressure plays a key role in failure process acting as destabilization factor. This indicates that macrofailure occurs more readily under fluid pressure, with a behavior that becomes progressively unstable as fluid pressure increases. This may have considerable consequences on our ability to forecast failure when fluid pressure is acting.
Fiber bundle model under fluid pressure.
Amitrano, David; Girard, Lucas
2016-03-01
Internal fluid pressure often plays an important role in the rupture of brittle materials. This is a major concern for many engineering applications and for natural hazards. More specifically, the mechanisms through which fluid pressure, applied at a microscale, can enhance the failure at a macroscale and accelerate damage dynamics leading to failure remains unclear. Here we revisit the fiber bundle model by accounting for the effect of fluid under pressure that contributes to the global load supported by the fiber bundle. Fluid pressure is applied on the broken fibers, following Biot's theory. The statistical properties of damage avalanches and their evolution toward macrofailure are analyzed for a wide range of fluid pressures. The macroscopic strength of the new model appears to be strongly controlled by the action of the fluid, particularly when the fluid pressure becomes comparable with the fiber strength. The behavior remains consistent with continuous transition, i.e., second order, including for large pressure. The main change concerns the damage acceleration toward the failure that is well modeled by the concept of sweeping of an instability. When pressure is increased, the exponent β characterizing the power-law distribution avalanche sizes significantly decreases and the exponent γ characterizing the cutoff divergence when failure is approached significantly increases. This proves that fluid pressure plays a key role in failure process acting as destabilization factor. This indicates that macrofailure occurs more readily under fluid pressure, with a behavior that becomes progressively unstable as fluid pressure increases. This may have considerable consequences on our ability to forecast failure when fluid pressure is acting. PMID:27078437
Birefringence of single and bundled microtubules.
Oldenbourg, R; Salmon, E D; Tran, P T
1998-01-01
We have measured the birefringence of microtubules (MTs) and of MT-based macromolecular assemblies in vitro and in living cells by using the new Pol-Scope. A single microtubule in aqueous suspension and imaged with a numerical aperture of 1.4 had a peak retardance of 0.07 nm. The peak retardance of a small bundle increased linearly with the number of MTs in the bundle. Axonemes (prepared from sea urchin sperm) had a peak retardance 20 times higher than that of single MTs, in accordance with the nine doublets and two singlets arrangement of parallel MTs in the axoneme. Measured filament retardance decreased when the filament was defocused or the numerical aperture of the imaging system was decreased. However, the retardance "area," which we defined as the image retardance integrated along a line perpendicular to the filament axis, proved to be independent of focus and of numerical aperture. These results are in good agreement with a theory that we developed for measuring retardances with imaging optics. Our theoretical concept is based on Wiener's theory of mixed dielectrics, which is well established for nonimaging applications. We extend its use to imaging systems by considering the coherence region defined by the optical set-up. Light scattered from within that region interferes coherently in the image point. The presence of a filament in the coherence region leads to a polarization dependent scattering cross section and to a finite retardance measured in the image point. Similar to resolution measurements, the linear dimension of the coherence region for retardance measurements is on the order lambda/(2 NA), where lambda is the wavelength of light and NA is the numerical aperture of the illumination and imaging lenses. PMID:9449366
Effect of Reynolds number and bundle geometry on the turbulent flow in tight lattice bundle
International Nuclear Information System (INIS)
The flow structure in tight lattice is still of great interest to nuclear industry. The accurate prediction of flow parameter in subchannels of tight lattice is likable. Unsteady Reynolds Averaged Navier Stokes (URANS) is a promising approach to achieve this goal. The implementation of URANS (Unsteady Reynolds Averaged Navier Stokes) approach will be validated by comparing computational results with the experimental data of Krauss (1998). In this paper, the turbulent flow with different Reynolds number (5000~215000) and different P/D(1.005~1.2) are simulated with CFD code CFX12.The effects of the Reynolds number and the bundle geometry(P/D) on wall shear stress, turbulent kinetic energy, turbulent mixing and large scale coherent structure in tight lattice are analyzed in details. It is hoped that the present work will contribute to the understanding of these important flow phenomena and facilitate the prediction and design of rod bundles. (author)
Delisle, Dennis R
2013-01-01
With passage of the Affordable Care Act, the ever-evolving landscape of health care braces for another shift in the reimbursement paradigm. As health care costs continue to rise, providers are pressed to deliver efficient, high-quality care at flat to minimally increasing rates. Inherent systemwide inefficiencies between payers and providers at various clinical settings pose a daunting task for enhancing collaboration and care coordination. A change from Medicare's fee-for-service reimbursement model to bundled payments offers one avenue for resolution. Pilots using such payment models have realized varying degrees of success, leading to the development and upcoming implementation of a bundled payment initiative led by the Center for Medicare and Medicaid Innovation. Delivery integration is critical to ensure high-quality care at affordable costs across the system. Providers and payers able to adapt to the newly proposed models of payment will benefit from achieving cost reductions and improved patient outcomes and realize a competitive advantage.
International Nuclear Information System (INIS)
The work of the Project-Fuel Development reached the apex of its current programme during the course of the year. Notable success was recorded in the area of irradiation testing with the completion of the examination of the MFBS-7 irradiation. The irradiation group also prepared the seventh Filos experiment and this, as well as the DIDO-III test, began irradiation at the end of the year. Consideration was given and plans prepared for a revised pin filling line for bundle tests. Work also began on the conceptual design study for a pilot production line having a nominal capacity of 500 kg fuel per year. (Auth.)
Spacer for supporting fuel element boxes
International Nuclear Information System (INIS)
A spacer plate unit arranged externally on each side and at a predetermined level of a polygonal fuel element box for mutually supporting, with respect to one another, a plurality of the fuel element boxes forming a fuel element bundle, is formed of a first and a second spacer plate part each having the same length and the same width and being constituted of unlike first and second materials, respectively. The first and second spacer plate parts of the several spacer plate units situated at the predetermined level are arranged in an alternating continuous series when viewed in the peripheral direction of the fuel element box, so that any two spacer plate units belonging to face-to-face oriented sides of two adjoining fuel element boxes in the fuel element bundle define interfaces of unlike materials
Post irradiation examination of thermal reactor fuels
Sah, D. N.; Viswanathan, U. K.; Ramadasan, E.; Unnikrishnan, K.; Anantharaman, S.
2008-12-01
The post irradiation examination (PIE) facility at the Bhabha Atomic Research Centre (BARC) has been in operation for more than three decades. Over these years this facility has been utilized for examination of experimental fuel pins and fuels from commercial power reactors operating in India. In a program to assess the performance of (U,Pu)O 2 MOX fuel prior to its introduction in commercial reactors, three experimental MOX fuel clusters irradiated in the pressurized water loop (PWL) of CIRUS up to burnup of 16 000 MWd/tU were examined. Fission gas release from these pins was measured by puncture test. Some of these fuel pins in the cluster contained controlled porosity pellets, low temperature sintered (LTS) pellets, large grain size pellets and annular pellets. PIE has also been carried out on natural UO 2 fuel bundles from Indian PHWRs, which included two high burnup (˜15 000 MWd/tU) bundles. Salient investigations carried out consisted of visual examination, leak testing, axial gamma scanning, fission gas analysis, microstructural examination of fuel and cladding, β, γ autoradiography of the fuel cross-section and fuel central temperature estimation from restructuring. A ThO 2 fuel bundle irradiated in Kakrapar Atomic Power Station (KAPS) up to a nominal fuel burnup of ˜11 000 MWd/tTh was also examined to evaluate its in-pile performance. The performance of the BWR fuel pins of Tarapur Atomic Power Stations (TAPS) was earlier assessed by carrying out PIE on 18 fuel elements selected from eight fuel assemblies irradiated in the two reactors. The burnup of these fuel elements varied from 5000 to 29 000 MWd/tU. This paper provides a brief review of some of the fuels examined and the results obtained on the performance of natural UO 2, enriched UO 2, MOX, and ThO 2 fuels.
DESIGN OF WIRE-WRAPPED ROD BUNDLE MATCHED INDEX-OF-REFRACTION EXPERIMENTS
Energy Technology Data Exchange (ETDEWEB)
Hugh McIlroy; Hongbin Zhang; Kurt Hamman
2008-05-01
Experiments will be conducted in the Idaho National Laboratory (INL) Matched Index-of-Refraction (MIR) Flow Facility [1] to characterize the three-dimensional velocity and turbulence fields in a wire-wrapped rod bundle typically employed in liquid-metal cooled fast reactors and to provide benchmark data for computer code validation. Sodium cooled fast reactors are under consideration for use in the U.S. Department of Energy (DOE) Global Nuclear Energy Partnership (GNEP) program. The experiment model will be constructed of quartz components and the working fluid will be mineral oil. Accurate temperature control (to within 0.05 oC) matches the index-of-refraction of mineral oil with that of quartz and renders the model transparent to the wavelength of laser light employed for optical measurements. The model will be a scaled 7-pin rod bundle enclosed in a hexagonal canister. Flow field measurements will be obtained with a LaVision 3-D particle image velocimeter (PIV) and complimented by near-wall velocity measurements obtained from a 2-D laser Doppler velocimeter (LDV). These measurements will be used as benchmark data for computational fluid dynamics (CFD) validation. The rod bundle model dimensions will be scaled up from the typical dimensions of a fast reactor fuel assembly to provide the maximum Reynolds number achievable in the MIR flow loop. A range of flows from laminar to fully-turbulent will be available with a maximum Reynolds number, based on bundle hydraulic diameter, of approximately 22,000. The fuel pins will be simulated by 85 mm diameter quartz tubes (closed on the inlet ends) and the wire-wrap will be simulated by 25 mm diameter quartz rods. The canister walls will be constructed from quartz plates. The model will be approximately 2.13 m in length. Bundle pressure losses will also be measured and the data recorded for code comparisons. The experiment design and preliminary CFD calculations, which will be used to provide qualitative hydrodynamic
Thermal Characteristics of Tube Bundles in Ultra-Supercritical Boilers
Directory of Open Access Journals (Sweden)
Seok Min Choi
2016-09-01
Full Text Available In this study, flow and thermal characteristics of tube bundles in ultra-supercritical boilers were analyzed. The local heat transfer around the tube bundles was measured to predict the local temperature distribution and vulnerable positions of the superheated tube bundles. The maximally superheated tube bundles were simulated in the laboratory and local heat transfer was measured by using the naphthalene sublimation method. The experiment was conducted on three lines of tube bundles, all with in-line arrangements. Each line consist of six tubes. The distance in the streamwise direction (Sx/∅ was 1.99 and that in the spanwise direction (Sz/∅ was 5.45. The Reynolds number varied from 5000 to 30,000, which covers a range of different operating conditions. Thermal and stress analyses were conducted numerically, based on the experimental data. The results showed that the flow characteristic changes the local heat transfer of the tube bundles. The flow impinged on the stagnation point of Tube 1 and reattached at 60° of Tube 2. The high heat transfer occurred at those positions of the tube bundles. The temperature and stress distributions on the surface of each tube bundle also varied. The reattachment point on Tube 2 had the highest heat transfer and temperature distribution. That position on Tube 2 was subjected to the highest stress due to the large temperature gradient. This result indicates that Tube 2 of the ultra-supercritical (USC boiler is the weakest of the tube bundles, changing the pitch of the streamwise direction of Tube 2 is one method to reduce the highest stress in superheater tube bundles in the USC boiler.
CFD Verification of 5x5 Rod Bundle with Mixing Vane Spacer Grids
Energy Technology Data Exchange (ETDEWEB)
Park, Sungkew; Jang, Hyungwook; Lim, Jongseon; Park, Eungjun; Nahm, Keeyil [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2014-05-15
Results of the CHF test are used for determining the CHF correlation, which is used to evaluate the thermal margin in the reactor core. Computational fluid dynamics (CFD) has been used to save the time and cost for experimental tests, components design and complicated phenomena in all industries including the reactor coolant system. L. D. Smith et al. applied the CFD methodology in a 5x5 rod bundle with the mixing vane spacer grid using the renormalization group (RNG) k-epsilon model. This CFD model agreed reasonably well with the test data. M. E. Conner et al. conducted experiments to validate the CFD methodology for the single-phase flow conditions in PWR fuel assemblies. In this validation case, the CFD code predicted very similar flow field structures as the test data. In this study, a CFD simulation under single-phase flow condition was conducted for one specific condition in a thermal mixing flow test of 5x5 rod bundle with some mixing vane spacer grids. In this study, a CFD simulation under a single-phase flow condition was conducted for one specific condition in a thermal mixing flow test of 5x5 rod bundle with the mixing vane spacer grids to verify the applicability of the CFD model for predicting the outlet temperature distribution. FLUENT 14.5 Version was used in this CFD analysis. For the successful prediction of the wall bounded turbulent flows, the y+ with 3 prism layers was determined within 5. At this time, k-epsilon standard turbulence model was used. The temperature distribution of CFD for each sub-channel at the outlet region of test bundle showed the difference approximately within 1.1% and 0.2% while comparing to that of test and sub-channel analysis code, respectively.
CFD Verification of 5x5 Rod Bundle with Mixing Vane Spacer Grids
International Nuclear Information System (INIS)
Results of the CHF test are used for determining the CHF correlation, which is used to evaluate the thermal margin in the reactor core. Computational fluid dynamics (CFD) has been used to save the time and cost for experimental tests, components design and complicated phenomena in all industries including the reactor coolant system. L. D. Smith et al. applied the CFD methodology in a 5x5 rod bundle with the mixing vane spacer grid using the renormalization group (RNG) k-epsilon model. This CFD model agreed reasonably well with the test data. M. E. Conner et al. conducted experiments to validate the CFD methodology for the single-phase flow conditions in PWR fuel assemblies. In this validation case, the CFD code predicted very similar flow field structures as the test data. In this study, a CFD simulation under single-phase flow condition was conducted for one specific condition in a thermal mixing flow test of 5x5 rod bundle with some mixing vane spacer grids. In this study, a CFD simulation under a single-phase flow condition was conducted for one specific condition in a thermal mixing flow test of 5x5 rod bundle with the mixing vane spacer grids to verify the applicability of the CFD model for predicting the outlet temperature distribution. FLUENT 14.5 Version was used in this CFD analysis. For the successful prediction of the wall bounded turbulent flows, the y+ with 3 prism layers was determined within 5. At this time, k-epsilon standard turbulence model was used. The temperature distribution of CFD for each sub-channel at the outlet region of test bundle showed the difference approximately within 1.1% and 0.2% while comparing to that of test and sub-channel analysis code, respectively
Two-categorical bundles and their classifying spaces
DEFF Research Database (Denmark)
Baas, Nils A.; Bökstedt, M.; Kro, T.A.
2012-01-01
For a 2-category 2C we associate a notion of a principal 2C-bundle. In case of the 2-category of 2-vector spaces in the sense of M.M. Kapranov and V.A. Voevodsky this gives the the 2-vector bundles of N.A. Baas, B.I. Dundas and J. Rognes. Our main result says that the geometric nerve of a good 2......-category is a classifying space for the associated principal 2-bundles. In the process of proving this we develop a lot of powerful machinery which may be useful in further studies of 2-categorical topology. As a corollary we get a new proof of the classification of principal bundles. A calculation based...... on the main theorem shows that the principal 2-bundles associated to the 2-category of 2-vector spaces in the sense of J.C. Baez and A.S. Crans split, up to concordance, as two copies of ordinary vector bundles. When 2C is a cobordism type 2-category we get a new notion of cobordism-bundles which turns out...
Direct reuse of spent nuclear fuel
Energy Technology Data Exchange (ETDEWEB)
Mohamed, Nader M.A., E-mail: mnader73@yahoo.com
2014-10-15
Highlights: • A new design for the PWR assemblies for direct use of spent fuel was proposed. • The PWR spent fuel will be transferred directly (after a certain cooling time) to CANDU reactors. • The proposed assembly has four zircaloy-4 tubes contains a number of CANDU fuel bundles (7 or 8 bundles per tube) stacked end to end. • MCNPX is used for the calculations that showed that the burnup can be increased by about 25%. • Acceptable linear heat generation rate in hot rods and improved Pu proliferation resistance. - Abstract: In this paper we proposed a new design for the PWR fuel assembly for direct use of the PWR spent fuel without processing. The PWR spent fuel will be transferred directly (after a certain cooling time) to CANDU reactors which preferably built in the same site to avoid the problem of transportations. The proposed assembly has four zircaloy-4 tubes contains a number of CANDU fuel bundles (7 or 8 bundles per tube) stacked end to end. Each tube has the same inner diameter of that of CANDU pressure tube. The spaces between the tubes contain low enriched UO{sub 2} fuel rods and guide tubes. MCNPX code is used for the simulation and calculation of the burnup of the proposed assembly. The bundles after the discharge from the PWR with their materials inventories are burned in a CANDU cell after a certain decay time. The results were compared with reference results and the impact of this new design on the uranium utilization improvement and on the proliferation resistance of plutonium is discussed. The effect of this new design on the power peaking, moderator temperature coefficient of reactivity and CANDU coolant void reactivity are discussed as well.
The Geometry of Tangent Bundles: Canonical Vector Fields
Directory of Open Access Journals (Sweden)
Tongzhu Li
2013-01-01
Full Text Available A canonical vector field on the tangent bundle is a vector field defined by an invariant coordinate construction. In this paper, a complete classification of canonical vector fields on tangent bundles, depending on vector fields defined on their bases, is obtained. It is shown that every canonical vector field is a linear combination with constant coefficients of three vector fields: the variational vector field (canonical lift, the Liouville vector field, and the vertical lift of a vector field on the base of the tangent bundle.
Systematic evaluation of bundled SPC water for biomolecular simulations.
Gopal, Srinivasa M; Kuhn, Alexander B; Schäfer, Lars V
2015-04-01
In bundled SPC water models, the relative motion of groups of four water molecules is restrained by distance-dependent potentials. Bundled SPC models have been used in hybrid all-atom/coarse-grained (AA/CG) multiscale simulations, since they enable to couple atomistic SPC water with supra-molecular CG water models that effectively represent more than a single water molecule. In the present work, we systematically validated and critically tested bundled SPC water models as solvent for biomolecular simulations. To that aim, we investigated both thermodynamic and structural properties of various biomolecular systems through molecular dynamics (MD) simulations. Potentials of mean force of dimerization of pairs of amino acid side chains as well as hydration free energies of single side chains obtained with bundled SPC and standard (unrestrained) SPC water agree closely with each other and with experimental data. Decomposition of the hydration free energies into enthalpic and entropic contributions reveals that in bundled SPC, this favorable agreement of the free energies is due to a larger degree of error compensation between hydration enthalpy and entropy. The Ramachandran maps of Ala3, Ala5, and Ala7 peptides are similar in bundled and unrestrained SPC, whereas for the (GS)2 peptide, bundled water leads to a slight overpopulation of extended conformations. Analysis of the end-to-end distance autocorrelation times of the Ala5 and (GS)2 peptides shows that sampling in more viscous bundled SPC water is about two times slower. Pronounced differences between the water models were found for the structure of a coiled-coil dimer, which is instable in bundled SPC but not in standard SPC. In addition, the hydration of the active site of the serine protease α-chymotrypsin depends on the water model. Bundled SPC leads to an increased hydration of the active site region, more hydrogen bonds between water and catalytic triad residues, and a significantly slower exchange of water
Bondage Numbers of C4 Bundles over a Cycle Cn
Directory of Open Access Journals (Sweden)
Moo Young Sohn
2013-01-01
Full Text Available Graph bundles generalize the notion of covering graphs and graph products. Graph bundles have been applied in computer architecture and communication networks. The bondage number is an important parameter for measuring the vulnerability and stability of the network domination under link failure. The bondage number b(G of a graph G is the minimum number of edges whose removal enlarges the domination number. In this paper, we show that the bondage number of every C4 bundles over a cycle Cn (n≥4 is equal to 4.
Thermomagnetic Siphoning on a Bundle of Current-Carrying Wires
Boulware, Jeffrey C.; Jensen, Scott
2010-01-01
Using COMSOL Multiphysics 3.5a, thermomagnetic siphoning (TMS) was shown to be a sufficient manner of regulating the temperature of a bundle of current-carrying wires wrapped with a magnetorheological fluid (MRF) jacket. As the bundle heated up, cooler MRF on the outside of the jacket was drawn towards the center due to Curie’s Law and the induced magnetic field. The process convected heat from the bundle as the MRF warmed up and was pushed out towards an isothermal jacket wall. Assuming an o...
Heat transfer to water from a vertical tube bundle under natural-circulation conditions
International Nuclear Information System (INIS)
The natural circulation heat transfer data for longitudinal flow of water outside a vertical rod bundle are needed for developing correlations which can be used in best estimate computer codes to model thermal-hydraulic behavior of nuclear reactor cores under accident or shutdown conditions. The heat transfer coefficient between the fuel rod surface and the coolant is the key parameter required to predict the fuel temperature. Because of the absence of the required heat transfer coefficient data base under natural circulation conditions, experiments have been performed in a natural circulation loop. A seven-tube bundle having a pitch-to-diameter ratio of 1.25 was used as a test heat exchanger. A circulating flow was established in the loop, because of buoyancy differences between its two vertical legs. Steady-state and transient heat transfer measurements have been made over as wide a range of thermal conditions as possible with the system. Steady state heat transfer data were correlated in terms of relevant dimensionless parameters. Empirical correlations for the average Nusselt number, in terms of Reynolds number, Rayleigh number and the ratio of Grashof to Reynolds number are given
Effect of Flow Blockage on the Coolability during Reflood in a 2 × 2 Rod Bundle
Directory of Open Access Journals (Sweden)
Kihwan Kim
2014-01-01
Full Text Available During the reflood phase of a large-break loss-of-coolant accident (LBLOCA in a pressurized-water reactor (PWR, the fuel rods can be ballooned or rearranged owing to an increase in the temperature and internal pressure of the fuel rods. In this study, an experimental study was performed to understand the thermal behavior and effect of the ballooned region on the coolability using a 2 × 2 rod bundle test facility. The electrically heated rod bundle was used and the ballooning shape of the rods was simulated by superimposing hollow sleeves, which have a 90% blockage ratio. Forced reflood tests were performed to examine the transient two-phase heat transfer behavior for different reflood rates and rod powers. The droplet behaviors were also investigated by measuring the velocity and size of droplets near the blockage region. The results showed that the heat transfer was enhanced in the downstream of the blockage region, owing to the reduced flow area of the subchannel, intensification of turbulence, and deposition of the droplet.
Wire-wrapped rod-bundle heat-transfer analysis for LMFBR
International Nuclear Information System (INIS)
Helical wire wraps are widely used in the LMFBR fuel and blanket assemblies to provide coolant mixing and maintain proper spacing between fuel pins. The presence of the helical wire, however, may possibly induce heat transfer problems, such as the uncertainty of the maximum clad temperature as a result of the contact between the wires and the pins. In this study, the detailed transient three dimensional velocity and temperature distributions for the coolant around the pin will be determined by solving the governing momentum and energy equation numerically. A computer code HEATRAN has been developed to perform this calculation. Before the computer code HEATRAN is applied to the wire wrapped rod bundle problem, it is used to analyze a wide range of fluid and heat transfer problem to verify its capabilities
Shatz, L F
2000-03-01
The relationship between size and shape of the hair bundle of a hair cell in the inner ear and its sensitivity at asymptotically high and low frequencies was determined, thereby extending the results of an analysis of hair bundle hydrodynamics in two dimensions (Freeman and Weiss, 1990. Hydrodynamic analysis of a two-dimensional model for micromechanical resonance of free-standing hair bundles. Hear. Res. 48, 37-68) to three dimensions. A hemispheroid was used to represent the hair bundle. The hemispheroid had a number of advantages: it could represent shapes that range from thin, pencil-like shapes, to wide, flat, disk-like shapes. Also analytic methods could be used in the high frequency range to obtain an exact solution to the equations of motion. In the low frequency range, where an approximate solution was found using boundary element methods, the sensitivity of the responses of hair cells was mainly proportional to the cube of the heights of their hair bundles, and at high frequencies, the sensitivity of the hair cells was mainly proportional to the inverse of their heights. An excellent match was obtained between measurements of sensitivity curves in the basillar papilla of the alligator and bobtail lizards and the model's predictions. These results also suggest why hair bundles of hair cells in vestibular organs which are sensitive to low frequencies have ranges of heights that are an order of magnitude larger than the range of heights of hair bundles of hair cells found in auditory organs.
Characteristics of DUPIC fuel fabrication technology
International Nuclear Information System (INIS)
The concept of DUPIC (Direct use of spent PWR fuel in CANDU reactor) fuel is recently being taken a growing interest as an innovative fuel in terms of proliferation resistant fuel cycle for reusing spent PWR fuel in CANDU reactor without wet reprocessing process. The fabrication processes are composed of decladding of spent PWR fuel rods, OREOX processing to produce the powder feedstock from the spent PWR fuel meat. Once the resinterable powder is prepared, the fuel fabrication processes such as pelletizing, rod and bundle manufacturing processes are similar to the conventional powder/pellet routes for the fuel fabrication except that all the processes should be performed in hot cell by remote manner. The characteristics of the DUPIC fuel fabrication processes and the status of the equipment development at KAERI is described. (author)
Energy Technology Data Exchange (ETDEWEB)
Franz, R.; Dominguez-Ontiveiro, E.; Barth, T.; Drapeau-Martin, S.; Hampel, U.
2013-06-01
Overflowed rod bundles can be used as a heat exchanger in many applications. With respect to safety aspects, the transition from nucleate boiling to film boiling at fuel assemblies in light water reactors is to be avoided. Under this aspect, the numerical flow simulation models for the description of boiling phenomenons are developed. In order to validate these models experimentally, a flow channel is constructed in which a vertical rod bundle is overflowed vertically by the refrigerant RC318 (octafluorocyclobutane). The contribution under consideration describes the test facility and measurement methodology, the process of evaluation, relevant results and error analysis.
Energy Technology Data Exchange (ETDEWEB)
Loftus, M J; Hochreiter, L E; McGuire, M F; Valkovic, M M
1983-10-01
This report presents data from the 163-Rod Bundle Blow Blockage Task of the Full-Length Emergency Cooling Heat Transfer Systems Effects and Separate Effects Test Program (FLECHT SEASET). The task consisted of forced and gravity reflooding tests utilizing electrical heater rods with a cosine axial power profile to simulate PWR nuclear core fuel rod arrays. These tests were designed to determine effects of flow blockage and flow bypass on reflooding behavior and to aid in the assessment of computational models in predicting the reflooding behavior of flow blockage in rod bundle arrays.
International Nuclear Information System (INIS)
This report presents data from the 163-Rod Bundle Blow Blockage Task of the Full-Length Emergency Cooling Heat Transfer Systems Effects and Separate Effects Test Program (FLECHT SEASET). The task consisted of forced and gravity reflooding tests utilizing electrical heater rods with a cosine axial power profile to simulate PWR nuclear core fuel rod arrays. These tests were designed to determine effects of flow blockage and flow bypass on reflooding behavior and to aid in the assessment of computational models in predicting the reflooding behavior of flow blockage in rod bundle arrays
Bundles of Norms About Teen Sex and Pregnancy.
Mollborn, Stefanie; Sennott, Christie
2015-09-01
Teen pregnancy is a cultural battleground in struggles over morality, education, and family. At its heart are norms about teen sex, contraception, pregnancy, and abortion. Analyzing 57 interviews with college students, we found that "bundles" of related norms shaped the messages teens hear. Teens did not think their communities encouraged teen sex or pregnancy, but normative messages differed greatly, with either moral or practical rationalizations. Teens readily identified multiple norms intended to regulate teen sex, contraception, abortion, childbearing, and the sanctioning of teen parents. Beyond influencing teens' behavior, norms shaped teenagers' public portrayals and post hoc justifications of their behavior. Although norm bundles are complex to measure, participants could summarize them succinctly. These bundles and their conflicting behavioral prescriptions create space for human agency in negotiating normative pressures. The norm bundles concept has implications for teen pregnancy prevention policies and can help revitalize social norms for understanding health behaviors. PMID:25387911
Zeta Functions for Elliptic Curves I. Counting Bundles
Weng, Lin
2012-01-01
To count bundles on curves, we study zetas of elliptic curves and their zeros. There are two types, i.e., the pure non-abelian zetas defined using moduli spaces of semi-stable bundles, and the group zetas defined for special linear groups. In lower ranks, we show that these two types of zetas coincide and satisfy the Riemann Hypothesis. For general cases, exposed is an intrinsic relation on automorphism groups of semi-stable bundles over elliptic curves, the so-called counting miracle. All this, together with Harder-Narasimhan, Desale-Ramanan and Zagier's result, gives an effective way to count semi-stable bundles on elliptic curves not only in terms of automorphism groups but more essentially in terms of their $h^0$'s. Distributions of zeros of high rank zetas are also discussed.
On exact triangles consisting of stable vector bundles on tori
Kobayashi, Kazushi
2016-01-01
In this paper, we consider the exact triangles consisting of stable holomorphic vector bundles on one-dimensional complex tori, and discuss their relations with the corresponding Fukaya category via the homological mirror symmetry.
Topological T-duality for torus bundles with monodromy
Baraglia, David
2015-05-01
We give a simplified definition of topological T-duality that applies to arbitrary torus bundles. The new definition does not involve Chern classes or spectral sequences, only gerbes and morphisms between them. All the familiar topological conditions for T-duals are shown to follow. We determine necessary and sufficient conditions for existence of a T-dual in the case of affine torus bundles. This is general enough to include all principal torus bundles as well as torus bundles with arbitrary monodromy representations. We show that isomorphisms in twisted cohomology, twisted K-theory and of Courant algebroids persist in this general setting. We also give an example where twisted K-theory groups can be computed by iterating T-duality.
Mechanical Models of Microtubule Bundle Collapse in Alzheimer's Disease
Sendek, Austin; Singh, Rajiv; Cox, Daniel
2013-03-01
Amyloid-beta aggregates initiate Alzheimer's disease, and downstream trigger degradation of tau proteins that act as microtubule bundle stabilizers and mechanical spacers. Currently it is unclear which of tau cutting by proteases, tau phosphorylation, or tau aggregation are responsible for cytoskeleton degradation., We construct a percolation simulation of the microtubule bundle using a molecular spring model for the taus and including depletion force attraction between microtubules and membrane/actin cytoskeletal surface tension. The simulation uses a fictive molecular dynamics to model the motion of the individual microtubules within the bundle as a result of random tau removal, and calculates the elastic modulus of the bundle as the tau concentration falls. We link the tau removal steps to kinetic tau steps in various models of tau degradation. Supported by US NSF Grant DMR 1207624
Infinitely stably extendable vector bundles on projective spaces
Coanda, Iustin
2009-01-01
According to Horrocks (1966), a vector bundle E on the projective n-space extends stably to the projective N-space, N>n, if there exists a vector bundle on the larger space whose restriction to the smaller one is isomorphic to E plus a direct sum of line bundles. We show that E extends stably to the projective N-space for every N>n if and only if E is the cohomology of a free monad (with three terms). The proof uses the method of Coanda and Trautmann (2006). Combining this result with a theorem of Mohan Kumar, Peterson and Rao (2003), we get a new effective version of the Babylonian tower theorem for vector bundles on projective spaces.
The canonical Cartan bundle and connection in CR geometry
Herzlich, Marc
2009-01-01
minor changes ; wrong author in reference [7] corrected; International audience; We give a differential geometric description of the Cartan (or tractor) bundle and its canonical connection in CR geometry, thus offering a direct, alternative, definition to the usual abstract approach.
Deformation Quantization of Principal Fibre Bundles and Classical Gauge Theories
Wei\\ss, Stefan
2010-01-01
In this dissertation the notion of deformation quantization of principal fibre bundles is established and investigated in order to find a geometric formulation of classical gauge theories on noncommutative space-times. As a generalization, the notion of deformation quantization of surjective submersions is also discussed. It is shown that deformation quantizations of surjective submersions and principal fibre bundles always exist and are unique up to equivalence. These statements concerning complex-valued functions are moreover formulated and proved for sections of arbitrary vector bundles over the total space, in particular equivariant vector bundles. The commutants of the deformed right module structures within the differential operators, playing an inportant role with regard to the infinitesimal gauge transformations, are computed explicitly in each case. Depending on the choice of specific covariant derivatives and connections the commutants are isomorphic to the formal power series of the respective vert...
National Partnership for Maternal Safety: Consensus Bundle on Venous Thromboembolism.
D'Alton, Mary E; Friedman, Alexander M; Smiley, Richard M; Montgomery, Douglas M; Paidas, Michael J; D'Oria, Robyn; Frost, Jennifer L; Hameed, Afshan B; Karsnitz, Deborah; Levy, Barbara S; Clark, Steven L
2016-10-01
Obstetric venous thromboembolism is a leading cause of severe maternal morbidity and mortality. Maternal death from thromboembolism is amenable to prevention, and thromboprophylaxis is the most readily implementable means of systematically reducing the maternal death rate. Observational data support the benefit of risk-factor-based prophylaxis in reducing obstetric thromboembolism. This bundle, developed by a multidisciplinary working group and published by the National Partnership for Maternal Safety under the guidance of the Council on Patient Safety in Women's Health Care, supports routine thromboembolism risk assessment for obstetric patients, with appropriate use of pharmacologic and mechanical thromboprophylaxis. Safety bundles outline critical clinical practices that should be implemented in every maternity unit. The safety bundle is organized into four domains: Readiness, Recognition, Response, and Reporting and Systems Learning. Although the bundle components may be adapted to meet the resources available in individual facilities, standardization within an institution is strongly encouraged. PMID:27636577
Bundles of Norms About Teen Sex and Pregnancy.
Mollborn, Stefanie; Sennott, Christie
2015-09-01
Teen pregnancy is a cultural battleground in struggles over morality, education, and family. At its heart are norms about teen sex, contraception, pregnancy, and abortion. Analyzing 57 interviews with college students, we found that "bundles" of related norms shaped the messages teens hear. Teens did not think their communities encouraged teen sex or pregnancy, but normative messages differed greatly, with either moral or practical rationalizations. Teens readily identified multiple norms intended to regulate teen sex, contraception, abortion, childbearing, and the sanctioning of teen parents. Beyond influencing teens' behavior, norms shaped teenagers' public portrayals and post hoc justifications of their behavior. Although norm bundles are complex to measure, participants could summarize them succinctly. These bundles and their conflicting behavioral prescriptions create space for human agency in negotiating normative pressures. The norm bundles concept has implications for teen pregnancy prevention policies and can help revitalize social norms for understanding health behaviors.
Steric effects induce geometric remodeling of actin bundles in filopodia
Dobramysl, Ulrich; Erban, Radek
2016-01-01
Filopodia are ubiquitous fingerlike protrusions, spawned by many eukaryotic cells, to probe and interact with their environments. Polymerization dynamics of actin filaments, comprising the structural core of filopodia, largely determine their instantaneous lengths and overall lifetimes. The polymerization reactions at the filopodial tip require transport of G-actin, which enter the filopodial tube from the filopodial base and diffuse toward the filament barbed ends near the tip. Actin filaments are mechanically coupled into a tight bundle by cross-linker proteins. Interestingly, many of these proteins are relatively short, restricting the free diffusion of cytosolic G-actin throughout the bundle and, in particular, its penetration into the bundle core. To investigate the effect of steric restrictions on G-actin diffusion by the porous structure of filopodial actin filament bundle, we used a particle-based stochastic simulation approach. We discovered that excluded volume interactions result in partial and the...
Reproducibility of heat transfer tests in a 5X5 bundle geometry
International Nuclear Information System (INIS)
This paper describes the repeatability and reliability of bundle heat transfer data obtained in a 5X5 PWR-type bundle subassembly operating at PWR conditions of interest. The 5X5 fuel bundle simulator, installed in the OMEGA-2 loop, is equipped with simple support grids, designed to have a low impact on the flow and heat transfer. The nine central heaters were equipped with the novel sliding thermocouple technique, capable of measuring the detailed axial and circumferential temperature distributions during single-phase and boiling heat transfer tests. In order to obtain highly accurate bundle heat transfer measurements, appropriate experimental procedures and in-situ calibrations of all essential instrumentation were employed. This includes (i) the employment of calibrated reference fluid temperature measurement devices, (ii) in-situ calibrations of fluid and heater-sheath thermocouples, (iii) calibration of heater wall thickness based on in-situ measurements, and (iv) selection of data that satisfy strict acceptance criteria. After applying these corrections and data screening criteria, the measurement accuracy and repeatability was assessed. This was done by means of three different tests: Single Phase Heat Transfer: The repeatability of heat transfer were assessed by comparing the measurements of two separate 5X5 bundles against the predictions from a Dittus-Boelter-type heat transfer correlation which provided very similar results. Also the single-phase heat transfer repeatability was assessed by performing several repeat runs and comparing results obtained on heaters in symmetric locations. Excellent repeatability was noted and the results for symmetric angular locations are almost identical; Boiling Tests: During the boiling heat transfer tests excellent repeatability and symmetry was observed. The saturation temperature (corresponding to the measured outlet temperature) was found to be in very good agreement with (i) the outlet temperature measured by the
Quantum principal bundles and Tannaka-Krein duality theory
Durdevic, M
1995-01-01
The structure of quantum principal bundles is studied, from the viewpoint of Tannaka-Krein duality theory. It is shown that if the structure quantum group is compact, principal G-bundles over a quantum space M are in a natural correspondence with certain contravariant functors defined on the category of finite-dimensional unitary representations of G, with the values in the category of finite projective bimodules over a *-algebra representing the base space.
Quantized gauge-affine gravity in the superfiber bundle approach
Meziane, A.; Tahiri, M
2004-01-01
The quantization of gauge-affine gravity within the superfiber bundle formalism is proposed. By introducing an even pseudotensorial 1-superform over a principal superfibre bundle with superconnection, we obtain the geometrical Becchi-Rouet-Stora-Tyutin (BRST) and anti-BRST transformations of the fields occurring in such a theory. Reducing the four-dimensional general affine group double-covering to the Poincare group double-covering we also find the BRST and anti-BRST transformations of the f...
Bondage Numbers of C4 Bundles over a Cycle Cn
Moo Young Sohn; Fu-Tao Hu; Jaeun Lee
2013-01-01
Graph bundles generalize the notion of covering graphs and graph products. Graph bundles have been applied in computer architecture and communication networks. The bondage number is an important parameter for measuring the vulnerability and stability of the network domination under link failure. The bondage number $b\\left(G\\right)$ of a graph $G$ is the minimum number of edges whose removal enlarges the domination number. In this paper, we show that the bondage number of every ${C}_{4}$ bu...
Simplified modeling of EM field coupling to complex cable bundles
Schetelig, B.; J. Keghie; Kanyou Nana, R.; Fichte, L.-O.; S. Potthast; Dickmann, S.
2010-01-01
In this contribution, the procedure "Equivalent Cable Bundle Method" is used for the simplification of large cable bundles, and it is extended to the application on differential signal lines. The main focus is on the reduction of twisted-pair cables. Furthermore, the process presented here allows to take into account cables with wires that are situated quite close to each other. The procedure is based on a new approach to calculate the geometry of the simplified cable and us...
Intra-His bundle block: clinical, electrocardiographic, and electrophysiologic characteristics
Andréa Eduardo M.; Atié Jacob; Maciel Washington A.; Oliveira Jr Nilson A. de; Camanho Luiz Eduardo; Belo Luís Gustavo; Carvalho Hecio Affonso de; Siqueira Leonardo; Saad Eduardo; Venancio Ana Claudia
2002-01-01
OBJECTIVE: To assess the clinical, electrocardiographic, and electrophysiologic characteristics of patients (pt) with intra-His bundle block undergoing an electrophysiologic study (EPS). METHODS: We analyzed the characteristics of 16 pt with second-degree atrioventricular block and symptoms of syncope or dyspnea, or both, undergoing conventional EPS. RESULTS: Intra-His bundle block was documented in 16 pt during an EPS. In 15 (94%) pt, the atrioventricular block was recorded in sinus rhythm; ...
Principal 2-bundles and their gauge 2-groups
Wockel, Christoph
2008-01-01
In this paper we introduce principal 2-bundles and show how they are classified by non-abelian Cech cohomology. Moreover, we show that their gauge 2-groups can be described by 2-group-valued functors, much like in classical bundle theory. Using this, we show that, under some mild requirements, these gauge 2-groups possess a natural smooth structure. In the last section we provide some explicit examples.
Energy Technology Data Exchange (ETDEWEB)
Galahom, Ahmed Abdelghafar [Higher Technological Institute, Ramadan (Egypt)
2016-06-15
The present work discusses two different models of boiling water reactor (BWR) bundle to compare the neutronic characteristics of uranium dioxide (UO{sub 2}) and uranium zirconium hydride (UZrH{sub 1.6}) fuel. Each bundle consists of four assemblies. The BWR assembly fueled with UO{sub 2} contains 8 × 8 fuel rods while that fueled with UZrH{sub 1.6} contains 9 × 9 fuel rods. The Monte Carlo N-Particle Transport code, based on the Mont Carlo method, is used to design three dimensional models for BWR fuel bundles at typical operating temperatures and pressure conditions. These models are used to determine the multiplication factor, pin-by-pin power distribution, axial power distribution, thermal neutron flux distribution, and axial thermal neutron flux. The moderator and coolant (water) are permitted to boil within the BWR core forming steam bubbles, so it is important to calculate the reactivity effect of voiding at different values. It is found that the hydride fuel bundle design can be simplified by eliminating water rods and replacing the control blade with control rods. UZrH{sub 1.6} fuel improves the performance of the BWR in different ways such as increasing the energy extracted per fuel assembly, reducing the uranium ore, and reducing the plutonium accumulated in the BWR through burnup.
BiSet: Semantic Edge Bundling with Biclusters for Sensemaking.
Sun, Maoyuan; Mi, Peng; North, Chris; Ramakrishnan, Naren
2016-01-01
Identifying coordinated relationships is an important task in data analytics. For example, an intelligence analyst might want to discover three suspicious people who all visited the same four cities. Existing techniques that display individual relationships, such as between lists of entities, require repetitious manual selection and significant mental aggregation in cluttered visualizations to find coordinated relationships. In this paper, we present BiSet, a visual analytics technique to support interactive exploration of coordinated relationships. In BiSet, we model coordinated relationships as biclusters and algorithmically mine them from a dataset. Then, we visualize the biclusters in context as bundled edges between sets of related entities. Thus, bundles enable analysts to infer task-oriented semantic insights about potentially coordinated activities. We make bundles as first class objects and add a new layer, "in-between", to contain these bundle objects. Based on this, bundles serve to organize entities represented in lists and visually reveal their membership. Users can interact with edge bundles to organize related entities, and vice versa, for sensemaking purposes. With a usage scenario, we demonstrate how BiSet supports the exploration of coordinated relationships in text analytics.
A Radiologist's Primer on Bundles and Care Episodes.
Seidenwurm, David; Lexa, Frank James
2016-09-01
Bundled or episode payments are among the most heavily emphasized approaches to aligning incentives and promoting care coordination, efficiency, and accountability in health care redesign. Bundled or episode payments price a market basket of services for an entire episode of care with both a clearly defined trigger and termination. Because the radiologist is "ancillary" in many bundles, the specialty is often unaware of the phenomenon. This is likely to change rapidly. Radiology is pivotal in high-prevalence, high-impact care areas such as low back pain and stroke that are focuses of widely used system performance metrics. More important, radiology is central to the diagnosis and management of a wide range of important diagnostic issues in areas such as breast cancer, pulmonary nodules, and incidental findings. Three models of bundled care will probably involve radiology intimately in the near future. Pure radiology bundles might be constructed for breast cancer screening and diagnosis, and these could be priced on the basis of guideline-based best-practice frequencies of care events such as recall and biopsy. Clinical bundles, for example low back pain, could be priced on the basis of optimal imaging frequencies. Finally, pricing of imaging studies might include evidence-based frequencies of follow-up imaging for incidental findings. PMID:27210231
Fuel management simulation for CANFLEX-RU in CANDU 6
Energy Technology Data Exchange (ETDEWEB)
Jeong, Chang Joon; Suk, Ho Chun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)
1997-12-31
Fuel management simulations have been performed for CANFLEX-09% RU fuel in the CANDU 6 reactor. In this study, the bi-directional 4-bundle shift fuelling scheme was assumed. The lattice cell and time-average calculation were carried out. The refuelling simulation calculations were performed for 600 full power days. Time-averaged results show good axial power profile with the CANFLEX-RU fuel. During the simulation period, the maximum channel and bundle power were maintained below the licensing limit of CANDU 6 reactor. 7 refs., 4 figs. (Author)
Fuel handling solutions to power pulse at Bruce NGS A
International Nuclear Information System (INIS)
In response to the discovery of the power pulse problem in March of 1993, Bruce A has installed flow straightening shield plugs in the inner zone channels of all units to partially reduce the gap and gain an increase in reactor power to 75%. After review and evaluation of solutions to manage the gap, including creep compensators and long fuel bundles, efforts have focused on a different solution involving reordering the fuel bundles to reverse the burnup profile. This configuration is maintained by fuelling with the flow and providing better support to the highly irradiated downstream fuel bundles by changing the design of the outlet shield plug. Engineering changes to the fuel handling control system and outlet shield plug are planned to be implemented starting in June 1996, thereby eliminating the power pulse problem and restrictions on reactor operating power. (author). 2 refs., 1 tab., 2 figs
How Buyers Evaluate Product Bundles: A Model of Anchoring and Adjustment.
Yadav, Manjit S
1994-01-01
Bundling, the joint offering of two or more items, is a common selling strategy, yet little research has been conducted on buyers' evaluation of bundle offers. We developed and tested a model of bundle evaluation in which the buyers anchored their evaluation on the item perceived as most important and then made adjustments on the basis of their evaluations of the remaining bundle items. The results of two computerized laboratory experiments suggested that people tend to examine bundle items i...
RU fuel development program for an advanced fuel cycle in Korea
International Nuclear Information System (INIS)
Korea is a unique country, having both PWR and CANDU reactors. Korea can therefore exploit the natural synergism between the two reactor types to minimize overall waste production, and maximize energy derived from the fuel, by ultimately burning the spent fuel from its PWR reactors in CANDU reactors. As one of the possible fuel cycles, Recovered Uranium (RU) fuel offers a very attractive alternative to the use of Natural Uranium (NU) and slightly enriched uranium (SEU) in CANDU reactors. Potential benefits can be derived from a number of stages in the fuel cycle: no enrichment required, therefore no enrichment tails, direct conversion to UO2, lower sensitivity to 234U and 236U absorption in the CANDU reactor, and expected lower cost relative to NU and SEU. These benefits all fit well with the PWR-CANDU fuel cycle synergy. RU arising from the conventional reprocessing of European and Japanese oxide spent fuel by 2000 is projected to be approaching 25,000 te. The use of RU fuel in a CANDU 6 reactor should result in no serious radiological difficulties and no requirements for special precautions and should not require any new technologies for the fuel fabrication and handling. The use of the CANDU Flexible Fueling (CANFLEX) bundle as the carrier for RU will be fully compatible with the reactor design, current safety and operational requirements, and there will be improved fuel performance compared with the CANDU 37-element NU fuel bundle. Compared with the 37-element NU bundle, the RU fuel has significantly improved fuel cycle economics derived from increased burnups, a large reduction in both fuel requirements and spent fuel, arisings, and the potential lower cost for RU material. There is the potential for annual fuel cost savings in the range of one-third to two-thirds, with enhanced operating margins using RU in the CANFLEX bundle design. These benefits provide the rationale for justifying R and D efforts on the use of RU fuel for advanced fuel cycles in CANDU
CFD simulation of critical heat flux in a rod bundle
International Nuclear Information System (INIS)
The critical heat flux (CHF) condition is characterized by a sharp reduction of the local heat transfer coefficient which results from the replacement of liquid by vapour adjacent to the heat transfer surface. If the surface heat flux is the independent variable, the condition manifests itself as a sharp increase in surface temperature as the critical heat flux value is reached. The critical heat flux forms an important boundary for the performance of the heat exchange equipment. Determination of the critical heat flux is one of the key issues in nuclear reactor safety. This paper presents numerical simulations of boiling flow in a rod bundle with Departure from Nucleate Boiling (DNB) condition at the end of the middle rod. Large Water Loop CHF tests were used as a data set for our simulations. The Large Water Loop (LWL) is non-active pressurised-water equipment with technological and thermal parameters corresponding to those of PWR. The CHF experimental facility (a part of the Large Water Loop) has been designed for research into CHF in water flow through a bundle of electrically heated vertical rods. The critical conditions were determined under constant pressure, inlet water temperature and mass flux and for quasi steady-state - by gradually increasing the heat input. The rods are modelled by hollow tubes with direct heating of the wall. NEPTUNE-CFD code was used for numerical simulations. The computational domain covered a 30 deg. quasi-symmetric section of the actual channel. Simplified grid spacers were included in the domain. Calculations were performed with two-fluid approach with models for drag, lift, added mass and turbulent dispersion forces as well as for interfacial heat and mass transfer. Turbulent dispersion coefficient was based on void fraction gradient and on drag and mass forces. K-epsilon model was used for the prediction of the liquid turbulence, the flow of vapour was assumed to be laminar. Generalized wall heat-flux-splitting model was used
Hagg, Heather (Woodward); El-Harit, Jamie; Vanni, Chris; Scott, Penny
2007-01-01
Within healthcare, clinical practice bundles have been used to implement standardized, nursing driven protocols resulting in standardized patient care and improved patient outcomes. Examples of these types of bundles include clinical practices shown through evidence based medicine to reduce occurrences of Ventilator Associated Pneumonia – VAP bundle; those shown to reduce the occurrences of central line infections – CL bundle; and those shown to significantly improve the outcomes of patients...
Evaluation of radiation source term for the DUPIC fuel core
Energy Technology Data Exchange (ETDEWEB)
Choi, Hang Bok; Ryu, Ho Jin; Park, Chang Je
2004-12-01
The radiation source term of the DUPIC fuel CANDU reactor was estimated for the total and gap inventories of fission products. The calculation was performed by the ELESTRES code using fuel burnup and linear power distribution obtained from the reactor physics calculations. The radiation source term represented by the fission products gap inventory was 46912 TBq for the 1/4 DUPIC fuel core, while it was 75448 TBq for the natural uranium core. Such a reduction of the radiation source term for the DUPIC fuel core can be attributed to the lower linear power of the DUPIC fuel bundle caused by the flattened power distribution of the DUPIC fuel core which adopts a 2-bundle shift refueling scheme. It is therefore expected that the consequence of the loss of coolant accident for the DUPIC fuel core could be weak when compared to the natural uranium core from the viewpoint of radiation doses to the public.
Börlin, Niclas; Grussenmeyer, Pierre
2016-06-01
The aim of this paper is to investigate whether the Matlab-based Damped Bundle Adjustment Toolbox (DBAT) can be used to provide independent verification of the BA computation of two popular software—PhotoModeler (PM) and PhotoScan (PS). For frame camera data sets with lens distortion, DBAT is able to reprocess and replicate subsets of PM results with high accuracy. For lens-distortion-free data sets, DBAT can furthermore provide comparative results between PM and PS. Data sets for the discussed projects are available from the authors. The use of an external verification tool such as DBAT will enable users to get an independent verification of the computations of their software. In addition, DBAT can provide computation of quality parameters such as estimated standard deviations, correlation between parameters, etc., something that should be part of best practice for any photogrammetric software. Finally, as the code is free and open-source, users can add computations of their own.
Location of test bundle instrumentation and anticipated experimental values for the CFTL AG-1 bundle
International Nuclear Information System (INIS)
The placement of instrumentation within the Core Flow Test Loop (CFTL) AG-1 test section to meet the following objectives is described. The objectives are threefold: (1) to provide values for the evaluation of the performance of the test section, (2) to compare the experimental data with value determined by pretest calulations to indicate the approach to conditions that can lead to a bundle failure, and (3) to acquire data during testing that will form a data base for subsequent use in the verification of computational procedures used in the licensing of the Gas-Cooled Fast Reactor. Anticipated values for the various instruments have been determined using the computational procedure SAGAPO modified for the AG-1 geometry. These results are used as the basis for the specification of differential pressure cells and the range of readings anticipated from the thermocouples. Part of the results for the full-flow, full-power case is presented
Fuel assembly supporting structure
International Nuclear Information System (INIS)
For use in forming the core of a pressurized-water reactor, a fuel assembly supporting structure for holding a bundle of interspaced fuel rods, is formed by interspaced end pieces having holes in which the end portions of control rod guide tubes are inserted, fuel rod spacer grids being positioned by these guide tubes between the end pieces. The end pieces are fastened to the end portions of the guide tubes, to integrate the supporting structure, and in the case of at least one of the end pieces, this is done by means which releases that end piece from the guide tubes when the end pieces receive an abnormal thrust force directed towards each other and which would otherwise place the guide tubes under a compressive stress that would cause them to buckle. The spacer grids normally hold the fuel rods interspaced by distances determined by nuclear physics, and buckling of the control rod guide tubes can distort the fuel rod spacer grids with consequent dearrangement of the fuel rod interspacing. A sudden loss of pressure in a pressurized-water reactor pressure vessel can result in the pressurized coolant in the vessel discharging from the vessel at such high velocity as to result in the abnormal thrust force on the end pieces of each fuel assembly, which could cause buckling of the control rod guide tubes when the end pieces are fixed to them in the normal rigid and unyielding manner
Photochemical properties of mesophyll and bundle sheath chloroplasts of maize.
Bazzaz, M B; Govindjee
1973-09-01
Several photochemical and spectral properties of maize (Zea mays) bundle sheath and mesophyll chloroplasts are reported that provide a better understanding of the photosynthetic apparatus of C(4) plants. The difference absorption spectrum at 298 K and the fluorescence excitation and emission spectra of chlorophyll at 298 K and 77 K provide new information on the different forms of chlorophyll a in bundle sheath and mesophyll chloroplasts: the former contain, relative to short wavelength chlorophyll a forms, more long wavelength chlorophyll a form (e.g. chlorophyll a 693 and chlorophyll a 705) and less chlorophyll b than the latter. The degree of polarization of chlorophyll a fluorescence is 6% in bundle sheath and 4% in mesophyll chloroplasts. This result is consistent with the presence of relatively high amounts of oriented long wavelength forms of chlorophyll a in bundle sheath compared to mesophyll chloroplasts. The relative yield of variable, with respect to constant, chorophyll a fluorescence in mesophyll chloroplasts is more than twice that in bundle sheath chloroplast. Furthermore, the relative yield of total chlorophyll a fluorescence is 40% lower in bundle sheath compared to that in mesophyll chloroplasts. This is in agreement with the presence of the higher ratio of the weakly fluorescent pigment system I to pigment system II in bundle sheath than in mesophyll chloroplast. The efficiency of energy transfer from chlorophyll b and carotenoids to chlorophyll a are calculated to be 100 and 50%, respectively, in both types of chloroplasts. Fluorescence quenching of atebrin, reflecting high energy state of chloroplasts, is 10 times higher in mesophyll chloroplasts than in bundle sheath chloroplasts during noncyclic electron flow but is equal during cyclic flow. The entire electron transport chain is shown to be present in both types of chloroplasts, as inferred from the antagonistic effect of red (650 nm) and far red (710 nm) lights on the absorbance changes at
Compatibility analysis of DUPIC fuel (part 3) - radiation physics analysis
Energy Technology Data Exchange (ETDEWEB)
Kim, Chun Soo; Bae, Dae Seok; Kim, Kyung Su; Park, Byung Yun; Koh, Young Kown
2000-04-01
As a part of the compatibility analysis of DUPIC fuel in CANDU reactors, the radiation physics calculations have been performed for the CANDU primary shielding system, thermal shield, radiation damage, transportation cask and storage. At first, the primary shield system was assessed for the DUPIC fuel core, which has shown that the dose rates and heat deposition rates through the primary shield of the DUPIC fuel core are not much different from those of natural uranium core because the power levels on the core periphery are similar for both cores. Secondly, the radiation effects on the critical components and the themal shields were assessed when the DUPIC fuel is loaded in CANDU reactors. Compared with the displacement per atom (DPA) of the critical component for natural uranium core, that for the DUPIC fuel core was increased by -30% for the innermost groove and the weld points and by -10% for the corner of the calandria subshells and annular plates in the calandria, respectivdely. Finally, the feasibility study of the DUPIC fuel handling was performed, which has shown that all handling and inspection of the DUPIC fuel bundles be done remotely and behind a shielding wall. For the transportation of the DUPIC fuel, the preliminary study has shown that there shold be no technical problem th design a transportation cask for the fresh and spent DUPIC fuel bundles. For the storage of the fresh and spent DUPIC fuels, there is no the criticality safety problem unless the fuel bundle geometry is destroyed.
Directory of Open Access Journals (Sweden)
Sandra Umeda Sasaki
2008-01-01
Full Text Available INTRODUCTION: Anterior cruciate ligament ruptures are frequent, especially in sports. Surgical reconstruction with autologous grafts is widely employed in the international literature. Controversies remain with respect to technique variations as continuous research for improvement takes place. One of these variations is the anatomical double bundle technique, which is performed instead of the conventional single bundle technique. More recently, there has been a tendency towards positioning the two bundles through double bone tunnels in the femur and tibia (anatomical reconstruction. OBJECTIVES: To compare, through biomechanical tests, the practice of anatomical double bundle anterior cruciate ligament reconstruction with a patellar graft to conventional single bundle reconstruction with the same amount of patellar graft in a paired experimental cadaver study. METHODS: Nine pairs of male cadaver knees ranging in age from 44 to 63 years were randomized into two groups: group A (single bundle and group B (anatomical reconstruction. Each knee was biomechanically tested under three conditions: intact anterior cruciate ligament, reconstructed anterior cruciate ligament, and injured anterior cruciate ligament. Maximum anterior dislocation, rigidity, and passive internal tibia rotation were recorded with knees submitted to a 100 N horizontal anterior dislocation force applied to the tibia with the knees at 30, 60 and 90 degrees of flexion. RESULTS: There were no differences between the two techniques for any of the measurements by ANOVA tests. CONCLUSION: The technique of anatomical double bundle reconstruction of the anterior cruciate ligament with bone-patellar tendon-bone graft has a similar biomechanical behavior with regard to anterior tibial dislocation, rigidity, and passive internal tibial rotation.
Hair-bundle friction from transduction channels' gating forces
Bormuth, Volker; Barral, Jérémie; Joanny, Jean-François; Jülicher, Frank; Martin, Pascal
2015-12-01
Hearing starts when sound-evoked mechanical vibrations of the hair-cell bundle activate mechanosensitive ion channels, giving birth to an electrical signal. As for any mechanical system, friction impedes movements of the hair bundle and thus constrains the sensitivity and frequency selectivity of auditory transduction. We have shown recently that the opening and closing of the transduction channels produce internal frictional forces that can dominate viscous drag on the micrometer-sized hair bundle and thus provide a major source of damping [2]. We develop here a physical theory of passive hair-bundle mechanics that explains the origin of channel friction. We show that channel friction can be understood quantitatively by coupling the dynamics of the conformational change associated with channel gating to tip-link tension. As a result, varying channel properties affects friction, with faster channels producing smaller friction. The analysis emphasizes the dual role of transduction channels' gating forces, which affect both hair-bundle stiffness and drag. Friction originating from gating of ion channels is a general concept that is relevant to all mechanosensitive channels.
Variable recruitment in bundles of miniature pneumatic artificial muscles.
DeLaHunt, Sylvie A; Pillsbury, Thomas E; Wereley, Norman M
2016-01-01
The natural compliance and force generation properties of pneumatic artificial muscles (PAMs) allow them to operate like human muscles in anthropomorphic robotic manipulators. Traditionally, manipulators use a single PAM or multiple PAMs actuated in unison in place of a human muscle. However, these standard manipulators can experience significant efficiency losses when operated outside their target performance ranges at low actuation pressures. This study considers the application of a variable recruitment control strategy to a parallel bundle of miniature PAMs as an attempt to mimic the selective recruitment of motor units in a human muscle. Bundles of miniature PAMs are experimentally characterized, their actuation behavior is modeled, and the efficiency gains and losses associated with the application of a variable recruitment control strategy are assessed. This bio-inspired control strategy allows muscle bundles to operate the fewest miniature PAMs necessary to achieve a desired performance objective, improving the muscle bundle's operating efficiency over larger ranges of force generation and displacement. The study also highlights the need for improved PAM fabrication techniques to facilitate the production of identical miniature PAMs for inclusion in muscle bundles. PMID:27623216
Pressure Loss across Tube Bundles in Two-phase Flow
Energy Technology Data Exchange (ETDEWEB)
Sim, Woo Gun; Banzragch, Dagdan [Hannam Univ., Daejon (Korea, Republic of)
2016-03-15
An analytical model was developed by Sim to estimate the two-phase damping ratio for upward two-phase flow perpendicular to horizontal tube bundles. The parameters of two-phase flow, such as void fraction and pressure loss evaluated in the model, were calculated based on existing experimental formulations. However, it is necessary to implement a few improvements in the formulations for the case of tube bundles. For the purpose of the improved formulation, we need more information about the two-phase parameters, which can be found through experimental test. An experiment is performed with a typical normal square array of cylinders subjected to the two-phase flow of air-water in the tube bundles, to calculate the two-phase Euler number and the two-phase friction multiplier. The pitch-to-diameter ratio is 1.35 and the diameter of cylinder is 18mm. Pressure loss along the flow direction in the tube bundles is measured with a pressure transducer and data acquisition system to calculate the two-phase Euler number and the two-phase friction multiplier. The void fraction model by Feenstra et al. is used to estimate the void fraction of the two-phase flow in tube bundles. The experimental results of the two phase friction multiplier and two-phase Euler number for homogeneous and non-homogeneous two-phase flows are compared and evaluated against the analytical results given by Sim's model.
Experimental study for convective heat transfer of staged tube bundles
International Nuclear Information System (INIS)
The lack of potable water is one of the most serious problems the world is facing at present. SMART which is a 330 MWt advanced integral PWR, was developed by the KAERI for electricity generation and seawater desalination. SMART adopted a passive system to enhance its safety. The passive system can passively remove a decay heat from a reactor core to an emergency cooldown tank through the heat exchanger. Tube bundles of the heat exchanger, which is submerged in an emergency cooldown tank, transfer heat to an emergency cooldown tank by natural circulation. Heat transfer tests for the upward straight tube bundle were performed to confirm the capability of the SMART design under natural circulation conditions. The heat transfer at the tube bundle was affected by the fluid temperature in the emergency cooldown tank and the radial location of tube bundle. However, it had nearly the same value at the inlet region regardless of the tube location. The average heat transfer at the tube bundle was slightly higher than that at the single tube. (author)
In-Situ Imaging and Quantification of Tritium Surface Contamination via Coherent Fiber Bundle
International Nuclear Information System (INIS)
Princeton Plasma Physics Laboratory (PPPL) has developed a method of imaging tritium on in-situ surfaces for the purpose of real-time data collection. This method expands upon a previous tritium imaging concept, also developed at PPPL. Enhancements include an objective lens coupled to the entry aperture of a coherent fiber optic (CFO) bundle, and a relay lens connecting the exit aperture of the fiber bundle to an intensifier tube and a charge-coupled device (CCD) camera. The system has been specifically fabricated for use in determining tritium concentrations on first wall materials. One potential complication associated with the development of D-T [deuterium-tritium] fueled fusion reactors is the deposition of tritium (i.e., co-deposited layer) on the surface of the primary wall of the vacuum vessel. It would be advantageous to implement a process to accurately determine tritium distribution on these inner surfaces. This fiber optic imaging device provides a highly practical method for determining the location, concentration, and activity of surface tritium deposition. In addition, it can be employed for detection of tritium ''hot-spots'' and ''hide-out'' regions present on the surfaces being imaged
Experiment data report for Multirod Burst Test (MRBT) Bundle B-5. [PWR
Energy Technology Data Exchange (ETDEWEB)
Chapman, R H; Crowley, J L; Longest, A W
1984-08-01
A reference source of MRBT bundle B-5 test data is presented with interpretation limited to that necessary to understand pertinent features of the test. Primary objectives of this 8 x 8 multirod burst test were to investigate the effects of array size and rod-to-rod interactions on cladding deformation in the high-alpha-Zircaloy temperature range under simulated light-water reactor loss-of-coolant accident (LOCA) conditions. B-5 test conditions, nominally the same as used in an earlier 4 x 4 (B-3) test, simulated the adiabatic heatup (reheat) phase of an LOCA and were conducive to large deformation. The fuel pin simulators were electrically heated (average linear power generation of 3.0 kW/m) and were slightly cooled with a very low flow (Re approx. 140) of low-pressure superheated steam. The cladding temperature increased from the initial temperature (335/sup 0/C) to the burst temperature at a rate of 9.8/sup 0/C/s. The simulators burst in a very narrow temperature range, with an average of 768/sup 0/C. Cladding burst strain ranged from 32% to 95%, with an average of 61%. Volumetric expansion over the heated length of the cladding ranged from 35% to 79%, with an average of 52%. The results clearly show deformation was greater in the bundle interior and suggest rod-to-rod mechanical interactions caused axial propagation of the deformation.
Thermal-hydraulics performance optimization of Candu fuel using Assert subchannel code
International Nuclear Information System (INIS)
An optimization of fuel bundle geometry using the subchannel code ASSERT is performed in support of Candu fuel design to enhance the thermohydraulics performance. The new bundle design is based on a reference CANFLEX bundle with changes to the centre and inner-ring element diameters and pitch-circle diameters (PCDs) of various element rings. Different methods of varying the PCDs for reaching the optimized geometry are considered in an attempt to minimize the optimization effort. The optimized geometry in the present analysis is the one that maximizes the dryout power and that has simultaneous CHF (critical heat flux) initiation involving more than one subchannel rings. (authors)
Multi-scale strain-stiffening of semiflexible bundle networks
Piechocka, I K; Broedersz, C P; Kurniawan, N A; MacKintosh, F C; Koenderink, G H
2015-01-01
Bundles of polymer filaments are responsible for the rich and unique mechanical behaviors of many biomaterials, including cells and extracellular matrices. In fibrin biopolymers, whose nonlinear elastic properties are crucial for normal blood clotting, protofibrils self-assemble and bundle to form networks of semiflexible fibers. Here we show that the extraordinary strain-stiffening response of fibrin networks is a direct reflection of the hierarchical architecture of the fibrin fibers. We measure the rheology of networks of unbundled protofibrils and find excellent agreement with an affine model of extensible wormlike polymers. By direct comparison with these data, we show that physiological fibrin networks composed of thick fibers can be modeled as networks of tight protofibril bundles. We demonstrate that the tightness of coupling between protofibrils in the fibers can be tuned by the degree of enzymatic intermolecular crosslinking by the coagulation Factor XIII. Furthermore, at high stress, the protofibri...
Magnetic Propulsion of Microswimmers with DNA-Based Flagellar Bundles.
Maier, Alexander M; Weig, Cornelius; Oswald, Peter; Frey, Erwin; Fischer, Peer; Liedl, Tim
2016-02-10
We show that DNA-based self-assembly can serve as a general and flexible tool to construct artificial flagella of several micrometers in length and only tens of nanometers in diameter. By attaching the DNA flagella to biocompatible magnetic microparticles, we provide a proof of concept demonstration of hybrid structures that, when rotated in an external magnetic field, propel by means of a flagellar bundle, similar to self-propelling peritrichous bacteria. Our theoretical analysis predicts that flagellar bundles that possess a length-dependent bending stiffness should exhibit a superior swimming speed compared to swimmers with a single appendage. The DNA self-assembly method permits the realization of these improved flagellar bundles in good agreement with our quantitative model. DNA flagella with well-controlled shape could fundamentally increase the functionality of fully biocompatible nanorobots and extend the scope and complexity of active materials. PMID:26821214
Real Parabolic Vector Bundles over a Real Curve
Indian Academy of Sciences (India)
Sanjay Amrutiya
2014-02-01
We define real parabolic structures on real vector bundles over a real curve. Let $(X, _X)$ be a real curve, and let $S\\subset X$ be a non-empty finite subset of such that $_X(S) = S$. Let ≥ 2 be an integer. We construct an -fold cyclic cover : $Y→ X$ in the category of real curves, ramified precisely over each point of , and with the property that for any element of the Galois group , and any $y\\in Y$, one has $_Y(gy) = g^{-1}_Y(y)$. We established an equivalence between the category of real parabolic vector bundles on $(X,_X)$ with real parabolic structure over , all of whose weights are integral multiples of 1/, and the category of real -equivariant vector bundles on $(Y, _Y)$.
A class of Poisson Nijenhuis structures on a tangent bundle
Sarlet, W.; Vermeire, F.
2004-06-01
Equipping the tangent bundle TQ of a manifold with a symplectic form coming from a regular Lagrangian L, we explore how to obtain a Poisson-Nijenhuis structure from a given type (1, 1) tensor field J on Q. It is argued that the complete lift Jc of J is not the natural candidate for a Nijenhuis tensor on TQ, but plays a crucial role in the construction of a different tensor R, which appears to be the pullback under the Legendre transform of the lift of J to T*Q. We show how this tangent bundle view brings new insights and is capable also of producing all important results which are known from previous studies on the cotangent bundle, in the case when Q is equipped with a Riemannian metric. The present approach further paves the way for future generalizations.
Betti numbers of graded modules and cohomology of vector bundles
Eisenbud, David; Schreyer, Frank-Olaf
2009-07-01
In the remarkable paper Graded Betti numbers of Cohen-Macaulay modules and the multiplicity conjecture, Mats Boij and Jonas Soederberg conjectured that the Betti table of a Cohen-Macaulay module over a polynomial ring is a positive linear combination of Betti tables of modules with pure resolutions. We prove a strengthened form of their conjectures. Applications include a proof of the Multiplicity Conjecture of Huneke and Srinivasan and a proof of the convexity of a fan naturally associated to the Young lattice. With the same tools we show that the cohomology table of any vector bundle on projective space is a positive rational linear combination of the cohomology tables of what we call supernatural vector bundles. Using this result we give new bounds on the slope of a vector bundle in terms of its cohomology.
Symposium on Singularities, Representation of Algebras, and Vector Bundles
Trautmann, Günther
1987-01-01
It is well known that there are close relations between classes of singularities and representation theory via the McKay correspondence and between representation theory and vector bundles on projective spaces via the Bernstein-Gelfand-Gelfand construction. These relations however cannot be considered to be either completely understood or fully exploited. These proceedings document recent developments in the area. The questions and methods of representation theory have applications to singularities and to vector bundles. Representation theory itself, which had primarily developed its methods for Artinian algebras, starts to investigate algebras of higher dimension partly because of these applications. Future research in representation theory may be spurred by the classification of singularities and the highly developed theory of moduli for vector bundles. The volume contains 3 survey articles on the 3 main topics mentioned, stressing their interrelationships, as well as original research papers.
Gradient Bundle Analysis: A Full Topological Approach to Chemical Bonding
Morgenstern, Amanda
2016-01-01
The "chemical bond" is a central concept in molecular sciences, but there is no consensus as to what a bond actually is. Therefore, a variety of bonding models have been developed, each defining the structure of molecules in a different manner with the goal of explaining and predicting chemical properties. This thesis describes the initial development of gradient bundle analysis (GBA), a chemical bonding model that creates a high resolution picture of chemical interactions within the charge density framework. GBA is based on concepts from the quantum theory of atoms in molecules (QTAIM), but uses a more complete picture of the topology and geometry of the electron charge density to understand and predict bonding interactions. Gradient bundles are defined as volumes bounded by zero-flux surfaces (ZFSs) in the gradient of the charge density with well-defined energies. The structure of gradient bundles provides an avenue for detecting the locations of valence electrons, which correspond to reactive regions in a ...
Lesson Eleven Transient and intermittent left bundle branch block
Institute of Scientific and Technical Information of China (English)
鲁端; 王劲
2004-01-01
@@ In transient left bundle branch block,normal intraventricular conduction subsequently returns,if only1temporarily.The condition has also been called paroxysmal,unstable,or temporary left bundle branch block. Its etiology is similar to that of the stable variety2, with the great majority of the patients having ischemic or hypertensive heart disease or both. Transient bundle branch block may complicate acute myocardial infarction or may occur during attacks of angina. It may appear during an episode of congestive heart failure and disappear with improvement of the cardiac status. Most patients eventually develop permanent block. Occasionally,however, the patient may revert to normal conduction even years after consistently demonstrating the block.
The Family Problem: Hints from Heterotic Line Bundle Models
Constantin, Andrei; Mishra, Challenger
2015-01-01
Within the class of heterotic line bundle models, we argue that N=1 vacua which lead to a small number of low-energy chiral families are preferred. By imposing an upper limit on the volume of the internal manifold, as required in order to obtain finite values of the four-dimensional gauge couplings, and validity of the supergravity approximation we show that, for a given manifold, only a finite number of line bundle sums are consistent with supersymmetry. By explicitly scanning over this finite set of line bundle models on certain manifolds we show that, for a sufficiently small volume of the internal manifold, the family number distribution peaks at small values, consistent with three chiral families. The relation between the maximal number of families and the gauge coupling is discussed, which hints towards a possible explanation of the family problem.
Magnetic Propulsion of Microswimmers with DNA-Based Flagellar Bundles.
Maier, Alexander M; Weig, Cornelius; Oswald, Peter; Frey, Erwin; Fischer, Peer; Liedl, Tim
2016-02-10
We show that DNA-based self-assembly can serve as a general and flexible tool to construct artificial flagella of several micrometers in length and only tens of nanometers in diameter. By attaching the DNA flagella to biocompatible magnetic microparticles, we provide a proof of concept demonstration of hybrid structures that, when rotated in an external magnetic field, propel by means of a flagellar bundle, similar to self-propelling peritrichous bacteria. Our theoretical analysis predicts that flagellar bundles that possess a length-dependent bending stiffness should exhibit a superior swimming speed compared to swimmers with a single appendage. The DNA self-assembly method permits the realization of these improved flagellar bundles in good agreement with our quantitative model. DNA flagella with well-controlled shape could fundamentally increase the functionality of fully biocompatible nanorobots and extend the scope and complexity of active materials.
DTI Image Registration under Probabilistic Fiber Bundles Tractography Learning
Lei, Tao; Fan, Yangyu; Zhang, Xiuwei
2016-01-01
Diffusion Tensor Imaging (DTI) image registration is an essential step for diffusion tensor image analysis. Most of the fiber bundle based registration algorithms use deterministic fiber tracking technique to get the white matter fiber bundles, which will be affected by the noise and volume. In order to overcome the above problem, we proposed a Diffusion Tensor Imaging image registration method under probabilistic fiber bundles tractography learning. Probabilistic tractography technique can more reasonably trace to the structure of the nerve fibers. The residual error estimation step in active sample selection learning is improved by modifying the residual error model using finite sample set. The calculated deformation field is then registered on the DTI images. The results of our proposed registration method are compared with 6 state-of-the-art DTI image registration methods under visualization and 3 quantitative evaluation standards. The experimental results show that our proposed method has a good comprehensive performance.
Literature search on Light Water Reactor (LWR) fuel and absorber rod fabrication, 1960--1976
Energy Technology Data Exchange (ETDEWEB)
Sample, C R [comp.
1977-02-01
A literature search was conducted to provide information supporting the design of a conceptual Light Water Reactor (LWR) Fuel Fabrication plant. Emphasis was placed on fuel processing and pin bundle fabrication, effects of fuel impurities and microstructure on performance and densification, quality assurance, absorber and poison rod fabrication, and fuel pin welding. All data have been taken from publicly available documents, journals, and books. This work was sponsored by the Finishing Processes-Mixed Oxide (MOX) Fuel Fabrication Studies program at HEDL.
Literature search on Light Water Reactor (LWR) fuel and absorber rod fabrication, 1960--1976
International Nuclear Information System (INIS)
A literature search was conducted to provide information supporting the design of a conceptual Light Water Reactor (LWR) Fuel Fabrication plant. Emphasis was placed on fuel processing and pin bundle fabrication, effects of fuel impurities and microstructure on performance and densification, quality assurance, absorber and poison rod fabrication, and fuel pin welding. All data have been taken from publicly available documents, journals, and books. This work was sponsored by the Finishing Processes-Mixed Oxide (MOX) Fuel Fabrication Studies program at HEDL
Current perceptions of spent nuclear fuel behavior in water pool storage
International Nuclear Information System (INIS)
A survey was conducted of a cross section of U.S. and Canadian fuel storage pool operators to define the spent fuel behavior and to establish the range of pool storage environments. There is no evidence for significant corrosion degradation. Fuel handling causes only minimal damage. Most fuel bundles with defects generally are stored without special procedures. Successful fuel storage up to 18 years with benign water chemistry has been demonstrated. 2 tables
Quillen Bundle and Geometric Prequantization of Non-Abelian Vortices on a Riemann Surface
Indian Academy of Sciences (India)
Rukmini Dey; Samir K Paul
2011-02-01
In this paper we prequantize the moduli space of non-abelian vortices. We explicitly calculate the symplectic form arising from 2 metric and we construct a prequantum line bundle whose curvature is proportional to this symplectic form. The prequantum line bundle turns out to be Quillen’s determinant line bundle with a modified Quillen metric. Next, as in the case of abelian vortices, we construct line bundles over the moduli space whose curvatures form a family of symplectic forms which are parametrized by $\\Psi_0$, a section of a certain bundle. The equivalence of these prequantum bundles are discussed.
The Determinant Bundle on the Moduli Space of Stable Triples over a Curve
Indian Academy of Sciences (India)
Indranil Biswas; N Raghavendra
2002-08-01
We construct a holomorphic Hermitian line bundle over the moduli space of stable triples of the form (1, 2, ), where 1 and 2 are holomorphic vector bundles over a fixed compact Riemann surface , and : 2 → 1 is a holomorphic vector bundle homomorphism. The curvature of the Chern connection of this holomorphic Hermitian line bundle is computed. The curvature is shown to coincide with a constant scalar multiple of the natural Kähler form on the moduli space. The construction is based on a result of Quillen on the determinant line bundle over the space of Dolbeault operators on a fixed ∞ Hermitian vector bundle over a compact Riemann surface.
Cellulosic Fibers: Effect of Processing on Fiber Bundle Strength
DEFF Research Database (Denmark)
Thygesen, Anders; Madsen, Bo; Thomsen, Anne Belinda;
2011-01-01
A range of differently processed cellulosic fibers from flax and hemp plants were investigated to study the relation between processing of cellulosic fibers and fiber bundle strength. The studied processing methods are applied for yarn production and include retting, scutching, carding, and cotto......A range of differently processed cellulosic fibers from flax and hemp plants were investigated to study the relation between processing of cellulosic fibers and fiber bundle strength. The studied processing methods are applied for yarn production and include retting, scutching, carding...
Stable bundles of rank 2 with 4 sections
Grzegorczyk, I; Newstead, P E
2010-01-01
This paper contains results on stable bundles of rank $2$ with space of sections of dimension $4$ on a smooth irreducible projective algebraic curve $C$. There is a known lower bound on the degree for the existence of such bundles; the main result of the paper is a geometric criterion for this bound to be attained. For a general curve $C$ of genus $10$, we show that the bound cannot be attained, but that there exist Petri curves of this genus for which the bound is sharp. We interpret the main results for various curves and in terms of Clifford indices and coherent systems.
Stable bundles of rank 2 with 4 sections
Grzegorczyk, I.; Mercat, V.; Newstead, P. E.
2010-01-01
This paper contains results on stable bundles of rank 2 with space of sections of dimension 4 on a smooth irreducible projective algebraic curve $C$. There is a known lower bound on the degree for the existence of such bundles; the main result of the paper is a geometric criterion for this bound to be attained. For a general curve $C$ of genus 10, we show that the bound cannot be attained, but that there exist Petri curves of this genus for which the bound is sharp. We interpret the main resu...
Normal Bundle of Rational Curves and Waring Decomposition
Bernardi, Alessandro
2012-01-01
The problem to determine the splitting of the normal bundle of rational curves has been considered in the 80s in a series of papers by Ghione and Sacchiero and in another series by Eisenbud and Van de Ven in the case of rational space curves. With our approach we are able to obtain results for curves enbedded in $\\bbP^m$ for $m\\geq 3$ we find an interesting interplay between the Waring decomposition and the splitting of the normal bundle.
Failure process of a bundle of plastic fibers
F. Raischel; Kun, F; Herrmann, H. J.
2006-01-01
We present an extension of fiber bundle models considering that failed fibers still carry a fraction $0 \\leq \\alpha \\leq 1$ of their failure load. The value of $\\alpha$ interpolates between the perfectly brittle failure $(\\alpha = 0)$ and perfectly plastic behavior $(\\alpha=1)$ of fibers. We show that the finite load bearing capacity of broken fibers has a substantial effect on the failure process of the bundle. In the case of global load sharing it is found that for $\\alpha \\to 1$ the macros...
Einstein Manifolds, Abelian Instantons, Bundle Reduction, and the Cosmological Constant
Soo, C P
2001-01-01
The anti-self-dual projection of the spin connections of certain four-dimensional Einstein manifolds can be Abelian in nature. These configurations signify bundle reductions. By a theorem of Kobayashi and Nomizu such a process is predicated on the existence of a covariantly constant field. It turns out that even without fundamental Higgs fields and other physical matter, gravitational self-interactions can generate this mechanism if the cosmological constant is non-vanishing. This article identifies the order parameter, and clarifies how these Abelian instanton solutions are associated with a Higgs triplet which causes the bundle reduction from SO(3) gauge group to U(1).
ASSERT and COBRA predictions of flow distribution in vertical bundles
International Nuclear Information System (INIS)
COBRA and ASSERT are subchannel codes which compute flow and enthalpy distributions in rod bundles. COBRA is a well known code, ASSERT is under development at CRNL. This paper gives a comparison of the two codes with boiling experiments in vertical seven rod bundles. ASSERT predictions of the void distribution are shown to be in good agreement with reported experimental results, while COBRA predictions are unsatisfactory. The mixing models in both COBRA and ASSERT are briefly discussed. The reasons for the failure of COBRA-IV and the success of ASSERT in simulating the experiments are highlighted
Capillary Micro-Flow Through a Fiber Bundle(Ⅰ)
Institute of Scientific and Technical Information of China (English)
ZHU Ying-dan; WANG Ji-hui; TAN Hua; GAO Guo-qiang
2004-01-01
The present work considered the capillary micro-flow through a fiber bundle. The resin heights in the fiber bundle as a function of time were used to determine the experimental values of capillary pressure and the permeability by the nonlinear regression fitting method. The fitting curves showed a good agreement with experiments. However, these values of capillary pressure from short- time experiments were much lower than the theoretical results from the Yang-Laplace Equation. More accurate capillary pressure was predicted from the presented long-run experiment.
Phase Space Reduction of Star Products on Cotangent Bundles
Kowalzig, Niels; Neumaier, Nikolai; Pflaum, Markus J.
2004-01-01
In this paper we construct star products on Marsden-Weinstein reduced spaces in case both the original phase space and the reduced phase space are (symplectomorphic to) cotangent bundles. Under the assumption that the original cotangent bundle $T^*Q$ carries a symplectique structure of form $\\omega_{B_0}=\\omega_0 + \\pi^*B_0$ with $B_0$ a closed two-form on $Q$, is equipped by the cotangent lift of a proper and free Lie group action on $Q$ and by an invariant star product that admits a $G$-equ...
BUNDLE ADJUSTMENTS CCD CAMERA CALIBRATION BASED ON COLLINEARITY EQUATION
Institute of Scientific and Technical Information of China (English)
Liu Changying; Yu Zhijing; Che Rensheng; Ye Dong; Huang Qingcheng; Yang Dingning
2004-01-01
The solid template CCD camera calibration method of bundle adjustments based on collinearity equation is presented considering the characteristics of space large-dimension on-line measurement. In the method, a more comprehensive camera model is adopted which is based on the pinhole model extended with distortions corrections. In the process of calibration, calibration precision is improved by imaging at different locations in the whole measurement space, multi-imaging at the same location and bundle adjustments optimization. The calibration experiment proves that the calibration method is able to fulfill calibration requirement of CCD camera applied to vision measurement.
Reaction–diffusion model of hair-bundle morphogenesis
Jacobo, Adrian; Hudspeth, A. J.
2014-01-01
Our senses of hearing and balance rest upon the activity of hair cells, the ear’s sensory receptors. Each hair cell detects mechanical stimuli with its hair bundle, an organelle comprising 10–300 cylindrical, actin-filled stereocilia. A bundle’s structure is highly stereotyped: the stereocilia stand erect in a regular, hexagonal array and display a monotonic gradient in length along one axis. This precise organization is key to the operation of the hair bundle: mutations that disturb the morp...
Dialytic Separation of Bundled, Functionalized Carbon Nanotubes from Carbonaceous Impurities
Directory of Open Access Journals (Sweden)
J. Justin Mulvey
2014-11-01
Full Text Available Separating functionalized single-wall carbon nanotubes (SWCNTs from functionalized amorphous carbon is challenging, due to their polydispersity and similar physicochemical properties. We describe a single-step, dialytic separation method that takes advantage of the ability of heavily functionalized SWCNTs to bundle in a polar environment while maintaining their solubility. Experiments on functionalized SWCNTs were compared with functionalized, C60 fullerenes (buckyballs to probe the general applicability of the method and further characterize the bundling process. This approach may simultaneously be used to purify a functionalization reaction mixture of unreacted small molecules and of residual solvents, such as dimethylformamide.
International Nuclear Information System (INIS)
A new ultrasonic instrument system was developed and applied to the problem of detecting critical heat flux (CHF) in experiments that simulate a nuclear reactor fuel assembly. This instrumentation system used the principles of ultrasonic thermometry to detect and localte CHF in a tube bundle with non-uniform axial heat generation. The technique consists of measuring the time between pairs of ultrasonic echoes that reflect from a sequence of evenly spaced discontinuities along a sensor. Each measurement of time is directly related to the temperature of a specific segment of a sensor. The system was designed to handle many 16-zone sensors at a high rate of data acquisition so that CHF could be rapidly detected and accurately located. This paper includes a description of the sensor and the signal processing techniques as well as examples of the system's response to CHF
Spent fuel response after a postulated loss of spent fuel bay cooling accident
International Nuclear Information System (INIS)
A study of the spent fuel behavior in a postulated severe accident is performed to understand the timings of actions and potential consequence associated with an unmitigated loss of cooling for an extended period of time. This study provides input to the 'stress test' for Cernavoda CANDU® 6 plants, requested by WENRA/ENSREG. For extreme situations, in the light of the events which occurred at Fukushima in 2011, this work has assessed the spent fuel response after a postulated loss of spent fuel bay cooling accident, assuming that there is a prolonged loss of all electrical power and water make-up to the spent fuel bay. Assessment results indicate that hydrogen generation is insignificant as long as the spent fuel remains submerged. With a large amount of shield water in the CANDU spent fuel bay, as a passive inherent feature, it is estimated that the onset of spent fuel uncovering takes more than two weeks after loss of the spent fuel bay cooling for the spent fuel bay design with normal load. The potential consequence is also discussed after the water level drops below the first few layers of spent fuel bundles due to boil-off/evaporation. However, there is a significant amount of time to take corrective actions using a number of backup design provisions to prevent spent fuel bundle uncovering. (author)
Assessment of causes for degrading fuel performance at Darlington NGS
International Nuclear Information System (INIS)
Fuel performance at the Darlington nuclear generating station has historically been excellent. Until recently, the majority of these few fuel defects have been attributed to fretting by heat transport system debris. The minority have been linked to manufacturing issues. Recently, Darlington has experienced an increase in the number of fuel defects. Although the defect rate remains low with respect to industry standards, this defect experience is considered to be unacceptable given current industry expectations and the OPG zero defect policy. Nine fuel defects have been discharged since 2007 from the four Darlington reactors. This represents a fuel defect rate of just 0.35 defects per year per reactor. At the time of this writing three additional defects are suspected to be in core. Although a definitive defect cause has yet to be identified, these fuel performance issues appear to be due to the coincidental degradation of manufacturing and operational factors, thereby decreasing the margins to fuel failure due to fuelling power ramps. All of the confirmed defected bundles have been long bundles and all experienced a relatively high power ramp when shifted from Position 2 to Position 6. High bundle uranium masses and low internal clearances are thought to be significant contributing factors. Bundle burnups at the time of the power ramps were low and these bundles were not identified by existing power ramp defect predictive tools. Our assessment has resulted in a number of recommendations which are designed to mitigate these adverse conditions by restoring the margins to power ramp failures. These recommendations impact broadly across a number of organizations including reactor physics, fuel design, fuel manufacturing, reactor design, inspections and PIE. (author)
Transient heat transfer behavior during reflood phase in a 2x2 ballooned rod bundle
International Nuclear Information System (INIS)
The coolability of the ballooned region is entirely different with that of the normal ones. Therefore, in this study, the transient heat transfer behavior during the reflood phase of ballooned fuel rods was experimentally investigated in a 2x2 rod bundle test facility. The coolability depends greatly on the blockage characteristics (blockage ratio, blockage length, blockage shape, and blockage configuration) and the system conditions of the test facility (flow, system pressure, and inlet temperature). Among them, the blockage ratio effect on the coolabiltiy is carefully examined varying the reflood rate in the present study, since the blockage ratio plays a significant role on the coolability under the low reflood rate condition (2.5 cm/s). The test results were analyzed with the transient temperature profiles of the fuel rods and the local heat transfer coefficient calculated using a 1-D cylindrical coordinates FVM (Finite-Volume-Method) code. Forced reflood tests with various reflood rates were performed to understand the transient heat transfer behavior and to investigate the influence of the blockage ratio on the coolability in the 2x2 rod bundle test facility. The transient temperature profiles and the local heat transfer coefficients at the upstream and downstream region of the blockage simulator were examined for non-blockage, 90% blockage, and 62% blockage conditions. In the downstream region, the coolability was greatly enhanced except for a low reflood rate (1.0 cm/s). In the upstream region, the cooling performance decreased smoothly with decreasing the reflood rate. When the reflood rate is 1.0 cm/s, the coolabilities at the both upstream and downstream region were significantly reduced regardless of the blockage ratio. As a conclusion, the coolability at the low reflood rate (1.0 cm/s) should be carefully examined with the droplet behavior as a future work
Mechanical Property Evaluation of High Burnup PHWR Fuel Clads
International Nuclear Information System (INIS)
Assurance of clad integrity is of vital importance for the safe and reliable extension of fuel burnup. In order to study the effect of extended burnup of 15,000 MW∙d/tU on the performance of Pressurised Heavy Water Reactor (PHWR) fuel bundles of 19-element design, a couple of bundles were irradiated in Indian PHWR. The tensile property of irradiated cladding from one such bundle was evaluated using the ring tension test method. Using a similar method, claddings of mixed oxide (MOX) fuel elements irradiated in the pressurized water loop (PWL) of CIRUS to a burnup of 10,000 MW∙d/THM were tested. The tests were carried out both at ambient temperature and at 300°C. The paper will describe the test procedure, results generated and discuss the findings. (author)
Comparison of the CORA-12, 13, 17 experiments and B4 effect on the flooding behavior of BWR bundles
International Nuclear Information System (INIS)
The CORA quench experiments 12, 13 (PWR) and 17 (BWR) are in agreement with LOFT 2 and TMI: Flooding of hot Zircaloy clad fuel rods does not result in an immediate cooldown of the bundle, but produces remarkable temporary temperature increase, connected to a strong peak in hydrogen production. The PWR tests CORA 12 and CORA 13 are of the same geometrical arrangement and test conduct, with the exception of the shorter time between power shutdown and quench initiation for CORA 13. A higher temperature of the bundle at start of quenching was the consequence. BWR test CORA 17 - with B4C absorber and additional Zircaloy channel box walls - was in respect to the delay-time between power shutdown and start of quenching similar to test CORA 12. All tests showed during the quench phase the temporary temperature increase, correlated to a hydrogen peak. The CORA 17 test resulted immediately after quenching in a modest increase for 20 s and changed then in a steep increase, resulting in the highest temperature and hydrogen peaks of the three tests. CORA 17 also showed a temperature increase in the lower part of the bundle, in contrast to CORA 12 and CORA 13 with temperature increase only in the upper half of the bundle. We interpret this earlier starting and stronger reaction due to the influence of the boron carbide, the absorber material of the BWR test. B4C has an exothermic reaction rate 4 to 9 times larger than Zry and produces 5 to 6,6 times more hydrogen. Probably the hot remained columns of B4C (seen in the non-quench test CORA 16) react early in the quench process with the increased upcoming steam. The bundle temperature raised by this reaction increases the reaction rate (exponential dependency) of the remaining metallic Zry. Due to the larger amount of Zry in the BWR bundle (channel box walls) and the smaller steam input during the heatup phase (2 g/s instead of 6 g/s) more metallic Zry can have survived oxidation during the heatup phase. (orig./HP)
Specifications for reactor physics experiments on CANFLEX-RU fuel
International Nuclear Information System (INIS)
This is to describe reactor physics experiments to be performed in the ZED-2 reactor to study CANFLEX-RU fuel bundles in CANDU-type fuel channels. The experiments are to provide benchmark quality validation data for the computer codes and associated nuclear databases used for physics calculations, in particular WIMS-AECL. Such validation data is likely to be a requirement by the regulator as condition for licensing a CANDU reactor based on an enriched fuel cycle
An analytical assessment of the longitudinal ridging of CANDU type fuel element
International Nuclear Information System (INIS)
There are 380 fuel channels in a CANDU-6 reactor, and twelve fuel bundles are loaded into each fuel channel. High-pressure, heavy water coolant passes through the fuel bundle string to remove heat generated from the fuel. Fuel sheath collapses down around the uranium dioxide pellet due to the coolant pressure when the fuel is loaded into the reactor. Longitudinal ridges may form in CANDU fuel element sheaths as a result of sheath collapse onto the pellets. A static analysis, finite-element (FE) model was developed to simulate the longitudinal ridging of the fuel element with use of the structural analysis computer code ABAQUS. Collapse pressures were calculated for the fifty-one cases for which test results of WCL in 1973 and 1975 are available. Calculation results under-predicted the critical collapse pressure but it showed significant relationship against test results
AdS 3-manifolds and Higgs bundles
DEFF Research Database (Denmark)
Alessandrini, Daniele; Li, Qiongling
2015-01-01
In this paper we investigate the relationships between closed AdS 3-manifolds and Higgs bundles. We have a new way to construct AdS structures that allows us to see many of their properties explicitly, for example we can recover the very recent formula by Tholozan for the volumes. We also find...
Signal Integrity Analysis in Single and Bundled Carbon Nanotube Interconnects
International Nuclear Information System (INIS)
Carbon nanotube (CN T) can be considered as an emerging interconnect material in current nano scale regime. They are more promising than other interconnect materials such as Al or Cu because of their robustness to electromigration. This research paper aims to address the crosstalk-related issues (signal integrity) in interconnect lines. Different analytical models of single- (SWCNT), double- (DWCNT), and multiwalled CNTs (MWCNT) are studied to analyze the crosstalk delay at global interconnect lengths. A capacitively coupled three-line bus architecture employing CMOS driver is used for accurate estimation of crosstalk delay. Each line in bus architecture is represented with the equivalent RLC models of single and bundled SWCNT, DWCNT, and MWCNT interconnects. Crosstalk delay is observed at middle line (victim) when it switches in opposite direction with respect to the other two lines (aggressors). Using the data predicted by ITRS 2012, a comparative analysis on the basis of crosstalk delay is performed for bundled SWCNT/DWCNT and single MWCNT interconnects. It is observed that the overall crosstalk delay is improved by 40.92% and 21.37% for single MWCNT in comparison to bundled SWCNT and bundled DWCNT interconnects, respectively.
Dendritic bundles, minicolumns, columns, and cortical output units
Directory of Open Access Journals (Sweden)
Giorgio Innocenti
2010-03-01
Full Text Available The search for the fundamental building block of the cerebral cortex has highlighted three structures, perpendicular to the cortical surface: i columns of neurons with radially invariant response properties, e.g., receptive field position, sensory modality, stimulus orientation or direction, frequency tuning etc. ii minicolumns of radially aligned cell bodies and iii bundles, constituted by the apical dendrites of pyramidal neurons with cell bodies in different layers. The latter were described in detail, and sometimes quantitatively, in several species and areas. It was recently suggested that the dendritic bundles consist of apical dendrites belonging to neurons projecting their axons to specific targets. We review the concept above and suggest that another structural and computational unit of cerebral cortex is the cortical output unit (COU, i.e. an assembly of bundles of apical dendrites and their parent cell bodies including each of the outputs to distant cortical or subcortical structures, of a given cortical locus (area or part of an area. This somato-dendritic assembly receives inputs some of which are common to the whole assembly and determine its radially invariant response properties, others are specific to one or more dendritic bundles, and determine the specific response signature of neurons in the different cortical layers and projecting to different targets.
A Method of Assembling Compact Coherent Fiber-Optic Bundles
Martin, Stefan; Liu, Duncan; Levine, Bruce Martin; Shao, Michael; Wallace, James
2007-01-01
A method of assembling coherent fiber-optic bundles in which all the fibers are packed together as closely as possible is undergoing development. The method is based, straightforwardly, on the established concept of hexagonal close packing; hence, the development efforts are focused on fixtures and techniques for practical implementation of hexagonal close packing of parallel optical fibers.
Almost Lie structures on an anchored Banach bundle
Cabau, Patrick
2011-01-01
Under appropriate assumptions, we generalize the concept of linear almost Poisson struc- tures, almost Lie algebroids, almost differentials in the framework of Banach anchored bundles and the relation between these objects. We then obtain an adapted formalism for mechanical systems which is illustrated by the evolutionary problem of the "Hilbert snake"
Rigidity of Minimal Submanifolds with Flat Normal Bundle
Indian Academy of Sciences (India)
Hai-Ping Fu
2010-09-01
Let $M^n(n≥ 3)$ be an -dimensional complete immersed $\\frac{n-2}{n}$-superstable minimal submanifold in an $(n+p)$-dimensional Euclidean space $\\mathbb{R}^{n+p}$ with flat normal bundle. We prove that if the second fundamental form of satisfies some decay conditions, then is an affine plane or a catenoid in some Euclidean subspace.
Assembly and operation experience of EVA II steam reforming bundle
International Nuclear Information System (INIS)
The main test component of the experimental facility EVA-II/ADAM-II is a helium heated steam reformer bundle with 30 tubes. The tubes are filled with a catalyst of raschig ring type. The main test of the component were related to the power dependence. A series of experiment dealt with the influence of steam/methane ratio on the carbon deposit formation
Euler-Lagrange Forms and Cohomology Groups on Jet Bundles
Institute of Scientific and Technical Information of China (English)
CHEN Jing-Bo
2005-01-01
@@ Using the language of jet bundles, we generalize the definitions of Euler-Lagrange one-form and the associated cohomology which were introduced by Guo et al. [Commun. Theor. Phys. 37(2002)1]. Continuous and discreteLagrange mechanics and field theory are presented. Higher order Euler-Lagrange cohomology groups are also introduced.
Quantum nonsymmetric gravity and the superfiber bundle formalism
International Nuclear Information System (INIS)
The formalism of the principal super fiber-bundle is applied to quantum Nonsymmetric gravitational theory. It is shown that the metric and Fadeev-Popov fields arise as superfield components of the super connection. Moreover the BRST and anti-BRST transformations are shown to be the gauge transformations of the parameters of the ghost and anti-ghost superfields. (authors)
Quantum Nonsymmetric Gravity and The Superfiber Bundle Formalism
Mebarki, N
1999-01-01
The formalism of the principal superfiber-bundle is applied to quantum Nonsymmetric gravitationl theory. It is shown that the metric and Faddev-Popov fields arise as superfields components of the superconnection. Moreover,the BRST and anti-BRST transformations are shown to be the gauge transformations of parameters the ghost and anti-ghost superfields.
Elliptic open books on torus bundles over the circle
Etgü, Tolga
2006-01-01
As an application of the construction of open books on plumbed 3-manifolds, we construct elliptic open books on torus bundles over the circle. In certain cases these open books are compatible with Stein fillable contact structures and have minimal genus.
Heat transfer and fluid friction in bundles of twisted tubes
Dzyubenko, B. V.; Dreitser, G. A.
1986-06-01
The results of heat-transfer and friction studies in bundles of twisted tubes and rods with spiral wire-wrap spacers are analyzed, and recommendations are given for calculating the heat-transfer coefficient in heat exchangers using twisted tubes.
Self-adjointness of the Gaffney Laplacian on Vector Bundles
Energy Technology Data Exchange (ETDEWEB)
Bandara, Lashi, E-mail: lashi.bandara@chalmers.se [Chalmers University of Technology and University of Gothenburg, Mathematical Sciences (Sweden); Milatovic, Ognjen, E-mail: omilatov@unf.edu [University of North Florida, Department of Mathematics and Statistics (United States)
2015-12-15
We study the Gaffney Laplacian on a vector bundle equipped with a compatible metric and connection over a Riemannian manifold that is possibly geodesically incomplete. Under the hypothesis that the Cauchy boundary is polar, we demonstrate the self-adjointness of this Laplacian. Furthermore, we show that negligible boundary is a necessary and sufficient condition for the self-adjointness of this operator.
Multicell slug flow heat transfer analysis of finite LMFBR bundles
Energy Technology Data Exchange (ETDEWEB)
Yeung, M.K.; Wolf, L.
1978-12-01
An analytical two-dimensional, multi-region, multi-cell technique has been developed for the thermal analysis of LMFBR rod bundles. Local temperature fields of various unit cells were obtained for 7, 19, and 37-rod bundles of different geometries and power distributions. The validity of the technique has been verified by its excellent agreement with the THTB calculational result. By comparing the calculated fully-developed circumferential clad temperature distribution with those of the experimental measurements, an axial correction factor has been derived to account for the entrance effect for practical considerations. Moreover, the knowledge of the local temperature field of the rod bundle leads to the determination of the effective mixing lengths L/sub ij/ for adjacent subchannels of various geometries. It was shown that the implementation of the accurately determined L/sub ij/ into COBRA-IIIC calculations has fairly significant effects on intersubchannel mixing. In addition, a scheme has been proposed to couple the 2-D distributed and lumped parameter calculation by COBRA-IIIC such that the entrance effect can be implanted into the distributed parameter analysis. The technique has demonstrated its applicability for a 7-rod bundle and the results of calculation were compared to those of three-dimensional analyses and experimental measurements.
Fission yeast Scp3 potentially maintains microtubule orientation through bundling.
Directory of Open Access Journals (Sweden)
Kanako Ozaki
Full Text Available Microtubules play important roles in organelle transport, the maintenance of cell polarity and chromosome segregation and generally form bundles during these processes. The fission yeast gene scp3+ was identified as a multicopy suppressor of the cps3-81 mutant, which is hypersensitive to isopropyl N-3-chlorophenylcarbamate (CIPC, a poison that induces abnormal multipolar spindle formation in higher eukaryotes. In this study, we investigated the function of Scp3 along with the effect of CIPC in the fission yeast Schizosaccharomyces pombe. Microscopic observation revealed that treatment with CIPC, cps3-81 mutation and scp3+ gene deletion disturbed the orientation of microtubules in interphase cells. Overexpression of scp3+ suppressed the abnormal orientation of microtubules by promoting bundling. Functional analysis suggested that Scp3 functions independently from Ase1, a protein largely required for the bundling of the mitotic spindle. A strain lacking the ase1+ gene was more sensitive to CIPC, with the drug affecting the integrity of the mitotic spindle, indicating that CIPC has a mitotic target that has a role redundant with Ase1. These results suggested that multiple systems are independently involved to ensure microtubule orientation by bundling in fission yeast.
Frame-independent mechanics:geometry on affine bundles
Grabowska, K.; Grabowski, J.; Urbanski, P.
2005-01-01
Main ideas of the differential geometry on affine bundles are presented. Affine counterparts of Lie algebroid and Poisson structures are introduced and discussed. The developed concepts are applied in a frame-independent formulation of the time-dependent and the Newtonian mechanics.
MYOCARDIAL DEFORMATION AND COMPLETE LEFT BUNDLE BRANCH BLOCK
Directory of Open Access Journals (Sweden)
E. N. Pavlyukova
2015-12-01
Full Text Available Tissue Doppler imaging is evolving as a useful echocardiographic tool for quantitative assessment of left ventricular systolic and diastolic function. Over the last 10 years, myocardial deformation imaging has become possible initially with tissue Doppler , and more recently with myocardial speckle-tracking using 2D echocardiography. Unlike simple tissue velocity measurements, deformation measurements are specific for the region of interest. Strain rate or strain measurements have been used as sensitive indicators for subclinical diseases, and it is the most widely used tool to assess mechanical dyssynchrony. Left bundle branch block is a frequent, etiologically heterogeneous, clinically hostile and diagnostically challenging entity. About 2% of patients underwent cardiac stress testing show stable or intermittent left bundle branch block. Presence of left bundle branch block is associated with a lower and slower diastolic coronary flow velocity especially during hyperemia. Stress echocardiography is the best option for the diagnosis of ischemic heart disease, albeit specificity and sensitivity reduce in patients with left bundle branch block in the territory of left anterior descending artery in presence of initial septum dyskinesia.
Regularity for The CR Vector Bundle Problem I
Gong, Xianghong; Webster, S. M.
2009-01-01
We give a new solution to the local integrability problem for CR vector bundles over strictly pseudoconvex real hypersurfaces of dimension seven or greater. It is based on a KAM rapid convergence argument and avoids the previous more difficult Nash-Moser methods. The solution is sharp as to H\\"older continuity.
A note on stochastic calculus in vector bundles
Catuogno, Pedro J; Ruffino, Paulo R
2011-01-01
The aim of these notes is to relate covariant stochastic integration in a vector bundle $E$ (as in Norris \\cite{Norris}) with the usual Stratonovich calculus via the connector $\\K:TE \\rightarrow E$ (cf. e.g. Paterson \\cite{Paterson} or Poor \\cite{Poor}) which carries the connection dependence.
Negotiating over bundles and prices using aggregate knowledge
Somefun, D.J.A.; Klos, T.B.; La Poutré, J.A.
2004-01-01
Combining two or more items and selling them as one good, a practice called bundling, can be a very effective strategy for reducing the costs of producing, marketing, and selling goods. In this paper, we consider a form of multi-issue negotiation where a shop negotiates both the contents and the pri
Product Bundling and Shared Information Goods: A Pricing Exercise
Morrison, William G.
2016-01-01
In this article, the author describes an exercise in which two pricing problems (product bundling and the sharing of digital information goods) can be understood using the same analytical approach. The exercise allows students to calculate the correct numerical answers with relative ease, while the teaching plan demonstrates the importance of the…
Exposure Control Using Adaptive Multi-Stage Item Bundles.
Luecht, Richard M.
This paper presents a multistage adaptive testing test development paradigm that promises to handle content balancing and other test development needs, psychometric reliability concerns, and item exposure. The bundled multistage adaptive testing (BMAT) framework is a modification of the computer-adaptive sequential testing framework introduced by…
2010-02-24
... Price Index Adjustments for Expenditure Limitations and Lobbyist Bundling Disclosure Threshold AGENCY: Federal Election Commission. ACTION: Notice of adjustments to expenditure limitations and lobbyist... Commission'') is adjusting certain expenditure limitations and the lobbyist bundling disclosure threshold...
2012-02-21
... Price Index Adjustments for Expenditure Limitations and Lobbyist Bundling Disclosure Threshold AGENCY: Federal Election Commission. ACTION: Notice of adjustments to expenditure limitations and lobbyist... Commission'') is adjusting certain expenditure limitations and the lobbyist bundling disclosure threshold...
A comprehensive comparison on vibration and heat transfer of two elastic heat transfer tube bundles
Institute of Scientific and Technical Information of China (English)
闫柯; 葛培琪; 翟强
2015-01-01
Elastic heat transfer tube bundles are widely used in the field of flow-induced vibration heat transfer enhancement. Two types of mainly used tube bundles, the planar elastic tube bundle and the conical spiral tube bundle were comprehensively compared in the condition of the same shell side diameter. The natural mode characteristics, the effect of fluid−structure interaction, the stress distribution, the comprehensive heat transfer performance and the secondary fluid flow of the two elastic tube bundles were all concluded and compared. The results show that the natural frequency and the critical velocity of vibration buckling of the planar elastic tube bundle are larger than those of the conical spiral tube bundle, while the stress distribution and the comprehensive heat transfer performance of the conical spiral tube bundle are relatively better.
International Nuclear Information System (INIS)
Precise knowlege of the velocity and temperature distributions is necessary in fuel element design (rod bundles with longitudinal flow). The detail codes required in the fine analysis of non-uniformly cooled bundle zones are presently at the stage of development. In order to verify these computer codes, the mean fluid temperatures and the related RMS values of the temperature fluctuations were measured in a heated bundle, TEGENA, containing four rods arranged in one row (P/D = W/D = 1.147) with sodium cooling (Pr≅0.005). The temperature distribution in the structures was determined as the necessary boundary condition for the temperature profiles in the fluid. The experiments were carried out with different types of heating (uniform load and flux tilting) and the flow conditions were varied in the ranges 4000≤Re≤76,000; 20≤Pe≤400. The essential processes of thermal development took place under uniform load within a heated bundle length of about 100 hydraulic diameters. In the main measuring plane at the end of the heated zone, after 200 hydraulic diameters, the flow can be termed largely developed thermally. There, the temperature profiles measured in the fluid exhibit pronounced maxima in the narrowest gaps of the subchannels as well as pronounced minima in the centers of the subchannels at the unheated wall. In the zones of maximum temperature gradients the temperature fluctuations attain maximum and minimum values, respectively, at the points of disappearance of the temperature gradients. In all cases of flux tilting investigated the flow at the end of the heated zone had not yet developed thermally. (orig.)
International Nuclear Information System (INIS)
GNF ENUSA Nuclear Fuel S.A. (GENUSA) was formed in Madrid in May 1996. GENUSA is a corporation organized and existing under the laws of Spain, jointly owned by GNF-A and ENUSA. GENUSA consolidates all European BWR fuel marketing activities of GNF-A and ENUSA, primarily providing marketing and project management. In its standard way of operating, it will obtain engineering, components and conversion from GNF-A and engineering, fabrication and fuel related services from ENUSA. GENUSA's development philosophy over the past decades has been to introduce evolutionary designs, supported by our global experience base, that deliver the performance needed by our customers to meet their operating strategies. GENUSA considers, as one of our strengths, the ever-increasing experience base that provides the foundation for such evolutionary changes. This experience is supported and complemented with an even greater GNF experience. Over the last 40 years, GNF and ENUSA have designed, fabricated, and placed in operation over 144,000 BWR fuel bundles containing over 9.7 million fuel rods. This experience base represents the widest range of operating conditions of any BWR fuel vendor, reflecting varying reactor power densities, operating strategies, and water chemistry environments. It covers operating periods of up to ∼10 years and bundle average exposures up to 68 MWd/kgU.. It provides the confirmation of our understanding and ability to model fuel performance behavior, and has been instrumental in the identification and characterization of each encountered failure mechanism. With the knowledge gained from this extensive experience base, mitigating actions have been developed and progressively implemented by GENUSA as part of a continuous program toward improved fuel reliability and performance. GENUSA's evolutionary product introduction strategy has been extremely successful. There has been a continuous stream of new products/processes that were developed to deliver improved
Thorium-Based Fuels Preliminary Lattice Cell Studies for Candu Reactors
International Nuclear Information System (INIS)
The choice of nuclear power as a major contributor to the future global energy needs must take into account acceptable risks of nuclear weapon proliferation, in addition to economic competitiveness, acceptable safety standards, and acceptable waste disposal options. Candu reactors offer a proven technology, safe and reliable reactor technology, with an interesting evolutionary potential for proliferation resistance, their versatility for various fuel cycles creating premises for a better utilization of global fuel resources. Candu reactors impressive degree of fuel cycle flexibility is a consequence of its channel design, excellent neutron economy, on-power refueling, and simple fuel bundle. These features facilitate the introduction and exploitation of various fuel cycles in Candu reactors in an evolutionary fashion. The main reasons for our interest in Thorium-based fuel cycles have been, globally, to extend the energy obtainable from natural Uranium and, locally, to provide a greater degree of energy self-reliance. Applying the once through Thorium (OTT) cycle in existing and advanced Candu reactors might be seen as an evaluative concept for the sustainable development both from the economic and waste management points of view. Two Candu fuel bundles project will be used for the proposed analysis, namely the Candu standard fuel bundle with 37 fuel elements and the CANFLEX fuel bundle with 43 fuel elements. Using the Canadian proposed scheme - loading mixed ThO2-SEU CANFLEX bundles in Candu 6 reactors - simulated at lattice cell level led to promising conclusions on operation at higher fuel burnups, reduction of the fissile content to the end of the cycle, minor actinide content reduction in the spent fuel, reduction of the spent fuel radiotoxicity, presence of radionuclides emitting strong gamma radiation for proliferation resistance benefit. The calculations were performed using the lattice codes WIMS and Dragon (together with the corresponding nuclear data
Compatibility analysis of DUPIC fuel(4) - thermal hydraulic analysis
International Nuclear Information System (INIS)
Thermal-hydraulic compatibility of the DUPIC fuel bundle in the CANDU reactor has been studied. The critical channel power, the critical power ratio, the channel exit quality and the channel flow are calculated for the DUPIC and the standard fuels by using the NUCIRC code. The physical models and associated parametric values for the NUCIRC analysis of the fuels are also presented. Based upon the slave channel analysis, the critical channel power and the critical power ratios have been found to be very similar for the two fuel types. The same dryout model is used in this study for the standard and the DUPIC fuel bundles. To assess the dryout characteristics of the DUPIC fuel bundle, the ASSERT-PV code has been used for the subchannel analysis. Based upon the results of the subchannel analysis, it is found that the dryout location and the power for the two fuel types are indeed very similar. This study shows that thermal performance of the DUPIC fuel is not significantly different from that of the standard fuel
A study on the direct use of spent PWR fuel in CANDU reactors -Fuel management and safety analysis-
Energy Technology Data Exchange (ETDEWEB)
Park, Hyun Soo; Lee, Boh Wook; Choi, Hang Bok; Lee, Yung Wook; Cho, Jae Sun; Huh, Chang Wook [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)
1995-07-01
The reference DUPIC fuel composition was determined based on the reactor safety, thermal-hydraulics, economics, and refabrication aspects. The center pin of the reference DUPIC fuel bundle is poisoned with natural dysprosium. The worst LOCA analysis has shown that the transient power and heat deposition of the reference DUPIC core are the same as those of natural uranium CANDU core. The intra-code comparison has shown that the accuracy of DUPIC physics code system is comparable to the current CANDU core design code system. The sensitivity studies were performed for the refuelling schemes of DUPIC core and the 2-bundle shift refuelling scheme was selected as the standard refuelling scheme of the DUPIC core. The application of 4-bundle shift refuelling scheme will be studied in parallel as the auto-refuelling method is improved and the reference core parameters of the heterogeneous DUPIC core are defined. The heterogeneity effect was analyzed in a preliminary fashion using 33 fuel types and the random loading strategy. The refuelling simulation has shown that the DUPIC core satisfies the current CANDU 6 operating limits of channel and bundle power regardless of the fuel composition heterogeneity. The 33 fuel types used in the heterogeneity analysis was determined based on the initial enrichment and discharge burnup of the PWR fuel. 90 figs, 62 tabs, 63 refs. (Author).
Twisted Partial Actions, A Classification of Stable C*-Algebraic Bundles (Preliminary Version)
Exel, Ruy
1994-01-01
We introduce the notion of continuous twisted partial actions of a locally compact group on a C*-algebra. With such, we construct an associated C*-algebraic bundle called the semidirect product bundle. Our main theorem shows that, given any C*-algebraic bundle which is second countable and whose unit fiber algebra is stable, there is a continuous twisted partial action of the base group on the unit fiber algebra, whose associated semidirect product bundle is isomorphic to the given one.
Equilibrium Bundle Size of Rodlike Polyelectrolytes with Counterion-Induced Attractive Interactions
Henle, Mark L.; Pincus, Philip A.
2004-01-01
Multivalent counterions can induce an effective attraction between like-charged rodlike polyelectrolytes, leading to the formation of polelectrolyte bundles. In this paper, we calculate the equilibrium bundle size using a simple model in which the attraction between polyelectrolytes (assumed to be pairwise additive) is treated phenomenologically. If the counterions are point-like, they almost completely neutralize the charge of the bundle, and the equilibrium bundle size diverges. When the co...
On the Topology of Real Bundle Pairs over Nodal Symmetric Surfaces
Georgieva, Penka
2015-01-01
We give an alternative argument for the classification of real bundle pairs over smooth symmetric surfaces and extend this classification to nodal symmetric surfaces. We also classify the homotopy classes of automorphisms of real bundle pairs over symmetric surfaces. The two statements together describe the isomorphisms between real bundle pairs over symmetric surfaces up to deformation.
Semistability of Certain Bundles on Second Symmetric Power of a Curve
Dan, Krishanu; Pal, Sarbeswar
2015-01-01
Let $C$ be a smooth irreducible projective curve and $E$ be a rank 2 stable vector bundle on $C$. Then one can associate a rank 4 vector bundle $\\mathcal{F}_2(E)$ on $S^2(C)$, second symmetric power of $C$. Our goal in this article is to study semistability of this bundle.
Consideration of subchannel area of a 37-element fuel to enhance CHF
International Nuclear Information System (INIS)
CANDU-6 reactor has 380 fuel channels of a pressure tube type, which provides an independent flow passage, and each pressure tube contains 12 fuel bundles horizontally. The CHF of a CANDU fuel bundle in a horizontal fuel channel is one of the important parameters determining the thermalhydraulic safety margin as well as the trip set point of the Regional Overpower Protection (ROP) system. Hence, the CHF enhancement of a CANDU fuel bundle has been an issue for a long time and can be affected by the geometric configuration of the fuel elements as well as several appendages such as the end-plates, bearing pads, and spacers attached to the fuel elements. This paper considers the modification of the inner ring radius of a standard 37-element fuel bundle to enhance the CHF, since the CHFs of a standard 37-element fuel bundle preferably occur at the peripheral subchannels of the center rod, owing to the relative small flow area or high flow resistance under high flow conditions or the normal operating conditions of a CANDU reactor. Subchannel analysis techniques using the ASSERT-PV code were applied to investigate the local CHF characteristics according to the inner ring radius variation for the original diameter of the pressure tube. It was found that the modification of the inner ring radius is very effective in enhancing the dryout power of the fuel bundle under the reactor operating conditions through an enthalpy re-distribution of the subchannels and change in the local locations of the first CHF occurrences. (author)
In-service inspection and testing of TAPS square fuel channels
International Nuclear Information System (INIS)
Tarapur Atomic Power Station is a twin unit Boiling Water Reactor. The initial each unit design was for 210 MWe. Subsequently due to Secondary Steam Generator tube leak problem, the units were de-rated to 160 MWe in the year 1985-86. Since then each unit is operating at 160 MWe. The station has completed 32 years of successful commercial operation. Presently each reactor is re-rated to 530 MWth. There are 284 fuel assemblies in each reactor. Each fuel assembly utilizes fuel channel made of Zircaloy-4 material. The fuel channel is a square tube and it surrounds the fuel bundle. The channel is secured to the fuel bundle by means of channel fastener assembly. The fuel channel length is 158.625 and wall thickness is 0.060. The fuel channel directs the coolant flow to fuel rods. It is also used as a guide for control blade movement inside the core. It provides for the structural stability of the fuel assembly. Initially during fabrication of the fuel channel, care is taken to control its dimensions very stringently by following quality assurance plan. However, once the channels are loaded into core along with fuel bundle, it undergoes dimensional changes due to neutron exposure. The fuel channels are monitored for its dimensions due to the neutron exposure and taken out of core at appropriate time. The paper prescribes the methodology adopted for inspecting the channels and the findings of the inspection. (author)
BWR fuel cycle optimization using neural networks
International Nuclear Information System (INIS)
Highlights: → OCONN a new system to optimize all nuclear fuel management steps in a coupled way. → OCON is based on an artificial recurrent neural network to find the best combination of partial solutions to each fuel management step. → OCONN works with a fuel lattices' stock, a fuel reloads' stock and a control rod patterns' stock, previously obtained with different heuristic techniques. → Results show OCONN is able to find good combinations according the global objective function. - Abstract: In nuclear fuel management activities for BWRs, four combinatorial optimization problems are solved: fuel lattice design, axial fuel bundle design, fuel reload design and control rod patterns design. Traditionally, these problems have been solved in separated ways due to their complexity and the required computational resources. In the specialized literature there are some attempts to solve fuel reloads and control rod patterns design or fuel lattice and axial fuel bundle design in a coupled way. In this paper, the system OCONN to solve all of these problems in a coupled way is shown. This system is based on an artificial recurrent neural network to find the best combination of partial solutions to each problem, in order to maximize a global objective function. The new system works with a fuel lattices' stock, a fuel reloads' stock and a control rod patterns' stock, previously obtained with different heuristic techniques. The system was tested to design an equilibrium cycle with a cycle length of 18 months. Results show that the new system is able to find good combinations. Cycle length is reached and safety parameters are fulfilled.
International Nuclear Information System (INIS)
Highlights: • We perform an entropy generation analysis for turbulent flow through interior subchannels with three different constraints. • The results show excellent agreement with equivalent annulus solution. • For pitch to diameter ratio constraint the square subchannel is more acceptable than triangular one. • The other two constraints result in different characteristics to the above. • Effects of duty parameter, dimensionless wall heat flux and length to diameter ratio of fuel rods have been analyzed. - Abstract: Longitudinal flow through central subchannel structures in an array of fuel rods in a nuclear reactor plays an important role in removing the heat generated inside the fuel rods. In this paper, an entropy generation analysis has been carried out for assessment of the performance of an infinite triangular as well as a square subchannel for single-phase forced turbulent flow. The performance is evaluated with the objective function being the overall entropy generation in a central subchannel. Various constraints such as dimensionless flow area subtended by the array of rods, pitch to diameter ratio for the configuration of rod bundles and volumetric heat generation to power density ratio of the subchannel imposed by power restrictions have been considered. The parameters include the dimensionless wall heat flux, duty parameter, length to diameter ratio for fuel rods, Reynolds number etc. It has been observed that for a pitch to diameter ratio constraint the square subchannel generates lesser amount of entropy and thus more acceptable compared to triangular structure. For the same constraint the optimum Reynolds number shifts towards higher value compared to triangular one. For dimensionless flow area constraint, on the other hand, the analysis reveals completely reverse phenomenon
Energy Technology Data Exchange (ETDEWEB)
Lee, Dong Won; Kim, Hyungmo; Ko, Yung Joo; Choi, Hae Seob; Euh, Dong-Jin; Jeong, Ji-Young; Lee, Hyeong-Yeon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2015-05-15
For a safety analysis in a core thermal design of a sodium-cooled fast reactor (SFR), flow mixing characteristics at subchannels in a wire-wrapped rod bundle are crucial factor for the design code verification and validation. Wrapped wires make a cross flow in a circumference of the fuel rod, and this effect lets flow be mixed. Therefore the sub-channel analysis method is commonly used for thermal hydraulic analysis of a SFR, a wire wrapped sub-channel type. To measure flow mixing characteristics, a wire mesh sensing technique can be useful method. A wire mesh sensor has been traditionally used to measure the void fraction of a two-phase flow field, i.e. gas and liquid. However, the recent reports that the wire mesh sensor can be used successfully to recognize the flow field in liquid phase by injecting a tracing liquid with a different level of electric conductivity. The subchannel flow characteristics analysis method is commonly used for the thermal hydraulic analysis of a SFR, a wire wrapped subchannel type. In this study, mixing experiments were conducted successfully at a hexagonally arrayed 61-pin wire-wrapped fuel rod bundle test section. Wire mesh sensor was used to measure flow mixing characteristics. The developed post-processing method has its own merits, and flow mixing results were reasonable.
Pham, Son; Kawara, Zensaku; Yokomine, Takehiko; Kunugi, Tomoaki
2012-11-01
Playing important roles in the mass and heat transfer as well as the safety of boiling water reactor, the liquid film flow on nuclear fuel rods has been studied by different measurement techniques such as ultrasonic transmission, conductivity probe, etc. Obtained experimental data of this annular two-phase flow, however, are still not enough to construct the physical model for critical heat flux analysis especially at the micro-scale. Remain problems are mainly caused by complicated geometry of fuel rod bundles, high velocity and very unstable interface behavior of liquid and gas flow. To get over these difficulties, a new approach using a very high speed digital camera system has been introduced in this work. The test section simulating a 3×3 rectangular rod bundle was made of acrylic to allow a full optical observation of the camera. Image data were taken through Cassegrain optical system to maintain the spatiotemporal resolution up to 7 μm and 20 μs. The results included not only the real-time visual information of flow patterns, but also the quantitative data such as liquid film thickness, the droplets' size and speed distributions, and the tilt angle of wavy surfaces. These databases could contribute to the development of a new model for the annular two-phase flow. Partly supported by the Global Center of Excellence (G-COE) program (J-051) of MEXT, Japan.
Energy Technology Data Exchange (ETDEWEB)
Kim, HYungmo; Chang, Seokkyu; Lee, Dong Won; Choi, Hae Seob; Euh, Dongjin; Lee, Hyeongyeon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2014-05-15
In this SFR type of fuel rod, core subchannels are classified with interior, edge, and corner subchannels. Flow distribution of each subchannel is a crucial factor for the core thermal design, and experimental tests for the design code verification and validation in a temperature limitation analysis were conducted. To verify and validate computer codes for the SFR core thermal design, a hexagonally arrayed 37-pin wire-wrapped fuel rod bundle test section was fabricated. The measurement experiments were conducted using a well- designed test loop and iso-kinetic sampling probe. The developed iso-kinetic sampling method in the present study has its own merits, and flow rate results by sampling showed in good agreement with the preliminary CFD analysis results. In addition, the estimated mass balance error was only about 3% in the experiments. Therefore, the present methodology and results can be used in future experiments for design code verification and validation.
Frobenius Pull Backs of Vector Bundles in Higher Dimensions
Indian Academy of Sciences (India)
V Trivedi
2012-11-01
We prove that for a smooth projective variety of arbitrary dimension and for a vector bundle over , the Harder–Narasimhan filtration of a Frobenius pull back of is a refinement of the Frobenius pull back of the Harder–Narasimhan filtration of , provided there is a lower bound on the characteristic (in terms of rank of and the slope of the destabilizing sheaf of the cotangent bundle of ). We also recall some examples, due to Raynaud and Monsky, to show that some lower bound on is necessary. We also give a bound on the instability degree of the Frobenius pull back of in terms of the instability degree of and well defined invariants of .
Dimer model for Tau proteins bound in microtubule bundles
Hall, Natalie; Kluber, Alexander; Hayre, N. Robert; Singh, Rajiv; Cox, Daniel
2013-03-01
The microtubule associated protein tau is important in nucleating and maintaining microtubule spacing and structure in neuronal axons. Modification of tau is implicated as a later stage process in Alzheimer's disease, but little is known about the structure of tau in microtubule bundles. We present preliminary work on a proposed model for tau dimers in microtubule bundles (dimers are the minimal units since there is one microtubule binding domain per tau). First, a model of tau monomer was created and its characteristics explored using implicit solvent molecular dynamics simulation. Multiple simulations yield a partially collapsed form with separate positively/negatively charged clumps, but which are a factor of two smaller than required by observed microtubule spacing. We argue that this will elongate in dimer form to lower electrostatic energy at a cost of entropic ``spring'' energy. We will present preliminary results on steered molecular dynamics runs on tau dimers to estimate the actual force constant. Supported by US NSF Grant DMR 1207624.
Balanced metrics for vector bundles and polarised manifolds
DEFF Research Database (Denmark)
Garcia Fernandez, Mario; Ross, Julius
2012-01-01
We consider a notion of balanced metrics for triples (X, L, E) which depend on a parameter α, where X is smooth complex manifold with an ample line bundle L and E is a holomorphic vector bundle over X. For generic choice of α, we prove that the limit of a convergent sequence of balanced metrics...... leads to a Hermitian-Einstein metric on E and a constant scalar curvature Kähler metric in c_1(L). For special values of α, limits of balanced metrics are solutions of a system of coupled equations relating a Hermitian-Einstein metric on E and a Kähler metric in c1(L). For this, we compute the top two...
Nuclear spin relaxation due to random motion of vortex bundles
International Nuclear Information System (INIS)
The dependence of nuclear-spin-relaxation rate T1 on NMR resonant frequency for a layered superconducting sample has been analyzed theoretically. In the considered arrangement the Zeeman field has been applied in the plane of superconducting layers while the relaxation was due to interactions between the spin systems and moving flux bundles, created by the transport current flowing along superconducting layers. It has been found that the functional form of a dependence of spin-relaxation rate on the Zeeman field has two components, a Lorentzian and an oscillatory one. The characteristic rolloff frequency of the Lorentzian component depends on the pinning properties of the sample. The period of oscillations of the oscillatory component is of the order of the inverse of interaction time of flowing flux bundles with a probe nucleus. copyright 1996 The American Physical Society
On phenomena of turbulent flow through rod bundles
International Nuclear Information System (INIS)
Experimental studies have shown that the axial and azimuthal turbulence intensities in the gap regions of rod bundles increase strongly with decreasing rod spacing; the fluctuating velocities in the axial and azimuthal directions have a quasi-periodic behavior. To determine the origin of this phenomenon and its characteristic as a function of the geometry and the Reynolds number, an experimental investigation was performed on the turbulent flow in several rod bundles with different aspect ratios (P/D, W/D). Hot-wires and microphones were used for the measurements of velocity and wall pressure fluctuations. The data were evaluated to obtain spectra as well as auto and cross correlations. Based on the results, a phenomenological model is proposed to explain this phenomenon. By means of the model, the mass exchange between neighbouring subchannels is explained. (orig.)
A class of recursion operators on a tangent bundle
Vermeire, F.; Sarlet, W.; Crampin, M.
2006-06-01
We generalize the construction of a class of type (1, 1) tensor fields R on a tangent bundle which was introduced in a preceding paper. The generalization comes from the fact that, apart from a given Lagrangian, the further data consist of a type (1, 1) tensor J along the tangent bundle projection τ: TQ →Q, rather than a tensor on Q. The main features under investigation are two kinds of recursion properties of R, namely its potential invariance under the flow of the given dynamics and the property of having vanishing Nijenhuis torsion. The theory is applied, in particular, to the case of second-order dynamics coming from a Finsler metric.
A class of recursion operators on a tangent bundle
Energy Technology Data Exchange (ETDEWEB)
Vermeire, F [Department of Mathematical Physics and Astronomy, Ghent University, Krijgslaan 281, B-9000 Ghent (Belgium); Sarlet, W [Department of Mathematical Physics and Astronomy, Ghent University, Krijgslaan 281, B-9000 Ghent (Belgium); Crampin, M [Department of Mathematical Physics and Astronomy, Ghent University, Krijgslaan 281, B-9000 Ghent (Belgium)
2006-06-09
We generalize the construction of a class of type (1, 1) tensor fields R on a tangent bundle which was introduced in a preceding paper. The generalization comes from the fact that, apart from a given Lagrangian, the further data consist of a type (1, 1) tensor J along the tangent bundle projection {tau}: TQ {yields}Q, rather than a tensor on Q. The main features under investigation are two kinds of recursion properties of R, namely its potential invariance under the flow of the given dynamics and the property of having vanishing Nijenhuis torsion. The theory is applied, in particular, to the case of second-order dynamics coming from a Finsler metric.
Pressure effects on single wall carbon nanotube bundles
Energy Technology Data Exchange (ETDEWEB)
Teredesai, P.V. [Indian Inst. of Science, Bangalore (India). Dept. of Physics; Sood, A.K. [Indian Inst. of Science, Bangalore (India). Dept. of Physics; Chemistry and Physics of Materials Unit, Jawaharlal Nehru Center for Advanced Scientific Research, Jakkur Campus, Jakkur (India); Sharma, S.M.; Karmakar, S.; Sikka, S.K. [High Pressure Physics Div., Bhabha Atomic Research Center, Mumbai (India); Govindaraj, A.; Rao, C.N.R. [Chemistry and Physics of Materials Unit, Jawaharlal Nehru Center for Advanced Scientific Research, Jakkur Campus, Jakkur (India)
2001-01-01
We report high pressure Raman studies on single wall carbon nanotube bundles under hydrostatic conditions using two different pressure transmitting media, alcohol mixture and pure water. The radial and tangential modes show a blue shift when SWNT bundle is immersed in the liquids at ambient pressures. The pressure dependence of the radial modes is the same in both liquids. However, the pressure derivatives d{omega}/dP of the tangential modes are slightly higher for the water medium. Raman results are compared with studies under non-hydrostatic conditions and with recent high-pressure X-ray studies. It is seen that the mode frequencies of the recovered sample after pressure cycling from 26 GPa are downshifted by {proportional_to}7-10 cm{sup -1} as compared to the starting sample. (orig.)
An improved partial bundle method for linearly constrained minimax problems
Directory of Open Access Journals (Sweden)
Chunming Tang
2016-02-01
Full Text Available In this paper, we propose an improved partial bundle method for solving linearly constrained minimax problems. In order to reduce the number of component function evaluations, we utilize a partial cutting-planes model to substitute for the traditional one. At each iteration, only one quadratic programming subproblem needs to be solved to obtain a new trial point. An improved descent test criterion is introduced to simplify the algorithm. The method produces a sequence of feasible trial points, and ensures that the objective function is monotonically decreasing on the sequence of stability centers. Global convergence of the algorithm is established. Moreover, we utilize the subgradient aggregation strategy to control the size of the bundle and therefore overcome the difficulty of computation and storage. Finally, some preliminary numerical results show that the proposed method is effective.
Attribute-based edge bundling for visualizing social networks
Guo, Lin; Zuo, Wanli; Peng, Tao; Adhikari, Binod Kumar
2015-11-01
Most nodes in complex networks have multiple attributes, which make them hard to analyze. Because general edge bundling algorithms fail to handle complex networks as a result of their intricate features, network simplification is extremely important. This paper proposes an attribute-based edge bundling algorithm that displays similar edges in nearby locations. Meanwhile, by analyzing complex networks at a community level, the overlapping clustering of nodes is well implemented, and better clustering effects can be achieved by grouping similar edges together. On the basis of datasets with different types and sizes, the experiments illustrate the simplification degree of the intricate graphs created by the algorithm proposed, which outperforms established competitors in correctness and effectiveness.
Field emission from nanotube bundle emitters at low fields
Energy Technology Data Exchange (ETDEWEB)
Wang, Q.H.; Corrigan, T.D.; Dai, J.Y.; Chang, R.P. [Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208 (United States); Krauss, A.R. [Materials Science and Chemistry Divisions, Argonne National Laboratory, Argonne, Illinois 60439 (United States)
1997-06-01
The fabrication of nanotube field emitters with an onset field as low as 0.8 V/{mu}m is described and the low-field electron emission mechanism is discussed. These emitters are made using nanotube cathode deposit with the addition of epoxy resin. The preferred orientation of nanotubes in nanotube bundles of the deposit is preserved. The nanotube tips are sharpened by exposing the nanotube bundle surface to a microwave oxygen plasma. The local-field enhancement factor is estimated to be 8000 by using the Fowler{endash}Nordheim equation. The low onset field is attributed to the well-distributed, highly orientated sharp tips at the sample surface. {copyright} {ital 1997 American Institute of Physics.}
Persistence Length and Nanomechanics of Random Bundles of Nanotubes
Energy Technology Data Exchange (ETDEWEB)
Yakobson, Boris I. [Rice University, Department of Mechanical Engineering and Materials Science, Department of Chemistry, and Center for Nanoscale Science and Technology (United States)], E-mail: biy@rice.edu; Couchman, Luise S. [Naval Research Laboratory, Code 7130 (United States)
2006-02-15
A connection between the stiffness of carbon nanotubes (CNT) and their mesoscopic physical behaviour is presented. Persistence lengths of CNT and bundles are calculated and shown to be in macroscopic range (0.03-1 mm for an individual tube), exceeding by many orders of magnitude the typical diameters (around 1-3 nm). Consequently, thermal fluctuations can be neglected when scaling analysis is applied to randomly packed (as produced) CNT network, leading to an approximate equation of state for such material. Beyond the linear elasticity, the outmost CNT are shown to gradually split from the bent bundles; this permits access of solvent or reacting species to the CNT walls, an important mechanism promoting solubilization and chemical functionalization of nanotubes.
Multiplexed holographic memory by use of fiber bundle referencing
Zhang, Jiasen; Aruga, Tadashi
2005-04-01
We propose a volume holographic storage technique, in which a fiber bundle is used to guide the reference beam. Multiplexing is implemented by changing the incident direction of the laser beam upon the fiber bundle in the reference arm. In the technique, we make the system more compact by using a wedge prism to change the direction of the laser beam. This method has a large accessible angular scanning range and a large geometric storage bandwidth. Multiple images are stored in a LiNbO3:Fe crystal with an angular separation of 0.05° between successive holograms using a wedge prism with a deviation angle of 8°. This method is useful as a new image storage technique because of its compactness and simplicity.
Infinitesimal moduli of G2 holonomy manifolds with instanton bundles
de la Ossa, Xenia; Svanes, Eirik Eik
2016-01-01
We describe the infinitesimal moduli space of pairs $(Y, V)$ where $Y$ is a manifold with $G_2$ holonomy, and $V$ is a vector bundle on $Y$ with an instanton connection. These structures arise in connection to the moduli space of heterotic string compactifications on compact and non-compact seven dimensional spaces, e.g. domain walls. Employing the canonical $G_2$ cohomology $H^*_{{\\check{\\rm d}}_E}(Y,E)$ developed by Reyes-Carri\\'on and Fern\\'andez and Ugarte, we show that the moduli space decomposes into the sum of the bundle moduli $H^1_{{\\check{\\rm d}}_A}(Y,{\\rm End}(V))$ plus the moduli of the $G_2$ structure preserving the instanton condition. The latter piece is contained in $H^1_{{\\check{\\rm d}}_\
The special linear version of the projective bundle theorem
Ananyevskiy, Alexey
2012-01-01
A special linear Grassmann variety SGr(k,n) is the complement to the zero section of the determinant of the tautological vector bundle over Gr(k,n). For a representable ring cohomology theory A(-) with a special linear orientation and invertible stable Hopf map \\eta, including Witt groups and MSL[\\eta^{-1}], we have A(SGr(2,2n+1))=A(pt)[e]/(e^{2n}), and A(SGr(2,2n)) is a truncated polynomial algebra in two variables over A(pt). A splitting principle for such theories is established. We use the computations for the special linear Grassmann varieties to calculate A(BSL_n) in terms of the homogeneous power series in certain characteristic classes of the tautological bundle.
Wu, Jing; Wang, Heng; Guo, Xuan; Chen, Jiong
2016-08-15
The actin bundle is an array of linear actin filaments cross-linked by actin-bundling proteins, but its assembly and dynamics are not as well understood as those of the branched actin network. Here we used the Drosophila bristle as a model system to study actin bundle formation. We found that cofilin, a major actin disassembly factor of the branched actin network, promotes the formation and positioning of actin bundles in the developing bristles. Loss of function of cofilin or AIP1, a cofactor of cofilin, each resulted in increased F-actin levels and severe defects in actin bundle organization, with the defects from cofilin deficiency being more severe. Further analyses revealed that cofilin likely regulates actin bundle formation and positioning by the following means. First, cofilin promotes a large G-actin pool both locally and globally, likely ensuring rapid actin polymerization for bundle initiation and growth. Second, cofilin limits the size of a nonbundled actin-myosin network to regulate the positioning of actin bundles. Third, cofilin prevents incorrect assembly of branched and myosin-associated actin filament into bundles. Together these results demonstrate that the interaction between the dynamic dendritic actin network and the assembling actin bundles is critical for actin bundle formation and needs to be closely regulated.