WorldWideScience

Sample records for acquisition facilitates 3d

  1. An Effective 3D Ear Acquisition System.

    Directory of Open Access Journals (Sweden)

    Yahui Liu

    Full Text Available The human ear is a new feature in biometrics that has several merits over the more common face, fingerprint and iris biometrics. It can be easily captured from a distance without a fully cooperative subject. Also, the ear has a relatively stable structure that does not change much with the age and facial expressions. In this paper, we present a novel method of 3D ear acquisition system by using triangulation imaging principle, and the experiment results show that this design is efficient and can be used for ear recognition.

  2. An Effective 3D Ear Acquisition System.

    Science.gov (United States)

    Liu, Yahui; Lu, Guangming; Zhang, David

    2015-01-01

    The human ear is a new feature in biometrics that has several merits over the more common face, fingerprint and iris biometrics. It can be easily captured from a distance without a fully cooperative subject. Also, the ear has a relatively stable structure that does not change much with the age and facial expressions. In this paper, we present a novel method of 3D ear acquisition system by using triangulation imaging principle, and the experiment results show that this design is efficient and can be used for ear recognition.

  3. Integration of real-time 3D image acquisition and multiview 3D display

    Science.gov (United States)

    Zhang, Zhaoxing; Geng, Zheng; Li, Tuotuo; Li, Wei; Wang, Jingyi; Liu, Yongchun

    2014-03-01

    Seamless integration of 3D acquisition and 3D display systems offers enhanced experience in 3D visualization of the real world objects or scenes. The vivid representation of captured 3D objects displayed on a glasses-free 3D display screen could bring the realistic viewing experience to viewers as if they are viewing real-world scene. Although the technologies in 3D acquisition and 3D display have advanced rapidly in recent years, effort is lacking in studying the seamless integration of these two different aspects of 3D technologies. In this paper, we describe our recent progress on integrating a light-field 3D acquisition system and an autostereoscopic multiview 3D display for real-time light field capture and display. This paper focuses on both the architecture design and the implementation of the hardware and the software of this integrated 3D system. A prototype of the integrated 3D system is built to demonstrate the real-time 3D acquisition and 3D display capability of our proposed system.

  4. Acquisition of 3-D Map Structures for Mobile Robots

    Science.gov (United States)

    2007-11-02

    U.S.N.A. — Trident Scholar project report; no. 295 (2002) Acquisition of 3-D Map Structures for Mobile Robots by Midshipman Edward H.L. Fong, Class...REPORT TYPE 3. DATES COVERED (FROM - TO) xx-xx-2002 to xx-xx-2002 4. TITLE AND SUBTITLE Acquisition of 3-D Map Structures for Mobile Robots Unclassified...AND SUBTITLE Acquisition of 3-D map structures for mobile robots 6. AUTHOR(S) Fong, Edward H. L. (Edward Hsiang Lung), 1980- 5. FUNDING NUMBERS 7

  5. Multi-view passive 3D face acquisition device

    NARCIS (Netherlands)

    Spreeuwers, L.J.

    2008-01-01

    Approaches to acquisition of 3D facial data include laser scanners, structured light devices and (passive) stereo vision. The laser scanner and structured light methods allow accurate reconstruction of the 3D surface but strong light is projected on the faces of subjects. Passive stereo vision based

  6. 3D Printing Facilitated Scaffold-free Tissue Unit Fabrication

    Science.gov (United States)

    Tan, Yu; Richards, Dylan J.; Trusk, Thomas C.; Visconti, Richard P.; Yost, Michael J.; Kindy, Mark S.; Drake, Christopher J.; Argraves, William Scott; Markwald, Roger R.; Mei, Ying

    2014-01-01

    Tissue spheroids hold great potential in tissue engineering as building blocks to assemble into functional tissues. To date, agarose molds have been extensively used to facilitate fusion process of tissue spheroids. As a molding material, agarose typically requires low temperature plates for gelation and/or heated dispenser units. Here, we proposed and developed an alginate-based, direct 3D mold-printing technology: 3D printing micro-droplets of alginate solution into biocompatible, bio-inert alginate hydrogel molds for the fabrication of scaffold-free tissue engineering constructs. Specifically, we developed a 3D printing technology to deposit micro-droplets of alginate solution on calcium containing substrates in a layer-by-layer fashion to prepare ring-shaped 3D hydrogel molds. Tissue spheroids composed of 50% endothelial cells and 50% smooth muscle cells were robotically placed into the 3D printed alginate molds using a 3D printer, and were found to rapidly fuse into toroid-shaped tissue units. Histological and immunofluorescence analysis indicated that the cells secreted collagen type I playing a critical role in promoting cell-cell adhesion, tissue formation and maturation. PMID:24717646

  7. Measuring Knowledge Acquisition in 3D Virtual Learning Environments.

    Science.gov (United States)

    Nunes, Eunice P dos Santos; Roque, Licínio G; Nunes, Fatima de Lourdes dos Santos

    2016-01-01

    Virtual environments can contribute to the effective learning of various subjects for people of all ages. Consequently, they assist in reducing the cost of maintaining physical structures of teaching, such as laboratories and classrooms. However, the measurement of how learners acquire knowledge in such environments is still incipient in the literature. This article presents a method to evaluate the knowledge acquisition in 3D virtual learning environments (3D VLEs) by using the learner's interactions in the VLE. Three experiments were conducted that demonstrate the viability of using this method and its computational implementation. The results suggest that it is possible to automatically assess learning in predetermined contexts and that some types of user interactions in 3D VLEs are correlated with the user's learning differential.

  8. 3D DATA ACQUISITION FOR INDOOR ASSETS USING TERRESTRIAL LASER SCANNING

    OpenAIRE

    Lee, S. Y.; Z Majid; H. Setan

    2013-01-01

    The newly development of technology clearly shows an improvement of three-dimension (3D) data acquisition techniques. The requirements of 3D information and features have been obviously increased during past few years in many related fields. Generally, 3D visualization can provide more understanding and better analysis for making decision. The need of 3D GIS also pushed by the highly demand of 3D in geospatial related applications as well as the existing fast and accurate 3D data col...

  9. Mask free intravenous 3D digital subtraction angiography (IV 3D-DSA) from a single C-arm acquisition

    Science.gov (United States)

    Li, Yinsheng; Niu, Kai; Yang, Pengfei; Aagaard-Kienitz, Beveley; Niemann, David B.; Ahmed, Azam S.; Strother, Charles; Chen, Guang-Hong

    2016-03-01

    Currently, clinical acquisition of IV 3D-DSA requires two separate scans: one mask scan without contrast medium and a filled scan with contrast injection. Having two separate scans adds radiation dose to the patient and increases the likelihood of suffering inadvertent patient motion induced mis-registration and the associated mis-registraion artifacts in IV 3D-DSA images. In this paper, a new technique, SMART-RECON is introduced to generate IV 3D-DSA images from a single Cone Beam CT (CBCT) acquisition to eliminate the mask scan. Potential benefits of eliminating mask scan would be: (1) both radiation dose and scan time can be reduced by a factor of 2; (2) intra-sweep motion can be eliminated; (3) inter-sweep motion can be mitigated. Numerical simulations were used to validate the algorithm in terms of contrast recoverability and the ability to mitigate limited view artifacts.

  10. Methodologies for digital 3D acquisition and representation of mosaics

    Science.gov (United States)

    Manferdini, Anna Maria; Cipriani, Luca; Kniffitz, Linda

    2011-07-01

    Despite the recent improvements and widespread of digital technologies and their applications in the field of Cultural Heritage, nowadays Museums and Institutions still aren't encouraged to adopt digital procedures as a standard practice to collect data upon the heritage they are called to preserve and promote. One of the main reasons for this lack can be singled out in the high costs connected with these procedures and with their increasing due to difficulties connected with digital survey of artifacts and artworks which present evident intrinsic complexities and peculiarities that cannot be reconnected to recurrences. The aim of this paper is to show the results of a research conducted in order to find the most suitable digital methodology and procedure to be adopted to collect geometric and radiometric data upon mosaics that can straightforward both the preservation of the consistency of information about its geometry and the management of huge amount of data. One of the most immediate application of digital 3d survey of mosaics is the substitution of plaster casts that are usually built to add the third dimension to pictorial or photographic surveys before restoration interventions in order to document their conservation conditions and ease reconstruction procedures. Moreover, digital 3d surveys of mosaics allow to reproduce restoration interventions in digital environment able to perform reliable preliminary evaluations; in addition, 3d reality-based models of mosaics can be used within digital catalogues or for digital exhibitions and reconstruction aims.

  11. 3-D acquisition geometry analysis: Incorporating information from multiples

    NARCIS (Netherlands)

    Kumar, A.; Blacquiere, G.; Verschuur, D.J.

    2014-01-01

    Recent advances in survey design have led to conventional common-midpoint-based analysis being replaced by the subsurface-based seismic acquisition analysis and design, with the emphasis on advance techniques of illumination analysis. Amongst them are wave-equation-based seismic illumination analyse

  12. Geofencing-Based Localization for 3d Data Acquisition Navigation

    Science.gov (United States)

    Nakagawa, M.; Kamio, T.; Yasojima, H.; Kobayashi, T.

    2016-06-01

    Users require navigation for many location-based applications using moving sensors, such as autonomous robot control, mapping route navigation and mobile infrastructure inspection. In indoor environments, indoor positioning systems using GNSSs can provide seamless indoor-outdoor positioning and navigation services. However, instabilities in sensor position data acquisition remain, because the indoor environment is more complex than the outdoor environment. On the other hand, simultaneous localization and mapping processing is better than indoor positioning for measurement accuracy and sensor cost. However, it is not easy to estimate position data from a single viewpoint directly. Based on these technical issues, we focus on geofencing techniques to improve position data acquisition. In this research, we propose a methodology to estimate more stable position or location data using unstable position data based on geofencing in indoor environments. We verify our methodology through experiments in indoor environments.

  13. Integrin-linked kinase regulates cellular mechanics facilitating the motility in 3D extracellular matrices.

    Science.gov (United States)

    Kunschmann, Tom; Puder, Stefanie; Fischer, Tony; Perez, Jeremy; Wilharm, Nils; Mierke, Claudia Tanja

    2017-03-01

    The motility of cells plays an important role for many processes such as wound healing and malignant progression of cancer. The efficiency of cell motility is affected by the microenvironment. The connection between the cell and its microenvironment is facilitated by cell-matrix adhesion receptors and upon their activation focal adhesion proteins such as integrin-linked kinase (ILK) are recruited to sites of focal adhesion formation. In particular, ILK connects cell-matrix receptors to the actomyosin cytoskeleton. However, ILK's role in cell mechanics regulating cellular motility in 3D collagen matrices is still not well understood. We suggest that ILK facilitates 3D motility by regulating cellular mechanical properties such as stiffness and force transmission. Thus, ILK wild-type and knock-out cells are analyzed for their ability to migrate on 2D substrates serving as control and in dense 3D extracellular matrices. Indeed, ILK wild-type cells migrated faster on 2D substrates and migrated more numerous and deeper in 3D matrices. Hence, we analyzed cellular deformability, Young's modulus (stiffness) and adhesion forces. We found that ILK wild-type cells are less deformable (stiffer) and produce higher cell-matrix adhesion forces compared to ILK knock-out cells. Finally, ILK is essential for providing cellular mechanical stiffness regulating 3D motility.

  14. Vision processing for realtime 3-D data acquisition based on coded structured light.

    Science.gov (United States)

    Chen, S Y; Li, Y F; Zhang, Jianwei

    2008-02-01

    Structured light vision systems have been successfully used for accurate measurement of 3-D surfaces in computer vision. However, their applications are mainly limited to scanning stationary objects so far since tens of images have to be captured for recovering one 3-D scene. This paper presents an idea for real-time acquisition of 3-D surface data by a specially coded vision system. To achieve 3-D measurement for a dynamic scene, the data acquisition must be performed with only a single image. A principle of uniquely color-encoded pattern projection is proposed to design a color matrix for improving the reconstruction efficiency. The matrix is produced by a special code sequence and a number of state transitions. A color projector is controlled by a computer to generate the desired color patterns in the scene. The unique indexing of the light codes is crucial here for color projection since it is essential that each light grid be uniquely identified by incorporating local neighborhoods so that 3-D reconstruction can be performed with only local analysis of a single image. A scheme is presented to describe such a vision processing method for fast 3-D data acquisition. Practical experimental performance is provided to analyze the efficiency of the proposed methods.

  15. A 3D acquisition system combination of structured-light scanning and shape from silhouette

    Institute of Scientific and Technical Information of China (English)

    Changku Sun; Li Tao; Peng Wang; Li He

    2006-01-01

    @@ A robust and accurate three dimensional (3D) acquisition system is presented, which is a combination of structured-light scanning and shape from silhouette. Using common world coordinate system, two groups of point data can be integrated into the final complete 3D model without any integration and registration algorithm. The mathematics model of structured-light scanning is described in detail, and the shape from silhouette algorithm is introduced as well. The complete 3D model of a cup with a handle is obtained successfully by the proposed technique. At last the measurement on a ball bearing is performed, with the measurement precision better than 0.15 mm.

  16. Semantic facilitation in bilingual first language acquisition.

    Science.gov (United States)

    Bilson, Samuel; Yoshida, Hanako; Tran, Crystal D; Woods, Elizabeth A; Hills, Thomas T

    2015-07-01

    Bilingual first language learners face unique challenges that may influence the rate and order of early word learning relative to monolinguals. A comparison of the productive vocabularies of 435 children between the ages of 6 months and 7 years-181 of which were bilingual English learners-found that monolinguals learned both English words and all-language concepts faster than bilinguals. However, bilinguals showed an enhancement of an effect previously found in monolinguals-the preference for learning words with more associative cues. Though both monolinguals and bilinguals were best fit by a similar model of word learning, semantic network structure and growth indicated that the two groups were learning English words in a different order. Further, in comparison with a model of two-monolinguals-in-one-mind, bilinguals overproduced translational equivalents. Our results support an emergent account of bilingual first language acquisition, where learning a word in one language facilitates its acquisition in a second language.

  17. Structuring Narrative in 3D Digital Game-Based Learning Environments to Support Second Language Acquisition

    Science.gov (United States)

    Neville, David O.

    2010-01-01

    The essay is a conceptual analysis from an instructional design perspective exploring the feasibility of using three-dimensional digital game-based learning (3D-DGBL) environments to assist in second language acquisition (SLA). It examines the shared characteristics of narrative within theories of situated cognition, context-based approaches to…

  18. A Service-oriented FPGA-based 3D Model Acquisition System

    Directory of Open Access Journals (Sweden)

    MACHIDON, O. M.

    2015-11-01

    Full Text Available This paper proposes a non-contact, low cost 3D scanning solution using laser striping. The solution is composed of two main parts: the hardware setup - used for acquiring the object's 3D surface information, and the software part - that processes the information and obtains the 3D model representation of the object. We propose two major improvements over the traditional scanning solutions: the 3D information acquisition is based on a reconfigurable hardware platform - a Xilinx Spartan 6 FPGA - which adds flexibility and scalability to the scanning process, while the 3D model reconstruction is remotely available "as a Service", by the means of a web interface that abstracts away the complexity of the underlying processes and improves the performance, while granting easy sharing between users. By separating data capture process from the 3D model reconstruction tasks the system gains in portability - a feature that is absent for most existing solutions. The service-oriented approach brings on a performance gain, since the computational intensive tasks are handled by dedicated servers and ease of use of the system, because the user does not have to bother managing and using the software tools locally.

  19. A Quality Assurance Method that Utilizes 3D Dosimetry and Facilitates Clinical Interpretation

    Energy Technology Data Exchange (ETDEWEB)

    Oldham, Mark, E-mail: mark.oldham@duke.edu [Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Thomas, Andrew; O' Daniel, Jennifer; Juang, Titania [Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Ibbott, Geoffrey [University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Adamovics, John [Rider University, Lawrenceville, New Jersey (United States); Kirkpatrick, John P. [Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States)

    2012-10-01

    Purpose: To demonstrate a new three-dimensional (3D) quality assurance (QA) method that provides comprehensive dosimetry verification and facilitates evaluation of the clinical significance of QA data acquired in a phantom. Also to apply the method to investigate the dosimetric efficacy of base-of-skull (BOS) intensity-modulated radiotherapy (IMRT) treatment. Methods and Materials: Two types of IMRT QA verification plans were created for 6 patients who received BOS IMRT. The first plan enabled conventional 2D planar IMRT QA using the Varian portal dosimetry system. The second plan enabled 3D verification using an anthropomorphic head phantom. In the latter, the 3D dose distribution was measured using the DLOS/Presage dosimetry system (DLOS = Duke Large-field-of-view Optical-CT System, Presage Heuris Pharma, Skillman, NJ), which yielded isotropic 2-mm data throughout the treated volume. In a novel step, measured 3D dose distributions were transformed back to the patient's CT to enable calculation of dose-volume histograms (DVH) and dose overlays. Measured and planned patient DVHs were compared to investigate clinical significance. Results: Close agreement between measured and calculated dose distributions was observed for all 6 cases. For gamma criteria of 3%, 2 mm, the mean passing rate for portal dosimetry was 96.8% (range, 92.0%-98.9%), compared to 94.9% (range, 90.1%-98.9%) for 3D. There was no clear correlation between 2D and 3D passing rates. Planned and measured dose distributions were evaluated on the patient's anatomy, using DVH and dose overlays. Minor deviations were detected, and the clinical significance of these are presented and discussed. Conclusions: Two advantages accrue to the methods presented here. First, treatment accuracy is evaluated throughout the whole treated volume, yielding comprehensive verification. Second, the clinical significance of any deviations can be assessed through the generation of DVH curves and dose overlays on

  20. On horizontal resolution for seismic acquisition geometries in complex 3D media

    Science.gov (United States)

    Wei, Wei; Fu, Li-Yun

    2014-09-01

    Spatial sampling has a crucial influence on the horizontal resolution of seismic imaging, but how to quantify the influence is still controversial especially in complex media. Most of the studies on horizontal resolution focus on the measurement of wavelet widths for seismic migration, but neglect to evaluate the effect of side-lobe perturbations on spatial resolution. The side-lobe effect, as a migration noise, is important for seismic imaging in complex media. In this article, with focal beam analysis, we define two parameters to represent the horizontal resolution of an acquisition geometry: the width of the main lobe (WML) along the inline and crossline directions and the ratio of the main-lobe amplitude to the total amplitude (RMT) in a focal beam. We provide examples of typical acquisition geometries to show how spatial sampling affects the horizontal resolution, measured in terms of WML and RMT values. WML defines the horizontal resolution to image the target, whereas RMT describes the clarity of the imaging. Migration noise reduces with increasing RMT, indirectly improving both the vertical and horizontal resolutions of seismic imaging. Case studies of seismic migration with 3D seismic data from an oil field of China, demonstrate how the acquisition geometries with different WML and RMT values influence the performance of seismic imaging. Prior WML and RMT analyses to predict the quality of acquired datasets can optimize acquisition geometries before the implementation of seismic acquisition.

  1. Intriguing Success in 3D Seismic Acquisition in Ecologically Critical Lawachara National Park of Bangladesh

    Energy Technology Data Exchange (ETDEWEB)

    Bakht, Delawar; Siddique, Mohammad; Masud, Mohammad

    2010-09-15

    In-depth environmental studies were conducted in 2008 by a multi-disciplinary team of international and national specialists of SMEC International for Chevron Bangladesh for obtaining Environmental Clearance for 3D seismic acquisition in Moulvibazar Gas Field. This included Lawachara National Park which was declared as an ecologically critical area in 1996. Exclusive monitoring of potential impact mitigation mechanism identified through EIA studies resulted in to completing the project with intriguing success. This has displayed a glaring example of sharing expertise leading to successful initiative in technology transfer in the developing country like Bangladesh currently in dire quest of harnessing natural gas.

  2. SU-E-J-237: Real-Time 3D Anatomy Estimation From Undersampled MR Acquisitions

    Energy Technology Data Exchange (ETDEWEB)

    Glitzner, M; Lagendijk, J; Raaymakers, B; Crijns, S [University Medical Center Utrecht, Utrecht (Netherlands); Senneville, B Denis de [University Medical Center Utrecht, Utrecht (Netherlands); Mathematical Institute of Bordeaux, University of Bordeaux, Talence Cedex (France)

    2015-06-15

    Recent developments made MRI guided radiotherapy feasible. Performing simultaneous imaging during fractions can provide information about changing anatomy by means of deformable image registration for either immediate plan adaptations or accurate dose accumulation on the changing anatomy. In 3D MRI, however, acquisition time is considerable and scales with resolution. Furthermore, intra-scan motion degrades image quality.In this work, we investigate the sensitivity of registration quality on imageresolution: potentially, by employing spatial undersampling, the acquisition timeof MR images for the purpose of deformable image registration can be reducedsignificantly.On a volunteer, 3D-MR imaging data was sampled in a navigator-gated manner, acquiring one axial volume (360×260×100mm{sup 3}) per 3s during exhale phase. A T1-weighted FFE sequence was used with an acquired voxel size of (2.5mm{sup 3}) for a duration of 17min. Deformation vector fields were evaluated for 100 imaging cycles with respect to the initial anatomy using deformable image registration based on optical flow. Subsequently, the imaging data was downsampled by a factor of 2, simulating a fourfold acquisition speed. Displacements of the downsampled volumes were then calculated by the same process.In kidneyliver boundaries and the region around stomach/duodenum, prominent organ drifts could be observed in both the original and the downsampled imaging data. An increasing displacement of approximately 2mm was observed for the kidney, while an area around the stomach showed sudden displacements of 4mm. Comparison of the motile points over time showed high reproducibility between the displacements of high-resolution and downsampled volumes: over a 17min acquisition, the componentwise RMS error was not more than 0.38mm.Based on the synthetic experiments, 3D nonrigid image registration shows little sensitivity to image resolution and the displacement information is preserved even when halving the

  3. 3D analytic cone-beam reconstruction for multiaxial CT acquisitions.

    Science.gov (United States)

    Yin, Zhye; De Man, Bruno; Pack, Jed

    2009-01-01

    A conventional 3rd generation Computed Tomography (CT) system with a single circular source trajectory is limited in terms of longitudinal scan coverage since extending the scan coverage beyond 40 mm results in significant cone-beam artifacts. A multiaxial CT acquisition is achieved by combining multiple sequential 3rd generation axial scans or by performing a single axial multisource CT scan with multiple longitudinally offset sources. Data from multiple axial scans or multiple sources provide complementary information. For full-scan acquisitions, we present a window-based 3D analytic cone-beam reconstruction algorithm by tessellating data from neighboring axial datasets. We also show that multi-axial CT acquisition can extend the axial scan coverage while minimizing cone-beam artifacts. For half-scan acquisitions, one cannot take advantage of conjugate rays. We propose a cone-angle dependent weighting approach to combine multi-axial half-scan data. We compute the relative contribution from each axial dataset to each voxel based on the X-ray beam collimation, the respective cone-angles, and the spacing between the axial scans. We present numerical experiments to demonstrate that the proposed techniques successfully reduce cone-beam artifacts at very large volumetric coverage.

  4. The Dynamics of Syntax Acquisition: Facilitation between Syntactic Structures

    Science.gov (United States)

    Keren-Portnoy, Tamar; Keren, Michael

    2011-01-01

    This paper sets out to show how facilitation between different clause structures operates over time in syntax acquisition. The phenomenon of facilitation within given structures has been widely documented, yet inter-structure facilitation has rarely been reported so far. Our findings are based on the naturalistic production corpora of six toddlers…

  5. Utilizing Information Technology to Facilitate Rapid Acquisition

    Science.gov (United States)

    2006-06-01

    PAGES 109 14. SUBJECT TERMS Rapid Acquisition, eCommerce , eProcurement, Information Technology, Contracting, Global Information Network...Agency. 5 eCommerce and eProcurement, and possess an adequate knowledge of information technology. D. RESEARCH QUESTIONS 1. Primary Research... eCommerce , Information Technology, and eProcurement knowledge, and government and private industry reports utilizing numerous library and Internet

  6. Photogrammetric 3d Acquisition and Analysis of Medicamentous Induced Pilomotor Reflex ("goose Bumps")

    Science.gov (United States)

    Schneider, D.; Hecht, A.

    2016-06-01

    In a current study at the University Hospital Dresden, Department of Neurology, the autonomous function of nerve fibres of the human skin is investigated. For this purpose, a specific medicament is applied on a small area of the skin of a test person which results in a local reaction (goose bumps). Based on the extent of the area, where the stimulation of the nerve fibres is visible, it can be concluded how the nerve function of the skin works. The aim of the investigation described in the paper is to generate 3D data of these goose bumps. Therefore, the paper analyses and compares different photogrammetric surface measurement techniques in regard to their suitability for the 3D acquisition of silicone imprints of the human skin. Furthermore, an appropriate processing procedure for analysing the recorded point cloud data is developed and presented. It was experimentally proven that by using (low-cost) photogrammetric techniques medicamentous induced goose bumps can be acquired in three dimensions and can be analysed almost fully automatically from the perspective of medical research questions. The relative accuracy was determined with 1% (RMSE) of the area resp. the volume of an individual goose bump.

  7. Description of patellar movement by 3D parameters obtained from dynamic CT acquisition

    Science.gov (United States)

    de Sá Rebelo, Marina; Moreno, Ramon Alfredo; Gobbi, Riccardo Gomes; Camanho, Gilberto Luis; de Ávila, Luiz Francisco Rodrigues; Demange, Marco Kawamura; Pecora, Jose Ricardo; Gutierrez, Marco Antonio

    2014-03-01

    The patellofemoral joint is critical in the biomechanics of the knee. The patellofemoral instability is one condition that generates pain, functional impairment and often requires surgery as part of orthopedic treatment. The analysis of the patellofemoral dynamics has been performed by several medical image modalities. The clinical parameters assessed are mainly based on 2D measurements, such as the patellar tilt angle and the lateral shift among others. Besides, the acquisition protocols are mostly performed with the leg laid static at fixed angles. The use of helical multi slice CT scanner can allow the capture and display of the joint's movement performed actively by the patient. However, the orthopedic applications of this scanner have not yet been standardized or widespread. In this work we present a method to evaluate the biomechanics of the patellofemoral joint during active contraction using multi slice CT images. This approach can greatly improve the analysis of patellar instability by displaying the physiology during muscle contraction. The movement was evaluated by computing its 3D displacements and rotations from different knee angles. The first processing step registered the images in both angles based on the femuŕs position. The transformation matrix of the patella from the images was then calculated, which provided the rotations and translations performed by the patella from its position in the first image to its position in the second image. Analysis of these parameters for all frames provided real 3D information about the patellar displacement.

  8. PHOTOGRAMMETRIC 3D ACQUISITION AND ANALYSIS OF MEDICAMENTOUS INDUCED PILOMOTOR REFLEX (“GOOSE BUMPS”

    Directory of Open Access Journals (Sweden)

    D. Schneider

    2016-06-01

    Full Text Available In a current study at the University Hospital Dresden, Department of Neurology, the autonomous function of nerve fibres of the human skin is investigated. For this purpose, a specific medicament is applied on a small area of the skin of a test person which results in a local reaction (goose bumps. Based on the extent of the area, where the stimulation of the nerve fibres is visible, it can be concluded how the nerve function of the skin works. The aim of the investigation described in the paper is to generate 3D data of these goose bumps. Therefore, the paper analyses and compares different photogrammetric surface measurement techniques in regard to their suitability for the 3D acquisition of silicone imprints of the human skin. Furthermore, an appropriate processing procedure for analysing the recorded point cloud data is developed and presented. It was experimentally proven that by using (low-cost photogrammetric techniques medicamentous induced goose bumps can be acquired in three dimensions and can be analysed almost fully automatically from the perspective of medical research questions. The relative accuracy was determined with 1% (RMSE of the area resp. the volume of an individual goose bump.

  9. Data acquisition electronics and reconstruction software for real time 3D track reconstruction within the MIMAC project

    CERN Document Server

    Bourrion, O; Grignon, C; Bouly, J L; Richer, J P; Guillaudin, O; Mayet, F; Billard, J; Santos, D

    2011-01-01

    Directional detection of non-baryonic Dark Matter requires 3D reconstruction of low energy nuclear recoils tracks. A gaseous micro-TPC matrix, filled with either 3He, CF4 or C4H10 has been developed within the MIMAC project. A dedicated acquisition electronics and a real time track reconstruction software have been developed to monitor a 512 channel prototype. This autotriggered electronic uses embedded processing to reduce the data transfer to its useful part only, i.e. decoded coordinates of hit tracks and corresponding energy measurements. An acquisition software with on-line monitoring and 3D track reconstruction is also presented.

  10. Intracellular ROS mediates gas plasma-facilitated cellular transfection in 2D and 3D cultures

    Science.gov (United States)

    Xu, Dehui; Wang, Biqing; Xu, Yujing; Chen, Zeyu; Cui, Qinjie; Yang, Yanjie; Chen, Hailan; Kong, Michael G.

    2016-01-01

    This study reports the potential of cold atmospheric plasma (CAP) as a versatile tool for delivering oligonucleotides into mammalian cells. Compared to lipofection and electroporation methods, plasma transfection showed a better uptake efficiency and less cell death in the transfection of oligonucleotides. We demonstrated that the level of extracellular aqueous reactive oxygen species (ROS) produced by gas plasma is correlated with the uptake efficiency and that this is achieved through an increase of intracellular ROS levels and the resulting increase in cell membrane permeability. This finding was supported by the use of ROS scavengers, which reduced CAP-based uptake efficiency. In addition, we found that cold atmospheric plasma could transfer oligonucleotides such as siRNA and miRNA into cells even in 3D cultures, thus suggesting the potential for unique applications of CAP beyond those provided by standard transfection techniques. Together, our results suggest that cold plasma might provide an efficient technique for the delivery of siRNA and miRNA in 2D and 3D culture models. PMID:27296089

  11. A 3D MR-acquisition scheme for nonrigid bulk motion correction in simultaneous PET-MR

    Energy Technology Data Exchange (ETDEWEB)

    Kolbitsch, Christoph, E-mail: christoph.1.kolbitsch@kcl.ac.uk; Prieto, Claudia; Schaeffter, Tobias [Division of Imaging Sciences and Biomedical Engineering, King' s College London, London SE1 7EH (United Kingdom); Tsoumpas, Charalampos [Division of Imaging Sciences and Biomedical Engineering, King' s College London, London SE1 7EH, United Kingdom and Division of Medical Physics, University of Leeds, Leeds LS2 9JT (United Kingdom)

    2014-08-15

    Purpose: Positron emission tomography (PET) is a highly sensitive medical imaging technique commonly used to detect and assess tumor lesions. Magnetic resonance imaging (MRI) provides high resolution anatomical images with different contrasts and a range of additional information important for cancer diagnosis. Recently, simultaneous PET-MR systems have been released with the promise to provide complementary information from both modalities in a single examination. Due to long scan times, subject nonrigid bulk motion, i.e., changes of the patient's position on the scanner table leading to nonrigid changes of the patient's anatomy, during data acquisition can negatively impair image quality and tracer uptake quantification. A 3D MR-acquisition scheme is proposed to detect and correct for nonrigid bulk motion in simultaneously acquired PET-MR data. Methods: A respiratory navigated three dimensional (3D) MR-acquisition with Radial Phase Encoding (RPE) is used to obtain T1- and T2-weighted data with an isotropic resolution of 1.5 mm. Healthy volunteers are asked to move the abdomen two to three times during data acquisition resulting in overall 19 movements at arbitrary time points. The acquisition scheme is used to retrospectively reconstruct dynamic 3D MR images with different temporal resolutions. Nonrigid bulk motion is detected and corrected in this image data. A simultaneous PET acquisition is simulated and the effect of motion correction is assessed on image quality and standardized uptake values (SUV) for lesions with different diameters. Results: Six respiratory gated 3D data sets with T1- and T2-weighted contrast have been obtained in healthy volunteers. All bulk motion shifts have successfully been detected and motion fields describing the transformation between the different motion states could be obtained with an accuracy of 1.71 ± 0.29 mm. The PET simulation showed errors of up to 67% in measured SUV due to bulk motion which could be reduced to

  12. Hand-guided 3D surface acquisition by combining simple light sectioning with real-time algorithms

    CERN Document Server

    Arold, Oliver; Willomitzer, Florian; Häusler, Gerd

    2014-01-01

    Precise 3D measurements of rigid surfaces are desired in many fields of application like quality control or surgery. Often, views from all around the object have to be acquired for a full 3D description of the object surface. We present a sensor principle called "Flying Triangulation" which avoids an elaborate "stop-and-go" procedure. It combines a low-cost classical light-section sensor with an algorithmic pipeline. A hand-guided sensor captures a continuous movie of 3D views while being moved around the object. The views are automatically aligned and the acquired 3D model is displayed in real time. In contrast to most existing sensors no bandwidth is wasted for spatial or temporal encoding of the projected lines. Nor is an expensive color camera necessary for 3D acquisition. The achievable measurement uncertainty and lateral resolution of the generated 3D data is merely limited by physics. An alternating projection of vertical and horizontal lines guarantees the existence of corresponding points in successi...

  13. Antenna System and Digital Acquisition System for Enabling Ice Sheet 3D Tomography Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The concept of using SAR data to form 3D tomographic images has been developed over the last decade, but the enabling technology has been slow to progress. Current...

  14. Validation of new 3D post processing algorithm for improved maximum intensity projections of MR angiography acquisitions in the brain

    Energy Technology Data Exchange (ETDEWEB)

    Bosmans, H.; Verbeeck, R.; Vandermeulen, D.; Suetens, P.; Wilms, G.; Maaly, M.; Marchal, G.; Baert, A.L. [Louvain Univ. (Belgium)

    1995-12-01

    The objective of this study was to validate a new post processing algorithm for improved maximum intensity projections (mip) of intracranial MR angiography acquisitions. The core of the post processing procedure is a new brain segmentation algorithm. Two seed areas, background and brain, are automatically detected. A 3D region grower then grows both regions towards each other and this preferentially towards white regions. In this way, the skin gets included into the final `background region` whereas cortical blood vessels and all brain tissues are included in the `brain region`. The latter region is then used for mip. The algorithm runs less than 30 minutes on a full dataset on a Unix workstation. Images from different acquisition strategies including multiple overlapping thin slab acquisition, magnetization transfer (MT) MRA, Gd-DTPA enhanced MRA, normal and high resolution acquisitions and acquisitions from mid field and high field systems were filtered. A series of contrast enhanced MRA acquisitions obtained with identical parameters was filtered to study the robustness of the filter parameters. In all cases, only a minimal manual interaction was necessary to segment the brain. The quality of the mip was significantly improved, especially in post Gd-DTPA acquisitions or using MT, due to the absence of high intensity signals of skin, sinuses and eyes that otherwise superimpose on the angiograms. It is concluded that the filter is a robust technique to improve the quality of MR angiograms.

  15. Concept for an airborne real-time ISR system with multi-sensor 3D data acquisition

    Science.gov (United States)

    Haraké, Laura; Schilling, Hendrik; Blohm, Christian; Hillemann, Markus; Lenz, Andreas; Becker, Merlin; Keskin, Göksu; Middelmann, Wolfgang

    2016-10-01

    In modern aerial Intelligence, Surveillance and Reconnaissance operations, precise 3D information becomes inevitable for increased situation awareness. In particular, object geometries represented by texturized digital surface models constitute an alternative to a pure evaluation of radiometric measurements. Besides the 3D data's level of detail aspect, its availability is time-relevant in order to make quick decisions. Expanding the concept of our preceding remote sensing platform developed together with OHB System AG and Geosystems GmbH, in this paper we present an airborne multi-sensor system based on a motor glider equipped with two wing pods; one carries the sensors, whereas the second pod downlinks sensor data to a connected ground control station by using the Aerial Reconnaissance Data System of OHB. An uplink is created to receive remote commands from the manned mobile ground control station, which on its part processes and evaluates incoming sensor data. The system allows the integration of efficient image processing and machine learning algorithms. In this work, we introduce a near real-time approach for the acquisition of a texturized 3D data model with the help of an airborne laser scanner and four high-resolution multi-spectral (RGB, near-infrared) cameras. Image sequences from nadir and off-nadir cameras permit to generate dense point clouds and to texturize also facades of buildings. The ground control station distributes processed 3D data over a linked geoinformation system with web capabilities to off-site decision-makers. As the accurate acquisition of sensor data requires boresight calibrated sensors, we additionally examine the first steps of a camera calibration workflow.

  16. STUDY ON THE LINE SCAN CCD CAMERA CALIBRATION OF VEHICLE-BORNE 3D DATA ACQUISITION SYSTEM

    OpenAIRE

    Han, Y; Yang, B.; F. Zhang

    2012-01-01

    Based on the characters of the line scan CCD camera and the Vehicle-borne 3D data acquisition system, it presented a novel method to calibrate the line Scan Camera (LSC) based on the laser scanner. Using the angle information in the original laser scanner data, combing the principle of the line scan camera, it built a calibration model for LSC and designed some experiment methods to implement that. Using the new model and the special experiment methods it computed out high precision ...

  17. Adjustment of Sonar and Laser Acquisition Data for Building the 3D Reference Model of a Canal Tunnel †

    Science.gov (United States)

    Moisan, Emmanuel; Charbonnier, Pierre; Foucher, Philippe; Grussenmeyer, Pierre; Guillemin, Samuel; Koehl, Mathieu

    2015-01-01

    In this paper, we focus on the construction of a full 3D model of a canal tunnel by combining terrestrial laser (for its above-water part) and sonar (for its underwater part) scans collected from static acquisitions. The modeling of such a structure is challenging because the sonar device is used in a narrow environment that induces many artifacts. Moreover, the location and the orientation of the sonar device are unknown. In our approach, sonar data are first simultaneously denoised and meshed. Then, above- and under-water point clouds are co-registered to generate directly the full 3D model of the canal tunnel. Faced with the lack of overlap between both models, we introduce a robust algorithm that relies on geometrical entities and partially-immersed targets, which are visible in both the laser and sonar point clouds. A full 3D model, visually promising, of the entrance of a canal tunnel is obtained. The analysis of the method raises several improvement directions that will help with obtaining more accurate models, in a more automated way, in the limits of the involved technology. PMID:26690444

  18. Adjustment of Sonar and Laser Acquisition Data for Building the 3D Reference Model of a Canal Tunnel

    Directory of Open Access Journals (Sweden)

    Emmanuel Moisan

    2015-12-01

    Full Text Available In this paper, we focus on the construction of a full 3D model of a canal tunnel by combining terrestrial laser (for its above-water part and sonar (for its underwater part scans collected from static acquisitions. The modeling of such a structure is challenging because the sonar device is used in a narrow environment that induces many artifacts. Moreover, the location and the orientation of the sonar device are unknown. In our approach, sonar data are first simultaneously denoised and meshed. Then, above- and under-water point clouds are co-registered to generate directly the full 3D model of the canal tunnel. Faced with the lack of overlap between both models, we introduce a robust algorithm that relies on geometrical entities and partially-immersed targets, which are visible in both the laser and sonar point clouds. A full 3D model, visually promising, of the entrance of a canal tunnel is obtained. The analysis of the method raises several improvement directions that will help with obtaining more accurate models, in a more automated way, in the limits of the involved technology.

  19. Adjustment of Sonar and Laser Acquisition Data for Building the 3D Reference Model of a Canal Tunnel.

    Science.gov (United States)

    Moisan, Emmanuel; Charbonnier, Pierre; Foucher, Philippe; Grussenmeyer, Pierre; Guillemin, Samuel; Koehl, Mathieu

    2015-01-01

    In this paper, we focus on the construction of a full 3D model of a canal tunnel by combining terrestrial laser (for its above-water part) and sonar (for its underwater part) scans collected from static acquisitions. The modeling of such a structure is challenging because the sonar device is used in a narrow environment that induces many artifacts. Moreover, the location and the orientation of the sonar device are unknown. In our approach, sonar data are first simultaneously denoised and meshed. Then, above- and under-water point clouds are co-registered to generate directly the full 3D model of the canal tunnel. Faced with the lack of overlap between both models, we introduce a robust algorithm that relies on geometrical entities and partially-immersed targets, which are visible in both the laser and sonar point clouds. A full 3D model, visually promising, of the entrance of a canal tunnel is obtained. The analysis of the method raises several improvement directions that will help with obtaining more accurate models, in a more automated way, in the limits of the involved technology.

  20. [EOS imaging acquisition system : 2D/3D diagnostics of the skeleton].

    Science.gov (United States)

    Tarhan, T; Froemel, D; Meurer, A

    2015-12-01

    The application spectrum of the EOS imaging acquisition system is versatile. It is especially useful in the diagnostics and planning of corrective surgical procedures in complex orthopedic cases. The application is indicated when assessing deformities and malpositions of the spine, pelvis and lower extremities. It can also be used in the assessment and planning of hip and knee arthroplasty. For the first time physicians have the opportunity to conduct examinations of the whole body under weight-bearing conditions in order to anticipate the effects of a planned surgical procedure on the skeletal system as a whole and therefore on the posture of the patient. Compared to conventional radiographic examination techniques, such as x-ray or computed tomography, the patient is exposed to much less radiation. Therefore, the pediatric application of this technique can be described as reasonable.

  1. Acquisition of high-resolution 3D data and processing using Artificial Intelligence

    Science.gov (United States)

    Meng, Hui; Sheng, J.; Yang, W.; Pu, Y.

    1996-11-01

    Holographic PIV (HPIV) is a promising 3D velocity field measurement technique providing high spatial-temporal resolution needed for understanding complex and turbulent flows. An HPIV system, combining in-line recording and off-axis viewing (IROV) holography and Heuristic Morphology Particle Pairing (HMPP) method, is being developed in this work. Unlike 2D PIV, HPIV instantaneously records a volume of particle images through holographic imaging. Its data processing involves special difficulties such as speckle noise, sparse pairs and large data sets. The HMPP algorithm is an adaptive parallel processing scheme applying artificial intelligence searching theory. Based on similar morphology of a particle group at successive instants separated by a small interval, HMPP matches a group of particle images between double exposures and provides velocity vectors for individual particle pairs, providing much higher spatial resolution than conventional correlation algorithm and lower measurement error caused by large velocity gradients. Taking advantages of IROV and HMPP, the system being developed appears highly promising as a practical HPIV configuration.

  2. Virtualizing ancient Rome: 3D acquisition and modeling of a large plaster-of-Paris model of imperial Rome

    Science.gov (United States)

    Guidi, Gabriele; Frischer, Bernard; De Simone, Monica; Cioci, Andrea; Spinetti, Alessandro; Carosso, Luca; Micoli, Laura L.; Russo, Michele; Grasso, Tommaso

    2005-01-01

    Computer modeling through digital range images has been used for many applications, including 3D modeling of objects belonging to our cultural heritage. The scales involved range from small objects (e.g. pottery), to middle-sized works of art (statues, architectural decorations), up to very large structures (architectural and archaeological monuments). For any of these applications, suitable sensors and methodologies have been explored by different authors. The object to be modeled within this project is the "Plastico di Roma antica," a large plaster-of-Paris model of imperial Rome (16x17 meters) created in the last century. Its overall size therefore demands an acquisition approach typical of large structures, but it also is characterized extremely tiny details typical of small objects (houses are a few centimeters high; their doors, windows, etc. are smaller than 1 centimeter). This paper gives an account of the procedures followed for solving this "contradiction" and describes how a huge 3D model was acquired and generated by using a special metrology Laser Radar. The procedures for reorienting in a single reference system the huge point clouds obtained after each acquisition phase, thanks to the measurement of fixed redundant references, are described. The data set was split in smaller sub-areas 2 x 2 meters each for purposes of mesh editing. This subdivision was necessary owing to the huge number of points in each individual scan (50-60 millions). The final merge of the edited parts made it possible to create a single mesh. All these processes were made with software specifically designed for this project since no commercial package could be found that was suitable for managing such a large number of points. Preliminary models are presented. Finally, the significance of the project is discussed in terms of the overall project known as "Rome Reborn," of which the present acquisition is an important component.

  3. Modeling 3-D permeability distribution in alluvial fans using facies architecture and geophysical acquisitions

    Science.gov (United States)

    Zhu, Lin; Gong, Huili; Dai, Zhenxue; Guo, Gaoxuan; Teatini, Pietro

    2017-02-01

    Alluvial fans are highly heterogeneous in hydraulic properties due to complex depositional processes, which make it difficult to characterize the spatial distribution of the hydraulic conductivity (K). An original methodology is developed to identify the spatial statistical parameters (mean, variance, correlation range) of the hydraulic conductivity in a three-dimensional (3-D) setting by using geological and geophysical data. More specifically, a large number of inexpensive vertical electric soundings are integrated with a facies model developed from borehole lithologic data to simulate the log10(K) continuous distributions in multiple-zone heterogeneous alluvial megafans. The Chaobai River alluvial fan in the Beijing Plain, China, is used as an example to test the proposed approach. Due to the non-stationary property of the K distribution in the alluvial fan, a multiple-zone parameterization approach is applied to analyze the conductivity statistical properties of different hydrofacies in the various zones. The composite variance in each zone is computed to describe the evolution of the conductivity along the flow direction. Consistently with the scales of the sedimentary transport energy, the results show that conductivity variances of fine sand, medium-coarse sand, and gravel decrease from the upper (zone 1) to the lower (zone 3) portion along the flow direction. In zone 1, sediments were moved by higher-energy flooding, which induces poor sorting and larger conductivity variances. The composite variance confirms this feature with statistically different facies from zone 1 to zone 3. The results of this study provide insights to improve our understanding on conductivity heterogeneity and a method for characterizing the spatial distribution of K in alluvial fans.

  4. A framework for geometry acquisition, 3-D printing, simulation, and measurement of head-related transfer functions with a focus on hearing-assistive devices

    DEFF Research Database (Denmark)

    Harder, Stine; Paulsen, Rasmus Reinhold; Larsen, Martin

    2016-01-01

    of a three-dimensional (3D) head model for acquisition of individual HRTFs. Two aspects were investigated; whether a 3D-printed model can replace measurements on a human listener and whether numerical simulations can replace acoustic measurements. For this purpose, HRTFs were acoustically measured for four...... human listeners and for a 3D printed head model of one of these listeners. Further, HRTFs were simulated by applying the finite element method to the 3D head model. The monaural spectral features and spectral distortions were very similar between re-measurements and between human and printed...... measurements, however larger deviations were observed between measurement and simulation. The binaural cues were in agreement among all HRTFs of the same listener, indicating that the 3D model is able to provide localization cues potentially accessible to HAD users. Hence, the pipeline of geometry acquisition...

  5. 3D video

    CERN Document Server

    Lucas, Laurent; Loscos, Céline

    2013-01-01

    While 3D vision has existed for many years, the use of 3D cameras and video-based modeling by the film industry has induced an explosion of interest for 3D acquisition technology, 3D content and 3D displays. As such, 3D video has become one of the new technology trends of this century.The chapters in this book cover a large spectrum of areas connected to 3D video, which are presented both theoretically and technologically, while taking into account both physiological and perceptual aspects. Stepping away from traditional 3D vision, the authors, all currently involved in these areas, provide th

  6. Continuous table acquisition MRI for radiotherapy treatment planning: Distortion assessment with a new extended 3D volumetric phantom

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Amy, E-mail: aw554@uowmail.edu.au; Metcalfe, Peter [Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522, Australia and Liverpool and Macarthur Cancer Therapy Centres and Ingham Institute for Applied Medical Research, Liverpool, NSW 2170 (Australia); Liney, Gary [Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522 (Australia); Liverpool and Macarthur Cancer Therapy Centres and Ingham Institute for Applied Medical Research, Liverpool, NSW 2170 (Australia); South West Clinical School, University of New South Wales, Sydney, NSW 2170 (Australia); Holloway, Lois [Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522 (Australia); Liverpool and Macarthur Cancer Therapy Centres and Ingham Institute for Applied Medical Research, Liverpool, NSW 2170 (Australia); South West Clinical School, University of New South Wales, Sydney, NSW 2170 (Australia); Institute of Medical Physics, School of Physics, University of Sydney, Sydney, NSW 2006 (Australia); Dowling, Jason; Rivest-Henault, David [Commonwealth Scientific and Industrial Research Organisation, Australian E-Health Research Centre, Herston, QLD 4029 (Australia)

    2015-04-15

    Purpose: Accurate geometry is required for radiotherapy treatment planning (RTP). When considering the use of magnetic resonance imaging (MRI) for RTP, geometric distortions observed in the acquired images should be considered. While scanner technology and vendor supplied correction algorithms provide some correction, large distortions are still present in images, even when considering considerably smaller scan lengths than those typically acquired with CT in conventional RTP. This study investigates MRI acquisition with a moving table compared with static scans for potential geometric benefits for RTP. Methods: A full field of view (FOV) phantom (diameter 500 mm; length 513 mm) was developed for measuring geometric distortions in MR images over volumes pertinent to RTP. The phantom consisted of layers of refined plastic within which vitamin E capsules were inserted. The phantom was scanned on CT to provide the geometric gold standard and on MRI, with differences in capsule location determining the distortion. MRI images were acquired with two techniques. For the first method, standard static table acquisitions were considered. Both 2D and 3D acquisition techniques were investigated. With the second technique, images were acquired with a moving table. The same sequence was acquired with a static table and then with table speeds of 1.1 mm/s and 2 mm/s. All of the MR images acquired were registered to the CT dataset using a deformable B-spline registration with the resulting deformation fields providing the distortion information for each acquisition. Results: MR images acquired with the moving table enabled imaging of the whole phantom length while images acquired with a static table were only able to image 50%–70% of the phantom length of 513 mm. Maximum distortion values were reduced across a larger volume when imaging with a moving table. Increased table speed resulted in a larger contribution of distortion from gradient nonlinearities in the through

  7. Detection of latent fingerprints using high-resolution 3D confocal microscopy in non-planar acquisition scenarios

    Science.gov (United States)

    Kirst, Stefan; Vielhauer, Claus

    2015-03-01

    In digitized forensics the support of investigators in any manner is one of the main goals. Using conservative lifting methods, the detection of traces is done manually. For non-destructive contactless methods, the necessity for detecting traces is obvious for further biometric analysis. High resolutional 3D confocal laser scanning microscopy (CLSM) grants the possibility for a detection by segmentation approach with improved detection results. Optimal scan results with CLSM are achieved on surfaces orthogonal to the sensor, which is not always possible due to environmental circumstances or the surface's shape. This introduces additional noise, outliers and a lack of contrast, making a detection of traces even harder. Prior work showed the possibility of determining angle-independent classification models for the detection of latent fingerprints (LFP). Enhancing this approach, we introduce a larger feature space containing a variety of statistical-, roughness-, color-, edge-directivity-, histogram-, Gabor-, gradient- and Tamura features based on raw data and gray-level co-occurrence matrices (GLCM) using high resolutional data. Our test set consists of eight different surfaces for the detection of LFP in four different acquisition angles with a total of 1920 single scans. For each surface and angles in steps of 10, we capture samples from five donors to introduce variance by a variety of sweat compositions and application influences such as pressure or differences in ridge thickness. By analyzing the present test set with our approach, we intend to determine angle- and substrate-dependent classification models to determine optimal surface specific acquisition setups and also classification models for a general detection purpose for both, angles and substrates. The results on overall models with classification rates up to 75.15% (kappa 0.50) already show a positive tendency regarding the usability of the proposed methods for LFP detection on varying surfaces in non

  8. Interactive 3D Visualization of the Great Lakes of the World (GLOW) as a Tool to Facilitate Informal Science Education

    Science.gov (United States)

    Yikilmaz, M.; Harwood, C. L.; Hsi, S.; Kellogg, L. H.; Kreylos, O.; McDermott, J.; Pellett, B.; Schladow, G.; Segale, H. M.; Yalowitz, S.

    2013-12-01

    Three-dimensional (3D) visualization is a powerful research tool that has been used to investigate complex scientific problems in various fields. It allows researchers to explore and understand processes and features that are not directly observable and help with building of new models. It has been shown that 3D visualization creates a more engaging environment for public audiences. Interactive 3D visualization can allow individuals to explore scientific concepts on their own. We present an NSF funded project developed in collaboration with UC Davis KeckCAVES, UC Davis Tahoe Environmental Research Center, ECHO Lake Aquarium & Science Center, and Lawrence Hall of Science. The Great Lakes of the World (GLOW) project aims to build interactive 3D visualization of some of the major lakes and reservoirs of the world to enhance public awareness and increase understanding and stewardship of freshwater lake ecosystems, habitats, and earth science processes. The project includes a collection of publicly available satellite imagery and digital elevation models at various resolutions for the 20 major lakes of the world as well as the bathymetry data for the 12 lakes. It also includes the vector based 'Global Lakes and Wetlands Database (GLWD)' by the World Wildlife Foundation (WWF) and the Center for Environmental System Research University of Kassel, Germany and the CIA World DataBank II data sets to show wetlands and water reservoirs at global scale. We use a custom virtual globe (Crusta) developed at the UC Davis KeckCAVES. Crusta is designed to specifically allow for visualization and mapping of features in very high spatial resolution (learn about the lake and watershed processes as well as geologic processes (e.g. faulting, landslide, glacial, volcanic) that have shaped these lakes. With the advances in 3D imaging technology, the hardware is becoming more affordable and accessible. Affordable 3D projectors, monitors and TVs will allow schools and informal science centers

  9. A web-based collaborative framework for facilitating decision making on a 3D design developing process

    Directory of Open Access Journals (Sweden)

    Purevdorj Nyamsuren

    2015-07-01

    Full Text Available Increased competitive challenges are forcing companies to find better ways to bring their applications to market faster. Distributed development environments can help companies improve their time-to-market by enabling parallel activities. Although, such environments still have their limitations in real-time communication and real-time collaboration during the product development process. This paper describes a web-based collaborative framework which has been developed to support the decision making on a 3D design developing process. The paper describes 3D design file for the discussion that contains all relevant annotations on its surface and their visualization on the user interface for design changing. The framework includes a native CAD data converting module, 3D data based real-time communication module, revision control module for 3D data and some sub-modules such as data storage and data management. We also discuss some raised issues in the project and the steps underway to address them.

  10. Comparison of two single-breath-held 3-D acquisitions with multi-breath-held 2-D cine steady-state free precession MRI acquisition in children with single ventricles

    Energy Technology Data Exchange (ETDEWEB)

    Atweh, Lamya A.; Dodd, Nicholas A.; Krishnamurthy, Ramkumar; Chu, Zili D. [Texas Children' s Hospital, EB Singleton Department of Pediatric Radiology, Cardiovascular Imaging, Houston, TX (United States); Pednekar, Amol [Philips Healthcare, Houston, TX (United States); Krishnamurthy, Rajesh [Texas Children' s Hospital, EB Singleton Department of Pediatric Radiology, Cardiovascular Imaging, Houston, TX (United States); Baylor College of Medicine, Department of Radiology, Houston, TX (United States); Baylor College of Medicine, Department of Pediatrics, Houston, TX (United States)

    2016-05-15

    Breath-held two-dimensional balanced steady-state free precession cine acquisition (2-D breath-held SSFP), accelerated with parallel imaging, is the method of choice for evaluating ventricular function due to its superior blood-to-myocardial contrast, edge definition and high intrinsic signal-to-noise ratio throughout the cardiac cycle. The purpose of this study is to qualitatively and quantitatively compare the two different single-breath-hold 3-D cine SSFP acquisitions using 1) multidirectional sensitivity encoding (SENSE) acceleration factors (3-D multiple SENSE SSFP), and 2) k-t broad-use linear acceleration speed-up technique (3-D k-t SSFP) with the conventional 2-D breath-held SSFP in non-sedated asymptomatic volunteers and children with single ventricle congenital heart disease. Our prospective study was performed on 30 non-sedated subjects (9 healthy volunteers and 21 functional single ventricle patients), ages 12.5 +/- 2.8 years. Two-dimensional breath-held SSFP with SENSE acceleration factor of 2, eight-fold accelerated 3-D k-t SSFP, and 3-D multiple SENSE SSFP with total parallel imaging factor of 4 were performed to evaluate ventricular volumes and mass in the short-axis orientation. Image quality scores (blood myocardial contrast, edge definition and interslice alignment) and volumetric analysis (end systolic volume, end diastolic volume and ejection fraction) were performed on the data sets by experienced users. Paired t-test was performed to compare each of the 3-D k-t SSFP and 3-D multiple SENSE SSFP clinical scores against 2-D breath-held SSFP. Bland-Altman analysis was performed on left ventricle (LV) and single ventricle volumetry. Interobserver and intraobserver variability in volumetric measurements were determined using intraclass coefficients. The clinical scores were highest for the 2-D breath-held SSFP images. Between the two 3-D sequences, 3-D multiple SENSE SSFP performed better than 3-D k-t SSFP. Bland-Altman analysis for volumes

  11. Facilitating the 3D Indoor Search and Rescue Problem: An Overview of the Problem and an Ant Colony Solution Approach

    Science.gov (United States)

    Tashakkori, H.; Rajabifard, A.; Kalantari, M.

    2016-10-01

    Search and rescue procedures for indoor environments are quite complicated due to the fact that much of the indoor information is unavailable to rescuers before physical entrance to the incident scene. Thus, decision making regarding the number of crew required and the way they should be dispatched in the building considering the various access points and complexities in the buildings in order to cover the search area in minimum time is dependent on prior knowledge and experience of the emergency commanders. Hence, this paper introduces the Search and Rescue Problem (SRP) which aims at finding best search and rescue routes that minimize the overall search time in the buildings. 3D BIM-oriented indoor GIS is integrated in the indoor route graph to find accurate routes based on the building geometric and semantic information. An Ant Colony Based Algorithm is presented that finds the number of first responders required and their individual routes to search all rooms and points of interest inside the building to minimize the overall time spent by all rescuers inside the disaster area. The evaluation of the proposed model for a case study building shows a significant improve in search and rescue time which will lead to a higher chance of saving lives and less exposure of emergency crew to danger.

  12. FACILITATING THE 3D INDOOR SEARCH AND RESCUE PROBLEM: AN OVERVIEW OF THE PROBLEM AND AN ANT COLONY SOLUTION APPROACH

    Directory of Open Access Journals (Sweden)

    H. Tashakkori

    2016-10-01

    Full Text Available Search and rescue procedures for indoor environments are quite complicated due to the fact that much of the indoor information is unavailable to rescuers before physical entrance to the incident scene. Thus, decision making regarding the number of crew required and the way they should be dispatched in the building considering the various access points and complexities in the buildings in order to cover the search area in minimum time is dependent on prior knowledge and experience of the emergency commanders. Hence, this paper introduces the Search and Rescue Problem (SRP which aims at finding best search and rescue routes that minimize the overall search time in the buildings. 3D BIM-oriented indoor GIS is integrated in the indoor route graph to find accurate routes based on the building geometric and semantic information. An Ant Colony Based Algorithm is presented that finds the number of first responders required and their individual routes to search all rooms and points of interest inside the building to minimize the overall time spent by all rescuers inside the disaster area. The evaluation of the proposed model for a case study building shows a significant improve in search and rescue time which will lead to a higher chance of saving lives and less exposure of emergency crew to danger.

  13. 3-D seismic acquisition geometry design and analysis: Investigation of the requirements to include illumination from all multiples

    NARCIS (Netherlands)

    Kumar, A.

    2015-01-01

    A seismic survey should be designed such that imaging of the acquired data leads to a sufficiently accurate subsurface image. For that purpose, methods for acquisition geometry analysis and design are available. These methods are used to judge whether an acquisition geometry is suited for the specif

  14. A computer-assisted 3D model for analyzing the aggregation of tumorigenic cells reveals specialized behaviors and unique cell types that facilitate aggregate coalescence.

    Directory of Open Access Journals (Sweden)

    Amanda Scherer

    Full Text Available We have developed a 4D computer-assisted reconstruction and motion analysis system, J3D-DIAS 4.1, and applied it to the reconstruction and motion analysis of tumorigenic cells in a 3D matrix. The system is unique in that it is fast, high-resolution, acquires optical sections using DIC microscopy (hence there is no associated photoxicity, and is capable of long-term 4D reconstruction. Specifically, a z-series at 5 μm increments can be acquired in less than a minute on tissue samples embedded in a 1.5 mm thick 3D Matrigel matrix. Reconstruction can be repeated at intervals as short as every minute and continued for 30 days or longer. Images are converted to mathematical representations from which quantitative parameters can be derived. Application of this system to cancer cells from established lines and fresh tumor tissue has revealed unique behaviors and cell types not present in non-tumorigenic lines. We report here that cells from tumorigenic lines and tumors undergo rapid coalescence in 3D, mediated by specific cell types that we have named "facilitators" and "probes." A third cell type, the "dervish", is capable of rapid movement through the gel and does not adhere to it. These cell types have never before been described. Our data suggest that tumorigenesis in vitro is a developmental process involving coalescence facilitated by specialized cells that culminates in large hollow spheres with complex architecture. The unique effects of select monoclonal antibodies on these processes demonstrate the usefulness of the model for analyzing the mechanisms of anti-cancer drugs.

  15. Measured count-rate performance of the Discovery STE PET/CT scanner in 2D, 3D and partial collimation acquisition modes.

    Science.gov (United States)

    Macdonald, L R; Schmitz, R E; Alessio, A M; Wollenweber, S D; Stearns, C W; Ganin, A; Harrison, R L; Lewellen, T K; Kinahan, P E

    2008-07-21

    We measured count rates and scatter fraction on the Discovery STE PET/CT scanner in conventional 2D and 3D acquisition modes, and in a partial collimation mode between 2D and 3D. As part of the evaluation of using partial collimation, we estimated global count rates using a scanner model that combined computer simulations with an empirical live-time function. Our measurements followed the NEMA NU2 count rate and scatter-fraction protocol to obtain true, scattered and random coincidence events, from which noise equivalent count (NEC) rates were calculated. The effect of patient size was considered by using 27 cm and 35 cm diameter phantoms, in addition to the standard 20 cm diameter cylindrical count-rate phantom. Using the scanner model, we evaluated two partial collimation cases: removing half of the septa (2.5D) and removing two-thirds of the septa (2.7D). Based on predictions of the model, a 2.7D collimator was constructed. Count rates and scatter fractions were then measured in 2D, 2.7D and 3D. The scanner model predicted relative NEC variation with activity, as confirmed by measurements. The measured 2.7D NEC was equal or greater than 3D NEC for all activity levels in the 27 cm and 35 cm phantoms. In the 20 cm phantom, 3D NEC was somewhat higher ( approximately 15%) than 2.7D NEC at 100 MBq. For all higher activity concentrations, 2.7D NEC was greater and peaked 26% above the 3D peak NEC. The peak NEC in 2.7D mode occurred at approximately 425 MBq, and was 26-50% greater than the peak 3D NEC, depending on object size. NEC in 2D was considerably lower, except at relatively high activity concentrations. Partial collimation shows promise for improved noise equivalent count rates in clinical imaging without altering other detector parameters.

  16. The effect of pose variability and repeated reliability of segmental centres of mass acquisition when using 3D photonic scanning.

    Science.gov (United States)

    Chiu, Chuang-Yuan; Pease, David L; Sanders, Ross H

    2016-12-01

    Three-dimensional (3D) photonic scanning is an emerging technique to acquire accurate body segment parameter data. This study established the repeated reliability of segmental centres of mass when using 3D photonic scanning (3DPS). Seventeen male participants were scanned twice by a 3D whole-body laser scanner. The same operators conducted the reconstruction and segmentation processes to obtain segmental meshes for calculating the segmental centres of mass. The segmental centres of mass obtained from repeated 3DPS were compared by relative technical error of measurement (TEM). Hypothesis tests were conducted to determine the size of change required for each segment to be determined a true variation. The relative TEMs for all segments were less than 5%. The relative changes in centres of mass at ±1.5% for most segments can be detected (p 3D photonic scanning and emphasised that the error for arm segments need to be considered while using this technique to acquire centres of mass.

  17. A versatile and low-cost 3D acquisition and processing pipeline for collecting mass of archaeological findings on the field

    Science.gov (United States)

    Gattet, E.; Devogelaere, J.; Raffin, R.; Bergerot, L.; Daniel, M.; Jockey, Ph.; De Luca, L.

    2015-02-01

    In recent years, advances in the fields of photogrammetry and computer vision have produced several solutions for generating 3D reconstruction starting from simple images. Even if the potentialities of the image-based 3D reconstruction approach are nowadays very well-known in terms of reliability, accuracy and flexibility, there is still a lack of low-cost, open-source and automated solutions for collecting mass of archaeological findings, specially if one consider the real (and non theoretical) contextual aspects of a digitization campaign on the field (number of objects to acquire, available time, lighting conditions, equipment transport, budget, etc...) as well as the accuracy requirements for an in-depth shape analysis and classification purpose. In this paper we present a prototype system (integrating hardware and software) for the 3D acquisition, geometric reconstruction, documentation and archiving of large collections of archaeological findings. All the aspects of our approach are based on high-end image-based modeling techniques and designed basing on an accurate analysis of the typical field conditions of an archaeological campaign, as well as on the specific requirements of archaeological finding documentation and analysis. This paper presents all the aspects integrated into the prototype: - a hardware development of a transportable photobooth for the automated image acquisition consisting of a turntable and three DSLR controlled by a microcontroller; - an automatic image processing pipeline (based on Apero/Micmac) including mask generation, tie-point extraction, bundle adjustment, multi-view stereo correlation, point cloud generation, surface reconstruction; - a versatile (off-line/on-line) portable database for associating descriptive attributes (archaeological description) to the 3D digitizations on site; - a platform for data-gathering, archiving and sharing collections of 3D digitizations on the Web. The presentation and the assessment of this

  18. Whole-heart cine MRI in a single breath-hold. A compressed sensing accelerated 3D acquisition technique for assessment of cardiac function

    Energy Technology Data Exchange (ETDEWEB)

    Wech, T.; Koestler, H. [Wuerzburg Univ. (Germany). Inst. of Radiology; Wuerzburg Univ. (Germany). Comprehensive Heart Failure Center; Pickl, W.; Tran-Gia, J.; Ritter, C.; Hahn, D. [Wuerzburg Univ. (Germany). Inst. of Radiology; Beer, M. [Wuerzburg Univ. (Germany). Inst. of Radiology; Graz Univ. (Austria). University Hospital Radiology

    2014-01-15

    Purpose: The aim of this study was to perform functional MR imaging of the whole heart in a single breath-hold using an undersampled 3 D trajectory for data acquisition in combination with compressed sensing for image reconstruction. Materials and Methods: Measurements were performed using an SSFP sequence on a 3 T whole-body system equipped with a 32-channel body array coil. A 3 D radial stack-of-stars sampling scheme was utilized enabling efficient undersampling of the k-space and thereby accelerating data acquisition. Compressed sensing was applied for the reconstruction of the missing data. A validation study was performed based on a fully sampled dataset acquired by standard Cartesian cine imaging of 2 D slices on a healthy volunteer. The results were investigated with regard to systematic errors and resolution losses possibly introduced by the developed reconstruction. Subsequently, the proposed technique was applied for in-vivo functional cardiac imaging of the whole heart in a single breath-hold of 27 s. The developed technique was tested on three healthy volunteers to examine its reproducibility. Results: By means of the results of the simulation (temporal resolution: 47 ms, spatial resolution: 1.4 x 1.4 x 8 mm, 3 D image matrix: 208 x 208 x 10), an overall acceleration factor of 10 has been found where the compressed sensing reconstructed image series shows only very low systematic errors and a slight in-plane resolution loss of 15 %. The results of the in-vivo study (temporal resolution: 40.5 ms, spatial resolution: 2.1 x 2.1 x 8 mm, 3 D image matrix: 224 x 224 x 12) performed with an acceleration factor of 10.7 confirm the overall good image quality of the presented technique for undersampled acquisitions. Conclusion: The combination of 3 D radial data acquisition and model-based compressed sensing reconstruction allows high acceleration factors enabling cardiac functional imaging of the whole heart within only one breath-hold. The image quality in the

  19. Simultaneous acquisition of 3D shape and deformation by combination of interferometric and correlation-based laser speckle metrology.

    Science.gov (United States)

    Dekiff, Markus; Berssenbrügge, Philipp; Kemper, Björn; Denz, Cornelia; Dirksen, Dieter

    2015-12-01

    A metrology system combining three laser speckle measurement techniques for simultaneous determination of 3D shape and micro- and macroscopic deformations is presented. While microscopic deformations are determined by a combination of Digital Holographic Interferometry (DHI) and Digital Speckle Photography (DSP), macroscopic 3D shape, position and deformation are retrieved by photogrammetry based on digital image correlation of a projected laser speckle pattern. The photogrammetrically obtained data extend the measurement range of the DHI-DSP system and also increase the accuracy of the calculation of the sensitivity vector. Furthermore, a precise assignment of microscopic displacements to the object's macroscopic shape for enhanced visualization is achieved. The approach allows for fast measurements with a simple setup. Key parameters of the system are optimized, and its precision and measurement range are demonstrated. As application examples, the deformation of a mandible model and the shrinkage of dental impression material are measured.

  20. High-quality 3D fingerprint acquisition using a novel sub-window-based structured light illumination approach

    Science.gov (United States)

    Yalla, Veeraganesh; Daley, Ray; Boles, Colby; Hassebrook, Laurence; Fleming, Kyle; Troy, Mike

    2010-08-01

    Fingerprint identification is one of the most prolific and well-regarded modalities in the field of biometrics for its high recognition rates. Fingerprints remain consistent throughout a person's lifetime and are relatively simple and inexpensive to capture with techniques ranging from inked fingerprint cards to Livescan devices. In this paper, we present an algorithm and a working device that is capable of capturing high quality 3D fingerprints based on Structured Light Illumination using a novel approach called the sub-window technique. The various benefits of this unique approach and applications in fingerprint biometrics are presented.

  1. Single breath-hold assessment of cardiac function using an accelerated 3D single breath-hold acquisition technique - comparison of an intravascular and extravascular contrast agent

    Directory of Open Access Journals (Sweden)

    Makowski Marcus R

    2012-07-01

    Full Text Available Abstract Background Cardiovascular magnetic resonance (CMR is the current gold standard for the assessment of left ventricular (LV function. Repeated breath-holds are needed for standard multi-slice 2D cine steady-state free precession sequences (M2D-SSFP. Accelerated single breath-hold techniques suffer from low contrast between blood pool and myocardium. In this study an intravascular contrast agent was prospectively compared to an extravascular contrast agent for the assessment of LV function using a single-breath-hold 3D-whole-heart cine SSFP sequence (3D-SSFP. Methods LV function was assessed in fourteen patients on a 1.5 T MR-scanner (Philips Healthcare using 32-channel coil technology. Patients were investigated twice using a 3D-SSFP sequence (acquisition time 18–25 s after Gadopentetate dimeglumine (GdD, day 1 and Gadofosveset trisodium (GdT, day 2 administration. Image acquisition was accelerated using sensitivity encoding in both phase encoding directions (4xSENSE. CNR and BMC were both measured between blood and myocardium. The CNR incorporated noise measurements, while the BMC represented the coeffiancy between the signal from blood and myocardium [1]. Contrast to noise ratio (CNR, blood to myocardium contrast (BMC, image quality, LV functional parameters and intra-/interobserver variability were compared. A M2D-SSFP sequence was used as a reference standard on both days. Results All 3D-SSFP sequences were successfully acquired within one breath-hold after GdD and GdT administration. CNR and BMC were significantly (p vs. 23.7 and regression analysis showed a stronger correlation to the reference standard (R2 = 0.92 vs. R2 = 0.71, compared to 3D-SSFP with GdD. Conclusions A single-breath-hold 3D-whole-heart cine SSFP sequence in combination with 32-channel technology and an intravascular contrast agent allows for the accurate and fast assessment of LV function. Trial registration The study was approved by the local

  2. Study on image acquisition in 3-D sensor system of arc welding pool surface shape using grating projection

    Science.gov (United States)

    Ai, Xiaopu; Liu, Nansheng; Wei, Yiqing; Hu, Xian; Wei, Sheng; Liu, Xiaorui

    2009-11-01

    Detecting 3-D information on welding pool surface shape is difficult due to the arc light interference, high temperature radiation and pool surface specular reflection. The characteristics of mirror like reflection on pool of liquid surface are studied. Besides the way to obtain clear information-rich image of the pool area is discussed under the strong arc light. Because of the strong arc light above the pool will affect the imaging of the relatively weaker laser stripes seriously, we need to choose a suitable shooting angle and shooting distance to achieve well image. According to all these factors, the optimal combination of the sensing structure parameters in theory is deduced. Based on this work, a vision detecting of arc welding pool surface topography system was putted up in our laboratory, also actual measurement was carried out to obtain more clear images of deformation laser stripes in welding pool. This will provide the three-dimensional reconstruction a strong support.

  3. E-Book as Facilitator of Vocabulary Acquisition: Support of Adults, Dynamic Dictionary and Static Dictionary

    Science.gov (United States)

    Korat, Ofra; Levin, Iris; Atishkin, Shifra; Turgeman, Merav

    2014-01-01

    We investigated the effects of three facilitators: adults' support, dynamic visual vocabulary support and static visual vocabulary support on vocabulary acquisition in the context of e-book reading. Participants were 144 Israeli Hebrew-speaking preschoolers (aged 4-6) from middle SES neighborhoods. The entire sample read the e-book without a…

  4. SLA before ABC: Factors Facilitating Second Language Acquisition in Irish-Medium Playgroups.

    Science.gov (United States)

    Mhathuna, Maire Mhic

    1995-01-01

    This study investigated factors facilitating acquisition of Irish in Irish-medium playgroups designed for children who are native English-speakers. Data were gathered in four visits each to two such playgroups, each containing approximately 20 children. Four aspects of conversational exchanges were examined: understanding; code mixing; formulaic…

  5. 3D change detection - Approaches and applications

    Science.gov (United States)

    Qin, Rongjun; Tian, Jiaojiao; Reinartz, Peter

    2016-12-01

    Due to the unprecedented technology development of sensors, platforms and algorithms for 3D data acquisition and generation, 3D spaceborne, airborne and close-range data, in the form of image based, Light Detection and Ranging (LiDAR) based point clouds, Digital Elevation Models (DEM) and 3D city models, become more accessible than ever before. Change detection (CD) or time-series data analysis in 3D has gained great attention due to its capability of providing volumetric dynamics to facilitate more applications and provide more accurate results. The state-of-the-art CD reviews aim to provide a comprehensive synthesis and to simplify the taxonomy of the traditional remote sensing CD techniques, which mainly sit within the boundary of 2D image/spectrum analysis, largely ignoring the particularities of 3D aspects of the data. The inclusion of 3D data for change detection (termed 3D CD), not only provides a source with different modality for analysis, but also transcends the border of traditional top-view 2D pixel/object-based analysis to highly detailed, oblique view or voxel-based geometric analysis. This paper reviews the recent developments and applications of 3D CD using remote sensing and close-range data, in support of both academia and industry researchers who seek for solutions in detecting and analyzing 3D dynamics of various objects of interest. We first describe the general considerations of 3D CD problems in different processing stages and identify CD types based on the information used, being the geometric comparison and geometric-spectral analysis. We then summarize relevant works and practices in urban, environment, ecology and civil applications, etc. Given the broad spectrum of applications and different types of 3D data, we discuss important issues in 3D CD methods. Finally, we present concluding remarks in algorithmic aspects of 3D CD.

  6. Investigation of data acquisition parameters for Minami Noshiro 3D experiment using 3D seismic modeling; Sanjigen hado denpa modeling wo riyoshita Minami Noshiro sanjigen jishin tansa data shutoku parameter no kento

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, H.; Nakagami, K.; Minegishi, M. [Japan National Oil Corp., Tokyo (Japan). Technology Research Center; Kano, R. [Teikoku Oil Co. Ltd., Tokyo (Japan)

    1996-10-01

    This paper describes how to grasp the characteristics of reflected waves which means how the reflected wave can be received in its magnitude depending on the complicated subsurface structure. Data acquisition parameters were also investigated, as to offset distance distribution and mute setting during the HMO correction. A velocity structure model was prepared for an area of 9km{times}8km including the given 3D seismic exploration area at Minami Noshiro, Akita Prefecture. For the geological sequence used for the velocity structure model, three formations, i.e., Katsurane Formation, Funakawa Formation, and Onagawa Formation, were inputted in an order from the shallower depth on the basis of the depth structure profile obtained from the previous data. Ray tracing was calculated by means of the two-dot dashed line tracing method. For this method, amplitude as well as travel time of waves can be calculated at the same time. This was effective for grasping the magnitude of reflected wave on simulating the traced data. For the velocity structure model used in this study, existing data inputted were old, which limited the quantity of information. However, this model would sufficiently contribute to the verification of survey design and the determination of optimal layout. 1 ref., 3 figs.

  7. Uav-Based Acquisition of 3d Point Cloud - a Comparison of a Low-Cost Laser Scanner and Sfm-Tools

    Science.gov (United States)

    Mader, D.; Blaskow, R.; Westfeld, P.; Maas, H.-G.

    2015-08-01

    The Project ADFEX (Adaptive Federative 3D Exploration of Multi Robot System) pursues the goal to develop a time- and cost-efficient system for exploration and monitoring task of unknown areas or buildings. A fleet of unmanned aerial vehicles equipped with appropriate sensors (laser scanner, RGB camera, near infrared camera, thermal camera) were designed and built. A typical operational scenario may include the exploration of the object or area of investigation by an UAV equipped with a laser scanning range finder to generate a rough point cloud in real time to provide an overview of the object on a ground station as well as an obstacle map. The data about the object enables the path planning for the robot fleet. Subsequently, the object will be captured by a RGB camera mounted on the second flying robot for the generation of a dense and accurate 3D point cloud by using of structure from motion techniques. In addition, the detailed image data serves as basis for a visual damage detection on the investigated building. This paper focuses on our experience with use of a low-cost light-weight Hokuyo laser scanner onboard an UAV. The hardware components for laser scanner based 3D point cloud acquisition are discussed, problems are demonstrated and analyzed, and a quantitative analysis of the accuracy potential is shown as well as in comparison with structure from motion-tools presented.

  8. Intracellular nanomanipulation by a photonic-force microscope with real-time acquisition of a 3D stiffness matrix

    Science.gov (United States)

    Bertseva, E.; Singh, A. S. G.; Lekki, J.; Thévenaz, P.; Lekka, M.; Jeney, S.; Gremaud, G.; Puttini, S.; Nowak, W.; Dietler, G.; Forró, L.; Unser, M.; Kulik, A. J.

    2009-07-01

    A traditional photonic-force microscope (PFM) results in huge sets of data, which requires tedious numerical analysis. In this paper, we propose instead an analog signal processor to attain real-time capabilities while retaining the richness of the traditional PFM data. Our system is devoted to intracellular measurements and is fully interactive through the use of a haptic joystick. Using our specialized analog hardware along with a dedicated algorithm, we can extract the full 3D stiffness matrix of the optical trap in real time, including the off-diagonal cross-terms. Our system is also capable of simultaneously recording data for subsequent offline analysis. This allows us to check that a good correlation exists between the classical analysis of stiffness and our real-time measurements. We monitor the PFM beads using an optical microscope. The force-feedback mechanism of the haptic joystick helps us in interactively guiding the bead inside living cells and collecting information from its (possibly anisotropic) environment. The instantaneous stiffness measurements are also displayed in real time on a graphical user interface. The whole system has been built and is operational; here we present early results that confirm the consistency of the real-time measurements with offline computations.

  9. Pseudo-random data acquisition geometry in 3D seismic survey; Sanjigen jishin tansa ni okeru giji random data shutoku reiauto ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Minegishi, M.; Tsuburaya, Y. [Japan National Oil Corp., Tokyo (Japan). Technology Research Center

    1996-10-01

    Influence of pseudo-random geometry on the imaging for 3D seismic exploration data acquisition has been investigate using a simple model by comparing with the regular geometry. When constituting wave front by the interference of elemental waves, pseudo-random geometry data did not always provide good results. In the case of a point diffractor, the imaging operation, where the constituted wave front was returned to the point diffractor by the interference of elemental waves for the spatial alias records, did not always give clear images. In the case of multi point diffractor, good images were obtained with less noise generation in spite of alias records. There are a lot of diffractors in the actual geological structures, which corresponds to the case of multi point diffractors. Finally, better images could be obtained by inputting records acquired using the pseudo-random geometry rather than by inputting spatial alias records acquired using the regular geometry. 7 refs., 6 figs.

  10. Sea level history in 3D: Data acquisition and processing for an ultra-high resolution MCS survey across IODP Expedition 313 drillsite

    Science.gov (United States)

    Nedimovic, M. R.; Mountain, G. S.; Austin, J. A., Jr.; Fulthorpe, C.; Aali, M.; Baldwin, K.; Bhatnagar, T.; Johnson, C.; Küçük, H. M.; Newton, A.; Stanley, J.

    2015-12-01

    In June-July 2015, we acquired the first 3D/2D hybrid (short/long streamer) multichannel seismic (MCS) reflection dataset. These data were collected simultaneously across IODP Exp. 313 drillsites, off New Jersey, using R/V Langsethand cover ~95% of the planned 12x50 km box. Despite the large survey area, the lateral and vertical resolution for the 3D dataset is almost a magnitude of order higher than for data gathered for standard petroleum exploration. Such high-resolution was made possible by collection of common midpoint (CMP) lines whose combined length is ~3 times the Earth's circumference (~120,000 profile km) and a source rich in high-frequencies. We present details on the data acquisition, ongoing data analysis, and preliminary results. The science driving this project is presented by Mountain et al. The 3D component of this innovative survey used an athwartship cross cable, extended laterally by 2 barovanes roughly 357.5 m apart and trailed by 24 50-m P-Cables spaced ~12.5 m with near-trace offset of 53 m. Each P-Cable had 8 single hydrophone groups spaced at 6.25 m for a total of 192 channels. Record length was 4 s and sample rate 0.5 ms, with no low cut and an 824 Hz high cut filter. We ran 77 sail lines spaced ~150 m. Receiver locations were determined using 2 GPS receivers mounted on floats and 2 compasses and depth sensors per streamer. Streamer depths varied from 2.1 to 3.7 m. The 2D component used a single 3 km streamer, with 240 9-hydrophone groups spaced at 12.5 m, towed astern with near-trace offset of 229 m. The record length was 4 s and sample rate 0.5 ms, with low cut filter at 2 Hz and high cut at 412 Hz. Receiver locations were recorded using GPS at the head float and tail buoy, combined with 12 bird compasses spaced ~300 m. Nominal streamer depth was 4.5 m. The source for both systems was a 700 in3 linear array of 4 Bolt air guns suspended at 4.5 m towing depth, 271.5 m behind the ship's stern. Shot spacing was 12.5 m. Data analysis to

  11. A Programmed Training Technique That Uses Reinforcement to Facilitate Acquisition and Retention in Brain-Damaged Patients

    Science.gov (United States)

    Dolan, Michael P.; Norton, James C.

    1977-01-01

    Hospitalized brain-damaged patients were Ss in a study designed to evaluate the effectiveness of a treatment technique used with contingent reinforcement to facilitate acquisition and retention of environmentally relevant information. (Editor)

  12. Language-experience facilitates discrimination of /d-th/ in monolingual and bilingual acquisition of English.

    Science.gov (United States)

    Sundara, Megha; Polka, Linda; Genesee, Fred

    2006-06-01

    To trace how age and language experience shape the discrimination of native and non-native phonetic contrasts, we compared 4-year-olds learning either English or French or both and simultaneous bilingual adults on their ability to discriminate the English /d-th/ contrast. Findings show that the ability to discriminate the native English contrast improved with age. However, in the absence of experience with this contrast, discrimination of French children and adults remained unchanged during development. Furthermore, although simultaneous bilingual and monolingual English adults were comparable, children exposed to both English and French were poorer at discriminating this contrast when compared to monolingual English-learning 4-year-olds. Thus, language experience facilitates perception of the English /d-th/ contrast and this facilitation occurs later in development when English and French are acquired simultaneously. The difference between bilingual and monolingual acquisition has implications for language organization in children with simultaneous exposure.

  13. Facilitated acquisition of eyeblink conditioning in those vulnerable to anxiety disorders

    Directory of Open Access Journals (Sweden)

    Meghan Davis Caulfield

    2013-07-01

    Full Text Available Behavioral inhibition (BI increases vulnerability to develop anxiety disorders and is typified by avoidance and withdrawal from novel objects, people, and situations. The present study considered the relationship between behavioral inhibition and temperamental risk factors, such as trait anxiety and acquisition rate of a classically conditioned eyeblink response. 174 healthy undergraduate students (mean age 20.3 years, 71.8% female were given the State-Trait Anxiety Inventory and a battery of self-report measures of behavioral inhibition consisting of the Adult and Retrospective Measures of Behavioural Inhibition (AMBI/RMBI and the Concurrent and Retrospective Self Report of Inhibition (CSRI/RSRI. Participants then underwent standard delay classical eyeblink conditioning consisting of 45 trials with a 500-ms CS overlapping and co-terminating with a 10-ms airpuff US. Individuals with higher scores on the AMBI and Trait Anxiety Inventory, but not the other measures, showed faster acquisition of a conditioned eyeblink response than individuals with lower scores. Results support a relationship between facilitated acquisition of inter-stimulus relationships and risk for anxiety, and suggest that some measures assessing anxiety vulnerability better capture this relationship than others.

  14. Improvement of 3D Scanner

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The disadvantage remaining in 3D scanning system and its reasons are discussed. A new host-and-slave structure with high speed image acquisition and processing system is proposed to quicken the image processing and improve the performance of 3D scanning system.

  15. Use of cone-beam CT and live 3-D needle guidance to facilitate percutaneous nephrostomy and nephrolithotripsy access in children and adolescents

    Energy Technology Data Exchange (ETDEWEB)

    Hawkins, C.M. [Emory University School of Medicine, Department of Radiology and Imaging Sciences, Atlanta, GA (United States); Kukreja, Kamlesh [Texas Children' s Hospital, Department of Radiology, Houston, TX (United States); Singewald, Timothy; Johnson, Neil D.; Racadio, John M. [Cincinnati Children' s Hospital Medical Center, Department of Radiology, Cincinnati, OH (United States); Minevich, Eugene; Reddy, Pramod [Cincinnati Children' s Hospital Medical Center, Department of Urology, Cincinnati, OH (United States)

    2016-04-15

    Gaining access into non-dilated renal collecting systems for percutaneous nephrolithotripsy, particularly in patients with prohibitive body habitus and/or scoliosis, is often challenging using conventional techniques. To evaluate the feasibility of cone-beam CT for percutaneous nephrostomy placement for subsequent percutaneous nephrolithotripsy in children and adolescents. A retrospective review of percutaneous nephrostomy revealed use of cone-beam CT and 3-D guidance in 12 percutaneous nephrostomy procedures for 9 patients between 2006 and 2015. All cone-beam CT-guided percutaneous nephrostomies were for pre-lithotripsy access and all 12 were placed in non-dilated collecting systems. Technical success was 100%. There were no complications. Cone-beam CT with 3-D guidance is a technically feasible technique for percutaneous nephrostomy in children and adolescents, specifically for nephrolithotripsy access in non-dilated collecting systems. (orig.)

  16. Pyrolysed 3D-Carbon Scaffolds Induce Spontaneous Differentiation of Human Neural Stem Cells and Facilitate Real-Time Dopamine Detection

    DEFF Research Database (Denmark)

    Amato, Letizia; Heiskanen, Arto; Caviglia, Claudia

    2014-01-01

    Structurally patterned pyrolysed three-dimensional carbon scaffolds (p3Dcarbon) are fabricated and applied for differentiation of human neural stem cells (hNSCs) developed for cell replacement therapy and sensing of released dopamine. In the absence of differentiation factors (DF) the pyrolysed...... carbon material induces spontaneous hNSC differentiation into mature dopamine-producing neurons and the 3D-topography promotes neurite elongation. In the presence and absence of DF, ≈73–82% of the hNSCs obtain dopaminergic properties on pyrolysed carbon, a to-date unseen efficiency in both two...

  17. 基于激光影像的物体三维点云获取系统%The acquisition System of 3D Point Cloud Based on Image With Laser

    Institute of Scientific and Technical Information of China (English)

    王震; 刘进

    2013-01-01

    三维点云获取系统能够快速地获取目标物体的几何信息,生成大量点云,将目标的真实三维形态在计算机中可视化的展现出来。本文提出了一种新的三维点云数据获取的方法,应用在自主开发的基于激光影像的物体三维点云获取系统中,即标定激光面映射目标表面点的一维坐标,利用单像摄影测量后方交会和一维坐标的联合解算,得出目标点三维伪坐标。通过坐标逆向旋转恢复,得到真实的三维坐标数据,据此完整地建立目标物体的三维可视化模型。%The acquisition system of 3D point cloud can get the geometric information fast and provide a lot of point cloud data in order to show the object 3D shape on a computer .This paper gives a new method of getting 3D point cloud data that is applied to the self-made system of object 3D point cloud acquisition based on image with laser .The calibra-ted laser area reflects the one dimension coordinates of object surface .Through the combined calculation of one dimen-sion coordinate and resection of single photogrammetry the original 3D coordinates of object points can be obtained . Through reverse rotation we can get the true 3D coordinates and construct the complete 3D visual model of object.

  18. CASTLE3D - A Computer Aided System for Labelling Archaeological Excavations in 3D

    Science.gov (United States)

    Houshiar, H.; Borrmann, D.; Elseberg, J.; Nüchter, A.; Näth, F.; Winkler, S.

    2015-08-01

    Documentation of archaeological excavation sites with conventional methods and tools such as hand drawings, measuring tape and archaeological notes is time consuming. This process is prone to human errors and the quality of the documentation depends on the qualification of the archaeologist on site. Use of modern technology and methods in 3D surveying and 3D robotics facilitate and improve this process. Computer-aided systems and databases improve the documentation quality and increase the speed of data acquisition. 3D laser scanning is the state of the art in modelling archaeological excavation sites, historical sites and even entire cities or landscapes. Modern laser scanners are capable of data acquisition of up to 1 million points per second. This provides a very detailed 3D point cloud of the environment. 3D point clouds and 3D models of an excavation site provide a better representation of the environment for the archaeologist and for documentation. The point cloud can be used both for further studies on the excavation and for the presentation of results. This paper introduces a Computer aided system for labelling archaeological excavations in 3D (CASTLE3D). Consisting of a set of tools for recording and georeferencing the 3D data from an excavation site, CASTLE3D is a novel documentation approach in industrial archaeology. It provides a 2D and 3D visualisation of the data and an easy-to-use interface that enables the archaeologist to select regions of interest and to interact with the data in both representations. The 2D visualisation and a 3D orthogonal view of the data provide cuts of the environment that resemble the traditional hand drawings. The 3D perspective view gives a realistic view of the environment. CASTLE3D is designed as an easy-to-use on-site semantic mapping tool for archaeologists. Each project contains a predefined set of semantic information that can be used to label findings in the data. Multiple regions of interest can be joined under

  19. Use of a graphics processing unit (GPU) to facilitate real-time 3D graphic presentation of the patient skin-dose distribution during fluoroscopic interventional procedures.

    Science.gov (United States)

    Rana, Vijay; Rudin, Stephen; Bednarek, Daniel R

    2012-02-23

    We have developed a dose-tracking system (DTS) that calculates the radiation dose to the patient's skin in real-time by acquiring exposure parameters and imaging-system-geometry from the digital bus on a Toshiba Infinix C-arm unit. The cumulative dose values are then displayed as a color map on an OpenGL-based 3D graphic of the patient for immediate feedback to the interventionalist. Determination of those elements on the surface of the patient 3D-graphic that intersect the beam and calculation of the dose for these elements in real time demands fast computation. Reducing the size of the elements results in more computation load on the computer processor and therefore a tradeoff occurs between the resolution of the patient graphic and the real-time performance of the DTS. The speed of the DTS for calculating dose to the skin is limited by the central processing unit (CPU) and can be improved by using the parallel processing power of a graphics processing unit (GPU). Here, we compare the performance speed of GPU-based DTS software to that of the current CPU-based software as a function of the resolution of the patient graphics. Results show a tremendous improvement in speed using the GPU. While an increase in the spatial resolution of the patient graphics resulted in slowing down the computational speed of the DTS on the CPU, the speed of the GPU-based DTS was hardly affected. This GPU-based DTS can be a powerful tool for providing accurate, real-time feedback about patient skin-dose to physicians while performing interventional procedures.

  20. Use of a graphics processing unit (GPU) to facilitate real-time 3D graphic presentation of the patient skin-dose distribution during fluoroscopic interventional procedures

    Science.gov (United States)

    Rana, Vijay; Rudin, Stephen; Bednarek, Daniel R.

    2012-03-01

    We have developed a dose-tracking system (DTS) that calculates the radiation dose to the patient's skin in realtime by acquiring exposure parameters and imaging-system-geometry from the digital bus on a Toshiba Infinix C-arm unit. The cumulative dose values are then displayed as a color map on an OpenGL-based 3D graphic of the patient for immediate feedback to the interventionalist. Determination of those elements on the surface of the patient 3D-graphic that intersect the beam and calculation of the dose for these elements in real time demands fast computation. Reducing the size of the elements results in more computation load on the computer processor and therefore a tradeoff occurs between the resolution of the patient graphic and the real-time performance of the DTS. The speed of the DTS for calculating dose to the skin is limited by the central processing unit (CPU) and can be improved by using the parallel processing power of a graphics processing unit (GPU). Here, we compare the performance speed of GPU-based DTS software to that of the current CPU-based software as a function of the resolution of the patient graphics. Results show a tremendous improvement in speed using the GPU. While an increase in the spatial resolution of the patient graphics resulted in slowing down the computational speed of the DTS on the CPU, the speed of the GPU-based DTS was hardly affected. This GPU-based DTS can be a powerful tool for providing accurate, real-time feedback about patient skin-dose to physicians while performing interventional procedures.

  1. Retro-orbital blood acquisition facilitates circulating microRNA measurement in zebrafish with paracetamol hepatotoxicity.

    Science.gov (United States)

    Vliegenthart, Adriaan D B; Starkey Lewis, Philip; Tucker, Carl S; Del Pozo, Jorge; Rider, Sebastein; Antoine, Daniel J; Dubost, Valérie; Westphal, Magdalena; Moulin, Pierre; Bailey, Matthew A; Moggs, Jonathan G; Goldring, Chris E; Park, B Kevin; Dear, James W

    2014-06-01

    Paracetamol is the commonest cause of acute liver failure in the Western world and biomarkers are needed that report early hepatotoxicity. The liver-enriched microRNA (miRNA), miR-122, is a promising biomarker currently being qualified in humans. For biomarker development and drug toxicity screening, the zebrafish has advantages over rodents; however, blood acquisition in this model remains technically challenging. We developed a method for collecting blood from the adult zebrafish by retro-orbital (RO) bleeding and compared it to the commonly used lateral incision method. The RO technique was more reliable in terms of the blood yield and minimum amount per fish. This new RO technique was used in a zebrafish model of paracetamol toxicity. Paracetamol induced dose-dependent increases in liver cell necrosis, serum alanine transaminase activity, and mortality. In situ hybridization localized expression of miR-122 to the cytoplasm of zebrafish hepatocytes. After collection by RO bleeding, serum miR-122 could be measured and this miRNA was substantially increased by paracetamol 24 h after exposure, an increase that was prevented by delayed (3 h poststart of paracetamol exposure) treatment with acetylcysteine. In summary, collection of blood by RO bleeding facilitated measurement of miR-122 in a zebrafish model of paracetamol hepatotoxicity. The zebrafish represents a new species for measurement of circulating miRNA biomarkers that are translational and can bridge between fish and humans.

  2. Use of 3D printer technology to facilitate surgical correction of a complex vascular anomaly with esophageal entrapment in a dog.

    Science.gov (United States)

    Dundie, A; Hayes, G; Scrivani, P; Campoy, L; Fletcher, D; Ash, K; Oxford, E; Moïse, N S

    2017-01-13

    A 10 week old female intact Staffordshire terrier was presented with a total of five congenital cardio-thoracic vascular anomalies consisting of a patent ductus arteriosus (PDA) with an aneurysmic dilation, pulmonic stenosis, persistent right aortic arch, aberrant left subclavian artery and persistent left cranial vena cava. These abnormalities were identified with a combination of echocardiogram and computed tomography angiography (CTA). The abnormalities were associated with esophageal entrapment, regurgitation, and volume overload of the left heart with left atrial and ventricular enlargement. A 2 cm diameter aneurysmic dilation at the junction of the PDA, right aortic arch and aberrant left subclavian artery presented an unusual surgical challenge and precluded simple circumferential ligation and transection of the structure. A full scale three dimensional model of the heart and vasculature was constructed from the CTA and plasma sterilized. The model was used preoperatively to facilitate surgical planning and enhance intraoperative communication and coordination between the surgical and anesthesia teams. Intraoperatively the model facilitated spatial orientation, atraumatic vascular dissection, instrument sizing and positioning. A thoracoabdominal stapler was used to close the PDA aneurysm prior to transection. At the four-month postoperative follow-up the patient was doing well. This is the first reported application of new imaging and modeling technology to enhance surgical planning when approaching correction of complex cardiovascular anomalies in a dog.

  3. Sodium magnetic resonance imaging. Development of a 3D radial acquisition technique with optimized k-space sampling density and high SNR-efficiency; Natrium-Magnetresonanztomographie. Entwicklung einer 3D radialen Messtechnik mit optimierter k-Raum-Abtastdichte und hoher SNR-Effizienz

    Energy Technology Data Exchange (ETDEWEB)

    Nagel, Armin Michael

    2009-04-01

    A 3D radial k-space acquisition technique with homogenous distribution of the sampling density (DA-3D-RAD) is presented. This technique enables short echo times (TE<0.5 ms), that are necessary for {sup 23}Na-MRI, and provides a high SNR-efficiency. The gradients of the DA-3D-RAD-sequence are designed such that the average sampling density in each spherical shell of k-space is constant. The DA-3D-RAD-sequence provides 34% more SNR than a conventional 3D radial sequence (3D-RAD) if T{sub 2}{sup *}-decay is neglected. This SNR-gain is enhanced if T{sub 2}{sup *}-decay is present, so a 1.5 to 1.8 fold higher SNR is measured in brain tissue with the DA-3D-RAD-sequence. Simulations and experimental measurements show that the DA-3D-RAD sequence yields a better resolution in the presence of T{sub 2}{sup *}-decay and less image artefacts when B{sub 0}-inhomogeneities exist. Using the developed sequence, T{sub 1}-, T{sub 2}{sup *}- and Inversion-Recovery-{sup 23}Na-image contrasts were acquired for several organs and {sup 23}Na-relaxation times were measured (brain tissue: T{sub 1}=29.0{+-}0.3 ms; T{sub 2s}{sup *}{approx}4 ms; T{sub 2l}{sup *}{approx}31 ms; cerebrospinal fluid: T{sub 1}=58.1{+-}0.6 ms; T{sub 2}{sup *}=55{+-}3 ms (B{sub 0}=3 T)). T{sub 1}- und T{sub 2}{sup *}-relaxation times of cerebrospinal fluid are independent of the selected magnetic field strength (B0 = 3T/7 T), whereas the relaxation times of brain tissue increase with field strength. Furthermore, {sup 23}Na-signals of oedemata were suppressed in patients and thus signals from different tissue compartments were selectively measured. (orig.)

  4. Pharyngolaryngeal tumors: spiral CT with 3D reconstruction; Tumeurs du pharyngo-larynx: apport de la tomodensitometrie en acquisition volumique avec reconstructions tridimensionnelles

    Energy Technology Data Exchange (ETDEWEB)

    Arnould, V.; Troufleau, P.; Stines, J. [Centre de Lutte Contre le Cancer, 54 - Nancy (France); Regent, D. [Centre Hospitalier Universitaire, 54 - Nancy (France)

    1995-04-01

    Spiral CT allows the exploration of the whole larynx and hypopharynx in 30 seconds. This is a good adjustment between the technique and the organ. Performed on 15 patients during a 30 seconds Valsalva maneuver, the exploration yields results from good to excellent. In two cases, conventional and helical CT are compared. The limitation of mA is not a drawback in such a thin region and there is no shift of organ or lesion between two scans, because the whole range is scanned in a single breathhold. 3D display of larynx and pharynx can performed with some advantage, especially easiness of presentation for surgeon. They help topographic analysis and make correlation between endoscopic views and axial scans. They could be useful for surgical simulation and 3D photon treatment plannings. (authors). 17 refs., 17 figs.

  5. 3D Animation Essentials

    CERN Document Server

    Beane, Andy

    2012-01-01

    The essential fundamentals of 3D animation for aspiring 3D artists 3D is everywhere--video games, movie and television special effects, mobile devices, etc. Many aspiring artists and animators have grown up with 3D and computers, and naturally gravitate to this field as their area of interest. Bringing a blend of studio and classroom experience to offer you thorough coverage of the 3D animation industry, this must-have book shows you what it takes to create compelling and realistic 3D imagery. Serves as the first step to understanding the language of 3D and computer graphics (CG)Covers 3D anim

  6. Comparison of 3D Maximum intensity projection (MIP reconstruction and 2D T2 Half-Fourier Acquisition Single-Shot Turbo Spin-Echo (HASTE sequence in magnetic resonance cholangiopancreatography

    Directory of Open Access Journals (Sweden)

    Fuad Julardžija

    2014-04-01

    Full Text Available Introduction: Magnetic resonance cholangiopancreatography (MRCP is a method that allows noninvasive visualization of pancreatobiliary tree and does not require contrast application. It is a modern method based on heavily T2-weighted imaging (hydrography, which uses bile and pancreatic secretions as a natural contrast medium. Certain weaknesses in quality of demonstration of pancreatobiliary tract can be observed in addition to its good characteristics. Our aim was to compare the 3D Maximum intensity projection (MIP reconstruction and 2D T2 Half-Fourier Acquisition Single-Shot Turbo Spin-Echo (HASTE sequence in magnetic resonance cholangiopancreatography.Methods: During the period of one year 51 patients underwent MRCP on 3T „Trio“ system. Patients of different sex and age structure were included, both outpatient and hospitalized. 3D MIP reconstruction and 2D T2 haste sequence were used according to standard scanning protocols.Results: There were 45.1% (n= 23 male and 54.9% (n=28 female patients, age range from 17 to 81 years. 2D T2 haste sequence was more susceptible to respiratory artifacts presence in 64% patients, compared to 3D MIP reconstruction with standard error (0.09, result significance indication (p=0.129 and confidence interval (0.46 to 0.81. 2D T2 haste sequences is more sensitive and superior for pancreatic duct demonstration compared to 3D MIP reconstruction with standard error (0.07, result significance indication (p=0.01 and confidence interval (0.59 to 0.87Conclusion: In order to make qualitative demonstration and analysis of hepatobiliary and pancreatic system on MR, both 2D T2 haste sequence in transversal plane and 3D MIP reconstruction are required.

  7. ITI-signals and prelimbic cortex facilitate avoidance acquisition and reduce avoidance latencies, respectively, in male WKY rats

    Directory of Open Access Journals (Sweden)

    Kevin D Beck

    2014-11-01

    Full Text Available As a model of anxiety disorder vulnerability, male Wistar-Kyoto (WKY rats acquire lever-press avoidance behavior more readily than outbred Sprague Dawley rats, and their acquisition is enhanced by the presence of a discrete signal presented during the inter-trial intervals (ITIs, suggesting it is perceived as a safety signal. A series of experiments were conducted to determine if this is the case. Additional experiments investigated if the avoidance facilitation relies upon processing through medial prefrontal cortex (mPFC. The results suggest that the ITI-signal facilitates acquisition during the early stages of the avoidance acquisition process, when the rats are initially acquiring escape behavior and then transitioning to avoidance behavior. Post-avoidance introduction of the visual ITI-signal into other associative learning tasks failed to confirm that the visual stimulus had acquired the properties of a conditioned inhibitor. Shortening the signal from the entirety of the 3 min ITI to only the first 5 s of the 3 min ITI slowed acquisition during the first 4 sessions, suggesting the flashing light is not functioning as a feedback signal. The prelimbic (PL cortex showed greater activation during the period of training when the transition from escape responding to avoidance responding occurs. Only combined PL+infralimbic cortex lesions modestly slowed avoidance acquisition, but PL cortex lesions slowed avoidance response latencies. Thus, the flashing light ITI-signal is not likely perceived as a safety signal nor is it serving as a feedback signal. The functional role of the PL cortex appears to be to increase the drive towards responding to the threat of the warning signal. Hence, avoidance susceptibility displayed by male WKY rats may be driven, in part, both by external stimuli (ITI signal as well as by enhanced threat recognition to the warning signal via the PL cortex.

  8. Amygdala’s involvement in facilitating associative learning-induced plasticity: a promiscuous role for the amygdala in memory acquisition

    Directory of Open Access Journals (Sweden)

    Lily S Chau

    2012-10-01

    Full Text Available It is widely accepted that the amygdala plays a critical role in acquisition and consolidation of fear-related memories. Some of the more widely employed behavioral paradigms that have assisted in solidifying the amygdala’s role in fear-related memories are associative learning paradigms. With most associative learning tasks, a neutral conditioned stimulus (CS is paired with a salient unconditioned stimulus (US that elicits an unconditioned response (UR. After multiple CS-US pairings, the subject learns that the CS predicts the onset or delivery of the US, and thus elicits a learned conditioned response (CR. Most fear-related associative paradigms have suggested that an aspect of the fear association is stored in the amygdala; however, some fear-motivated associative paradigms suggest that the amygdala is not a site of storage, but rather facilitates consolidation in other brain regions. Based upon various learning theories, one of the most likely sites for storage of long-term memories is the neocortex. In support of these theories, findings from our laboratory, and others, have demonstrated that trace-conditioning, an associative paradigm where there is a separation in time between the CS and US, induces learning-specific neocortical plasticity. The following review will discuss the amygdala’s involvement, either as a site of storage or facilitating storage in other brain regions such as the neocortex, in fear- and non-fear-motivated associative paradigms. In this review, we will discuss recent findings suggesting a broader role for the amygdala in increasing the saliency of behaviorally relevant information, thus facilitating acquisition for all forms of memory, both fear- and non-fear-related. This proposed promiscuous role of the amygdala in facilitating acquisition for all memories further suggests a potential role of the amygdala in general learning disabilities.

  9. Amygdala's involvement in facilitating associative learning-induced plasticity: a promiscuous role for the amygdala in memory acquisition.

    Science.gov (United States)

    Chau, Lily S; Galvez, Roberto

    2012-01-01

    It is widely accepted that the amygdala plays a critical role in acquisition and consolidation of fear-related memories. Some of the more widely employed behavioral paradigms that have assisted in solidifying the amygdala's role in fear-related memories are associative learning paradigms. With most associative learning tasks, a neutral conditioned stimulus (CS) is paired with a salient unconditioned stimulus (US) that elicits an unconditioned response (UR). After multiple CS-US pairings, the subject learns that the CS predicts the onset or delivery of the US, and thus elicits a learned conditioned response (CR). Most fear-related associative paradigms have suggested that an aspect of the fear association is stored in the amygdala; however, some fear-motivated associative paradigms suggest that the amygdala is not a site of storage, but rather facilitates consolidation in other brain regions. Based upon various learning theories, one of the most likely sites for storage of long-term memories is the neocortex. In support of these theories, findings from our laboratory, and others, have demonstrated that trace-conditioning, an associative paradigm where there is a separation in time between the CS and US, induces learning-specific neocortical plasticity. The following review will discuss the amygdala's involvement, either as a site of storage or facilitating storage in other brain regions such as the neocortex, in fear- and non-fear-motivated associative paradigms. In this review, we will discuss recent findings suggesting a broader role for the amygdala in increasing the saliency of behaviorally relevant information, thus facilitating acquisition for all forms of memory, both fear- and non-fear-related. This proposed promiscuous role of the amygdala in facilitating acquisition for all memories further suggests a potential role of the amygdala in general learning disabilities.

  10. Accuracy and benefits of 3D bone surface modelling: a comparison of two methods of surface data acquisition reconstructed by laser scanning and computed tomography outputs.

    Science.gov (United States)

    Brzobohatá, Hana; Prokop, Josef; Horák, Martin; Jancárek, Alexandr; Velemínská, Jana

    2012-09-01

    The aim of this study is to compare two different methods of frontal bone surface model acquisition. Three dimensional models acquired by laser scanning were compared with models of the same bones acquired by virtual replicas reconstructed from a sequence of computed tomography (CT) images. The influence of volumetric CT data processing (namely thresholding), which immediately preceded the generation of the three-dimensional surface model, was also considered and explored in detail in one sample. Despite identifying certain areas where both models showed deviations across all samples, their conformity can be generally classified as satisfactory, and the differences can be regarded as minimal. The average deviation of registered surface models was 0.27 mm for 90% of the data, and its value was therefore very close to the resolution of the laser scanner used.

  11. 3D roadmap in neuroangiography: technique and clinical interest

    Energy Technology Data Exchange (ETDEWEB)

    Soederman, Michael; Andersson, T. [Karolinska Hospital, Department of Neuroradiology, Stockholm (Sweden); Babic, D.; Homan, R. [Philips Medical Systems, Best (Netherlands)

    2005-10-01

    We present the first clinical results obtained with a novel technique: the three-dimensional [3D] roadmap. The major difference from the standard 2D digital roadmap technique is that the newly developed 3D roadmap is based on a rotational angiography acquisition technique with the two-dimensional [2D] fluoroscopic image as an overlay. Data required for an accurate superimposition of the previously acquired 3D reconstructed image on the interactively made 2D fluoroscopy image, in real time, are stored in the 3D workstation and constitute the calibration dataset. Both datasets are spatially aligned in real time; thus, the 3D image is accurately superimposed on the 2D fluoroscopic image regardless of any change in C-arm position or magnification. The principal advantage of the described roadmap method is that one contrast injection allows the C-arm to be positioned anywhere in the space and allows alterations in the distance between the x-ray tube and the image intensifier as well as changes in image magnification. In the clinical setting, the 3D roadmap facilitated intravascular neuronavigation with concurrent reduction of procedure time and use of contrast medium. (orig.)

  12. Facilitated acquisition of standard but not long delay classical eyeblink conditioning in behaviorally inhibited adolescents.

    Science.gov (United States)

    Caulfield, M D; VanMeenen, K M; Servatius, R J

    2015-02-01

    Adolescence is a key age in the development of anxiety disorders. The present study assessed the relationship between behavioral inhibition, a risk factor for anxiety typified by avoidance, and acquisition of the classically conditioned eyeblink response. 168 healthy high school students (mean age 15.7 years, 54% female) were given a battery of self-report measures including the Adult Measure of Behavioural Inhibition (AMBI). The study compared acquisition of three experimental training conditions. Two groups were given paired CS-US training: standard delay of 500-ms or long delay of 1000-ms with CS overlapping and co-terminating with a 50-ms airpuff US. A third group received unpaired training of 1000-ms CS and 50-ms airpuff US. Inhibited individuals showed greater acquisition of the conditioned eyeblink response in the 500-ms CS condition, but not in the paired 1000-ms condition. No differences in spontaneous blinks or reactivity to the stimulus were evident in the 1000-ms unpaired CS condition. Results support a relationship between associative learning and anxiety vulnerability that may be mediated by cerebellar functioning in inhibited individuals.

  13. Asphalt pavement surface 3D data acquisition system based on line-structure light%基于线结构光的沥青路面三维数据采集系统

    Institute of Scientific and Technical Information of China (English)

    孙朝云; 呼延菊; 李伟; 魏子尧; 刘祝

    2016-01-01

    To solve the problem of poor real-time,low accuracy of current asphalt pavement surface 3D data acquisition system,which can not provide 3D pavement data comprehensively,this paper studied an asphalt pavement 3D data acquisition system based on line-structure light.The system was a three-dimensional equipment with optical and electrical integration and automation,which was designed for domestic road three-dimensional information detection.It could realize data collection,analysis,processing,3D display for asphalt pavement surface topography.The system used infrared laser light source,planar array CCD camera and digital image detection technology.This system computed the 3D depth information based on laser triangulation algorithm,finished 3D reconstruction of road surface morphology by use of MATLAB software to obtain 3D display after reconstruction,and did quantitative analysis of detection results.Based on modular design,this system mainly consisted of power supply module,salve computer control module,counting trigger module,laser triangulation detection module,GPS module and data processing module.The 3D data of asphalt pavement were obtained through testing software's driving hardware modules.The results show that modular design improves anti-interference,making the system structure simple and clear,and relieve from the complex wires.It is convenient for debugging,maintenance,shorten development cycle,and the cost for development and maintenance is also reduced.The results also show that the system can not only meet the requirements of asphalt pavement 3D data acquisition and the requirements of real-time detection,but also provide vivid and visualized 3D visual topography.17 figs,21 refs.%针对目前沥青路面表面形貌三维数据采集实时性差、精确度低,难以准确全面地提供路面三维构造形态的问题,研究了基于线结构光的沥青路面表面形貌三维数据采集系统.该系统是针对中国道路三维信息检测要求

  14. IZDELAVA TISKALNIKA 3D

    OpenAIRE

    Brdnik, Lovro

    2015-01-01

    Diplomsko delo analizira trenutno stanje 3D tiskalnikov na trgu. Prikazan je razvoj in principi delovanja 3D tiskalnikov. Predstavljeni so tipi 3D tiskalnikov, njihove prednosti in slabosti. Podrobneje je predstavljena zgradba in delovanje koračnih motorjev. Opravljene so meritve koračnih motorjev. Opisana je programska oprema za rokovanje s 3D tiskalniki in komponente, ki jih potrebujemo za izdelavo. Diploma se oklepa vprašanja, ali je izdelava 3D tiskalnika bolj ekonomična kot pa naložba v ...

  15. Concept and Practice of Teaching Technical University Students to Modern Technologies of 3d Data Acquisition and Processing: a Case Study of Close-Range Photogrammetry and Terrestrial Laser Scanning

    Science.gov (United States)

    Kravchenko, Iulia; Luhmann, Thomas; Shults, Roman

    2016-06-01

    For the preparation of modern specialists in the acquisition and processing of three-dimensional data, a broad and detailed study of related modern methods and technologies is necessary. One of the most progressive and effective methods of acquisition and analyzing spatial data is terrestrial laser scanning. The study of methods and technologies for terrestrial laser scanning is of great importance not only for GIS specialists, but also for surveying engineers who make decisions in traditional engineering tasks (monitoring, executive surveys, etc.). The understanding and formation of the right approach in preparing new professionals need to develop a modern and variable educational program. This educational program must provide effective practical and laboratory work and the student's coursework. The resulting knowledge of the study should form the basis for practical or research of young engineers. In 2014, the Institute of Applied Sciences (Jade University Oldenburg, Germany) and Kyiv National University of Construction and Architecture (Kiev, Ukraine) had launched a joint educational project for the introduction of terrestrial laser scanning technology for collection and processing of spatial data. As a result of this project practical recommendations have been developed for the organization of educational processes in the use of terrestrial laser scanning. An advanced project-oriented educational program was developed which is presented in this paper. In order to demonstrate the effectiveness of the program a 3D model of the big and complex main campus of Kyiv National University of Construction and Architecture has been generated.

  16. CONCEPT AND PRACTICE OF TEACHING TECHNICAL UNIVERSITY STUDENTS TO MODERN TECHNOLOGIES OF 3D DATA ACQUISITION AND PROCESSING: A CASE STUDY OF CLOSE-RANGE PHOTOGRAMMETRY AND TERRESTRIAL LASER SCANNING

    Directory of Open Access Journals (Sweden)

    I. Kravchenko

    2016-06-01

    Full Text Available For the preparation of modern specialists in the acquisition and processing of three-dimensional data, a broad and detailed study of related modern methods and technologies is necessary. One of the most progressive and effective methods of acquisition and analyzing spatial data is terrestrial laser scanning. The study of methods and technologies for terrestrial laser scanning is of great importance not only for GIS specialists, but also for surveying engineers who make decisions in traditional engineering tasks (monitoring, executive surveys, etc.. The understanding and formation of the right approach in preparing new professionals need to develop a modern and variable educational program. This educational program must provide effective practical and laboratory work and the student’s coursework. The resulting knowledge of the study should form the basis for practical or research of young engineers. In 2014, the Institute of Applied Sciences (Jade University Oldenburg, Germany and Kyiv National University of Construction and Architecture (Kiev, Ukraine had launched a joint educational project for the introduction of terrestrial laser scanning technology for collection and processing of spatial data. As a result of this project practical recommendations have been developed for the organization of educational processes in the use of terrestrial laser scanning. An advanced project-oriented educational program was developed which is presented in this paper. In order to demonstrate the effectiveness of the program a 3D model of the big and complex main campus of Kyiv National University of Construction and Architecture has been generated.

  17. 3D ear identification based on sparse representation.

    Science.gov (United States)

    Zhang, Lin; Ding, Zhixuan; Li, Hongyu; Shen, Ying

    2014-01-01

    Biometrics based personal authentication is an effective way for automatically recognizing, with a high confidence, a person's identity. Recently, 3D ear shape has attracted tremendous interests in research field due to its richness of feature and ease of acquisition. However, the existing ICP (Iterative Closet Point)-based 3D ear matching methods prevalent in the literature are not quite efficient to cope with the one-to-many identification case. In this paper, we aim to fill this gap by proposing a novel effective fully automatic 3D ear identification system. We at first propose an accurate and efficient template-based ear detection method. By utilizing such a method, the extracted ear regions are represented in a common canonical coordinate system determined by the ear contour template, which facilitates much the following stages of feature extraction and classification. For each extracted 3D ear, a feature vector is generated as its representation by making use of a PCA-based local feature descriptor. At the stage of classification, we resort to the sparse representation based classification approach, which actually solves an l1-minimization problem. To the best of our knowledge, this is the first work introducing the sparse representation framework into the field of 3D ear identification. Extensive experiments conducted on a benchmark dataset corroborate the effectiveness and efficiency of the proposed approach. The associated Matlab source code and the evaluation results have been made publicly online available at http://sse.tongji.edu.cn/linzhang/ear/srcear/srcear.htm.

  18. 3D and Education

    Science.gov (United States)

    Meulien Ohlmann, Odile

    2013-02-01

    Today the industry offers a chain of 3D products. Learning to "read" and to "create in 3D" becomes an issue of education of primary importance. 25 years professional experience in France, the United States and Germany, Odile Meulien set up a personal method of initiation to 3D creation that entails the spatial/temporal experience of the holographic visual. She will present some different tools and techniques used for this learning, their advantages and disadvantages, programs and issues of educational policies, constraints and expectations related to the development of new techniques for 3D imaging. Although the creation of display holograms is very much reduced compared to the creation of the 90ies, the holographic concept is spreading in all scientific, social, and artistic activities of our present time. She will also raise many questions: What means 3D? Is it communication? Is it perception? How the seeing and none seeing is interferes? What else has to be taken in consideration to communicate in 3D? How to handle the non visible relations of moving objects with subjects? Does this transform our model of exchange with others? What kind of interaction this has with our everyday life? Then come more practical questions: How to learn creating 3D visualization, to learn 3D grammar, 3D language, 3D thinking? What for? At what level? In which matter? for whom?

  19. Topology Dictionary for 3D Video Understanding

    OpenAIRE

    2012-01-01

    This paper presents a novel approach that achieves 3D video understanding. 3D video consists of a stream of 3D models of subjects in motion. The acquisition of long sequences requires large storage space (2 GB for 1 min). Moreover, it is tedious to browse data sets and extract meaningful information. We propose the topology dictionary to encode and describe 3D video content. The model consists of a topology-based shape descriptor dictionary which can be generated from either extracted pattern...

  20. TEHNOLOGIJE 3D TISKALNIKOV

    OpenAIRE

    Kolar, Nataša

    2016-01-01

    Diplomsko delo predstavi razvoj tiskanja skozi čas. Podrobneje so opisani 3D tiskalniki, ki uporabljajo različne tehnologije 3D tiskanja. Predstavljene so različne tehnologije 3D tiskanja, njihova uporaba in narejeni prototipi oz. končni izdelki. Diplomsko delo opiše celoten postopek, od zamisli, priprave podatkov in tiskalnika do izdelave prototipa oz. končnega izdelka.

  1. How a Web-Based Course Facilitates Acquisition of English for Academic Purposes

    Directory of Open Access Journals (Sweden)

    Jin Chen

    2004-05-01

    Full Text Available This paper describes an experimental study aimed at investigating the learning effectiveness of a Web-based course called Academic English (EAP for Japanese learners of English. The main focus of the study was to examine the form, function, and impact of interaction in the course. Twenty university-level EFL students participated in this experiment. They were randomly assigned to two treatment groups: a controlled group with inter-personal task treatment and an experiment group with intra-personal task treatment. Regarding effectiveness of the interactivity dimension in language acquisition, there was one independent variable, type of treatments, and two dependent variables, achievement and attitude measurements. The achievement variable was used to address the extent of learning due to the two treatment conditions. The attitude variable was used to address the degree of motivation towards a Web-based communication platform as well as the enforced interaction functions. Statistical analyses revealed no significant effect of treatment on either comprehension or general L2 development, but significant differences were found with respect to language interaction for task completion under different task treatments. Therefore, it was concluded that this Web-based course was well designed to maximize the students' language learning experience as well as to improve their language abilities in English. Further research is needed to examine the notion of self-repair in students' production in the target language.

  2. Rad59-facilitated acquisition of Y' elements by short telomeres delays the onset of senescence.

    Directory of Open Access Journals (Sweden)

    Dmitri Churikov

    2014-11-01

    Full Text Available Telomerase-negative yeasts survive via one of the two Rad52-dependent recombination pathways, which have distinct genetic requirements. Although the telomere pattern of type I and type II survivors is well characterized, the mechanistic details of short telomere rearrangement into highly evolved pattern observed in survivors are still missing. Here, we analyze immediate events taking place at the abruptly shortened VII-L and native telomeres. We show that short telomeres engage in pairing with internal Rap1-bound TG1-3-like tracts present between subtelomeric X and Y' elements, which is followed by BIR-mediated non-reciprocal translocation of Y' element and terminal TG1-3 repeats from the donor end onto the shortened telomere. We found that choice of the Y' donor was not random, since both engineered telomere VII-L and native VI-R acquired Y' elements from partially overlapping sets of specific chromosome ends. Although short telomere repair was associated with transient delay in cell divisions, Y' translocation on native telomeres did not require Mec1-dependent checkpoint. Furthermore, the homeologous pairing between the terminal TG1-3 repeats at VII-L and internal repeats on other chromosome ends was largely independent of Rad51, but instead it was facilitated by Rad59 that stimulates Rad52 strand annealing activity. Therefore, Y' translocation events taking place during presenescence are genetically separable from Rad51-dependent Y' amplification process that occurs later during type I survivor formation. We show that Rad59-facilitated Y' translocations on X-only telomeres delay the onset of senescence while preparing ground for type I survivor formation.

  3. Temporally-structured acquisition of multidimensional optical imaging data facilitates visualization of elusive cortical representations in the behaving monkey.

    Science.gov (United States)

    Omer, David B; Hildesheim, Rina; Grinvald, Amiram

    2013-11-15

    Fundamental understanding of higher cognitive functions can greatly benefit from imaging of cortical activity with high spatiotemporal resolution in the behaving non-human primate. To achieve rapid imaging of high-resolution dynamics of cortical representations of spontaneous and evoked activity, we designed a novel data acquisition protocol for sensory stimulation by rapidly interleaving multiple stimuli in continuous sessions of optical imaging with voltage-sensitive dyes. We also tested a new algorithm for the "temporally structured component analysis" (TSCA) of a multidimensional time series that was developed for our new data acquisition protocol, but was tested only on simulated data (Blumenfeld, 2010). In addition to the raw data, the algorithm incorporates prior knowledge about the temporal structure of the data as well as input from other information. Here we showed that TSCA can successfully separate functional signal components from other signals referred to as noise. Imaging of responses to multiple visual stimuli, utilizing voltage-sensitive dyes, was performed on the visual cortex of awake monkeys. Multiple cortical representations, including orientation and ocular dominance maps as well as the hitherto elusive retinotopic representation of orientation stimuli, were extracted in only 10s of imaging, approximately two orders of magnitude faster than accomplished by conventional methods. Since the approach is rather general, other imaging techniques may also benefit from the same stimulation protocol. This methodology can thus facilitate rapid optical imaging explorations in monkeys, rodents and other species with a versatility and speed that were not feasible before.

  4. 3D virtuel udstilling

    DEFF Research Database (Denmark)

    Tournay, Bruno; Rüdiger, Bjarne

    2006-01-01

    3d digital model af Arkitektskolens gård med virtuel udstilling af afgangsprojekter fra afgangen sommer 2006. 10 s.......3d digital model af Arkitektskolens gård med virtuel udstilling af afgangsprojekter fra afgangen sommer 2006. 10 s....

  5. 3D-printed patient-specific applications in orthopedics

    Directory of Open Access Journals (Sweden)

    Wong KC

    2016-10-01

    Full Text Available Kwok Chuen Wong Department of Orthopedics and Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong Abstract: With advances in both medical imaging and computer programming, two-dimensional axial images can be processed into other reformatted views (sagittal and coronal and three-dimensional (3D virtual models that represent a patients’ own anatomy. This processed digital information can be analyzed in detail by orthopedic surgeons to perform patient-specific orthopedic procedures. The use of 3D printing is rising and has become more prevalent in medical applications over the last decade as surgeons and researchers are increasingly utilizing the technology’s flexibility in manufacturing objects. 3D printing is a type of manufacturing process in which materials such as plastic or metal are deposited in layers to create a 3D object from a digital model. This additive manufacturing method has the advantage of fabricating objects with complex freeform geometry, which is impossible using traditional subtractive manufacturing methods. Specifically in surgical applications, the 3D printing techniques can not only generate models that give a better understanding of the complex anatomy and pathology of the patients and aid in education and surgical training, but can also produce patient-specific surgical guides or even custom implants that are tailor-made to the surgical requirements. As the clinical workflow of the 3D printing technology continues to evolve, orthopedic surgeons should embrace the latest knowledge of the technology and incorporate it into their clinical practice for patient-specific orthopedic applications. This paper is written to help orthopedic surgeons stay up-to-date on the emerging 3D technology, starting from the acquisition of clinical imaging to 3D printing for patient-specific applications in orthopedics. It 1 presents the necessary steps to prepare the medical images that are

  6. Blender 3D cookbook

    CERN Document Server

    Valenza, Enrico

    2015-01-01

    This book is aimed at the professionals that already have good 3D CGI experience with commercial packages and have now decided to try the open source Blender and want to experiment with something more complex than the average tutorials on the web. However, it's also aimed at the intermediate Blender users who simply want to go some steps further.It's taken for granted that you already know how to move inside the Blender interface, that you already have 3D modeling knowledge, and also that of basic 3D modeling and rendering concepts, for example, edge-loops, n-gons, or samples. In any case, it'

  7. Multiplane 3D superresolution optical fluctuation imaging

    CERN Document Server

    Geissbuehler, Stefan; Godinat, Aurélien; Bocchio, Noelia L; Dubikovskaya, Elena A; Lasser, Theo; Leutenegger, Marcel

    2013-01-01

    By switching fluorophores on and off in either a deterministic or a stochastic manner, superresolution microscopy has enabled the imaging of biological structures at resolutions well beyond the diffraction limit. Superresolution optical fluctuation imaging (SOFI) provides an elegant way of overcoming the diffraction limit in all three spatial dimensions by computing higher-order cumulants of image sequences of blinking fluorophores acquired with a conventional widefield microscope. So far, three-dimensional (3D) SOFI has only been demonstrated by sequential imaging of multiple depth positions. Here we introduce a versatile imaging scheme which allows for the simultaneous acquisition of multiple focal planes. Using 3D cross-cumulants, we show that the depth sampling can be increased. Consequently, the simultaneous acquisition of multiple focal planes reduces the acquisition time and hence the photo-bleaching of fluorescent markers. We demonstrate multiplane 3D SOFI by imaging the mitochondria network in fixed ...

  8. 3D GEO: AN ALTERNATIVE APPROACH

    OpenAIRE

    2016-01-01

    The expression GEO is mostly used to denote relation to the earth. However it should not be confined to what is related to the earth's surface, as other objects also need three dimensional representation and documentation, like cultural heritage objects. They include both tangible and intangible ones. In this paper the 3D data acquisition and 3D modelling of cultural heritage assets are briefly described and their significance is also highlighted. Moreover the organization of such information...

  9. 3D Digital Modelling

    DEFF Research Database (Denmark)

    Hundebøl, Jesper

    wave of new building information modelling tools demands further investigation, not least because of industry representatives' somewhat coarse parlance: Now the word is spreading -3D digital modelling is nothing less than a revolution, a shift of paradigm, a new alphabet... Research qeustions. Based...... on empirical probes (interviews, observations, written inscriptions) within the Danish construction industry this paper explores the organizational and managerial dynamics of 3D Digital Modelling. The paper intends to - Illustrate how the network of (non-)human actors engaged in the promotion (and arrest) of 3......D Modelling (in Denmark) stabilizes - Examine how 3D Modelling manifests itself in the early design phases of a construction project with a view to discuss the effects hereof for i.a. the management of the building process. Structure. The paper introduces a few, basic methodological concepts...

  10. Professional Papervision3D

    CERN Document Server

    Lively, Michael

    2010-01-01

    Professional Papervision3D describes how Papervision3D works and how real world applications are built, with a clear look at essential topics such as building websites and games, creating virtual tours, and Adobe's Flash 10. Readers learn important techniques through hands-on applications, and build on those skills as the book progresses. The companion website contains all code examples, video step-by-step explanations, and a collada repository.

  11. AE3D

    Energy Technology Data Exchange (ETDEWEB)

    2016-06-20

    AE3D solves for the shear Alfven eigenmodes and eigenfrequencies in a torodal magnetic fusion confinement device. The configuration can be either 2D (e.g. tokamak, reversed field pinch) or 3D (e.g. stellarator, helical reversed field pinch, tokamak with ripple). The equations solved are based on a reduced MHD model and sound wave coupling effects are not currently included.

  12. Avoidance prone individuals self reporting behavioral inhibition exhibit facilitated acquisition and altered extinction of conditioned eyeblinks with partial reinforcement schedules.

    Science.gov (United States)

    Allen, Michael Todd; Myers, Catherine E; Servatius, Richard J

    2014-01-01

    Avoidance in the face of novel situations or uncertainty is a prime feature of behavioral inhibition which has been put forth as a risk factor for the development of anxiety disorders. Recent work has found that behaviorally inhibited (BI) individuals acquire conditioned eyeblinks faster than non-inhibited (NI) individuals in omission and yoked paradigms in which the predictive relationship between the conditioned stimulus (CS) and unconditional stimulus (US) is less than optimal as compared to standard training with CS-US paired trials (Holloway et al., 2014). In the current study, we tested explicitly partial schedules in which half the trials were CS alone or US alone trials in addition to the standard CS-US paired trials. One hundred and forty nine college-aged undergraduates participated in the study. All participants completed the Adult Measure of Behavioral Inhibition (i.e., AMBI) which was used to group participants as BI and NI. Eyeblink conditioning consisted of three US alone trials, 60 acquisition trials, and 20 CS-alone extinction trials presented in one session. Conditioning stimuli were a 500 ms tone CS and a 50-ms air puff US. Behaviorally inhibited individuals receiving 50% partial reinforcement with CS alone or US alone trials produced facilitated acquisition as compared to NI individuals. A partial reinforcement extinction effect (PREE) was evident with CS alone trials in BI but not NI individuals. These current findings indicate that avoidance prone individuals self-reporting behavioral inhibition over-learn an association and are slow to extinguish conditioned responses (CRs) when there is some level of uncertainty between paired trials and CS or US alone presentations.

  13. Avoidance Prone Individuals Self Reporting Behavioral Inhibition Exhibit Facilitated Acquisition and Altered Extinction of Conditioned Eyeblinks With Partial Reinforcement Schedules

    Directory of Open Access Journals (Sweden)

    Michael Todd Allen

    2014-10-01

    Full Text Available Avoidance in the face of novel situations or uncertainty is a prime feature of behavioral inhibition which has been put forth as a risk factor for the development of anxiety disorders. Recent work has found that behaviorally inhibited individuals acquire conditioned eyeblinks faster than non-inhibited individuals in omission and yoked paradigms in which the predictive relationship between the conditioned stimulus (CS and unconditional stimulus (US is less than optimal as compared to standard training with CS-US paired trials (Holloway et al., 2014. In the current study, we tested explicitly partial schedules in which half the trials were CS alone or US alone trials in addition to the standard CS-US paired trials. One hundred and forty nine college-aged undergraduates participated in the study. All participants completed the Adult Measure of Behavioral Inhibition (i.e., AMBI which was used to group participants as behaviorally inhibited and non-inhibited. Eyeblink conditioning consisted of 3 US alone trials, 60 acquisition trials, and 20 CS-alone extinction trials presented in one session. Conditioning stimuli were a 500 ms tone conditioned stimulus (CS and a 50-ms air puff unconditional stimulus (US. Behaviorally inhibited individuals receiving 50% partial reinforcement with CS alone or US alone trials produced facilitated acquisition as compared to non-inhibited individuals. A partial reinforcement extinction effect was evident with CS alone trials in behaviorally inhibited but not non-inhibited individuals. These current findings indicate that avoidance prone individuals self-reporting behavioral inhibition over-learn an association and are slow to extinguish conditioned responses when there is some level of uncertainty between paired trials and CS or US alone presentations.

  14. Reconstruction and analysis of shapes from 3D scans

    NARCIS (Netherlands)

    ter Haar, F.B.

    2009-01-01

    In this thesis we use 3D laser range scans for the acquisition, reconstruction, and analysis of 3D shapes. 3D laser range scanning has proven to be a fast and effective way to capture the surface of an object in a computer. Thousands of depth measurements represent a part of the surface geometry as

  15. Effects of health facilitator performance and attendance at training sessions on the acquisition of tobacco refusal skills among multi-ethnic, high-risk adolescents.

    Science.gov (United States)

    Elder, J P; Woodruff, S I; Sallis, J F; de Moor, C; Edwards, C; Wildey, M B

    1994-06-01

    The study examined the effectiveness of a psycho-social tobacco use prevention intervention with a refusal skills training component on the refusal skills of high-risk adolescents, and investigated skill acquisition as related to subject demographics, performance of health facilitators and attendance at skills training sessions. Tobacco refusal skills were assessed for a group (n = 389) of high-risk, seventh-grade students participating as intervention and control subjects in Project SHOUT, a large tobacco use prevention program in the San Diego area. In addition, subject demographics, ratings of health facilitator performance and information about subjects' attendance at skills training sessions were collected. Subjects' responses to audiotaped peer offers of cigarettes and smokeless tobacco were coded for content and quality. Greater tobacco refusal skills among intervention subjects was hypothesized. Further health facilitator performance, attendance at training sessions and subject demographics were thought to be related to skill acquisition. High-risk intervention subjects gave significantly higher quality tobacco-refusal responses than did controls, although the differences between means were small. Results suggested that Hispanic adolescents were particularly receptive to the refusal skills training. The association between health facilitator performance and skill acquisition varied by subject ethnicity, as did the relationship between attendance at training sessions and skill acquisition.

  16. Radiochromic 3D Detectors

    Science.gov (United States)

    Oldham, Mark

    2015-01-01

    Radiochromic materials exhibit a colour change when exposed to ionising radiation. Radiochromic film has been used for clinical dosimetry for many years and increasingly so recently, as films of higher sensitivities have become available. The two principle advantages of radiochromic dosimetry include greater tissue equivalence (radiologically) and the lack of requirement for development of the colour change. In a radiochromic material, the colour change arises direct from ionising interactions affecting dye molecules, without requiring any latent chemical, optical or thermal development, with important implications for increased accuracy and convenience. It is only relatively recently however, that 3D radiochromic dosimetry has become possible. In this article we review recent developments and the current state-of-the-art of 3D radiochromic dosimetry, and the potential for a more comprehensive solution for the verification of complex radiation therapy treatments, and 3D dose measurement in general.

  17. 3D Spectroscopic Instrumentation

    CERN Document Server

    Bershady, Matthew A

    2009-01-01

    In this Chapter we review the challenges of, and opportunities for, 3D spectroscopy, and how these have lead to new and different approaches to sampling astronomical information. We describe and categorize existing instruments on 4m and 10m telescopes. Our primary focus is on grating-dispersed spectrographs. We discuss how to optimize dispersive elements, such as VPH gratings, to achieve adequate spectral resolution, high throughput, and efficient data packing to maximize spatial sampling for 3D spectroscopy. We review and compare the various coupling methods that make these spectrographs ``3D,'' including fibers, lenslets, slicers, and filtered multi-slits. We also describe Fabry-Perot and spatial-heterodyne interferometers, pointing out their advantages as field-widened systems relative to conventional, grating-dispersed spectrographs. We explore the parameter space all these instruments sample, highlighting regimes open for exploitation. Present instruments provide a foil for future development. We give an...

  18. 3D Projection Installations

    DEFF Research Database (Denmark)

    Halskov, Kim; Johansen, Stine Liv; Bach Mikkelsen, Michelle

    2014-01-01

    Three-dimensional projection installations are particular kinds of augmented spaces in which a digital 3-D model is projected onto a physical three-dimensional object, thereby fusing the digital content and the physical object. Based on interaction design research and media studies, this article...... contributes to the understanding of the distinctive characteristics of such a new medium, and identifies three strategies for designing 3-D projection installations: establishing space; interplay between the digital and the physical; and transformation of materiality. The principal empirical case, From...... Fingerplan to Loop City, is a 3-D projection installation presenting the history and future of city planning for the Copenhagen area in Denmark. The installation was presented as part of the 12th Architecture Biennale in Venice in 2010....

  19. Interaktiv 3D design

    DEFF Research Database (Denmark)

    Villaume, René Domine; Ørstrup, Finn Rude

    2002-01-01

    Projektet undersøger potentialet for interaktiv 3D design via Internettet. Arkitekt Jørn Utzons projekt til Espansiva blev udviklet som et byggesystem med det mål, at kunne skabe mangfoldige planmuligheder og mangfoldige facade- og rumudformninger. Systemets bygningskomponenter er digitaliseret som...... 3D elementer og gjort tilgængelige. Via Internettet er det nu muligt at sammenstille og afprøve en uendelig  række bygningstyper som  systemet blev tænkt og udviklet til....

  20. Feasibility of 3D Partially Parallel Acquisition DCE MRI in Pulmonary Parenchyma Perfusion%三维并行采集动态增强MRI在肺实质局部灌注中的应用研究

    Institute of Scientific and Technical Information of China (English)

    夏艺; 范丽; 刘士远; 管宇; 徐雪原; 于红; 肖湘生

    2012-01-01

    目的 评价3D并行采集动态对比增强MRI(dynamic contrast-enhanced MRI,DCE-MRI)技术对肺实质局部灌注成像的可行性.资料与方法 采用GE 1.5 T MRI系统,对10名健康志愿者及47例肺部疾病患者行灌注成像;评价肺灌注图像的均匀度,若存在灌注异常区域则计算其与正常肺组织的信号强度之比( RSI).结果 DCE-MRI可以清楚地显示肺实质灌注情况:10名健康志愿者的灌注图像较均匀,未见灌注缺损区.10例肺动脉栓塞( pulmonary embolism,PE)共出现12个楔形灌注缺损区,其中1例双侧PE出现3个灌注缺损区;12例侵犯邻近肺动脉的肺癌,在相应供血区均出现灌注缺损;RSI经单样本t检验差异具有明显的统计学意义(t=-24.74,P<0.05);另25例(20例未侵犯邻近肺动脉的肺癌和5例炎性病变)在对比剂首过肺实质强化达峰值时,病灶局部均呈低信号改变.结论 3D并行采集DCE-MRI技术可在单次屏气状态下完成动态多期扫描,获得全肺的容积灌注成像数据,对MR肺灌注图像采用半量化分析可明显区分出灌注异常区与灌注正常区.%Objective To assess the feasibility of 3 D partially parallel acquisition dynamic contrast enhanced (DCE) MRI in pulmonary parenchyma perfusion. Materials and Methods Ten healthy volunteers and 47 patients with lung disease performed perfusion imaging on a clinical 1. 5-T GE Excite HD whole body system. The homogeneity of perfusion images were assessed. In case of perfusion abnormality, the signal intensity ratio ( RSI) of perfusion abnormality and normal lung were calculated. Results Pulmonary parenchyma perfusion was well depicted with DCE-MRI. The perfusion images of healthy volunteers were homogeneous. 12 wedge shaped perfusion defects were visualized in 10 patients with pulmonary embolisms. 12 perfusion defects were also showed in 12 patients with lung cancer infiltrating the pulmonary artery. There was significant difference in RSI (t = - 24

  1. Studies oriented to optimize the image quality of the small animal PET: Clear PET, modifying some of the parameters of the reconstruction algorithm IMF-OSEM 3D on the data acquisition simulated with GAMOS; Estudios para la optimizaciOn de la calidad de imagen en el escaner ClearPET, modifi cando parametros del algoritmo IMF-OSEM 3D sobre adquisiciones simuladas con GAMOS

    Energy Technology Data Exchange (ETDEWEB)

    Canadas, M.; Mendoza, J.; Embid, M.

    2007-09-27

    This report presents studies oriented to optimize the image quality of the small animal PET: Clear- PET. Certain figures of merit (FOM) were used to assess a quantitative value of the contrast and delectability of lesions. The optimization was carried out modifying some of the parameters in the reconstruction software of the scanner, imaging a mini-Derenzo phantom and a cylinder phantom with background activity and two hot spheres. Specifically, it was evaluated the incidence of the inter-update Metz filter (IMF) inside the iterative reconstruction algorithm 3D OSEM. The data acquisition was simulated using the GAMOS framework (Monte Carlo simulation). Integrating GAMOS output with the reconstruction software of the scanner was an additional novelty of this work, to achieve this, data sets were written with the list-mode format (LMF) of ClearPET. In order to verify the optimum values obtained, we foresee to make real acquisitions in the ClearPET of CIEMAT. (Author) 17 refs.

  2. Technical feasibility of 2D-3D coregistration for visualization of self-expandable microstents to facilitate coil embolization of broad-based intracranial aneurysms: an in vitro study

    Energy Technology Data Exchange (ETDEWEB)

    Richter, Gregor [University of Erlangen-Nuernberg, Department of Neuroradiology, Erlangen (Germany); Kreisklinikum Siegen, Department of Radiology and Neuroradiology, Siegen (Germany); Pfister, Marcus [Siemens AG, Healthcare Sector, Forchheim (Germany); Struffert, Tobias; Engelhorn, Tobias; Doelken, Marc; Doerfler, Arnd [University of Erlangen-Nuernberg, Department of Neuroradiology, Erlangen (Germany); Spiegel, Martin; Hornegger, Joachim [University of Erlangen, Department of Informatics 5, Erlangen (Germany)

    2009-12-15

    The use of self-expandable microstents for treatment of broad-based intracranial aneurysms is widely spread. However, poor fluoroscopic visibility of the stents remains disadvantageous during the coiling procedure. Flat detector angiographic computed tomography (ACT) provides high resolution imaging of microstents even though integration of this imaging modality in the neurointerventional workflow has not been widely reported. An acrylic glass model was used to simulate the situation of a broad-based sidewall aneurysm. After insertion of a self-expandable microstent, ACT was performed. The resulting 3D dataset of the Microstent was subsequently projected into a conventional 2D fluoroscopic roadmap. This 3D visualization of the stent supported the coil embolization procedure of the in vitro aneurysm. In vitro 2D-3D coregistration with integration of 3D ACT data of a self-expandable microstent in a conventional 2D roadmap is feasible. Unsatisfying stent visibility constrains clinical cases with complex parent vessel anatomy and challenging aneurysm geometry; hence, this technique potentially may be useful in such cases. In our opinion, the clinical feasibility and utility of this new technique should be verified in a clinical aneurysm embolization study series using 2D-3D coregistration. (orig.)

  3. Tangible 3D Modelling

    DEFF Research Database (Denmark)

    Hejlesen, Aske K.; Ovesen, Nis

    2012-01-01

    This paper presents an experimental approach to teaching 3D modelling techniques in an Industrial Design programme. The approach includes the use of tangible free form models as tools for improving the overall learning. The paper is based on lecturer and student experiences obtained through...

  4. Shaping 3-D boxes

    DEFF Research Database (Denmark)

    Stenholt, Rasmus; Madsen, Claus B.

    2011-01-01

    Enabling users to shape 3-D boxes in immersive virtual environments is a non-trivial problem. In this paper, a new family of techniques for creating rectangular boxes of arbitrary position, orientation, and size is presented and evaluated. These new techniques are based solely on position data...

  5. 3D Wire 2015

    DEFF Research Database (Denmark)

    Jordi, Moréton; F, Escribano; J. L., Farias

    This document is a general report on the implementation of gamification in 3D Wire 2015 event. As the second gamification experience in this event, we have delved deeply in the previous objectives (attracting public areas less frequented exhibition in previous years and enhance networking) and ha......, improves socialization and networking, improves media impact, improves fun factor and improves encouragement of the production team....

  6. Topology dictionary for 3D video understanding.

    Science.gov (United States)

    Tung, Tony; Matsuyama, Takashi

    2012-08-01

    This paper presents a novel approach that achieves 3D video understanding. 3D video consists of a stream of 3D models of subjects in motion. The acquisition of long sequences requires large storage space (2 GB for 1 min). Moreover, it is tedious to browse data sets and extract meaningful information. We propose the topology dictionary to encode and describe 3D video content. The model consists of a topology-based shape descriptor dictionary which can be generated from either extracted patterns or training sequences. The model relies on 1) topology description and classification using Reeb graphs, and 2) a Markov motion graph to represent topology change states. We show that the use of Reeb graphs as the high-level topology descriptor is relevant. It allows the dictionary to automatically model complex sequences, whereas other strategies would require prior knowledge on the shape and topology of the captured subjects. Our approach serves to encode 3D video sequences, and can be applied for content-based description and summarization of 3D video sequences. Furthermore, topology class labeling during a learning process enables the system to perform content-based event recognition. Experiments were carried out on various 3D videos. We showcase an application for 3D video progressive summarization using the topology dictionary.

  7. 3D photoacoustic imaging

    Science.gov (United States)

    Carson, Jeffrey J. L.; Roumeliotis, Michael; Chaudhary, Govind; Stodilka, Robert Z.; Anastasio, Mark A.

    2010-06-01

    Our group has concentrated on development of a 3D photoacoustic imaging system for biomedical imaging research. The technology employs a sparse parallel detection scheme and specialized reconstruction software to obtain 3D optical images using a single laser pulse. With the technology we have been able to capture 3D movies of translating point targets and rotating line targets. The current limitation of our 3D photoacoustic imaging approach is its inability ability to reconstruct complex objects in the field of view. This is primarily due to the relatively small number of projections used to reconstruct objects. However, in many photoacoustic imaging situations, only a few objects may be present in the field of view and these objects may have very high contrast compared to background. That is, the objects have sparse properties. Therefore, our work had two objectives: (i) to utilize mathematical tools to evaluate 3D photoacoustic imaging performance, and (ii) to test image reconstruction algorithms that prefer sparseness in the reconstructed images. Our approach was to utilize singular value decomposition techniques to study the imaging operator of the system and evaluate the complexity of objects that could potentially be reconstructed. We also compared the performance of two image reconstruction algorithms (algebraic reconstruction and l1-norm techniques) at reconstructing objects of increasing sparseness. We observed that for a 15-element detection scheme, the number of measureable singular vectors representative of the imaging operator was consistent with the demonstrated ability to reconstruct point and line targets in the field of view. We also observed that the l1-norm reconstruction technique, which is known to prefer sparseness in reconstructed images, was superior to the algebraic reconstruction technique. Based on these findings, we concluded (i) that singular value decomposition of the imaging operator provides valuable insight into the capabilities of

  8. 3D scene reconstruction based on 3D laser point cloud combining UAV images

    Science.gov (United States)

    Liu, Huiyun; Yan, Yangyang; Zhang, Xitong; Wu, Zhenzhen

    2016-03-01

    It is a big challenge capturing and modeling 3D information of the built environment. A number of techniques and technologies are now in use. These include GPS, and photogrammetric application and also remote sensing applications. The experiment uses multi-source data fusion technology for 3D scene reconstruction based on the principle of 3D laser scanning technology, which uses the laser point cloud data as the basis and Digital Ortho-photo Map as an auxiliary, uses 3DsMAX software as a basic tool for building three-dimensional scene reconstruction. The article includes data acquisition, data preprocessing, 3D scene construction. The results show that the 3D scene has better truthfulness, and the accuracy of the scene meet the need of 3D scene construction.

  9. 3D ear identification based on sparse representation.

    Directory of Open Access Journals (Sweden)

    Lin Zhang

    Full Text Available Biometrics based personal authentication is an effective way for automatically recognizing, with a high confidence, a person's identity. Recently, 3D ear shape has attracted tremendous interests in research field due to its richness of feature and ease of acquisition. However, the existing ICP (Iterative Closet Point-based 3D ear matching methods prevalent in the literature are not quite efficient to cope with the one-to-many identification case. In this paper, we aim to fill this gap by proposing a novel effective fully automatic 3D ear identification system. We at first propose an accurate and efficient template-based ear detection method. By utilizing such a method, the extracted ear regions are represented in a common canonical coordinate system determined by the ear contour template, which facilitates much the following stages of feature extraction and classification. For each extracted 3D ear, a feature vector is generated as its representation by making use of a PCA-based local feature descriptor. At the stage of classification, we resort to the sparse representation based classification approach, which actually solves an l1-minimization problem. To the best of our knowledge, this is the first work introducing the sparse representation framework into the field of 3D ear identification. Extensive experiments conducted on a benchmark dataset corroborate the effectiveness and efficiency of the proposed approach. The associated Matlab source code and the evaluation results have been made publicly online available at http://sse.tongji.edu.cn/linzhang/ear/srcear/srcear.htm.

  10. Networked 3D Virtual Museum System

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Virtual heritage has become increasingly important in the conservation, preservation, and interpretation of our cultural and natural history. Moreover, rapid advances in digital technologies in recent years offer virtual heritage new direction. This paper introduces our approach toward a networked 3D virtual museum system, especially, how to model, manage, present virtual heritages and furthermore how to use computer network for the share of virtual heritage in the networked virtual environment. This paper first addresses a 3D acquisition and processing technique for virtual heritage modeling and shows some illustrative examples. Then, this paper describes a management of virtual heritage assets that are composed by various rich media. This paper introduces our schemes to present the virtual heritages, which include 3D virtual heritage browser system, CAVE system, and immersive VR theater. Finally, this paper presents the new direction of networked 3D virtual museum of which main idea is remote guide of the virtual heritage using the mixed reality technique.

  11. 3D scanning particle tracking velocimetry

    Science.gov (United States)

    Hoyer, Klaus; Holzner, Markus; Lüthi, Beat; Guala, Michele; Liberzon, Alexander; Kinzelbach, Wolfgang

    2005-11-01

    In this article, we present an experimental setup and data processing schemes for 3D scanning particle tracking velocimetry (SPTV), which expands on the classical 3D particle tracking velocimetry (PTV) through changes in the illumination, image acquisition and analysis. 3D PTV is a flexible flow measurement technique based on the processing of stereoscopic images of flow tracer particles. The technique allows obtaining Lagrangian flow information directly from measured 3D trajectories of individual particles. While for a classical PTV the entire region of interest is simultaneously illuminated and recorded, in SPTV the flow field is recorded by sequential tomographic high-speed imaging of the region of interest. The advantage of the presented method is a considerable increase in maximum feasible seeding density. Results are shown for an experiment in homogenous turbulence and compared with PTV. SPTV yielded an average 3,500 tracked particles per time step, which implies a significant enhancement of the spatial resolution for Lagrangian flow measurements.

  12. Unoriented 3d TFTs

    CERN Document Server

    Bhardwaj, Lakshya

    2016-01-01

    This paper generalizes two facts about oriented 3d TFTs to the unoriented case. On one hand, it is known that oriented 3d TFTs having a topological boundary condition admit a state-sum construction known as the Turaev-Viro construction. This is related to the string-net construction of fermionic phases of matter. We show how Turaev-Viro construction can be generalized to unoriented 3d TFTs. On the other hand, it is known that the "fermionic" versions of oriented TFTs, known as Spin-TFTs, can be constructed in terms of "shadow" TFTs which are ordinary oriented TFTs with an anomalous Z_2 1-form symmetry. We generalize this correspondence to Pin+ TFTs by showing that they can be constructed in terms of ordinary unoriented TFTs with anomalous Z_2 1-form symmetry having a mixed anomaly with time-reversal symmetry. The corresponding Pin+ TFT does not have any anomaly for time-reversal symmetry however and hence it can be unambiguously defined on a non-orientable manifold. In case a Pin+ TFT admits a topological bou...

  13. 3D and beyond

    Science.gov (United States)

    Fung, Y. C.

    1995-05-01

    This conference on physiology and function covers a wide range of subjects, including the vasculature and blood flow, the flow of gas, water, and blood in the lung, the neurological structure and function, the modeling, and the motion and mechanics of organs. Many technologies are discussed. I believe that the list would include a robotic photographer, to hold the optical equipment in a precisely controlled way to obtain the images for the user. Why are 3D images needed? They are to achieve certain objectives through measurements of some objects. For example, in order to improve performance in sports or beauty of a person, we measure the form, dimensions, appearance, and movements.

  14. 3D Surgical Simulation

    Science.gov (United States)

    Cevidanes, Lucia; Tucker, Scott; Styner, Martin; Kim, Hyungmin; Chapuis, Jonas; Reyes, Mauricio; Proffit, William; Turvey, Timothy; Jaskolka, Michael

    2009-01-01

    This paper discusses the development of methods for computer-aided jaw surgery. Computer-aided jaw surgery allows us to incorporate the high level of precision necessary for transferring virtual plans into the operating room. We also present a complete computer-aided surgery (CAS) system developed in close collaboration with surgeons. Surgery planning and simulation include construction of 3D surface models from Cone-beam CT (CBCT), dynamic cephalometry, semi-automatic mirroring, interactive cutting of bone and bony segment repositioning. A virtual setup can be used to manufacture positioning splints for intra-operative guidance. The system provides further intra-operative assistance with the help of a computer display showing jaw positions and 3D positioning guides updated in real-time during the surgical procedure. The CAS system aids in dealing with complex cases with benefits for the patient, with surgical practice, and for orthodontic finishing. Advanced software tools for diagnosis and treatment planning allow preparation of detailed operative plans, osteotomy repositioning, bone reconstructions, surgical resident training and assessing the difficulties of the surgical procedures prior to the surgery. CAS has the potential to make the elaboration of the surgical plan a more flexible process, increase the level of detail and accuracy of the plan, yield higher operative precision and control, and enhance documentation of cases. Supported by NIDCR DE017727, and DE018962 PMID:20816308

  15. TOWARDS: 3D INTERNET

    Directory of Open Access Journals (Sweden)

    Ms. Swapnali R. Ghadge

    2013-08-01

    Full Text Available In today’s ever-shifting media landscape, it can be a complex task to find effective ways to reach your desired audience. As traditional media such as television continue to lose audience share, one venue in particular stands out for its ability to attract highly motivated audiences and for its tremendous growth potential the 3D Internet. The concept of '3D Internet' has recently come into the spotlight in the R&D arena, catching the attention of many people, and leading to a lot of discussions. Basically, one can look into this matter from a few different perspectives: visualization and representation of information, and creation and transportation of information, among others. All of them still constitute research challenges, as no products or services are yet available or foreseen for the near future. Nevertheless, one can try to envisage the directions that can be taken towards achieving this goal. People who take part in virtual worlds stay online longer with a heightened level of interest. To take advantage of that interest, diverse businesses and organizations have claimed an early stake in this fast-growing market. They include technology leaders such as IBM, Microsoft, and Cisco, companies such as BMW, Toyota, Circuit City, Coca Cola, and Calvin Klein, and scores of universities, including Harvard, Stanford and Penn State.

  16. Cubical Cohomology Ring of 3D Photographs

    CERN Document Server

    Gonzalez-Diaz, Rocio; Medrano, Belen; 10.1002/ima.20271

    2011-01-01

    Cohomology and cohomology ring of three-dimensional (3D) objects are topological invariants that characterize holes and their relations. Cohomology ring has been traditionally computed on simplicial complexes. Nevertheless, cubical complexes deal directly with the voxels in 3D images, no additional triangulation is necessary, facilitating efficient algorithms for the computation of topological invariants in the image context. In this paper, we present formulas to directly compute the cohomology ring of 3D cubical complexes without making use of any additional triangulation. Starting from a cubical complex $Q$ that represents a 3D binary-valued digital picture whose foreground has one connected component, we compute first the cohomological information on the boundary of the object, $\\partial Q$ by an incremental technique; then, using a face reduction algorithm, we compute it on the whole object; finally, applying the mentioned formulas, the cohomology ring is computed from such information.

  17. Three-component synthesis of pyrano[2,3-d]-pyrimidine dione derivatives facilitated by sulfonic acid nanoporous silica (SBA-Pr-SO3H and their docking and urease inhibitory activity

    Directory of Open Access Journals (Sweden)

    Ghodsi Mohammadi Ziarani

    2013-01-01

    Full Text Available A straightforward and efficient method for the synthesis of pyrano[2,3-d]pyrimidine diones derivatives from the reaction of barbituric acid, malononitrile and various aromatic aldehydes using SBA-Pr-SO3H as a nanocatalyst is reported.ResultsReactions proceed with high efficiency under solvent free conditions. Urease inhibitory activity of pyrano[2,3-d]pyrimidine diones derivatives were tested against Jack bean urease using phenol red method. Three compounds of 4a, 4d and 4l were not active in urease inhibition test, but compound 4a displayed slight urease activation properties. Compounds 4b, 4k, 4f, 4e, 4j, 4g and 4c with hydrophobic substitutes on phenyl ring, showed good inhibitory activity (19.45-279.14 muM.DiscussionThe compounds with electron donating group and higher hydrophobic interaction with active site of enzyme prevents hydrolysis of substrate. Electron withdrawing groups such as nitro at different position and meta-methoxy reduced urease inhibitory activity. Substitution of both hydrogen of barbituric acid with methyl group will convert inhibitor to activator.

  18. Three-component synthesis of pyrano[2,3-d]-pyrimidine dione derivatives facilitated by sulfonic acid nanoporous silica (SBA-Pr-SO3H and their docking and urease inhibitory activity

    Directory of Open Access Journals (Sweden)

    Ziarani Ghodsi Mohammadi

    2013-01-01

    Full Text Available Abstract Background A straightforward and efficient method for the synthesis of pyrano[2,3-d]pyrimidine diones derivatives from the reaction of barbituric acid, malononitrile and various aromatic aldehydes using SBA-Pr-SO3H as a nanocatalyst is reported. Results Reactions proceed with high efficiency under solvent free conditions. Urease inhibitory activity of pyrano[2,3-d]pyrimidine diones derivatives were tested against Jack bean urease using phenol red method. Three compounds of 4a, 4d and 4l were not active in urease inhibition test, but compound 4a displayed slight urease activation properties. Compounds 4b, 4k, 4f, 4e, 4j, 4g and 4c with hydrophobic substitutes on phenyl ring, showed good inhibitory activity (19.45-279.14 μM. Discussion The compounds with electron donating group and higher hydrophobic interaction with active site of enzyme prevents hydrolysis of substrate. Electron withdrawing groups such as nitro at different position and meta-methoxy reduced urease inhibitory activity. Substitution of both hydrogen of barbituric acid with methyl group will convert inhibitor to activator.

  19. 3D printing for dummies

    CERN Document Server

    Hausman, Kalani Kirk

    2014-01-01

    Get started printing out 3D objects quickly and inexpensively! 3D printing is no longer just a figment of your imagination. This remarkable technology is coming to the masses with the growing availability of 3D printers. 3D printers create 3-dimensional layered models and they allow users to create prototypes that use multiple materials and colors.  This friendly-but-straightforward guide examines each type of 3D printing technology available today and gives artists, entrepreneurs, engineers, and hobbyists insight into the amazing things 3D printing has to offer. You'll discover methods for

  20. Intraoral 3D scanner

    Science.gov (United States)

    Kühmstedt, Peter; Bräuer-Burchardt, Christian; Munkelt, Christoph; Heinze, Matthias; Palme, Martin; Schmidt, Ingo; Hintersehr, Josef; Notni, Gunther

    2007-09-01

    Here a new set-up of a 3D-scanning system for CAD/CAM in dental industry is proposed. The system is designed for direct scanning of the dental preparations within the mouth. The measuring process is based on phase correlation technique in combination with fast fringe projection in a stereo arrangement. The novelty in the approach is characterized by the following features: A phase correlation between the phase values of the images of two cameras is used for the co-ordinate calculation. This works contrary to the usage of only phase values (phasogrammetry) or classical triangulation (phase values and camera image co-ordinate values) for the determination of the co-ordinates. The main advantage of the method is that the absolute value of the phase at each point does not directly determine the coordinate. Thus errors in the determination of the co-ordinates are prevented. Furthermore, using the epipolar geometry of the stereo-like arrangement the phase unwrapping problem of fringe analysis can be solved. The endoscope like measurement system contains one projection and two camera channels for illumination and observation of the object, respectively. The new system has a measurement field of nearly 25mm × 15mm. The user can measure two or three teeth at one time. So the system can by used for scanning of single tooth up to bridges preparations. In the paper the first realization of the intraoral scanner is described.

  1. Martian terrain - 3D

    Science.gov (United States)

    1997-01-01

    This area of terrain near the Sagan Memorial Station was taken on Sol 3 by the Imager for Mars Pathfinder (IMP). 3D glasses are necessary to identify surface detail.The IMP is a stereo imaging system with color capability provided by 24 selectable filters -- twelve filters per 'eye.' It stands 1.8 meters above the Martian surface, and has a resolution of two millimeters at a range of two meters.Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  2. RRS "Charles Darwin" Cruise 178, 14 Mar - 11 Apr 2006. 3D seismic acquisition over mud volcanoes in the Gulf of Cadiz and submarine landslides in the Eivissa Channel, western Mediterranean Sea

    OpenAIRE

    Masson, D. G.; C. Berndt

    2006-01-01

    The major aims of Charles Darwin Cruise 178 were to obtain (i) 3D seismic imagery, video transects and swath bathymetry maps of mud volcanoes in the southern Gulf of Cadiz, (ii) video transects across suspected cold water coral reefs in the Alboran Sea and (iii) 3D seismic imagery of submarine landslides in the Eivissa Channel, immediately east of the Balearic Islands in the western Mediterranean Sea. The cruise was in support of the EU Framework 6 ‘HERMES’ project (Hotspot Ecosystem Research...

  3. USGS National Lidar and DEM Acquisition Plan Objectives for FY17 from The National Map 3D Elevation Program (3DEP) - National Geospatial Data Asset (NGDA) National Elevation Data Set (NED)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — U.S. Geological Survey, Department of the Interior - The annual lidar and DEM acquisition plan is part of the 3DEP initiative to systematically collect enhanced...

  4. USGS Hurricane Sandy Lidar and DEM Acquisition Plan Objectives for FY15 from The National Map 3D Elevation Program (3DEP) - National Geospatial Data Asset (NGDA) National Elevation Data Set (NED)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — U.S. Geological Survey, Department of the Interior - The Hurricane Sandy Supplemental Funding lidar and DEM acquisition plan is part of the 3DEP initiative to...

  5. 3D Printing an Octohedron

    OpenAIRE

    Aboufadel, Edward F.

    2014-01-01

    The purpose of this short paper is to describe a project to manufacture a regular octohedron on a 3D printer. We assume that the reader is familiar with the basics of 3D printing. In the project, we use fundamental ideas to calculate the vertices and faces of an octohedron. Then, we utilize the OPENSCAD program to create a virtual 3D model and an STereoLithography (.stl) file that can be used by a 3D printer.

  6. Salient Local 3D Features for 3D Shape Retrieval

    CERN Document Server

    Godil, Afzal

    2011-01-01

    In this paper we describe a new formulation for the 3D salient local features based on the voxel grid inspired by the Scale Invariant Feature Transform (SIFT). We use it to identify the salient keypoints (invariant points) on a 3D voxelized model and calculate invariant 3D local feature descriptors at these keypoints. We then use the bag of words approach on the 3D local features to represent the 3D models for shape retrieval. The advantages of the method are that it can be applied to rigid as well as to articulated and deformable 3D models. Finally, this approach is applied for 3D Shape Retrieval on the McGill articulated shape benchmark and then the retrieval results are presented and compared to other methods.

  7. A system for finding a 3D target without a 3D image

    Science.gov (United States)

    West, Jay B.; Maurer, Calvin R., Jr.

    2008-03-01

    We present here a framework for a system that tracks one or more 3D anatomical targets without the need for a preoperative 3D image. Multiple 2D projection images are taken using a tracked, calibrated fluoroscope. The user manually locates each target on each of the fluoroscopic views. A least-squares minimization algorithm triangulates the best-fit position of each target in the 3D space of the tracking system: using the known projection matrices from 3D space into image space, we use matrix minimization to find the 3D position that projects closest to the located target positions in the 2D images. A tracked endoscope, whose projection geometry has been pre-calibrated, is then introduced to the operating field. Because the position of the targets in the tracking space is known, a rendering of the targets may be projected onto the endoscope view, thus allowing the endoscope to be easily brought into the target vicinity even when the endoscope field of view is blocked, e.g. by blood or tissue. An example application for such a device is trauma surgery, e.g., removal of a foreign object. Time, scheduling considerations and concern about excessive radiation exposure may prohibit the acquisition of a 3D image, such as a CT scan, which is required for traditional image guidance systems; it is however advantageous to have 3D information about the target locations available, which is not possible using fluoroscopic guidance alone.

  8. First Language Proficiency as a Facilitator in Foreign/ Second Language Acquisition: A Case Study in the Kingdom of Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Mohammed Marajan Awad Adam

    2016-03-01

    Full Text Available English is taught as a foreign language in the Arab world even though practical concerns call for greater emphasis on the language. In all personal interactions too Arabic is the preferred language. Thus the environment for English is really very limited as by the time the learners are exposed to the language they are well entrenched in Arabic. While this may be a handicap in some EFL situations (for example where adults are concerned, in the Arab context this can prove a big boon. This is because young language learners who are proficient in their first language can apply the learning techniques while acquiring the second language. This paper targets the teaching fraternity in the Arab world to help them understand how first language proficiency can aid second/foreign language acquisition.Keywords: language acquisition, Saudi EFL learners, language proficiency, Arabic as a first language 

  9. USGS Alaska IfSAR and DEM Acquisition Plan Objectives for FY15 - FY17 from The National Map 3D Elevation Program (3DEP) - National Geospatial Data Asset (NGDA) National Elevation Data Set (NED)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — U.S. Geological Survey, Department of the Interior - The annual Alaska IfSAR and DEM acquisition plan is part of the 3DEP initiative to collect high-quality...

  10. Quasi 3D dosimetry (EPID, conventional 2D/3D detector matrices)

    Science.gov (United States)

    Bäck, A.

    2015-01-01

    Patient specific pretreatment measurement for IMRT and VMAT QA should preferably give information with a high resolution in 3D. The ability to distinguish complex treatment plans, i.e. treatment plans with a difference between measured and calculated dose distributions that exceeds a specified tolerance, puts high demands on the dosimetry system used for the pretreatment measurements and the results of the measurement evaluation needs a clinical interpretation. There are a number of commercial dosimetry systems designed for pretreatment IMRT QA measurements. 2D arrays such as MapCHECK® (Sun Nuclear), MatriXXEvolution (IBA Dosimetry) and OCTAVIOUS® 1500 (PTW), 3D phantoms such as OCTAVIUS® 4D (PTW), ArcCHECK® (Sun Nuclear) and Delta4 (ScandiDos) and software for EPID dosimetry and 3D reconstruction of the dose in the patient geometry such as EPIDoseTM (Sun Nuclear) and Dosimetry CheckTM (Math Resolutions) are available. None of those dosimetry systems can measure the 3D dose distribution with a high resolution (full 3D dose distribution). Those systems can be called quasi 3D dosimetry systems. To be able to estimate the delivered dose in full 3D the user is dependent on a calculation algorithm in the software of the dosimetry system. All the vendors of the dosimetry systems mentioned above provide calculation algorithms to reconstruct a full 3D dose in the patient geometry. This enables analyzes of the difference between measured and calculated dose distributions in DVHs of the structures of clinical interest which facilitates the clinical interpretation and is a promising tool to be used for pretreatment IMRT QA measurements. However, independent validation studies on the accuracy of those algorithms are scarce. Pretreatment IMRT QA using the quasi 3D dosimetry systems mentioned above rely on both measurement uncertainty and accuracy of calculation algorithms. In this article, these quasi 3D dosimetry systems and their use in patient specific pretreatment IMRT

  11. 3D Spectroscopy in Astronomy

    Science.gov (United States)

    Mediavilla, Evencio; Arribas, Santiago; Roth, Martin; Cepa-Nogué, Jordi; Sánchez, Francisco

    2011-09-01

    Preface; Acknowledgements; 1. Introductory review and technical approaches Martin M. Roth; 2. Observational procedures and data reduction James E. H. Turner; 3. 3D Spectroscopy instrumentation M. A. Bershady; 4. Analysis of 3D data Pierre Ferruit; 5. Science motivation for IFS and galactic studies F. Eisenhauer; 6. Extragalactic studies and future IFS science Luis Colina; 7. Tutorials: how to handle 3D spectroscopy data Sebastian F. Sánchez, Begona García-Lorenzo and Arlette Pécontal-Rousset.

  12. Spherical 3D isotropic wavelets

    Science.gov (United States)

    Lanusse, F.; Rassat, A.; Starck, J.-L.

    2012-04-01

    Context. Future cosmological surveys will provide 3D large scale structure maps with large sky coverage, for which a 3D spherical Fourier-Bessel (SFB) analysis in spherical coordinates is natural. Wavelets are particularly well-suited to the analysis and denoising of cosmological data, but a spherical 3D isotropic wavelet transform does not currently exist to analyse spherical 3D data. Aims: The aim of this paper is to present a new formalism for a spherical 3D isotropic wavelet, i.e. one based on the SFB decomposition of a 3D field and accompany the formalism with a public code to perform wavelet transforms. Methods: We describe a new 3D isotropic spherical wavelet decomposition based on the undecimated wavelet transform (UWT) described in Starck et al. (2006). We also present a new fast discrete spherical Fourier-Bessel transform (DSFBT) based on both a discrete Bessel transform and the HEALPIX angular pixelisation scheme. We test the 3D wavelet transform and as a toy-application, apply a denoising algorithm in wavelet space to the Virgo large box cosmological simulations and find we can successfully remove noise without much loss to the large scale structure. Results: We have described a new spherical 3D isotropic wavelet transform, ideally suited to analyse and denoise future 3D spherical cosmological surveys, which uses a novel DSFBT. We illustrate its potential use for denoising using a toy model. All the algorithms presented in this paper are available for download as a public code called MRS3D at http://jstarck.free.fr/mrs3d.html

  13. 3D IBFV : Hardware-Accelerated 3D Flow Visualization

    NARCIS (Netherlands)

    Telea, Alexandru; Wijk, Jarke J. van

    2003-01-01

    We present a hardware-accelerated method for visualizing 3D flow fields. The method is based on insertion, advection, and decay of dye. To this aim, we extend the texture-based IBFV technique for 2D flow visualization in two main directions. First, we decompose the 3D flow visualization problem in a

  14. 3D Elevation Program—Virtual USA in 3D

    Science.gov (United States)

    Lukas, Vicki; Stoker, J.M.

    2016-04-14

    The U.S. Geological Survey (USGS) 3D Elevation Program (3DEP) uses a laser system called ‘lidar’ (light detection and ranging) to create a virtual reality map of the Nation that is very accurate. 3D maps have many uses with new uses being discovered all the time.  

  15. Interactive 3D multimedia content

    CERN Document Server

    Cellary, Wojciech

    2012-01-01

    The book describes recent research results in the areas of modelling, creation, management and presentation of interactive 3D multimedia content. The book describes the current state of the art in the field and identifies the most important research and design issues. Consecutive chapters address these issues. These are: database modelling of 3D content, security in 3D environments, describing interactivity of content, searching content, visualization of search results, modelling mixed reality content, and efficient creation of interactive 3D content. Each chapter is illustrated with example a

  16. A 3-D Contextual Classifier

    DEFF Research Database (Denmark)

    Larsen, Rasmus

    1997-01-01

    . This includes the specification of a Gaussian distribution for the pixel values as well as a prior distribution for the configuration of class variables within the cross that is m ade of a pixel and its four nearest neighbours. We will extend this algorithm to 3-D, i.e. we will specify a simultaneous Gaussian...... distr ibution for a pixel and its 6 nearest 3-D neighbours, and generalise the class variable configuration distribution within the 3-D cross. The algorithm is tested on a synthetic 3-D multivariate dataset....

  17. 3D Bayesian contextual classifiers

    DEFF Research Database (Denmark)

    Larsen, Rasmus

    2000-01-01

    We extend a series of multivariate Bayesian 2-D contextual classifiers to 3-D by specifying a simultaneous Gaussian distribution for the feature vectors as well as a prior distribution of the class variables of a pixel and its 6 nearest 3-D neighbours.......We extend a series of multivariate Bayesian 2-D contextual classifiers to 3-D by specifying a simultaneous Gaussian distribution for the feature vectors as well as a prior distribution of the class variables of a pixel and its 6 nearest 3-D neighbours....

  18. 3-D printers for libraries

    CERN Document Server

    Griffey, Jason

    2014-01-01

    As the maker movement continues to grow and 3-D printers become more affordable, an expanding group of hobbyists is keen to explore this new technology. In the time-honored tradition of introducing new technologies, many libraries are considering purchasing a 3-D printer. Jason Griffey, an early enthusiast of 3-D printing, has researched the marketplace and seen several systems first hand at the Consumer Electronics Show. In this report he introduces readers to the 3-D printing marketplace, covering such topics asHow fused deposition modeling (FDM) printing workBasic terminology such as build

  19. 3D for Graphic Designers

    CERN Document Server

    Connell, Ellery

    2011-01-01

    Helping graphic designers expand their 2D skills into the 3D space The trend in graphic design is towards 3D, with the demand for motion graphics, animation, photorealism, and interactivity rapidly increasing. And with the meteoric rise of iPads, smartphones, and other interactive devices, the design landscape is changing faster than ever.2D digital artists who need a quick and efficient way to join this brave new world will want 3D for Graphic Designers. Readers get hands-on basic training in working in the 3D space, including product design, industrial design and visualization, modeling, ani

  20. A 3D Geometry Model Search Engine to Support Learning

    Science.gov (United States)

    Tam, Gary K. L.; Lau, Rynson W. H.; Zhao, Jianmin

    2009-01-01

    Due to the popularity of 3D graphics in animation and games, usage of 3D geometry deformable models increases dramatically. Despite their growing importance, these models are difficult and time consuming to build. A distance learning system for the construction of these models could greatly facilitate students to learn and practice at different…

  1. 3D scanning particle tracking velocimetry

    Energy Technology Data Exchange (ETDEWEB)

    Hoyer, Klaus; Holzner, Markus; Guala, Michele; Liberzon, Alexander; Kinzelbach, Wolfgang [Swiss Federal Institut of Technology Zurich, Institut fuer Hydromechanik und Wasserwirtschaft, Zuerich (Switzerland); Luethi, Beat [Risoe National Laboratory, Roskilde (Denmark)

    2005-11-01

    In this article, we present an experimental setup and data processing schemes for 3D scanning particle tracking velocimetry (SPTV), which expands on the classical 3D particle tracking velocimetry (PTV) through changes in the illumination, image acquisition and analysis. 3D PTV is a flexible flow measurement technique based on the processing of stereoscopic images of flow tracer particles. The technique allows obtaining Lagrangian flow information directly from measured 3D trajectories of individual particles. While for a classical PTV the entire region of interest is simultaneously illuminated and recorded, in SPTV the flow field is recorded by sequential tomographic high-speed imaging of the region of interest. The advantage of the presented method is a considerable increase in maximum feasible seeding density. Results are shown for an experiment in homogenous turbulence and compared with PTV. SPTV yielded an average 3,500 tracked particles per time step, which implies a significant enhancement of the spatial resolution for Lagrangian flow measurements. (orig.)

  2. 3D GEO: AN ALTERNATIVE APPROACH

    Directory of Open Access Journals (Sweden)

    A. Georgopoulos

    2016-10-01

    Full Text Available The expression GEO is mostly used to denote relation to the earth. However it should not be confined to what is related to the earth's surface, as other objects also need three dimensional representation and documentation, like cultural heritage objects. They include both tangible and intangible ones. In this paper the 3D data acquisition and 3D modelling of cultural heritage assets are briefly described and their significance is also highlighted. Moreover the organization of such information, related to monuments and artefacts, into relational data bases and its use for various purposes, other than just geometric documentation is also described and presented. In order to help the reader understand the above, several characteristic examples are presented and their methodology explained and their results evaluated.

  3. 3D Geo: An Alternative Approach

    Science.gov (United States)

    Georgopoulos, A.

    2016-10-01

    The expression GEO is mostly used to denote relation to the earth. However it should not be confined to what is related to the earth's surface, as other objects also need three dimensional representation and documentation, like cultural heritage objects. They include both tangible and intangible ones. In this paper the 3D data acquisition and 3D modelling of cultural heritage assets are briefly described and their significance is also highlighted. Moreover the organization of such information, related to monuments and artefacts, into relational data bases and its use for various purposes, other than just geometric documentation is also described and presented. In order to help the reader understand the above, several characteristic examples are presented and their methodology explained and their results evaluated.

  4. Identification of an Acinetobacter baumannii zinc acquisition system that facilitates resistance to calprotectin-mediated zinc sequestration.

    Directory of Open Access Journals (Sweden)

    M Indriati Hood

    Full Text Available Acinetobacter baumannii is an important nosocomial pathogen that accounts for up to 20 percent of infections in intensive care units worldwide. Furthermore, A. baumannii strains have emerged that are resistant to all available antimicrobials. These facts highlight the dire need for new therapeutic strategies to combat this growing public health threat. Given the critical role for transition metals at the pathogen-host interface, interrogating the role for these metals in A. baumannii physiology and pathogenesis could elucidate novel therapeutic strategies. Toward this end, the role for calprotectin- (CP-mediated chelation of manganese (Mn and zinc (Zn in defense against A. baumannii was investigated. These experiments revealed that CP inhibits A. baumannii growth in vitro through chelation of Mn and Zn. Consistent with these in vitro data, Imaging Mass Spectrometry revealed that CP accompanies neutrophil recruitment to the lung and accumulates at foci of infection in a murine model of A. baumannii pneumonia. CP contributes to host survival and control of bacterial replication in the lung and limits dissemination to secondary sites. Using CP as a probe identified an A. baumannii Zn acquisition system that contributes to Zn uptake, enabling this organism to resist CP-mediated metal chelation, which enhances pathogenesis. Moreover, evidence is provided that Zn uptake across the outer membrane is an energy-dependent process in A. baumannii. Finally, it is shown that Zn limitation reverses carbapenem resistance in multidrug resistant A. baumannii underscoring the clinical relevance of these findings. Taken together, these data establish Zn acquisition systems as viable therapeutic targets to combat multidrug resistant A. baumannii infections.

  5. THE USE OF 3D SCANNING AND RAPID PROTOTYPING IN MEDICAL ENGINEERING

    Directory of Open Access Journals (Sweden)

    Octavian CIOBANU

    2013-05-01

    Full Text Available New cost effective scanning and modeling techniques are used today to process data acquisition and3D reconstruction in order to fabricate prostheses and orthoses by 3D printing. Paper approaches two scanningand 3D modeling techniques used in order to fabricate orthoses and prostheses. In this study, an artificialprosthetic ear was produced through 3D printing using two scanning techniques: structured light scanningtechnique and single camera stereo photogrammetric scanning technique. The processing phases are describedand discussed from data acquisition to 3D printing. The surface scanning and 3D reconstruction techniques willcontinue to increase the accessibility of prostheses and orthoses, making them more cost-effective and morecomfortable.

  6. Spherical 3D Isotropic Wavelets

    CERN Document Server

    Lanusse, F; Starck, J -L

    2011-01-01

    Future cosmological surveys will provide 3D large scale structure maps with large sky coverage, for which a 3D Spherical Fourier-Bessel (SFB) analysis in is natural. Wavelets are particularly well-suited to the analysis and denoising of cosmological data, but a spherical 3D isotropic wavelet transform does not currently exist to analyse spherical 3D data. The aim of this paper is to present a new formalism for a spherical 3D isotropic wavelet, i.e. one based on the Fourier-Bessel decomposition of a 3D field and accompany the formalism with a public code to perform wavelet transforms. We describe a new 3D isotropic spherical wavelet decomposition based on the undecimated wavelet transform (UWT) described in Starck et al. 2006. We also present a new fast Discrete Spherical Fourier-Bessel Transform (DSFBT) based on both a discrete Bessel Transform and the HEALPIX angular pixelisation scheme. We test the 3D wavelet transform and as a toy-application, apply a denoising algorithm in wavelet space to the Virgo large...

  7. 3D Printing for Bricks

    OpenAIRE

    ECT Team, Purdue

    2015-01-01

    Building Bytes, by Brian Peters, is a project that uses desktop 3D printers to print bricks for architecture. Instead of using an expensive custom-made printer, it uses a normal standard 3D printer which is available for everyone and makes it more accessible and also easier for fabrication.

  8. 3D modeling of buildings outstanding sites

    CERN Document Server

    Héno, Rapha?le

    2014-01-01

    Conventional topographic databases, obtained by capture on aerial or spatial images provide a simplified 3D modeling of our urban environment, answering the needs of numerous applications (development, risk prevention, mobility management, etc.). However, when we have to represent and analyze more complex sites (monuments, civil engineering works, archeological sites, etc.), these models no longer suffice and other acquisition and processing means have to be implemented. This book focuses on the study of adapted lifting means for "notable buildings". The methods tackled in this book cover las

  9. 3D vision system assessment

    Science.gov (United States)

    Pezzaniti, J. Larry; Edmondson, Richard; Vaden, Justin; Hyatt, Bryan; Chenault, David B.; Kingston, David; Geulen, Vanilynmae; Newell, Scott; Pettijohn, Brad

    2009-02-01

    In this paper, we report on the development of a 3D vision system consisting of a flat panel stereoscopic display and auto-converging stereo camera and an assessment of the system's use for robotic driving, manipulation, and surveillance operations. The 3D vision system was integrated onto a Talon Robot and Operator Control Unit (OCU) such that direct comparisons of the performance of a number of test subjects using 2D and 3D vision systems were possible. A number of representative scenarios were developed to determine which tasks benefited most from the added depth perception and to understand when the 3D vision system hindered understanding of the scene. Two tests were conducted at Fort Leonard Wood, MO with noncommissioned officers ranked Staff Sergeant and Sergeant First Class. The scenarios; the test planning, approach and protocols; the data analysis; and the resulting performance assessment of the 3D vision system are reported.

  10. PLOT3D user's manual

    Science.gov (United States)

    Walatka, Pamela P.; Buning, Pieter G.; Pierce, Larry; Elson, Patricia A.

    1990-01-01

    PLOT3D is a computer graphics program designed to visualize the grids and solutions of computational fluid dynamics. Seventy-four functions are available. Versions are available for many systems. PLOT3D can handle multiple grids with a million or more grid points, and can produce varieties of model renderings, such as wireframe or flat shaded. Output from PLOT3D can be used in animation programs. The first part of this manual is a tutorial that takes the reader, keystroke by keystroke, through a PLOT3D session. The second part of the manual contains reference chapters, including the helpfile, data file formats, advice on changing PLOT3D, and sample command files.

  11. 3D printing in dentistry.

    Science.gov (United States)

    Dawood, A; Marti Marti, B; Sauret-Jackson, V; Darwood, A

    2015-12-01

    3D printing has been hailed as a disruptive technology which will change manufacturing. Used in aerospace, defence, art and design, 3D printing is becoming a subject of great interest in surgery. The technology has a particular resonance with dentistry, and with advances in 3D imaging and modelling technologies such as cone beam computed tomography and intraoral scanning, and with the relatively long history of the use of CAD CAM technologies in dentistry, it will become of increasing importance. Uses of 3D printing include the production of drill guides for dental implants, the production of physical models for prosthodontics, orthodontics and surgery, the manufacture of dental, craniomaxillofacial and orthopaedic implants, and the fabrication of copings and frameworks for implant and dental restorations. This paper reviews the types of 3D printing technologies available and their various applications in dentistry and in maxillofacial surgery.

  12. Using 3D in Visualization

    DEFF Research Database (Denmark)

    Wood, Jo; Kirschenbauer, Sabine; Döllner, Jürgen

    2005-01-01

    The notion of three-dimensionality is applied to five stages of the visualization pipeline. While 3D visulization is most often associated with the visual mapping and representation of data, this chapter also identifies its role in the management and assembly of data, and in the media used...... to display 3D imagery. The extra cartographic degree of freedom offered by using 3D is explored and offered as a motivation for employing 3D in visualization. The use of VR and the construction of virtual environments exploit navigational and behavioral realism, but become most usefil when combined...... with abstracted representations embedded in a 3D space. The interactions between development of geovisualization, the technology used to implement it and the theory surrounding cartographic representation are explored. The dominance of computing technologies, driven particularly by the gaming industry...

  13. 3D PERSPECTIVE OF MAXILLOFACIAL TRAUMA

    Directory of Open Access Journals (Sweden)

    Surekha

    2016-03-01

    Full Text Available AIM Role of 3 Dimensional Computed Tomography in facial fractures. METHODS AND MATERIALS 133 patients with history of head trauma were scanned using multi slice CT for a period of 2 yrs. Data acquisition was performed using - 16 Slice GE Bright Speed Elite CT Scanner. The datasets were transferred to workstation and VR post-processing protocols were applied. RESULTS 122 patients were male and 11 were female. The mean age of patients with fractures was 32.3 years old. Fractures included the mandible, the maxilla, the frontal bone, the zygomatic arch and the nasal bone. CONCLUSION Continuing advances in computer software algorithms and improved precision in the acquisition of radiographic data makes 3D reformatted CT imaging a necessary complement to traditional 2D CT imaging in the management of complex facial trauma. CT is the investigation of choice in the evaluation of patients with maxillofacial trauma.

  14. 3-D Reconstruction From Satellite Images

    DEFF Research Database (Denmark)

    Denver, Troelz

    1999-01-01

    The aim of this project has been to implement a software system, that is able to create a 3-D reconstruction from two or more 2-D photographic images made from different positions. The height is determined from the disparity difference of the images. The general purpose of the system is mapping...... of planetary surfaces, but other purposes is considered as well. The system performance is measured with respect to the precision and the time consumption.The reconstruction process is divided into four major areas: Acquisition, calibration, matching/reconstruction and presentation. Each of these areas...... are treated individually. A detailed treatment of various lens distortions is required, in order to correct for these problems. This subject is included in the acquisition part. In the calibration part, the perspective distortion is removed from the images. Most attention has been paid to the matching problem...

  15. ADT-3D Tumor Detection Assistant in 3D

    Directory of Open Access Journals (Sweden)

    Jaime Lazcano Bello

    2008-12-01

    Full Text Available The present document describes ADT-3D (Three-Dimensional Tumor Detector Assistant, a prototype application developed to assist doctors diagnose, detect and locate tumors in the brain by using CT scan. The reader may find on this document an introduction to tumor detection; ADT-3D main goals; development details; description of the product; motivation for its development; result’s study; and areas of applicability.

  16. Unassisted 3D camera calibration

    Science.gov (United States)

    Atanassov, Kalin; Ramachandra, Vikas; Nash, James; Goma, Sergio R.

    2012-03-01

    With the rapid growth of 3D technology, 3D image capture has become a critical part of the 3D feature set on mobile phones. 3D image quality is affected by the scene geometry as well as on-the-device processing. An automatic 3D system usually assumes known camera poses accomplished by factory calibration using a special chart. In real life settings, pose parameters estimated by factory calibration can be negatively impacted by movements of the lens barrel due to shaking, focusing, or camera drop. If any of these factors displaces the optical axes of either or both cameras, vertical disparity might exceed the maximum tolerable margin and the 3D user may experience eye strain or headaches. To make 3D capture more practical, one needs to consider unassisted (on arbitrary scenes) calibration. In this paper, we propose an algorithm that relies on detection and matching of keypoints between left and right images. Frames containing erroneous matches, along with frames with insufficiently rich keypoint constellations, are detected and discarded. Roll, pitch yaw , and scale differences between left and right frames are then estimated. The algorithm performance is evaluated in terms of the remaining vertical disparity as compared to the maximum tolerable vertical disparity.

  17. Bioprinting of 3D hydrogels.

    Science.gov (United States)

    Stanton, M M; Samitier, J; Sánchez, S

    2015-08-07

    Three-dimensional (3D) bioprinting has recently emerged as an extension of 3D material printing, by using biocompatible or cellular components to build structures in an additive, layer-by-layer methodology for encapsulation and culture of cells. These 3D systems allow for cell culture in a suspension for formation of highly organized tissue or controlled spatial orientation of cell environments. The in vitro 3D cellular environments simulate the complexity of an in vivo environment and natural extracellular matrices (ECM). This paper will focus on bioprinting utilizing hydrogels as 3D scaffolds. Hydrogels are advantageous for cell culture as they are highly permeable to cell culture media, nutrients, and waste products generated during metabolic cell processes. They have the ability to be fabricated in customized shapes with various material properties with dimensions at the micron scale. 3D hydrogels are a reliable method for biocompatible 3D printing and have applications in tissue engineering, drug screening, and organ on a chip models.

  18. Tuotekehitysprojekti: 3D-tulostin

    OpenAIRE

    Pihlajamäki, Janne

    2011-01-01

    Opinnäytetyössä tutustuttiin 3D-tulostamisen teknologiaan. Työssä käytiin läpi 3D-tulostimesta tehty tuotekehitysprojekti. Sen lisäksi esiteltiin yleisellä tasolla tuotekehitysprosessi ja syntyneiden tulosten mahdollisia suojausmenetelmiä. Tavoitteena tässä työssä oli kehittää markkinoilta jo löytyvää kotitulostin-tasoista 3D-laiteteknologiaa lähemmäksi ammattilaistason ratkaisua. Tavoitteeseen pyrittiin keskittymällä parantamaan laitteella saavutettavaa tulostustarkkuutta ja -nopeutt...

  19. Handbook of 3D integration

    CERN Document Server

    Garrou , Philip; Ramm , Peter

    2014-01-01

    Edited by key figures in 3D integration and written by top authors from high-tech companies and renowned research institutions, this book covers the intricate details of 3D process technology.As such, the main focus is on silicon via formation, bonding and debonding, thinning, via reveal and backside processing, both from a technological and a materials science perspective. The last part of the book is concerned with assessing and enhancing the reliability of the 3D integrated devices, which is a prerequisite for the large-scale implementation of this emerging technology. Invaluable reading fo

  20. Color 3D Reverse Engineering

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    This paper presents a principle and a method of col or 3D laser scanning measurement. Based on the fundamental monochrome 3D measureme nt study, color information capture, color texture mapping, coordinate computati on and other techniques are performed to achieve color 3D measurement. The syste m is designed and composed of a line laser light emitter, one color CCD camera, a motor-driven rotary filter, a circuit card and a computer. Two steps in captu ring object's images in the measurement process: Firs...

  1. Exploration of 3D Printing

    OpenAIRE

    Lin, Zeyu

    2014-01-01

    3D printing technology is introduced and defined in this Thesis. Some methods of 3D printing are illustrated and their principles are explained with pictures. Most of the essential parts are presented with pictures and their effects are explained within the whole system. Problems on Up! Plus 3D printer are solved and a DIY product is made with this machine. The processes of making product are recorded and the items which need to be noticed during the process are the highlight in this th...

  2. Immersive 3D geovisualisation in higher education

    Science.gov (United States)

    Philips, Andrea; Walz, Ariane; Bergner, Andreas; Graeff, Thomas; Heistermann, Maik; Kienzler, Sarah; Korup, Oliver; Lipp, Torsten; Schwanghart, Wolfgang; Zeilinger, Gerold

    2014-05-01

    that significantly contributed to the hundred-year flooding in Dresden in 2002, we empirically evaluated the usefulness of this immersive 3D technology towards learning success. Results show that immersive 3D geovisualisation have educational and content-related advantages compared to 2D geovisualisations through the mentioned benefits. This innovative way of geovisualisation is thus not only entertaining and motivating for students, but can also be constructive for research studies by, for instance, facilitating the study of complex environments or decision-making processes.

  3. Arterial Transit Time Mapping Obtained by Pulsed Continuous 3D ASL Imaging with Multiple Post-Label Delay Acquisitions: Comparative Study with PET-CBF in Patients with Chronic Occlusive Cerebrovascular Disease.

    Science.gov (United States)

    Tsujikawa, Tetsuya; Kimura, Hirohiko; Matsuda, Tsuyoshi; Fujiwara, Yasuhiro; Isozaki, Makoto; Kikuta, Ken-Ichiro; Okazawa, Hidehiko

    2016-01-01

    Arterial transit time (ATT) is most crucial for measuring absolute cerebral blood flow (CBF) by arterial spin labeling (ASL), a noninvasive magnetic resonance (MR) perfusion assessment technique, in patients with chronic occlusive cerebrovascular disease. We validated ASL-CBF and ASL-ATT maps calculated by pulsed continuous ASL (pCASL) with multiple post-label delay acquisitions in patients with occlusive cerebrovascular disease. Fifteen patients underwent MR scans, including pCASL, and positron emission tomography (PET) scans with 15O-water to obtain PET-CBF. MR acquisitions with different post-label delays (1.0, 1.5, 2.0, 2.5 and 3.0 sec) were also obtained for ATT correction. The theoretical framework of 2-compartmental model (2CM) was also used for the delay compensation. ASL-CBF and ASL-ATT were calculated based on the proposed 2CM, and the effect on the CBF values and the ATT correction characteristics were discussed. Linear regression analyses were performed both on pixel-by-pixel and region-of-interest bases in the middle cerebral artery (MCA) territory. There were significant correlations between ASL-CBF and PET-CBF both for voxel values (r = 0.74 ± 0.08, slope: 0.87 ± 0.22, intercept: 6.1 ± 4.9) and for the MCA territorial comparison in both affected (R2 = 0.67, y = 0.83x + 6.3) and contralateral sides (R2 = 0.66, y = 0.74x + 6.3). ASL-ATTs in the affected side were significantly longer than those in the contralateral side (1.51 ± 0.41 sec and 1.12 ± 0.30 sec, respectively, p <0.0005). CBF measurement using pCASL with delay compensation was feasible and fairly accurate even in altered hemodynamic states.

  4. 3D seismic survey in Honjo, Akita. Problems and struggles in acquisition and processing; Akitaken Honjo koku ni okeru sanjigen jishin tansa. Genba sagyo to data shori ni okeru mondaiten

    Energy Technology Data Exchange (ETDEWEB)

    Imahori, S.; Kotera, Y.; Nakanishi, T. [Japan Energy Development Co. Ltd., Tokyo (Japan)

    1997-05-27

    Honjo mining area where investigations are conducted is hilly and has a complicated terrain with gas pipes buried in the ground just under the access road disabling the proper positioning of shock-generating large excavators or vibrators. Auger`s shallow hole shooting method is used in this survey to execute blastings at 639 points. In this method using charge depths of 4m, different from the conventional method using deeper charge depths (20-25m), surface waves prevail in the shot records giving rise to a new problem of removing them in the stage of data processing. The 2D filter that is a powerful tool in 2D data processing is not available in a 3D-survey where the tracing intervals are irregular in the shot records. In the effort of this time, a window length as a parameter in the direction of time is specified, and the F-X dip filtering method is employed in which any event that linearly continues beyond a certain number of traces in the said window is eliminated as a linear noise. It is recommended that the weighting function be changed in the direction of space since surface wave velocities are different at different locations. 1 fig., 1 tab.

  5. Exploring the educational potential of 3D virtual environments

    OpenAIRE

    Esteve Mon, Francesc Marc; Mercè GISBERT CERVERA

    2013-01-01

    3D virtual environments are advanced technology systems, with some potentialities in the teaching and learning process.In recent years, different institutions have promoted the acquisition of XXI century skills. Competences such as initiative, teamwork, creativity, flexibility or digital literacy.Multi-user virtual environments, sometimes called virtual worlds or 3D simulators, are immersive, interactive, customizable, accessible and programmable systems. This kind of environments allow to de...

  6. Accepting the T3D

    Energy Technology Data Exchange (ETDEWEB)

    Rich, D.O.; Pope, S.C.; DeLapp, J.G.

    1994-10-01

    In April, a 128 PE Cray T3D was installed at Los Alamos National Laboratory`s Advanced Computing Laboratory as part of the DOE`s High-Performance Parallel Processor Program (H4P). In conjunction with CRI, the authors implemented a 30 day acceptance test. The test was constructed in part to help them understand the strengths and weaknesses of the T3D. In this paper, they briefly describe the H4P and its goals. They discuss the design and implementation of the T3D acceptance test and detail issues that arose during the test. They conclude with a set of system requirements that must be addressed as the T3D system evolves.

  7. Advanced 3-D Ultrasound Imaging

    DEFF Research Database (Denmark)

    Rasmussen, Morten Fischer

    The main purpose of the PhD project was to develop methods that increase the 3-D ultrasound imaging quality available for the medical personnel in the clinic. Acquiring a 3-D volume gives the medical doctor the freedom to investigate the measured anatomy in any slice desirable after the scan has...... been completed. This allows for precise measurements of organs dimensions and makes the scan more operator independent. Real-time 3-D ultrasound imaging is still not as widespread in use in the clinics as 2-D imaging. A limiting factor has traditionally been the low image quality achievable using...... Field II simulations and measurements with the ultrasound research scanner SARUS and a 3.5MHz 1024 element 2-D transducer array. In all investigations, 3-D synthetic aperture imaging achieved a smaller main-lobe, lower sidelobes, higher contrast, and better signal to noise ratio than parallel...

  8. Conducting polymer 3D microelectrodes

    DEFF Research Database (Denmark)

    Sasso, Luigi; Vazquez, Patricia; Vedarethinam, Indumathi

    2010-01-01

    Conducting polymer 3D microelectrodes have been fabricated for possible future neurological applications. A combination of micro-fabrication techniques and chemical polymerization methods has been used to create pillar electrodes in polyaniline and polypyrrole. The thin polymer films obtained...

  9. High resolution 3-D wavelength diversity imaging

    Science.gov (United States)

    Farhat, N. H.

    1981-09-01

    A physical optics, vector formulation of microwave imaging of perfectly conducting objects by wavelength and polarization diversity is presented. The results provide the theoretical basis for optimal data acquisition and three-dimensional tomographic image retrieval procedures. These include: (a) the selection of highly thinned (sparse) receiving array arrangements capable of collecting large amounts of information about remote scattering objects in a cost effective manner and (b) techniques for 3-D tomographic image reconstruction and display in which polarization diversity data is fully accounted for. Data acquisition employing a highly attractive AMTDR (Amplitude Modulated Target Derived Reference) technique is discussed and demonstrated by computer simulation. Equipment configuration for the implementation of the AMTDR technique is also given together with a measurement configuration for the implementation of wavelength diversity imaging in a roof experiment aimed at imaging a passing aircraft. Extension of the theory presented to 3-D tomographic imaging of passive noise emitting objects by spectrally selective far field cross-correlation measurements is also given. Finally several refinements made in our anechoic-chamber measurement system are shown to yield drastic improvement in performance and retrieved image quality.

  10. Dynamic 3D MR-defecography

    Energy Technology Data Exchange (ETDEWEB)

    Ratz, V.; Wech, T.; Schindele, A.; Dierks, A.; Sauer, A.; Reibetanz, J.; Borzi, A.; Bley, T.; Koestler, H.

    2016-09-15

    Epidemiological studies have estimated the incidence of chronic constipation to be up to 27% of the general population. The gold standard to evaluate affected patients is the dynamic entero-colpo-cysto-defecography. In the clinical routine 2 D MR-defecography is also performed, but only one to three 2 D slices at a temporal footprint of about one second are acquired. To improve the detection of lateral localized pathologies, we developed and implemented dynamic 3 D MR-defecography. Each 3 D block consisted of seven slices with an in-plane spatial resolution of 1.3 x 1.3 mm{sup 2} to 2.3 x 2.3 mm{sup 2} and an image update rate between 0.8 s and 1.3 s. We used a fast bSSFP sequence with a modified stack-of-stars sampling scheme for data acquisition and a modified FISTA compressed sensing algorithm to reconstruct the undersampled datasets. We performed a study including 6 patients to optimize the acquisition parameters with respect to image quality.

  11. 3D Face Apperance Model

    DEFF Research Database (Denmark)

    Lading, Brian; Larsen, Rasmus; Astrom, K

    2006-01-01

    We build a 3D face shape model, including inter- and intra-shape variations, derive the analytical Jacobian of its resulting 2D rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations......We build a 3D face shape model, including inter- and intra-shape variations, derive the analytical Jacobian of its resulting 2D rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations...

  12. 3D Face Appearance Model

    DEFF Research Database (Denmark)

    Lading, Brian; Larsen, Rasmus; Åström, Kalle

    2006-01-01

    We build a 3d face shape model, including inter- and intra-shape variations, derive the analytical jacobian of its resulting 2d rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations.}......We build a 3d face shape model, including inter- and intra-shape variations, derive the analytical jacobian of its resulting 2d rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations.}...

  13. Main: TATCCAYMOTIFOSRAMY3D [PLACE

    Lifescience Database Archive (English)

    Full Text Available TATCCAYMOTIFOSRAMY3D S000256 01-August-2006 (last modified) kehi TATCCAY motif foun...d in rice (O.s.) RAmy3D alpha-amylase gene promoter; Y=T/C; a GATA motif as its antisense sequence; TATCCAY ...motif and G motif (see S000130) are responsible for sugar repression (Toyofuku et al. 1998); GATA; amylase; sugar; repression; rice (Oryza sativa) TATCCAY ...

  14. Dissection of C. elegans behavioral genetics in 3-D environments.

    Science.gov (United States)

    Kwon, Namseop; Hwang, Ara B; You, Young-Jai; V Lee, Seung-Jae; Je, Jung Ho

    2015-01-01

    The nematode Caenorhabditis elegans is a widely used model for genetic dissection of animal behaviors. Despite extensive technical advances in imaging methods, it remains challenging to visualize and quantify C. elegans behaviors in three-dimensional (3-D) natural environments. Here we developed an innovative 3-D imaging method that enables quantification of C. elegans behavior in 3-D environments. Furthermore, for the first time, we characterized 3-D-specific behavioral phenotypes of mutant worms that have defects in head movement or mechanosensation. This approach allowed us to reveal previously unknown functions of genes in behavioral regulation. We expect that our 3-D imaging method will facilitate new investigations into genetic basis of animal behaviors in natural 3-D environments.

  15. MPML3D: Scripting Agents for the 3D Internet.

    Science.gov (United States)

    Prendinger, Helmut; Ullrich, Sebastian; Nakasone, Arturo; Ishizuka, Mitsuru

    2011-05-01

    The aim of this paper is two-fold. First, it describes a scripting language for specifying communicative behavior and interaction of computer-controlled agents ("bots") in the popular three-dimensional (3D) multiuser online world of "Second Life" and the emerging "OpenSimulator" project. While tools for designing avatars and in-world objects in Second Life exist, technology for nonprogrammer content creators of scenarios involving scripted agents is currently missing. Therefore, we have implemented new client software that controls bots based on the Multimodal Presentation Markup Language 3D (MPML3D), a highly expressive XML-based scripting language for controlling the verbal and nonverbal behavior of interacting animated agents. Second, the paper compares Second Life and OpenSimulator platforms and discusses the merits and limitations of each from the perspective of agent control. Here, we also conducted a small study that compares the network performance of both platforms.

  16. 3D-model building of the jaw impression

    Science.gov (United States)

    Ahmed, Moumen T.; Yamany, Sameh M.; Hemayed, Elsayed E.; Farag, Aly A.

    1997-03-01

    A novel approach is proposed to obtain a record of the patient's occlusion using computer vision. Data acquisition is obtained using intra-oral video cameras. The technique utilizes shape from shading to extract 3D information from 2D views of the jaw, and a novel technique for 3D data registration using genetic algorithms. The resulting 3D model can be used for diagnosis, treatment planning, and implant purposes. The overall purpose of this research is to develop a model-based vision system for orthodontics to replace traditional approaches. This system will be flexible, accurate, and will reduce the cost of orthodontic treatments.

  17. Applications of 3D printing in cardiovascular diseases.

    Science.gov (United States)

    Giannopoulos, Andreas A; Mitsouras, Dimitris; Yoo, Shi-Joon; Liu, Peter P; Chatzizisis, Yiannis S; Rybicki, Frank J

    2016-12-01

    3D-printed models fabricated from CT, MRI, or echocardiography data provide the advantage of haptic feedback, direct manipulation, and enhanced understanding of cardiovascular anatomy and underlying pathologies. Reported applications of cardiovascular 3D printing span from diagnostic assistance and optimization of management algorithms in complex cardiovascular diseases, to planning and simulating surgical and interventional procedures. The technology has been used in practically the entire range of structural, valvular, and congenital heart diseases, and the added-value of 3D printing is established. Patient-specific implants and custom-made devices can be designed, produced, and tested, thus opening new horizons in personalized patient care and cardiovascular research. Physicians and trainees can better elucidate anatomical abnormalities with the use of 3D-printed models, and communication with patients is markedly improved. Cardiovascular 3D bioprinting and molecular 3D printing, although currently not translated into clinical practice, hold revolutionary potential. 3D printing is expected to have a broad influence in cardiovascular care, and will prove pivotal for the future generation of cardiovascular imagers and care providers. In this Review, we summarize the cardiovascular 3D printing workflow, from image acquisition to the generation of a hand-held model, and discuss the cardiovascular applications and the current status and future perspectives of cardiovascular 3D printing.

  18. 3D passive integral imaging using compressive sensing.

    Science.gov (United States)

    Cho, Myungjin; Mahalanobis, Abhijit; Javidi, Bahram

    2012-11-19

    Passive 3D sensing using integral imaging techniques has been well studied in the literature. It has been shown that a scene can be reconstructed at various depths using several 2D elemental images. This provides the ability to reconstruct objects in the presence of occlusions, and passively estimate their 3D profile. However, high resolution 2D elemental images are required for high quality 3D reconstruction. Compressive Sensing (CS) provides a way to dramatically reduce the amount of data that needs to be collected to form the elemental images, which in turn can reduce the storage and bandwidth requirements. In this paper, we explore the effects of CS in acquisition of the elemental images, and ultimately on passive 3D scene reconstruction and object recognition. Our experiments show that the performance of passive 3D sensing systems remains robust even when elemental images are recovered from very few compressive measurements.

  19. From 3D view to 3D print

    Science.gov (United States)

    Dima, M.; Farisato, G.; Bergomi, M.; Viotto, V.; Magrin, D.; Greggio, D.; Farinato, J.; Marafatto, L.; Ragazzoni, R.; Piazza, D.

    2014-08-01

    In the last few years 3D printing is getting more and more popular and used in many fields going from manufacturing to industrial design, architecture, medical support and aerospace. 3D printing is an evolution of bi-dimensional printing, which allows to obtain a solid object from a 3D model, realized with a 3D modelling software. The final product is obtained using an additive process, in which successive layers of material are laid down one over the other. A 3D printer allows to realize, in a simple way, very complex shapes, which would be quite difficult to be produced with dedicated conventional facilities. Thanks to the fact that the 3D printing is obtained superposing one layer to the others, it doesn't need any particular work flow and it is sufficient to simply draw the model and send it to print. Many different kinds of 3D printers exist based on the technology and material used for layer deposition. A common material used by the toner is ABS plastics, which is a light and rigid thermoplastic polymer, whose peculiar mechanical properties make it diffusely used in several fields, like pipes production and cars interiors manufacturing. I used this technology to create a 1:1 scale model of the telescope which is the hardware core of the space small mission CHEOPS (CHaracterising ExOPlanets Satellite) by ESA, which aims to characterize EXOplanets via transits observations. The telescope has a Ritchey-Chrétien configuration with a 30cm aperture and the launch is foreseen in 2017. In this paper, I present the different phases for the realization of such a model, focusing onto pros and cons of this kind of technology. For example, because of the finite printable volume (10×10×12 inches in the x, y and z directions respectively), it has been necessary to split the largest parts of the instrument in smaller components to be then reassembled and post-processed. A further issue is the resolution of the printed material, which is expressed in terms of layers

  20. 3D-mallinnus ja 3D-animaatiot biovoimalaitoksesta

    OpenAIRE

    Hiltula, Tytti

    2014-01-01

    Opinnäytetyössä tehtiin biovoimalaitoksen piirustuksista 3D-mallinnus ja animaatiot. Työn tarkoituksena oli saada valmiiksi Recwell Oy:lle markkinointiin tarkoitetut kuva- ja videomateriaalit. Työssä perehdyttiin 3D-mallintamisen perustietoihin ja lähtökohtiin sekä animaation laatimiseen. Työ laadittiin kokonaisuudessaan AutoCAD-ohjelmalla, ja työn aikana tutustuttiin huolellisesti myös ohjelman käyttöohjeisiin. Piirustusten mitoituksessa huomattiin jo alkuvaiheessa suuria puutteita, ...

  1. 近景摄影测量在三维数据采集中的应用%Application of close range photogrammetry technology in 3D data acquisition

    Institute of Scientific and Technical Information of China (English)

    冉险生; 林立; 黄泽好

    2013-01-01

    Grating projection scanning equipments are often used to detect 3D data of industrial products,such to acquire precise surface size of products. Photographs merging has a large accumulated error in the measurement of large-size surface due to the principle of uncoded point three-point fix. Using close-range photogrammetry method to build three-dimensional measurement of uncoded point group is an effective means to improve accuracy of the three-dimensional measurement. Describes the principles and methods of close-range industrial photogrammetry systematically. A multi-camera station close-range photogrammetry method combined with the grating projection scanning method is introduced to achieve accurate measurement of large-size objects. A case study of surface measurement of motor vehicles shown that, compare with a separate raster scan method, close-range photogrammetry combined with the raster scan method not only improve the scanning efficiency but also increased the accuracy of the scanning of large-size objects substantially.%工业产品的三维数据检测常常使用光栅投影扫描设备获得被测物体精确的表面尺寸.由于其照片拼合依据非编码点三点定位原理,因而在测量大尺寸物体表面时,具有较大的累计误差.通过近景摄影测量方法构建三维测量的非编码点群,是提高三维测量精度的一种有效手段.阐述了近景摄影测量的原理及方法,提出了利用多摄站近景摄影测量结合光栅投影扫描的方法实现大尺寸物体精确测量.以汽车外表面测量为例,通过采用单独使用光栅投影扫描设备与近景摄影测量结合光栅投影扫描两种不同的方法,对大尺寸物体表面测量的结果进行对比,其结果表明,使用近景摄影测量方法不仅提高了扫描效率,而且大幅度提高了大尺寸物体的扫描精度.

  2. YouDash3D: exploring stereoscopic 3D gaming for 3D movie theaters

    Science.gov (United States)

    Schild, Jonas; Seele, Sven; Masuch, Maic

    2012-03-01

    Along with the success of the digitally revived stereoscopic cinema, events beyond 3D movies become attractive for movie theater operators, i.e. interactive 3D games. In this paper, we present a case that explores possible challenges and solutions for interactive 3D games to be played by a movie theater audience. We analyze the setting and showcase current issues related to lighting and interaction. Our second focus is to provide gameplay mechanics that make special use of stereoscopy, especially depth-based game design. Based on these results, we present YouDash3D, a game prototype that explores public stereoscopic gameplay in a reduced kiosk setup. It features live 3D HD video stream of a professional stereo camera rig rendered in a real-time game scene. We use the effect to place the stereoscopic effigies of players into the digital game. The game showcases how stereoscopic vision can provide for a novel depth-based game mechanic. Projected trigger zones and distributed clusters of the audience video allow for easy adaptation to larger audiences and 3D movie theater gaming.

  3. 五号桩地区滩浅海高精度三维地震采集技术%3D high-precision seismic acquisition techniques in Wuhaozhuang beach and shallow sea area

    Institute of Scientific and Technical Information of China (English)

    邸志欣; 丁伟; 吕公河; 刘怀山; 段卫星; 刘斌

    2012-01-01

    Wuhaozhuang area is the key and old oil area of Shengli Oilfield for oil-gas exploration in beach and shallow sea. It has great potential on increase in oil reserve and production, but the energy in middle-deep layer of the existing seismic data is weak, and its signal-to-noise ratio is low, so it is hard to meet the requirements for further detailed structure interpretation and reservoir description. Aimed at the characteristics and difficulties of the complex surface and underground conditions, based on complex structure modeling and prestack imaging result analysis, we designed and proved high-precision geometries for seismic acquisition suitable for the beach and shallow sea in Wuhaozhuang area, which ensured seamless data acquisition in the land-beach-shallow-sea area. By studying 'high-efficient dynamite source and using the shooting techniques based on near-surface lithology layering and modeling, the shooting effect of intertidal zone was improved. By studying and testing air gun array parameters, we optimized airgun array mode and shooting depth with good wavelet characteristics and strong energy. The platelike long-tail cone geophone coupler was adopted to improve the seismic wave receiving effect in intertidal zone as well. Besides, the repositioning technology and counter measurements were utilized to improve the positioning accuracy of underwater hydrophone. By jointly using all the techniques and methods, we achieved high-quality seismic data and obvious geological effect in Wuhaozhuang area.%五号桩地区是胜利油田滩浅海油气勘探的重点老区,增储上产的潜力巨大,但以往地震资料中深层能量弱,信噪比较低,无法满足进一步精细构造解释和油藏描述要求.针对该区复杂的地表和地下特点及难点,基于复杂构造模型正演和叠前成像效果分析,设计论证了适合于该区滩浅海高精度地震采集的观测系统形式,确保了全区陆-滩-海资料的无缝连接采集;通过

  4. 3D future internet media

    CERN Document Server

    Dagiuklas, Tasos

    2014-01-01

    This book describes recent innovations in 3D media and technologies, with coverage of 3D media capturing, processing, encoding, and adaptation, networking aspects for 3D Media, and quality of user experience (QoE). The main contributions are based on the results of the FP7 European Projects ROMEO, which focus on new methods for the compression and delivery of 3D multi-view video and spatial audio, as well as the optimization of networking and compression jointly across the Future Internet (www.ict-romeo.eu). The delivery of 3D media to individual users remains a highly challenging problem due to the large amount of data involved, diverse network characteristics and user terminal requirements, as well as the user’s context such as their preferences and location. As the number of visual views increases, current systems will struggle to meet the demanding requirements in terms of delivery of constant video quality to both fixed and mobile users. ROMEO will design and develop hybrid-networking solutions that co...

  5. Materialedreven 3d digital formgivning

    DEFF Research Database (Denmark)

    Hansen, Flemming Tvede

    2010-01-01

    Formålet med forskningsprojektet er for det første at understøtte keramikeren i at arbejde eksperimenterende med digital formgivning, og for det andet at bidrage til en tværfaglig diskurs om brugen af digital formgivning. Forskningsprojektet fokuserer på 3d formgivning og derved på 3d digital...... formgivning og Rapid Prototyping (RP). RP er en fællesbetegnelse for en række af de teknikker, der muliggør at overføre den digitale form til 3d fysisk form. Forskningsprojektet koncentrerer sig om to overordnede forskningsspørgsmål. Det første handler om, hvordan viden og erfaring indenfor det keramiske...... fagområde kan blive udnyttet i forhold til 3d digital formgivning. Det andet handler om, hvad en sådan tilgang kan bidrage med, og hvordan den kan blive udnyttet i et dynamisk samspil med det keramiske materiale i formgivningen af 3d keramiske artefakter. Materialedreven formgivning er karakteriseret af en...

  6. Novel 3D media technologies

    CERN Document Server

    Dagiuklas, Tasos

    2015-01-01

    This book describes recent innovations in 3D media and technologies, with coverage of 3D media capturing, processing, encoding, and adaptation, networking aspects for 3D Media, and quality of user experience (QoE). The contributions are based on the results of the FP7 European Project ROMEO, which focuses on new methods for the compression and delivery of 3D multi-view video and spatial audio, as well as the optimization of networking and compression jointly across the future Internet. The delivery of 3D media to individual users remains a highly challenging problem due to the large amount of data involved, diverse network characteristics and user terminal requirements, as well as the user’s context such as their preferences and location. As the number of visual views increases, current systems will struggle to meet the demanding requirements in terms of delivery of consistent video quality to fixed and mobile users. ROMEO will present hybrid networking solutions that combine the DVB-T2 and DVB-NGH broadcas...

  7. Speaking Volumes About 3-D

    Science.gov (United States)

    2002-01-01

    In 1999, Genex submitted a proposal to Stennis Space Center for a volumetric 3-D display technique that would provide multiple users with a 360-degree perspective to simultaneously view and analyze 3-D data. The futuristic capabilities of the VolumeViewer(R) have offered tremendous benefits to commercial users in the fields of medicine and surgery, air traffic control, pilot training and education, computer-aided design/computer-aided manufacturing, and military/battlefield management. The technology has also helped NASA to better analyze and assess the various data collected by its satellite and spacecraft sensors. Genex capitalized on its success with Stennis by introducing two separate products to the commercial market that incorporate key elements of the 3-D display technology designed under an SBIR contract. The company Rainbow 3D(R) imaging camera is a novel, three-dimensional surface profile measurement system that can obtain a full-frame 3-D image in less than 1 second. The third product is the 360-degree OmniEye(R) video system. Ideal for intrusion detection, surveillance, and situation management, this unique camera system offers a continuous, panoramic view of a scene in real time.

  8. Modification of 3D milling machine to 3D printer

    OpenAIRE

    Halamíček, Lukáš

    2015-01-01

    Tato práce se zabývá přestavbou gravírovací frézky na 3D tiskárnu. V první části se práce zabývá možnými technologiemi 3D tisku a možností jejich využití u přestavby. Dále jsou popsány a vybrány vhodné součásti pro přestavbu. V další části je realizováno řízení ohřevu podložky, trysky a řízení posuvu drátu pomocí softwaru TwinCat od společnosti Beckhoff na průmyslovém počítači. Výsledkem práce by měla být oživená 3D tiskárna. This thesis deals with rebuilding of engraving machine to 3D pri...

  9. Aspects of defects in 3d-3d correspondence

    Science.gov (United States)

    Gang, Dongmin; Kim, Nakwoo; Romo, Mauricio; Yamazaki, Masahito

    2016-10-01

    In this paper we study supersymmetric co-dimension 2 and 4 defects in the compactification of the 6d (2, 0) theory of type A N -1 on a 3-manifold M . The so-called 3d-3d correspondence is a relation between complexified Chern-Simons theory (with gauge group SL(N,C) ) on M and a 3d N=2 theory T N [ M ]. We study this correspondence in the presence of supersymmetric defects, which are knots/links inside the 3-manifold. Our study employs a number of different methods: state-integral models for complex Chern-Simons theory, cluster algebra techniques, domain wall theory T [SU( N )], 5d N=2 SYM, and also supergravity analysis through holography. These methods are complementary and we find agreement between them. In some cases the results lead to highly non-trivial predictions on the partition function. Our discussion includes a general expression for the cluster partition function, which can be used to compute in the presence of maximal and certain class of non-maximal punctures when N > 2. We also highlight the non-Abelian description of the 3d N=2 T N [ M ] theory with defect included, when such a description is available. This paper is a companion to our shorter paper [1], which summarizes our main results.

  10. 3-D Vector Flow Imaging

    DEFF Research Database (Denmark)

    Holbek, Simon

    studies and in vivo. Phantom measurements are compared with their corresponding reference value, whereas the in vivo measurement is validated against the current golden standard for non-invasive blood velocity estimates, based on magnetic resonance imaging (MRI). The study concludes, that a high precision......, if this significant reduction in the element count can still provide precise and robust 3-D vector flow estimates in a plane. The study concludes that the RC array is capable of estimating precise 3-D vector flow both in a plane and in a volume, despite the low channel count. However, some inherent new challenges......For the last decade, the field of ultrasonic vector flow imaging has gotten an increasingly attention, as the technique offers a variety of new applications for screening and diagnostics of cardiovascular pathologies. The main purpose of this PhD project was therefore to advance the field of 3-D...

  11. 3D vector flow imaging

    DEFF Research Database (Denmark)

    Pihl, Michael Johannes

    The main purpose of this PhD project is to develop an ultrasonic method for 3D vector flow imaging. The motivation is to advance the field of velocity estimation in ultrasound, which plays an important role in the clinic. The velocity of blood has components in all three spatial dimensions, yet...... conventional methods can estimate only the axial component. Several approaches for 3D vector velocity estimation have been suggested, but none of these methods have so far produced convincing in vivo results nor have they been adopted by commercial manufacturers. The basis for this project is the Transverse...... on the TO fields are suggested. They can be used to optimize the TO method. In the third part, a TO method for 3D vector velocity estimation is proposed. It employs a 2D phased array transducer and decouples the velocity estimation into three velocity components, which are estimated simultaneously based on 5...

  12. Markerless 3D Face Tracking

    DEFF Research Database (Denmark)

    Walder, Christian; Breidt, Martin; Bulthoff, Heinrich

    2009-01-01

    We present a novel algorithm for the markerless tracking of deforming surfaces such as faces. We acquire a sequence of 3D scans along with color images at 40Hz. The data is then represented by implicit surface and color functions, using a novel partition-of-unity type method of efficiently...... combining local regressors using nearest neighbor searches. Both these functions act on the 4D space of 3D plus time, and use temporal information to handle the noise in individual scans. After interactive registration of a template mesh to the first frame, it is then automatically deformed to track...... the scanned surface, using the variation of both shape and color as features in a dynamic energy minimization problem. Our prototype system yields high-quality animated 3D models in correspondence, at a rate of approximately twenty seconds per timestep. Tracking results for faces and other objects...

  13. Emerging Applications of Bedside 3D Printing in Plastic Surgery

    Directory of Open Access Journals (Sweden)

    Michael P Chae

    2015-06-01

    Full Text Available Modern imaging techniques are an essential component of preoperative planning in plastic and reconstructive surgery. However, conventional modalities, including three-dimensional (3D reconstructions, are limited by their representation on 2D workstations. 3D printing has been embraced by early adopters to produce medical imaging-guided 3D printed biomodels that facilitate various aspects of clinical practice. The cost and size of 3D printers have rapidly decreased over the past decade in parallel with the expiration of key 3D printing patents. With increasing accessibility, investigators are now able to convert standard imaging data into Computer Aided Design (CAD files using various 3D reconstruction softwares and ultimately fabricate 3D models using 3D printing techniques, such as stereolithography (SLA, multijet modeling (MJM, selective laser sintering (SLS, binder jet technique (BJT, and fused deposition modeling (FDM. Significant improvements in clinical imaging and user-friendly 3D software have permitted computer-aided 3D modeling of anatomical structures and implants without out-sourcing in many cases. These developments offer immense potential for the application of 3D printing at the bedside for a variety of clinical applications. However, many clinicians have questioned whether the cost-to-benefit ratio justifies its ongoing use. In this review the existing uses of 3D printing in plastic surgery practice, spanning the spectrum from templates for facial transplantation surgery through to the formation of bespoke craniofacial implants to optimize post-operative aesthetics, are described. Furthermore, we discuss the potential of 3D printing to become an essential office-based tool in plastic surgery to assist in preoperative planning, patient and surgical trainee education, and the development of intraoperative guidance tools and patient-specific prosthetics in everyday surgical practice.

  14. 3D Printed Bionic Nanodevices.

    Science.gov (United States)

    Kong, Yong Lin; Gupta, Maneesh K; Johnson, Blake N; McAlpine, Michael C

    2016-06-01

    The ability to three-dimensionally interweave biological and functional materials could enable the creation of bionic devices possessing unique and compelling geometries, properties, and functionalities. Indeed, interfacing high performance active devices with biology could impact a variety of fields, including regenerative bioelectronic medicines, smart prosthetics, medical robotics, and human-machine interfaces. Biology, from the molecular scale of DNA and proteins, to the macroscopic scale of tissues and organs, is three-dimensional, often soft and stretchable, and temperature sensitive. This renders most biological platforms incompatible with the fabrication and materials processing methods that have been developed and optimized for functional electronics, which are typically planar, rigid and brittle. A number of strategies have been developed to overcome these dichotomies. One particularly novel approach is the use of extrusion-based multi-material 3D printing, which is an additive manufacturing technology that offers a freeform fabrication strategy. This approach addresses the dichotomies presented above by (1) using 3D printing and imaging for customized, hierarchical, and interwoven device architectures; (2) employing nanotechnology as an enabling route for introducing high performance materials, with the potential for exhibiting properties not found in the bulk; and (3) 3D printing a range of soft and nanoscale materials to enable the integration of a diverse palette of high quality functional nanomaterials with biology. Further, 3D printing is a multi-scale platform, allowing for the incorporation of functional nanoscale inks, the printing of microscale features, and ultimately the creation of macroscale devices. This blending of 3D printing, novel nanomaterial properties, and 'living' platforms may enable next-generation bionic systems. In this review, we highlight this synergistic integration of the unique properties of nanomaterials with the

  15. Microfluidic 3D Helix Mixers

    Directory of Open Access Journals (Sweden)

    Georgette B. Salieb-Beugelaar

    2016-10-01

    Full Text Available Polymeric microfluidic systems are well suited for miniaturized devices with complex functionality, and rapid prototyping methods for 3D microfluidic structures are increasingly used. Mixing at the microscale and performing chemical reactions at the microscale are important applications of such systems and we therefore explored feasibility, mixing characteristics and the ability to control a chemical reaction in helical 3D channels produced by the emerging thread template method. Mixing at the microscale is challenging because channel size reduction for improving solute diffusion comes at the price of a reduced Reynolds number that induces a strictly laminar flow regime and abolishes turbulence that would be desired for improved mixing. Microfluidic 3D helix mixers were rapidly prototyped in polydimethylsiloxane (PDMS using low-surface energy polymeric threads, twisted to form 2-channel and 3-channel helices. Structure and flow characteristics were assessed experimentally by microscopy, hydraulic measurements and chromogenic reaction, and were modeled by computational fluid dynamics. We found that helical 3D microfluidic systems produced by thread templating allow rapid prototyping, can be used for mixing and for controlled chemical reaction with two or three reaction partners at the microscale. Compared to the conventional T-shaped microfluidic system used as a control device, enhanced mixing and faster chemical reaction was found to occur due to the combination of diffusive mixing in small channels and flow folding due to the 3D helix shape. Thus, microfluidic 3D helix mixers can be rapidly prototyped using the thread template method and are an attractive and competitive method for fluid mixing and chemical reactions at the microscale.

  16. 3D structure of muscle dihydropyridine receptor

    Directory of Open Access Journals (Sweden)

    Montserrat Samsó

    2015-01-01

    Full Text Available Excitation contraction coupling, the rapid and massive Ca2+ release under control of an action potential that triggers muscle contraction, takes places at specialized regions of the cell called triad junctions. There, a highly ordered supramolecular complex between the dihydropyridine receptor (DHPR and the ryanodine receptor (RyR1 mediates the quasi‐instantaneous conversion from T‐tubule depolarization into Ca2+ release from the sarcoplasmic reticulum (SR. The DHPR has several key modules required for EC coupling: the voltage sensors and II‐III loop in the alpha1s subunit, and the beta subunit. To gain insight into their molecular organization, this review examines the most updated 3D structure of the DHPR as obtained by transmission electron microscopy and image reconstruction. Although structure determination of a heteromeric membrane protein such as the DHPR is challenging, novel technical advances in protein expression and 3D labeling facilitated this task. The 3D structure of the DHPR complex consists of a main body with five irregular corners around its perimeter encompassing the transmembrane alpha 1s subunit besides the intracellular beta subunit, an extended extracellular alpha 2 subunit, and a bulky intracellular II‐III loop. The structural definition attained at 19 Å resolution enabled docking of the atomic coordinates of structural homologs of the alpha1s and beta subunits. These structural features, together with their relative location with respect to the RyR1, are discussed in the context of the functional data.

  17. Integration of real-time 3D capture, reconstruction, and light-field display

    Science.gov (United States)

    Zhang, Zhaoxing; Geng, Zheng; Li, Tuotuo; Pei, Renjing; Liu, Yongchun; Zhang, Xiao

    2015-03-01

    Effective integration of 3D acquisition, reconstruction (modeling) and display technologies into a seamless systems provides augmented experience of visualizing and analyzing real objects and scenes with realistic 3D sensation. Applications can be found in medical imaging, gaming, virtual or augmented reality and hybrid simulations. Although 3D acquisition, reconstruction, and display technologies have gained significant momentum in recent years, there seems a lack of attention on synergistically combining these components into a "end-to-end" 3D visualization system. We designed, built and tested an integrated 3D visualization system that is able to capture in real-time 3D light-field images, perform 3D reconstruction to build 3D model of the objects, and display the 3D model on a large autostereoscopic screen. In this article, we will present our system architecture and component designs, hardware/software implementations, and experimental results. We will elaborate on our recent progress on sparse camera array light-field 3D acquisition, real-time dense 3D reconstruction, and autostereoscopic multi-view 3D display. A prototype is finally presented with test results to illustrate the effectiveness of our proposed integrated 3D visualization system.

  18. Making Inexpensive 3-D Models

    Science.gov (United States)

    Manos, Harry

    2016-01-01

    Visual aids are important to student learning, and they help make the teacher's job easier. Keeping with the "TPT" theme of "The Art, Craft, and Science of Physics Teaching," the purpose of this article is to show how teachers, lacking equipment and funds, can construct a durable 3-D model reference frame and a model gravity…

  19. 3D terahertz beam profiling

    DEFF Research Database (Denmark)

    Pedersen, Pernille Klarskov; Strikwerda, Andrew; Wang, Tianwu

    2013-01-01

    We present a characterization of THz beams generated in both a two-color air plasma and in a LiNbO3 crystal. Using a commercial THz camera, we record intensity images as a function of distance through the beam waist, from which we extract 2D beam profiles and visualize our measurements into 3D beam...

  20. 3D Printing: Exploring Capabilities

    Science.gov (United States)

    Samuels, Kyle; Flowers, Jim

    2015-01-01

    As 3D printers become more affordable, schools are using them in increasing numbers. They fit well with the emphasis on product design in technology and engineering education, allowing students to create high-fidelity physical models to see and test different iterations in their product designs. They may also help students to "think in three…

  1. When Art Meets 3D

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The presentation of the vanguard work,My Dream3D,the innovative production by the China Disabled People’s Performing Art Troupe(CDPPAT),directed by Joy Joosang Park,provided the film’s domestic premiere at Beijing’s Olympic Park onApril7.The show provided an intriguing insight not

  2. Common atlas format and 3D brain atlas reconstructor: infrastructure for constructing 3D brain atlases.

    Science.gov (United States)

    Majka, Piotr; Kublik, Ewa; Furga, Grzegorz; Wójcik, Daniel Krzysztof

    2012-04-01

    One of the challenges of modern neuroscience is integrating voluminous data of diferent modalities derived from a variety of specimens. This task requires a common spatial framework that can be provided by brain atlases. The first atlases were limited to two-dimentional presentation of structural data. Recently, attempts at creating 3D atlases have been made to offer navigation within non-standard anatomical planes and improve capability of localization of different types of data within the brain volume. The 3D atlases available so far have been created using frameworks which make it difficult for other researchers to replicate the results. To facilitate reproducible research and data sharing in the field we propose an SVG-based Common Atlas Format (CAF) to store 2D atlas delineations or other compatible data and 3D Brain Atlas Reconstructor (3dBAR), software dedicated to automated reconstruction of three-dimensional brain structures from 2D atlas data. The basic functionality is provided by (1) a set of parsers which translate various atlases from a number of formats into the CAF, and (2) a module generating 3D models from CAF datasets. The whole reconstruction process is reproducible and can easily be configured, tracked and reviewed, which facilitates fixing errors. Manual corrections can be made when automatic reconstruction is not sufficient. The software was designed to simplify interoperability with other neuroinformatics tools by using open file formats. The content can easily be exchanged at any stage of data processing. The framework allows for the addition of new public or proprietary content.

  3. Priprava 3D modelov za 3D tisk

    OpenAIRE

    2015-01-01

    Po mnenju nekaterih strokovnjakov bo aditivna proizvodnja (ali 3D tiskanje) spremenila proizvodnjo industrijo, saj si bo vsak posameznik lahko natisnil svoj objekt po želji. V diplomski nalogi so predstavljene nekatere tehnologije aditivne proizvodnje. V nadaljevanju diplomske naloge je predstavljena izdelava makete hiše v merilu 1:100, vse od modeliranja do tiskanja. Poseben poudarek je posvečen predelavi modela, da je primeren za tiskanje, kjer je razvit pristop za hitrejše i...

  4. Post processing of 3D models for 3D printing

    OpenAIRE

    2015-01-01

    According to the opinion of some experts the additive manufacturing or 3D printing will change manufacturing industry, because any individual could print their own model according to his or her wishes. In this graduation thesis some of the additive manufacturing technologies are presented. Furthermore in the production of house scale model in 1:100 is presented, starting from modeling to printing. Special attention is given to postprocessing of the building model elements us...

  5. 3D Printing of Carbon Nanotubes-Based Microsupercapacitors.

    Science.gov (United States)

    Yu, Wei; Zhou, Han; Li, Ben Q; Ding, Shujiang

    2017-02-08

    A novel 3D printing procedure is presented for fabricating carbon-nanotubes (CNTs)-based microsupercapacitors. The 3D printer uses a CNTs ink slurry with a moderate solid content and prints a stream of continuous droplets. Appropriate control of a heated base is applied to facilitate the solvent removal and adhesion between printed layers and to improve the structure integrity without structure delamination or distortion upon drying. The 3D-printed electrodes for microsupercapacitors are characterized by SEM, laser scanning confocal microscope, and step profiler. Effect of process parameters on 3D printing is also studied. The final solid-state microsupercapacitors are assembled with the printed multilayer CNTs structures and poly(vinyl alcohol)-H3PO4 gel as the interdigitated microelectrodes and electrolyte. The electrochemical performance of 3D printed microsupercapacitors is also tested, showing a significant areal capacitance and excellent cycle stability.

  6. 3D Equilibrium Reconstructions in DIII-D

    Science.gov (United States)

    Lao, L. L.; Ferraro, N. W.; Strait, E. J.; Turnbull, A. D.; King, J. D.; Hirshman, H. P.; Lazarus, E. A.; Sontag, A. C.; Hanson, J.; Trevisan, G.

    2013-10-01

    Accurate and efficient 3D equilibrium reconstruction is needed in tokamaks for study of 3D magnetic field effects on experimentally reconstructed equilibrium and for analysis of MHD stability experiments with externally imposed magnetic perturbations. A large number of new magnetic probes have been recently installed in DIII-D to improve 3D equilibrium measurements and to facilitate 3D reconstructions. The V3FIT code has been in use in DIII-D to support 3D reconstruction and the new magnetic diagnostic design. V3FIT is based on the 3D equilibrium code VMEC that assumes nested magnetic surfaces. V3FIT uses a pseudo-Newton least-square algorithm to search for the solution vector. In parallel, the EFIT equilibrium reconstruction code is being extended to allow for 3D effects using a perturbation approach based on an expansion of the MHD equations. EFIT uses the cylindrical coordinate system and can include the magnetic island and stochastic effects. Algorithms are being developed to allow EFIT to reconstruct 3D perturbed equilibria directly making use of plasma response to 3D perturbations from the GATO, MARS-F, or M3D-C1 MHD codes. DIII-D 3D reconstruction examples using EFIT and V3FIT and the new 3D magnetic data will be presented. Work supported in part by US DOE under DE-FC02-04ER54698, DE-FG02-95ER54309 and DE-AC05-06OR23100.

  7. Ceftriaxone attenuates acquisition and facilitates extinction of cocaine-induced suppression of saccharin intake in C57BL/6J mice.

    Science.gov (United States)

    Freet, Christopher S; Lawrence, Antoneal L

    2015-10-01

    Growing evidence implicates glutamate homeostasis in a number of behaviors observed in addiction such as acquisition of drug taking, motivation, and reinstatement. To date, however, the role of glutamate homeostasis in the avoidance of natural rewards due to exposure to drugs of abuse has received little attention. The aim of the current study was to evaluate the beta-lactam antibiotic, ceftriaxone, which has been shown to normalize disrupted glutamate homeostasis associated with exposure to drugs of abuse, in cocaine-induced suppression of saccharin intake in C57BL/6J mice. Briefly, C57BL/6J mice received daily injections of either 200mg/kg ceftriaxone or saline. Mice were then given access to 0.15% saccharin for 1h and immediately injected intraperitoneally with either saline or 30 mg/kg cocaine; taste-drug pairings occurred every 24h for 5 trials followed by a final CS only trial. One week following taste-drug pairings, extinction was evaluated in a series of one- and two-bottle saccharin intake tests. Individual differences in cocaine-induced suppression were observed (i.e., low and high suppressors) with differential effects of ceftriaxone. Ceftriaxone delayed suppression of saccharin intake in high suppressors but prevented suppression in low suppressors. In addition, ceftriaxone history facilitated extinction in the high suppressors. These data suggest that changes in glutamate homeostasis may be involved in the formation and expression of cocaine-induced suppression of saccharin intake in mice.

  8. Facilitating Leader Tacit Knowledge Acquisition

    Directory of Open Access Journals (Sweden)

    Svec Vlastimil

    2013-03-01

    Full Text Available The aim of the paper is to identify how to support the moulding of tacit knowledge which is necessary for success in a managerial position within a framework for the preparation and developmentof managers. The paper is based on an analysis of expert publications and the results of a completed project. Research respondents and theorists agree with the necessity for active involvementof trainees. It is also important to develop knowledge within the framework of manager preparation with significant reflection on learning from mistakes. From the methods of tacit knowledge transfer a close collaboration with experienced people, working in teams, training of model situations, goal-directed interviews, coaching, job rotation, short term attachments and excursions seem to be the most beneficial. It is also important to pay attention to the cultivationof organisational culture, especially in the sense of accepting knowledge sharing as the norm.

  9. 3D Printing: Print the future of ophthalmology.

    Science.gov (United States)

    Huang, Wenbin; Zhang, Xiulan

    2014-08-26

    The three-dimensional (3D) printer is a new technology that creates physical objects from digital files. Recent technological advances in 3D printing have resulted in increased use of this technology in the medical field, where it is beginning to revolutionize medical and surgical possibilities. It is already providing medicine with powerful tools that facilitate education, surgical planning, and organ transplantation research. A good understanding of this technology will be beneficial to ophthalmologists. The potential applications of 3D printing in ophthalmology, both current and future, are explored in this article.

  10. Face recognition based on matching of local features on 3D dynamic range sequences

    Science.gov (United States)

    Echeagaray-Patrón, B. A.; Kober, Vitaly

    2016-09-01

    3D face recognition has attracted attention in the last decade due to improvement of technology of 3D image acquisition and its wide range of applications such as access control, surveillance, human-computer interaction and biometric identification systems. Most research on 3D face recognition has focused on analysis of 3D still data. In this work, a new method for face recognition using dynamic 3D range sequences is proposed. Experimental results are presented and discussed using 3D sequences in the presence of pose variation. The performance of the proposed method is compared with that of conventional face recognition algorithms based on descriptors.

  11. ETeach3D: Designing a 3D Virtual Environment for Evaluating the Digital Competence of Preservice Teachers

    Science.gov (United States)

    Esteve-Mon, Francesc M.; Cela-Ranilla, Jose María; Gisbert-Cervera, Mercè

    2016-01-01

    The acquisition of teacher digital competence is a key aspect in the initial training of teachers. However, most existing evaluation instruments do not provide sufficient evidence of this teaching competence. In this study, we describe the design and development process of a three-dimensional (3D) virtual environment for evaluating the teacher…

  12. 3D reconstruction of tensors and vectors

    Energy Technology Data Exchange (ETDEWEB)

    Defrise, Michel; Gullberg, Grant T.

    2005-02-17

    Here we have developed formulations for the reconstruction of 3D tensor fields from planar (Radon) and line-integral (X-ray) projections of 3D vector and tensor fields. Much of the motivation for this work is the potential application of MRI to perform diffusion tensor tomography. The goal is to develop a theory for the reconstruction of both Radon planar and X-ray or line-integral projections because of the flexibility of MRI to obtain both of these type of projections in 3D. The development presented here for the linear tensor tomography problem provides insight into the structure of the nonlinear MRI diffusion tensor inverse problem. A particular application of tensor imaging in MRI is the potential application of cardiac diffusion tensor tomography for determining in vivo cardiac fiber structure. One difficulty in the cardiac application is the motion of the heart. This presents a need for developing future theory for tensor tomography in a motion field. This means developing a better understanding of the MRI signal for diffusion processes in a deforming media. The techniques developed may allow the application of MRI tensor tomography for the study of structure of fiber tracts in the brain, atherosclerotic plaque, and spine in addition to fiber structure in the heart. However, the relations presented are also applicable to other fields in medical imaging such as diffraction tomography using ultrasound. The mathematics presented can also be extended to exponential Radon transform of tensor fields and to other geometric acquisitions such as cone beam tomography of tensor fields.

  13. Forensic 3D Scene Reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    LITTLE,CHARLES Q.; PETERS,RALPH R.; RIGDON,J. BRIAN; SMALL,DANIEL E.

    1999-10-12

    Traditionally law enforcement agencies have relied on basic measurement and imaging tools, such as tape measures and cameras, in recording a crime scene. A disadvantage of these methods is that they are slow and cumbersome. The development of a portable system that can rapidly record a crime scene with current camera imaging, 3D geometric surface maps, and contribute quantitative measurements such as accurate relative positioning of crime scene objects, would be an asset to law enforcement agents in collecting and recording significant forensic data. The purpose of this project is to develop a feasible prototype of a fast, accurate, 3D measurement and imaging system that would support law enforcement agents to quickly document and accurately record a crime scene.

  14. 3D Printed Robotic Hand

    Science.gov (United States)

    Pizarro, Yaritzmar Rosario; Schuler, Jason M.; Lippitt, Thomas C.

    2013-01-01

    Dexterous robotic hands are changing the way robots and humans interact and use common tools. Unfortunately, the complexity of the joints and actuations drive up the manufacturing cost. Some cutting edge and commercially available rapid prototyping machines now have the ability to print multiple materials and even combine these materials in the same job. A 3D model of a robotic hand was designed using Creo Parametric 2.0. Combining "hard" and "soft" materials, the model was printed on the Object Connex350 3D printer with the purpose of resembling as much as possible the human appearance and mobility of a real hand while needing no assembly. After printing the prototype, strings where installed as actuators to test mobility. Based on printing materials, the manufacturing cost of the hand was $167, significantly lower than other robotic hands without the actuators since they have more complex assembly processes.

  15. 3D Printable Graphene Composite.

    Science.gov (United States)

    Wei, Xiaojun; Li, Dong; Jiang, Wei; Gu, Zheming; Wang, Xiaojuan; Zhang, Zengxing; Sun, Zhengzong

    2015-07-08

    In human being's history, both the Iron Age and Silicon Age thrived after a matured massive processing technology was developed. Graphene is the most recent superior material which could potentially initialize another new material Age. However, while being exploited to its full extent, conventional processing methods fail to provide a link to today's personalization tide. New technology should be ushered in. Three-dimensional (3D) printing fills the missing linkage between graphene materials and the digital mainstream. Their alliance could generate additional stream to push the graphene revolution into a new phase. Here we demonstrate for the first time, a graphene composite, with a graphene loading up to 5.6 wt%, can be 3D printable into computer-designed models. The composite's linear thermal coefficient is below 75 ppm·°C(-1) from room temperature to its glass transition temperature (Tg), which is crucial to build minute thermal stress during the printing process.

  16. Medical 3D thermography system

    OpenAIRE

    GRUBIŠIĆ, IVAN

    2011-01-01

    Infrared (IR) thermography determines the surface temperature of an object or human body using thermal IR measurement camera. It is an imaging technology which is contactless and completely non-invasive. These propertiesmake IR thermography a useful method of analysis that is used in various industrial applications to detect, monitor and predict irregularities in many fields from engineering to medical and biological observations. This paper presents a conceptual model of Medical 3D Thermo...

  17. 3D silicon strip detectors

    Energy Technology Data Exchange (ETDEWEB)

    Parzefall, Ulrich [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany)], E-mail: ulrich.parzefall@physik.uni-freiburg.de; Bates, Richard [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Boscardin, Maurizio [FBK-irst, Center for Materials and Microsystems, via Sommarive 18, 38050 Povo di Trento (Italy); Dalla Betta, Gian-Franco [INFN and Universita' di Trento, via Sommarive 14, 38050 Povo di Trento (Italy); Eckert, Simon [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Eklund, Lars; Fleta, Celeste [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Jakobs, Karl; Kuehn, Susanne [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Lozano, Manuel [Instituto de Microelectronica de Barcelona, IMB-CNM, CSIC, Barcelona (Spain); Pahn, Gregor [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Parkes, Chris [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Pellegrini, Giulio [Instituto de Microelectronica de Barcelona, IMB-CNM, CSIC, Barcelona (Spain); Pennicard, David [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Piemonte, Claudio; Ronchin, Sabina [FBK-irst, Center for Materials and Microsystems, via Sommarive 18, 38050 Povo di Trento (Italy); Szumlak, Tomasz [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Zoboli, Andrea [INFN and Universita' di Trento, via Sommarive 14, 38050 Povo di Trento (Italy); Zorzi, Nicola [FBK-irst, Center for Materials and Microsystems, via Sommarive 18, 38050 Povo di Trento (Italy)

    2009-06-01

    While the Large Hadron Collider (LHC) at CERN has started operation in autumn 2008, plans for a luminosity upgrade to the Super-LHC (sLHC) have already been developed for several years. This projected luminosity increase by an order of magnitude gives rise to a challenging radiation environment for tracking detectors at the LHC experiments. Significant improvements in radiation hardness are required with respect to the LHC. Using a strawman layout for the new tracker of the ATLAS experiment as an example, silicon strip detectors (SSDs) with short strips of 2-3 cm length are foreseen to cover the region from 28 to 60 cm distance to the beam. These SSD will be exposed to radiation levels up to 10{sup 15}N{sub eq}/cm{sup 2}, which makes radiation resistance a major concern for the upgraded ATLAS tracker. Several approaches to increasing the radiation hardness of silicon detectors exist. In this article, it is proposed to combine the radiation hard 3D-design originally conceived for pixel-style applications with the benefits of the established planar technology for strip detectors by using SSDs that have regularly spaced doped columns extending into the silicon bulk under the detector strips. The first 3D SSDs to become available for testing were made in the Single Type Column (STC) design, a technological simplification of the original 3D design. With such 3D SSDs, a small number of prototype sLHC detector modules with LHC-speed front-end electronics as used in the semiconductor tracking systems of present LHC experiments were built. Modules were tested before and after irradiation to fluences of 10{sup 15}N{sub eq}/cm{sup 2}. The tests were performed with three systems: a highly focused IR-laser with 5{mu}m spot size to make position-resolved scans of the charge collection efficiency, an Sr{sup 90}{beta}-source set-up to measure the signal levels for a minimum ionizing particle (MIP), and a beam test with 180 GeV pions at CERN. This article gives a brief overview of

  18. 3D Printing in Instructional Settings: Identifying a Curricular Hierarchy of Activities

    Science.gov (United States)

    Brown, Abbie

    2015-01-01

    A report of a year-long study in which the author engaged in 3D printing activity in order to determine how to facilitate and support skill building, concept attainment, and increased confidence with its use among teachers. Use of 3D printing tools and their applications in instructional settings are discussed. A hierarchy of 3D printing…

  19. Organizational Learning Goes Virtual?: A Study of Employees' Learning Achievement in Stereoscopic 3D Virtual Reality

    Science.gov (United States)

    Lau, Kung Wong

    2015-01-01

    Purpose: This study aims to deepen understanding of the use of stereoscopic 3D technology (stereo3D) in facilitating organizational learning. The emergence of advanced virtual technologies, in particular to the stereo3D virtual reality, has fundamentally changed the ways in which organizations train their employees. However, in academic or…

  20. 3D-Printing for Analytical Ultracentrifugation

    Science.gov (United States)

    Desai, Abhiksha; Krynitsky, Jonathan; Pohida, Thomas J.; Zhao, Huaying

    2016-01-01

    Analytical ultracentrifugation (AUC) is a classical technique of physical biochemistry providing information on size, shape, and interactions of macromolecules from the analysis of their migration in centrifugal fields while free in solution. A key mechanical element in AUC is the centerpiece, a component of the sample cell assembly that is mounted between the optical windows to allow imaging and to seal the sample solution column against high vacuum while exposed to gravitational forces in excess of 300,000 g. For sedimentation velocity it needs to be precisely sector-shaped to allow unimpeded radial macromolecular migration. During the history of AUC a great variety of centerpiece designs have been developed for different types of experiments. Here, we report that centerpieces can now be readily fabricated by 3D printing at low cost, from a variety of materials, and with customized designs. The new centerpieces can exhibit sufficient mechanical stability to withstand the gravitational forces at the highest rotor speeds and be sufficiently precise for sedimentation equilibrium and sedimentation velocity experiments. Sedimentation velocity experiments with bovine serum albumin as a reference molecule in 3D printed centerpieces with standard double-sector design result in sedimentation boundaries virtually indistinguishable from those in commercial double-sector epoxy centerpieces, with sedimentation coefficients well within the range of published values. The statistical error of the measurement is slightly above that obtained with commercial epoxy, but still below 1%. Facilitated by modern open-source design and fabrication paradigms, we believe 3D printed centerpieces and AUC accessories can spawn a variety of improvements in AUC experimental design, efficiency and resource allocation. PMID:27525659

  1. 3D-Printing for Analytical Ultracentrifugation.

    Science.gov (United States)

    Desai, Abhiksha; Krynitsky, Jonathan; Pohida, Thomas J; Zhao, Huaying; Schuck, Peter

    2016-01-01

    Analytical ultracentrifugation (AUC) is a classical technique of physical biochemistry providing information on size, shape, and interactions of macromolecules from the analysis of their migration in centrifugal fields while free in solution. A key mechanical element in AUC is the centerpiece, a component of the sample cell assembly that is mounted between the optical windows to allow imaging and to seal the sample solution column against high vacuum while exposed to gravitational forces in excess of 300,000 g. For sedimentation velocity it needs to be precisely sector-shaped to allow unimpeded radial macromolecular migration. During the history of AUC a great variety of centerpiece designs have been developed for different types of experiments. Here, we report that centerpieces can now be readily fabricated by 3D printing at low cost, from a variety of materials, and with customized designs. The new centerpieces can exhibit sufficient mechanical stability to withstand the gravitational forces at the highest rotor speeds and be sufficiently precise for sedimentation equilibrium and sedimentation velocity experiments. Sedimentation velocity experiments with bovine serum albumin as a reference molecule in 3D printed centerpieces with standard double-sector design result in sedimentation boundaries virtually indistinguishable from those in commercial double-sector epoxy centerpieces, with sedimentation coefficients well within the range of published values. The statistical error of the measurement is slightly above that obtained with commercial epoxy, but still below 1%. Facilitated by modern open-source design and fabrication paradigms, we believe 3D printed centerpieces and AUC accessories can spawn a variety of improvements in AUC experimental design, efficiency and resource allocation.

  2. Acquisition geometry analysis in complex 3D media

    NARCIS (Netherlands)

    Van Veldhuizen, E.J.; Blacquiere, G.; Berkhout, A.J.

    2008-01-01

    Increasingly, we must deal with complex subsurface structures in seismic exploration, often resulting in poor illumination and, therefore, poor image quality. Consequently, it is desirable to take into consideration the effects of wave propagation in the subsurface structure when designing an acquis

  3. Wireless 3D Chocolate Printer

    Directory of Open Access Journals (Sweden)

    FROILAN G. DESTREZA

    2014-02-01

    Full Text Available This study is for the BSHRM Students of Batangas State University (BatStateU ARASOF for the researchers believe that the Wireless 3D Chocolate Printer would be helpful in their degree program especially on making creative, artistic, personalized and decorative chocolate designs. The researchers used the Prototyping model as procedural method for the successful development and implementation of the hardware and software. This method has five phases which are the following: quick plan, quick design, prototype construction, delivery and feedback and communication. This study was evaluated by the BSHRM Students and the assessment of the respondents regarding the software and hardware application are all excellent in terms of Accuracy, Effecitveness, Efficiency, Maintainability, Reliability and User-friendliness. Also, the overall level of acceptability of the design project as evaluated by the respondents is excellent. With regard to the observation about the best raw material to use in 3D printing, the chocolate is good to use as the printed material is slightly distorted,durable and very easy to prepare; the icing is also good to use as the printed material is not distorted and is very durable but consumes time to prepare; the flour is not good as the printed material is distorted, not durable but it is easy to prepare. The computation of the economic viability level of 3d printer with reference to ROI is 37.14%. The recommendation of the researchers in the design project are as follows: adding a cooling system so that the raw material will be more durable, development of a more simplified version and improving the extrusion process wherein the user do not need to stop the printing process just to replace the empty syringe with a new one.

  4. Interactive 3D Mars Visualization

    Science.gov (United States)

    Powell, Mark W.

    2012-01-01

    The Interactive 3D Mars Visualization system provides high-performance, immersive visualization of satellite and surface vehicle imagery of Mars. The software can be used in mission operations to provide the most accurate position information for the Mars rovers to date. When integrated into the mission data pipeline, this system allows mission planners to view the location of the rover on Mars to 0.01-meter accuracy with respect to satellite imagery, with dynamic updates to incorporate the latest position information. Given this information so early in the planning process, rover drivers are able to plan more accurate drive activities for the rover than ever before, increasing the execution of science activities significantly. Scientifically, this 3D mapping information puts all of the science analyses to date into geologic context on a daily basis instead of weeks or months, as was the norm prior to this contribution. This allows the science planners to judge the efficacy of their previously executed science observations much more efficiently, and achieve greater science return as a result. The Interactive 3D Mars surface view is a Mars terrain browsing software interface that encompasses the entire region of exploration for a Mars surface exploration mission. The view is interactive, allowing the user to pan in any direction by clicking and dragging, or to zoom in or out by scrolling the mouse or touchpad. This set currently includes tools for selecting a point of interest, and a ruler tool for displaying the distance between and positions of two points of interest. The mapping information can be harvested and shared through ubiquitous online mapping tools like Google Mars, NASA WorldWind, and Worldwide Telescope.

  5. How 3-D Movies Work

    Institute of Scientific and Technical Information of China (English)

    吕铁雄

    2011-01-01

    难度:★★★★☆词数:450 建议阅读时间:8分钟 Most people see out of two eyes. This is a basic fact of humanity,but it’s what makes possible the illusion of depth(纵深幻觉) that 3-D movies create. Human eyes are spaced about two inches apart, meaning that each eye gives the brain a slightly different perspective(透视感)on the same object. The brain then uses this variance to quickly determine an object’s distance.

  6. Virtual 3-D Facial Reconstruction

    Directory of Open Access Journals (Sweden)

    Martin Paul Evison

    2000-06-01

    Full Text Available Facial reconstructions in archaeology allow empathy with people who lived in the past and enjoy considerable popularity with the public. It is a common misconception that facial reconstruction will produce an exact likeness; a resemblance is the best that can be hoped for. Research at Sheffield University is aimed at the development of a computer system for facial reconstruction that will be accurate, rapid, repeatable, accessible and flexible. This research is described and prototypical 3-D facial reconstructions are presented. Interpolation models simulating obesity, ageing and ethnic affiliation are also described. Some strengths and weaknesses in the models, and their potential for application in archaeology are discussed.

  7. The use of mobile 3D scanners in maxillofacial surgery.

    Science.gov (United States)

    Peters, Florian; Möhlhenrich, Stephan Christian; Ayoub, Nassim; Goloborodko, Evgeny; Ghassemi, Alireza; Lethaus, Bernd; Hölzle, Frank; Modabber, Ali

    There are many possibilities for the use of three-dimensional (3D) scanners in maxillofacial surgery. This study aimed to investigate whether the bundling and syncing of two 3D scanners has advantages over single-scanner acquisition in terms of scan quality and the time required to scan an object. Therefore, the speed and precision of 3D data acquisition with one scanner versus two synced scanners was measured in 30 subjects. This was done by analyzing the results obtained by scanning test objects attached to the forehead and cheeks of the subjects. Statistical methods included the Student t test for paired samples. Single-scanner recording resulted in significantly lower mean error of measurement than synced recording with two scanners for length (P scanner method resulted in a significantly lowermean error of measurement than the two-scanner method for frontal/lower plane angles (P scanners resulted in a significant reduction of scanning time (P 3D scanner, the bundling of two 3D scanners resulted in faster scanning times but lower scan quality.

  8. Photogrammetric 3D skull/photo superimposition: A pilot study.

    Science.gov (United States)

    Santoro, Valeria; Lubelli, Sergio; De Donno, Antonio; Inchingolo, Alessio; Lavecchia, Fulvio; Introna, Francesco

    2017-02-13

    The identification of bodies through the examination of skeletal remains holds a prominent place in the field of forensic investigations. Technological advancements in 3D facial acquisition techniques have led to the proposal of a new body identification technique that involves a combination of craniofacial superimposition and photogrammetry. The aim of this study was to test the method by superimposing various computerized 3D images of skulls onto various photographs of missing people taken while they were still alive in cases when there was a suspicion that the skulls in question belonged to them. The technique is divided into four phases: preparatory phase, 3d acquisition phase, superimposition phase, and metric image analysis 3d. The actual superimposition of the images was carried out in the fourth step. and was done so by comparing the skull images with the selected photos. Using a specific software, the two images (i.e. the 3D avatar and the photo of the missing person) were superimposed. Cross-comparisons of 5 skulls discovered in a mass grave, and of 2 skulls retrieved in the crawlspace of a house were performed. The morphologyc phase reveals a full overlap between skulls and photos of disappeared persons. Metric phase reveals that correlation coefficients of this values, higher than 0.998-0,997 allow to confirm identification hypothesis.

  9. 3D medical thermography device

    Science.gov (United States)

    Moghadam, Peyman

    2015-05-01

    In this paper, a novel handheld 3D medical thermography system is introduced. The proposed system consists of a thermal-infrared camera, a color camera and a depth camera rigidly attached in close proximity and mounted on an ergonomic handle. As a practitioner holding the device smoothly moves it around the human body parts, the proposed system generates and builds up a precise 3D thermogram model by incorporating information from each new measurement in real-time. The data is acquired in motion, thus it provides multiple points of view. When processed, these multiple points of view are adaptively combined by taking into account the reliability of each individual measurement which can vary due to a variety of factors such as angle of incidence, distance between the device and the subject and environmental sensor data or other factors influencing a confidence of the thermal-infrared data when captured. Finally, several case studies are presented to support the usability and performance of the proposed system.

  10. 3D Printable Graphene Composite

    Science.gov (United States)

    Wei, Xiaojun; Li, Dong; Jiang, Wei; Gu, Zheming; Wang, Xiaojuan; Zhang, Zengxing; Sun, Zhengzong

    2015-07-01

    In human being’s history, both the Iron Age and Silicon Age thrived after a matured massive processing technology was developed. Graphene is the most recent superior material which could potentially initialize another new material Age. However, while being exploited to its full extent, conventional processing methods fail to provide a link to today’s personalization tide. New technology should be ushered in. Three-dimensional (3D) printing fills the missing linkage between graphene materials and the digital mainstream. Their alliance could generate additional stream to push the graphene revolution into a new phase. Here we demonstrate for the first time, a graphene composite, with a graphene loading up to 5.6 wt%, can be 3D printable into computer-designed models. The composite’s linear thermal coefficient is below 75 ppm·°C-1 from room temperature to its glass transition temperature (Tg), which is crucial to build minute thermal stress during the printing process.

  11. 3D printed bionic ears.

    Science.gov (United States)

    Mannoor, Manu S; Jiang, Ziwen; James, Teena; Kong, Yong Lin; Malatesta, Karen A; Soboyejo, Winston O; Verma, Naveen; Gracias, David H; McAlpine, Michael C

    2013-06-12

    The ability to three-dimensionally interweave biological tissue with functional electronics could enable the creation of bionic organs possessing enhanced functionalities over their human counterparts. Conventional electronic devices are inherently two-dimensional, preventing seamless multidimensional integration with synthetic biology, as the processes and materials are very different. Here, we present a novel strategy for overcoming these difficulties via additive manufacturing of biological cells with structural and nanoparticle derived electronic elements. As a proof of concept, we generated a bionic ear via 3D printing of a cell-seeded hydrogel matrix in the anatomic geometry of a human ear, along with an intertwined conducting polymer consisting of infused silver nanoparticles. This allowed for in vitro culturing of cartilage tissue around an inductive coil antenna in the ear, which subsequently enables readout of inductively-coupled signals from cochlea-shaped electrodes. The printed ear exhibits enhanced auditory sensing for radio frequency reception, and complementary left and right ears can listen to stereo audio music. Overall, our approach suggests a means to intricately merge biologic and nanoelectronic functionalities via 3D printing.

  12. Progresses in 3D integral imaging with optical processing

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Corral, Manuel; Martinez-Cuenca, Raul; Saavedra, Genaro; Navarro, Hector; Pons, Amparo [Department of Optics. University of Valencia. Calle Doctor Moliner 50, E46 100, Burjassot (Spain); Javidi, Bahram [Electrical and Computer Engineering Department, University of Connecticut, Storrs, CT 06269-1157 (United States)], E-mail: manuel.martinez@uv.es

    2008-11-01

    Integral imaging is a promising technique for the acquisition and auto-stereoscopic display of 3D scenes with full parallax and without the need of any additional devices like special glasses. First suggested by Lippmann in the beginning of the 20th century, integral imaging is based in the intersection of ray cones emitted by a collection of 2D elemental images which store the 3D information of the scene. This paper is devoted to the study, from the ray optics point of view, of the optical effects and interaction with the observer of integral imaging systems.

  13. 3D mudeli koostamine Kinect v2 kaamera abil

    OpenAIRE

    Valgma, Lembit

    2016-01-01

    Kinect is an easy to use and a ordable RGB-D acquisition device that provides both spatial and color information for captured pixels. That makes it an attractive alternative to regular 3D scanning devices that usually cost signi cantly more and do not provide color info. Second generation of Kinect (v2) provides even better quality depth and color images to user. This thesis describes and implements method for 3D reconstruction using Kinect v2. Method suitability for various objects is ...

  14. Full Parallax Integral 3D Display and Image Processing Techniques

    Directory of Open Access Journals (Sweden)

    Byung-Gook Lee

    2015-02-01

    Full Text Available Purpose – Full parallax integral 3D display is one of the promising future displays that provide different perspectives according to viewing direction. In this paper, the authors review the recent integral 3D display and image processing techniques for improving the performance, such as viewing resolution, viewing angle, etc.Design/methodology/approach – Firstly, to improve the viewing resolution of 3D images in the integral imaging display with lenslet array, the authors present 3D integral imaging display with focused mode using the time-multiplexed display. Compared with the original integral imaging with focused mode, the authors use the electrical masks and the corresponding elemental image set. In this system, the authors can generate the resolution-improved 3D images with the n×n pixels from each lenslet by using n×n time-multiplexed display. Secondly, a new image processing technique related to the elemental image generation for 3D scenes is presented. With the information provided by the Kinect device, the array of elemental images for an integral imaging display is generated.Findings – From their first work, the authors improved the resolution of 3D images by using the time-multiplexing technique through the demonstration of the 24 inch integral imaging system. Authors’ method can be applied to a practical application. Next, the proposed method with the Kinect device can gain a competitive advantage over other methods for the capture of integral images of big 3D scenes. The main advantage of fusing the Kinect and the integral imaging concepts is the acquisition speed, and the small amount of handled data.Originality / Value – In this paper, the authors review their recent methods related to integral 3D display and image processing technique.Research type – general review.

  15. 动态三维测量中图像同步高速投影与采集的原理及实现%The principle and realization method for the synchronization of high-speed image projection and acquisition in dynamic 3 D measurement

    Institute of Scientific and Technical Information of China (English)

    朱红; 钟凯; 詹国敏; 李中伟; 史玉升

    2015-01-01

    基于结构光的动态物体三维面形测量对航空航天、能源和汽车等领域的科学研究与工程应用具有重要作用。然而现有测量设备单次测量时间过长,难以实现对动态物体三维面形的测量,其中主要的难点在于图像高速同步投影与采集。提出了一种图像精确同步高速投影与采集的方法,该方法通过实验测定出数字微镜翻转延时和触发曝光延时,设计了帧触发信号、数字微镜翻转、LED光源点亮和相机曝光之间耦合工作的精确时序,从而实现了220帧/秒图像的精确投影与采集,为动态物体三维面形测量设备的开发提供了良好的技术基础。%The dynamic 3D measurement base on structured light measurement technology become more and more important in field of industrial aerospace,energy,and automotive.However,the existing device cost a long time for single measurement ,so it’s hard to realize the dynamic measurement ,the main difficulty lies to the synchronization between the projection image and acquisi -tion in a high speed .Propose a method for the exactly synchronization between the projection image and acquisition ,determine the digital micromirror flip time and trigger the exposure time through the experiment ,and design precise timing relationships among the frame trigger signal ,digital micromirror flip ,LED light source and the camera exposure ,so as to realize the 220 fps projection and acquisition image synchronously ,this method provides a good technical basis for the dynamic 3D measurement device devel-opment.

  16. 3D biometrics systems and applications

    CERN Document Server

    Zhang, David

    2013-01-01

    Includes discussions on popular 3D imaging technologies, combines them with biometric applications, and then presents real 3D biometric systems Introduces many efficient 3D feature extraction, matching, and fusion algorithms Techniques presented have been supported by experimental results using various 3D biometric classifications

  17. A virtual reality 3D jigsaw for teaching anatomy.

    Science.gov (United States)

    Ruthenbeck, G S; Carati, C J; Gibbins, I L; Reynolds, K J

    2008-01-01

    Virtual Reality has some advantages over traditional teaching and learning media. Here we describe a VR Jigsaw which uses a novel interface to facilitate learning the anatomy of the skull. A small trial was performed which indicates that the software succeeds at engaging students and suggests that their comprehension of complex 3D structures was improved.

  18. Image based 3D city modeling : Comparative study

    Science.gov (United States)

    Singh, S. P.; Jain, K.; Mandla, V. R.

    2014-06-01

    3D city model is a digital representation of the Earth's surface and it's related objects such as building, tree, vegetation, and some manmade feature belonging to urban area. The demand of 3D city modeling is increasing rapidly for various engineering and non-engineering applications. Generally four main image based approaches were used for virtual 3D city models generation. In first approach, researchers were used Sketch based modeling, second method is Procedural grammar based modeling, third approach is Close range photogrammetry based modeling and fourth approach is mainly based on Computer Vision techniques. SketchUp, CityEngine, Photomodeler and Agisoft Photoscan are the main softwares to represent these approaches respectively. These softwares have different approaches & methods suitable for image based 3D city modeling. Literature study shows that till date, there is no complete such type of comparative study available to create complete 3D city model by using images. This paper gives a comparative assessment of these four image based 3D modeling approaches. This comparative study is mainly based on data acquisition methods, data processing techniques and output 3D model products. For this research work, study area is the campus of civil engineering department, Indian Institute of Technology, Roorkee (India). This 3D campus acts as a prototype for city. This study also explains various governing parameters, factors and work experiences. This research work also gives a brief introduction, strengths and weakness of these four image based techniques. Some personal comment is also given as what can do or what can't do from these softwares. At the last, this study shows; it concluded that, each and every software has some advantages and limitations. Choice of software depends on user requirements of 3D project. For normal visualization project, SketchUp software is a good option. For 3D documentation record, Photomodeler gives good result. For Large city

  19. Recent Advances in Visualizing 3D Flow with LIC

    Science.gov (United States)

    Interrante, Victoria; Grosch, Chester

    1998-01-01

    Line Integral Convolution (LIC), introduced by Cabral and Leedom in 1993, is an elegant and versatile technique for representing directional information via patterns of correlation in a texture. Although most commonly used to depict 2D flow, or flow over a surface in 3D, LIC methods can equivalently be used to portray 3D flow through a volume. However, the popularity of LIC as a device for illustrating 3D flow has historically been limited both by the computational expense of generating and rendering such a 3D texture and by the difficulties inherent in clearly and effectively conveying the directional information embodied in the volumetric output textures that are produced. In an earlier paper, we briefly discussed some of the factors that may underlie the perceptual difficulties that we can encounter with dense 3D displays and outlined several strategies for more effectively visualizing 3D flow with volume LIC. In this article, we review in more detail techniques for selectively emphasizing critical regions of interest in a flow and for facilitating the accurate perception of the 3D depth and orientation of overlapping streamlines, and we demonstrate new methods for efficiently incorporating an indication of orientation into a flow representation and for conveying additional information about related scalar quantities such as temperature or vorticity over a flow via subtle, continuous line width and color variations.

  20. 3D Printing of Graphene Aerogels.

    Science.gov (United States)

    Zhang, Qiangqiang; Zhang, Feng; Medarametla, Sai Pradeep; Li, Hui; Zhou, Chi; Lin, Dong

    2016-04-01

    3D printing of a graphene aerogel with true 3D overhang structures is highlighted. The aerogel is fabricated by combining drop-on-demand 3D printing and freeze casting. The water-based GO ink is ejected and freeze-cast into designed 3D structures. The lightweight (<10 mg cm(-3) ) 3D printed graphene aerogel presents superelastic and high electrical conduction.

  1. 3D plant phenotyping in sunflower using architecture-based organ segmentation from 3D point clouds

    OpenAIRE

    Gélard, William; Burger, Philippe; Casadebaig, Pierre; Langlade, Nicolas; Debaeke, Philippe; Devy, Michel; Herbulot, Ariane

    2016-01-01

    International audience; This paper presents a 3D phenotyping method applied to sunflower, allowing to compute the leaf area of an isolated plant. This is a preliminary step towards the automated monitoring of leaf area and plant growth through the plant life cycle. First, a model-based segmentation method is applied to 3D data derived from RGB images acquired on sunflower plants grown in pots. The RGB image acquisitions are made all around the isolated plant with a single hand-held standard c...

  2. Conducting Polymer 3D Microelectrodes

    Directory of Open Access Journals (Sweden)

    Jenny Emnéus

    2010-12-01

    Full Text Available Conducting polymer 3D microelectrodes have been fabricated for possible future neurological applications. A combination of micro-fabrication techniques and chemical polymerization methods has been used to create pillar electrodes in polyaniline and polypyrrole. The thin polymer films obtained showed uniformity and good adhesion to both horizontal and vertical surfaces. Electrodes in combination with metal/conducting polymer materials have been characterized by cyclic voltammetry and the presence of the conducting polymer film has shown to increase the electrochemical activity when compared with electrodes coated with only metal. An electrochemical characterization of gold/polypyrrole electrodes showed exceptional electrochemical behavior and activity. PC12 cells were finally cultured on the investigated materials as a preliminary biocompatibility assessment. These results show that the described electrodes are possibly suitable for future in-vitro neurological measurements.

  3. Investigating 3d Reconstruction Methods for Small Artifacts

    Science.gov (United States)

    Evgenikou, V.; Georgopoulos, A.

    2015-02-01

    Small artifacts have always been a real challenge when it comes to 3D modelling. They usually present severe difficulties for their 3D reconstruction. Lately, the demand for the production of 3D models of small artifacts, especially in the cultural heritage domain, has dramatically increased. As with many cases, there are no specifications and standards for this task. This paper investigates the efficiency of several mainly low cost methods for 3D model production of such small artifacts. Moreover, the material, the color and the surface complexity of these objects id also investigated. Both image based and laser scanning methods have been considered as alternative data acquisition methods. The evaluation has been confined to the 3D meshes, as texture depends on the imaging properties, which are not investigated in this project. The resulting meshes have been compared to each other for their completeness, and accuracy. It is hoped that the outcomes of this investigation will be useful to researchers who are planning to embark into mass production of 3D models of small artifacts.

  4. INVESTIGATING 3D RECONSTRUCTION METHODS FOR SMALL ARTIFACTS

    Directory of Open Access Journals (Sweden)

    V. Evgenikou

    2015-02-01

    Full Text Available Small artifacts have always been a real challenge when it comes to 3D modelling. They usually present severe difficulties for their 3D reconstruction. Lately, the demand for the production of 3D models of small artifacts, especially in the cultural heritage domain, has dramatically increased. As with many cases, there are no specifications and standards for this task. This paper investigates the efficiency of several mainly low cost methods for 3D model production of such small artifacts. Moreover, the material, the color and the surface complexity of these objects id also investigated. Both image based and laser scanning methods have been considered as alternative data acquisition methods. The evaluation has been confined to the 3D meshes, as texture depends on the imaging properties, which are not investigated in this project. The resulting meshes have been compared to each other for their completeness, and accuracy. It is hoped that the outcomes of this investigation will be useful to researchers who are planning to embark into mass production of 3D models of small artifacts.

  5. Supernova Remnant in 3-D

    Science.gov (United States)

    2009-01-01

    of the wavelength shift is related to the speed of motion, one can determine how fast the debris are moving in either direction. Because Cas A is the result of an explosion, the stellar debris is expanding radially outwards from the explosion center. Using simple geometry, the scientists were able to construct a 3-D model using all of this information. A program called 3-D Slicer modified for astronomical use by the Astronomical Medicine Project at Harvard University in Cambridge, Mass. was used to display and manipulate the 3-D model. Commercial software was then used to create the 3-D fly-through. The blue filaments defining the blast wave were not mapped using the Doppler effect because they emit a different kind of light synchrotron radiation that does not emit light at discrete wavelengths, but rather in a broad continuum. The blue filaments are only a representation of the actual filaments observed at the blast wave. This visualization shows that there are two main components to this supernova remnant: a spherical component in the outer parts of the remnant and a flattened (disk-like) component in the inner region. The spherical component consists of the outer layer of the star that exploded, probably made of helium and carbon. These layers drove a spherical blast wave into the diffuse gas surrounding the star. The flattened component that astronomers were unable to map into 3-D prior to these Spitzer observations consists of the inner layers of the star. It is made from various heavier elements, not all shown in the visualization, such as oxygen, neon, silicon, sulphur, argon and iron. High-velocity plumes, or jets, of this material are shooting out from the explosion in the plane of the disk-like component mentioned above. Plumes of silicon appear in the northeast and southwest, while those of iron are seen in the southeast and north. These jets were already known and Doppler velocity measurements have been made for these structures, but their orientation and

  6. 3D Printed Micro Free-Flow Electrophoresis Device.

    Science.gov (United States)

    Anciaux, Sarah K; Geiger, Matthew; Bowser, Michael T

    2016-08-02

    The cost, time, and restrictions on creative flexibility associated with current fabrication methods present significant challenges in the development and application of microfluidic devices. Additive manufacturing, also referred to as three-dimensional (3D) printing, provides many advantages over existing methods. With 3D printing, devices can be made in a cost-effective manner with the ability to rapidly prototype new designs. We have fabricated a micro free-flow electrophoresis (μFFE) device using a low-cost, consumer-grade 3D printer. Test prints were performed to determine the minimum feature sizes that could be reproducibly produced using 3D printing fabrication. Microfluidic ridges could be fabricated with dimensions as small as 20 μm high × 640 μm wide. Minimum valley dimensions were 30 μm wide × 130 μm wide. An acetone vapor bath was used to smooth acrylonitrile-butadiene-styrene (ABS) surfaces and facilitate bonding of fully enclosed channels. The surfaces of the 3D-printed features were profiled and compared to a similar device fabricated in a glass substrate. Stable stream profiles were obtained in a 3D-printed μFFE device. Separations of fluorescent dyes in the 3D-printed device and its glass counterpart were comparable. A μFFE separation of myoglobin and cytochrome c was also demonstrated on a 3D-printed device. Limits of detection for rhodamine 110 were determined to be 2 and 0.3 nM for the 3D-printed and glass devices, respectively.

  7. Comparing a quasi-3D to a full 3D nearshore circulation model: SHORECIRC and ROMS

    Science.gov (United States)

    Haas, K.A.; Warner, J.C.

    2009-01-01

    Predictions of nearshore and surf zone processes are important for determining coastal circulation, impacts of storms, navigation, and recreational safety. Numerical modeling of these systems facilitates advancements in our understanding of coastal changes and can provide predictive capabilities for resource managers. There exists many nearshore coastal circulation models, however they are mostly limited or typically only applied as depth integrated models. SHORECIRC is an established surf zone circulation model that is quasi-3D to allow the effect of the variability in the vertical structure of the currents while maintaining the computational advantage of a 2DH model. Here we compare SHORECIRC to ROMS, a fully 3D ocean circulation model which now includes a three dimensional formulation for the wave-driven flows. We compare the models with three different test applications for: (i) spectral waves approaching a plane beach with an oblique angle of incidence; (ii) monochromatic waves driving longshore currents in a laboratory basin; and (iii) monochromatic waves on a barred beach with rip channels in a laboratory basin. Results identify that the models are very similar for the depth integrated flows and qualitatively consistent for the vertically varying components. The differences are primarily the result of the vertically varying radiation stress utilized by ROMS and the utilization of long wave theory for the radiation stress formulation in vertical varying momentum balance by SHORECIRC. The quasi-3D model is faster, however the applicability of the fully 3D model allows it to extend over a broader range of processes, temporal, and spatial scales. ?? 2008 Elsevier Ltd.

  8. 3D multiplexed immunoplasmonics microscopy

    Science.gov (United States)

    Bergeron, Éric; Patskovsky, Sergiy; Rioux, David; Meunier, Michel

    2016-07-01

    Selective labelling, identification and spatial distribution of cell surface biomarkers can provide important clinical information, such as distinction between healthy and diseased cells, evolution of a disease and selection of the optimal patient-specific treatment. Immunofluorescence is the gold standard for efficient detection of biomarkers expressed by cells. However, antibodies (Abs) conjugated to fluorescent dyes remain limited by their photobleaching, high sensitivity to the environment, low light intensity, and wide absorption and emission spectra. Immunoplasmonics is a novel microscopy method based on the visualization of Abs-functionalized plasmonic nanoparticles (fNPs) targeting cell surface biomarkers. Tunable fNPs should provide higher multiplexing capacity than immunofluorescence since NPs are photostable over time, strongly scatter light at their plasmon peak wavelengths and can be easily functionalized. In this article, we experimentally demonstrate accurate multiplexed detection based on the immunoplasmonics approach. First, we achieve the selective labelling of three targeted cell surface biomarkers (cluster of differentiation 44 (CD44), epidermal growth factor receptor (EGFR) and voltage-gated K+ channel subunit KV1.1) on human cancer CD44+ EGFR+ KV1.1+ MDA-MB-231 cells and reference CD44- EGFR- KV1.1+ 661W cells. The labelling efficiency with three stable specific immunoplasmonics labels (functionalized silver nanospheres (CD44-AgNSs), gold (Au) NSs (EGFR-AuNSs) and Au nanorods (KV1.1-AuNRs)) detected by reflected light microscopy (RLM) is similar to the one with immunofluorescence. Second, we introduce an improved method for 3D localization and spectral identification of fNPs based on fast z-scanning by RLM with three spectral filters corresponding to the plasmon peak wavelengths of the immunoplasmonics labels in the cellular environment (500 nm for 80 nm AgNSs, 580 nm for 100 nm AuNSs and 700 nm for 40 nm × 92 nm AuNRs). Third, the developed

  9. Exploring the educational potential of 3D virtual environments

    Directory of Open Access Journals (Sweden)

    Francesc Marc ESTEVE MON

    2013-12-01

    Full Text Available 3D virtual environments are advanced technology systems, with some potentialities in the teaching and learning process.In recent years, different institutions have promoted the acquisition of XXI century skills. Competences such as initiative, teamwork, creativity, flexibility or digital literacy.Multi-user virtual environments, sometimes called virtual worlds or 3D simulators, are immersive, interactive, customizable, accessible and programmable systems. This kind of environments allow to design educational complex activities to develop these key competences. For this purpose it’s necessary to set an appropriate teaching strategy to put this knowledge and skills into action, and design suitable mechanisms for registration and systematization. This paper analyzes the potential of these environments and presents two experiences in 3D virtual environments: (1 to develop teamwork and self-management skills, and (2 to assess digital literacy in preservice teachers.

  10. Semantic 3D object maps for everyday robot manipulation

    CERN Document Server

    Rusu, Radu Bogdan

    2013-01-01

    The book written by Dr. Radu B. Rusu presents a detailed description of 3D Semantic Mapping in the context of mobile robot manipulation. As autonomous robotic platforms get more sophisticated manipulation capabilities, they also need more expressive and comprehensive environment models that include the objects present in the world, together with their position, form, and other semantic aspects, as well as interpretations of these objects with respect to the robot tasks.   The book proposes novel 3D feature representations called Point Feature Histograms (PFH), as well as frameworks for the acquisition and processing of Semantic 3D Object Maps with contributions to robust registration, fast segmentation into regions, and reliable object detection, categorization, and reconstruction. These contributions have been fully implemented and empirically evaluated on different robotic systems, and have been the original kernel to the widely successful open-source project the Point Cloud Library (PCL) -- see http://poi...

  11. In Vivo 3-D Vector Velocity Estimation with Continuous Data

    DEFF Research Database (Denmark)

    Holbek, Simon; Pihl, Michael Johannes; Ewertsen, Caroline

    2015-01-01

    In this study, a method for estimating 3-D vector velocities at very high frame rate using continuous data acquisition is presented. An emission sequence was designed to acquire real-time continuous data in one plane. The transverse oscillation (TO) method was used to estimate 3-D vector flow...... measurements, three heart cycles acquired at 2.1 kHz showed peak out-of-plane velocities of 83 cm/s, 87 cm/s and 90 cm/s in agreement with the 92 cm/s found with spectral Doppler. Mean flow rate was estimated to 257 ml/min. The results demonstrate that accurate real-time 3- D vector velocities can be obtained...... using the TO method, which can be used to improve operator-independece when examining blood flow in vivo, thereby increasing accuracy and consistency....

  12. A 3D surface imaging system for assessing human obesity

    Science.gov (United States)

    Xu, B.; Yu, W.; Yao, M.; Yao, X.; Li, Q.; Pepper, M. R.; Freeland-Graves, J. H.

    2009-08-01

    The increasing prevalence of obesity suggests a need to develop a convenient, reliable and economical tool for assessment of this condition. Three-dimensional (3D) body surface imaging has emerged as an exciting technology for estimation of body composition. This paper presents a new 3D body imaging system, which was designed for enhanced portability, affordability, and functionality. In this system, stereo vision technology was used to satisfy the requirements for a simple hardware setup and fast image acquisitions. The portability of the system was created via a two-stand configuration, and the accuracy of body volume measurements was improved by customizing stereo matching and surface reconstruction algorithms that target specific problems in 3D body imaging. Body measurement functions dedicated to body composition assessment also were developed. The overall performance of the system was evaluated in human subjects by comparison to other conventional anthropometric methods, as well as air displacement plethysmography, for body fat assessment.

  13. Kuvaus 3D-tulostamisesta hammastekniikassa

    OpenAIRE

    Munne, Mauri; Mustonen, Tuomas; Vähäjylkkä, Jaakko

    2013-01-01

    3D-tulostaminen kehittyy nopeasti ja yleistyy koko ajan. Tulostimien tarkkuuksien kehittyessä 3D-tulostus on ottamassa myös jalansijaa hammastekniikan alalta. Tämän opinnäytetyön tarkoituksena on kuvata 3D-tulostamisen tilaa hammastekniikassa. 3D-tulostaminen on Suomessa vielä melko harvinaista, joten opinnäytetyön tavoitteena on koota yhteen kaikki mahdollinen tieto liittyen 3D-tulostamiseen hammastekniikassa. Tavoitteena on myös 3D-tulostimen testaaminen käytännössä aina suun skannaami...

  14. The 3D Elevation Program and America's infrastructure

    Science.gov (United States)

    Lukas, Vicki; Carswell, Jr., William J.

    2016-11-07

    Infrastructure—the physical framework of transportation, energy, communications, water supply, and other systems—and construction management—the overall planning, coordination, and control of a project from beginning to end—are critical to the Nation’s prosperity. The American Society of Civil Engineers has warned that, despite the importance of the Nation’s infrastructure, it is in fair to poor condition and needs sizable and urgent investments to maintain and modernize it, and to ensure that it is sustainable and resilient. Three-dimensional (3D) light detection and ranging (lidar) elevation data provide valuable productivity, safety, and cost-saving benefits to infrastructure improvement projects and associated construction management. By providing data to users, the 3D Elevation Program (3DEP) of the U.S. Geological Survey reduces users’ costs and risks and allows them to concentrate on their mission objectives. 3DEP includes (1) data acquisition partnerships that leverage funding, (2) contracts with experienced private mapping firms, (3) technical expertise, lidar data standards, and specifications, and (4) most important, public access to high-quality 3D elevation data. The size and breadth of improvements for the Nation’s infrastructure and construction management needs call for an efficient, systematic approach to acquiring foundational 3D elevation data. The 3DEP approach to national data coverage will yield large cost savings over individual project-by-project acquisitions and will ensure that data are accessible for other critical applications.

  15. Crowdsourcing Based 3d Modeling

    Science.gov (United States)

    Somogyi, A.; Barsi, A.; Molnar, B.; Lovas, T.

    2016-06-01

    Web-based photo albums that support organizing and viewing the users' images are widely used. These services provide a convenient solution for storing, editing and sharing images. In many cases, the users attach geotags to the images in order to enable using them e.g. in location based applications on social networks. Our paper discusses a procedure that collects open access images from a site frequently visited by tourists. Geotagged pictures showing the image of a sight or tourist attraction are selected and processed in photogrammetric processing software that produces the 3D model of the captured object. For the particular investigation we selected three attractions in Budapest. To assess the geometrical accuracy, we used laser scanner and DSLR as well as smart phone photography to derive reference values to enable verifying the spatial model obtained from the web-album images. The investigation shows how detailed and accurate models could be derived applying photogrammetric processing software, simply by using images of the community, without visiting the site.

  16. Can 3D Point Clouds Replace GCPs?

    Science.gov (United States)

    Stavropoulou, G.; Tzovla, G.; Georgopoulos, A.

    2014-05-01

    Over the past decade, large-scale photogrammetric products have been extensively used for the geometric documentation of cultural heritage monuments, as they combine metric information with the qualities of an image document. Additionally, the rising technology of terrestrial laser scanning has enabled the easier and faster production of accurate digital surface models (DSM), which have in turn contributed to the documentation of heavily textured monuments. However, due to the required accuracy of control points, the photogrammetric methods are always applied in combination with surveying measurements and hence are dependent on them. Along this line of thought, this paper explores the possibility of limiting the surveying measurements and the field work necessary for the production of large-scale photogrammetric products and proposes an alternative method on the basis of which the necessary control points instead of being measured with surveying procedures are chosen from a dense and accurate point cloud. Using this point cloud also as a surface model, the only field work necessary is the scanning of the object and image acquisition, which need not be subject to strict planning. To evaluate the proposed method an algorithm and the complementary interface were produced that allow the parallel manipulation of 3D point clouds and images and through which single image procedures take place. The paper concludes by presenting the results of a case study in the ancient temple of Hephaestus in Athens and by providing a set of guidelines for implementing effectively the method.

  17. Automatic inventory of components by laser 3D scanner; Inventario de automatico de componentes mediante laser escaner 3D

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Garcia, R.; Munoz Prieto, C.; Sarti Fernandez, F.

    2014-07-01

    One of the existing needs in nuclear decommissioning projects is to provide an inventory of components to be dismantled, which is available from its spatial location and elements that exist in your environment. The Laser scanner technology is a system of data acquisition that allows 3D models composed of millions of points, it's models with pinpoint accuracy and are available in a very short space of time. (Author)

  18. Double Negativity in 3D Space Coiling Metamaterials

    Science.gov (United States)

    Maurya, Santosh K.; Pandey, Abhishek; Shukla, Shobha; Saxena, Sumit

    2016-09-01

    Metamaterials displaying negative refractive index has remarkable potential to facilitate the manipulation of incident waves for wide variety of applications such as cloaking, superlensing and the like. Space-coiling approach is a recently explored technique to achieve extreme properties. The space coiling phenomena cause less energy absorption as compared to local resonating phenomena for obtaining extreme parameters. Here we show extreme properties in doubly negative 3D space coiling acoustic metamaterials. Frequency dispersive spectrum of extreme constitutive parameters has been calculated for 2D maze and 3D space coiling labyrinthine structure. This is in good agreement to the calculated acoustic band dispersion.

  19. Double Negativity in 3D Space Coiling Metamaterials.

    Science.gov (United States)

    Maurya, Santosh K; Pandey, Abhishek; Shukla, Shobha; Saxena, Sumit

    2016-09-21

    Metamaterials displaying negative refractive index has remarkable potential to facilitate the manipulation of incident waves for wide variety of applications such as cloaking, superlensing and the like. Space-coiling approach is a recently explored technique to achieve extreme properties. The space coiling phenomena cause less energy absorption as compared to local resonating phenomena for obtaining extreme parameters. Here we show extreme properties in doubly negative 3D space coiling acoustic metamaterials. Frequency dispersive spectrum of extreme constitutive parameters has been calculated for 2D maze and 3D space coiling labyrinthine structure. This is in good agreement to the calculated acoustic band dispersion.

  20. An annotation system for 3D fluid flow visualization

    Science.gov (United States)

    Loughlin, Maria M.; Hughes, John F.

    1995-01-01

    Annotation is a key activity of data analysis. However, current systems for data analysis focus almost exclusively on visualization. We propose a system which integrates annotations into a visualization system. Annotations are embedded in 3D data space, using the Post-it metaphor. This embedding allows contextual-based information storage and retrieval, and facilitates information sharing in collaborative environments. We provide a traditional database filter and a Magic Lens filter to create specialized views of the data. The system has been customized for fluid flow applications, with features which allow users to store parameters of visualization tools and sketch 3D volumes.

  1. 3-D Imaging Systems for Agricultural Applications—A Review

    Directory of Open Access Journals (Sweden)

    Manuel Vázquez-Arellano

    2016-04-01

    Full Text Available Efficiency increase of resources through automation of agriculture requires more information about the production process, as well as process and machinery status. Sensors are necessary for monitoring the status and condition of production by recognizing the surrounding structures such as objects, field structures, natural or artificial markers, and obstacles. Currently, three dimensional (3-D sensors are economically affordable and technologically advanced to a great extent, so a breakthrough is already possible if enough research projects are commercialized. The aim of this review paper is to investigate the state-of-the-art of 3-D vision systems in agriculture, and the role and value that only 3-D data can have to provide information about environmental structures based on the recent progress in optical 3-D sensors. The structure of this research consists of an overview of the different optical 3-D vision techniques, based on the basic principles. Afterwards, their application in agriculture are reviewed. The main focus lays on vehicle navigation, and crop and animal husbandry. The depth dimension brought by 3-D sensors provides key information that greatly facilitates the implementation of automation and robotics in agriculture.

  2. 3-D Imaging Systems for Agricultural Applications—A Review

    Science.gov (United States)

    Vázquez-Arellano, Manuel; Griepentrog, Hans W.; Reiser, David; Paraforos, Dimitris S.

    2016-01-01

    Efficiency increase of resources through automation of agriculture requires more information about the production process, as well as process and machinery status. Sensors are necessary for monitoring the status and condition of production by recognizing the surrounding structures such as objects, field structures, natural or artificial markers, and obstacles. Currently, three dimensional (3-D) sensors are economically affordable and technologically advanced to a great extent, so a breakthrough is already possible if enough research projects are commercialized. The aim of this review paper is to investigate the state-of-the-art of 3-D vision systems in agriculture, and the role and value that only 3-D data can have to provide information about environmental structures based on the recent progress in optical 3-D sensors. The structure of this research consists of an overview of the different optical 3-D vision techniques, based on the basic principles. Afterwards, their application in agriculture are reviewed. The main focus lays on vehicle navigation, and crop and animal husbandry. The depth dimension brought by 3-D sensors provides key information that greatly facilitates the implementation of automation and robotics in agriculture. PMID:27136560

  3. 3-D Imaging Systems for Agricultural Applications-A Review.

    Science.gov (United States)

    Vázquez-Arellano, Manuel; Griepentrog, Hans W; Reiser, David; Paraforos, Dimitris S

    2016-04-29

    Efficiency increase of resources through automation of agriculture requires more information about the production process, as well as process and machinery status. Sensors are necessary for monitoring the status and condition of production by recognizing the surrounding structures such as objects, field structures, natural or artificial markers, and obstacles. Currently, three dimensional (3-D) sensors are economically affordable and technologically advanced to a great extent, so a breakthrough is already possible if enough research projects are commercialized. The aim of this review paper is to investigate the state-of-the-art of 3-D vision systems in agriculture, and the role and value that only 3-D data can have to provide information about environmental structures based on the recent progress in optical 3-D sensors. The structure of this research consists of an overview of the different optical 3-D vision techniques, based on the basic principles. Afterwards, their application in agriculture are reviewed. The main focus lays on vehicle navigation, and crop and animal husbandry. The depth dimension brought by 3-D sensors provides key information that greatly facilitates the implementation of automation and robotics in agriculture.

  4. 3D Flash LIDAR Space Laser Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Scientific Concepts, Inc. (ASC) is a small business that has developed 3D Flash LIDAR systems for space and terrestrial applications. 3D Flash LIDAR is...

  5. Eesti 3D jaoks kitsas / Virge Haavasalu

    Index Scriptorium Estoniae

    Haavasalu, Virge

    2009-01-01

    Produktsioonifirma Digitaalne Sputnik: Kaur ja Kaspar Kallas tegelevad filmide produtseerimise ning 3D digitaalkaamerate tootearendusega (Silicon Imaging LLC). Vendade Kallaste 3D-kaamerast. Kommenteerib Eesti Filmi Sihtasutuse direktor Marge Liiske

  6. Will 3D printers manufacture your meals?

    NARCIS (Netherlands)

    Bommel, K.J.C. van

    2013-01-01

    These days, 3D printers are laying down plastics, metals, resins, and other materials in whatever configurations creative people can dream up. But when the next 3D printing revolution comes, you'll be able to eat it.

  7. An interactive multiview 3D display system

    Science.gov (United States)

    Zhang, Zhaoxing; Geng, Zheng; Zhang, Mei; Dong, Hui

    2013-03-01

    The progresses in 3D display systems and user interaction technologies will help more effective 3D visualization of 3D information. They yield a realistic representation of 3D objects and simplifies our understanding to the complexity of 3D objects and spatial relationship among them. In this paper, we describe an autostereoscopic multiview 3D display system with capability of real-time user interaction. Design principle of this autostereoscopic multiview 3D display system is presented, together with the details of its hardware/software architecture. A prototype is built and tested based upon multi-projectors and horizontal optical anisotropic display structure. Experimental results illustrate the effectiveness of this novel 3D display and user interaction system.

  8. Sliding Adjustment for 3D Video Representation

    Directory of Open Access Journals (Sweden)

    Galpin Franck

    2002-01-01

    Full Text Available This paper deals with video coding of static scenes viewed by a moving camera. We propose an automatic way to encode such video sequences using several 3D models. Contrary to prior art in model-based coding where 3D models have to be known, the 3D models are automatically computed from the original video sequence. We show that several independent 3D models provide the same functionalities as one single 3D model, and avoid some drawbacks of the previous approaches. To achieve this goal we propose a novel algorithm of sliding adjustment, which ensures consistency of successive 3D models. The paper presents a method to automatically extract the set of 3D models and associate camera positions. The obtained representation can be used for reconstructing the original sequence, or virtual ones. It also enables 3D functionalities such as synthetic object insertion, lightning modification, or stereoscopic visualization. Results on real video sequences are presented.

  9. Forward ramp in 3D

    Science.gov (United States)

    1997-01-01

    Mars Pathfinder's forward rover ramp can be seen successfully unfurled in this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. This ramp was not used for the deployment of the microrover Sojourner, which occurred at the end of Sol 2. When this image was taken, Sojourner was still latched to one of the lander's petals, waiting for the command sequence that would execute its descent off of the lander's petal.The image helped Pathfinder scientists determine whether to deploy the rover using the forward or backward ramps and the nature of the first rover traverse. The metallic object at the lower left of the image is the lander's low-gain antenna. The square at the end of the ramp is one of the spacecraft's magnetic targets. Dust that accumulates on the magnetic targets will later be examined by Sojourner's Alpha Proton X-Ray Spectrometer instrument for chemical analysis. At right, a lander petal is visible.The IMP is a stereo imaging system with color capability provided by 24 selectable filters -- twelve filters per 'eye.' It stands 1.8 meters above the Martian surface, and has a resolution of two millimeters at a range of two meters.Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  10. A comprehensive evaluation of the PRESAGE/optical-CT 3D dosimetry system

    Energy Technology Data Exchange (ETDEWEB)

    Sakhalkar, H. S.; Adamovics, J.; Ibbott, G.; Oldham, M. [Department of Radiation Oncology Physics, Duke University Medical Center, Durham, North Carolina 27710 (United States); Department of Chemistry and Biology, Rider University, Lawrenceville, New Jersey 08648 (United States); Department of Radiation Physics, M. D. Anderson Cancer Center, Houston, Texas 77030 (United States); Department of Radiation Oncology Physics, Duke University Medical Center, Durham, North Carolina 27710 (United States)

    2009-01-15

    This work presents extensive investigations to evaluate the robustness (intradosimeter consistency and temporal stability of response), reproducibility, precision, and accuracy of a relatively new 3D dosimetry system comprising a leuco-dye doped plastic 3D dosimeter (PRESAGE) and a commercial optical-CT scanner (OCTOPUS 5x scanner from MGS Research, Inc). Four identical PRESAGE 3D dosimeters were created such that they were compatible with the Radiologic Physics Center (RPC) head-and-neck (H and N) IMRT credentialing phantom. Each dosimeter was irradiated with a rotationally symmetric arrangement of nine identical small fields (1x3 cm{sup 2}) impinging on the flat circular face of the dosimeter. A repetitious sequence of three dose levels (4, 2.88, and 1.28 Gy) was delivered. The rotationally symmetric treatment resulted in a dose distribution with high spatial variation in axial planes but only gradual variation with depth along the long axis of the dosimeter. The significance of this treatment was that it facilitated accurate film dosimetry in the axial plane, for independent verification. Also, it enabled rigorous evaluation of robustness, reproducibility and accuracy of response, at the three dose levels. The OCTOPUS 5x commercial scanner was used for dose readout from the dosimeters at daily time intervals. The use of improved optics and acquisition technique yielded substantially improved noise characteristics (reduced to {approx}2%) than has been achieved previously. Intradosimeter uniformity of radiochromic response was evaluated by calculating a 3D gamma comparison between each dosimeter and axially rotated copies of the same dosimeter. This convenient technique exploits the rotational symmetry of the distribution. All points in the gamma comparison passed a 2% difference, 1 mm distance-to-agreement criteria indicating excellent intradosimeter uniformity even at low dose levels. Postirradiation, the dosimeters were all found to exhibit a slight increase in

  11. Laser Based 3D Volumetric Display System

    Science.gov (United States)

    1993-03-01

    Literature, Costa Mesa, CA July 1983. 3. "A Real Time Autostereoscopic Multiplanar 3D Display System", Rodney Don Williams, Felix Garcia, Jr., Texas...8217 .- NUMBERS LASER BASED 3D VOLUMETRIC DISPLAY SYSTEM PR: CD13 0. AUTHOR(S) PE: N/AWIU: DN303151 P. Soltan, J. Trias, W. Robinson, W. Dahlke 7...laser generated 3D volumetric images on a rotating double helix, (where the 3D displays are computer controlled for group viewing with the naked eye

  12. 3D Printing and Its Urologic Applications.

    Science.gov (United States)

    Soliman, Youssef; Feibus, Allison H; Baum, Neil

    2015-01-01

    3D printing is the development of 3D objects via an additive process in which successive layers of material are applied under computer control. This article discusses 3D printing, with an emphasis on its historical context and its potential use in the field of urology.

  13. Beowulf 3D: a case study

    Science.gov (United States)

    Engle, Rob

    2008-02-01

    This paper discusses the creative and technical challenges encountered during the production of "Beowulf 3D," director Robert Zemeckis' adaptation of the Old English epic poem and the first film to be simultaneously released in IMAX 3D and digital 3D formats.

  14. 3D Printing and Its Urologic Applications

    Science.gov (United States)

    Soliman, Youssef; Feibus, Allison H; Baum, Neil

    2015-01-01

    3D printing is the development of 3D objects via an additive process in which successive layers of material are applied under computer control. This article discusses 3D printing, with an emphasis on its historical context and its potential use in the field of urology. PMID:26028997

  15. Expanding Geometry Understanding with 3D Printing

    Science.gov (United States)

    Cochran, Jill A.; Cochran, Zane; Laney, Kendra; Dean, Mandi

    2016-01-01

    With the rise of personal desktop 3D printing, a wide spectrum of educational opportunities has become available for educators to leverage this technology in their classrooms. Until recently, the ability to create physical 3D models was well beyond the scope, skill, and budget of many schools. However, since desktop 3D printers have become readily…

  16. Investigating Mobile Stereoscopic 3D Touchscreen Interaction

    OpenAIRE

    Colley, Ashley; Hakkila, Jonna; SCHOENING, Johannes; Posti, Maaret

    2013-01-01

    3D output is no longer limited to large screens in cinemas or living rooms. Nowadays more and more mobile devices are equipped with autostereoscopic 3D (S3D) touchscreens. As a consequence interaction with 3D content now also happens whilst users are on the move. In this paper we carried out a user study with 27 participants to assess how mobile interaction, i.e. whilst walking, with mobile S3D devices, differs from interaction with 2D mobile touchscreens. We investigate the difference in tou...

  17. Wafer level 3-D ICs process technology

    CERN Document Server

    Tan, Chuan Seng; Reif, L Rafael

    2009-01-01

    This book focuses on foundry-based process technology that enables the fabrication of 3-D ICs. The core of the book discusses the technology platform for pre-packaging wafer lever 3-D ICs. However, this book does not include a detailed discussion of 3-D ICs design and 3-D packaging. This is an edited book based on chapters contributed by various experts in the field of wafer-level 3-D ICs process technology. They are from academia, research labs and industry.

  18. View-based 3-D object retrieval

    CERN Document Server

    Gao, Yue

    2014-01-01

    Content-based 3-D object retrieval has attracted extensive attention recently and has applications in a variety of fields, such as, computer-aided design, tele-medicine,mobile multimedia, virtual reality, and entertainment. The development of efficient and effective content-based 3-D object retrieval techniques has enabled the use of fast 3-D reconstruction and model design. Recent technical progress, such as the development of camera technologies, has made it possible to capture the views of 3-D objects. As a result, view-based 3-D object retrieval has become an essential but challenging res

  19. Single-shot 3D motion picture camera with a dense point cloud

    CERN Document Server

    Willomitzer, Florian

    2016-01-01

    We introduce a method and a 3D-camera for single-shot 3D shape measurement, with unprecedented features: The 3D-camera does not rely on pattern codification and acquires object surfaces at the theoretical limit of the information efficiency: Up to 30% of the available camera pixels display independent (not interpolated) 3D points. The 3D-camera is based on triangulation with two properly positioned cameras and a projected multi-line pattern, in combination with algorithms that solve the ambiguity problem. The projected static line pattern enables 3D-acquisition of fast processes and the take of 3D-motion-pictures. The depth resolution is at its physical limit, defined by electronic noise and speckle noise. The requisite low cost technology is simple.

  20. Web-based interactive visualization of 3D video mosaics using X3D standard

    Institute of Scientific and Technical Information of China (English)

    CHON Jaechoon; LEE Yang-Won; SHIBASAKI Ryosuke

    2006-01-01

    We present a method of 3D image mosaicing for real 3D representation of roadside buildings, and implement a Web-based interactive visualization environment for the 3D video mosaics created by 3D image mosaicing. The 3D image mosaicing technique developed in our previous work is a very powerful method for creating textured 3D-GIS data without excessive data processing like the laser or stereo system. For the Web-based open access to the 3D video mosaics, we build an interactive visualization environment using X3D, the emerging standard of Web 3D. We conduct the data preprocessing for 3D video mosaics and the X3D modeling for textured 3D data. The data preprocessing includes the conversion of each frame of 3D video mosaics into concatenated image files that can be hyperlinked on the Web. The X3D modeling handles the representation of concatenated images using necessary X3D nodes. By employing X3D as the data format for 3D image mosaics, the real 3D representation of roadside buildings is extended to the Web and mobile service systems.

  1. Case study: Beauty and the Beast 3D: benefits of 3D viewing for 2D to 3D conversion

    Science.gov (United States)

    Handy Turner, Tara

    2010-02-01

    From the earliest stages of the Beauty and the Beast 3D conversion project, the advantages of accurate desk-side 3D viewing was evident. While designing and testing the 2D to 3D conversion process, the engineering team at Walt Disney Animation Studios proposed a 3D viewing configuration that not only allowed artists to "compose" stereoscopic 3D but also improved efficiency by allowing artists to instantly detect which image features were essential to the stereoscopic appeal of a shot and which features had minimal or even negative impact. At a time when few commercial 3D monitors were available and few software packages provided 3D desk-side output, the team designed their own prototype devices and collaborated with vendors to create a "3D composing" workstation. This paper outlines the display technologies explored, final choices made for Beauty and the Beast 3D, wish-lists for future development and a few rules of thumb for composing compelling 2D to 3D conversions.

  2. 3D Bioprinting of Tissue/Organ Models.

    Science.gov (United States)

    Pati, Falguni; Gantelius, Jesper; Svahn, Helene Andersson

    2016-04-04

    In vitro tissue/organ models are useful platforms that can facilitate systematic, repetitive, and quantitative investigations of drugs/chemicals. The primary objective when developing tissue/organ models is to reproduce physiologically relevant functions that typically require complex culture systems. Bioprinting offers exciting prospects for constructing 3D tissue/organ models, as it enables the reproducible, automated production of complex living tissues. Bioprinted tissues/organs may prove useful for screening novel compounds or predicting toxicity, as the spatial and chemical complexity inherent to native tissues/organs can be recreated. In this Review, we highlight the importance of developing 3D in vitro tissue/organ models by 3D bioprinting techniques, characterization of these models for evaluating their resemblance to native tissue, and their application in the prioritization of lead candidates, toxicity testing, and as disease/tumor models.

  3. VISRAD, 3-D Target Design and Radiation Simulation Code

    Science.gov (United States)

    Golovkin, Igor; Macfarlane, Joseph; Golovkina, Viktoriya

    2016-10-01

    The 3-D view factor code VISRAD is widely used in designing HEDP experiments at major laser and pulsed-power facilities, including NIF, OMEGA, OMEGA-EP, ORION, LMJ, Z, and PLX. It simulates target designs by generating a 3-D grid of surface elements, utilizing a variety of 3-D primitives and surface removal algorithms, and can be used to compute the radiation flux throughout the surface element grid by computing element-to-element view factors and solving power balance equations. Target set-up and beam pointing are facilitated by allowing users to specify positions and angular orientations using a variety of coordinates systems (e.g., that of any laser beam, target component, or diagnostic port). Analytic modeling for laser beam spatial profiles for OMEGA DPPs and NIF CPPs is used to compute laser intensity profiles throughout the grid of surface elements. We will discuss recent improvements to the software package and plans for future developments.

  4. 3D laptop for defense applications

    Science.gov (United States)

    Edmondson, Richard; Chenault, David

    2012-06-01

    Polaris Sensor Technologies has developed numerous 3D display systems using a US Army patented approach. These displays have been developed as prototypes for handheld controllers for robotic systems and closed hatch driving, and as part of a TALON robot upgrade for 3D vision, providing depth perception for the operator for improved manipulation and hazard avoidance. In this paper we discuss the prototype rugged 3D laptop computer and its applications to defense missions. The prototype 3D laptop combines full temporal and spatial resolution display with the rugged Amrel laptop computer. The display is viewed through protective passive polarized eyewear, and allows combined 2D and 3D content. Uses include robot tele-operation with live 3D video or synthetically rendered scenery, mission planning and rehearsal, enhanced 3D data interpretation, and simulation.

  5. User-centered 3D geovisualisation

    DEFF Research Database (Denmark)

    Nielsen, Anette Hougaard

    2004-01-01

    3D Geovisualisation is a multidisciplinary science mainly utilizing geographically related data, developing software systems for 3D visualisation and producing relevant models. In this paper the connection between geoinformation stored as 3D objects and the end user is of special interest....... In a broader perspective, the overall aim is to develop a language in 3D Geovisualisation gained through usability projects and the development of a theoretical background. A conceptual level of user-centered 3D Geovisualisation is introduced by applying a categorisation originating from Virtual Reality....... The conceptual level is used to structure and organise user-centered 3D Geovisualisation into four categories: representation, rendering, interface and interaction. The categories reflect a process of development of 3D Geovisualisation where objects can be represented verisimilar to the real world...

  6. 3D Stratigraphic Modeling of Central Aachen

    Science.gov (United States)

    Dong, M.; Neukum, C.; Azzam, R.; Hu, H.

    2010-05-01

    , -y, -z coordinates, down-hole depth, and stratigraphic information are available. 4) We grouped stratigraphic units into four main layers based on analysis of geological settings of the modeling area. The stratigraphic units extend from Quaternary, Cretaceous, Carboniferous to Devonian. In order to facilitate the determination of each unit boundaries, a series of standard code was used to integrate data with different descriptive attributes. 5) The Quaternary and Cretaceous units are characterized by subhorizontal layers. Kriging interpolation was processed to the borehole data in order to estimate data distribution and surface relief for the layers. 6) The Carboniferous and Devonian units are folded. The lack of software support, concerning simulating folds and the shallow depth of boreholes and cross sections constrained the determination of geological boundaries. A strategy of digitalizing the fold surfaces from cross sections and establishing them as inclined strata was followed. The modeling was simply subdivided into two steps. The first step consisted of importing data into the modeling software. The second step involved the construction of subhorizontal layers and folds, which were constrained by geological maps, cross sections and outcrops. The construction of the 3D stratigraphic model is of high relevance to further simulation and application, such as 1) lithological modeling; 2) answering simple questions such as "At which unit is the water table?" and calculating volume of groundwater storage during assessment of aquifer vulnerability to contamination; and 3) assigned by geotechnical properties in grids and providing them for user required application. Acknowledgements: Borehole data is kindly provided by the Municipality of Aachen. References: 1. Janet T. Watt, Jonathan M.G. Glen, David A. John and David A. Ponce (2007) Three-dimensional geologic model of the northern Nevada rift and the Beowawe geothermal system, north-central Nevada. Geosphere, v. 3

  7. 3D fingerprint imaging system based on full-field fringe projection profilometry

    Science.gov (United States)

    Huang, Shujun; Zhang, Zonghua; Zhao, Yan; Dai, Jie; Chen, Chao; Xu, Yongjia; Zhang, E.; Xie, Lili

    2014-01-01

    As an unique, unchangeable and easily acquired biometrics, fingerprint has been widely studied in academics and applied in many fields over the years. The traditional fingerprint recognition methods are based on the obtained 2D feature of fingerprint. However, fingerprint is a 3D biological characteristic. The mapping from 3D to 2D loses 1D information and causes nonlinear distortion of the captured fingerprint. Therefore, it is becoming more and more important to obtain 3D fingerprint information for recognition. In this paper, a novel 3D fingerprint imaging system is presented based on fringe projection technique to obtain 3D features and the corresponding color texture information. A series of color sinusoidal fringe patterns with optimum three-fringe numbers are projected onto a finger surface. From another viewpoint, the fringe patterns are deformed by the finger surface and captured by a CCD camera. 3D shape data of the finger can be obtained from the captured fringe pattern images. This paper studies the prototype of the 3D fingerprint imaging system, including principle of 3D fingerprint acquisition, hardware design of the 3D imaging system, 3D calibration of the system, and software development. Some experiments are carried out by acquiring several 3D fingerprint data. The experimental results demonstrate the feasibility of the proposed 3D fingerprint imaging system.

  8. Point Cluster Analysis Using a 3D Voronoi Diagram with Applications in Point Cloud Segmentation

    Directory of Open Access Journals (Sweden)

    Shen Ying

    2015-08-01

    Full Text Available Three-dimensional (3D point analysis and visualization is one of the most effective methods of point cluster detection and segmentation in geospatial datasets. However, serious scattering and clotting characteristics interfere with the visual detection of 3D point clusters. To overcome this problem, this study proposes the use of 3D Voronoi diagrams to analyze and visualize 3D points instead of the original data item. The proposed algorithm computes the cluster of 3D points by applying a set of 3D Voronoi cells to describe and quantify 3D points. The decompositions of point cloud of 3D models are guided by the 3D Voronoi cell parameters. The parameter values are mapped from the Voronoi cells to 3D points to show the spatial pattern and relationships; thus, a 3D point cluster pattern can be highlighted and easily recognized. To capture different cluster patterns, continuous progressive clusters and segmentations are tested. The 3D spatial relationship is shown to facilitate cluster detection. Furthermore, the generated segmentations of real 3D data cases are exploited to demonstrate the feasibility of our approach in detecting different spatial clusters for continuous point cloud segmentation.

  9. A novel approach for a 2D/3D image registration routine for medical tool navigation in minimally invasive vascular interventions

    Energy Technology Data Exchange (ETDEWEB)

    Schwerter, Michael [Forschungszentrum Juelich (Germany). Inst. of Neuroscience and Medicine (INM-4) - Medical Imaging Physics; Lietzmann, Florian; Schad, Lothar R. [Heidelberg Univ., Medical Faculty Mannheim (Germany). Computer Assisted Clinical Medicine

    2016-11-01

    Minimally invasive interventions are frequently aided by 2D projective image guidance. To facilitate the navigation of medical tools within the patient, information from preoperative 3D images can supplement interventional data. This work describes a novel approach to perform a 3D CT data registration to a single interventional native fluoroscopic frame. The goal of this procedure is to recover and visualize a current 2D interventional tool position in its corresponding 3D dataset. A dedicated routine was developed and tested on a phantom. The 3D position of a guidewire inserted into the phantom could successfully be reconstructed for varying 2D image acquisition geometries. The scope of the routine includes projecting the CT data into the plane of the fluoroscopy. A subsequent registration of the real and virtual projections is performed with an accuracy within the range of 1.16 ± 0.17 mm for fixed landmarks. The interventional tool is extracted from the fluoroscopy and matched to the corresponding part of the projected and transformed arterial vasculature. A root mean square error of up to 0.56 mm for matched point pairs is reached. The desired 3D view is provided by backprojecting the matched guidewire through the CT array. Due to its potential to reduce patient dose and treatment times, the proposed routine has the capability of reducing patient stress at lower overall treatment costs.

  10. FROM 3D MODEL DATA TO SEMANTICS

    Directory of Open Access Journals (Sweden)

    My Abdellah Kassimi

    2012-01-01

    Full Text Available The semantic-based 3D models retrieval systems have become necessary since the increase of 3D modelsdatabases. In this paper, we propose a new method for the mapping problem between 3D model data andsemantic data involved in semantic based retrieval for 3D models given by polygonal meshes. First, wefocused on extracting invariant descriptors from the 3D models and analyzing them to efficient semanticannotation and to improve the retrieval accuracy. Selected shape descriptors provide a set of termscommonly used to describe visually a set of objects using linguistic terms and are used as semanticconcept to label 3D model. Second, spatial relationship representing directional, topological anddistance relationships are used to derive other high-level semantic features and to avoid the problem ofautomatic 3D model annotation. Based on the resulting semantic annotation and spatial concepts, anontology for 3D model retrieval is constructed and other concepts can be inferred. This ontology is usedto find similar 3D models for a given query model. We adopted the query by semantic example approach,in which the annotation is performed mostly automatically. The proposed method is implemented in our3D search engine (SB3DMR, tested using the Princeton Shape Benchmark Database.

  11. Emerging technologies for 3D video creation, coding, transmission and rendering

    CERN Document Server

    Dufaux, Frederic; Cagnazzo, Marco

    2013-01-01

    With the expectation of greatly enhanced user experience, 3D video is widely perceived as the next major advancement in video technology. In order to fulfil the expectation of enhanced user experience, 3D video calls for new technologies addressing efficient content creation, representation/coding, transmission and display. Emerging Technologies for 3D Video will deal with all aspects involved in 3D video systems and services, including content acquisition and creation, data representation and coding, transmission, view synthesis, rendering, display technologies, human percepti

  12. Free and open-source automated 3-D microscope.

    Science.gov (United States)

    Wijnen, Bas; Petersen, Emily E; Hunt, Emily J; Pearce, Joshua M

    2016-11-01

    Open-source technology not only has facilitated the expansion of the greater research community, but by lowering costs it has encouraged innovation and customizable design. The field of automated microscopy has continued to be a challenge in accessibility due the expense and inflexible, noninterchangeable stages. This paper presents a low-cost, open-source microscope 3-D stage. A RepRap 3-D printer was converted to an optical microscope equipped with a customized, 3-D printed holder for a USB microscope. Precision measurements were determined to have an average error of 10 μm at the maximum speed and 27 μm at the minimum recorded speed. Accuracy tests yielded an error of 0.15%. The machine is a true 3-D stage and thus able to operate with USB microscopes or conventional desktop microscopes. It is larger than all commercial alternatives, and is thus capable of high-depth images over unprecedented areas and complex geometries. The repeatability is below 2-D microscope stages, but testing shows that it is adequate for the majority of scientific applications. The open-source microscope stage costs less than 3-9% of the closest proprietary commercial stages. This extreme affordability vastly improves accessibility for 3-D microscopy throughout the world.

  13. Three Dimensional (3D Lumbar Vertebrae Data Set

    Directory of Open Access Journals (Sweden)

    H. Bennani

    2016-08-01

    Full Text Available 3D modelling can be used for a variety of purposes, including biomedical modelling for orthopaedic or anatomical applications. Low back pain is prevalent in society yet few validated 3D models of the lumbar spine exist to facilitate assessment. We therefore created a 3D surface data set for lumbar vertebrae from human vertebrae. Models from 86 lumbar vertebrae were constructed using an inexpensive method involving image capture by digital camera and reconstruction of 3D models via an image-based technique. The reconstruction method was validated using a laser-based arm scanner and measurements derived from real vertebrae using electronic callipers. Results show a mean relative error of 5.2% between image-based models and real vertebrae, a mean relative error of 4.7% between image-based and arm scanning models and 95% of vertices’ errors are less than 3.5 millimetres with a median of 1.1 millimetres. The accuracy of the method indicates that the generated models could be useful for biomechanical modelling or 3D visualisation of the spine.

  14. 3D Printing of Organs-On-Chips

    Directory of Open Access Journals (Sweden)

    Hee-Gyeong Yi

    2017-01-01

    Full Text Available Organ-on-a-chip engineering aims to create artificial living organs that mimic the complex and physiological responses of real organs, in order to test drugs by precisely manipulating the cells and their microenvironments. To achieve this, the artificial organs should to be microfabricated with an extracellular matrix (ECM and various types of cells, and should recapitulate morphogenesis, cell differentiation, and functions according to the native organ. A promising strategy is 3D printing, which precisely controls the spatial distribution and layer-by-layer assembly of cells, ECMs, and other biomaterials. Owing to this unique advantage, integration of 3D printing into organ-on-a-chip engineering can facilitate the creation of micro-organs with heterogeneity, a desired 3D cellular arrangement, tissue-specific functions, or even cyclic movement within a microfluidic device. Moreover, fully 3D-printed organs-on-chips more easily incorporate other mechanical and electrical components with the chips, and can be commercialized via automated massive production. Herein, we discuss the recent advances and the potential of 3D cell-printing technology in engineering organs-on-chips, and provides the future perspectives of this technology to establish the highly reliable and useful drug-screening platforms.

  15. Optical-CT imaging of complex 3D dose distributions

    Science.gov (United States)

    Oldham, Mark; Kim, Leonard; Hugo, Geoffrey

    2005-04-01

    The limitations of conventional dosimeters restrict the comprehensiveness of verification that can be performed for advanced radiation treatments presenting an immediate and substantial problem for clinics attempting to implement these techniques. In essence, the rapid advances in the technology of radiation delivery have not been paralleled by corresponding advances in the ability to verify these treatments. Optical-CT gel-dosimetry is a relatively new technique with potential to address this imbalance by providing high resolution 3D dose maps in polymer and radiochromic gel dosimeters. We have constructed a 1st generation optical-CT scanner capable of high resolution 3D dosimetry and applied it to a number of simple and increasingly complex dose distributions including intensity-modulated-radiation-therapy (IMRT). Prior to application to IMRT, the robustness of optical-CT gel dosimetry was investigated on geometry and variable attenuation phantoms. Physical techniques and image processing methods were developed to minimize deleterious effects of refraction, reflection, and scattered laser light. Here we present results of investigations into achieving accurate high-resolution 3D dosimetry with optical-CT, and show clinical examples of 3D IMRT dosimetry verification. In conclusion, optical-CT gel dosimetry can provide high resolution 3D dose maps that greatly facilitate comprehensive verification of complex 3D radiation treatments. Good agreement was observed at high dose levels (>50%) between planned and measured dose distributions. Some systematic discrepancies were observed however (rms discrepancy 3% at high dose levels) indicating further work is required to eliminate confounding factors presently compromising the accuracy of optical-CT 3D gel-dosimetry.

  16. Registration of 3D and Multispectral Data for the Study of Cultural Heritage Surfaces

    Directory of Open Access Journals (Sweden)

    Frank Boochs

    2013-01-01

    Full Text Available We present a technique for the multi-sensor registration of featureless datasets based on the photogrammetric tracking of the acquisition systems in use. This method is developed for the in situ study of cultural heritage objects and is tested by digitizing a small canvas successively with a 3D digitization system and a multispectral camera while simultaneously tracking the acquisition systems with four cameras and using a cubic target frame with a side length of 500 mm. The achieved tracking accuracy is better than 0.03 mm spatially and 0.150 mrad angularly. This allows us to seamlessly register the 3D acquisitions and to project the multispectral acquisitions on the 3D model.

  17. 3D Systems” ‘Stuck in the Middle’ of the 3D Printer Boom?

    NARCIS (Netherlands)

    A. Hoffmann (Alan)

    2014-01-01

    textabstract3D Systems, the pioneer of 3D printing, predicted a future where "kids from 8 to 80" could design and print their ideas at home. By 2013, 9 years after the creation of the first working 3D printer, there were more than 30 major 3D printing companies competing for market share. 3DS and it

  18. 3D-tulostus : case Printrbot

    OpenAIRE

    Arvekari, Lassi

    2013-01-01

    Opinnäytetyön tavoitteena on selvittää 3D-tulostustekniikan perusteita ja 3D-tulostuksen nykytilannetta. 3D-tulostukseen sopivien mallien luomista tutkitaan ja mallin tekemiseen on etsitty toimivia ohjesääntöjä. Tärkeä osa työtä on tutkia mitä vaiheita 3D-tulostimen hankinnassa kotikäyttöön tulee vastaan. Käytännön kokeita varten opinnäytetyössä on case Printrbot, jossa on tutustuttu edulliseen 3D-tulostuslaitteeseen kokoonpanosta lähtien. Työn kuluessa selvisi että edulliset 3D-tulos...

  19. Stability Criteria of 3D Inviscid Shears

    CERN Document Server

    Li, Y Charles

    2009-01-01

    The classical plane Couette flow, plane Poiseuille flow, and pipe Poiseuille flow share some universal 3D steady coherent structure in the form of "streak-roll-critical layer". As the Reynolds number approaches infinity, the steady coherent structure approaches a 3D limiting shear of the form ($U(y,z), 0, 0$) in velocity variables. All such 3D shears are steady states of the 3D Euler equations. This raises the importance of investigating the stability of such inviscid 3D shears in contrast to the classical Rayleigh theory of inviscid 2D shears. Several general criteria of stability for such inviscid 3D shears are derived. In the Appendix, an argument is given to show that a 2D limiting shear can only be the classical laminar shear.

  20. EXAMINATION ABOUT INFLUENCE FOR PRECISION OF 3D IMAGE MEASUREMENT FROM THE GROUND CONTROL POINT MEASUREMENT AND SURFACE MATCHING

    Directory of Open Access Journals (Sweden)

    T. Anai

    2015-05-01

    Full Text Available As the 3D image measurement software is now widely used with the recent development of computer-vision technology, the 3D measurement from the image is now has acquired the application field from desktop objects as wide as the topography survey in large geographical areas. Especially, the orientation, which used to be a complicated process in the heretofore image measurement, can be now performed automatically by simply taking many pictures around the object. And in the case of fully textured object, the 3D measurement of surface features is now done all automatically from the orientated images, and greatly facilitated the acquisition of the dense 3D point cloud from images with high precision. With all this development in the background, in the case of small and the middle size objects, we are now furnishing the all-around 3D measurement by a single digital camera sold on the market. And we have also developed the technology of the topographical measurement with the air-borne images taken by a small UAV [1~5]. In this present study, in the case of the small size objects, we examine the accuracy of surface measurement (Matching by the data of the experiments. And as to the topographic measurement, we examine the influence of GCP distribution on the accuracy by the data of the experiments. Besides, we examined the difference of the analytical results in each of the 3D image measurement software. This document reviews the processing flow of orientation and the 3D measurement of each software and explains the feature of the each software. And as to the verification of the precision of stereo-matching, we measured the test plane and the test sphere of the known form and assessed the result. As to the topography measurement, we used the air-borne image data photographed at the test field in Yadorigi of Matsuda City, Kanagawa Prefecture JAPAN. We have constructed Ground Control Point which measured by RTK-GPS and Total Station. And we show the results

  1. Examination about Influence for Precision of 3d Image Measurement from the Ground Control Point Measurement and Surface Matching

    Science.gov (United States)

    Anai, T.; Kochi, N.; Yamada, M.; Sasaki, T.; Otani, H.; Sasaki, D.; Nishimura, S.; Kimoto, K.; Yasui, N.

    2015-05-01

    As the 3D image measurement software is now widely used with the recent development of computer-vision technology, the 3D measurement from the image is now has acquired the application field from desktop objects as wide as the topography survey in large geographical areas. Especially, the orientation, which used to be a complicated process in the heretofore image measurement, can be now performed automatically by simply taking many pictures around the object. And in the case of fully textured object, the 3D measurement of surface features is now done all automatically from the orientated images, and greatly facilitated the acquisition of the dense 3D point cloud from images with high precision. With all this development in the background, in the case of small and the middle size objects, we are now furnishing the all-around 3D measurement by a single digital camera sold on the market. And we have also developed the technology of the topographical measurement with the air-borne images taken by a small UAV [1~5]. In this present study, in the case of the small size objects, we examine the accuracy of surface measurement (Matching) by the data of the experiments. And as to the topographic measurement, we examine the influence of GCP distribution on the accuracy by the data of the experiments. Besides, we examined the difference of the analytical results in each of the 3D image measurement software. This document reviews the processing flow of orientation and the 3D measurement of each software and explains the feature of the each software. And as to the verification of the precision of stereo-matching, we measured the test plane and the test sphere of the known form and assessed the result. As to the topography measurement, we used the air-borne image data photographed at the test field in Yadorigi of Matsuda City, Kanagawa Prefecture JAPAN. We have constructed Ground Control Point which measured by RTK-GPS and Total Station. And we show the results of analysis made

  2. Ultrasonic Sensor Based 3D Mapping & Localization

    Directory of Open Access Journals (Sweden)

    Shadman Fahim Ahmad

    2016-04-01

    Full Text Available This article provides a basic level introduction to 3D mapping using sonar sensors and localization. It describes the methods used to construct a low-cost autonomous robot along with the hardware and software used as well as an insight to the background of autonomous robotic 3D mapping and localization. We have also given an overview to what the future prospects of the robot may hold in 3D based mapping.

  3. ERP system for 3D printing industry

    Directory of Open Access Journals (Sweden)

    Deaky Bogdan

    2017-01-01

    Full Text Available GOCREATE is an original cloud-based production management and optimization service which helps 3D printing service providers to use their resources better. The proposed Enterprise Resource Planning system can significantly increase income through improved productivity. With GOCREATE, the 3D printing service providers get a much higher production efficiency at a much lower licensing cost, to increase their competitiveness in the fast growing 3D printing market.

  4. Reconhecimento de faces 3D com Kinect

    OpenAIRE

    Cardia Neto, João Baptista [UNESP

    2014-01-01

    For person identification, facil recognition has several advantages over other biometric traits due mostly to its high universelly, collectability, and acceptability. When dealing with 2D face images several problems arise related to pose, illumination, and facial expressions. To increase the performance of facial recognition, 3D mehtods have been proposed and developedm since working with 3D objects allow us to handle better the aforementioned problems. With 3D object, it is possible to rota...

  5. Illustrating Mathematics using 3D Printers

    OpenAIRE

    Knill, Oliver; Slavkovsky, Elizabeth

    2013-01-01

    3D printing technology can help to visualize proofs in mathematics. In this document we aim to illustrate how 3D printing can help to visualize concepts and mathematical proofs. As already known to educators in ancient Greece, models allow to bring mathematics closer to the public. The new 3D printing technology makes the realization of such tools more accessible than ever. This is an updated version of a paper included in book Low-Cost 3D Printing for science, education and Sustainable Devel...

  6. Calibration for 3D Structured Light Measurement

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A calibration procedure was developed for three-dimensional(3D) binocular structured light measurement systems. In virtue of a specially designed pattern, matching points in stereo images are extracted. And then sufficient 3D space points are obtained through pairs of images with the intrinsic and extrinsic parameters of each camera estimated prior and consequently some lights are calibrated by means of multi point fitting. Finally, a mathematical model is applied to interpolate and approximate all dynamic scanning lights based on geometry. The process of calibration method is successfully used in the binocular 3D measurement system based on structured lights and the 3D reconstruction results are satisfying.

  7. Getting started in 3D with Maya

    CERN Document Server

    Watkins, Adam

    2012-01-01

    Deliver professional-level 3D content in no time with this comprehensive guide to 3D animation with Maya. With over 12 years of training experience, plus several award winning students under his belt, author Adam Watkins is the ideal mentor to get you up to speed with 3D in Maya. Using a structured and pragmatic approach Getting Started in 3D with Maya begins with basic theory of fundamental techniques, then builds on this knowledge using practical examples and projects to put your new skills to the test. Prepared so that you can learn in an organic fashion, each chapter builds on the know

  8. Virtual Realization using 3D Password

    Directory of Open Access Journals (Sweden)

    A.B.Gadicha

    2012-03-01

    Full Text Available Current authentication systems suffer from many weaknesses. Textual passwords are commonly used; however, users do not follow their requirements. Users tend to choose meaningful words from dictionaries, which make textual passwords easy to break and vulnerable to dictionary or brute force attacks. Many available graphical passwords have a password space that is less than or equal to the textual password space. Smart cards or tokens can be stolen. Many biometric authentications have been proposed; however, users tend to resist using biometrics because of their intrusiveness and the effect on their privacy. Moreover, biometrics cannot be revoked. In this paper, we present and evaluate our contribution, i.e., the 3D password. The 3D password is a multifactor authentication scheme. To be authenticated, we present a 3D virtual environment where the user navigates and interacts with various objects. The sequence of actions and interactions toward the objects inside the 3D environment constructs the user’s 3D password. The 3D password can combine most existing authentication schemes such as textual passwords, graphical passwords, and various types of biometrics into a 3D virtual environment. The design of the 3D virtual environment and the type of objects selected determine the 3D password key space.

  9. Ekologinen 3D-tulostettava asuste

    OpenAIRE

    Paulasaari, Laura

    2014-01-01

    Tämän opinnäytetyön aiheena oli ekologisuus 3D-tulostuksessa ja sen hyödynnettävyys erityisesti asustesuunnittelussa. Työn tarkoituksena oli selvittää, kuinka 3D-tulostusta voi tehdä ekologisemmin ja mitä vaihtoehtoja kuluttajalle tällä hetkellä on. Työ tehtiin Young skills –osuuskunnalle. 3D-tulostuksella on mahdollisuus antaa todella paljon tulevaisuuden tuotantomenetelmille ja se vapauttaa tuotteiden muotoilua täysin uudella tavalla. 3D-tulostuksen avulla voidaan keskittyä enemmän esim...

  10. 3D Printers Can Provide an Added Dimension for Teaching Structure-Energy Relationships

    Science.gov (United States)

    Blauch, David N.; Carroll, Felix A.

    2014-01-01

    A 3D printer is used to prepare a variety of models representing potential energy as a function of two geometric coordinates. These models facilitate the teaching of structure-energy relationships in molecular conformations and in chemical reactions.

  11. Efficacy of 3-D computed tomographic reconstruction in evaluating anatomical relationships of colovesical fistula.

    Science.gov (United States)

    Shinojima, Toshiaki; Nakajima, Fumio; Koizumi, Jun

    2002-04-01

    A case of colovesical fistula is reported. The anatomy of the pelvis was determined preoperatively with 3-D computed tomography (CT), and the fistula, including adjacent structures, could clearly be seen. Compared with conventional axial CT imaging, 3-D CT provided better and more complete visualization of the anatomical relationships, which facilitated the surgical procedure and provided a good outcome.

  12. Volumetric motion quantification by 3D tissue phase mapped CMR

    Directory of Open Access Journals (Sweden)

    Lutz Anja

    2012-10-01

    Full Text Available Abstract Background The objective of this study was the quantification of myocardial motion from 3D tissue phase mapped (TPM CMR. Recent work on myocardial motion quantification by TPM has been focussed on multi-slice 2D acquisitions thus excluding motion information from large regions of the left ventricle. Volumetric motion assessment appears an important next step towards the understanding of the volumetric myocardial motion and hence may further improve diagnosis and treatments in patients with myocardial motion abnormalities. Methods Volumetric motion quantification of the complete left ventricle was performed in 12 healthy volunteers and two patients applying a black-blood 3D TPM sequence. The resulting motion field was analysed regarding motion pattern differences between apical and basal locations as well as for asynchronous motion pattern between different myocardial segments in one or more slices. Motion quantification included velocity, torsion, rotation angle and strain derived parameters. Results All investigated motion quantification parameters could be calculated from the 3D-TPM data. Parameters quantifying hypokinetic or asynchronous motion demonstrated differences between motion impaired and healthy myocardium. Conclusions 3D-TPM enables the gapless volumetric quantification of motion abnormalities of the left ventricle, which can be applied in future application as additional information to provide a more detailed analysis of the left ventricular function.

  13. Clinical evaluation of 2D versus 3D whole-body PET image quality using a dedicated BGO PET scanner

    Energy Technology Data Exchange (ETDEWEB)

    Visvikis, D. [CHU Morvan, U650 INSERM, Laboratoire de Traitement de l' Information Medicale (LaTIM), Brest (France); Griffiths, D. [Lister Healthcare, London PET Centre, London (United Kingdom); Costa, D.C. [Middlesex Hospital, Institute of Nuclear Medicine, Royal Free and University College Medical School, London (United Kingdom); HPP Medicina Molecular, SA Porto (Portugal); Bomanji, J.; Ell, P.J. [Middlesex Hospital, Institute of Nuclear Medicine, Royal Free and University College Medical School, London (United Kingdom)

    2005-09-01

    Three-dimensional positron emission tomography (3D PET) results in higher system sensitivity, with an associated increase in the detection of scatter and random coincidences. The objective of this work was to compare, from a clinical perspective, 3D and two-dimensional (2D) acquisitions in terms of whole-body (WB) PET image quality with a dedicated BGO PET system. 2D and 3D WB emission acquisitions were carried out in 70 patients. Variable acquisition parameters in terms of time of emission acquisition per axial field of view (aFOV) and slice overlap between sequential aFOVs were used during the 3D acquisitions. 3D and 2D images were reconstructed using FORE+WLS and OSEM respectively. Scatter correction was performed by convolution subtraction and a model-based scatter correction in 2D and 3D respectively. All WB images were attenuation corrected using segmented transmission scans. Images were blindly assessed by three observers for the presence of artefacts, confidence in lesion detection and overall image quality using a scoring system. Statistically significant differences between 2D and 3D image quality were only obtained for 3D emission acquisitions of 3 min. No statistically significant differences were observed for image artefacts or lesion detectability scores. Image quality correlated significantly with patient weight for both modes of operation. Finally, no differences were seen in image artefact scores for the different axial slice overlaps considered, suggesting the use of five slice overlaps in 3D WB acquisitions. 3D WB imaging using a dedicated BGO-based PET scanner offers similar image quality to that obtained in 2D considering similar overall times of acquisitions. (orig.)

  14. Canada in 3D - Toward a Sustainable 3D Model for Canadian Geology from Diverse Data Sources

    Science.gov (United States)

    Brodaric, B.; Pilkington, M.; Snyder, D. B.; St-Onge, M. R.; Russell, H.

    2015-12-01

    Many big science issues span large areas and require data from multiple heterogeneous sources, for example climate change, resource management, and hazard mitigation. Solutions to these issues can significantly benefit from access to a consistent and integrated geological model that would serve as a framework. However, such a model is absent for most large countries including Canada, due to the size of the landmass and the fragmentation of the source data into institutional and disciplinary silos. To overcome these barriers, the "Canada in 3D" (C3D) pilot project was recently launched by the Geological Survey of Canada. C3D is designed to be evergreen, multi-resolution, and inter-disciplinary: (a) it is to be updated regularly upon acquisition of new data; (b) portions vary in resolution and will initially consist of four layers (surficial, sedimentary, crystalline, and mantle) with intermediary patches of higher-resolution fill; and (c) a variety of independently managed data sources are providing inputs, such as geophysical, 3D and 2D geological models, drill logs, and others. Notably, scalability concerns dictate a decentralized and interoperable approach, such that only key control objects, denoting anchors for the modeling process, are imported into the C3D database while retaining provenance links to original sources. The resultant model is managed in the database, contains full modeling provenance as well as links to detailed information on rock units, and is to be visualized in desktop and online environments. It is anticipated that C3D will become the authoritative state of knowledge for the geology of Canada at a national scale.

  15. Real-time structured light intraoral 3D measurement pipeline

    Science.gov (United States)

    Gheorghe, Radu; Tchouprakov, Andrei; Sokolov, Roman

    2013-02-01

    Computer aided design and manufacturing (CAD/CAM) is increasingly becoming a standard feature and service provided to patients in dentist offices and denture manufacturing laboratories. Although the quality of the tools and data has slowly improved in the last years, due to various surface measurement challenges, practical, accurate, invivo, real-time 3D high quality data acquisition and processing still needs improving. Advances in GPU computational power have allowed for achieving near real-time 3D intraoral in-vivo scanning of patient's teeth. We explore in this paper, from a real-time perspective, a hardware-software-GPU solution that addresses all the requirements mentioned before. Moreover we exemplify and quantify the hard and soft deadlines required by such a system and illustrate how they are supported in our implementation.

  16. Action and gait recognition from recovered 3-D human joints.

    Science.gov (United States)

    Gu, Junxia; Ding, Xiaoqing; Wang, Shengjin; Wu, Youshou

    2010-08-01

    A common viewpoint-free framework that fuses pose recovery and classification for action and gait recognition is presented in this paper. First, a markerless pose recovery method is adopted to automatically capture the 3-D human joint and pose parameter sequences from volume data. Second, multiple configuration features (combination of joints) and movement features (position, orientation, and height of the body) are extracted from the recovered 3-D human joint and pose parameter sequences. A hidden Markov model (HMM) and an exemplar-based HMM are then used to model the movement features and configuration features, respectively. Finally, actions are classified by a hierarchical classifier that fuses the movement features and the configuration features, and persons are recognized from their gait sequences with the configuration features. The effectiveness of the proposed approach is demonstrated with experiments on the Institut National de Recherche en Informatique et Automatique Xmas Motion Acquisition Sequences data set.

  17. Demonstration: A smartphone 3D functional brain scanner

    DEFF Research Database (Denmark)

    Stahlhut, Carsten; Stopczynski, Arkadiusz; Larsen, Jakob Eg

    We demonstrate a fully portable 3D real-time functional brain scanner consisting of a wireless 14-channel ‘Neuroheadset‘ (Emotiv EPOC) and a Nokia N900 smartphone. The novelty of our system is the ability to perform real-time functional brain imaging on a smartphone device, including stimulus...... delivery, data acquisition, logging, brain state decoding, and 3D visualization of the cortical EEG sources. Custom-made software realized in Qt has been implemented on the phone, which allow for either the phone to process the EEG data locally or transmit it to a server when more advanced machine learning......, tablet computers, and netbooks) that are based on Linux operating systems....

  18. Managing Geological Profiles in Databases for 3D Visualisation

    Science.gov (United States)

    Jarna, A.; Grøtan, B. O.; Henderson, I. H. C.; Iversen, S.; Khloussy, E.; Nordahl, B.; Rindstad, B. I.

    2016-10-01

    Geology and all geological structures are three-dimensional in space. GIS and databases are common tools used by geologists to interpret and communicate geological data. The NGU (Geological Survey of Norway) is the national institution for the study of bedrock, mineral resources, surficial deposits and groundwater and marine geology. 3D geology is usually described by geological profiles, or vertical sections through a map, where you can look at the rock structure below the surface. The goal is to gradually expand the usability of existing and new geological profiles to make them more available in the retail applications as well as build easier entry and registration of profiles. The project target is to develop the methodology for acquisition of data, modification and use of data and its further presentation on the web by creating a user-interface directly linked to NGU's webpage. This will allow users to visualise profiles in a 3D model.

  19. An aerial 3D printing test mission

    Science.gov (United States)

    Hirsch, Michael; McGuire, Thomas; Parsons, Michael; Leake, Skye; Straub, Jeremy

    2016-05-01

    This paper provides an overview of an aerial 3D printing technology, its development and its testing. This technology is potentially useful in its own right. In addition, this work advances the development of a related in-space 3D printing technology. A series of aerial 3D printing test missions, used to test the aerial printing technology, are discussed. Through completing these test missions, the design for an in-space 3D printer may be advanced. The current design for the in-space 3D printer involves focusing thermal energy to heat an extrusion head and allow for the extrusion of molten print material. Plastics can be used as well as composites including metal, allowing for the extrusion of conductive material. A variety of experiments will be used to test this initial 3D printer design. High altitude balloons will be used to test the effects of microgravity on 3D printing, as well as parabolic flight tests. Zero pressure balloons can be used to test the effect of long 3D printing missions subjected to low temperatures. Vacuum chambers will be used to test 3D printing in a vacuum environment. The results will be used to adapt a current prototype of an in-space 3D printer. Then, a small scale prototype can be sent into low-Earth orbit as a 3-U cube satellite. With the ability to 3D print in space demonstrated, future missions can launch production hardware through which the sustainability and durability of structures in space will be greatly improved.

  20. 3D thermography in non-destructive testing of composite structures

    Science.gov (United States)

    Hellstein, Piotr; Szwedo, Mariusz

    2016-12-01

    The combination of 3D scanners and infrared cameras has lead to the introduction of 3D thermography. Such analysis produces results in the form of three-dimensional thermograms, where the temperatures are mapped on a 3D model reconstruction of the inspected object. All work in the field of 3D thermography focused on its utility in passive thermography inspections. The authors propose a new real-time 3D temperature mapping method, which for the first time can be applied to active thermography analyses. All steps required to utilise 3D thermography are discussed, starting from acquisition of three-dimensional and infrared data, going through image processing and scene reconstruction, finishing with thermal projection and ray-tracing visualisation techniques. The application of the developed method was tested during diagnosis of several industrial composite structures—boats, planes and wind turbine blades.

  1. Review of three-dimensional (3D) surface imaging for oncoplastic, reconstructive and aesthetic breast surgery.

    Science.gov (United States)

    O'Connell, Rachel L; Stevens, Roger J G; Harris, Paul A; Rusby, Jennifer E

    2015-08-01

    Three-dimensional surface imaging (3D-SI) is being marketed as a tool in aesthetic breast surgery. It has recently also been studied in the objective evaluation of cosmetic outcome of oncological procedures. The aim of this review is to summarise the use of 3D-SI in oncoplastic, reconstructive and aesthetic breast surgery. An extensive literature review was undertaken to identify published studies. Two reviewers independently screened all abstracts and selected relevant articles using specific inclusion criteria. Seventy two articles relating to 3D-SI for breast surgery were identified. These covered endpoints such as image acquisition, calculations and data obtainable, comparison of 3D and 2D imaging and clinical research applications of 3D-SI. The literature provides a favourable view of 3D-SI. However, evidence of its superiority over current methods of clinical decision making, surgical planning, communication and evaluation of outcome is required before it can be accepted into mainstream practice.

  2. 3D Printed Block Copolymer Nanostructures

    Science.gov (United States)

    Scalfani, Vincent F.; Turner, C. Heath; Rupar, Paul A.; Jenkins, Alexander H.; Bara, Jason E.

    2015-01-01

    The emergence of 3D printing has dramatically advanced the availability of tangible molecular and extended solid models. Interestingly, there are few nanostructure models available both commercially and through other do-it-yourself approaches such as 3D printing. This is unfortunate given the importance of nanotechnology in science today. In this…

  3. Parametrizable cameras for 3D computational steering

    NARCIS (Netherlands)

    Mulder, J.D.; Wijk, J.J. van

    1997-01-01

    We present a method for the definition of multiple views in 3D interfaces for computational steering. The method uses the concept of a point-based parametrizable camera object. This concept enables a user to create and configure multiple views on his custom 3D interface in an intuitive graphical man

  4. 3D elastic control for mobile devices.

    Science.gov (United States)

    Hachet, Martin; Pouderoux, Joachim; Guitton, Pascal

    2008-01-01

    To increase the input space of mobile devices, the authors developed a proof-of-concept 3D elastic controller that easily adapts to mobile devices. This embedded device improves the completion of high-level interaction tasks such as visualization of large documents and navigation in 3D environments. It also opens new directions for tomorrow's mobile applications.

  5. 3D printing of functional structures

    NARCIS (Netherlands)

    Krijnen, G.J.M.

    2016-01-01

    The technology colloquial known as ‘3D printing’ has developed in such diversity in printing technologies and application fields that meanwhile it seems anything is possible. However, clearly the ideal 3D Printer, with high resolution, multi-material capability, fast printing, etc. is yet to be deve

  6. 3D, or Not to Be?

    Science.gov (United States)

    Norbury, Keith

    2012-01-01

    It may be too soon for students to be showing up for class with popcorn and gummy bears, but technology similar to that behind the 3D blockbuster movie "Avatar" is slowly finding its way into college classrooms. 3D classroom projectors are taking students on fantastic voyages inside the human body, to the ruins of ancient Greece--even to faraway…

  7. The 3D-city model

    DEFF Research Database (Denmark)

    Holmgren, Steen; Rüdiger, Bjarne; Tournay, Bruno

    2001-01-01

    We have worked with the construction and use of 3D city models for about ten years. This work has given us valuable experience concerning model methodology. In addition to this collection of knowledge, our perception of the concept of city models has changed radically. In order to explain...... of 3D city models....

  8. 3D Printing of Molecular Models

    Science.gov (United States)

    Gardner, Adam; Olson, Arthur

    2016-01-01

    Physical molecular models have played a valuable role in our understanding of the invisible nano-scale world. We discuss 3D printing and its use in producing models of the molecules of life. Complex biomolecular models, produced from 3D printed parts, can demonstrate characteristics of molecular structure and function, such as viral self-assembly,…

  9. 3D Printing. What's the Harm?

    Science.gov (United States)

    Love, Tyler S.; Roy, Ken

    2016-01-01

    Health concerns from 3D printing were first documented by Stephens, Azimi, Orch, and Ramos (2013), who found that commercially available 3D printers were producing hazardous levels of ultrafine particles (UFPs) and volatile organic compounds (VOCs) when plastic materials were melted through the extruder. UFPs are particles less than 100 nanometers…

  10. 3D background aerodynamics using CFD

    DEFF Research Database (Denmark)

    Sørensen, Niels N.

    2002-01-01

    3D rotor computations for the Greek Geovilogiki (GEO) 44 meter rotor equipped with 19 meters blades are performed. The lift and drag polars are extracted at five spanvise locations r/R= (.37, .55, .71, .82, .93) based on identification of stagnationpoints between 2D and 3D computations. The inner...

  11. Limited Feedback for 3D Massive MIMO under 3D-UMa and 3D-UMi Scenarios

    Directory of Open Access Journals (Sweden)

    Zheng Hu

    2015-01-01

    Full Text Available For three-dimensional (3D massive MIMO utilizing the uniform rectangular array (URA in the base station (BS, we propose a limited feedback transmission scheme in which the channel state information (CSI feedback operations for horizontal domain and vertical domain are separate. Compared to the traditional feedback scheme, the scheme can reduce the feedback overhead, code word index search complexity, and storage requirement. Also, based on the zenith of departure angle (ZoD distribution in 3D-Urban Macro Cell (3D-UMa and 3D-Urban Micro Cell (3D-UMi scenarios, we propose the angle quantization codebook for vertical domain, while the codebook of long term evolution-advanced (LTE-Advanced is still adopted in horizontal domain to preserve compatibility with the LTE-Advanced. Based on the angle quantization codebook, the subsampled 3-bit DFT codebook is designed for vertical domain. The system-level simulation results reveal that, to compromise the feedback overhead and system performance, 2-bit codebook for 3D-UMa scenario and 3-bit codebook for 3D-UMi scenario can meet requirements in vertical domain. The feedback period for vertical domain can also be extended appropriately to reduce the feedback overhead.

  12. Fabrication of 3D Silicon Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Kok, A.; Hansen, T.E.; Hansen, T.A.; Lietaer, N.; Summanwar, A.; /SINTEF, Oslo; Kenney, C.; Hasi, J.; /SLAC; Da Via, C.; /Manchester U.; Parker, S.I.; /Hawaii U.

    2012-06-06

    Silicon sensors with a three-dimensional (3-D) architecture, in which the n and p electrodes penetrate through the entire substrate, have many advantages over planar silicon sensors including radiation hardness, fast time response, active edge and dual readout capabilities. The fabrication of 3D sensors is however rather complex. In recent years, there have been worldwide activities on 3D fabrication. SINTEF in collaboration with Stanford Nanofabrication Facility have successfully fabricated the original (single sided double column type) 3D detectors in two prototype runs and the third run is now on-going. This paper reports the status of this fabrication work and the resulted yield. The work of other groups such as the development of double sided 3D detectors is also briefly reported.

  13. Maintaining and troubleshooting your 3D printer

    CERN Document Server

    Bell, Charles

    2014-01-01

    Maintaining and Troubleshooting Your 3D Printer by Charles Bell is your guide to keeping your 3D printer running through preventive maintenance, repair, and diagnosing and solving problems in 3D printing. If you've bought or built a 3D printer such as a MakerBot only to be confounded by jagged edges, corner lift, top layers that aren't solid, or any of a myriad of other problems that plague 3D printer enthusiasts, then here is the book to help you get past all that and recapture the joy of creative fabrication. The book also includes valuable tips for builders and those who want to modify the

  14. 2D/3D switchable displays

    Science.gov (United States)

    Dekker, T.; de Zwart, S. T.; Willemsen, O. H.; Hiddink, M. G. H.; IJzerman, W. L.

    2006-02-01

    A prerequisite for a wide market acceptance of 3D displays is the ability to switch between 3D and full resolution 2D. In this paper we present a robust and cost effective concept for an auto-stereoscopic switchable 2D/3D display. The display is based on an LCD panel, equipped with switchable LC-filled lenticular lenses. We will discuss 3D image quality, with the focus on display uniformity. We show that slanting the lenticulars in combination with a good lens design can minimize non-uniformities in our 20" 2D/3D monitors. Furthermore, we introduce fractional viewing systems as a very robust concept to further improve uniformity in the case slanting the lenticulars and optimizing the lens design are not sufficient. We will discuss measurements and numerical simulations of the key optical characteristics of this display. Finally, we discuss 2D image quality, the switching characteristics and the residual lens effect.

  15. 6D Interpretation of 3D Gravity

    Science.gov (United States)

    Herfray, Yannick; Krasnov, Kirill; Scarinci, Carlos

    2017-02-01

    We show that 3D gravity, in its pure connection formulation, admits a natural 6D interpretation. The 3D field equations for the connection are equivalent to 6D Hitchin equations for the Chern–Simons 3-form in the total space of the principal bundle over the 3-dimensional base. Turning this construction around one gets an explanation of why the pure connection formulation of 3D gravity exists. More generally, we interpret 3D gravity as the dimensional reduction of the 6D Hitchin theory. To this end, we show that any \\text{SU}(2) invariant closed 3-form in the total space of the principal \\text{SU}(2) bundle can be parametrised by a connection together with a 2-form field on the base. The dimensional reduction of the 6D Hitchin theory then gives rise to 3D gravity coupled to a topological 2-form field.

  16. 3D Visualization Development of SIUE Campus

    Science.gov (United States)

    Nellutla, Shravya

    Geographic Information Systems (GIS) has progressed from the traditional map-making to the modern technology where the information can be created, edited, managed and analyzed. Like any other models, maps are simplified representations of real world. Hence visualization plays an essential role in the applications of GIS. The use of sophisticated visualization tools and methods, especially three dimensional (3D) modeling, has been rising considerably due to the advancement of technology. There are currently many off-the-shelf technologies available in the market to build 3D GIS models. One of the objectives of this research was to examine the available ArcGIS and its extensions for 3D modeling and visualization and use them to depict a real world scenario. Furthermore, with the advent of the web, a platform for accessing and sharing spatial information on the Internet, it is possible to generate interactive online maps. Integrating Internet capacity with GIS functionality redefines the process of sharing and processing the spatial information. Enabling a 3D map online requires off-the-shelf GIS software, 3D model builders, web server, web applications and client server technologies. Such environments are either complicated or expensive because of the amount of hardware and software involved. Therefore, the second objective of this research was to investigate and develop simpler yet cost-effective 3D modeling approach that uses available ArcGIS suite products and the free 3D computer graphics software for designing 3D world scenes. Both ArcGIS Explorer and ArcGIS Online will be used to demonstrate the way of sharing and distributing 3D geographic information on the Internet. A case study of the development of 3D campus for the Southern Illinois University Edwardsville is demonstrated.

  17. The psychology of the 3D experience

    Science.gov (United States)

    Janicke, Sophie H.; Ellis, Andrew

    2013-03-01

    With 3D televisions expected to reach 50% home saturation as early as 2016, understanding the psychological mechanisms underlying the user response to 3D technology is critical for content providers, educators and academics. Unfortunately, research examining the effects of 3D technology has not kept pace with the technology's rapid adoption, resulting in large-scale use of a technology about which very little is actually known. Recognizing this need for new research, we conducted a series of studies measuring and comparing many of the variables and processes underlying both 2D and 3D media experiences. In our first study, we found narratives within primetime dramas had the power to shift viewer attitudes in both 2D and 3D settings. However, we found no difference in persuasive power between 2D and 3D content. We contend this lack of effect was the result of poor conversion quality and the unique demands of 3D production. In our second study, we found 3D technology significantly increased enjoyment when viewing sports content, yet offered no added enjoyment when viewing a movie trailer. The enhanced enjoyment of the sports content was shown to be the result of heightened emotional arousal and attention in the 3D condition. We believe the lack of effect found for the movie trailer may be genre-related. In our final study, we found 3D technology significantly enhanced enjoyment of two video games from different genres. The added enjoyment was found to be the result of an increased sense of presence.

  18. Exploration 3-D Seismic Field Test/Native Tribes Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Carroll, Herbert B.; Chen, K.C.; Guo, Genliang; Johnson, W.I.; Reeves,T.K.; Sharma,Bijon

    1999-04-27

    To determine current acquisition procedures and costs and to further the goals of the President's Initiative for Native Tribes, a seismic-survey project is to be conducted on Osage tribal lands. The goals of the program are to demonstrate the capabilities, costs, and effectiveness of 3-D seismic work in a small-operator setting and to determine the economics of such a survey. For these purposes, typical small-scale independent-operator practices are being followed and a shallow target chose in an area with a high concentration of independent operators. The results will be analyzed in detail to determine if there are improvements and/or innovations which can be easily introduced in field-acquisition procedures, in processing, or in data manipulation and interpretation to further reduce operating costs and to make the system still more active to the small-scale operator.

  19. Perancangan dan Pembuatan Aplikasi Visualisasi 3D Interaktif Masjid Agung Jawa Tengah Menggunakan Unity3D

    Directory of Open Access Journals (Sweden)

    Irham Fa'idh Faiztyan

    2015-04-01

    Full Text Available Previously, people who want to visit a tourist attraction should come to that place. If you can’t visit it normally, you can only read or heard from a source. Therefore made 3-dimensional visualization application. The object to be visualized in this research is Great Mosque of Central Java. This application aims to facilitate the introduction of the Great Mosque of Central Java. This application is created using Unity3D and Sketchup software, where the programming language used is UnityScript and JavaScript. The design phase made using Multimedia Development Life Cycle, and then proceed with the design using Flowchart. Implementation phase is done by implementing a 3D model and program implementation. The testing phase is done with a black-box method, as well as testing of the frame rate per second, memory and processor usage, how long rendering process, and user testing. The results show that this application runs well on Windows operating systems. Buttons and functions within the application has been running well with the respective functionality. From the test results on the application of the Great Mosque of Central Java visualization can be shown that the process of rendering both real time and non real time rendering requires a high performance from graphics card and processor. Based on the testing that has been done, the application is quite easy to run by the user, the objects that exist in the application is quite similar to the original object, and this application provides benefits to its users.

  20. 3D target array for pulsed multi-sourced radiography

    Science.gov (United States)

    Le Galloudec, Nathalie Joelle

    2016-02-23

    The various technologies presented herein relate to the generation of x-rays and other charged particles. A plurality of disparate source materials can be combined on an array to facilitate fabrication of co-located mixed tips (point sources) which can be utilized to form a polychromatic cloud, e.g., a plurality of x-rays having a range of energies and or wavelengths, etc. The tips can be formed such that the x-rays are emitted in a direction different to other charged particles to facilitate clean x-ray sourcing. Particles, such as protons, can be directionally emitted to facilitate generation of neutrons at a secondary target. The various particles can be generated by interaction of a laser irradiating the array of tips. The tips can be incorporated into a plurality of 3D conical targets, the conical target sidewall(s) can be utilized to microfocus a portion of a laser beam onto the tip material.

  1. Rebinning and reconstruction techniques for 3D TOF-PET

    Energy Technology Data Exchange (ETDEWEB)

    Vandenberghe, Stefaan [Philips Research USA, Briarcliff NY (United States)]. E-mail: stefaan.vandenberghe@ugent.be; Karp, Joel [PET instrumentation group, University of Pennsylvania, Philadelphia, PA (United States)

    2006-12-20

    The measured time difference in 3D Time-of-Flight (TOF) positron emission tomography (PET) makes it possible to improve the signal-to-noise ratio of reconstructed images. The improvement in signal-to-noise ratio will probably be used to reduce imaging time. To keep up with workflow there will be a need for faster reconstruction methods. A variety of reconstruction and rebinning methods have been developed in the past for 2D and 3D TOF-PET data. The TOF information makes very simple reconstruction methods possible. These allow real time reconstruction but the obtained image quality is lower. Relative fast reconstructions can be obtained using rebinning techniques. Fully 3D iterative listmode reconstruction makes no approximations but comes at the expense of long reconstruction times. Data from Monte Carlo simulations of 3D TOF-PET scanners are used to quantify differences in noise and contrast between the different methods. Real time methods are useful for direct display after or even during acquisition, but do not generate useful data for reviewing. Rebinning methods can be used to reduce the reconstruction time with a small loss in image quality and the image quality loss is quite small if good timing resolution can be achieved. Fully 3D iterative listmode reconstruction maximizes the obtained image quality and should be used if not even a small loss in image quality is acceptable. When timing resolution is improved the difference between the different methods become clearly smaller and in the limit where timing resolution is equal to spatial resolution, the methods are equivalent.

  2. The 3D Elevation Program—Summary for Puerto Rico

    Science.gov (United States)

    Carswell, Jr., William J.

    2016-02-03

    Elevation data are essential to a broad range of applications, including forest resources management, wildlife and habitat management, scientific research, national security, recreation, and many others. For the Commonwealth of Puerto Rico, elevation data are critical for flood risk management, landslide mitigation, natural resources conservation, sea level rise and subsidence, coastal zone management, infrastructure and construction management, and other business uses. Today, high-density light detection and ranging (lidar) data are the primary sources for deriving elevation models and other datasets. Federal, State, Tribal, U.S. territorial, and local agencies work in partnership to (1) replace data that are older and of lower quality and (2) provide coverage where publicly accessible data do not exist. A joint goal of State and Federal partners is to acquire consistent, statewide coverage to support existing and emerging applications enabled by lidar data.The National Enhanced Elevation Assessment evaluated multiple elevation data acquisition options to determine the optimal data quality and data replacement cycle relative to cost to meet the identified requirements of the user community. The evaluation demonstrated that lidar acquisition at quality level 2 for the conterminous United States, Hawaii, and selected U.S. territories, and quality level 5 interferometric synthetic aperture radar (IfSAR) data for Alaska, all with a 6- to 10-year acquisition cycle, provided the highest benefit/cost ratios. The 3D Elevation Program (3DEP) initiative selected an 8-year acquisition cycle for the respective quality levels. 3DEP, managed by the U.S. Geological Survey (USGS), the Office of Management and Budget Circular A‒16 lead agency for terrestrial elevation data, responds to the growing need for high-quality topographic data and a wide range of other three-dimensional (3D) representations of the Nation’s natural and constructed features.

  3. Comprehending 3D Diagrams: Sketching to Support Spatial Reasoning.

    Science.gov (United States)

    Gagnier, Kristin M; Atit, Kinnari; Ormand, Carol J; Shipley, Thomas F

    2016-11-25

    Science, technology, engineering, and mathematics (STEM) disciplines commonly illustrate 3D relationships in diagrams, yet these are often challenging for students. Failing to understand diagrams can hinder success in STEM because scientific practice requires understanding and creating diagrammatic representations. We explore a new approach to improving student understanding of diagrams that convey 3D relations that is based on students generating their own predictive diagrams. Participants' comprehension of 3D spatial diagrams was measured in a pre- and post-design where students selected the correct 2D slice through 3D geologic block diagrams. Generating sketches that predicated the internal structure of a model led to greater improvement in diagram understanding than visualizing the interior of the model without sketching, or sketching the model without attempting to predict unseen spatial relations. In addition, we found a positive correlation between sketched diagram accuracy and improvement on the diagram comprehension measure. Results suggest that generating a predictive diagram facilitates students' abilities to make inferences about spatial relationships in diagrams. Implications for use of sketching in supporting STEM learning are discussed.

  4. Advancing the field of 3D biomaterial printing.

    Science.gov (United States)

    Jakus, Adam E; Rutz, Alexandra L; Shah, Ramille N

    2016-01-11

    3D biomaterial printing has emerged as a potentially revolutionary technology, promising to transform both research and medical therapeutics. Although there has been recent progress in the field, on-demand fabrication of functional and transplantable tissues and organs is still a distant reality. To advance to this point, there are two major technical challenges that must be overcome. The first is expanding upon the limited variety of available 3D printable biomaterials (biomaterial inks), which currently do not adequately represent the physical, chemical, and biological complexity and diversity of tissues and organs within the human body. Newly developed biomaterial inks and the resulting 3D printed constructs must meet numerous interdependent requirements, including those that lead to optimal printing, structural, and biological outcomes. The second challenge is developing and implementing comprehensive biomaterial ink and printed structure characterization combined with in vitro and in vivo tissue- and organ-specific evaluation. This perspective outlines considerations for addressing these technical hurdles that, once overcome, will facilitate rapid advancement of 3D biomaterial printing as an indispensable tool for both investigating complex tissue and organ morphogenesis and for developing functional devices for a variety of diagnostic and regenerative medicine applications.

  5. Mechanism of 3D domain swapping in bovine seminal ribonuclease.

    Science.gov (United States)

    Spadaccini, Roberta; Ercole, Carmine; Graziano, Giuseppe; Wechselberger, Rainer; Boelens, Rolf; Picone, Delia

    2014-02-01

    3D domain swapping (3D-DS) is a complex protein aggregation process for which no unique mechanism exists. We report an analysis of 3D-DS in bovine seminal ribonuclease, a homodimeric protein whose subunits are linked by two disulfide bridges, based on NMR and biochemical studies. The presence of the covalent bonds between the subunits stabilizes the unswapped dimer, and allows distinct evaluation of the structural and dynamic effects of the swapping with respect to the dimerization process. In comparison with the monomeric subunit, which, in solution has a compact structure without any propensity for local unfolding, both swapped and unswapped dimers show increased flexibility. NMR analysis, together with urea denaturation and hydrogen–deuterium exchange data, indicates that the two dimers have increased conformational fluctuations. Furthermore, we found that the rate-limiting step of both the swapping and unswapping pathways is the detachment of the N-terminal helices from the monomers. These results suggest a new general mechanism in which a dimeric intermediate could facilitate 3D-DS in globular proteins.

  6. Photogrammetry for rapid prototyping: development of noncontact 3D reconstruction technologies

    Science.gov (United States)

    Knyaz, Vladimir A.

    2002-04-01

    An important stage of rapid prototyping technology is generating computer 3D model of an object to be reproduced. Wide variety of techniques for 3D model generation exists beginning with manual 3D models generation and finishing with full-automated reverse engineering system. The progress in CCD sensors and computers provides the background for integration of photogrammetry as an accurate 3D data source with CAD/CAM. The paper presents the results of developing photogrammetric methods for non-contact spatial coordinates measurements and generation of computer 3D model of real objects. The technology is based on object convergent images processing for calculating its 3D coordinates and surface reconstruction. The hardware used for spatial coordinates measurements is based on PC as central processing unit and video camera as image acquisition device. The original software for Windows 9X realizes the complete technology of 3D reconstruction for rapid input of geometry data in CAD/CAM systems. Technical characteristics of developed systems are given along with the results of applying for various tasks of 3D reconstruction. The paper describes the techniques used for non-contact measurements and the methods providing metric characteristics of reconstructed 3D model. Also the results of system application for 3D reconstruction of complex industrial objects are presented.

  7. 3D imaging in forensic odontology.

    Science.gov (United States)

    Evans, Sam; Jones, Carl; Plassmann, Peter

    2010-06-16

    This paper describes the investigation of a new 3D capture method for acquiring and subsequent forensic analysis of bite mark injuries on human skin. When documenting bite marks with standard 2D cameras errors in photographic technique can occur if best practice is not followed. Subsequent forensic analysis of the mark is problematic when a 3D structure is recorded into a 2D space. Although strict guidelines (BAFO) exist, these are time-consuming to follow and, due to their complexity, may produce errors. A 3D image capture and processing system might avoid the problems resulting from the 2D reduction process, simplifying the guidelines and reducing errors. Proposed Solution: a series of experiments are described in this paper to demonstrate that the potential of a 3D system might produce suitable results. The experiments tested precision and accuracy of the traditional 2D and 3D methods. A 3D image capture device minimises the amount of angular distortion, therefore such a system has the potential to create more robust forensic evidence for use in courts. A first set of experiments tested and demonstrated which method of forensic analysis creates the least amount of intra-operator error. A second set tested and demonstrated which method of image capture creates the least amount of inter-operator error and visual distortion. In a third set the effects of angular distortion on 2D and 3D methods of image capture were evaluated.

  8. Medical 3D Printing for the Radiologist.

    Science.gov (United States)

    Mitsouras, Dimitris; Liacouras, Peter; Imanzadeh, Amir; Giannopoulos, Andreas A; Cai, Tianrun; Kumamaru, Kanako K; George, Elizabeth; Wake, Nicole; Caterson, Edward J; Pomahac, Bohdan; Ho, Vincent B; Grant, Gerald T; Rybicki, Frank J

    2015-01-01

    While use of advanced visualization in radiology is instrumental in diagnosis and communication with referring clinicians, there is an unmet need to render Digital Imaging and Communications in Medicine (DICOM) images as three-dimensional (3D) printed models capable of providing both tactile feedback and tangible depth information about anatomic and pathologic states. Three-dimensional printed models, already entrenched in the nonmedical sciences, are rapidly being embraced in medicine as well as in the lay community. Incorporating 3D printing from images generated and interpreted by radiologists presents particular challenges, including training, materials and equipment, and guidelines. The overall costs of a 3D printing laboratory must be balanced by the clinical benefits. It is expected that the number of 3D-printed models generated from DICOM images for planning interventions and fabricating implants will grow exponentially. Radiologists should at a minimum be familiar with 3D printing as it relates to their field, including types of 3D printing technologies and materials used to create 3D-printed anatomic models, published applications of models to date, and clinical benefits in radiology. Online supplemental material is available for this article.

  9. Digital relief generation from 3D models

    Science.gov (United States)

    Wang, Meili; Sun, Yu; Zhang, Hongming; Qian, Kun; Chang, Jian; He, Dongjian

    2016-09-01

    It is difficult to extend image-based relief generation to high-relief generation, as the images contain insufficient height information. To generate reliefs from three-dimensional (3D) models, it is necessary to extract the height fields from the model, but this can only generate bas-reliefs. To overcome this problem, an efficient method is proposed to generate bas-reliefs and high-reliefs directly from 3D meshes. To produce relief features that are visually appropriate, the 3D meshes are first scaled. 3D unsharp masking is used to enhance the visual features in the 3D mesh, and average smoothing and Laplacian smoothing are implemented to achieve better smoothing results. A nonlinear variable scaling scheme is then employed to generate the final bas-reliefs and high-reliefs. Using the proposed method, relief models can be generated from arbitrary viewing positions with different gestures and combinations of multiple 3D models. The generated relief models can be printed by 3D printers. The proposed method provides a means of generating both high-reliefs and bas-reliefs in an efficient and effective way under the appropriate scaling factors.

  10. 3D Reconstruction Technique for Tomographic PIV

    Institute of Scientific and Technical Information of China (English)

    姜楠; 包全; 杨绍琼

    2015-01-01

    Tomographic particle image velocimetry(Tomo-PIV) is a state-of-the-art experimental technique based on a method of optical tomography to achieve the three-dimensional(3D) reconstruction for three-dimensional three-component(3D-3C) flow velocity measurements. 3D reconstruction for Tomo-PIV is carried out herein. Meanwhile, a 3D simplified tomographic reconstruction model reduced from a 3D volume light inten-sity field with 2D projection images into a 2D Tomo-slice plane with 1D projecting lines, i.e., simplifying this 3D reconstruction into a problem of 2D Tomo-slice plane reconstruction, is applied thereafter. Two kinds of the most well-known algebraic reconstruction techniques, algebraic reconstruction technique(ART) and multiple algebraic reconstruction technique(MART), are compared as well. The principles of the two reconstruction algorithms are discussed in detail, which has been performed by a series of simulation images, yielding the corresponding recon-struction images that show different features between the ART and MART algorithm, and then their advantages and disadvantages are discussed. Further discussions are made for the standard particle image reconstruction when the background noise of the pre-initial particle image has been removed. Results show that the particle image recon-struction has been greatly improved. The MART algorithm is much better than the ART. Furthermore, the computa-tional analyses of two parameters(the particle density and the number of cameras), are performed to study their effects on the reconstruction. Lastly, the 3D volume particle field is reconstructed by using the improved algorithm based on the simplified 3D tomographic reconstruction model, which proves that the algorithm simplification is feasible and it can be applied to the reconstruction of 3D volume particle field in a Tomo-PIV system.

  11. 3D object-oriented image analysis in 3D geophysical modelling

    DEFF Research Database (Denmark)

    Fadel, I.; van der Meijde, M.; Kerle, N.

    2015-01-01

    Non-uniqueness of satellite gravity interpretation has traditionally been reduced by using a priori information from seismic tomography models. This reduction in the non-uniqueness has been based on velocity-density conversion formulas or user interpretation of the 3D subsurface structures (objects......) based on the seismic tomography models and then forward modelling these objects. However, this form of object-based approach has been done without a standardized methodology on how to extract the subsurface structures from the 3D models. In this research, a 3D object-oriented image analysis (3D OOA......) approach was implemented to extract the 3D subsurface structures from geophysical data. The approach was applied on a 3D shear wave seismic tomography model of the central part of the East African Rift System. Subsequently, the extracted 3D objects from the tomography model were reconstructed in the 3D...

  12. 3-D Human Modeling and Animation

    CERN Document Server

    Ratner, Peter

    2012-01-01

    3-D Human Modeling and Animation Third Edition All the tools and techniques you need to bring human figures to 3-D life Thanks to today's remarkable technology, artists can create and animate realistic, three-dimensional human figures that were not possible just a few years ago. This easy-to-follow book guides you through all the necessary steps to adapt your own artistic skill in figure drawing, painting, and sculpture to this exciting digital canvas. 3-D Human Modeling and Animation, Third Edition starts you off with simple modeling, then prepares you for more advanced techniques for crea

  13. FIT3D: Fitting optical spectra

    Science.gov (United States)

    Sánchez, S. F.; Pérez, E.; Sánchez-Blázquez, P.; González, J. J.; Rosales-Ortega, F. F.; Cano-Díaz, M.; López-Cobá, C.; Marino, R. A.; Gil de Paz, A.; Mollá, M.; López-Sánchez, A. R.; Ascasibar, Y.; Barrera-Ballesteros, J.

    2016-09-01

    FIT3D fits optical spectra to deblend the underlying stellar population and the ionized gas, and extract physical information from each component. FIT3D is focused on the analysis of Integral Field Spectroscopy data, but is not restricted to it, and is the basis of Pipe3D, a pipeline used in the analysis of datasets like CALIFA, MaNGA, and SAMI. It can run iteratively or in an automatic way to derive the parameters of a large set of spectra.

  14. 3D Immersive Visualization with Astrophysical Data

    Science.gov (United States)

    Kent, Brian R.

    2017-01-01

    We present the refinement of a new 3D immersion technique for astrophysical data visualization.Methodology to create 360 degree spherical panoramas is reviewed. The 3D software package Blender coupled with Python and the Google Spatial Media module are used together to create the final data products. Data can be viewed interactively with a mobile phone or tablet or in a web browser. The technique can apply to different kinds of astronomical data including 3D stellar and galaxy catalogs, images, and planetary maps.

  15. 3D Printing the ATLAS' barrel toroid

    CERN Document Server

    Goncalves, Tiago Barreiro

    2016-01-01

    The present report summarizes my work as part of the Summer Student Programme 2016 in the CERN IR-ECO-TSP department (International Relations – Education, Communication & Outreach – Teacher and Student Programmes). Particularly, I worked closely with the S’Cool LAB team on a science education project. This project included the 3D designing, 3D printing, and assembling of a model of the ATLAS’ barrel toroid. A detailed description of the project' development is presented and a short manual on how to use 3D printing software and hardware is attached.

  16. 3D face modeling, analysis and recognition

    CERN Document Server

    Daoudi, Mohamed; Veltkamp, Remco

    2013-01-01

    3D Face Modeling, Analysis and Recognition presents methodologies for analyzing shapes of facial surfaces, develops computational tools for analyzing 3D face data, and illustrates them using state-of-the-art applications. The methodologies chosen are based on efficient representations, metrics, comparisons, and classifications of features that are especially relevant in the context of 3D measurements of human faces. These frameworks have a long-term utility in face analysis, taking into account the anticipated improvements in data collection, data storage, processing speeds, and application s

  17. A high capacity 3D steganography algorithm.

    Science.gov (United States)

    Chao, Min-Wen; Lin, Chao-hung; Yu, Cheng-Wei; Lee, Tong-Yee

    2009-01-01

    In this paper, we present a very high-capacity and low-distortion 3D steganography scheme. Our steganography approach is based on a novel multilayered embedding scheme to hide secret messages in the vertices of 3D polygon models. Experimental results show that the cover model distortion is very small as the number of hiding layers ranges from 7 to 13 layers. To the best of our knowledge, this novel approach can provide much higher hiding capacity than other state-of-the-art approaches, while obeying the low distortion and security basic requirements for steganography on 3D models.

  18. RHOCUBE: 3D density distributions modeling code

    Science.gov (United States)

    Nikutta, Robert; Agliozzo, Claudia

    2016-11-01

    RHOCUBE models 3D density distributions on a discrete Cartesian grid and their integrated 2D maps. It can be used for a range of applications, including modeling the electron number density in LBV shells and computing the emission measure. The RHOCUBE Python package provides several 3D density distributions, including a powerlaw shell, truncated Gaussian shell, constant-density torus, dual cones, and spiralling helical tubes, and can accept additional distributions. RHOCUBE provides convenient methods for shifts and rotations in 3D, and if necessary, an arbitrary number of density distributions can be combined into the same model cube and the integration ∫ dz performed through the joint density field.

  19. Computer Modelling of 3D Geological Surface

    CERN Document Server

    Kodge, B G

    2011-01-01

    The geological surveying presently uses methods and tools for the computer modeling of 3D-structures of the geographical subsurface and geotechnical characterization as well as the application of geoinformation systems for management and analysis of spatial data, and their cartographic presentation. The objectives of this paper are to present a 3D geological surface model of Latur district in Maharashtra state of India. This study is undertaken through the several processes which are discussed in this paper to generate and visualize the automated 3D geological surface model of a projected area.

  20. FUN3D Manual: 12.8

    Science.gov (United States)

    Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.

    2015-01-01

    This manual describes the installation and execution of FUN3D version 12.8, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  1. FUN3D Manual: 12.6

    Science.gov (United States)

    Biedron, Robert T.; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, William L.; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.

    2015-01-01

    This manual describes the installation and execution of FUN3D version 12.6, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  2. FUN3D Manual: 12.5

    Science.gov (United States)

    Biedron, Robert T.; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, William L.; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.

    2014-01-01

    This manual describes the installation and execution of FUN3D version 12.5, including optional dependent packages. FUN3D is a suite of computational uid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables ecient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  3. FUN3D Manual: 13.1

    Science.gov (United States)

    Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.

    2017-01-01

    This manual describes the installation and execution of FUN3D version 13.1, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  4. FUN3D Manual: 12.4

    Science.gov (United States)

    Biedron, Robert T.; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.

    2014-01-01

    This manual describes the installation and execution of FUN3D version 12.4, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixedelement unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  5. FUN3D Manual: 12.7

    Science.gov (United States)

    Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.

    2015-01-01

    This manual describes the installation and execution of FUN3D version 12.7, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  6. Automatic balancing of 3D models

    DEFF Research Database (Denmark)

    Christiansen, Asger Nyman; Schmidt, Ryan; Bærentzen, Jakob Andreas

    2014-01-01

    3D printing technologies allow for more diverse shapes than are possible with molds and the cost of making just one single object is negligible compared to traditional production methods. However, not all shapes are suitable for 3D print. One of the remaining costs is therefore human time spent......, in these cases, we will apply a rotation of the object which only deforms the shape a little near the base. No user input is required but it is possible to specify manufacturing constraints related to specific 3D print technologies. Several models have successfully been balanced and printed using both polyjet...

  7. Participation and 3D Visualization Tools

    DEFF Research Database (Denmark)

    Mullins, Michael; Jensen, Mikkel Holm; Henriksen, Sune

    2004-01-01

    With a departure point in a workshop held at the VR Media Lab at Aalborg University , this paper deals with aspects of public participation and the use of 3D visualisation tools. The workshop grew from a desire to involve a broad collaboration between the many actors in the city through using new...... perceptions of architectural representation in urban design where 3D visualisation techniques are used. It is the authors? general finding that, while 3D visualisation media have the potential to increase understanding of virtual space for the lay public, as well as for professionals, the lay public require...

  8. The reactor dynamics code DYN3D

    Energy Technology Data Exchange (ETDEWEB)

    Kliem, Soeren; Bilodid, Yuri; Fridman, Emil; Baier, Silvio; Grahn, Alexander; Gommlich, Andre; Nikitin, Evgeny; Rohde, Ulrich [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany)

    2016-05-15

    The article provides an overview on the code DYN3D which is a three-dimensional core model for steady-state, dynamic and depletion calculations in reactor cores with quadratic or hexagonal fuel assembly geometry being developed by the Helmholtz-Zentrum Dresden-Rossendorf for more than 20 years. The current paper gives an overview on the basic DYN3D models and the available code couplings. The verification and validation status is shortly outlined. The paper concludes with the current developments of the DYN3D code. For more detailed information the reader is referred to the publications cited in the corresponding chapters.

  9. 3D Indoor Building Environment Reconstruction using calibration of Range finder Data

    DEFF Research Database (Denmark)

    Jamali, Ali; Anton, François; Rahman, Alias Abdul

    2015-01-01

    Nowadays, municipalities intend to have 3D city models for facility management, disaster management and architectural planning. 3D data acquisition can be done by laser scanning for indoor environment which is a costly and time consuming process. Currently, for indoor surveying, Electronic Distance...... Measurement (EDM) and Terrestrial Laser Scanner (TLS) are mostly used. In this paper, several techniques for indoor 3D building data acquisition have been investigated. For reducing the time and cost of indoor building data acquisition process, the Trimble LaserAce 1000 range finder is used. The accuracy...... of the rangefinder is evaluated and a simple spatial model is reconstructed from real data. This technique is rapid (it requires a shorter time as compared to others), but the results show inconsistencies in horizontal angles for short distances in indoor environments. The range finder was calibrated using a least...

  10. Do-It-Yourself: 3D Models of Hydrogenic Orbitals through 3D Printing

    Science.gov (United States)

    Griffith, Kaitlyn M.; de Cataldo, Riccardo; Fogarty, Keir H.

    2016-01-01

    Introductory chemistry students often have difficulty visualizing the 3-dimensional shapes of the hydrogenic electron orbitals without the aid of physical 3D models. Unfortunately, commercially available models can be quite expensive. 3D printing offers a solution for producing models of hydrogenic orbitals. 3D printing technology is widely…

  11. 3D presentatie van geluid in de cockpit [3D sound presentation in the cockpit

    NARCIS (Netherlands)

    Bronkhorst, A.W.

    2003-01-01

    A.W. Bronkhorst, 3D-presentatie van geluid in de cockpit 1 Using virtual acoustics, sound can be presented from virtual sources located in the 3D space around the listener. This 3D sound has interesting applications in the cockpit. Sounds can be used to convey directional information, and interferen

  12. 3D Printing of Biocompatible Supramolecular Polymers and their Composites.

    Science.gov (United States)

    Hart, Lewis R; Li, Siwei; Sturgess, Craig; Wildman, Ricky; Jones, Julian R; Hayes, Wayne

    2016-02-10

    A series of polymers capable of self-assembling into infinite networks via supramolecular interactions have been designed, synthesized, and characterized for use in 3D printing applications. The biocompatible polymers and their composites with silica nanoparticles were successfully utilized to deposit both simple cubic structures, as well as a more complex twisted pyramidal feature. The polymers were found to be not toxic to a chondrogenic cell line, according to ISO 10993-5 and 10993-12 standard tests and the cells attached to the supramolecular polymers as demonstrated by confocal microscopy. Silica nanoparticles were then dispersed within the polymer matrix, yielding a composite material which was optimized for inkjet printing. The hybrid material showed promise in preliminary tests to facilitate the 3D deposition of a more complex structure.

  13. Technical illustration based on 3D CSG models

    Institute of Scientific and Technical Information of China (English)

    GENG Wei-dong; DING Lei; YU Hong-feng; PAN Yun-he

    2005-01-01

    This paper presents an automatic non-photorealistic rendering approach to generating technical illustration from 3D models. It first decomposes the 3D object into a set of CSG primitives, and then performs the hidden surface removal based on the prioritized list, in which the rendition order of CSG primitives is sorted out by depth. Then, each primitive is illustrated by the pre-defined empirical lighting model, and the system mimics the stroke-drawing by user-specified style. In order to artistically and flexibly modulate the illumination, the empirical lighting model is defined by three major components: parameters of multi-level lighting intensities, parametric spatial occupations for each lighting level, and an interpolation method to calculate the lighting units into the spatial occupation of CSG primitives, instead of"pixel-by-pixel" painting. This region-by-region shading facilitates the simulation of illustration styles.

  14. The 3D Genome as Moderator of Chromosomal Communication.

    Science.gov (United States)

    Dekker, Job; Mirny, Leonid

    2016-03-10

    Proper expression of genes requires communication with their regulatory elements that can be located elsewhere along the chromosome. The physics of chromatin fibers imposes a range of constraints on such communication. The molecular and biophysical mechanisms by which chromosomal communication is established, or prevented, have become a topic of intense study, and important roles for the spatial organization of chromosomes are being discovered. Here we present a view of the interphase 3D genome characterized by extensive physical compartmentalization and insulation on the one hand and facilitated long-range interactions on the other. We propose the existence of topological machines dedicated to set up and to exploit a 3D genome organization to both promote and censor communication along and between chromosomes.

  15. Integration of Petrophysical Methods and 3D Printing Technology to Replicate Reservoir Pore Systems

    Science.gov (United States)

    Ishutov, S.; Hasiuk, F.; Gray, J.; Harding, C.

    2014-12-01

    Pore-scale imaging and modeling are becoming routine geoscience techniques of reservoir analysis and simulation in oil and gas industry. Three-dimensional printing may facilitate the transformation of pore-space imagery into rock models, which can be compared to traditional laboratory methods and literature data. Although current methodologies for rapid rock modeling and printing obscure many details of grain geometry, computed tomography data is one route to refine pore networks and experimentally test hypotheses related to rock properties, such as porosity and permeability. This study uses three-dimensional printing as a novel way of interacting with x-ray computed tomography data from reservoir core plugs based on digital modeling of pore systems in coarse-grained sandstones and limestones. The advantages of using artificial rocks as a proxy are to better understand the contributions of pore system characteristics at various scales to petrophysical properties in oil and gas reservoirs. Pore radii of reservoir sandstones used in this study range from 1 to 100s of microns, whereas the pore radii for limestones vary from 0.01 to 10s of microns. The resolution of computed tomography imaging is ~10 microns; the resolution of 3D digital printing used in the study varies from 2.5 to 300 microns. For this technology to be useful, loss of pore network information must be minimized in the course of data acquisition, modeling, and production as well as verified against core-scale measurements. The ultimate goal of this study is to develop a reservoir rock "photocopier" that couples 3D scanning and modeling with 3D printing to reproduce a) petrophyscially accurate copies of reservoir pore systems and b) digitally modified pore systems for testing hypotheses about reservoir flow. By allowing us to build porous media with known properties (porosity, permeability, surface area), technology will also advance our understanding of the tools used to measure these quantities (e

  16. Two Accelerating Techniques for 3D Reconstruction

    Institute of Scientific and Technical Information of China (English)

    刘世霞; 胡事民; 孙家广

    2002-01-01

    Automatic reconstruction of 3D objects from 2D orthographic views has been a major research issue in CAD/CAM. In this paper, two accelerating techniques to improve the efficiency of reconstruction are presented. First, some pseudo elements are removed by depth and topology information as soon as the wire-frame is constructed, which reduces the searching space. Second, the proposed algorithm does not establish all possible surfaces in the process of generating 3D faces. The surfaces and edge loops are generated by using the relationship between the boundaries of 3D faces and their projections. This avoids the growth in combinational complexity of previous methods that have to check all possible pairs of 3D candidate edges.

  17. 3D-FPA Hybridization Improvements Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Scientific Concepts, Inc. (ASC) is a small business, which has developed a compact, eye-safe 3D Flash LIDARTM Camera (FLC) well suited for real-time...

  18. The 3-d view of planetary nebulae

    Directory of Open Access Journals (Sweden)

    Hugo E. Schwarz

    2006-01-01

    Full Text Available Considerando las nebulosas planetarias (PNe de manera tridimensional (3-D, demonstramos que se pueden reducir las grandes incertidumbres asociadas con los m etodos cl asicos de modelar y observar PNe para obtener sus estructuras 3-D y distancias. Usando espectrofotometr a de ranura larga o empleando un Integral Field Unit para restringir los modelos de fotoionizaci on 3-D de PNe y as eliminar dicha incertidumbre de la densidad y de la fracci on del volumen que emite radiaci on ( lling factor, determinamos las detalladas estructuras 3-D, los par ametros de las estrellas centrales y las distancias con una precisi on de 10-20%. Los m etodos cl asicos t picamente daban estos par ametros con una incertidumbre de un factor 3 o m as.

  19. Nonlaser-based 3D surface imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Shin-yee; Johnson, R.K.; Sherwood, R.J. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    3D surface imaging refers to methods that generate a 3D surface representation of objects of a scene under viewing. Laser-based 3D surface imaging systems are commonly used in manufacturing, robotics and biomedical research. Although laser-based systems provide satisfactory solutions for most applications, there are situations where non laser-based approaches are preferred. The issues that make alternative methods sometimes more attractive are: (1) real-time data capturing, (2) eye-safety, (3) portability, and (4) work distance. The focus of this presentation is on generating a 3D surface from multiple 2D projected images using CCD cameras, without a laser light source. Two methods are presented: stereo vision and depth-from-focus. Their applications are described.

  20. Designing Biomaterials for 3D Printing.

    Science.gov (United States)

    Guvendiren, Murat; Molde, Joseph; Soares, Rosane M D; Kohn, Joachim

    2016-10-10

    Three-dimensional (3D) printing is becoming an increasingly common technique to fabricate scaffolds and devices for tissue engineering applications. This is due to the potential of 3D printing to provide patient-specific designs, high structural complexity, rapid on-demand fabrication at a low-cost. One of the major bottlenecks that limits the widespread acceptance of 3D printing in biomanufacturing is the lack of diversity in "biomaterial inks". Printability of a biomaterial is determined by the printing technique. Although a wide range of biomaterial inks including polymers, ceramics, hydrogels and composites have been developed, the field is still struggling with processing of these materials into self-supporting devices with tunable mechanics, degradation, and bioactivity. This review aims to highlight the past and recent advances in biomaterial ink development and design considerations moving forward. A brief overview of 3D printing technologies focusing on ink design parameters is also included.

  1. DNA biosensing with 3D printing technology.

    Science.gov (United States)

    Loo, Adeline Huiling; Chua, Chun Kiang; Pumera, Martin

    2017-01-16

    3D printing, an upcoming technology, has vast potential to transform conventional fabrication processes due to the numerous improvements it can offer to the current methods. To date, the employment of 3D printing technology has been examined for applications in the fields of engineering, manufacturing and biological sciences. In this study, we examined the potential of adopting 3D printing technology for a novel application, electrochemical DNA biosensing. Metal 3D printing was utilized to construct helical-shaped stainless steel electrodes which functioned as a transducing platform for the detection of DNA hybridization. The ability of electroactive methylene blue to intercalate into the double helix structure of double-stranded DNA was then exploited to monitor the DNA hybridization process, with its inherent reduction peak serving as an analytical signal. The designed biosensing approach was found to demonstrate superior selectivity against a non-complementary DNA target, with a detection range of 1-1000 nM.

  2. Lightning fast animation in Element 3D

    CERN Document Server

    Audronis, Ty

    2014-01-01

    An easy-to-follow and all-inclusive guide, in which the underlying principles of 3D animation as well as their importance are explained in detail. The lessons are designed to teach you how to think of 3D animation in such a way that you can troubleshoot any problem, or animate any scene that comes your way.If you are a Digital Artist, Animation Artist, or a Game Programmer and you want to become an expert in Element 3D, this is the book for you. Although there are a lot of basics for beginners in this book, it includes some advanced techniques for both animating in Element 3D, and overcoming i

  3. Advanced 3D Object Identification System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Optra will build an Advanced 3D Object Identification System utilizing three or more high resolution imagers spaced around a launch platform. Data from each imager...

  4. 3D Biomaterial Microarrays for Regenerative Medicine

    DEFF Research Database (Denmark)

    Gaharwar, Akhilesh K.; Arpanaei, Ayyoob; Andresen, Thomas Lars;

    2015-01-01

    Three dimensional (3D) biomaterial microarrays hold enormous promise for regenerative medicine because of their ability to accelerate the design and fabrication of biomimetic materials. Such tissue-like biomaterials can provide an appropriate microenvironment for stimulating and controlling stem...

  5. 3D-printed bioanalytical devices

    Science.gov (United States)

    Bishop, Gregory W.; Satterwhite-Warden, Jennifer E.; Kadimisetty, Karteek; Rusling, James F.

    2016-07-01

    While 3D printing technologies first appeared in the 1980s, prohibitive costs, limited materials, and the relatively small number of commercially available printers confined applications mainly to prototyping for manufacturing purposes. As technologies, printer cost, materials, and accessibility continue to improve, 3D printing has found widespread implementation in research and development in many disciplines due to ease-of-use and relatively fast design-to-object workflow. Several 3D printing techniques have been used to prepare devices such as milli- and microfluidic flow cells for analyses of cells and biomolecules as well as interfaces that enable bioanalytical measurements using cellphones. This review focuses on preparation and applications of 3D-printed bioanalytical devices.

  6. 3D VISUALIZATION FOR VIRTUAL MUSEUM DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    M. Skamantzari

    2016-06-01

    Full Text Available The interest in the development of virtual museums is nowadays rising rapidly. During the last decades there have been numerous efforts concerning the 3D digitization of cultural heritage and the development of virtual museums, digital libraries and serious games. The realistic result has always been the main concern and a real challenge when it comes to 3D modelling of monuments, artifacts and especially sculptures. This paper implements, investigates and evaluates the results of the photogrammetric methods and 3D surveys that were used for the development of a virtual museum. Moreover, the decisions, the actions, the methodology and the main elements that this kind of application should include and take into consideration are described and analysed. It is believed that the outcomes of this application will be useful to researchers who are planning to develop and further improve the attempts made on virtual museums and mass production of 3D models.

  7. Eyes on the Earth 3D

    Science.gov (United States)

    Kulikov, anton I.; Doronila, Paul R.; Nguyen, Viet T.; Jackson, Randal K.; Greene, William M.; Hussey, Kevin J.; Garcia, Christopher M.; Lopez, Christian A.

    2013-01-01

    Eyes on the Earth 3D software gives scientists, and the general public, a realtime, 3D interactive means of accurately viewing the real-time locations, speed, and values of recently collected data from several of NASA's Earth Observing Satellites using a standard Web browser (climate.nasa.gov/eyes). Anyone with Web access can use this software to see where the NASA fleet of these satellites is now, or where they will be up to a year in the future. The software also displays several Earth Science Data sets that have been collected on a daily basis. This application uses a third-party, 3D, realtime, interactive game engine called Unity 3D to visualize the satellites and is accessible from a Web browser.

  8. 3D Flash LIDAR Space Laser Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Scientific Concepts, Inc (ASC) is a small business, which has developed a compact, eye-safe 3D Flash LIDARTM Camera (FLC) well suited for real-time...

  9. Copper Electrodeposition for 3D Integration

    CERN Document Server

    Beica, Rozalia; Ritzdorf, Tom

    2008-01-01

    Two dimensional (2D) integration has been the traditional approach for IC integration. Due to increasing demands for providing electronic devices with superior performance and functionality in more efficient and compact packages, has driven the semiconductor industry to develop more advanced packaging technologies. Three-dimensional (3D) approaches address both miniaturization and integration required for advanced and portable electronic products. Vertical integration proved to be essential in achieving a greater integration flexibility of disparate technologies, reason for which a general trend of transition from 2D to 3D integration is currently being observed in the industry. 3D chip integration using through silicon via (TSV) copper is considered one of the most advanced technologies among all different types of 3D packaging technologies. Copper electrodeposition is one of technologies that enable the formation of TSV structures. Because of its well-known application for copper damascene, it was believed ...

  10. Pentingnya Pengetahuan Anatomi untuk 3D Artist

    Directory of Open Access Journals (Sweden)

    Anton Sugito Kurniawan

    2011-03-01

    Full Text Available No matter how far the current technological advances, anatomical knowledge will still be needed as a basis for making a good character design. Understanding anatomy will help us in the placement of the articulation of muscles and joints, thus more realistic modeling of 3d characters will be achieved in the form and movement. As a 3d character artist, anatomy should be able to inform in every aspect of our work. Each 3D/CG (Computer Graphics-artist needs to know how to use software applications, but what differentiates a 3d artist with a computer operator is an artistic vision and understanding of the basic shape of the human body. Artistic vision could not easily be taught, but a CG-artist may study it on their own from which so many reference sources may help understand and deepen their knowledge of anatomy.

  11. Measuring Visual Closeness of 3-D Models

    KAUST Repository

    Morales, Jose A.

    2012-09-01

    Measuring visual closeness of 3-D models is an important issue for different problems and there is still no standardized metric or algorithm to do it. The normal of a surface plays a vital role in the shading of a 3-D object. Motivated by this, we developed two applications to measure visualcloseness, introducing normal difference as a parameter in a weighted metric in Metro’s sampling approach to obtain the maximum and mean distance between 3-D models using 3-D and 6-D correspondence search structures. A visual closeness metric should provide accurate information on what the human observers would perceive as visually close objects. We performed a validation study with a group of people to evaluate the correlation of our metrics with subjective perception. The results were positive since the metrics predicted the subjective rankings more accurately than the Hausdorff distance.

  12. 3DSEM: A 3D microscopy dataset

    Directory of Open Access Journals (Sweden)

    Ahmad P. Tafti

    2016-03-01

    Full Text Available The Scanning Electron Microscope (SEM as a 2D imaging instrument has been widely used in many scientific disciplines including biological, mechanical, and materials sciences to determine the surface attributes of microscopic objects. However the SEM micrographs still remain 2D images. To effectively measure and visualize the surface properties, we need to truly restore the 3D shape model from 2D SEM images. Having 3D surfaces would provide anatomic shape of micro-samples which allows for quantitative measurements and informative visualization of the specimens being investigated. The 3DSEM is a dataset for 3D microscopy vision which is freely available at [1] for any academic, educational, and research purposes. The dataset includes both 2D images and 3D reconstructed surfaces of several real microscopic samples.

  13. Infiltration front monitoring using 3D Electrical Resistivity Tomography

    Science.gov (United States)

    Oxarango, Laurent; Audebert, Marine; Guyard, Helene; Clement, Remi

    2016-04-01

    The electrical resistivity tomography (ERT) geophysical method is commonly used to identify the spatial distribution of electrical resisitivity in the soil at the field scale. Recent progress in commercial acquisition systems allows repeating fast acquisitions (10 min) in order to monitor a 3D dynamic phenomenon. Since the ERT method is sensitive to moisture content variations, it can thus be used to delineate the infiltration shape during water infiltration. In heterogeneous conditions, the 3D infiltration shape is a crucial information because it could differ significantly from the homogeneous behavior. In a first step, the ERT method is validated at small scale ( 10m). Two examples of leachate injection monitoring in municipal solid waste landfills are used to put forward benefits and limitations of the ERT-MICS method. Effective infiltration porosities in a range between 3% and 8% support the assumption of a flow in heterogeneous media. Audebert, M., R. Clément, N. Touze-Foltz, T. Günther, S. Moreau, and C. Duquennoi (2014), Time-lapse ERT interpretation methodology for leachate injection monitoring based on multiple inversions and a clustering strategy (MICS), Journal of Applied Geophysics, 111, 320-333. Keywords: ERT, infiltration front, field survey

  14. Acquiring 3D indoor environments with variability and repetition

    KAUST Repository

    Kim, Youngmin

    2012-11-01

    Large-scale acquisition of exterior urban environments is by now a well-established technology, supporting many applications in search, navigation, and commerce. The same is, however, not the case for indoor environments, where access is often restricted and the spaces are cluttered. Further, such environments typically contain a high density of repeated objects (e.g., tables, chairs, monitors, etc.) in regular or non-regular arrangements with significant pose variations and articulations. In this paper, we exploit the special structure of indoor environments to accelerate their 3D acquisition and recognition with a low-end handheld scanner. Our approach runs in two phases: (i) a learning phase wherein we acquire 3D models of frequently occurring objects and capture their variability modes from only a few scans, and (ii) a recognition phase wherein from a single scan of a new area, we identify previously seen objects but in different poses and locations at an average recognition time of 200ms/model. We evaluate the robustness and limits of the proposed recognition system using a range of synthetic and real world scans under challenging settings. © 2012 ACM.

  15. Metrological analysis of the human foot: 3D multisensor exploration

    Science.gov (United States)

    Muñoz Potosi, A.; Meneses Fonseca, J.; León Téllez, J.

    2011-08-01

    In the podiatry field, many of the foot dysfunctions are mainly generated due to: Congenital malformations, accidents or misuse of footwear. For the treatment or prevention of foot disorders, the podiatrist diagnoses prosthesis or specific adapted footwear, according to the real dimension of foot. Therefore, it is necessary to acquire 3D information of foot with 360 degrees of observation. As alternative solution, it was developed and implemented an optical system of threedimensional reconstruction based in the principle of laser triangulation. The system is constituted by an illumination unit that project a laser plane into the foot surface, an acquisition unit with 4 CCD cameras placed around of axial foot axis, an axial moving unit that displaces the illumination and acquisition units in the axial axis direction and a processing and exploration unit. The exploration software allows the extraction of distances on three-dimensional image, taking into account the topography of foot. The optical system was tested and their metrological performances were evaluated in experimental conditions. The optical system was developed to acquire 3D information in order to design and make more appropriate footwear.

  16. Signal and Noise in 3D Environments

    Science.gov (United States)

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Signal and Noise in 3D Environments Michael B. Porter...complicated 3D environments . I have also been doing a great deal of work in modeling the noise field (the ocean soundscape) due to various sources...we have emphasized the propagation of ‘signals’. We have become increasingly interested in modeling ‘ noise ’ which can illuminate the ocean environment

  17. 3D Computer Graphics and Nautical Charts

    OpenAIRE

    Porathe, Thomas

    2011-01-01

    This paper gives an overview of an ongoing project using real-time 3D visualization to display nautical charts in a way used by 3D computer games. By displaying the map in an egocentric perspective the need to make cognitively demanding mental rotations are suggested to be removed, leading to faster decision-making and less errors. Experimental results support this hypothesis. Practical tests with limited success have been performed this year.

  18. 3D Printing Electrically Small Spherical Antennas

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.

    2013-01-01

    3D printing is applied for rapid prototyping of an electrically small spherical wire antenna. The model is first printed in plastic and subsequently covered with several layers of conductive paint. Measured results are in good agreement with simulations.......3D printing is applied for rapid prototyping of an electrically small spherical wire antenna. The model is first printed in plastic and subsequently covered with several layers of conductive paint. Measured results are in good agreement with simulations....

  19. 3D Reconstruction of NMR Images

    Directory of Open Access Journals (Sweden)

    Peter Izak

    2007-01-01

    Full Text Available This paper introduces experiment of 3D reconstruction NMR images scanned from magnetic resonance device. There are described methods which can be used for 3D reconstruction magnetic resonance images in biomedical application. The main idea is based on marching cubes algorithm. For this task was chosen sophistication method by program Vision Assistant, which is a part of program LabVIEW.

  20. Mayavi: Making 3D Data Visualization Reusable

    OpenAIRE

    Varoquaux, Gaël; Ramachandran, Prabhu

    2008-01-01

    International audience; Mayavi is a general-purpose 3D scientific visualization package. We believe 3D data visualization is a difficult task and different users can benefit from an easy-to-use tool for this purpose. In this article, we focus on how Mayavi addresses the needs of different users with a common code-base, rather than describing the data visualization functionalities of Mayavi, or the visualization model exposed to the user.

  1. 3D printing from MRI Data: Harnessing strengths and minimizing weaknesses.

    Science.gov (United States)

    Ripley, Beth; Levin, Dmitry; Kelil, Tatiana; Hermsen, Joshua L; Kim, Sooah; Maki, Jeffrey H; Wilson, Gregory J

    2017-03-01

    3D printing facilitates the creation of accurate physical models of patient-specific anatomy from medical imaging datasets. While the majority of models to date are created from computed tomography (CT) data, there is increasing interest in creating models from other datasets, such as ultrasound and magnetic resonance imaging (MRI). MRI, in particular, holds great potential for 3D printing, given its excellent tissue characterization and lack of ionizing radiation. There are, however, challenges to 3D printing from MRI data as well. Here we review the basics of 3D printing, explore the current strengths and weaknesses of printing from MRI data as they pertain to model accuracy, and discuss considerations in the design of MRI sequences for 3D printing. Finally, we explore the future of 3D printing and MRI, including creative applications and new materials.

  2. Auto convergence for stereoscopic 3D cameras

    Science.gov (United States)

    Zhang, Buyue; Kothandaraman, Sreenivas; Batur, Aziz Umit

    2012-03-01

    Viewing comfort is an important concern for 3-D capable consumer electronics such as 3-D cameras and TVs. Consumer generated content is typically viewed at a close distance which makes the vergence-accommodation conflict particularly pronounced, causing discomfort and eye fatigue. In this paper, we present a Stereo Auto Convergence (SAC) algorithm for consumer 3-D cameras that reduces the vergence-accommodation conflict on the 3-D display by adjusting the depth of the scene automatically. Our algorithm processes stereo video in realtime and shifts each stereo frame horizontally by an appropriate amount to converge on the chosen object in that frame. The algorithm starts by estimating disparities between the left and right image pairs using correlations of the vertical projections of the image data. The estimated disparities are then analyzed by the algorithm to select a point of convergence. The current and target disparities of the chosen convergence point determines how much horizontal shift is needed. A disparity safety check is then performed to determine whether or not the maximum and minimum disparity limits would be exceeded after auto convergence. If the limits would be exceeded, further adjustments are made to satisfy the safety limits. Finally, desired convergence is achieved by shifting the left and the right frames accordingly. Our algorithm runs real-time at 30 fps on a TI OMAP4 processor. It is tested using an OMAP4 embedded prototype stereo 3-D camera. It significantly improves 3-D viewing comfort.

  3. 3D steerable wavelets in practice.

    Science.gov (United States)

    Chenouard, Nicolas; Unser, Michael

    2012-11-01

    We introduce a systematic and practical design for steerable wavelet frames in 3D. Our steerable wavelets are obtained by applying a 3D version of the generalized Riesz transform to a primary isotropic wavelet frame. The novel transform is self-reversible (tight frame) and its elementary constituents (Riesz wavelets) can be efficiently rotated in any 3D direction by forming appropriate linear combinations. Moreover, the basis functions at a given location can be linearly combined to design custom (and adaptive) steerable wavelets. The features of the proposed method are illustrated with the processing and analysis of 3D biomedical data. In particular, we show how those wavelets can be used to characterize directional patterns and to detect edges by means of a 3D monogenic analysis. We also propose a new inverse-problem formalism along with an optimization algorithm for reconstructing 3D images from a sparse set of wavelet-domain edges. The scheme results in high-quality image reconstructions which demonstrate the feature-reduction ability of the steerable wavelets as well as their potential for solving inverse problems.

  4. ASSESSING 3D PHOTOGRAMMETRY TECHNIQUES IN CRANIOMETRICS

    Directory of Open Access Journals (Sweden)

    M. C. Moshobane

    2016-06-01

    Full Text Available Morphometrics (the measurement of morphological features has been revolutionized by the creation of new techniques to study how organismal shape co-varies with several factors such as ecophenotypy. Ecophenotypy refers to the divergence of phenotypes due to developmental changes induced by local environmental conditions, producing distinct ecophenotypes. None of the techniques hitherto utilized could explicitly address organismal shape in a complete biological form, i.e. three-dimensionally. This study investigates the use of the commercial software, Photomodeler Scanner® (PMSc® three-dimensional (3D modelling software to produce accurate and high-resolution 3D models. Henceforth, the modelling of Subantarctic fur seal (Arctocephalus tropicalis and Antarctic fur seal (Arctocephalus gazella skulls which could allow for 3D measurements. Using this method, sixteen accurate 3D skull models were produced and five metrics were determined. The 3D linear measurements were compared to measurements taken manually with a digital caliper. In addition, repetitive measurements were recorded by varying researchers to determine repeatability. To allow for comparison straight line measurements were taken with the software, assuming that close accord with all manually measured features would illustrate the model’s accurate replication of reality. Measurements were not significantly different demonstrating that realistic 3D skull models can be successfully produced to provide a consistent basis for craniometrics, with the additional benefit of allowing non-linear measurements if required.

  5. Assessing 3d Photogrammetry Techniques in Craniometrics

    Science.gov (United States)

    Moshobane, M. C.; de Bruyn, P. J. N.; Bester, M. N.

    2016-06-01

    Morphometrics (the measurement of morphological features) has been revolutionized by the creation of new techniques to study how organismal shape co-varies with several factors such as ecophenotypy. Ecophenotypy refers to the divergence of phenotypes due to developmental changes induced by local environmental conditions, producing distinct ecophenotypes. None of the techniques hitherto utilized could explicitly address organismal shape in a complete biological form, i.e. three-dimensionally. This study investigates the use of the commercial software, Photomodeler Scanner® (PMSc®) three-dimensional (3D) modelling software to produce accurate and high-resolution 3D models. Henceforth, the modelling of Subantarctic fur seal (Arctocephalus tropicalis) and Antarctic fur seal (Arctocephalus gazella) skulls which could allow for 3D measurements. Using this method, sixteen accurate 3D skull models were produced and five metrics were determined. The 3D linear measurements were compared to measurements taken manually with a digital caliper. In addition, repetitive measurements were recorded by varying researchers to determine repeatability. To allow for comparison straight line measurements were taken with the software, assuming that close accord with all manually measured features would illustrate the model's accurate replication of reality. Measurements were not significantly different demonstrating that realistic 3D skull models can be successfully produced to provide a consistent basis for craniometrics, with the additional benefit of allowing non-linear measurements if required.

  6. Spatial 3-D nonlinear calibration technique for PSD

    Science.gov (United States)

    Guo, Lifeng; Zhang, Guoxiong; Zheng, Qi; Gong, Qiang; Liu, Wenyao

    2006-11-01

    A 3-D nonlinear calibration technique for Position sensitive detector (PSD) in long distance laser collimating measurement is proposed. An automatic calibration system was developed to measure the nonlinearity of a 2-D PSD in 3-D space. It is mainly composed of a high accurate 2-D motorized translational stage, a high precision distance measuring device, and a computer-based data acquisition and control system. With the aid of the calibration system, the nonlinear characteristic of 2-D PSD is checked in a long collimating distance up to 78 meters. The calibration experiment was carried out for a series of distance, e.g. every 15 meters. The results showed that the nonlinearity of 2-D PSD is different evidently when the PSD element is at different distance from the laser head. One calculating method is defined to evaluate the nonlinear errors. The spatial 3-D mapping relationship between the actual displacements of the incident light and the coordinates of 2-D PSD outputs is established using a multilayer feedforward neural network.

  7. Feature detection on 3D images of dental imprints

    Science.gov (United States)

    Mokhtari, Marielle; Laurendeau, Denis

    1994-09-01

    A computer vision approach for the extraction of feature points on 3D images of dental imprints is presented. The position of feature points are needed for the measurement of a set of parameters for automatic diagnosis of malocclusion problems in orthodontics. The system for the acquisition of the 3D profile of the imprint, the procedure for the detection of the interstices between teeth, and the approach for the identification of the type of tooth are described, as well as the algorithm for the reconstruction of the surface of each type of tooth. A new approach for the detection of feature points, called the watershed algorithm, is described in detail. The algorithm is a two-stage procedure which tracks the position of local minima at four different scales and produces a final map of the position of the minima. Experimental results of the application of the watershed algorithm on actual 3D images of dental imprints are presented for molars, premolars and canines. The segmentation approach for the analysis of the shape of incisors is also described in detail.

  8. Single-shot 3D sensing with improved data density

    CERN Document Server

    Willomitzer, Florian; Faber, Christian; Häusler, Gerd

    2014-01-01

    We introduce a novel concept for motion robust optical 3D-sensing. The concept is based on multi-line triangulation. The aim is to evaluate a large number of projected lines (high data density) in a large measurement volume with high precision. Implementing all those three attributes at the same time allows for the "perfect" real-time 3D movie camera (our long term goal). The key problem towards this goal is ambiguous line indexing: we will demonstrate that the necessary information for unique line indexing can be acquired by two synchronized cameras and a back projection scheme. The introduced concept preserves high lateral resolution, since the lines are as narrow as the sampling theorem allows, no spatial bandwidth is consumed by encoding of the lines. In principle, the distance uncertainty is only limited by shot noise and coherent noise. The concept can be also advantageously implemented with a hand-guided sensor and real-time registration, for a complete and dense 3D-acquisition of complicated scenes.

  9. Low cost 3D scanning process using digital image processing

    Science.gov (United States)

    Aguilar, David; Romero, Carlos; Martínez, Fernando

    2017-02-01

    This paper shows the design and building of a low cost 3D scanner, able to digitize solid objects through contactless data acquisition, using active object reflection. 3D scanners are used in different applications such as: science, engineering, entertainment, etc; these are classified in: contact scanners and contactless ones, where the last ones are often the most used but they are expensive. This low-cost prototype is done through a vertical scanning of the object using a fixed camera and a mobile horizontal laser light, which is deformed depending on the 3-dimensional surface of the solid. Using digital image processing an analysis of the deformation detected by the camera was done; it allows determining the 3D coordinates using triangulation. The obtained information is processed by a Matlab script, which gives to the user a point cloud corresponding to each horizontal scanning done. The obtained results show an acceptable quality and significant details of digitalized objects, making this prototype (built on LEGO Mindstorms NXT kit) a versatile and cheap tool, which can be used for many applications, mainly by engineering students.

  10. 3D Reconstruction of Irregular Buildings and Buddha Statues

    Science.gov (United States)

    Zhang, K.; Li, M.-j.

    2014-04-01

    Three-dimensional laser scanning could acquire object's surface data quickly and accurately. However, the post-processing of point cloud is not perfect and could be improved. Based on the study of 3D laser scanning technology, this paper describes the details of solutions to modelling irregular ancient buildings and Buddha statues in Jinshan Temple, which aiming at data acquisition, modelling and texture mapping, etc. In order to modelling irregular ancient buildings effectively, the structure of each building is extracted manually by point cloud and the textures are mapped by the software of 3ds Max. The methods clearly combine 3D laser scanning technology with traditional modelling methods, and greatly improves the efficiency and accuracy of the ancient buildings restored. On the other hand, the main idea of modelling statues is regarded as modelling objects in reverse engineering. The digital model of statues obtained is not just vivid, but also accurate in the field of surveying and mapping. On this basis, a 3D scene of Jinshan Temple is reconstructed, which proves the validity of the solutions.

  11. Method for modeling post-mortem biometric 3D fingerprints

    Science.gov (United States)

    Rajeev, Srijith; Shreyas, Kamath K. M.; Agaian, Sos S.

    2016-05-01

    Despite the advancements of fingerprint recognition in 2-D and 3-D domain, authenticating deformed/post-mortem fingerprints continue to be an important challenge. Prior cleansing and reconditioning of the deceased finger is required before acquisition of the fingerprint. The victim's finger needs to be precisely and carefully operated by a medium to record the fingerprint impression. This process may damage the structure of the finger, which subsequently leads to higher false rejection rates. This paper proposes a non-invasive method to perform 3-D deformed/post-mortem finger modeling, which produces a 2-D rolled equivalent fingerprint for automated verification. The presented novel modeling method involves masking, filtering, and unrolling. Computer simulations were conducted on finger models with different depth variations obtained from Flashscan3D LLC. Results illustrate that the modeling scheme provides a viable 2-D fingerprint of deformed models for automated verification. The quality and adaptability of the obtained unrolled 2-D fingerprints were analyzed using NIST fingerprint software. Eventually, the presented method could be extended to other biometric traits such as palm, foot, tongue etc. for security and administrative applications.

  12. Computer Graphics Teaching Support using X3D: Extensible 3D Graphics for Web Authors

    OpenAIRE

    Brutzman, Don

    2008-01-01

    X3D is the ISO-standard scene-graph language for interactive 3D graphics on the Web. A new course is available for teaching the fundamentals of 3D graphics using Extensible 3D (X3D). Resources include a detailed textbook, an authoring tool, hundreds of example scenes, and detailed slidesets covering each chapter. The published book is commercially available, while all other course-module resources are provided online free under open-source licenses. Numerous other commercial and o...

  13. Recording stereoscopic 3D neurosurgery with a head-mounted 3D camera system.

    Science.gov (United States)

    Lee, Brian; Chen, Brian R; Chen, Beverly B; Lu, James Y; Giannotta, Steven L

    2015-06-01

    Stereoscopic three-dimensional (3D) imaging can present more information to the viewer and further enhance the learning experience over traditional two-dimensional (2D) video. Most 3D surgical videos are recorded from the operating microscope and only feature the crux, or the most important part of the surgery, leaving out other crucial parts of surgery including the opening, approach, and closing of the surgical site. In addition, many other surgeries including complex spine, trauma, and intensive care unit procedures are also rarely recorded. We describe and share our experience with a commercially available head-mounted stereoscopic 3D camera system to obtain stereoscopic 3D recordings of these seldom recorded aspects of neurosurgery. The strengths and limitations of using the GoPro(®) 3D system as a head-mounted stereoscopic 3D camera system in the operating room are reviewed in detail. Over the past several years, we have recorded in stereoscopic 3D over 50 cranial and spinal surgeries and created a library for education purposes. We have found the head-mounted stereoscopic 3D camera system to be a valuable asset to supplement 3D footage from a 3D microscope. We expect that these comprehensive 3D surgical videos will become an important facet of resident education and ultimately lead to improved patient care.

  14. 3D-mallien muokkaus 3D-tulostamista varten CAD-ohjelmilla

    OpenAIRE

    Lehtimäki, Jarmo

    2013-01-01

    Insinöörityössäni käsitellään 3D-mallien tulostamista ja erityisesti 3D-mallien mallintamista niin, että kappaleiden valmistaminen 3D-tulostimella onnistuisi mahdollisimman hyvin. Työ tehtiin Prohoc Oy:lle, joka sijaitsee Vaasassa. 3D-tulostuspalveluun tuli jatkuvasti 3D-malleja, joiden tulostuksessa oli ongelmia. Työssäni tutkin näiden ongelmien syntyä ja tein ohjeita eri 3D-mallinnusohjelmille, joiden tarkoituksena on auttaa tekemään helpommin tulostettavia 3D-malleja. Työhön kuului myös et...

  15. 3D-PRINTING OF BUILD OBJECTS

    Directory of Open Access Journals (Sweden)

    SAVYTSKYI M. V.

    2016-03-01

    Full Text Available Raising of problem. Today, in all spheres of our life we can constate the permanent search for new, modern methods and technologies that meet the principles of sustainable development. New approaches need to be, on the one hand more effective in terms of conservation of exhaustible resources of our planet, have minimal impact on the environment and on the other hand to ensure a higher quality of the final product. Construction is not exception. One of the new promising technology is the technology of 3D -printing of individual structures and buildings in general. 3Dprinting - is the process of real object recreating on the model of 3D. Unlike conventional printer which prints information on a sheet of paper, 3D-printer allows you to display three-dimensional information, i.e. creates certain physical objects. Currently, 3D-printer finds its application in many areas of production: machine building elements, a variety of layouts, interior elements, various items. But due to the fact that this technology is fairly new, it requires the creation of detailed and accurate technologies, efficient equipment and materials, and development of common vocabulary and regulatory framework in this field. Research Aim. The analysis of existing methods of creating physical objects using 3D-printing and the improvement of technology and equipment for the printing of buildings and structures. Conclusion. 3D-printers building is a new generation of equipment for the construction of buildings, structures, and structural elements. A variety of building printing technics opens up wide range of opportunities in the construction industry. At this stage, printers design allows to create low-rise buildings of different configurations with different mortars. The scientific novelty of this work is to develop proposals to improve the thermal insulation properties of constructed 3D-printing objects and technological equipment. The list of key terms and notions of construction

  16. Powering an in-space 3D printer using solar light energy

    Science.gov (United States)

    Leake, Skye; McGuire, Thomas; Parsons, Michael; Hirsch, Michael P.; Straub, Jeremy

    2016-05-01

    This paper describes how a solar power source can enable in-space 3D printing without requiring conversion to electric power and back. A design for an in-space 3D printer is presented, with a particular focus on the power generation system. Then, key benefits are presented and evaluated. Specifically, the approach facilitates the design of a spacecraft that can be built, launched, and operated at very low cost levels. The proposed approach also facilitates easy configuration of the amount of energy that is supplied. Finally, it facilitates easier disposal by removing the heavy metals and radioactive materials required for a nuclear-power solution.

  17. An Empirical Research on Cooperative Writing and Its Facilitation of Metacognitive Writing Strategy Acquisition in College Writing Classes%合作写作促进元认知策略习得的实证研究

    Institute of Scientific and Technical Information of China (English)

    蒋冬美; 李红军

    2012-01-01

    To test its effectiveness in facilitating the acquisition of writing metacognitive strategies and improv- ing learners' writing proficiency, an empirical research was carried out in a college writing class. The results indicate that cooperative writing encourages both the sharing of metacognitive strategies in writing among students and their self-analysis, and raises the effectiveness of writing feedback, which leads to the growth of the width and depth of learners' construction of writing metacognitive strategies, and therefore increases the acquisition and their writing achievement greatly.%为探讨合作学习对促进写作元认知策略的习得以及提高学生写作水平的效果,在大学英语写作课堂进行实证研究。结果表明:合作写作促进学习者之间写作元认知策略的相互分享和自我反思,也提高了反馈的有效性,从而增强了他们写作元认知策略建构的广度和深度,大大提高了写作元认知策略的习得和写作水平。

  18. Visual Fixation for 3D Video Stabilization

    Directory of Open Access Journals (Sweden)

    Hans-Peter Seidel

    2011-03-01

    Full Text Available Visual fixation is employed by humans and some animals to keep a specific 3D location at the center of the visual gaze. Inspired by this phenomenon in nature, this paper explores the idea to transfer this mechanism to the context of video stabilization for a hand-held video camera. A novel approach is presented that stabilizes a video by fixating on automatically extracted 3D target points. This approach is different from existing automatic solutions that stabilize the video by smoothing. To determine the 3D target points, the recorded scene is analyzed with a state-of-the-art structure-from-motion algorithm, which estimates camera motion and reconstructs a 3D point cloud of the static scene objects. Special algorithms are presented that search either virtual or real 3D target points, which back-project close to the center of the image for as long a period of time as possible. The stabilization algorithm then transforms the original images of the sequence so that these 3D target points are kept exactly in the center of the image, which, in case of real 3D target points, produces a perfectly stable result at the image center. Furthermore, different methods of additional user interaction are investigated. It is shown that the stabilization process can easily be controlled and that it can be combined with state-of-the-art tracking techniques in order to obtain a powerful image stabilization tool. The approach is evaluated on a variety of videos taken with a hand-held camera in natural scenes.

  19. PLOT3D Export Tool for Tecplot

    Science.gov (United States)

    Alter, Stephen

    2010-01-01

    The PLOT3D export tool for Tecplot solves the problem of modified data being impossible to output for use by another computational science solver. The PLOT3D Exporter add-on enables the use of the most commonly available visualization tools to engineers for output of a standard format. The exportation of PLOT3D data from Tecplot has far reaching effects because it allows for grid and solution manipulation within a graphical user interface (GUI) that is easily customized with macro language-based and user-developed GUIs. The add-on also enables the use of Tecplot as an interpolation tool for solution conversion between different grids of different types. This one add-on enhances the functionality of Tecplot so significantly, it offers the ability to incorporate Tecplot into a general suite of tools for computational science applications as a 3D graphics engine for visualization of all data. Within the PLOT3D Export Add-on are several functions that enhance the operations and effectiveness of the add-on. Unlike Tecplot output functions, the PLOT3D Export Add-on enables the use of the zone selection dialog in Tecplot to choose which zones are to be written by offering three distinct options - output of active, inactive, or all zones (grid blocks). As the user modifies the zones to output with the zone selection dialog, the zones to be written are similarly updated. This enables the use of Tecplot to create multiple configurations of a geometry being analyzed. For example, if an aircraft is loaded with multiple deflections of flaps, by activating and deactivating different zones for a specific flap setting, new specific configurations of that aircraft can be easily generated by only writing out specific zones. Thus, if ten flap settings are loaded into Tecplot, the PLOT3D Export software can output ten different configurations, one for each flap setting.

  20. A microfluidic device for 2D to 3D and 3D to 3D cell navigation

    Science.gov (United States)

    Shamloo, Amir; Amirifar, Leyla

    2016-01-01

    Microfluidic devices have received wide attention and shown great potential in the field of tissue engineering and regenerative medicine. Investigating cell response to various stimulations is much more accurate and comprehensive with the aid of microfluidic devices. In this study, we introduced a microfluidic device by which the matrix density as a mechanical property and the concentration profile of a biochemical factor as a chemical property could be altered. Our microfluidic device has a cell tank and a cell culture chamber to mimic both 2D to 3D and 3D to 3D migration of three types of cells. Fluid shear stress is negligible on the cells and a stable concentration gradient can be obtained by diffusion. The device was designed by a numerical simulation so that the uniformity of the concentration gradients throughout the cell culture chamber was obtained. Adult neural cells were cultured within this device and they showed different branching and axonal navigation phenotypes within varying nerve growth factor (NGF) concentration profiles. Neural stem cells were also cultured within varying collagen matrix densities while exposed to NGF concentrations and they experienced 3D to 3D collective migration. By generating vascular endothelial growth factor concentration gradients, adult human dermal microvascular endothelial cells also migrated in a 2D to 3D manner and formed a stable lumen within a specific collagen matrix density. It was observed that a minimum absolute concentration and concentration gradient were required to stimulate migration of all types of the cells. This device has the advantage of changing multiple parameters simultaneously and is expected to have wide applicability in cell studies.

  1. Simultaneous visualization of anatomical and functional 3D data by combining volume rendering and flow visualization

    Science.gov (United States)

    Schafhitzel, Tobias; Rößler, Friedemann; Weiskopf, Daniel; Ertl, Thomas

    2007-03-01

    Modern medical imaging provides a variety of techniques for the acquisition of multi-modality data. A typical example is the combination of functional and anatomical data from functional Magnetic Resonance Imaging (fMRI) and anatomical MRI measurements. Usually, the data resulting from each of these two methods is transformed to 3D scalar-field representations to facilitate visualization. A common method for the visualization of anatomical/functional multi-modalities combines semi-transparent isosurfaces (SSD, surface shaded display) with other scalar visualization techniques like direct volume rendering (DVR). However, partial occlusion and visual clutter that typically result from the overlay of these traditional 3D scalar-field visualization techniques make it difficult for the user to perceive and recognize visual structures. This paper addresses these perceptual issues by a new visualization approach for anatomical/functional multi-modalities. The idea is to reduce the occlusion effects of an isosurface by replacing its surface representation by a sparser line representation. Those lines are chosen along the principal curvature directions of the isosurface and rendered by a flow visualization method called line integral convolution (LIC). Applying the LIC algorithm results in fine line structures that improve the perception of the isosurface's shape in a way that it is possible to render it with small opacity values. An interactive visualization is achieved by executing the algorithm completely on the graphics processing unit (GPU) of modern graphics hardware. Furthermore, several illumination techniques and image compositing strategies are discussed for emphasizing the isosurface structure. We demonstrate our method for the example of fMRI/MRI measurements, visualizing the spatial relationship between brain activation and brain tissue.

  2. A new approach towards image based virtual 3D city modeling by using close range photogrammetry

    Science.gov (United States)

    Singh, S. P.; Jain, K.; Mandla, V. R.

    2014-05-01

    3D city model is a digital representation of the Earth's surface and it's related objects such as building, tree, vegetation, and some manmade feature belonging to urban area. The demand of 3D city modeling is increasing day to day for various engineering and non-engineering applications. Generally three main image based approaches are using for virtual 3D city models generation. In first approach, researchers used Sketch based modeling, second method is Procedural grammar based modeling and third approach is Close range photogrammetry based modeling. Literature study shows that till date, there is no complete solution available to create complete 3D city model by using images. These image based methods also have limitations This paper gives a new approach towards image based virtual 3D city modeling by using close range photogrammetry. This approach is divided into three sections. First, data acquisition process, second is 3D data processing, and third is data combination process. In data acquisition process, a multi-camera setup developed and used for video recording of an area. Image frames created from video data. Minimum required and suitable video image frame selected for 3D processing. In second section, based on close range photogrammetric principles and computer vision techniques, 3D model of area created. In third section, this 3D model exported to adding and merging of other pieces of large area. Scaling and alignment of 3D model was done. After applying the texturing and rendering on this model, a final photo-realistic textured 3D model created. This 3D model transferred into walk-through model or in movie form. Most of the processing steps are automatic. So this method is cost effective and less laborious. Accuracy of this model is good. For this research work, study area is the campus of department of civil engineering, Indian Institute of Technology, Roorkee. This campus acts as a prototype for city. Aerial photography is restricted in many country

  3. Heat Equation to 3D Image Segmentation

    Directory of Open Access Journals (Sweden)

    Nikolay Sirakov

    2006-04-01

    Full Text Available This paper presents a new approach, capable of 3D image segmentation and objects' surface reconstruction. The main advantages of the method are: large capture range; quick segmentation of a 3D scene/image to regions; multiple 3D objects reconstruction. The method uses centripetal force and penalty function to segment the entire 3D scene/image to regions containing a single 3D object. Each region is inscribed in a convex, smooth closed surface, which defines a centripetal force. Then the surface is evolved by the geometric heat differential equation toward the force's direction. The penalty function is defined to stop evolvement of those surface patches, whose normal vectors encountered object's surface. On the base of the theoretical model Forward Difference Algorithm was developed and coded by Mathematica. Stability convergence condition, truncation error and calculation complexity of the algorithm are determined. The obtained results, advantages and disadvantages of the method are discussed at the end of this paper.

  4. Recent Progress on 3D Silicon Detectors

    CERN Document Server

    Lange, Jörn

    2015-01-01

    3D silicon detectors, in which the electrodes penetrate the sensor bulk perpendicular to the surface, have recently undergone a rapid development from R\\&D over industrialisation to their first installation in a real high-energy-physics experiment. Since June 2015, the ATLAS Insertable B-Layer is taking first collision data with 3D pixel detectors. At the same time, preparations are advancing to install 3D pixel detectors in forward trackers such as the ATLAS Forward Proton detector or the CMS-TOTEM Proton Precision Spectrometer. For those experiments, the main requirements are a slim edge and the ability to cope with non-uniform irradiation. Both have been shown to be fulfilled by 3D pixel detectors. For the High-Luminosity LHC pixel upgrades of the major experiments, 3D detectors are promising candidates for the innermost pixel layers to cope with harsh radiation environments up to fluences of $2\\times10^{16}$\\,n$_{eq}$/cm$^2$ thanks to their excellent radiation hardness at low operational voltages and ...

  5. Full-color holographic 3D printer

    Science.gov (United States)

    Takano, Masami; Shigeta, Hiroaki; Nishihara, Takashi; Yamaguchi, Masahiro; Takahashi, Susumu; Ohyama, Nagaaki; Kobayashi, Akihiko; Iwata, Fujio

    2003-05-01

    A holographic 3D printer is a system that produces a direct hologram with full-parallax information using the 3-dimensional data of a subject from a computer. In this paper, we present a proposal for the reproduction of full-color images with the holographic 3D printer. In order to realize the 3-dimensional color image, we selected the 3 laser wavelength colors of red (λ=633nm), green (λ=533nm), and blue (λ=442nm), and we built a one-step optical system using a projection system and a liquid crystal display. The 3-dimensional color image is obtained by synthesizing in a 2D array the multiple exposure with these 3 wavelengths made on each 250mm elementary hologram, and moving recording medium on a x-y stage. For the natural color reproduction in the holographic 3D printer, we take the approach of the digital processing technique based on the color management technology. The matching between the input and output colors is performed by investigating first, the relation between the gray level transmittance of the LCD and the diffraction efficiency of the hologram and second, by measuring the color displayed by the hologram to establish a correlation. In our first experimental results a non-linear functional relation for single and multiple exposure of the three components were found. These results are the first step in the realization of a natural color 3D image produced by the holographic color 3D printer.

  6. Magnetic Properties of 3D Printed Toroids

    Science.gov (United States)

    Bollig, Lindsey; Otto, Austin; Hilpisch, Peter; Mowry, Greg; Nelson-Cheeseman, Brittany; Renewable Energy; Alternatives Lab (REAL) Team

    Transformers are ubiquitous in electronics today. Although toroidal geometries perform most efficiently, transformers are traditionally made with rectangular cross-sections due to the lower manufacturing costs. Additive manufacturing techniques (3D printing) can easily achieve toroidal geometries by building up a part through a series of 2D layers. To get strong magnetic properties in a 3D printed transformer, a composite filament is used containing Fe dispersed in a polymer matrix. How the resulting 3D printed toroid responds to a magnetic field depends on two structural factors of the printed 2D layers: fill factor (planar density) and fill pattern. In this work, we investigate how the fill factor and fill pattern affect the magnetic properties of 3D printed toroids. The magnetic properties of the printed toroids are measured by a custom circuit that produces a hysteresis loop for each toroid. Toroids with various fill factors and fill patterns are compared to determine how these two factors can affect the magnetic field the toroid can produce. These 3D printed toroids can be used for numerous applications in order to increase the efficiency of transformers by making it possible for manufacturers to make a toroidal geometry.

  7. 3D culture for cardiac cells.

    Science.gov (United States)

    Zuppinger, Christian

    2016-07-01

    This review discusses historical milestones, recent developments and challenges in the area of 3D culture models with cardiovascular cell types. Expectations in this area have been raised in recent years, but more relevant in vitro research, more accurate drug testing results, reliable disease models and insights leading to bioartificial organs are expected from the transition to 3D cell culture. However, the construction of organ-like cardiac 3D models currently remains a difficult challenge. The heart consists of highly differentiated cells in an intricate arrangement.Furthermore, electrical “wiring”, a vascular system and multiple cell types act in concert to respond to the rapidly changing demands of the body. Although cardiovascular 3D culture models have been predominantly developed for regenerative medicine in the past, their use in drug screening and for disease models has become more popular recently. Many sophisticated 3D culture models are currently being developed in this dynamic area of life science. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.

  8. BEAMS3D Neutral Beam Injection Model

    Science.gov (United States)

    McMillan, Matthew; Lazerson, Samuel A.

    2014-09-01

    With the advent of applied 3D fields in Tokamaks and modern high performance stellarators, a need has arisen to address non-axisymmetric effects on neutral beam heating and fueling. We report on the development of a fully 3D neutral beam injection (NBI) model, BEAMS3D, which addresses this need by coupling 3D equilibria to a guiding center code capable of modeling neutral and charged particle trajectories across the separatrix and into the plasma core. Ionization, neutralization, charge-exchange, viscous slowing down, and pitch angle scattering are modeled with the ADAS atomic physics database. Elementary benchmark calculations are presented to verify the collisionless particle orbits, NBI model, frictional drag, and pitch angle scattering effects. A calculation of neutral beam heating in the NCSX device is performed, highlighting the capability of the code to handle 3D magnetic fields. Notice: this manuscript has been authored by Princeton University under Contract Number DE-AC02-09CH11466 with the US Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

  9. 3D bioprinting for engineering complex tissues.

    Science.gov (United States)

    Mandrycky, Christian; Wang, Zongjie; Kim, Keekyoung; Kim, Deok-Ho

    2016-01-01

    Bioprinting is a 3D fabrication technology used to precisely dispense cell-laden biomaterials for the construction of complex 3D functional living tissues or artificial organs. While still in its early stages, bioprinting strategies have demonstrated their potential use in regenerative medicine to generate a variety of transplantable tissues, including skin, cartilage, and bone. However, current bioprinting approaches still have technical challenges in terms of high-resolution cell deposition, controlled cell distributions, vascularization, and innervation within complex 3D tissues. While no one-size-fits-all approach to bioprinting has emerged, it remains an on-demand, versatile fabrication technique that may address the growing organ shortage as well as provide a high-throughput method for cell patterning at the micrometer scale for broad biomedical engineering applications. In this review, we introduce the basic principles, materials, integration strategies and applications of bioprinting. We also discuss the recent developments, current challenges and future prospects of 3D bioprinting for engineering complex tissues. Combined with recent advances in human pluripotent stem cell technologies, 3D-bioprinted tissue models could serve as an enabling platform for high-throughput predictive drug screening and more effective regenerative therapies.

  10. A Hybrid 3D Indoor Space Model

    Science.gov (United States)

    Jamali, Ali; Rahman, Alias Abdul; Boguslawski, Pawel

    2016-10-01

    GIS integrates spatial information and spatial analysis. An important example of such integration is for emergency response which requires route planning inside and outside of a building. Route planning requires detailed information related to indoor and outdoor environment. Indoor navigation network models including Geometric Network Model (GNM), Navigable Space Model, sub-division model and regular-grid model lack indoor data sources and abstraction methods. In this paper, a hybrid indoor space model is proposed. In the proposed method, 3D modeling of indoor navigation network is based on surveying control points and it is less dependent on the 3D geometrical building model. This research proposes a method of indoor space modeling for the buildings which do not have proper 2D/3D geometrical models or they lack semantic or topological information. The proposed hybrid model consists of topological, geometrical and semantical space.

  11. 3D Printed Multimaterial Microfluidic Valve

    Science.gov (United States)

    Patrick, William G.; Sharma, Sunanda; Kong, David S.; Oxman, Neri

    2016-01-01

    We present a novel 3D printed multimaterial microfluidic proportional valve. The microfluidic valve is a fundamental primitive that enables the development of programmable, automated devices for controlling fluids in a precise manner. We discuss valve characterization results, as well as exploratory design variations in channel width, membrane thickness, and membrane stiffness. Compared to previous single material 3D printed valves that are stiff, these printed valves constrain fluidic deformation spatially, through combinations of stiff and flexible materials, to enable intricate geometries in an actuated, functionally graded device. Research presented marks a shift towards 3D printing multi-property programmable fluidic devices in a single step, in which integrated multimaterial valves can be used to control complex fluidic reactions for a variety of applications, including DNA assembly and analysis, continuous sampling and sensing, and soft robotics. PMID:27525809

  12. Resist loss in 3D compact modeling

    Science.gov (United States)

    Zheng, Xin; Huang, Jensheng; Chin, Fook; Kazarian, Aram; Kuo, Chun-Chieh

    2012-03-01

    An enhancement to compact modeling capability to include photoresist (PR) loss at different heights is developed and discussed. A hypsometric map representing 3-D resist profile was built by applying a first principle approximation to estimate the "energy loss" from the resist top to any other plane of interest as a proportional corresponding change in model threshold, which is analogous to a change in exposure dose. The result is compared and validated with 3D rigorous modeling as well as SEM images. Without increase in computation time, this compact model can construct 3D resist profiles capturing resist profile degradation at any vertical plane. Sidewall angle and standing wave information can also be granted from the vertical profile reconstruction. Since this method does not change any form of compact modeling, it can be integrated to validation and correction without any additional work.

  13. 3D integral imaging with optical processing

    Science.gov (United States)

    Martínez-Corral, Manuel; Martínez-Cuenca, Raúl; Saavedra, Genaro; Javidi, Bahram

    2008-04-01

    Integral imaging (InI) systems are imaging devices that provide auto-stereoscopic images of 3D intensity objects. Since the birth of this new technology, InI systems have faced satisfactorily many of their initial drawbacks. Basically, two kind of procedures have been used: digital and optical procedures. The "3D Imaging and Display Group" at the University of Valencia, with the essential collaboration of Prof. Javidi, has centered its efforts in the 3D InI with optical processing. Among other achievements, our Group has proposed the annular amplitude modulation for enlargement of the depth of field, dynamic focusing for reduction of the facet-braiding effect, or the TRES and MATRES devices to enlarge the viewing angle.

  14. Pyrolytic 3D Carbon Microelectrodes for Electrochemistry

    DEFF Research Database (Denmark)

    Hemanth, Suhith; Caviglia, Claudia; Amato, Letizia

    2016-01-01

    electrochemical activity, chemical stability, and ease in surface functionalization [1]. The most common carbon microfabrication techniques (i.e. screen printing) produce two-dimensional (2D) electrodes, which limit the detection sensitivity. Hence several 3D microfabrication techniques have been explored......This work presents the fabrication and characterization of multi-layered three-dimensional (3D) pyrolysed carbon microelectrodes for electrochemical applications. For this purpose, an optimized UV photolithography and pyrolysis process with the negative tone photoresist SU-8 has been developed...... carbon [2]. This process enables fabrication of 2D and 3D electrodes with possibility for tailoring ad-hoc designs and unique sensitivities for specific applications. Due to this, pyrolysed carbon is becoming increasingly attractive for numerous applications, such as novel sensors and scaffolds for cell...

  15. Structured light field 3D imaging.

    Science.gov (United States)

    Cai, Zewei; Liu, Xiaoli; Peng, Xiang; Yin, Yongkai; Li, Ameng; Wu, Jiachen; Gao, Bruce Z

    2016-09-05

    In this paper, we propose a method by means of light field imaging under structured illumination to deal with high dynamic range 3D imaging. Fringe patterns are projected onto a scene and modulated by the scene depth then a structured light field is detected using light field recording devices. The structured light field contains information about ray direction and phase-encoded depth, via which the scene depth can be estimated from different directions. The multidirectional depth estimation can achieve high dynamic 3D imaging effectively. We analyzed and derived the phase-depth mapping in the structured light field and then proposed a flexible ray-based calibration approach to determine the independent mapping coefficients for each ray. Experimental results demonstrated the validity of the proposed method to perform high-quality 3D imaging for highly and lowly reflective surfaces.

  16. Solving a 3D structural puzzle

    DEFF Research Database (Denmark)

    Hoeck, Casper

    to spatial structural information using NMR spectroscopy. Experimental distances from nuclear Overhauser effect (NOE) correlations, and dihedral angles from 3JHH-coupling constants, were used to obtain 3D structural information for several natural and synthetic compounds. The stereochemistry of novel natural...... samples, which allows for RDCs to be extracted. The number of internuclear vectors for the correlation of RDCs to 3D structures is often limited for small molecules. Homonuclear RDCs were extracted by use of the homonuclear S3 HMBC that correlated well to alignment tensors from 1DCH-coupling constants......-calculation of RDCs from 3D structures was developed and tested, which copes better with multiple conformers than the commonly used SVD methodology. The approach thus resulted in good conformer populations for several small molecules, including multiple cinchona alkaloids....

  17. A Hybrid 3D Indoor Space Model

    Directory of Open Access Journals (Sweden)

    A. Jamali

    2016-10-01

    Full Text Available GIS integrates spatial information and spatial analysis. An important example of such integration is for emergency response which requires route planning inside and outside of a building. Route planning requires detailed information related to indoor and outdoor environment. Indoor navigation network models including Geometric Network Model (GNM, Navigable Space Model, sub-division model and regular-grid model lack indoor data sources and abstraction methods. In this paper, a hybrid indoor space model is proposed. In the proposed method, 3D modeling of indoor navigation network is based on surveying control points and it is less dependent on the 3D geometrical building model. This research proposes a method of indoor space modeling for the buildings which do not have proper 2D/3D geometrical models or they lack semantic or topological information. The proposed hybrid model consists of topological, geometrical and semantical space.

  18. 3D nanopillar optical antenna photodetectors.

    Science.gov (United States)

    Senanayake, Pradeep; Hung, Chung-Hong; Shapiro, Joshua; Scofield, Adam; Lin, Andrew; Williams, Benjamin S; Huffaker, Diana L

    2012-11-05

    We demonstrate 3D surface plasmon photoresponse in nanopillar arrays resulting in enhanced responsivity due to both Localized Surface Plasmon Resonances (LSPRs) and Surface Plasmon Polariton Bloch Waves (SPP-BWs). The LSPRs are excited due to a partial gold shell coating the nanopillar which acts as a 3D Nanopillar Optical Antenna (NOA) in focusing light into the nanopillar. Angular photoresponse measurements show that SPP-BWs can be spectrally coincident with LSPRs to result in a x2 enhancement in responsivity at 1180 nm. Full-wave Finite Difference Time Domain (FDTD) simulations substantiate both the spatial and spectral coupling of the SPP-BW / LSPR for enhanced absorption and the nature of the LSPR. Geometrical control of the 3D NOA and the self-aligned metal hole lattice allows the hybridization of both localized and propagating surface plasmon modes for enhanced absorption. Hybridized plasmonic modes opens up new avenues in optical antenna design in nanoscale photodetectors.

  19. Atomic resolution 3D electron diffraction microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Jianwei; Ohsuna, Tetsu; Terasaki, Osamu; O' Keefe, Michael A.

    2002-03-01

    Electron lens aberration is the major barrier limiting the resolution of electron microscopy. Here we describe a novel form of electron microscopy to overcome electron lens aberration. By combining coherent electron diffraction with the oversampling phasing method, we show that the 3D structure of a 2 x 2 x 2 unit cell nano-crystal (framework of LTA [Al12Si12O48]8) can be ab initio determined at the resolution of 1 Angstrom from a series of simulated noisy diffraction pattern projections with rotation angles ranging from -70 degrees to +70 degrees in 5 degrees increments along a single rotation axis. This form of microscopy (which we call 3D electron diffraction microscopy) does not require any reference waves, and can image the 3D structure of nanocrystals, as well as non-crystalline biological and materials science samples, with the resolution limited only by the quality of sample diffraction.

  20. Spectroradiometric characterization of autostereoscopic 3D displays

    Science.gov (United States)

    Rubiño, Manuel; Salas, Carlos; Pozo, Antonio M.; Castro, J. J.; Pérez-Ocón, Francisco

    2013-11-01

    Spectroradiometric measurements have been made for the experimental characterization of the RGB channels of autostereoscopic 3D displays, giving results for different measurement angles with respect to the normal direction of the plane of the display. In the study, 2 different models of autostereoscopic 3D displays of different sizes and resolutions were used, making measurements with a spectroradiometer (model PR-670 SpectraScan of PhotoResearch). From the measurements made, goniometric results were recorded for luminance contrast, and the fundamental hypotheses have been evaluated for the characterization of the displays: independence of the RGB channels and their constancy. The results show that the display with the lower angle variability in the contrast-ratio value and constancy of the chromaticity coordinates nevertheless presented the greatest additivity deviations with the measurement angle. For both displays, when the parameters evaluated were taken into account, lower angle variability consistently resulted in the 2D mode than in the 3D mode.

  1. 3D-printed microfluidic devices.

    Science.gov (United States)

    Amin, Reza; Knowlton, Stephanie; Hart, Alexander; Yenilmez, Bekir; Ghaderinezhad, Fariba; Katebifar, Sara; Messina, Michael; Khademhosseini, Ali; Tasoglu, Savas

    2016-06-20

    Microfluidics is a flourishing field, enabling a wide range of biochemical and clinical applications such as cancer screening, micro-physiological system engineering, high-throughput drug testing, and point-of-care diagnostics. However, fabrication of microfluidic devices is often complicated, time consuming, and requires expensive equipment and sophisticated cleanroom facilities. Three-dimensional (3D) printing presents a promising alternative to traditional techniques such as lithography and PDMS-glass bonding, not only by enabling rapid design iterations in the development stage, but also by reducing the costs associated with institutional infrastructure, equipment installation, maintenance, and physical space. With the recent advancements in 3D printing technologies, highly complex microfluidic devices can be fabricated via single-step, rapid, and cost-effective protocols, making microfluidics more accessible to users. In this review, we discuss a broad range of approaches for the application of 3D printing technology to fabrication of micro-scale lab-on-a-chip devices.

  2. Novel proposals in widefield 3D microscopy

    Science.gov (United States)

    Sanchez-Ortiga, E.; Doblas, A.; Saavedra, G.; Martinez-Corral, M.

    2010-04-01

    Patterned illumination is a successful set of techniques in high resolution 3D microscopy. In particular, structured illumination microscopy is based on the projection of 1D periodic patterns onto the 3D sample under study. In this research we propose the implementation of a very simple method for the flexible production of 1D structured illumination. Specifically, we propose the insertion of a Fresnel biprism after a monochromatic point source. The biprism produces a pair of twin, fully coherent, virtual point sources. After imaging the virtual sources onto the objective aperture stop, the expected 1D periodic pattern is produced into the 3D sample. The main advantage of using the Fresnel biprism is that by simply varying the distance between the biprism and the point source one can tune the period of the fringes while keeping their contrast.

  3. 3D face analysis for demographic biometrics

    Energy Technology Data Exchange (ETDEWEB)

    Tokola, Ryan A [ORNL; Mikkilineni, Aravind K [ORNL; Boehnen, Chris Bensing [ORNL

    2015-01-01

    Despite being increasingly easy to acquire, 3D data is rarely used for face-based biometrics applications beyond identification. Recent work in image-based demographic biometrics has enjoyed much success, but these approaches suffer from the well-known limitations of 2D representations, particularly variations in illumination, texture, and pose, as well as a fundamental inability to describe 3D shape. This paper shows that simple 3D shape features in a face-based coordinate system are capable of representing many biometric attributes without problem-specific models or specialized domain knowledge. The same feature vector achieves impressive results for problems as diverse as age estimation, gender classification, and race classification.

  4. 3D-skannauksen hyödyntäminen 3D-tulostuksessa

    OpenAIRE

    Seppälä, Mikko

    2016-01-01

    Opinnäytetyössä tutustuttiin 3D-skannaus- ja 3D-tulostusteknologioihin. Työssä käytiin läpi erilaiset 3D-tulostusmenetelmät ja esiteltiin erilaisia 3D-skannausmenetelmiä. Lisäksi käytiin läpi 3D-skannaus- ja 3D-tulostusprosessi. Tavoitteena opinnäytetyössä oli tutkia, kuinka nämä kaksi teknologiaa toimivat yhdessä. Tarkoituksena oli käydä läpi prosessi, jossa fyysinen kappale skannattiin digitaaliseen muotoon, jonka jälkeen se voidaan tulostaa uudeksi fyysiseksi kappaleeksi. Lisäksi tarko...

  5. 3D Hilbert Space Filling Curves in 3D City Modeling for Faster Spatial Queries

    DEFF Research Database (Denmark)

    Ujang, Uznir; Antón Castro, Francesc/François; Azri, Suhaibah;

    2014-01-01

    are presented in this paper. The advantages of implementing space-filling curves in 3D city modeling will improve data retrieval time by means of optimized 3D adjacency, nearest neighbor information and 3D indexing. The Hilbert mapping, which maps a sub-interval of the ([0,1]) interval to the corresponding...... method, retrieving portions of and especially searching these 3D city models, will not be done optimally. Even though current developments are based on an open data model allotted by the Open Geospatial Consortium (OGC) called CityGML, its XML-based structure makes it challenging to cluster the 3D urban...... web standards. However, these 3D city models consume much more storage compared to two dimensional (2 D) spatial data. They involve extra geometrical and topological information together with semantic data. Without a proper spatial data clustering method and its corresponding spatial data access...

  6. X3d2pov. Traductor of X3D to POV-Ray

    Directory of Open Access Journals (Sweden)

    Andrea Castellanos Mendoza

    2011-01-01

    Full Text Available High-quality and low-quality interactive graphics represent two different approaches to computer graphics’ 3D object representation. The former is mainly used to produce high computational cost movie animation. The latter is used for producing interactive scenes as part of virtual reality environments. Many file format specifications have appeared to satisfy underlying model needs; POV-ray (persistence of vision is an open source specification for rendering photorealistic images with the ray tracer algorithm and X3D (extendable 3D as the VRML successor standard for producing web virtual-reality environments written in XML. X3D2POV has been introduced to render high-quality images from an X3D scene specification; it is a grammar translator tool from X3D code to POV-ray code.

  7. Design and Implementation of 3D Model Database for General-Purpose 3D GIS

    Institute of Scientific and Technical Information of China (English)

    XU Weiping; ZHU Qing; DU Zhiqiang; ZHANG Yeting

    2010-01-01

    To improve the reusability of three-dimensional (3D) models and simplify the complexity of natural scene reconstruction, this paper presents a 3D model database for universal 3D GIS. After the introduction of its extensible function architecture,accompanied by the conclusion of implicit spatial-temporal hierarchy of models in any reconstructed scene of 3D GIS for general purpose, several key issues are discussed in detail, such as the storage and management of 3D models and related retrieval and load method, as well as the interfaces for further on-demand development. Finally, the validity and feasibility of this model database are proved through its application in the development of 3D visualization system of railway operation.

  8. p3d – Python module for structural bioinformatics

    Directory of Open Access Journals (Sweden)

    Fufezan Christian

    2009-08-01

    Full Text Available Abstract Background High-throughput bioinformatic analysis tools are needed to mine the large amount of structural data via knowledge based approaches. The development of such tools requires a robust interface to access the structural data in an easy way. For this the Python scripting language is the optimal choice since its philosophy is to write an understandable source code. Results p3d is an object oriented Python module that adds a simple yet powerful interface to the Python interpreter to process and analyse three dimensional protein structure files (PDB files. p3d's strength arises from the combination of a very fast spatial access to the structural data due to the implementation of a binary space partitioning (BSP tree, b set theory and c functions that allow to combine a and b and that use human readable language in the search queries rather than complex computer language. All these factors combined facilitate the rapid development of bioinformatic tools that can perform quick and complex analyses of protein structures. Conclusion p3d is the perfect tool to quickly develop tools for structural bioinformatics using the Python scripting language.

  9. Customizable engineered blood vessels using 3D printed inserts.

    Science.gov (United States)

    Pinnock, Cameron B; Meier, Elizabeth M; Joshi, Neeraj N; Wu, Bin; Lam, Mai T

    2016-04-15

    Current techniques for tissue engineering blood vessels are not customizable for vascular size variation and vessel wall thickness. These critical parameters vary widely between the different arteries in the human body, and the ability to engineer vessels of varying sizes could increase capabilities for disease modeling and treatment options. We present an innovative method for producing customizable, tissue engineered, self-organizing vascular constructs by replicating a major structural component of blood vessels - the smooth muscle layer, or tunica media. We utilize a unique system combining 3D printed plate inserts to control construct size and shape, and cell sheets supported by a temporary fibrin hydrogel to encourage cellular self-organization into a tubular form resembling a natural artery. To form the vascular construct, 3D printed inserts are adhered to tissue culture plates, fibrin hydrogel is deposited around the inserts, and human aortic smooth muscle cells are then seeded atop the fibrin hydrogel. The gel, aided by the innate contractile properties of the smooth muscle cells, aggregates towards the center post insert, creating a tissue ring of smooth muscle cells. These rings are then stacked into the final tubular construct. Our methodology is robust, easily repeatable and allows for customization of cellular composition, vessel wall thickness, and length of the vessel construct merely by varying the size of the 3D printed inserts. This platform has potential for facilitating more accurate modeling of vascular pathology, serving as a drug discovery tool, or for vessel repair in disease treatment.

  10. Scanning 3D full human bodies using Kinects.

    Science.gov (United States)

    Tong, Jing; Zhou, Jin; Liu, Ligang; Pan, Zhigeng; Yan, Hao

    2012-04-01

    Depth camera such as Microsoft Kinect, is much cheaper than conventional 3D scanning devices, and thus it can be acquired for everyday users easily. However, the depth data captured by Kinect over a certain distance is of extreme low quality. In this paper, we present a novel scanning system for capturing 3D full human body models by using multiple Kinects. To avoid the interference phenomena, we use two Kinects to capture the upper part and lower part of a human body respectively without overlapping region. A third Kinect is used to capture the middle part of the human body from the opposite direction. We propose a practical approach for registering the various body parts of different views under non-rigid deformation. First, a rough mesh template is constructed and used to deform successive frames pairwisely. Second, global alignment is performed to distribute errors in the deformation space, which can solve the loop closure problem efficiently. Misalignment caused by complex occlusion can also be handled reasonably by our global alignment algorithm. The experimental results have shown the efficiency and applicability of our system. Our system obtains impressive results in a few minutes with low price devices, thus is practically useful for generating personalized avatars for everyday users. Our system has been used for 3D human animation and virtual try on, and can further facilitate a range of home–oriented virtual reality (VR) applications.

  11. Effective classification of 3D image data using partitioning methods

    Science.gov (United States)

    Megalooikonomou, Vasileios; Pokrajac, Dragoljub; Lazarevic, Aleksandar; Obradovic, Zoran

    2002-03-01

    We propose partitioning-based methods to facilitate the classification of 3-D binary image data sets of regions of interest (ROIs) with highly non-uniform distributions. The first method is based on recursive dynamic partitioning of a 3-D volume into a number of 3-D hyper-rectangles. For each hyper-rectangle, we consider, as a potential attribute, the number of voxels (volume elements) that belong to ROIs. A hyper-rectangle is partitioned only if the corresponding attribute does not have high discriminative power, determined by statistical tests, but it is still sufficiently large for further splitting. The final discriminative hyper-rectangles form new attributes that are further employed in neural network classification models. The second method is based on maximum likelihood employing non-spatial (k-means) and spatial DBSCAN clustering algorithms to estimate the parameters of the underlying distributions. The proposed methods were experimentally evaluated on mixtures of Gaussian distributions, on realistic lesion-deficit data generated by a simulator conforming to a clinical study, and on synthetic fractal data. Both proposed methods have provided good classification on Gaussian mixtures and on realistic data. However, the experimental results on fractal data indicated that the clustering-based methods were only slightly better than random guess, while the recursive partitioning provided significantly better classification accuracy.

  12. 3D printing of novel osteochondral scaffolds with graded microstructure

    Science.gov (United States)

    Nowicki, Margaret A.; Castro, Nathan J.; Plesniak, Michael W.; Zhang, Lijie Grace

    2016-10-01

    Osteochondral tissue has a complex graded structure where biological, physiological, and mechanical properties vary significantly over the full thickness spanning from the subchondral bone region beneath the joint surface to the hyaline cartilage region at the joint surface. This presents a significant challenge for tissue-engineered structures addressing osteochondral defects. Fused deposition modeling (FDM) 3D bioprinters present a unique solution to this problem. The objective of this study is to use FDM-based 3D bioprinting and nanocrystalline hydroxyapatite for improved bone marrow human mesenchymal stem cell (hMSC) adhesion, growth, and osteochondral differentiation. FDM printing parameters can be tuned through computer aided design and computer numerical control software to manipulate scaffold geometries in ways that are beneficial to mechanical performance without hindering cellular behavior. Additionally, the ability to fine-tune 3D printed scaffolds increases further through our investment casting procedure which facilitates the inclusion of nanoparticles with biochemical factors to further elicit desired hMSC differentiation. For this study, FDM was used to print investment-casting molds innovatively designed with varied pore distribution over the full thickness of the scaffold. The mechanical and biological impacts of the varied pore distributions were compared and evaluated to determine the benefits of this physical manipulation. The results indicate that both mechanical properties and cell performance improve in the graded pore structures when compared to homogeneously distributed porous and non-porous structures. Differentiation results indicated successful osteogenic and chondrogenic manipulation in engineered scaffolds.

  13. Body Language Advanced 3D Character Rigging

    CERN Document Server

    Allen, Eric; Fong, Jared; Sidwell, Adam G

    2011-01-01

    Whether you're a professional Character TD or just like to create 3D characters, this detailed guide reveals the techniques you need to create sophisticated 3D character rigs that range from basic to breathtaking. Packed with step-by-step instructions and full-color illustrations, Body Language walks you through rigging techniques for all the body parts to help you create realistic and believable movements in every character you design. You'll learn advanced rigging concepts that involve MEL scripting and advanced deformation techniques and even how to set up a character pipeline.

  14. 3D Membrane Imaging and Porosity Visualization

    KAUST Repository

    Sundaramoorthi, Ganesh

    2016-03-03

    Ultrafiltration asymmetric porous membranes were imaged by two microscopy methods, which allow 3D reconstruction: Focused Ion Beam and Serial Block Face Scanning Electron Microscopy. A new algorithm was proposed to evaluate porosity and average pore size in different layers orthogonal and parallel to the membrane surface. The 3D-reconstruction enabled additionally the visualization of pore interconnectivity in different parts of the membrane. The method was demonstrated for a block copolymer porous membrane and can be extended to other membranes with application in ultrafiltration, supports for forward osmosis, etc, offering a complete view of the transport paths in the membrane.

  15. The Local Universe: Galaxies in 3D

    CERN Document Server

    Koribalski, B S

    2016-01-01

    Here I present results from individual galaxy studies and galaxy surveys in the Local Universe with particular emphasis on the spatially resolved properties of neutral hydrogen gas. The 3D nature of the data allows detailed studies of the galaxy morphology and kinematics, their relation to local and global star formation as well as galaxy environments. I use new 3D visualisation tools to present multi-wavelength data, aided by tilted-ring models of the warped galaxy disks. Many of the algorithms and tools currently under development are essential for the exploration of upcoming large survey data, but are also highly beneficial for the analysis of current galaxy surveys.

  16. Tekstiilit 3d-mallinnuksessa ja -animaatiossa

    OpenAIRE

    Lahti, Toni

    2007-01-01

    Opinnäytetyön tarkoituksena oli tutkia tekstiilien 3D-mallinnusta ja animaatiota. Hahmon vaatetus on työn pääroolissa ja esimerkit liittyvät useimmiten vaatekappaleisiin. Vaatteet ovat mielenkiintoisimpia ja vaikeimmin toteutettavia tekstiilejä.; Alkuun täytyi tutustua tekstiilien luonteeseen. Tekstiilien erilaiset rakenteet vaikuttavat siihen kuinka tekstiili käyttäytyy. Tämän takia työssä esitellään kudotun ja neulotun tekstiilin valmistus ja niiden perusrakenteet.; 3D-mallinnettujen tekst...

  17. Factorization of the 3d superconformal index

    CERN Document Server

    Hwang, Chiung; Park, Jaemo

    2012-01-01

    We prove that 3d superconformal index for general $\\mathcal N=2$ U(N) gauge group with fundamentals and anti-fundmentals with/without Chern-Simons terms is factorized into vortex and anti-vortex partition function. We show that for simple cases, 3d vortex partition function coincides with a suitable topological open string partition function. We provide much more elegant derivation at the index level for $\\mathcal N=2$ Seiberg-like dualities of unitary gauge groups with fundamantal matters and $\\mathcal N=4$ mirror symmetry

  18. SURVEY AND ANALYSIS OF 3D STEGANOGRAPHY

    Directory of Open Access Journals (Sweden)

    K .LAKSHMI

    2011-01-01

    Full Text Available Steganography is the science that involves communicating secret data in an appropriate multimedia carrier, eg., images, audio, and video files. The remarkable growth in computational power, increase in current security approaches and techniques are often used together to ensures security of the secret message. Steganography’s ultimate objectives, which are capacity and invisibility, are the main factors that separate it from related techniques. In this paper we focus on 3D models of steganography and conclude with some review analysis of high capacity data hiding and low-distortion 3D models.

  19. Building 3D models with modo 701

    CERN Document Server

    García, Juan Jiménez

    2013-01-01

    The book will focus on creating a sample application throughout the book, building gradually from chapter to chapter.If you are new to the 3D world, this is the key to getting started with a modern software in the modern visualization industry. Only minimal previous knowledge is needed.If you have some previous knowledge about 3D content creation, you will find useful tricks that will differentiate the learning experience from a typical user manual from this, a practical guide concerning the most common problems and situations and how to solve them.

  20. 3D Modeling Engine Representation Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Steven Prescott; Ramprasad Sampath; Curtis Smith; Timothy Yang

    2014-09-01

    Computers have been used for 3D modeling and simulation, but only recently have computational resources been able to give realistic results in a reasonable time frame for large complex models. This summary report addressed the methods, techniques, and resources used to develop a 3D modeling engine to represent risk analysis simulation for advanced small modular reactor structures and components. The simulations done for this evaluation were focused on external events, specifically tsunami floods, for a hypothetical nuclear power facility on a coastline.

  1. Local orientation measurements in 3D

    DEFF Research Database (Denmark)

    Juul Jensen, D.

    2005-01-01

    The 3 Dimensional X-Ray Diffraction (3DXRD) method is presented and its potentials illustrated by examples. The 3DXRD method is based on diffraction of high energy X-rays and allows fast and nondestructive 3D characterization of the local distribution of crystallographic orientations in the bulk....... The spatial resolution is about 1x5x5 mu m but diffraction from microstructural elements as small as 100 nm may be monitored within suitable samples. As examples of the use of the 3DXRD method, it is chosen to present results for complete 3D characterization of grain structures, in-situ "filming...

  2. Multifractal modelling and 3D lacunarity analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hanen, Akkari, E-mail: bettaieb.hanen@topnet.t [Laboratoire de biophysique, TIM, Faculte de Medecine (Tunisia); Imen, Bhouri, E-mail: bhouri_imen@yahoo.f [Unite de recherche ondelettes et multifractals, Faculte des sciences (Tunisia); Asma, Ben Abdallah, E-mail: asma.babdallah@cristal.rnu.t [Laboratoire de biophysique, TIM, Faculte de Medecine (Tunisia); Patrick, Dubois, E-mail: pdubois@chru-lille.f [INSERM, U 703, Lille (France); Hedi, Bedoui Mohamed, E-mail: medhedi.bedoui@fmm.rnu.t [Laboratoire de biophysique, TIM, Faculte de Medecine (Tunisia)

    2009-09-28

    This study presents a comparative evaluation of lacunarity of 3D grey level models with different types of inhomogeneity. A new method based on the 'Relative Differential Box Counting' was developed to estimate the lacunarity features of grey level volumes. To validate our method, we generated a set of 3D grey level multifractal models with random, anisotropic and hierarchical properties. Our method gives a lacunarity measurement correlated with the theoretical one and allows a better model classification compared with a classical approach.

  3. The Galicia 3D experiment: an Introduction.

    Science.gov (United States)

    Reston, Timothy; Martinez Loriente, Sara; Holroyd, Luke; Merry, Tobias; Sawyer, Dale; Morgan, Julia; Jordan, Brian; Tesi Sanjurjo, Mari; Alexanian, Ara; Shillington, Donna; Gibson, James; Minshull, Tim; Karplus, Marianne; Bayracki, Gaye; Davy, Richard; Klaeschen, Dirk; Papenberg, Cord; Ranero, Cesar; Perez-Gussinye, Marta; Martinez, Miguel

    2014-05-01

    In June and July 2013, scientists from 8 institutions took part in the Galicia 3D seismic experiment, the first ever crustal -scale academic 3D MCS survey over a rifted margin. The aim was to determine the 3D structure of a critical portion of the west Galicia rifted margin. At this margin, well-defined tilted fault blocks, bound by west-dipping faults and capped by synrift sediments are underlain by a bright reflection, undulating on time sections, termed the S reflector and thought to represent a major detachment fault of some kind. Moving west, the crust thins to zero thickness and mantle is unroofed, as evidence by the "Peridotite Ridge" first reported at this margin, but since observed at many other magma-poor margins. By imaging such a margin in detail, the experiment aimed to resolve the processes controlling crustal thinning and mantle unroofing at a type example magma poor margin. The experiment set out to collect several key datasets: a 3D seismic reflection volume measuring ~20x64km and extending down to ~14s TWT, a 3D ocean bottom seismometer dataset suitable for full wavefield inversion (the recording of the complete 3D seismic shots by 70 ocean bottom instruments), the "mirror imaging" of the crust using the same grid of OBS, a single 2D combined reflection/refraction profile extending to the west to determine the transition from unroofed mantle to true oceanic crust, and the seismic imaging of the water column, calibrated by regular deployment of XBTs to measure the temperature structure of the water column. We collected 1280 km2 of seismic reflection data, consisting of 136533 shots recorded on 1920 channels, producing 260 million seismic traces, each ~ 14s long. This adds up to ~ 8 terabytes of data, representing, we believe, the largest ever academic 3D MCS survey in terms of both the area covered and the volume of data. The OBS deployment was the largest ever within an academic 3D survey.

  4. Delft3D turbine turbulence module

    Energy Technology Data Exchange (ETDEWEB)

    2016-04-18

    The DOE has funded Sandia National Labs (SNL) to develop an open-source modeling tool to guide the design and layout of marine hydrokinetic (MHK) arrays to maximize power production while minimizing environmental effects. This modeling framework simulates flows through and around a MHK arrays while quantifying environmental responses. As an augmented version of the Dutch company, Deltares’s, environmental hydrodynamics code, Delft3D, SNL-Delft3D includes a new module that simulates energy conversion (momentum withdrawal) by MHK devices with commensurate changes in the turbulent kinetic energy and its dissipation rate.

  5. MRS3D: 3D Spherical Wavelet Transform on the Sphere

    Science.gov (United States)

    Lanusse, F.; Rassat, A.; Starck, J.-L.

    2011-12-01

    Future cosmological surveys will provide 3D large scale structure maps with large sky coverage, for which a 3D Spherical Fourier-Bessel (SFB) analysis is natural. Wavelets are particularly well-suited to the analysis and denoising of cosmological data, but a spherical 3D isotropic wavelet transform does not currently exist to analyse spherical 3D data. We present a new fast Discrete Spherical Fourier-Bessel Transform (DSFBT) based on both a discrete Bessel Transform and the HEALPIX angular pixelisation scheme. We tested the 3D wavelet transform and as a toy-application, applied a denoising algorithm in wavelet space to the Virgo large box cosmological simulations and found we can successfully remove noise without much loss to the large scale structure. The new spherical 3D isotropic wavelet transform, called MRS3D, is ideally suited to analysing and denoising future 3D spherical cosmological surveys; it uses a novel discrete spherical Fourier-Bessel Transform. MRS3D is based on two packages, IDL and Healpix and can be used only if these two packages have been installed.

  6. PB3D: A new code for edge 3-D ideal linear peeling-ballooning stability

    Science.gov (United States)

    Weyens, T.; Sánchez, R.; Huijsmans, G.; Loarte, A.; García, L.

    2017-02-01

    A new numerical code PB3D (Peeling-Ballooning in 3-D) is presented. It implements and solves the intermediate-to-high-n ideal linear magnetohydrodynamic stability theory extended to full edge 3-D magnetic toroidal configurations in previous work [1]. The features that make PB3D unique are the assumptions on the perturbation structure through intermediate-to-high mode numbers n in general 3-D configurations, while allowing for displacement of the plasma edge. This makes PB3D capable of very efficient calculations of the full 3-D stability for the output of multiple equilibrium codes. As first verification, it is checked that results from the stability code MISHKA [2], which considers axisymmetric equilibrium configurations, are accurately reproduced, and these are then successfully extended to 3-D configurations, through comparison with COBRA [3], as well as using checks on physical consistency. The non-intuitive 3-D results presented serve as a tentative first proof of the capabilities of the code.

  7. Scalable 3D GIS environment managed by 3D-XML-based modeling

    Science.gov (United States)

    Shi, Beiqi; Rui, Jianxun; Chen, Neng

    2008-10-01

    Nowadays, the namely 3D GIS technologies become a key factor in establishing and maintaining large-scale 3D geoinformation services. However, with the rapidly increasing size and complexity of the 3D models being acquired, a pressing needed for suitable data management solutions has become apparent. This paper outlines that storage and exchange of geospatial data between databases and different front ends like 3D models, GIS or internet browsers require a standardized format which is capable to represent instances of 3D GIS models, to minimize loss of information during data transfer and to reduce interface development efforts. After a review of previous methods for spatial 3D data management, a universal lightweight XML-based format for quick and easy sharing of 3D GIS data is presented. 3D data management based on XML is a solution meeting the requirements as stated, which can provide an efficient means for opening a new standard way to create an arbitrary data structure and share it over the Internet. To manage reality-based 3D models, this paper uses 3DXML produced by Dassault Systemes. 3DXML uses opening XML schemas to communicate product geometry, structure and graphical display properties. It can be read, written and enriched by standard tools; and allows users to add extensions based on their own specific requirements. The paper concludes with the presentation of projects from application areas which will benefit from the functionality presented above.

  8. Innovations in 3D printing: a 3D overview from optics to organs.

    Science.gov (United States)

    Schubert, Carl; van Langeveld, Mark C; Donoso, Larry A

    2014-02-01

    3D printing is a method of manufacturing in which materials, such as plastic or metal, are deposited onto one another in layers to produce a three dimensional object, such as a pair of eye glasses or other 3D objects. This process contrasts with traditional ink-based printers which produce a two dimensional object (ink on paper). To date, 3D printing has primarily been used in engineering to create engineering prototypes. However, recent advances in printing materials have now enabled 3D printers to make objects that are comparable with traditionally manufactured items. In contrast with conventional printers, 3D printing has the potential to enable mass customisation of goods on a large scale and has relevance in medicine including ophthalmology. 3D printing has already been proved viable in several medical applications including the manufacture of eyeglasses, custom prosthetic devices and dental implants. In this review, we discuss the potential for 3D printing to revolutionise manufacturing in the same way as the printing press revolutionised conventional printing. The applications and limitations of 3D printing are discussed; the production process is demonstrated by producing a set of eyeglass frames from 3D blueprints.

  9. 3D motion analysis via energy minimization

    Energy Technology Data Exchange (ETDEWEB)

    Wedel, Andreas

    2009-10-16

    This work deals with 3D motion analysis from stereo image sequences for driver assistance systems. It consists of two parts: the estimation of motion from the image data and the segmentation of moving objects in the input images. The content can be summarized with the technical term machine visual kinesthesia, the sensation or perception and cognition of motion. In the first three chapters, the importance of motion information is discussed for driver assistance systems, for machine vision in general, and for the estimation of ego motion. The next two chapters delineate on motion perception, analyzing the apparent movement of pixels in image sequences for both a monocular and binocular camera setup. Then, the obtained motion information is used to segment moving objects in the input video. Thus, one can clearly identify the thread from analyzing the input images to describing the input images by means of stationary and moving objects. Finally, I present possibilities for future applications based on the contents of this thesis. Previous work in each case is presented in the respective chapters. Although the overarching issue of motion estimation from image sequences is related to practice, there is nothing as practical as a good theory (Kurt Lewin). Several problems in computer vision are formulated as intricate energy minimization problems. In this thesis, motion analysis in image sequences is thoroughly investigated, showing that splitting an original complex problem into simplified sub-problems yields improved accuracy, increased robustness, and a clear and accessible approach to state-of-the-art motion estimation techniques. In Chapter 4, optical flow is considered. Optical flow is commonly estimated by minimizing the combined energy, consisting of a data term and a smoothness term. These two parts are decoupled, yielding a novel and iterative approach to optical flow. The derived Refinement Optical Flow framework is a clear and straight-forward approach to

  10. The EISCAT_3D Science Case

    Science.gov (United States)

    Tjulin, A.; Mann, I.; McCrea, I.; Aikio, A. T.

    2013-05-01

    EISCAT_3D will be a world-leading international research infrastructure using the incoherent scatter technique to study the atmosphere in the Fenno-Scandinavian Arctic and to investigate how the Earth's atmosphere is coupled to space. The EISCAT_3D phased-array multistatic radar system will be operated by EISCAT Scientific Association and thus be an integral part of an organisation that has successfully been running incoherent scatter radars for more than thirty years. The baseline design of the radar system contains a core site with transmitting and receiving capabilities located close to the intersection of the Swedish, Norwegian and Finnish borders and five receiving sites located within 50 to 250 km from the core. The EISCAT_3D project is currently in its Preparatory Phase and can smoothly transit into implementation in 2014, provided sufficient funding. Construction can start 2016 and first operations in 2018. The EISCAT_3D Science Case is prepared as part of the Preparatory Phase. It is regularly updated with annual new releases, and it aims at being a common document for the whole future EISCAT_3D user community. The areas covered by the Science Case are atmospheric physics and global change; space and plasma physics; solar system research; space weather and service applications; and radar techniques, new methods for coding and analysis. Two of the aims for EISCAT_3D are to understand the ways natural variability in the upper atmosphere, imposed by the Sun-Earth system, can influence the middle and lower atmosphere, and to improve the predictivity of atmospheric models by providing higher resolution observations to replace the current parametrised input. Observations by EISCAT_3D will also be used to monitor the direct effects from the Sun on the ionosphere-atmosphere system and those caused by solar wind magnetosphere-ionosphere interaction. In addition, EISCAT_3D will be used for remote sensing the large-scale behaviour of the magnetosphere from its

  11. 3D lithographically fabricated nanoliter containers for drug delivery.

    Science.gov (United States)

    Randall, Christina L; Leong, Timothy G; Bassik, Noy; Gracias, David H

    2007-12-22

    Lithographic patterning offers the possibility for precise structuring of drug delivery devices. The fabrication process can also facilitate the incorporation of advanced functionality for imaging, sensing, telemetry and actuation. However, a major limitation of present day lithographic fabrication is the inherent two-dimensionality of the patterning process. We review a new approach to construct three dimensional (3D) patterned containers by lithographically patterning two dimensional (2D) templates with liquefiable hinges that spontaneously fold upon heating into hollow polyhedral containers. The containers have finite encapsulation volumes, can be made small enough to pass through a hypodermic needle, and the 3D profile of the containers facilitates enhanced diffusion with the surrounding medium as compared to reservoir systems fabricated in planar substrates. We compare the features of the containers to those of present day drug delivery systems. These features include ease of manufacture, versatility in size and shape, monodisperse porosity, ability for spatial manipulation and remote triggering to release drugs on-demand, the incorporation of electronic modules, cell encapsulation, biocompatibility and stability. We also review possible applications in drug delivery and cell encapsulation therapy (CET). The results summarized in this review suggest a new strategy to enable construction of "smart", three dimensional drug delivery systems using lithography.

  12. A new chapter in pharmaceutical manufacturing: 3D-printed drug products.

    Science.gov (United States)

    Norman, James; Madurawe, Rapti D; Moore, Christine M V; Khan, Mansoor A; Khairuzzaman, Akm

    2017-01-01

    FDA recently approved a 3D-printed drug product in August 2015, which is indicative of a new chapter for pharmaceutical manufacturing. This review article summarizes progress with 3D printed drug products and discusses process development for solid oral dosage forms. 3D printing is a layer-by-layer process capable of producing 3D drug products from digital designs. Traditional pharmaceutical processes, such as tablet compression, have been used for decades with established regulatory pathways. These processes are well understood, but antiquated in terms of process capability and manufacturing flexibility. 3D printing, as a platform technology, has competitive advantages for complex products, personalized products, and products made on-demand. These advantages create opportunities for improving the safety, efficacy, and accessibility of medicines. Although 3D printing differs from traditional manufacturing processes for solid oral dosage forms, risk-based process development is feasible. This review highlights how product and process understanding can facilitate the development of a control strategy for different 3D printing methods. Overall, the authors believe that the recent approval of a 3D printed drug product will stimulate continual innovation in pharmaceutical manufacturing technology. FDA encourages the development of advanced manufacturing technologies, including 3D-printing, using science- and risk-based approaches.

  13. Planetary Torque in 3D Isentropic Disks

    CERN Document Server

    Fung, Jeffrey; Lega, Elena; Velasco, David

    2016-01-01

    Planet migration is inherently a three-dimensional (3D) problem, because Earth-size planetary cores are deeply embedded in protoplanetary disks. Simulations of these 3D disks remain challenging due to the steep requirement in resolution. Using two different hydrodynamics code, FARGO3D and PEnGUIn, we simulate disk-planet interaction for a 1 to 5 Earth-mass planet embedded in an isentropic disk. We measure the torque on the planet and ensure that the measurements are converged both in resolution and between the two codes. We find that the torque is independent of the smoothing length of the planet's potential ($r_{\\rm s}$), and that it has a weak dependence on the adiabatic index of the gaseous disk ($\\gamma$). The torque values correspond to an inward migration rate qualitatively similar to previous linear calculations. We perform additional simulations with explicit radiative transfer using FARGOCA, and again find agreement between 3D simulations and existing torque formulae. We also present the flow pattern...

  14. 3D MHD Flux emergence experiments

    DEFF Research Database (Denmark)

    Hood, A.W.; Archontis, V.; Mactaggart, David

    2012-01-01

    This paper reviews some of the many 3D numerical experiments of the emergence of magnetic fields from the solar interior and the subsequent interaction with the pre-existing coronal magnetic field. The models described here are idealised, in the sense that the internal energy equation only involves...

  15. 3D gender recognition using cognitive modeling

    DEFF Research Database (Denmark)

    Fagertun, Jens; Andersen, Tobias; Hansen, Thomas

    2013-01-01

    We use 3D scans of human faces and cognitive modeling to estimate the “gender strength”. The “gender strength” is a continuous class variable of the gender, superseding the traditional binary class labeling. To visualize some of the visual trends humans use when performing gender classification, ...

  16. Rubber Impact on 3D Textile Composites

    Science.gov (United States)

    Heimbs, Sebastian; Van Den Broucke, Björn; Duplessis Kergomard, Yann; Dau, Frederic; Malherbe, Benoit

    2012-06-01

    A low velocity impact study of aircraft tire rubber on 3D textile-reinforced composite plates was performed experimentally and numerically. In contrast to regular unidirectional composite laminates, no delaminations occur in such a 3D textile composite. Yarn decohesions, matrix cracks and yarn ruptures have been identified as the major damage mechanisms under impact load. An increase in the number of 3D warp yarns is proposed to improve the impact damage resistance. The characteristic of a rubber impact is the high amount of elastic energy stored in the impactor during impact, which was more than 90% of the initial kinetic energy. This large geometrical deformation of the rubber during impact leads to a less localised loading of the target structure and poses great challenges for the numerical modelling. A hyperelastic Mooney-Rivlin constitutive law was used in Abaqus/Explicit based on a step-by-step validation with static rubber compression tests and low velocity impact tests on aluminium plates. Simulation models of the textile weave were developed on the meso- and macro-scale. The final correlation between impact simulation results on 3D textile-reinforced composite plates and impact test data was promising, highlighting the potential of such numerical simulation tools.

  17. 3D Urban Visualization with LOD Techniques

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In 3D urban visualization, large data volumes related to buildings are a major factor that limits the delivery and browsing speed in a web-based computer system. This paper proposes a new approach based on the level of detail (LOD) technique advanced in 3D visualization in computer graphics. The key idea of LOD technique is to generalize details of object surfaces without losing details for delivery and displaying objects. This technique has been successfully used in visualizing one or a few multiple objects in films and other industries. However, applying the technique to 3D urban visualization requires an effective generalization method for urban buildings. Conventional two-dimensional (2D) generalization method at different scales provides a good generalization reference for 3D urban visualization. Yet, it is difficult to determine when and where to retrieve data for displaying buildings. To solve this problem, this paper defines an imaging scale point and image scale region for judging when and where to get the right data for visualization. The results show that the average response time of view transformations is much decreased.

  18. Pyrolytic 3D Carbon Microelectrodes for Electrochemistry

    DEFF Research Database (Denmark)

    Hemanth, Suhith; Caviglia, Claudia; Amato, Letizia;

    2016-01-01

    by pyrolysis at 900ºC for 1h was developed. With this process, microelectrode chips with a three electrode configuration were fabricated and characterized with cyclic voltammetry (CV) using a 10mM potassium ferri-ferrocyanide redox probe in a custom made batch system with magnetic clamping. The 3D pyrolytic...

  19. 3D Printing and Global Value Chains

    DEFF Research Database (Denmark)

    Rehnberg, Märtha; Ponte, Stefano

    From the birth of industrialization, access to new technology has been a decisive factor in how value added is created and distributed across networks of global production. This article provides a balanced assessment of the potential impact that one of these technologies (3D printing, or 3DP) may...

  20. Techniques and architectures for 3D interaction

    NARCIS (Netherlands)

    De Haan, G.

    2009-01-01

    Spatial scientific datasets are all around us, and 3D visualization is a powerful tool to explore details and structures within them. When dealing with complex spatial structures, interactive Virtual Reality (VR) systems can potentially improve exploration over desktop-based systems. However, from p