WorldWideScience

Sample records for acquisition mechanisms nutrient

  1. Nutrient acquisition strategies of mammalian cells.

    Science.gov (United States)

    Palm, Wilhelm; Thompson, Craig B

    2017-06-07

    Mammalian cells are surrounded by diverse nutrients, such as glucose, amino acids, various macromolecules and micronutrients, which they can import through transmembrane transporters and endolysosomal pathways. By using different nutrient sources, cells gain metabolic flexibility to survive periods of starvation. Quiescent cells take up sufficient nutrients to sustain homeostasis. However, proliferating cells depend on growth-factor-induced increases in nutrient uptake to support biomass formation. Here, we review cellular nutrient acquisition strategies and their regulation by growth factors and cell-intrinsic nutrient sensors. We also discuss how oncogenes and tumour suppressors promote nutrient uptake and thereby support the survival and growth of cancer cells.

  2. Mycorrhizal fungi enhance plant nutrient acquisition and modulate nitrogen loss with variable water regimes.

    Science.gov (United States)

    Bowles, Timothy M; Jackson, Louise E; Cavagnaro, Timothy R

    2018-01-01

    Climate change will alter both the amount and pattern of precipitation and soil water availability, which will directly affect plant growth and nutrient acquisition, and potentially, ecosystem functions like nutrient cycling and losses as well. Given their role in facilitating plant nutrient acquisition and water stress resistance, arbuscular mycorrhizal (AM) fungi may modulate the effects of changing water availability on plants and ecosystem functions. The well-characterized mycorrhizal tomato (Solanum lycopersicum L.) genotype 76R (referred to as MYC+) and the mutant mycorrhiza-defective tomato genotype rmc were grown in microcosms in a glasshouse experiment manipulating both the pattern and amount of water supply in unsterilized field soil. Following 4 weeks of differing water regimes, we tested how AM fungi affected plant productivity and nutrient acquisition, short-term interception of a 15NH4+ pulse, and inorganic nitrogen (N) leaching from microcosms. AM fungi enhanced plant nutrient acquisition with both lower and more variable water availability, for instance increasing plant P uptake more with a pulsed water supply compared to a regular supply and increasing shoot N concentration more when lower water amounts were applied. Although uptake of the short-term 15NH4+ pulse was higher in rmc plants, possibly due to higher N demand, AM fungi subtly modulated NO3- leaching, decreasing losses by 54% at low and high water levels in the regular water regime, with small absolute amounts of NO3- leached (<1 kg N/ha). Since this study shows that AM fungi will likely be an important moderator of plant and ecosystem responses to adverse effects of more variable precipitation, management strategies that bolster AM fungal communities may in turn create systems that are more resilient to these changes. © 2017 John Wiley & Sons Ltd.

  3. Use of fluorescent nanoparticles to investigate nutrient acquisition by developing Eimeria maxima macrogametocytes.

    Science.gov (United States)

    Frölich, Sonja; Wallach, Michael

    2016-06-29

    The enteric disease coccidiosis, caused by the unicellular parasite Eimeria, is a major and reoccurring problem for the poultry industry. While the molecular machinery driving host cell invasion and oocyst wall formation has been well documented in Eimeria, relatively little is known about the host cell modifications which lead to acquisition of nutrients and parasite growth. In order to understand the mechanism(s) by which nutrients are acquired by developing intracellular gametocytes and oocysts, we have performed uptake experiments using polystyrene nanoparticles (NPs) of 40 nm and 100 nm in size, as model NPs typical of organic macromolecules. Cytochalasin D and nocodazole were used to inhibit, respectively, the polymerization of the actin and microtubules. The results indicated that NPs entered the parasite at all stages of macrogametocyte development and early oocyst maturation via an active energy dependent process. Interestingly, the smaller NPs were found throughout the parasite cytoplasm, while the larger NPs were mainly localised to the lumen of large type 1 wall forming body organelles. NP uptake was reduced after microfilament disruption and treatment with nocodazole. These observations suggest that E. maxima parasites utilize at least 2 or more uptake pathways to internalize exogenous material during the sexual stages of development.

  4. Nutrient acquisition by symbiotic fungi governs Palaeozoic climate transition.

    Science.gov (United States)

    Mills, Benjamin J W; Batterman, Sarah A; Field, Katie J

    2018-02-05

    Fossil evidence from the Rhynie chert indicates that early land plants, which evolved in a high-CO 2 atmosphere during the Palaeozoic Era, hosted diverse fungal symbionts. It is hypothesized that the rise of early non-vascular land plants, and the later evolution of roots and vasculature, drove the long-term shift towards a high-oxygen, low CO 2 climate that eventually permitted the evolution of mammals and, ultimately, humans. However, very little is known about the productivity of the early terrestrial biosphere, which depended on the acquisition of the limiting nutrient phosphorus via fungal symbiosis. Recent laboratory experiments have shown that plant-fungal symbiotic function is specific to fungal identity, with carbon-for-phosphorus exchange being either enhanced or suppressed under superambient CO 2 By incorporating these experimental findings into a biogeochemical model, we show that the differences in these symbiotic nutrient acquisition strategies could greatly alter the plant-driven changes to climate, allowing drawdown of CO 2 to glacial levels, and altering the nature of the rise of oxygen. We conclude that an accurate depiction of plant-fungal symbiotic systems, informed by high-CO 2 experiments, is key to resolving the question of how the first terrestrial ecosystems altered our planet.This article is part of a discussion meeting issue 'The Rhynie cherts: our earliest terrestrial ecosystem revisited'. © 2017 The Authors.

  5. Knowledge Capture and Acquisition Mechanisms at Kisii University

    Directory of Open Access Journals (Sweden)

    Nemwel Aming'a

    2015-07-01

    Full Text Available Knowledge management and knowledge assets have gained much prominence in recent years and are said to improve organizational performance. Knowledge capture and acquisition mechanisms enhance organizational memory and performance. However, knowledge capture and acquisition mechanisms in higher education institutions are not well known. The aim of this study was to investigate the knowledge capture and acquisition mechanisms at Kisii University. This was a case study in which data were collected through interviews and questionnaires. Purposive sampling was used to determine interview participants while questionnaire respondents were selected through stratified random sampling. Qualitative and quantitative data were analysed using SPSS® student version 14; it revealed that there were various knowledge capture and acquisition mechanisms at Kisii University. It was also established that the University encountered various challenges in knowledge capture and acquisition and lacked some essential knowledge capture and acquisition mechanisms. In this regard, this study proposed knowledge capture and acquisition guidelines that may be adopted by the University to enhance its organizational memory and performance.

  6. Net root growth and nutrient acquisition in response to predicted climate change in two contrasting heathland species

    DEFF Research Database (Denmark)

    Arndal, M.F.; Merrild, M.P.; Michelsen, A.

    2013-01-01

    Accurate predictions of nutrient acquisition by plant roots and mycorrhizas are critical in modelling plant responses to climate change.We conducted a field experiment with the aim to investigate root nutrient uptake in a future climate and studied root production by ingrowth cores, mycorrhizal...... to elevated CO2. The species-specific response to the treatments suggests different sensitivity to global change factors, which could result in changed plant competitive interactions and belowground nutrient pool sizes in response to future climate change....

  7. Changes in growth characters and nutrient acquisition of guava (psidium guajava l.) in response to coal ash

    International Nuclear Information System (INIS)

    Swain, S.C.; Padhi, S.K.

    2012-01-01

    Coal ash management would remain a great concern all over the world. Several studies proposed that there is an ample scope for safe utilization of coal ash as a soil ameliorant that may improve physical, chemical and biological properties of the soil and is a source of readily available plant micro and macro nutrient. With this concept a pot culture experiment was carried out in the eastern ghat high land zone of Odisha, India under open condition in the nursery. Different levels of coal ash and soil mixture were used in different combinations to check their effect on the physio-morphological and biochemical parameters of guava. The study on the effect of varying levels of coal ash on guava revealed that the combination of 50:50 and 25:75 coal ash and soil mixture increased the seed germination, seedling characteristics, biomass, vegetative growth and chlorophyll content of the seedlings. The increase in growth traits was attributed to increase in nutrient acquisition of plants grown under above combinations. On contrary 100% coal ash in the growing medium reduced seed germination, seedling vigour, growth and biomass per plant. The leaf nutrient status of N, P, K, Ca, Mg, S and the micro nutrients Zn, Mn, B, Mo, Fe and Cu were found to be higher in the treatments having higher proportion of coal ash in the growing medium than other treatments and the lowest was recorded in control ( no coal ash). The findings suggest that application of coal ash in certain proportion is beneficial in terms of growth parameters and nutrient acquisition in guava. (author)

  8. Disentangling value creation mechanism in cross-border acquisitions

    DEFF Research Database (Denmark)

    Wang, Daojuan; Sørensen, Olav Jull; Moini, Hamid

    2016-01-01

    This study investigates the value creation mechanism in cross-border acquisitions ( CBAs ) by employing a structural equation modeling technique and surveying 103 CBAs performed by Nordic firms. The results reveal that resource possession, resource picking, and resource utilization are three impo...... in this study, is an important step forward in merger and acquisition (M&A) research. Moreover, numerous research findings offer tactical implications for international acquirers.......This study investigates the value creation mechanism in cross-border acquisitions ( CBAs ) by employing a structural equation modeling technique and surveying 103 CBAs performed by Nordic firms. The results reveal that resource possession, resource picking, and resource utilization are three...... important strategic dimensions for realizing synergy and creating value in CBAs . Furthermore, mediation analysis shows that the two acquisition-based dynamic capabilities—value identification and resource reconfiguration—act as important mediators in how the joining firms’ resource base impacts acquisition...

  9. Plant nutrient acquisition strategies in tundra species: at which soil depth do species take up their nitrogen?

    Science.gov (United States)

    Limpens, Juul; Heijmans, Monique; Nauta, Ake; van Huissteden, Corine; van Rijssel, Sophie

    2016-04-01

    The Arctic is warming at unprecedented rates. Increased thawing of permafrost releases nutrients locked up in the previously frozen soils layers, which may initiate shifts in vegetation composition. The direction in which the vegetation shifts will co-determine whether Arctic warming is mitigated or accelerated, making understanding successional trajectories urgent. One of the key factors influencing the competitive relationships between plant species is their access to nutrients, in particularly nitrogen (N). We assessed the depth at which plant species took up N by performing a 15N tracer study, injecting 15(NH4)2SO4 at three depths (5, 15, 20 cm) into the soil in arctic tundra in north-eastern Siberia in July. In addition we explored plant nutrient acquisition strategy by analyzing natural abundances of 15N in leaves. We found that vascular plants took up 15N at all injection depths, irrespective of species, but also that species showed a clear preference for specific soil layers that coincided with their functional group (graminoids, dwarf shrubs, cryptogams). Graminoids took up most 15N at 20 cm depth nearest to the thaw front, with grasses showing a more pronounced preference than sedges. Dwarf shrubs took up most 15N at 5 cm depth, with deciduous shrubs displaying more preference than evergreens. Cryptogams did not take up any of the supplied 15N . The natural 15N abundances confirmed the pattern of nutrient acquisition from deeper soil layers in graminoids and from shallow soil layers in both deciduous and evergreen dwarf shrubs. Our results prove that graminoids and shrubs differ in their N uptake strategies, with graminoids profiting from nutrients released at the thaw front, whereas shrubs forage in the upper soil layers. The above implies that graminoids, grasses in particular, will have a competitive advantage over shrubs as the thaw front proceeds and/or superficial soil layers dry out. Our results suggest that the vertical distribution of nutrients

  10. Engineering crop nutrient efficiency for sustainable agriculture.

    Science.gov (United States)

    Chen, Liyu; Liao, Hong

    2017-10-01

    Increasing crop yields can provide food, animal feed, bioenergy feedstocks and biomaterials to meet increasing global demand; however, the methods used to increase yield can negatively affect sustainability. For example, application of excess fertilizer can generate and maintain high yields but also increases input costs and contributes to environmental damage through eutrophication, soil acidification and air pollution. Improving crop nutrient efficiency can improve agricultural sustainability by increasing yield while decreasing input costs and harmful environmental effects. Here, we review the mechanisms of nutrient efficiency (primarily for nitrogen, phosphorus, potassium and iron) and breeding strategies for improving this trait, along with the role of regulation of gene expression in enhancing crop nutrient efficiency to increase yields. We focus on the importance of root system architecture to improve nutrient acquisition efficiency, as well as the contributions of mineral translocation, remobilization and metabolic efficiency to nutrient utilization efficiency. © 2017 Institute of Botany, Chinese Academy of Sciences.

  11. Trait-abundance relation in response to nutrient addition in a Tibetan alpine meadow: The importance of species trade-off in resource conservation and acquisition.

    Science.gov (United States)

    Liu, Huiying; Li, Ying; Ren, Fei; Lin, Li; Zhu, Wenyan; He, Jin-Sheng; Niu, Kechang

    2017-12-01

    In competition-dominated communities, traits promoting resource conservation and competitive ability are expected to have an important influence on species relative abundance (SRA). Yet, few studies have tested the trait-abundance relations in the line of species trade-off in resource conservation versus acquisition, indicating by multiple traits coordination. We measured SRA and key functional traits involving leaf economic spectrum (SLA, specific leaf area; LDMC, leaf dry matter content; LCC, leaf carbon concentration; LNC, leaf nitrogen concentration; LPC, leaf phosphorus concentration; Hs, mature height) for ten common species in all plots subjected to addition of nitrogen fertilizer (N), phosphorus fertilizer (P), or both of them (NP) in a Tibetan alpine meadow. We test whether SRA is positively related with traits promoting plant resource conservation, while negatively correlated with traits promoting plant growth and resource acquisition. We found that species were primarily differentiated along a trade-off axis involving traits promoting nutrient acquisition and fast growth (e.g., LPC and SLA) versus traits promoting resource conservation and competition ability (e.g., large LDMC). We further found that SRA was positively correlated with plant height, LDMC, and LCC, but negatively associated with SLA and leaf nutrient concentration irrespective of fertilization. A stronger positive height-SRA was found in NP-fertilized plots than in other plots, while negative correlations between SRA and SLA and LPC were found in N or P fertilized plots. The results indicate that species trade-off in nutrient acquisition and resource conservation was a key driver of SRA in competition-dominated communities following fertilization, with the linkage between SRA and traits depending on plant competition for specific soil nutrient and/or light availability. The results highlight the importance of competitive exclusion in plant community assembly following fertilization and

  12. Shigella Iron Acquisition Systems and their Regulation.

    Science.gov (United States)

    Wei, Yahan; Murphy, Erin R

    2016-01-01

    Survival of Shigella within the host is strictly dependent on the ability of the pathogen to acquire essential nutrients, such as iron. As an innate immune defense against invading pathogens, the level of bio-available iron within the human host is maintained at exceeding low levels, by sequestration of the element within heme and other host iron-binding compounds. In response to sequestration mediated iron limitation, Shigella produce multiple iron-uptake systems that each function to facilitate the utilization of a specific host-associated source of nutrient iron. As a mechanism to balance the essential need for iron and the toxicity of the element when in excess, the production of bacterial iron acquisition systems is tightly regulated by a variety of molecular mechanisms. This review summarizes the current state of knowledge on the iron-uptake systems produced by Shigella species, their distribution within the genus, and the molecular mechanisms that regulate their production.

  13. Improving crop nutrient efficiency through root architecture modifications.

    Science.gov (United States)

    Li, Xinxin; Zeng, Rensen; Liao, Hong

    2016-03-01

    Improving crop nutrient efficiency becomes an essential consideration for environmentally friendly and sustainable agriculture. Plant growth and development is dependent on 17 essential nutrient elements, among them, nitrogen (N) and phosphorus (P) are the two most important mineral nutrients. Hence it is not surprising that low N and/or low P availability in soils severely constrains crop growth and productivity, and thereby have become high priority targets for improving nutrient efficiency in crops. Root exploration largely determines the ability of plants to acquire mineral nutrients from soils. Therefore, root architecture, the 3-dimensional configuration of the plant's root system in the soil, is of great importance for improving crop nutrient efficiency. Furthermore, the symbiotic associations between host plants and arbuscular mycorrhiza fungi/rhizobial bacteria, are additional important strategies to enhance nutrient acquisition. In this review, we summarize the recent advances in the current understanding of crop species control of root architecture alterations in response to nutrient availability and root/microbe symbioses, through gene or QTL regulation, which results in enhanced nutrient acquisition. © 2015 Institute of Botany, Chinese Academy of Sciences.

  14. Root morphology and mycorrhizal symbioses together shape nutrient foraging strategies of temperate trees.

    Science.gov (United States)

    Chen, Weile; Koide, Roger T; Adams, Thomas S; DeForest, Jared L; Cheng, Lei; Eissenstat, David M

    2016-08-02

    Photosynthesis by leaves and acquisition of water and minerals by roots are required for plant growth, which is a key component of many ecosystem functions. Although the role of leaf functional traits in photosynthesis is generally well understood, the relationship of root functional traits to nutrient uptake is not. In particular, predictions of nutrient acquisition strategies from specific root traits are often vague. Roots of nearly all plants cooperate with mycorrhizal fungi in nutrient acquisition. Most tree species form symbioses with either arbuscular mycorrhizal (AM) or ectomycorrhizal (EM) fungi. Nutrients are distributed heterogeneously in the soil, and nutrient-rich "hotspots" can be a key source for plants. Thus, predicting the foraging strategies that enable mycorrhizal root systems to exploit these hotspots can be critical to the understanding of plant nutrition and ecosystem carbon and nutrient cycling. Here, we show that in 13 sympatric temperate tree species, when nutrient availability is patchy, thinner root species alter their foraging to exploit patches, whereas thicker root species do not. Moreover, there appear to be two distinct pathways by which thinner root tree species enhance foraging in nutrient-rich patches: AM trees produce more roots, whereas EM trees produce more mycorrhizal fungal hyphae. Our results indicate that strategies of nutrient foraging are complementary among tree species with contrasting mycorrhiza types and root morphologies, and that predictable relationships between below-ground traits and nutrient acquisition emerge only when both roots and mycorrhizal fungi are considered together.

  15. Nitrogen regulation of transpiration controls mass-flow acquisition of nutrients.

    Science.gov (United States)

    Matimati, Ignatious; Verboom, G Anthony; Cramer, Michael D

    2014-01-01

    Transpiration may enhance mass-flow of nutrients to roots, especially in low-nutrient soils or where the root system is not extensively developed. Previous work suggested that nitrogen (N) may regulate mass-flow of nutrients. Experiments were conducted to determine whether N regulates water fluxes, and whether this regulation has a functional role in controlling the mass-flow of nutrients to roots. Phaseolus vulgaris were grown in troughs designed to create an N availability gradient by restricting roots from intercepting a slow-release N source, which was placed at one of six distances behind a 25 μm mesh from which nutrients could move by diffusion or mass-flow (termed 'mass-flow' treatment). Control plants had the N source supplied directly to their root zone so that N was available through interception, mass-flow, and diffusion (termed 'interception' treatment). 'Mass-flow' plants closest to the N source exhibited 2.9-fold higher transpiration (E), 2.6-fold higher stomatal conductance (gs), 1.2-fold higher intercellular [CO2] (Ci), and 3.4-fold lower water use efficiency than 'interception' plants, despite comparable values of photosynthetic rate (A). E, gs, and Ci first increased and then decreased with increasing distance from the N source to values even lower than those of 'interception' plants. 'Mass-flow' plants accumulated phosphorus and potassium, and had maximum concentrations at 10mm from the N source. Overall, N availability regulated transpiration-driven mass-flow of nutrients from substrate zones that were inaccessible to roots. Thus when water is available, mass-flow may partially substitute for root density in providing access to nutrients without incurring the costs of root extension, although the efficacy of mass-flow also depends on soil nutrient retention and hydraulic properties.

  16. An intelligent data acquisition system for fluid mechanics research

    Science.gov (United States)

    Cantwell, E. R.; Zilliac, G.; Fukunishi, Y.

    1989-01-01

    This paper describes a novel data acquisition system for use with wind-tunnel probe-based measurements, which incorporates a degree of specific fluid dynamics knowledge into a simple expert system-like control program. The concept was developed with a rudimentary expert system coupled to a probe positioning mechanism operating in a small-scale research wind tunnel. The software consisted of two basic elements, a general-purpose data acquisition system and the rulebased control element to take and analyze data and supplying decisions as to where to measure, how many data points to take, and when to stop. The system was validated in an experiment involving a vortical flow field, showing that it was possible to increase the resolution of the experiment or, alternatively, reduce the total number of data points required, to achieve parity with the results of most conventional data acquisition approaches.

  17. Root proliferation in decaying roots and old root channels: A nutrient conservation mechanism in oligotrophic mangrove forests?

    Science.gov (United States)

    McKee, K.L.

    2001-01-01

    1. In oligotrophic habitats, proliferation of roots in nutrient-rich microsites may contribute to overall nutrient conservation by plants. Peat-based soils on mangrove islands in Belize are characterized by the presence of decaying roots and numerous old root channels (0.1-3.5 cm diameter) that become filled with living and highly branched roots of Rhizophora mangle and Avicennia germinans. The objectives of this study were to quantify the proliferation of roots in these microsites and to determine what causes this response. 2. Channels formed by the refractory remains of mangrove roots accounted for only 1-2% of total soil volume, but the proportion of roots found within channels varied from 9 to 24% of total live mass. Successive generations of roots growing inside increasingly smaller root channels were also found. 3. When artificial channels constructed of PVC pipe were buried in the peat for 2 years, those filled with nutrient-rich organic matter had six times more roots than empty or sand-filled channels, indicating a response to greater nutrient availability rather than to greater space or less impedance to root growth. 4. Root proliferation inside decaying roots may improve recovery of nutrients released from decomposing tissues before they can be leached or immobilized in this intertidal environment. Greatest root proliferation in channels occurred in interior forest zones characterized by greater soil waterlogging, which suggests that this may be a strategy for nutrient capture that minimizes oxygen losses from the whole root system. 5. Improved efficiency of nutrient acquisition at the individual plant level has implications for nutrient economy at the ecosystem level and may explain, in part, how mangroves persist and grow in nutrient-poor environments.

  18. Early root overproduction not triggered by nutrients decisive for competitive success belowground.

    Directory of Open Access Journals (Sweden)

    Francisco M Padilla

    Full Text Available Theory predicts that plant species win competition for a shared resource by more quickly preempting the resource in hotspots and by depleting resource levels to lower concentrations than its competitors. Competition in natural grasslands largely occurs belowground, but information regarding root interactions is limited, as molecular methods quantifying species abundance belowground have only recently become available.In monoculture, the grass Festuca rubra had higher root densities and a faster rate of soil nitrate depletion than Plantago lanceolata, projecting the first as a better competitor for nutrients. However, Festuca lost in competition with Plantago. Plantago not only replaced the lower root mass of its competitor, but strongly overproduced roots: with only half of the plants in mixture than in monoculture, Plantago root densities in mixture were similar or higher than those in its monocultures. These responses occurred equally in a nutrient-rich and nutrient-poor soil layer, and commenced immediately at the start of the experiment when root densities were still low and soil nutrient concentrations high.Our results suggest that species may achieve competitive superiority for nutrients by root growth stimulation prior to nutrient depletion, induced by the presence of a competitor species, rather than by a better ability to compete for nutrients per se. The root overproduction by which interspecific neighbors are suppressed independent of nutrient acquisition is consistent with predictions from game theory. Our results emphasize that root competition may be driven by other mechanisms than is currently assumed. The long-term consequences of these mechanisms for community dynamics are discussed.

  19. MDAS2: A Data Acquisition System for the Soil Mechanic Laboratory

    International Nuclear Information System (INIS)

    Alberdi, J.; Barcala, J. M.

    2000-01-01

    The Soil Mechanic Laboratory in CIEMAT is working to characterize a bentonite which may be use in the storage of radioactive waste. The bentonite is studied with several tests, frequently used in soil mechanics. This document describes the data acquisition system used in one of these experiments

  20. Words, rules, and mechanisms of language acquisition.

    Science.gov (United States)

    Endress, Ansgar D; Bonatti, Luca L

    2016-01-01

    We review recent artificial language learning studies, especially those following Endress and Bonatti (Endress AD, Bonatti LL. Rapid learning of syllable classes from a perceptually continuous speech stream. Cognition 2007, 105:247-299), suggesting that humans can deploy a variety of learning mechanisms to acquire artificial languages. Several experiments provide evidence for multiple learning mechanisms that can be deployed in fluent speech: one mechanism encodes the positions of syllables within words and can be used to extract generalization, while the other registers co-occurrence statistics of syllables and can be used to break a continuum into its components. We review dissociations between these mechanisms and their potential role in language acquisition. We then turn to recent criticisms of the multiple mechanisms hypothesis and show that they are inconsistent with the available data. Our results suggest that artificial and natural language learning is best understood by dissecting the underlying specialized learning abilities, and that these data provide a rare opportunity to link important language phenomena to basic psychological mechanisms. For further resources related to this article, please visit the WIREs website. © 2015 Wiley Periodicals, Inc.

  1. Production compilation : A simple mechanism to model complex skill acquisition

    NARCIS (Netherlands)

    Taatgen, N.A.; Lee, F.J.

    2003-01-01

    In this article we describe production compilation, a mechanism for modeling skill acquisition. Production compilation has been developed within the ACT-Rational (ACT-R; J. R. Anderson, D. Bothell, M. D. Byrne, & C. Lebiere, 2002) cognitive architecture and consists of combining and specializing

  2. Data acquisition system for charge-division mechanism based on FPGA

    International Nuclear Information System (INIS)

    Yang Litao; Li Dongcang; Yang Lei; Wu Huaiyi; Qi Zhong

    2010-01-01

    Design a system of Peak value acquisition, data processing and data output for 4 channels nuclear signal at the same time by FPGA that base on the basic principle of position information readout for particle through Charger-division Mechanism. In view of the randomness of nuclear signal, so insert asynchronous FIFO in the system, which greatly improve the sampling rate of system. In the article has produced the conjunctive relation and inner circuit structure and give out simulation. From here, you can see the great power of FPGA which used in nuclear data acquisition and processing system. (authors)

  3. Mechanisms of rule acquisition and rule following in inductive reasoning.

    Science.gov (United States)

    Crescentini, Cristiano; Seyed-Allaei, Shima; De Pisapia, Nicola; Jovicich, Jorge; Amati, Daniele; Shallice, Tim

    2011-05-25

    Despite the recent interest in the neuroanatomy of inductive reasoning processes, the regional specificity within prefrontal cortex (PFC) for the different mechanisms involved in induction tasks remains to be determined. In this study, we used fMRI to investigate the contribution of PFC regions to rule acquisition (rule search and rule discovery) and rule following. Twenty-six healthy young adult participants were presented with a series of images of cards, each consisting of a set of circles numbered in sequence with one colored blue. Participants had to predict the position of the blue circle on the next card. The rules that had to be acquired pertained to the relationship among succeeding stimuli. Responses given by subjects were categorized in a series of phases either tapping rule acquisition (responses given up to and including rule discovery) or rule following (correct responses after rule acquisition). Mid-dorsolateral PFC (mid-DLPFC) was active during rule search and remained active until successful rule acquisition. By contrast, rule following was associated with activation in temporal, motor, and medial/anterior prefrontal cortex. Moreover, frontopolar cortex (FPC) was active throughout the rule acquisition and rule following phases before a rule became familiar. We attributed activation in mid-DLPFC to hypothesis generation and in FPC to integration of multiple separate inferences. The present study provides evidence that brain activation during inductive reasoning involves a complex network of frontal processes and that different subregions respond during rule acquisition and rule following phases.

  4. Enhancement of faba bean competitive ability by arbuscular mycorrhizal fungi is highly correlated with dynamic nutrient acquisition by competing wheat.

    Science.gov (United States)

    Qiao, Xu; Bei, Shuikuan; Li, Chunjie; Dong, Yan; Li, Haigang; Christie, Peter; Zhang, Fusuo; Zhang, Junling

    2015-01-29

    The mechanistic understanding of the dynamic processes linking nutrient acquisition and biomass production of competing individuals can be instructive in optimizing intercropping systems. Here, we examine the effect of inoculation with Funneliformis mosseae on competitive dynamics between wheat and faba bean. Wheat is less responsive to mycorrhizal inoculation. Both inoculated and uninoculated wheat attained the maximum instantaneous N and P capture approximately five days before it attained the maximum instantaneous biomass production, indicating that wheat detected the competitor and responded physiologically to resource limitation prior to the biomass response. By contrast, the instantaneous N and P capture by uninoculated faba bean remained low throughout the growth period, and plant growth was not significantly affected by competing wheat. However, inoculation substantially enhanced biomass production and N and P acquisition of faba bean. The exudation of citrate and malate acids and acid phosphatase activity were greater in mycorrhizal than in uninoculated faba bean, and rhizosphere pH tended to decrease. We conclude that under N and P limiting conditions, temporal separation of N and P acquisition by competing plant species and enhancement of complementary resource use in the presence of AMF might be attributable to the competitive co-existence of faba bean and wheat.

  5. A new theory of plant-microbe nutrient competition resolves inconsistencies between observations and model predictions.

    Science.gov (United States)

    Zhu, Qing; Riley, William J; Tang, Jinyun

    2017-04-01

    Terrestrial plants assimilate anthropogenic CO 2 through photosynthesis and synthesizing new tissues. However, sustaining these processes requires plants to compete with microbes for soil nutrients, which therefore calls for an appropriate understanding and modeling of nutrient competition mechanisms in Earth System Models (ESMs). Here, we survey existing plant-microbe competition theories and their implementations in ESMs. We found no consensus regarding the representation of nutrient competition and that observational and theoretical support for current implementations are weak. To reconcile this situation, we applied the Equilibrium Chemistry Approximation (ECA) theory to plant-microbe nitrogen competition in a detailed grassland 15 N tracer study and found that competition theories in current ESMs fail to capture observed patterns and the ECA prediction simplifies the complex nature of nutrient competition and quantitatively matches the 15 N observations. Since plant carbon dynamics are strongly modulated by soil nutrient acquisition, we conclude that (1) predicted nutrient limitation effects on terrestrial carbon accumulation by existing ESMs may be biased and (2) our ECA-based approach may improve predictions by mechanistically representing plant-microbe nutrient competition. © 2016 by the Ecological Society of America.

  6. EXTERNAL CORPORATE GOVERNANCE MECHANISMS: MERGERS AND ACQUISITIONS ON THE BRAZILIAN MARKET

    Directory of Open Access Journals (Sweden)

    Mario Augusto Parente Monteiro

    2014-08-01

    Full Text Available The research aims to answer the following question: What is the effectiveness of mergers and acquisitions in the Brazilian market as external corporate governance mechanism? The main objective of the study is to verify if mergers and acquisitions operations in Brazilian market may act as an external mechanism of corporate governance, replacing managers and, as a consequence of changes in management, improving financial performance. The study is exploratory, qualitative in its approach, supported by documentary research on secondary data concerning an intentional sample of Brazilian companies aiming to identify the effect of M&A operations on the corporate governance structure of the acquired firm and on its financial results. Data obtained on the website of the Brazilian Securities and Exchange Commission (CVM, related to Brazilian M&A operations in the period 2005-2010, were analyzed. Although M&A operations in Brazil were found to have disciplinary nature in our sample of firms in the studied period, our results are inconclusive regarding the effectiveness of these transactions and external governance mechanisms.

  7. Nutrient-dependent/pheromone-controlled adaptive evolution: a model

    Directory of Open Access Journals (Sweden)

    James Vaughn Kohl

    2013-06-01

    Full Text Available Background: The prenatal migration of gonadotropin-releasing hormone (GnRH neurosecretory neurons allows nutrients and human pheromones to alter GnRH pulsatility, which modulates the concurrent maturation of the neuroendocrine, reproductive, and central nervous systems, thus influencing the development of ingestive behavior, reproductive sexual behavior, and other behaviors. Methods: This model details how chemical ecology drives adaptive evolution via: (1 ecological niche construction, (2 social niche construction, (3 neurogenic niche construction, and (4 socio-cognitive niche construction. This model exemplifies the epigenetic effects of olfactory/pheromonal conditioning, which alters genetically predisposed, nutrient-dependent, hormone-driven mammalian behavior and choices for pheromones that control reproduction via their effects on luteinizing hormone (LH and systems biology. Results: Nutrients are metabolized to pheromones that condition behavior in the same way that food odors condition behavior associated with food preferences. The epigenetic effects of olfactory/pheromonal input calibrate and standardize molecular mechanisms for genetically predisposed receptor-mediated changes in intracellular signaling and stochastic gene expression in GnRH neurosecretory neurons of brain tissue. For example, glucose and pheromones alter the hypothalamic secretion of GnRH and LH. A form of GnRH associated with sexual orientation in yeasts links control of the feedback loops and developmental processes required for nutrient acquisition, movement, reproduction, and the diversification of species from microbes to man. Conclusion: An environmental drive evolved from that of nutrient ingestion in unicellular organisms to that of pheromone-controlled socialization in insects. In mammals, food odors and pheromones cause changes in hormones such as LH, which has developmental affects on pheromone-controlled sexual behavior in nutrient-dependent reproductively

  8. Dual RNA-seq transcriptional analysis of wheat roots colonized by Azospirillum brasilense reveals up-regulation of nutrient acquisition and cell cycle genes.

    Science.gov (United States)

    Camilios-Neto, Doumit; Bonato, Paloma; Wassem, Roseli; Tadra-Sfeir, Michelle Z; Brusamarello-Santos, Liziane C C; Valdameri, Glaucio; Donatti, Lucélia; Faoro, Helisson; Weiss, Vinicius A; Chubatsu, Leda S; Pedrosa, Fábio O; Souza, Emanuel M

    2014-05-16

    The rapid growth of the world's population demands an increase in food production that no longer can be reached by increasing amounts of nitrogenous fertilizers. Plant growth promoting bacteria (PGPB) might be an alternative to increase nitrogenous use efficiency (NUE) in important crops such wheat. Azospirillum brasilense is one of the most promising PGPB and wheat roots colonized by A. brasilense is a good model to investigate the molecular basis of plant-PGPB interaction including improvement in plant-NUE promoted by PGPB. We performed a dual RNA-Seq transcriptional profiling of wheat roots colonized by A. brasilense strain FP2. cDNA libraries from biological replicates of colonized and non-inoculated wheat roots were sequenced and mapped to wheat and A. brasilense reference sequences. The unmapped reads were assembled de novo. Overall, we identified 23,215 wheat expressed ESTs and 702 A. brasilense expressed transcripts. Bacterial colonization caused changes in the expression of 776 wheat ESTs belonging to various functional categories, ranging from transport activity to biological regulation as well as defense mechanism, production of phytohormones and phytochemicals. In addition, genes encoding proteins related to bacterial chemotaxi, biofilm formation and nitrogen fixation were highly expressed in the sub-set of A. brasilense expressed genes. PGPB colonization enhanced the expression of plant genes related to nutrient up-take, nitrogen assimilation, DNA replication and regulation of cell division, which is consistent with a higher proportion of colonized root cells in the S-phase. Our data support the use of PGPB as an alternative to improve nutrient acquisition in important crops such as wheat, enhancing plant productivity and sustainability.

  9. Transformation mechanism of nutrient elements in the process of biochar preparation for returning biochar to soil

    Institute of Scientific and Technical Information of China (English)

    Shuangshuang Tian; Zhongxin Tan; Alfreda Kasiulienė; Ping Ai

    2017-01-01

    Returning biochar to soil is a heavily researched topic because biochar functions well for soil improvement. There is a significant loss of nutrients, which occurs during biochar preparation before biochar is returned to soil, thereby seriously undermining biochar's efficacy. Therefore, the transformation mechanisms of biochar pH, mass, nutrients and metals during pyrolysis under different atmospheres and temperatures were studied such that the best method for biochar preparation could be developed. Several conclusions can be reached: (1) a CO2 atmosphere is better than a N2 atmosphere for biochar preparation, although preparation in a CO2 atmosphere is not a common practice for biochar producers; (2) 350 ℃ is the best temperature for biochar preparation because the amount of nutrient loss is notably low based on the premise of straw transferred into biochar; and (3) transforming mechanisms of pH, N, P and K are also involved in the biochar preparation process.

  10. Data Acquisition System Design for Advanced Core-Cooling Mechanism Experiment

    International Nuclear Information System (INIS)

    Zhang, Ziyang; Tian, Fang; Zhang, Tao; Wang, Shen

    2011-01-01

    Data Acquisition System (DAS) design for Advanced Core-Cooling Mechanism Experiment(ACME) is studied in the paper. DAS is an important connection between test facility and result analysis. Firstly, it introduces DAS and its design requirement for ACME. Nearly one thousand data resources need record in ACME. They have different types and acquisition frequencies. In order to record these data, a large scale and high speed layered data acquisition system is developed. Secondly, it discusses the DAS design for ACME, including the analog signal adjusting circuits, clock circuit design, sampling frequencies, data storage and transmission by large database system, anti-interference and etc. Analog signal adjusting circuits are necessary to deal with different kinds of input data to gain standard data resources. Some data change slowly and others change in several seconds according to the test performed on ACME. So it is difficult to use uniform sampling frequencies, and a layered data acquisition system is introduced. A large database is built to store data for ACME test, which keeps data safer and makes subsequent data handling more convenient. A database hot backup is also applied to ensure data safety. The software of DAS is built by Labview, which can provide intuitionist result and friendly interface. Another important function of DAS is the ACME safety protection. Finally, the characteristics and improvement of DAS for ACME is analyzed compared to other test facility. Besides friendly user interface, DAS of ACME can also assure higher data precision and sampling frequency

  11. The role of arbuscular mycorrhizas in reducing soil nutrient loss.

    Science.gov (United States)

    Cavagnaro, Timothy R; Bender, S Franz; Asghari, Hamid R; Heijden, Marcel G A van der

    2015-05-01

    Substantial amounts of nutrients are lost from soils via leaching and as gaseous emissions. These losses can be environmentally damaging and expensive in terms of lost agricultural production. Plants have evolved many traits to optimize nutrient acquisition, including the formation of arbuscular mycorrhizas (AM), associations of plant roots with fungi that acquire soil nutrients. There is emerging evidence that AM have the ability to reduce nutrient loss from soils by enlarging the nutrient interception zone and preventing nutrient loss after rain-induced leaching events. Until recently, this important ecosystem service of AM had been largely overlooked. Here we review the role of AM in reducing nutrient loss and conclude that this role cannot be ignored if we are to increase global food production in an environmentally sustainable manner. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Nutrient tasting and signaling mechanisms in the gut V. Mechanisms of immunologic sensation of intestinal contents.

    LENUS (Irish Health Repository)

    Shanahan, F

    2012-02-03

    Immune perception of intestinal contents reflects a functional dualism with systemic hyporesponsiveness to dietary antigens and resident microflora (oral tolerance) and active immune responses to mucosal pathogens. This facilitates optimal absorption of dietary nutrients while conserving immunologic resources for episodic pathogenic challenge. Discrimination between dangerous and harmless antigens within the enteric lumen requires continual sampling of the microenvironment by multiple potential pathways, innate and adaptive recognition mechanisms, bidirectional lymphoepithelial signaling, and rigorous control of effector responses. Errors in these processes disrupt mucosal homeostasis and are associated with food hypersensitivity and mucosal inflammation. Mechanisms of mucosal immune perception and handling of dietary proteins and other antigens have several practical and theoretical implications including vaccine design, therapy of systemic autoimmunity, and alteration of enteric flora with probiotics.

  13. Nutrient removal by apple, pear and cherry nursery trees

    OpenAIRE

    Giovambattista Sorrenti; Maurizio Quartieri; Silvia Salvi; Moreno Toselli

    2017-01-01

    Given that nursery is a peculiar environment, the amount of nutrients removed by nursery trees represents a fundamental acquisition to optimise fertilisation strategies, with economic and environmental implications. In this context, we determined nutrient removal by apple, pear and cherry nursery trees at the end of the nursery growing cycle. We randomly removed 5 leafless apple (Golden Delicious/EMLA M9; density of 30,000 trees ha–1), pear (Santa Maria/Adams; density of 30,000 trees ha–1) an...

  14. Octopamine connects nutrient cues to lipid metabolism upon nutrient deprivation.

    Science.gov (United States)

    Tao, Jun; Ma, Yi-Cheng; Yang, Zhong-Shan; Zou, Cheng-Gang; Zhang, Ke-Qin

    2016-05-01

    Starvation is probably the most common stressful situation in nature. In vertebrates, elevation of the biogenic amine norepinephrine levels is common during starvation. However, the precise role of norepinephrine in nutrient deprivation remains largely unknown. We report that in the free-living nematode Caenorhabditis elegans, up-regulation of the biosynthesis of octopamine, the invertebrate counterpart of norepinephrine, serves as a mechanism to adapt to starvation. During nutrient deprivation, the nuclear receptor DAF-12, known to sense nutritional cues, up-regulates the expression of tbh-1 that encodes tyramine β-hydroxylase, a key enzyme for octopamine biosynthesis, in the RIC neurons. Octopamine induces the expression of the lipase gene lips-6 via its receptor SER-3 in the intestine. LIPS-6, in turn, elicits lipid mobilization. Our findings reveal that octopamine acts as an endocrine regulator linking nutrient cues to lipolysis to maintain energy homeostasis, and suggest that such a mechanism may be evolutionally conserved in diverse organisms.

  15. Antioxidant and anti-inflammatory nutrient status, supplementation, and mechanisms in patients with schizophrenia.

    Science.gov (United States)

    Mitra, Sumedha; Natarajan, Radhika; Ziedonis, Douglas; Fan, Xiaoduo

    2017-08-01

    Over 50 million people around the world suffer from schizophrenia, a severe mental illness characterized by misinterpretation of reality. Although the exact causes of schizophrenia are still unknown, studies have indicated that inflammation and oxidative stress may play an important role in the etiology of the disease. Pro-inflammatory cytokines are crucial for normal central nervous development and proper functioning of neural networks and neurotransmitters. Patients with schizophrenia tend to have abnormal immune activation resulting in elevated pro-inflammatory cytokine levels, ultimately leading to functional brain impairments. Patients with schizophrenia have also been found to suffer from oxidative stress, a result of an imbalance between the production of free radicals and the ability to detoxify their harmful effects. Furthermore, inflammation and oxidative stress are implicated to be related to the severity of psychotic symptoms. Several nutrients are known to have anti-inflammatory and antioxidant functions through various mechanisms in our body. The present review evaluates studies and literature that address the status and supplementation of omega-3 polyunsaturated fatty acids, vitamin D, B vitamins (B6, folate, B12), vitamin E, and carotenoids in different stages of schizophrenia. The possible anti-inflammatory and antioxidant mechanisms of action of each nutrient are discussed. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Heme Synthesis and Acquisition in Bacterial Pathogens.

    Science.gov (United States)

    Choby, Jacob E; Skaar, Eric P

    2016-08-28

    Bacterial pathogens require the iron-containing cofactor heme to cause disease. Heme is essential to the function of hemoproteins, which are involved in energy generation by the electron transport chain, detoxification of host immune effectors, and other processes. During infection, bacterial pathogens must synthesize heme or acquire heme from the host; however, host heme is sequestered in high-affinity hemoproteins. Pathogens have evolved elaborate strategies to acquire heme from host sources, particularly hemoglobin, and both heme acquisition and synthesis are important for pathogenesis. Paradoxically, excess heme is toxic to bacteria and pathogens must rely on heme detoxification strategies. Heme is a key nutrient in the struggle for survival between host and pathogen, and its study has offered significant insight into the molecular mechanisms of bacterial pathogenesis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Relative Roles of Soil Moisture, Nutrient Supply, Depth, and Mechanical Impedance in Determining Composition and Structure of Wisconsin Prairies.

    Science.gov (United States)

    Wernerehl, Robert W; Givnish, Thomas J

    2015-01-01

    Ecologists have long classified Midwestern prairies based on compositional variation assumed to reflect local gradients in moisture availability. The best known classification is based on Curtis' continuum index (CI), calculated using the presence of indicator species thought centered on different portions of an underlying moisture gradient. Direct evidence of the extent to which CI reflects differences in moisture availability has been lacking, however. Many factors that increase moisture availability (e.g., soil depth, silt content) also increase nutrient supply and decrease soil mechanical impedance; the ecological effects of the last have rarely been considered in any ecosystem. Decreased soil mechanical impedance should increase the availability of soil moisture and nutrients by reducing the root costs of retrieving both. Here we assess the relative importance of soil moisture, nutrient supply, and mechanical impedance in determining prairie composition and structure. We used leaf δ13C of C3 plants as a measure of growing-season moisture availability, cation exchange capacity (CEC) x soil depth as a measure of mineral nutrient availability, and penetrometer data as a measure of soil mechanical impedance. Community composition and structure were assessed in 17 remnant prairies in Wisconsin which vary little in annual precipitation. Ordination and regression analyses showed that δ13C increased with CI toward "drier" sites, and decreased with soil depth and % silt content. Variation in δ13C among remnants was 2.0‰, comparable to that along continental gradients from ca. 500-1500 mm annual rainfall. As predicted, LAI and average leaf height increased significantly toward "wetter" sites. CI accounted for 54% of compositional variance but δ13C accounted for only 6.2%, despite the strong relationships of δ13C to CI and CI to composition. Compositional variation reflects soil fertility and mechanical impedance more than moisture availability. This study is the

  18. Relative Roles of Soil Moisture, Nutrient Supply, Depth, and Mechanical Impedance in Determining Composition and Structure of Wisconsin Prairies

    Science.gov (United States)

    Wernerehl, Robert W.; Givnish, Thomas J.

    2015-01-01

    Ecologists have long classified Midwestern prairies based on compositional variation assumed to reflect local gradients in moisture availability. The best known classification is based on Curtis’ continuum index (CI), calculated using the presence of indicator species thought centered on different portions of an underlying moisture gradient. Direct evidence of the extent to which CI reflects differences in moisture availability has been lacking, however. Many factors that increase moisture availability (e.g., soil depth, silt content) also increase nutrient supply and decrease soil mechanical impedance; the ecological effects of the last have rarely been considered in any ecosystem. Decreased soil mechanical impedance should increase the availability of soil moisture and nutrients by reducing the root costs of retrieving both. Here we assess the relative importance of soil moisture, nutrient supply, and mechanical impedance in determining prairie composition and structure. We used leaf δ13C of C3 plants as a measure of growing-season moisture availability, cation exchange capacity (CEC) x soil depth as a measure of mineral nutrient availability, and penetrometer data as a measure of soil mechanical impedance. Community composition and structure were assessed in 17 remnant prairies in Wisconsin which vary little in annual precipitation. Ordination and regression analyses showed that δ13C increased with CI toward “drier” sites, and decreased with soil depth and % silt content. Variation in δ13C among remnants was 2.0‰, comparable to that along continental gradients from ca. 500–1500 mm annual rainfall. As predicted, LAI and average leaf height increased significantly toward “wetter” sites. CI accounted for 54% of compositional variance but δ13C accounted for only 6.2%, despite the strong relationships of δ13C to CI and CI to composition. Compositional variation reflects soil fertility and mechanical impedance more than moisture availability. This

  19. Nutrient foraging strategies are associated with productivity and population growth in forest shrubs

    Science.gov (United States)

    Stone, Bram W. G.; Faillace, Cara A.; Lafond, Jonathan J.; Baumgarten, Joni M.; Mozdzer, Thomas J.; Dighton, John; Meiners, Scott J.; Grabosky, Jason C.; Ehrenfeld, Joan G.

    2017-01-01

    Background and Aims Temperate deciduous forest understoreys are experiencing widespread changes in community composition, concurrent with increases in rates of nitrogen supply. These shifts in plant abundance may be driven by interspecific differences in nutrient foraging (i.e. conservative vs. acquisitive strategies) and, thus, adaptation to contemporary nutrient loading conditions. This study sought to determine if interspecific differences in nutrient foraging could help explain patterns of shrub success and decline in eastern North American forests. Methods Using plants grown in a common garden, fine root traits associated with nutrient foraging were measured for six shrub species. Traits included the mean and skewness of the root diameter distribution, specific root length (SRL), C:N ratio, root tissue density, arbuscular mycorrhizal colonization and foraging precision. Above- and below-ground productivity were also determined for the same plants, and population growth rates were estimated using data from a long-term study of community dynamics. Root traits were compared among species and associations among root traits, measures of productivity and rates of population growth were evaluated. Key Results Species fell into groups having thick or thin root forms, which correspond to conservative vs. acquisitive nutrient foraging strategies. Interspecific variation in root morphology and tissue construction correlated with measures of productivity and rates of cover expansion. Of the four species with acquisitive traits, three were introduced species that have become invasive in recent decades, and the fourth was a weedy native. In contrast, the two species with conservative traits were historically dominant shrubs that have declined in abundance in eastern North American forests. Conclusions In forest understoreys of eastern North America, elevated nutrient availability may impose a filter on species success in addition to above-ground processes such as herbivory

  20. Vigorous root growth is a better indicator of early nutrient uptake than root hair traits in spring wheat grown under low fertility

    DEFF Research Database (Denmark)

    Wang, Yaosheng; Thorup-Kristensen, Kristian; Jensen, Lars Stoumann

    2016-01-01

    . Vigorous root growth, however, was a better indicator of early nutrient acquisition than RHL and RHD. Vigorous root growth and long and dense root hairs ensured efficient acquisition of macro- and micronutrients during early growth and a high root length to shoot dry matter ratio favored high macronutrient......A number of root and root hair traits have been proposed as important for nutrient acquisition. However, there is still a need for knowledge on which traits are most important in determining macro- and micronutrient uptake at low soil fertility. This study investigated the variations in root growth...... vigor and root hair length (RHL) and density (RHD) among spring wheat genotypes and their relationship to nutrient concentrations and uptake during early growth. Six spring wheat genotypes were grown in a soil with low nutrient availability. The root and root hair traits as well as the concentration...

  1. Reconciling genetic evolution and the associative learning account of mirror neurons through data-acquisition mechanisms.

    Science.gov (United States)

    Lotem, Arnon; Kolodny, Oren

    2014-04-01

    An associative learning account of mirror neurons should not preclude genetic evolution of its underlying mechanisms. On the contrary, an associative learning framework for cognitive development should seek heritable variation in the learning rules and in the data-acquisition mechanisms that construct associative networks, demonstrating how small genetic modifications of associative elements can give rise to the evolution of complex cognition.

  2. Effects of different mechanized soil fertilization methods on corn nutrient accumulation and yield

    Science.gov (United States)

    Shi, Qingwen; Bai, Chunming; Wang, Huixin; Wu, Di; Song, Qiaobo; Dong, Zengqi; Gao, Depeng; Dong, Qiping; Cheng, Xin; Zhang, Yahao; Mu, Jiahui; Chen, Qinghong; Liao, Wenqing; Qu, Tianru; Zhang, Chunling; Zhang, Xinyu; Liu, Yifei; Han, Xiaori

    2017-05-01

    Aim: Experiments for mechanized corn soil fertilization were conducted in Faku demonstration zone. On this basis, we studied effects on corn nutrient accumulation and yield traits at brown soil regions due to different mechanized soil fertilization measures. We also evaluated and optimized the regulation effects of mechanized soil fertilization for the purpose of crop yield increase and production efficiency improvement. Method: Based on the survey of soil background value in the demonstration zone, we collected plant samples during different corn growth periods to determine and make statistical analysis. Conclusions: Decomposed cow dung, when under mechanical broadcasting, was able to remarkably increase nitrogen and potassium accumulation content of corns at their ripe stage. Crushed stalk returning combined with deep tillage would remarkably increase phosphorus accumulation content of corn plants. When compared with top application, crushed stalk returning combined with deep tillage would remarkably increase corn thousand kernel weight (TKW). Mechanized broadcasting of granular organic fertilizer and crushed stalk returning combined with deep tillage, when compared with surface application, were able to boost corn yield in the in the demonstration zone.

  3. On the genetic mechanisms of nutrient-dependent lifespan and reproduction

    NARCIS (Netherlands)

    Zandveld, Jelle

    2017-01-01

    Dietary restriction (DR), a moderate reduction in nutrient intake, improves health or extends lifespan across many species. Moreover, recent insights have shown that also the effects of specific nutrients are of importance for the beneficial effects of DR rather than intake alone. However, we

  4. Nitrogen deposition increases the acquisition of phosphorus and potassium by heather Calluna vulgaris

    International Nuclear Information System (INIS)

    Rowe, Edwin C.; Smart, Simon M.; Kennedy, Valerie H.; Emmett, Bridget A.; Evans, Christopher D.

    2008-01-01

    Increased plant productivity due to nitrogen pollution increases the strength of the global carbon sink, but is implicated in plant diversity loss. However, modelling and experimental studies have suggested that these effects are constrained by availability of other nutrients. In a survey of element concentrations in Calluna vulgaris across an N deposition gradient in the UK, shoot concentrations of N and more surprisingly phosphorus and potassium were positively correlated with N deposition; tissue N/P ratio even decreased with N deposition. Elevated P and K concentrations possibly resulted from improved acquisition due to additional enzyme production or mycorrhizal activity. Heather occurs on organic soils where nutrient limitations are likely due to availability constraints rather than small stocks. However, if this effect extends to other plant and soil types, effects of N deposition on C sinks and plant competition may not be as constrained by availability of other nutrients as previously proposed. - Heather tissue phosphorus and potassium concentrations increased across a nitrogen deposition gradient, implying that nitrogen limited acquisition of other plant nutrients

  5. Nutrient foraging strategies are associated with productivity and population growth in forest shrubs.

    Science.gov (United States)

    Caplan, Joshua S; Stone, Bram W G; Faillace, Cara A; Lafond, Jonathan J; Baumgarten, Joni M; Mozdzer, Thomas J; Dighton, John; Meiners, Scott J; Grabosky, Jason C; Ehrenfeld, Joan G

    2017-04-01

    Temperate deciduous forest understoreys are experiencing widespread changes in community composition, concurrent with increases in rates of nitrogen supply. These shifts in plant abundance may be driven by interspecific differences in nutrient foraging (i.e. conservative vs. acquisitive strategies) and, thus, adaptation to contemporary nutrient loading conditions. This study sought to determine if interspecific differences in nutrient foraging could help explain patterns of shrub success and decline in eastern North American forests. Using plants grown in a common garden, fine root traits associated with nutrient foraging were measured for six shrub species. Traits included the mean and skewness of the root diameter distribution, specific root length (SRL), C:N ratio, root tissue density, arbuscular mycorrhizal colonization and foraging precision. Above- and below-ground productivity were also determined for the same plants, and population growth rates were estimated using data from a long-term study of community dynamics. Root traits were compared among species and associations among root traits, measures of productivity and rates of population growth were evaluated. Species fell into groups having thick or thin root forms, which correspond to conservative vs. acquisitive nutrient foraging strategies. Interspecific variation in root morphology and tissue construction correlated with measures of productivity and rates of cover expansion. Of the four species with acquisitive traits, three were introduced species that have become invasive in recent decades, and the fourth was a weedy native. In contrast, the two species with conservative traits were historically dominant shrubs that have declined in abundance in eastern North American forests. In forest understoreys of eastern North America, elevated nutrient availability may impose a filter on species success in addition to above-ground processes such as herbivory and overstorey canopy conditions. Shrubs that have

  6. Nutrition acquisition strategies during fungal infection of plants.

    Science.gov (United States)

    Divon, Hege H; Fluhr, Robert

    2007-01-01

    In host-pathogen interactions, efficient pathogen nutrition is a prerequisite for successful colonization and fungal fitness. Filamentous fungi have a remarkable capability to adapt and exploit the external nutrient environment. For phytopathogenic fungi, this asset has developed within the context of host physiology and metabolism. The understanding of nutrient acquisition and pathogen primary metabolism is of great importance in the development of novel disease control strategies. In this review, we discuss the current knowledge on how plant nutrient supplies are utilized by phytopathogenic fungi, and how these activities are controlled. The generation and use of auxotrophic mutants have been elemental to the determination of essential and nonessential nutrient compounds from the plant. Considerable evidence indicates that pathogen entrainment of host metabolism is a widespread phenomenon and can be accomplished by rerouting of the plant's responses. Crucial fungal signalling components for nutrient-sensing pathways as well as their developmental dependency have now been identified, and were shown to operate in a coordinate cross-talk fashion that ensures proper nutrition-related behaviour during the infection process.

  7. Direct mechanical data acquisition of dental impressions for the manufacturing of CAD/CAM restorations.

    Science.gov (United States)

    Quaas, Sebastian; Rudolph, Heike; Luthardt, Ralph G

    2007-12-01

    The basic prerequisite for the production of dental restorations by means of CAD/CAM technologies is the data acquisition (digitization). Currently, two methods are available, i.e. the extraoral digitization of master casts and the direct intraoral data acquisition. However, it seems to be beneficial to immediately digitize impressions directly at the dental office in order to combine the high precision of mechanical digitizing methods and to shorten the production process. The aim of this study was to investigate the measurement uncertainty (+/-2sigma) and the three-dimensional accuracy of the immediate tactile in-office digitization of dental impressions and of the mechanical digitizing of ceramic master dies using a high-precision touch-probe digitizer. The experimental set-up consisted of ceramic master dies representing tooth 13 and 36 as well as their identical virtual models (CAD models). Fifteen one-step putty-wash impressions were taken from each tooth. The impressions as well as the ceramic master dies were digitized applying a standardized procedure. The datasets were aligned to the corresponding CAD models; then, a computer-aided three-dimensional analysis was performed. The digitizing of the dental impressions showed a measurement uncertainty of 5.8, mean positive deviations between 27 and 28microm, and mean negative deviations between -21 and -31microm. The digitizing of the ceramic master dies showed a measurement uncertainty of 2.8, mean positive deviations between 7.7 and 9.1microm, and mean negative deviations between -8.5 and -8.8microm. Mechanical digitizers show a very low measurement uncertainty and a high precision. The immediate tactile in-office digitization of impressions cannot be recommended as adequate data acquisition method for CAD/CAM restorations. It is recommendable to digitize clinical sites extraorally, i.e. after taking an impression and fabricating a model cast thereof.

  8. Acclimation of Emiliania huxleyi (1516) to nutrient limitation involves precise modification of the proteome to scavenge alternative sources of N and P.

    Science.gov (United States)

    McKew, Boyd A; Metodieva, Gergana; Raines, Christine A; Metodiev, Metodi V; Geider, Richard J

    2015-10-01

    Limitation of marine primary production by the availability of nitrogen or phosphorus is common. Emiliania huxleyi, a ubiquitous phytoplankter that plays key roles in primary production, calcium carbonate precipitation and production of dimethyl sulfide, often blooms in mid-latitude at the beginning of summer when inorganic nutrient concentrations are low. To understand physiological mechanisms that allow such blooms, we examined how the proteome of E. huxleyi (strain 1516) responds to N and P limitation. We observed modest changes in much of the proteome despite large physiological changes (e.g. cellular biomass, C, N and P) associated with nutrient limitation of growth rate. Acclimation to nutrient limitation did however involve significant increases in the abundance of transporters for ammonium and nitrate under N limitation and for phosphate under P limitation. More notable were large increases in proteins involved in the acquisition of organic forms of N and P, including urea and amino acid/polyamine transporters and numerous C-N hydrolases under N limitation and a large upregulation of alkaline phosphatase under P limitation. This highly targeted reorganization of the proteome towards scavenging organic forms of macronutrients gives unique insight into the molecular mechanisms that underpin how E. huxleyi has found its niche to bloom in surface waters depleted of inorganic nutrients. © 2015 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  9. Transplacental Nutrient Transport Mechanisms of Intrauterine Growth Restriction in Rodent Models and Humans.

    Science.gov (United States)

    Winterhager, Elke; Gellhaus, Alexandra

    2017-01-01

    Although the causes of intrauterine growth restriction (IUGR) have been intensively investigated, important information is still lacking about the role of the placenta as a link from adverse maternal environment to adverse pregnancy outcomes of IUGR and preterm birth. IUGR is associated with an increased risk of cardiovascular, metabolic, and neurological diseases later in life. Determination of the most important pathways that regulate transplacental transport systems is necessary for identifying marker genes as diagnostic tools and for developing drugs that target the molecular pathways. Besides oxygen, the main nutrients required for appropriate fetal development and growth are glucose, amino acids, and fatty acids. Dysfunction in transplacental transport is caused by impairments in both placental morphology and blood flow, as well as by factors such as alterations in the expression of insulin-like growth factors and changes in the mTOR signaling pathway leading to a change in nutrient transport. Animal models are important tools for systematically studying such complex events. Debate centers on whether the rodent placenta is an appropriate tool for investigating the alterations in the human placenta that result in IUGR. This review provides an overview of the alterations in expression and activity of nutrient transporters and alterations in signaling associated with IUGR and compares these findings in rodents and humans. In general, the data obtained by studies of the various types of rodent and human nutrient transporters are similar. However, direct comparison is complicated by the fact that the results of such studies are controversial even within the same species, making the interpretation of the results challenging. This difficulty could be due to the absence of guidelines of the experimental design and, especially in humans, the use of trophoblast cell culture studies instead of clinical trials. Nonetheless, developing new therapy concepts for IUGR will

  10. Transplacental Nutrient Transport Mechanisms of Intrauterine Growth Restriction in Rodent Models and Humans

    Directory of Open Access Journals (Sweden)

    Elke Winterhager

    2017-11-01

    Full Text Available Although the causes of intrauterine growth restriction (IUGR have been intensively investigated, important information is still lacking about the role of the placenta as a link from adverse maternal environment to adverse pregnancy outcomes of IUGR and preterm birth. IUGR is associated with an increased risk of cardiovascular, metabolic, and neurological diseases later in life. Determination of the most important pathways that regulate transplacental transport systems is necessary for identifying marker genes as diagnostic tools and for developing drugs that target the molecular pathways. Besides oxygen, the main nutrients required for appropriate fetal development and growth are glucose, amino acids, and fatty acids. Dysfunction in transplacental transport is caused by impairments in both placental morphology and blood flow, as well as by factors such as alterations in the expression of insulin-like growth factors and changes in the mTOR signaling pathway leading to a change in nutrient transport. Animal models are important tools for systematically studying such complex events. Debate centers on whether the rodent placenta is an appropriate tool for investigating the alterations in the human placenta that result in IUGR. This review provides an overview of the alterations in expression and activity of nutrient transporters and alterations in signaling associated with IUGR and compares these findings in rodents and humans. In general, the data obtained by studies of the various types of rodent and human nutrient transporters are similar. However, direct comparison is complicated by the fact that the results of such studies are controversial even within the same species, making the interpretation of the results challenging. This difficulty could be due to the absence of guidelines of the experimental design and, especially in humans, the use of trophoblast cell culture studies instead of clinical trials. Nonetheless, developing new therapy

  11. Iron Acquisition Mechanisms and Their Role in the Virulence of Burkholderia Species

    Science.gov (United States)

    Butt, Aaron T.; Thomas, Mark S.

    2017-01-01

    Burkholderia is a genus within the β-Proteobacteriaceae that contains at least 90 validly named species which can be found in a diverse range of environments. A number of pathogenic species occur within the genus. These include Burkholderia cenocepacia and Burkholderia multivorans, opportunistic pathogens that can infect the lungs of patients with cystic fibrosis, and are members of the Burkholderia cepacia complex (Bcc). Burkholderia pseudomallei is also an opportunistic pathogen, but in contrast to Bcc species it causes the tropical human disease melioidosis, while its close relative Burkholderia mallei is the causative agent of glanders in horses. For these pathogens to survive within a host and cause disease they must be able to acquire iron. This chemical element is essential for nearly all living organisms due to its important role in many enzymes and metabolic processes. In the mammalian host, the amount of accessible free iron is negligible due to the low solubility of the metal ion in its higher oxidation state and the tight binding of this element by host proteins such as ferritin and lactoferrin. As with other pathogenic bacteria, Burkholderia species have evolved an array of iron acquisition mechanisms with which to capture iron from the host environment. These mechanisms include the production and utilization of siderophores and the possession of a haem uptake system. Here, we summarize the known mechanisms of iron acquisition in pathogenic Burkholderia species and discuss the evidence for their importance in the context of virulence and the establishment of infection in the host. We have also carried out an extensive bioinformatic analysis to identify which siderophores are produced by each Burkholderia species that is pathogenic to humans. PMID:29164069

  12. Neuronal Calcium Signaling in Metabolic Regulation and Adaptation to Nutrient Stress.

    Science.gov (United States)

    Jayakumar, Siddharth; Hasan, Gaiti

    2018-01-01

    All organisms can respond physiologically and behaviorally to environmental fluxes in nutrient levels. Different nutrient sensing pathways exist for specific metabolites, and their inputs ultimately define appropriate nutrient uptake and metabolic homeostasis. Nutrient sensing mechanisms at the cellular level require pathways such as insulin and target of rapamycin (TOR) signaling that integrates information from different organ systems like the fat body and the gut. Such integration is essential for coordinating growth with development. Here we review the role of a newly identified set of integrative interneurons and the role of intracellular calcium signaling within these neurons, in regulating nutrient sensing under conditions of nutrient stress. A comparison of the identified Drosophila circuit and cellular mechanisms employed in this circuit, with vertebrate systems, suggests that the identified cell signaling mechanisms may be conserved for neural circuit function related to nutrient sensing by central neurons. The ideas proposed are potentially relevant for understanding the molecular basis of metabolic disorders, because these are frequently linked to nutritional stress.

  13. Nutrient acquisition across a dietary shift: fruit feeding butterflies crave amino acids, nectivores seek salt.

    Science.gov (United States)

    Ravenscraft, Alison; Boggs, Carol L

    2016-05-01

    Evolutionary dietary shifts have major ecological consequences. One likely consequence is a change in nutrient limitation-some nutrients become more abundant in the diet, others become more scarce. Individuals' behavior should change accordingly to match this new limitation regime: they should seek out nutrients that are deficient in the new diet. We investigated the relationship between diet and responses to nutrients using adult Costa Rican butterflies with contrasting feeding habits, testing the hypothesis that animals will respond more positively to nutrients that are scarcer in their diets. Via literature searches and our own data, we showed that nitrogen and sodium are both at lower concentration in nectar than in fruit. We therefore assessed butterflies' acceptance of sodium and four nitrogenous compounds that ranged in complexity from inorganic nitrogen (ammonium chloride) to protein (albumin). We captured wild butterflies, offered them aqueous solutions of each substance, and recorded whether they accepted (drank) or rejected each substance. Support for our hypothesis was mixed. Across the sexes, frugivores were four times more likely to accept amino acids (hydrolyzed casein) than nectivores, in opposition to expectation. In males, nectivores accepted sodium almost three times more frequently than frugivores, supporting expectations. Together, these results suggest that in butterflies, becoming frugivorous is associated with an increased receptivity to amino acids and decreased receptivity to sodium. Nectivory and frugivory are widespread feeding strategies in organisms as diverse as insects, birds, and bats; our results suggest that these feeding strategies may put different pressures on how animals fulfill their nutritional requirements.

  14. Fluid mechanical responses to nutrient depletion in fungi and biofilmsa)

    Science.gov (United States)

    Brenner, Michael P.

    2014-10-01

    In both fungi and bacterial biofilms, when nutrients are depleted, the organisms cannot physically migrate to find a new source, but instead must develop adaptations that allow them to survive. This paper reviews our work attempting to discover design principles for these adaptations. We develop fluid mechanical models, and aim to understand whether these suggest organizing principles for the observed morphological diversity. Determining whether a proposed organizing principle explains extant biological designs is fraught with difficulty: simply because a design principle predicts characteristics similar to an organism's morphology could just as well be accidental as revealing. In each of the two sets of examples, we adopt different strategies to develop understanding in spite of this difficulty. Within the fungal phylum Ascomycota, we use the large observed diversity of different morphological solutions to the fundamental fluid mechanical problem to measure how far each solution is from a design optimum, thereby measuring how far the extant designs deviate from the hypothesized optimum. This allows comparing different design principles to each other. For biofilms, we use engineering principles to make qualitative predictions of what types of adaptations might exist given the physicochemical properties of the repertoire of proteins that bacteria can create, and then find evidence for these adaptations in experiments. While on the surface this paper addresses the particular adaptations used by the fungal phylum Ascomycota and bacterial biofilms, we also aim to motivate discussion of different approaches to using design principles, fluid mechanical or otherwise, to rationalize observed engineering solutions in biology.

  15. The combination of energy-dependent internal adaptation mechanisms and external factors enables Listeria monocytogenes to express a strong starvation survival response during multiple-nutrient starvation.

    Science.gov (United States)

    Lungu, Bwalya; Saldivar, Joshua C; Story, Robert; Ricke, Steven C; Johnson, Michael G

    2010-05-01

    The goal of this study was to characterize the starvation survival response (SSR) of a wild-type Listeria monocytogenes 10403S and an isogenic DeltasigB mutant strain during multiple-nutrient starvation conditions over 28 days. This study examined the effects of inhibitors of protein synthesis, the proton motive force, substrate level phosphorylation, and oxidative phosphorylation on the SSR of L. monocytogenes 10403S and a DeltasigB mutant during multiple-nutrient starvation. The effects of starvation buffer changes on viability were also examined. During multiple-nutrient starvation, both strains expressed a strong SSR, suggesting that L. monocytogenes possesses SigB-independent mechanism(s) for survival during multiple-nutrient starvation. Neither strain was able to express an SSR following starvation buffer changes, indicating that the nutrients/factors present in the starvation buffer could be a source of energy for cell maintenance and survival. Neither the wild-type nor the DeltasigB mutant strain was able to elicit an SSR when exposed to the protein synthesis inhibitor chloramphenicol within the first 4 h of starvation. However, both strains expressed an SSR when exposed to chloramphenicol after 6 h or more of starvation, suggesting that the majority of proteins required to elicit an effective SSR in L. monocytogenes are likely produced somewhere between 4 and 6 h of starvation. The varying SSRs of both strains to the different metabolic inhibitors under aerobic or anaerobic conditions suggested that (1) energy derived from the proton motive force is important for an effective SSR, (2) L. monocytogenes utilizes an anaerobic electron transport during multiple-nutrient starvation conditions, and (3) the glycolytic pathway is an important energy source during multiple-nutrient starvation when oxygen is available, and less important under anaerobic conditions. Collectively, the data suggest that the combination of energy-dependent internal adaptation mechanisms

  16. Zinc piracy as a mechanism of Neisseria meningitidis for evasion of nutritional immunity.

    Directory of Open Access Journals (Sweden)

    Michiel Stork

    2013-10-01

    Full Text Available The outer membrane of Gram-negative bacteria functions as a permeability barrier that protects these bacteria against harmful compounds in the environment. Most nutrients pass the outer membrane by passive diffusion via pore-forming proteins known as porins. However, diffusion can only satisfy the growth requirements if the extracellular concentration of the nutrients is high. In the vertebrate host, the sequestration of essential nutrient metals is an important defense mechanism that limits the growth of invading pathogens, a process known as "nutritional immunity." The acquisition of scarce nutrients from the environment is mediated by receptors in the outer membrane in an energy-requiring process. Most characterized receptors are involved in the acquisition of iron. In this study, we characterized a hitherto unknown receptor from Neisseria meningitidis, a causative agent of sepsis and meningitis. Expression of this receptor, designated CbpA, is induced when the bacteria are grown under zinc limitation. We demonstrate that CbpA functions as a receptor for calprotectin, a protein that is massively produced by neutrophils and other cells and that has been shown to limit bacterial growth by chelating Zn²⁺ and Mn²⁺ ions. Expression of CbpA enables N. meningitidis to survive and propagate in the presence of calprotectin and to use calprotectin as a zinc source. Besides CbpA, also the TonB protein, which couples energy of the proton gradient across the inner membrane to receptor-mediated transport across the outer membrane, is required for the process. CbpA was found to be expressed in all N. meningitidis strains examined, consistent with a vital role for the protein when the bacteria reside in the host. Together, our results demonstrate that N. meningitidis is able to subvert an important defense mechanism of the human host and to utilize calprotectin to promote its growth.

  17. Effects of growth rate, cell size, motion, and elemental stoichiometry on nutrient transport kinetics.

    Science.gov (United States)

    Flynn, Kevin J; Skibinski, David O F; Lindemann, Christian

    2018-04-01

    Nutrient acquisition is a critical determinant for the competitive advantage for auto- and osmohetero- trophs alike. Nutrient limited growth is commonly described on a whole cell basis through reference to a maximum growth rate (Gmax) and a half-saturation constant (KG). This empirical application of a Michaelis-Menten like description ignores the multiple underlying feedbacks between physiology contributing to growth, cell size, elemental stoichiometry and cell motion. Here we explore these relationships with reference to the kinetics of the nutrient transporter protein, the transporter rate density at the cell surface (TRD; potential transport rate per unit plasma-membrane area), and diffusion gradients. While the half saturation value for the limiting nutrient increases rapidly with cell size, significant mitigation is afforded by cell motion (swimming or sedimentation), and by decreasing the cellular carbon density. There is thus potential for high vacuolation and high sedimentation rates in diatoms to significantly decrease KG and increase species competitive advantage. Our results also suggest that Gmax for larger non-diatom protists may be constrained by rates of nutrient transport. For a given carbon density, cell size and TRD, the value of Gmax/KG remains constant. This implies that species or strains with a lower Gmax might coincidentally have a competitive advantage under nutrient limited conditions as they also express lower values of KG. The ability of cells to modulate the TRD according to their nutritional status, and hence change the instantaneous maximum transport rate, has a very marked effect upon transport and growth kinetics. Analyses and dynamic models that do not consider such modulation will inevitably fail to properly reflect competitive advantage in nutrient acquisition. This has important implications for the accurate representation and predictive capabilities of model applications, in particular in a changing environment.

  18. The effects of leaf litter nutrient pulses on Alliaria petiolata performance

    Directory of Open Access Journals (Sweden)

    Robert W. Heckman

    2015-08-01

    Full Text Available Nutrient pulses can facilitate species establishment and spread in new habitats, particularly when one species more effectively uses that nutrient pulse. Biological differences in nutrient acquisition between native and exotic species may facilitate invasions into a variety of habitats including deciduous forest understories. Alliaria petiolata (Bieb. Cavara & Grande is an important invader of deciduous forest understories throughout much of North America. These understory communities contain many species which perform the majority of their growth and reproduction before canopy closure in spring. Because A. petiolata is a wintergreen biennial that can be active during autumn and winter, it may utilize nutrients released from decaying leaf litter before its competitors. To investigate this we manipulated the timing of leaf litter addition (fall or spring and experimentally simulated the nutrient pulse from decaying leaves using artificial fertilizer. To determine whether A. petiolata affected the abundance of understory competitors, we also removed A. petiolata from one treatment. A. petiolata that received early nutrients exhibited greater growth. Treatments receiving fall leaf litter or artificial nutrients had greater A. petiolata adult biomass than plots receiving spring nutrient additions (leaf litter or artificial nutrients. However, fall leaf litter addition had no effect on the richness of competitor species. Thus, wintergreen phenology may contribute to the spread of A. petiolata through deciduous forest understories, but may not explain community-level impacts of A. petiolata in deciduous forests.

  19. Technological Similarity, Post-acquisition R&D Reorganization, and Innovation Performance in Horizontal Acquisition

    DEFF Research Database (Denmark)

    Colombo, Massimo G.; Rabbiosi, Larissa

    2014-01-01

    This paper aims to disentangle the mechanisms through which technological similarity between acquiring and acquired firms influences innovation in horizontal acquisitions. We develop a theoretical model that links technological similarity to: (i) two key aspects of post-acquisition reorganization...... of acquired R&D operations – the rationalization of the R&D operations and the replacement of the R&D top manager, and (ii) two intermediate effects that are closely associated with the post-acquisition innovation performance of the combined firm – improvements in R&D productivity and disruptions in R......&D personnel. We rely on PLS techniques to test our theoretical model using detailed information on 31 horizontal acquisitions in high- and medium-tech industries. Our results indicate that in horizontal acquisitions, technological similarity negatively affects post-acquisition innovation performance...

  20. Nutrient and nonnutrient renal blood flow

    International Nuclear Information System (INIS)

    Young, J.S.; Passmore, J.C.; Hartupee, D.A.; Baker, C.H.

    1990-01-01

    The role of prostaglandins in the distribution of total renal blood flow (TRBF) between nutrient and nonnutrient compartments was investigated in anesthetized mongrel dogs. Renal blood flow distribution was assessed by the xenon 133 freeze-dissection technique and by rubidium 86 extraction after ibuprofen treatment. Ibuprofen (13 mg/kg) significantly decreased TRBF by 16.3% +/- 1.2% (mean +/- SEM electromagnetic flow probe; p less than 0.005), but did not alter blood flows to the outer cortex (3.7 vs 4.3 ml/min per gram), the inner cortex (2.6 vs 2.7 ml/min per gram), and the other medulla (1.5 vs 1.5 ml/min per gram), which suggests a decrease in nonnutrient flow. In a separate group of animals the effect of reduced blood flow on the nutrient and nonnutrient components was determined by mechanically reducing renal arterial blood flow by 48%. Unlike the ibuprofen group, nutrient blood flows were proportionally reduced with the mechanical decrease in TRBF in the outer cortex (1.9 ml/min per gram, p less than 0.05), the inner cortex (1.4 ml/min per gram, p less than 0.05), and the outer medulla (0.8 ml/min per gram, p less than 0.01). These results indicate no shift between nutrient and nonnutrient compartments. Nutrient and nonnutrient renal blood flows of the left kidney were also determined by 86Rb extraction. After ibuprofen treatment, nonextracted 86Rb decreased to 12.1% from the control value of 15.6% (p less than 0.05). Mechanical reduction of TRBF did not significantly decrease the proportion of unextracted 86Rb (18.7%)

  1. Phosphorus physiological ecology and molecular mechanisms in marine phytoplankton.

    Science.gov (United States)

    Lin, Senjie; Litaker, Richard Wayne; Sunda, William G

    2016-02-01

    Phosphorus (P) is an essential nutrient for marine phytoplankton and indeed all life forms. Current data show that P availability is growth-limiting in certain marine systems and can impact algal species composition. Available P occurs in marine waters as dissolved inorganic phosphate (primarily orthophosphate [Pi]) or as a myriad of dissolved organic phosphorus (DOP) compounds. Despite numerous studies on P physiology and ecology and increasing research on genomics in marine phytoplankton, there have been few attempts to synthesize information from these different disciplines. This paper is aimed to integrate the physiological and molecular information on the acquisition, utilization, and storage of P in marine phytoplankton and the strategies used by these organisms to acclimate and adapt to variations in P availability. Where applicable, we attempt to identify gaps in our current knowledge that warrant further research and examine possible metabolic pathways that might occur in phytoplankton from well-studied bacterial models. Physical and chemical limitations governing cellular P uptake are explored along with physiological and molecular mechanisms to adapt and acclimate to temporally and spatially varying P nutrient regimes. Topics covered include cellular Pi uptake and feedback regulation of uptake systems, enzymatic utilization of DOP, P acquisition by phagotrophy, P-limitation of phytoplankton growth in oceanic and coastal waters, and the role of P-limitation in regulating cell size and toxin levels in phytoplankton. Finally, we examine the role of P and other nutrients in the transition of phytoplankton communities from early succession species (diatoms) to late succession ones (e.g., dinoflagellates and haptophytes). © 2015 Phycological Society of America.

  2. Repeated MDMA administration increases MDMA-produced locomotor activity and facilitates the acquisition of MDMA self-administration: role of dopamine D2 receptor mechanisms.

    Science.gov (United States)

    van de Wetering, Ross; Schenk, Susan

    2017-04-01

    Repeated exposure to ±3, 4-methylenedioxymethamphetamine (MDMA) produces sensitization to MDMA-produced hyperactivity, but the mechanisms underlying the development of this sensitized response or the relationship to the reinforcing effects of MDMA is unknown. This study determined the effect of a sensitizing regimen of MDMA exposure on the acquisition of MDMA self-administration and investigated the role of dopamine D 2 receptor mechanisms. Rats received the selective D 2 antagonist, eticlopride (0.0 or 0.3 mg/kg, i.p.) and MDMA (0.0 or 10.0 mg/kg, i.p.) during a five-day pretreatment regimen. Two days following the final session, the locomotor activating effects of MDMA (5 mg/kg, i.p.) and the latency to acquisition of MDMA self-administration were determined. Pretreatment with MDMA enhanced the locomotor activating effects of MDMA and facilitated the acquisition of MDMA self-administration. Administration of eticlopride during MDMA pretreatment completely blocked the development of sensitization to MDMA-produced hyperactivity but failed to significantly alter the facilitated acquisition of MDMA self-administration. Pretreatment with eticlopride alone facilitated the acquisition of self-administration. These data suggest that repeated MDMA exposure sensitized both the locomotor activating and reinforcing effects of MDMA. Activation of D 2 receptors during MDMA pretreatment appears critical for the development of sensitization to MDMA-produced hyperactivity. The role of D 2 receptor mechanisms in the development of sensitization to the reinforcing effects of MDMA is equivocal.

  3. Bivalve nutrient cycling : nutrient turnover by suspended mussel communities in oligotrophic fjords

    NARCIS (Netherlands)

    Jansen, H.M.

    2012-01-01

    This study examined a range of eco-physiological processes (i.e filtration, growth, excretion,

    faeces production) and feedback mechanisms with the aim to investigate the contribution of

    suspended mussel Mytilus edulis communities to nutrient cycling in oligotrophic

  4. Improving Acquisition Outcomes with Contextual Ambidexterity

    DEFF Research Database (Denmark)

    Meglio, Olimpia; King, David R.; Risberg, Annette

    2015-01-01

    The results of research on mergers and acquisitions often point to a need to improve acquisition outcomes and lessen the organizational turmoil that can often follow integration efforts. We assert that viewing acquisition integration through the lens of contextual ambidexterity may improve...... acquisition outcomes in two ways: by providing an integrated solution to the economic and social tensions in acquisitions, and by enabling managers to effectively confront the competing needs of task and human integration. We also posit that by building on contextual ambidexterity, we can extend...... the possibilities for both research and practice regarding task and human integration in acquisitions. We also emphasize the role of an integration manager and integration mechanisms in enabling contextual ambidexterity for successful acquisition integration. Finally, we identify implications for research...

  5. The subtropical nutrient spiral

    Science.gov (United States)

    Jenkins, William J.; Doney, Scott C.

    2003-12-01

    We present an extended series of observations and more comprehensive analysis of a tracer-based measure of new production in the Sargasso Sea near Bermuda using the 3He flux gauge technique. The estimated annually averaged nitrate flux of 0.84 ± 0.26 mol m-2 yr-1 constitutes only that nitrate physically transported to the euphotic zone, not nitrogen from biological sources (e.g., nitrogen fixation or zooplankton migration). We show that the flux estimate is quantitatively consistent with other observations, including decade timescale evolution of the 3H + 3He inventory in the main thermocline and export production estimates. However, we argue that the flux cannot be supplied in the long term by local diapycnal or isopycnal processes. These considerations lead us to propose a three-dimensional pathway whereby nutrients remineralized within the main thermocline are returned to the seasonally accessible layers within the subtropical gyre. We describe this mechanism, which we call "the nutrient spiral," as a sequence of steps where (1) nutrient-rich thermocline waters are entrained into the Gulf Stream, (2) enhanced diapycnal mixing moves nutrients upward onto lighter densities, (3) detrainment and enhanced isopycnal mixing injects these waters into the seasonally accessible layer of the gyre recirculation region, and (4) the nutrients become available to biota via eddy heaving and wintertime convection. The spiral is closed when nutrients are utilized, exported, and then remineralized within the thermocline. We present evidence regarding the characteristics of the spiral and discuss some implications of its operation within the biogeochemical cycle of the subtropical ocean.

  6. Leaf mineral nutrient remobilization during leaf senescence and modulation by nutrient deficiency.

    Directory of Open Access Journals (Sweden)

    Anne eMaillard

    2015-05-01

    Full Text Available Higher plants have to cope with fluctuating mineral resource availability. However strategies such as stimulation of root growth, increased transporter activities, and nutrient storage and remobilization have been mostly studied for only a few macronutrients. Leaves of cultivated crops (Zea mays, Brassica napus, Pisum sativum, Triticum aestivum, Hordeum vulgare and tree species (Quercus robur, Populus nigra, Alnus glutinosa grown under field conditions were harvested regularly during their life span and analysed to evaluate the net mobilization of 13 nutrients during leaf senescence. While N was remobilized in all plant species with different efficiencies ranging from 40% (maize to 90% (wheat, other macronutrients (K-P-S-Mg were mobilized in most species. Ca and Mn, usually considered as having low phloem mobility were remobilized from leaves in wheat and barley. Leaf content of Cu-Mo-Ni-B-Fe-Zn decreased in some species, as a result of remobilization. Overall, wheat, barley and oak appeared to be the most efficient at remobilization while poplar and maize were the least efficient. Further experiments were performed with rapeseed plants subjected to individual nutrient deficiencies. Compared to field conditions, remobilization from leaves was similar (N-S-Cu or increased by nutrient deficiency (K-P-Mg while nutrient deficiency had no effect on Mo-Zn-B-Ca-Mn, which seemed to be non-mobile during leaf senescence under field conditions. However, Ca and Mn were largely mobilized from roots (-97 and -86% of their initial root contents, respectively to shoots. Differences in remobilization between species and between nutrients are then discussed in relation to a range of putative mechanisms.

  7. Contribution of water hyacinth (Eichhornia crassipes (Mart.) Solms) grown under different nutrient conditions to Fe-removal mechanisms in constructed wetlands.

    Science.gov (United States)

    Jayaweera, Mahesh W; Kasturiarachchi, Jagath C; Kularatne, Ranil K A; Wijeyekoon, Suren L J

    2008-05-01

    Severe contamination of water resources including groundwater with iron (Fe) due to various anthropogenic activities has been a major environmental problem in industrial areas of Sri Lanka. Hence, the use of the obnoxious weed, water hyacinth (Eichhornia crassipes (Mart.) Solms) in constructed wetlands (floating aquatic macrophyte-based plant treatment systems) to phytoremediate Fe-rich wastewaters seems to be an appealing option. Although several studies have documented that hyacinths are good metal-accumulating plants none of these studies have documented the ability of this plant grown under different nutrient conditions to remove heavy metals from wastewaters. This paper, therefore, reports the phytoremediation efficiencies of water hyacinth grown under different nutrient conditions for Fe-rich wastewaters in batch-type constructed wetlands. This study was conducted for 15 weeks after 1-week acclimatization by culturing young water hyacinth plants (average height of 20+/-2cm) in 590L capacity fiberglass tanks under different nutrient concentrations of 1-fold [28 and 7.7mg/L of total nitrogen (TN) and total phosphorous (TP), respectively], 2-fold, 1/2-fold, 1/4-fold and 1/8-fold with synthetic wastewaters containing 9.27Femg/L. Another set-up of hyacinths containing only Fe as a heavy metal but without any nutrients (i.e., 0-fold) was also studied. A mass balance was carried out to investigate the phytoremediation efficiencies and to determine the different mechanisms governing Fe removal from the wastewaters. Fe removal was largely due to phytoremediation mainly through the process of rhizofiltration and chemical precipitation of Fe2O3 and FeOH3 followed by flocculation and sedimentation. However, chemical precipitation was more significant especially during the first 3 weeks of the study. Plants grown in the 0-fold set-up showed the highest phytoremediation efficiency of 47% during optimum growth at the 6th week with a highest accumulation of 6707Femg/kg dry

  8. Physical-biological coupling induced aggregation mechanism for the formation of high biomass red tides in low nutrient waters.

    Science.gov (United States)

    Lai, Zhigang; Yin, Kedong

    2014-01-01

    Port Shelter is a semi-enclosed bay in northeast Hong Kong where high biomass red tides are observed to occur frequently in narrow bands along the local bathymetric isobars. Previous study showed that nutrients in the Bay are not high enough to support high biomass red tides. The hypothesis is that physical aggregation and vertical migration of dinoflagellates appear to be the driving mechanism to promote the formation of red tides in this area. To test this hypothesis, we used a high-resolution estuarine circulation model to simulate the near-shore water dynamics based on in situ measured temperature/salinity profiles, winds and tidal constitutes taken from a well-validated regional tidal model. The model results demonstrated that water convergence occurs in a narrow band along the west shore of Port Shelter under a combined effect of stratified tidal current and easterly or northeasterly wind. Using particles as dinoflagellate cells and giving diel vertical migration, the model results showed that the particles aggregate along the convergent zone. By tracking particles in the model predicted current field, we estimated that the physical-biological coupled processes induced aggregation of the particles could cause 20-45 times enhanced cell density in the convergent zone. This indicated that a high cell density red tide under these processes could be initialized without very high nutrients concentrations. This may explain why Port Shelter, a nutrient-poor Bay, is the hot spot for high biomass red tides in Hong Kong in the past 25 years. Our study explains why red tide occurrences are episodic events and shows the importance of taking the physical-biological aggregation mechanism into consideration in the projection of red tides for coastal management. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Predicting Species-Resolved Macronutrient Acquisition during Succession in a Model Phototrophic Biofilm Using an Integrated ‘Omics Approach

    Directory of Open Access Journals (Sweden)

    Stephen R. Lindemann

    2017-06-01

    Full Text Available The principles governing acquisition and interspecies exchange of nutrients in microbial communities and how those exchanges impact community productivity are poorly understood. Here, we examine energy and macronutrient acquisition in unicyanobacterial consortia for which species-resolved genome information exists for all members, allowing us to use multi-omic approaches to predict species’ abilities to acquire resources and examine expression of resource-acquisition genes during succession. Metabolic reconstruction indicated that a majority of heterotrophic community members lacked the genes required to directly acquire the inorganic nutrients provided in culture medium, suggesting high metabolic interdependency. The sole primary producer in consortium UCC-O, cyanobacterium Phormidium sp. OSCR, displayed declining expression of energy harvest, carbon fixation, and nitrate and sulfate reduction proteins but sharply increasing phosphate transporter expression over 28 days. Most heterotrophic members likewise exhibited signs of phosphorus starvation during succession. Though similar in their responses to phosphorus limitation, heterotrophs displayed species-specific expression of nitrogen acquisition genes. These results suggest niche partitioning around nitrogen sources may structure the community when organisms directly compete for limited phosphate. Such niche complementarity around nitrogen sources may increase community diversity and productivity in phosphate-limited phototrophic communities.

  10. Nutrients, neurogenesis and brain ageing: From disease mechanisms to therapeutic opportunities.

    Science.gov (United States)

    Fidaleo, Marco; Cavallucci, Virve; Pani, Giovambattista

    2017-10-01

    Appreciation of the physiological relevance of mammalian adult neurogenesis has in recent years rapidly expanded from a phenomenon of homeostatic cell replacement and brain repair to the current view of a complex process involved in high order cognitive functions. In parallel, an array of endogenous or exogenous triggers of neurogenesis has also been identified, among which metabolic and nutritional cues have drawn significant attention. Converging evidence from animal and in vitro studies points to nutrient sensing and energy metabolism as major physiological determinants of neural stem cell fate, and modulators of the whole neurogenic process. While the cellular and molecular circuitries underlying metabolic regulation of neurogenesis are still incompletely understood, the key role of mitochondrial activity and dynamics, and the importance of autophagy have begun to be fully appreciated; moreover, nutrient-sensitive pathways and transducers such as the insulin-IGF cascade, the AMPK/mTOR axis and the transcription regulators CREB and Sirt-1 have been included, beside more established "developmental" signals like Notch and Wnt, in the molecular networks that dictate neural-stem-cell self-renewal, migration and differentiation in response to local and systemic inputs. Many of these nutrient-related cascades are deregulated in the contest of metabolic diseases and in ageing, and may contribute to impaired neurogenesis and thus to cognition defects observed in these conditions. Importantly, accumulating knowledge on the metabolic control of neurogenesis provides a theoretical framework for the trial of new or repurposed drugs capable of interfering with nutrient sensing as enhancers of neurogenesis in the context of neurodegeneration and brain senescence. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Neuronal regulation of homeostasis by nutrient sensing.

    Science.gov (United States)

    Lam, Tony K T

    2010-04-01

    In type 2 diabetes and obesity, the homeostatic control of glucose and energy balance is impaired, leading to hyperglycemia and hyperphagia. Recent studies indicate that nutrient-sensing mechanisms in the body activate negative-feedback systems to regulate energy and glucose homeostasis through a neuronal network. Direct metabolic signaling within the intestine activates gut-brain and gut-brain-liver axes to regulate energy and glucose homeostasis, respectively. In parallel, direct metabolism of nutrients within the hypothalamus regulates food intake and blood glucose levels. These findings highlight the importance of the central nervous system in mediating the ability of nutrient sensing to maintain homeostasis. Futhermore, they provide a physiological and neuronal framework by which enhancing or restoring nutrient sensing in the intestine and the brain could normalize energy and glucose homeostasis in diabetes and obesity.

  12. Arbuscular mycorrhiza and water and nutrient supply differently impact seedling performance of dry woodland species with different acquisition strategies

    NARCIS (Netherlands)

    Emiru Birhane, E.B.; Kuyper, T.W.; Sterck, F.J.; Gebrehiwot, K.; Bongers, F.

    2015-01-01

    Background: Arbuscular mycorrhizal (AM) fungi increase seedling survival and performance through enhancement of nutrient and water uptake under stress conditions. Acacia etbaica, A. senegal and Boswellia papyrifera dominate large areas in African drylands where both moisture and nutrients are

  13. Differences in root distribution, nutrient acquisition and nutrient utilization by tropical forage species grown in degraded hillside soil conditions¹ Diferencias en la distribución de raíces, absorción y utilización de nutrientes por especies forrajeras tropicales en condiciones de suelos degradados de ladera

    Directory of Open Access Journals (Sweden)

    Arnulfo Gómez-Carabalí

    2010-04-01

    Full Text Available Low nutrient availability, especially phosphorus (P and nitrogen (N supply is the major limitation to forage production in acid infertile soils of the tropics. A field study was conducted at the farm ‘La Esperanza’ located in Mondomo, Department of Cauca, in the coffee growing zone of Colombia. The main objective was to determine differences in root distribution, nutrient (N, P, K, Ca, Mg and S acquisition and nutrient utilization of one C4 forage grass (Brachiaria dictyoneura and two C3 forage legumes (Arachis pintoi and Centrosema macrocarpum grown under two fertilization levels, cultivated either in monoculture or in association and harvested at four different ages.There were no significant differences in root biomass among the grass and legumes and their combinations. The native vegetation had the lowest root biomass; while the introduced grass (B. dictyoneura had the highest root length density among all materials at all depths and ages and the native vegetation had the highest specific root length. As expected, nutrient uptake increased with age and with high fertilization in all species. Centrosema macrocarpun had the highest N and Ca uptake among all plant materials tested. Uptake of P, K and Mg was greater in the grass B. dictyoneura than in the other plant species and combination planting at all ages. On the other hand, the grass had the lowest Ca uptake. The grass and its mixture with the legumes A. pintoi and C. macrocarpun had the highest S uptake. A highly significant (pLa baja disponibilidad de nutrientes, especialmente fósforo (P y nitrógeno (N es el mayor limitante para la producción de forrajes en los suelos ácidos de baja fertilidad del trópico. En la finca La Esperanza. localizada en Mondomo, departamento del Cauca, zona cafetera de Colombia, se llevo a cabo un estudio con el objeto de determinar las diferencias en la distribución de raíces, absorción y utilización de nutrientes (N, P, K, Ca, Mg, y S de una gram

  14. Nutrient Acquisition and the Metabolic Potential of Photoferrotrophic Chlorobi

    Directory of Open Access Journals (Sweden)

    Katharine J. Thompson

    2017-07-01

    Full Text Available Anoxygenic photosynthesis evolved prior to oxygenic photosynthesis and harnessed energy from sunlight to support biomass production on the early Earth. Models that consider the availability of electron donors predict that anoxygenic photosynthesis using Fe(II, known as photoferrotrophy, would have supported most global primary production before the proliferation of oxygenic phototrophs at approximately 2.3 billion years ago. These photoferrotrophs have also been implicated in the deposition of banded iron formations, the world’s largest sedimentary iron ore deposits that formed mostly in late Archean and early Proterozoic Eons. In this work we present new data and analyses that illuminate the metabolic capacity of photoferrotrophy in the phylum Chlorobi. Our laboratory growth experiments and biochemical analyses demonstrate that photoferrotrophic Chlorobi are capable of assimilatory sulfate reduction and nitrogen fixation under sulfate and nitrogen limiting conditions, respectively. Furthermore, the evolutionary histories of key enzymes in both sulfur (CysH and CysD and nitrogen fixation (NifDKH pathways are convoluted; protein phylogenies, however, suggest that early Chlorobi could have had the capacity to assimilate sulfur and fix nitrogen. We argue, then, that the capacity for photoferrotrophic Chlorobi to acquire these key nutrients enabled them to support primary production and underpin global biogeochemical cycles in the Precambrian.

  15. Nutrient sensing and signaling in the yeast Saccharomyces cerevisiae

    Science.gov (United States)

    Conrad, Michaela; Schothorst, Joep; Kankipati, Harish Nag; Van Zeebroeck, Griet; Rubio-Texeira, Marta; Thevelein, Johan M

    2014-01-01

    The yeast Saccharomyces cerevisiae has been a favorite organism for pioneering studies on nutrient-sensing and signaling mechanisms. Many specific nutrient responses have been elucidated in great detail. This has led to important new concepts and insight into nutrient-controlled cellular regulation. Major highlights include the central role of the Snf1 protein kinase in the glucose repression pathway, galactose induction, the discovery of a G-protein-coupled receptor system, and role of Ras in glucose-induced cAMP signaling, the role of the protein synthesis initiation machinery in general control of nitrogen metabolism, the cyclin-controlled protein kinase Pho85 in phosphate regulation, nitrogen catabolite repression and the nitrogen-sensing target of rapamycin pathway, and the discovery of transporter-like proteins acting as nutrient sensors. In addition, a number of cellular targets, like carbohydrate stores, stress tolerance, and ribosomal gene expression, are controlled by the presence of multiple nutrients. The protein kinase A signaling pathway plays a major role in this general nutrient response. It has led to the discovery of nutrient transceptors (transporter receptors) as nutrient sensors. Major shortcomings in our knowledge are the relationship between rapid and steady-state nutrient signaling, the role of metabolic intermediates in intracellular nutrient sensing, and the identity of the nutrient sensors controlling cellular growth. PMID:24483210

  16. Successional dynamics drive tropical forest nutrient limitation

    Science.gov (United States)

    Chou, C.; Hedin, L. O. O.

    2017-12-01

    It is increasingly recognized that nutrients such as N and P may significantly constrain the land carbon sink. However, we currently lack a complete understanding of these nutrient cycles in forest ecosystems and how to incorporate them into Earth System Models. We have developed a framework of dynamic forest nutrient limitation, focusing on the role of secondary forest succession and canopy gap disturbances as bottlenecks of high plant nutrient demand and limitation. We used succession biomass data to parameterize a simple ecosystem model and examined the dynamics of nutrient limitation throughout tropical secondary forest succession. Due to the patterns of biomass recovery in secondary tropical forests, we found high nutrient demand from rapid biomass accumulation in the earliest years of succession. Depending on previous land use scenarios, soil nutrient availability may also be low in this time period. Coupled together, this is evidence that there may be high biomass nutrient limitation early in succession, which is partially met by abundant symbiotic nitrogen fixation from certain tree species. We predict a switch from nitrogen limitation in early succession to one of three conditions: (i) phosphorus only, (ii) phosphorus plus nitrogen, or (iii) phosphorus, nitrogen, plus light co-limitation. We will discuss the mechanisms that govern the exact trajectory of limitation as forests build biomass. In addition, we used our model to explore scenarios of tropical secondary forest impermanence and the impacts of these dynamics on ecosystem nutrient limitation. We found that secondary forest impermanence exacerbates nutrient limitation and the need for nitrogen fixation early in succession. Together, these results indicate that biomass recovery dynamics early in succession as well as their connection to nutrient demand and limitation are fundamental for understanding and modeling nutrient limitation of the tropical forest carbon sink.

  17. Carbon cost of plant nitrogen acquisition: global carbon cycle impact from an improved plant nitrogen cycle in the Community Land Model.

    Science.gov (United States)

    Shi, Mingjie; Fisher, Joshua B; Brzostek, Edward R; Phillips, Richard P

    2016-03-01

    Plants typically expend a significant portion of their available carbon (C) on nutrient acquisition - C that could otherwise support growth. However, given that most global terrestrial biosphere models (TBMs) do not include the C cost of nutrient acquisition, these models fail to represent current and future constraints to the land C sink. Here, we integrated a plant productivity-optimized nutrient acquisition model - the Fixation and Uptake of Nitrogen Model - into one of the most widely used TBMs, the Community Land Model. Global plant nitrogen (N) uptake is dynamically simulated in the coupled model based on the C costs of N acquisition from mycorrhizal roots, nonmycorrhizal roots, N-fixing microbes, and retranslocation (from senescing leaves). We find that at the global scale, plants spend 2.4 Pg C yr(-1) to acquire 1.0 Pg N yr(-1) , and that the C cost of N acquisition leads to a downregulation of global net primary production (NPP) by 13%. Mycorrhizal uptake represented the dominant pathway by which N is acquired, accounting for ~66% of the N uptake by plants. Notably, roots associating with arbuscular mycorrhizal (AM) fungi - generally considered for their role in phosphorus (P) acquisition - are estimated to be the primary source of global plant N uptake owing to the dominance of AM-associated plants in mid- and low-latitude biomes. Overall, our coupled model improves the representations of NPP downregulation globally and generates spatially explicit patterns of belowground C allocation, soil N uptake, and N retranslocation at the global scale. Such model improvements are critical for predicting how plant responses to altered N availability (owing to N deposition, rising atmospheric CO2 , and warming temperatures) may impact the land C sink. © 2015 John Wiley & Sons Ltd.

  18. Mechanisms of Phosphorus Acquisition and Lipid Class Remodeling under P Limitation in a Marine Microalga.

    Science.gov (United States)

    Mühlroth, Alice; Winge, Per; El Assimi, Aimen; Jouhet, Juliette; Maréchal, Eric; Hohmann-Marriott, Martin F; Vadstein, Olav; Bones, Atle M

    2017-12-01

    Molecular mechanisms of phosphorus (P) limitation are of great interest for understanding algal production in aquatic ecosystems. Previous studies point to P limitation-induced changes in lipid composition. As, in microalgae, the molecular mechanisms of this specific P stress adaptation remain unresolved, we reveal a detailed phospholipid-recycling scheme in Nannochloropsis oceanica and describe important P acquisition genes based on highly corresponding transcriptome and lipidome data. Initial responses to P limitation showed increased expression of genes involved in P uptake and an expansion of the P substrate spectrum based on purple acid phosphatases. Increase in P trafficking displayed a rearrangement between compartments by supplying P to the chloroplast and carbon to the cytosol for lipid synthesis. We propose a novel phospholipid-recycling scheme for algae that leads to the rapid reduction of phospholipids and synthesis of the P-free lipid classes. P mobilization through membrane lipid degradation is mediated mainly by two glycerophosphoryldiester phosphodiesterases and three patatin-like phospholipases A on the transcriptome level. To compensate for low phospholipids in exponential growth, N. oceanica synthesized sulfoquinovosyldiacylglycerol and diacylglyceroltrimethylhomoserine. In this study, it was shown that an N. oceanica strain has a unique repertoire of genes that facilitate P acquisition and the degradation of phospholipids compared with other stramenopiles. The novel phospholipid-recycling scheme opens new avenues for metabolic engineering of lipid composition in algae. © 2017 American Society of Plant Biologists. All Rights Reserved.

  19. The Acquisition Experiences of Kazoil

    DEFF Research Database (Denmark)

    Minbaeva, Dana; Muratbekova-Touron, Maral

    2016-01-01

    This case describes two diverging post-acquisition experiences of KazOil, an oil drilling company in Kazakhstan, in the years after the dissolution of the Soviet Union. When the company was bought by the Canadian corporation Hydrocarbons Ltd in 1996, exposed to new human resource strategies...... among students that cultural distance is not the main determinant for the success of social integration mechanisms in post-acquisition situations. On the contrary, the relationship between integration instrument and integration success is also governed by contextual factors such as the attractiveness...... of the acquisition target or state of development of HRM in the target country....

  20. Mechanical sludge disintegration for the production of carbon source for biological nutrient removal.

    Science.gov (United States)

    Kampas, P; Parsons, S A; Pearce, P; Ledoux, S; Vale, P; Churchley, J; Cartmell, E

    2007-04-01

    The primary driver for a successful biological nutrient removal is the availability of suitable carbon source, mainly in the form of volatile fatty acids (VFA). Several methods have been examined to increase the amount of VFAs in wastewater. This study investigates the mechanism of mechanical disintegration of thickened surplus activated sludge by a deflaker technology for the production of organic matter. This equipment was able to increase the soluble carbon in terms of VFA and soluble chemical oxygen demand (SCOD) with the maximum concentration to be around 850 and 6530 mgl(-1), for VFA and SCOD, respectively. The particle size was reduced from 65.5 to 9.3 microm after 15 min of disintegration with the simultaneous release of proteins (1550 mgl(-1)) and carbohydrates (307 mgl(-1)) indicating floc disruption and breakage. High performance size exclusion chromatography investigated the disintegrated sludge and confirmed that the deflaker was able to destroy the flocs releasing polymeric substances that are typically found outside of cells. When long disintegration times were applied (>or=10 min or >or=9000 kJkg(-1)TS of specific energy) smaller molecular size materials were released to the liquid phase, which are considered to be found inside the cells indicating cell lysis.

  1. Essays on the role of accounting in acquisition decision-making

    OpenAIRE

    Puhakka, Hannu

    2017-01-01

    This dissertation investigates the role of accounting in acquisition decision-making via three essays. First essay examines the influence of accounting on trust development during the acquisition negotiation process. Essay 2 explores the interplay of formal and informal pre-decision control mechanisms and seeks to provide new insights on the interplay of various pre-decision control mechanisms at different stages of the acquisition decision-making process. Third essay seeks to specify how acc...

  2. Mechanisms for success after long-term nutrient enrichment in a boreal forest understory.

    Directory of Open Access Journals (Sweden)

    Tess Nahanni Grainger

    Full Text Available Global levels of reactive nitrogen are predicted to rise in the coming decades as a result of increased deposition from the burning of fossil fuels and the large-scale conversion of nitrogen into a useable form for agriculture. Many plant communities respond strongly to increases in soil nitrogen, particularly in northern ecosystems where nitrogen levels are naturally very low. An experiment in northern Canada that was initiated in 1990 has been investigating the effects of long-term nutrient enrichment (fertilizer added annually on a boreal forest understory community. We used this experiment to investigate why some species increase in abundance under nutrient enrichment whereas others decline. We focused on four species that differed in their responses to fertilization: Mertensia paniculata and Epilobium angustifolium increased in abundance, Achillea millefolium remained relatively constant and Festuca altaica declined. We hypothesized that the two species that were successful in the new high-nutrient, light-limited environment would be taller, have higher specific leaf area, change phenology by growing earlier in the season and be more morphologically plastic than their less successful counterparts. We compared plant height, specific leaf area, growth spurt date and allocation to leaves in plants grown in control and fertilized plots. We demonstrated that each of the two species that came to dominate fertilized plots has a different combination of traits and responses that likely gave them a competitive advantage; M. paniculata has the highest specific leaf area of the four species whereas E. angustifolium is tallest and exhibits morphological plasticity when fertilized by increasing biomass allocation to leaves. These results indicate that rather than one strategy determining success when nutrients become available, a variety of traits and responses may contribute to a species' ability to persist in a nutrient-enriched boreal forest

  3. How Much of Language Acquisition Does Operant Conditioning Explain?

    Science.gov (United States)

    Sturdy, Christopher B; Nicoladis, Elena

    2017-01-01

    Since the 1950s, when Chomsky argued that Skinner's arguments could not explain syntactic acquisition, psychologists have generally avoided explicitly invoking operant or instrumental conditioning as a learning mechanism for language among human children. In this article, we argue that this is a mistake. We focus on research that has been done on language learning in human infants and toddlers in order to illustrate our points. Researchers have ended up inventing learning mechanisms that, in actual practice, not only resemble but also in fact are examples of operant conditioning (OC) by any other name they select. We argue that language acquisition researchers should proceed by first ruling out OC before invoking alternative learning mechanisms. While it is possible that OC cannot explain all of the language acquisition, simple learning mechanisms that work across species may have some explanatory power in children's language learning.

  4. WERF Nutrient Challenge investigates limits of nutrient removal technologies.

    Science.gov (United States)

    Neethling, J B; Clark, D; Pramanik, A; Stensel, H D; Sandino, J; Tsuchihashi, R

    2010-01-01

    The WERF Nutrient Challenge is a multi-year collaborative research initiative established in 2007 to develop and provide current information about wastewater treatment nutrients (specifically nitrogen and phosphorus in wastewater), their characteristics, and bioavailability in aquatic environments to help regulators make informed decisions. The Nutrient Challenge will also provide data on nutrient removal so that treatment facilities can select sustainable, cost-effective methods and technologies to meet permit limits. To meet these goals, the Nutrient Challenge has teamed with a wide array of utilities, agencies, consultants, universities and other researchers and practitioners to collaborate on projects that advance these goals. The Nutrient Challenge is focusing on a different approach to collaborating and leveraging resources (financial and intellectual) on research projects by targeting existing projects and research that correspond with its goals and funding those aspects that the Nutrient Challenge identified as a priority. Because the Nutrient Challenge is focused on collaboration, outreach is an absolutely necessary component of its effectiveness. Through workshops, webinars, a web portal and online compendium, published papers, and conference lectures, the Nutrient Challenge is both presenting important new information, and soliciting new partnerships.

  5. Automated nutrient analyses in seawater

    Energy Technology Data Exchange (ETDEWEB)

    Whitledge, T.E.; Malloy, S.C.; Patton, C.J.; Wirick, C.D.

    1981-02-01

    This manual was assembled for use as a guide for analyzing the nutrient content of seawater samples collected in the marine coastal zone of the Northeast United States and the Bering Sea. Some modifications (changes in dilution or sample pump tube sizes) may be necessary to achieve optimum measurements in very pronounced oligotrophic, eutrophic or brackish areas. Information is presented under the following section headings: theory and mechanics of automated analysis; continuous flow system description; operation of autoanalyzer system; cookbook of current nutrient methods; automated analyzer and data analysis software; computer interfacing and hardware modifications; and trouble shooting. The three appendixes are entitled: references and additional reading; manifold components and chemicals; and software listings. (JGB)

  6. Microbial metabolic potential for carbon degradation and nutrient (nitrogen and phosphorus) acquisition in an ombrotrophic peatland.

    Science.gov (United States)

    Lin, Xueju; Tfaily, Malak M; Green, Stefan J; Steinweg, J Megan; Chanton, Patrick; Imvittaya, Aopeau; Chanton, Jeffrey P; Cooper, William; Schadt, Christopher; Kostka, Joel E

    2014-06-01

    This study integrated metagenomic and nuclear magnetic resonance (NMR) spectroscopic approaches to investigate microbial metabolic potential for organic matter decomposition and nitrogen (N) and phosphorus (P) acquisition in soils of an ombrotrophic peatland in the Marcell Experimental Forest (MEF), Minnesota, USA. This analysis revealed vertical stratification in key enzymatic pathways and taxa containing these pathways. Metagenomic analyses revealed that genes encoding laccases and dioxygenases, involved in aromatic compound degradation, declined in relative abundance with depth, while the relative abundance of genes encoding metabolism of amino sugars and all four saccharide groups increased with depth in parallel with a 50% reduction in carbohydrate content. Most Cu-oxidases were closely related to genes from Proteobacteria and Acidobacteria, and type 4 laccase-like Cu-oxidase genes were >8 times more abundant than type 3 genes, suggesting an important and overlooked role for type 4 Cu-oxidase in phenolic compound degradation. Genes associated with sulfate reduction and methanogenesis were the most abundant anaerobic respiration genes in these systems, with low levels of detection observed for genes of denitrification and Fe(III) reduction. Fermentation genes increased in relative abundance with depth and were largely affiliated with Syntrophobacter. Methylocystaceae-like small-subunit (SSU) rRNA genes, pmoA, and mmoX genes were more abundant among methanotrophs. Genes encoding N2 fixation, P uptake, and P regulons were significantly enriched in the surface peat and in comparison to other ecosystems, indicating N and P limitation. Persistence of inorganic orthophosphate throughout the peat profile in this P-limiting environment indicates that P may be bound to recalcitrant organic compounds, thus limiting P bioavailability in the subsurface. Comparative metagenomic analysis revealed a high metabolic potential for P transport and starvation, N2 fixation, and

  7. Fine-root growth in a forested bog is seasonally dynamic, but shallowly distributed in nutrient-poor peat

    Science.gov (United States)

    Colleen M. Iversen; Joanne Childs; Richard J. Norby; Todd A. Ontl; Randall K. Kolka; Deanne J. Brice; Karis J. McFarlane; Paul J. Hanson

    2017-01-01

    Background and aims. Fine roots contribute to ecosystem carbon, water, and nutrient fluxes through resource acquisition, respiration, exudation, and turnover, but are understudied in peatlands. We aimed to determine how the amount and timing of fine-root growth in a forested, ombrotrophic bog varied across gradients of vegetation density, peat...

  8. Saharan dust nutrients promote Vibrio bloom formation in marine surface waters.

    Science.gov (United States)

    Westrich, Jason R; Ebling, Alina M; Landing, William M; Joyner, Jessica L; Kemp, Keri M; Griffin, Dale W; Lipp, Erin K

    2016-05-24

    Vibrio is a ubiquitous genus of marine bacteria, typically comprising a small fraction of the total microbial community in surface waters, but capable of becoming a dominant taxon in response to poorly characterized factors. Iron (Fe), often restricted by limited bioavailability and low external supply, is an essential micronutrient that can limit Vibrio growth. Vibrio species have robust metabolic capabilities and an array of Fe-acquisition mechanisms, and are able to respond rapidly to nutrient influx, yet Vibrio response to environmental pulses of Fe remains uncharacterized. Here we examined the population growth of Vibrio after natural and simulated pulses of atmospherically transported Saharan dust, an important and episodic source of Fe to tropical marine waters. As a model for opportunistic bacterial heterotrophs, we demonstrated that Vibrio proliferate in response to a broad range of dust-Fe additions at rapid timescales. Within 24 h of exposure, strains of Vibrio cholerae and Vibrio alginolyticus were able to directly use Saharan dust-Fe to support rapid growth. These findings were also confirmed with in situ field studies; arrival of Saharan dust in the Caribbean and subtropical Atlantic coincided with high levels of dissolved Fe, followed by up to a 30-fold increase of culturable Vibrio over background levels within 24 h. The relative abundance of Vibrio increased from ∼1 to ∼20% of the total microbial community. This study, to our knowledge, is the first to describe Vibrio response to Saharan dust nutrients, having implications at the intersection of marine ecology, Fe biogeochemistry, and both human and environmental health.

  9. How Much of Language Acquisition Does Operant Conditioning Explain?

    Science.gov (United States)

    Sturdy, Christopher B.; Nicoladis, Elena

    2017-01-01

    Since the 1950s, when Chomsky argued that Skinner’s arguments could not explain syntactic acquisition, psychologists have generally avoided explicitly invoking operant or instrumental conditioning as a learning mechanism for language among human children. In this article, we argue that this is a mistake. We focus on research that has been done on language learning in human infants and toddlers in order to illustrate our points. Researchers have ended up inventing learning mechanisms that, in actual practice, not only resemble but also in fact are examples of operant conditioning (OC) by any other name they select. We argue that language acquisition researchers should proceed by first ruling out OC before invoking alternative learning mechanisms. While it is possible that OC cannot explain all of the language acquisition, simple learning mechanisms that work across species may have some explanatory power in children’s language learning. PMID:29163295

  10. How Much of Language Acquisition Does Operant Conditioning Explain?

    Directory of Open Access Journals (Sweden)

    Christopher B. Sturdy

    2017-10-01

    Full Text Available Since the 1950s, when Chomsky argued that Skinner’s arguments could not explain syntactic acquisition, psychologists have generally avoided explicitly invoking operant or instrumental conditioning as a learning mechanism for language among human children. In this article, we argue that this is a mistake. We focus on research that has been done on language learning in human infants and toddlers in order to illustrate our points. Researchers have ended up inventing learning mechanisms that, in actual practice, not only resemble but also in fact are examples of operant conditioning (OC by any other name they select. We argue that language acquisition researchers should proceed by first ruling out OC before invoking alternative learning mechanisms. While it is possible that OC cannot explain all of the language acquisition, simple learning mechanisms that work across species may have some explanatory power in children’s language learning.

  11. Language acquisition is model-based rather than model-free.

    Science.gov (United States)

    Wang, Felix Hao; Mintz, Toben H

    2016-01-01

    Christiansen & Chater (C&C) propose that learning language is learning to process language. However, we believe that the general-purpose prediction mechanism they propose is insufficient to account for many phenomena in language acquisition. We argue from theoretical considerations and empirical evidence that many acquisition tasks are model-based, and that different acquisition tasks require different, specialized models.

  12. Wildfire Effects on In-stream Nutrient Processing and Hydrologic Transport

    Science.gov (United States)

    Rhea, A.; Covino, T. P.; Rhoades, C.; Fegel, T.

    2017-12-01

    In many forests throughout the Western U.S., drought, climate change, and growing fuel loads are contributing to increased fire frequency and severity. Wildfires can influence watershed nutrient retention as they fundamentally alter the biological composition and physical structure in upland landscapes, riparian corridors, and stream channels. While numerous studies have documented substantial short-term increases in stream nutrient concentrations and export (particularly reactive nitrogen, N) following forest fires, the long-term implications for watershed nutrient cycling remain unclear. For example, recent work indicates that nitrate concentrations and export can remain elevated for a decade or more following wildfire, yet the controls on these processes are unknown. In this research, we use empirical observations from nutrient tracer injections, nutrient diffusing substrates, and continuous water quality monitoring to isolate biological and physical controls on nutrient export across a burn-severity gradient. Tracer results demonstrate substantial stream-groundwater exchange, but little biological nutrient uptake in burned streams. This in part explains patterns of elevated nutrient export. Paired nutrient diffusing substrate experiments allow us to further investigate shifts in N, phosphorus, and carbon limitation that may suppress post-fire stream nutrient uptake. By isolating the mechanisms that reduce the capacity of fire-affected streams to retain and transform nutrient inputs, we can better predict dynamics in post-fire water quality and help prioritize upland and riparian restoration.

  13. MDAS2: A Data Acquisition System for the Soil Mechanic Laboratory; Sistema MDAS2 para Toma de Datos en el Laboratorio de Mecanica de Suelos

    Energy Technology Data Exchange (ETDEWEB)

    Alberdi, J.; Barcala, J. M. [Ciemat. Madrid (Spain)

    2000-07-01

    The soil Mechanic Laboratory in CIEMAT is working to characterize a bentonite which may be use in the storage of radioactive waste. The bentonite is studied with several tests, frequently used in soil mechanics. This document describes the data acquisition system used in one of these experiments.

  14. A smart market for nutrient credit trading to incentivize wetland construction

    Science.gov (United States)

    Raffensperger, John F.; Prabodanie, R. A. Ranga; Kostel, Jill A.

    2017-03-01

    Nutrient trading and constructed wetlands are widely discussed solutions to reduce nutrient pollution. Nutrient markets usually include agricultural nonpoint sources and municipal and industrial point sources, but these markets rarely include investors who construct wetlands to sell nutrient reduction credits. We propose a new market design for trading nutrient credits, with both point source and non-point source traders, explicitly incorporating the option of landowners to build nutrient removal wetlands. The proposed trading program is designed as a smart market with centralized clearing, done with an optimization. The market design addresses the varying impacts of runoff over space and time, and the lumpiness of wetland investments. We simulated the market for the Big Bureau Creek watershed in north-central Illinois. We found that the proposed smart market would incentivize wetland construction by assuring reasonable payments for the ecosystem services provided. The proposed market mechanism selects wetland locations strategically taking into account both the cost and nutrient removal efficiencies. The centralized market produces locational prices that would incentivize farmers to reduce nutrients, which is voluntary. As we illustrate, wetland builders' participation in nutrient trading would enable the point sources and environmental organizations to buy low cost nutrient credits.

  15. The Protein Composition of the Digestive Fluid from the Venus Flytrap Sheds Light on Prey Digestion Mechanisms*

    Science.gov (United States)

    Schulze, Waltraud X.; Sanggaard, Kristian W.; Kreuzer, Ines; Knudsen, Anders D.; Bemm, Felix; Thøgersen, Ida B.; Bräutigam, Andrea; Thomsen, Line R.; Schliesky, Simon; Dyrlund, Thomas F.; Escalante-Perez, Maria; Becker, Dirk; Schultz, Jörg; Karring, Henrik; Weber, Andreas; Højrup, Peter; Hedrich, Rainer; Enghild, Jan J.

    2012-01-01

    The Venus flytrap (Dionaea muscipula) is one of the most well-known carnivorous plants because of its unique ability to capture small animals, usually insects or spiders, through a unique snap-trapping mechanism. The animals are subsequently killed and digested so that the plants can assimilate nutrients, as they grow in mineral-deficient soils. We deep sequenced the cDNA from Dionaea traps to obtain transcript libraries, which were used in the mass spectrometry-based identification of the proteins secreted during digestion. The identified proteins consisted of peroxidases, nucleases, phosphatases, phospholipases, a glucanase, chitinases, and proteolytic enzymes, including four cysteine proteases, two aspartic proteases, and a serine carboxypeptidase. The majority of the most abundant proteins were categorized as pathogenesis-related proteins, suggesting that the plant's digestive system evolved from defense-related processes. This in-depth characterization of a highly specialized secreted fluid from a carnivorous plant provides new information about the plant's prey digestion mechanism and the evolutionary processes driving its defense pathways and nutrient acquisition. PMID:22891002

  16. Mechanisms of adaptation of small grains to soil acidity

    Directory of Open Access Journals (Sweden)

    Đalović Ivica G.

    2010-01-01

    Full Text Available Acid soils limit crop production on 30-40% of the world's arable land and up to 70% of the world's potentially arable land. Over 60% of the total arable lands in Serbia are acid soils. Soil acidity is determined by hydrogen (H+ in soil solution and it is influenced by edaphic, climatic, and biological factors. Major constraints for plant growth on acid mineral soils are toxic concentrations of mineral elements like Al of H+ and/or low mineral nutrient availability due to low solubility (e.g. P and Mo or low reserves and impaired uptake (e.g. Mg2+ at high H+ concentrations. Aluminum (Al toxicity is primary factor limiting crop production on acid soils. This review examines our current understanding of mechanisms of Al-toxicity, as well as the physiological and genetic basis for Al-toxicity and tolerance. Inhibition of root growth by Al leads to more shallow root systems, which may affect the capacity for mineral nutrient acquisition and increase the risk of drought stress. Of the two principal strategies (tolerance and avoidance of plants for adaptation to adverse soil conditions, the strategy of avoidance is more common for adaptation to acid mineral soils. At the same, the short view of the most important genetics tolerance mechanisms, developed and determined in some small grains genotypes, is showed as well.

  17. Enhancement of spilled oil biodegradation by nutrients of natural origin

    International Nuclear Information System (INIS)

    Basseres, A.; Eyraud, P.; Ladousse, A.; Tramier, B.

    1993-01-01

    Ten years ago, Elf Aquitaine began developing the technologies for the acceleration of hydrocarbon biodegradation. The continuation of this work has involved the study of new additives to complement the oleophilic nutrient, INIPOL EAP 22. In particular, it has been shown in both laboratory and in situ tests that hydrocarbon degradation can be accelerated by animal meals, which are natural products. Preliminary laboratory studies carried out under batch conditions have shown that the use of these products has resulted in considerable growth of the bacteria, coupled with a notable increase in the biological degradation kinetics of the hydrocarbons. These results are comparable with the performance of the nutrient INIPOL EAP 22. In situ experiments undertaken on soils polluted by hydrocarbons have shown that by using animal meals, 50 percent biodegradation was obtained after six weeks and this increased to 80 percent when mechanical aeration was also employed. Under nutrient-free control conditions, 25 percent biodegradation was obtained with no aeration and 35 percent with mechanical aeration. In trials using coastal sandy sediments, the use of these nutrients has resulted in an increase of both the number of hydrocarbon specific bacteria and the hydrocarbon degradation. It can be concluded from these pilot experiments that in the development of bioremediation as an operational tool in the response to accidental oil spills, these nutrients of natural origin represent an interesting advance

  18. Specialization to Extremely Low-Nutrient Soils Limits the Nutritional Adaptability of Plant Lineages.

    Science.gov (United States)

    Verboom, G Anthony; Stock, William D; Cramer, Michael D

    2017-06-01

    Specialization to extreme selective situations promotes the acquisition of traits whose coadaptive integration may compromise evolutionary flexibility and adaptability. We test this idea in the context of the foliar stoichiometry of plants native to the South African Cape. Whereas foliar concentrations of nitrogen, phosphorus (P), potassium (K), calcium, magnesium, and sodium showed strong phylogenetic signal, as did the foliar ratios of these nutrients to P, the same was not true of the corresponding soil values. In addition, although foliar traits were often related to soil values, the coefficients of determination were consistently low. These results identify foliar stoichiometry as having a strong genetic component, with variation in foliar nutrient concentrations, especially [P] and [K], being identified as potentially adaptive. Comparison of stoichiometric variation across 11 similarly aged clades revealed consistently low foliar nutrient concentrations in lineages showing specialization to extremely low-nutrient fynbos heathlands. These lineages also display lower rates of evolution of these traits as well as a reduced tendency for foliar [P] to track soil [P]. Reduced evolutionary lability and adaptability in the nutritional traits of fynbos-specialist lineages may explain the floristic distinctness of the fynbos flora and implies a reduced scope for edaphically driven ecological speciation.

  19. Nutrient cycling strategies.

    NARCIS (Netherlands)

    Breemen, van N.

    1995-01-01

    This paper briefly reviews pathways by which plants can influence the nutrient cycle, and thereby the nutrient supply of themselves and of their competitors. Higher or lower internal nutrient use efficiency positively feeds back into the nutrient cycle, and helps to increase or decrease soil

  20. A Lossless Network for Data Acquisition

    OpenAIRE

    Jereczek, Grzegorz Edmund; Lehmann Miotto, Giovanna

    2016-01-01

    The bursty many-to-one communication pattern, typical for data acquisition systems, is particularly demanding for commodity TCP/IP and Ethernet technologies. We expand the study of lossless switching in software running on commercial-off-the-shelf servers, using the ATLAS experiment as a case study. In this paper we extend the popular software switch, Open vSwitch, with a dedicated, throughput-oriented buffering mechanism for data acquisition. We compare the performance under heavy congestion...

  1. DACS II - A distributed thermal/mechanical loads data acquisition and control system

    Science.gov (United States)

    Zamanzadeh, Behzad; Trover, William F.; Anderson, Karl F.

    1987-01-01

    A distributed data acquisition and control system has been developed for the NASA Flight Loads Research Facility. The DACS II system is composed of seven computer systems and four array processors configured as a main computer system, three satellite computer systems, and 13 analog input/output systems interconnected through three independent data networks. Up to three independent heating and loading tests can be run concurrently on different test articles or the entire system can be used on a single large test such as a full scale hypersonic aircraft. Thermal tests can include up to 512 independent adaptive closed loop control channels. The control system can apply up to 20 MW of heating to a test specimen while simultaneously applying independent mechanical loads. Each thermal control loop is capable of heating a structure at rates of up to 150 F per second over a temperature range of -300 to +2500 F. Up to 64 independent mechanical load profiles can be commanded along with thermal control. Up to 1280 analog inputs monitor temperature, load, displacement and strain on the test specimens with real time data displayed on up to 15 terminals as color plots and tabular data displays. System setup and operation is accomplished with interactive menu-driver displays with extensive facilities to assist the users in all phases of system operation.

  2. Potential of three microbial bio-effectors to promote maize growth and nutrient acquisition from alternative phosphorous fertilizers in contrasting soils

    DEFF Research Database (Denmark)

    Thonar, Cécile; Lekfeldt, Jonas Duus Stevens; Cozzolino, Vincenza

    2017-01-01

    results were mostly obtained with BEs in combination with organic fertilizers such as composted animal manures, fresh digestate of organic wastes, and sewage sludge. In only one experiment, the nutrient use efficiency of mineral recycling fertilizers was improved by BE inoculation. Conclusions......Background: Agricultural production is challenged by the limitation of non-renewable resources. Alternative fertilizers are promoted but they often have a lower availability of key macronutrients, especially phosphorus (P). Biological inoculants, the so-called bio-effectors (BEs), may be combined...... with these fertilizers to improve the nutrient use efficiency. Methods: The goal of this study was to assess the potential of three BEs in combination with alternative fertilizers (e.g., composted manure, biogas digestate, green compost) to promote plant growth and nutrient uptake in soils typical for various European...

  3. A mathematical function for the description of nutrient-response curve.

    Directory of Open Access Journals (Sweden)

    Hamed Ahmadi

    Full Text Available Several mathematical equations have been proposed to modeling nutrient-response curve for animal and human justified on the goodness of fit and/or on the biological mechanism. In this paper, a functional form of a generalized quantitative model based on Rayleigh distribution principle for description of nutrient-response phenomena is derived. The three parameters governing the curve a has biological interpretation, b may be used to calculate reliable estimates of nutrient response relationships, and c provide the basis for deriving relationships between nutrient and physiological responses. The new function was successfully applied to fit the nutritional data obtained from 6 experiments including a wide range of nutrients and responses. An evaluation and comparison were also done based simulated data sets to check the suitability of new model and four-parameter logistic model for describing nutrient responses. This study indicates the usefulness and wide applicability of the new introduced, simple and flexible model when applied as a quantitative approach to characterizing nutrient-response curve. This new mathematical way to describe nutritional-response data, with some useful biological interpretations, has potential to be used as an alternative approach in modeling nutritional responses curve to estimate nutrient efficiency and requirements.

  4. Plants may alter competition by modifying nutrient bioavailability in rhizosphere: a modeling approach.

    Science.gov (United States)

    Raynaud, Xavier; Jaillard, Benoît; Leadley, Paul W

    2008-01-01

    Plants modify nutrient availability by releasing chemicals in the rhizosphere. This change in availability induced by roots (bioavailability) is known to improve nutrient uptake by individual plants releasing such compounds. Can this bioavailability alter plant competition for nutrients and under what conditions? To address these questions, we have developed a model of nutrient competition between plant species based on mechanistic descriptions of nutrient diffusion, plant exudation, and plant uptake. The model was parameterized using data of the effects of root citrate exudation on phosphorus availability. We performed a sensitivity analysis for key parameters to test the generality of these effects. Our simulations suggest the following. (1) Nutrient uptake depends on the number of roots when nutrients and exudates diffuse little, because individual roots are nearly independent in terms of nutrient supply. In this case, bioavailability profits only species with exudates. (2) Competition for nutrients depends on the spatial arrangement of roots when nutrients diffuse little but exudates diffuse widely. (3) Competition for nutrients depends on the nutrient uptake capacity of roots when nutrients and exudates diffuse widely. In this case, bioavailability profits all species. Mechanisms controlling competition for bioavailable nutrients appear to be diverse and strongly depend on soil, nutrient, and plant properties.

  5. Nutrient Sensing at the Plasma Membrane of Fungal Cells.

    Science.gov (United States)

    Van Dijck, Patrick; Brown, Neil Andrew; Goldman, Gustavo H; Rutherford, Julian; Xue, Chaoyang; Van Zeebroeck, Griet

    2017-03-01

    To respond to the changing environment, cells must be able to sense external conditions. This is important for many processes including growth, mating, the expression of virulence factors, and several other regulatory effects. Nutrient sensing at the plasma membrane is mediated by different classes of membrane proteins that activate downstream signaling pathways: nontransporting receptors, transceptors, classical and nonclassical G-protein-coupled receptors, and the newly defined extracellular mucin receptors. Nontransporting receptors have the same structure as transport proteins, but have lost the capacity to transport while gaining a receptor function. Transceptors are transporters that also function as a receptor, because they can rapidly activate downstream signaling pathways. In this review, we focus on these four types of fungal membrane proteins. We mainly discuss the sensing mechanisms relating to sugars, ammonium, and amino acids. Mechanisms for other nutrients, such as phosphate and sulfate, are discussed briefly. Because the model yeast Saccharomyces cerevisiae has been the most studied, especially regarding these nutrient-sensing systems, each subsection will commence with what is known in this species.

  6. Trichoderma asperellum T42 Reprograms Tobacco for Enhanced Nitrogen Utilization Efficiency and Plant Growth When Fed with N Nutrients

    Directory of Open Access Journals (Sweden)

    Bansh N. Singh

    2018-02-01

    Full Text Available Trichoderma spp., are saprophytic fungi that can improve plant growth through increased nutrient acquisition and change in the root architecture. In the present study, we demonstrate that Trichoderma asperellum T42 mediate enhancement in host biomass, total nitrogen content, nitric oxide (NO production and cytosolic Ca2+ accumulation in tobacco. T42 inoculation enhanced lateral root, root hair length, root hair density and root/shoot dry mass in tobacco under deprived nutrients condition. Interestingly, these growth attributes were further elevated in presence of T42 and supplementation of NO3- and NH4+ nutrients to tobacco at 40 and 70 days, particularly in NO3- supplementation, whereas no significant increment was observed in nia30 mutant. In addition, NO production was more in tobacco roots in T42 inoculated plants fed with NO3- nutrient confirming NO generation was dependent on NR pathway. NO3- dependent NO production contributed to increase in lateral root initiation, Ca2+ accumulation and activities of nitrate transporters (NRTs in tobacco. Higher activities of several NRT genes in response to T42 and N nutrients and suppression of ammonium transporter (AMT1 suggested that induction of high affinity NRTs help NO3- acquisition through roots of tobacco. Among the NRTs NRT2.1 and NRT2.2 were more up-regulated compared to the other NRTs. Addition of sodium nitroprusside (SNP, relative to those supplied with NO3-/NH4+ nutrition and T42 treated plants singly, and with application of NO inhibitor, cPTIO, confirmed the altered NO fluorescence intensity in tobacco roots. Our findings suggest that T42 promoted plant growth significantly ant N content in the tobacco plants grown under N nutrients, notably higher in NO3-, providing insight of the strategy for not only tobacco but probably for other crops as well to adapt to fluctuating nitrate availability in soil.

  7. Lateral diffusion of nutrients by mammalian herbivores in terrestrial ecosystems.

    Directory of Open Access Journals (Sweden)

    Adam Wolf

    Full Text Available Animals translocate nutrients by consuming nutrients at one point and excreting them or dying at another location. Such lateral fluxes may be an important mechanism of nutrient supply in many ecosystems, but lack quantification and a systematic theoretical framework for their evaluation. This paper presents a mathematical framework for quantifying such fluxes in the context of mammalian herbivores. We develop an expression for lateral diffusion of a nutrient, where the diffusivity is a biologically determined parameter depending on the characteristics of mammals occupying the domain, including size-dependent phenomena such as day range, metabolic demand, food passage time, and population size. Three findings stand out: (a Scaling law-derived estimates of diffusion parameters are comparable to estimates calculated from estimates of each coefficient gathered from primary literature. (b The diffusion term due to transport of nutrients in dung is orders of magnitude large than the coefficient representing nutrients in bodymass. (c The scaling coefficients show that large herbivores make a disproportionate contribution to lateral nutrient transfer. We apply the diffusion equation to a case study of Kruger National Park to estimate the conditions under which mammal-driven nutrient transport is comparable in magnitude to other (abiotic nutrient fluxes (inputs and losses. Finally, a global analysis of mammalian herbivore transport is presented, using a comprehensive database of contemporary animal distributions. We show that continents vary greatly in terms of the importance of animal-driven nutrient fluxes, and also that perturbations to nutrient cycles are potentially quite large if threatened large herbivores are driven to extinction.

  8. Incidental Lexicon Acquisition through Playful Interaction

    OpenAIRE

    Lukas Wilhelm Ansteeg

    2015-01-01

    This paper presents an educational game which aids learners with foreign lexicon acquisition while entertaining them at the same time. An overview over existing language learning tools is given, and a general platform for educational games for second language acquisition (SLA) is described. It introduces a specific prototype video game which teaches Italian vocabulary to the user. The application puts learning at the core of its game mechanics and combines it with a narrative and role-playing...

  9. Oxytocin differentially modulates pavlovian cue and context fear acquisition.

    Science.gov (United States)

    Cavalli, Juliana; Ruttorf, Michaela; Pahi, Mario Rosero; Zidda, Francesca; Flor, Herta; Nees, Frauke

    2017-06-01

    Fear acquisition and extinction have been demonstrated as core mechanisms for the development and maintenance of mental disorders, with different contributions of processing cues vs contexts. The hypothalamic peptide oxytocin (OXT) may have a prominent role in this context, as it has been shown to affect fear learning. However, investigations have focused on cue conditioning, and fear extinction. Its differential role for cue and context fear acquisition is still not known. In a randomized, double-blind, placebo (PLC)-controlled design, we administered an intranasal dose of OXT or PLC before the acquisition of cue and context fear conditioning in healthy individuals (n = 52), and assessed brain responses, skin conductance responses and self-reports (valence/arousal/contingency). OXT compared with PLC significantly induced decreased responses in the nucleus accumbens during early cue and context acquisition, and decreased responses of the anterior cingulate cortex and insula during early as well as increased hippocampal response during late context, but not cue acquisition. The OXT group additionally showed significantly higher arousal in late cue and context acquisition. OXT modulates various aspects of cue and context conditioning, which is relevant from a mechanism-based perspective and might have implications for the treatment of fear and anxiety. © The Author (2017). Published by Oxford University Press.

  10. Effect of soil acidification on root growth, nutrient and water uptake

    International Nuclear Information System (INIS)

    Marschner, H.

    1989-01-01

    Soil acidification poses various types of stress to plants, especially Al and H + toxicity in roots and Mg and Ca deficiency in roots and shoots. The importance of the various types of stress varies with plant species, location and time. Average data of the chemical composition of the bulk soil or of the molar Ca/Al or Mg/Al ratios in the soil solution without consideration of the Al species are of limited value for precise conclusions of the actual, or for predictions of the potential risk of soil-acidity-induced inhibition of root growth and of nutritional imbalances. The root-induced changes in the rhizosphere and the consequences for Al toxicity and nutrient acquisition by plants deserve more attention. Further it should be considered that roots are not only required for anchoring higher plants in the soil and for nutrient and water uptake. Roots are also important sites for synthesis of phytohormones, cytokinins and abscisic acid in particular, which are transported into the shoots and act either as signals for the water status at the soil-root interface (ABA) or as compounds required for growth and development. Inhibition in root growth may therefore affect shoot growth by means other than water and nutrient supply. (orig./vhe)

  11. Shifts in nitrogen acquisition strategies enable enhanced terrestrial carbon storage under elevated CO2 in a global model

    Science.gov (United States)

    Sulman, B. N.; Brzostek, E. R.; Menge, D.; Malyshev, S.; Shevliakova, E.

    2017-12-01

    Earth System Model (ESM) projections of terrestrial carbon (C) uptake are critical to understanding the future of the global C cycle. Current ESMs include intricate representations of photosynthetic C fixation in plants, allowing them to simulate the stimulatory effect of increasing atmospheric CO2 levels on photosynthesis. However, they lack sophisticated representations of plant nutrient acquisition, calling into question their ability to project the future land C sink. We conducted simulations using a new model of terrestrial C and nitrogen (N) cycling within the Geophysical Fluid Dynamics Laboratory (GFDL) global land model LM4 that uses a return on investment framework to simulate global patterns of N acquisition via fixation of N2 from the atmosphere, scavenging of inorganic N from soil solution, and mining of organic N from soil organic matter (SOM). We show that these strategies drive divergent C cycle responses to elevated CO2 at the ecosystem scale, with the scavenging strategy leading to N limitation of plant growth and the mining strategy facilitating stimulation of plant biomass accumulation over decadal time scales. In global simulations, shifts in N acquisition from inorganic N scavenging to organic N mining along with increases in N fixation supported long-term acceleration of C uptake under elevated CO2. Our results indicate that the ability of the land C sink to mitigate atmospheric CO2 levels is tightly coupled to the functional diversity of ecosystems and their capacity to change their N acquisition strategies over time. Incorporation of these mechanisms into ESMs is necessary to improve confidence in model projections of the global C cycle.

  12. The duration of mitosis and daughter cell size are modulated by nutrients in budding yeast.

    Science.gov (United States)

    Leitao, Ricardo M; Kellogg, Douglas R

    2017-11-06

    The size of nearly all cells is modulated by nutrients. Thus, cells growing in poor nutrients can be nearly half the size of cells in rich nutrients. In budding yeast, cell size is thought to be controlled almost entirely by a mechanism that delays cell cycle entry until sufficient growth has occurred in G1 phase. Here, we show that most growth of a new daughter cell occurs in mitosis. When the rate of growth is slowed by poor nutrients, the duration of mitosis is increased, which suggests that cells compensate for slow growth in mitosis by increasing the duration of growth. The amount of growth required to complete mitosis is reduced in poor nutrients, leading to a large reduction in cell size. Together, these observations suggest that mechanisms that control the extent of growth in mitosis play a major role in cell size control in budding yeast. © 2017 Leitao and Kellogg.

  13. Knowledge Transfers following Acquisition

    DEFF Research Database (Denmark)

    Gammelgaard, Jens

    2001-01-01

    Prior relations between the acquiring firm and the target company pave the way for knowledge transfers subsequent to the acquisitions. One major reason is that through the market-based relations the two actors build up mutual trust and simultaneously they learn how to communicate. An empirical...... study of 54 Danish acquisitions taking place abroad from 1994 to 1998 demonstrated that when there was a high level of trust between the acquiring firm and the target firm before the take-over, then medium and strong tie-binding knowledge transfer mechanisms, such as project groups and job rotation......, were used more intensively. Further, the degree of stickiness was significantly lower in the case of prior trust-based relations....

  14. The Effects of Foreign Language Motivation in Second Language Acquisition

    Institute of Scientific and Technical Information of China (English)

    WU Miao-ru

    2013-01-01

    Foreign language motivation is regarded as one source of individual differences in second language acquisition. Learn-ing motivation is a dynamic mechanism which gives rise to learning activities. Learners ’motivation is a decisive factor for the suc-cess of second language acquisition.

  15. Proposal for a method to estimate nutrient shock effects in bacteria

    Directory of Open Access Journals (Sweden)

    Azevedo Nuno F

    2012-08-01

    Full Text Available Abstract Background Plating methods are still the golden standard in microbiology; however, some studies have shown that these techniques can underestimate the microbial concentrations and diversity. A nutrient shock is one of the mechanisms proposed to explain this phenomenon. In this study, a tentative method to assess nutrient shock effects was tested. Findings To estimate the extent of nutrient shock effects, two strains isolated from tap water (Sphingomonas capsulata and Methylobacterium sp. and two culture collection strains (E. coli CECT 434 and Pseudomonas fluorescens ATCC 13525 were exposed both to low and high nutrient conditions for different times and then placed in low nutrient medium (R2A and rich nutrient medium (TSA. The average improvement (A.I. of recovery between R2A and TSA for the different times was calculated to more simply assess the difference obtained in culturability between each medium. As expected, A.I. was higher when cells were plated after the exposition to water than when they were recovered from high-nutrient medium showing the existence of a nutrient shock for the diverse bacteria used. S. capsulata was the species most affected by this phenomenon. Conclusions This work provides a method to consistently determine the extent of nutrient shock effects on different microorganisms and hence quantify the ability of each species to deal with sudden increases in substrate concentration.

  16. The Nutrient Density of Snacks: A Comparison of Nutrient Profiles of Popular Snack Foods Using the Nutrient-Rich Foods Index.

    Science.gov (United States)

    Hess, Julie; Rao, Goutham; Slavin, Joanne

    2017-01-01

    Background: Although Americans receive almost a quarter of their daily energy from snacks, snacking remains a poorly defined and understood eating occasion. However, there is little dietary guidance about choosing snacks. Families, clinicians, and researchers need a comprehensive approach to assessing their nutritional value. Objective: To quantify and compare the nutrient density of commonly consumed snacks by their overall nutrient profiles using the Nutrient-Rich Foods (NRF) Index 10.3. Methods: NRF Index scores were calculated for the top 3 selling products (based on 2014 market research data) in different snack categories. These NRF scores were averaged to provide an overall nutrient-density score for each category. Results: Based on NRF scores, yogurt (55.3), milk (52.5), and fruit (30.1) emerged as the most nutrient-dense snacks. Ice cream (-4.4), pies and cakes (-11.1), and carbonated soft drinks (-17.2) emerged as the most nutrient-poor snacks. Conclusions: The NRF Index is a useful tool for assessing the overall nutritional value of snacks based on nutrients to limit and nutrients to encourage.

  17. Numerical simulations of river discharges, nutrient flux and nutrient dispersal in Jakarta Bay, Indonesia

    International Nuclear Information System (INIS)

    Wulp, Simon A. van der; Damar, Ario; Ladwig, Norbert; Hesse, Karl-J.

    2016-01-01

    The present application of numerical modelling techniques provides an overview of river discharges, nutrient flux and nutrient dispersal in Jakarta Bay. A hydrological model simulated river discharges with a total of 90 to 377 m 3 s −1 entering Jakarta Bay. Daily total nitrogen and total phosphorus loads ranged from 40 to 174 tons and 14 to 60 tons, respectively. Flow model results indicate that nutrient gradients are subject to turbulent mixing by tides and advective transport through circulation driven by wind, barotropic and baroclinic pressure gradients. The bulk of nutrient loads originate from the Citarum and Cisadane rivers flowing through predominantly rural areas. Despite lower nutrient loads, river discharges from the urban area of Jakarta exhibit the highest impact of nutrient concentrations in the near shore area of Jakarta Bay and show that nutrient concentrations were not only regulated by nutrient loads but were strongly regulated by initial river concentrations and local flow characteristics. - Highlights: • Full overview of river discharges, nutrient flux and nutrient levels in Jakarta Bay • Important overview of nutrient flux from individual rivers • Simulations identify the principal drivers of water circulation and nutrient gradient. • Nutrient dispersion model includes the local effects of the Java Sea current system.

  18. Linking environmental nutrient enrichment and disease emergence in humans and wildlife

    Science.gov (United States)

    Johnson, Pieter T. J.; Townsend, Alan R.; Cleveland, Cory C.; Glibert, Patricia M.; Howarth, Robert W.; McKenzie, Valerie J.; Rejmankova, Eliska; Ward, Mary H.

    2009-01-01

    Worldwide increases in the numbers of human and wildlife diseases present ecologists with the challenge of understanding how large-scale environmental changes affect host-parasite interactions. One of the most profound changes to Earth’s ecosystems is the alteration of global nutrient cycles, including those of phosphorus (P) and especially nitrogen (N). Alongside the obvious direct benefits of nutrient application for food production, growing evidence suggests that anthropogenic inputs of N and P can indirectly affect the abundance of infectious and noninfectious pathogens, sometimes leading to epidemic conditions. However, the mechanisms underpinning observed correlations, and how such patterns vary with disease type, have long remained conjectural. Here, we discuss recent experimental advances in this area to critically evaluate the relationship between environmental nutrient enrichment and disease. Given the inter-related nature of human and wildlife disease emergence, we include a broad range of human and wildlife examples from terrestrial, marine and freshwater ecosystems. We examine the consequences of nutrient pollution on directly transmitted, vector-borne, complex life cycle, and noninfectious pathogens, including West Nile virus, malaria, harmful algal blooms, coral reef diseases and amphibian malformations. Our synthetic examination suggests that the effects of environmental nutrient enrichment on disease are complex and multifaceted, varying with the type of pathogen, host species and condition, attributes of the ecosystem and the degree of enrichment; some pathogens increase in abundance whereas others decline or disappear. Nevertheless, available evidence indicates that ecological changes associated with nutrient enrichment often exacerbate infection and disease caused by generalist parasites with direct or simple life cycles. Observed mechanisms include changes in host/vector density, host distribution, infection resistance, pathogen virulence or

  19. Approaches and uncertainties in nutrient budgets; Implications for nutrient management and environmental policies

    NARCIS (Netherlands)

    Oenema, O.; Kros, J.; Vries, de W.

    2003-01-01

    Nutrient budgets of agroecosystems are constructed either (i) to increase the understanding of nutrient cycling, (ii) as performance indicator and awareness raiser in nutrient management and environmental policy, or (iii) as regulating policy instrument to enforce a certain nutrient management

  20. Fatal attraction: vegetation responses to nutrient inputs attract herbivores to infectious anthrax carcass sites.

    Science.gov (United States)

    Turner, Wendy C; Kausrud, Kyrre L; Krishnappa, Yathin S; Cromsigt, Joris P G M; Ganz, Holly H; Mapaure, Isaac; Cloete, Claudine C; Havarua, Zepee; Küsters, Martina; Getz, Wayne M; Stenseth, Nils Chr

    2014-11-22

    Parasites can shape the foraging behaviour of their hosts through cues indicating risk of infection. When cues for risk co-occur with desired traits such as forage quality, individuals face a trade-off between nutrient acquisition and parasite exposure. We evaluated how this trade-off may influence disease transmission in a 3-year experimental study of anthrax in a guild of mammalian herbivores in Etosha National Park, Namibia. At plains zebra (Equus quagga) carcass sites we assessed (i) carcass nutrient effects on soils and grasses, (ii) concentrations of Bacillus anthracis (BA) on grasses and in soils, and (iii) herbivore grazing behaviour, compared with control sites, using motion-sensing camera traps. We found that carcass-mediated nutrient pulses improved soil and vegetation, and that BA is found on grasses up to 2 years after death. Host foraging responses to carcass sites shifted from avoidance to attraction, and ultimately to no preference, with the strength and duration of these behavioural responses varying among herbivore species. Our results demonstrate that animal carcasses alter the environment and attract grazing hosts to parasite aggregations. This attraction may enhance transmission rates, suggesting that hosts are limited in their ability to trade off nutrient intake with parasite avoidance when relying on indirect cues. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  1. Interactions between nutrients and organic micro-pollutants in shallow freshwater ecosystems

    NARCIS (Netherlands)

    Roessink, I.; Koelmans, A.A.; Brock, T.C.M.

    2008-01-01

    Effects of nutrients and toxicants in aquatic ecosystems may interact in several ways. Here, we (a) present an overview of reported mechanisms that may play a role in these interactions, and (b) compare these reported mechanisms against the results of a suite of experiments performed with organic

  2. Modeling farm nutrient flows in the North China Plain to reduce nutrient losses

    NARCIS (Netherlands)

    Zhao, Zhanqing; Bai, Zhaohai; Wei, Sha; Ma, Wenqi; Wang, Mengru; Kroeze, Carolien; Ma, Lin

    2017-01-01

    Years of poor nutrient management practices in the agriculture industry in the North China Plain have led to large losses of nutrients to the environment, causing severe ecological consequences. Analyzing farm nutrient flows is urgently needed in order to reduce nutrient losses. A farm-level

  3. Compulsory acquisition of shares buyer, other shareholders, abuse of right of compulsory acquisition of shares

    Directory of Open Access Journals (Sweden)

    Arsić Zoran V.

    2015-01-01

    Full Text Available Company Act of Republic of Serbia includes mechanism for the compulsory acquisition of the shareholdings of minority shareholders. Technically this procedure is effected on the basis of the shareholders assembly resolution. Buyer is shareholder who has at least 90% of share capital and at least 90% of votes. Shares owned by entity under his dominant influence will be treated as shares of that shareholder provided that dominant influence exists at least one year. Company's own shares, and shares subject o a pledge do not represent shares of other shareholders. There are several actions which may be treated as abuse of right of compulsory acquisition of shares.

  4. Adaption of Ulva pertusa to multiple-contamination of heavy metals and nutrients: Biological mechanism of outbreak of Ulva sp. green tide.

    Science.gov (United States)

    Ge, Changzi; Yu, Xiru; Kan, Manman; Qu, Chunfeng

    2017-12-15

    The multiple-contamination of heavy metals and nutrients worsens increasingly and Ulva sp. green tide occurs almost simultaneously. To reveal the biological mechanism for outbreak of the green tide, Ulva pertusa was exposed to seven-day-multiple-contamination. The relation between pH variation (V pH ), Chl a content, ratio of (Chl a content)/(Chl b content) (R chla/chlb ), SOD activity of U. pertusa (A SOD ) and contamination concentration is [Formula: see text] (pcontamination concentrations of seawaters where Ulva sp. green tide occurred and the contamination concentrations set in the present work, U. pertusa can adapt to multiple-contaminations in these waters. Thus, the adaption to multiple-contamination may be one biological mechanism for the outbreak of Ulva sp. green tide. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Applying Aspects of the Expert Performance Approach to Better Understand the Structure of Skill and Mechanisms of Skill Acquisition in Video Games.

    Science.gov (United States)

    Boot, Walter R; Sumner, Anna; Towne, Tyler J; Rodriguez, Paola; Anders Ericsson, K

    2017-04-01

    Video games are ideal platforms for the study of skill acquisition for a variety of reasons. However, our understanding of the development of skill and the cognitive representations that support skilled performance can be limited by a focus on game scores. We present an alternative approach to the study of skill acquisition in video games based on the tools of the Expert Performance Approach. Our investigation was motivated by a detailed analysis of the behaviors responsible for the superior performance of one of the highest scoring players of the video game Space Fortress (Towne, Boot, & Ericsson, ). This analysis revealed how certain behaviors contributed to his exceptional performance. In this study, we recruited a participant for a similar training regimen, but we collected concurrent and retrospective verbal protocol data throughout training. Protocol analysis revealed insights into strategies, errors, mental representations, and shifting game priorities. We argue that these insights into the developing representations that guided skilled performance could only easily have been derived from the tools of the Expert Performance Approach. We propose that the described approach could be applied to understand performance and skill acquisition in many different video games (and other short- to medium-term skill acquisition paradigms) and help reveal mechanisms of transfer from gameplay to other measures of laboratory and real-world performance. Copyright © 2016 Cognitive Science Society, Inc.

  6. Microbial enzyme activity, nutrient uptake and nutrient limitation in forested streams

    Science.gov (United States)

    Brian H. Hill; Frank H. McCormick; Bret C. Harvey; Sherri L. Johnson; Melvin L. Warren; Colleen M. Elonen

    2010-01-01

    The flow of organic matter and nutrients from catchments into the streams draining them and the biogeochemical transformations of organic matter and nutrients along flow paths are fundamental processes instreams (Hynes,1975; Fisher, Sponseller & Heffernan, 2004). Microbial biofilms are often the primary interface for organic matter and nutrient uptake and...

  7. Defining planktonic protist functional groups on mechanisms for energy and nutrient acquisition

    DEFF Research Database (Denmark)

    Mitra, Aditee; Flynn, Kevin J.; Tillmann, Urban

    2016-01-01

    Arranging organisms into functional groups aids ecological research by grouping organisms (irrespective of phylogenetic origin) that interact with environmental factors in similar ways. Planktonic protists traditionally have been split between photoautotrophic “phytoplankton” and phagotrophic...... “microzooplankton”. However, there is a growing recognition of the importance of mixotrophy in euphotic aquatic systems, where many protists often combine photoautotrophic and phagotrophic modes of nutrition. Such organisms do not align with the traditional dichotomy of phytoplankton and microzooplankton...... for phototrophy, and (iv) non-constitutive mixotrophs (NCMs) that acquire their phototrophic capacity by ingesting specific (SNCM) or general non-specific (GNCM) prey. For the first time, we incorporate these functional groups within a foodweb structure and show, using model outputs, that there is scope...

  8. Hypoxia and bicarbonate could limit the expression of iron acquisition genes in Strategy I plants by affecting ethylene synthesis and signaling in different ways.

    Science.gov (United States)

    García, María J; García-Mateo, María J; Lucena, Carlos; Romera, Francisco J; Rojas, Carmen L; Alcántara, Esteban; Pérez-Vicente, Rafael

    2014-01-01

    In a previous work, it was shown that bicarbonate (one of the most important factors causing Fe chlorosis in Strategy I plants) can limit the expression of several genes involved in Fe acquisition. Hypoxia is considered another important factor causing Fe chlorosis, mainly on calcareous soils. However, to date it is not known whether hypoxia aggravates Fe chlorosis by affecting bicarbonate concentration or by specific negative effects on Fe acquisition. Results found in this work show that hypoxia, generated by eliminating the aeration of the nutrient solution, can limit the expression of several Fe acquisition genes in Fe-deficient Arabidopsis, cucumber and pea plants, like the genes for ferric reductases AtFRO2, PsFRO1 and CsFRO1; iron transporters AtIRT1, PsRIT1 and CsIRT1; H(+) -ATPase CsHA1; and transcription factors AtFIT, AtbHLH38, and AtbHLH39. Interestingly, the limitation of the expression of Fe-acquisition genes by hypoxia did not occur in the Arabidopsis ethylene constitutive mutant ctr1, which suggests that the negative effect of hypoxia is related to ethylene, an hormone involved in the upregulation of Fe acquisition genes. As for hypoxia, results obtained by applying bicarbonate to the nutrient solution suggests that ethylene is also involved in its negative effect, since ACC (1-aminocyclopropane-1-carboxylic acid; ethylene precursor) partially reversed the negative effect of bicarbonate on the expression of Fe acquisition genes. Taken together, the results obtained show that hypoxia and bicarbonate could induce Fe chlorosis by limiting the expression of Fe acquisition genes, probably because each factor negatively affects different steps of ethylene synthesis and/or signaling. © 2013 Scandinavian Plant Physiology Society.

  9. Maternal–Fetal Nutrient Transport in Pregnancy Pathologies: The Role of the Placenta

    Directory of Open Access Journals (Sweden)

    Kendra Elizabeth Brett

    2014-09-01

    Full Text Available Appropriate in utero growth is essential for offspring development and is a critical contributor to long-term health. Fetal growth is largely dictated by the availability of nutrients in maternal circulation and the ability of these nutrients to be transported into fetal circulation via the placenta. Substrate flux across placental gradients is dependent on the accessibility and activity of nutrient-specific transporters. Changes in the expression and activity of these transporters is implicated in cases of restricted and excessive fetal growth, and may represent a control mechanism by which fetal growth rate attempts to match availability of nutrients in maternal circulation. This review provides an overview of placenta nutrient transport with an emphasis on macro-nutrient transporters. It highlights the changes in expression and activity of these transporters associated with common pregnancy pathologies, including intrauterine growth restriction, macrosomia, diabetes and obesity, as well as the potential impact of maternal diet. Molecular signaling pathways linking maternal nutrient availability and placenta nutrient transport are discussed. How sexual dimorphism affects fetal growth strategies and the placenta’s response to an altered intrauterine environment is considered. Further knowledge in this area may be the first step in the development of targeted interventions to help optimize fetal growth.

  10. Plant–microbial competition for nitrogen increases microbial activities and carbon loss in invaded soils

    Science.gov (United States)

    Matthew E. Craig; Jennifer M. Fraterrigo

    2017-01-01

    Many invasive plant species show high rates of nutrient acquisition relative to their competitors. Yet the mechanisms underlying this phenomenon, and its implications for ecosystem functioning, are poorly understood, particularly in nutrient-limited systems. Here, we test the hypothesis that an invasive plant species (Microstegium vimineum...

  11. Effects of salinity stress on seedlings growth, mineral nutrients and ...

    African Journals Online (AJOL)

    USER

    2010-08-16

    Aug 16, 2010 ... mechanisms, including low external water potential, ion toxicity and interference with the uptake of nutrients, particulary ... to which each of these factors affects growth depends on ..... Copper enzymes in isolated chloroplasts:.

  12. Factors influencing the technology upgrading and catch-up of Chinese wind turbine manufacturers: Technology acquisition mechanisms and government policies

    International Nuclear Information System (INIS)

    Qiu, Yueming; Ortolano, Leonard; David Wang, Yi

    2013-01-01

    This paper uses firm level data for the Chinese wind turbine manufacturing industry from 1998 to 2009 to quantify the effects of technology acquisition mechanisms – purchasing production licenses from foreign manufacturers, joint design with foreign design firms, joint-ventures and domestic R and D – on wind turbine manufacturers' technology levels (as measured by turbine size, in megawatts). It also examines the impacts of government policies on manufacturer technology levels. Technology upgrading (measured by increase of turbine size) and catch-up (measured by decrease in the distance to the world technology frontier in terms of turbine size) are used to measure advances in technology level. Results from econometric modeling studies indicate that firms' technology acquisition mechanisms and degree of business diversification are statistically significant factors in influencing technology upgrading. Similar results were found for the catch-up variable (i.e., distance to the world technology frontier). The influence of government policies is significant for technology upgrading but not catch-up. These and other modeling results are shown to have implications for both policymakers and wind turbine manufacturers. - Highlights: ► Technology acquired through joint design has the highest level. ► Technology acquired through purchasing production license has the lowest level. ► Technology acquired through domestic R and D has the level in between. ► A firm with related other businesses tends to have a higher level of technology. ► The influence of policies is significant for technology upgrade but not catch-up

  13. Treatment of Source-Separated Blackwater: A Decentralized Strategy for Nutrient Recovery towards a Circular Economy

    OpenAIRE

    Melesse Eshetu Moges; Daniel Todt; Arve Heistad

    2018-01-01

    Using a filter medium for organic matter removal and nutrient recovery from blackwater treatment is a novel concept and has not been investigated sufficiently to date. This paper demonstrates a combined blackwater treatment and nutrient-recovery strategy and establishes mechanisms for a more dependable source of plant nutrients aiming at a circular economy. Source-separated blackwater from a student dormitory was used as feedstock for a sludge blanket anaerobic-baffled reactor. The effluent f...

  14. Transcriptional regulator-mediated activation of adaptation genes triggers CRISPR de novo spacer acquisition

    DEFF Research Database (Denmark)

    Liu, Tao; Li, Yingjun; Wang, Xiaodi

    2015-01-01

    Acquisition of de novo spacer sequences confers CRISPR-Cas with a memory to defend against invading genetic elements. However, the mechanism of regulation of CRISPR spacer acquisition remains unknown. Here we examine the transcriptional regulation of the conserved spacer acquisition genes in Type I......, it was demonstrated that the transcription level of csa1, cas1, cas2 and cas4 was significantly enhanced in a csa3a-overexpression strain and, moreover, the Csa1 and Cas1 protein levels were increased in this strain. Furthermore, we demonstrated the hyperactive uptake of unique spacers within both CRISPR loci...... in the presence of the csa3a overexpression vector. The spacer acquisition process is dependent on the CCN PAM sequence and protospacer selection is random and non-directional. These results suggested a regulation mechanism of CRISPR spacer acquisition where a single transcriptional regulator senses the presence...

  15. Consumer-driven nutrient dynamics in freshwater ecosystems: from individuals to ecosystems.

    Science.gov (United States)

    Atkinson, Carla L; Capps, Krista A; Rugenski, Amanda T; Vanni, Michael J

    2017-11-01

    The role of animals in modulating nutrient cycling [hereafter, consumer-driven nutrient dynamics (CND)] has been accepted as an important influence on both community structure and ecosystem function in aquatic systems. Yet there is great variability in the influence of CND across species and ecosystems, and the causes of this variation are not well understood. Here, we review and synthesize the mechanisms behind CND in fresh waters. We reviewed 131 articles on CND published between 1973 and 1 June 2015. The rate of new publications in CND has increased from 1.4 papers per year during 1973-2002 to 7.3 per year during 2003-2015. The majority of investigations are in North America with many concentrating on fish. More recent studies have focused on animal-mediated nutrient excretion rates relative to nutrient demand and indirect impacts (e.g. decomposition). We identified several mechanisms that influence CND across levels of biological organization. Factors affecting the stoichiometric plasticity of consumers, including body size, feeding history and ontogeny, play an important role in determining the impact of individual consumers on nutrient dynamics and underlie the stoichiometry of CND across time and space. The abiotic characteristics of an ecosystem affect the net impact of consumers on ecosystem processes by influencing consumer metabolic processes (e.g. consumption and excretion/egestion rates), non-CND supply of nutrients and ecosystem nutrient demand. Furthermore, the transformation and transport of elements by populations and communities of consumers also influences the flow of energy and nutrients across ecosystem boundaries. This review highlights that shifts in community composition or biomass of consumers and eco-evolutionary underpinnings can have strong effects on the functional role of consumers in ecosystem processes, yet these are relatively unexplored aspects of CND. Future research should evaluate the value of using species traits and abiotic

  16. Responses of plant nutrient resorption to phosphorus addition in freshwater marsh of Northeast China

    Science.gov (United States)

    Mao, Rong; Zeng, De-Hui; Zhang, Xin-Hou; Song, Chang-Chun

    2015-01-01

    Anthropogenic activities have increased phosphorus (P) inputs to most aquatic and terrestrial ecosystems. However, the relationship between plant nutrient resorption and P availability is still unclear, and much less is known about the underlying mechanisms. Here, we used a multi-level P addition experiment (0, 1.2, 4.8, and 9.6 g P m−2 year−1) to assess the effect of P enrichment on nutrient resorption at plant organ, species, and community levels in a freshwater marsh of Northeast China. The response of nutrient resorption to P addition generally did not vary with addition rates. Moreover, nutrient resorption exhibited similar responses to P addition across the three hierarchical levels. Specifically, P addition decreased nitrogen (N) resorption proficiency, P resorption efficiency and proficiency, but did not impact N resorption efficiency. In addition, P resorption efficiency and proficiency were linearly related to the ratio of inorganic P to organic P and organic P fraction in mature plant organs, respectively. Our findings suggest that the allocation pattern of plant P between inorganic and organic P fractions is an underlying mechanism controlling P resorption processes, and that P enrichment could strongly influence plant-mediated biogeochemical cycles through altered nutrient resorption in the freshwater wetlands of Northeast China. PMID:25631373

  17. Numerical simulations of river discharges, nutrient flux and nutrient dispersal in Jakarta Bay, Indonesia.

    Science.gov (United States)

    van der Wulp, Simon A; Damar, Ario; Ladwig, Norbert; Hesse, Karl-J

    2016-09-30

    The present application of numerical modelling techniques provides an overview of river discharges, nutrient flux and nutrient dispersal in Jakarta Bay. A hydrological model simulated river discharges with a total of 90 to 377m(3)s(-1) entering Jakarta Bay. Daily total nitrogen and total phosphorus loads ranged from 40 to 174tons and 14 to 60tons, respectively. Flow model results indicate that nutrient gradients are subject to turbulent mixing by tides and advective transport through circulation driven by wind, barotropic and baroclinic pressure gradients. The bulk of nutrient loads originate from the Citarum and Cisadane rivers flowing through predominantly rural areas. Despite lower nutrient loads, river discharges from the urban area of Jakarta exhibit the highest impact of nutrient concentrations in the near shore area of Jakarta Bay and show that nutrient concentrations were not only regulated by nutrient loads but were strongly regulated by initial river concentrations and local flow characteristics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Linguistic Diversity in First Language Acquisition Research: Moving beyond the Challenges

    Science.gov (United States)

    Kelly, Barbara F.; Forshaw, William; Nordlinger, Rachel; Wigglesworth, Gillian

    2015-01-01

    The field of first language acquisition (FLA) needs to take into account data from the broadest typological array of languages and language-learning environments if it is to identify potential universals in child language development, and how these interact with socio-cultural mechanisms of acquisition. Yet undertaking FLA research in remote…

  19. Atmospheric Transport of Nutrient Matter during a Red Tide Event

    Science.gov (United States)

    Tian, R.; Weng, H.; Lin, Q.

    2017-12-01

    Harmful algal blooms (HABs) resulting from an explosive increase in algae population have become a global problem in coastal marine environment. During 3rd -8th, May of 2006, large-scale, mixed prorocentrum dentatum stein and skeletonema costatum bloom developed in those water off the coast of Zhejiang province (Zhoushan city and Liuheng Island) of China. Using Global Nested Air Quality Prediction Modeling System (GNAQPMS), we find an atmospheric transport of considerable nutrient matter (nitrate, ammonium, Fe (Ⅱ)) to East China Sea (ECS) before the red tide event. It be inferred that the atmospheric transport of nutrient matter is a significant source of nutrient matter in the water of East China Sea whose hydrological setting is dominated by oligotrophic Taiwan Warm Current in spring. Such atmospheric transport of nutrient matter is likely a cause factor of red tide in the coast of East China Sea, especially during dust event. The study provides new information for discovering the occurring mechanism of the red tides in ECS and the essential parameters for the red tide research.

  20. Computer model of hydroponics nutrient solution pH control using ammonium.

    Science.gov (United States)

    Pitts, M; Stutte, G

    1999-01-01

    A computer simulation of a hydroponics-based plant growth chamber using ammonium to control pH was constructed to determine the feasibility of such a system. In nitrate-based recirculating hydroponics systems, the pH will increase as plants release hydroxide ions into the nutrient solution to maintain plant charge balance. Ammonium is an attractive alternative to traditional pH controls in an ALSS, but requires careful monitoring and control to avoid overdosing the plants with ammonium. The primary advantage of using NH4+ for pH control is that it exploits the existing plant nutrient uptake charge balance mechanisms to maintain solution pH. The simulation models growth, nitrogen uptake, and pH of a l-m2 stand of wheat. Simulation results indicated that ammonium-based control of nutrient solution pH is feasible using a proportional integral controller. Use of a 1 mmol/L buffer (Ka = 1.6 x 10(-6)) in the nutrient solution is required.

  1. Hypothalamic AgRP-neurons control peripheral substrate utilization and nutrient partitioning

    Science.gov (United States)

    Joly-Amado, Aurélie; Denis, Raphaël G P; Castel, Julien; Lacombe, Amélie; Cansell, Céline; Rouch, Claude; Kassis, Nadim; Dairou, Julien; Cani, Patrice D; Ventura-Clapier, Renée; Prola, Alexandre; Flamment, Melissa; Foufelle, Fabienne; Magnan, Christophe; Luquet, Serge

    2012-01-01

    Obesity-related diseases such as diabetes and dyslipidemia result from metabolic alterations including the defective conversion, storage and utilization of nutrients, but the central mechanisms that regulate this process of nutrient partitioning remain elusive. As positive regulators of feeding behaviour, agouti-related protein (AgRP) producing neurons are indispensible for the hypothalamic integration of energy balance. Here, we demonstrate a role for AgRP-neurons in the control of nutrient partitioning. We report that ablation of AgRP-neurons leads to a change in autonomic output onto liver, muscle and pancreas affecting the relative balance between lipids and carbohydrates metabolism. As a consequence, mice lacking AgRP-neurons become obese and hyperinsulinemic on regular chow but display reduced body weight gain and paradoxical improvement in glucose tolerance on high-fat diet. These results provide a direct demonstration of a role for AgRP-neurons in the coordination of efferent organ activity and nutrient partitioning, providing a mechanistic link between obesity and obesity-related disorders. PMID:22990237

  2. Perinatal acquisition of drug-resistant HIV-1 infection: mechanisms and long-term outcome

    Directory of Open Access Journals (Sweden)

    Dollfus Catherine

    2009-09-01

    Full Text Available Abstract Background Primary-HIV-1-infection in newborns that occurs under antiretroviral prophylaxis that is a high risk of drug-resistance acquisition. We examine the frequency and the mechanisms of resistance acquisition at the time of infection in newborns. Patients and Methods We studied HIV-1-infected infants born between 01 January 1997 and 31 December 2004 and enrolled in the ANRS-EPF cohort. HIV-1-RNA and HIV-1-DNA samples obtained perinatally from the newborn and mother were subjected to population-based and clonal analyses of drug resistance. If positive, serial samples were obtained from the child for resistance testing. Results Ninety-two HIV-1-infected infants were born during the study period. Samples were obtained from 32 mother-child pairs and from another 28 newborns. Drug resistance was detected in 12 newborns (20%: drug resistance to nucleoside reverse transcriptase inhibitors was seen in 10 cases, non-nucleoside reverse transcriptase inhibitors in two cases, and protease inhibitors in one case. For 9 children, the detection of the same resistance mutations in mothers' samples (6 among 10 available and in newborn lymphocytes (6/8 suggests that the newborn was initially infected by a drug-resistant strain. Resistance variants were either transmitted from mother-to-child or selected during subsequent temporal exposure under suboptimal perinatal prophylaxis. Follow-up studies of the infants showed that the resistance pattern remained stable over time, regardless of antiretroviral therapy, suggesting the early cellular archiving of resistant viruses. The absence of resistance in the mother of the other three children (3/10 and neonatal lymphocytes (2/8 suggests that the newborns were infected by a wild-type strain without long-term persistence of resistance when suboptimal prophylaxis was stopped. Conclusion This study confirms the importance of early resistance genotyping of HIV-1-infected newborns. In most cases (75%, drug

  3. Effects of sexual maturation and 17ß-Estradiol on nutrient partitioning and mechanisms regulating growth and nutrient metabolism in Rainbow Trout Oncorhynchus mykiss

    Science.gov (United States)

    In female rainbow trout sexual maturation occurs parallel with declines in growth performance and mobilization of nutrient stores that partition energy away from growth and toward gonad development. For this reason sterile triploids are often reared for their ability to produce larger fillets and a...

  4. Nutrient synchrony in preruminant calves

    NARCIS (Netherlands)

    Borne, van den J.J.G.C.

    2006-01-01

    In animal nutrition, the nutrient composition of the daily feed supply is composed to match the nutrient requirements for the desired performance. The time of nutrient availability within a day is usually considered not to affect the fate of nutrients. The aim of this thesis was to evaluate effects

  5. Speed in Acquisitions

    DEFF Research Database (Denmark)

    Meglio, Olimpia; King, David R.; Risberg, Annette

    2017-01-01

    The advantage of speed is often invoked by academics and practitioners as an essential condition during post-acquisition integration, frequently without consideration of the impact earlier decisions have on acquisition speed. In this article, we examine the role speed plays in acquisitions across...... the acquisition process using research organized around characteristics that display complexity with respect to acquisition speed. We incorporate existing research with a process perspective of acquisitions in order to present trade-offs, and consider the influence of both stakeholders and the pre......-deal-completion context on acquisition speed, as well as the organization’s capabilities to facilitating that speed. Observed trade-offs suggest both that acquisition speed often requires longer planning time before an acquisition and that associated decisions require managerial judgement. A framework for improving...

  6. Nutrient Retention in Restored Streams and Floodplains: A ...

    Science.gov (United States)

    Abstract: Excess nitrogen (N) and phosphorus (P) from human activities have contributed to degradation of coastal waters globally. A growing body of work suggests that hydrologically restoring streams and floodplains in agricultural and urban watersheds has potential to increase nitrogen and phosphorus retention, but rates and mechanisms have not yet been synthesized and compared across studies. We conducted a review of nutrient retention within hydrologically reconnected streams and floodplains including 79 studies. Overall, 62% of results were positive, 26% were neutral, and 12% were negative. The studies we reviewed used a variety of methods to analyze nutrients cycling. We did a further intensive meta-analysis on nutrient spiraling studies because this method was the most consistent and comparable between studies. A meta-analysis of 240 experimental additions of ammonium (NH4+), nitrate (NO3-), and soluble reactive phosphorus (SRP) was synthesized from 15 nutrient spiraling studies. Overall, we found that rates of uptake were variable along stream reaches over space and time. Our results indicate that the size of the stream restoration (total surface area) and hydrologic residence time can be key drivers in influencing N and P uptake at broader watershed scales or along the urban watershed continuum. Excess nitrogen and phosphorus from human activities contributes to the degradation of water quality in streams and coastal areas nationally and globally.

  7. Strain Identity of the Ectomycorrhizal Fungus Laccaria bicolor Is More Important than Richness in Regulating Plant and Fungal Performance under Nutrient Rich Conditions

    Directory of Open Access Journals (Sweden)

    Christina Hazard

    2017-09-01

    Full Text Available Effects of biodiversity on productivity are more likely to be expressed when there is greater potential for niche complementarity. In soil, chemically complex pools of nutrient resources should provide more opportunities for niche complementarity than chemically simple pools. Ectomycorrhizal (ECM fungal genotypes can exhibit substantial variation in nutrient acquisition traits and are key components of soil biodiversity. Here, we tested the hypothesis that increasing the chemical complexity and forms of soil nutrients would enhance the effects of intraspecific ECM diversity on host plant and fungal productivity. In pure culture, we found substantial variation in growth of strains of the ECM fungus Laccaria bicolor on a range of inorganic and organic forms of nutrients. Subsequent experiments examined the effects of intraspecific identity and richness using Scots pine (Pinus sylvestris seedlings colonized with different strains of L. bicolor growing on substrates supplemented with either inorganic or organic forms of nitrogen and phosphorus. Intraspecific identity effects on plant productivity were only found under the inorganic nutrient amendment, whereas intraspecific identity affected fungal productivity to a similar extent under both nutrient treatments. Overall, there were no significant effects of intraspecific richness on plant and fungal productivity. Our findings suggest soil nutrient composition does not interact strongly with ECM intraspecific richness, at least under experimental conditions where mineral nutrients were not limiting. Under these conditions, intraspecific identity of ECM fungi becomes more important than richness in modulating plant and fungal performance.

  8. Effects of two different AMF species on growth and nutrient content ...

    African Journals Online (AJOL)

    SERVER

    2008-02-19

    Feb 19, 2008 ... INTRODUCTION. Soil salinity is one of the limiting environmental factors for ..... There could be other mechanisms explaining the role of. AMF in salt .... mycorrhizas in assessment of genetically dependent efficiency of nutrient ...

  9. The Nutrient Density of Snacks

    Directory of Open Access Journals (Sweden)

    Julie Hess BA

    2017-03-01

    Full Text Available Background: Although Americans receive almost a quarter of their daily energy from snacks, snacking remains a poorly defined and understood eating occasion. However, there is little dietary guidance about choosing snacks. Families, clinicians, and researchers need a comprehensive approach to assessing their nutritional value. Objective: To quantify and compare the nutrient density of commonly consumed snacks by their overall nutrient profiles using the Nutrient-Rich Foods (NRF Index 10.3. Methods: NRF Index scores were calculated for the top 3 selling products (based on 2014 market research data in different snack categories. These NRF scores were averaged to provide an overall nutrient-density score for each category. Results: Based on NRF scores, yogurt (55.3, milk (52.5, and fruit (30.1 emerged as the most nutrient-dense snacks. Ice cream (−4.4, pies and cakes (−11.1, and carbonated soft drinks (−17.2 emerged as the most nutrient-poor snacks. Conclusions: The NRF Index is a useful tool for assessing the overall nutritional value of snacks based on nutrients to limit and nutrients to encourage.

  10. Soluble organic nutrient fluxes

    Science.gov (United States)

    Robert G. Qualls; Bruce L. Haines; Wayne Swank

    2014-01-01

    Our objectives in this study were (i) compare fluxes of the dissolved organic nutrients dissolved organic carbon (DOC), DON, and dissolved organic phosphorus (DOP) in a clearcut area and an adjacent mature reference area. (ii) determine whether concentrations of dissolved organic nutrients or inorganic nutrients were greater in clearcut areas than in reference areas,...

  11. Stanley Corrsin Award Talk: Fluid Mechanics of Fungi and Slime

    Science.gov (United States)

    Brenner, Michael

    2013-11-01

    There are interesting fluid mechanics problems everywhere, even in the most lowly and hidden corners of forest floors. Here I discuss some questions we have been working on in recent years involving fungi and slime. A critical issue for the ecology of fungi and slime is nutrient availability: nutrient sources are highly heterogeneous, and strategies are necessary to find food when it runs out. In the fungal phylum Ascomycota, spore dispersal is the primary mechanism for finding new food sources. The defining feature of this phylum is the ascus, a fluid filled sac from which spores are ejected, through a build up in osmotic pressure. We outline the (largely fluid mechanical) design constraints on this ejection strategy, and demonstrate how it provides strong constraints for the diverse morphologies of spores and asci found in nature. The core of the argument revisits a classical problem in elastohydrodynamic lubrication from a different perspective. A completely different strategy for finding new nutrient is found by slime molds and fungi that stretch out - as a single organism- over enormous areas (up to hectares) over forest floors. As a model problem we study the slime mold Physarum polycephalum, which forages with a large network of connected tubes on the forest floors. Localized regions in the network find nutrient sources and then pump the nutrients throughout the entire organism. We discuss fluid mechanical mechanisms for coordinating this transport, which generalize peristalsis to pumping in a heterogeneous network. We give a preliminary discussion to how physarum can detect a nutrient source and pump the nutrient throughout the organism.

  12. Nutrient transport within and between habitats through seed dispersal processes by woolly monkeys in north-western Amazonia.

    Science.gov (United States)

    Stevenson, Pablo R; Guzmán-Caro, Diana C

    2010-11-01

    The contribution of vertebrate animals to nutrient cycling has proven to be important in various ecosystems. However, the role of large bodied primates in nutrient transport in neotropical forests is not well documented. Here, we assess the role of a population of woolly monkeys (Lagothrix lagothricha lugens) as vectors of nutrient movement through seed dispersal. We estimated total seed biomass transported by the population within and between two habitats (terra firme and flooded forests) at Tinigua Park, Colombia, and quantified potassium (K), phosphorus (P) and nitrogen (N) content in seeds of 20 plant species from both forests. Overall, the population transported an estimated minimum of 11.5 (±1.2 SD) g of potassium, 13.2 (±0.7) g of phosphorus and 34.3 (±0.1) g nitrogen, within 22.4 (±2.0) kg of seeds ha(-1) y(-1). Approximately 84% of all nutrients were deposited in the terra firme forest mostly through recycling processes, and also through translocation from the flooded forest. This type of translocation represents an important and high-quality route of transport since abiotic mechanisms do not usually move nutrients upwards, and since chemical tests show that seeds from flooded forests have comparatively higher nutrient contents. The overall contribution to nutrient movement by the population of woolly monkeys is significant because of the large amount of biomass transported, and the high phosphorus content of seeds. As a result, the phosphorus input generated by these monkeys is of the same order of magnitude as other abiotic mechanisms of nutrient transport such as atmospheric deposition and some weathering processes. Our results suggest that via seed dispersal processes, woolly monkey populations can contribute to nutrient movement in tropical forests, and may act as important nutrient input vectors in terra firme forests. © 2010 Wiley-Liss, Inc.

  13. Neurogenetics and Nutrigenomics of Neuro-Nutrient Therapy for Reward Deficiency Syndrome (RDS): Clinical Ramifications as a Function of Molecular Neurobiological Mechanisms

    Science.gov (United States)

    Blum, Kenneth; Oscar-Berman, Marlene; Stuller, Elizabeth; Miller, David; Giordano, John; Morse, Siobhan; McCormick, Lee; Downs, William B; Waite, Roger L; Barh, Debmalya; Neal, Dennis; Braverman, Eric R; Lohmann, Raquel; Borsten, Joan; Hauser, Mary; Han, David; Liu, Yijun; Helman, Manya; Simpatico, Thomas

    2013-01-01

    In accord with the new definition of addiction published by American Society of Addiction Medicine (ASAM) it is well-known that individuals who present to a treatment center involved in chemical dependency or other documented reward dependence behaviors have impaired brain reward circuitry. They have hypodopaminergic function due to genetic and/or environmental negative pressures upon the reward neuro-circuitry. This impairment leads to aberrant craving behavior and other behaviors such as Substance Use Disorder (SUD). Neurogenetic research in both animal and humans revealed that there is a well-defined cascade in the reward site of the brain that leads to normal dopamine release. This cascade has been termed the “Brain Reward Cascade” (BRC). Any impairment due to either genetics or environmental influences on this cascade will result in a reduced amount of dopamine release in the brain reward site. Manipulation of the BRC has been successfully achieved with neuro-nutrient therapy utilizing nutrigenomic principles. After over four decades of development, neuro-nutrient therapy has provided important clinical benefits when appropriately utilized. This is a review, with some illustrative case histories from a number of addiction professionals, of certain molecular neurobiological mechanisms which if ignored may lead to clinical complications. PMID:23926462

  14. Neurogenetics and Nutrigenomics of Neuro-Nutrient Therapy for Reward Deficiency Syndrome (RDS): Clinical Ramifications as a Function of Molecular Neurobiological Mechanisms.

    Science.gov (United States)

    Blum, Kenneth; Oscar-Berman, Marlene; Stuller, Elizabeth; Miller, David; Giordano, John; Morse, Siobhan; McCormick, Lee; Downs, William B; Waite, Roger L; Barh, Debmalya; Neal, Dennis; Braverman, Eric R; Lohmann, Raquel; Borsten, Joan; Hauser, Mary; Han, David; Liu, Yijun; Helman, Manya; Simpatico, Thomas

    2012-11-27

    In accord with the new definition of addiction published by American Society of Addiction Medicine (ASAM) it is well-known that individuals who present to a treatment center involved in chemical dependency or other documented reward dependence behaviors have impaired brain reward circuitry. They have hypodopaminergic function due to genetic and/or environmental negative pressures upon the reward neuro-circuitry. This impairment leads to aberrant craving behavior and other behaviors such as Substance Use Disorder (SUD). Neurogenetic research in both animal and humans revealed that there is a well-defined cascade in the reward site of the brain that leads to normal dopamine release. This cascade has been termed the "Brain Reward Cascade" (BRC). Any impairment due to either genetics or environmental influences on this cascade will result in a reduced amount of dopamine release in the brain reward site. Manipulation of the BRC has been successfully achieved with neuro-nutrient therapy utilizing nutrigenomic principles. After over four decades of development, neuro-nutrient therapy has provided important clinical benefits when appropriately utilized. This is a review, with some illustrative case histories from a number of addiction professionals, of certain molecular neurobiological mechanisms which if ignored may lead to clinical complications.

  15. Physical nutrient transport in the North Atlantic Subtropical Gyre

    Science.gov (United States)

    Jenkins, W.; Lott, D. E.

    2009-04-01

    Use of the helium-3 flux gauge to estimate the physically mediated flux of new nutrients to the euphotic zone of the North Atlantic subtropical gyre broadly suggests a pathway whereby inorganic nutrients that have been remineralized within the main thermocline may be returned to the seasonally accessible layer in the Sargasso Sea: the so-called "Nutrient Spiral" (Jenkins and Doney (2003), Glob. Biog. Cyc., 17(4), doi:1110.1029/2003GB002085.) The challenge, however, is identifying the exact mechanism whereby this occurs. One possible process is that of "obduction", whereby the combination of strong advection and rapidly deepening winter mixed layers result in the effective outcropping of substantial amounts of thermocline nutrients and tritiugenic helium-3. We present here a quantitative estimate based on hydrographic sections and geostrophic transports of the fluxes and transformations of both tritugenic helium-3 and nitrate within the basin, and attempt to relate these estimates to the specific shallow-water behaviors of these tracers, and their global and regional physical transports. An important constraint for these estimates lies in the evolving distributions of the transient tracers tritium and helium-3. We compare these results with other tracer-based estimates of new, net-community, and export production.

  16. Seasonal influence on the response of the somatotropic axis to nutrient restriction and re-alimentation in captive Steller sea lions (Eumetopias jubatus).

    Science.gov (United States)

    Richmond, Julie P; Jeanniard du Dot, Tiphaine; Rosen, David A S; Zinn, Steven A

    2010-03-01

    Fluctuations in availability of prey resources can impede acquisition of sufficient energy for maintenance and growth. By investigating the hormonal mechanisms of the somatotropic axis that link nutrition, fat metabolism, and lean tissue accretion, we can assess the physiological impact of decreased nutrient intake on growth. Further, species that undergo seasonal periods of reduced intake as a part of their normal life history may have a differential seasonal response to nutrient restriction. This experiment evaluated the influence of season and age on the response of the somatotropic axis, including growth hormone (GH), insulin-like growth factor (IGF)-I, and IGF-binding proteins (BP), to reduced nutrient intake and re-alimentation in Steller sea lions. Eight captive females (five juveniles, three sub-adults) were subject to 28-day periods of food restriction, controlled re-feeding, and ad libitum recovery in summer (long-day photoperiod) and winter (short-day photoperiod). Hormone concentrations were insensitive to type of fish fed (low fat pollock vs. high fat herring), but sensitive to energy intake. Body mass, fat, and IGF-I declined, whereas GH and IGFBP-2 increased during feed restriction. Reduced IGF-I and IGFBP with increased GH during controlled re-feeding suggest that animals did not reach positive energy balance until fed ad libitum. Increased IGF-I, IGFBP-2, IGFBP-3, and reduced GH observed in summer reflected seasonal differences in energy partitioning. There was a strong season and age effect in the response to restriction and re-alimentation, indicating that older, larger animals are better able to cope with stress associated with energy deficit, regardless of season.

  17. Sensitivity analysis of a pulse nutrient addition technique for estimating nutrient uptake in large streams

    Science.gov (United States)

    Laurence Lin; J.R. Webster

    2012-01-01

    The constant nutrient addition technique has been used extensively to measure nutrient uptake in streams. However, this technique is impractical for large streams, and the pulse nutrient addition (PNA) has been suggested as an alternative. We developed a computer model to simulate Monod kinetics nutrient uptake in large rivers and used this model to evaluate the...

  18. Design of Tokamak synchronous data acquisition system based on PXI express

    International Nuclear Information System (INIS)

    Liu Rui; Zheng Wei; Zhang Ming; Weng Chuqiao; Zhuang Ge; Ding Tonghai; Yu Kexun

    2014-01-01

    With the development of J-TEXT device, the original data acquisition system can't meet the experiment's requirement on stability, modularity and sampling rate, so a new data acquisition system needs to be built. This paper introduces the design and implementation of the distributed Tokamak synchronous high-speed data acquisition system based on PXI Express. The acquisition unit consists of PXIe case Nl PXIe 1062Q, PXIe controller NI PXIe-8133 and high-speed synchronous data acquisition card Nl PXIe-6368, compatible with the latest standard of ITER CODAC, so it has good mechanical sealing, strong modularity and high sampling rate etc. The system takes a synchronous difference acquisition for diagnosis signal. The data storage adopts MDSplus which is the general database in the nuclear fusion field. The test and experimental results show that the system can work continuously and stably at 2 MSps sampling rate, and meet the requirement of experiment device's operation well. (authors)

  19. Effects of ultraviolet radiation and nutrients on the structure-function of phytoplankton in a high mountain lake.

    Science.gov (United States)

    Korbee, Nathalie; Carrillo, Presentación; Mata, M Teresa; Rosillo, Silvia; Medina-Sánchez, Juan Manuel; Figueroa, Félix L

    2012-06-01

    The combined effect of high solar ultraviolet radiation (UVR) and nutrient supply in a phytoplankton community of a high mountain lake is analyzed in a in situ experiment for 6 days with 2 × 2 factorial design. Interactive UVR × nutrient effects on structural and functional variables (algal biomass, chlorophyll a (chl a), primary production (PP), maximal electron transport rate (ETR(max)), and alkaline phosphatase activity (APA)), as well as stoichiometric ones (sestonic N per cell and N:P ratio) were found. Under non-nutrient enriched conditions, no deleterious effects of UVR on structural variables, PP, photosynthetic efficiency and ETR(max) were observed, whereas only particulate and total APA were affected by UVR. However, percentage excreted organic carbon (%EOC), dissolved APA and sestonic C and P per cell increased under UVR, leading to a decrease in algal C:P and N:P ratios. After nutrient enrichment, chl a, total algal biomass and PP were negatively affected by UVR whereas %EOC, ETR(max) and internal C, P and N content increased. We suggest that the mechanism of algal acclimation to UVR in this high UVR flux ecosystem seems to be related to the increase of internal algal P-content mediated by physiological mechanisms to save P and by a stimulatory UVR effect on dissolved extracellular APA. The mechanism involved in the unmasking effect of UVR after nutrient-enrichment may be the result of a greater sensitivity to UVR-induced cell damage, making the negative UVR effects more evident.

  20. Nutrient sequestration in Aquitaine lakes (SW France) limits nutrient flux to the coastal zone

    Science.gov (United States)

    Buquet, Damien; Anschutz, Pierre; Charbonnier, Céline; Rapin, Anne; Sinays, Rémy; Canredon, Axel; Bujan, Stéphane; Poirier, Dominique

    2017-12-01

    Oligotrophic coastal zones are disappearing from increased nutrient loading. The quantity of nutrients reaching the coast is determined not only by their original source (e.g. fertilizers used in agriculture, waste water discharges) and the land use, but also by the pathways through which nutrients are cycled from the source to the river mouth. In particular, lakes sequester nutrients and, hence, reduce downstream transfer of nutrients to coastal environments. Here, we quantify the impact of Aquitaine great lakes on the fluxes of dissolved macro-nutrients (N, P, Si) to the Bay of Biscay. For that, we have measured nutrient concentrations and fluxes in 2014 upstream and downstream lakes of Lacanau and Carcans-Hourtin, which belongs to the catchment of the Arcachon Bay, which is the largest coastal lagoon of the Bay of Biscay French coast. Data were compared to values obtained from the Leyre river, the main freshwater and nutrient source for the lagoon. Results show that processes in lakes greatly limit nutrient flux to the lagoon compared to fluxes from Leyre river, although the watershed is similar in terms of land cover. In lakes, phosphorus and silicon are trapped for long term in the sediment, silicon as amorphous biogenic silica and phosphorus as organic P and P associated with Fe-oxides. Nitrogen that enters lakes mostly as nitrate is used for primary production. N is mineralized in the sediment; a fraction diffuses as ammonium. N2 production through benthic denitrification extracts only 10% of dissolved inorganic nitrogen from the aquatic system. The main part is sequestered in organic-rich sediment that accumulates below 5 m depth in both lakes.

  1. Nutrient resorption efficiency of cocoa plantson lowl and of Alluvial plain

    Directory of Open Access Journals (Sweden)

    Rudy Erwiyono

    2011-05-01

    Full Text Available Observation on nutrient retranslocation of cocoa plants has been carried out in Kaliwining Experimental Station, Indonesian Coffee and Cocoa Research Institute (ICCRI in Jember in order to assess its efficiency to have better understanding on the loss of nutrients through cocoa litterfall relatively intensive during dry season, better utilization of the plant litters, and further more efficient plant management. Nutrient retranslocation assessment has been conducted for macro nutrients in terms of N, P, and K that have been observed on four clones of cocoa planted in 2004, that are KW 163, KW 162, KKM 22, and KW 165 in the plot with Tectona grandis shading trees and plot with Cassia surithensis shading trees, with five replicates. The plots of observation overlaid on Alluvial plain 45 m asl. and D type rainfall. The results showed that nutrient contents in senescence leaves with yellow colour and then falling significantly lower than those of mature leaves with green colour adjacent to it. Reductions of N, P, and K contents during leaf senescence occured significantly on KW 163, KW 162, and KKM 22 clones, whereas on KW 165 clone significant reduction only happened to phosphorus. Mature leaves of cocoa with green colour contained average nitrogen, phosphorus, and kalium at 13.0, 1.6, and 13.5 mg/g- respectively. Whereas senescing leaves with yellow colour then defoliating contained average nitrogen, phosphorus, and kalium at 9.5, 0.9, and 10.0 mg/g, respectively. This reduction of nutrient contents was caused by nutrient retranslocation mechanism of the plants. Nitrogen, phosphorus, and kalium retranslocated by cocoa plants in rainy season are as much as 3.60, 0.70, and 3.39 mg/g, or 27%, 42%, and 24%, respectively. In other words nutrient retranslocation efficiency of cocoa plants for N, P, and K is in the following order: P>N>K. Among the clones, KKM 22 clone retranslocated P and K most efficiently; whereas for N, KW 162 clone retranslocated it

  2. Intestinal Fork Head Regulates Nutrient Absorption and Promotes Longevity

    Directory of Open Access Journals (Sweden)

    Ekin Bolukbasi

    2017-10-01

    Full Text Available Reduced activity of nutrient-sensing signaling networks can extend organismal lifespan, yet the underlying biology remains unclear. We show that the anti-aging effects of rapamycin and reduced intestinal insulin/insulin growth factor (IGF signaling (IIS require the Drosophila FoxA transcription factor homolog Fork Head (FKH. Intestinal FKH induction extends lifespan, highlighting a role for the gut. FKH binds to and is phosphorylated by AKT and Target of Rapamycin. Gut-specific FKH upregulation improves gut barrier function in aged flies. Additionally, it increases the expression of nutrient transporters, as does lowered IIS. Evolutionary conservation of this effect of lowered IIS is suggested by the upregulation of related nutrient transporters in insulin receptor substrate 1 knockout mouse intestine. Our study highlights a critical role played by FKH in the gut in mediating anti-aging effects of reduced IIS. Malnutrition caused by poor intestinal absorption is a major problem in the elderly, and a better understanding of the mechanisms involved will have important therapeutic implications for human aging.

  3. Phosphorylated Akt Protein at Ser473 Enables HeLa Cells to Tolerate Nutrient-Deprived Conditions

    Science.gov (United States)

    Fathy, Moustafa; Awale, Suresh; Nikaido, Toshio

    2017-12-29

    Background: Despite angiogenesis, many tumours remain hypovascular and starved of nutrients while continuing to grow rapidly. The specific biochemical mechanisms associated with starvation resistance, austerity, may be new biological characters of cancer that are critical for cancer progression. Objective: This study aim was to investigate the effect of nutrient starvation on HeLa cells and the possible mechanism by which the cells are able to tolerate nutrient-deprived conditions. Methods: Nutrient starvation was achieved by culturing HeLa cells in nutrient-deprived medium (NDM) and cell survival was estimated by using cell counting kit-8. The effect of starvation on cell cycle distribution and the quantitative analysis of apoptotic cells were investigated by flow cytometry using propidium iodide staining. Western blotting was used to detect the expression levels of Akt and phosphorylated Akt at Ser473 (Ser473p-Akt) proteins. Results: HeLa cells displayed extremely long survival when cultured in NDM. The percentage of apoptotic HeLa cells was significantly increased by starvation in a time-dependent manner. A significant increase in the expression of Ser473p-Akt protein after starvation was also observed. Furthermore, it was found that Akt inhibitor III molecule inhibited the cells proliferation in a concentration- and time-dependent manner. Conclusion: Results of the present study provide evidence that Akt activation may be implicated in the tolerance of HeLa cells for nutrient starvation and may help to suggest new therapeutic strategies designed to prevent austerity of cervical cancer cells through inhibition of Akt activation. Creative Commons Attribution License

  4. Smart acquisition EELS

    International Nuclear Information System (INIS)

    Sader, Kasim; Schaffer, Bernhard; Vaughan, Gareth; Brydson, Rik; Brown, Andy; Bleloch, Andrew

    2010-01-01

    We have developed a novel acquisition methodology for the recording of electron energy loss spectra (EELS) using a scanning transmission electron microscope (STEM): 'Smart Acquisition'. Smart Acquisition allows the independent control of probe scanning procedures and the simultaneous acquisition of analytical signals such as EELS. The original motivation for this work arose from the need to control the electron dose experienced by beam-sensitive specimens whilst maintaining a sufficiently high signal-to-noise ratio in the EEL signal for the extraction of useful analytical information (such as energy loss near edge spectral features) from relatively undamaged areas. We have developed a flexible acquisition framework which separates beam position data input, beam positioning, and EELS acquisition. In this paper we demonstrate the effectiveness of this technique on beam-sensitive thin films of amorphous aluminium trifluoride. Smart Acquisition has been used to expose lines to the electron beam, followed by analysis of the structures created by line-integrating EELS acquisitions, and the results are compared to those derived from a standard EELS linescan. High angle annular dark-field images show clear reductions in damage for the Smart Acquisition areas compared to the conventional linescan, and the Smart Acquisition low loss EEL spectra are more representative of the undamaged material than those derived using a conventional linescan. Atomically resolved EELS of all four elements of CaNdTiO show the high resolution capabilities of Smart Acquisition.

  5. Smart acquisition EELS

    Energy Technology Data Exchange (ETDEWEB)

    Sader, Kasim, E-mail: k.sader@leeds.ac.uk [SuperSTEM, J block, Daresbury Laboratory, Warrington, Cheshire, WA4 4AD (United Kingdom); Institute for Materials Research, University of Leeds, LS2 9JT (United Kingdom); Schaffer, Bernhard [SuperSTEM, J block, Daresbury Laboratory, Warrington, Cheshire, WA4 4AD (United Kingdom); Department of Physics and Astronomy, University of Glasgow (United Kingdom); Vaughan, Gareth [Institute for Materials Research, University of Leeds, LS2 9JT (United Kingdom); Brydson, Rik [SuperSTEM, J block, Daresbury Laboratory, Warrington, Cheshire, WA4 4AD (United Kingdom); Institute for Materials Research, University of Leeds, LS2 9JT (United Kingdom); Brown, Andy [Institute for Materials Research, University of Leeds, LS2 9JT (United Kingdom); Bleloch, Andrew [SuperSTEM, J block, Daresbury Laboratory, Warrington, Cheshire, WA4 4AD (United Kingdom); Department of Engineering, University of Liverpool, Liverpool (United Kingdom)

    2010-07-15

    We have developed a novel acquisition methodology for the recording of electron energy loss spectra (EELS) using a scanning transmission electron microscope (STEM): 'Smart Acquisition'. Smart Acquisition allows the independent control of probe scanning procedures and the simultaneous acquisition of analytical signals such as EELS. The original motivation for this work arose from the need to control the electron dose experienced by beam-sensitive specimens whilst maintaining a sufficiently high signal-to-noise ratio in the EEL signal for the extraction of useful analytical information (such as energy loss near edge spectral features) from relatively undamaged areas. We have developed a flexible acquisition framework which separates beam position data input, beam positioning, and EELS acquisition. In this paper we demonstrate the effectiveness of this technique on beam-sensitive thin films of amorphous aluminium trifluoride. Smart Acquisition has been used to expose lines to the electron beam, followed by analysis of the structures created by line-integrating EELS acquisitions, and the results are compared to those derived from a standard EELS linescan. High angle annular dark-field images show clear reductions in damage for the Smart Acquisition areas compared to the conventional linescan, and the Smart Acquisition low loss EEL spectra are more representative of the undamaged material than those derived using a conventional linescan. Atomically resolved EELS of all four elements of CaNdTiO show the high resolution capabilities of Smart Acquisition.

  6. Nutrient removal by apple, pear and cherry nursery trees

    Directory of Open Access Journals (Sweden)

    Giovambattista Sorrenti

    2017-06-01

    Full Text Available Given that nursery is a peculiar environment, the amount of nutrients removed by nursery trees represents a fundamental acquisition to optimise fertilisation strategies, with economic and environmental implications. In this context, we determined nutrient removal by apple, pear and cherry nursery trees at the end of the nursery growing cycle. We randomly removed 5 leafless apple (Golden Delicious/EMLA M9; density of 30,000 trees ha–1, pear (Santa Maria/Adams; density of 30,000 trees ha–1 and cherry (AlexTM/Gisela 6®; density of 40,000 trees ha–1 trees from a commercial nursery. Trees were divided into roots (below the root collar, rootstock (above-ground wood between root collar and grafting point and variety (1-year-old wood above the grafting point. For each organ we determined biomass, macro- (N, P, K, Ca, Mg, S, and micro- (Fe, Mn, Zn, Cu, and B nutrient concentration. Pear trees were the most developed (650 g (dw tree–1, equal to 1.75 and 2.78 folds than apple and cherry trees, respectively whereas, independently of the species, variety mostly contributed (>50% to the total tree biomass, followed by roots and then above-ground rootstock. However, the dry biomass and nutrient amount measured in rootstocks (including roots represent the cumulative amount of 2 and 3 seasons, for Gisela® 6 (tissue culture and pome fruit species (generated by mound layering, respectively. Macro and micronutrients were mostly concentrated in roots, followed by variety and rootstock, irrespective of the species. Independently of the tissue, macronutrients concentration hierarchy was N>Ca>K> P>Mg>S. Removed N by whole tree accounted for 6.58, 3.53 and 2.49 g tree–1 for pear, apple and cherry, respectively, corresponding to almost 200, 107 and 100 kg N ha–1, respectively. High amounts of K and Ca were used by pear (130-140 kg ha–1 and apple trees (~50 and 130 kg ha–1 of K and Ca, respectively, while ~25 kg K ha–1 and 55 kg Ca ha–1 were

  7. Nutrient Management in Recirculating Hydroponic Culture

    Science.gov (United States)

    Bugbee, Bruce

    2004-01-01

    There is an increasing need to recirculate and reuse nutrient solutions in order to reduce environmental and economic costs. However, one of the weakest points in hydroponics is the lack of information on managing the nutrient solution. Many growers and research scientists dump out nutrient solutions and refill at weekly intervals. Other authors have recommended measuring the concentrations of individual nutrients in solution as a key to nutrient control and maintenance. Dumping and replacing solution is unnecessary. Monitoring ions in solution is not always necessary; in fact the rapid depletion of some nutrients often causes people to add toxic amounts of nutrients to the solution. Monitoring ions in solution is interesting, but it is not the key to effective maintenance.

  8. Language Acquisition without an Acquisition Device

    Science.gov (United States)

    O'Grady, William

    2012-01-01

    Most explanatory work on first and second language learning assumes the primacy of the acquisition phenomenon itself, and a good deal of work has been devoted to the search for an "acquisition device" that is specific to humans, and perhaps even to language. I will consider the possibility that this strategy is misguided and that language…

  9. Nutrients, foods, and colorectal cancer prevention.

    Science.gov (United States)

    Song, Mingyang; Garrett, Wendy S; Chan, Andrew T

    2015-05-01

    Diet has an important role in the development of colorectal cancer. In the past few decades, findings from extensive epidemiologic and experimental investigations have linked consumption of several foods and nutrients to the risk of colorectal neoplasia. Calcium, fiber, milk, and whole grains have been associated with a lower risk of colorectal cancer, and red meat and processed meat have been associated with an increased risk. There is substantial evidence for the potential chemopreventive effects of vitamin D, folate, fruits, and vegetables. Nutrients and foods also may interact, as a dietary pattern, to influence colorectal cancer risk. Diet likely influences colorectal carcinogenesis through several interacting mechanisms. These include the direct effects on immune responsiveness and inflammation, and the indirect effects of overnutrition and obesity-risk factors for colorectal cancer. Emerging evidence also implicates the gut microbiota as an important effector in the relationship between diet and cancer. Dietary modification therefore has the promise of reducing colorectal cancer incidence. Copyright © 2015 AGA Institute. Published by Elsevier Inc. All rights reserved.

  10. Post-Acquisition IT Integration

    DEFF Research Database (Denmark)

    Henningsson, Stefan; Yetton, Philip

    2013-01-01

    The extant research on post-acquisition IT integration analyzes how acquirers realize IT-based value in individual acquisitions. However, serial acquirers make 60% of acquisitions. These acquisitions are not isolated events, but are components in growth-by-acquisition programs. To explain how...... serial acquirers realize IT-based value, we develop three propositions on the sequential effects on post-acquisition IT integration in acquisition programs. Their combined explanation is that serial acquirers must have a growth-by-acquisition strategy that includes the capability to improve...... IT integration capabilities, to sustain high alignment across acquisitions and to maintain a scalable IT infrastructure with a flat or decreasing cost structure. We begin the process of validating the three propositions by investigating a longitudinal case study of a growth-by-acquisition program....

  11. FOLIAR NUTRIENT CONTENTS AND FRUIT YIELD IN CUSTARD APPLE PROGENIES

    Directory of Open Access Journals (Sweden)

    Paulo Sérgio Lima e Silva

    2009-01-01

    Full Text Available Foliar nutrient contents are evaluated in several fruit trees with many objectives. Leaf analysis constitutes a way of evaluating the nutritional requirements of crops. Due to the positive impact that fertilizers have on crop yields, researchers frequently try to evaluate the correlations between yield and foliar nutrient contents. This work's objective was to present fruit yields from the 4th to the 6th cropping seasons, evaluate foliar nutrient contents (on the 5th cropping season, and estimate the correlations between these two groups of traits for 20 half-sibling custard apple tree progenies. The progenies were evaluated in a random block design with five replicates and four plants per plot. One hundred leaves were collected from the middle third of the canopy (in height of each of four plants in each plot. The leaves were collected haphazardly, i.e., in a random manner, but without using a drawing mechanism. In the analysis of variance, the nutrient concentrations in the leaves from plants of each plot were represented by the average of four plants in the plot. Fruit yield in the various progenies did not depend on cropping season; progeny A4 was the most productive. No Spearman correlation was found between leaf nutrient concentrations and fruit yield. Increased nutrient concentrations in the leaves were progeny-dependent, i.e., with regard to Na (progenies FE5 and JG1, Ca (progeny A4, Mg (progeny SM7, N (progeny A3, P (progeny M, and K contents (progeny JG3. Spearman's correlation was negative between Na-Mg, Na-Ca, and Mg-P contents, and positive between Mg-Ca and N-K contents.

  12. Nutrient Exchange and Regulation in Arbuscular Mycorrhizal Symbiosis.

    Science.gov (United States)

    Wang, Wanxiao; Shi, Jincai; Xie, Qiujin; Jiang, Yina; Yu, Nan; Wang, Ertao

    2017-09-12

    Most land plants form symbiotic associations with arbuscular mycorrhizal (AM) fungi. These are the most common and widespread terrestrial plant symbioses, which have a global impact on plant mineral nutrition. The establishment of AM symbiosis involves recognition of the two partners and bidirectional transport of different mineral and carbon nutrients through the symbiotic interfaces within the host root cells. Intriguingly, recent discoveries have highlighted that lipids are transferred from the plant host to AM fungus as a major carbon source. In this review, we discuss the transporter-mediated transfer of carbon, nitrogen, phosphate, potassium and sulfate, and present hypotheses pertaining to the potential regulatory mechanisms of nutrient exchange in AM symbiosis. Current challenges and future perspectives on AM symbiosis research are also discussed. Copyright © 2017 The Author. Published by Elsevier Inc. All rights reserved.

  13. Spatially variable synergistic effects of disturbance and additional nutrients on kelp recruitment and recovery.

    Science.gov (United States)

    Carnell, Paul E; Keough, Michael J

    2014-05-01

    Understanding the impact of multiple stressors on ecosystems is of pronounced importance, particularly when one or more of those stressors is anthropogenic. Here we investigated the role of physical disturbance and increased nutrients on reefs dominated by the canopy-forming kelp Ecklonia radiata. We combined experimental kelp canopy removals and additional nutrient at three different locations in a large embayment in temperate southeastern Australia. Over the following winter recruitment season, Ecklonia recruitment was unaffected by increased nutrients alone, but tripled at all sites where the canopy had been removed. At one site, the combination of disturbance and increased nutrients resulted in more than four times the recruitment of the introduced kelp Undaria pinnatifida. Six months after disturbance, the proliferation of the Undaria canopy in the canopy-removal and nutrient-addition treatment negatively influenced the recovery of the native kelp Ecklonia. Given the otherwise competitive dominance of adult Ecklonia, this provides a mechanism whereby Undaria could maintain open space for the following recruitment season. This interplay between disturbance, nutrients and the response of native and invasive species makes a compelling case for how a combination of factors can influence species dynamics.

  14. Litter type affects the activity of aerobic decomposers in a boreal peatland more than site nutrient and water table regimes

    Directory of Open Access Journals (Sweden)

    P. Straková

    2011-09-01

    Full Text Available Peatlands are carbon (C storage ecosystems sustained by a high water table (WT. High WT creates anoxic conditions that suppress the activity of aerobic decomposers and provide conditions for peat accumulation. Peatland function can be dramatically affected by WT drawdown caused by climate and/or land-use change. Aerobic decomposers are directly affected by WT drawdown through environmental factors such as increased oxygenation and nutrient availability. Additionally, they are indirectly affected via changes in plant community composition and litter quality. We studied the relative importance of direct and indirect effects of WT drawdown on aerobic decomposer activity in plant litter at two stages of decomposition (incubated in the field for 1 or 2 years. We did this by profiling 11 extracellular enzymes involved in the mineralization of organic C, nitrogen (N, phosphorus (P and sulphur. Our study sites represented a three-stage chronosequence from pristine to short-term (years and long-term (decades WT drawdown conditions under two nutrient regimes (bog and fen. The litter types included reflected the prevalent vegetation: Sphagnum mosses, graminoids, shrubs and trees.

    Litter type was the main factor shaping microbial activity patterns and explained about 30 % of the variation in enzyme activities and activity allocation. Overall, enzyme activities were higher in vascular plant litters compared to Sphagnum litters, and the allocation of enzyme activities towards C or nutrient acquisition was related to the initial litter quality (chemical composition. Direct effects of WT regime, site nutrient regime and litter decomposition stage (length of incubation period summed to only about 40 % of the litter type effect. WT regime alone explained about 5 % of the variation in enzyme activities and activity allocation. Generally, enzyme activity increased following the long-term WT drawdown and the activity allocation turned from P

  15. Litter type affects the activity of aerobic decomposers in a boreal peatland more than site nutrient and water table regimes

    Science.gov (United States)

    Straková, P.; Niemi, R. M.; Freeman, C.; Peltoniemi, K.; Toberman, H.; Heiskanen, I.; Fritze, H.; Laiho, R.

    2011-09-01

    Peatlands are carbon (C) storage ecosystems sustained by a high water table (WT). High WT creates anoxic conditions that suppress the activity of aerobic decomposers and provide conditions for peat accumulation. Peatland function can be dramatically affected by WT drawdown caused by climate and/or land-use change. Aerobic decomposers are directly affected by WT drawdown through environmental factors such as increased oxygenation and nutrient availability. Additionally, they are indirectly affected via changes in plant community composition and litter quality. We studied the relative importance of direct and indirect effects of WT drawdown on aerobic decomposer activity in plant litter at two stages of decomposition (incubated in the field for 1 or 2 years). We did this by profiling 11 extracellular enzymes involved in the mineralization of organic C, nitrogen (N), phosphorus (P) and sulphur. Our study sites represented a three-stage chronosequence from pristine to short-term (years) and long-term (decades) WT drawdown conditions under two nutrient regimes (bog and fen). The litter types included reflected the prevalent vegetation: Sphagnum mosses, graminoids, shrubs and trees. Litter type was the main factor shaping microbial activity patterns and explained about 30 % of the variation in enzyme activities and activity allocation. Overall, enzyme activities were higher in vascular plant litters compared to Sphagnum litters, and the allocation of enzyme activities towards C or nutrient acquisition was related to the initial litter quality (chemical composition). Direct effects of WT regime, site nutrient regime and litter decomposition stage (length of incubation period) summed to only about 40 % of the litter type effect. WT regime alone explained about 5 % of the variation in enzyme activities and activity allocation. Generally, enzyme activity increased following the long-term WT drawdown and the activity allocation turned from P and N acquisition towards C

  16. Yield Gap, Indigenous Nutrient Supply and Nutrient Use Efficiency for Maize in China

    Science.gov (United States)

    Xu, Xinpeng; Liu, Xiaoyan; He, Ping; Johnston, Adrian M.; Zhao, Shicheng; Qiu, Shaojun; Zhou, Wei

    2015-01-01

    Great achievements have been attained in agricultural production of China, while there are still many difficulties and challenges ahead that call for put more efforts to overcome to guarantee food security and protect environment simultaneously. Analyzing yield gap and nutrient use efficiency will help develop and inform agricultural policies and strategies to increase grain yield. On-farm datasets from 2001 to 2012 with 1,971 field experiments for maize (Zea mays L.) were collected in four maize agro-ecological regions of China, and the optimal management (OPT), farmers’ practice (FP), a series of nutrient omission treatments were used to analyze yield gap, nutrient use efficiency and indigenous nutrient supply by adopting meta-analysis and ANOVA analysis. Across all sites, the average yield gap between OPT and FP was 0.7 t ha-1, the yield response to nitrogen (N), phosphorus (P), and potassium (K) were 1.8, 1.0, and 1.2 t ha-1, respectively. The soil indigenous nutrient supply of N, P, and K averaged 139.9, 33.7, and 127.5 kg ha-1, respectively. As compared to FP, the average recovery efficiency (RE) of N, P, and K with OPT increased by percentage point of 12.2, 5.5, and 6.5, respectively. This study indicated that there would be considerable potential to further improve yield and nutrient use efficiency in China, and will help develop and inform agricultural policies and strategies, while some management measures such as soil, plant and nutrient are necessary and integrate with advanced knowledge and technologies. PMID:26484543

  17. Yield Gap, Indigenous Nutrient Supply and Nutrient Use Efficiency for Maize in China.

    Directory of Open Access Journals (Sweden)

    Xinpeng Xu

    Full Text Available Great achievements have been attained in agricultural production of China, while there are still many difficulties and challenges ahead that call for put more efforts to overcome to guarantee food security and protect environment simultaneously. Analyzing yield gap and nutrient use efficiency will help develop and inform agricultural policies and strategies to increase grain yield. On-farm datasets from 2001 to 2012 with 1,971 field experiments for maize (Zea mays L. were collected in four maize agro-ecological regions of China, and the optimal management (OPT, farmers' practice (FP, a series of nutrient omission treatments were used to analyze yield gap, nutrient use efficiency and indigenous nutrient supply by adopting meta-analysis and ANOVA analysis. Across all sites, the average yield gap between OPT and FP was 0.7 t ha-1, the yield response to nitrogen (N, phosphorus (P, and potassium (K were 1.8, 1.0, and 1.2 t ha-1, respectively. The soil indigenous nutrient supply of N, P, and K averaged 139.9, 33.7, and 127.5 kg ha-1, respectively. As compared to FP, the average recovery efficiency (RE of N, P, and K with OPT increased by percentage point of 12.2, 5.5, and 6.5, respectively. This study indicated that there would be considerable potential to further improve yield and nutrient use efficiency in China, and will help develop and inform agricultural policies and strategies, while some management measures such as soil, plant and nutrient are necessary and integrate with advanced knowledge and technologies.

  18. Yield Gap, Indigenous Nutrient Supply and Nutrient Use Efficiency for Maize in China.

    Science.gov (United States)

    Xu, Xinpeng; Liu, Xiaoyan; He, Ping; Johnston, Adrian M; Zhao, Shicheng; Qiu, Shaojun; Zhou, Wei

    2015-01-01

    Great achievements have been attained in agricultural production of China, while there are still many difficulties and challenges ahead that call for put more efforts to overcome to guarantee food security and protect environment simultaneously. Analyzing yield gap and nutrient use efficiency will help develop and inform agricultural policies and strategies to increase grain yield. On-farm datasets from 2001 to 2012 with 1,971 field experiments for maize (Zea mays L.) were collected in four maize agro-ecological regions of China, and the optimal management (OPT), farmers' practice (FP), a series of nutrient omission treatments were used to analyze yield gap, nutrient use efficiency and indigenous nutrient supply by adopting meta-analysis and ANOVA analysis. Across all sites, the average yield gap between OPT and FP was 0.7 t ha-1, the yield response to nitrogen (N), phosphorus (P), and potassium (K) were 1.8, 1.0, and 1.2 t ha-1, respectively. The soil indigenous nutrient supply of N, P, and K averaged 139.9, 33.7, and 127.5 kg ha-1, respectively. As compared to FP, the average recovery efficiency (RE) of N, P, and K with OPT increased by percentage point of 12.2, 5.5, and 6.5, respectively. This study indicated that there would be considerable potential to further improve yield and nutrient use efficiency in China, and will help develop and inform agricultural policies and strategies, while some management measures such as soil, plant and nutrient are necessary and integrate with advanced knowledge and technologies.

  19. The mechanism and design of sequencing batch reactor systems for nutrient removal--the state of the art.

    Science.gov (United States)

    Artan, N; Wilderer, P; Orhon, D; Morgenroth, E; Ozgür, N

    2001-01-01

    The Sequencing Batch Reactor (SBR) process for carbon and nutrient removal is subject to extensive research, and it is finding a wider application in full-scale installations. Despite the growing popularity, however, a widely accepted approach to process analysis and modeling, a unified design basis, and even a common terminology are still lacking; this situation is now regarded as the major obstacle hindering broader practical application of the SBR. In this paper a rational dimensioning approach is proposed for nutrient removal SBRs based on scientific information on process stoichiometry and modelling, also emphasizing practical constraints in design and operation.

  20. Pea-barley intercropping for efficient symbiotic N-2-fixation, soil N acquisition and use of other nutrients in European organic cropping systems

    DEFF Research Database (Denmark)

    Hauggaard-Nielsen, Henrik; Gooding, M.; Ambus, Per

    2009-01-01

    Complementarity in acquisition of nitrogen (N) from soil and N-2-fixation within pea and barley intercrops was studied in organic field experiments across Western Europe (Denmark, United Kingdom, France, Germany and Italy). Spring pea and barley were sown either as sole crops, at the recommended...... recovery was greater in the pea-barley intercrops than in the sole Crops Suggesting a high degree of complementarity over a wide range of growing conditions. Complementarity was partly attributed to greater soil mineral N acquisition by barley, forcing pea to rely more on N-2-fixation. At all sites......) in Danish and German experiments was 20% higher in the intercrop (P50B50) than in the respective sole crops, possibly influencing general crop yields and thereby competitive ability for other resources. Comparing all sites and seasons, the benefits of organic pea-barley intercropping for N acquisition were...

  1. Nutrient imbalance in Norway spruce

    International Nuclear Information System (INIS)

    Thelin, Gunnar

    2000-11-01

    The studies presented in my thesis indicate that growing Norway spruce in monoculture does not constitute sustainable forest management in a high N and S deposition environment, such as in southern Sweden. The combination of N-induced high growth rates and leaching due to soil acidification causes soil reserves of nutrients to decrease. This will increase the risk of nutrient imbalance within the trees when nutrient demands are not met. The development of nutrient imbalance in Scania, southern Sweden, was shown as negative trends in needle and soil nutrient status from the mid-80s to the present in Norway spruce and Scots pine stands. This imbalance appears to be connected to high levels of N and S deposition. Clear negative effects on tree vitality were found when using a new branch development method. Today, growth and vitality seems to be limited by K, rather than N, in spruce stands older than 40 years. However, younger stands appear to be able to absorb the deposited N without negative effects on growth and vitality. When investigating effects of nutrient stress on tree vitality, indicators such as branch length and shoot multiplication rate, which include effects accumulated over several years, are suitable. Countermeasures are needed in order to maintain the forest production at a high level. Positive effects on tree nutrient status after vitality fertilization (N-free fertilization) was shown in two micronutrient deficient stands in south-central Sweden. In addition, tree vitality was positively affected after the application of a site-adapted fertilizer to the canopy. Site-adaption of fertilizers will most likely improve the possibilities of a positive response on tree growth and vitality in declining stands. In a survey of Norway spruce in mixtures with beech, birch, or oak compared to monocultures it was shown that spruce nutrient status was higher in mixtures with deciduous species than in monocultures. By using mixed-species stands the need for

  2. Nutrient imbalance in Norway spruce

    Energy Technology Data Exchange (ETDEWEB)

    Thelin, Gunnar

    2000-11-01

    The studies presented in my thesis indicate that growing Norway spruce in monoculture does not constitute sustainable forest management in a high N and S deposition environment, such as in southern Sweden. The combination of N-induced high growth rates and leaching due to soil acidification causes soil reserves of nutrients to decrease. This will increase the risk of nutrient imbalance within the trees when nutrient demands are not met. The development of nutrient imbalance in Scania, southern Sweden, was shown as negative trends in needle and soil nutrient status from the mid-80s to the present in Norway spruce and Scots pine stands. This imbalance appears to be connected to high levels of N and S deposition. Clear negative effects on tree vitality were found when using a new branch development method. Today, growth and vitality seems to be limited by K, rather than N, in spruce stands older than 40 years. However, younger stands appear to be able to absorb the deposited N without negative effects on growth and vitality. When investigating effects of nutrient stress on tree vitality, indicators such as branch length and shoot multiplication rate, which include effects accumulated over several years, are suitable. Countermeasures are needed in order to maintain the forest production at a high level. Positive effects on tree nutrient status after vitality fertilization (N-free fertilization) was shown in two micronutrient deficient stands in south-central Sweden. In addition, tree vitality was positively affected after the application of a site-adapted fertilizer to the canopy. Site-adaption of fertilizers will most likely improve the possibilities of a positive response on tree growth and vitality in declining stands. In a survey of Norway spruce in mixtures with beech, birch, or oak compared to monocultures it was shown that spruce nutrient status was higher in mixtures with deciduous species than in monocultures. By using mixed-species stands the need for

  3. USA Nutrient managment forecasting via the "Fertilizer Forecaster": linking surface runnof, nutrient application and ecohydrology.

    Science.gov (United States)

    Drohan, Patrick; Buda, Anthony; Kleinman, Peter; Miller, Douglas; Lin, Henry; Beegle, Douglas; Knight, Paul

    2017-04-01

    USA and state nutrient management planning offers strategic guidance that strives to educate farmers and those involved in nutrient management to make wise management decisions. A goal of such programs is to manage hotspots of water quality degradation that threaten human and ecosystem health, water and food security. The guidance provided by nutrient management plans does not provide the day-to-day support necessary to make operational decisions, particularly when and where to apply nutrients over the short term. These short-term decisions on when and where to apply nutrients often make the difference between whether the nutrients impact water quality or are efficiently utilized by crops. Infiltrating rainfall events occurring shortly after broadcast nutrient applications are beneficial, given they will wash soluble nutrients into the soil where they are used by crops. Rainfall events that generate runoff shortly after nutrients are broadcast may wash off applied nutrients, and produce substantial nutrient losses from that site. We are developing a model and data based support tool for nutrient management, the Fertilizer Forecaster, which identifies the relative probability of runoff or infiltrating events in Pennsylvania (PA) landscapes in order to improve water quality. This tool will support field specific decisions by farmers and land managers on when and where to apply fertilizers and manures over 24, 48 and 72 hour periods. Our objectives are to: (1) monitor agricultural hillslopes in watersheds representing four of the five Physiographic Provinces of the Chesapeake Bay basin; (2) validate a high resolution mapping model that identifies soils prone to runoff; (3) develop an empirically based approach to relate state-of-the-art weather forecast variables to site-specific rainfall infiltration or runoff occurrence; (4) test the empirical forecasting model against alternative approaches to forecasting runoff occurrence; and (5) recruit farmers from the four

  4. Incidental Lexicon Acquisition through Playful Interaction

    Directory of Open Access Journals (Sweden)

    Lukas Wilhelm Ansteeg

    2015-02-01

    Full Text Available This paper presents an educational game which aids learners with foreign lexicon acquisition while entertaining them at the same time. An overview over existing language learning tools is given, and a general platform for educational games for second language acquisition (SLA is described. It introduces a specific prototype video game which teaches Italian vocabulary to the user. The application puts learning at the core of its game mechanics and combines it with a narrative and role-playing elements. In a user study, the game is compared to two other learning methods with focus on long term retention of vocabulary and enjoyment of the exercise. The game is found to perform within 10% of the efficiency of pure vocabulary learning exercises, while being considerably more enjoyable to the user.

  5. Nutrients in Energy and One-Carbon Metabolism: Learning from Metformin Users

    Directory of Open Access Journals (Sweden)

    Fedra Luciano-Mateo

    2017-02-01

    Full Text Available Metabolic vulnerability is associated with age-related diseases and concomitant co-morbidities, which include obesity, diabetes, atherosclerosis and cancer. Most of the health problems we face today come from excessive intake of nutrients and drugs mimicking dietary effects and dietary restriction are the most successful manipulations targeting age-related pathways. Phenotypic heterogeneity and individual response to metabolic stressors are closely related food intake. Understanding the complexity of the relationship between dietary provision and metabolic consequences in the long term might provide clinical strategies to improve healthspan. New aspects of metformin activity provide a link to many of the overlapping factors, especially the way in which organismal bioenergetics remodel one-carbon metabolism. Metformin not only inhibits mitochondrial complex 1, modulating the metabolic response to nutrient intake, but also alters one-carbon metabolic pathways. Here, we discuss findings on the mechanism(s of action of metformin with the potential for therapeutic interpretations.

  6. Incorporating hydrologic variability into nutrient spiraling

    Science.gov (United States)

    Doyle, Martin W.

    2005-09-01

    Nutrient spiraling describes the path of a nutrient molecule within a stream ecosystem, combining the biochemical cycling processes with the downstream driving force of stream discharge. To date, nutrient spiraling approaches have been hampered by their inability to deal with fluctuating flows, as most studies have characterized nutrient retention within only a small range of discharges near base flow. Here hydrologic variability is incorporated into nutrient spiraling theory by drawing on the fluvial geomorphic concept of effective discharge. The effective discharge for nutrient retention is proposed to be that discharge which, over long periods of time, is responsible for the greatest portion of nutrient retention. A developed analytical model predicts that the effective discharge for nutrient retention will equal the modal discharge for small streams or those with little discharge variability. As modal discharge increases or discharge variability increases, the effective discharge becomes increasingly less than the modal discharge. In addition to the effective discharge, a new metric is proposed, the functionally equivalent discharge, which is the single discharge that will reproduce the magnitude of nutrient retention generated by the full hydrologic frequency distribution when all discharge takes place at that rate. The functionally equivalent discharge was found to be the same as the modal discharge at low hydrologic variability, but increasingly different from the modal discharge at large hydrologic variability. The functionally equivalent discharge provides a simple quantitative means of incorporating hydrologic variability into long-term nutrient budgets.

  7. Growth Mechanism of Microbial Colonies

    Science.gov (United States)

    Zhu, Minhui; Martini, K. Michael; Kim, Neil H.; Sherer, Nicholas; Lee, Jia Gloria; Kuhlman, Thomas; Goldenfeld, Nigel

    Experiments on nutrient-limited E. coli colonies, growing on agar gel from single cells reveal a power-law distribution of sizes, both during the growth process and in the final stage when growth has ceased. We developed a Python simulation to study the growth mechanism of the bacterial population and thus understand the broad details of the experimental findings. The simulation takes into account nutrient uptake, metabolic function, growth and cell division. Bacteria are modeled in two dimensions as hard circle-capped cylinders with steric interactions and elastic stress dependent growth characteristics. Nutrient is able to diffuse within and between the colonies. The mechanism of microbial colony growth involves reproduction of cells within the colonies and the merging of different colonies. We report results on the dynamic scaling laws and final state size distribution, that capture in semi-quantitative detail the trends observed in experiment. Supported by NSF Grant 0822613.

  8. Nutrient additions to mitigate for loss of Pacific salmon: consequences for stream biofilm and nutrient dynamics

    Science.gov (United States)

    Marcarelli, Amy M.; Baxter, Colden V.; Wipfli, Mark S.

    2014-01-01

    Mitigation activities designed to supplement nutrient and organic matter inputs to streams experiencing decline or loss of Pacific salmon typically presuppose that an important pathway by which salmon nutrients are moved to fish (anadromous and/or resident) is via nutrient incorporation by biofilms and subsequent bottom-up stimulation of biofilm production, which is nutrient-limited in many ecosystems where salmon returns have declined. Our objective was to quantify the magnitude of nutrient incorporation and biofilm dynamics that underpin this indirect pathway in response to experimental additions of salmon carcasses and pelletized fish meal (a.k.a., salmon carcass analogs) to 500-m reaches of central Idaho streams over three years. Biofilm standing crops increased 2–8-fold and incorporated marine-derived nutrients (measured using 15N and 13C) in the month following treatment, but these responses did not persist year-to-year. Biofilms were nitrogen (N) limited before treatments, and remained N limited in analog, but not carcass-treated reaches. Despite these biofilm responses, in the month following treatment total N load was equal to 33–47% of the N added to the treated reaches, and N spiraling measurements suggested that as much as 20%, but more likely 2–3% of added N was taken up by microbes. Design of biologically and cost-effective strategies for nutrient addition will require understanding the rates at which stream microbes take up nutrients and the downstream distance traveled by exported nutrients.

  9. Seasonal and scale-dependent variability in nutrient- and allelopathy-mediated macrophyte–phytoplankton interactions

    Directory of Open Access Journals (Sweden)

    Lombardo P.

    2013-08-01

    Full Text Available macrophyte–phytoplankton interactions were investigated using a dual laboratory and field approach during a growing season, with responses quantified as changes in biomass. Short-term, close-range interactions in laboratory microcosms always led to mutual exclusion of macrophytes (Elodea canadensis or Ceratophyllum demersum and algae (Raphidocelis subcapitata, Fistulifera pelliculosa or cyanobacteria (Synechococcus leopoliensis, suggesting regulation by positive feedback mechanisms, progressively establishing and reinforcing a “stable state”. Laboratory results suggest that close-range regulation of R. subcapitata and F. pelliculosa by macrophytes was primarily via nutrient (N, P mediation. Sprig-produced allelochemicals may have contributed to inhibition of S. leopoliensis in C. demersum presence, while S. leopoliensis was apparently enhanced by nutrients leaked by subhealthy (discolored leaves; biomass loss E. canadensis. Seasonal changes in algal growth suppression were correlated with sprig growth. Marginal differences in in situ phytoplankton patterns inside and outside monospecific macrophyte stands suggest that the nutrient- and/or allelopathy-mediated close-range mechanisms observed in the laboratory did not propagate at the macrophyte-stand scale. Factors operating at a larger scale (e.g., lake trophic state, extent of submerged vegetation coverage appear to override in situ macrophyte–phytoplankton close-range interactions.

  10. Comparative analysis of phytochemicals and nutrient availability in two contrasting cultivars of sweet potato (Ipomoea batatas L.).

    Science.gov (United States)

    Shekhar, Shubhendu; Mishra, Divya; Buragohain, Alak Kumar; Chakraborty, Subhra; Chakraborty, Niranjan

    2015-04-15

    Sweet potato ranks as the world's seventh most important food crop, and has major contribution to energy and phytochemical source of nutrition. To unravel the molecular basis for differential nutrient availability, and to exploit the natural genetic variation(s) of sweet potato, a series of physiochemical and proteomics experiment was conducted using two contrasting cultivars, an orange-fleshed sweet potato (OFSP) and a white-fleshed sweet potato (WFSP). Phytochemical screening revealed high percentage of carbohydrate, reducing sugar and phenolics in WFSP, whereas OFSP showed increased levels of total protein, flavonoids, anthocyanins, and carotenoids. The rate of starch and cellulose degradation was found to be less in OFSP during storage, indicating tight regulation of gene(s) responsible for starch-degradation. Comparative proteomics displayed a cultivar-dependent expression of proteins along with evolutionarily conserved proteins. These results suggest that cultivar-specific expression of proteins and/or their interacting partners might play a crucial role for nutrient acquisition in sweet potato. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Measuring nutrient spiralling in streams

    Energy Technology Data Exchange (ETDEWEB)

    Newbold, J D; Elwood, J W; O' Neill, R V; Van Winkle, W

    1981-01-01

    Nutrient cycling in streams involves some downstream transport before the cycle is completed. Thus, the path traveled by a nutrient atom in passing through the cycle can be visualized as a spiral. As an index of the spiralling process, we introduce spiralling length, defined as the average distance associated with one complete cycle of a nutrient atom. This index provides a measure of the utilization of nutrients relative to the available supply from upstream. Using /sup 32/p as a tracer, we estimated a spiralling length of 193 m for phosphorus in a small woodland stream.

  12. Mergers and Acquisitions

    OpenAIRE

    Frasch, Manfred; Leptin, Maria

    2000-01-01

    Mergers and acquisitions (M&As) are booming a strategy of choice for organizations attempting to maintain a competitive advantage. Previous research on mergers and acquisitions declares that acquirers do not normally benefit from acquisitions. Targets, on the other hand, have a tendency of gaining positive returns in the few days surrounding merger announcements due to several characteristic on the acquisitions deal. The announcement period wealth effect on acquiring firms, however, is as cle...

  13. Political rotations and cross-province acquisitions in China

    DEFF Research Database (Denmark)

    Muratova, Yulia; Arnoldi, Jakob; Chen, Xin

    2018-01-01

    The underdeveloped institutional framework and trade barriers between China’s provinces make cross-province acquisitions challenging. We explore how Chinese firms can mitigate this problem. Drawing on social network theory we propose that cross-province rotation of political leaders—a key element...... of the promotion system of political cadres in China—is a mechanism enabling growth through cross-province acquisitions. We conceptualize rotated leaders as brokers between two geographically dispersed networks. We contribute to the literature on the characteristics of Chinese social networks, the effect...... of political connections on firm strategy, and the impact of political rotations on firm growth in China’s provinces....

  14. Hypothalamic carnitine metabolism integrates nutrient and hormonal feedback to regulate energy homeostasis.

    Science.gov (United States)

    Stark, Romana; Reichenbach, Alex; Andrews, Zane B

    2015-12-15

    The maintenance of energy homeostasis requires the hypothalamic integration of nutrient feedback cues, such as glucose, fatty acids, amino acids, and metabolic hormones such as insulin, leptin and ghrelin. Although hypothalamic neurons are critical to maintain energy homeostasis research efforts have focused on feedback mechanisms in isolation, such as glucose alone, fatty acids alone or single hormones. However this seems rather too simplistic considering the range of nutrient and endocrine changes associated with different metabolic states, such as starvation (negative energy balance) or diet-induced obesity (positive energy balance). In order to understand how neurons integrate multiple nutrient or hormonal signals, we need to identify and examine potential intracellular convergence points or common molecular targets that have the ability to sense glucose, fatty acids, amino acids and hormones. In this review, we focus on the role of carnitine metabolism in neurons regulating energy homeostasis. Hypothalamic carnitine metabolism represents a novel means for neurons to facilitate and control both nutrient and hormonal feedback. In terms of nutrient regulation, carnitine metabolism regulates hypothalamic fatty acid sensing through the actions of CPT1 and has an underappreciated role in glucose sensing since carnitine metabolism also buffers mitochondrial matrix levels of acetyl-CoA, an allosteric inhibitor of pyruvate dehydrogenase and hence glucose metabolism. Studies also show that hypothalamic CPT1 activity also controls hormonal feedback. We hypothesis that hypothalamic carnitine metabolism represents a key molecular target that can concurrently integrate nutrient and hormonal information, which is critical to maintain energy homeostasis. We also suggest this is relevant to broader neuroendocrine research as it predicts that hormonal signaling in the brain varies depending on current nutrient status. Indeed, the metabolic action of ghrelin, leptin or insulin

  15. High performance data acquisition with InfiniBand

    International Nuclear Information System (INIS)

    Adamczewski, Joern; Essel, Hans G.; Kurz, Nikolaus; Linev, Sergey

    2008-01-01

    For the new experiments at FAIR new concepts of data acquisition systems have to be developed like the distribution of self-triggered, time stamped data streams over high performance networks for event building. In this concept any data filtering is done behind the network. Therefore the network must achieve up to 1 GByte/s bi-directional data transfer per node. Detailed simulations have been done to optimize scheduling mechanisms for such event building networks. For real performance tests InfiniBand has been chosen as one of the fastest available network technology. The measurements of network event building have been performed on different Linux clusters from four to over hundred nodes. Several InfiniBand libraries have been tested like uDAPL, Verbs, or MPI. The tests have been integrated in the data acquisition backbone core software DABC, a general purpose data acquisition library. Detailed results are presented. In the worst cases (over hundred nodes) 50% of the required bandwidth can be already achieved. It seems possible to improve these results by further investigations

  16. Leaf absorption of mineral nutrients in carnivorous plants stimulates root nutrient uptake

    Czech Academy of Sciences Publication Activity Database

    Adamec, Lubomír

    2002-01-01

    Roč. 155, - (2002), s. 89-100 ISSN 0028-646X R&D Projects: GA AV ČR IAA6005905 Institutional research plan: CEZ:AV0Z6005908 Keywords : terrestrial carnivorous plant s * utilization of prey * mineral nutrient re-utilization * leaf nutrient supply Subject RIV: EF - Botanics Impact factor: 2.945, year: 2002

  17. CADDIS Volume 2. Sources, Stressors and Responses: Nutrients

    Science.gov (United States)

    Introduction to the nutrients module, when to list nutrients as a candidate cause, ways to measure nutrients, simple and detailed conceptual diagrams for nutrients, nutrients module references and literature reviews.

  18. A Comparative-Study on Nutrient Cycling in Wet Heathland Ecosystems.2.Litter Decomposition and Nutrient Mineralization

    NARCIS (Netherlands)

    Berendse, F.; Bobbink, R.; Rouwenhorst, G.

    1989-01-01

    The concept of the relative nutrient requirement (L n) that was introduced in the first paper of this series is used to analyse the effects of the dominant plant population on nutrient cycling and nutrient mineralization in wet heathland ecosystems. A distinction is made between the effect that the

  19. Lake nutrient stoichiometry is less predictable than nutrient concentrations at regional and sub-continental scales.

    Science.gov (United States)

    Collins, Sarah M; Oliver, Samantha K; Lapierre, Jean-Francois; Stanley, Emily H; Jones, John R; Wagner, Tyler; Soranno, Patricia A

    2017-07-01

    Production in many ecosystems is co-limited by multiple elements. While a known suite of drivers associated with nutrient sources, nutrient transport, and internal processing controls concentrations of phosphorus (P) and nitrogen (N) in lakes, much less is known about whether the drivers of single nutrient concentrations can also explain spatial or temporal variation in lake N:P stoichiometry. Predicting stoichiometry might be more complex than predicting concentrations of individual elements because some drivers have similar relationships with N and P, leading to a weak relationship with their ratio. Further, the dominant controls on elemental concentrations likely vary across regions, resulting in context dependent relationships between drivers, lake nutrients and their ratios. Here, we examine whether known drivers of N and P concentrations can explain variation in N:P stoichiometry, and whether explaining variation in stoichiometry differs across regions. We examined drivers of N:P in ~2,700 lakes at a sub-continental scale and two large regions nested within the sub-continental study area that have contrasting ecological context, including differences in the dominant type of land cover (agriculture vs. forest). At the sub-continental scale, lake nutrient concentrations were correlated with nutrient loading and lake internal processing, but stoichiometry was only weakly correlated to drivers of lake nutrients. At the regional scale, drivers that explained variation in nutrients and stoichiometry differed between regions. In the Midwestern U.S. region, dominated by agricultural land use, lake depth and the percentage of row crop agriculture were strong predictors of stoichiometry because only phosphorus was related to lake depth and only nitrogen was related to the percentage of row crop agriculture. In contrast, all drivers were related to N and P in similar ways in the Northeastern U.S. region, leading to weak relationships between drivers and stoichiometry

  20. Leaf nutrient resorption, leaf lifespan and the retention of nutrients in seagrass systems

    NARCIS (Netherlands)

    Hemminga, M.A.; Marbà, N.; Stapel, J.

    1999-01-01

    Efficient nutrient resorption from senescing leaves, and extended leaf life spans are important strategies in order to conserve nutrients for plants in general. Despite the fact that seagrasses often grow in oligotrophic waters, these conservation strategies are not strongly developed in seagrasses.

  1. Impact of Temperature and Nutrients on Carbon: Nutrient Tissue Stoichiometry of Submerged Aquatic Plants: An Experiment and Meta-Analysis

    Directory of Open Access Journals (Sweden)

    Mandy Velthuis

    2017-05-01

    Full Text Available Human activity is currently changing our environment rapidly, with predicted temperature increases of 1–5°C over the coming century and increased nitrogen and phosphorus inputs in aquatic ecosystems. In the shallow parts of these ecosystems, submerged aquatic plants enhance water clarity by resource competition with phytoplankton, provide habitat, and serve as a food source for other organisms. The carbon:nutrient stoichiometry of submerged aquatic plants can be affected by changes in both temperature and nutrient availability. We hypothesized that elevated temperature leads to higher carbon:nutrient ratios through enhanced nutrient-use efficiency, while nutrient addition leads to lower carbon:nutrient ratios by the luxurious uptake of nutrients. We addressed these hypotheses with an experimental and a meta-analytical approach. We performed a full-factorial microcosm experiment with the freshwater plant Elodea nuttallii grown at 10, 15, 20, and 25°C on sediment consisting of pond soil/sand mixtures with 100, 50, 25, and 12.5% pond soil. To address the effect of climatic warming and nutrient addition on the carbon:nutrient stoichiometry of submerged freshwater and marine plants we performed a meta-analysis on experimental studies that elevated temperature and/or added nutrients (nitrogen and phosphorus. In the microcosm experiment, C:N ratios of Elodea nuttallii decreased with increasing temperature, and this effect was most pronounced at intermediate nutrient availability. Furthermore, higher nutrient availability led to decreased aboveground C:P ratios. In the meta-analysis, nutrient addition led to a 25, 22, and 16% reduction in aboveground C:N and C:P ratios and belowground C:N ratios, accompanied with increased N content. No consistent effect of elevated temperature on plant stoichiometry could be observed, as very few studies were found on this topic and contrasting results were reported. We conclude that while nutrient addition

  2. Monitoring of nutrient limitation in growing E. coli: a mathematical model of a ppGpp-based biosensor.

    Science.gov (United States)

    Pokhilko, Alexandra

    2017-11-21

    E. coli can be used as bacterial cell factories for production of biofuels and other useful compounds. The efficient production of the desired products requires careful monitoring of growth conditions and the optimization of metabolic fluxes. To avoid nutrient depletion and maximize product yields we suggest using a natural mechanism for sensing nutrient limitation, related to biosynthesis of an intracellular messenger - guanosine tetraphosphate (ppGpp). We propose a design for a biosensor, which monitors changes in the intracellular concentration of ppGpp by coupling it to a fluorescent output. We used mathematical modelling to analyse the intracellular dynamics of ppGpp, its fluorescent reporter, and cell growth in normal and fatty acid-producing E. coli lines. The model integrates existing mechanisms of ppGpp regulation and predicts the biosensor response to changes in nutrient state. In particular, the model predicts that excessive stimulation of fatty acid production depletes fatty acid intermediates, downregulates growth and increases the levels of ppGpp-related fluorescence. Our analysis demonstrates that the ppGpp sensor can be used for early detection of nutrient limitation during cell growth and for testing productivity of engineered lines.

  3. Micro-halocline enabled nutrient recycling may explain extreme Azolla event in the Eocene Arctic Ocean.

    Science.gov (United States)

    van Kempen, Monique M L; Smolders, Alfons J P; Lamers, Leon P M; Roelofs, Jan G M

    2012-01-01

    In order to understand the physicochemical mechanisms that could explain the massive growth of Azolla arctica in the Eocene Arctic Ocean, we carried out a laboratory experiment in which we studied the interacting effects of rain and wind on the development of salinity stratification, both in the presence and in the absence of a dense Azolla cover. Additionally, we carried out a mesocosm experiment to get a better understanding of the nutrient cycling within and beneath a dense Azolla cover in both freshwater and brackish water environments. Here we show that Azolla is able to create a windproof, small-scale salinity gradient in brackish waters, which allows for efficient recycling of nutrients. We suggest that this mechanism ensures the maintenance of a large standing biomass in which additional input of nutrients ultimately result in a further expansion of an Azolla cover. As such, it may not only explain the extent of the Azolla event during the Eocene, but also the absence of intact vegetative Azolla remains and the relatively low burial efficiency of organic carbon during this interval.

  4. Micro-halocline enabled nutrient recycling may explain extreme Azolla event in the Eocene Arctic Ocean.

    Directory of Open Access Journals (Sweden)

    Monique M L van Kempen

    Full Text Available In order to understand the physicochemical mechanisms that could explain the massive growth of Azolla arctica in the Eocene Arctic Ocean, we carried out a laboratory experiment in which we studied the interacting effects of rain and wind on the development of salinity stratification, both in the presence and in the absence of a dense Azolla cover. Additionally, we carried out a mesocosm experiment to get a better understanding of the nutrient cycling within and beneath a dense Azolla cover in both freshwater and brackish water environments. Here we show that Azolla is able to create a windproof, small-scale salinity gradient in brackish waters, which allows for efficient recycling of nutrients. We suggest that this mechanism ensures the maintenance of a large standing biomass in which additional input of nutrients ultimately result in a further expansion of an Azolla cover. As such, it may not only explain the extent of the Azolla event during the Eocene, but also the absence of intact vegetative Azolla remains and the relatively low burial efficiency of organic carbon during this interval.

  5. Optimizing Productivity of Food Crop Genotypes in Low Nutrient Soils

    International Nuclear Information System (INIS)

    2013-11-01

    Global climate change is likely to exacerbate plant abiotic stress in the coming decades by increasing water stress and by accelerating soil fertility degradation. To respond to this set of challenges, there is a need to develop agricultural systems with significantly greater productivity and resilience that at the same time use limited natural resources more efficiently. Low phosphorus (N) and nitrogen (P) availabilities are primary limitations to productivity in low input agriculture, and fertilizers are primary resource inputs in intensive agriculture. A critical feature of future agricultural systems will be new crop varieties with improved conversion of soil resources to yields. These new cultivars would have improved productivity in low input systems and decreased input requirements in high input systems. Many scientists are currently turning their attention to roots, the hidden half of the plant, as central to their efforts to produce crops with better yields without causing environmental damage. Several root traits are known to be associated with P and N acquisition efficiency in low N and P soils. These root traits include root hairs, root length, root branching and root density. The identification of root traits for enhanced P and N acquisition is enabling crop breeders to develop new genotypes with better yields in low fertility soils of Africa, Asia and Latin America. However, in order to use a trait as a selection criterion for crop improvement, either direct phenotypic selection or through marker assisted selection, it is necessary to develop protocols to measure accurately the root traits that enhance N and P acquisition in the glasshouse and in the field, which can provide robust and rapid evaluation of many root systems' architectural traits in targeted production environments using different crops. The objective of the Coordinated Research Project on Optimizing Productivity of Food Crop Genotypes in Low Nutrient Soils was to develop integrated

  6. Optimizing Productivity of Food Crop Genotypes in Low Nutrient Soils

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-11-15

    Global climate change is likely to exacerbate plant abiotic stress in the coming decades by increasing water stress and by accelerating soil fertility degradation. To respond to this set of challenges, there is a need to develop agricultural systems with significantly greater productivity and resilience that at the same time use limited natural resources more efficiently. Low phosphorus (N) and nitrogen (P) availabilities are primary limitations to productivity in low input agriculture, and fertilizers are primary resource inputs in intensive agriculture. A critical feature of future agricultural systems will be new crop varieties with improved conversion of soil resources to yields. These new cultivars would have improved productivity in low input systems and decreased input requirements in high input systems. Many scientists are currently turning their attention to roots, the hidden half of the plant, as central to their efforts to produce crops with better yields without causing environmental damage. Several root traits are known to be associated with P and N acquisition efficiency in low N and P soils. These root traits include root hairs, root length, root branching and root density. The identification of root traits for enhanced P and N acquisition is enabling crop breeders to develop new genotypes with better yields in low fertility soils of Africa, Asia and Latin America. However, in order to use a trait as a selection criterion for crop improvement, either direct phenotypic selection or through marker assisted selection, it is necessary to develop protocols to measure accurately the root traits that enhance N and P acquisition in the glasshouse and in the field, which can provide robust and rapid evaluation of many root systems' architectural traits in targeted production environments using different crops. The objective of the Coordinated Research Project on Optimizing Productivity of Food Crop Genotypes in Low Nutrient Soils was to develop integrated

  7. Software Switching for Data Acquisition

    CERN Multimedia

    CERN. Geneva; Malone, David

    2016-01-01

    In this talk we discuss the feasibility of replacing telecom-class routers with a topology of commodity servers acting as software switches in data acquisition. We extend the popular software switch, Open vSwitch, with a dedicated, throughput-oriented buffering mechanism. We compare the performance under heavy many-to-one congestion to typical Ethernet switches and evaluate the scalability when building larger topologies, exploiting the integration with software-defined networking technologies. Please note that David Malone will speak on behalf of Grzegorz Jereczek.

  8. Absorção de nutrientes pelo trigo Absorption of nutrients by wheat plants

    Directory of Open Access Journals (Sweden)

    Hermano Gargantini

    1973-01-01

    Full Text Available Estudou-se a absorção dos nutrientes essenciais das variedades de trigo (Triticum aestivum L. BH 1146 e IAS 3795, cultivadas em vasos de Mitscherlich em casa de vegetação, empregaudo-se Latossolo Vermelho-Escuro fase arenosa, proveniente do município de Capão Bonito. Durante todo o ciclo vegetativo da cultura, a cada 10 dias, colheram-se plantas, para serem analisados os elementos N, P, K, Ca, Mg e S. Verificou-se sensível diferença na entração dos nutrientes, entre ambas as variedades. Assim, enquanto na BH o nitrogênio e, a seguir, o potássio foram os nutrientes absorvidos em maiores quantidades, seguindo-se, em quantidades menores, o fósforo, o cálcio, o ennofre e o magnésio, na variedade IAS o potássio foi absorvido em muito maior quantidade que o nitrogênio, e depois dele, na ordem, o cálcio, o fósforo, o ennofre e o magnésio.In this paper the nutrient absorption by wheat plants is presented. Two varieties of wheat, BH 1146 and IAS 3795, were grown in Mitscherlich pots under greenhouse conditions and supplied with all nutrients, including micronutrients. Plant samples, obtained at 10-day intervals, were analysed for N, P, K, Ca, Mg and S. The amounts of nutrients absorbed were diferent between the two varieties. Furthermore, the BH variety absorbed more nitrogen than other nutrients, while for the IAS variety potassium was the element absorbed in larger amounts. Absorption of P, S, Ca, Mg was small for both varieties.

  9. Mergers and Acquisitions

    DEFF Research Database (Denmark)

    Risberg, Annette

    Introduction to the study of mergers and acquisitions. This book provides an understanding of the mergers and acquisitions process, how and why they occur, and also the broader implications for organizations. It presents issues including motives and planning, partner selection, integration......, employee experiences and communication. Mergers and acquisitions remain one of the most common forms of growth, yet they present considerable challenges for the companies and management involved. The effects on stakeholders, including shareholders, managers and employees, must be considered as well...... by editorial commentaries and reflects the important organizational and behavioural aspects which have often been ignored in the past. By providing this in-depth understanding of the mergers and acquisitions process, the reader understands not only how and why mergers and acquisitions occur, but also...

  10. Nutrient surpluses on integrated arable farms

    NARCIS (Netherlands)

    Schröder, J.J.; Asperen, van P.; Dongen, van G.J.M.; Wijnands, F.G.

    1996-01-01

    From 1990 to 1993 nutrient fluxes were monitored on 38 private arable farms that had adopted farming strategies aiming at reduced nutrient inputs and substitution of mineral fertilizers by organic fertilizers. The nutrient surplus was defined as the difference between inputs (including inputs

  11. Foods, Nutrients, and Dietary Patterns: Interconnections and Implications for Dietary Guidelines12

    Science.gov (United States)

    Satija, Ambika; Hu, Frank B

    2016-01-01

    Dietary guidelines provide evidence-based statements on food choices to meet nutritional requirements and reduce the risk of prevailing chronic disease. They involve a substantial amount of research translation, and their implementation has important health consequences. Foods, however, are complex combinations of nutrients and other compounds that act synergistically within the food and across food combinations. In addition, the evidence base underpinning dietary guidelines accesses research that reflects different study designs, with inherent strengths and limitations. We propose a systematic approach for the review of evidence that begins with research on dietary patterns. This research will identify the combinations of foods that best protect, or appear deleterious to, health. Next, we suggest that evidence be sought from research that focuses on the effects of individual foods. Finally, nutrient-based research should be considered to explain the mechanisms by which these foods and dietary patterns exert their effects, take into account the effects of ingredients added to the food supply, and enable assessments of dietary sufficiency. The consideration of individual nutrients and food components (e.g., upper limits for saturated fat, added sugar, and sodium) provides important benchmarks for evaluating overall diet quality. The concepts of core and discretionary foods (nutrient-rich and nutrient-poor foods, respectively) enable distinctions between foods, and this has implications for the relation between food policy and food manufacturing. In summary, evidence supporting healthy dietary patterns provides the foundation for the development of dietary guidelines. Further reference to individual foods and nutrients follows from the foundation of healthy dietary patterns. PMID:27184272

  12. Evolution of photorespiration from cyanobacteria to land plants, considering protein phylogenies and acquisition of carbon concentrating mechanisms.

    Science.gov (United States)

    Hagemann, Martin; Kern, Ramona; Maurino, Veronica G; Hanson, David T; Weber, Andreas P M; Sage, Rowan F; Bauwe, Hermann

    2016-05-01

    Photorespiration and oxygenic photosynthesis are intimately linked processes. It has been shown that under the present day atmospheric conditions cyanobacteria and all eukaryotic phototrophs need functional photorespiration to grow autotrophically. The question arises as to when this essential partnership evolved, i.e. can we assume a coevolution of both processes from the beginning or did photorespiration evolve later to compensate for the generation of 2-phosphoglycolate (2PG) due to Rubisco's oxygenase reaction? This question is mainly discussed here using phylogenetic analysis of proteins involved in the 2PG metabolism and the acquisition of different carbon concentrating mechanisms (CCMs). The phylogenies revealed that the enzymes involved in the photorespiration of vascular plants have diverse origins, with some proteins acquired from cyanobacteria as ancestors of the chloroplasts and others from heterotrophic bacteria as ancestors of mitochondria in the plant cell. Only phosphoglycolate phosphatase was found to originate from Archaea. Notably glaucophyte algae, the earliest branching lineage of Archaeplastida, contain more photorespiratory enzymes of cyanobacterial origin than other algal lineages or land plants indicating a larger initial contribution of cyanobacterial-derived proteins to eukaryotic photorespiration. The acquisition of CCMs is discussed as a proxy for assessing the timing of periods when photorespiratory activity may have been enhanced. The existence of CCMs also had marked influence on the structure and function of photorespiration. Here, we discuss evidence for an early and continuous coevolution of photorespiration, CCMs and photosynthesis starting from cyanobacteria via algae, to land plants. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  13. Nutrient supply of plants in aquaponic systems

    OpenAIRE

    Bittsánszky, András; Uzinger, Nikolett; Gyulai, Gábor; Mathis, Alex; Junge, Ranka; Villarroel, Morris; Kotzen, Benzion; Komives, Tamas

    2016-01-01

    In this preliminary article we present data on plant nutrient concentrations in aquaponic systems, and compare them to nutrient concentrations in “standard” hydroponic solutions. Our data shows that the nutrient concentrations supplied by the fish in aquaponic system are significantly lower for most nutrients, compared to hydroponic systems. Nevertheless, plants do thrive in solutions that have lower nutrient levels than “standard” hydroponic solutions. This is especially true for green leafy...

  14. Energy-neutral sustainable nutrient recovery incorporated with the wastewater purification process in an enlarged microbial nutrient recovery cell

    Science.gov (United States)

    Sun, Dongya; Gao, Yifan; Hou, Dianxun; Zuo, Kuichang; Chen, Xi; Liang, Peng; Zhang, Xiaoyuan; Ren, Zhiyong Jason; Huang, Xia

    2018-04-01

    Recovery of nutrient resources from the wastewater is now an inevitable strategy to maintain the supply of both nutrient and water for our huge population. While the intensive energy consumption in conventional nutrient recovery technologies still remained as the bottleneck towards the sustainable nutrient recycle. This study proposed an enlarged microbial nutrient recovery cell (EMNRC) which was powered by the energy contained in wastewater and achieved multi-cycle nutrient recovery incorporated with in situ wastewater treatment. With the optimal recovery solution of 3 g/L NaCl and the optimal volume ratio of wastewater to recovery solution of 10:1, >89% of phosphorus and >62% of ammonium nitrogen were recovered into struvite. An extremely low water input ratio of water. It was proved the EMNRC system was a promising technology which could utilize the chemical energy contained in wastewater itself and energy-neutrally recover nutrient during the continuous wastewater purification process.

  15. Nutrient supply of plants in aquaponic systems

    Directory of Open Access Journals (Sweden)

    Andras Bittsanszky

    2016-10-01

    Full Text Available In this preliminary article we present data on plant nutrient concentrations in aquaponics systems, and we compare them to nutrient concentrations in “standard” hydroponic solutions. Our data shows that the nutrient concentrations supplied by the fish in the aquaponics system are significantly lower for most nutrients compared to hydroponic systems. Nevertheless, plants do thrive in solutions that have lower nutrient levels compared to “standard” hydroponic solutions. This is especially true for green leafy vegetables that rarely need additional nutritional supplementation. It is concluded that in the highly complex system of aquaponics, special care has to be taken, via continuous monitoring of the chemical composition of the circulating water, to provide adequate concentrations and ratios of nutrients, and especially for the potentially toxic component, ammonium. If certain plants require nutrient supplementation, we consider that one based on organic substances would be most beneficial. However, protocols for the application of such nutrient amendments still need to be developed.

  16. Variability of nutrients and carbon dioxide in the Antarctic Intermediate Water between 1990 and 2014

    Science.gov (United States)

    Panassa, Essowè; Santana-Casiano, J. Magdalena; González-Dávila, Melchor; Hoppema, Mario; van Heuven, Steven M. A. C.; Völker, Christoph; Wolf-Gladrow, Dieter; Hauck, Judith

    2018-03-01

    Antarctic Intermediate Water (AAIW) formation constitutes an important mechanism for the export of macronutrients out of the Southern Ocean that fuels primary production in low latitudes. We used quality-controlled gridded data from five hydrographic cruises between 1990 and 2014 to examine decadal variability in nutrients and dissolved inorganic carbon (DIC) in the AAIW (neutral density range 27 net primary productivity (more nutrients unutilized) in the source waters of the AAIW could have contributed as well but cannot fully explain all observed changes.

  17. Molecular pharmacology of promiscuous seven transmembrane receptors sensing organic nutrients

    DEFF Research Database (Denmark)

    Wellendorph, Petrine; Johansen, Lars Dan; Bräuner-Osborne, Hans

    2009-01-01

    drug targets, to treat, for example, type II diabetes by mimicking food intake by potent agonists or positive allosteric modulators. The ligand-receptor interactions of the promiscuous receptors of organic nutrients thus remain an interesting subject of emerging functional importance....... in taste tissue, the gastrointestinal tract, endocrine glands, adipose tissue, and/or kidney. These receptors thus hold the potential to act as sensors of food intake, regulating, for example, release of incretin hormones from the gut, insulin/glucagon from the pancreas, and leptin from adipose tissue....... The promiscuous tendency in ligand recognition of these receptors is in contrast to the typical specific interaction with one physiological agonist seen for most receptors, which challenges the classic "lock-and-key" concept. We here review the molecular mechanisms of nutrient sensing of the calcium...

  18. A role for N-acetylglucosamine as a nutrient sensor and mediator of insulin resistance.

    Science.gov (United States)

    Wells, L; Vosseller, K; Hart, G W

    2003-02-01

    The ability to regulate energy balance at both the cellular and whole body level is an essential process of life. As western society has shifted to a higher caloric diet and more sedentary lifestyle, the incidence of type 2 diabetes (non-insulin-dependent diabetes mellitus) has increased to epidemic proportions. Thus, type 2 diabetes has been described as a disease of 'chronic overnutrition'. There are abundant data to support the relationship between nutrient availability and insulin action. However, there have been multiple hypotheses and debates as to the mechanism by which nutrient availability modulates insulin signaling and how excess nutrients lead to insulin resistance. One well-established pathway for nutrient sensing is the hexosamine biosynthetic pathway (HSP), which produces the acetylated aminosugar nucleotide uridine 5'-diphospho-N-acetylglucosamine (UDP-Glc-NAc) as its end product. Since UDP-GlcNAc is the donor substrate for modification of nucleocytoplasmic proteins at serine and threonine residues with N-acetylglucosamine (O-GlcNAc), the possibility of this posttranslational modification serving as the nutrient sensor has been proposed. We have recently directly tested this model in adipocytes by examining the effect of elevated levels of O-GlcNAc on insulin-stimulated glucose uptake. In this review, we summarize the existing work that implicates the HSP and O-GlcNAc modification as nutrient sensors and regulators of insulin signaling.

  19. Roles of NMDA and dopamine D1 and D2 receptors in the acquisition and expression of flavor preferences conditioned by oral glucose in rats.

    Science.gov (United States)

    Dela Cruz, J A D; Coke, T; Icaza-Cukali, D; Khalifa, N; Bodnar, R J

    2014-10-01

    Animals learn to prefer flavors associated with the intake of sugar (sucrose, fructose, glucose) and fat (corn oil: CO) solutions. Conditioned flavor preferences (CFP) have been elicited for sugars based on orosensory (flavor-flavor: e.g., fructose-CFP) and post-ingestive (flavor-nutrient: e.g., intragastric (IG) glucose-CFP) processes. Dopamine (DA) D1, DA D2 and NMDA receptor antagonism differentially eliminate the acquisition and expression of fructose-CFP and IG glucose-CFP. However, pharmacological analysis of fat (CO)-CFP, mediated by both flavor-flavor and flavor-nutrient processes, indicated that acquisition and expression of fat-CFP were minimally affected by systemic DA D1 and D2 antagonists, and were reduced by NMDA antagonism. Therefore, the present study examined whether systemic DA D1 (SCH23390), DA D2 (raclopride) or NMDA (MK-801) receptor antagonists altered acquisition and/or expression of CFP induced by oral glucose that should be mediated by both flavor-flavor and flavor-nutrient processes. Oral glucose-CFP was elicited following by training rats to drink one novel flavor (CS+, e.g., cherry) mixed in 8% glucose and another flavor (CS-, e.g., grape) mixed in 2% glucose. In expression studies, food-restricted rats drank these solutions in one-bottle sessions (2 h) over 10 days. Subsequent two-bottle tests with the CS+ and CS- flavors mixed in 2% glucose occurred 0.5 h after systemic administration of vehicle (VEH), SCH23390 (50-800 nmol/kg), raclopride (50-800 nmol/kg) or MK-801 (50-200 μg/kg). Rats displayed a robust CS+ preference following VEH treatment (94-95%) which was significantly though marginally attenuated by SCH23390 (67-70%), raclopride (77%) or MK-801 (70%) at doses that also markedly reduced overall CS intake. In separate acquisition studies, rats received VEH, SCH23390 (50-400 nmol/kg), raclopride (50-400 nmol/kg) or MK-801 (100 μg/kg) 0.5 h prior to ten 1-bottle training trials with CS+/8%G and CS-/2%G training solutions that was

  20. Balanço de nutrientes em povoamento de Eucalyptus saligna implantado sobre Cambissolo Háplico no RS Nutrient balance in plantation of Eucalyptus saligna planted on Inceptisol in Rio Grande do Sul

    Directory of Open Access Journals (Sweden)

    Michael Mazurana

    2011-09-01

    Full Text Available A fragilidade de um sistema florestal pode ser avaliada através do balanço de nutrientes, destacando a eficiência da ciclagem sendo que, em certos casos, a adubação deve ser utilizada para manter ou elevar a produtividade do sistema. Objetivou-se com este estudo avaliar o comportamento de diferentes sistemas de preparo de solo em Cambissolo Háplico e sua influência nas perdas de nutrientes transportados por erosão em área cultivada com Eucalyptus saligna. Os tratamentos foram constituídos por quatro métodos de preparo do solo: subsolagem interrompida com resíduo (SIR, subsolagem contínua com resíduo (SCR, subsolagem contínua sem resíduo (SSR e coveamento mecânico (CME, em delineamento de blocos ao acaso com três repetições por tratamento. O sistema SSR apresentou as maiores perdas de nutrientes quando comparadas com as dos outros métodos de preparo de solo. As maiores perdas de nutrientes pela erosão hídrica foram, pela ordem, K > Ca > Mg > P > Cu > B. Os sistemas de preparo SIR e SSR apresentaram os maiores teores de nutrientes contidos na parte aérea e o menor balanço nutricional, respectivamente.The forest system fragility can be evaluated through nutrient balance, with an emphasis in the cycling efficiency to maintain or elevate of productivity of system. The objective of this study was to evaluate the effects of different soil tillage systems on nutrient losses transported by erosion on an Inceptisol with Eucalyptus saligna. Four tillage systems were tested: interrupted deep chiseling with residue (SIR, continuous deep chiseling with residue (SCR, continuous deep chiseling without residue (SSR and mechanical pitting (CME. The SIR system showed the greatest nutrient losses. The loss of nutrients was higher by water erosion, in the following order, K > Ca > Mg > P > Cu > B. SIR and SSR tillage systems had the highest levels of nutrients in shoots and lower nutritional balance, respectively.

  1. Modeling nutrient in-stream processes at the watershed scale using Nutrient Spiralling metrics

    Science.gov (United States)

    Marcé, R.; Armengol, J.

    2009-07-01

    One of the fundamental problems of using large-scale biogeochemical models is the uncertainty involved in aggregating the components of fine-scale deterministic models in watershed applications, and in extrapolating the results of field-scale measurements to larger spatial scales. Although spatial or temporal lumping may reduce the problem, information obtained during fine-scale research may not apply to lumped categories. Thus, the use of knowledge gained through fine-scale studies to predict coarse-scale phenomena is not straightforward. In this study, we used the nutrient uptake metrics defined in the Nutrient Spiralling concept to formulate the equations governing total phosphorus in-stream fate in a deterministic, watershed-scale biogeochemical model. Once the model was calibrated, fitted phosphorus retention metrics where put in context of global patterns of phosphorus retention variability. For this purpose, we calculated power regressions between phosphorus retention metrics, streamflow, and phosphorus concentration in water using published data from 66 streams worldwide, including both pristine and nutrient enriched streams. Performance of the calibrated model confirmed that the Nutrient Spiralling formulation is a convenient simplification of the biogeochemical transformations involved in total phosphorus in-stream fate. Thus, this approach may be helpful even for customary deterministic applications working at short time steps. The calibrated phosphorus retention metrics were comparable to field estimates from the study watershed, and showed high coherence with global patterns of retention metrics from streams of the world. In this sense, the fitted phosphorus retention metrics were similar to field values measured in other nutrient enriched streams. Analysis of the bibliographical data supports the view that nutrient enriched streams have lower phosphorus retention efficiency than pristine streams, and that this efficiency loss is maintained in a wide

  2. Characterization of nutrient deficiency in Hancornia speciosa Gomes seedlings by omitting micronutrients from the nutrient solution

    Directory of Open Access Journals (Sweden)

    Layara Alexandre Bessa

    2013-06-01

    Full Text Available Hancornia speciosa Gomes (Mangaba tree is a fruit tree belonging to the Apocynaceae family and is native to Brazil. The production of seedlings of this species is limited by a lack of technical and nutritional expertise. To address this deficiency, this study aimed to characterize the visual symptoms of micronutrient deficiency and to assess growth and leaf nutrient accumulation in H. speciosa seedlings supplied with nutrient solutions that lack individual micronutrients. H. speciosa plants were grown in nutrient solution in a greenhouse according to a randomized block design, with four replicates. The treatments consisted of a group receiving complete nutrient solution and groups treated with a nutrient solution lacking one of the following micronutrients: boron (B, copper (Cu, iron (Fe, manganese (Mn, zinc (Zn, and molybdenum (Mo. The visual symptoms of nutrient deficiency were generally easy to characterize. Dry matter production was affected by the omission of micronutrients, and the treatment lacking Fe most limited the stem length, stem diameter, root length, and number of leaves in H. speciosa seedlings as well as the dry weight of leaves, the total dry weight, and the relative growth in H. speciosa plants. The micronutrient contents of H. speciosa leaves from plants receiving the complete nutrient solution treatment were, in decreasing order, Fe>Mn>Cu>Zn>B.

  3. A flexible modelling software for data acquisition

    International Nuclear Information System (INIS)

    Shu Yantai; Chen Yanhui; Yang Songqi; Liu Genchen

    1992-03-01

    A flexible modelling software for data acquisition is based on an event-driven simulator. It can be used to simulate a wide variety of systems which can be modelled as open queuing networks. The main feature of the software is its flexibility to evaluate the performance of various data acquisition system, whether pulsed or not. The flexible features of this software as follow: The user can choose the number of processors in the model and the route which every job takes to move the model. the service rate of a processor is automatically adapted. The simulator has a pipe-line mechanism. A job can be divided into several segments and a processor may be used as a compression component etc. Some modelling techniques and applications of this software in plasma physics laboratories are also presented

  4. Language acquisition from a biolinguistic perspective.

    Science.gov (United States)

    Crain, Stephen; Koring, Loes; Thornton, Rosalind

    2017-10-01

    This paper describes the biolinguistic approach to language acquisition. We contrast the biolinguistic approach with a usage-based approach. We argue that the biolinguistic approach is superior because it provides more accurate and more extensive generalizations about the properties of human languages, as well as a better account of how children acquire human languages. To distinguish between these accounts, we focus on how child and adult language differ both in sentence production and in sentence understanding. We argue that the observed differences resist explanation using the cognitive mechanisms that are invoked by the usage-based approach. In contrast, the biolinguistic approach explains the qualitative parametric differences between child and adult language. Explaining how child and adult language differ and demonstrating that children perceive unity despite apparent diversity are two of the hallmarks of the biolinguistic approach to language acquisition. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. A Lossless Network for Data Acquisition

    CERN Document Server

    AUTHOR|(SzGeCERN)698154; The ATLAS collaboration; Lehmann Miotto, Giovanna

    2017-01-01

    The bursty many-to-one communication pattern, typical for data acquisition systems, is particularly demanding for commodity TCP/IP and Ethernet technologies. We expand the study of lossless switching in software running on commercial-off-the-shelf servers, using the ATLAS experiment as a case study. In this paper we extend the popular software switch, Open vSwitch, with a dedicated, throughput-oriented buffering mechanism for data acquisition. We compare the performance under heavy congestion on typical Ethernet switches to a commodity server acting as a switch. Our results indicate that software switches with large buffers perform significantly better. Next, we evaluate the scalability of the system when building a larger topology of interconnected software switches, exploiting the integration with software-defined networking technologies. We build an IP-only leaf-spine network consisting of eight software switches running on separate physical servers as a demonstrator.

  6. A Lossless Network for Data Acquisition

    Science.gov (United States)

    Jereczek, Grzegorz; Lehmann Miotto, Giovanna; Malone, David; Walukiewicz, Miroslaw

    2017-06-01

    The bursty many-to-one communication pattern, typical for data acquisition systems, is particularly demanding for commodity TCP/IP and Ethernet technologies. We expand the study of lossless switching in software running on commercial off-the-shelf servers, using the ATLAS experiment as a case study. In this paper, we extend the popular software switch, Open vSwitch, with a dedicated, throughput-oriented buffering mechanism for data acquisition. We compare the performance under heavy congestion on typical Ethernet switches to a commodity server acting as a switch. Our results indicate that software switches with large buffers perform significantly better. Next, we evaluate the scalability of the system when building a larger topology of interconnected software switches, exploiting the integration with software-defined networking technologies. We build an IP-only leaf-spine network consisting of eight software switches running on distinct physical servers as a demonstrator.

  7. TOR Signaling and Nutrient Sensing.

    Science.gov (United States)

    Dobrenel, Thomas; Caldana, Camila; Hanson, Johannes; Robaglia, Christophe; Vincentz, Michel; Veit, Bruce; Meyer, Christian

    2016-04-29

    All living organisms rely on nutrients to sustain cell metabolism and energy production, which in turn need to be adjusted based on available resources. The evolutionarily conserved target of rapamycin (TOR) protein kinase is a central regulatory hub that connects environmental information about the quantity and quality of nutrients to developmental and metabolic processes in order to maintain cellular homeostasis. TOR is activated by both nitrogen and carbon metabolites and promotes energy-consuming processes such as cell division, mRNA translation, and anabolism in times of abundance while repressing nutrient remobilization through autophagy. In animals and yeasts, TOR acts antagonistically to the starvation-induced AMP-activated kinase (AMPK)/sucrose nonfermenting 1 (Snf1) kinase, called Snf1-related kinase 1 (SnRK1) in plants. This review summarizes the immense knowledge on the relationship between TOR signaling and nutrients in nonphotosynthetic organisms and presents recent findings in plants that illuminate the crucial role of this pathway in conveying nutrient-derived signals and regulating many aspects of metabolism and growth.

  8. Low transient storage and uptake efficiencies in seven agricultural streams: implications for nutrient demand.

    Science.gov (United States)

    Sheibley, Richard W; Duff, John H; Tesoriero, Anthony J

    2014-11-01

    We used mass load budgets, transient storage modeling, and nutrient spiraling metrics to characterize nitrate (NO), ammonium (NH), and inorganic phosphorus (SRP) demand in seven agricultural streams across the United States and to identify in-stream services that may control these conditions. Retention of one or all nutrients was observed in all but one stream, but demand for all nutrients was low relative to the mass in transport. Transient storage metrics (/, , , and ) correlated with NO retention but not NH or SRP retention, suggesting in-stream services associated with transient storage and stream water residence time could influence reach-scale NO demand. However, because the fraction of median reach-scale travel time due to transient storage () was ≤1.2% across the sites, only a relatively small demand for NO could be generated by transient storage. In contrast, net uptake of nutrients from the water column calculated from nutrient spiraling metrics were not significant at any site because uptake lengths calculated from background nutrient concentrations were statistically insignificant and therefore much longer than the study reaches. These results suggest that low transient storage coupled with high surface water NO inputs have resulted in uptake efficiencies that are not sufficient to offset groundwater inputs of N. Nutrient retention has been linked to physical and hydrogeologic elements that drive flow through transient storage areas where residence time and biotic contact are maximized; however, our findings indicate that similar mechanisms are unable to generate a significant nutrient demand in these streams relative to the loads. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  9. Nutrient cycle benchmarks for earth system land model

    Science.gov (United States)

    Zhu, Q.; Riley, W. J.; Tang, J.; Zhao, L.

    2017-12-01

    Projecting future biosphere-climate feedbacks using Earth system models (ESMs) relies heavily on robust modeling of land surface carbon dynamics. More importantly, soil nutrient (particularly, nitrogen (N) and phosphorus (P)) dynamics strongly modulate carbon dynamics, such as plant sequestration of atmospheric CO2. Prevailing ESM land models all consider nitrogen as a potentially limiting nutrient, and several consider phosphorus. However, including nutrient cycle processes in ESM land models potentially introduces large uncertainties that could be identified and addressed by improved observational constraints. We describe the development of two nutrient cycle benchmarks for ESM land models: (1) nutrient partitioning between plants and soil microbes inferred from 15N and 33P tracers studies and (2) nutrient limitation effects on carbon cycle informed by long-term fertilization experiments. We used these benchmarks to evaluate critical hypotheses regarding nutrient cycling and their representation in ESMs. We found that a mechanistic representation of plant-microbe nutrient competition based on relevant functional traits best reproduced observed plant-microbe nutrient partitioning. We also found that for multiple-nutrient models (i.e., N and P), application of Liebig's law of the minimum is often inaccurate. Rather, the Multiple Nutrient Limitation (MNL) concept better reproduces observed carbon-nutrient interactions.

  10. The heavy metal paradox in arbuscular mycorrhizas: from mechanisms to biotechnological applications.

    Science.gov (United States)

    Ferrol, Nuria; Tamayo, Elisabeth; Vargas, Paola

    2016-12-01

    Arbuscular mycorrhizal symbioses that involve most plants and Glomeromycota fungi are integral and functional parts of plant roots. In these associations, the fungi not only colonize the root cortex but also maintain an extensive network of hyphae that extend out of the root into the surrounding environment. These external hyphae contribute to plant uptake of low mobility nutrients, such as P, Zn, and Cu. Besides improving plant mineral nutrition, arbuscular mycorrhizal fungi (AMF) can alleviate heavy metal (HM) toxicity to their host plants. HMs, such as Cu, Zn, Fe, and Mn, play essential roles in many biological processes but are toxic when present in excess. This makes their transport and homeostatic control of particular importance to all living organisms. AMF play an important role in modulating plant HM acquisition in a wide range of soil metal concentrations and have been considered to be a key element in the improvement of micronutrient concentrations in crops and in the phytoremediation of polluted soils. In the present review, we provide an overview of the contribution of AMF to plant HM acquisition and performance under deficient and toxic HM conditions, and summarize current knowledge of metal homeostasis mechanisms in arbuscular mycorrhizas. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  11. Physical Mechanisms Routing Nutrients in the Central Red Sea

    KAUST Repository

    Zarokanellos, Nikolaos

    2017-10-06

    Mesoscale eddies and boundary currents play a key role in the upper layer circulation of the Red Sea. This study assesses the physical and biochemical characteristics of an eastern boundary current (EBC) and recurrent eddies in the central Red Sea (CRS) using a combination of in situ and satellite observations. Hydrographic surveys in November 2013 (autumn) and in April 2014 (spring) in the CRS (22.15 − 24.1°N) included a total of 39 and 27 CTD stations, respectively. In addition, high-resolution hydrographic data were acquired in spring 2014 with a towed undulating vehicle (ScanFish). In situ measurements of salinity, temperature, chlorophyll fluorescence, colored dissolved organic matter (CDOM), and dissolved nitrate: phosphorous ratios reveal distinct water mass characteristics for the two periods. An EBC, observed in the upper 150 m of the water column during autumn, transported low-salinity and warm water from the south toward the CRS. Patches of the low-salinity water of southern origin tended to contain relatively high concentrations of chlorophyll and CDOM. The prominent dynamic feature observed in spring was a cyclonic/anticyclonic eddy pair. The cyclonic eddy was responsible for an upward nutrient flux into the euphotic zone. Higher chlorophyll and CDOM concentrations, and concomitant lower nitrate:phosphorous ratios indicate the influence of the EBC in the CRS at the end of the stratified summer period.

  12. Physical Mechanisms Routing Nutrients in the Central Red Sea

    Science.gov (United States)

    Zarokanellos, Nikolaos D.; Kürten, Benjamin; Churchill, James H.; Roder, Cornelia; Voolstra, Christian R.; Abualnaja, Yasser; Jones, Burton H.

    2017-11-01

    Mesoscale eddies and boundary currents play a key role in the upper layer circulation of the Red Sea. This study assesses the physical and biochemical characteristics of an eastern boundary current (EBC) and recurrent eddies in the central Red Sea (CRS) using a combination of in situ and satellite observations. Hydrographic surveys in November 2013 (autumn) and in April 2014 (spring) in the CRS (22.15°N-24.1°N) included a total of 39 and 27 CTD stations, respectively. In addition, high-resolution hydrographic data were acquired in spring 2014 with a towed undulating vehicle (ScanFish). In situ measurements of salinity, temperature, chlorophyll fluorescence, colored dissolved organic matter (CDOM), and dissolved nitrate: phosphorous ratios reveal distinct water mass characteristics for the two periods. An EBC, observed in the upper 150 m of the water column during autumn, transported low-salinity and warm water from the south toward the CRS. Patches of the low-salinity water of southern origin tended to contain relatively high concentrations of chlorophyll and CDOM. The prominent dynamic feature observed in spring was a cyclonic/anticyclonic eddy pair. The cyclonic eddy was responsible for an upward nutrient flux into the euphotic zone. Higher chlorophyll and CDOM concentrations, and concomitant lower nitrate:phosphorous ratios indicate the influence of the EBC in the CRS at the end of the stratified summer period.

  13. Ironing Out the Unconventional Mechanisms of Iron Acquisition and Gene Regulation in Chlamydia

    Directory of Open Access Journals (Sweden)

    Nick D. Pokorzynski

    2017-09-01

    Full Text Available The obligate intracellular pathogen Chlamydia trachomatis, along with its close species relatives, is known to be strictly dependent upon the availability of iron. Deprivation of iron in vitro induces an aberrant morphological phenotype termed “persistence.” This persistent phenotype develops in response to various immunological and nutritional insults and may contribute to the development of sub-acute Chlamydia-associated chronic diseases in susceptible populations. Given the importance of iron to Chlamydia, relatively little is understood about its acquisition and its role in gene regulation in comparison to other iron-dependent bacteria. Analysis of the genome sequences of a variety of chlamydial species hinted at the involvement of unconventional mechanisms, being that Chlamydia lack many conventional systems of iron homeostasis that are highly conserved in other bacteria. Herein we detail past and current research regarding chlamydial iron biology in an attempt to provide context to the rapid progress of the field in recent years. We aim to highlight recent discoveries and innovations that illuminate the strategies involved in chlamydial iron homeostasis, including the vesicular mode of acquiring iron from the intracellular environment, and the identification of a putative iron-dependent transcriptional regulator that is synthesized as a fusion with a ABC-type transporter subunit. These recent findings, along with the noted absence of iron-related homologs, indicate that Chlamydia have evolved atypical approaches to the problem of iron homeostasis, reinvigorating research into the iron biology of this pathogen.

  14. Overfishing and nutrient pollution interact with temperature to disrupt coral reefs down to microbial scales.

    Science.gov (United States)

    Zaneveld, Jesse R; Burkepile, Deron E; Shantz, Andrew A; Pritchard, Catharine E; McMinds, Ryan; Payet, Jérôme P; Welsh, Rory; Correa, Adrienne M S; Lemoine, Nathan P; Rosales, Stephanie; Fuchs, Corinne; Maynard, Jeffrey A; Thurber, Rebecca Vega

    2016-06-07

    Losses of corals worldwide emphasize the need to understand what drives reef decline. Stressors such as overfishing and nutrient pollution may reduce resilience of coral reefs by increasing coral-algal competition and reducing coral recruitment, growth and survivorship. Such effects may themselves develop via several mechanisms, including disruption of coral microbiomes. Here we report the results of a 3-year field experiment simulating overfishing and nutrient pollution. These stressors increase turf and macroalgal cover, destabilizing microbiomes, elevating putative pathogen loads, increasing disease more than twofold and increasing mortality up to eightfold. Above-average temperatures exacerbate these effects, further disrupting microbiomes of unhealthy corals and concentrating 80% of mortality in the warmest seasons. Surprisingly, nutrients also increase bacterial opportunism and mortality in corals bitten by parrotfish, turning normal trophic interactions deadly for corals. Thus, overfishing and nutrient pollution impact reefs down to microbial scales, killing corals by sensitizing them to predation, above-average temperatures and bacterial opportunism.

  15. Differences in egg nutrient availability, development, and nutrient metabolism of broiler and layer embryos

    NARCIS (Netherlands)

    Nangsuay, A.; Molenaar, R.; Meijerhof, R.; Anker, van den I.; Heetkamp, M.J.W.; Kemp, B.; Brand, van den H.

    2015-01-01

    Selection for production traits of broilers and layers leads to physiological differences, which may already be present during incubation. This study aimed to investigate the influence of strain (broiler vs layer) on egg nutrient availability, embryonic development and nutrient metabolism. A total

  16. 2017 NAIP Acquisition Map

    Data.gov (United States)

    Farm Service Agency, Department of Agriculture — Planned States for 2017 NAIP acquisition and acquisition status layer (updated daily). Updates to the acquisition seasons may be made during the season to...

  17. The role of diatom nanostructures in biasing diffusion to improve uptake in a patchy nutrient environment.

    Directory of Open Access Journals (Sweden)

    James G Mitchell

    Full Text Available BACKGROUND: Diatoms are important single-celled autotrophs that dominate most lit aquatic environments and are distinguished by surficial frustules with intricate designs of unknown function. PRINCIPAL FINDINGS: We show that some frustule designs constrain diffusion to positively alter nutrient uptake. In nutrient gradients of 4 to 160 times over <5 cm, the screened-chambered morphology of Coscincodiscus sp. biases the nutrient diffusion towards the cell by at least 3.8 times the diffusion to the seawater. In contrast, the open-chambers of Thalassiosira eccentrica produce at least a 1.3 times diffusion advantage to the membrane over Coscincodiscus sp. when nutrients are homogeneous. SIGNIFICANCE: Diffusion constraint explains the success of particular diatom species at given times and the overall success of diatoms. The results help answer the unresolved question of how adjacent microplankton compete. Furthermore, diffusion constraint by supramembrane nanostructures to alter molecular diffusion suggests that microbes compete via supramembrane topology, a competitive mechanism not considered by the standard smooth-surface equations used for nutrient uptake nor in microbial ecology and cell physiology.

  18. Rapid Material Appearance Acquisition Using Consumer Hardware

    Directory of Open Access Journals (Sweden)

    Jiří Filip

    2014-10-01

    Full Text Available A photo-realistic representation of material appearance can be achieved by means of bidirectional texture function (BTF capturing a material’s appearance for varying illumination, viewing directions, and spatial pixel coordinates. BTF captures many non-local effects in material structure such as inter-reflections, occlusions, shadowing, or scattering. The acquisition of BTF data is usually time and resource-intensive due to the high dimensionality of BTF data. This results in expensive, complex measurement setups and/or excessively long measurement times. We propose an approximate BTF acquisition setup based on a simple, affordable mechanical gantry containing a consumer camera and two LED lights. It captures a very limited subset of material surface images by shooting several video sequences. A psychophysical study comparing captured and reconstructed data with the reference BTFs of seven tested materials revealed that results of our method show a promising visual quality. Speed of the setup has been demonstrated on measurement of human skin and measurement and modeling of a glue dessication time-varying process. As it allows for fast, inexpensive, acquisition of approximate BTFs, this method can be beneficial to visualization applications demanding less accuracy, where BTF utilization has previously been limited.

  19. Nutrient allocations and metabolism in two Collembola with contrasting reproduction and growth strategies

    DEFF Research Database (Denmark)

    Larsen, Thomas; Ventura, Marc; Damgaard, Christian

    2009-01-01

    1.  Physiological mechanisms such as allocation and release of nutrients are keys to understanding an animal's adaptation to a particular habitat. This study investigated how two detrivores with contrasting life-history traits allocated carbon (C) and nitrogen (N) to growth, reproduction and meta...

  20. How Much of Language Acquisition Does Operant Conditioning Explain?

    OpenAIRE

    Sturdy, Christopher B.; Nicoladis, Elena

    2017-01-01

    Since the 1950s, when Chomsky argued that Skinner’s arguments could not explain syntactic acquisition, psychologists have generally avoided explicitly invoking operant or instrumental conditioning as a learning mechanism for language among human children. In this article, we argue that this is a mistake. We focus on research that has been done on language learning in human infants and toddlers in order to illustrate our points. Researchers have ended up inventing learning mechanisms that, in ...

  1. Nutrient uptake dynamics across a gradient of nutrient concentrations and ratios at the landscape scale

    Science.gov (United States)

    Gibson, Catherine A.; O'Reilly, Catherine M.; Conine, Andrea L.; Lipshutz, Sondra M.

    2015-02-01

    Understanding interactions between nutrient cycles is essential for recognizing and remediating human impacts on water quality, yet multielemental approaches to studying nutrient cycling in streams are currently rare. Here we utilized a relatively new approach (tracer additions for spiraling curve characterization) to examine uptake dynamics for three essential nutrients across a landscape that varied in absolute and relative nutrient availability. We measured nutrient uptake for soluble reactive phosphorous, ammonium-nitrogen, and nitrate-nitrogen in 16 headwater streams in the Catskill Mountains, New York. Across the landscape, ammonium-nitrogen and soluble reactive phosphorus had shorter uptake lengths and higher uptake velocities than nitrate-nitrogen. Ammonium-nitrogen and soluble reactive phosphorus uptake velocities were tightly correlated, and the slope of the relationship did not differ from one, suggesting strong demand for both nutrients despite the high ambient water column dissolved inorganic nitrogen: soluble reactive phosphorus ratios. Ammonium-nitrogen appeared to be the preferred form of nitrogen despite much higher nitrate-nitrogen concentrations. The uptake rate of nitrate-nitrogen was positively correlated with ambient soluble reactive phosphorus concentration and soluble reactive phosphorus areal uptake rate, suggesting that higher soluble reactive phosphorus concentrations alleviate phosphorus limitation and facilitate nitrate-nitrogen uptake. In addition, these streams retained a large proportion of soluble reactive phosphorus, ammonium-nitrogen, and nitrate-nitrogen supplied by the watershed, demonstrating that these streams are important landscape filters for nutrients. Together, these results (1) indicated phosphorus limitation across the landscape but similarly high demand for ammonium-nitrogen and (2) suggested that nitrate-nitrogen uptake was influenced by variability in soluble reactive phosphorus availability and preference for

  2. Data acquisition

    International Nuclear Information System (INIS)

    Clout, P.N.

    1982-01-01

    Data acquisition systems are discussed for molecular biology experiments using synchrotron radiation sources. The data acquisition system requirements are considered. The components of the solution are described including hardwired solutions and computer-based solutions. Finally, the considerations for the choice of the computer-based solution are outlined. (U.K.)

  3. Combination of Micro nutrients for Bone (COMB) Study: Bone Density after Micro nutrient Intervention

    International Nuclear Information System (INIS)

    Genuis, S.J.; Bouchard, Th.P.

    2012-01-01

    Along with other investigations, patients presenting to an environmental health clinic with various chronic conditions were assessed for bone health status. Individuals with compromised bone strength were educated about skeletal health issues and provided with therapeutic options for potential amelioration of their bone health. Patients who declined pharmacotherapy or who previously experienced failure of drug treatment were offered other options including supplemental micro nutrients identified in the medical literature as sometimes having a positive impact on bone mineral density (BMD). After 12 months of consecutive supplemental micro nutrient therapy with a combination that included vitamin D3, vitamin K2, strontium, magnesium and docosahexaenoic acid (DHA), repeat bone densitometry was performed. The results were analyzed in a group of compliant patients and demonstrate improved BMD in patients classified with normal, osteopenic and osteoporotic bone density. According to the results, this combined micro nutrient supplementation regimen appears to be at least as effective as bis phosphonates or strontium ranelate in raising BMD levels in hip, spine, and femoral neck sites. No fractures occurred in the group taking the micro nutrient protocol. This micro nutrient regimen also appears to show efficacy in individuals where bis phosphonate therapy was previously unsuccessful in maintaining or raising BMD. Prospective clinical trials are required to confirm efficacy

  4. Nutrient transitions are a source of persisters in Escherichia coli biofilms.

    Directory of Open Access Journals (Sweden)

    Stephanie M Amato

    Full Text Available Chronic and recurrent infections have been attributed to persisters in biofilms, and despite this importance, the mechanisms of persister formation in biofilms remain unclear. The plethora of biofilm characteristics that could give rise to persisters, including slower growth, quorum signaling, oxidative stress, and nutrient heterogeneity, have complicated efforts to delineate formation pathways that generate persisters during biofilm development. Here we sought to specifically determine whether nutrient transitions, which are a common metabolic stress encountered within surface-attached communities, stimulate persister formation in biofilms and if so, to then identify the pathway. To accomplish this, we established an experimental methodology where nutrient availability to biofilm cells could be controlled exogenously, and then used that method to discover that diauxic carbon source transitions stimulated persister formation in Escherichia coli biofilms. Previously, we found that carbon source transitions stimulate persister formation in planktonic E. coli cultures, through a pathway that involved ppGpp and nucleoid-associated proteins, and therefore, tested the functionality of that pathway in biofilms. Biofilm persister formation was also found to be dependent on ppGpp and nucleoid-associated proteins, but the importance of specific proteins and enzymes between biofilm and planktonic lifestyles was significantly different. Data presented here support the increasingly appreciated role of ppGpp as a central mediator of bacterial persistence and demonstrate that nutrient transitions can be a source of persisters in biofilms.

  5. Nutrient transitions are a source of persisters in Escherichia coli biofilms.

    Science.gov (United States)

    Amato, Stephanie M; Brynildsen, Mark P

    2014-01-01

    Chronic and recurrent infections have been attributed to persisters in biofilms, and despite this importance, the mechanisms of persister formation in biofilms remain unclear. The plethora of biofilm characteristics that could give rise to persisters, including slower growth, quorum signaling, oxidative stress, and nutrient heterogeneity, have complicated efforts to delineate formation pathways that generate persisters during biofilm development. Here we sought to specifically determine whether nutrient transitions, which are a common metabolic stress encountered within surface-attached communities, stimulate persister formation in biofilms and if so, to then identify the pathway. To accomplish this, we established an experimental methodology where nutrient availability to biofilm cells could be controlled exogenously, and then used that method to discover that diauxic carbon source transitions stimulated persister formation in Escherichia coli biofilms. Previously, we found that carbon source transitions stimulate persister formation in planktonic E. coli cultures, through a pathway that involved ppGpp and nucleoid-associated proteins, and therefore, tested the functionality of that pathway in biofilms. Biofilm persister formation was also found to be dependent on ppGpp and nucleoid-associated proteins, but the importance of specific proteins and enzymes between biofilm and planktonic lifestyles was significantly different. Data presented here support the increasingly appreciated role of ppGpp as a central mediator of bacterial persistence and demonstrate that nutrient transitions can be a source of persisters in biofilms.

  6. Mechanisms Involved in Acquisition of blaNDM Genes by IncA/C2 and IncFIIY Plasmids.

    Science.gov (United States)

    Wailan, Alexander M; Sidjabat, Hanna E; Yam, Wan Keat; Alikhan, Nabil-Fareed; Petty, Nicola K; Sartor, Anna L; Williamson, Deborah A; Forde, Brian M; Schembri, Mark A; Beatson, Scott A; Paterson, David L; Walsh, Timothy R; Partridge, Sally R

    2016-07-01

    blaNDM genes confer carbapenem resistance and have been identified on transferable plasmids belonging to different incompatibility (Inc) groups. Here we present the complete sequences of four plasmids carrying a blaNDM gene, pKP1-NDM-1, pEC2-NDM-3, pECL3-NDM-1, and pEC4-NDM-6, from four clinical samples originating from four different patients. Different plasmids carry segments that align to different parts of the blaNDM region found on Acinetobacter plasmids. pKP1-NDM-1 and pEC2-NDM-3, from Klebsiella pneumoniae and Escherichia coli, respectively, were identified as type 1 IncA/C2 plasmids with almost identical backbones. Different regions carrying blaNDM are inserted in different locations in the antibiotic resistance island known as ARI-A, and ISCR1 may have been involved in the acquisition of blaNDM-3 by pEC2-NDM-3. pECL3-NDM-1 and pEC4-NDM-6, from Enterobacter cloacae and E. coli, respectively, have similar IncFIIY backbones, but different regions carrying blaNDM are found in different locations. Tn3-derived inverted-repeat transposable elements (TIME) appear to have been involved in the acquisition of blaNDM-6 by pEC4-NDM-6 and the rmtC 16S rRNA methylase gene by IncFIIY plasmids. Characterization of these plasmids further demonstrates that even very closely related plasmids may have acquired blaNDM genes by different mechanisms. These findings also illustrate the complex relationships between antimicrobial resistance genes, transposable elements, and plasmids and provide insights into the possible routes for transmission of blaNDM genes among species of the Enterobacteriaceae family. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  7. Nutrient removal by Chlorella vulgaris F1068 under cetyltrimethyl ammonium bromide induced hormesis.

    Science.gov (United States)

    Zhou, Qiongzhi; Li, Feng; Ge, Fei; Liu, Na; Kuang, Yangduo

    2016-10-01

    Toxicants are generally harmful to biotechnology in wastewater treatment. However, trace toxicant can induce microbial hormesis, but to date, it is still unknown how this phenomenon affects nutrient removal during municipal wastewater treatment process. Therefore, this study focused on the effects of hormesis induced by cetyltrimethyl ammonium bromide (CTAB), a representative quaternary ammonium cationic surfactant, on nutrient removal by Chlorella vulgaris F1068. Results showed that when the concentration of CTAB was less than 10 ng/L, the cellular components chlorophyll a, proteins, polysaccharides, and total lipids increased by 10.11, 58.17, 38.78, and 11.87 %, respectively, and some enzymes in nutrient metabolism of algal cells, such as glutamine synthetase (GS), acid phosphatase (ACP), H(+)-ATPase, and esterase, were also enhanced. As a result, the removal efficiencies of ammonia nitrogen (NH4 (+)) and total phosphorus (TP) increased by 14.66 and 8.51 %, respectively, compared to the control during a 7-day test period. The underlying mechanism was mainly due to an enhanced photosynthetic activity of C. vulgaris F1068 indicated by the increase in chlorophyll fluorescence parameters (the value of Fv/Fm, ΦII, Fv/Fo, and rETR increased by 12.99, 7.56, 25.59, and 8.11 %, respectively) and adenylate energy charge (AEC) (from 0.68 to 0.72). These results suggest that hormesis induced by trace toxicants could enhance the nutrient removal, which would be further considered in the design of municipal wastewater treatment processes. Graphical abstract The schematic mechanism of C. vulgaris F1068 under CTAB induced hormesis. Green arrows ( ) represent the increase and the red arrow ( ) represents the decrease.

  8. Data Acquisition System

    International Nuclear Information System (INIS)

    Cirstea, C.D.; Buda, S.I.; Constantin, F.

    2005-01-01

    This paper deals with a multi parametric acquisition system developed for a four input Analog to Digital Converter working in CAMAC Standard. The acquisition software is built in MS Visual C++ on a standard PC with a USB interface. It has a visual interface which permits Start/Stop of the acquisition, setting the type of acquisition (True/Live time), the time and various menus for primary data acquisition. The spectrum is dynamically visualized with a moving cursor indicating the content and position. The microcontroller PIC16C765 is used for data transfer from ADC to PC; The microcontroller and the software create an embedded system which emulates the CAMAC protocol programming the 4 input ADC for operating modes ('zero suppression', 'addressed' and 'sequential') and handling the data transfers from ADC to its internal memory. From its memory the data is transferred into the PC by the USB interface. The work is in progress. (authors)

  9. Data acquisition system

    International Nuclear Information System (INIS)

    Cirstea, D.C.; Buda, S.I.; Constantin, F.

    2005-01-01

    The topic of this paper deals with a multi parametric acquisition system developed around a four input Analog to Digital Converter working in CAMAC Standard. The acquisition software is built in MS Visual C++ on a standard PC with a USB interface. It has a visual interface which permits Start/Stop of the acquisition, setting the type of acquisition (True/Live time), the time and various menus for primary data acquisition. The spectrum is dynamically visualized with a moving cursor indicating the content and position. The microcontroller PIC16C765 is used for data transfer from ADC to PC; The microcontroller and the software create an embedded system which emulates the CAMAC protocol programming, the 4 input ADC for operating modes ('zero suppression', 'addressed' and 'sequential') and handling the data transfers from ADC to its internal memory. From its memory the data is transferred into the PC by the USB interface. The work is in progress. (authors)

  10. Effect of elevated [CO2 ] on yield, intra-plant nutrient dynamics, and grain quality of rice cultivars in Eastern India.

    Science.gov (United States)

    Jena, Usha Rani; Swain, Dillip Kumar; Hazra, K K; Maity, Mrinal K

    2018-05-16

    Climate models predict an increase in global temperature in response to a doubling of atmospheric [CO 2 ] that may impact future rice production and quality. In this study, the effect of elevated [CO 2 ] on yield, nutrient acquisition and utilization, and grain quality of rice genotypes was investigated in subtropical climate of eastern India (Kharagpur). Three environments (open field, ambient, and elevated [CO 2 ]) were tested using four rice cultivars of eastern India. Under elevated [CO 2 ] (25% higher), yield of high yielding cultivars (HYCs) viz. IR 36, Swarna, and Swarna sub1 was significantly reduced (11-13%), whereas the yield increased (6-9%) for Badshabhog, a low-yielding aromatic cultivar. Elevated [CO 2 ] significantly enhanced K uptake (14-21%), but did not influence the uptake of total N and P. The nutrient harvest index and use efficiency values in HYCs were reduced under elevated [CO 2 ] indicating that nutrients translocation from source to sink (grain) was significantly reduced. An increase in alkali spreading value (10%) and reduction in grain protein (2-3%) and iron (5-6%) was also observed upon [CO 2 ] elevation. The study highlights the importance of nutrient management (increasing N rate for HYCs) and selective breeding of tolerant cultivar in minimizing the adverse effect of elevated [CO 2 ] on rice yield and quality. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  11. Nutrient Shielding in Clusters of Cells

    Science.gov (United States)

    Lavrentovich, Maxim O.; Koschwanez, John H.; Nelson, David R.

    2014-01-01

    Cellular nutrient consumption is influenced by both the nutrient uptake kinetics of an individual cell and the cells’ spatial arrangement. Large cell clusters or colonies have inhibited growth at the cluster's center due to the shielding of nutrients by the cells closer to the surface. We develop an effective medium theory that predicts a thickness ℓ of the outer shell of cells in the cluster that receives enough nutrient to grow. The cells are treated as partially absorbing identical spherical nutrient sinks, and we identify a dimensionless parameter ν that characterizes the absorption strength of each cell. The parameter ν can vary over many orders of magnitude between different cell types, ranging from bacteria and yeast to human tissue. The thickness ℓ decreases with increasing ν, increasing cell volume fraction ϕ, and decreasing ambient nutrient concentration ψ∞. The theoretical results are compared with numerical simulations and experiments. In the latter studies, colonies of budding yeast, Saccharomyces cerevisiae, are grown on glucose media and imaged under a confocal microscope. We measure the growth inside the colonies via a fluorescent protein reporter and compare the experimental and theoretical results for the thickness ℓ. PMID:23848711

  12. Water Quality Protection from Nutrient Pollution: Case ...

    Science.gov (United States)

    Water bodies and coastal areas around the world are threatened by increases in upstream sediment and nutrient loads, which influence drinking water sources, aquatic species, and other ecologic functions and services of streams, lakes, and coastal water bodies. For example, increased nutrient fluxes from the Mississippi River Basin have been linked to increased occurrences of seasonal hypoxia in northern Gulf of Mexico. Lake Erie is another example where in the summer of 2014 nutrients, nutrients, particularly phosphorus, washed from fertilized farms, cattle feedlots, and leaky septic systems; caused a severe algae bloom, much of it poisonous; and resulted in the loss of drinking water for a half-million residents. Our current management strategies for point and non-point source nutrient loadings need to be improved to protect and meet the expected increased future demands of water for consumption, recreation, and ecological integrity. This presentation introduces management practices being implemented and their effectiveness in reducing nutrient loss from agricultural fields, a case analysis of nutrient pollution of the Grand Lake St. Marys and possible remedies, and ongoing work on watershed modeling to improve our understanding on nutrient loss and water quality. Presented at the 3rd International Conference on Water Resource and Environment.

  13. Placental Nutrient Transport in Gestational Diabetic Pregnancies

    Directory of Open Access Journals (Sweden)

    Marisol Castillo-Castrejon

    2017-11-01

    Full Text Available Maternal obesity during pregnancy is rising and is associated with increased risk of developing gestational diabetes mellitus (GDM, defined as glucose intolerance first diagnosed in pregnancy (1. Fetal growth is determined by the maternal nutrient supply and placental nutrient transfer capacity. GDM-complicated pregnancies are more likely to be complicated by fetal overgrowth or excess adipose deposition in utero. Infants born from GDM mothers have an increased risk of developing cardiovascular and metabolic disorders later in life. Diverse factors, such as ethnicity, age, fetal sex, clinical treatment for glycemic control, gestational weight gain, and body mass index among others, represent a challenge for studying underlying mechanisms in GDM subjects. Determining the individual roles of glucose intolerance, obesity, and other factors on placental function and fetal growth remains a challenge. This review provides an overview of changes in placental macronutrient transport observed in human pregnancies complicated by GDM. Improved knowledge and understanding of the alterations in placenta function that lead to pathological fetal growth will allow for development of new therapeutic interventions and treatments to improve pregnancy outcomes and lifelong health for the mother and her children.

  14. Auction and Game Theory Based Recommendations for DOD Acquisitions

    Science.gov (United States)

    2015-03-24

    exchange—the future of B2B . Harvard Business Review, 78(6), 86. Acquisition Research Program Graduate School of Business & Public Policy - 29 - Naval...mechanism: To illustrate the VCG mechanism, suppose that there are two items for sale (A and B) and two bidders. Each bidder n = 1,2 submits bids: vˆn...Bidder A’s perspective. The demands of all bidders other than Bidder A (i.e., 1 + 2 + 1 + 0) total only 4, while 5 licenses are available for sale

  15. Heme acquisition mechanisms of Porphyromonas gingivalis - strategies used in a polymicrobial community in a heme-limited host environment.

    Science.gov (United States)

    Smalley, J W; Olczak, T

    2017-02-01

    Porphyromonas gingivalis, a main etiologic agent and key pathogen responsible for initiation and progression of chronic periodontitis requires heme as a source of iron and protoporphyrin IX for its survival and the ability to establish an infection. Porphyromonas gingivalis is able to accumulate a defensive cell-surface heme-containing pigment in the form of μ-oxo bisheme. The main sources of heme for P. gingivalis in vivo are hemoproteins present in saliva, gingival crevicular fluid, and erythrocytes. To acquire heme, P. gingivalis uses several mechanisms. Among them, the best characterized are those employing hemagglutinins, hemolysins, and gingipains (Kgp, RgpA, RgpB), TonB-dependent outer-membrane receptors (HmuR, HusB, IhtA), and hemophore-like proteins (HmuY, HusA). Proteins involved in intracellular heme transport, storage, and processing are less well characterized (e.g. PgDps). Importantly, P. gingivalis may also use the heme acquisition systems of other bacteria to fulfill its own heme requirements. Porphyromonas gingivalis displays a novel paradigm for heme acquisition from hemoglobin, whereby the Fe(II)-containing oxyhemoglobin molecule must first be oxidized to methemoglobin to facilitate heme release. This process not only involves P. gingivalis arginine- and lysine-specific gingipains, but other proteases (e.g. interpain A from Prevotella intermedia) or pyocyanin produced by Pseudomonas aeruginosa. Porphyromonas gingivalis is then able to fully proteolyze the more susceptible methemoglobin substrate to release free heme or to wrest heme from it directly through the use of the HmuY hemophore. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Nutrient management in substrate systems

    NARCIS (Netherlands)

    Sonneveld, C.; Voogt, W.

    2009-01-01

    Speaking about nutrient solutions in soilless cultivation, different solutions can be discerned. Originally, in soilless culture only one nutrient solution was taken into account, being the solution in the containers in which the plants were grown. Such solutions were intensively moved by air

  17. Nutrients Turned into Toxins: Microbiota Modulation of Nutrient Properties in Chronic Kidney Disease.

    Science.gov (United States)

    Fernandez-Prado, Raul; Esteras, Raquel; Perez-Gomez, Maria Vanessa; Gracia-Iguacel, Carolina; Gonzalez-Parra, Emilio; Sanz, Ana B; Ortiz, Alberto; Sanchez-Niño, Maria Dolores

    2017-05-12

    In chronic kidney disease (CKD), accumulation of uremic toxins is associated with an increased risk of death. Some uremic toxins are ingested with the diet, such as phosphate and star fruit-derived caramboxin. Others result from nutrient processing by gut microbiota, yielding precursors of uremic toxins or uremic toxins themselves. These nutrients include l-carnitine, choline/phosphatidylcholine, tryptophan and tyrosine, which are also sold over-the-counter as nutritional supplements. Physicians and patients alike should be aware that, in CKD patients, the use of these supplements may lead to potentially toxic effects. Unfortunately, most patients with CKD are not aware of their condition. Some of the dietary components may modify the gut microbiota, increasing the number of bacteria that process them to yield uremic toxins, such as trimethylamine N-Oxide (TMAO), p-cresyl sulfate, indoxyl sulfate and indole-3 acetic acid. Circulating levels of nutrient-derived uremic toxins are associated to increased risk of death and cardiovascular disease and there is evidence that this association may be causal. Future developments may include maneuvers to modify gut processing or absorption of these nutrients or derivatives to improve CKD patient outcomes.

  18. Nutrient transport in the mammary gland: calcium, trace minerals and water soluble vitamins.

    Science.gov (United States)

    Montalbetti, Nicolas; Dalghi, Marianela G; Albrecht, Christiane; Hediger, Matthias A

    2014-03-01

    Milk nutrients are secreted by epithelial cells in the alveoli of the mammary gland by several complex and highly coordinated systems. Many of these nutrients are transported from the blood to the milk via transcellular pathways that involve the concerted activity of transport proteins on the apical and basolateral membranes of mammary epithelial cells. In this review, we focus on transport mechanisms that contribute to the secretion of calcium, trace minerals and water soluble vitamins into milk with particular focus on the role of transporters of the SLC series as well as calcium transport proteins (ion channels and pumps). Numerous members of the SLC family are involved in the regulation of essential nutrients in the milk, such as the divalent metal transporter-1 (SLC11A2), ferroportin-1 (SLC40A1) and the copper transporter CTR1 (SLC31A1). A deeper understanding of the physiology and pathophysiology of these transporters will be of great value for drug discovery and treatment of breast diseases.

  19. Fisheries management under nutrient influence

    DEFF Research Database (Denmark)

    Hammarlund, Cecilia; Nielsen, Max; Waldo, Staffan

    2018-01-01

    A fisheries management model that identifies the economic optimal management of fisheries under the influence of nutrients is presented. The model starts from the idea that growth in fish biomass increases with increasing availability of nutrients owing to higher food availability up to a peak...

  20. Nutrients requirements in biological industrial wastewater treatment ...

    African Journals Online (AJOL)

    In both these wastewaters nutrients were not added. A simple formula is introduced to calculate nutrient requirements based on removal efficiency and observed biomass yield coefficient. Key Words: Olive mill wastewater; anaerobic treatment; aerobic treatment; sequencing batch reactor; biomass yield; nutrient requirement.

  1. Skeletal nutrient vascular adaptation induced by external oscillatory intramedullary fluid pressure intervention

    Directory of Open Access Journals (Sweden)

    Qin Yi-Xian

    2010-03-01

    Full Text Available Abstract Background Interstitial fluid flow induced by loading has demonstrated to be an important mediator for regulating bone mass and morphology. It is shown that the fluid movement generated by the intramedullary pressure (ImP provides a source for pressure gradient in bone. Such dynamic ImP may alter the blood flow within nutrient vessel adjacent to bone and directly connected to the marrow cavity, further initiating nutrient vessel adaptation. It is hypothesized that oscillatory ImP can mediate the blood flow in the skeletal nutrient vessels and trigger vasculature remodeling. The objective of this study was then to evaluate the vasculature remodeling induced by dynamic ImP stimulation as a function of ImP frequency. Methods Using an avian model, dynamics physiological fluid ImP (70 mmHg, peak-peak was applied in the marrow cavity of the left ulna at either 3 Hz or 30 Hz, 10 minutes/day, 5 days/week for 3 or 4 weeks. The histomorphometric measurements of the principal nutrient arteries were done to quantify the arterial wall area, lumen area, wall thickness, and smooth muscle cell layer numbers for comparison. Results The preliminary results indicated that the acute cyclic ImP stimuli can significantly enlarge the nutrient arterial wall area up to 50%, wall thickness up to 20%, and smooth muscle cell layer numbers up to 37%. In addition, 3-week of acute stimulation was sufficient to alter the arterial structural properties, i.e., increase of arterial wall area, whereas 4-week of loading showed only minimal changes regardless of the loading frequency. Conclusions These data indicate a potential mechanism in the interrelationship between vasculature adaptation and applied ImP alteration. Acute ImP could possibly initiate the remodeling in the bone nutrient vasculature, which may ultimately alter blood supply to bone.

  2. Spindle assembly checkpoint acquisition at the mid-blastula transition.

    Directory of Open Access Journals (Sweden)

    Maomao Zhang

    Full Text Available The spindle assembly checkpoint (SAC maintains the fidelity of chromosome segregation during mitosis. Nonpathogenic cells lacking the SAC are typically only found in cleavage stage metazoan embryos, which do not acquire functional checkpoints until the mid-blastula transition (MBT. It is unclear how proper SAC function is acquired at the MBT, though several models exist. First, SAC acquisition could rely on transcriptional activity, which increases dramatically at the MBT. Embryogenesis prior to the MBT relies primarily on maternally loaded transcripts, and if SAC signaling components are not maternally supplied, the SAC would depend on zygotic transcription at the MBT. Second, checkpoint acquisition could depend on the Chk1 kinase, which is activated at the MBT to elongate cell cycles and is required for the SAC in somatic cells. Third, SAC function could depend on a threshold nuclear to cytoplasmic (N:C ratio, which increases during pre-MBT cleavage cycles and dictates several MBT events like zygotic transcription and cell cycle remodeling. Finally, the SAC could by regulated by a timer mechanism that coincides with other MBT events but is independent of them. Using zebrafish embryos we show that SAC acquisition at the MBT is independent of zygotic transcription, indicating that the checkpoint program is maternally supplied. Additionally, by precociously lengthening cleavage cycles with exogenous Chk1 activity, we show that cell cycle lengthening and Chk1 activity are not sufficient for SAC acquisition. Furthermore, we find that SAC acquisition can be uncoupled from the N:C ratio. Together, our findings indicate that SAC acquisition is regulated by a maternally programmed developmental timer.

  3. Nutrient uptake and regeneration ratios in the Red sea with reference to the nutrient budgets

    Digital Repository Service at National Institute of Oceanography (India)

    Naqvi, S.W.A.; Hansen, H.P.; Kureishy, T.W.

    the Red Se, however, appears to be rather uniform and the atomic ratios between carbon, nitrogen and phosphorus in the biomass are deduced to be 188:21:1. Increased input of nutrients associated with subsurface inflow of nutrient-rich waters from the Gulf...

  4. Plant ecosystem responses to rising atmospheric CO2: applying a "two-timing" approach to assess alternative hypotheses for mechanisms of nutrient limitation

    Science.gov (United States)

    Medlyn, B.; Jiang, M.; Zaehle, S.

    2017-12-01

    There is now ample experimental evidence that the response of terrestrial vegetation to rising atmospheric CO2 concentration is modified by soil nutrient availability. How to represent nutrient cycling processes is thus a key consideration for vegetation models. We have previously used model intercomparison to demonstrate that models incorporating different assumptions predict very different responses at Free-Air CO2 Enrichment experiments. Careful examination of model outputs has provided some insight into the reasons for the different model outcomes, but it is difficult to attribute outcomes to specific assumptions. Here we investigate the impact of individual assumptions in a generic plant carbon-nutrient cycling model. The G'DAY (Generic Decomposition And Yield) model is modified to incorporate alternative hypotheses for nutrient cycling. We analyse the impact of these assumptions in the model using a simple analytical approach known as "two-timing". This analysis identifies the quasi-equilibrium behaviour of the model at the time scales of the component pools. The analysis provides a useful mathematical framework for probing model behaviour and identifying the most critical assumptions for experimental study.

  5. 75 FR 54524 - Defense Federal Acquisition Regulation Supplement; Acquisition Strategies To Ensure Competition...

    Science.gov (United States)

    2010-09-08

    ...., because the changes are to internal Government organization and operating procedures only. The rule... 48 CFR Part 207 Government procurement. Ynette R. Shelkin, Editor, Defense Acquisition Regulations... Life Cycle of Major Defense Acquisition Programs (DFARS Case 2009-D014) AGENCY: Defense Acquisition...

  6. A comparative study on nutrient cycling in wet heathland ecosystems : II. Litter decomposition and nutrient mineralization.

    Science.gov (United States)

    Berendse, Frank; Bobbink, Roland; Rouwenhorst, Gerrit

    1989-03-01

    The concept of the relative nutrient requirement (L n ) that was introduced in the first paper of this series is used to analyse the effects of the dominant plant population on nutrient cycling and nutrient mineralization in wet heathland ecosystems. A distinction is made between the effect that the dominant plant species has on (1) the distribution of nutrients over the plant biomass and the soil compartment of the ecosystem and (2) the recirculation rate of nutrients. The first effect of the dominant plant species can be calculated on the basis of the δ/k ratio (which is the ratio of the relative mortality to the decomposition constant). The second effect can be analysed using the relative nutrient requirement (L n ). The mass loss and the changes in the amounts of N and P in decomposing above-ground and below-ground litter produced by Erica tetralix and Molinia caerulea were measured over three years. The rates of mass loss from both above-ground and below-ground litter of Molinia were higher than those from Erica litter. After an initial leaching phase, litter showed either a net release or a net immobilization of nitrogen or phosphorus that depended on the initial concentrations of these nutrients. At the same sites, mineralization of nitrogen and phosphorus were measured for two years both in communities dominated by Molinia and in communities dominated by Erica. There were no clear differences in the nitrogen mineralization, but in one of the two years, phosphate mineralization in the Molinia-community was significantly higher. On the basis of the theory that was developed, mineralization rates and ratios between amounts of nutrients in plant biomass and in the soil were calculated on the basis of parameters that were independently measured. There was a reasonable agreement between predicted and measured values in the Erica-communities. In the Molinia-communities there were large differences between calculated and measured values, which was explained by the

  7. Submarine groundwater discharge as an important nutrient source influencing nutrient structure in coastal water of Daya Bay, China

    Science.gov (United States)

    Wang, Xuejing; Li, Hailong; Zheng, Chunmiao; Yang, Jinzhong; Zhang, Yan; Zhang, Meng; Qi, Zhanhui; Xiao, Kai; Zhang, Xiaolang

    2018-03-01

    As an important nutrient source for coastal waters, submarine groundwater discharge (SGD) has long been largely ignored in Daya Bay, China. In this study, we estimate the fluxes of SGD and associated nutrients into this region using a 224Ra mass balance model and assess the contribution/importance of nutrients by SGD, benthic sediments, local rivers, and atmospheric deposition. The results of 224Ra mass balance show that the estimated SGD ranges from (2.76 ± 1.43) × 106 m3/d to (1.03 ± 0.53) × 107 m3/d with an average of (6.32 ± 2.42) × 106 m3/d, about 16 times the total discharge rate of local rivers. The nutrient loading from SGD is estimated to be (1.05-1.99) × 105 mol/d for NO3-N, (4.04-12.16) × 103 mol/d for DIP, and (3.54-11.35) × 105 mol/d for Si. Among these considered nutrient sources, we find that SGD is the primary source for Si and NO3-N, contributing 68% and 42% of all considered sources, respectively. The atmospheric NO3-N flux is comparable to that from SGD. The local rivers are the most important source for DIP, contributing 75% of all considered sources. SGD with high N:P ratio (NO3-N/DIP) of 37.0 delivers not only a large quantity of nutrients, but also changes nutrient structure in coastal water. Based on a DIP budget, primary productivity is evaluated to be 54-73 mg C/m2 d, in which SGD accounts for approximately 30% of total production. This study indicates that SGD is a key source of nutrients to coastal waters and may cause an obvious change of primary production and nutrient structure in Daya Bay.

  8. Linking nutrient enrichment, sediment erodibility and biofilms

    Science.gov (United States)

    Conrad, B.; Mahon, R.; Sojka, S. L.

    2014-12-01

    Sediment movement in coastal lagoons affects nutrient flux and primary producer growth. Previous research has shown that sediment erodibility is affected by biofilm concentration and that growth of benthic organisms, which produce biofilm, is affected by nutrient enrichment. However, researchers have not examined possible links between nutrient addition and sediment erodibility. We manipulated nutrient levels in the water column of 16 microcosms filled with homogenized sediment from a shallow coastal lagoon and artificial seawater to determine the effects on biofilm growth, measured through chlorophyll a and colloidal carbohydrate concentrations. Erosion tests using a Gust microcosm were conducted to determine the relationship between sediment erodibility and biofilm concentration. Results show that carbohydrate levels decreased with increasing nutrient enrichment and were unrelated to chlorophyll concentrations and erodibility. The nutrient levels did not predictably affect the chlorophyll levels, with lower chlorophyll concentrations in the control and medium enrichment treatments than the low and high enrichment treatments. Controls on biofilm growth are still unclear and the assumed relationship between carbohydrates and erodibility may be invalid. Understanding how biofilms respond to nutrient enrichment and subsequent effects on sediment erodibility is essential for protecting and restoring shallow coastal systems.

  9. Interspecific variation in leaf pigments and nutrients of five tree species from a subtropical forest in southern Brazil

    Directory of Open Access Journals (Sweden)

    MÁRCIA BÜNDCHEN

    2016-01-01

    Full Text Available ABSTRACT The purpose of this study was to analyze the seasonal variation in the nutrient and pigment content of leaves from five tree species - of which three are perennial (Cupania vernalis, Matayba elaeagnoides and Nectandra lanceolata and two are deciduous (Cedrela fissilis and Jacaranda micrantha - in an ecotone between a Deciduous Seasonal Forest and a Mixed Ombrophilous Forest in the state of Santa Catarina, Brazil. Leaf samples were collected in the four seasons of the year to determine the content of macronutrients (N, K, P, Mg, Ca, S and photosynthetic pigments (Chla, Chlb, Chltot, Cartot, Chla:Chlb and Cartot:Chltot. The principal component analysis showed that leaf pigments contributed to the formation of the first axis, which explains most of the data variance for all species, while leaf nutrient contribution showed strong interspecific variation. These results demonstrate that the studied species have different strategies for acquisition and use of mineral resources and acclimation to light, which are determinant for them to coexist in the forest environment.

  10. 9 Nutrient Load of the Sakumo Lagoon.cdr

    African Journals Online (AJOL)

    Administrator

    nutrients studied, phosphates were the highest in the Sakumo lagoon. The decreasing ... (2008), used nutrient and the trophic status to assess the ... the level of nutrient pollution of the Ramsar site. Materials and ... In assessing the nutrient load, water samples of the .... tidal waves resulting in sea water intrusion may account ...

  11. Diagnosis of the nutrient compositional space of fruit crops

    Directory of Open Access Journals (Sweden)

    Léon-Étienne Parent

    2011-03-01

    Full Text Available Tissue analysis is a useful tool for the nutrient management of fruit orchards. The mineral composition of diagnostic tissues expressed as nutrient concentration on a dry weight basis has long been used to assess the status of 'pure' nutrients. When nutrients are mixed and interact in plant tissues, their proportions or concentrations change relatively to each other as a result of synergism, antagonism, or neutrality, hence producing resonance within the closed space of tissue composition. Ternary diagrams and nutrient ratios are early representations of interacting nutrients in the compositional space. Dual and multiple interactions were integrated by the Diagnosis and Recommendation Integrated System (DRIS into nutrient indexes and by Compositional Nutrient Diagnosis into centered log ratios (CND-clr. DRIS has some computational flaws such as using a dry matter index that is not a part as well as nutrient products (e.g. NxCa instead of ratios. DRIS and CND-clr integrate all possible nutrient interactions without defining an ad hoc interactive model. They diagnose D components while D-1 could be diagnosed in the D-compositional Hilbert space. The isometric log ratio (ilr coordinates overcome these problems using orthonormal binary nutrient partitions instead of dual ratios. In this study, it is presented a nutrient interactive model as well as computation methods for DRIS and CND-clr and CND-ilr coordinates (CND-ilr using leaf analytical data from an experimental apple orchard in Southwestern Quebec, Canada. It was computed the Aitchison and Mahalanobis distances across ilr coordinates as measures of nutrient imbalance. The effect of changing nutrient concentrations on ilr coordinates are simulated to identify the ones contributing the most to nutrient imbalance.

  12. Data acquisition and control for gamma scanning

    International Nuclear Information System (INIS)

    Barnes, B.K.; Murray, A.S.; Quintana, J.N.

    1980-01-01

    A new computer-based data acquisition and control unit has been installed in the Los Alamos Scientific Laboratory (LASL) system for scanning irradiated reactor fuel pins. The scanning mechanism is controlled by a commercial multichannel analyzer via a CAMAC link with an intelligent crate controller. The scanning and control unit consists of three linked LSI-11 computers. The multitasking capability of the commercial operation system allows control decisions to be based upon currently acquiring data

  13. Potential effects of nutrient profiles on nutrient intakes in the Netherlands, Greece, Spain, USA, Israel, China and South-Africa

    NARCIS (Netherlands)

    Roodenburg, Annet J C; Schlatmann, Anke; Dötsch-Klerk, Mariska; Daamen, Robert; Dong, Jie; Guarro, Marta; Stergiou, Margarita; Sayed, Nazeeia; Ronoh, Eunice; Jansen, Léon; Seidell, Jacob C

    2011-01-01

    INTRODUCTION: Nutrient profiling is defined as the science of categorising foods based on their nutrient composition. The Choices Programme is a nutrient profile system with criteria that determine whether foods are eligible to carry a "healthier option" stamp. The Daily Menu Method which has been

  14. Influence of Acacia trees on soil nutrient levels in arid lands

    Science.gov (United States)

    De Boever, Maarten; Gabriels, Donald; Ouessar, Mohamed; Cornelis, Wim

    2014-05-01

    mechanism is of crucial importance for soil nutrient conservation and the restoration of degraded arid environments.

  15. Early-stage changes in natural (13)C and (15)N abundance and nutrient dynamics during different litter decomposition.

    Science.gov (United States)

    Gautam, Mukesh Kumar; Lee, Kwang-Sik; Song, Byeong-Yeol; Lee, Dongho; Bong, Yeon-Sik

    2016-05-01

    Decomposition, nutrient, and isotopic (δ(13)C and δ(15)N) dynamics during 1 year were studied for leaf and twig litters of Pinus densiflora, Castanea crenata, Erigeron annuus, and Miscanthus sinensis growing on a highly weathered soil with constrained nutrient supply using litterbags in a cool temperate region of South Korea. Decay constant (k/year) ranged from 0.58 to 1.29/year, and mass loss ranged from 22.36 to 58.43 % among litter types. The results demonstrate that mass loss and nutrient dynamics of decomposing litter were influenced by the seasonality of mineralization and immobilization processes. In general, most nutrients exhibited alternate phases of rapid mineralization followed by gradual immobilization, except K, which was released throughout the field incubation. At the end of study, among all the nutrients only N and P showed net immobilization. Mobility of different nutrients from decomposing litter as the percentage of initial litter nutrient concentration was in the order of K > Mg > Ca > N ≈ P. The δ(13)C (0.32-6.70 ‰) and δ(15)N (0.74-3.90 ‰) values of residual litters showed nonlinear increase and decrease, respectively compared to initial isotopic values during decomposition. Litter of different functional types and chemical quality converged toward a conservative nutrient use strategy through mechanisms of slow decomposition and slow nutrient mobilization. Our results indicate that litter quality and season, are the most important regulators of litter decomposition in these forests. The results revealed significant relationships between litter decomposition rates and N, C:N ratio and P, and seasonality (temperature). These results and the convergence of different litters towards conservative nutrient use in these nutrient constrained ecosystems imply optimization of litter management because litter removal can have cascading effects on litter decomposition and nutrient availability in these systems.

  16. Merger and Acquisition Market: from World Experience to National Practice

    Directory of Open Access Journals (Sweden)

    Hrechana Svitlana I.

    2014-03-01

    Full Text Available The goal of the article lies in identification of tendencies and prospects of development of the merger and acquisition market of Ukraine in the context of influence of the world M and A experience upon this process under conditions of globalisation. In the result of the study the article analyses the most significant merger and acquisition operations that took place in the world practice and in Ukraine in recent years. The article reveals and deeply assesses the variety of motives and mechanisms of their realisation from the position of practice of developed countries and trans-national corporations and also domestic associations of enterprises. It shows that transactions of tough or forced character of acquisition prevail in Ukraine, specific features of which are not only the reduced cost but also direct belonging of buyers to oligarchic-political structures. It explains negative influence of these specific features upon volume and activity of the national M and A market. It formulates and offers a system of state and economic subjects measures, immediate application of which would allow creation of favourable conditions for development of the national merger and acquisition market.

  17. Role of Translocted Signals in Regulating Root Development and Nutrient Uptake in Legumes

    Energy Technology Data Exchange (ETDEWEB)

    Atkins, C. A. [School of Plant Biology, University of Western Australia, Crawley, WA (Australia)

    2013-11-15

    Uptake of nutrients is achieved through the expression and activity of specific carrier/transporter mechanisms localized in the root system and distributed as a consequence of the development of the architecture of the system. Both root system development and the nutrient transport mechanisms are responsive to environmental factors that include nutrient supply and availability, water supply, salinity, soil acidity and compaction together with a wide range of biotic stresses. The response to each may be regulated at the molecular level by both local and systemic signals. These signals include the classical plant growth regulators but also low molecular weight compounds such as sugars and amino acids as well as macromolecules, including peptides, proteins and nucleic acids. Among the latter, recent research has shown that small RNA species and especially small interfering RNAs (siRNA) and microRNAs (miRNA) are potent and effective regulators of gene expression which, in the context of root development as well as nutrient uptake, have central and critical roles. Systemic (translocated) signals that specifically regulate root development and function are less well defined but analyses of phloem exudate in species of lupin (Lupinus albus and L. angustifolius) and species of Brassica and cucurbits have demonstrated that a wide range of macromolecules, including miRNAs, are present and potentially translocated from source organs (principally leaves) to sinks (shoot apical meristems, developing fruits and seeds, roots and nodules). While specific signaling roles for many of these macromolecules are yet to be discovered there are some that have been documented and their regulatory activity in organ development and functioning, as well as in nutrition, confirmed. The following article provides an up to date review and presents the results of recent research using lupin with emphasis on the analysis of small RNAs and their likely role(s) in regulation of root development and

  18. Nutrient-enhancement of Matooke banana for improved nutrient ...

    African Journals Online (AJOL)

    A total of 173 PLHIVregistered with Rakai Health Science Project were chosen and interviewed using structured questionnaires to determine the current contribution of banana to the household food security. Nutrient intake data were collected using Gibson s 24-hour recall method and food frequency questionnaires.

  19. Nutrient quality of fast food kids meals

    Science.gov (United States)

    Exposure of children to kids’ meals at fast food restaurants is high; however, the nutrient quality of such meals has not been systematically assessed. We assessed the nutrient quality of fast food meals marketed to young children, i.e., "kids meals". The nutrient quality of kids’ meals was assessed...

  20. Healthy Snacks: Using Nutrient Profiling to Evaluate the Nutrient-Density of Common Snacks in the United States.

    Science.gov (United States)

    Hess, Julie M; Slavin, Joanne L

    2017-09-01

    To quantify and compare the nutrient-density of commonly consumed snacks using two nutrient-density measures, Nutrient Rich Foods Indices 9.3 (NRF 9.3) and 15.3 (NRF 15.3). Identify commonly consumed categories of snacks and individual snack foods, calculate NRF 9.3 and 15.3 scores, rank snacks by category and by individual food based on nutrient density, compare and contrast scores generated by the two NRF Indices. NRF 9.3 and 15.3 scores. Averages and standard deviations of nutrient-density scores for each snack category. Vegetables and coffee/tea received the highest category scores on both indices. Cakes/cookies/pastries and sweets had the lowest category scores. NRF 9.3 scores for individual snacks ranged from -46 (soda) to 524 (coffee). NRF 15.3 scores ranged from -45 (soda) to 736 (coffee). If added to food labels, NRF scores could help consumers identify more nutritious choices. The differences between NRF 9.3 and 15.3 scores generated for the same foods and the limitations of these indices highlight the need for careful consideration of which nutrient-density measure to include on food labels as well as consumer education. © 2017 Institute of Food Technologists®.

  1. The Type VI Secretion System Engages a Redox-Regulated Dual-Functional Heme Transporter for Zinc Acquisition.

    Science.gov (United States)

    Si, Meiru; Wang, Yao; Zhang, Bing; Zhao, Chao; Kang, Yiwen; Bai, Haonan; Wei, Dawei; Zhu, Lingfang; Zhang, Lei; Dong, Tao G; Shen, Xihui

    2017-07-25

    The type VI secretion system was recently reported to be involved in zinc acquisition, but the underlying mechanism remains unclear. Here, we report that Burkholderia thailandensis T6SS4 is involved in zinc acquisition via secretion of a zinc-scavenging protein, TseZ, that interacts with the outer membrane heme transporter HmuR. We find that HmuR is a redox-regulated dual-functional transporter that transports heme iron under normal conditions but zinc upon sensing extracellular oxidative stress, triggered by formation of an intramolecular disulfide bond. Acting as the first line of defense against oxidative stress, HmuR not only guarantees an immediate response to the changing environment but also provides a fine-tuned mechanism that allows a gradual response to perceived stress. The T6SS/HmuR-mediated active zinc transport system is also involved in bacterial virulence and contact-independent bacterial competition. We describe a sophisticated bacterial zinc acquisition mechanism affording insights into the role of metal ion transport systems. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  2. Predicting the profile of nutrients available for absorption: from nutrient requirement to animal response and environmental impact.

    Science.gov (United States)

    Dijkstra, J; Kebreab, E; Mills, J A N; Pellikaan, W F; López, S; Bannink, A; France, J

    2007-02-01

    Current feed evaluation systems for dairy cattle aim to match nutrient requirements with nutrient intake at pre-defined production levels. These systems were not developed to address, and are not suitable to predict, the responses to dietary changes in terms of production level and product composition, excretion of nutrients to the environment, and nutrition related disorders. The change from a requirement to a response system to meet the needs of various stakeholders requires prediction of the profile of absorbed nutrients and its subsequent utilisation for various purposes. This contribution examines the challenges to predicting the profile of nutrients available for absorption in dairy cattle and provides guidelines for further improved prediction with regard to animal production responses and environmental pollution.The profile of nutrients available for absorption comprises volatile fatty acids, long-chain fatty acids, amino acids and glucose. Thus the importance of processes in the reticulo-rumen is obvious. Much research into rumen fermentation is aimed at determination of substrate degradation rates. Quantitative knowledge on rates of passage of nutrients out of the rumen is rather limited compared with that on degradation rates, and thus should be an important theme in future research. Current systems largely ignore microbial metabolic variation, and extant mechanistic models of rumen fermentation give only limited attention to explicit representation of microbial metabolic activity. Recent molecular techniques indicate that knowledge on the presence and activity of various microbial species is far from complete. Such techniques may give a wealth of information, but to include such findings in systems predicting the nutrient profile requires close collaboration between molecular scientists and mathematical modellers on interpreting and evaluating quantitative data. Protozoal metabolism is of particular interest here given the paucity of quantitative data

  3. Interactive natural language acquisition in a multi-modal recurrent neural architecture

    Science.gov (United States)

    Heinrich, Stefan; Wermter, Stefan

    2018-01-01

    For the complex human brain that enables us to communicate in natural language, we gathered good understandings of principles underlying language acquisition and processing, knowledge about sociocultural conditions, and insights into activity patterns in the brain. However, we were not yet able to understand the behavioural and mechanistic characteristics for natural language and how mechanisms in the brain allow to acquire and process language. In bridging the insights from behavioural psychology and neuroscience, the goal of this paper is to contribute a computational understanding of appropriate characteristics that favour language acquisition. Accordingly, we provide concepts and refinements in cognitive modelling regarding principles and mechanisms in the brain and propose a neurocognitively plausible model for embodied language acquisition from real-world interaction of a humanoid robot with its environment. In particular, the architecture consists of a continuous time recurrent neural network, where parts have different leakage characteristics and thus operate on multiple timescales for every modality and the association of the higher level nodes of all modalities into cell assemblies. The model is capable of learning language production grounded in both, temporal dynamic somatosensation and vision, and features hierarchical concept abstraction, concept decomposition, multi-modal integration, and self-organisation of latent representations.

  4. Repeat synoptic sampling reveals drivers of change in carbon and nutrient chemistry of Arctic catchments

    Science.gov (United States)

    Zarnetske, J. P.; Abbott, B. W.; Bowden, W. B.; Iannucci, F.; Griffin, N.; Parker, S.; Pinay, G.; Aanderud, Z.

    2017-12-01

    Dissolved organic carbon (DOC), nutrients, and other solute concentrations are increasing in rivers across the Arctic. Two hypotheses have been proposed to explain these trends: 1. distributed, top-down permafrost degradation, and 2. discrete, point-source delivery of DOC and nutrients from permafrost collapse features (thermokarst). While long-term monitoring at a single station cannot discriminate between these mechanisms, synoptic sampling of multiple points in the stream network could reveal the spatial structure of solute sources. In this context, we sampled carbon and nutrient chemistry three times over two years in 119 subcatchments of three distinct Arctic catchments (North Slope, Alaska). Subcatchments ranged from 0.1 to 80 km2, and included three distinct types of Arctic landscapes - mountainous, tundra, and glacial-lake catchments. We quantified the stability of spatial patterns in synoptic water chemistry and analyzed high-frequency time series from the catchment outlets across the thaw season to identify source areas for DOC, nutrients, and major ions. We found that variance in solute concentrations between subcatchments collapsed at spatial scales between 1 to 20 km2, indicating a continuum of diffuse- and point-source dynamics, depending on solute and catchment characteristics (e.g. reactivity, topography, vegetation, surficial geology). Spatially-distributed mass balance revealed conservative transport of DOC and nitrogen, and indicates there may be strong in-stream retention of phosphorus, providing a network-scale confirmation of previous reach-scale studies in these Arctic catchments. Overall, we present new approaches to analyzing synoptic data for change detection and quantification of ecohydrological mechanisms in ecosystems in the Arctic and beyond.

  5. Acquisitions Everywhere: Modeling an Acquisitions Data Standard to Connect a Distributed Environment

    OpenAIRE

    Hanson, Eric M.; Lightcap, Paul W.; Miguez, Matthew R.

    2016-01-01

    Acquisitions functions remain operationally crucial in providing access to paid information resources, but data formats and workflows utilized within library acquisitions remain primarily within the traditional integrated library system (ILS). As libraries have evolved to use distributed systems to manage information resources, so too must acquisitions functions adapt to an environment that may include the ILS, e‐resource management systems (ERMS), institutional repositories (IR), and other d...

  6. Hardware Timestamping for an Image Acquisition System Based on FlexRIO and IEEE 1588 v2 Standard

    Science.gov (United States)

    Esquembri, S.; Sanz, D.; Barrera, E.; Ruiz, M.; Bustos, A.; Vega, J.; Castro, R.

    2016-02-01

    Current fusion devices usually implement distributed acquisition systems for the multiple diagnostics of their experiments. However, each diagnostic is composed by hundreds or even thousands of signals, including images from the vessel interior. These signals and images must be correctly timestamped, because all the information will be analyzed to identify plasma behavior using temporal correlations. For acquisition devices without synchronization mechanisms the timestamp is given by another device with timing capabilities when signaled by the first device. Later, each data should be related with its timestamp, usually via software. This critical action is unfeasible for software applications when sampling rates are high. In order to solve this problem this paper presents the implementation of an image acquisition system with real-time hardware timestamping mechanism. This is synchronized with a master clock using the IEEE 1588 v2 Precision Time Protocol (PTP). Synchronization, image acquisition and processing, and timestamping mechanisms are implemented using Field Programmable Gate Array (FPGA) and a timing card -PTP v2 synchronized. The system has been validated using a camera simulator streaming videos from fusion databases. The developed architecture is fully compatible with ITER Fast Controllers and has been integrated with EPICS to control and monitor the whole system.

  7. Response of algal metrics to nutrients and physical factors and identification of nutrient thresholds in agricultural streams

    Science.gov (United States)

    Black, R.W.; Moran, P.W.; Frankforter, J.D.

    2011-01-01

    Many streams within the United States are impaired due to nutrient enrichment, particularly in agricultural settings. The present study examines the response of benthic algal communities in agricultural and minimally disturbed sites from across the western United States to a suite of environmental factors, including nutrients, collected at multiple scales. The first objective was to identify the relative importance of nutrients, habitat and watershed features, and macroinvertebrate trophic structure to explain algal metrics derived from deposition and erosion habitats. The second objective was to determine if thresholds in total nitrogen (TN) and total phosphorus (TP) related to algal metrics could be identified and how these thresholds varied across metrics and habitats. Nutrient concentrations within the agricultural areas were elevated and greater than published threshold values. All algal metrics examined responded to nutrients as hypothesized. Although nutrients typically were the most important variables in explaining the variation in each of the algal metrics, environmental factors operating at multiple scales also were important. Calculated thresholds for TN or TP based on the algal metrics generated from samples collected from erosion and deposition habitats were not significantly different. Little variability in threshold values for each metric for TN and TP was observed. The consistency of the threshold values measured across multiple metrics and habitats suggest that the thresholds identified in this study are ecologically relevant. Additional work to characterize the relationship between algal metrics, physical and chemical features, and nuisance algal growth would be of benefit to the development of nutrient thresholds and criteria. ?? 2010 The Author(s).

  8. Optimizing nutrient management for farm systems

    OpenAIRE

    Goulding, Keith; Jarvis, Steve; Whitmore, Andy

    2007-01-01

    Increasing the inputs of nutrients has played a major role in increasing the supply of food to a continually growing world population. However, focusing attention on the most important nutrients, such as nitrogen (N), has in some cases led to nutrient imbalances, some excess applications especially of N, inefficient use and large losses to the environment with impacts on air and water quality, biodiversity and human health. In contrast, food exports from the developing to the developed world ...

  9. Ecosystem responses to long-term nutrient management in an urban estuary: Tampa Bay, Florida, USA

    Science.gov (United States)

    Greening, H.; Janicki, A.; Sherwood, E. T.; Pribble, R.; Johansson, J. O. R.

    2014-12-01

    In subtropical Tampa Bay, Florida, USA, we evaluated restoration trajectories before and after nutrient management strategies were implemented using long-term trends in nutrient loading, water quality, primary production, and seagrass extent. Following citizen demands for action, reduction in wastewater nutrient loading of approximately 90% in the late 1970s lowered external total nitrogen (TN) loading by more than 50% within three years. Continuing nutrient management actions from public and private sectors were associated with a steadily declining TN load rate and with concomitant reduction in chlorophyll-a concentrations and ambient nutrient concentrations since the mid-1980s, despite an increase of more than 1 M people living within the Tampa Bay metropolitan area. Water quality (chlorophyll-a concentration, water clarity as indicated by Secchi disk depth, total nitrogen concentration and dissolved oxygen) and seagrass coverage are approaching conditions observed in the 1950s, before the large increases in human population in the watershed. Following recovery from an extreme weather event in 1997-1998, water clarity increased significantly and seagrass is expanding at a rate significantly different than before the event, suggesting a feedback mechanism as observed in other systems. Key elements supporting the nutrient management strategy and concomitant ecosystem recovery in Tampa Bay include: 1) active community involvement, including agreement about quantifiable restoration goals; 2) regulatory and voluntary reduction in nutrient loadings from point, atmospheric, and nonpoint sources; 3) long-term water quality and seagrass extent monitoring; and 4) a commitment from public and private sectors to work together to attain restoration goals. A shift from a turbid, phytoplankton-based system to a clear water, seagrass-based system that began in the 1980s following comprehensive nutrient loading reductions has resulted in a present-day Tampa Bay which looks and

  10. Recovery from disturbance requires resynchronization of ecosystem nutrient cycles.

    Science.gov (United States)

    Rastetter, E B; Yanai, R D; Thomas, R Q; Vadeboncoeur, M A; Fahey, T J; Fisk, M C; Kwiatkowski, B L; Hamburg, S P

    2013-04-01

    Nitrogen (N) and phosphorus (P) are tightly cycled in most terrestrial ecosystems, with plant uptake more than 10 times higher than the rate of supply from deposition and weathering. This near-total dependence on recycled nutrients and the stoichiometric constraints on resource use by plants and microbes mean that the two cycles have to be synchronized such that the ratio of N:P in plant uptake, litterfall, and net mineralization are nearly the same. Disturbance can disrupt this synchronization if there is a disproportionate loss of one nutrient relative to the other. We model the resynchronization of N and P cycles following harvest of a northern hardwood forest. In our simulations, nutrient loss in the harvest is small relative to postharvest losses. The low N:P ratio of harvest residue results in a preferential release of P and retention of N. The P release is in excess of plant requirements and P is lost from the active ecosystem cycle through secondary mineral formation and leaching early in succession. Because external P inputs are small, the resynchronization of the N and P cycles later in succession is achieved by a commensurate loss of N. Through succession, the ecosystem undergoes alternating periods of N limitation, then P limitation, and eventually co-limitation as the two cycles resynchronize. However, our simulations indicate that the overall rate and extent of recovery is limited by P unless a mechanism exists either to prevent the P loss early in succession (e.g., P sequestration not stoichiometrically constrained by N) or to increase the P supply to the ecosystem later in succession (e.g., biologically enhanced weathering). Our model provides a heuristic perspective from which to assess the resynchronization among tightly cycled nutrients and the effect of that resynchronization on recovery of ecosystems from disturbance.

  11. 48 CFR 434.004 - Acquisition strategy.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 4 2010-10-01 2010-10-01 false Acquisition strategy. 434.004 Section 434.004 Federal Acquisition Regulations System DEPARTMENT OF AGRICULTURE SPECIAL CATEGORIES OF CONTRACTING MAJOR SYSTEM ACQUISITION General 434.004 Acquisition strategy. (a) The program...

  12. The effect of nutrient enrichment on growth, photosynthesis and hydraulic conductance of dwarf mangroves in Panamá

    Science.gov (United States)

    Lovelock, C.E.; Feller, Ilka C.; McKee, K.L.; Engelbrecht, B.M.J.; Ball, M.C.

    2004-01-01

    1. Dwarf stands of the mangrove Rhizophora mangle L. are extensive in the Caribbean. We fertilized dwarf trees in Almirante Bay, Bocas del Toro Province, north-eastern Panama with nitrogen (N) and phosphorus (P) to determine (1) if growth limitations are due to nutrient deficiency; and (2) what morphological and/or physiological factors underlie nutrient limitations to growth. 2. Shoot growth was 10-fold when fertilized with P and twofold with N fertilization, indicating that stunted growth of these mangroves is partially due to nutrient deficiency. 3. Growth enhancements caused by N or P enrichment could not be attributed to increases in photosynthesis on a leaf area basis, although photosynthetic nutrient-use efficiency was improved. The most dramatic effect was on stem hydraulic conductance, which was increased sixfold by P and 2-5-fold with N enrichment. Fertilization with P enhanced leaf and stem P concentrations and reduced C:N ratio, but did not alter leaf damage by herbivores. 4. Our findings indicate that addition of N and P significantly alter tree growth and internal nutrient dynamics of mangroves at Bocas del Toro, but also that the magnitude, pattern and mechanisms of change will be differentially affected by each nutrient.

  13. Gr and hp-1 tomato mutants unveil unprecedented interactions between arbuscular mycorrhizal symbiosis and fruit ripening

    Science.gov (United States)

    The roots of plants interact with soil mycorrhizal fungi to facilitate soil nutrient acquisition by the plant and carbon transfer to the fungus. Here we use tomato fruit ripening mutations to demonstrate that this root interaction communicates with and supports genetic mechanisms associated with th...

  14. Leaf trait response to nutrients and herbivore exclusion across a globally replicated grassland experiment

    Science.gov (United States)

    Firn, Jennifer

    2017-04-01

    Leaf trait response to nutrients and herbivore exclusion across a globally replicated grassland experiment Jennifer Firn1, James McGree2, Eric Lind3, Elizabeth Borer3, Eric Seabloom3, Lauren Sullivan3, Kimberly Lapierre4 and the Nutrient Network 1Queensland University of Technology (QUT), School of Earth, Environmental and Biological Sciences, Science and Engineering Faculty, Brisbane, QLD, 4001 Australia 2Queensland University of Technology (QUT), School of Mathematical Sciences, Science and Engineering Faculty, Brisbane, QLD, 4001 Australia 3Universtiy of Minnesota, Department of Ecology, Evolution, and Behavior, 1479 Gortner Avenue, 140 Gortner Laboratory, St. Paul, MN 55108 USA 4Department of integrative Biology, University of California, Berkeley, CA 94720 USA Functional trait research has developed with the aim of finding general patterns in how the function of plant assemblages changes with respect to different land-uses. Most studies have compared sites within and across regions with variations in land-use history, but not necessarily with standardized treatments in an experimental framework. The trends that have emerged from this research is that characteristics of leaf traits such as specific leaf area (SLA) correlate with carbon acquisition strategies known to influence ecosystem functioning. SLA has been found to represent a plant's investment in growing light-capturing area per dry mass content. Species with a relatively high SLA tend to have a higher rate of return on the resources invested into making tissue (cheaper leaves in terms of energy and resources needed to produce them) when compared to species with a lower SLA (more expensive leaves to produce). Few studies have examined quantitatively measured traits in an experimental framework. The Nutrient Network experiment, globally distributed experiment, presents a unique opportunity to examine the response of functional traits across grassland ecosystems characterised by a diverse range of

  15. Trace element and nutrient accumulation in sunflower plants two years after the Aznalcóllar mine spill.

    Science.gov (United States)

    Madejón, P; Murillo, J M; Marañón, T; Cabrera, F; Soriano, M A

    2003-05-20

    The failure of a tailing pond dam at the Aznalcóllar pyrite mine (SW Spain) in April 1998 released a toxic spill affecting approximately 4300 ha along the Agrio and Guadiamar valleys. Two years later, we have studied yield and concentration of mineral nutrients and trace elements in sunflower plants grown in the spill-affected soil, and in an adjacent unaffected soil as comparison. The study has been carried out in plants at seedling (V4) and mature (R8) stages. Shoot and root biomass of sunflower seedlings was significantly smaller in the affected soil than in the unaffected soil, but there was no significant difference at the mature stage. Oil production was greater in the spill-affected plants. We have not detected any 'fertilising' effect caused by the acid waters of the spill on the main nutrient (N, P and Ca) acquisition, as documented in 1998 for sunflower plants flooded by the spill. Sunflower plants growing in the spill-affected soil reached adequate levels of nutrients. None of the trace elements measured-As, Cd, Cu, Pb and Tl-reached levels either phytotoxic or toxic for humans or animals in seeds and the above-ground part of the spill-affected plants. We evaluate the potential use of sunflower plants for phytoremediation. The potential for phytoextraction is very low; however, it may be used for soil conservation. The production of oil (usable for industrial purposes) may add some value to this crop.

  16. Cooperation through Competition-Dynamics and Microeconomics of a Minimal Nutrient Trade System in Arbuscular Mycorrhizal Symbiosis.

    Science.gov (United States)

    Schott, Stephan; Valdebenito, Braulio; Bustos, Daniel; Gomez-Porras, Judith L; Sharma, Tripti; Dreyer, Ingo

    2016-01-01

    In arbuscular mycorrhizal (AM) symbiosis, fungi and plants exchange nutrients (sugars and phosphate, for instance) for reciprocal benefit. Until now it is not clear how this nutrient exchange system works. Here, we used computational cell biology to simulate the dynamics of a network of proton pumps and proton-coupled transporters that are upregulated during AM formation. We show that this minimal network is sufficient to describe accurately and realistically the nutrient trade system. By applying basic principles of microeconomics, we link the biophysics of transmembrane nutrient transport with the ecology of organismic interactions and straightforwardly explain macroscopic scenarios of the relations between plant and AM fungus. This computational cell biology study allows drawing far reaching hypotheses about the mechanism and the regulation of nutrient exchange and proposes that the "cooperation" between plant and fungus can be in fact the result of a competition between both for the same resources in the tiny periarbuscular space. The minimal model presented here may serve as benchmark to evaluate in future the performance of more complex models of AM nutrient exchange. As a first step toward this goal, we included SWEET sugar transporters in the model and show that their co-occurrence with proton-coupled sugar transporters results in a futile carbon cycle at the plant plasma membrane proposing that two different pathways for the same substrate should not be active at the same time.

  17. The dynamics of mergers and acquisitions: ancestry as the seminal determinant.

    Science.gov (United States)

    Viegas, Eduardo; Cockburn, Stuart P; Jensen, Henrik J; West, Geoffrey B

    2014-11-08

    Understanding the fundamental mechanisms behind the complex landscape of corporate mergers and acquisitions is of crucial importance to economies across the world. Adapting ideas from the fields of complexity and evolutionary dynamics to analyse business ecosystems, we show here that ancestry, i.e. the cumulative sum of historical mergers across all ancestors, is the key characteristic to company mergers and acquisitions. We verify this by comparing an agent-based model to an extensive range of business data, covering the period from the 1830s to the present day and a range of industries and geographies. This seemingly universal mechanism leads to imbalanced business ecosystems, with the emergence of a few very large, but sluggish 'too big to fail' entities, and very small, niche entities, thereby creating a paradigm where a configuration akin to effective oligopoly or monopoly is a likely outcome for free market systems.

  18. 48 CFR 873.105 - Acquisition planning.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Acquisition planning. 873.105 Section 873.105 Federal Acquisition Regulations System DEPARTMENT OF VETERANS AFFAIRS DEPARTMENT... planning. (a) Acquisition planning is an indispensable component of the total acquisition process. (b) For...

  19. 48 CFR 34.004 - Acquisition strategy.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Acquisition strategy. 34... CATEGORIES OF CONTRACTING MAJOR SYSTEM ACQUISITION General 34.004 Acquisition strategy. The program manager, as specified in agency procedures, shall develop an acquisition strategy tailored to the particular...

  20. 48 CFR 3034.004 - Acquisition strategy.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 7 2010-10-01 2010-10-01 false Acquisition strategy. 3034.004 Section 3034.004 Federal Acquisition Regulations System DEPARTMENT OF HOMELAND SECURITY, HOMELAND... Acquisition strategy. See (HSAR) 48 CFR 3009.570 for policy applicable to acquisition strategies that consider...

  1. Nutrient restriction induces failure of reproductive function and molecular changes in hypothalamus-pituitary-gonadal axis in postpubertal gilts.

    Science.gov (United States)

    Zhou, Dongsheng; Zhuo, Yong; Che, Lianqiang; Lin, Yan; Fang, Zhengfeng; Wu, De

    2014-07-01

    People on a diet to lose weight may be at risk of reproductive failure. To investigate the effects of nutrient restriction on reproductive function and the underlying mechanism, changes of reproductive traits, hormone secretions and gene expressions in hypothalamus-pituitary-gonadal axis were examined in postpubertal gilts at anestrus induced by nutrient restriction. Gilts having experienced two estrus cycles were fed a normal (CON, 2.86 kg/d) or nutrient restricted (NR, 1 kg/d) food regimens to expect anestrus. NR gilts experienced another three estrus cycles, but did not express estrus symptoms at the anticipated fourth estrus. Blood samples were collected at 5 days' interval for consecutive three times for measurement of hormone concentrations at the 23th day of the fourth estrus cycle. Individual progesterone concentrations of NR gilts from three consecutive blood samples were below 1.0 ng/mL versus 2.0 ng/mL in CON gilts, which was considered anestrus. NR gilts had impaired development of reproductive tract characterized by absence of large follicles (diameter ≥ 6 mm), decreased number of corepus lutea and atrophy of uterus and ovary tissues. Circulating concentrations of IGF-I, kisspeptin, estradiol, progesterone and leptin were significantly lower in NR gilts than that in CON gilts. Nutrient restriction down-regulated gene expressions of kiss-1, G-protein coupled protein 54, gonadotropin-releasing hormone, estrogen receptor α, progesterone receptor, leptin receptor, follicle-stimulating hormone and luteinizing hormone and insulin-like growth factor I in hypothalamus-pituitary-gonadal axis of gilts. Collectively, nutrient restriction resulted in impairment of reproductive function and changes of hormone secretions and gene expressions in hypothalamus-pituitary-gonadal axis, which shed light on the underlying mechanism by which nutrient restriction influenced reproductive function.

  2. Applications of nutrient profiling: potential role in diet-related chronic disease prevention and the feasibility of a core nutrient-profiling system.

    Science.gov (United States)

    Sacks, G; Rayner, M; Stockley, L; Scarborough, P; Snowdon, W; Swinburn, B

    2011-03-01

    A number of different nutrient-profiling models have been proposed and several applications of nutrient profiling have been identified. This paper outlines the potential role of nutrient-profiling applications in the prevention of diet-related chronic disease (DRCD), and considers the feasibility of a core nutrient-profiling system, which could be modified for purpose, to underpin the multiple potential applications in a particular country. The 'Four 'P's of Marketing' (Product, Promotion, Place and Price) are used as a framework for identifying and for classifying potential applications of nutrient profiling. A logic pathway is then presented that can be used to gauge the potential impact of nutrient-profiling interventions on changes in behaviour, changes in diet and, ultimately, changes in DRCD outcomes. The feasibility of a core nutrient-profiling system is assessed by examining the implications of different model design decisions and their suitability to different purposes. There is substantial scope to use nutrient profiling as part of the policies for the prevention of DRCD. A core nutrient-profiling system underpinning the various applications is likely to reduce discrepancies and minimise the confusion for regulators, manufacturers and consumers. It seems feasible that common elements, such as a standard scoring method, a core set of nutrients and food components, and defined food categories, could be incorporated as part of a core system, with additional application-specific criteria applying. However, in developing and in implementing such a system, several country-specific contextual and technical factors would need to be balanced.

  3. Age of Acquisition Effects in Chinese EFL learners’ Delexicalized Verb and Collocation Acquisition

    Directory of Open Access Journals (Sweden)

    Miao Haiyan

    2015-05-01

    Full Text Available This paper investigates age of acquisition (AoA effects and the acquisition of delexicalized verbs and collocations in Chinese EFL learners, and explores the underlying reasons from the connectionist model for these learners’ acquisition characteristics. The data were collected through a translation test consisted of delexialized verb information section and English-Chinese and Chinese-English collocation parts, aiming to focus on Chinese EFL learners’ receptive and productive abilities respectively. As Chinese EFL is a nationally classroom-based practice beginning from early primary school, the pedagogical value and different phases of acquisition are thus taken into consideration in designing the translation test. Research results show that the effects of AoA are significant not only in the learners’ acquisition of individual delexicalized verbs but also in delexicalized collocations. Although learners have long begun to learn delexicalized verbs, their production indicates that early learning does not guarantee total acquisition, because their grasp of delexicalized verbs still stay at the senior middle school level. AoA effects significantly affect the recognition but not the production of collocations. Furthermore, a plateau effect occurs in learners’ acquisition of college-level delexicalized collocations, as their recognition and production have no processing advantages over earlier learned collocations.

  4. Sustaining an Acquisition-based Growth Strategy

    DEFF Research Database (Denmark)

    Henningsson, Stefan; Toppenberg, Gustav; Shanks, Graeme

    Value creating acquisitions are a major challenge for many firms. Our case study of Cisco Systems shows that an advanced Enterprise Architecture (EA) capability can contribute to the acquisition process through a) preparing the acquirer to become ‘acquisition ready’, b) identifying resource...... complementarity, c) directing and governing the integration process, and d) post-acquisition evaluation of the achieved integration and proposing ways forward. Using the EA capability in the acquisition process improves Cisco’s ability to rapidly capture value from its acquisitions and to sustain its acquisition...

  5. 48 CFR 234.004 - Acquisition strategy.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Acquisition strategy. 234..., DEPARTMENT OF DEFENSE SPECIAL CATEGORIES OF CONTRACTING MAJOR SYSTEM ACQUISITION 234.004 Acquisition strategy. (1) See 209.570 for policy applicable to acquisition strategies that consider the use of lead system...

  6. Nutrient budgets for large Chinese estuaries

    Directory of Open Access Journals (Sweden)

    S. M. Liu

    2009-10-01

    Full Text Available Chinese rivers deliver about 5–10% of global freshwater input and 15–20% of the global continental sediment to the world ocean. We report the riverine fluxes and concentrations of major nutrients (nitrogen, phosphorus, and silicon in the rivers of the contiguous landmass of China and Korea in the northeast Asia. The rivers are generally enriched with dissolved inorganic nitrogen (DIN and depleted in dissolved inorganic phosphate (PO43− with very high DIN: PO43− concentration ratios. DIN, phosphorus, and silicon levels and loads in rivers are mainly affected by agriculture activities and urbanization, anthropogenic activities and adsorption on particulates, and rock types, climate and physical denudation intensity, respectively. Nutrient transports by rivers in the summer are 3–4 times higher than those in the winter with the exception of NH4+. The flux of NH4+ is rather constant throughout the year due to the anthropogenic sources such as the sewer discharge. As nutrient composition has changed in the rivers, ecosystems in estuaries and coastal sea have also changed in recent decades. Among the changes, a shift of limiting nutrients from phosphorus to nitrogen for phytoplankton production with urbanization is noticeable and in some areas silicon becomes the limiting nutrient for diatom productivity. A simple steady-state mass-balance box model was employed to assess nutrient budgets in the estuaries. The major Chinese estuaries export <15% of nitrogen, <6% of phosphorus required for phytoplankton production and ~4% of silicon required for diatom growth in the Chinese Seas (Bohai, Yellow Sea, East China Sea, South China Sea. This suggests that land-derived nutrients are largely confined to the immediate estuaries, and ecosystem in the coastal sea beyond the estuaries is mainly supported by other nutrient sources such as regeneration, open ocean and

  7. Nutrient balances in the forest energy cycle

    International Nuclear Information System (INIS)

    Olsson, Bengt

    2006-02-01

    In Sweden, recycling of stabilised wood-ashes to forests is considered to compensate for nutrient removals from whole-tree harvesting (i.e. use of harvest residues - slash - for energy purposes). This study has analysed nutrient fluxes through the complete forest energy cycle and estimated mass balances of nutrients in harvested biomass with those in ashes, to investigate the realism in large-scale nutrient compensation with wood-ash. Expected nutrient fluxes from forests through energy plants were calculated based on nutrient and biomass data of forest stands in the Nordic countries, and from data on nutrient fluxes through CFB-plants. The expected stoichiometric composition of wood-ashes was compared with the composition of CFB-fly ashes from various Swedish energy plants. Nutrient contents for different tree fractions were calculated to express the average nutrient concentrations in slash and stems with bark, respectively. A nutrient budget synthesis of the effects of whole-tree harvesting on base cation turnover in the following stand was presented for two experimental sites. Major conclusions from the study are: In the CFB-scenario, where the bottom ash is deposited and only the fly ash can be applied to forests, the fly ash from the slash do not meet the demands for nutrient compensation for slash harvesting. Stem material (50% wood, 50% bark) must be added at equivalent amounts, as the slash to produce the amounts of fly ash needed for compensation of slash harvesting. In the scenario where more stem material was added (75% of total fuel load), the amounts of fly ashes produced hardly compensated for nutrient removals with both stem and slash harvesting. The level of nutrient compensation was lowest for potassium. The stoichiometric nutrient composition of CFB-fly ashes from Swedish energy plants is not similar with the nutrient composition of tree biomass. The higher Ca/P ratio in ashes is only partly explained by the mixture of fuels (e.g. increasing bark

  8. Global Expanded Nutrient Supply (GENuS Model: A New Method for Estimating the Global Dietary Supply of Nutrients.

    Directory of Open Access Journals (Sweden)

    Matthew R Smith

    Full Text Available Insufficient data exist for accurate estimation of global nutrient supplies. Commonly used global datasets contain key weaknesses: 1 data with global coverage, such as the FAO food balance sheets, lack specific information about many individual foods and no information on micronutrient supplies nor heterogeneity among subnational populations, while 2 household surveys provide a closer approximation of consumption, but are often not nationally representative, do not commonly capture many foods consumed outside of the home, and only provide adequate information for a few select populations. Here, we attempt to improve upon these datasets by constructing a new model--the Global Expanded Nutrient Supply (GENuS model--to estimate nutrient availabilities for 23 individual nutrients across 225 food categories for thirty-four age-sex groups in nearly all countries. Furthermore, the model provides historical trends in dietary nutritional supplies at the national level using data from 1961-2011. We determine supplies of edible food by expanding the food balance sheet data using FAO production and trade data to increase food supply estimates from 98 to 221 food groups, and then estimate the proportion of major cereals being processed to flours to increase to 225. Next, we estimate intake among twenty-six demographic groups (ages 20+, both sexes in each country by using data taken from the Global Dietary Database, which uses nationally representative surveys to relate national averages of food consumption to individual age and sex-groups; for children and adolescents where GDD data does not yet exist, average calorie-adjusted amounts are assumed. Finally, we match food supplies with nutrient densities from regional food composition tables to estimate nutrient supplies, running Monte Carlo simulations to find the range of potential nutrient supplies provided by the diet. To validate our new method, we compare the GENuS estimates of nutrient supplies against

  9. Nutrient losses from cattle co-digestate slurry during storage

    Directory of Open Access Journals (Sweden)

    Francesca Perazzolo

    2016-06-01

    Full Text Available Among environmental issues related to intensive livestock activity, emissions to air from manure management are of increasing concern. Thus the knowledge of the effect of treatment application on subsequent emissions from manure is required to assess the environment impact of management solutions. This work addresses the effect of anaerobic digestion and phase separation on emissions during storage by studying nitrogen losses from lab-scale stores and field pilot-scale stores of a co-digestate cattle slurry and its respective separated fractions. Lab-scale experiment was carried in temperature-controlled room where each fraction (untreated, separated liquid and separated solid was stored in duplicate for a period of 32 days in 30 L vessel. Pilot-scale experiment was carried out both during the cold season and during warm season for 90 days of storage. In both experimentations samples of the manure were analysed periodically for total Kjeldahl nitrogen (TKN, total ammonia nitrogen, dry matter and volatile solids and pH. These analyses allow estimating nitrogen losses in different storage conditions. Effects of mechanical separation and season were assessed by ANOVA (Wilcoxon test, P<0.05. In temperature controlled conditions nitrogen losses measured account for 13% and 26% of TKN for unseparated and separated slurries respectively. In field conditions during cold season nutrient losses were limited. On average unseparated and separated slurries lost respectively 6.8% and 12.6% of their initial TKN content. Much higher were the TKN losses from the slurries examined in warm season where losses raised up to 40% of the initial TKN content. Generally mechanical separation increases nutrient losses, but the differences were not significant in field conditions. The results highlighted that nutrient losses, in particular the nitrogen ones, can be considerable especially during summer storage. The latter, in case of separated slurries, are mainly related

  10. Managed nutrient reduction impacts on nutrient concentrations, water clarity, primary production, and hypoxia in a north temperate estuary

    Science.gov (United States)

    Oviatt, Candace; Smith, Leslie; Krumholz, Jason; Coupland, Catherine; Stoffel, Heather; Keller, Aimee; McManus, M. Conor; Reed, Laura

    2017-12-01

    Except for the Providence River and side embayments like Greenwich Bay, Narragansett Bay can no longer be considered eutrophic. In summer 2012 managed nitrogen treatment in Narragansett Bay achieved a goal of reducing effluent dissolved inorganic nitrogen inputs by over 50%. Narragansett Bay represents a small northeast US estuary that had been heavily loaded with sewage effluent nutrients since the late 1800s. The input reduction was reflected in standing stock nutrients resulting in a statistically significant 60% reduction in concentration. In the Providence River estuary, total nitrogen decreased from 100 μm to about 40 μm, for example. We tested four environmental changes that might be associated with the nitrogen reduction. System apparent production was significantly decreased by 31% and 45% in the upper and mid Bay. Nutrient reductions resulted in statistically improved water clarity in the mid and upper Bay and in a 34% reduction in summer hypoxia. Nitrogen reduction also reduced the winter spring diatom bloom; winter chlorophyll levels after nutrient reduction have been significantly lower than before the reduction. The impact on the Bay will continue to evolve over the next few years and be a natural experiment for other temperate estuaries that will be experiencing nitrogen reduction. To provide perspective we review factors effecting hypoxia in other estuaries with managed nutrient reduction and conclude that, as in Narragansett Bay, physical factors can be as important as nutrients. On a positive note managed nutrient reduction has mitigated further deterioration in most estuaries.

  11. Multiple Transceptors for Macro- and Micro-Nutrients Control Diverse Cellular Properties Through the PKA Pathway in Yeast: A Paradigm for the Rapidly Expanding World of Eukaryotic Nutrient Transceptors Up to Those in Human Cells.

    Science.gov (United States)

    Steyfkens, Fenella; Zhang, Zhiqiang; Van Zeebroeck, Griet; Thevelein, Johan M

    2018-01-01

    The nutrient composition of the medium has dramatic effects on many cellular properties in the yeast Saccharomyces cerevisiae . In addition to the well-known specific responses to starvation for an essential nutrient, like nitrogen or phosphate, the presence of fermentable sugar or a respirative carbon source leads to predominance of fermentation or respiration, respectively. Fermenting and respiring cells also show strong differences in other properties, like storage carbohydrate levels, general stress tolerance and cellular growth rate. However, the main glucose repression pathway, which controls the switch between respiration and fermentation, is not involved in control of these properties. They are controlled by the protein kinase A (PKA) pathway. Addition of glucose to respiring yeast cells triggers cAMP synthesis, activation of PKA and rapid modification of its targets, like storage carbohydrate levels, general stress tolerance and growth rate. However, starvation of fermenting cells in a glucose medium for any essential macro- or micro-nutrient counteracts this effect, leading to downregulation of PKA and its targets concomitant with growth arrest and entrance into G0. Re-addition of the lacking nutrient triggers rapid activation of the PKA pathway, without involvement of cAMP as second messenger. Investigation of the sensing mechanism has revealed that the specific high-affinity nutrient transporter(s) induced during starvation function as transporter-receptors or transceptors for rapid activation of PKA upon re-addition of the missing substrate. In this way, transceptors have been identified for amino acids, ammonium, phosphate, sulfate, iron, and zinc. We propose a hypothesis for regulation of PKA activity by nutrient transceptors to serve as a conceptual framework for future experimentation. Many properties of transceptors appear to be similar to those of classical receptors and nutrient transceptors may constitute intermediate forms in the development

  12. Multiple Transceptors for Macro- and Micro-Nutrients Control Diverse Cellular Properties Through the PKA Pathway in Yeast: A Paradigm for the Rapidly Expanding World of Eukaryotic Nutrient Transceptors Up to Those in Human Cells

    Directory of Open Access Journals (Sweden)

    Fenella Steyfkens

    2018-03-01

    Full Text Available The nutrient composition of the medium has dramatic effects on many cellular properties in the yeast Saccharomyces cerevisiae. In addition to the well-known specific responses to starvation for an essential nutrient, like nitrogen or phosphate, the presence of fermentable sugar or a respirative carbon source leads to predominance of fermentation or respiration, respectively. Fermenting and respiring cells also show strong differences in other properties, like storage carbohydrate levels, general stress tolerance and cellular growth rate. However, the main glucose repression pathway, which controls the switch between respiration and fermentation, is not involved in control of these properties. They are controlled by the protein kinase A (PKA pathway. Addition of glucose to respiring yeast cells triggers cAMP synthesis, activation of PKA and rapid modification of its targets, like storage carbohydrate levels, general stress tolerance and growth rate. However, starvation of fermenting cells in a glucose medium for any essential macro- or micro-nutrient counteracts this effect, leading to downregulation of PKA and its targets concomitant with growth arrest and entrance into G0. Re-addition of the lacking nutrient triggers rapid activation of the PKA pathway, without involvement of cAMP as second messenger. Investigation of the sensing mechanism has revealed that the specific high-affinity nutrient transporter(s induced during starvation function as transporter-receptors or transceptors for rapid activation of PKA upon re-addition of the missing substrate. In this way, transceptors have been identified for amino acids, ammonium, phosphate, sulfate, iron, and zinc. We propose a hypothesis for regulation of PKA activity by nutrient transceptors to serve as a conceptual framework for future experimentation. Many properties of transceptors appear to be similar to those of classical receptors and nutrient transceptors may constitute intermediate forms in

  13. 48 CFR 307.104-70 - Acquisition strategy.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 4 2010-10-01 2010-10-01 false Acquisition strategy. 307... AND ACQUISITION PLANNING ACQUISITION PLANNING Acquisition Planning 307.104-70 Acquisition strategy... designated by the HHS CIO, DASFMP, the CAO, or the cognizant HCA) shall prepare an acquisition strategy using...

  14. Proximate and Ultimate Limiting Nutrients in the Mississippi River Plume: Implications for Hypoxia Reduction Through Nutrient Management

    Science.gov (United States)

    Fennel, K.; Laurent, A.

    2016-02-01

    A large hypoxic area (15,000 km2 on average) forms every summer over the Texas-Louisiana shelf in the northern Gulf of Mexico due to decay of organic matter that is primarily derived from nutrient inputs from the Mississippi/Atchafalaya River System. Efforts are underway to reduce the extent of hypoxic conditions through nutrient management in the watershed; for example, an interagency Hypoxia Task Force is developing Action Plans with input from various stakeholders that set out targets for hypoxia reduction. An open question is by how much nutrient loads would have to be decreased in order to produce the desired reductions in hypoxia and when these would be measurable over natural variability. We have performed a large number of multi-year nutrient load reduction scenarios with a regional biogeochemical model for the region. The model is based on the Regional Ocean Modeling System (ROMS), explicitly includes nitrogen (N) and phosphorus (P) species as inorganic nutrients, and has been shown to realistically reproduce the key processes responsible for hypoxia generation. We have quantified the effects of differential reductions in river N and P loads on hypoxic extent. An assessment of the effects of N versus P reductions is important because, thus far, nutrient management efforts have focused on N, yet P is known to limit primary production in spring and early summer. A debate is ongoing as to whether targets for P reductions should be set and whether nutrient reduction efforts should focus solely on P, which results primarily from urban and industrial point sources and is uncoupled from agricultural fertilizer application. Our results strongly indicate that N is the `ultimate' limiting nutrient to primary production determining the areal extent and duration of hypoxic conditions in a cumulative sense, while P is temporarily limiting in spring. Although reductions in river P load would decrease hypoxic extent in early summer, they would have a much smaller effect

  15. Alocação de nutrientes em plantios de eucalipto no Brasil Nutrient allocation in eucalypt plantations in Brazil

    Directory of Open Access Journals (Sweden)

    Reynaldo Campos Santana

    2008-12-01

    Full Text Available Práticas de manejo florestal podem alterar a exportação de nutrientes do sítio. Este trabalho teve por objetivo estimar o conteúdo de nutrientes em árvores de eucalipto, em diferentes regiões do Brasil. Avaliou-se a influência de algumas características climáticas na produção e no conteúdo de nutrientes na biomassa, utilizando-se o banco de dados do Programa de Pesquisa em Solos e Nutrição de Eucalipto do Departamento de Solos - UFV. As características climáticas foram um importante componente dos modelos. A produção de biomassa e o conteúdo de nutrientes foram positivamente relacionados entre si e ambos foram menores nas regiões com menor disponibilidade de água. As estimativas apontaram que até à idade de 4,5 anos pós-plantio acumulam-se as maiores proporções de nutrientes (68 % do N, 69 % do P, 67 % do K, 63 % do Ca e 68 % do Mg para a idade de corte de 6,5 anos. Isto indica que, após 4,5 anos, o potencial de resposta à aplicação de fertilizantes é menor. O conteúdo estimado de nutrientes acumulados na copa e na casca representou 65, 70, 64, 79 e 79 %, de N, P, K, Ca e Mg, respectivamente, até 6,5 anos de idade. Assim, a colheita apenas do lenho representa expressiva redução na exportação desses nutrientes proporcionando maior sustentabilidade da produção nas plantações de eucalipto.Forest management practices can alter nutrient exportation from the site. The purpose of this study was to estimate nutrient contents in the aboveground biomass of eucalyptus plantations in Brazil. The influence of key climatic variables on eucalypt productivity and nutrient content was evaluated, using the database from the Reserch Programa on Soil and Eucalyptus Nutrition of the Soil Science, Departament - Federal University of Viçosa, Minas Gerais State, Brazil. Climatic characteristics were an important component of the models. In regions with low water availability the nutrient accumulation in aboveground biomass as

  16. Plant response to nutrient availability across variable bedrock geologies

    Science.gov (United States)

    Castle, S.C.; Neff, J.C.

    2009-01-01

    We investigated the role of rock-derived mineral nutrient availability on the nutrient dynamics of overlying forest communities (Populus tremuloides and Picea engelmanni-Abies lasiocarpa v. arizonica) across three parent materials (andesite, limestone, and sandstone) in the southern Rocky Mountains of Colorado. Broad geochemical differences were observed between bedrock materials; however, bulk soil chemistries were remarkably similar between the three different sites. In contrast, soil nutrient pools were considerably different, particularly for P, Ca, and Mg concentrations. Despite variations in nutrient stocks and nutrient availability in soils, we observed relatively inflexible foliar concentrations and foliar stoichiometries for both deciduous and coniferous species. Foliar nutrient resorption (P and K) in the deciduous species followed patterns of nutrient content across substrate types, with higher resorption corresponding to lower bedrock concentrations. Work presented here indicates a complex plant response to available soil nutrients, wherein plant nutrient use compensates for variations in supply gradients and results in the maintenance of a narrow range in foliar stoichiometry. ?? 2008 Springer Science+Business Media, LLC.

  17. A comparison of nutrient density scores for 100% fruit juices.

    Science.gov (United States)

    Rampersaud, G C

    2007-05-01

    The 2005 Dietary Guidelines for Americans recommend that consumers choose a variety of nutrient-dense foods. Nutrient density is usually defined as the quantity of nutrients per calorie. Food and nutrition professionals should be aware of the concept of nutrient density, how it might be quantified, and its potential application in food labeling and dietary guidance. This article presents the concept of a nutrient density score and compares nutrient density scores for various 100% fruit juices. One hundred percent fruit juices are popular beverages in the United States, and although they can provide concentrated sources of a variety of nutrients, they can differ considerably in their nutrient profiles. Six methodologies were used to quantify nutrient density and 7 100% fruit juices were included in the analysis: apple, grape, pink grapefruit, white grapefruit, orange, pineapple, and prune. Food composition data were obtained from the USDA National Nutrient Database for Standard Reference, Release 18. Application of the methods resulted in nutrient density scores with a range of values and magnitudes. The relative scores indicated that citrus juices, particularly pink grapefruit and orange juice, were more nutrient dense compared to the other nonfortified 100% juices included in the analysis. Although the methods differed, the relative ranking of the juices based on nutrient density score was similar for each method. Issues to be addressed regarding the development and application of a nutrient density score include those related to food fortification, nutrient bioavailability, and consumer education and behavior.

  18. Tree root systems and nutrient mobilization

    DEFF Research Database (Denmark)

    Boyle, Jim; Rob, Harrison; Raulund-Rasmussen, Karsten

    sometimes stored at depth. Other recent studies on potential release of nutrients due to chemical weathering indicate the importance of root access to deep soil layers. Release profi les clearly indicate depletion in the top layers and a much higher potential in B and C horizons. Review of evaluations......Roots mobilize nutrients via deep penetration and rhizosphere processes inducing weathering of primary minerals. These contribute to C transfer to soils and to tree nutrition. Assessments of these characteristics and processes of root systems are important for understanding long-term supplies...... of nutrient elements essential for forest growth and resilience. Research and techniques have signifi cantly advanced since Olof Tamm’s 1934 base mineral index for Swedish forest soils, and basic nutrient budget estimates for whole-tree harvesting systems of the 1970s. Recent research in areas that include...

  19. Hal Is a Bacillus anthracis Heme Acquisition Protein

    Science.gov (United States)

    Balderas, Miriam A.; Nobles, Christopher L.; Honsa, Erin S.; Alicki, Embriette R.

    2012-01-01

    The metal iron is a limiting nutrient for bacteria during infection. Bacillus anthracis, the causative agent of anthrax and a potential weapon of bioterrorism, grows rapidly in mammalian hosts, which suggests that it efficiently attains iron during infection. Recent studies have uncovered both heme (isd) and siderophore-mediated (asb) iron transport pathways in this pathogen. Whereas deletion of the asb genes results in reduced virulence, the loss of three surface components from isd had no effect, thereby leaving open the question of what additional factors in B. anthracis are responsible for iron uptake from the most abundant iron source for mammals, heme. Here, we describe the first functional characterization of bas0520, a gene recently implicated in anthrax disease progression. bas0520 encodes a single near-iron transporter (NEAT) domain and several leucine-rich repeats. The NEAT domain binds heme, despite lacking a stabilizing tyrosine common to the NEAT superfamily of hemoproteins. The NEAT domain also binds hemoglobin and can acquire heme from hemoglobin in solution. Finally, deletion of bas0520 resulted in bacilli unable to grow efficiently on heme or hemoglobin as an iron source and yielded the most significant phenotype relative to that for other putative heme uptake systems, a result that suggests that this protein plays a prominent role in the replication of B. anthracis in hematogenous environments. Thus, we have assigned the name of Hal (heme-acquisition leucine-rich repeat protein) to BAS0520. These studies advance our understanding of heme acquisition by this dangerous pathogen and justify efforts to determine the mechanistic function of this novel protein for vaccine or inhibitor development. PMID:22865843

  20. [First language acquisition research and theories of language acquisition].

    Science.gov (United States)

    Miller, S; Jungheim, M; Ptok, M

    2014-04-01

    In principle, a child can seemingly easily acquire any given language. First language acquisition follows a certain pattern which to some extent is found to be language independent. Since time immemorial, it has been of interest why children are able to acquire language so easily. Different disciplinary and methodological orientations addressing this question can be identified. A selective literature search in PubMed and Scopus was carried out and relevant monographies were considered. Different, partially overlapping phases can be distinguished in language acquisition research: whereas in ancient times, deprivation experiments were carried out to discover the "original human language", the era of diary studies began in the mid-19th century. From the mid-1920s onwards, behaviouristic paradigms dominated this field of research; interests were focussed on the determination of normal, average language acquisition. The subsequent linguistic period was strongly influenced by the nativist view of Chomsky and the constructivist concepts of Piaget. Speech comprehension, the role of speech input and the relevance of genetic disposition became the centre of attention. The interactionist concept led to a revival of the convergence theory according to Stern. Each of these four major theories--behaviourism, cognitivism, interactionism and nativism--have given valuable and unique impulses, but no single theory is universally accepted to provide an explanation of all aspects of language acquisition. Moreover, it can be critically questioned whether clinicians consciously refer to one of these theories in daily routine work and whether therapies are then based on this concept. It remains to be seen whether or not new theories of grammar, such as the so-called construction grammar (CxG), will eventually change the general concept of language acquisition.

  1. Marine-derived nutrients, bioturbation, and ecosystem metabolism: reconsidering the role of salmon in streams.

    Science.gov (United States)

    Holtgrieve, Gordon W; Schindler, Daniel E

    2011-02-01

    In coastal areas of the North Pacific Ocean, annual returns of spawning salmon provide a substantial influx of nutrients and organic matter to streams and are generally believed to enhance the productivity of recipient ecosystems. Loss of this subsidy from areas with diminished salmon runs has been hypothesized to limit ecosystem productivity in juvenile salmon rearing habitats (lakes and streams), thereby reinforcing population declines. Using five to seven years of data from an Alaskan stream supporting moderate salmon densities, we show that salmon predictably increased stream water nutrient concentrations, which were on average 190% (nitrogen) and 390% (phosphorus) pre-salmon values, and that primary producers incorporated some of these nutrients into tissues. However, benthic algal biomass declined by an order of magnitude despite increased nutrients. We also measured changes in stream ecosystem metabolic properties, including gross primary productivity (GPP) and ecosystem respiration (ER), from three salmon streams by analyzing diel measurements of oxygen concentrations and stable isotopic ratios (delta O-O2) within a Bayesian statistical model of oxygen dynamics. Our results do not support a shift toward higher primary productivity with the return of salmon, as is expected from a nutrient fertilization mechanism. Rather, net ecosystem metabolism switched from approximately net autotrophic (GPP > or = ER) to a strongly net heterotrophic state (GPP disturbance enhanced in situ heterotrophic respiration. Salmon also changed the physical properties of the stream, increasing air-water gas exchange by nearly 10-fold during peak spawning. We suggest that management efforts to restore salmon ecosystems should consider effects on ecosystem metabolic properties and how salmon disturbance affects the incorporation of marine-derived nutrients into food webs.

  2. Effects of nutrients on interaction between the invasive bidens pilosa the parasitic cusuta australis

    International Nuclear Information System (INIS)

    Yang, B.; Li, J.; Yan, M.

    2015-01-01

    Parasitic plants have been identified as potential biological agents to control invasive plants. Understanding the interaction between invasive plants and their novel natural enemies is important for understanding mechanisms underlying plant invasion success and thus taking measures to control invasion. We conducted a factorial experiment to test the interactive effects of nutrient addition (low vs. high) and parasitism (with vs. without Cuscuta australis) on the growth of the invasive Bidens pilosa. Parasitism significantly decreased leaf, stem and root biomass of the host invasive plant, and nutrient addition increased leaf and stem biomass of the host. A synergistic effect of parasitism and nutrient addition was found on stem and leaf biomass of the hosts. Nutrient addition significantly increased vegetative biomass of the parasitic plant and caused a more deleterious effect on the invasive host. Reproductive biomass of the parasitic plant was significantly positively related with net photosynthetic rate, light-utilisation efficiency and apparent carboxylation efficiency. Vegetative biomass and total biomass of the parasitic plants were significantly positively related with specific leaf area and the relative chlorophyll content of the host plant. The deleterious effect of the parasite on the growth of the host plant was significantly positively correlated with vegetative biomass of the parasitic plant. Nutrient addition increased the negative effect of the parasitic plant on the invasive host, indicating that the parasitic plant is potentially a biological control agent for the invasive plant even in the context of changing global resources. (author)

  3. A Relational Approach to the Acquisition Decision-Making Process in the Military Organization

    Directory of Open Access Journals (Sweden)

    Gheorghe Minculete

    2016-06-01

    Full Text Available The market relations of military organizations focus on the acquisition of material goods and/or services. Nonetheless, the importance of the decisions related to the supply process is sometimes minimized. This attitude is so harmful for the effi cacy and effi ciency of the activities conducted by the military structure that at times it can have a negative impact on the management staff too. Problems may occur because the acquisition process must unfold performance-oriented; its main objective is the purchasing of material goods and/or services meant to ensure the smooth operation of the activities of the military organization. In case this cannot be achieved, it is highly probable that the mission of the organization itself is compromised. The present article explores the constitutive elements of the acquisition decision-making situation, certainty, uncertainty and risk connected to the purchasing mechanism, as well as the stages of the acquisition decision-making process

  4. Trends in nutrients

    Science.gov (United States)

    Heathwaite, A.L.; Johnes, P.J.; Peters, N.E.

    1996-01-01

    The roles of nitrogen (N) and phosphorus (P) as key nutrients determining the trophic status of water bodies are examined, and evidence reviewed for trends in concentrations of N and P species which occur in freshwaters, primarily in northern temperate environments. Data are reported for water bodies undergoing eutrophication and acidification, especially water bodies receiving increased nitrogen inputs through the atmospheric deposition of nitrogen oxides (NOx). Nutrient loading on groundwaters and surface freshwaters is assessed with respect to causes and rates of (change, relative rates of change for N and P, and implications of change for the future management of lakes, rivers and groundwaters. In particular, the nature and emphasis of studies for N species and P fractions in lakes versus rivers and groundwaters are contrasted. This review paper primarily focuses on results from North America and Europe, particularly for the UK where a wide range of data sets exists. Few nutrient loading data have been published on water bodies in less developed countries; however, some of the available data are presented to provide a global perspective. In general, N and P concentrations have increased dramatically (>20 times background concentrations) in many areas and causes vary considerably, ranging from urbanization to changes in agricultural practices.

  5. Frequent Canned Food Use is Positively Associated with Nutrient-Dense Food Group Consumption and Higher Nutrient Intakes in US Children and Adults.

    Science.gov (United States)

    Comerford, Kevin B

    2015-07-09

    In addition to fresh foods, many canned foods also provide nutrient-dense dietary options, often at a lower price, with longer storage potential. The aim of this study was to compare nutrient-dense food group intake and nutrient intake between different levels of canned food consumption in the US. Consumption data were collected for this cross-sectional study from 9761 American canned food consumers (aged two years and older) from The NPD Group's National Eating Trends® (NET®) database during 2011-2013; and the data were assessed using The NPD Group's Nutrient Intake Database. Canned food consumers were placed into three groups: Frequent Can Users (≥6 canned items/week); n = 2584, Average Can Users (3-5 canned items/week); n = 4445, and Infrequent Can Users (≤2 canned items/week); n = 2732. The results provide evidence that Frequent Can Users consume more nutrient-dense food groups such as fruits, vegetables, dairy products, and protein-rich foods, and also have higher intakes of 17 essential nutrients including the shortfall nutrients-potassium, calcium and fiber-when compared to Infrequent Can Users. Therefore, in addition to fresh foods, diets higher in nutrient-dense canned food consumption can also offer dietary options which improve nutrient intakes and the overall diet quality of Americans.

  6. Nutrient and energy recovery from urine

    NARCIS (Netherlands)

    Kuntke, P.

    2013-01-01

    Keywords: urine, urine treatment, nutrient recovery, microbial fuel cells, energy production from urine, membrane capacitive deionization.

    In conventional wastewater treatment plants large amounts of energy are required for the removal and recovery of nutrients (i.e. nitrogen and

  7. Design of the M&S acquisition support effort of the SANDF GBADS acquisition programme

    CSIR Research Space (South Africa)

    Nel, JJ

    2007-06-01

    Full Text Available (AmADS) GBADS Phase 2 (MobADS) GBADS Phase 3 (LmADS) GBADS Phase 4 (C2 Optimisation) GBADS Phase 5 (MecADS) Figure 1: GBADS Phased Acquisition. The acquisition programme comprises five phases each addressing the acquisition of a specific... element of the GBADS. Phase 1 addresses an Air-mobile Air Defence System (AmADS) utilising man-portable missiles that can also be employed as a component of a Mobile Air Defence System (MobADS). Phase 2 involves the acquisition of the remainder...

  8. Improving Lowland Rice (O. sativa L. cv. MR219 Plant Growth Variables, Nutrients Uptake, and Nutrients Recovery Using Crude Humic Substances

    Directory of Open Access Journals (Sweden)

    Perumal Palanivell

    2015-01-01

    Full Text Available High cation exchange capacity and organic matter content of crude humic substances from compost could be exploited to reduce ammonia loss from urea and to as well improve rice growth and soil chemical properties for efficient nutrients utilization in lowland rice cultivation. Close-dynamic air flow system was used to determine the effects of crude humic substances on ammonia volatilization. A pot experiment was conducted to determine the effects of crude humic substances on rice plant growth, nutrients uptake, nutrients recovery, and soil chemical properties using an acid soil mixed with three rates of crude humic substances (20, 40, and 60 g pot−1. Standard procedures were used to evaluate rice plant dry matter production, nutrients uptake, nutrients recovery, and soil chemical properties. Application of crude humic substances increased ammonia volatilization. However, the lowest rate of crude humic substances (20 g pot−1 significantly improved total dry matter, nutrients uptake, nutrients recovery, and soil nutrients availability compared with crude humic substances (40 and 60 g pot−1 and the normal fertilization. Apart from improving growth of rice plants, crude humic substances can be used to ameliorate acid soils in rice cultivation. The findings of this study are being validated in our ongoing field trials.

  9. Improving Lowland Rice (O. sativa L. cv. MR219) Plant Growth Variables, Nutrients Uptake, and Nutrients Recovery Using Crude Humic Substances.

    Science.gov (United States)

    Palanivell, Perumal; Ahmed, Osumanu Haruna; Ab Majid, Nik Muhamad; Jalloh, Mohamadu Boyie; Susilawati, Kasim

    2015-01-01

    High cation exchange capacity and organic matter content of crude humic substances from compost could be exploited to reduce ammonia loss from urea and to as well improve rice growth and soil chemical properties for efficient nutrients utilization in lowland rice cultivation. Close-dynamic air flow system was used to determine the effects of crude humic substances on ammonia volatilization. A pot experiment was conducted to determine the effects of crude humic substances on rice plant growth, nutrients uptake, nutrients recovery, and soil chemical properties using an acid soil mixed with three rates of crude humic substances (20, 40, and 60 g pot(-1)). Standard procedures were used to evaluate rice plant dry matter production, nutrients uptake, nutrients recovery, and soil chemical properties. Application of crude humic substances increased ammonia volatilization. However, the lowest rate of crude humic substances (20 g pot(-1)) significantly improved total dry matter, nutrients uptake, nutrients recovery, and soil nutrients availability compared with crude humic substances (40 and 60 g pot(-1)) and the normal fertilization. Apart from improving growth of rice plants, crude humic substances can be used to ameliorate acid soils in rice cultivation. The findings of this study are being validated in our ongoing field trials.

  10. Effects of pasture renovation on hydrology, nutrient runoff, and forage yield.

    Science.gov (United States)

    de Koff, J P; Moore, P A; Formica, J; Van Eps, M; DeLaune, P B

    2011-01-01

    Proper pasture management is important in promoting optimal forage growth and reducing runoff and nutrient loss. Pasture renovation is a management tool that improves aeration by mechanically creating holes or pockets within the soil. Pasture renovation was performed before manure application (poultry litter or swine slurry) on different pasture soils and rainfall simulations were conducted to identify the effects of pasture renovation on nutrient runoff and forage growth. Renovation of small plots resulted in significant and beneficial hydrological changes. During the first rainfall simulation, runoff volumes were 45 to 74% lower for seven out of eight renovated treatments, and infiltration rates increased by 3 to 87% for all renovated treatments as compared with nonrenovated treatments. Renovation of pasture soils fertilized with poultry litter led to significant reductions in dissolved reactive P (DRP) (74-87%), total P (TP) (76-85%), and total nitrogen (TN) (72-80%) loads in two of the three soils studied during the first rainfall simulation. Renovation did not result in any significant differences in forage yields. Overall, beneficial impacts of renovation lasted up to 3 mo, the most critical period for nutrient runoff following manure application. Therefore, renovation could be an important best management practice in these areas.

  11. Treatment of Source-Separated Blackwater: A Decentralized Strategy for Nutrient Recovery towards a Circular Economy

    Directory of Open Access Journals (Sweden)

    Melesse Eshetu Moges

    2018-04-01

    Full Text Available Using a filter medium for organic matter removal and nutrient recovery from blackwater treatment is a novel concept and has not been investigated sufficiently to date. This paper demonstrates a combined blackwater treatment and nutrient-recovery strategy and establishes mechanisms for a more dependable source of plant nutrients aiming at a circular economy. Source-separated blackwater from a student dormitory was used as feedstock for a sludge blanket anaerobic-baffled reactor. The effluent from the reactor, with 710 mg L−1 NH4–N and 63 mg L−1 PO4–P, was treated in a sequence of upflow and downflow filtration columns using granular activated carbon, Cocos char and polonite as filter media at a flow rate of 600 L m−2 day−1 and organic loading rate of 430 g chemical oxygen demand (COD m−2 day−1. Filtration treatment of the anaerobic effluent with carbon adsorbents removed 80% of the residual organic matter, more than 90% of suspended solids, and turbidity while releasing more than 76% NH4–N and 85% of PO4–P in the liquid phase. The treatment train also removed total coliform bacteria and E. coli in the effluent, achieving concentrations below detection limit after the integration of ultraviolet (UV light. These integrated technological pathways ensure simultaneous nutrient recovery as a nutrient solution, pathogen inactivation, and reduction of active organic substances. The treated nutrient-rich water can be applied as a source of value creation for various end-use options.

  12. Detecting terrestrial nutrient limitation: a global meta-analysis of foliar nutrient concentrations after fertilization

    Directory of Open Access Journals (Sweden)

    Rebecca eOstertag

    2016-03-01

    Full Text Available Examining foliar nutrient concentrations after fertilization provides an alternative method for detecting nutrient limitation of ecosystems, which is logistically simpler to measure than biomass change. We present a meta-analysis of response ratios of foliar nitrogen and phosphorus (RRN, RRP after addition of fertilizer of nitrogen (N, phosphorus (P, or the two elements in combination, in relation to climate, ecosystem type, life form, family, and methodological factors. Results support other meta-analyses using biomass, and demonstrate there is strong evidence for nutrient limitation in natural communities. However, because N fertilization experiments greatly outnumber P fertilization trials, it is difficult to discern the absolute importance of N vs. P vs. co-limitation across ecosystems. Despite these caveats, it is striking that results did not follow conventional wisdom that temperate ecosystems are N-limited and tropical ones are P-limited. In addition, the use of ratios of N-to-P rather than response ratios also are a useful index of nutrient limitation, but due to large overlap in values, there are unlikely to be universal cutoff values for delimiting N vs. P limitation. Differences in RRN and RRP were most significant across ecosystem types, plant families, life forms, and between competitive environments, but not across climatic variables.

  13. How do persistent organic pollutants be coupled with biogeochemical cycles of carbon and nutrients in terrestrial ecosystems under global climate change?

    Energy Technology Data Exchange (ETDEWEB)

    Teng, Ying [Chinese Academy of Sciences, Nanjing (China). Key Lab. of Soil Environment and Pollution Remediation; Griffith Univ., Nathan, QLD (Australia). Environmetnal Futures Centre and School of Biomolecular and Physical Sciences; Xu, Zhihong; Reverchon, Frederique [Griffith Univ., Nathan, QLD (Australia). Environmetnal Futures Centre and School of Biomolecular and Physical Sciences; Luo, Yongming [Chinese Academy of Sciences, Nanjing (China). Key Lab. of Soil Environment and Pollution Remediation

    2012-03-15

    Global climate change (GCC), especially global warming, has affected the material cycling (e.g., carbon, nutrients, and organic chemicals) and the energy flows of terrestrial ecosystems. Persistent organic pollutants (POPs) were regarded as anthropogenic organic carbon (OC) source, and be coupled with the natural carbon (C) and nutrient biogeochemical cycling in ecosystems. The objective of this work was to review the current literature and explore potential coupling processes and mechanisms between POPs and biogeochemical cycles of C and nutrients in terrestrial ecosystems induced by global warming. Global warming has caused many physical, chemical, and biological changes in terrestrial ecosystems. POPs environmental fate in these ecosystems is controlled mainly by temperature and biogeochemical processes. Global warming may accelerate the re-emissions and redistribution of POPs among environmental compartments via soil-air exchange. Soil-air exchange is a key process controlling the fate and transportation of POPs and terrestrial ecosystem C at regional and global scales. Soil respiration is one of the largest terrestrial C flux induced by microbe and plant metabolism, which can affect POPs biotransformation in terrestrial ecosystems. Carbon flow through food web structure also may have important consequences for the biomagnification of POPs in the ecosystems and further lead to biodiversity loss induced by climate change and POPs pollution stress. Moreover, the integrated techniques and biological adaptation strategy help to fully explore the coupling mechanisms, functioning and trends of POPs and C and nutrient biogeochemical cycling processes in terrestrial ecosystems. There is increasing evidence that the environmental fate of POPs has been linked with biogeochemical cycles of C and nutrients in terrestrial ecosystems under GCC. However, the relationships between POPs and the biogeochemical cycles of C and nutrients are still not well understood. Further

  14. Methods of preparing and using intravenous nutrient compositions

    International Nuclear Information System (INIS)

    Beigler, M.A.; Koury, A.J.

    1983-01-01

    A method for preparing a stable, dry-packaged, sterile, nutrient composition which upon addition of sterile, pyrogen-free water is suitable for intravenous administration to a mammal, including a human, is described. The method comprises providing the nutrients in a specific dry form and state of physical purity acceptable for intravenous administration, sealing the nutrients in a particular type of container adapted to receive and dispense sterile fluids and subjecting the container and its sealed contents to a sterilizing, nondestructive dose of ionizing radiation. The method results in a packaged, sterile nutrient composition which may be dissolved by the addition of sterile pyrogen-free water. The resulting aqueous intravenous solution may be safely administered to a mammal in need of nutrient therapy. The packaged nutrient compositions of the invention exhibit greatly extended storage life and provide an economical method of providing intravenous solutions which are safe and efficacious for use. (author)

  15. Spatial and temporal variation of nutrients in groundwater and associated processes in the coastal zone of the Pearl River Delta, China

    Science.gov (United States)

    Chen, J.

    2017-12-01

    Rapid urbanization has occurred in the Pearl River Delta since 1980s, resulting in tremendous accumulation of population and material in an area of around 1.1x104 km2. Massive nutrients were released to the coastal zone either via the Pearl River or the aquifer, and effects of these nutrients on ecosystem and drinking water supply are a big public concern. Field campaigns to collect groundwater samples were implemented in rainy (April- September) and dry seasons (October - March) during the period of 2005-2016, and samples were analyzed for major ions, nutrients, multiple isotopes, N2O and microbiological DNA. Seasonal and spatial pattern of nutrients from the recharge to the discharge zone in two case study areas were identified and compared regarding relevant N transformation processes. Main sources of nutrients in groundwater and major mechanisms, e.g. denitrification, nitrification and etc., involved in these processes were raised by integrating microbiological, isotopic and geochemical evidences. Driven forces of the change in nutrients in the past 10 years were investigated based on statistical data, and total nutrient load in groundwater in the delta was estimated.

  16. Cooperation through Competition—Dynamics and Microeconomics of a Minimal Nutrient Trade System in Arbuscular Mycorrhizal Symbiosis

    Science.gov (United States)

    Schott, Stephan; Valdebenito, Braulio; Bustos, Daniel; Gomez-Porras, Judith L.; Sharma, Tripti; Dreyer, Ingo

    2016-01-01

    In arbuscular mycorrhizal (AM) symbiosis, fungi and plants exchange nutrients (sugars and phosphate, for instance) for reciprocal benefit. Until now it is not clear how this nutrient exchange system works. Here, we used computational cell biology to simulate the dynamics of a network of proton pumps and proton-coupled transporters that are upregulated during AM formation. We show that this minimal network is sufficient to describe accurately and realistically the nutrient trade system. By applying basic principles of microeconomics, we link the biophysics of transmembrane nutrient transport with the ecology of organismic interactions and straightforwardly explain macroscopic scenarios of the relations between plant and AM fungus. This computational cell biology study allows drawing far reaching hypotheses about the mechanism and the regulation of nutrient exchange and proposes that the “cooperation” between plant and fungus can be in fact the result of a competition between both for the same resources in the tiny periarbuscular space. The minimal model presented here may serve as benchmark to evaluate in future the performance of more complex models of AM nutrient exchange. As a first step toward this goal, we included SWEET sugar transporters in the model and show that their co-occurrence with proton-coupled sugar transporters results in a futile carbon cycle at the plant plasma membrane proposing that two different pathways for the same substrate should not be active at the same time. PMID:27446142

  17. The biogeochemical role of baleen whales and krill in Southern Ocean nutrient cycling.

    Directory of Open Access Journals (Sweden)

    Lavenia Ratnarajah

    Full Text Available The availability of micronutrients is a key factor that affects primary productivity in High Nutrient Low Chlorophyll (HNLC regions of the Southern Ocean. Nutrient supply is governed by a range of physical, chemical and biological processes, and there are significant feedbacks within the ecosystem. It has been suggested that baleen whales form a crucial part of biogeochemical cycling processes through the consumption of nutrient-rich krill and subsequent defecation, but data on their contribution are scarce. We analysed the concentration of iron, cadmium, manganese, cobalt, copper, zinc, phosphorus and carbon in baleen whale faeces and muscle, and krill tissue using inductively coupled plasma mass spectrometry. Metal concentrations in krill tissue were between 20 thousand and 4.8 million times higher than typical Southern Ocean HNLC seawater concentrations, while whale faecal matter was between 276 thousand and 10 million times higher. These findings suggest that krill act as a mechanism for concentrating and retaining elements in the surface layer, which are subsequently released back into the ocean, once eaten by whales, through defecation. Trace metal to carbon ratios were also higher in whale faeces compared to whale muscle indicating that whales are concentrating carbon and actively defecating trace elements. Consequently, recovery of the great whales may facilitate the recycling of nutrients via defecation, which may affect productivity in HNLC areas.

  18. IT-based Value Creation in Serial Acquisitions

    DEFF Research Database (Denmark)

    Henningsson, Stefan; Yetton, Philip

    2013-01-01

    serial acquirers realize IT-based value, we integrate and model the findings on individual acquisitions from the extant literature, and extend that model to explain the effects of sequential acquisitions in a growth-by-acquisition strategy. This extended model, drawing on the Resource-Based Theory......The extant research on post-acquisition IT integration analyzes how acquirers realize IT-based value in individual acquisitions. However, serial acquirers make 60% of acquisitions. These acquisitions are not isolated events, but are components in growth-by-acquisition programs. To explain how...

  19. 48 CFR 970.2301 - Sustainable acquisition.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Sustainable acquisition. 970.2301 Section 970.2301 Federal Acquisition Regulations System DEPARTMENT OF ENERGY AGENCY..., Renewable Energy Technologies, Occupational Safety and Drug-Free Work Place 970.2301 Sustainable acquisition...

  20. Acquisitions by EMNCs in Developed Markets

    DEFF Research Database (Denmark)

    Rabbiosi, Larissa; Elia, Stefano; Bertoni, Fabio

    2012-01-01

    Building on an organisational learning perspective, we argue that emerging market firms’ international experience and home-country characteristics are core sources of learning. Furthermore, we argue that these factors constitute important determinants of emerging market firms’ acquisition behaviour...... in developed countries (south-north acquisitions). We test our hypotheses on a sample of 808 south-north acquisitions. The acquisitions were undertaken in Europe, Japan and North America (Canada and the US) between 1999 and 2008 by firms from the emerging economies of Brazil, Russia, India and China....... As suggested by the internationalisation process model, our results show that emerging market firms undertake acquisitions in developed countries in an incremental fashion. Acquisition experience in developed markets increases the likelihood of exploitative expansion, while acquisition experience in developing...

  1. Roots bridge water to nutrients: a study of utilizing hydraulic redistribution through root systems to extract nutrients in the dry soils

    Science.gov (United States)

    Yan, J.; Ghezzehei, T. A.

    2017-12-01

    The rhizosphere is the region of soil that surrounds by individual plant roots. While its small volume and narrow region compared to bulk soil, the rhizosphere regulates numerous processes that determine physical structure, nutrient distribution, and biodiversity of soils. One of the most important and distinct functions of the rhizosphere is the capacity of roots to bridge and redistribute soil water from wet soil layers to drier layers. This process was identified and defined as hydraulic lift or hydraulic redistribution, a passive process driven by gradients in water potentials and it has attracted much research attention due to its important role in global water circulation and agriculture security. However, while previous studies mostly focused on the hydrological or physiological impacts of hydraulic redistribution, limited research has been conducted to elucidate its role in nutrient cycling and uptake. In this study, we aim to test the possibility of utilizing hydraulic redistribution to facilitate the nutrient movement and uptake from resource segregated zone. Our overarching hypothesis is that plants can extract nutrients from the drier but nutrient-rich regions by supplying sufficient amounts of water from the wet but nutrient-deficient regions. To test our hypothesis, we designed split-root systems of tomatoes with unequal supply of water and nutrients in different root compartments. More specifically, we transplanted tomato seedlings into sand or soil mediums, and grew them under conditions with alternate 12-h lightness and darkness. We continuously monitored the temperature, water and nutrient content of soils in these separated compartments. The above and below ground biomass were also quantified to evaluate the impacts on the plant growth. The results were compared to a control with evenly supply of water and nutrients to assess the plant growth, nutrient leaching and uptake without hydraulic redistribution.

  2. Flavins secreted by roots of iron-deficient Beta vulgaris enable mining of ferric oxide via reductive mechanisms.

    Science.gov (United States)

    Sisó-Terraza, Patricia; Rios, Juan J; Abadía, Javier; Abadía, Anunciación; Álvarez-Fernández, Ana

    2016-01-01

    Iron (Fe) is abundant in soils but generally poorly soluble. Plants, with the exception of Graminaceae, take up Fe using an Fe(III)-chelate reductase coupled to an Fe(II) transporter. Whether or not nongraminaceous species can convert scarcely soluble Fe(III) forms into soluble Fe forms has deserved little attention so far. We have used Beta vulgaris, one among the many species whose roots secrete flavins upon Fe deficiency, to study whether or not flavins are involved in Fe acquisition. Flavins secreted by Fe-deficient plants were removed from the nutrient solution, and plants were compared with Fe-sufficient plants and Fe-deficient plants without flavin removal. Solubilization of a scarcely soluble Fe(III)-oxide was assessed in the presence or absence of flavins, NADH (nicotinamide adenine dinucleotide, reduced form) or plant roots, and an Fe(II) trapping agent. The removal of flavins from the nutrient solution aggravated the Fe deficiency-induced leaf chlorosis. Flavins were able to dissolve an Fe(III)-oxide in the presence of NADH. The addition of extracellular flavins enabled roots of Fe-deficient plants to reductively dissolve an Fe(III)-oxide. We concluded that root-secretion of flavins improves Fe nutrition in B. vulgaris. Flavins allow B. vulgaris roots to mine Fe from Fe(III)-oxides via reductive mechanisms. © 2015 CSIC New Phytologist © 2015 New Phytologist Trust.

  3. Above-ground biomass and nutrient accumulation in the tropical ...

    African Journals Online (AJOL)

    This means that the impact of logging in the Ebom rainforest remains low. However, additional research is needed on nutrient input in the forest from outside as well as on the impact of logging on nutrient leaching in order to get a complete picture of the nutrient cycles. Key-words: phytomass, nutrient pools, logging, ...

  4. Acquisition of HPLC-Mass Spectrometer

    Science.gov (United States)

    2015-08-18

    31-Jan-2015 Approved for Public Release; Distribution Unlimited Final Report: Acquisition of HPLC -Mass Spectrometer The views, opinions and/or findings...published in peer-reviewed journals: Final Report: Acquisition of HPLC -Mass Spectrometer Report Title The acquisition of the mass spectrometer has been a

  5. Mariculture: significant and expanding cause of coastal nutrient enrichment

    International Nuclear Information System (INIS)

    Bouwman, Lex; Beusen, Arthur; Glibert, Patricia M; Overbeek, Ciska; Pawlowski, Marcin; Herrera, Jorge; Mulsow, Sandor; Yu, Rencheng; Zhou, Mingjiang

    2013-01-01

    Mariculture (marine aquaculture) generates nutrient waste either through the excretion by the reared organisms, or through direct enrichment by, or remineralization of, externally applied feed inputs. Importantly, the waste from fish or shellfish cannot easily be managed, as most is in dissolved form and released directly to the aquatic environment. The release of dissolved and particulate nutrients by intensive mariculture results in increasing nutrient loads (finfish and crustaceans), and changes in nutrient stoichiometry (all mariculture types). Based on different scenarios, we project that nutrients from mariculture will increase up to six fold by 2050 with exceedance of the nutrient assimilative capacity in parts of the world where mariculture growth is already rapid. Increasing nutrient loads and altered nutrient forms (increased availability of reduced relative to oxidized forms of nitrogen) and/or stoichiometric proportions (altered nitrogen:phosphorus ratios) may promote an increase in harmful algal blooms (HABs) either directly or via stimulation of algae on which mixotrophic HABs may feed. HABs can kill or intoxicate the mariculture product with severe economic losses, and can increase risks to human health. (letter)

  6. Production dynamics of fine roots in beech forests: possible mechanism of resource allocation between above- and below-ground production

    Science.gov (United States)

    Nakahata, R.; Osawa, A.; Naramoto, M.; Mizunaga, H.; Sato, M.

    2017-12-01

    The masting phenomenon that seed production has large annual variation with spatial synchrony appears generally in beeches. Therefore, net primary production and carbon allocation mechanism in beech forests may differ among several years in relation to annual variation of seed production. On the other hand, fine roots play key roles in carbon dynamics and nutrient and water acquisition of an ecosystem. Evaluation of fine root dynamics is essential to understand long-term dynamics of production in forest ecosystems. Moreover, the influence of mast seeding on resource allocation should be clarified in such beech forests. The aim of this study is to clarify possible relationships between the patterns of above- and below-ground production in relation to the masting events using observation data of litter fall and fine root dynamics. We applied the litter trap method and a minirhizotron method in a cool-temperate natural forest dominated by beech (Fagus crenata Blume). Ten litter traps were set from 2008 to 2016, then annual leaf and seed production were estimated. Four minirhizotron tubes were buried in Aug. 2008 and soil profiles were scanned monthly until Nov. 2016 during the periods of no snow covering. The scanned soil profiles were analyzed for calculating fine root production using the WinRHIZO Tron software. In the present study site, rich production of mast seeding occurred biennially and fine root production showed various seasonal patterns. There was no significant correlation between seed production and annual fine root production in the same year. However, seed production had a positive correlation with fine root production in autumn in the previous year and indicated a negative correlation with that in autumn in the current year. These results indicate that higher fine root production has led to increased nutrient acquisition, which resulted in rich seed production in the next year. It is also suppressed after the masting events due to shortage in

  7. Opportunities to enhance and interpret nutrient fluxes and imbalances in animal production systems by use of stable isotopes

    International Nuclear Information System (INIS)

    Jarvis, S.C.

    2002-01-01

    Full text: The flows and transfers of nutrients within agricultural systems are complex and the presence of livestock increases the complexity. Few, if any, systems are in equilibrium with respect to nutrients inputs and outputs and all are 'leaky' to some extent or other: the presence of animals inevitably increases the opportunity for inefficiency. Whilst there is still much need to enhance nutrient use in many parts of the world in order to promote crop/food production particularly in resource-poor environments, there has been considerable recent research which re- examine nutrient behaviour because of pollution effects. Understanding nutrients fluxes and budgets/balances of inputs and outputs within a system and its component parts, provides the means to assess (i) current status, (ii) extent of losses and (iii) potential options for change to reduce losses, increase nutrient use efficiency and sustain or enhance production at minimum cost. Increasingly, nutrient accounting is being used at field, farm and national scales to aid decision making and planning. To do this effectively, requires that the sources and transfers of nutrients to, from and within the system be known. The paper discusses the way in which systems and farm gate balances can be used to promote efficiency of nutrient use in relation to required production levels and to optimise (i) investment in purchased nutrients, (ii) opportunities to capitalise on internal recycling and (iii) other farming activities which influence nutrient balance, surplus and loss. A major challenge for the future will be to balance the on- and off-farm needs of supplying and utilising nutrients in order to maintain long-term sustainability of farming systems, food production and rural resources. The paper concentrates on aspects of N in livestock systems as this provides one of the main opportunities to increase effectiveness of nutrient use in agriculture throughout the world with the aim of demonstrating some of the

  8. Proximate versus ultimate limiting nutrients in the Mississippi River Plume and Implications for Hypoxia Reductions through Nutrient Management

    Science.gov (United States)

    Fennel, Katja; Laurent, Arnaud

    2016-04-01

    A large hypoxic area (15,000 km2 on average) forms every summer over the Texas-Louisiana shelf in the northern Gulf of Mexico due to decay of organic matter that is primarily derived from nutrient inputs from the Mississippi/Atchafalaya River System. Efforts are underway to reduce the extent of hypoxic conditions through nutrient management in the watershed; for example, an interagency Hypoxia Task Force is developing Action Plans with input from various stakeholders that set out targets for hypoxia reduction. An open question is how far nutrient loads would have to be decreased in order to produce the desired reductions in hypoxia and when these would be measurable given significant natural variability. We have simulated a large number of multi-year nutrient load reduction scenarios with a regional biogeochemical model for the region. The model is based on the Regional Ocean Modeling System (ROMS), explicitly includes nitrogen (N) and phosphorus (P) species as inorganic nutrients, and has been shown to realistically reproduce the key processes responsible for hypoxia generation. We have quantified the effects of differential reductions in river N and P loads on hypoxic extent. An assessment of the effects of N versus P reductions is important because, thus far, nutrient management efforts have focused on N, yet P is known to limit primary production in spring and early summer. A debate is ongoing as to whether targets for P reductions should be set and whether nutrient reduction efforts should focus solely on P, which results primarily from urban and industrial point sources and is uncoupled from agricultural fertilizer application. Our results strongly indicate that N is the 'ultimate' limiting nutrient to primary production determining the areal extent and duration of hypoxic conditions in a cumulative sense, while P is temporarily limiting in spring. Although reductions in river P load would decrease hypoxic extent in early summer, they would have a much

  9. Lexical and semantic representations of L2 cognate and noncognate words acquisition in children : evidence from two learning methods

    OpenAIRE

    Comesaña, Montserrat; Soares, Ana Paula; Sánchez-Casas, Rosa; Lima, Cátia

    2012-01-01

    How bilinguals represent words in two languages and which mechanisms are responsible for second language acquisition are important questions in the bilingual and vocabulary acquisition literature. This study aims to analyze the effect of two learning methods (picture-based vs. word-based method) and two types of words (cognates and noncognates) in early stages of children’s L2 acquisition. Forty-eight native speakers of European Portuguese, all sixth graders (mean age= 10.87 years; SD= 0....

  10. Nutrient management strategies on Dutch dairy farms: an empirical analysis

    NARCIS (Netherlands)

    Ondersteijn, C.J.M.

    2002-01-01

    Key Words: MINAS; nitrogen surplus; phosphate surplus; nutrient efficiency; nutrient productivity; financial consequences; strategic management; perceived environmental uncertainty; nutrient management planning; dairy farming; The Netherlands.

    Agricultural nutrients are a

  11. River Metabolism and Nutrient Cycling at the Point Scale: Insights from In Situ Sensors in Benthic Chambers

    Science.gov (United States)

    Cohen, M. J.; Reijo, C. J.; Hensley, R. T.

    2017-12-01

    Riverine processing of nutrients and carbon is a local process, subject to heterogeneity in sediment, biotic, insolation, and flow velocity drivers. Measurements at the reach scale aggregate across riverscapes, limiting their utility for enumerating these drivers, and thus for scaling to river networks. Using a combination of in situ sensors that sample water chemistry at high temporal resolution and open benthic chambers that isolate the biogeochemical impacts of a small footprint of benthic surface area, we explored controls on metabolism and nutrient cycling. We specifically sought to answer two questions. First, what are the controls on primary production, with a particular emphasis on the relative roles of light vs. nutrient limitation? Second, what are the pathways of nutrient retention, and do the reaction kinetics of these different pathways differ? We demonstrate the considerable utility of these benthic chambers, reasoning that they provide experimental units for river processes that are not attainable at the reach or network scale. Specifically, in addition to their ability to sample the heterogeneity of the river bed as well as observe nutrient depletion to create concentrations well below ambient levels, they enable manipulative experiments (e.g., nutrient enrichment, light reduction, grazer adjustments) while retaining key elements of the natural system. Across several of Florida's spring-fed river sites, our results strongly support the primacy of light limitation of primary production, with very little evidence of any incremental effects of nutrient enrichment. Nutrient depletion assays further support the dominance of two N retention mechanisms (denitrification and assimilation), the kinetics of which differ markedly, with denitrification exhibiting nearly first-order reactions, and assimilation following zero-order or Michaelis-Menten kinetics over the range of observed concentrations. This latter result helps explain the absence of strong

  12. Recovery of agricultural nutrients from biorefineries.

    Science.gov (United States)

    Carey, Daniel E; Yang, Yu; McNamara, Patrick J; Mayer, Brooke K

    2016-09-01

    This review lays the foundation for why nutrient recovery must be a key consideration in design and operation of biorefineries and comprehensively reviews technologies that can be used to recover an array of nitrogen, phosphorus, and/or potassium-rich products of relevance to agricultural applications. Recovery of these products using combinations of physical, chemical, and biological operations will promote sustainability at biorefineries by converting low-value biomass (particularly waste material) into a portfolio of higher-value products. These products can include a natural partnering of traditional biorefinery outputs such as biofuels and chemicals together with nutrient-rich fertilizers. Nutrient recovery not only adds an additional marketable biorefinery product, but also avoids the negative consequences of eutrophication, and helps to close anthropogenic nutrient cycles, thereby providing an alternative to current unsustainable approaches to fertilizer production, which are energy-intensive and reliant on nonrenewable natural resource extraction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Nutrient enrichment increases mortality of mangroves.

    Directory of Open Access Journals (Sweden)

    Catherine E Lovelock

    Full Text Available Nutrient enrichment of the coastal zone places intense pressure on marine communities. Previous studies have shown that growth of intertidal mangrove forests is accelerated with enhanced nutrient availability. However, nutrient enrichment favours growth of shoots relative to roots, thus enhancing growth rates but increasing vulnerability to environmental stresses that adversely affect plant water relations. Two such stresses are high salinity and low humidity, both of which require greater investment in roots to meet the demands for water by the shoots. Here we present data from a global network of sites that documents enhanced mortality of mangroves with experimental nutrient enrichment at sites where high sediment salinity was coincident with low rainfall and low humidity. Thus the benefits of increased mangrove growth in response to coastal eutrophication is offset by the costs of decreased resilience due to mortality during drought, with mortality increasing with soil water salinity along climatic gradients.

  14. Predicting the profile of nutrients available for absorption: from nutrient requirement to animal response and environmental impact

    NARCIS (Netherlands)

    Dijkstra, J.; Kebreab, E.; Mills, J.A.N.; Pellikaan, W.F.; López, S.; Bannink, A.; France, J.

    2007-01-01

    Current feed evaluation systems for dairy cattle aim to match nutrient requirements with nutrient intake at pre-defined production levels. These systems were not developed to address, and are not suitable to predict, the responses to dietary changes in terms of production level and product

  15. Nutrient cycling and nutrient losses in Andean montane forests from Antioquia, Colombia

    International Nuclear Information System (INIS)

    Londono Alvarez, Adriana; Montoya Gomez, Diana Cristina; Leon Pelaez, Juan Diego; Gonzalez Hernandez, Maria Isabel

    2007-01-01

    Gravitational flow and its chemical composition were measured in montane oak forests (Quercus humboldtii), in pine (Pinus patula) and cypress (Cupressus lusitanica) plantations in Piedras Blancas, Antioquia (Colombia), over two years. Zero tension lysimeters were used at different depth soil levels, the highest gravitational flow value at highest depth (50-80 cm) was obtained in cypress plot (492-7 mm), followed by pine (14,2 mm) and oak forest (2,0 mm). A similar behavior was encountered for nutrient losses, following the same pattern as gravitational flow. thus, for oak, pine and cypress, nutrient losses were respective/y: ca: 0,004, 0,084 and 2,270 kg ha -1 Y 1 ; P 0,008, 0,052 and 1,234 kg ha -1 Y 1 , mg: 0,004, 0,022 and 0,667 kg ha -1 y 1. K losses were 0,08 and 7,092 kg ha -1 Y 1 for oak forest and cypress plantation respectively. Nutrient losses followed the next order for each type of forest: oak: K ≥ P ≥Ca≥Mg, pine: Ca≥Fe≥P>Mg≥Zn≥Mn and cypress: K≥Mn≥Ca≥P≥Fe≥Zn≥Mg

  16. Acquisition system for the CLIC Module

    CERN Document Server

    Vilalte, Sebastien

    2011-01-01

    The status of R&D activities for CLIC module acquisition are discussed [1]. LAPP is involved in the design of the local CLIC module acquisition crate, described in the document Study of the CLIC Module Front-End Acquisition and Evaluation Electronics [2]. This acquisition system is a project based on a local crate, assigned to the CLIC module, including several mother boards. These motherboards are foreseen to hold mezzanines dedicated to the different subsystems. This system has to work in radiation environment. LAPP is involved in the development of Drive Beam stripline position monitors read-out, described in the document Drive Beam Stripline BPM Electronics and Acquisition [3]. LAPP also develops a generic acquisition mezzanine that allows to perform all-around acquisition and components tests for drive beam stripline BPM read-out.

  17. Nutrient density: addressing the challenge of obesity.

    Science.gov (United States)

    Drewnowski, Adam

    2017-10-30

    Obesity rates are increasing worldwide. Potential reasons include excessive consumption of sugary beverages and energy-dense foods instead of more nutrient-rich options. On a per kJ basis, energy-dense grains, added sugars and fats cost less, whereas lean meats, seafood, leafy greens and whole fruit generally cost more. Given that consumer food choices are often driven by price, the observed social inequities in diet quality and health can be explained, in part, by nutrition economics. Achieving a nutrient-rich diet at an affordable cost has become progressively more difficult within the constraints of global food supply. However, given the necessary metrics and educational tools, it may be possible to eat better for less. New metrics of nutrient density help consumers identify foods, processed and unprocessed, that are nutrient-rich, affordable and appealing. Affordability metrics, created by adding food prices to food composition data, permit calculations of both kJ and nutrients per penny, allowing for new studies on the economic drivers of food choice. Merging dietary intake data with local or national food prices permits the estimation of individual-level diet costs. New metrics of nutrient balance can help identify those food patterns that provide optimal nutritional value. Behavioural factors, including cooking at home, have been associated with nutrition resilience, defined as healthier diets at lower cost. Studies of the energy and nutrient costs of the global food supply and diverse food patterns will permit a better understanding of the socioeconomic determinants of health. Dietary advice ought to be accompanied by economic feasibility studies.

  18. CADDIS Volume 2. Sources, Stressors and Responses: Nutrients - Simple Conceptual Diagram

    Science.gov (United States)

    Introduction to the nutrients module, when to list nutrients as a candidate cause, ways to measure nutrients, simple and detailed conceptual diagrams for nutrients, nutrients module references and literature reviews.

  19. First Language Acquisition and Teaching

    Science.gov (United States)

    Cruz-Ferreira, Madalena

    2011-01-01

    "First language acquisition" commonly means the acquisition of a single language in childhood, regardless of the number of languages in a child's natural environment. Language acquisition is variously viewed as predetermined, wondrous, a source of concern, and as developing through formal processes. "First language teaching" concerns schooling in…

  20. Making Acquisition Measurable

    Science.gov (United States)

    2011-04-30

    Corporation. All rights reserved End Users Administrator/ Maintainer (A/M) Subject Matter Expert ( SME ) Trainer/ Instructor Manager, Evaluator, Supervisor... CMMI ) - Acquisition (AQ) © 2011 The MITRE Corporation. All rights reserved 13 CMMI -Development Incremental iterative development (planning & execution...objectives Constructing games highlighting particular aspects of proposed CCOD® acquisition, and conducting exercises with Subject Matter Experts ( SMEs

  1. Nutrient management regulations in The Netherlands

    NARCIS (Netherlands)

    Schröder, J.J.; Neeteson, J.J.

    2008-01-01

    The application of nutrients affect the quality of the environment which justifies the consideration of regulations regarding their use in agriculture. In the early 1990s The Netherlands decided to use the indicator `nutrient surplus at farm level¿ as the basis for a regulation which was called the

  2. Nutrients in the nexus

    Science.gov (United States)

    Davidson, Eric A.; Niphong, Rachel; Ferguson, Richard B.; Palm, Cheryl; Osmond, Deanna L.; Baron, Jill S.

    2016-01-01

    Synthetic nitrogen (N) fertilizer has enabled modern agriculture to greatly improve human nutrition during the twentieth century, but it has also created unintended human health and environmental pollution challenges for the twenty-first century. Averaged globally, about half of the fertilizer-N applied to farms is removed with the crops, while the other half remains in the soil or is lost from farmers’ fields, resulting in water and air pollution. As human population continues to grow and food security improves in the developing world, the dual development goals of producing more nutritious food with low pollution will require both technological and socio-economic innovations in agriculture. Two case studies presented here, one in sub-Saharan Africa and the other in Midwestern United States, demonstrate how management of nutrients, water, and energy is inextricably linked in both small-scale and large-scale food production, and that science-based solutions to improve the efficiency of nutrient use can optimize food production while minimizing pollution. To achieve the needed large increases in nutrient use efficiency, however, technological developments must be accompanied by policies that recognize the complex economic and social factors affecting farmer decision-making and national policy priorities. Farmers need access to affordable nutrient supplies and support information, and the costs of improving efficiencies and avoiding pollution may need to be shared by society through innovative policies. Success will require interdisciplinary partnerships across public and private sectors, including farmers, private sector crop advisors, commodity supply chains, government agencies, university research and extension, and consumers.

  3. Indoor integrated navigation and synchronous data acquisition method for Android smartphone

    Science.gov (United States)

    Hu, Chunsheng; Wei, Wenjian; Qin, Shiqiao; Wang, Xingshu; Habib, Ayman; Wang, Ruisheng

    2015-08-01

    Smartphones are widely used at present. Most smartphones have cameras and kinds of sensors, such as gyroscope, accelerometer and magnet meter. Indoor navigation based on smartphone is very important and valuable. According to the features of the smartphone and indoor navigation, a new indoor integrated navigation method is proposed, which uses MEMS (Micro-Electro-Mechanical Systems) IMU (Inertial Measurement Unit), camera and magnet meter of smartphone. The proposed navigation method mainly involves data acquisition, camera calibration, image measurement, IMU calibration, initial alignment, strapdown integral, zero velocity update and integrated navigation. Synchronous data acquisition of the sensors (gyroscope, accelerometer and magnet meter) and the camera is the base of the indoor navigation on the smartphone. A camera data acquisition method is introduced, which uses the camera class of Android to record images and time of smartphone camera. Two kinds of sensor data acquisition methods are introduced and compared. The first method records sensor data and time with the SensorManager of Android. The second method realizes open, close, data receiving and saving functions in C language, and calls the sensor functions in Java language with JNI interface. A data acquisition software is developed with JDK (Java Development Kit), Android ADT (Android Development Tools) and NDK (Native Development Kit). The software can record camera data, sensor data and time at the same time. Data acquisition experiments have been done with the developed software and Sumsang Note 2 smartphone. The experimental results show that the first method of sensor data acquisition is convenient but lost the sensor data sometimes, the second method is much better in real-time performance and much less in data losing. A checkerboard image is recorded, and the corner points of the checkerboard are detected with the Harris method. The sensor data of gyroscope, accelerometer and magnet meter have

  4. 76 FR 68044 - Federal Acquisition Regulation; Federal Acquisition Circular 2005-54; Small Entity Compliance Guide

    Science.gov (United States)

    2011-11-02

    ... Acquisition Circular 2005-54; Small Entity Compliance Guide AGENCY: Department of Defense (DoD), General... Federal Acquisition Circular (FAC) 2005-54, which amend the Federal Acquisition Regulation (FAR... (FAR Case 2009-006) This final rule amends the FAR to implement Executive Order (E.O.) 13494, Economy...

  5. 75 FR 19179 - Federal Acquisition Regulation; Federal Acquisition Circular 2005-41; Small Entity Compliance Guide

    Science.gov (United States)

    2010-04-13

    ... Acquisition Circular 2005-41; Small Entity Compliance Guide AGENCIES: Department of Defense (DoD), General... Federal Acquisition Circular (FAC) 2005-41 which amends the Federal Acquisition Regulation (FAR... projects where the total cost to the Government is $25 million or more in order to promote economy and...

  6. Nutrient demand in bioventing of fuel oil pollution

    International Nuclear Information System (INIS)

    Breedveld, G.D.; Hauge, A.; Olstad, G.

    1995-01-01

    The effect of nutrient addition on bioventing of fuel oil pollution in an artificially polluted sandy soil has been studied at different experimental scales to assess the predictive value of laboratory treatability studies. The results of batch studies, laboratory column studies, and pilot-scale field tests (10 tons of soil) were compared. The qualitative response to nutrient addition was comparable in all experiments. Without nutrient addition, a minimal respiration rate was observed. With nutrient addition, respiration rates increased almost instantaneously. The highest rates were observed in the batch studies. The column study and pilot-scale field test indicated similar respiration rates, at approximately one sixth the respiration rates in the batch study. Respiration rates in the pilot-scale field study decreased during the winter season. Analysis of the residual oil composition in soil samples showed a relation between the degree of weathering, measured as the n-C 17 /pristane and n-C 18 /phytane ratio, and nutrient addition. Lower n-C 17 /pristane ratios were observed at higher total nitrogen content. After 1 year of bioventing with nutrient addition, a 66% reduction in TPH content was observed. Without nutrient addition, the residual oil still closely resembled the original fuel oil product, with only minor removal of the light-end compounds

  7. Soil and Nutrient Loss Following Site Preparation Burning

    Science.gov (United States)

    J.P. Field; E.A. Carter

    2000-01-01

    Sediment loss and nutrient cpncentrations in runoff were evaluated to determine the effects of site preparation burning on a recently harvested loblolly pine (Pinus taeda L.) site in east Texas. Sediment and nutrient losses prior to treatment were approximately the same from control plots and pretreatment burn plots. Nutrient analysis of runoff...

  8. Indexing mergers and acquisitions

    OpenAIRE

    Gang, Jianhua; Guo, Jie (Michael); Hu, Nan; Li, Xi

    2017-01-01

    We measure the efficiency of mergers and acquisitions by putting forward an index (the ‘M&A Index’) based on stochastic frontier analysis. The M&A Index is calculated for each takeover deal and is standardized between 0 and 1. An acquisition with a higher index encompasses higher efficiency. We find that takeover bids with higher M&A Indices are more likely to succeed. Moreover, the M&A Index shows a strong and positive relation with the acquirers’ post-acquisition stock perfo...

  9. ENVIRONMENTAL ACCOUNTING IN AGRICULTURE: NUTRIENT ACCOUNTING AND OTHER ASPECTS

    Directory of Open Access Journals (Sweden)

    P URFI

    2003-04-01

    Full Text Available While traditional accounting focuses on accounting for capital assets, costs, yields valued and sold in the market, environmental accounting intends to do the same with non-marketed capital assets, costs and yields, that is, externalities. The farm level nutrient balances are based on an input-output comparison, in which the nutrients entering the farm within inputs are compared to nutrients leaving the farm within the sold products. The method considers the amounts of nutrients entering the farm but not leaving it with the products to be wastes polluting the environment. The weakness of this approach is the handling of stock changes. In a farming year high amounts of nutrients contained in unsold products are not wastes, nor are they stored in the soil, but are stored in the stocks. To handle this problem the concepts of external nutrient balance and internal nutrient balance are introduced, and are tested in case studies of two Hungarian mixed farms.

  10. Methane productivity and nutrient recovery from manure

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, H.B.

    2003-07-01

    The efficient recovery of energy and improvements in the handling of nutrients from manure have attracted increased research focus during recent decades. Anaerobic digestion is a key process in any strategy for the recovery of energy, while slurry separation is an important component in an improved nutrient-handling strategy. This thesis is divided into two parts: the first deals mainly with nutrient recovery strategies and the second examines biological degradation processes, including controlled anaerobic digestion. (au)

  11. 75 FR 14057 - Federal Acquisition Regulation; Federal Acquisition Circular 2005-40; Introduction

    Science.gov (United States)

    2010-03-23

    ... the Civilian Agency Acquisition Council and the Defense Acquisition Regulations Council (Councils) in..., consider all the information in FAPIIS and PPIRS when making a responsibility determination, and notify the... appropriate for the official's consideration; and Enter a non-responsibility determination into FAPIIS. The...

  12. 75 FR 53127 - Federal Acquisition Regulation; Federal Acquisition Circular 2005-45; Introduction

    Science.gov (United States)

    2010-08-30

    ... summarizes the Federal Acquisition Regulation (FAR) rules agreed to by the Civilian Agency Acquisition... Chambers. Cost or Pricing Data. III American Recovery 2009-008 Davis. and Reinvestment Act of 2009 (the Recovery Act)-- Buy American Requirements for Construction Materials. SUPPLEMENTARY INFORMATION: Summaries...

  13. Usefulness of Models in Precision Nutrient Management

    DEFF Research Database (Denmark)

    Plauborg, Finn; Manevski, Kiril; Zhenjiang, Zhou

    Modern agriculture increasingly applies new methods and technologies to increase production and nutrient use efficiencies and at the same time reduce leaching of nutrients and greenhouse gas emissions. GPS based ECa-measurement equipment, ER or EM instrumentations, are used to spatially character......Modern agriculture increasingly applies new methods and technologies to increase production and nutrient use efficiencies and at the same time reduce leaching of nutrients and greenhouse gas emissions. GPS based ECa-measurement equipment, ER or EM instrumentations, are used to spatially...... and mineral composition. Mapping of crop status and the spatial-temporal variability within fields with red-infrared reflection are used to support decision on split fertilisation and more precise dosing. The interpretation and use of these various data in precise nutrient management is not straightforward...... of mineralisation. However, whether the crop would benefit from this depended to a large extent on soil hydraulic conductivity within the range of natural variation when testing the model. In addition the initialisation of the distribution of soil total carbon and nitrogen into conceptual model compartments...

  14. Limiting nutrient emission from a cut rose closed system by high-flux irrigation and low nutrient concentrations?

    NARCIS (Netherlands)

    Baas, R.; Berg, van der D.

    2004-01-01

    A two-year project was aimed at decreasing nutrient emission from closed nutrient systems by using high irrigation rates in order to allow lower EC levels in the presence of accumulated Na and Cl. Experimental variables were growing media, irrigation frequencies, EC and NaCl concentrations for cut

  15. Coupling of the spatial-temporal distributions of nutrients and physical conditions in the southern Yellow Sea

    Science.gov (United States)

    Wei, Qin-Sheng; Yu, Zhi-Gang; Wang, Bao-Dong; Fu, Ming-Zhu; Xia, Chang-Shui; Liu, Lu; Ge, Ren-Feng; Wang, Hui-Wu; Zhan, Run

    2016-04-01

    depletion of nutrients in the central SYS and the upwelled transport in the boundary of the YSCWM resulted in a spatial transfer of the high Chl-a zone, varying generally from the central SYS to the boundary of the YSCWM from spring to summer, and the nutrient flux associated with this upwelling could contribute significantly to local primary production. This study deepens our understanding of the mechanisms influencing the distribution and transport of nutrients in the SYS.

  16. The effect of acquisition interval and spatial resolution on dynamic cardiac imaging with a stationary SPECT camera

    International Nuclear Information System (INIS)

    Roberts, J; Maddula, R; Clackdoyle, R; DiBella, E; Fu, Z

    2007-01-01

    The current SPECT scanning paradigm that acquires images by slow rotation of multiple detectors in body-contoured orbits around the patient is not suited to the rapid collection of tomographically complete data. During rapid image acquisition, mechanical and patient safety constraints limit the detector orbit to circular paths at increased distances from the patient, resulting in decreased spatial resolution. We consider a novel dynamic rotating slant-hole (DyRoSH) SPECT camera that can collect full tomographic data every 2 s, employing three stationary detectors mounted with slant-hole collimators that rotate at 30 rpm. Because the detectors are stationary, they can be placed much closer to the patient than is possible with conventional SPECT systems. We propose that the decoupling of the detector position from the mechanics of rapid image acquisition offers an additional degree of freedom which can be used to improve accuracy in measured kinetic parameter estimates. With simulations and list-mode reconstructions, we consider the effects of different acquisition intervals on dynamic cardiac imaging, comparing a conventional three detector SPECT system with the proposed DyRoSH SPECT system. Kinetic parameters of a two-compartment model of myocardial perfusion for technetium-99m-teboroxime were estimated. When compared to a conventional SPECT scanner for the same acquisition periods, the proposed DyRoSH system shows equivalent or reduced bias or standard deviation values for the kinetic parameter estimates. The DyRoSH camera with a 2 s acquisition period does not show any improvement compared to a DyRoSH camera with a 10 s acquisition period

  17. The effect of acquisition interval and spatial resolution on dynamic cardiac imaging with a stationary SPECT camera

    Science.gov (United States)

    Roberts, J.; Maddula, R.; Clackdoyle, R.; Di Bella, E.; Fu, Z.

    2007-08-01

    The current SPECT scanning paradigm that acquires images by slow rotation of multiple detectors in body-contoured orbits around the patient is not suited to the rapid collection of tomographically complete data. During rapid image acquisition, mechanical and patient safety constraints limit the detector orbit to circular paths at increased distances from the patient, resulting in decreased spatial resolution. We consider a novel dynamic rotating slant-hole (DyRoSH) SPECT camera that can collect full tomographic data every 2 s, employing three stationary detectors mounted with slant-hole collimators that rotate at 30 rpm. Because the detectors are stationary, they can be placed much closer to the patient than is possible with conventional SPECT systems. We propose that the decoupling of the detector position from the mechanics of rapid image acquisition offers an additional degree of freedom which can be used to improve accuracy in measured kinetic parameter estimates. With simulations and list-mode reconstructions, we consider the effects of different acquisition intervals on dynamic cardiac imaging, comparing a conventional three detector SPECT system with the proposed DyRoSH SPECT system. Kinetic parameters of a two-compartment model of myocardial perfusion for technetium-99m-teboroxime were estimated. When compared to a conventional SPECT scanner for the same acquisition periods, the proposed DyRoSH system shows equivalent or reduced bias or standard deviation values for the kinetic parameter estimates. The DyRoSH camera with a 2 s acquisition period does not show any improvement compared to a DyRoSH camera with a 10 s acquisition period.

  18. Nutrients affecting brain composition and behavior

    Science.gov (United States)

    Wurtman, R. J.

    1987-01-01

    This review examines the changes in brain composition and in various brain functions, including behavior, that can follow the ingestion of particular foods or nutrients. It details those that are best understood: the increases in serotonin, catecholamine, or acetylcholine synthesis that can occur subsequent to food-induced increases in brain levels of tryptophan, tyrosine, or choline; it also discusses the various processes that must intervene between the mouth and the synapse, so to speak, in order for a nutrient to affect neurotransmission, and it speculates as to additional brain chemicals that may ultimately be found to be affected by changes in the availability of their nutrient precursors. Because the brain chemicals best known to be nutrient dependent overlap with those thought to underlie the actions of most of the drugs used to treat psychiatric diseases, knowledge of this dependence may help the psychiatrist to understand some of the pathologic processes occurring in his/her patients, particularly those with appetitive symptoms. At the very least, such knowledge should provide the psychiatrist with objective criteria for judging when to take seriously assertions that particular foods or nutrients do indeed affect behavior (e.g., in hyperactive children). If the food can be shown to alter neurotransmitter release, it may be behaviorally-active; however, if it lacks a discernible neurochemical effect, the likelihood that it really alters behavior is small.

  19. Soil Nutrient Stocks in Sub-Saharan Africa: Modeling Soil Nutrients Using Machine Learning

    Science.gov (United States)

    Cooper, M. W.; Hengl, T.; Shepherd, K.; Heuvelink, G. B. M.

    2017-12-01

    We present the results of our work modeling 15 target soil nutrients at 250 meter resolution across Sub-Saharan Africa. We used a large stack of GIS layers as covariates, including layers on topography, climate, geology, hydrology and land cover. As training data we used ca. 59,000 soil samples harmonized across a number of projects and datasets, and we modeled each nutrient using an ensemble of random forest and gradient boosting algorithms, implemented using the R packages ranger and xgboost. Using cross validation, we determined that significant models can be produced for organic Carbon, total (organic) Nitrogen, total Phosphorus, and extractable Phosphorous, Potassium, Calcium, Magnesium, Sulfur, Sodium, Iron, Manganese, Zinc, Copper, Aluminum and Boron, with an R-square value between 40 and 95%. The main covariates explaining spatial distribution of nutrients were precipitation and land form parameters. However, we were unable to significantly predict Sulfur, Phosphorus and Boron as these could not be correlated with any environmental covariates we used. Although the accuracy of predictions looks promising, our predictions likely suffer from the significant spatial clustering of the sampling locations, as well as a lack of more detailed data on geology and parent material at a continental scale. These results will contribute to targeting agricultural investments and interventions, as well as targeting restoration efforts and estimating yield potential and yield gaps. These results were recently published in the journal Nutrient Cycling in Agroecosystems (DOI: 10.1007/s10705-017-9870-x) and the maps are available for download under the ODC Open Database License.

  20. AMF Inoculation Enhances Growth and Improves the Nutrient Uptake Rates of Transplanted, Salt-Stressed Tomato Seedlings

    Directory of Open Access Journals (Sweden)

    Astrit Balliu

    2015-12-01

    Full Text Available The study aimed to investigate the effects of commercially available AMF inoculate (Glomus sp. mixture on the growth and the nutrient acquisition in tomato (Solanumlycopersicum L. plants directly after transplanting and under different levels of salinity. Inoculated (AMF+ and non-inoculated (AMF− tomato plants were subjected to three levels of NaCl salinity (0, 50, and 100 mM·NaCl. Seven days after transplanting, plants were analyzed for dry matter and RGR of whole plants and root systems. Leaf tissue was analyzed for mineral concentration before and after transplanting; leaf nutrient content and relative uptake rates (RUR were calculated. AMF inoculation did not affect plant dry matter or RGR under fresh water-irrigation. The growth rate of AMF−plants did significantly decline under both moderate (77% and severe (61% salt stress compared to the fresh water-irrigated controls, while the decline was much less (88% and 75%,respectivelyand statistically non-significant in salt-stressed AMF+ plants. Interestingly, root system dry matter of AMF+ plants (0.098 g plant–1 remained significantly greater under severe soil salinity compared to non-inoculated seedlings (0.082 g plant–1. The relative uptake rates of N, P, Mg, Ca, Mn, and Fe were enhanced in inoculated tomato seedlings and remained higher under (moderate salt stress compared to AMF− plants This study suggests that inoculation with commercial AMF during nursery establishment contributes to alleviation of salt stress by maintaining a favorable nutrient profile. Therefore, nursery inoculation seems to be a viable solution to attenuate the effects of increasing soil salinity levels, especially in greenhouses with low natural abundance of AMF spores.

  1. Nutrient fluxes at the landscape level and the R* rule

    Science.gov (United States)

    Ju, Shu; DeAngelis, Donald L.

    2010-01-01

    Nutrient cycling in terrestrial ecosystems involves not only the vertical recycling of nutrients at specific locations in space, but also biologically driven horizontal fluxes between different areas of the landscape. This latter process can result in net accumulation of nutrients in some places and net losses in others. We examined the effects of such nutrient-concentrating fluxes on the R* rule, which predicts that the species that can survive in steady state at the lowest level of limiting resource, R*, can exclude all competing species. To study the R* rule in this context, we used a literature model of plant growth and nutrient cycling in which both nutrients and light may limit growth, with plants allocating carbon and nutrients between foliage and roots according to different strategies. We incorporated the assumption that biological processes may concentrate nutrients in some parts of the landscape. We assumed further that these processes draw nutrients from outside the zone of local recycling at a rate proportional to the local biomass density. Analysis showed that at sites where there is a sufficient biomass-dependent accumulation of nutrients, the plant species with the highest biomass production rates (roughly corresponding to the best competitors) do not reduce locally available nutrients to a minimum concentration level (that is, minimum R*), as expected from the R* rule, but instead maximize local nutrient concentration. These new results require broadening of our understanding of the relationships between nutrients and vegetation competition on the landscape level. The R* rule is replaced by a more complex criterion that varies across a landscape and reduces to the R* rule only under certain limiting conditions.

  2. Developing Acquisition IS Integration Capabilities

    DEFF Research Database (Denmark)

    Wynne, Peter J.

    2016-01-01

    An under researched, yet critical challenge of Mergers and Acquisitions (M&A), is what to do with the two organisations’ information systems (IS) post-acquisition. Commonly referred to as acquisition IS integration, existing theory suggests that to integrate the information systems successfully......, an acquiring company must leverage two high level capabilities: diagnosis and integration execution. Through a case study, this paper identifies how a novice acquirer develops these capabilities in anticipation of an acquisition by examining its use of learning processes. The study finds the novice acquirer...... applies trial and error, experimental, and vicarious learning processes, while actively avoiding improvisational learning. The results of the study contribute to the acquisition IS integration literature specifically by exploring it from a new perspective: the learning processes used by novice acquirers...

  3. Calo trigger acquisition system

    CERN Multimedia

    Franchini, Matteo

    2016-01-01

    Calo trigger acquisition system - Evolution of the acquisition system from a multiple boards system (upper, orange cables) to a single board one (below, light blue cables) where all the channels are collected in a single board.

  4. INfluence of vinasse on water movement in soil, using automatic acquisition and handling data system

    International Nuclear Information System (INIS)

    Nascimento Filho, V.F. do; Barros Ferraz, E.S. de

    1986-01-01

    The vinasse, by-product of ethylic alcohol industry from the sugar cane juice or molasses yeast fermentation, has been incorporated in the soil as fertilizer, due to the its hight organic matter (2-6%), potassium and sulphate (0,1-0,5%) and other nutrient contents. By employing monoenergetic gamma-ray beam attenuation technique (241Am; 59,5 keV; 100 mCi) the influence of vinasse on the water movement in the soil was studied. For this, an automatic acquisition and handling data system was used, based in multichannel analyser, multi-scaling mode operated, coupled to a personal microcomputer and plotter. Despite the small depth studied (6 cm), it was observed that vinasse decreases the water infiltration velocity in the soil. (Author) [pt

  5. Interação fármaco-nutriente: uma revisão Drug-nutrient interaction: a review

    Directory of Open Access Journals (Sweden)

    Mirian Ribeiro Leite MOURA

    2002-08-01

    Full Text Available A dieta influencia todos os estágios do ciclo da vida, fornecendo nutrientes necessários ao sustento do corpo humano. Alterações de ordem funcional e/ou estrutural, provocadas por doenças e infecções agudas ou crônicas, levam à utilização de medicamentos, cujo objetivo é restaurar a saúde. A via preferencial escolhida para a sua administração é a oral, entre outras razões, por sua comodidade e segurança. O fenômeno de interação fármaco-nutriente pode surgir antes ou durante a absorção gastrintestinal, durante a distribuição e armazenamento nos tecidos, no processo de biotransformação ou mesmo durante a excreção. Assim, é de importância fundamental conhecer os fármacos cuja velocidade de absorção e/ou quantidade absorvida podem ser afetadas na presença de alimentos, bem como aqueles que não são afetados. Por outro lado, muitos deles, incluindo antibióticos, antiácidos e laxativos podem causar má absorção de nutrientes. Portanto, o objetivo do presente artigo é apresentar uma revisão dos diversos aspectos envolvidos na interação fármaco-nutriente.Diet influences the whole life cycle, supplying nutrients required to maintain the human body. Functional and/or structural alterations, caused by diseases and acute or chronic infections, lead to the use of drugs in order to restore the health. The oral route is preferred for drug administration, owing to safety and convenience, among other reasons. The drug-nutrient interaction phenomenon can occur before or during gastrointestinal absorption, during distribution and storage in the tissues, in the biotransformation process, or even during excretion. Thus, to know the drugs whose rate of absorption and/or absorbed amount can be affected in the presence of food, as well as those that are not affected, is of fundamental importance. On the other hand, a number of commonly used drugs, including antibiotics, antacids and laxatives, can cause malabsorption of

  6. Eddy Mediated Nutrient Pattern in the North Eastern Arabian Sea

    Science.gov (United States)

    Thachaparambil, M.; Moolakkal Antony, R.; B R, S.; V N, S.; N, C.; M, S.

    2016-02-01

    A Cold Core Eddy (CCE) mediated nutrient pattern in the North Eastern Arabian Sea (NEAS) is explained based on in situ measurments during March 2013 onboard FORV Sagar Sampada which was not reported earlier in the area. Samples for physical, chemical and biological parameters were collected in 5 stations along the diameter of the eddy and following standard protocols. The core of the CCE is identified at 21°20.38'N; 66°30.68'E with a diameter of 120Km. Earlier studies explaining the process and the forcing mechanism of the particular eddy records that, the eddy is short term (1-3 months) and is regular during the season. Surface waters were well oxygenated (>4.8 ml L-1) in the core. Surface value of nutrients viz., Nitrate, Nitrite, Silicate and phosphate in the core regions was 0.9µM, 0.01 µM, 0.5 µM and 0.7 µM respectively indicating upwelling in the core. Spring intermonsoon (SIM) is generally termed as a transition period between the active winter and summer seasons and as per earlier studies, high biological production and the regularly occurring Noctilica bloom is supported by the nutrient loading due to convective mixing during winter as well as regenerated production. However, present observations shows that, nutrient pumping due to the upwelling associated with the CCE also contributes for sustaining high biological production and are evident in the Chl a and mesozooplankton biovolume which records values of 4.35mg/m3 and 1.09ml/m3 respectively in the core. An intense Noctiluca blooms observed in the western flank of the eddy (Chl a 13.25 mg/m3; cell density 5.8×106 cells/litre), where Nitrate concentration records 1.04µM explains the role of such mesoscale processes in the sustenance of the HAB events. While eastern flank of the CCE showed typical open ocean condition of the season showing Nitrate 0.08µM; Chl a 0.23mg/m3; and phytoplankton cell density as 421 cells/litre. Keywords: Cold core eddy, nutrients, NEAS, SIM, biological production

  7. Playing at Serial Acquisitions

    NARCIS (Netherlands)

    J.T.J. Smit (Han); T. Moraitis (Thras)

    2010-01-01

    textabstractBehavioral biases can result in suboptimal acquisition decisions-with the potential for errors exacerbated in consolidating industries, where consolidators design serial acquisition strategies and fight escalating takeover battles for platform companies that may determine their future

  8. Perception of Teachers and Administrators on the Teaching Methods That Influence the Acquisition of Generic Skills

    Science.gov (United States)

    Audu, R.; Bin Kamin, Yusri; Bin Musta'amal, Aede Hatib; Bin Saud, Muhammad Sukri; Hamid, Mohd. Zolkifli Abd.

    2014-01-01

    This study is designed to identify the most significant teaching methods that influence the acquisition of generic skills of mechanical engineering trades students at technical college level. Descriptive survey research design was utilized in carrying out the study. One hundred and ninety (190) respondents comprised of mechanical engineering…

  9. Gene Acquisition Convergence between Entomopoxviruses and Baculoviruses

    Directory of Open Access Journals (Sweden)

    Julien Thézé

    2015-04-01

    Full Text Available Organisms from diverse phylogenetic origins can thrive within the same ecological niches. They might be induced to evolve convergent adaptations in response to a similar landscape of selective pressures. Their genomes should bear the signature of this process. The study of unrelated virus lineages infecting the same host panels guarantees a clear identification of phyletically independent convergent adaptation. Here, we investigate the evolutionary history of genes in the accessory genome shared by unrelated insect large dsDNA viruses: the entomopoxviruses (EPVs, Poxviridae and the baculoviruses (BVs. EPVs and BVs have overlapping ecological niches and have independently evolved similar infection processes. They are, in theory, subjected to the same selective pressures from their host’s immune responses. Their accessory genomes might, therefore, bear analogous genomic signatures of convergent adaption and could point out key genomic mechanisms of adaptation hitherto undetected in viruses. We uncovered 32 homologous, yet independent acquisitions of genes originating from insect hosts, different eukaryotes, bacteria and viruses. We showed different evolutionary levels of gene acquisition convergence in these viruses, underlining a continuous evolutionary process. We found both recent and ancient gene acquisitions possibly involved to the adaptation to both specific and distantly related hosts. Multidirectional and multipartite gene exchange networks appear to constantly drive exogenous gene assimilations, bringing key adaptive innovations and shaping the life histories of large DNA viruses. This evolutionary process might lead to genome level adaptive convergence.

  10. Bioactive Nutrients and Nutrigenomics in Age-Related Diseases

    Directory of Open Access Journals (Sweden)

    Tania Rescigno

    2017-01-01

    Full Text Available The increased life expectancy and the expansion of the elderly population are stimulating research into aging. Aging may be viewed as a multifactorial process that results from the interaction of genetic and environmental factors, which include lifestyle. Human molecular processes are influenced by physiological pathways as well as exogenous factors, which include the diet. Dietary components have substantive effects on metabolic health; for instance, bioactive molecules capable of selectively modulating specific metabolic pathways affect the development/progression of cardiovascular and neoplastic disease. As bioactive nutrients are increasingly identified, their clinical and molecular chemopreventive effects are being characterized and systematic analyses encompassing the “omics” technologies (transcriptomics, proteomics and metabolomics are being conducted to explore their action. The evolving field of molecular pathological epidemiology has unique strength to investigate the effects of dietary and lifestyle exposure on clinical outcomes. The mounting body of knowledge regarding diet-related health status and disease risk is expected to lead in the near future to the development of improved diagnostic procedures and therapeutic strategies targeting processes relevant to nutrition. The state of the art of aging and nutrigenomics research and the molecular mechanisms underlying the beneficial effects of bioactive nutrients on the main aging-related disorders are reviewed herein.

  11. Frequent Canned Food Use is Positively Associated with Nutrient-Dense Food Group Consumption and Higher Nutrient Intakes in US Children and Adults

    Directory of Open Access Journals (Sweden)

    Kevin B. Comerford

    2015-07-01

    Full Text Available In addition to fresh foods, many canned foods also provide nutrient-dense dietary options, often at a lower price, with longer storage potential. The aim of this study was to compare nutrient-dense food group intake and nutrient intake between different levels of canned food consumption in the US. Consumption data were collected for this cross-sectional study from 9761 American canned food consumers (aged two years and older from The NPD Group’s National Eating Trends® (NET® database during 2011–2013; and the data were assessed using The NPD Group’s Nutrient Intake Database. Canned food consumers were placed into three groups: Frequent Can Users (≥6 canned items/week; n = 2584, Average Can Users (3–5 canned items/week; n = 4445, and Infrequent Can Users (≤2 canned items/week; n = 2732. The results provide evidence that Frequent Can Users consume more nutrient-dense food groups such as fruits, vegetables, dairy products, and protein-rich foods, and also have higher intakes of 17 essential nutrients including the shortfall nutrients—potassium, calcium and fiber—when compared to Infrequent Can Users. Therefore, in addition to fresh foods, diets higher in nutrient-dense canned food consumption can also offer dietary options which improve nutrient intakes and the overall diet quality of Americans.

  12. Marine nutrient contributions to tidal creeks in Virginia: spawning marine fish as nutrient vectors to freshwater ecosystems

    Science.gov (United States)

    Macavoy, S. E.; Garman, G. C.

    2006-12-01

    Coastal freshwater streams are typically viewed as conduits for the transport of sediment and nutrients to the coasts. Some coastal streams however experience seasonal migrations of anadromous fish returning to the freshwater to spawn. The fish may be vectors for the delivery of marine nutrients to nutrient poor freshwater in the form of excreted waste and post-spawning carcasses. Nutrients derived from marine sources are 13C, 15N and 34S enriched relative to nutrients in freshwater. Here we examine sediment, particulate organic matter (POM), invertebrates and fish in two tidal freshwater tributaries of the James River USA. The d15N of POM became elevated (from 3.8 to 6.5%), coincident with the arrival of anadromous river herring (Alosa sp), indicating a pulse of marine nitrogen. However, the elevated 15N was not observed in sediment samples or among invertebrates, which did not experience a seasonal isotopic shift (there were significant differences however among the guilds of invertebrate). Anadromous Alosa aestivalis captured within the tidal freshwater were 13C and 34S enriched (-19.3 and 17.2%, respectively) relative to resident freshwater fishes (-26.4 and 3.6% respectively) captured within 2 weeks of the Alosa. Although it is likely that marine derived nitrogen was detected in the tidal freshwater, it was not in sufficient abundance to change the isotope signature of most ecosystem components.

  13. Protein Redox Dynamics During Light-to-Dark Transitions in Cyanobacteria and Impacts Due to Nutrient Limitation

    Directory of Open Access Journals (Sweden)

    Aaron T Wright

    2014-07-01

    Full Text Available Protein redox chemistry constitutes a major void in knowledge pertaining to photoautotrophic system regulation and signaling processes. We have employed a chemical biology approach to analyze redox sensitive proteins in live Synechococcus sp. PCC 7002 cells in both light and dark periods, and to understand how cellular redox balance is disrupted during nutrient perturbation. The present work identified 300 putative redox-sensitive proteins that are involved in the generation of reductant, macromolecule synthesis, and carbon flux through central metabolic pathways, and may be involved in cell signaling and response mechanisms. Furthermore, our research suggests that dynamic redox changes in response to specific nutrient limitations, including carbon and nitrogen limitations, contribute to the regulatory changes driven by a shift from light to dark. Taken together, these results contribute to a high-level understanding of post-translational mechanisms regulating flux distributions and suggest potential metabolic engineering targets for redirecting carbon towards biofuel precursors.

  14. Nutrients and Hydrology Indicate the Driving Mechanisms of Peatland Surface Patterning

    NARCIS (Netherlands)

    Eppinga, M.B.; Ruiter, de P.C.; Wassen, M.J.; Rietkerk, M.

    2009-01-01

    Peatland surface patterning motivates studies that identify underlying structuring mechanisms. Theoretical studies so far suggest that different mechanisms may drive similar types of patterning. The long time span associated with peatland surface pattern formation, however, limits possibilities for

  15. Box Model of Freshwater, Salinity and Nutrient in the Delta Mahakam, East Kalimantan

    Directory of Open Access Journals (Sweden)

    Marojahan Simanjuntak

    2011-04-01

    Full Text Available Box Model of Freshwater, Salinity and Nutrient in the Delta Mahakam, East Kalimantan. Research has been conducted in the southern part of the Mahakam Delta, East Kalimantan. Method of measuring temperature, salinity, light transmission and turbidity by using CTD model 603 SBE and current measurement and bathymetry by using ADCP model RDI. Measurement parameters on the nutrient chemistry are based of water samples taken using Nansen bottles from two depths. The purpose of this study to determine the mechanism of freshwater, salinity and nutrient transport from the land of the Mahakam River which interact with seawater by using box models. The results illustrate that the vertical distribution of salinity in the Mahakam Delta has obtained a high stratification, where the freshwater salinity 12.30 psu at the surface of a river flowing toward the sea, and seawater of high salinity 30.07 psu flowing in the direction river under the surface that are separated by a layer of mixture. Freshwater budget of the sea (VSurf obtained for 0,0306 x 109 m3 day-1, and the sea water salinity budget is going into the bottom layer system (VDeep.SOcn-d obtained for 20,727 x 109 psu day-1. While time dilution (Syst obtained for 0.245 day-1 or 5.87 hours. Nutrient budget in the surface layer obtained by the system is autotrophic while in layers near the bottom tend to be heterotrophic

  16. Nutrient sensing via mTOR in T cells maintains a tolerogenic microenvironment

    Directory of Open Access Journals (Sweden)

    Duncan eHowie

    2014-08-01

    Full Text Available We have proposed that tolerance can be maintained by the induction, by Treg cells, of a tolerogenic microenvironment within tolerated tissues that inhibits effector cell activity but which supports the generation of further Treg cells by infectious tolerance. Two important components of this tolerogenic microenvironment depend on metabolism and nutrient sensing. The first is due to the up-regulation of multiple enzymes that consume essential amino acids (EAAs, which are sensed in naive T cells primarily via inhibition of the mTOR pathway, which in turn encourages their further differentiation into foxp3+ Treg cells. The second mechanism is the metabolism of extracellular ATP to adenosine by the ectoenzymes CD39 and CD73. These two enzymes are constitutively co-expressed on Treg cells, but can also be induced on a wide variety of cell types by TGFbeta and the adenosine generated can be shown to be a potent inhibitor of T cell proliferation. This review will focus on mechanisms of nutrient sensing in T cells, how these are integrated with TCR and cytokine signals via the mnTOR pathway, and what impact this has on intracellular metabolism and subsequently the control of differentiation into different effector or regulatory T cell subsets.

  17. Modeling investigation of the nutrient and phytoplankton variability in the Chesapeake Bay outflow plume

    Science.gov (United States)

    Jiang, Long; Xia, Meng

    2018-03-01

    The Chesapeake Bay outflow plume (CBOP) is the mixing zone between Chesapeake Bay and less eutrophic continental shelf waters. Variations in phytoplankton distribution in the CBOP are critical to the fish nursery habitat quality and ecosystem health; thus, an existing hydrodynamic-biogeochemical model for the bay and the adjacent coastal ocean was applied to understand the nutrient and phytoplankton variability in the plume and the dominant environmental drivers. The simulated nutrient and chlorophyll a distribution agreed well with field data and real-time satellite imagery. Based on the model calculation, the net dissolved inorganic nitrogen (DIN) and phosphorus (DIP) flux at the bay mouth was seaward and landward during 2003-2012, respectively. The CBOP was mostly nitrogen-limited because of the relatively low estuarine DIN export. The highest simulated phytoplankton biomass generally occurred in spring in the near field of the plume. Streamflow variations could regulate the estuarine residence time, and thus modulate nutrient export and phytoplankton biomass in the plume area; in comparison, changing nutrient loading with fixed streamflow had a less extensive impact, especially in the offshore and far-field regions. Correlation analyses and numerical experiments revealed that southerly winds on the shelf were effective in promoting the offshore plume expansion and phytoplankton accumulation. Climate change including precipitation and wind pattern shifts is likely to complicate the driving mechanisms of phytoplankton variability in the plume region.

  18. Nutrient cycling in a RRIM 600 clone rubber plantation

    Directory of Open Access Journals (Sweden)

    Murbach Marcos Roberto

    2003-01-01

    Full Text Available Few reports have been presented on nutrient cycling in rubber tree plantations (Hevea brasiliensis Muell. Arg.. This experiment was carried out to evaluate: the effect of K rates on the amount of nutrients transfered to the soil in a 13-year old Hevea brasilensis RRIM 600 clone plantation, nutrient retranslocation from the leaves before falling to the soil, and nutrient loss by dry rubber export. The experiment started in 1998 and potassium was applied at the rates of 0, 40, 80 and 160 kg ha-1 of K2O under the crowns of 40 rubber trees of each plot. Literfall collectors, five per plot, were randomly distributed within the plots under the trees. The accumulated literfall was collected monthly during one year. The coagulated rubber latex from each plot was weighed, and samples were analyzed for nutrient content. Increasing K fertilization rates also increased the K content in leaf literfall. Calcium and N were the most recycled leaf nutrients to the soil via litterfall. Potassium, followed by P were the nutrients with the highest retranslocation rates. Potassium was the most exported nutrient by the harvested rubber, and this amount was higher than that transfered to the soil by the leaf literfall.

  19. SUBMERGED MACROPHYTE EFFECTS ON NUTRIENT EXCHANGES IN RIVERINE SEDIMENTS

    Science.gov (United States)

    Submersed macrophytes are important in nutrient cycling in marine and lacustrine systems, although their role in nutrient exchange in tidally-influenced riverine systems is not well studied. In the laboratory, plants significantly lowered porewater nutrient pools of riverine sedi...

  20. Modelling live forensic acquisition

    CSIR Research Space (South Africa)

    Grobler, MM

    2009-06-01

    Full Text Available This paper discusses the development of a South African model for Live Forensic Acquisition - Liforac. The Liforac model is a comprehensive model that presents a range of aspects related to Live Forensic Acquisition. The model provides forensic...

  1. Role of fetal nutrient restriction and postnatal catch-up growth on structural and mechanical alterations of rat aorta.

    Science.gov (United States)

    Gutiérrez-Arzapalo, Perla Y; Rodríguez-Rodríguez, Pilar; Ramiro-Cortijo, David; López de Pablo, Ángel L; López-Giménez, María Rosario; Condezo-Hoyos, Luis; Greenwald, Stephen E; González, Maria Del Carmen; Arribas, Silvia M

    2017-12-26

    Intrauterine growth restriction (IUGR), induced by maternal undernutrition, leads to impaired aortic development. This is followed by hypertrophic remodelling associated with accelerated growth during lactation. Fetal nutrient restriction is associated with increased aortic compliance at birth and at weaning, but not in adult animals. This mechanical alteration may be related to a decreased perinatal collagen deposition. Aortic elastin scaffolds purified from young male and female IUGR animals also exhibit increased compliance, only maintained in adult IUGR females. These mechanical alterations may be related to differences in elastin deposition and remodelling. Fetal undernutrition induces similar aortic structural and mechanical alterations in young male and female rats. Our data argue against an early mechanical cause for the sex differences in hypertension development induced by maternal undernutrition. However, the larger compliance of elastin in adult IUGR females may contribute to the maintenance of a normal blood pressure level. Fetal undernutrition programmes hypertension development, males being more susceptible. Deficient fetal elastogenesis and vascular growth is a possible mechanism. We investigated the role of aortic mechanical alterations in a rat model of hypertension programming, evaluating changes at birth, weaning and adulthood. Dams were fed ad libitum (Control) or 50% of control intake during the second half of gestation (maternal undernutrition, MUN). Offspring aged 3 days, 21 days and 6 months were studied. Blood pressure was evaluated in vivo. In the thoracic aorta we assessed gross structure, mechanical properties (intact and purified elastin), collagen and elastin content and internal elastic lamina (IEL) organization. Only adult MUN males developed hypertension (systolic blood pressure: MUN males  = 176.6 ± 5.6 mmHg; Control males  = 136.1 ± 4.9 mmHg). At birth MUN rats were lighter, with smaller aortic cross-sectional area

  2. Industry Relatedness and Post-Acquisition Innovative Performance

    DEFF Research Database (Denmark)

    Cefis, Elena; Marsili, Orietta; Rigamonti, Damiana

    2015-01-01

    This paper examines how characteristics of acquiring and acquired firms influence the curvilinear (inverted U-shaped) relationship between relatedness and post-acquisition innovative performance. Using a relatedness index based on industry co-occurrence in a sample of 1,736 Dutch acquisitions, we...... find that acquirer's internal R&D and acquisition experience, and the small size of acquired firms, help to reach a balance between exploration of novelty and exploitation of synergies in unrelated acquisitions, and to achieve higher post-acquisition performance. However, while the acquirer's R......&D increases flexibility in the acquisition process in presence of deviations from the optimal level of relatedness, acquisition experience may enhance rigidities....

  3. Nutrients for the aging eye

    Directory of Open Access Journals (Sweden)

    Rasmussen HM

    2013-06-01

    Full Text Available Helen M Rasmussen,1 Elizabeth J Johnson2 1Educational Studies, Lesley University, Cambridge, MA, USA; 2Carotenoid and Health Laboratory, Jean Mayer US Department of Agriculture Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA Abstract: The incidence of age-related eye diseases is expected to rise with the aging of the population. Oxidation and inflammation are implicated in the etiology of these diseases. There is evidence that dietary antioxidants and anti-inflammatories may provide benefit in decreasing the risk of age-related eye disease. Nutrients of interest are vitamins C and E, β-carotene, zinc, lutein, zeaxanthin, and the omega-3 fatty acids eicosapentaenoic acid and docosahexaenoic acid. While a recent survey finds that among the baby boomers (45–65 years old, vision is the most important of the five senses, well over half of those surveyed were not aware of the important nutrients that play a key role in eye health. This is evident from a national survey that finds that intake of these key nutrients from dietary sources is below the recommendations or guidelines. Therefore, it is important to educate this population and to create an awareness of the nutrients and foods of particular interest in the prevention of age-related eye disease. Keywords: nutrition, aging, eye health

  4. Production, partitioning and stoichiometry of organic matter under variable nutrient supply during mesocosm experiments in the tropical Pacific and Atlantic Ocean

    Directory of Open Access Journals (Sweden)

    J. M. S. Franz

    2012-11-01

    Full Text Available Oxygen-deficient waters in the ocean, generally referred to as oxygen minimum zones (OMZ, are expected to expand as a consequence of global climate change. Poor oxygenation is promoting microbial loss of inorganic nitrogen (N and increasing release of sediment-bound phosphate (P into the water column. These intermediate water masses, nutrient-loaded but with an N deficit relative to the canonical N:P Redfield ratio of 16:1, are transported via coastal upwelling into the euphotic zone. To test the impact of nutrient supply and nutrient stoichiometry on production, partitioning and elemental composition of dissolved (DOC, DON, DOP and particulate (POC, PON, POP organic matter, three nutrient enrichment experiments were conducted with natural microbial communities in shipboard mesocosms, during research cruises in the tropical waters of the southeast Pacific and the northeast Atlantic. Maximum accumulation of POC and PON was observed under high N supply conditions, indicating that primary production was controlled by N availability. The stoichiometry of microbial biomass was unaffected by nutrient N:P supply during exponential growth under nutrient saturation, while it was highly variable under conditions of nutrient limitation and closely correlated to the N:P supply ratio, although PON:POP of accumulated biomass generally exceeded the supply ratio. Microbial N:P composition was constrained by a general lower limit of 5:1. Channelling of assimilated P into DOP appears to be the mechanism responsible for the consistent offset of cellular stoichiometry relative to inorganic nutrient supply and nutrient drawdown, as DOP build-up was observed to intensify under decreasing N:P supply. Low nutrient N:P conditions in coastal upwelling areas overlying O2-deficient waters seem to represent a net source for DOP, which may stimulate growth of diazotrophic phytoplankton. These results demonstrate that microbial nutrient assimilation and

  5. Nutritional status as assessed by nutrient intakes and biomarkers among women of childbearing age--is the burden of nutrient inadequacies growing in America?

    Science.gov (United States)

    Rai, Deshanie; Bird, Julia K; McBurney, Michael I; Chapman-Novakofski, Karen M

    2015-06-01

    Understanding nutrient intakes among women of childbearing age within the USA is important given the accumulating evidence that maternal body weight gain and nutrient intakes prior to pregnancy may influence the health and well-being of the offspring. The objective of the present study was to evaluate nutritional status in women of childbearing age and to ascertain the influence of ethnicity and income on nutrient intakes. Nutritional status was assessed using data on nutrient intakes through foods and supplements from the National Health and Nutrition Examination Survey. Biomarker data from the Centers for Disease Control and Prevention were used to assess nutritional status for selected nutrients. Poverty-income ratio was used to assess family income. White (n 1560), African-American (n 889) and Mexican-American (n 761) women aged 19-30 and 31-50 years were included. A nationally representative sample of non-pregnant women of childbearing age resident in the USA. African-American women had the lowest intakes of fibre, folate, riboflavin, P, K, Ca and Mg. Women (31-50 years) with a poverty-income ratio of ≤ 1.85 had significantly lower intakes of almost all nutrients analysed. Irrespective of ethnicity and income, a significant percentage of women were not consuming the estimated recommended amounts (Estimated Average Requirement) of several key nutrients: vitamin A (~80%), vitamin D (~78%) and fibre (~92%). Nutrient biomarker data were generally reflective of nutrient intake patterns among the different ethnic groups. Women of childbearing age in the USA are not meeting nutrient intake guidelines, with differences between ethnic groups and socio-economic strata. These factors should be considered when establishing nutrition science advocacy and policy.

  6. Assessing Nutrient Intake and Nutrient Status of HIV Seropositive Patients Attending Clinic at Chulaimbo Sub-District Hospital, Kenya

    Directory of Open Access Journals (Sweden)

    Agatha Christine Onyango

    2012-01-01

    Full Text Available Background. Nutritional status is an important determinant of HIV outcomes. Objective. To assess the nutrient intake and nutrient status of HIV seropositive patients attending an AIDS outpatient clinic, to improve the nutritional management of HIV-infected patients. Design. Prospective cohort study. Setting. Comprehensive care clinic in Chulaimbo Sub-District Hospital, Kenya. Subjects. 497 HIV sero-positive adults attending the clinic. Main Outcome Measures. Evaluation of nutrient intake using 24-hour recall, food frequency checklist, and nutrient status using biochemical assessment indicators (haemoglobin, creatinine, serum glutamate pyruvate (SGPT and mean corpuscular volume (MCV. Results. Among the 497 patients recruited (M : F sex ratio: 1.4, mean age: 39 years ± 10.5 y, Generally there was inadequate nutrient intake reported among the HIV patients, except iron (10.49 ± 3.49 mg. All the biochemical assessment indicators were within normal range except for haemoglobin 11.2 g/dL (11.4 ± 2.60 male and 11.2 ± 4.25 female. Conclusions. Given its high frequency, malnutrition should be prevented, detected, monitored, and treated from the early stages of HIV infection among patients attending AIDS clinics in order to improve survival and quality of life.

  7. Value Creation through Acquisition Strategy: A Study of Volvo’s Acquisition by Geely

    Directory of Open Access Journals (Sweden)

    Yane Chandera

    2012-04-01

    Full Text Available This paper examines the value creation on the acquisition of Volvo Car Corp by Zhejiang Geely Holding Group. The acquisition of Volvo by Geely became an interesting topic to discuss since it was the first time in automotive industry that a Chinese company acquired an international company with a considerably high transaction amount. The paper examines the short term value creation using event study to calculate abnormal returns of each company’s stock during the announcement period and measuring the significance of the cumulative abnormal return. The findings are consistent with previous studies over the years which have shown that most acquisitions fail to add value for shareholders in the acquiring company. The paper discusses the broad managerial implications of the findings this paper discussion on marketing aspect after the acquisition by integrating two different brand perceptions.

  8. Value Creation through Acquisition Strategy: A Study of Volvo’s Acquisition by Geely

    Directory of Open Access Journals (Sweden)

    Yane Chandera

    2012-08-01

    Full Text Available This paper examines the value creation on the acquisition of Volvo Car Corp by Zhejiang Geely Holding Group. The acquisition of Volvo by Geely became an interesting topic to discuss since it was the first time in automotive industry that a Chinese company acquired an international company with a considerably high transaction amount. The paper examines the short term value creation using event study to calculate abnormal returns of each company’s stock during the announcement period and measuring the significance of the cumulative abnormal return. The findings are consistent with previous studies over the years which have shown that most acquisitions fail to add value for shareholders in the acquiring company. The paper discusses the broad managerial implications of the findings this paper discussion on marketing aspect after the acquisition by integrating two different brand perceptions.

  9. Effectiveness of flavour nutrient learning and mere exposure as mechanisms to increase toddler's intake and preference for green vegetables

    NARCIS (Netherlands)

    Wild, de V.W.T.; Graaf, de C.; Jager, G.

    2013-01-01

    Children’s consumption of vegetables is still below recommendations. Since preference is the most important predictor of children’s intake and most children dislike vegetables, new strategies are needed to increase their preferences for vegetables. Flavour nutrient learning (FNL) could be an

  10. Nutrient-rich foods in relation to various measures of anthropometry

    NARCIS (Netherlands)

    Streppel, M.T.; Groot, de C.P.G.M.; Feskens, E.J.M.

    2012-01-01

    Background. Nutrient quality systems, for example the nutrient-rich foods (NRF) index, measure the nutrient quality of individual foods and may be used to assess the nutrient density of the overall diet. It is not yet known whether the NRF index is helpful in weight management. We hypothesize that a

  11. Strategic nutrient management of field pea in southwestern Uganda ...

    African Journals Online (AJOL)

    Strategic nutrient management of field pea in southwestern Uganda. ... African Journal of Food, Agriculture, Nutrition and Development ... Strategic nutrient management requires that the most limiting nutrient is known in order to provide a foundation for designing effective and sustainable soil fertility management ...

  12. PRECIPITAÇÃO E APORTE DE NUTRIENTES EM DIFERENTES ESTÁDIOS SUCESSIONAIS DE FLORESTA ATLÂNTICA, PINHEIRAL - RJ

    Directory of Open Access Journals (Sweden)

    Anderson Ribeiro Diniz

    2013-01-01

    Full Text Available Forest cover has importance within the context of the water balance of a particular site and may alter the mechanism of entry of water and nutrients to the soil surface. The aim of this study was to quantify the net precipitation, interception, addition of nutrients in throughfall and stem flow in a forest in different stages of regeneration of Mata Atlântica: early-stage secondary forest (ESSF, intermediary stage secondary forest (ISSF and advanced stage secondary forest (AESF. The study was conducted in Pinheiral, Rio de Janeiro state. The data collection was performed during the period of April 2009 to March 2010. The values of incident precipitation, effective precipitation and interception were similar among the three stages evaluated. The AESF area showed higher values of Mg and P in the addition of nutrients from throughfall compared with other areas assessed. The pH of the precipitation incident did not differ among areas, but was higher than the pH of rainfall. The three areas evaluated showed no difference in the addition of nutrients to flow through the trunk. The AESF area showed a trend of higher levels of addition of nutrients from throughfall precipitation and runoff from stemflow.

  13. Control and data acquisition system for the macromolecular crystallography beamline of SSRF

    International Nuclear Information System (INIS)

    Wang Qisheng; Huang Sheng; Sun Bo; Tang Lin; He Jianhua

    2012-01-01

    The macromolecular crystallography beamline BL17U1 of Shanghai Synchrotron Radiation Facility (SSRF) is an important platform for structure biological science. High performance of the beamline would benefit the users greatly in their experiment and data acquisition. To take full advantage of the state-of-the-art mechanical and physical design of the beamline, we have made a series of efforts to develop a robust control and data acquisition system, with user-friendly GUI. These were done by adopting EPICS and Blu-Ice systems on the BL17U1 beamline, with considerations on easy accommodation of new beeline components. In this paper, we report the integration of EPICS and Blu-Ice systems. By using the EPICS gateway interface and several new DHS, Blu-Ice was successfully established for the BL17U1 beamline. As a result, the experiment control and data acquisition system is reliable and functional for users. (authors)

  14. Effects of mineral nutrients on ozone susceptibility of Lemna minor

    Energy Technology Data Exchange (ETDEWEB)

    Craker, L E

    1971-01-01

    Susceptibility of Lemna minor L. to ozone injury was influenced by the mineral nutrients available to the Lemna plants. Additional nitrogen or additional iron in the nutrient media respectively enhanced or reduced chlorophyll loss of Lemna plants fumigated with ozone. Lemna plants growing on a nutrient medium lacking copper had significantly less injury from ozone fumigation than Lemna plants growing on a complete nutrient medium. There were apparent interactions among phosphorus and potassium nutrient levels in determing the Lemna plant's susceptibility to ozone.

  15. Nutrient Limitation in Central Red Sea Mangroves

    KAUST Repository

    Almahasheer, Hanan; Duarte, Carlos M.; Irigoien, Xabier

    2016-01-01

    Red Sea have characteristic heights of ~2 m, suggesting nutrient limitation. We assessed the nutrient status of mangrove stands in the Central Red Sea and conducted a fertilization experiment (N, P and Fe and various combinations thereof) on 4-week

  16. Development of an epiphyte indicator of nutrient enrichment. A ...

    Science.gov (United States)

    An extensive review of the literature on epiphytes on submerged aquatic vegetation (SAV), primarily seagrasses but including some brackish and freshwater rooted macrophytes, was conducted in order to evaluate the evidence for response of epiphyte metrics to increased nutrients. Evidence from field observational studies together with laboratory and field mesocosm experiments was assembled from the literature and evaluated for evidence of a hypothesized positive response to nutrient addition. There was general consistency in the results to confirm that elevated nutrients tended to increase the load of epiphytes on the surface of SAV, in the absence of other limiting factors. In spite of multiple sources of uncontrolled variation, positive relationships of epiphyte load to nutrient concentration or load (either N or P) were often observed along strong anthropogenic or natural nutrient gradients in coastal regions, although response patterns may only be evident for parts of the year. Mesocosm nutrient studies tended to be more common for temperate regions and field addition studies more common for tropical and subtropical regions. Addition of nutrients via the water column tended to elicit stronger epiphyte responses than sediment additions, and may be a factor in the lack of epiphyte response reported in some studies. Mesograzer activity is a critical covariate for epiphyte response under experimental nutrient elevation, but the epiphyte response is highly de

  17. Including spatial data in nutrient balance modelling on dairy farms

    Science.gov (United States)

    van Leeuwen, Maricke; van Middelaar, Corina; Stoof, Cathelijne; Oenema, Jouke; Stoorvogel, Jetse; de Boer, Imke

    2017-04-01

    The Annual Nutrient Cycle Assessment (ANCA) calculates the nitrogen (N) and phosphorus (P) balance at a dairy farm, while taking into account the subsequent nutrient cycles of the herd, manure, soil and crop components. Since January 2016, Dutch dairy farmers are required to use ANCA in order to increase understanding of nutrient flows and to minimize nutrient losses to the environment. A nutrient balance calculates the difference between nutrient inputs and outputs. Nutrients enter the farm via purchased feed, fertilizers, deposition and fixation by legumes (nitrogen), and leave the farm via milk, livestock, manure, and roughages. A positive balance indicates to which extent N and/or P are lost to the environment via gaseous emissions (N), leaching, run-off and accumulation in soil. A negative balance indicates that N and/or P are depleted from soil. ANCA was designed to calculate average nutrient flows on farm level (for the herd, manure, soil and crop components). ANCA was not designed to perform calculations of nutrient flows at the field level, as it uses averaged nutrient inputs and outputs across all fields, and it does not include field specific soil characteristics. Land management decisions, however, such as the level of N and P application, are typically taken at the field level given the specific crop and soil characteristics. Therefore the information that ANCA provides is likely not sufficient to support farmers' decisions on land management to minimize nutrient losses to the environment. This is particularly a problem when land management and soils vary between fields. For an accurate estimate of nutrient flows in a given farming system that can be used to optimize land management, the spatial scale of nutrient inputs and outputs (and thus the effect of land management and soil variation) could be essential. Our aim was to determine the effect of the spatial scale of nutrient inputs and outputs on modelled nutrient flows and nutrient use efficiencies

  18. Closed-Cycle Nutrient Supply For Hydroponics

    Science.gov (United States)

    Schwartzkopf, Steven H.

    1991-01-01

    Hydroponic system controls composition and feed rate of nutrient solution and recovers and recycles excess solution. Uses air pressure on bladders to transfer aqueous nutrient solution. Measures and adjusts composition of solution before it goes to hydroponic chamber. Eventually returns excess solution to one of tanks. Designed to operate in microgravity, also adaptable to hydroponic plant-growing systems on Earth.

  19. Arbuscular Mycorrhizal Fungi Negatively Affect Nitrogen Acquisition and Grain Yield of Maize in a N Deficient Soil.

    Science.gov (United States)

    Wang, Xin-Xin; Wang, Xiaojing; Sun, Yu; Cheng, Yang; Liu, Shitong; Chen, Xinping; Feng, Gu; Kuyper, Thomas W

    2018-01-01

    Arbuscular mycorrhizal fungi (AMF) play a crucial role in enhancing the acquisition of immobile nutrients, particularly phosphorus. However, because nitrogen (N) is more mobile in the soil solution and easier to access by plants roots, the role of AMF in enhancing N acquisition is regarded as less important for host plants. Because AMF have a substantial N demand, competition for N between AMF and plants particularly under low N condition is possible. Thus, it is necessary to know whether or not AMF affect N uptake of plants and thereby affect plant growth under field conditions. We conducted a 2-year field trial and pot experiments in a greenhouse by using benomyl to suppress colonization of maize roots by indigenous AMF at both low and high N application rates. Benomyl reduced mycorrhizal colonization of maize plants in all experiments. Benomyl-treated maize had a higher shoot N concentration and content and produced more grain under field conditions. Greenhouse pot experiments showed that benomyl also enhanced maize growth and N concentration and N content when the soil was not sterilized, but had no effect on maize biomass and N content when the soil was sterilized but a microbial wash added, providing evidence that increased plant performance is at least partly caused by direct effects of benomyl on AMF. We conclude that AMF can reduce N acquisition and thereby reduce grain yield of maize in N-limiting soils.

  20. Simultaneous biological nutrient removal: evaluation of autotrophic denitrification, heterotrophic nitrification, and biological phosphorus removal in full-scale systems.

    Science.gov (United States)

    Littleton, Helen X; Daigger, Glen T; Strom, Peter F; Cowan, Robert A

    2003-01-01

    Simultaneous biological nutrient removal (SBNR) is the biological removal of nitrogen and phosphorus in excess of that required for biomass synthesis in a biological wastewater treatment system without defined anaerobic or anoxic zones. Evidence is growing that significant SBNR can occur in many systems, including the aerobic zone of systems already configured for biological nutrient removal. Although SBNR systems offer several potential advantages, they cannot be fully realized until the mechanisms responsible for SBNR are better understood. Consequently, a research program was initiated with the basic hypothesis that three mechanisms might be responsible for SBNR: the reactor macroenvironment, the floc microenvironment, and novel microorganisms. Previously, the nutrient removal capabilities of seven full-scale, staged, closed-loop bioreactors known as Orbal oxidation ditches were evaluated. Chemical analysis and microbiological observations suggested that SBNR occurred in these systems. Three of these plants were further examined in this research to evaluate the importance of novel microorganisms, especially for nitrogen removal. A screening tool was developed to determine the relative significance of the activities of microorganisms capable of autotrophic denitrification and heterotrophic nitrification-aerobic denitrification in biological nutrient removal systems. The results indicated that novel microorganisms were not substantial contributors to SBNR in the plants studied. Phosphorus metabolism (anaerobic release, aerobic uptake) was also tested in one of the plants. Activity within the mixed liquor that was consistent with current theories for phosphorus-accumulating organisms (PAOs) was observed. Along with other observations, this suggests the presence of PAOs in the facilities studied.

  1. Novel insight into the process of nutrients removal using an algal biofilm: The evaluation of mechanism and efficiency

    Czech Academy of Sciences Publication Activity Database

    Sukačová, Kateřina; Kočí, R.; Žídková, Milena; Vítěz, T.; Trtílek, M.

    2017-01-01

    Roč. 19, č. 10 (2017), s. 909-914 ISSN 1522-6514 R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:67179843 Keywords : microalgal biofilm * nutrients removal * X-ray diffraction analyses * wastewater treatment Subject RIV: EH - Ecology, Behaviour OBOR OECD: Environmental sciences (social aspects to be 5.7) Impact factor: 1.770, year: 2016

  2. Sugar sensing by ChREBP/Mondo-Mlx-new insight into downstream regulatory networks and integration of nutrient-derived signals.

    Science.gov (United States)

    Havula, Essi; Hietakangas, Ville

    2018-04-01

    Animals regulate their physiology with respect to nutrient status, which requires nutrient sensing pathways. Simple carbohydrates, sugars, are sensed by the basic-helix-loop-helix leucine zipper transcription factors ChREBP/Mondo, together with their heterodimerization partner Mlx, which are well-established activators of sugar-induced lipogenesis. Loss of ChREBP/Mondo-Mlx in mouse and Drosophila leads to sugar intolerance, that is, inability to survive on sugar containing diet. Recent evidence has revealed that ChREBP/Mondo-Mlx responds to sugar and fatty acid-derived metabolites through several mechanisms and cross-connects with other nutrient sensing pathways. ChREBP/Mondo-Mlx controls several downstream transcription factors and hormones, which mediate not only readjustment of metabolic pathways, but also control feeding behavior, intestinal digestion, and circadian rhythm. Copyright © 2017. Published by Elsevier Ltd.

  3. CADDIS Volume 2. Sources, Stressors and Responses: Nutrients - Detailed Conceptual Diagram (P)

    Science.gov (United States)

    Introduction to the nutrients module, when to list nutrients as a candidate cause, ways to measure nutrients, simple and detailed conceptual diagrams for nutrients, nutrients module references and literature reviews.

  4. CADDIS Volume 2. Sources, Stressors and Responses: Nutrients - Detailed Conceptual Diagram (N)

    Science.gov (United States)

    Introduction to the nutrients module, when to list nutrients as a candidate cause, ways to measure nutrients, simple and detailed conceptual diagrams for nutrients, nutrients module references and literature reviews.

  5. Patterns of nutrient utilization. Implications for nitrogen metabolism

    International Nuclear Information System (INIS)

    Oldham, J.D.

    1983-01-01

    Nutrients react within both the rumen and the ruminant body, and the patterns of availability of different nutrients greatly influence their net utilization. In the rumen, microbial capture of N substrates, especially ammonia, depends on the degree of synchronization between rates of production of N substrates and of ATP to drive microbial protein synthesis. The form of dietary carbohydrate and of dietary N and the frequency of feeding can all affect the efficiency of microbial growth and digestion. The pattern of supply of nutrients to the body will also influence nutrient utilization. Disparities between diurnal patterns of supply of volatile fatty acids from the rumen and amino acids from the intestines will result in changes in balance of metabolic pathways. The balance between supply of glucogenic and lipogenic nutrients will influence efficiency of fattening. A major factor determining the pattern of utilization/metabolism of amino acids is the metabolic demand for protein synthesis, which varies with physiological state. (author)

  6. Effects of mineral nutrients on ozone susceptibility of Lemna minor

    Energy Technology Data Exchange (ETDEWEB)

    Craker, L.E.

    1971-01-01

    Susceptibility of Lemna minor L. to ozone injury was influenced by the mineral nutrients available to the Lemna plants. Additional nitrogen or additional iron in the nutrient media respectively enhanced or reduced chlorophyll loss of Lemna plants fumigated with ozone. Lemna plants growing on a nutrient medium lacking copper had significantly less injury from ozone fumigation than Lemna plants growing on a complete nutrient medium. There were apparent interactions among phosphorus and potassium nutrient levels in determing the Lemna plant's susceptibility to ozone.

  7. Nutrient Intake among Pregnant Teenage Girls Attending Ante-Natal ...

    African Journals Online (AJOL)

    A standardised interviewer administered Food Frequency Questionnaire was used to asses the dietary intake. Nutrient calculator was used to determine the nutrient intake of the study participant. Results: The intakes of all selected nutrients were significantly lower than the RDA. Protein intake was significantly associated ...

  8. Nutrients and antinutrients composition of raw, cooked and sun ...

    African Journals Online (AJOL)

    Nutrients and antinutrients composition of raw, cooked and sun-dried sweet potato leaves. ... African Journal of Food, Agriculture, Nutrition and Development ... This study aimed to determine nutrient (iron, calcium, vitamin A and ascorbic acid) and anti-nutrient (oxalates and polyphenols) contents in raw, cooked and dried ...

  9. stream nutrient uptake, forest succession, and biogeochemical theory

    OpenAIRE

    Valett, H. M.; Crenshaw, C. L.; Wagner, P. F.

    2002-01-01

    Theories of forest succession predict a close relationship between net biomass increment and catchment nutrient retention. Retention, therefore, is expected to be greatest during aggrading phases of forest succession. In general, studies of this type have compared watershed retention efficiency by monitoring stream nutrient export at the base of the catchment. As such, streams are viewed only as transport systems. Contrary to this view, the nutrient spiraling concept emphasizes transformation...

  10. Heterogeneity and loss of soil nutrient elements under aeolian processes in the Otindag Desert, China

    Science.gov (United States)

    Li, Danfeng; Wang, Xunming; Lou, Junpeng; Liu, Wenbin; Li, Hui; Ma, Wenyong; Jiao, Linlin

    2018-02-01

    The heterogeneity of the composition of surface soils that are affected by aeolian processes plays important roles in ecological evolution and the occurrence of aeolian desertification in fragile ecological zones, but the associated mechanisms are poorly understood. Using field investigation, wind tunnel experiments, and particle size and element analyses, we discuss the variation in the nutrient elements of surface soils that forms in the presence of aeolian processes of four vegetation species (Caragana microphylla Lam, Artemisia frigida Willd. Sp. Pl., Leymus chinensis (Trin.) Tzvel. and Stipa grandis P. Smirn) growing in the Otindag Desert, China. These four vegetation communities correspond to increasing degrees of degradation. A total of 40 macro elements, trace elements, and oxides were measured in the surface soil and in wind-transported samples. The results showed that under the different degradation stages, the compositions and concentrations of nutrients in surface soils differed for the four vegetation species. Aeolian processes may cause higher heterogeneity and higher loss of soil nutrient elements for the communities of Artemisia frigida Willd. Sp. Pl., Leymus chinensis (Trin.) Tzvel, and Stipa grandis P. Smirn than for the Caragana microphylla Lam community. There was remarkable variation in the loss of nutrients under different aeolian transportation processes. Over the past several decades, the highest loss of soil elements occurred in the 1970s, whereas the loss from 2011 to the present was generally 4.0% of that in the 1970s. These results indicate that the evident decrease in nutrient loss has played an important role in the rehabilitation that has occurred in the region recently.

  11. Periphytic biofilms: A promising nutrient utilization regulator in wetlands.

    Science.gov (United States)

    Wu, Yonghong; Liu, Junzhuo; Rene, Eldon R

    2018-01-01

    Low nutrient utilization efficiency in agricultural ecosystems is the main cause of nonpoint source (NPS) pollution. Therefore, novel approaches should be explored to improve nutrient utilization in these ecosystems. Periphytic biofilms composed of microalgae, bacteria and other microbial organisms are ubiquitous and form a 'third phase' in artificial wetlands such as paddy fields. Periphytic biofilms play critical roles in nutrient transformation between the overlying water and soil/sediment, however, their contributions to nutrient utilization improvement and NPS pollution control have been largely underestimated. This mini review summarizes the contributions of periphytic biofilms to nutrient transformation processes, including assimilating and storing bioavailable nitrogen and phosphorus, fixing nitrogen, and activating occluded phosphorus. Future research should focus on augmenting the nitrogen fixing, phosphate solubilizing and phosphatase producing microorganisms in periphytic biofilms to improve nutrient utilization and thereby reduce NPS pollution production in artificial and natural wetland ecosystems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Acquisition Workforce Annual Report 2006

    Data.gov (United States)

    General Services Administration — This is the Federal Acquisition Institute's (FAI's) Annual demographic report on the Federal acquisition workforce, showing trends by occupational series, employment...

  13. Acquisition Workforce Annual Report 2008

    Data.gov (United States)

    General Services Administration — This is the Federal Acquisition Institute's (FAI's) Annual demographic report on the Federal acquisition workforce, showing trends by occupational series, employment...

  14. Effects of soil applications of micro-nutrients and chelating agent citric acid on mineral nutrients in soybean seeds

    Science.gov (United States)

    Micro-nutrients deficiency in soil result in crop yield loss and poor seed quality. Correcting this deficiency is normally conducted by foliar or soil application. The objective of this research was to determine the effects of soil applications of five micro-nutrients (Mn, Cu, Zn, Mo, and B) with a ...

  15. A relay network of extracellular heme-binding proteins drives C. albicans iron acquisition from hemoglobin.

    Science.gov (United States)

    Kuznets, Galit; Vigonsky, Elena; Weissman, Ziva; Lalli, Daniela; Gildor, Tsvia; Kauffman, Sarah J; Turano, Paola; Becker, Jeffrey; Lewinson, Oded; Kornitzer, Daniel

    2014-10-01

    Iron scavenging constitutes a crucial challenge for survival of pathogenic microorganisms in the iron-poor host environment. Candida albicans, like many microbial pathogens, is able to utilize iron from hemoglobin, the largest iron pool in the host's body. Rbt5 is an extracellular glycosylphosphatidylinositol (GPI)-anchored heme-binding protein of the CFEM family that facilitates heme-iron uptake by an unknown mechanism. Here, we characterize an additional C. albicans CFEM protein gene, PGA7, deletion of which elicits a more severe heme-iron utilization phenotype than deletion of RBT5. The virulence of the pga7-/- mutant is reduced in a mouse model of systemic infection, consistent with a requirement for heme-iron utilization for C. albicans pathogenicity. The Pga7 and Rbt5 proteins exhibit distinct cell wall attachment, and discrete localization within the cell envelope, with Rbt5 being more exposed than Pga7. Both proteins are shown here to efficiently extract heme from hemoglobin. Surprisingly, while Pga7 has a higher affinity for heme in vitro, we find that heme transfer can occur bi-directionally between Pga7 and Rbt5, supporting a model in which they cooperate in a heme-acquisition relay. Together, our data delineate the roles of Pga7 and Rbt5 in a cell surface protein network that transfers heme from extracellular hemoglobin to the endocytic pathway, and provide a paradigm for how receptors embedded in the cell wall matrix can mediate nutrient uptake across the fungal cell envelope.

  16. Enabling nutrient security and sustainability through systems research.

    Science.gov (United States)

    Kaput, Jim; Kussmann, Martin; Mendoza, Yery; Le Coutre, Ronit; Cooper, Karen; Roulin, Anne

    2015-05-01

    Human and companion animal health depends upon nutritional quality of foods. Seed varieties, seasonal and local growing conditions, transportation, food processing, and storage, and local food customs can influence the nutrient content of food. A new and intensive area of investigation is emerging that recognizes many factors in these agri-food systems that influence the maintenance of nutrient quality which is fundamental to ensure nutrient security for world populations. Modeling how these systems function requires data from different sectors including agricultural, environmental, social, and economic, but also must incorporate basic nutrition and other biomedical sciences. Improving the agri-food system through advances in pre- and post-harvest processing methods, biofortification, or fortifying processed foods will aid in targeting nutrition for populations and individuals. The challenge to maintain and improve nutrient quality is magnified by the need to produce food locally and globally in a sustainable and consumer-acceptable manner for current and future populations. An unmet requirement for assessing how to improve nutrient quality, however, is the basic knowledge of how to define health. That is, health cannot be maintained or improved by altering nutrient quality without an adequate definition of what health means for individuals and populations. Defining and measuring health therefore becomes a critical objective for basic nutritional and other biomedical sciences.

  17. Nutrient management for rice production

    International Nuclear Information System (INIS)

    Khan, A.R.; Chandra, D.; Nanda, P.; Singh, S.S.; Singh, S.R.; Ghorai, A.K.

    2002-06-01

    The nutrient removed by the crops far exceeds the amounts replenished through fertilizer, causing a much greater strain on the native soil reserves. The situation is further aggravated in countries like India, where sub-optimal fertilizer used by the farmers is a common phenomenon rather than an exception. The total consumption of nutrients of all crops in India, even though reached 15 million tons in 1997, remains much below the estimated nutrient removal of 25 million tons (Swarup and Goneshamurthy, 1998). The gap between nutrient removal supplied through fertilizer has widened further in 2000 to 34 million tons of plant nutrients from the soil against an estimated fertilizer availability of 18 million tons (Singh and Dwivedi, 1996). Nitrogen is the nutrient which limits the most the rice production worldwide. In Asia, where more than 90 percent of the world's rice is produced, about 60 percent of the N fertilizer consumed is used on rice (Stangel and De Dutta, 1985). Conjunctive use of organic material along with fertilizer has been proved an efficient source of nitrogen. Organic residue recycling is becoming an increasingly important aspect of environmentally sound sustainable agriculture. Returning residues like green manure to the soil is necessary for maintaining soil organic matter, which is important for favourable soil structure, soil water retention and soil microbial flora and fauna activities. Use of organic manures in conjunction or as an alternative to chemical fertilizer is receiving attention. Green manure, addition to some extent, helps not only in enhancing the yield but also in improving the physical and chemical nature of soils. The excessive application of chemical fertilizers made it imperative that a part of inorganic fertilizer may be substituted with the recycling of organic wastes. Organic manure has been recorded to enhance the efficiency and reduce the requirement of chemical fertilizers. Partial nitrogen substitution through organic

  18. Multi spectral scaling data acquisition system

    International Nuclear Information System (INIS)

    Behere, Anita; Patil, R.D.; Ghodgaonkar, M.D.; Gopalakrishnan, K.R.

    1997-01-01

    In nuclear spectroscopy applications, it is often desired to acquire data at high rate with high resolution. With the availability of low cost computers, it is possible to make a powerful data acquisition system with minimum hardware and software development, by designing a PC plug-in acquisition board. But in using the PC processor for data acquisition, the PC can not be used as a multitasking node. Keeping this in view, PC plug-in acquisition boards with on-board processor find tremendous applications. Transputer based data acquisition board has been designed which can be configured as a high count rate pulse height MCA or as a Multi Spectral Scaler. Multi Spectral Scaling (MSS) is a new technique, in which multiple spectra are acquired in small time frames and are then analyzed. This paper describes the details of this multi spectral scaling data acquisition system. 2 figs

  19. Acquisition Research Program Homepage

    OpenAIRE

    2015-01-01

    Includes an image of the main page on this date and compressed file containing additional web pages. Established in 2003, Naval Postgraduate School’s (NPS) Acquisition Research Program provides leadership in innovation, creative problem solving and an ongoing dialogue, contributing to the evolution of Department of Defense acquisition strategies.

  20. Behavior Choice of Technology-motivated Mergers and Acquisitions for Enterprise Innovation Capability Improvement:Analysis Based on Internal Dynamic Mechanism%技术贸易中技术并购对企业创新能力提升的行为选择--基于内部动力机制的分析

    Institute of Scientific and Technical Information of China (English)

    陈磊

    2014-01-01

    论文针对技术并购提升企业创新能力的行为选择进行分析。通过对技术并购内涵的阐述,剖析技术并购的具体内容以及企业技术并购中知识资本互动的层次各维度,并就企业技术并购提升企业创新能力的内部动力机制、外部适用边界与技术并购成长路径选择条件进行深入分析。分别从知识资本的外部累进与更新、知识资本内部协同以及知识型人力资源与组织的动态构建等三方面深入剖析基于知识资本的技术并购内部动力机制,并在此基础上提出技术增强型、互补型与多元型三类技术并购模式,分析技术并购内部动力机制的创新效应。%This paper analyzes the behavior choice of technological merger and acquisition improving enterprise innovation capability. Based on elaboration of the connotation of technological merger and acquisition, this paper analyzes the specific content of technological merger and acquisition and the level of each dimension in technological merger and acquisition. It also analyzes the internal dynamic mechanism and external boundary conditions of technological merger and acquisition improving enterprise innovation capability and the growth path of technological merger and acquisition. The technological merger and acquisition internal dynamic mechanism based on knowledge capital is analyzed from external progression and update, internal coordination and dynamic construction of knowledge-based human resource and organization, and based on this, three technology acquisition modes are put forward namely technical enhancing, complementary and pluralistic to analyze the innovation effect of technological merger and acquisition internal dynamic mechanism.

  1. Nutrient Limitation in Central Red Sea Mangroves

    KAUST Repository

    Almahasheer, Hanan

    2016-12-24

    As coastal plants that can survive in salt water, mangroves play an essential role in large marine ecosystems (LMEs). The Red Sea, where the growth of mangroves is stunted, is one of the least studied LMEs in the world. Mangroves along the Central Red Sea have characteristic heights of ~2 m, suggesting nutrient limitation. We assessed the nutrient status of mangrove stands in the Central Red Sea and conducted a fertilization experiment (N, P and Fe and various combinations thereof) on 4-week-old seedlings of Avicennia marina to identify limiting nutrients and stoichiometric effects. We measured height, number of leaves, number of nodes and root development at different time periods as well as the leaf content of C, N, P, Fe, and Chl a in the experimental seedlings. Height, number of nodes and number of leaves differed significantly among treatments. Iron treatment resulted in significantly taller plants compared with other nutrients, demonstrating that iron is the primary limiting nutrient in the tested mangrove population and confirming Liebig\\'s law of the minimum: iron addition alone yielded results comparable to those using complete fertilizer. This result is consistent with the biogenic nature of the sediments in the Red Sea, which are dominated by carbonates, and the lack of riverine sources of iron.

  2. Performance Confirmation Data Acquisition System

    International Nuclear Information System (INIS)

    D.W. Markman

    2000-01-01

    The purpose of this analysis is to identify and analyze concepts for the acquisition of data in support of the Performance Confirmation (PC) program at the potential subsurface nuclear waste repository at Yucca Mountain. The scope and primary objectives of this analysis are to: (1) Review the criteria for design as presented in the Performance Confirmation Data Acquisition/Monitoring System Description Document, by way of the Input Transmittal, Performance Confirmation Input Criteria (CRWMS M and O 1999c). (2) Identify and describe existing and potential new trends in data acquisition system software and hardware that would support the PC plan. The data acquisition software and hardware will support the field instruments and equipment that will be installed for the observation and perimeter drift borehole monitoring, and in-situ monitoring within the emplacement drifts. The exhaust air monitoring requirements will be supported by a data communication network interface with the ventilation monitoring system database. (3) Identify the concepts and features that a data acquisition system should have in order to support the PC process and its activities. (4) Based on PC monitoring needs and available technologies, further develop concepts of a potential data acquisition system network in support of the PC program and the Site Recommendation and License Application

  3. 48 CFR Appendix - Federal Acquisition Regulation (FAR) Index

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Federal Acquisition Regulation (FAR) Index Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION CONTRACT... (IFMS) Contract clause. FAR Index Federal Acquisition Regulation (FAR) Index Editorial Note: This...

  4. Intragastric administration of leucine or isoleucine lowers the blood glucose response to a mixed-nutrient drink by different mechanisms in healthy, lean volunteers.

    Science.gov (United States)

    Ullrich, Sina S; Fitzgerald, Penelope Ce; Schober, Gudrun; Steinert, Robert E; Horowitz, Michael; Feinle-Bisset, Christine

    2016-11-01

    The branched-chain amino acids leucine and isoleucine lower blood glucose after oral glucose ingestion, and the intraduodenal infusion of leucine decreases energy intake in healthy, lean men. We investigated the effects of the intragastric administration of leucine and isoleucine on the gastric emptying of, and blood glucose responses to, a physiologic mixed-macronutrient drink and subsequent energy intake. In 2 separate studies, 12 healthy, lean subjects received on 3 separate occasions an intragastric infusion of 5 g leucine (leucine-5g) or an intragastric infusion of 10 g leucine (leucine-10g), an intragastric infusion of 5 g isoleucine (isoleucine-5g) or an intragastric infusion of 10 g isoleucine (isoleucine-10g), or a control. Fifteen minutes later, subjects consumed a mixed-nutrient drink (400 kcal, 56 g carbohydrates, 15 g protein, and 12 g fat), and gastric emptying ( 13 C-acetate breath test) and blood glucose, plasma insulin, C-peptide, glucagon, glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP), and cholecystokinin (leucine study only) were measured for 60 min. Immediately afterward, energy intake from a cold, buffet-style meal was assessed. Compared with the control, leucine-10g decreased the blood glucose area under the curve (AUC) (P blood glucose (P = 0.07), whereas effects of leucine-5g were NS. Leucine-10g, but not leucine-5g, increased plasma insulin and C-peptide AUCs (P blood glucose AUC and peak blood glucose (P blood glucose AUC. Isoleucine did not affect energy intake. In healthy subjects, both leucine and isoleucine reduced blood glucose in response to a mixed-nutrient drink but did not affect subsequent energy intake. The mechanisms underlying glucose lowering appear to differ; leucine stimulated insulin, whereas isoleucine acted insulin independently. These trials were registered at www.anzctr.org.au as 12613000899741 and 12614000837628. © 2016 American Society for Nutrition.

  5. Nutrient management in farms in conversion to organic

    OpenAIRE

    Kolbe, Hartmut

    2008-01-01

    This report, adapted for Saxony, serves converting farmers supported by local advisors as a guideline for a balanced nutrient management at farm level. Essentials of nutrient supply and management measures to consider during the conversion are described to guarantee a successful farming with a naturally based nutrient management. Especially for the conversion phase it is recommended to calculate nitrogen balance after each crop rotation with the help of advisors. This report shows the me...

  6. Reinventing the Platform Core Through Acquisition

    DEFF Research Database (Denmark)

    Toppenberg, Gustav; Henningsson, Stefan; Eaton, Ben

    2016-01-01

    the acquisition and integration of companies presenting innovative technologies of relevance to the platform core. Using a revelatory case study of Cisco Systems, we develop the explanatory notion of ‘coring acquisition’. In this type of acquisition value is created through the acquisition of companies...

  7. 10 CFR 626.4 - General acquisition strategy.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false General acquisition strategy. 626.4 Section 626.4 Energy DEPARTMENT OF ENERGY (CONTINUED) SALES REGULATION PROCEDURES FOR ACQUISITION OF PETROLEUM FOR THE STRATEGIC PETROLEUM RESERVE § 626.4 General acquisition strategy. (a) Criteria for commencing acquisition. To reduce...

  8. 48 CFR 1.102-3 - Acquisition team.

    Science.gov (United States)

    2010-10-01

    ... service. By identifying the team members in this manner, teamwork, unity of purpose, and open... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Acquisition team. 1.102-3... ACQUISITION REGULATIONS SYSTEM Purpose, Authority, Issuance 1.102-3 Acquisition team. The purpose of defining...

  9. Somatosensory cortices are required for the acquisition of morphine-induced conditioned place preference.

    Directory of Open Access Journals (Sweden)

    Zhiqiang Meng

    Full Text Available BACKGROUND: Sensory system information is thought to play an important role in drug addiction related responses. However, how somatic sensory information participates in the drug related behaviors is still unclear. Many studies demonstrated that drug addiction represents a pathological usurpation of neural mechanisms of learning and memory that normally relate to the pursuit of rewards. Thus, elucidate the role of somatic sensory in drug related learning and memory is of particular importance to understand the neurobiological mechanisms of drug addiction. PRINCIPAL FINDINGS: In the present study, we investigated the role of somatosensory system in reward-related associative learning using the conditioned place preference model. Lesions were made in somatosensory cortices either before or after conditioning training. We found that lesion of somatosensory cortices before, rather than after morphine conditioning impaired the acquisition of place preference. CONCLUSION: These results demonstrate that somatosensory cortices are necessary for the acquisition but not retention of morphine induced place preference.

  10. Mitochondrial protein acetylation mediates nutrient sensing of mitochondrial protein synthesis and mitonuclear protein balance.

    Science.gov (United States)

    Di Domenico, Antonella; Hofer, Annette; Tundo, Federica; Wenz, Tina

    2014-11-01

    Changes in nutrient supply require global metabolic reprogramming to optimize the utilization of the nutrients. Mitochondria as a central component of the cellular metabolism play a key role in this adaptive process. Since mitochondria harbor their own genome, which encodes essential enzymes, mitochondrial protein synthesis is a determinant of metabolic adaptation. While regulation of cytoplasmic protein synthesis in response to metabolic challenges has been studied in great detail, mechanisms which adapt mitochondrial translation in response to metabolic challenges remain elusive. Our results suggest that the mitochondrial acetylation status controlled by Sirt3 and its proposed opponent GCN5L1 is an important regulator of the metabolic adaptation of mitochondrial translation. Moreover, both proteins modulate regulators of cytoplasmic protein synthesis as well as the mitonuclear protein balance making Sirt3 and GCN5L1 key players in synchronizing mitochondrial and cytoplasmic translation. Our results thereby highlight regulation of mitochondrial translation as a novel component in the cellular nutrient sensing scheme and identify mitochondrial acetylation as a new regulatory principle for the metabolic competence of mitochondrial protein synthesis. © 2014 International Union of Biochemistry and Molecular Biology.

  11. Nutrient sensing and TOR signaling in yeast and mammals.

    Science.gov (United States)

    González, Asier; Hall, Michael N

    2017-02-15

    Coordinating cell growth with nutrient availability is critical for cell survival. The evolutionarily conserved TOR (target of rapamycin) controls cell growth in response to nutrients, in particular amino acids. As a central controller of cell growth, mTOR (mammalian TOR) is implicated in several disorders, including cancer, obesity, and diabetes. Here, we review how nutrient availability is sensed and transduced to TOR in budding yeast and mammals. A better understanding of how nutrient availability is transduced to TOR may allow novel strategies in the treatment for mTOR-related diseases. © 2017 The Authors.

  12. Oxygen and diverse nutrients influence the water kefir fermentation process.

    Science.gov (United States)

    Laureys, David; Aerts, Maarten; Vandamme, Peter; De Vuyst, Luc

    2018-08-01

    Eight water kefir fermentation series differing in the presence of oxygen, the nutrient concentration, and the nutrient source were studied during eight consecutive backslopping steps. The presence of oxygen allowed the proliferation of acetic acid bacteria, resulting in high concentrations of acetic acid, and decreased the relative abundance of Bifidobacterium aquikefiri. Low nutrient concentrations resulted in slow water kefir fermentation and high pH values, which allowed the growth of Comamonas testosteroni/thiooxydans. Further, low nutrient concentrations favored the growth of Lactobacillus hilgardii and Dekkera bruxellensis, whereas high nutrient concentrations favored the growth of Lactobacillus nagelii and Saccharomyces cerevisiae. Dried figs, dried apricots, and raisins resulted in stable water kefir fermentation. Water kefir fermentation with dried apricots resulted in the highest pH and water kefir grain growth, whereas that with raisins resulted in the lowest pH and water kefir grain growth. Further, water kefir fermentation with raisins resembled fermentations with low nutrient concentrations, that with dried apricots resembled fermentations with normal nutrient concentrations, and that with fresh figs or a mixture of yeast extract and peptone resembled fermentations with high nutrient concentrations. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Can radiocaesium be used as a tracer for vegetal nutrients?

    International Nuclear Information System (INIS)

    Anjos, R. M.; Mosquera, B.; Carvalho, C.; Sanches, N.; Bastos, J.; Macario, K.; Vezzone, M.; Gomes, P.R.S.

    2007-01-01

    In recent years, there has been a growing interest in the evaluation of nutrient fluxes and radioactive contaminants in forest and agricultural ecosystems. Several studies on forest ecosystems have been carried out, mostly in Europe, after the Chernobyl accident. These studies have been performed mainly in the development of models for predicting the radiocaesium behavior in the soil and plant compartments of forest systems. However, research on the use of radiocaesium as a tracer for vegetal nutrients has shown that, despite the fact that caesium is a weakly hydrated alkaline metal and has chemical similarities to potassium and ammonium, this is still a complex problem requiring, then, more experimental results. Additionally, very little is known about the mechanisms involved in the radionuclide uptake and retention by tropical plants. In order to contribute to the understanding of the relative behavior of caesium, potassium and ammonium and to investigate whether radiocaesium can be used as a tracer for vegetal nutrients, the Laboratory of Radioecology (LARA) of the Federal Fluminense University has been performing analysis of 137 Cs, 40 K and NH 4 concentrations in several vegetal compartments of agricultural tropical plants, such as guava (Psidium guajava), mango (Mangifera indica), avocado (Persea americana), pomegranate (Punica granatum), papaya (Carica Papaya), banana (Musa paradisiaca), manioc (Manihot Esculenta), and chili pepper (Capsicum fructescens) trees. Measurements of 137 Cs, 40 K and NH 4 concentrations show that these elements can be very mobile within a plant, exhibiting the highest values of concentration in the growing parts of the trees: fruits, leaves, twigs, barks and the outer growth layers. On the other hand, our results indicate that for wood trees (such as guava, mango, avocado, pomegranate and chili pepper trees) do both caesium and the vegetal nutrients have simultaneously higher concentrations in the youngest rather than in the oldest

  14. The contribution of short-term memory for serial order to early reading acquisition: evidence from a longitudinal study.

    Science.gov (United States)

    Martinez Perez, Trecy; Majerus, Steve; Poncelet, Martine

    2012-04-01

    Early reading acquisition skills have been linked to verbal short-term memory (STM) capacity. However, the nature of this relationship remains controversial because verbal STM, like reading acquisition, depends on the complexity of underlying phonological processing skills. This longitudinal study addressed the relation between STM and reading decoding acquisition by distinguishing between STM for item information and STM for order information based on recent studies showing that STM for item information, but not STM for order information, recruits underlying phonological representations. If there is a specific link between STM and reading decoding acquisition, STM for order information should be an independent predictor of reading decoding acquisition. Tasks maximizing STM for serial order or item information, measures of phonological abilities, and reading tests were administered to children followed from kindergarten through first grade. We observed that order STM capacity, but not item STM capacity, predicted independent variance in reading decoding abilities 1 year later. These results highlight the specific role of STM for order in reading decoding acquisition and argue for a causal role of order STM capacity in reading acquisition. Mechanisms relating STM for order information and reading acquisition are discussed. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Dopamine alleviates nutrient deficiency-induced stress in Malus hupehensis.

    Science.gov (United States)

    Liang, Bowen; Li, Cuiying; Ma, Changqing; Wei, Zhiwei; Wang, Qian; Huang, Dong; Chen, Qi; Li, Chao; Ma, Fengwang

    2017-10-01

    Dopamine mediates many physiological processes in plants. We investigated its role in regulating growth, root system architecture, nutrient uptake, and responses to nutrient deficiencies in Malus hupehensis Rehd. Under a nutrient deficiency, plants showed significant reductions in growth, chlorophyll concentrations, and net photosynthesis, along with disruptions in nutrient uptake, transport, and distribution. However, pretreatment with 100 μM dopamine markedly alleviated such inhibitions. Supplementation with that compound enabled plants to maintain their photosynthetic capacity and development of the root system while promoting the uptake of N, P, K, Ca, Mg, Fe, Mn, Cu, Zn, and B, altering the way in which those nutrients were partitioned throughout the plant. The addition of dopamine up-regulated genes for antioxidant enzymes involved in the ascorbate-glutathione cycle (MdcAPX, MdcGR, MdMDHAR, MdDHAR-1, and MdDHAR-2) but down-regulated genes for senescence (SAG12, PAO, and MdHXK). These results indicate that exogenous dopamine has an important antioxidant and anti-senescence effect that might be helpful for improving nutrient uptake. Our findings demonstrate that dopamine offers new opportunities for its use in agriculture, especially when addressing the problem of nutrient deficiencies. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  16. Data Acquisition for Modular Biometric Monitoring System

    Science.gov (United States)

    Chmiel, Alan J. (Inventor); Humphreys, Bradley T. (Inventor); Grodsinsky, Carlos M. (Inventor)

    2014-01-01

    A modular system for acquiring biometric data includes a plurality of data acquisition modules configured to sample biometric data from at least one respective input channel at a data acquisition rate. A representation of the sampled biometric data is stored in memory of each of the plurality of data acquisition modules. A central control system is in communication with each of the plurality of data acquisition modules through a bus. The central control system is configured to collect data asynchronously, via the bus, from the memory of the plurality of data acquisition modules according to a relative fullness of the memory of the plurality of data acquisition modules.

  17. The nutrient density approach to healthy eating: challenges and opportunities.

    Science.gov (United States)

    Nicklas, Theresa A; Drewnowski, Adam; O'Neil, Carol E

    2014-12-01

    The term 'nutrient density' for foods/beverages has been used loosely to promote the Dietary Guidelines for Americans. The 2010 Dietary Guidelines for Americans defined 'all vegetables, fruits, whole grains, fat-free or low-fat milk and milk products, seafood, lean meats and poultry, eggs, beans and peas (legumes), and nuts and seeds that are prepared without added solid fats, added sugars, and sodium' as nutrient dense. The 2010 Dietary Guidelines for Americans further states that nutrient-dense foods and beverages provide vitamins, minerals and other substances that may have positive health effects with relatively few (kilo)calories or kilojoules. Finally, the definition states nutrients and other beneficial substances have not been 'diluted' by the addition of energy from added solid fats, added sugars or by the solid fats naturally present in the food. However, the Dietary Guidelines Advisory Committee and other scientists have failed to clearly define 'nutrient density' or to provide criteria or indices that specify cut-offs for foods that are nutrient dense. Today, 'nutrient density' is a ubiquitous term used in the scientific literature, policy documents, marketing strategies and consumer messaging. However, the term remains ambiguous without a definitive or universal definition. Classifying or ranking foods according to their nutritional content is known as nutrient profiling. The goal of the present commentary is to address the research gaps that still exist before there can be a consensus on how best to define nutrient density, highlight the situation in the USA and relate this to wider, international efforts in nutrient profiling.

  18. Water and nutrient budgets at field and regional scale : travel times of drainage water and nutrient loads to surface water

    NARCIS (Netherlands)

    Eertwegh, van den G.A.P.H.

    2002-01-01

    Keywords : water and nutrient budget, travel time of drainage water, dual-porosity concept, agricultural nutrient losses, loads to surface water, field-scale experiments, regional-scale

  19. Comparison of Nutrient Content and Cost of Home-Packed Lunches to Reimbursable School Lunch Nutrient Standards and Prices

    Science.gov (United States)

    Johnson, Cara M.; Bednar, Carolyn; Kwon, Junehee; Gustof, Alissa

    2009-01-01

    Purpose: The purpose of this study was to compare nutrient content and cost of home-packed lunches to nutrient standards and prices for reimbursable school lunches. Methods: Researchers observed food and beverage contents of 333 home packed lunches at four north Texas elementary schools. Nutritionist Pro was used to analyze lunches for calories,…

  20. Nutrient removal from swine lagoon effluent by duckweed

    Energy Technology Data Exchange (ETDEWEB)

    Bergmann, B.A.; Cheng, J.; Classen, J.; Stomp, A.M.

    2000-04-01

    Three duckweed geographic isolates were grown on varying concentrations of swine lagoon effluent in a greenhouse to determine their ability to remove nutrients from the effluent. Duckweed biomass was harvested every other day over a 12-day period. Duckweed biomass production, nutrient loss from the swine lagoon effluent, and nutrient content of duckweed biomass were used to identify effluent concentrations/geographic isolate combinations that are effective in terms of nutrient utilization from swine lagoon effluent and production of healthy duckweed biomass. When Lemna minor geographic isolate 8627 was grown on 50% swine lagoon effluent, respective losses of TKN, NH{sub 3}-N, TP, OPO{sub 4}-P, TOC, K, Cu, and Zn were 83, 100, 49, 31, 68, 21, 28 and 67%.

  1. Optimization of carrageenan-based jelly products added with nutrients for reducing osteoporosis risks

    Science.gov (United States)

    Athaillah, Zatil Afrah; Eviana, Irma; Pudjiraharti, Sri; Haryono, Agus

    2017-11-01

    Osteoporosis is a main concern, particularly in aging populations and more specifically in elderly women. Introducing functional foods that contains nutrients that have been scientifically proven to bring beneficial effects for bone metabolism is one of potential mechanism to reduce its prevalence. In this study, optimization of jelly products containing the necessary nutrients was conducted. We investigated the effect of adding skim milk, at particular concentrations, to gelling temperature of the sol, syneresis of the gels, and texture profile of the gels. Furthermore, green tea and ginger extract were added to the formulation and consumer preference on color and taste was analyzed. Our findings demonstrated that no significant difference in gelling temperature and syneresis was found as skim milk concentration was increased from 0.64 to 2.51%. Texture profile analysis data suggested that adding skim milk contributed to increased firmness, toughness, stringiness, and initial stiffness of the gels. In general, panellist could accept both color and taste of green tea and ginger jellies, as the median values were between 6 and 7 in the 9-point rating hedonic scale. These findings suggested that addition of nutrients beneficial for bone health can be conducted to jelly products with good sensory acceptance.

  2. New KENS data acquisition system

    International Nuclear Information System (INIS)

    Arai, M.; Furusaka, M.; Satoh, S.

    1989-01-01

    In this report, the authors discuss a data acquisition system, KENSnet, which is newly introduced to the KENS facility. The criteria for the data acquisition system was about 1 MIPS for CPU speed and 150 Mbytes for storage capacity for a computer per spectrometer. VAX computers were chosen with their propreitary operating system, VMS. The Vax computers are connected by a DECnet network mediated by Ethernet. Front-end computers, Apple Macintosh Plus and Macintosh II, were chosen for their user-friendly manipulation and intelligence. New CAMAC-based data acquisition electronics were developed. The data acquisition control program (ICP) and the general data analysis program (Genie) were both developed at ISIS and have been installed. 2 refs., 3 figs., 1 tab

  3. Nutrient Dynamics and Litter Decomposition in Leucaena ...

    African Journals Online (AJOL)

    Nutrient contents and rate of litter decomposition were investigated in Leucaena leucocephala plantation in the University of Agriculture, Abeokuta, Ogun State, Nigeria. Litter bag technique was used to study the pattern and rate of litter decomposition and nutrient release of Leucaena leucocephala. Fifty grams of oven-dried ...

  4. [Inventory of regional surface nutrient balance and policy recommendations in China].

    Science.gov (United States)

    Chen, Min-Peng; Chen, Ji-Ning

    2007-06-01

    By applying OECD surface soil nitrogen balance methodology, the framework, methodology and database for nutrient balance budget in China are established to evaluate the impact of nutrient balance on agricultural production and water environment. Results show that nitrogen and phosphorus surplus in China are 640 x 10(4) t and 98 x 10(4) t respectively, and nitrogen and phosphorus surplus intensity in China are 16.56 kg/hm2 and 2.53 kg/hm2 respectively. Because of striking spatial difference of nutrient balance across the country, China is seeing a dual-challenge of nutrient surplus management as well as nutrient deficit management. Chemical fertilizer and livestock manure are best targets to perform nutrient surplus management due to their marked contributions to nutrient input. However, it is not cost-effective to implement a uniform management for all regions since nutrient input structures of them vary considerably.

  5. Recovery of Nutrients from Biogas Digestate with Biochar and Clinoptilolite

    DEFF Research Database (Denmark)

    Kocatürk, Nazli Pelin

    in recovery of nutrients whose natural reserves are being depleted such as phosphorus and potassium. In this thesis I propose the use of sorbents i.e. biochar and clinoptilolite to concentrate nutrients and subsequently the application of digestate-enriched biochar and clinoptilolite as fertiliser. Therefore...... the overall objective of this thesis is to investigate the use of clinoptilolite and biochar to recover plant nutrients from the liquid fraction of digestate resulting from anaerobic digestion of animal manure and investigate the plant-availability of the recovered form of nutrients. In Chapter 1 (General...... of nutrients on sorbent) but decreasing efficiencies of clinoptilolite to remove nutrients from the liquid fraction of digestate. In Chapter 3, I studied the chemical activation of biochar by treating the biochar with deionised water, hydrogen peroxide, sulfuric acid and sodium hydroxide solutions...

  6. Soil an-d nutrient loss following site preparation burning

    Science.gov (United States)

    E.A. Carter; J.P. Field; K.W. Farrish

    2000-01-01

    Sediment loss and nutrient cpncentrations in runoff were evaluated to determine the effects of site preparation burning on a recently harvested loblolly pine (Pinur taeda L.) site in east Texas. Sediment and nutrient losses prior to treatment were approximately the same from control plots and pretreatment burn plots. Nutrient analysis of runoff samples indicated that...

  7. Program design of data acquisition in Windows

    International Nuclear Information System (INIS)

    Cai Jianxin; Yan Huawen

    2004-01-01

    Several methods for the design of data acquisition program based on Microsoft Windows are introduced. Then their respective advantages and disadvantages are totally analyzed. At the same time, the data acquisition modes applicable to each method are also pointed out. It is convenient for data acquisition programmers to develop data acquisition systems. (authors)

  8. Studies in Filipino Second Language Acquisition.

    Science.gov (United States)

    Ramos, Teresita V.

    Very little research has been done on first or second language acquisition in the Philippines. Most second language learning studies cited in the literature concern acquisition of English in English-speaking communities, and most American studies of Filipino language acquisition are superficial, consisting primarily of morpheme analysis. The…

  9. Collection assessment and acquisitions budgets

    CERN Document Server

    Lee, Sul H

    2013-01-01

    This invaluable new book contains timely information about the assessment of academic library collections and the relationship of collection assessment to acquisition budgets. The rising cost of information significantly influences academic libraries'abilities to acquire the necessary materials for students and faculty, and public libraries'abilities to acquire material for their clientele. Collection Assessment and Acquisitions Budgets examines different aspects of the relationship between the assessment of academic library collections and the management of library acquisition budgets. Librar

  10. Managing Soil Biota-Mediated Decomposition and Nutrient Mineralization in Sustainable Agroecosystems

    Directory of Open Access Journals (Sweden)

    Joann K. Whalen

    2014-01-01

    Full Text Available Transformation of organic residues into plant-available nutrients occurs through decomposition and mineralization and is mediated by saprophytic microorganisms and fauna. Of particular interest is the recycling of the essential plant elements—N, P, and S—contained in organic residues. If organic residues can supply sufficient nutrients during crop growth, a reduction in fertilizer use is possible. The challenge is synchronizing nutrient release from organic residues with crop nutrient demands throughout the growing season. This paper presents a conceptual model describing the pattern of nutrient release from organic residues in relation to crop nutrient uptake. Next, it explores experimental approaches to measure the physical, chemical, and biological barriers to decomposition and nutrient mineralization. Methods are proposed to determine the rates of decomposition and nutrient release from organic residues. Practically, this information can be used by agricultural producers to determine if plant-available nutrient supply is sufficient to meet crop demands at key growth stages or whether additional fertilizer is needed. Finally, agronomic practices that control the rate of soil biota-mediated decomposition and mineralization, as well as those that facilitate uptake of plant-available nutrients, are identified. Increasing reliance on soil biological activity could benefit crop nutrition and health in sustainable agroecosystems.

  11. Discovery of nitrate-CPK-NLP signalling in central nutrient-growth networks

    Science.gov (United States)

    Liu, Kun-hsiang; Niu, Yajie; Konishi, Mineko; Wu, Yue; Du, Hao; Sun Chung, Hoo; Li, Lei; Boudsocq, Marie; McCormack, Matthew; Maekawa, Shugo; Ishida, Tetsuya; Zhang, Chao; Shokat, Kevan; Yanagisawa, Shuichi; Sheen, Jen

    2018-01-01

    Nutrient signalling integrates and coordinates gene expression, metabolism and growth. However, its primary molecular mechanisms remain incompletely understood in plants and animals. Here we report novel Ca2+ signalling triggered by nitrate with live imaging of an ultrasensitive biosensor in Arabidopsis leaves and roots. A nitrate-sensitized and targeted functional genomic screen identifies subgroup III Ca2+-sensor protein kinases (CPKs) as master regulators orchestrating primary nitrate responses. A chemical switch with the engineered CPK10(M141G) kinase enables conditional analyses of cpk10,30,32 to define comprehensive nitrate-associated regulatory and developmental programs, circumventing embryo lethality. Nitrate-CPK signalling phosphorylates conserved NIN-LIKE PROTEIN (NLP) transcription factors (TFs) to specify reprogramming of gene sets for downstream TFs, transporters, N-assimilation, C/N-metabolism, redox, signalling, hormones, and proliferation. Conditional cpk10,30,32 and nlp7 similarly impair nitrate-stimulated system-wide shoot growth and root establishment. The nutrient-coupled Ca2+ signalling network integrates transcriptome and cellular metabolism with shoot-root coordination and developmental plasticity in shaping organ biomass and architecture. PMID:28489820

  12. Fish extinctions alter nutrient recycling in tropical freshwaters.

    Science.gov (United States)

    McIntyre, Peter B; Jones, Laura E; Flecker, Alexander S; Vanni, Michael J

    2007-03-13

    There is increasing evidence that species extinctions jeopardize the functioning of ecosystems. Overfishing and other human influences are reducing the diversity and abundance of fish worldwide, but the ecosystem-level consequences of these changes have not been assessed quantitatively. Recycling of nutrients is one important ecosystem process that is directly influenced by fish. Fish species vary widely in the rates at which they excrete nitrogen and phosphorus; thus, altering fish communities could affect nutrient recycling. Here, we use extensive field data on nutrient recycling rates and population sizes of fish species in a Neotropical river and Lake Tanganyika, Africa, to evaluate the effects of simulated extinctions on nutrient recycling. In both of these species-rich ecosystems, recycling was dominated by relatively few species, but contributions of individual species differed between nitrogen and phosphorus. Alternative extinction scenarios produced widely divergent patterns. Loss of the species targeted by fishermen led to faster declines in nutrient recycling than extinctions in order of rarity, body size, or trophic position. However, when surviving species were allowed to increase after extinctions, these compensatory responses had strong moderating effects even after losing many species. Our results underscore the complexity of predicting the consequences of extinctions from species-rich animal communities. Nevertheless, the importance of exploited species in nutrient recycling suggests that overfishing could have particularly detrimental effects on ecosystem functioning.

  13. Anoxic monimolimnia: Nutrients devious feeders or bombs ready to explode?

    Science.gov (United States)

    Gianni, Areti; Zacharias, Ierotheos

    2015-04-01

    Coastal regions are under strong human influence and its environmental impact is reflected into their water quality. Oligotrophic estuaries and coastal systems have changed in mesotrophic and/or eutrophic, shown an increase in toxic algal blooms, hypoxic/anoxic events, and massive mortalities of many aquatic and benthic organisms. In strongly stratified and productive water basins, bottom water dissolved oxygen is depleted due to the excessive organic matter decomposition in these depths. Distribution and recycling of nutrients in their water column is inextricably dependent on oxygenation and redox conditions. Bottom water anoxia accelerates PO43-, NH4+ and H2S recycling and accumulation from organic matter decomposition. The anoxic, H2S, PO43- and NH4+ rich bottom water constitutes a toxic layer, threatening the balance of the entire ecosystem. In permanently stratified water basins, storm events could result in stratification destruction and water column total mixing. The turnover brings large amounts of H2S to the surface resulting in low levels of oxygen and massive fish kills. PO43- and NH4+ are released to the interface and surface waters promoting algal blooms. Μore organic matter is produced fueling anoxia. The arising question is, whether the balance of an anoxic water ecosystem is under the threat of its hypolimnetic nutrient and sulfide load, only in the case of storm events and water column total mixing. In polymictic water basins it is clear that the accumulated, in the bottom layer, nutrients will supply surface waters, after the pycnocline overturn. Besides this mechanism of basins' water quality degradation is nowadays recognized as one of the biggest obstacles in eutrophic environments management and restoration efforts. The role of internal load, in permanently stratified water basins, is not so clear. In the present study the impact of storm events on water column stability and bottom water anoxia of meromictic coastal basins, is investigated

  14. Microcomputer data acquisition and control.

    Science.gov (United States)

    East, T D

    1986-01-01

    In medicine and biology there are many tasks that involve routine well defined procedures. These tasks are ideal candidates for computerized data acquisition and control. As the performance of microcomputers rapidly increases and cost continues to go down the temptation to automate the laboratory becomes great. To the novice computer user the choices of hardware and software are overwhelming and sadly most of the computer sales persons are not at all familiar with real-time applications. If you want to bill your patients you have hundreds of packaged systems to choose from; however, if you want to do real-time data acquisition the choices are very limited and confusing. The purpose of this chapter is to provide the novice computer user with the basics needed to set up a real-time data acquisition system with the common microcomputers. This chapter will cover the following issues necessary to establish a real time data acquisition and control system: Analysis of the research problem: Definition of the problem; Description of data and sampling requirements; Cost/benefit analysis. Choice of Microcomputer hardware and software: Choice of microprocessor and bus structure; Choice of operating system; Choice of layered software. Digital Data Acquisition: Parallel Data Transmission; Serial Data Transmission; Hardware and software available. Analog Data Acquisition: Description of amplitude and frequency characteristics of the input signals; Sampling theorem; Specification of the analog to digital converter; Hardware and software available; Interface to the microcomputer. Microcomputer Control: Analog output; Digital output; Closed-Loop Control. Microcomputer data acquisition and control in the 21st Century--What is in the future? High speed digital medical equipment networks; Medical decision making and artificial intelligence.

  15. Nutrient retranslocation in forest species in the Brazilian Amazon

    Directory of Open Access Journals (Sweden)

    Murilo Rezende Machado

    2016-01-01

    Full Text Available Internal retranslocation is an important mechanism for nutrient conservation in plants, which depends on different factors. However, there are little data about this subject, especially on tropical forest species. This study aimed to evaluate the macronutrient retranslocation dynamic and the influence of ecological (P: pioneer x NP: non-pioneer and phenological (ND: non-deciduous x D: semideciduous / deciduous characteristics on the macronutrient content of leaves of five tree species on monospecific plantations in the Brazilian Amazon: Acacia mangium Willd., Parkia decussata Ducke, Dipteryx odorata (Aublet Willd., Jacaranda copaia (Aubl. D. Don and Swietenia macrophylla King. Photosynthetically active green leaves and senescent leaves (leaf litter were collected. Retranslocation was estimated through an equation proposed by Attiwill, Guthrie and Leuning (1978. The pioneer species presented higher foliar contents of N; the non-pioneer species presented higher contents of K, Ca and S; and the results were inconclusive for P and Mg. The deciduous species presented higher foliar contents of K and of P, whereas the foliar contents of N, Ca, Mg and S were virtually identical between the phenological groups. The internal retranslocation of foliar nutrients in pioneer and non-deciduous species was higher than that of non-pioneer and deciduous species.

  16. Nutrient cycling and ecosystem metabolism in boreal streams of the Central Siberian Plateau

    Science.gov (United States)

    Diemer, L.; McDowell, W. H.; Prokushkin, A. S.

    2013-12-01

    mechanisms controlling nutrient processing and productivity in headwater streams of Central Siberia will be critical to understanding global biogeochemical cycling, particularly as these systems respond to climate change.

  17. Knowledge-sharing Behavior and Post-acquisition Integration Failure

    DEFF Research Database (Denmark)

    Gammelgaard, Jens; Husted, Kenneth; Michailova, Snejina

    2004-01-01

    AbstractNot achieving the anticipated synergy effects in the post-acquisition integration context is a serious causefor the high acquisition failure rate. While existing studies on failures of acquisitions exist fromeconomics, finance, strategy, organization theory, and human resources management......, this paper appliesinsights from the knowledge-sharing literature. The paper establishes a conceptual link between obstaclesin the post-acquisition integration processes and individual knowledge-sharing behavior as related toknowledge transmitters and knowledge receivers. We argue that such an angle offers...... important insights toexplaining the high failure rate in acquisitions.Descriptors: post-acquisition integration, acquisition failure, individual knowledge-sharing behavior...

  18. Nutrient regulation in a predator, the wolf spider Pardosa prativaga

    DEFF Research Database (Denmark)

    Jensen, Kim; Mayntz, David; Toft, Søren

    2011-01-01

    Nutrient balancing is well known in herbivores and omnivores, but has only recently been demonstrated in predators. To test how a predator might regulate nutrients when the prey varies in nutrient composition, we restricted juvenile Pardosa prativaga wolf spiders to diets of one of six fruit fly......, Drosophila melanogaster, prey types varying in lipid:protein composition during their second instar. We collected all fly remnants to estimate food and nutrient intake over each meal. The spiders adjusted their capture rate and nutrient extraction in response to prey mass and nutrient composition...... irrespective of energy intake. Intake was initially regulated to a constant lipid plus protein mass, but later spiders fed on prey with high proportions of protein increased consumption relative to spiders fed on other prey types. This pattern indicates that the spiders were prepared to overconsume vast...

  19. Nutrient flows in international trade: Ecology and policy issues

    International Nuclear Information System (INIS)

    Grote, Ulrike; Craswell, Eric; Vlek, Paul

    2005-01-01

    Impacts of increasing population pressure on food demand and land resources has sparked interest in nutrient balances and flows at a range of scales. West Asia/North Africa, China, and sub-Saharan Africa are net importers of NPK in agricultural commodities. These imported nutrients do not, however, redress the widely recognized declines in fertility in sub-Saharan African soils, because the nutrients imported are commonly concentrated in the cities, creating waste disposal problems rather than alleviating deficiencies in rural soils. Countries with a net loss of NPK in agricultural commodities are the major food exporting countries-the United States, Australia, and some Latin American countries. In the case of the United States, exports of NPK will increase from 3.1 Tg in 1997 to 4.8 Tg in 2020. The results suggest that between 1997 and 2020, total international net flows of NPK in traded agricultural commodities will double to 8.8 million tonnes. Against this background, the paper analyses the impact of different policy measures on nutrient flows and balances. This includes not only the effects of agricultural trade liberalization and the reduction of subsidies, but also the more direct environmental policies like nutrient accounting schemes, eco-labeling, and nutrient trading. It finally stresses the need for environmental costs to be factored into the debate on nutrient management and advocates more inter-disciplinary research on these important problems

  20. Merging Platform Ecosystems in Technology Acquisitions

    DEFF Research Database (Denmark)

    Dowie, Jamie; Henningsson, Stefan; Kude, Thomas

    2017-01-01

    of the merging companies. Given the increasing importance of platforms and value co-creation with third-party providers for companies making technology acquisitions, we complement existing literature by reframing the analysis of technology acquisitions to include the merger of the broader partner ecosystems....... Specifically, we draw on theories of ecosystem governance to analyze how ecosystem tensions unfolded during the ecosystem merger and how the acquirer governed these tensions in SAP SE’s acquisition of the e-commerce provider Hybris AG. Our findings suggest that the governance of ecosystem tensions...... is an important aspect of managing technology acquisitions. We identify the pre-acquisition relation between the acquired company’s ecosystem partners and the acquirer as an important context factor for explaining how a partner company is exposed to the ecosystem tensions during the merger....

  1. IT Consultants in Acquisition IT Integration

    DEFF Research Database (Denmark)

    Henningsson, Stefan; Øhrgaard, Christian

    2016-01-01

    strategic IT initiatives and how companies can draw effectively on their services. The paper investigates the use of consultants in relation to one type of major strategic IT initiative: acquisition IT integration. Acquisition IT integration, which is the integration of the acquirer’s and target......’s IT following a corporate acquisition, presents a difficult but crucial IT challenge for the many acquiring organizations. Through a comparative case study of four acquirers, theoretically grounded in the resource-based view of the firm, it is analyzed how acquirers draw on external consultants to realize...... acquisition IT integration. Two complementary and two supplementary roles consultants assume in these projects are identified. Additionally, three characteristics of the acquisition IT integration strategy are identified that influence how the acquirers assign different roles to IT consultants. The resulting...

  2. Mass-Balance Constraints on Nutrient Cycling in Tropical Seagrass Beds

    NARCIS (Netherlands)

    Erftemeijer, P.L.A.; Middelburg, J.J.

    1995-01-01

    A relatively simple mass balance model is presented to study the cycling of nutrients (nitrogen and phosphorus) in tropical seagrass beds. The model is based on quantitative data on nutrient availability, seagrass primary production, community oxygen metabolism, seagrass tissue nutrient contents,

  3. Cool tadpoles from Arctic environments waste fewer nutrients - high gross growth efficiencies lead to low consumer-mediated nutrient recycling in the North.

    Science.gov (United States)

    Liess, Antonia; Guo, Junwen; Lind, Martin I; Rowe, Owen

    2015-11-01

    Endothermic organisms can adapt to short growing seasons, low temperatures and nutrient limitation by developing high growth rates and high gross growth efficiencies (GGEs). Animals with high GGEs are better at assimilating limiting nutrients and thus should recycle (or lose) fewer nutrients. Longer guts in relation to body mass may facilitate higher GGE under resource limitation. Within the context of ecological stoichiometry theory, this study combines ecology with evolution by relating latitudinal life-history adaptations in GGE, mediated by gut length, to its ecosystem consequences, such as consumer-mediated nutrient recycling. In common garden experiments, we raised Rana temporaria tadpoles from two regions (Arctic/Boreal) under two temperature regimes (18/23 °C) crossed with two food quality treatments (high/low-nitrogen content). We measured tadpole GGEs, total nutrient loss (excretion + egestion) rates and gut length during ontogeny. In order to maintain their elemental balance, tadpoles fed low-nitrogen (N) food had lower N excretion rates and higher total phosphorous (P) loss rates than tadpoles fed high-quality food. In accordance with expectations, Arctic tadpoles had higher GGEs and lower N loss rates than their low-latitude conspecifics, especially when fed low-N food, but only in ambient temperature treatments. Arctic tadpoles also had relatively longer guts than Boreal tadpoles during early development. That temperature and food quality interacted with tadpole region of origin in affecting tadpole GGEs, nutrient loss rates and relative gut length, suggests evolved adaptation to temperature and resource differences. With future climate change, mean annual temperatures will increase. Additionally, species and genotypes will migrate north. This will change the functioning of Boreal and Arctic ecosystems by affecting consumer-mediated nutrient recycling and thus affect nutrient dynamics in general. Our study shows that evolved latitudinal adaption can

  4. Dysregulation of Nutrient Sensing and CLEARance in Presenilin Deficiency

    Directory of Open Access Journals (Sweden)

    Kavya Reddy

    2016-03-01

    Full Text Available Attenuated auto-lysosomal system has been associated with Alzheimer disease (AD, yet all underlying molecular mechanisms leading to this impairment are unknown. We show that the amino acid sensing of mechanistic target of rapamycin complex 1 (mTORC1 is dysregulated in cells deficient in presenilin, a protein associated with AD. In these cells, mTORC1 is constitutively tethered to lysosomal membranes, unresponsive to starvation, and inhibitory to TFEB-mediated clearance due to a reduction in Sestrin2 expression. Normalization of Sestrin2 levels through overexpression or elevation of nuclear calcium rescued mTORC1 tethering and initiated clearance. While CLEAR network attenuation in vivo results in buildup of amyloid, phospho-Tau, and neurodegeneration, presenilin-knockout fibroblasts and iPSC-derived AD human neurons fail to effectively initiate autophagy. These results propose an altered mechanism for nutrient sensing in presenilin deficiency and underline an importance of clearance pathways in the onset of AD.

  5. Effects of rehydration nutrients on H2S metabolism and formation of volatile sulfur compounds by the wine yeast VL3.

    Science.gov (United States)

    Winter, Gal; Henschke, Paul A; Higgins, Vincent J; Ugliano, Maurizio; Curtin, Chris D

    2011-11-02

    In winemaking, nutrient supplementation is a common practice for optimising fermentation and producing quality wine. Nutritionally suboptimal grape juices are often enriched with nutrients in order to manipulate the production of yeast aroma compounds. Nutrients are also added to active dry yeast (ADY) rehydration media to enhance subsequent fermentation performance. In this study we demonstrate that nutrient supplementation at rehydration also has a significant effect on the formation of volatile sulfur compounds during wine fermentations. The concentration of the 'fruity' aroma compounds, the polyfunctional thiols 3-mercaptohexan-1-ol (3MH) and 3-mercaptohexyl acetate (3MHA), was increased while the concentration of the 'rotten egg' aroma compound, hydrogen sulfide (H2S), was decreased. Nutrient supplementation of the rehydration media also changed the kinetics of H2S production during fermentation by advancing onset of H2S production. Microarray analysis revealed that this was not due to expression changes within the sulfate assimilation pathway, which is known to be a major contributor to H2S production. To gain insight into possible mechanisms responsible for this effect, a component of the rehydration nutrient mix, the tri-peptide glutathione (GSH) was added at rehydration and studied for its subsequent effects on H2S formation. GSH was found to be taken up during rehydration and to act as a source for H2S during the following fermentation. These findings represent a potential approach for managing sulfur aroma production through the use of rehydration nutrients.

  6. Nutrient spiraling in streams and river networks

    Science.gov (United States)

    Ensign, Scott H.; Doyle, Martin W.

    2006-12-01

    Over the past 3 decades, nutrient spiraling has become a unifying paradigm for stream biogeochemical research. This paper presents (1) a quantitative synthesis of the nutrient spiraling literature and (2) application of these data to elucidate trends in nutrient spiraling within stream networks. Results are based on 404 individual experiments on ammonium (NH4), nitrate (NO3), and phosphate (PO4) from 52 published studies. Sixty-nine percent of the experiments were performed in first- and second-order streams, and 31% were performed in third- to fifth-order streams. Uptake lengths, Sw, of NH4 (median = 86 m) and PO4 (median = 96 m) were significantly different (α = 0.05) than NO3 (median = 236 m). Areal uptake rates of NH4 (median = 28 μg m-2 min-1) were significantly different than NO3 and PO4 (median = 15 and 14 μg m-2 min-1, respectively). There were significant differences among NH4, NO3, and PO4 uptake velocity (median = 5, 1, and 2 mm min-1, respectively). Correlation analysis results were equivocal on the effect of transient storage on nutrient spiraling. Application of these data to a stream network model showed that recycling (defined here as stream length ÷ Sw) of NH4 and NO3 generally increased with stream order, while PO4 recycling remained constant along a first- to fifth-order stream gradient. Within this hypothetical stream network, cumulative NH4 uptake decreased slightly with stream order, while cumulative NO3 and PO4 uptake increased with stream order. These data suggest the importance of larger rivers to nutrient spiraling and the need to consider how stream networks affect nutrient flux between terrestrial and marine ecosystems.

  7. Managing IT Integration Risk in Acquisitions

    DEFF Research Database (Denmark)

    Henningsson, Stefan; Kettinger, William J.

    2016-01-01

    The article discusses a framework for evaluating risk of information technology (IT) integration in acquisitions. Topics include the use of the experience of serial acquirer Trelleborg AB to show the merits of the framework for managing the risk and to determine low-risk acquisitions......, the importance of managing IT integration risk, and various risk areas for acquisition IT integration....

  8. Unmanned Maritime Systems Incremental Acquisition Approach

    Science.gov (United States)

    2016-12-01

    REPORT TYPE AND DATES COVERED MBA professional report 4. TITLE AND SUBTITLE UNMANNED MARITIME SYSTEMS INCREMENTAL ACQUISITION APPROACH 5. FUNDING...Approved for public release. Distribution is unlimited. UNMANNED MARITIME SYSTEMS INCREMENTAL ACQUISITION APPROACH Thomas Driscoll, Lieutenant...UNMANNED MARITIME SYSTEMS INCREMENTAL ACQUISITION APPROACH ABSTRACT The purpose of this MBA report is to explore and understand the issues

  9. Nutrient Film Technique (NFT Hydroponic Monitoring System

    Directory of Open Access Journals (Sweden)

    Helmy Helmy

    2016-10-01

    Full Text Available Plant cultivation using hydroponic is very popular today. Nutrient Film Technique (NFT hydroponic system is commonly used by people. It can be applied indoor or outdoor. Plants in this systemneed nutrient solution to grow well. pH, TDS and temperature of the nutrient solution must be check to ensure plant gets sufficient nutrients. This research aims todevelop monitoring system of NFT hydroponic. Farmer will be able to monitor pH, TDS and temperature online. It will ease farmer to decide which plant is suitable to be cultivated and time to boost growth.Delay of the system will be measured to know system performance. Result shows that pH is directly proportional with TDS. Temperature value has no correlation with pH and TDS. System has highest delay during daylight and afternoon but it will decline in the night and morning. Average of delay in the morning is 11 s, 28.5 s in daylight, 32 s in the afternoon and 17.5 s in the night.

  10. Review on Periphyton as Mediator of Nutrient Transfer in Aquatic Ecosystems

    Directory of Open Access Journals (Sweden)

    Surjya K. Saikia

    2011-12-01

    Full Text Available In the studies of aquatic ecology, periphyton has been uncared for despite its vital role in nutrient uptake and transfer to the upper trophic organisms. Being the component of food chain as attached organism it takes part in nutrient cycling in the ecosystem like that of suspended planktonic counterparts. The present review, with an aim to understand the role of periphyton in nutrient transfer from benthic environment to upper trophic level, focuses many aspects of periphyton-nutrient relationship based on available literatures. It also attempts to redefine periphyton, as a part of biofilm, harboring nutrient components like protein, fat and carbohydrate preferably in its extracellular polymeric substance (EPS, cyanobacteria, diatom and other algal communities. In addition to physical processes, nutrient uptake by periphyton is catalyzed by enzymes like Nitrogen Reductase and Alkaline Phosphatase from the environment. This uptake and transfer is further regulated by periphytic C: nutrient (N or P stoichiometry, colonization time, distribution of periphyton cover on sediments and macrophytes, macronutrient concentration, grazing, sloughing, temperature, and advective transport. The Carbon (C sources of periphyton are mainly dissolve organic matter and photosynthetic C that enters into higher trophic levels through predation and transfers as C-rich nutrient components. Despite of emerging interests on utilizing periphyton as nutrient transfer tool in aquatic ecosystem, the major challenges ahead for modern aquatic biologists lies on determining nutrient uptake and transfer rate of periphyton, periphytic growth and simulating nutrient models of periphyton to figure a complete energy cycle in aquatic ecosystem.

  11. How do Plants Absorb Nutrients from the Soil? - Study of Nutrient ...

    Indian Academy of Sciences (India)

    Logo of the Indian Academy of Sciences. Indian Academy of Sciences. Home · About ... Home; Journals; Resonance – Journal of Science Education; Volume 3; Issue 7. How do Plants Absorb Nutrients from the ... Author Affiliations. G Sivakumar Swamy1. Department of Botany, Karnatak University, Dharwad 580 003, India.

  12. Interactions between temperature and nutrients across levels of ecological organization.

    Science.gov (United States)

    Cross, Wyatt F; Hood, James M; Benstead, Jonathan P; Huryn, Alexander D; Nelson, Daniel

    2015-03-01

    Temperature and nutrient availability play key roles in controlling the pathways and rates at which energy and materials move through ecosystems. These factors have also changed dramatically on Earth over the past century as human activities have intensified. Although significant effort has been devoted to understanding the role of temperature and nutrients in isolation, less is known about how these two factors interact to influence ecological processes. Recent advances in ecological stoichiometry and metabolic ecology provide a useful framework for making progress in this area, but conceptual synthesis and review are needed to help catalyze additional research. Here, we examine known and potential interactions between temperature and nutrients from a variety of physiological, community, and ecosystem perspectives. We first review patterns at the level of the individual, focusing on four traits--growth, respiration, body size, and elemental content--that should theoretically govern how temperature and nutrients interact to influence higher levels of biological organization. We next explore the interactive effects of temperature and nutrients on populations, communities, and food webs by synthesizing information related to community size spectra, biomass distributions, and elemental composition. We use metabolic theory to make predictions about how population-level secondary production should respond to interactions between temperature and resource supply, setting up qualitative predictions about the flows of energy and materials through metazoan food webs. Last, we examine how temperature-nutrient interactions influence processes at the whole-ecosystem level, focusing on apparent vs. intrinsic activation energies of ecosystem processes, how to represent temperature-nutrient interactions in ecosystem models, and patterns with respect to nutrient uptake and organic matter decomposition. We conclude that a better understanding of interactions between temperature and

  13. Influence of harvest managements on biomass nutrient concentrations and removal rates of festulolium and tall fescue from a poorly drained nutrient-rich fen peatland

    DEFF Research Database (Denmark)

    Kandel, Tanka; Elsgaard, Lars; Lærke, Poul Erik

    2017-01-01

    This study was designed to show the effects of harvest time and frequency on biomass nutrient concentrations (total ash, N, P, K, Ca, Mg, Fe, Mn, Cu and Zn) as well as total nutrient removal potential by festulolium and tall fescue cultivated on a nutrient-rich fen peatland. The harvest managemen...

  14. Diagnosis of nutrient imbalances with vector analysis in agroforestry systems.

    Science.gov (United States)

    Isaac, Marney E; Kimaro, Anthony A

    2011-01-01

    Agricultural intensification has had unintended environmental consequences, including increased nutrient leaching and surface runoff and other agrarian-derived pollutants. Improved diagnosis of on-farm nutrient dynamics will have the advantage of increasing yields and will diminish financial and environmental costs. To achieve this, a management support system that allows for site-specific rapid evaluation of nutrient production imbalances and subsequent management prescriptions is needed for agroecological design. Vector diagnosis, a bivariate model to depict changes in yield and nutritional response simultaneously in a single graph, facilitates identification of nutritional status such as growth dilution, deficiency, sufficiency, luxury uptake, and toxicity. Quantitative data from cocoa agroforestry systems and pigeonpea intercropping trials in Ghana and Tanzania, respectively, were re-evaluated with vector analysis. Relative to monoculture, biomass increase in cocoa ( L.) under shade (35-80%) was accompanied by a 17 to 25% decline in P concentration, the most limiting nutrient on this site. Similarly, increasing biomass with declining P concentrations was noted for pigeonpea [ (L). Millsp.] in response to soil moisture availability under intercropping. Although vector analysis depicted nutrient responses, the current vector model does not consider non-nutrient resource effects on growth, such as ameliorated light and soil moisture, which were particularly active in these systems. We revisit and develop vector analysis into a framework for diagnosing nutrient and non-nutrient interactions in agroforestry systems. Such a diagnostic technique advances management decision-making by increasing nutrient precision and reducing environmental issues associated with agrarian-derived soil contamination. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.

  15. Adaptive radiation with regard to nutrient sequestration strategies in the carnivorous plants of the genus Nepenthes.

    Science.gov (United States)

    Pavlovič, Andrej

    2012-02-01

    Carnivorous pitcher plants of the genus Nepenthes have evolved a great diversity of pitcher morphologies. Selective pressures for maximizing nutrient uptake have driven speciation and diversification of the genus in a process known as adaptive radiation. This leads to the evolution of pitchers adapted to specific and often bizarre source of nutrients, which are not strictly animal-derived. One example is Nepenthes ampullaria with unusual growth pattern and pitcher morphology what enables the plant to capture a leaf litter from the canopy above. We showed that the plant benefits from nitrogen uptake by increased rate of photosynthesis and growth what may provide competitive advantage over others co-habiting plants. A possible impact of such specialization toward hybridization, an important mechanism in speciation, is discussed.

  16. The global nutrient challenge. From science to public engagement

    Energy Technology Data Exchange (ETDEWEB)

    Sutton, M.A.; Howard, C.M. [NERC Centre for Ecology and Hydrology, Edinburgh (United Kingdom); Bleeker, A. [Energy research Centre of the Netherlands, Petten (Netherlands); Datta, A. [United Nations Environment Programme, Nairobi (Kenya)

    2013-04-15

    Among the many environment and development challenges facing humanity, it is fair to say that nutrients do not currently feature so regularly in the newspapers, radio and television. The media tends to prefer easy single issues which affect our daily lives in a clear-cut way. The role of carbon in climate change is a good example. We all depend on climate. Burning fossil fuels makes more carbon dioxide, tending to change temperature and rainfall patterns, to which we can easily relate. The science is complex, but it is a simple message for the public to understand. It does not take long to think of several other easily grasped threats, like urban air pollution, poor drinking water, or even the occurrence of horsemeat in food chains. It is perhaps for these reasons that the role of nutrients in environmental change has received much less public attention. After all, nutrients - including nitrogen, phosphorus and many micronutrients - play multiple roles in our world; they affect many biogeochemical processes and they lead to a plethora of interacting threats. If we are not careful, we can quickly get buried in the complexity of the different ways in which our lives are affected by these elements. The outcome is that it can become hard to convey the science of global nutrient cycles in a way that the public can understand. These are points about which we have given substantial thought as we contributed to a recently launched report Our Nutrient World: The challenge to produce more food and energy with less pollution (Sutton et al., 2013). The report was commissioned by the United Nations Environment Programme (UNEP) and conducted by the Global Partnership on Nutrient Management in cooperation with the International Nitrogen Initiative. The commission was not to provide a full scientific assessment, but rather to develop a global overview of the challenges associated with nutrient management. Drawing on existing knowledge, the aim was to distill the nature of the

  17. Nutrient discharge from China’s aquaculture industry and associated environmental impacts

    Science.gov (United States)

    Zhang, Ying; Bleeker, Albert; Liu, Junguo

    2015-04-01

    China’s aquaculture industry accounts for the largest share of the world’s fishery production, and provides a principal source of protein for the nation’s booming population. However, the environmental effects of the nutrient loadings produced by this industry have not been systematically studied or reviewed. Few quantitative estimates exist for nutrient discharge from aquaculture and the resultant nutrient enrichment in waters and sediments. In this paper, we evaluate nutrient discharge from aquacultural systems into aquatic ecosystems and the resulting nutrient enrichment of water and sediments, based on data from 330 cases in 51 peer-reviewed publications. Nitrogen use efficiency ranged from 11.7% to 27.7%, whereas phosphorus use efficiency ranged from 8.7% to 21.2%. In 2010, aquacultural nutrient discharges into Chinese aquatic ecosystems included 1044 Gg total nitrogen (184 Gg N from mariculture; 860 Gg N freshwater culture) and 173 Gg total phosphorus (22 Gg P from mariculture; 151 Gg P from freshwater culture). Water bodies and sediments showed high levels of nutrient enrichment, especially in closed pond systems. However, this does not mean that open aquacultural systems have smaller nutrient losses. Improvement of feed efficiency in cage systems and retention of nutrients in closed systems will therefore be necessary. Strategies to increase nutrient recycling, such as integrated multi-trophic aquaculture, and social measures, such as subsidies, should be increased in the future. We recommend the recycling of nutrients in water and sediments by hybrid agricultural-aquacultural systems and the adoption of nutrient use efficiency as an indicator at farm or regional level for the sustainable development of aquaculture; such indicators; together with water quality indicators, can be used to guide evaluations of technological, policy, and economic approaches to improve the sustainability of Chinese aquaculture.

  18. Nutrient and media recycling in heterotrophic microalgae cultures.

    Science.gov (United States)

    Lowrey, Joshua; Armenta, Roberto E; Brooks, Marianne S

    2016-02-01

    In order for microalgae-based processes to reach commercial production for biofuels and high-value products such as omega-3 fatty acids, it is necessary that economic feasibility be demonstrated at the industrial scale. Therefore, process optimization is critical to ensure that the maximum yield can be achieved from the most efficient use of resources. This is particularly true for processes involving heterotrophic microalgae, which have not been studied as extensively as phototrophic microalgae. An area that has received significant conceptual praise, but little experimental validation, is that of nutrient recycling, where the waste materials from prior cultures and post-lipid extraction are reused for secondary fermentations. While the concept is very simple and could result in significant economic and environmental benefits, there are some underlying challenges that must be overcome before adoption of nutrient recycling is viable at commercial scale. Even more, adapting nutrient recycling for optimized heterotrophic cultures presents some added challenges that must be identified and addressed that have been largely unexplored to date. These challenges center on carbon and nitrogen recycling and the implications of using waste materials in conjunction with virgin nutrients for secondary cultures. The aim of this review is to provide a foundation for further understanding of nutrient recycling for microalgae cultivation. As such, we outline the current state of technology and practical challenges associated with nutrient recycling for heterotrophic microalgae on an industrial scale and give recommendations for future work.

  19. Nutrient budget for Saguling Reservoir, West Java, Indonesia.

    Science.gov (United States)

    Hart, Barry T; van Dok, Wendy; Djuangsih, Nani

    2002-04-01

    A preliminary nutrient budget for Saguling Reservoir is reported as a first attempt to quantify the behaviour of nutrients entering this reservoir. This work is part of a larger Indonesia-Australia collaborative research and training project, involving Padjadjaran University and Monash University, established to study nutrient dynamics in Saguling Reservoir. Saguling Reservoir, the first of a chain of three large reservoirs (Saguling, Cirata and Jatilahur), built on the Citarum River in central Java, was completed in 1985. It has already become highly polluted, particularly with domestic and industrial effluent (organic matter, nutrients, heavy metals) from the urban areas of Bandung (population 2 million). The reservoir experiences major water quality problems, including excessive growths of floating plants, toxic cyanobacterial blooms and regular fish-kills. The work reported in this paper shows that Saguling receives a very large nutrient load from the city of Bandung and because of this, is highly eutrophic. It is unlikely that the water quality of Saguling will improve until a substantial part of Bandung is sewered and adequate discharge controls are placed on the many industries in the region upstream of the reservoir.

  20. Seasonality o