WorldWideScience

Sample records for acquired immunity induced

  1. Schistosoma mansoni: is acquired immunity induced by highly x-irradiated cercariae dependent on the size of the challenging dose

    International Nuclear Information System (INIS)

    Hsue, S.Y.; Hsue, H.F.; Osborne, J.W.; Johnson, S.C.

    1982-01-01

    A high degree of immunity, as shown by a 91% reduction of the number of worms recovered was found in five groups of mice that were immunized five times with highly X-irradiated cercariae and then challenged with 10, 20, 50, 100, or 500 normal Schistosoma mansoni cercariae. The results indicated that there were no significant differences in worm reduction in immunized mice challenged with different numbers of cercariae; consequently the immunity induced by this immunization method did not appear to be challenge-dose-dependent. However, the results also showed that when immunized mice were challenged with 500, 100, 50, 20, and 10 cercariae, 0, 13, 26, 56, and 68%, respectively, of the experimental animals were free of worms. Thus, the percentage of worm-negative cases increased as the number of challenge cercariae decreased. When viewed in this manner, the acquired immunity may be considered challenge-dose-dependent as well. If this method of vaccination is used for schistosomiasis control, we may anticipate that in both hypo- and hyperendemic areas, the intensity of infection and the severity of the disease will be reduced owing to a reduction in worms burdens, and in hypoendemic areas, there will be a number of worm-free cases

  2. Features of Acquired Immunity in Malaria Endemic Areas

    Indian Academy of Sciences (India)

    ... of Acquired Immunity in Malaria Endemic Areas. Adults (>15 years) do not suffer from the disease. Concomitant presence of low levels of P. falciparum in immune persons. This immunity is lost within 6-12 months if a person moves out of endemic area. Antibodies mediate protection for the asexual stages of P. falciparum.

  3. The dynamics of naturally acquired immunity to Plasmodium falciparum infection.

    Directory of Open Access Journals (Sweden)

    Mykola Pinkevych

    Full Text Available Severe malaria occurs predominantly in young children and immunity to clinical disease is associated with cumulative exposure in holoendemic settings. The relative contribution of immunity against various stages of the parasite life cycle that results in controlling infection and limiting disease is not well understood. Here we analyse the dynamics of Plasmodium falciparum malaria infection after treatment in a cohort of 197 healthy study participants of different ages in order to model naturally acquired immunity. We find that both delayed time-to-infection and reductions in asymptomatic parasitaemias in older age groups can be explained by immunity that reduces the growth of blood stage as opposed to liver stage parasites. We found that this mechanism would require at least two components - a rapidly acting strain-specific component, as well as a slowly acquired cross-reactive or general immunity to all strains. Analysis and modelling of malaria infection dynamics and naturally acquired immunity with age provides important insights into what mechanisms of immune control may be harnessed by malaria vaccine strategists.

  4. Memory B-Cell and Antibody Responses Induced by Plasmodium falciparum Sporozoite Immunization

    NARCIS (Netherlands)

    Nahrendorf, W.; Scholzen, A.; Bijker, E.M.; Teirlinck, A.C.; Bastiaens, G.J.H.; Schats, R.; Hermsen, C.C.; Visser, L.G.; Langhorne, J.; Sauerwein, R.W.

    2014-01-01

    BACKGROUND: Immunization of healthy volunteers during receipt of chemoprophylaxis with Plasmodium falciparum sporozoites (CPS-immunization) induces sterile protection from malaria. Antibody responses have long been known to contribute to naturally acquired immunity against malaria, but their

  5. Tuberculosis and the acquired immune deficiency syndrome in South Brazil

    International Nuclear Information System (INIS)

    Vieira, M.V.; Genro, C.H.; Santos Silveira, R. de C. dos

    1989-01-01

    Tuberculosis and the acquired immune deficiency syndrome in South Brazil. The authors studied the incidence of tuberculosis in South Brazilian patients with acquired immune deficiency syndrome from January 1985 to June 1988. During this period, tuberculosis occurred in 10.3% of acquired immune deficiency syndrome patients. The socioeconomic conditions and the incidence of disease in the population were not confirmed as a potential risk for tuberculosis infection. Chest radiographs revealed pulmonary infiltrates in six patients, hilar and/or mediastinal adenopathy in three, and pleural effusion in two. The two remaining patients had pulmonary consolidation associated with other features. None of these patients presented pulmonary cavitation or radiographic findings of typical reactivation of pulmonary tuberculosis. (author) [pt

  6. Radiation-resistant acquired immunity of vaccinated mice to Schistosoma mansoni

    International Nuclear Information System (INIS)

    Aitken, R.; Coulson, P.S.; Dixon, B.; Wilson, R.A.

    1987-01-01

    Vaccination of mice with attenuated cercariae of Schistosoma mansoni induces specific acquired resistance to challenge infection. This resistance is immunologically-mediated, possibly via a delayed-type hypersensitivity. Studies of parasite migration have shown that the protective mechanism operates most effectively in the lungs of vaccinated mice. We have probed the mechanism by exposing mice to 500 rads of gamma radiation before challenge infection. Our results show that the effector mechanism operative against challenge larvae is resistant to radiation. In contrast, classical immune responses are markedly suppressed by the same treatment. While leukocyte populations in the blood fall dramatically after irradiation, numbers of cells recoverable by bronchoalveolar lavage are unaffected. We suggest that vaccination with attenuated cercariae establishes populations of sensitized cells in the lungs which trigger the mechanism of resistance when challenge schistosomula migrate through pulmonary capillary beds. Although the cells may be partially disabled by irradiation, they remain responsive to worm antigens and thereby capable of initiating the elimination mechanism. This hypothesis would explain the radiation resistance of vaccine-induced immunity to S. mansoni

  7. The role of acquired immunity and periodontal disease progression.

    Science.gov (United States)

    Teng, Yen-Tung A

    2003-01-01

    Our understanding of the pathogenesis in human periodontal diseases is limited by the lack of specific and sensitive tools or models to study the complex microbial challenges and their interactions with the host's immune system. Recent advances in cellular and molecular biology research have demonstrated the importance of the acquired immune system not only in fighting the virulent periodontal pathogens but also in protecting the host from developing further devastating conditions in periodontal infections. The use of genetic knockout and immunodeficient mouse strains has shown that the acquired immune response-in particular, CD4+ T-cells-plays a pivotal role in controlling the ongoing infection, the immune/inflammatory responses, and the subsequent host's tissue destruction. In particular, studies of the pathogen-specific CD4+ T-cell-mediated immunity have clarified the roles of: (i) the relative diverse immune repertoire involved in periodontal pathogenesis, (ii) the contribution of pathogen-associated Th1-Th2 cytokine expressions in periodontal disease progression, and (iii) micro-organism-triggered periodontal CD4+ T-cell-mediated osteoclastogenic factor, 'RANK-L', which is linked to the induction of alveolar bone destruction in situ. The present review will focus on some recent advances in the acquired immune responses involving B-cells, CD8+ T-cells, and CD4+ T-cells in the context of periodontal disease progression. New approaches will further facilitate our understanding of their underlying molecular mechanisms that may lead to the development of new treatment modalities for periodontal diseases and their associated complications.

  8. Maternal immunity enhances Mycoplasma hyopneumoniae vaccination induced cell-mediated immune responses in piglets.

    Science.gov (United States)

    Bandrick, Meggan; Theis, Kara; Molitor, Thomas W

    2014-06-05

    Passively acquired maternal derived immunity (MDI) is a double-edged sword. Maternal derived antibody-mediated immunity (AMI) and cell-mediated immunity (CMI) are critical immediate defenses for the neonate; however, MDI may interfere with the induction of active immunity in the neonate, i.e. passive interference. The effect of antigen-specific MDI on vaccine-induced AMI and CMI responses to Mycoplasma hyopneumoniae (M. hyopneumoniae) was assessed in neonatal piglets. To determine whether CMI and AMI responses could be induced in piglets with MDI, piglets with high and low levels of maternal M. hyopneumoniae-specific immunity were vaccinated against M. hyopneumoniae at 7 d of age. Piglet M. hyopneumoniae-specific antibody, lymphoproliferation, and delayed type hypersensitivity (DTH) responses were measured 7 d and 14 d post vaccination. Piglets with M. hyopneumoniae-specific MDI failed to show vaccine-induced AMI responses; there was no rise in M. hyopneumoniae antibody levels following vaccination of piglets in the presence of M. hyopneumoniae-specific MDI. However, piglets with M. hyopneumoniae-specific MDI had primary (antigen-specific lymphoproliferation) and secondary (DTH) M. hyopneumoniae-specific CMI responses following vaccination. In this study neonatal M. hyopneumoniae-specific CMI was not subject to passive interference by MDI. Further, it appears that both maternal derived and endogenous CMI contribute to M. hyopneumoniae-specific CMI responses in piglets vaccinated in the face of MDI.

  9. Toward immunogenetic studies of amphibian chytridiomycosis: Linking innate and acquired immunity

    Science.gov (United States)

    Richmond, J.Q.; Savage, Anna E.; Zamudio, Kelly R.; Rosenblum, E.B.

    2009-01-01

    Recent declines in amphibian diversity and abundance have contributed significantly to the global loss of biodiversity. The fungal disease chytridiomycosis is widely considered to be a primary cause of these declines, yet the critical question of why amphibian species differ in susceptibility remains unanswered. Considerable evidence links environmental conditions and interspecific variability of the innate immune system to differential infection responses, but other sources of individual, population, or species-typical variation may also be important. In this article we review the preliminary evidence supporting a role for acquired immune defenses against chytridiomycosis, and advocate for targeted investigation of genes controlling acquired responses, as well as those that functionally bridge the innate and acquired immune systems. Immunogenetic data promise to answer key questions about chytridiomycosis susceptibility and host-pathogen coevolution, and will draw much needed attention to the importance of considering evolutionary processes in amphibian conservation management and practice. ?? 2009 by American Institute of Biological Sciences.

  10. Testing the "toxin hypothesis of allergy": Mast cells, IgE, and innate and acquired immune responses to venoms*

    Science.gov (United States)

    Tsai, Mindy; Starkl, Philipp; Marichal, Thomas; Galli, Stephen J.

    2015-01-01

    Summary Work in mice indicates that innate functions of mast cells, particularly degradation of venom toxins by mast cell-derived proteases, can enhance resistance to certain arthropod or reptile venoms. Recent reports indicate that acquired Th2 immune responses associated with the production of IgE antibodies, induced by Russell’s viper venom or honeybee venom, or by a component of honeybee venom, bee venom phospholipase 2 (bvPLA2), can increase the resistance of mice to challenge with potentially lethal doses of either of the venoms or bvPLA2. These findings support the conclusion that, in contrast to the detrimental effects associated with allergic Th2 immune responses, mast cells and IgE-dependent immune responses to venoms can contribute to innate and adaptive resistance to venom-induced pathology and mortality. PMID:26210895

  11. Identification of Systemic Acquired Resistance–Related Volatile Organic Compounds and their Role in Plant Immunity

    OpenAIRE

    Bichlmeier, Marlies

    2017-01-01

    Systemic acquired resistance (SAR) is an inducible immune response that depends on ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1), which is essential for SAR signalling. In contrast to SAR, local resistance remains intact in Arabidopsis (Arabidopsis thaliana) eds1-2 mutant plants in response to Pseudomonas syringae delivering the effector protein AvrRpm1. I utilized the SAR-specific phenotype of the eds1-2 mutant to identify volatile organic compounds (VOCs) related to SAR. To this end, SAR was indu...

  12. Naturally acquired immunity to Plasmodium falciparum malaria in Africa

    DEFF Research Database (Denmark)

    Hviid, Lars

    2005-01-01

    Infection by Plasmodium falciparum parasites can lead to substantial protective immunity to malaria, and available evidence suggest that acquisition of protection against some severe malaria syndromes can be fairly rapid. Although these facts have raised hopes that the development of effective...... protective immunity to P. falciparum malaria is acquired following natural exposure to the parasites is beginning to emerge, not least thanks to studies that have combined clinical and epidemiological data with basic immunological research. This framework involves IgG with specificity for clonally variant...... antigens on the surface of the infected erythrocytes, can explain some of the difficulties in relating particular immune responses with specificity for well-defined antigenic targets to clinical protection, and suggests a radically new approach to controlling malaria-related morbidity and mortality...

  13. Hyperthyroidism caused by acquired immune deficiency syndrome.

    Science.gov (United States)

    Wang, J-J; Zhou, J-J; Yuan, X-L; Li, C-Y; Sheng, H; Su, B; Sheng, C-J; Qu, S; Li, H

    2014-01-01

    Acquired immune deficiency syndrome (AIDS) is an immune deficiency disease. The etiology of hyperthyroidism, which can also be immune-related, is usually divided into six classical categories, including hypophyseal, hypothalamic, thyroid, neoplastic, autoimmune and inflammatory hyperthyroidism. Hyperthyroidism is a rare complication of highly active antimicrobial therapy (HAART) for human immunodeficiency virus (HIV). Hyperthyroidism caused directly by AIDS has not been previously reported. A 29-year-old man who complained of dyspnea and asthenia for 1 month, recurrent fever for more than 20 days, and breathlessness for 1 week was admitted to our hospital. The thyroid function test showed that the level of free thyroxine (FT4) was higher than normal and that the level of thyroid-stimulating hormone (TSH) was below normal. He was diagnosed with hyperthyroidism. Additional investigations revealed a low serum albumin level and chest infection, along with diffuse lung fibrosis. Within 1 month, he experienced significant weight loss, no hand tremors, intolerance of heat, and perspiration proneness. We recommended an HIV examination; subsequently, AIDS was diagnosed based on the laboratory parameters. This is the first reported case of hyperthyroidism caused by AIDS. AIDS may cause hyperthyroidism by immunization regulation with complex, atypical, and easily ignored symptoms. Although hyperthyroidism is rare in patients with AIDS, clinicians should be aware of this potential interaction and should carefully monitor thyroid function in HIV-positive patients.

  14. Haemoglobin C and S role in acquired immunity against Plasmodium falciparum malaria.

    Directory of Open Access Journals (Sweden)

    Federica Verra

    2007-10-01

    Full Text Available A recently proposed mechanism of protection for haemoglobin C (HbC; beta6Glu-->Lys links an abnormal display of PfEMP1, an antigen involved in malaria pathogenesis, on the surface of HbC infected erythrocytes together with the observation of reduced cytoadhesion of parasitized erythrocytes and impaired rosetting in vitro. We investigated the impact of this hypothesis on the development of acquired immunity against Plasmodium falciparum variant surface antigens (VSA encoding PfEMP1 in HbC in comparison with HbA and HbS carriers of Burkina Faso. We measured: i total IgG against a single VSA, A4U, and against a panel of VSA from severe malaria cases in human sera from urban and rural areas of Burkina Faso of different haemoglobin genotypes (CC, AC, AS, SC, SS; ii total IgG against recombinant proteins of P. falciparum asexual sporozoite, blood stage antigens, and parasite schizont extract; iii total IgG against tetanus toxoid. Results showed that the reported abnormal cell-surface display of PfEMP1 on HbC infected erythrocytes observed in vitro is not associated to lower anti- PfEMP1 response in vivo. Higher immune response against the VSA panel and malaria antigens were observed in all adaptive genotypes containing at least one allelic variant HbC or HbS in the low transmission urban area whereas no differences were detected in the high transmission rural area. In both contexts the response against tetanus toxoid was not influenced by the beta-globin genotype. These findings suggest that both HbC and HbS affect the early development of naturally acquired immunity against malaria. The enhanced immune reactivity in both HbC and HbS carriers supports the hypothesis that the protection against malaria of these adaptive genotypes might be at least partially mediated by acquired immunity against malaria.

  15. A cascade reaction network mimicking the basic functional steps of acquired immune response

    Science.gov (United States)

    Han, Da; Wu, Cuichen; You, Mingxu; Zhang, Tao; Wan, Shuo; Chen, Tao; Qiu, Liping; Zheng, Zheng; Liang, Hao; Tan, Weihong

    2015-01-01

    Biological systems use complex ‘information processing cores’ composed of molecular networks to coordinate their external environment and internal states. An example of this is the acquired, or adaptive, immune system (AIS), which is composed of both humoral and cell-mediated components. Here we report the step-by-step construction of a prototype mimic of the AIS which we call Adaptive Immune Response Simulator (AIRS). DNA and enzymes are used as simple artificial analogues of the components of the AIS to create a system which responds to specific molecular stimuli in vitro. We show that this network of reactions can function in a manner which is superficially similar to the most basic responses of the vertebrate acquired immune system, including reaction sequences that mimic both humoral and cellular responses. As such, AIRS provides guidelines for the design and engineering of artificial reaction networks and molecular devices. PMID:26391084

  16. Club cells surviving influenza A virus infection induce temporary nonspecific antiviral immunity.

    Science.gov (United States)

    Hamilton, Jennifer R; Sachs, David; Lim, Jean K; Langlois, Ryan A; Palese, Peter; Heaton, Nicholas S

    2016-04-05

    A brief window of antigen-nonspecific protection has been observed after influenza A virus (IAV) infection. Although this temporary immunity has been assumed to be the result of residual nonspecific inflammation, this period of induced immunity has not been fully studied. Because IAV has long been characterized as a cytopathic virus (based on its ability to rapidly lyse most cell types in culture), it has been a forgone conclusion that directly infected cells could not be contributing to this effect. Using a Cre recombinase-expressing IAV, we have previously shown that club cells can survive direct viral infection. We show here not only that these cells can eliminate all traces of the virus and survive but also that they acquire a heightened antiviral response phenotype after surviving. Moreover, we experimentally demonstrate temporary nonspecific viral immunity after IAV infection and show that surviving cells are required for this phenotype. This work characterizes a virally induced modulation of the innate immune response that may represent a new mechanism to prevent viral diseases.

  17. Interleukin-1 and cutaneous inflammation: a crucial link between innate and acquired immunity.

    Science.gov (United States)

    Murphy, J E; Robert, C; Kupper, T S

    2000-03-01

    As our primary interface with the environment, the skin is constantly subjected to injury and invasion by pathogens. The fundamental force driving the evolution of the immune system has been the need to protect the host against overwhelming infection. The ability of T and B cells to recombine antigen receptor genes during development provides an efficient, flexible, and powerful immune system with nearly unlimited specificity for antigen. The capacity to expand subsets of antigen-specific lymphocytes that become activated by environmental antigens (memory response) is termed "acquired" immunity. Immunologic memory, although a fundamental aspect of mammalian biology, is a relatively recent evolutionary event that permits organisms to live for years to decades. "Innate" immunity, mediated by genes that remain in germ line conformation and encode for proteins that recognize conserved structural patterns on microorganisms, is a much more ancient system of host defense. Defensins and other antimicrobial peptides, complement and opsonins, and endocytic receptors are all considered components of the innate immune system. None of these, however, are signal-transducing receptors. Most recently, a large family of cell surface receptors that mediate signaling through the NF-kappaB transcription factor has been identified. This family of proteins shares striking homology with plant and Drosophila genes that mediate innate immunity. In mammals, this family includes the type I interleukin-1 receptor, the interleukin-18 receptor, and a growing family of Toll-like receptors, two of which were recently identified as signal-transducing receptors for bacterial endotoxin. In this review, we discuss how interleukin-1 links the innate and acquired immune systems to provide synergistic host defense activities in skin.

  18. Introduction and immunopathogenesis of acquired immune deficiency syndrome

    Directory of Open Access Journals (Sweden)

    Sudharshan S

    2008-01-01

    Full Text Available India has a large number of patients with acquired immune deficiency syndrome (AIDS, the third largest population of this group in the world. This disease was first described in patients with Pneumocystis pneumonia in 1981. Ocular lesions can occur at any stage of the disease but are more commonly seen at the late stages. Human immunodeficiency virus (HIV, the causative agent of AIDS is a retrovirus with RNA genome and a unique ′Reverse transcriptase enzyme′ and is of two types, HIV-1 and 2. Most human diseases are caused by HIV-1. The HIV-1 subtypes prevalent in India are A, B and C. They act predominantly by reducing the CD4+ cells and thus the patient becomes susceptible to opportunistic infections. High viral titers in the peripheral blood during primary infection lead to decrease in the number of CD4+ T lymphocytes. Onset of HIV-1-specific cellular immune response with synthesis of HIV-1 specific antibodies leads to the decline of plasma viral load and chronification of HIV-1 infection. However, the asymptomatic stage of infection may lead to persistent viral replication and a rapid turnover of plasma virions which is the clinical latency. During this period, there is further decrease in the CD4+ counts which makes the patient′s immune system incapable of controlling opportunistic pathogens and thus life-threatening AIDS-defining diseases emerge. Advent of highly active antiretroviral treatment (HAART has revolutionized the management of AIDS though there is associated increased development of immune recovery uveitis in a few of these patients.

  19. Microbe-Induced Inflammatory Signals Triggering Acquired Bone Marrow Failure Syndromes.

    Science.gov (United States)

    Espinoza, J Luis; Kotecha, Ritesh; Nakao, Shinji

    2017-01-01

    Acquired bone marrow failure syndromes encompass a unique set of disorders characterized by a reduction in the effective production of mature cells by the bone marrow (BM). In the majority of cases, these syndromes are the result of the immune-mediated destruction of hematopoietic stem cells or their progenitors at various stages of differentiation. Microbial infection has also been associated with hematopoietic stem cell injury and may lead to associated transient or persistent BM failure, and recent evidence has highlighted the potential impact of commensal microbes and their metabolites on hematopoiesis. We summarize the interactions between microorganisms and the host immune system and emphasize how they may impact the development of acquired BM failure.

  20. IgG4-related disease and its pathogenesis—cross-talk between innate and acquired immunity

    Science.gov (United States)

    Nakajima, Akio; Nakamura, Takuji; Kawanami, Takafumi; Tanaka, Masao; Dong, Lingli; Kawano, Mitsuhiro

    2014-01-01

    IgG4-related disease (IgG4-RD) is a novel clinical entity proposed in Japan in the 21th century and is attracting strong attention over the world. The characteristic manifestations of IgG4-RD are increased serum IgG4 concentration and tumefaction by IgG4+ plasma cells. Although the clinical manifestations in various organs have been established, the pathogenesis of IgG4-RD is still unknown. Recently, many reports of aberrant acquired immunity such as Th2-diminated immune responses have been published. However, many questions still remain, including questions about the pathogenesis of IgG4-RD and the roles of IgG4. In this review, we discuss the pathogenesis of IgG4-RD by focusing on the cross-talk between innate and acquired immunity. PMID:25024397

  1. Evidence against the existence of specific Schistosoma mansoni subpopulations which are resistant to irradiated vaccine-induced immunity

    International Nuclear Information System (INIS)

    Lewis, F.A.; Hieny, S.; Sher, A.

    1985-01-01

    When mice are immunized with irradiated Schistosoma mansoni cercariae a proportion of the subsequent cercarial challenge always escapes killing and matures to egg-laying adults. This report investigates the possibility that incomplete immunity in this system is governed by a genetically-determined insusceptibility of a particular schistosome subpopulation. To do this the authors tested whether more immunoresistant schistosomes would develop following successive passages of progeny of the resistant worms through immunized mice. Mice were immunized with 500 50 Krad-irradiated cercariae, and challenged with normal cercariae when immunity was at its peak. After five successive passages through snails and immune mice, progeny of those parasites which escaped immune killing were no more refractory to vaccine-induced resistance than the original stock maintained in nonimmune mice. Additionally, the passaged isolates did not differ from the original stock in their ability to induce protection following irradiation. The results indicate that with this model of acquired resistance incomplete immunity is unlikely to be due to a subpopulation of the parasites possessing a genetically-determined insusceptibility to killing

  2. Cancer resistance as an acquired and inheritable trait

    DEFF Research Database (Denmark)

    Koch, Janne; Hau, Jann; Jensen, Henrik Elvang

    2014-01-01

    AIM: To induce cancer resistance in wild-type mice and detect if the resistance could be inherited to the progeny of the induced resistant mice. Furthermore to investigate the spectrum and immunology of this inherited cancer resistance. MATERIALS AND METHODS: Resistance to with live S180 cancer c...... of the resistance is unknown but may involve epigenetic mechanisms. Other examples of inheritability of acquired phenotypic changes exist but, to our knowledge, this is the first demonstration of acquired, inherited cancer resistance.......AIM: To induce cancer resistance in wild-type mice and detect if the resistance could be inherited to the progeny of the induced resistant mice. Furthermore to investigate the spectrum and immunology of this inherited cancer resistance. MATERIALS AND METHODS: Resistance to with live S180 cancer...... cells in BALB/c mice was induced by immunization with inactivated S180 cancer cells. The immunization was performed by either frozen/thawed or irradiated cancer cells or cell-free ascitic fluid (CFAF). RESULTS: In all instances the induced resistance was demonstrated to be inheritable. The phenotype...

  3. Temporal stability of naturally acquired immunity to Merozoite Surface Protein-1 in Kenyan Adults

    Directory of Open Access Journals (Sweden)

    Crabb Brendan S

    2009-07-01

    Full Text Available Abstract Background Naturally acquired immunity to blood-stage Plasmodium falciparum infection develops with age and after repeated infections. In order to identify immune surrogates that can inform vaccine trials conducted in malaria endemic populations and to better understand the basis of naturally acquired immunity it is important to appreciate the temporal stability of cellular and humoral immune responses to malaria antigens. Methods Blood samples from 16 adults living in a malaria holoendemic region of western Kenya were obtained at six time points over the course of 9 months. T cell immunity to the 42 kDa C-terminal fragment of Merozoite Surface Protein-1 (MSP-142 was determined by IFN-γ ELISPOT. Antibodies to the 42 kDa and 19 kDa C-terminal fragments of MSP-1 were determined by serology and by functional assays that measure MSP-119 invasion inhibition antibodies (IIA to the E-TSR (3D7 allele and growth inhibitory activity (GIA. The haplotype of MSP-119 alleles circulating in the population was determined by PCR. The kappa test of agreement was used to determine stability of immunity over the specified time intervals of 3 weeks, 6 weeks, 6 months, and 9 months. Results MSP-1 IgG antibodies determined by serology were most consistent over time, followed by MSP-1 specific T cell IFN-γ responses and GIA. MSP-119 IIA showed the least stability over time. However, the level of MSP-119 specific IIA correlated with relatively higher rainfall and higher prevalence of P. falciparum infection with the MSP-119 E-TSR haplotype. Conclusion Variation in the stability of cellular and humoral immune responses to P. falciparum blood stage antigens needs to be considered when interpreting the significance of these measurements as immune endpoints in residents of malaria endemic regions.

  4. Tumor necrosis factor-α-induced protein 1 and immunity to hepatitis B virus

    Science.gov (United States)

    Lin, Marie C; Lee, Nikki P; Zheng, Ning; Yang, Pai-Hao; Wong, Oscar G; Kung, Hsiang-Fu; Hui, Chee-Kin; Luk, John M; Lau, George Ka-Kit

    2005-01-01

    AIM: To compare the gene expression profile in a pair of HBV-infected twins. METHODS: The gene expression profile was compared in a pair of HBV-infected twins. RESULTS: The twins displayed different disease outcomes. One acquired natural immunity against HBV, whereas the other became a chronic HBV carrier. Eighty-eight and forty-six genes were found to be up- or down-regulated in their PBMCs, respectively. Tumor necrosis factor-alpha-induced protein 1 (TNF-αIP1) that expressed at a higher level in the HBV-immune twins was identified and four pairs of siblings with HBV immunity by RT-PCR. However, upon HBV core antigen stimulation, TNF-αIP1 was downregulated in PBMCs from subjects with immunity, whereas it was slightly upregulated in HBV carriers. Bioinformatics analysis revealed a K+ channel tetramerization domain in TNF-αIP1 that shares a significant homology with some human, mouse, and C elegan proteins. CONCLUSION: TNF-αIP1 may play a role in the innate immunity against HBV. PMID:16437679

  5. Protective immunity to UV radiation-induced skin tumours induced by skin grafts and epidermal cells

    International Nuclear Information System (INIS)

    Ronald Sluyter; Kylie S Yuen; Gary M Halliday

    2001-01-01

    There is little evidence that cutaneous dendritic cells (DC), including epidermal Langerhans cells (LC), can induce immunity to UV radiation (UVR)-induced skin tumours. Here, it is shown that cells within skin can induce protective antitumour immunity against a UVR-induced fibrosarcoma. Transplantation of the skin overlying subcutaneous tumours onto naive recipients could induce protective antitumour immunity, probably because the grafting stimulated the tumour Ag-loaded DC to migrate to local lymph nodes. This suggests that cutaneous APC can present tumour Ag to induce protective antitumour immunity. Previously, it has been shown that immunization of mice with MHC class II+ epidermal cells (EC) pulsed with tumour extracts could induce delayed-type hypersensitivity against tumour cells. Here, this same immunization protocol could induce protective immunity against a minimum tumorigenic dose of UVR-induced fibrosarcoma cells, but not higher doses. Epidermal cells obtained from semiallogeneic donors and pulsed with tumour extract could also induce protective immunity. However, presentation of BSA Ag from the culture medium was found to contribute to this result using semiallogeneic EC. The results suggest that LC overlying skin tumours may be able to induce protective immunity to UVR-induced tumours if stimulated to migrate from the skin. Copyright (2001) Australasian Society of Immunology Inc

  6. A post hoc assessment of duration of protection in CAPiTA (Community Acquired Pneumonia immunization Trial in Adults)

    NARCIS (Netherlands)

    Patterson, Scott; Webber, Chris; Patton, Michael; Drews, Wayne; Huijts, Susanne M.; Bolkenbaas, Marieke; Gruber, William C.; Scott, Daniel A.; Bonten, Marc J M

    2016-01-01

    Background: The Community Acquired Pneumonia immunization Trial in Adults (CAPiTA) was conducted to evaluate 13-valent pneumococcal conjugate vaccine (PCV13) for the prevention of vaccine-type community-acquired pneumonia (VT-CAP) and vaccine-type invasive pneumococcal disease (VT-IPD) in adults

  7. The potential of immunostimulatory CpG DNA for inducing immunity against genital herpes: opportunities and challenges.

    Science.gov (United States)

    Harandi, Ali M

    2004-07-01

    Herpes simplex virus type 2 (HSV-2) invades human genital tract mucosa and following local replications can be rapidly transmitted via peripheral nerve axons to the sacral ganglia where it can establish latency. Reactivation of the latent viral reservoir results in recurrent ulcers in the genital region. Innate immunity, the first line of defence during both primary and recurrent genital herpes infections, is crucial during the period of acute infection to limit early virus replication and to facilitate the development of an appropriate specific acquired immunity. Recent developments in immunology reveal that the mammalian innate immune systems use Toll-like receptor (TLR) to specifically sense evolutionary conserved molecules such as bacterial DNA in pathogens. Recently, local-vaginal delivery of CpG containing oligodeoxynucleotide (ODN), a synthetic mimic of bacterial DNA, holds substantial promise as a strong inducer of innate immunity against genital herpes infections in the animal models of the disease. These preclinical observations provide a scientific ground work for introduction of this novel intervention strategy to clinic. This review aims to highlight recent developments and future challenges in use of immunostimulatory CpG ODN for inducing immunity against genital herpes infection and disease.

  8. The role of complement in the acquired immune response

    DEFF Research Database (Denmark)

    Nielsen, C H; Fischer, E M; Leslie, R G

    2000-01-01

    to specific T cells; the activation of a CD21/CD19 complex-mediated signalling pathway in B cells, which provides a stimulus synergistic to that induced by antigen interaction with the B-cell receptor (BCR); and promotion of the interaction between B cells and FDC, where C3d-bearing immune complexes...

  9. Lactose in human breast milk an inducer of innate immunity with implications for a role in intestinal homeostasis.

    Science.gov (United States)

    Cederlund, Andreas; Kai-Larsen, Ylva; Printz, Gordana; Yoshio, Hiroyuki; Alvelius, Gunvor; Lagercrantz, Hugo; Strömberg, Roger; Jörnvall, Hans; Gudmundsson, Gudmundur H; Agerberth, Birgitta

    2013-01-01

    Postpartum, infants have not yet established a fully functional adaptive immune system and are at risk of acquiring infections. Hence, newborns are dependent on the innate immune system with its antimicrobial peptides (AMPs) and proteins expressed at epithelial surfaces. Several factors in breast milk are known to confer immune protection, but which the decisive factors are and through which manner they work is unknown. Here, we isolated an AMP-inducing factor from human milk and identified it by electrospray mass spectrometry and NMR to be lactose. It induces the gene (CAMP) that encodes the only human cathelicidin LL-37 in colonic epithelial cells in a dose- and time-dependent manner. The induction was suppressed by two different p38 antagonists, indicating an effect via the p38-dependent pathway. Lactose also induced CAMP in the colonic epithelial cell line T84 and in THP-1 monocytes and macrophages. It further exhibited a synergistic effect with butyrate and phenylbutyrate on CAMP induction. Together, these results suggest an additional function of lactose in innate immunity by upregulating gastrointestinal AMPs that may lead to protection of the neonatal gut against pathogens and regulation of the microbiota of the infant.

  10. Lactose in human breast milk an inducer of innate immunity with implications for a role in intestinal homeostasis.

    Directory of Open Access Journals (Sweden)

    Andreas Cederlund

    Full Text Available Postpartum, infants have not yet established a fully functional adaptive immune system and are at risk of acquiring infections. Hence, newborns are dependent on the innate immune system with its antimicrobial peptides (AMPs and proteins expressed at epithelial surfaces. Several factors in breast milk are known to confer immune protection, but which the decisive factors are and through which manner they work is unknown. Here, we isolated an AMP-inducing factor from human milk and identified it by electrospray mass spectrometry and NMR to be lactose. It induces the gene (CAMP that encodes the only human cathelicidin LL-37 in colonic epithelial cells in a dose- and time-dependent manner. The induction was suppressed by two different p38 antagonists, indicating an effect via the p38-dependent pathway. Lactose also induced CAMP in the colonic epithelial cell line T84 and in THP-1 monocytes and macrophages. It further exhibited a synergistic effect with butyrate and phenylbutyrate on CAMP induction. Together, these results suggest an additional function of lactose in innate immunity by upregulating gastrointestinal AMPs that may lead to protection of the neonatal gut against pathogens and regulation of the microbiota of the infant.

  11. Lactose in Human Breast Milk an Inducer of Innate Immunity with Implications for a Role in Intestinal Homeostasis

    Science.gov (United States)

    Printz, Gordana; Yoshio, Hiroyuki; Alvelius, Gunvor; Lagercrantz, Hugo; Strömberg, Roger; Jörnvall, Hans; Gudmundsson, Gudmundur H.; Agerberth, Birgitta

    2013-01-01

    Postpartum, infants have not yet established a fully functional adaptive immune system and are at risk of acquiring infections. Hence, newborns are dependent on the innate immune system with its antimicrobial peptides (AMPs) and proteins expressed at epithelial surfaces. Several factors in breast milk are known to confer immune protection, but which the decisive factors are and through which manner they work is unknown. Here, we isolated an AMP-inducing factor from human milk and identified it by electrospray mass spectrometry and NMR to be lactose. It induces the gene (CAMP) that encodes the only human cathelicidin LL-37 in colonic epithelial cells in a dose- and time-dependent manner. The induction was suppressed by two different p38 antagonists, indicating an effect via the p38-dependent pathway. Lactose also induced CAMP in the colonic epithelial cell line T84 and in THP-1 monocytes and macrophages. It further exhibited a synergistic effect with butyrate and phenylbutyrate on CAMP induction. Together, these results suggest an additional function of lactose in innate immunity by upregulating gastrointestinal AMPs that may lead to protection of the neonatal gut against pathogens and regulation of the microbiota of the infant. PMID:23326523

  12. Genotoxicity induced by Taenia solium and its reduction by immunization with calreticulin in a hamster model of taeniosis.

    Science.gov (United States)

    Salazar, Ana María; Mendlovic, Fela; Cruz-Rivera, Mayra; Chávez-Talavera, Oscar; Sordo, Monserrat; Avila, Guillermina; Flisser, Ana; Ostrosky-Wegman, Patricia

    2013-06-01

    Genotoxicity induced by neurocysticercosis has been demonstrated in vitro and in vivo in humans. The adult stage of Taenia solium lodges in the small intestine and is the main risk factor to acquire neurocysticercosis, nevertheless its carcinogenic potential has not been evaluated. In this study, we determined the genotoxic effect of T. solium infection in the hamster model of taeniosis. In addition, we assessed the effect of oral immunization with recombinant T. solium calreticulin (rTsCRT) plus cholera toxin as adjuvant on micronuclei induction, as this protein has been shown to induce 33-44% protection in the hamster model of taeniosis. Blood samples were collected from the orbital venous plexus of noninfected and infected hamsters at different days postinfection, as well as from orally immunized animals, to evaluate the frequency of micronucleated reticulocytes as a measure of genotoxicity induced by parasite exposure and rTsCRT vaccination. Our results indicate that infection with T. solium caused time-dependent DNA damage in vivo and that rTsCRT immunization reduced the genotoxic damage induced by the presence of the tapeworms. Copyright © 2013 Wiley Periodicals, Inc.

  13. Immune response to uv-induced tumors: transplantation immunity and lymphocyte populations exhibiting anti-tumor activity

    International Nuclear Information System (INIS)

    Streeter, P.R.

    1985-01-01

    Ultraviolet light-induced murine skin tumors were analyzed for their ability to induce tumor-specific and cross-protective transplantation immunity in immunocompetent syngeneic mice. These studies revealed that progressor UV-tumors, like regressor UV-tumors, possess tumor-specific transplantation antigens. Cross-protective transplantation immunity to UV-tumors, however, was associated with sensitization to the serum used to culture the tumor lines rather than to cross-reactive or common determinants on UV-tumors. An analysis of the cytolytic activity of lymphocytes from the spleens of mice immunized with either regressor or progressor UV-tumors revealed a striking difference between the two immune splenocyte populations. From regressor tumor-immune animals, cytolytic T (Tc) lymphocytes with specificity for the immunizing tumor were found. However, the analysis of splenic lymphocytes from progressor tumor immune animals revealed no such effector cells. To more effectively examine those lymphocytes exhibiting cytolytic activity in vitro, T lymphocyte cloning technology was used as a means of isolating homogeneous lymphocyte populations with the effector activities described above. The mechanisms where NK cells and other nonspecific effector cells could be induced in tumor-immune animals are discussed in the context of class II restricted immune responses

  14. Acquired homotypic and heterotypic immunity against oculogenital Chlamydia trachomatis serovars following female genital tract infection in mice

    Directory of Open Access Journals (Sweden)

    Peña A Salvador

    2005-11-01

    Full Text Available Abstract Background Chlamydia trachomatis is the most common sexually transmitted bacterial pathogen causing female genital tract infection throughout the world. Reinfection with the same serovar, as well as multiple infections with different serovars, occurs in humans. Using a murine model of female C. trachomatis genital tract infection, we determined if homotypic and/or heterotypic protection against reinfection was induced following infection with human oculogenital strains of C. trachomatis belonging to two serovars (D and H that have been shown to vary significantly in the course of infection in the murine model. Methods Groups of outbred CF-1 mice were reinfected intravaginally with a strain of either serovar D or H, two months after initial infection with these strains. Cellular immune and serologic status, both quantitative and qualitative, was assessed following initial infection, and the course of infection was monitored by culturing vaginal samples collected every 2–7 days following reinfection. Results Serovar D was both more virulent (longer duration of infection and immunogenic (higher level of circulating and vaginal IgG and higher incidence of IgA in vaginal secretions in the mouse genital tract. Although both serovars induced cross-reacting antibodies during the course of primary infection, prior infection with serovar H resulted in only a slight reduction in the median duration of infection against homotypic reinfection (p ~ 0.10, while prior infection with serovar D resulted in significant reduction in the median duration of infection against both homotypic (p Conclusion Serovar D infection resulted in significant homotypic and heterotypic protection against reinfection, while primary infection with serovar H resulted in only slight homotypic protection. In addition to being the first demonstration of acquired heterotypic immunity between human oculogenital serovars, the differences in the level and extent of this immunity

  15. Cross-serotype immunity induced by immunization with a conserved rhinovirus capsid protein.

    Directory of Open Access Journals (Sweden)

    Nicholas Glanville

    Full Text Available Human rhinovirus (RV infections are the principle cause of common colds and precipitate asthma and COPD exacerbations. There is currently no RV vaccine, largely due to the existence of ∼150 strains. We aimed to define highly conserved areas of the RV proteome and test their usefulness as candidate antigens for a broadly cross-reactive vaccine, using a mouse infection model. Regions of the VP0 (VP4+VP2 capsid protein were identified as having high homology across RVs. Immunization with a recombinant VP0 combined with a Th1 promoting adjuvant induced systemic, antigen specific, cross-serotype, cellular and humoral immune responses. Similar cross-reactive responses were observed in the lungs of immunized mice after infection with heterologous RV strains. Immunization enhanced the generation of heterosubtypic neutralizing antibodies and lung memory T cells, and caused more rapid virus clearance. Conserved domains of the RV capsid therefore induce cross-reactive immune responses and represent candidates for a subunit RV vaccine.

  16. Heterotopic ossification (myositis ossificans) in acquired immune deficiency syndrome. Detection by gallium scintigraphy

    International Nuclear Information System (INIS)

    Drane, W.E.; Tipler, B.M.

    1987-01-01

    A case of heterotopic ossification (myositis ossificans) secondary to the central nervous system complications of acquired immune deficiency syndrome (AIDS) is reported. Because of the overwhelming suspicion of infection in this patient, this diagnosis was not considered until a gallium scan revealed the typical findings of heterotopic ossification. Because of the increasing utilization of gallium imaging in the AIDS population, every imaging specialist should be aware of this potential disorder

  17. Acquired Immune Deficiency Syndrome: A Preliminary Examination of the Effects on Gay Couples and Coupling.

    Science.gov (United States)

    Carl, Douglas

    1986-01-01

    The Acquired Immune Deficiency Syndrome (AIDS) epidemic significantly influences attitudes about life and lifestyles. Homosexuals have to give increased consideration to coupling, the nature of coupled relationships, sex and intimacy, and death long before the normal time. Discusses impact of AIDS on the early stages of gay coupling and on the…

  18. Functions of innate and acquired immune system are reduced in domestic pigeons (Columba livia domestica) given a low protein diet

    Science.gov (United States)

    Mabuchi, Yuko; Frankel, Theresa L.

    2016-01-01

    Racing pigeons are exposed to and act as carriers of diseases. Dietary protein requirement for their maintenance has not been determined experimentally despite their being domesticated for over 7000 years. A maintenance nitrogen (protein) requirement (MNR) for pigeons was determined in a balance study using diets containing 6, 10 and 14% crude protein (CP). Then, the effects of feeding the diets were investigated to determine whether they were adequate to sustain innate and acquired immune functions. Nitrogen intake from the 6% CP diet was sufficient to maintain nitrogen balance and body weight in pigeons. However, the immune functions of phagocytosis, oxidative burst and lymphocyte proliferation in pigeons fed this diet were reduced compared with those fed 10 and 14% CP diets. Pigeons given the 6 and 10% CP diets had lower antibody titres following inoculation against Newcastle disease (ND) than those on the 14% CP diet. A confounding factor found on autopsy was the presence of intestinal parasites in some of the pigeons given the 6 and 10% CP diets; however, none of the pigeons used to measure MNR or acquired immunity to ND were infested with parasites. In conclusion, neither the 6 nor 10% CP diets adequately sustained acquired immune function of pigeons. PMID:27069640

  19. Acquired and innate immunity to polyaromatic hydrocarbons

    International Nuclear Information System (INIS)

    Yusuf, Nabiha; Timares, Laura; Seibert, Megan D.; Xu Hui; Elmets, Craig A.

    2007-01-01

    Polyaromatic hydrocarbons are ubiquitous environmental pollutants that are potent mutagens and carcinogens. Researchers have taken advantage of these properties to investigate the mechanisms by which chemicals cause cancer of the skin and other organs. When applied to the skin of mice, several carcinogenic polyaromatic hydrocarbons have also been shown to interact with the immune system, stimulating immune responses and resulting in the development of antigen-specific T-cell-mediated immunity. Development of cell-mediated immunity is strain-specific and is governed by Ah receptor genes and by genes located within the major histocompatibility complex. CD8 + T cells are effector cells in the response, whereas CD4 + T cells down-regulate immunity. Development of an immune response appears to have a protective effect since strains of mice that develop a cell-mediated immune response to carcinogenic polyaromatic hydrocarbons are less likely to develop tumors when subjected to a polyaromatic hydrocarbon skin carcinogenesis protocol than mice that fail to develop an immune response. With respect to innate immunity, TLR4-deficient C3H/HeJ mice are more susceptible to polyaromatic hydrogen skin tumorigenesis than C3H/HeN mice in which TLR4 is normal. These findings support the hypothesis that immune responses, through their interactions with chemical carcinogens, play an active role in the prevention of chemical skin carcinogenesis during the earliest stages. Efforts to augment immune responses to the chemicals that cause tumors may be a productive approach to the prevention of tumors caused by these agents

  20. Immune markers and correlates of protection for vaccine induced immune responses

    DEFF Research Database (Denmark)

    Thakur, Aneesh; Pedersen, Lasse Eggers; Jungersen, Gregers

    2012-01-01

    of an appropriate humoral response currently remain the best validated correlates of protective immunity after vaccination. Despite advancements in the field of immunology over the past few decades currently there are, however, no sufficiently validated immune correlates of vaccine induced protection against......-specific production of interferon-gamma (IFN-γ) has been promoted as a quantitative marker of protective cell-mediated immune responses over the past couple of decades. More recently, however, evidence from several infections has pointed towards the quality of the immune response, measured through increased levels...... of antigen-specific polyfunctional T cells capable of producing a triad of relevant cytokines, as a better correlate of sustained protective immunity against this type of infections. Also the possibilities to measure antigen-specific cytotoxic T cells (CTL) during infection or in response to vaccination...

  1. Immunization with avian metapneumovirus harboring chicken Fc induces higher immune responses.

    Science.gov (United States)

    Paudel, Sarita; Easwaran, Maheswaran; Jang, Hyun; Jung, Ho-Kyoung; Kim, Joo-Hun; Shin, Hyun-Jin

    2016-07-15

    In this study, we evaluated the immune responses of avian metapneumovirus harboring chicken Fc molecule. Stable Vero cells expressing chicken Fc chimera on its surface (Vero-cFc) were established, and we confirmed that aMPV grown in Vero-cFc incorporated host derived chimera Fc into the aMPV virions. Immunization of chicken with aMPV-cFc induced higher level of antibodies and inflammatory cytokines; (Interferon (IFN)-γ and Interleukin (IL)-1β) compared to those of aMPV. The increased levels of antibodies and inflammatory cytokines in chicken immunized with aMPV-cFc were statistically significantly (p<0.05) to that of aMPV and control. The aMPV-cFc group also generated the highest neutralizing antibody response. After challenges, chickens immunized with aMPV-cFc showed much less pathological signs in nasal turbinates and trachea so that we could confirm aMPV-cFc induced higher protection than that of aMPV. The greater ability of aMPV harboring chicken Fc to that of aMPV presented it as a possible vaccine candidate. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Nanovectorized radiotherapy: a new strategy to induce anti-tumor immunity

    International Nuclear Information System (INIS)

    Vanpouille-Box, Claire; Hindré, François

    2012-01-01

    Recent experimental findings show that activation of the host immune system is required for the success of chemo- and radiotherapy. However, clinically apparent tumors have already developed multiple mechanisms to escape anti-tumor immunity. The fact that tumors are able to induce a state of tolerance and immunosuppression is a major obstacle in immunotherapy. Hence, there is an overwhelming need to develop new strategies that overcome this state of immune tolerance and induce an anti-tumor immune response both at primary and metastatic sites. Nanovectorized radiotherapy that combines ionizing radiation and nanodevices, is one strategy that could boost the quality and magnitude of an immune response in a predictable and designable fashion. The potential benefits of this emerging treatment may be based on the unique combination of immunostimulatory properties of nanoparticles with the ability of ionizing radiation to induce immunogenic tumor cell death. In this review, we will discuss available data and propose that the nanovectorized radiotherapy could be a powerful new strategy to induce anti-tumor immunity required for positive patient outcome.

  3. Nanovectorized radiotherapy, a new strategy to induce anti-tumor immunity

    Directory of Open Access Journals (Sweden)

    Claire eVanpouille-Box

    2012-10-01

    Full Text Available Recent experimental findings show that activation of the host immune system is required for the success of chemo- and radio-therapy. However, clinically-apparent tumors have already developed multiple mechanisms to escape anti-tumor immunity. The fact that tumors are able to induce a state of tolerance and immunosuppression is a major obstacle in immunotherapy. Hence, there is an overwhelming need to develop new strategies that overcome this state of immune tolerance and induce an anti-tumor immune response both at primary and metastatic sites. Nanovectorized radiotherapy that combines ionizing radiation and nano-devices, is one strategy that could boost the quality and magnitude of an immune response in a predictable and designable fashion. The potential benefits of this emerging treatment may be based on the unique combination of immuno-stimulatory properties of nanoparticles with the ability of ionizing radiation to induce immunogenic tumor cell death. In this review, we will discuss available data and propose that the nanovectorized radiotherapy could be a powerful new strategy to induce anti-tumor immunity required for positive patient outcome.

  4. The role of epidermal cytokines in the generation of cutaneous immune reactions and ultraviolet radiation-induced immune suppression

    International Nuclear Information System (INIS)

    Ullrich, S.E.

    1995-01-01

    The immune suppression generated by UV exposure is a major risk factor for skin cancer patients. This finding has fuelled efforts to understand the mechanisms involved in the immune suppression induced by exposure to UV radiation. This article reviews the recent findings on the role of epidermal cytokines in the generation of an immune response and their role in the induction of immune suppression induced by UV exposure. (UK)

  5. Enhanced acquired antibodies to a chimeric Plasmodium falciparum antigen; UB05-09 is associated with protective immunity against malaria.

    Science.gov (United States)

    Dinga, J N; Gamua, S D; Titanji, V P K

    2017-08-01

    It has been shown that covalently linking two antigens could enhance the immunogenicity of the chimeric construct. To prioritize such a chimera for malaria vaccine development, it is necessary to demonstrate that naturally acquired antibodies against the chimera are associated with protection from malaria. Here, we probe the ability of a chimeric construct of UB05 and UB09 antigens (UB05-09) to better differentiate between acquired immune protection and susceptibility to malaria. In a cross-sectional study, recombinant UB05-09 chimera and the constituent antigens were used to probe for specific antibodies in the plasma from children and adults resident in a malaria-endemic zone, using the enzyme-linked immunosorbent assay (ELISA). Anti-UB05-09 antibody levels doubled that of its constituent antigens, UB09 and UB05, and this correlated with protection against malaria. The presence of enhanced UB05-09-specific antibody correlated with the absence of fever and parasitaemia, which are the main symptoms of malaria infection. The chimera is more effective in detecting and distinguishing acquired protective immunity against malaria than any of its constituents taken alone. Online B-cell epitope prediction tools confirmed the presence of B-cell epitopes in the study antigens. UB05-09 chimera is a marker of protective immunity against malaria that needs to be studied further. © 2017 John Wiley & Sons Ltd.

  6. Proposed method for agglutinating antibody titer analysis and its use as indicator of acquired immunity in pacu, Piaractus mesopotamicus

    Directory of Open Access Journals (Sweden)

    JD Biller-Takahashi

    Full Text Available Antibody can be assessed by agglutinating antibody titer which is a quantitative measure of circulating antibodies in serum from fish previously immunized. The antibody evaluation has been performed with different fish species, and is considered a reliable method that can be applied to confirm several hypothesis regarding acquired immunity, even in conjunction with precise methods to describe immune mechanisms. In order to provide appropriate analytical methods for future studies on the specific immune system of native fish, the present study standardized on assay to measure the serum agglutinating antibody titer produced after immunization with inactivated A. hydrophila and levamisole administration in pacu. It was possible to determine the agglutinating antibodies titer in a satisfactorily way in pacu immunized with inactive A. hydrophila, and the highest titers were observed on fish fed with levamisole.

  7. Effect of oral administration of Lactobacillus paracasei L9 on mouse systemic immunity and the immune response in the intestine

    Directory of Open Access Journals (Sweden)

    Zhu Yuanbo

    2016-01-01

    Full Text Available A probiotic strain Lactobacillus paracasei L9,which was isolated from human intestine, was investigated for its immunomodulatory activity in vivo. Results showed that L9 improved systemic immunity by enhancing the phagocytic activity of peritoneal macrophages, the proliferation ratio of splenocytes, the IgG level in the serum and the level of IgA in the mucosa. Further, L9induced theTh1-polarized immune response by elevating the IFN-γ/IL-4 ratio in the mucosa. This effect was confirmed by the enhanced IL-12-inducing activity of macrophages after in vitro stimulation of L9. Also detected was increased expression of TLR-2mRNA in the mucosa. We predict that L9 could enhance innate immunity by activating TLR-2 in the mucosa, and enhance acquired immunity by promoting Th1 polarization through induced production of IL-12 by macrophages.

  8. Epidermal Langerhans' cell induction of immunity against an ultraviolet-induced skin tumour

    International Nuclear Information System (INIS)

    Cavanagh, L.L.; Sluyter, R.; Henderson, K.G.; Barnetson, R.St.C.; Halliday, G.M.

    1996-01-01

    Lanerghans' cells (LC) have been shown experimentally to induce immune response against many antigens; however, their role in the initiation of anti-tumour immunity has received little attention. This study examined the ability of murine epidermal LC to induce immunity to an ultraviolet radiation (UV)-induced skin tumour. Freshly prepared epidermal cells (EC) were cultured for 2 or 20 hr with granulocyte-macrophage colony-stimulating factor (GM-CSF), pulsed with an extract of the UV-13-1 tumour, then used to immunize naive syngeneic mice. Delayed type hypersensitivity (DTH) was elicited 10 days after immunization by injection of UV-13-1 tumour cells into the ear pinna, and measured 24 hr later. EC cultured with GM-CSF for 2 hr induced anti-tumour DTH, as did EC cultured for 20 hr without GM-CSF. Conversely, EC cultured for 2 hr without GM-CSF, or EC cultured for 20 hr with GM-CSF were unable to induce a DTH. Induction of immunity required active presentation of tumour antigens by Ia + EC and was tumour specific. Thus Ia + epidermal cells are capable of inducing anti-tumour immunity to UV-induced skin tumours, but only when they contact antigen in particular states of maturation. (author)

  9. Nucleic acid-induced antiviral immunity in invertebrates: an evolutionary perspective.

    Science.gov (United States)

    Wang, Pei-Hui; Weng, Shao-Ping; He, Jian-Guo

    2015-02-01

    Nucleic acids derived from viral pathogens are typical pathogen associated molecular patterns (PAMPs). In mammals, the recognition of viral nucleic acids by pattern recognition receptors (PRRs), which include Toll-like receptors (TLRs) and retinoic acid-inducible gene (RIG)-I-like receptors (RLRs), induces the release of inflammatory cytokines and type I interferons (IFNs) through the activation of nuclear factor κB (NF-κB) and interferon regulatory factor (IRF) 3/7 pathways, triggering the host antiviral state. However, whether nucleic acids can induce similar antiviral immunity in invertebrates remains ambiguous. Several studies have reported that nucleic acid mimics, especially dsRNA mimic poly(I:C), can strongly induce non-specific antiviral immune responses in insects, shrimp, and oyster. This behavior shows multiple similarities to the hallmarks of mammalian IFN responses. In this review, we highlight the current understanding of nucleic acid-induced antiviral immunity in invertebrates. We also discuss the potential recognition and regulatory mechanisms that confer non-specific antiviral immunity on invertebrate hosts. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. A Drosophila immune response against Ras-induced overgrowth

    Directory of Open Access Journals (Sweden)

    Thomas Hauling

    2014-03-01

    Full Text Available Our goal is to characterize the innate immune response against the early stage of tumor development. For this, animal models where genetic changes in specific cells and tissues can be performed in a controlled way have become increasingly important, including the fruitfly Drosophila melanogaster. Many tumor mutants in Drosophila affect the germline and, as a consequence, also the immune system itself, making it difficult to ascribe their phenotype to a specific tissue. Only during the past decade, mutations have been induced systematically in somatic cells to study the control of tumorous growth by neighboring cells and by immune cells. Here we show that upon ectopic expression of a dominant-active form of the Ras oncogene (RasV12, both imaginal discs and salivary glands are affected. Particularly, the glands increase in size, express metalloproteinases and display apoptotic markers. This leads to a strong cellular response, which has many hallmarks of the granuloma-like encapsulation reaction, usually mounted by the insect against larger foreign objects. RNA sequencing of the fat body reveals a characteristic humoral immune response. In addition we also identify genes that are specifically induced upon expression of RasV12. As a proof-of-principle, we show that one of the induced genes (santa-maria, which encodes a scavenger receptor, modulates damage to the salivary glands. The list of genes we have identified provides a rich source for further functional characterization. Our hope is that this will lead to a better understanding of the earliest stage of innate immune responses against tumors with implications for mammalian immunity.

  11. Perillyl alcohol suppresses antigen-induced immune responses in the lung

    International Nuclear Information System (INIS)

    Imamura, Mitsuru; Sasaki, Oh; Okunishi, Katsuhide; Nakagome, Kazuyuki; Harada, Hiroaki; Kawahata, Kimito; Tanaka, Ryoichi; Yamamoto, Kazuhiko; Dohi, Makoto

    2014-01-01

    Highlights: •Perillyl alcohol (POH) is an isoprenoid which inhibits the mevalonate pathway. •We examined whether POH suppresses immune responses with a mouse model of asthma. •POH treatment during sensitization suppressed Ag-induced priming of CD4 + T cells. •POH suppressed airway eosinophila and cytokine production in thoracic lymph nodes. -- Abstract: Perillyl alcohol (POH) is an isoprenoid which inhibits farnesyl transferase and geranylgeranyl transferase, key enzymes that induce conformational and functional changes in small G proteins to conduct signal production for cell proliferation. Thus, it has been tried for the treatment of cancers. However, although it affects the proliferation of immunocytes, its influence on immune responses has been examined in only a few studies. Notably, its effect on antigen-induced immune responses has not been studied. In this study, we examined whether POH suppresses Ag-induced immune responses with a mouse model of allergic airway inflammation. POH treatment of sensitized mice suppressed proliferation and cytokine production in Ag-stimulated spleen cells or CD4 + T cells. Further, sensitized mice received aerosolized OVA to induce allergic airway inflammation, and some mice received POH treatment. POH significantly suppressed indicators of allergic airway inflammation such as airway eosinophilia. Cytokine production in thoracic lymph nodes was also significantly suppressed. These results demonstrate that POH suppresses antigen-induced immune responses in the lung. Considering that it exists naturally, POH could be a novel preventive or therapeutic option for immunologic lung disorders such as asthma with minimal side effects

  12. Strains of bacterial species induce a greatly varied acute adaptive immune response: The contribution of the accessory genome.

    Directory of Open Access Journals (Sweden)

    Uri Sela

    2018-01-01

    Full Text Available A fundamental question in human susceptibility to bacterial infections is to what extent variability is a function of differences in the pathogen species or in individual humans. To focus on the pathogen species, we compared in the same individual the human adaptive T and B cell immune response to multiple strains of two major human pathogens, Staphylococcus aureus and Streptococcus pyogenes. We found wide variability in the acute adaptive immune response induced by various strains of a species, with a unique combination of activation within the two arms of the adaptive response. Further, this was also accompanied by a dramatic difference in the intensity of the specific protective T helper (Th response. Importantly, the same immune response differences induced by the individual strains were maintained across multiple healthy human donors. A comparison of isogenic phage KO strains, demonstrated that of the pangenome, prophages were the major contributor to inter-strain immune heterogeneity, as the T cell response to the remaining "core genome" was noticeably blunted. Therefore, these findings extend and modify the notion of an adaptive response to a pathogenic bacterium, by implying that the adaptive immune response signature of a bacterial species should be defined either per strain or alternatively to the species' 'core genome', common to all of its strains. Further, our results demonstrate that the acquired immune response variation is as wide among different strains within a single pathogenic species as it is among different humans, and therefore may explain in part the clinical heterogeneity observed in patients infected with the same species.

  13. [Mechanisms of retroviral immunosuppressive domain-induced immune modulation].

    Science.gov (United States)

    Blinov, V M; Krasnov, G S; Shargunov, A V; Shurdov, M A; Zverev, V V

    2013-01-01

    Immunosuppressive domains (ISD) of viral envelope glycoproteins provide highly pathogenic phenotypes of various retroviruses. ISD interaction with immune cells leads to an inhibition of a response. In the 1980s it was shown that the fragment of ISD comprising of 17 amino acids (named CKS-17) is carrying out such immune modulation. However the underlying mechanisms were not known. The years of thorough research allowed to identify the regulation of Ras-Raf-MEK-MAPK and PI3K-AKT-mTOR cellular pathways as a result of ISD interaction with immune cells. By the way, this leads to decrease of secretion of stimulatory cytokines (e.g., IL-12) and increase of inhibitory, anti-inflammatory ones (e.g., IL-10). One of the receptor tyrosine kinases inducing signal in these pathways acts as the primary target of ISD while other key regulators--cAMP and diacylglycerol (DAG), act as secondary messengers of signal transduction. Immunosuppressive-like domains can be found not only in retroviruses; the presence of ISD within Ebola viral envelope glycoproteins caused extremely hard clinical course of virus-induced hemorrhagic fever. A number of retroviral-origin fragments encoding ISD can be found in the human genome. These regions are expressed in the placenta within genes of syncytins providing a tolerance of mother's immune system to an embryo. The present review is devoted to molecular aspects of retroviral ISD-induced modulation of host immune system.

  14. Perillyl alcohol suppresses antigen-induced immune responses in the lung

    Energy Technology Data Exchange (ETDEWEB)

    Imamura, Mitsuru; Sasaki, Oh; Okunishi, Katsuhide; Nakagome, Kazuyuki; Harada, Hiroaki; Kawahata, Kimito; Tanaka, Ryoichi; Yamamoto, Kazuhiko [Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo (Japan); Dohi, Makoto, E-mail: mdohi-tky@umin.ac.jp [Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo (Japan); Institute of Respiratory Immunology, Shibuya Clinic for Respiratory Diseases and Allergology, Tokyo (Japan)

    2014-01-03

    Highlights: •Perillyl alcohol (POH) is an isoprenoid which inhibits the mevalonate pathway. •We examined whether POH suppresses immune responses with a mouse model of asthma. •POH treatment during sensitization suppressed Ag-induced priming of CD4{sup +} T cells. •POH suppressed airway eosinophila and cytokine production in thoracic lymph nodes. -- Abstract: Perillyl alcohol (POH) is an isoprenoid which inhibits farnesyl transferase and geranylgeranyl transferase, key enzymes that induce conformational and functional changes in small G proteins to conduct signal production for cell proliferation. Thus, it has been tried for the treatment of cancers. However, although it affects the proliferation of immunocytes, its influence on immune responses has been examined in only a few studies. Notably, its effect on antigen-induced immune responses has not been studied. In this study, we examined whether POH suppresses Ag-induced immune responses with a mouse model of allergic airway inflammation. POH treatment of sensitized mice suppressed proliferation and cytokine production in Ag-stimulated spleen cells or CD4{sup +} T cells. Further, sensitized mice received aerosolized OVA to induce allergic airway inflammation, and some mice received POH treatment. POH significantly suppressed indicators of allergic airway inflammation such as airway eosinophilia. Cytokine production in thoracic lymph nodes was also significantly suppressed. These results demonstrate that POH suppresses antigen-induced immune responses in the lung. Considering that it exists naturally, POH could be a novel preventive or therapeutic option for immunologic lung disorders such as asthma with minimal side effects.

  15. Sculpting humoral immunity through dengue vaccination to enhance protective immunity

    Directory of Open Access Journals (Sweden)

    Wayne eCrill

    2012-11-01

    Full Text Available Dengue viruses (DENV are the most important mosquito transmitted viral pathogens infecting humans. DENV infection produces a spectrum of disease, most commonly causing a self-limiting flu-like illness known as dengue fever; yet with increased frequency, manifesting as life-threatening dengue hemorrhagic fever (DHF. Waning cross-protective immunity from any of the four dengue serotypes may enhance subsequent infection with another heterologous serotype to increase the probability of DHF. Decades of effort to develop dengue vaccines are reaching the finishing line with multiple candidates in clinical trials. Nevertheless, concerns remain that imbalanced immunity, due to the prolonged prime-boost schedules currently used in clinical trials, could leave some vaccinees temporarily unprotected or with increased susceptibility to enhanced disease. Here we develop a DENV serotype 1 (DENV-1 DNA vaccine with the immunodominant cross-reactive B cell epitopes associated with immune enhancement removed. We compare wild-type (WT with this cross-reactivity reduced (CRR vaccine and demonstrate that both vaccines are equally protective against lethal homologous DENV-1 challenge. Under conditions mimicking natural exposure prior to acquiring protective immunity, WT vaccinated mice enhanced a normally sub-lethal heterologous DENV-2 infection resulting in DHF-like disease and 95% mortality in AG129 mice. However, CRR vaccinated mice exhibited redirected serotype-specific and protective immunity, and significantly reduced morbidity and mortality not differing from naïve mice. Thus, we demonstrate in an in vivo DENV disease model, that non-protective vaccine-induced immunity can prime vaccinees for enhanced DHF-like disease and that CRR DNA immunization significantly reduces this potential vaccine safety concern. The sculpting of immune memory by the modified vaccine and resulting redirection of humoral immunity provide insight into DENV vaccine induced immune

  16. Immunological characteristics and response to lipopolysaccharide of mouse lines selectively bred with natural and acquired immunities.

    Science.gov (United States)

    Narahara, Hiroki; Sakai, Eri; Katayama, Masafumi; Ohtomo, Yukiko; Yamamoto, Kanako; Takemoto, Miki; Aso, Hisashi; Ohwada, Shyuichi; Mohri, Yasuaki; Nishimori, Katsuhiko; Isogai, Emiko; Yamaguchi, Takahiro; Fukuda, Tomokazu

    2012-05-01

    Genetic improvement of resistance to infectious diseases is a challenging goal in animal breeding. Infection resistance involves multiple immunological characteristics, including natural and acquired immunity. In the present study, we developed an experimental model based on genetic selection, to improve immunological phenotypes. We selectively established three mouse lines based on phagocytic activity, antibody production and the combination of these two phenotypes. We analyzed the immunological characteristics of these lines using a lipopolysaccharide (LPS), which is one of the main components of Gram-negative bacteria. An intense immunological reaction was induced in each of the three mouse lines. Severe loss of body weight and liver damage were observed, and a high level of cytokine messenger RNA was detected in the liver tissue. The mouse line established using a combination of the two selection standards showed unique characteristics relative to the mouse lines selected on the basis of a single phenotype. Our results indicate that genetic selection and breeding is effective, even for immunological phenotypes with a relatively low heritability. Thus, it may be possible to improve resistance to infectious diseases by means of genetic selection. © 2011 The Authors. Animal Science Journal © 2011 Japanese Society of Animal Science.

  17. Foliar application of systemic acquired resistance (SAR) inducers for ...

    African Journals Online (AJOL)

    nbuensanteai

    2013-08-14

    Aug 14, 2013 ... induced by chitosan and BTH were involved in defense mechanism, reflecting the strong direct positive effect that chitosan ... to control plant diseases based on the systemic acquired resistance ... salicylic acid (SA) as a signal molecule and is associated ... treated plants for SAR relating chemical analyses.

  18. SIGNALING MECHANISMS IN SEPSIS-INDUCED IMMUNE DYSFUNCTION

    OpenAIRE

    Hasan, Zirak

    2013-01-01

    Sepsis and subsequent organ failure remain the major cause of mortality in intensive care units in spite of significant research efforts. The lung is the most vulnerable organ affected by early hyper-inflammatory immune response in septic patients. On the other hand, the septic insult induces immune dysfunction in later phases of sepsis which in turn increases susceptibility to infections. The aim of this thesis was to investigate early and late inflammatory mechanisms in abdominal sepsis ind...

  19. Skin innate immune system

    Directory of Open Access Journals (Sweden)

    Berna Aksoy

    2013-06-01

    Full Text Available All multicellular organisms protect themselves from external universe and microorganisms by innate immune sytem that is constitutively present. Skin innate immune system has several different components composed of epithelial barriers, humoral factors and cellular part. In this review information about skin innate immune system and its components are presented to the reader. Innate immunity, which wasn’t adequately interested in previously, is proven to provide a powerfull early protection system, control many infections before the acquired immunity starts and directs acquired immunity to develop optimally

  20. Adenovirus Vector-Derived VA-RNA-Mediated Innate Immune Responses

    Directory of Open Access Journals (Sweden)

    Hiroyuki Mizuguchi

    2011-07-01

    Full Text Available The major limitation of the clinical use of replication-incompetent adenovirus (Ad vectors is the interference by innate immune responses, including induction of inflammatory cytokines and interferons (IFN, following in vivo application of Ad vectors. Ad vector-induced production of inflammatory cytokines and IFNs also results in severe organ damage and efficient induction of acquired immune responses against Ad proteins and transgene products. Ad vector-induced innate immune responses are triggered by the recognition of Ad components by pattern recognition receptors (PRRs. In order to reduce the side effects by Ad vector-induced innate immune responses and to develop safer Ad vectors, it is crucial to clarify which PRRs and which Ad components are involved in Ad vector-induced innate immune responses. Our group previously demonstrated that myeloid differentiating factor 88 (MyD88 and toll-like receptor 9 (TLR9 play crucial roles in the Ad vector-induced inflammatory cytokine production in mouse bone marrow-derived dendritic cells. Furthermore, our group recently found that virus associated-RNAs (VA-RNAs, which are about 160 nucleotide-long non-coding small RNAs encoded in the Ad genome, are involved in IFN production through the IFN-β promoter stimulator-1 (IPS-1-mediated signaling pathway following Ad vector transduction. The aim of this review is to highlight the Ad vector-induced innate immune responses following transduction, especially VA-RNA-mediated innate immune responses. Our findings on the mechanism of Ad vector-induced innate immune responses should make an important contribution to the development of safer Ad vectors, such as an Ad vector lacking expression of VA-RNAs.

  1. Polyomavirus specific cellular immunity: from BK-virus-specific cellular immunity to BK-virus-associated nephropathy ?

    Directory of Open Access Journals (Sweden)

    manon edekeyser

    2015-06-01

    Full Text Available In renal transplantation, BK-virus-associated nephropathy has emerged as a major complication, with a prevalence of 5–10% and graft loss in >50% of cases. BK-virus is a member of the Polyomavirus family and rarely induces apparent clinical disease in the general population. However, replication of polyomaviruses, associated with significant organ disease, is observed in patients with acquired immunosuppression, which suggests a critical role for virus-specific cellular immunity to control virus replication and prevent chronic disease. Monitoring of specific immunity combined with viral load could be used to individually assess the risk of viral reactivation and virus control. We review the current knowledge on BK-virus specific cellular immunity and, more specifically, in immunocompromised patients. In the future, immune-based therapies could allow us to treat and prevent BK-virus-associated nephropathy.

  2. Inducible immune proteins in the dampwood termite Zootermopsis angusticollis

    Science.gov (United States)

    Rosengaus, Rebeca B.; Cornelisse, Tara; Guschanski, Katerina; Traniello, James F. A.

    2007-01-01

    Dampwood termites, Zootermopsis angusticollis (Isoptera: Termopsidae), mount an immune response to resist microbial infection. Here we report on results of a novel analysis that allowed us to electrophoretically assess changes in hemolymph proteins in the same individual before and after exposure to a pathogen. We demonstrate that contact with a sublethal concentration of the entomopathogenic fungus Metarhizium anisopliae (Deuteromycotina:Hypomycetes) induces the production of protective proteins in nymphs, pseudergates (false workers), and soldiers. Termites exposed to an immunizing dosage of fungal conidia consistently showed an enhancement of constitutive proteins (62-85 kDa) in the hemolymph as well as an induction of novel proteins (28-48 kDa) relative to preimmunization levels. No significant differences in protein banding patterns relative to baseline levels in control and naïve termites were observed. Incubating excised and eluted induced proteins produced by immunized pseudergates or immunized soldiers with conidia significantly reduced the germination of the fungus. The fungistatic effect of eluted proteins differed significantly among five colonies examined. Our results show that the upregulation of protective proteins in the hemolymph underscores the in vivo immune response we previously recorded in Z. angusticollis.

  3. The Skin Microbiome: Is It Affected by UV-induced Immune Suppression?

    Science.gov (United States)

    Patra, VijayKumar; Byrne, Scott N.; Wolf, Peter

    2016-01-01

    Human skin apart from functioning as a physical barricade to stop the entry of pathogens, also hosts innumerable commensal organisms. The skin cells and the immune system constantly interact with microbes, to maintain cutaneous homeostasis, despite the challenges offered by various environmental factors. A major environmental factor affecting the skin is ultraviolet radiation (UV-R) from sunlight. UV-R is well known to modulate the immune system, which can be both beneficial and deleterious. By targeting the cells and molecules within skin, UV-R can trigger the production and release of antimicrobial peptides, affect the innate immune system and ultimately suppress the adaptive cellular immune response. This can contribute to skin carcinogenesis and the promotion of infectious agents such as herpes simplex virus and possibly others. On the other hand, a UV-established immunosuppressive environment may protect against the induction of immunologically mediated skin diseases including some of photodermatoses such as polymorphic light eruption. In this article, we share our perspective about the possibility that UV-induced immune suppression may alter the landscape of the skin’s microbiome and its components. Alternatively, or in concert with this, direct UV-induced DNA and membrane damage to the microbiome may result in pathogen associated molecular patterns (PAMPs) that interfere with UV-induced immune suppression. PMID:27559331

  4. The skin microbiome: Is it affected by UV-induced immune suppression?

    Directory of Open Access Journals (Sweden)

    Vijaykumar Patra

    2016-08-01

    Full Text Available Human skin apart from functioning as a physical barricade to stop the entry of pathogens, also hosts innumerable commensal organisms. The skin cells and the immune system constantly interact with microbes, to maintain cutaneous homeostasis, despite the challenges offered by various environmental factors. A major environmental factor affecting the skin is ultraviolet radiation UV-R from sunlight. UV-R is well known to modulate the immune system, which can be both beneficial and deleterious. By targeting the cells and molecules within skin, UV-R can trigger the production and release of antimicrobial peptides (AMPs, affect the innate immune system and ultimately suppress the adaptive cellular immune response. This can contribute to skin carcinogenesis and the promotion of infectious agents such as herpes simplex virus and possibly others. On the other hand, a UV-established immunosuppressive environment may protect against the induction of immunologically mediated skin diseases including some of photodermatoses such as polymorphic light eruption. In this article, we share our perspective about the possibility that UV-induced immune suppression may alter the landscape of the skin's microbiome and its components. Alternatively, or in concert with this, direct UV-induced DNA and membrane damage to the microbiome may result in pathogen associated molecular patterns (PAMPs that interfere with UV-induced immune suppression.

  5. Macrophage Inducible C-Type Lectin As a Multifunctional Player in Immunity

    Directory of Open Access Journals (Sweden)

    Emmanuel C. Patin

    2017-07-01

    Full Text Available The macrophage-inducible C-type lectin (Mincle is an innate immune receptor on myeloid cells sensing diverse entities including pathogens and damaged cells. Mincle was first described as a receptor for the mycobacterial cell wall glycolipid, trehalose-6,6′-dimycolate, or cord factor, and the mammalian necrotic cell-derived alarmin histone deacetylase complex unit Sin3-associated protein 130. Upon engagement by its ligands, Mincle induces secretion of innate cytokines and other immune mediators modulating inflammation and immunity. Since its discovery more than 25 years ago, the understanding of Mincle’s immune function has made significant advances in recent years. In addition to mediating immune responses to infectious agents, Mincle has been linked to promote tumor progression, autoimmunity, and sterile inflammation; however, further studies are required to completely unravel the complex role of Mincle in these distinct host responses. In this review, we discuss recent findings on Mincle’s biology with an emphasis on its diverse functions in immunity.

  6. Constraint-induced movement therapy for children with acquired brain injury

    DEFF Research Database (Denmark)

    Schmidt Pedersen, Kristina; Pallesen, H.; Kristensen, H. K.

    2016-01-01

    An estimated 125-137 Danish children with acquired brain injury (ABI) require rehabilitation annually, 30-40 of these at a highly specialized level. Constraint-induced movement therapy (CIMT) has shown significant effects in increasing function in children with cerebral palsy. More knowledge of h...

  7. The effects of polycyclic aromatic hydrocarbons on the immune system of fish: A review

    International Nuclear Information System (INIS)

    Reynaud, S.; Deschaux, P.

    2006-01-01

    Polycyclic aromatic hydrocarbons are an important class of environmental pollutants that are known to be carcinogenic and immunotoxic. This review summarizes the diverse literature on the effects of these pollutants on innate and acquired immunity in fish and the mechanism of PAH-induced immunotoxicity. Among innate immune parameters, many authors have focused on macrophage activities in fish exposed to polycyclic aromatic hydrocarbons. Macrophage respiratory burst appears especially sensitive to polycyclic aromatic hydrocarbons. Among acquired immune parameters, lymphocyte proliferation appears highly sensitive to polycyclic aromatic hydrocarbon exposure. However, the effects of polycyclic aromatic hydrocarbons on both specific and non-specific immunity are contradictory and depend on the mode of exposure, the dose used or the species studied. In contrast to mammals, fewer studies have been done in fish to determine the mechanism of polycyclic aromatic hydrocarbon-induced toxicity. This phenomenon seems to implicate different intracellular mechanisms such as metabolism by cytochrome P4501A, binding to the Ah-receptor, or increased intracellular calcium. Advances in basic knowledge of fish immunity should lead to improvements in monitoring fish health and predicting the impact of polycyclic aromatic hydrocarbons on fish populations, which is a fundamental ecotoxicological goal

  8. The effects of polycyclic aromatic hydrocarbons on the immune system of fish: A review

    Energy Technology Data Exchange (ETDEWEB)

    Reynaud, S. [Laboratoire d' Ecologie Alpine. UMR CNRS 5553. Universite Joseph Fourier. BP 53. 38041 Grenoble cedex 9 (France) and Laboratory of General and Comparative Immunophysiology, Science Teaching and Research Unit, 123, av. Albert Thomas, 87060 Limoges (France)]. E-mail: stephane.reynaud@ujf-grenoble.fr; Deschaux, P. [Laboratory of General and Comparative Immunophysiology, Science Teaching and Research Unit, 123, av. Albert Thomas, 87060 Limoges (France)

    2006-05-01

    Polycyclic aromatic hydrocarbons are an important class of environmental pollutants that are known to be carcinogenic and immunotoxic. This review summarizes the diverse literature on the effects of these pollutants on innate and acquired immunity in fish and the mechanism of PAH-induced immunotoxicity. Among innate immune parameters, many authors have focused on macrophage activities in fish exposed to polycyclic aromatic hydrocarbons. Macrophage respiratory burst appears especially sensitive to polycyclic aromatic hydrocarbons. Among acquired immune parameters, lymphocyte proliferation appears highly sensitive to polycyclic aromatic hydrocarbon exposure. However, the effects of polycyclic aromatic hydrocarbons on both specific and non-specific immunity are contradictory and depend on the mode of exposure, the dose used or the species studied. In contrast to mammals, fewer studies have been done in fish to determine the mechanism of polycyclic aromatic hydrocarbon-induced toxicity. This phenomenon seems to implicate different intracellular mechanisms such as metabolism by cytochrome P4501A, binding to the Ah-receptor, or increased intracellular calcium. Advances in basic knowledge of fish immunity should lead to improvements in monitoring fish health and predicting the impact of polycyclic aromatic hydrocarbons on fish populations, which is a fundamental ecotoxicological goal.

  9. Variable Domain N-Linked Glycans Acquired During Antigen-Specific Immune Responses Can Contribute to Immunoglobulin G Antibody Stability

    Directory of Open Access Journals (Sweden)

    Fleur S. van de Bovenkamp

    2018-04-01

    Full Text Available Immunoglobulin G (IgG can contain N-linked glycans in the variable domains, the so-called Fab glycans, in addition to the Fc glycans in the CH2 domains. These Fab glycans are acquired following introduction of N-glycosylation sites during somatic hypermutation and contribute to antibody diversification. We investigated whether Fab glycans may—in addition to affecting antigen binding—contribute to antibody stability. By analyzing thermal unfolding profiles of antibodies with or without Fab glycans, we demonstrate that introduction of Fab glycans can improve antibody stability. Strikingly, removal of Fab glycans naturally acquired during antigen-specific immune responses can deteriorate antibody stability, suggesting in vivo selection of stable, glycosylated antibodies. Collectively, our data show that variable domain N-linked glycans acquired during somatic hypermutation can contribute to IgG antibody stability. These findings indicate that introducing Fab glycans may represent a mechanism to improve therapeutic/diagnostic antibody stability.

  10. Streptococcal Immunity Is Constrained by Lack of Immunological Memory following a Single Episode of Pyoderma.

    Directory of Open Access Journals (Sweden)

    Manisha Pandey

    2016-12-01

    Full Text Available The immunobiology underlying the slow acquisition of skin immunity to group A streptococci (GAS, is not understood, but attributed to specific virulence factors impeding innate immunity and significant antigenic diversity of the type-specific M-protein, hindering acquired immunity. We used a number of epidemiologically distinct GAS strains to model the development of acquired immunity. We show that infection leads to antibody responses to the serotype-specific determinants on the M-protein and profound protective immunity; however, memory B cells do not develop and immunity is rapidly lost. Furthermore, antibodies do not develop to a conserved M-protein epitope that is able to induce immunity following vaccination. However, if re-infected with the same strain within three weeks, enduring immunity and memory B-cells (MBCs to type-specific epitopes do develop. Such MBCs can adoptively transfer protection to naïve recipients. Thus, highly protective M-protein-specific MBCs may never develop following a single episode of pyoderma, contributing to the slow acquisition of immunity and to streptococcal endemicity in at-risk populations.

  11. Next-generation systemic acquired resistance.

    Science.gov (United States)

    Luna, Estrella; Bruce, Toby J A; Roberts, Michael R; Flors, Victor; Ton, Jurriaan

    2012-02-01

    Systemic acquired resistance (SAR) is a plant immune response to pathogen attack. Recent evidence suggests that plant immunity involves regulation by chromatin remodeling and DNA methylation. We investigated whether SAR can be inherited epigenetically following disease pressure by Pseudomonas syringae pv tomato DC3000 (PstDC3000). Compared to progeny from control-treated Arabidopsis (Arabidopsis thaliana; C(1)), progeny from PstDC3000-inoculated Arabidopsis (P(1)) were primed to activate salicylic acid (SA)-inducible defense genes and were more resistant to the (hemi)biotrophic pathogens Hyaloperonospora arabidopsidis and PstDC3000. This transgenerational SAR was sustained over one stress-free generation, indicating an epigenetic basis of the phenomenon. Furthermore, P(1) progeny displayed reduced responsiveness of jasmonic acid (JA)-inducible genes and enhanced susceptibility to the necrotrophic fungus Alternaria brassicicola. This shift in SA- and JA-dependent gene responsiveness was not associated with changes in corresponding hormone levels. Instead, chromatin immunoprecipitation analyses revealed that SA-inducible promoters of PATHOGENESIS-RELATED GENE1, WRKY6, and WRKY53 in P(1) plants are enriched with acetylated histone H3 at lysine 9, a chromatin mark associated with a permissive state of transcription. Conversely, the JA-inducible promoter of PLANT DEFENSIN1.2 showed increased H3 triple methylation at lysine 27, a mark related to repressed gene transcription. P(1) progeny from the defense regulatory mutant non expressor of PR1 (npr1)-1 failed to develop transgenerational defense phenotypes, demonstrating a critical role for NPR1 in expression of transgenerational SAR. Furthermore, the drm1drm2cmt3 mutant that is affected in non-CpG DNA methylation mimicked the transgenerational SAR phenotype. Since PstDC3000 induces DNA hypomethylation in Arabidopsis, our results suggest that transgenerational SAR is transmitted by hypomethylated genes that direct priming

  12. Immunizations with hepatitis B viral antigens and a TLR7/8 agonist adjuvant induce antigen-specific immune responses in HBV-transgenic mice

    Directory of Open Access Journals (Sweden)

    Ying Wang

    2014-12-01

    Conclusions: Immunization with CL097-conjugated HBV-Ag reversed immune tolerance in HBV-Tg mice and induced antigen-specific immune responses. TLR7/8 agonists appear to be potent adjuvants for the induction of antigen-specific Th1 responses in an immune tolerant state.

  13. Radiation-induced augmentation of the immune response

    International Nuclear Information System (INIS)

    Anderson, R.E.; Lefkovits, I.; Troup, G.M.

    1980-01-01

    Radiation-induced augmentation of the immune response has been shown to occur both in vivo and in vitro. Evidence is presented to implicate injury to an extremely radiosensitive T cell in the expression of this phenomenon. Experiments are outlined which could be employed to support or reflect this hypothesis

  14. Polysaccharides isolated from Açaí fruit induce innate immune responses.

    Directory of Open Access Journals (Sweden)

    Jeff Holderness

    2011-02-01

    Full Text Available The Açaí (Acai fruit is a popular nutritional supplement that purportedly enhances immune system function. These anecdotal claims are supported by limited studies describing immune responses to the Acai polyphenol fraction. Previously, we characterized γδ T cell responses to both polyphenol and polysaccharide fractions from several plant-derived nutritional supplements. Similar polyphenol and polysaccharide fractions are found in Acai fruit. Thus, we hypothesized that one or both of these fractions could activate γδ T cells. Contrary to previous reports, we did not identify agonist activity in the polyphenol fraction; however, the Acai polysaccharide fraction induced robust γδ T cell stimulatory activity in human, mouse, and bovine PBMC cultures. To characterize the immune response to Acai polysaccharides, we fractionated the crude polysaccharide preparation and tested these fractions for activity in human PBMC cultures. The largest Acai polysaccharides were the most active in vitro as indicated by activation of myeloid and γδ T cells. When delivered in vivo, Acai polysaccharide induced myeloid cell recruitment and IL-12 production. These results define innate immune responses induced by the polysaccharide component of Acai and have implications for the treatment of asthma and infectious disease.

  15. Ebola Virus Glycoprotein Induces an Innate Immune Response In vivo via TLR4

    Directory of Open Access Journals (Sweden)

    Chih-Yun Lai

    2017-08-01

    Full Text Available Ebola virus (EBOV, a member of the Filoviridae family, causes the most severe form of viral hemorrhagic fever. Although no FDA licensed vaccine or treatment against Ebola virus disease (EVD is currently available, Ebola virus glycoprotein (GP is the major antigen used in all candidate Ebola vaccines. Recent reports of protection as quickly as within 6 days of administration of the rVSV-based vaccine expressing EBOV GP before robust humoral responses were generated suggests that the innate immune responses elicited early after vaccination may contribute to the protection. However, the innate immune responses induced by EBOV GP in the absence of viral vectors or adjuvants have not been fully characterized in vivo. Our recent studies demonstrated that immunization with highly purified recombinant GP in the absence of adjuvants induced a robust IgG response and partial protection against EBOV infection suggesting that GP alone can induce protective immunity. In this study we investigated the early immune response to purified EBOV GP alone in vitro and in vivo. We show that GP was efficiently internalized by antigen presenting cells and subsequently induced production of key inflammatory cytokines. In vivo, immunization of mice with EBOV GP triggered the production of key Th1 and Th2 innate immune cytokines and chemokines, which directly governed the recruitment of CD11b+ macrophages and CD11c+ dendritic cells to the draining lymph nodes (DLNs. Pre-treatment of mice with a TLR4 antagonist inhibited GP-induced cytokine production and recruitment of immune cells to the DLN. EBOV GP also upregulated the expression of costimulatory molecules in bone marrow derived macrophages suggesting its ability to enhance APC stimulatory capacity, which is critical for the induction of effective antigen-specific adaptive immunity. Collectively, these results provide the first in vivo evidence that early innate immune responses to EBOV GP are mediated via the TLR4

  16. Radiation Therapy Induces Macrophages to Suppress Immune Responses Against Pancreatic Tumors in Mice

    Science.gov (United States)

    Seifert, Lena; Werba, Gregor; Tiwari, Shaun; Ly, Nancy Ngoc Giao; Nguy, Susanna; Alothman, Sara; Alqunaibit, Dalia; Avanzi, Antonina; Daley, Donnele; Barilla, Rocky; Tippens, Daniel; Torres-Hernandez, Alejandro; Hundeyin, Mautin; Mani, Vishnu R.; Hajdu, Cristina; Pellicciotta, Ilenia; Oh, Philmo; Du, Kevin; Miller, George

    2016-01-01

    Background & Aims The role of radiation therapy in the treatment of patients with pancreatic ductal adenocarcinoma (PDA) is controversial. Randomized controlled trials investigating the efficacy of radiation therapy in patients with locally advanced unresectable PDA have reported mixed results, with effects ranging from modest benefit to worse outcome, compared with control therapies. We investigated whether radiation causes inflammatory cells to acquire an immune-suppressive phenotype that limits the therapeutic effects of radiation on invasive PDAs and accelerates progression of pre-invasive foci. Methods We investigated the effects of radiation in p48Cre;LSL-KrasG12D (KC) and p48Cre;LSLKrasG12D;LSL-Trp53R172H (KPC) mice, as well as in C57BL/6 mice with orthotopic tumors grown from FC1242 cells derived from KPC mice. Some mice were given neutralizing antibodies against macrophage colony stimulating factor 1 (CSF1 or MCSF) or F4/80. Pancreata were exposed to doses of radiation ranging from 2–12 Gy and analyzed by flow cytometry. Results Pancreata of KC mice exposed to radiation had a higher frequency of advanced pancreatic intraepithelial lesions and more foci of invasive cancer than pancreata of unexposed mice (controls); radiation reduced survival time by more than 6 months. A greater proportion of macrophages from invasive and pre-invasive pancreatic tumors had an immune-suppressive, M2-like phenotype, compared with control mice. Pancreata from mice exposed to radiation had fewer CD8+ T cells than controls and greater numbers of CD4+ T cells of T-helper 2 and T-regulatory cell phenotypes. Adoptive transfer of T cells from irradiated PDA to tumors of control mice accelerated tumor growth. Radiation induced production of MCSF by PDA cells. An antibody against MCSF prevented radiation from altering the phenotype of macrophages in tumors, increasing the anti-tumor T-cell response and slowing tumor growth. Conclusions Radiation exposure causes macrophages in PDAs

  17. Effect of traditional Chinese medicine for treating human immunodeficiency virus infections and acquired immune deficiency syndrome: Boosting immune and alleviating symptoms.

    Science.gov (United States)

    Zou, Wen; Wang, Jian; Liu, Ying

    2016-01-01

    To respond to the human immunodeficiency virus (HIV)/acquired immune deficiency syndrome (AIDS) epidemic in China, the integration of antiretroviral therapy (ART) and traditional Chinese medicine (TCM) has important implications in health outcomes, especially in China where the use of TCM is widespread. The National Free TCM Pilot Program for HIV Infected People began in 5 provinces (Henan, Hebei, Anhui, Hubei, and Guangdong) in 2004, and quickly scaled up to 19 provinces, autonomous regions, and municipalities in China including some places with high prevalence, 26,276 adults have been treated thus far. Usually, people with HIV infection seek TCM for four main reasons: to enhance immune function, to treat symptoms, to improve quality of life, and to reduce side effects related to medications. Evidences from randomized controlled clinical trials suggested some beneficial effects of use of traditional Chinese herbal medicine for HIV infections and AIDS. More proofs from large, well-designed, rigorous trials is needed to give firm support. Challenges include interaction between herbs and antiretroviral drugs, stigma and discrimination. The Free TCM Program has made considerable progress in providing the necessary alternative care and treatment for HIV-infected people in China, and has strong government support for continued improvement and expansion, establishing and improving a work mechanism integrating Chinese and Western medicines.

  18. A novel fusion protein domain III-capsid from dengue-2, in a highly aggregated form, induces a functional immune response and protection in mice

    International Nuclear Information System (INIS)

    Valdes, Iris; Bernardo, Lidice; Gil, Lazaro; Pavon, Alekis; Lazo, Laura; Lopez, Carlos; Romero, Yaremis; Menendez, Ivon; Falcon, Viviana; Betancourt, Lazaro; Martin, Jorge; Chinea, Glay; Silva, Ricardo; Guzman, Maria G.; Guillen, Gerardo; Hermida, Lisset

    2009-01-01

    Based on the immunogenicity of domain III from the Envelope protein of dengue virus as well as the proven protective capacity of the capsid antigen, we have designed a novel domain III-capsid chimeric protein with the goal of obtaining a molecule potentially able to induce both humoral and cell-mediated immunity (CMI). After expression of the recombinant gene in Escherichia coli, the domain III moiety retained its antigenicity as evaluated with anti-dengue sera. In order to explore alternatives for modulating the immunogenicity of the protein, it was mixed with oligodeoxynucleotides in order to obtain particulated aggregates and then immunologically evaluated in mice in comparison with non-aggregated controls. Although the humoral immune response induced by both forms of the protein was equivalent, the aggregated variant resulted in a much stronger CMI as measured by in vitro IFN-γ secretion and protection experiments, mediated by CD4 + and CD8 + cells. The present work provides additional evidence in support for a crucial role of CMI in protection against dengue virus and describes a novel vaccine candidate against the disease based on a recombinant protein that can stimulate both arms of the acquired immune system.

  19. Immune-mediated rippling muscle disease and myasthenia gravis.

    Science.gov (United States)

    Bettini, Mariela; Gonorazky, Hernan; Chaves, Marcelo; Fulgenzi, Ernesto; Figueredo, Alejandra; Christiansen, Silvia; Cristiano, Edgardo; Bertini, Enrico S; Rugiero, Marcelo

    2016-10-15

    Cases of acquired rippling muscle disease in association with myasthenia gravis have been reported. We present three patients with iRMD (immune-mediated rippling muscle disease) and AChR-antibody positive myasthenia gravis. None of them had thymus pathology. They presented exercise-induced muscle rippling combined with generalized myasthenia gravis. One of them had muscle biopsy showing a myopathic pattern and a patchy immunostaining with caveolin antibodies. They were successfully treated steroids and azathioprine. The immune nature of this association is supported by the response to immunotherapies and the positivity of AChR-antibodies. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Epicutaneous Immunization with Type II Collagen Inhibits both Onset and Progression of Chronic Collagen-Induced Arthritis

    OpenAIRE

    Strid, Jessica; Tan, Lee Aun; Strobel, Stephan; Londei, Marco; Callard, Robin

    2007-01-01

    Epicutaneous immunization is a potential non-invasive technique for antigen-specific immune-modulation. Topical application of protein antigens to barrier-disrupted skin induces potent antigen-specific immunity with a strong Th2-bias. In this study, we investigate whether the autoimmune inflammatory response of chronic collagen-induced arthritis (CCIA) in DBA/1-TCR-beta Tg mice can be modified by epicutaneous immunization. We show that epicutaneous immunization with type II collagen (CII) inh...

  1. Life-history dependent relationships between body condition and immunity, between immunity indices in male Eurasian tree sparrows.

    Science.gov (United States)

    Zhao, Yuliang; Li, Mo; Sun, Yanfeng; Wu, Wei; Kou, Guanqun; Guo, Lingling; Xing, Danning; Wu, Yuefeng; Li, Dongming; Zhao, Baohua

    2017-08-01

    In free-living animals, recent evidence indicates that innate, and acquired, immunity varies with annual variation in the demand for, and availability of, food resources. However, little is known about how animals adjust the relationships between immunity and body condition, and between innate and acquired immunity to optimize survival over winter and reproductive success during the breeding stage. Here, we measured indices of body condition (size-corrected mass [SCM], and hematocrit [Hct]), constitutive innate immunity (plasma total complement hemolysis activity [CH 50 ]) and acquired immunity (plasma immunoglobulin A [IgA]), plus heterophil/lymphocyte (H/L) ratios, in male Eurasian tree sparrows (Passer montanus) during the wintering and the breeding stages. We found that birds during the wintering stage had higher IgA levels than those from the breeding stage. Two indices of body condition were both negatively correlated with plasma CH 50 activities, and positively with IgA levels in wintering birds, but this was not the case in the breeding birds. However, there was no correlation between CH 50 activities and IgA levels in both stages. These results suggest that the relationships between body condition and immunity can vary across life-history stage, and there are no correlations between innate and acquired immunity independent of life-history stage, in male Eurasian tree sparrows. Therefore, body condition indices predict immunological state, especially during the non-breeding stage, which can be useful indicators of individual immunocompetences for understanding the variations in innate and acquired immunity in free-living animals. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Salmonella enterica Induces And Subverts The Plant Immune System

    Directory of Open Access Journals (Sweden)

    Ana Victoria Garcia

    2014-04-01

    Full Text Available Infections with Salmonella enterica belong to the most prominent causes of food poisoning and infected fruits and vegetables represent important vectors for salmonellosis. Whereas it was shown that plants raise defense responses against Salmonella, these bacteria persist and proliferate in various plant tissues. Recent reports shed light into the molecular interaction between plants and Salmonella, highlighting the defense pathways induced and the means used by the bacteria to escape the plant immune system and accomplish colonization. It was recently shown that plants detect Salmonella pathogen-associated molecular patterns (PAMPs, such as the flagellin peptide flg22, and activate hallmarks of the defense program known as PAMP-triggered immunity (PTI. Interestingly, certain Salmonella strains carry mutations in the flg22 domain triggering PTI, suggesting that a strategy of Salmonella is to escape plant detection by mutating PAMP motifs. Another strategy may rely on the type III secretion system (T3SS as T3SS mutants were found to induce stronger plant defense responses than wild type bacteria. Although Salmonella effector delivery into plant cells has not been shown, expression of Salmonella effectors in plant tissues shows that these bacteria also possess powerful means to manipulate the plant immune system. Altogether, the data gathered suggest that Salmonella triggers PTI in plants and evolved strategies to avoid or subvert plant immunity.

  3. Salmonella enterica induces and subverts the plant immune system

    KAUST Repository

    García, Ana V.

    2014-04-04

    Infections with Salmonella enterica belong to the most prominent causes of food poisoning and infected fruits and vegetables represent important vectors for salmonellosis. Although it was shown that plants raise defense responses against Salmonella, these bacteria persist and proliferate in various plant tissues. Recent reports shed light into the molecular interaction between plants and Salmonella, highlighting the defense pathways induced and the means used by the bacteria to escape the plant immune system and accomplish colonization. It was recently shown that plants detect Salmonella pathogen-associated molecular patterns (PAMPs), such as the flagellin peptide flg22, and activate hallmarks of the defense program known as PAMP-triggered immunity (PTI). Interestingly, certain Salmonella strains carry mutations in the flg22 domain triggering PTI, suggesting that a strategy of Salmonella is to escape plant detection by mutating PAMP motifs. Another strategy may rely on the type III secretion system (T3SS) as T3SS mutants were found to induce stronger plant defense responses than wild type bacteria. Although Salmonella effector delivery into plant cells has not been shown, expression of Salmonella effectors in plant tissues shows that these bacteria also possess powerful means to manipulate the plant immune system. Altogether, these data suggest that Salmonella triggers PTI in plants and evolved strategies to avoid or subvert plant immunity. 2014 Garca and Hirt.

  4. Radiation-induced effects and the immune system in cancer

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Punit; Asea, Alexzander, E-mail: aasea@msm.edu [Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA (United States)

    2012-12-17

    Chemotherapy and radiation therapy (RT) are standard therapeutic modalities for patients with cancers, and could induce various tumor cell death modalities, releasing tumor-derived antigens as well as danger signals that could either be captured for triggering anti-tumor immune response. Historic studies examining tissue and cellular responses to RT have predominantly focused on damage caused to proliferating malignant cells leading to their death. However, there is increasing evidence that RT also leads to significant alterations in the tumor microenvironment, particularly with respect to effects on immune cells and infiltrating tumors. This review will focus on immunologic consequences of RT and discuss the therapeutic reprogramming of immune responses in tumors and how it regulates efficacy and durability to RT.

  5. Infectious Agents as Stimuli of Trained Innate Immunity

    Directory of Open Access Journals (Sweden)

    Paulina Rusek

    2018-02-01

    Full Text Available The discoveries made over the past few years have modified the current immunological paradigm. It turns out that innate immunity cells can mount some kind of immunological memory, similar to that observed in the acquired immunity and corresponding to the defense mechanisms of lower organisms, which increases their resistance to reinfection. This phenomenon is termed trained innate immunity. It is based on epigenetic changes in innate immune cells (monocytes/macrophages, NK cells after their stimulation with various infectious or non-infectious agents. Many infectious stimuli, including bacterial or fungal cells and their components (LPS, β-glucan, chitin as well as viruses or even parasites are considered potent inducers of innate immune memory. Epigenetic cell reprogramming occurring at the heart of the phenomenon may provide a useful basis for designing novel prophylactic and therapeutic strategies to prevent and protect against multiple diseases. In this article, we present the current state of art on trained innate immunity occurring as a result of infectious agent induction. Additionally, we discuss the mechanisms of cell reprogramming and the implications for immune response stimulation/manipulation.

  6. Platelet activating factor receptor binding plays a critical role in jet fuel-induced immune suppression

    International Nuclear Information System (INIS)

    Ramos, Gerardo; Kazimi, Nasser; Nghiem, Dat X.; Walterscheid, Jeffrey P.; Ullrich, Stephen E.

    2004-01-01

    Applying military jet fuel (JP-8) or commercial jet fuel (Jet-A) to the skin of mice suppresses the immune response in a dose-dependant manner. The release of biological response modifiers, particularly prostaglandin E 2 (PGE 2 ), is a critical step in activating immune suppression. Previous studies have shown that injecting selective cyclooxygenase-2 inhibitors into jet fuel-treated mice blocks immune suppression. Because the inflammatory phospholipid mediator, platelet-activating factor (PAF), up-regulates cyclooxygenase-2 production and PGE 2 synthesis by keratinocytes, we tested the hypothesis that PAF-receptor binding plays a role in jet fuel-induced immune suppression. Treating keratinocyte cultures with PAF and/or jet fuel (JP-8 and Jet-A) stimulates PGE 2 secretion. Jet fuel-induced PGE 2 production was suppressed by treating the keratinocytes with specific PAF-receptor antagonists. Injecting mice with PAF, or treating the skin of the mice with JP-8, or Jet-A, induced immune suppression. Jet fuel-induced immune suppression was blocked when the jet fuel-treated mice were injected with PAF-receptor antagonists before treatment. Jet fuel treatment has been reported to activate oxidative stress and treating the mice with anti-oxidants (Vitamins C, or E or beta-hydroxy toluene), before jet fuel application, interfered with immune suppression. These findings confirm previous studies showing that PAF-receptor binding can modulate immune function. Furthermore, they suggest that PAF-receptor binding may be an early event in the induction of immune suppression by immunotoxic environmental agents that target the skin

  7. The tumor necrosis factor-alpha-induced protein 8 family in immune homeostasis and inflammatory cancer diseases.

    Science.gov (United States)

    Luan, Y Y; Yao, Y M; Sheng, Z Y

    2013-01-01

    Within the immune system homeostasis is maintained by a myriad of mechanisms that include the regulation of immune cell activation and programmed cell death. The breakdown of immune homeostasis may lead to fatal inflammatory diseases. We set out to identify genes of tumor necrosis factor-alpha-induced protein 8 (TNFAIP8) family that has a functional role in the process of immune homeostasis. Tumor necrosis factor-alpha-induced protein 8 (TNFAIP8), which functions as an oncogenic molecule, is also associated with enhanced cell survival and inhibition of apoptosis. Tumor necrosis factor-alpha-induced protein 8-like 2 (TIPE2) governs immune homeostasis in both the innate and adaptive immune system and prevents hyper-responsiveness by negatively regulating signaling via T cell receptors and Toll-like receptors (TLRs). There also exist two highly homologous but uncharacterized proteins, TIPE1 and TIPE3. This review is an attempt to provide a summary of TNFAIP8 family associated with immune homeostasis and inflammatory cancer diseases.

  8. Transcriptional Changes during Naturally Acquired Zika Virus Infection Render Dendritic Cells Highly Conducive to Viral Replication.

    Science.gov (United States)

    Sun, Xiaoming; Hua, Stephane; Chen, Hsiao-Rong; Ouyang, Zhengyu; Einkauf, Kevin; Tse, Samantha; Ard, Kevin; Ciaranello, Andrea; Yawetz, Sigal; Sax, Paul; Rosenberg, Eric S; Lichterfeld, Mathias; Yu, Xu G

    2017-12-19

    Although dendritic cells are among the human cell population best equipped for cell-intrinsic antiviral immune defense, they seem highly susceptible to infection with the Zika virus (ZIKV). Using highly purified myeloid dendritic cells isolated from individuals with naturally acquired acute infection, we here show that ZIKV induces profound perturbations of transcriptional signatures relative to healthy donors. Interestingly, we noted a remarkable downregulation of antiviral interferon-stimulated genes and innate immune sensors, suggesting that ZIKV can actively suppress interferon-dependent immune responses. In contrast, several host factors known to support ZIKV infection were strongly upregulated during natural ZIKV infection; these transcripts included AXL, the main entry receptor for ZIKV; SOCS3, a negative regulator of ISG expression; and IDO-1, a recognized inducer of regulatory T cell responses. Thus, during in vivo infection, ZIKV can transform the transcriptome of dendritic cells in favor of the virus to render these cells highly conducive to ZIKV infection. Published by Elsevier Inc.

  9. Hydralazine-induced pauci-immune glomerulonephritis: intriguing case series with misleading diagnoses

    Directory of Open Access Journals (Sweden)

    Faizan Babar

    2016-04-01

    Full Text Available Hydralazine has been used since the 1950s for the management of hypertension. Evidence for hydralazine-associated vasculitis dates to pre-ANCA (antineutrophil cytoplasmic antibodies era. This abstract describes two cases of ANCA-positive pauci-immune glomerulonephritis (GN in challenging scenarios where diagnosis was misconstrued. A comprehensive literature review was done to understand the pathogenesis of drug-induced pauci-immune GN. We have described key diagnostic features that are helpful in distinguishing idiopathic ANCA vasculitis from drug-induced vasculitis. Additionally, we have also described different treatments meant to provide therapy options with the least side effects.

  10. High-Altitude-Induced alterations in Gut-Immune Axis: A review.

    Science.gov (United States)

    Khanna, Kunjan; Mishra, K P; Ganju, Lilly; Kumar, Bhuvnesh; Singh, Shashi Bala

    2018-03-04

    High-altitude sojourn above 8000 ft is increasing day by day either for pilgrimage, mountaineering, holidaying or for strategic reasons. In India, soldiers are deployed to these high mountains for their duty or pilgrims visit to the holy places, which are located at very high altitude. A large population also resides permanently in high altitude regions. Every year thousands of pilgrims visit Holy cave of Shri Amarnath ji, which is above 15 000 ft. The poor acclimatization to high altitude may cause alteration in immunity. The low oxygen partial pressure may cause alterations in gut microbiota, which may cause changes in gut immunity. Effect of high altitude on gut-associated mucosal system is new area of research. Many studies have been carried out to understand the physiology and immunology behind the high-altitude-induced gut problems. Few interventions have also been discovered to circumvent the problems caused due to high-altitude conditions. In this review, we have discussed the effects of high-altitude-induced changes in gut immunity particularly peyer's patches, NK cells and inflammatory cytokines, secretary immunoglobulins and gut microbiota. The published articles from PubMed and Google scholar from year 1975 to 2017 on high-altitude hypoxia and gut immunity are cited in this review.

  11. Effectiveness and safety of traditional Chinese medicine in treating acquired immune deficiency syndrome: 2004-2014.

    Science.gov (United States)

    Liu, Zhi-Bin; Yang, Ji-Ping; Xu, Li-Ran

    2015-12-23

    Substantial progress has been made in China in using traditional Chinese medicine (TCM) to treat acquired immune deficiency syndrome (AIDS). Our objective was to review the latest developments in TCM treatment of AIDS in China between 2004 and 2014. We reviewed the content of original articles investigating the efficacy and safety of TCM for treating AIDS published in Chinese and English language journals. Relevant references from 2004 to 2014 were found using PubMed and the China National Knowledge Infrastructure Database. We found that TCM has been widely used for treating AIDS and its complications in China. The number of TCM studies has increased, which indicates efficacy and safety. Measures of efficacy in the reviewed articles included the alleviation of human immunodeficiency virus (HIV)-related signs and symptoms, improvements in quality of life, improvements in long-term survival, counteraction of the adverse side effects of antiviral drugs, promotion of immune reconstitution, and improvement of laboratory results. In sum, the literature indicates that TCM is safe. TCM plays an important role in the treatment of AIDS. Some studies have attempted to measure the efficacy and safety of TCM for treating AIDS, but more evidence is needed. Therefore, more research on this topic is required in the future.

  12. Immune responses of dendritic cells after acquiring antigen from apoptotic hepatocholangioma cells caused by γ-ray

    International Nuclear Information System (INIS)

    Wu Gang; Gu Hongguang; Han Benli; Pei Xuetao

    2002-01-01

    Objective: To investigate the induction of cytotoxic T lymphocytes (CTLs) in antitumor responsiveness and therapeutic effects after dendritic cells (DCs) acquired antigen from apoptotic hepatocholangioma cells. Methods: DCs from blood mononuclear cells that maintain the characteristics of immaturity-anti-gen-capturing and-processing capacity were established in vitro by using granulocyte/macrophage colony-stimulating factor (GM-CSF) and interleukin-4. Then, apoptosis in hepatocholangioma cells was induced with γ-radiation. The experimental groups included (1) co-culture of DCs, and apoptotic cancer cells and T cells; (2) co-culture of DCs necrotic cancer cells and T cells; (3) co-culture of DCs-cultured cancer cell and T cells. These cells were co-cultured for 7 days. DCs and T cell were enriched separately. Finally, antitumor response test was carried out. Results: These cells had typical dendritic morphology, expressed high levels of CD1a, B7 and acquired antigen from apoptotic cells caused by γ-rays and induced an increased T cell-stimulatory capacity in MLR. Conclusions: DCs obtained from blood mononuclear cells using GM-CSF and IL-4 and DCs can efficiently present antigen driven from apoptotic cells caused by γ-rays and induce T cells increasing obviously. It can probably become an effective approach of DC transduction with antigen

  13. PSMA-targeted polyinosine/polycytosine vector induces prostate tumor regression and invokes an antitumor immune response in mice.

    Science.gov (United States)

    Langut, Yael; Talhami, Alaa; Mamidi, Samarasimhareddy; Shir, Alexei; Zigler, Maya; Joubran, Salim; Sagalov, Anna; Flashner-Abramson, Efrat; Edinger, Nufar; Klein, Shoshana; Levitzki, Alexander

    2017-12-26

    There is an urgent need for an effective treatment for metastatic prostate cancer (PC). Prostate tumors invariably overexpress prostate surface membrane antigen (PSMA). We designed a nonviral vector, PEI-PEG-DUPA (PPD), comprising polyethylenimine-polyethyleneglycol (PEI-PEG) tethered to the PSMA ligand, 2-[3-(1, 3-dicarboxy propyl)ureido] pentanedioic acid (DUPA), to treat PC. The purpose of PEI is to bind polyinosinic/polycytosinic acid (polyIC) and allow endosomal release, while DUPA targets PC cells. PolyIC activates multiple pathways that lead to tumor cell death and to the activation of bystander effects that harness the immune system against the tumor, attacking nontargeted neighboring tumor cells and reducing the probability of acquired resistance and disease recurrence. Targeting polyIC directly to tumor cells avoids the toxicity associated with systemic delivery. PPD selectively delivered polyIC into PSMA-overexpressing PC cells, inducing apoptosis, cytokine secretion, and the recruitment of human peripheral blood mononuclear cells (PBMCs). PSMA-overexpressing tumors in nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mice with partially reconstituted immune systems were significantly shrunken following PPD/polyIC treatment, in all cases. Half of the tumors showed complete regression. PPD/polyIC invokes antitumor immunity, but unlike many immunotherapies does not need to be personalized for each patient. The potent antitumor effects of PPD/polyIC should spur its development for clinical use.

  14. Ecoimmunity in Darwin's finches: invasive parasites trigger acquired immunity in the medium ground finch (Geospiza fortis.

    Directory of Open Access Journals (Sweden)

    Sarah K Huber

    Full Text Available BACKGROUND: Invasive parasites are a major threat to island populations of animals. Darwin's finches of the Galápagos Islands are under attack by introduced pox virus (Poxvirus avium and nest flies (Philornis downsi. We developed assays for parasite-specific antibody responses in Darwin's finches (Geospiza fortis, to test for relationships between adaptive immune responses to novel parasites and spatial-temporal variation in the occurrence of parasite pressure among G. fortis populations. METHODOLOGY/PRINCIPAL FINDINGS: We developed enzyme-linked immunosorbent assays (ELISAs for the presence of antibodies in the serum of Darwin's finches specific to pox virus or Philornis proteins. We compared antibody levels between bird populations with and without evidence of pox infection (visible lesions, and among birds sampled before nesting (prior to nest-fly exposure versus during nesting (with fly exposure. Birds from the Pox-positive population had higher levels of pox-binding antibodies. Philornis-binding antibody levels were higher in birds sampled during nesting. Female birds, which occupy the nest, had higher Philornis-binding antibody levels than males. The study was limited by an inability to confirm pox exposure independent of obvious lesions. However, the lasting effects of pox infection (e.g., scarring and lost digits were expected to be reliable indicators of prior pox infection. CONCLUSIONS/SIGNIFICANCE: This is the first demonstration, to our knowledge, of parasite-specific antibody responses to multiple classes of parasites in a wild population of birds. Darwin's finches initiated acquired immune responses to novel parasites. Our study has vital implications for invasion biology and ecological immunology. The adaptive immune response of Darwin's finches may help combat the negative effects of parasitism. Alternatively, the physiological cost of mounting such a response could outweigh any benefits, accelerating population decline. Tests

  15. Genetic Associations in Acquired Immune-Mediated Bone Marrow Failure Syndromes: Insights in Aplastic Anemia and Chronic Idiopathic Neutropenia

    Science.gov (United States)

    Mavroudi, Irene; Papadaki, Helen A.

    2012-01-01

    Increasing interest on the field of autoimmune diseases has unveiled a plethora of genetic factors that predispose to these diseases. However, in immune-mediated bone marrow failure syndromes, such as acquired aplastic anemia and chronic idiopathic neutropenia, in which the pathophysiology results from a myelosuppressive bone marrow microenvironment mainly due to the presence of activated T lymphocytes, leading to the accelerated apoptotic death of the hematopoietic stem and progenitor cells, such genetic associations have been very limited. Various alleles and haplotypes of human leucocyte antigen (HLA) molecules have been implicated in the predisposition of developing the above diseases, as well as polymorphisms of inhibitory cytokines such as interferon-γ, tumor necrosis factor-α, and transforming growth factor-β1 along with polymorphisms on molecules of the immune system including the T-bet transcription factor and signal transducers and activators of transcription. In some cases, specific polymorphisms have been implicated in the outcome of treatment on those patients. PMID:22956967

  16. Hepatitis B virus infection and vaccine-induced immunity in Madrid (Spain).

    Science.gov (United States)

    Pedraza-Flechas, Ana María; García-Comas, Luis; Ordobás-Gavín, María; Sanz-Moreno, Juan Carlos; Ramos-Blázquez, Belén; Astray-Mochales, Jenaro; Moreno-Guillén, Santiago

    2014-01-01

    To estimate the prevalence of hepatitis B virus (HBV) infection and vaccine-induced immunity in the region of Madrid, and to analyze their evolution over time. An observational, analytical, cross-sectional study was carried out in the population aged 16-80 years between 2008 and 2009. This was the last of four seroprevalence surveys in the region of Madrid. The prevalence of HBV infection and vaccine-induced immunity was estimated using multivariate logistic models and were compared with the prevalences in the 1989, 1993 and 1999 surveys. In the population aged 16-80 years, the prevalence of HBV infection was 11.0% (95% CI: 9.8-12.3) and that of chronic infection was 0.7% (95% CI: 0.5-1.1). The prevalence of vaccine-induced immunity in the population aged 16-20 years was 73.0% (95% CI: 70.0-76.0). Compared with previous surveys, there was a decrease in the prevalence of HBV infection. Based on the prevalence of chronic infection (<1%), Madrid is a region with low HBV endemicity. Preventive strategies against HBV should especially target the immigrant population. Copyright © 2013. Published by Elsevier Espana.

  17. [The humoral immune response in mice induced by recombinant Lactococcus lactis expressing HIV-1 gag].

    Science.gov (United States)

    Zhao, Xiaofei; Zhang, Cairong; Liu, Xiaojuan; Ma, Zhenghai

    2014-11-01

    To analyze the humoral immune response induced by recombinant Lactococcus lactis expressing HIV-1 gag in mice immunized orally, intranasally, subcutaneously or in the combined way of above three. Fifty BALB/c mice were randomly divided into 5 groups, 10 mice per group. The mice were immunized consecutively three times at two week intervals with 10(9) CFU of recombinant Lactococcus lactis expressing gag through oral, intranasal, subcutaneous administration or the mix of them. The mice that were immunized orally with Lactococcus lactis containing PMG36e served as a control group. The sera of mice were collected before primary immunization and 2 weeks after each immunization to detect the gag specific IgG by ELISA. Compared with the control group, the higher titer of serum gag specific IgG was detected in the four groups immunized with recombinant Lactococcus lactis expressing gag, and it was the highest in the mixed immunization group (PLactococcus lactis expressing gag can induce humoral immune response in mice by oral, intranasal, subcutaneous injection or the mix of them, and the mixed immunization can enhance the immune effects of Lactococcus lactis vector vaccine.

  18. Effect of Scoparia dulcis on noise stress induced adaptive immunity and cytokine response in immunized Wistar rats.

    Science.gov (United States)

    Sundareswaran, Loganathan; Srinivasan, Sakthivel; Wankhar, Wankupar; Sheeladevi, Rathinasamy

    Noise acts as a stressor and is reported to have impact on individual health depending on nature, type, intensity and perception. Modern medicine has no effective drugs or cure to prevent its consequences. Being an environmental stressor noise cannot be avoided; instead minimizing its exposure or consuming anti-stressor and adaptogens from plants can be considered. The present study was carried out to evaluate the anti-stressor, adaptogen and immunostimulatory activity of Scoparia dulcis against noise-induced stress in Wistar rat models. Noise stress in rats was created by broadband white noise generator, 100 dB A/4 h daily/15 days and S. dulcis (200 mg/kg b.w.) was administered orally. 8 groups of rats were used consisting of 6 animals each; 4 groups for unimmunized and 4 groups for immunized. For immunization, sheep red blood cells (5 × 10 9  cells/ml) were injected intraperitoneally. Sub-acute noise exposed rats showed a significant increase in corticosterone and IL-4 levels in both immunized and unimmunized rats whereas lymphocytes, antibody titration, soluble immune complex, IL-4 showed a marked increase with a significant decrease in IL-2, TNF-α, IFN-γ cytokines only in unimmunized rats. Immunized noise exposed rats presented increased leukocyte migration index and decreased foot pad thickness, IL-2, TNF-α, IFN-γ with no changes in the lymphocytes. S. dulcis (SD) has normalized and prevented the noise induced changes in cell-mediated and humoral immunity and it could be the presence of anti-stressor and immuno stimulant activity of the plant. Copyright © 2016 Transdisciplinary University, Bangalore and World Ayurveda Foundation. Published by Elsevier B.V. All rights reserved.

  19. Flagella-induced immunity against experimental cholera in adult rabbits.

    Science.gov (United States)

    Yancey, R J; Willis, D L; Berry, L J

    1979-07-01

    The adult rabbit ligated ileal loop model was used to evaluate the prophylactic potential of a crude flagellar (CF) vaccine produced from the classical. Inaba strain CA401. A greater than 1,000-fold increase in the challenge inoculum was required to induce an intestinal fluid response in actively immunized adult rabbits equivalent to that produced in unimmunized animals. Similar protection was afforded against challenge with classical and El Tor biotypes of both Inaba and Ogawa serotypes. Highly virulent 35S-labeled vibrios were inhibited in their ability to associated with the intestinal mucosa of CF-immunized rabbits. The protection conferred by CF immunization was found to be superior to that of a commercial bivalent vaccine and also to that of glutaraldehyde-treated cholera toxoid. The critical immunogenic component of CF appears to be a flagella-derived protein. The immunogenicity of CF was destroyed by heat treatment, and absorption of CF-immune serum with aflagellated mutant vibrios did not diminish its ability to confer a high level of passive protection. The intestinal protection of CF-immunized rabbits was completely reversed by the introduction of both goat anti-rabbit immunoglobulins A and G, but by neither alone.

  20. Skin immunization by microneedle patch overcomes statin-induced suppression of immune responses to influenza vaccine.

    Science.gov (United States)

    Vassilieva, Elena V; Wang, Shelly; Li, Song; Prausnitz, Mark R; Compans, Richard W

    2017-12-19

    Recent studies indicated that in elderly individuals, statin therapy is associated with a reduced response to influenza vaccination. The present study was designed to determine effects on the immune response to influenza vaccination induced by statin administration in a mouse model, and investigate potential approaches to improve the outcome of vaccination on the background of statin therapy. We fed middle aged BALB/c mice a high fat "western" diet (WD) alone or supplemented with atorvastatin (AT) for 14 weeks, and control mice were fed with the regular rodent diet. Mice were immunized with a single dose of subunit A/Brisbane/59/07 (H1N1) vaccine, either systemically or with dissolving microneedle patches (MNPs). We observed that a greater age-dependent decline in the hemagglutinin inhibition titers occurred in systemically-immunized mice than in MNP- immunized mice. AT dampened the antibody response in the animals vaccinated by either route of vaccine delivery. However, the MNP-vaccinated AT-treated animals had ~20 times higher total antibody levels to the influenza vaccine than the systemically vaccinated group one month postvaccination. We propose that microneedle vaccination against influenza provides an approach to ameliorate the immunosuppressive effect of statin therapy observed with systemic immunization.

  1. Effect of Scoparia dulcis on noise stress induced adaptive immunity and cytokine response in immunized Wistar rats

    Directory of Open Access Journals (Sweden)

    Loganathan Sundareswaran

    2017-01-01

    Conclusion: S. dulcis (SD has normalized and prevented the noise induced changes in cell-mediated and humoral immunity and it could be the presence of anti-stressor and immuno stimulant activity of the plant.

  2. Interaction Between 2 Nutraceutical Treatments and Host Immune Status in the Pediatric Critical Illness Stress-Induced Immune Suppression Comparative Effectiveness Trial.

    Science.gov (United States)

    Carcillo, Joseph A; Dean, J Michael; Holubkov, Richard; Berger, John; Meert, Kathleen L; Anand, Kanwaljeet J S; Zimmerman, Jerry J; Newth, Christopher J L; Harrison, Rick; Burr, Jeri; Willson, Douglas F; Nicholson, Carol; Bell, Michael J; Berg, Robert A; Shanley, Thomas P; Heidemann, Sabrina M; Dalton, Heidi; Jenkins, Tammara L; Doctor, Allan; Webster, Angie; Tamburro, Robert F

    2017-11-01

    The pediatric Critical Illness Stress-induced Immune Suppression (CRISIS) trial compared the effectiveness of 2 nutraceutical supplementation strategies and found no difference in the development of nosocomial infection and sepsis in the overall population. We performed an exploratory post hoc analysis of interaction between nutraceutical treatments and host immune status related to the development of nosocomial infection/sepsis. Children from the CRISIS trial were analyzed according to 3 admission immune status categories marked by decreasing immune competence: immune competent without lymphopenia, immune competent with lymphopenia, and previously immunocompromised. The comparative effectiveness of the 2 treatments was analyzed for interaction with immune status category. There were 134 immune-competent children without lymphopenia, 79 previously immune-competent children with lymphopenia, and 27 immunocompromised children who received 1 of the 2 treatments. A significant interaction was found between treatment arms and immune status on the time to development of nosocomial infection and sepsis ( P patient characteristic.

  3. Candida albicans infection of Caenorhabditis elegans induces antifungal immune defenses.

    Directory of Open Access Journals (Sweden)

    Read Pukkila-Worley

    2011-06-01

    Full Text Available Candida albicans yeast cells are found in the intestine of most humans, yet this opportunist can invade host tissues and cause life-threatening infections in susceptible individuals. To better understand the host factors that underlie susceptibility to candidiasis, we developed a new model to study antifungal innate immunity. We demonstrate that the yeast form of C. albicans establishes an intestinal infection in Caenorhabditis elegans, whereas heat-killed yeast are avirulent. Genome-wide, transcription-profiling analysis of C. elegans infected with C. albicans yeast showed that exposure to C. albicans stimulated a rapid host response involving 313 genes (124 upregulated and 189 downregulated, ~1.6% of the genome many of which encode antimicrobial, secreted or detoxification proteins. Interestingly, the host genes affected by C. albicans exposure overlapped only to a small extent with the distinct transcriptional responses to the pathogenic bacteria Pseudomonas aeruginosa or Staphylococcus aureus, indicating that there is a high degree of immune specificity toward different bacterial species and C. albicans. Furthermore, genes induced by P. aeruginosa and S. aureus were strongly over-represented among the genes downregulated during C. albicans infection, suggesting that in response to fungal pathogens, nematodes selectively repress the transcription of antibacterial immune effectors. A similar phenomenon is well known in the plant immune response, but has not been described previously in metazoans. Finally, 56% of the genes induced by live C. albicans were also upregulated by heat-killed yeast. These data suggest that a large part of the transcriptional response to C. albicans is mediated through "pattern recognition," an ancient immune surveillance mechanism able to detect conserved microbial molecules (so-called pathogen-associated molecular patterns or PAMPs. This study provides new information on the evolution and regulation of the innate

  4. Mucosal immunization using proteoliposome and cochleate structures from Neisseria meningitidis serogroup B induce mucosal and systemic responses.

    Science.gov (United States)

    Campo, Judith Del; Zayas, Caridad; Romeu, Belkis; Acevedo, Reinaldo; González, Elizabeth; Bracho, Gustavo; Cuello, Maribel; Cabrera, Osmir; Balboa, Julio; Lastre, Miriam

    2009-12-01

    Most pathogens either invade the body or establish infection in mucosal tissues and represent an enormous challenge for vaccine development by the absence of good mucosal adjuvants. A proteoliposome-derived adjuvant from Neisseria meningitidis serogroup B (AFPL1, Adjuvant Finlay Proteoliposome 1) and its derived cochleate form (Co, AFCo1) contain multiple pathogen-associated molecular patterns as immunopotentiators, and can also serve as delivery systems to elicit a Th1-type immune response. The present studies demonstrate the ability of AFPL1and AFCo1 to induce mucosal and systemic immune responses by different mucosal immunizations routes and significant adjuvant activity for antibody responses of both structures: a microparticle and a nanoparticle with a heterologous antigen. Therefore, we used female mice immunized by intragastric, intravaginal, intranasal or intramuscular routes with both structures alone or incorporated with ovalbumin (OVA). High levels of specific IgG antibody were detected in all sera and in vaginal washes, but specific IgA antibody in external secretions was only detected in mucosally immunized mice. Furthermore, antigen specific IgG1 and IgG2a isotypes were all induced. AFPL1 and AFCo1 are capable of inducing IFN-gamma responses, and chemokine secretions, like MIP-1alpha and MIP-1beta. However, AFCo1 is a better alternative to induce immune responses at mucosal level. Even when we use a heterologous antigen, the AFCo1 response was better than with AFPL1 in inducing mucosal and systemic immune responses. These results support the use of AFCo1 as a potent Th1 inducing adjuvant particularly suitable for mucosal immunization.

  5. Immune Evasion Strategies and Persistence of Helicobacter pylori.

    Science.gov (United States)

    Mejías-Luque, Raquel; Gerhard, Markus

    Helicobacter pylori infection is commonly acquired during childhood, can persist lifelong if not treated, and can cause different gastric pathologies, including chronic gastritis, peptic ulcer disease, and eventually gastric cancer. H. pylori has developed a number of strategies in order to cope with the hostile conditions found in the human stomach as well as successful mechanisms to evade the strong innate and adaptive immune responses elicited upon infection. Thus, by manipulating innate immune receptors and related signaling pathways, inducing tolerogenic dendritic cells and inhibiting effector T cell responses, H. pylori ensures low recognition by the host immune system as well as its persistence in the gastric epithelium. Bacterial virulence factors such as cytotoxin-associated gene A, vacuolating cytotoxin A, or gamma-glutamyltranspeptidase have been extensively studied in the context of bacterial immune escape and persistence. Further, the bacterium possesses other factors that contribute to immune evasion. In this chapter, we discuss in detail the main evasion and persistence strategies evolved by the bacterium as well as the specific bacterial virulence factors involved.

  6. Serotonergic Hyperactivity as a Potential Factor in Developmental, Acquired and Drug-Induced Synesthesia

    Directory of Open Access Journals (Sweden)

    Berit eBrogaard

    2013-10-01

    Full Text Available Though synesthesia research has seen a huge growth in recent decades, and tremendous progress has been made in terms of understanding the mechanism and cause of synesthesia, we are still left mostly in the dark when it comes to the mechanistic commonalities (if any among developmental, acquired and drug-induced synesthesia. We know that many forms of synesthesia involve aberrant structural or functional brain connectivity. Proposed mechanisms include direct projection and disinhibited feedback mechanisms, in which information from two otherwise structurally or functionally separate brain regions mix. We also know that synesthesia sometimes runs in families. However, it is unclear what causes its onset. Studies of psychedelic drugs, such as psilocybin, LSD and mescaline, reveal that exposure to these drugs can induce synesthesia. One neurotransmitter suspected to be central to the perceptual changes is serotonin. Excessive serotonin in the brain may cause many of the characteristics of psychedelic intoxication. Excessive serotonin levels may also play a role in synesthesia acquired after brain injury. In brain injury sudden cell death floods local brain regions with serotonin and glutamate. This neurotransmitter flooding could perhaps result in unusual feature binding. Finally, developmental synesthesia that occurs in individuals with autism may be a result of alterations in the serotonergic system, leading to a blockage of regular gating mechanisms. I conclude on these grounds that one commonality among at least some cases of acquired, developmental and drug-induced synesthesia may be the presence of excessive levels of serotonin, which increases the excitability and connectedness of sensory brain regions.

  7. Serotonergic hyperactivity as a potential factor in developmental, acquired and drug-induced synesthesia.

    Science.gov (United States)

    Brogaard, Berit

    2013-01-01

    Though synesthesia research has seen a huge growth in recent decades, and tremendous progress has been made in terms of understanding the mechanism and cause of synesthesia, we are still left mostly in the dark when it comes to the mechanistic commonalities (if any) among developmental, acquired and drug-induced synesthesia. We know that many forms of synesthesia involve aberrant structural or functional brain connectivity. Proposed mechanisms include direct projection and disinhibited feedback mechanisms, in which information from two otherwise structurally or functionally separate brain regions mix. We also know that synesthesia sometimes runs in families. However, it is unclear what causes its onset. Studies of psychedelic drugs, such as psilocybin, LSD and mescaline, reveal that exposure to these drugs can induce synesthesia. One neurotransmitter suspected to be central to the perceptual changes is serotonin. Excessive serotonin in the brain may cause many of the characteristics of psychedelic intoxication. Excessive serotonin levels may also play a role in synesthesia acquired after brain injury. In brain injury sudden cell death floods local brain regions with serotonin and glutamate. This neurotransmitter flooding could perhaps result in unusual feature binding. Finally, developmental synesthesia that occurs in individuals with autism may be a result of alterations in the serotonergic system, leading to a blockage of regular gating mechanisms. I conclude on these grounds that one commonality among at least some cases of acquired, developmental and drug-induced synesthesia may be the presence of excessive levels of serotonin, which increases the excitability and connectedness of sensory brain regions.

  8. Role of MicroRNAs in Obesity-Induced Metabolic Disorder and Immune Response.

    Science.gov (United States)

    Zhong, Hong; Ma, Minjuan; Liang, Tingming; Guo, Li

    2018-01-01

    In all living organisms, metabolic homeostasis and the immune system are the most fundamental requirements for survival. Recently, obesity has become a global public health issue, which is the cardinal risk factor for metabolic disorder. Many diseases emanating from obesity-induced metabolic dysfunction are responsible for the activated immune system, including innate and adaptive responses. Of note, inflammation is the manifest accountant signal. Deeply studied microRNAs (miRNAs) have participated in many pathways involved in metabolism and immune responses to protect cells from multiple harmful stimulants, and they play an important role in determining the progress through targeting different inflammatory pathways. Thus, immune response and metabolic regulation are highly integrated with miRNAs. Collectively, miRNAs are the new targets for therapy in immune dysfunction.

  9. Do entheogen-induced mystical experiences boost the immune system? Psychedelics, peak experiences, and wellness.

    Science.gov (United States)

    Roberts, T B

    1999-01-01

    Daily events that boost the immune system (as indicated by levels of salivary immunoglobulin A), some instances of spontaneous remission, and mystical experiences seem to share a similar cluster of thoughts, feelings, moods, perceptions, and behaviors. Entheogens--psychedelic drugs used in a religious context--can also produce mystical experiences (peak experiences, states of unitive consciousness, intense primary religious experiences) with the same cluster of effects. When this happens, is it also possible that such entheogen-induced mystical experiences strengthen the immune system? Might spontaneous remissions occur more frequently under such conditions? This article advances the so called "Emxis hypothesis"--that entheogen-induced mystical experiences influence the immune system.

  10. The role of probiotics and prebiotics inducing gut immunity

    Directory of Open Access Journals (Sweden)

    Angelica Thomaz Vieira

    2013-12-01

    Full Text Available The gut immune system is influenced by many factors, including dietary components and commensal bacteria. Nutrients that affect gut immunity and strategies that restore a healthy gut microbial community by affecting the microbial composition are being developed as new therapeutic approaches to treat several inflammatory diseases. Although probiotics (live microorganisms and prebiotics (food components have shown promise as treatments for several diseases in both clinical and animal studies, an understanding of the molecular mechanisms behind the direct and indirect effects on the gut immune response will facilitate better and possibly more efficient therapy for diseases. In this review, we will first describe the concept of prebiotics, probiotics and symbiotics and cover the most recently well-established scientific findings regarding the direct and indirect mechanisms by which these dietary approaches can influence gut immunity. Emphasis will be placed on the relationship of diet, the microbiota and the gut immune system. Second, we will highlight recent results from our group, which suggest a new dietary manipulation that includes the use of nutrient products (organic selenium and Lithothamnium muelleri and probiotics (Saccharomyces boulardii UFMG 905 and Bifidobacterium sp. that can stimulate and manipulate the gut immune response, inducing intestinal homeostasis. Furthermore, the purpose of this review is to discuss and translate all of this knowledge into therapeutic strategies and into treatment for extra-intestinal compartment pathologies. We will conclude by discussing perspectives and molecular advances regarding the use of prebiotics or probiotics as new therapeutic strategies that manipulate the microbial composition and the gut immune responses of the host.

  11. Persistence of the immune response induced by BCG vaccination

    Directory of Open Access Journals (Sweden)

    Blitz Rose

    2008-01-01

    Full Text Available Abstract Background Although BCG vaccination is recommended in most countries of the world, little is known of the persistence of BCG-induced immune responses. As novel TB vaccines may be given to boost the immunity induced by neonatal BCG vaccination, evidence concerning the persistence of the BCG vaccine-induced response would help inform decisions about when such boosting would be most effective. Methods A randomised control study of UK adolescents was carried out to investigate persistence of BCG immune responses. Adolescents were tested for interferon-gamma (IFN-γ response to Mycobacterium tuberculosis purified protein derivative (M.tb PPD in a whole blood assay before, 3 months, 12 months (n = 148 and 3 years (n = 19 after receiving teenage BCG vaccination or 14 years after receiving infant BCG vaccination (n = 16. Results A gradual reduction in magnitude of response was evident from 3 months to 1 year and from 1 year to 3 years following teenage vaccination, but responses 3 years after vaccination were still on average 6 times higher than before vaccination among vaccinees. Some individuals (11/86; 13% failed to make a detectable antigen-specific response three months after vaccination, or lost the response after 1 (11/86; 13% or 3 (3/19; 16% years. IFN-γ response to Ag85 was measured in a subgroup of adolescents and appeared to be better maintained with no decline from 3 to 12 months. A smaller group of adolescents were tested 14 years after receiving infant BCG vaccination and 13/16 (81% made a detectable IFN-γ response to M.tb PPD 14 years after infant vaccination as compared to 6/16 (38% matched unvaccinated controls (p = 0.012; teenagers vaccinated in infancy were 19 times more likely to make an IFN-γ response of > 500 pg/ml than unvaccinated teenagers. Conclusion BCG vaccination in infancy and adolescence induces immunological memory to mycobacterial antigens that is still present and measurable for at least 14 years in the

  12. Outer membrane vesicles of Gallibacterium anatis induce protective immunity in egg-laying hens.

    Science.gov (United States)

    Pors, Susanne E; Pedersen, Ida J; Skjerning, Ragnhild Bager; Thøfner, Ida C N; Persson, Gry; Bojesen, Anders M

    2016-11-15

    Gallibacterium anatis causes infections in the reproductive tract of egg-laying hens and induce increased mortality and decreased egg production. New prophylactic measures are needed in order to improve animal welfare and production efficiency. Bacterial outer membrane vesicles (OMVs) have previously shown promising results in protection against infections and we hypothesized that OMVs could serve as an immunogen to protect egg-laying hens against G. anatis. To investigate the immunogenic potential of G. anatis OMVs, two in vivo studies in egg-laying hens were made. The trials assessedthe degree of protection provided by immunization with G. anatis OMV against challenge and the IgY responses in serum after immunization and challenge, respectively. A total of 64 egg-laying hens were included in the trials. OMVs for immunization were produced and purified from a high-producing G. anatis ΔtolR mutant. Challenge was done with G. anatis 12656-12 and evaluated by scoring lesions and bacterial re-isolation rates from peritoneum. Finally, levels of OMV-specific IgY in sera were assayed by ELISA. Immunization with OMVs decreased the lesions scores significantly, while the bacterial re-isolation remained unchanged. Furthermore, a high OMV-specific IgY response was induced by immunization and subsequent challenge of the hens. The results strongly indicate that immunization with G. anatis OMVs provides significant protection against G. anatis challenge and induces specific antibody responses with high titers of OMV-specific IgY in serum. The results therefore show great promise for OMV based vaccines aiming at providing protecting against G. anatis in egg-laying hens. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Role of MicroRNAs in Obesity-Induced Metabolic Disorder and Immune Response

    Directory of Open Access Journals (Sweden)

    Hong Zhong

    2018-01-01

    Full Text Available In all living organisms, metabolic homeostasis and the immune system are the most fundamental requirements for survival. Recently, obesity has become a global public health issue, which is the cardinal risk factor for metabolic disorder. Many diseases emanating from obesity-induced metabolic dysfunction are responsible for the activated immune system, including innate and adaptive responses. Of note, inflammation is the manifest accountant signal. Deeply studied microRNAs (miRNAs have participated in many pathways involved in metabolism and immune responses to protect cells from multiple harmful stimulants, and they play an important role in determining the progress through targeting different inflammatory pathways. Thus, immune response and metabolic regulation are highly integrated with miRNAs. Collectively, miRNAs are the new targets for therapy in immune dysfunction.

  14. The role of complement in the acquired immune response

    DEFF Research Database (Denmark)

    Nielsen, C H; Fischer, E M; Leslie, R G

    2000-01-01

    Studies over the past three decades have clearly established a central role for complement in the promotion of a humoral immune response. The primary function of complement, in this regard, is to opsonize antigen or immune complexes for uptake by complement receptor type 2 (CR2, CD21) expressed...... on B cells, follicular dendritic cells (FDC) and some T cells. A variety of mechanisms appear to be involved in complement-mediated promotion of the humoral response. These include: enhancement of antigen (Ag) uptake and processing by both Ag-specific and non-specific B cells for presentation...

  15. Bacteria-triggered systemic immunity in barley is associated with WRKY and ETHYLENE RESPONSIVE FACTORs but not with salicylic acid.

    Science.gov (United States)

    Dey, Sanjukta; Wenig, Marion; Langen, Gregor; Sharma, Sapna; Kugler, Karl G; Knappe, Claudia; Hause, Bettina; Bichlmeier, Marlies; Babaeizad, Valiollah; Imani, Jafargholi; Janzik, Ingar; Stempfl, Thomas; Hückelhoven, Ralph; Kogel, Karl-Heinz; Mayer, Klaus F X; Vlot, A Corina

    2014-12-01

    Leaf-to-leaf systemic immune signaling known as systemic acquired resistance is poorly understood in monocotyledonous plants. Here, we characterize systemic immunity in barley (Hordeum vulgare) triggered after primary leaf infection with either Pseudomonas syringae pathovar japonica (Psj) or Xanthomonas translucens pathovar cerealis (Xtc). Both pathogens induced resistance in systemic, uninfected leaves against a subsequent challenge infection with Xtc. In contrast to systemic acquired resistance in Arabidopsis (Arabidopsis thaliana), systemic immunity in barley was not associated with NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 or the local or systemic accumulation of salicylic acid. Instead, we documented a moderate local but not systemic induction of abscisic acid after infection of leaves with Psj. In contrast to salicylic acid or its functional analog benzothiadiazole, local applications of the jasmonic acid methyl ester or abscisic acid triggered systemic immunity to Xtc. RNA sequencing analysis of local and systemic transcript accumulation revealed unique gene expression changes in response to both Psj and Xtc and a clear separation of local from systemic responses. The systemic response appeared relatively modest, and quantitative reverse transcription-polymerase chain reaction associated systemic immunity with the local and systemic induction of two WRKY and two ETHYLENE RESPONSIVE FACTOR (ERF)-like transcription factors. Systemic immunity against Xtc was further associated with transcriptional changes after a secondary/systemic Xtc challenge infection; these changes were dependent on the primary treatment. Taken together, bacteria-induced systemic immunity in barley may be mediated in part by WRKY and ERF-like transcription factors, possibly facilitating transcriptional reprogramming to potentiate immunity. © 2014 American Society of Plant Biologists. All Rights Reserved.

  16. Constraint-induced movement therapy for children with acquired brain injury

    DEFF Research Database (Denmark)

    Pedersen, Kristina Schmidt; Pallesen, Hanne; Kristensen, Hanne Kaae

    2016-01-01

    An estimated 125–137 Danish children with acquired brain injury (ABI) require rehabilitation annually, 30–40 of these at a highly specialized level. Constraint-induced movement therapy (CIMT) has shown significant effects in increasing function in children with cerebral palsy. More knowledge of how...... CIMT can be adapted for the rehabilitation of children with ABI is needed. The primary purpose of the study was to generate new knowledge about the pedagogical initiatives and frameworks involved in children’s participation in and activities during CIMT. Four children with ABI participated in the 60 h...

  17. Retnla (relmalpha/fizz1 suppresses helminth-induced Th2-type immunity.

    Directory of Open Access Journals (Sweden)

    John T Pesce

    2009-04-01

    Full Text Available Retnla (Resistin-like molecule alpha/FIZZ1 is induced during Th2 cytokine immune responses. However, the role of Retnla in Th2-type immunity is unknown. Here, using Retnla(-/- mice and three distinct helminth models, we show that Retnla functions as a negative regulator of Th2 responses. Pulmonary granuloma formation induced by the eggs of the helminth parasite Schistosoma mansoni is dependent on IL-4 and IL-13 and associated with marked increases in Retnla expression. We found that both primary and secondary pulmonary granuloma formation were exacerbated in the absence of Retlna. The number of granuloma-associated eosinophils and serum IgE titers were also enhanced. Moreover, when chronically infected with S. mansoni cercariae, Retnla(-/- mice displayed significant increases in granulomatous inflammation in the liver and the development of fibrosis and progression to hepatosplenic disease was markedly augmented. Finally, Retnla(-/- mice infected with the gastrointestinal (GI parasite Nippostrongylus brasiliensis had intensified lung pathology to migrating larvae, reduced fecundity, and accelerated expulsion of adult worms from the intestine, suggesting Th2 immunity was enhanced. When their immune responses were compared, helminth infected Retnla(-/- mice developed stronger Th2 responses, which could be reversed by exogenous rRelmalpha treatment. Studies with several cytokine knockout mice showed that expression of Retnla was dependent on IL-4 and IL-13 and inhibited by IFN-gamma, while tissue localization and cell isolation experiments indicated that eosinophils and epithelial cells were the primary producers of Retnla in the liver and lung, respectively. Thus, the Th2-inducible gene Retnla suppresses resistance to GI nematode infection, pulmonary granulomatous inflammation, and fibrosis by negatively regulating Th2-dependent responses.

  18. Immunization with the recombinant antigen Ss-IR induces protective immunity to infection with Strongyloides stercoralis in mice.

    Science.gov (United States)

    Abraham, David; Hess, Jessica A; Mejia, Rojelio; Nolan, Thomas J; Lok, James B; Lustigman, Sara; Nutman, Thomas B

    2011-10-19

    Human intestinal infections with the nematode Strongyloides stercoralis remain a significant problem worldwide and a vaccine would be a useful addition to the tools available to prevent and control this infection. The goal of this study was to test single antigens for their efficacy in a vaccine against S. stercoralis larvae in mice. Alum was used as the adjuvant in these studies and antigens selected for analysis were either recognized by protective human IgG (Ss-TMY-1, Ss-EAT-6, and Ss-LEC-5) or were known to be highly immunogenic in humans (Ss-NIE-1 and Ss-IR). Only mice immunized with the Ss-IR antigen demonstrated a significant decrease of approximately 80% in the survival of larval parasites in the challenge infection. Antibodies, recovered from mice with protective immunity to S. stercoralis after immunization with Ss-IR, were used to locate the antigen in the larvae. Confocal microscopy revealed that IgG from mice immunized with Ss-IR bound to the surface of the parasites and observations by electron microscopy indicated that IgG bound to granules in the glandular esophagus. Serum collected from mice immunized with Ss-IR passively transferred immunity to naïve mice. These studies demonstrate that Ss-IR, in combination with alum, induces high levels of protective immunity through an antibody dependent mechanism and may therefore be suitable for further development as a vaccine against human strongyloidiasis. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Novel paradigm for immunotherapy of ovarian cancer by engaging prophylactic immunity against hepatitis B virus.

    Science.gov (United States)

    Malecki, Marek; Putzer, Emily; Quach, Caroline; Dodivenaka, Chaitanya; Tombokan, Xenia

    2016-12-01

    Only eight women out of one hundred diagnosed with ovarian epithelial cancers, which progressed to the clinical stage IV, survive 10 years. First line therapies: surgery, chemotherapy, and radiation therapy inflict very serious iatrogenic consequences. Passive immunotherapy of ovarian cancers offers only low efficacy. Prophylactic and therapeutic vaccines for ovarian cancers are not available. Interestingly, prophylactic vaccines for Hepatitis B Viruses (HBV) are very effective. The specific aim of this work was to design, synthesize, and administer biomolecules, which would engage prophylactic, vaccination-induced immunity for HBV towards killing of ovarian cancer cells with high specificity and efficacy. Tissue biopsies, ascites, and blood were acquired from the patients, whose identities were entirely concealed in accordance with the Declaration of Helsinki, pursuant to the Institutional Review Board approval, and with the Patients' informed consent. By biomolecular engineering, we have created a novel family of biomolecules: antibody × vaccine engineered constructs (AVEC: anti-HER-2 × HBsAg). We have collected the blood from the volunteers, and measured the titers of anti-HBV antibodies resulting from the FDA approved and CDC scheduled HBV vaccinations. We have acquired tumor biopsies, ascites, and blood from patients suffering from the advanced ovarian cancers. We have established cultures of HER-2 over-expressing epithelial ovarian cancers: OV-90, TOC-112D, SKOV-3, as well as human ovary surface epithelial (HOSE) and human artery endothelial (HAE) cells. Treatment of the HER-2+ ovarian cancer cells with AVEC: anti-HER-2 × HBsAg, accompanied by administration of blood drawn from patients with high titers of the anti-HBV antibodies, resulted in much higher therapeutic efficacy as compared to treatment with the naked anti-HER-2 antibodies alone and/or with the relevant isotype antibodies. This treatment had practically no effect upon the HOSE and HAE

  20. Low-dose radiation induces drosophila innate immunity through toll pathway activation

    International Nuclear Information System (INIS)

    Seong, Ki Moon; Kim, Cha Soon; Lee, Byung-Sub; Nam, Seon Young; Yang, Kwang Hee; Kim, Ji-Young; Jin, Young-Woo; Park, Joong-Jean; Min, Kyung-Jin

    2012-01-01

    Numerous studies report that exposing certain organisms to low-dose radiation induces beneficial effects on lifespan, tumorigenesis, and immunity. By analyzing survival after bacterial infection and antimicrobial peptide gene expression in irradiated flies, we demonstrate that low-dose irradiation of Drosophila enhances innate immunity. Low-dose irradiation of flies significantly increased resistance against gram-positive and gram-negative bacterial infections, as well as expression of several antimicrobial peptide genes. Additionally, low-dose irradiation also resulted in a specific increase in expression of key proteins of the Toll signaling pathway and phosphorylated forms of p38 and N-terminal kinase (JNK). These results indicate that innate immunity is activated after low-dose irradiation through Toll signaling pathway in Drosophila. (author)

  1. Cross-immunity among allogeneic tumors of rats immunized with solid tumors

    International Nuclear Information System (INIS)

    Ogasawara, Masamichi

    1979-01-01

    Several experiments were done for the study of cross-immunity among allogeneic rat tumors by immunization using gamma-irradiated or non-irradiated solid tumors. Each group of rats which were immunized with gamma-irradiation solid tumor inocula from ascites tumor cell line of tetra-ploid Hirosaki sarcoma, Usubuchi sarcoma or AH 130, showed an apparent resistance against the intraperitoneal challenge with Hirosaki sarcoma. A similar resistance was demonstrated in the case of the challenge with Usubuchi sarcoma into rats immunized with non-irradiated methylcholanthrene (MCA)-induced tumors. In using solid MCA tumors as immunogen and Hirosaki sarcoma as challenge tumor, it was also demonstrated in 2 out of 3 groups immunized with non-irradiated tumors. In the experiment of trying to induce cross-immunity between 2 MCA tumors by immunization with irradiated solid tumor only, the inhibitory effect on the growth was observed in the early stage in the treated groups as compared with the control one. From the above results, it may be considered that the immunization with irradiated solid tumors fromas cites cell lines and non-irradiated solid MCA tumors induced strong cross-immunity in general, but that the immunization with only irradiated solid MCA tumors induced weak cross-immunity commonly. (author)

  2. Schistosomiasis coinfection in children influences acquired immune response against Plasmodium falciparum malaria antigens.

    Directory of Open Access Journals (Sweden)

    Tamsir O Diallo

    Full Text Available BACKGROUND: Malaria and schistosomiasis coinfection frequently occurs in tropical countries. This study evaluates the influence of Schistosoma haematobium infection on specific antibody responses and cytokine production to recombinant merozoite surface protein-1-19 (MSP1-(19 and schizont extract of Plasmodium falciparum in malaria-infected children. METHODOLOGY: Specific IgG1 to MSP1-(19, as well as IgG1 and IgG3 to schizont extract were significantly increased in coinfected children compared to P. falciparum mono-infected children. Stimulation with MSP1-(19 lead to a specific production of both interleukin-10 (IL-10 and interferon-γ (IFN-γ, whereas the stimulation with schizont extract produced an IL-10 response only in the coinfected group. CONCLUSIONS: Our study suggests that schistosomiasis coinfection favours anti-malarial protective antibody responses, which could be associated with the regulation of IL-10 and IFN-γ production and seems to be antigen-dependent. This study demonstrates the importance of infectious status of the population in the evaluation of acquired immunity against malaria and highlights the consequences of a multiple infection environment during clinical trials of anti-malaria vaccine candidates.

  3. Does exposure to UV radiation induce a shift to a Th-2-like immune reaction?

    International Nuclear Information System (INIS)

    Ullrich, S.E.

    1996-01-01

    In addition to being the primary cause of skin cancer, UV radiation is immune suppressive and there appears to be a link between the ability of UV to suppress the immune response and induce skin cancer. Cytokines made by UV-irradiated keratinocytes play an essential role in activating immune suppression. In particular, we have found that keratinocyte-derived interleukin (IL)-10 is responsible for the systemic impairment of antigen presenting cell function and the UV-induced suppression of delayed-type hypersenstivity (DTH). Antigen presentation by splenic adherent cells isolated from UV-irradiated mice to T helper-1 type T (Th1) cells is suppressed, whereas antigen presentation to T helper-2 type T (Th2) cells is enhanced. The enhanced antigen presentation to Th2 cells and the impaired presentation to Th1 cells can be reversed in vivo by injecting the UV-irradiated mice with monoclonal anti-IL-10 antibody. Furthermore, immune suppression can be transferred from UV-irradiated mice to normal recipients by adoptive transfer of T cells. Injecting the recipient mice with anti-IL-4 or anti-IL-10 prevents the transfer of immune suppression, suggesting the suppressor cells are Th2 cells. In addition, injecting UV-irradiated mice with IL-12, a cytokine that has been shown to be the primary inducer of Th1 cells, and one that prevents the differentiation of Th2 cells in vivo, reverses UV-induced immune suppression. These findings support the hypothesis that UV exposure activates IL-10 secretion, which depresses the function of Th1 cells, while enhancing the activity of Th2 cells. (Author)

  4. Spinal cord injury-induced immune deficiency syndrome enhances infection susceptibility dependent on lesion level.

    Science.gov (United States)

    Brommer, Benedikt; Engel, Odilo; Kopp, Marcel A; Watzlawick, Ralf; Müller, Susanne; Prüss, Harald; Chen, Yuying; DeVivo, Michael J; Finkenstaedt, Felix W; Dirnagl, Ulrich; Liebscher, Thomas; Meisel, Andreas; Schwab, Jan M

    2016-03-01

    Pneumonia is the leading cause of death after acute spinal cord injury and is associated with poor neurological outcome. In contrast to the current understanding, attributing enhanced infection susceptibility solely to the patient's environment and motor dysfunction, we investigate whether a secondary functional neurogenic immune deficiency (spinal cord injury-induced immune deficiency syndrome, SCI-IDS) may account for the enhanced infection susceptibility. We applied a clinically relevant model of experimental induced pneumonia to investigate whether the systemic SCI-IDS is functional sufficient to cause pneumonia dependent on spinal cord injury lesion level and investigated whether findings are mirrored in a large prospective cohort study after human spinal cord injury. In a mouse model of inducible pneumonia, high thoracic lesions that interrupt sympathetic innervation to major immune organs, but not low thoracic lesions, significantly increased bacterial load in lungs. The ability to clear the bacterial load from the lung remained preserved in sham animals. Propagated immune susceptibility depended on injury of central pre-ganglionic but not peripheral postganglionic sympathetic innervation to the spleen. Thoracic spinal cord injury level was confirmed as an independent increased risk factor of pneumonia in patients after motor complete spinal cord injury (odds ratio = 1.35, P spinal cord injury directly causes increased risk for bacterial infection in mice as well as in patients. Besides obvious motor and sensory paralysis, spinal cord injury also induces a functional SCI-IDS ('immune paralysis'), sufficient to propagate clinically relevant infection in an injury level dependent manner. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Temperature effects on vaccine induced immunity to viruses in fish

    DEFF Research Database (Denmark)

    Lorenzen, Niels; Lorenzen, Ellen; Rasmussen, Jesper Skou

    a problem in terms of inducing a protective immune response by vaccination in aquaculture, since it is often desirable to vaccinate fish during autumn, winter, or spring. In experimental vaccination trials with rainbow trout (Oncorhynchus mykiss) using a DNA-vaccine encoding the viral glycoprotein of viral...... haemorrhagic septicaemia virus (VHSV), non-specific as well as specific immune mechanisms seemed to be delayed at low temperature. At five weeks post vaccination fish kept at 5C had no detectable response of neutralising antibodies while two thirds of the fish kept at 15C had sero-converted. While protective...... immunity was still established at both temperatures, specificity analysis suggested that protection at the lower temperature was mainly due to non-specific innate antiviral mechanisms, which appeared to last longer at low temperature. This was presumably related to a prolonged persistence of the vaccine...

  6. Immunoglobulin GM and KM genes and measles vaccine-induced humoral immunity.

    Science.gov (United States)

    Ovsyannikova, Inna G; Larrabee, Beth R; Schaid, Daniel J; Poland, Gregory A

    2017-10-04

    Identifying genetic polymorphisms that explain variations in humoral immunity to live measles virus vaccine is of great interest. Immunoglobulin GM (heavy chain) and KM (light chain) allotypes are genetic markers known to be associated with susceptibility to several infectious diseases. We assessed associations between GM and KM genotypes and measles vaccine humoral immunity (neutralizing antibody titers) in a combined cohort (n=1796) of racially diverse healthy individuals (age 18-41years). We did not discover any significant associations between GM and/or KM genotypes and measles vaccine-induced neutralizing antibody titers. African-American subjects had higher neutralizing antibody titers than Caucasians (1260mIU/mL vs. 740mIU/mL, p=7.10×10 -13 ), and those titers remained statistically significant (p=1.68×10 -09 ) after adjusting for age at enrollment and time since last vaccination. There were no statistically significant sex-specific differences in measles-induced neutralizing antibody titers in our study (p=0.375). Our data indicate a surprising lack of evidence for an association between GM and KM genotypes and measles-specific neutralizing antibody titers, despite the importance of these immune response genes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Profiling of Human Acquired Immunity Against the Salivary Proteins of Phlebotomus papatasi Reveals Clusters of Differential Immunoreactivity

    Science.gov (United States)

    2014-03-10

    leishmaniasis.56 Pre-exposure of PROFILING OF SAND FLY SALIVARY PROTEINS 935 murine cells to L. intermedia salivary sonicates resulted in decreased IP-10...Thompson JD, Higgins DG, 2011. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7...Brodskyn C, Barral A, de Oliveira CI, 2010. Immunity to Lutzomyia intermedia saliva modulates the inflammatory environ- ment induced by Leishmania

  8. Skin Immunization Obviates Alcohol-Related Immune Dysfunction

    Directory of Open Access Journals (Sweden)

    Rhonda M. Brand

    2015-11-01

    Full Text Available Alcoholics suffer from immune dysfunction that can impede vaccine efficacy. If ethanol (EtOH-induced immune impairment is in part a result of direct exposure of immune cells to EtOH, then reduced levels of exposure could result in less immune dysfunction. As alcohol ingestion results in lower alcohol levels in skin than blood, we hypothesized that the skin immune network may be relatively preserved, enabling skin-targeted immunizations to obviate the immune inhibitory effects of alcohol consumption on conventional vaccines. We employed the two most common chronic EtOH mouse feeding models, the liver-damaging Lieber-DeCarli (LD and liver-sparing Meadows-Cook (MC diets, to examine the roles of EtOH and/or EtOH-induced liver dysfunction on alcohol related immunosuppression. Pair-fed mice were immunized against the model antigen ovalbumin (OVA by DNA immunization or against flu by administering the protein-based influenza vaccine either systemically (IV, IM, directly to liver (hydrodynamic, or cutaneously (biolistic, ID. We measured resulting tissue EtOH levels, liver stress, regulatory T cell (Treg, and myeloid-derived suppressor cell (MDSC populations. We compared immune responsiveness by measuring delayed-type hypersensitivity (DTH, antigen-specific cytotoxic T lymphocyte (CTL, and antibody induction as a function of delivery route and feeding model. We found that, as expected, and independent of the feeding model, EtOH ingestion inhibits DTH, CTL lysis, and antigen-specific total IgG induced by traditional systemic vaccines. On the other hand, skin-targeted vaccines were equally immunogenic in alcohol-exposed and non-exposed subjects, suggesting that cutaneous immunization may result in more efficacious vaccination in alcohol-ingesting subjects.

  9. Estradiol-induced vaginal mucus inhibits antigen penetration and CD8(+) T cell priming in response to intravaginal immunization.

    Science.gov (United States)

    Seavey, Matthew M; Mosmann, Tim R

    2009-04-14

    Although vaginal immunization has been explored as a strategy to induce mucosal immunity in the female reproductive tract, this site displays unique immunological features that probably evolved to inhibit anti-paternal T cell responses after insemination to allow successful pregnancy. We previously demonstrated that estradiol, which induces an estrus-like state, prevented CD8(+) T cell priming during intravaginal immunization of mice. We now show that estradiol prevented antigen loading of vaginal antigen presenting cells (APCs) after intravaginal immunization. Histological examination confirmed that estradiol prevented penetration of peptide antigen into the vaginal wall. Removal of the estradiol-induced mucus barrier by mucinase partially restored antigen loading of vaginal APC and CD8(+) T cell proliferation in vivo. The estradiol-induced mucus barrier may thus prevent exposure to antigens delivered intravaginally, supplementing additional estradiol-dependent mechanism(s) that inhibit CD8(+) T cell priming after insemination or vaginal vaccination.

  10. Estradiol-induced vaginal mucus inhibits antigen penetration and CD8+ T cell priming in response to intravaginal immunization

    Science.gov (United States)

    Seavey, Matthew M.; Mosmann, Tim R.

    2010-01-01

    Although vaginal immunization has been explored as a strategy to induce mucosal immunity in the female reproductive tract, this site displays unique immunological features that probably evolved to inhibit anti-paternal T cell responses after insemination to allow successful pregnancy. We previously demonstrated that estradiol, which induces an estrus-like state, prevented CD8+ T cell priming during intravaginal immunization of mice. We now show that estradiol prevented antigen loading of vaginal antigen presenting cells (APC) after intravaginal immunization. Histological examination confirmed that estradiol prevented penetration of peptide antigen into the vaginal wall. Removal of the estradiol-induced mucus barrier by mucinase partially restored antigen loading of vaginal APC and CD8+ T cell proliferation in vivo. The estradiol-induced mucus barrier may thus prevent exposure to antigens delivered intravaginally, supplementing additional estradiol-dependent mechanism(s) that inhibit CD8+ T cell priming after insemination or vaginal vaccination. PMID:19428849

  11. Inducible defenses stay up late: temporal patterns of immune gene expression in Tenebrio molitor.

    Science.gov (United States)

    Johnston, Paul R; Makarova, Olga; Rolff, Jens

    2013-12-06

    The course of microbial infection in insects is shaped by a two-stage process of immune defense. Constitutive defenses, such as engulfment and melanization, act immediately and are followed by inducible defenses, archetypically the production of antimicrobial peptides, which eliminate or suppress the remaining microbes. By applying RNAseq across a 7-day time course, we sought to characterize the long-lasting immune response to bacterial challenge in the mealworm beetle Tenebrio molitor, a model for the biochemistry of insect immunity and persistent bacterial infection. By annotating a hybrid de novo assembly of RNAseq data, we were able to identify putative orthologs for the majority of components of the conserved insect immune system. Compared with Tribolium castaneum, the most closely related species with a reference genome sequence and a manually curated immune system annotation, the T. molitor immune gene count was lower, with lineage-specific expansions of genes encoding serine proteases and their countervailing inhibitors accounting for the majority of the deficit. Quantitative mapping of RNAseq reads to the reference assembly showed that expression of genes with predicted functions in cellular immunity, wound healing, melanization, and the production of reactive oxygen species was transiently induced immediately after immune challenge. In contrast, expression of genes encoding antimicrobial peptides or components of the Toll signaling pathway and iron sequestration response remained elevated for at least 7 days. Numerous genes involved in metabolism and nutrient storage were repressed, indicating a possible cost of immune induction. Strikingly, the expression of almost all antibacterial peptides followed the same pattern of long-lasting induction, regardless of their spectra of activity, signaling possible interactive roles in vivo. Copyright © 2014 Johnston et al.

  12. The necrosome promotes pancreatic oncogenesis via CXCL1 and Mincle-induced immune suppression.

    Science.gov (United States)

    Seifert, Lena; Werba, Gregor; Tiwari, Shaun; Giao Ly, Nancy Ngoc; Alothman, Sara; Alqunaibit, Dalia; Avanzi, Antonina; Barilla, Rocky; Daley, Donnele; Greco, Stephanie H; Torres-Hernandez, Alejandro; Pergamo, Matthew; Ochi, Atsuo; Zambirinis, Constantinos P; Pansari, Mridul; Rendon, Mauricio; Tippens, Daniel; Hundeyin, Mautin; Mani, Vishnu R; Hajdu, Cristina; Engle, Dannielle; Miller, George

    2016-04-14

    Neoplastic pancreatic epithelial cells are believed to die through caspase 8-dependent apoptotic cell death, and chemotherapy is thought to promote tumour apoptosis. Conversely, cancer cells often disrupt apoptosis to survive. Another type of programmed cell death is necroptosis (programmed necrosis), but its role in pancreatic ductal adenocarcinoma (PDA) is unclear. There are many potential inducers of necroptosis in PDA, including ligation of tumour necrosis factor receptor 1 (TNFR1), CD95, TNF-related apoptosis-inducing ligand (TRAIL) receptors, Toll-like receptors, reactive oxygen species, and chemotherapeutic drugs. Here we report that the principal components of the necrosome, receptor-interacting protein (RIP)1 and RIP3, are highly expressed in PDA and are further upregulated by the chemotherapy drug gemcitabine. Blockade of the necrosome in vitro promoted cancer cell proliferation and induced an aggressive oncogenic phenotype. By contrast, in vivo deletion of RIP3 or inhibition of RIP1 protected against oncogenic progression in mice and was associated with the development of a highly immunogenic myeloid and T cell infiltrate. The immune-suppressive tumour microenvironment associated with intact RIP1/RIP3 signalling depended in part on necroptosis-induced expression of the chemokine attractant CXCL1, and CXCL1 blockade protected against PDA. Moreover, cytoplasmic SAP130 (a subunit of the histone deacetylase complex) was expressed in PDA in a RIP1/RIP3-dependent manner, and Mincle--its cognate receptor--was upregulated in tumour-infiltrating myeloid cells. Ligation of Mincle by SAP130 promoted oncogenesis, whereas deletion of Mincle protected against oncogenesis and phenocopied the immunogenic reprogramming of the tumour microenvironment that was induced by RIP3 deletion. Cellular depletion suggested that whereas inhibitory macrophages promote tumorigenesis in PDA, they lose their immune-suppressive effects when RIP3 or Mincle is deleted. Accordingly, T cells

  13. Identification of anti-CD98 antibody mimotopes for inducing antibodies with antitumor activity by mimotope immunization.

    Science.gov (United States)

    Saito, Misa; Kondo, Masahiro; Ohshima, Motohiro; Deguchi, Kazuki; Hayashi, Hideki; Inoue, Kazuyuki; Tsuji, Daiki; Masuko, Takashi; Itoh, Kunihiko

    2014-04-01

    A mimotope is an antibody-epitope-mimicking peptide retrieved from a phage display random peptide library. Immunization with antitumor antibody-derived mimotopes is promising for inducing antitumor immunity in hosts. In this study, we isolated linear and constrained mimotopes from HBJ127, a tumor-suppressing anti-CD98 heavy chain mAb, and determined their abilities for induction of antitumor activity equal to that of the parent antibody. We detected elevated levels of antipeptide responses, but failed to detect reactivity against native CD98-expressing HeLa cells in sera of immunized mice. Phage display panning and selection of mimotope-immunized mouse spleen-derived antibody Fab library showed that HeLa cell-reactive Fabs were successfully retrieved from the library. This finding indicates that native antigen-reactive Fab clones represented an undetectable minor population in mimotope-induced antibody repertoire. Functional and structural analysis of retrieved Fab clones revealed that they were almost identical to the parent antibody. From these results, we confirmed that mimotope immunization was promising for retrieving antitumor antibodies equivalent to the parent antibody, although the co-administration of adjuvant compounds such as T-cell epitope peptides and Toll-like receptor 4 agonist peptides is likely to be necessary for inducing stronger antitumor immunity than mimotope injection alone. © 2014 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.

  14. Induction of antitumor immunity through xenoplacental immunization

    Directory of Open Access Journals (Sweden)

    Agadjanyan Michael G

    2006-05-01

    Full Text Available Abstract Historically cancer vaccines have yielded suboptimal clinical results. We have developed a novel strategy for eliciting antitumor immunity based upon homology between neoplastic tissue and the developing placenta. Placenta formation shares several key processes with neoplasia, namely: angiogenesis, activation of matrix metalloproteases, and active suppression of immune function. Immune responses against xenoantigens are well known to break self-tolerance. Utilizing xenogeneic placental protein extracts as a vaccine, we have successfully induced anti-tumor immunity against B16 melanoma in C57/BL6 mice, whereas control xenogeneic extracts and B16 tumor extracts where ineffective, or actually promoted tumor growth, respectively. Furthermore, dendritic cells were able to prime tumor immunity when pulsed with the placental xenoantigens. While vaccination-induced tumor regression was abolished in mice depleted of CD4 T cells, both CD4 and CD8 cells were needed to adoptively transfer immunity to naïve mice. Supporting the role of CD8 cells in controlling tumor growth are findings that only freshly isolated CD8 cells from immunized mice were capable of inducing tumor cell caspases-3 activation ex vivo. These data suggest feasibility of using xenogeneic placental preparations as a multivalent vaccine potently targeting not just tumor antigens, but processes that are essential for tumor maintenance of malignant potential.

  15. Bacteria-Triggered Systemic Immunity in Barley Is Associated with WRKY and ETHYLENE RESPONSIVE FACTORs But Not with Salicylic Acid1[C][W

    Science.gov (United States)

    Dey, Sanjukta; Wenig, Marion; Langen, Gregor; Sharma, Sapna; Kugler, Karl G.; Knappe, Claudia; Hause, Bettina; Bichlmeier, Marlies; Babaeizad, Valiollah; Imani, Jafargholi; Janzik, Ingar; Stempfl, Thomas; Hückelhoven, Ralph; Kogel, Karl-Heinz; Mayer, Klaus F.X.

    2014-01-01

    Leaf-to-leaf systemic immune signaling known as systemic acquired resistance is poorly understood in monocotyledonous plants. Here, we characterize systemic immunity in barley (Hordeum vulgare) triggered after primary leaf infection with either Pseudomonas syringae pathovar japonica (Psj) or Xanthomonas translucens pathovar cerealis (Xtc). Both pathogens induced resistance in systemic, uninfected leaves against a subsequent challenge infection with Xtc. In contrast to systemic acquired resistance in Arabidopsis (Arabidopsis thaliana), systemic immunity in barley was not associated with NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 or the local or systemic accumulation of salicylic acid. Instead, we documented a moderate local but not systemic induction of abscisic acid after infection of leaves with Psj. In contrast to salicylic acid or its functional analog benzothiadiazole, local applications of the jasmonic acid methyl ester or abscisic acid triggered systemic immunity to Xtc. RNA sequencing analysis of local and systemic transcript accumulation revealed unique gene expression changes in response to both Psj and Xtc and a clear separation of local from systemic responses. The systemic response appeared relatively modest, and quantitative reverse transcription-polymerase chain reaction associated systemic immunity with the local and systemic induction of two WRKY and two ETHYLENE RESPONSIVE FACTOR (ERF)-like transcription factors. Systemic immunity against Xtc was further associated with transcriptional changes after a secondary/systemic Xtc challenge infection; these changes were dependent on the primary treatment. Taken together, bacteria-induced systemic immunity in barley may be mediated in part by WRKY and ERF-like transcription factors, possibly facilitating transcriptional reprogramming to potentiate immunity. PMID:25332505

  16. Pretreatment with Cry1Ac Protoxin Modulates the Immune Response, and Increases the Survival of Plasmodium-Infected CBA/Ca Mice

    Directory of Open Access Journals (Sweden)

    Martha Legorreta-Herrera

    2010-01-01

    Full Text Available Malaria is a major global health problem that kills 1-2 million people each year. Despite exhaustive research, naturally acquired immunity is poorly understood. Cry1A proteins are potent immunogens with adjuvant properties and are able to induce strong cellular and humoral responses. In fact, it has been shown that administration of Cry1Ac protoxin alone or with amoebic lysates induces protection against the lethal infection caused by the protozoa Naegleria fowleri. In this work, we studied whether Cry1Ac is able to activate the innate immune response to induce protection against Plasmodium berghei ANKA (lethal and P. chabaudi AS (nonlethal parasites in CBA/Ca mice. Treatment with Cry1Ac induced protection against both Plasmodium species in terms of reduced parasitaemia, longer survival time, modulation of pro- and anti-inflammatory cytokines, and increased levels of specific antibodies against Plasmodium. Understanding how to boost innate immunity to Plasmodium infection should lead to immunologically based intervention strategies.

  17. Double control systems for human T-cell leukemia virus type 1 by innate and acquired immunity.

    Science.gov (United States)

    Kannagi, Mari; Hasegawa, Atsuhiko; Kinpara, Shuichi; Shimizu, Yukiko; Takamori, Ayako; Utsunomiya, Atae

    2011-04-01

    Human T-cell leukemia virus type 1 (HTLV-1) is the causative retrovirus of adult T-cell leukemia (ATL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). HTLV-1-specific T-cell responses elicit antitumor and antiviral effects in experimental models, and are considered to be one of the most important determinants of the disease manifestation, since they are activated in HAM/TSP but not in ATL patients. The combination of low T-cell responses and elevated HTLV-1 proviral loads are features of ATL, and are also observed in a subpopulation of HTLV-1 carriers at the asymptomatic stage, suggesting that these features may be underlying risk factors. These risks may potentially be reduced by vaccination to activate HTLV-1-specific T-cell responses. HAM/TSP and ATL patients also differ in their levels of HTLV-1 mRNA expression, which are generally low in vivo but slightly higher in HAM/TSP patients. Our recent study indicated that viral expression in HTLV-1-infected T-cells is suppressed by stromal cells in culture through type-I IFNs. The suppression was reversible after isolation from the stromal cells, mimicking a long-standing puzzling phenomenon in HTLV-1 infection where the viral expression is very low in vivo and rapidly induced in vitro. Collectively, HTLV-1 is controlled by both acquired and innate immunity in vivo: HTLV-1-specific T-cells survey infected cells, and IFNs suppress viral expression. Both effects would contribute to a reduction in viral pathogenesis, although they may potentially influence or conflict with one another. The presence of double control systems for HTLV-1 infection provides a new concept for understanding the pathogenesis of HTLV-1-mediated malignant and inflammatory diseases. © 2011 Japanese Cancer Association.

  18. The Study on the Ferrokinetics and Acquired Immunity in Repeated Hookworm Infections

    International Nuclear Information System (INIS)

    Lee, Mun Ho; Lee, Pyl Ung

    1967-01-01

    In order to confirm whether acquired immunity or resistance can be developed by the repeated hookworm infections, the 150 mature actively moving filariform ancylostoma duodenale larvae obtained from the severe hookworm anemia patients were orally given to 8 healthy volunteers in three divided doses, 50 in each, at 5 day interval. Also the hematological changes as well as several ferrokinetics using 59 Fe were done and were compared with 10 controls. The clinical symptoms and signs were checked every day for the first 3 weeks and then twice weekly until the end of the experiment. The appearance of the ova in the stool was examined by the formalin ether method and the ova was counted by the Stoll's method. The following laboratory tests were done:1) Red blood cell count, venous blood hematocrit (micromethod), hemoglobin count (cyanomethemoglobin method) were checked every 5 to 7 day interval. 2) Plasma iron concentration (Barkan's modified method) was determined every 2 to 3 week interval. 3) Radioisotope studies:a) Ferrokinetics: Huff et al and Bothwell's method were applied. Erythropoietic Index (% of normal)= [ S ubject's turnover/100 ml whole bloodX100 ] over [ A verage normal turnover/100 ml whole blood ] b) Quantitative measurement of the gastrointestinal absorption of iron:Radioiron ( 59 Fe) balance method was applied. c) Determination of the plasma erythropoietin activity: Fried's method was applied. Following were the results: 1) The serum iron level was lower. The red cell volume was decreased, but with relative increase of plasma volume. 2) The plasma iron disappearance time was accelerated and the plasma iron turnover rate was decreased. The red cell iron turnover rate was markedly increased, while all of the red cell iron concentration, circulating red cell iron, plasma iron pool were decreased. The daily iron pool turnover and red cell renewal rate were increased. 3) The erythropoietic index, erythropoietin activity and intestinal absorption of iron

  19. The Study on the Ferrokinetics and Acquired Immunity in Repeated Hookworm Infections

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Mun Ho; Lee, Pyl Ung [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    1967-09-15

    In order to confirm whether acquired immunity or resistance can be developed by the repeated hookworm infections, the 150 mature actively moving filariform ancylostoma duodenale larvae obtained from the severe hookworm anemia patients were orally given to 8 healthy volunteers in three divided doses, 50 in each, at 5 day interval. Also the hematological changes as well as several ferrokinetics using {sup 59}Fe were done and were compared with 10 controls. The clinical symptoms and signs were checked every day for the first 3 weeks and then twice weekly until the end of the experiment. The appearance of the ova in the stool was examined by the formalin ether method and the ova was counted by the Stoll's method. The following laboratory tests were done:1) Red blood cell count, venous blood hematocrit (micromethod), hemoglobin count (cyanomethemoglobin method) were checked every 5 to 7 day interval. 2) Plasma iron concentration (Barkan's modified method) was determined every 2 to 3 week interval. 3) Radioisotope studies:a) Ferrokinetics: Huff et al and Bothwell's method were applied. Erythropoietic Index (% of normal)= ['Subject's turnover/100 ml whole bloodX100'] over ['Average normal turnover/100 ml whole blood'] b) Quantitative measurement of the gastrointestinal absorption of iron:Radioiron ({sup 59}Fe) balance method was applied. c) Determination of the plasma erythropoietin activity: Fried's method was applied. Following were the results: 1) The serum iron level was lower. The red cell volume was decreased, but with relative increase of plasma volume. 2) The plasma iron disappearance time was accelerated and the plasma iron turnover rate was decreased. The red cell iron turnover rate was markedly increased, while all of the red cell iron concentration, circulating red cell iron, plasma iron pool were decreased. The daily iron pool turnover and red cell renewal rate were increased. 3) The erythropoietic index, erythropoietin activity and intestinal absorption of

  20. Trivalent combination vaccine induces broad heterologous immune responses to norovirus and rotavirus in mice.

    Directory of Open Access Journals (Sweden)

    Kirsi Tamminen

    Full Text Available Rotavirus (RV and norovirus (NoV are the two major causes of viral gastroenteritis (GE in children worldwide. We have developed an injectable vaccine design to prevent infection or GE induced with these enteric viruses. The trivalent combination vaccine consists of NoV capsid (VP1 derived virus-like particles (VLPs of GI-3 and GII-4 representing the two major NoV genogroups and tubular RV recombinant VP6 (rVP6, the most conserved and abundant RV protein. Each component was produced in insect cells by a recombinant baculovirus expression system and combined in vitro. The vaccine components were administered intramuscularly to BALB/c mice either separately or in the trivalent combination. High levels of NoV and RV type specific serum IgGs with high avidity (>50% as well as intestinal IgGs were detected in the immunized mice. Cross-reactive IgG antibodies were also elicited against heterologous NoV VLPs not used for immunization (GII-4 NO, GII-12 and GI-1 VLPs and to different RVs from cell cultures. NoV-specific serum antibodies blocked binding of homologous and heterologous VLPs to the putative receptors, histo-blood group antigens, suggesting broad NoV neutralizing activity of the sera. Mucosal antibodies of mice immunized with the trivalent combination vaccine inhibited RV infection in vitro. In addition, cross-reactive T cell immune responses to NoV and RV-specific antigens were detected. All the responses were sustained for up to six months. No mutual inhibition of the components in the trivalent vaccine combination was observed. In conclusion, the NoV GI and GII VLPs combination induced broader cross-reactive and potentially neutralizing immune responses than either of the VLPs alone. Therefore, trivalent vaccine might induce protective immune responses to the vast majority of circulating NoV and RV genotypes.

  1. Sporothrix schenckii Immunization, but Not Infection, Induces Protective Th17 Responses Mediated by Circulating Memory CD4+ T Cells

    Directory of Open Access Journals (Sweden)

    Alberto García-Lozano

    2018-06-01

    Full Text Available Sporotrichosis is a chronic subcutaneous mycosis caused by the Sporothrix schenckii species complex and it is considered an emerging opportunistic infection in countries with tropical and subtropical climates. The host’s immune response has a main role in the development of this disease. However, it is unknown the features of the memory cellular immune response that could protect against the infection. Our results show that i.d. immunization in the ears of mice with inactivated S. schenckii conidia (iC combined with the cholera toxin (CT induces a cellular immune response mediated by circulating memory CD4+ T cells, which mainly produce interleukin 17 (IL-17. These cells mediate a strong delayed-type hypersensitivity (DTH reaction. Systemic and local protection against S. schenckii was mediated by circulating CD4+ T cells. In contrast, the infection induces a potent immune response in the skin mediated by CD4+ T cells, which have an effector phenotype that preferentially produce interferon gamma (IFN-γ and mediate a transitory DTH reaction. Our findings prove the potential value of the CT as a potent skin adjuvant when combined with fungal antigens, and they also have important implications for our better understanding of the differences between the memory immune response induced by the skin immunization and those induced by the infection; this knowledge enhances our understanding of how a protective immune response against a S. schenckii infection is developed.

  2. The Necrosome Promotes Pancreas Oncogenesis via CXCL1 and Mincle Induced Immune Suppression

    Science.gov (United States)

    Seifert, Lena; Werba, Gregor; Tiwari, Shaun; Giao Ly, Nancy Ngoc; Alothman, Sara; Alqunaibit, Dalia; Avanzi, Antonina; Barilla, Rocky; Daley, Donnele; Greco, Stephanie H.; Torres-Hernandez, Alejandro; Pergamo, Matthew; Ochi, Atsuo; Zambirinis, Constantinos P.; Pansari, Mridul; Rendon, Mauricio; Tippens, Daniel; Hundeyin, Mautin; Mani, Vishnu R.; Hajdu, Cristina; Engle, Dannielle; Miller, George

    2016-01-01

    Neoplastic pancreatic epithelial cells are widely believed to die via Caspase 8-dependant apoptotic cell death and chemotherapy is thought to further promote tumor apoptosis1. Conversely, disruption of apoptosis is a basic modality cancer cells exploit for survival2,3. However, the role of necroptosis, or programmed necrosis, in pancreatic ductal adenocarcinoma (PDA) is uncertain. There are a multitude of potential inducers of necroptosis in PDA including ligation of TNFR1, CD95, TRAIL receptors, Toll-like receptors, ROS, and Chemotherapeutics4,5. Here we report that the principal components of the necrosome, RIP1 and RIP3, are highly expressed in PDA and are further upregulated by chemotherapy. Blockade of the necrosome in vitro promoted cancer cell proliferation and induced an aggressive oncogenic phenotype. By contrast, in vivo RIP3 deletion or RIP1 inhibition was protective against oncogenic progression and was associated with the development of a highly immunogenic myeloid and T cell infiltrate. The immune-suppressive tumor microenvironment (TME) associated with intact RIP1/RIP3 signaling was in-part contingent on necroptosis-induced CXCL1 expression whereas CXCL1 blockade was protective against PDA. Moreover, we found that cytoplasmic SAP130 was expressed in PDA in a RIP1/RIP3-dependent manner, and Mincle – its cognate receptor – was upregulated in tumor-infiltrating myeloid cells. Mincle ligation by SAP130 promoted oncogenesis whereas Mincle deletion was protective and phenocopied the immunogenic reprogramming of the TME characteristic of RIP3 deletion. Cellular depletion experiments suggested that whereas inhibitory macrophages promote tumorigenesis in PDA, they lose their immune-suppressive effects in the context of RIP3 or Mincle deletion. As such, T cells which are dispensable to PDA progression in hosts with intact RIP3 or Mincle signaling become reprogrammed into indispensable mediators of anti-tumor immunity in absence of RIP3 or Mincle. Our work

  3. Modulation of Immune Functions by Foods

    Directory of Open Access Journals (Sweden)

    Shuichi Kaminogawa

    2004-01-01

    Full Text Available Evidence is rapidly accumulating as to the beneficial effects of foods. However, it is not always clear whether the information is based on data evaluated impartially in a scientific fashion. Human research into whether foods modulate immune functions in either intervention studies or randomized controlled trials can be classified into three categories according to the physical state of subjects enrolled for investigation: (i studies examining the effect of foods in healthy individuals; (ii studies analyzing the effect of foods on patients with hypersensitivity; and (iii studies checking the effect of foods on immunocompromized subjects, including patients who had undergone surgical resection of cancer and newborns. The systematization of reported studies has made it reasonable to conclude that foods are able to modulate immune functions manifesting as either innate immunity (phagocytic activity, NK cell activity or acquired immunity (T cell response, antibody production. Moreover, improvement of immune functions by foods can normalize the physical state of allergic patients or cancer patients, and may reduce the risk of diseases in healthy individuals. Therefore, it is valuable to assess the immune-modulating abilities of foods by measuring at least one parameter of either innate or acquired immunity.

  4. Fungal innate immunity induced by bacterial microbe-associated molecular patterns (MAMPs)

    DEFF Research Database (Denmark)

    Ip Cho, Simon; Sundelin, Thomas; Erbs, Gitte

    2016-01-01

    Plants and animals detect bacterial presence through Microbe-Associated Molecular Patterns (MAMPs) which induce an innate immune response. The field of fungal-bacterial interaction at the molecular level is still in its infancy and little is known about MAMPs and their detection by fungi. Exposin...

  5. Immunogenicity is unrelated to protective immunity when induced by soluble and particulate antigens from Nocardia brasiliensis in BALB/c mice.

    Science.gov (United States)

    Salinas-Carmona, Mario C; Ramos, Alma I; Pérez-Rivera, Isabel

    2006-08-01

    Cell-mediated immunity plays a major role in protection against intracellular microbes. Nocardia brasiliensis is a facultative intracellular pathogen that causes chronic actinomycetoma. In this work, we injected BALB/c mice with soluble P24 and particulate antigens from N. brasiliensis. A higher antibody titer and lymphocyte proliferation was induced by the particulate antigen than by the soluble antigen. However, five months after antigen injection, antibody concentration and lymphocyte proliferation were similar. An increase in CD45R and CD4 T cells was unrelated to protective immunity. Active immunization with soluble or particulate antigens induced complete protection during the primary immune response. This protective response was IgM mediated. The higher immunogenicity was not related to protective immunity since the particulate antigen induced protection similar to the soluble antigen. Using particulate antigens for vaccination guarantees a stronger immune response, local and systemic side effects, but not necessarily protection.

  6. Immune dysfunction in cirrhosis

    Science.gov (United States)

    Sipeki, Nora; Antal-Szalmas, Peter; Lakatos, Peter L; Papp, Maria

    2014-01-01

    Innate and adaptive immune dysfunction, also referred to as cirrhosis-associated immune dysfunction syndrome, is a major component of cirrhosis, and plays a pivotal role in the pathogenesis of both the acute and chronic worsening of liver function. During the evolution of the disease, acute decompensation events associated with organ failure(s), so-called acute-on chronic liver failure, and chronic decompensation with progression of liver fibrosis and also development of disease specific complications, comprise distinct clinical entities with different immunopathology mechanisms. Enhanced bacterial translocation associated with systemic endotoxemia and increased occurrence of systemic bacterial infections have substantial impacts on both clinical situations. Acute and chronic exposure to bacteria and/or their products, however, can result in variable clinical consequences. The immune status of patients is not constant during the illness; consequently, alterations of the balance between pro- and anti-inflammatory processes result in very different dynamic courses. In this review we give a detailed overview of acquired immune dysfunction and its consequences for cirrhosis. We demonstrate the substantial influence of inherited innate immune dysfunction on acute and chronic inflammatory processes in cirrhosis caused by the pre-existing acquired immune dysfunction with limited compensatory mechanisms. Moreover, we highlight the current facts and future perspectives of how the assessment of immune dysfunction can assist clinicians in everyday practical decision-making when establishing treatment and care strategies for the patients with end-stage liver disease. Early and efficient recognition of inappropriate performance of the immune system is essential for overcoming complications, delaying progression and reducing mortality. PMID:24627592

  7. An immunoproteomic approach revealing peptides from Sporothrix brasiliensis that induce a cellular immune response in subcutaneous sporotrichosis.

    Science.gov (United States)

    de Almeida, José Roberto Fogaça; Jannuzzi, Grasielle Pereira; Kaihami, Gilberto Hideo; Breda, Leandro Carvalho Dantas; Ferreira, Karen Spadari; de Almeida, Sandro Rogério

    2018-03-08

    Sporothrix brasiliensis is the most virulent fungus of the Sporothrix complex and is the main species recovered in the sporotrichosis zoonotic hyperendemic area in Rio de Janeiro. A vaccine against S. brasiliensis could improve the current sporotrichosis situation. Here, we show 3 peptides from S. brasiliensis immunogenic proteins that have a higher likelihood for engaging MHC-class II molecules. We investigated the efficiency of the peptides as vaccines for preventing subcutaneous sporotrichosis. In this study, we observed a decrease in lesion diameters in peptide-immunized mice, showing that the peptides could induce a protective immune response against subcutaneous sporotrichosis. ZR8 peptide is from the GP70 protein, the main antigen of the Sporothrix complex, and was the best potential vaccine candidate by increasing CD4 + T cells and higher levels of IFN-γ, IL-17A and IL-1β characterizing a strong cellular immune response. This immune environment induced a higher number of neutrophils in lesions that are associated with fungus clearance. These results indicated that the ZR8 peptide induces a protective immune response against subcutaneous sporotrichosis and is a vaccine candidate against S. brasiliensis infection.

  8. Evidence of a Redox-Dependent Regulation of Immune Responses to Exercise-Induced Inflammation

    Directory of Open Access Journals (Sweden)

    Alexandra Sakelliou

    2016-01-01

    Full Text Available We used thiol-based antioxidant supplementation (n-acetylcysteine, NAC to determine whether immune mobilisation following skeletal muscle microtrauma induced by exercise is redox-sensitive in healthy humans. According to a two-trial, double-blind, crossover, repeated measures design, 10 young men received either placebo or NAC (20 mg/kg/day immediately after a muscle-damaging exercise protocol (300 eccentric contractions and for eight consecutive days. Blood sampling and performance assessments were performed before exercise, after exercise, and daily throughout recovery. NAC reduced the decline of reduced glutathione in erythrocytes and the increase of plasma protein carbonyls, serum TAC and erythrocyte oxidized glutathione, and TBARS and catalase activity during recovery thereby altering postexercise redox status. The rise of muscle damage and inflammatory markers (muscle strength, creatine kinase activity, CRP, proinflammatory cytokines, and adhesion molecules was less pronounced in NAC during the first phase of recovery. The rise of leukocyte and neutrophil count was decreased by NAC after exercise. Results on immune cell subpopulations obtained by flow cytometry indicated that NAC ingestion reduced the exercise-induced rise of total macrophages, HLA+ macrophages, and 11B+ macrophages and abolished the exercise-induced upregulation of B lymphocytes. Natural killer cells declined only in PLA immediately after exercise. These results indicate that thiol-based antioxidant supplementation blunts immune cell mobilisation in response to exercise-induced inflammation suggesting that leukocyte mobilization may be under redox-dependent regulation.

  9. Skeletal Muscle and Lymphocyte Mitochondrial Dysfunctions in Septic Shock Trigger ICU-Acquired Weakness and Sepsis-Induced Immunoparalysis

    Directory of Open Access Journals (Sweden)

    Quentin Maestraggi

    2017-01-01

    Full Text Available Fundamental events driving the pathological processes of septic shock-induced multiorgan failure (MOF at the cellular and subcellular levels remain debated. Emerging data implicate mitochondrial dysfunction as a critical factor in the pathogenesis of sepsis-associated MOF. If macrocirculatory and microcirculatory dysfunctions undoubtedly participate in organ dysfunction at the early stage of septic shock, an intrinsic bioenergetic failure, sometimes called “cytopathic hypoxia,” perpetuates cellular dysfunction. Short-term failure of vital organs immediately threatens patient survival but long-term recovery is also severely hindered by persistent dysfunction of organs traditionally described as nonvital, such as skeletal muscle and peripheral blood mononuclear cells (PBMCs. In this review, we will stress how and why a persistent mitochondrial dysfunction in skeletal muscles and PBMC could impair survival in patients who overcome the first acute phase of their septic episode. First, muscle wasting protracts weaning from mechanical ventilation, increases the risk of mechanical ventilator-associated pneumonia, and creates a state of ICU-acquired muscle weakness, compelling the patient to bed. Second, failure of the immune system (“immunoparalysis” translates into its inability to clear infectious foci and predisposes the patient to recurrent nosocomial infections. We will finally emphasize how mitochondrial-targeted therapies could represent a realistic strategy to promote long-term recovery after sepsis.

  10. Drug-induced immune hemolytic anemia

    Science.gov (United States)

    Immune hemolytic anemia secondary to drugs; Anemia - immune hemolytic - secondary to drugs ... Drugs that can cause this type of hemolytic anemia include: Cephalosporins (a class of antibiotics), most common ...

  11. Alemtuzumab-induced elimination of HIV-1-infected immune cells.

    Science.gov (United States)

    Ruxrungtham, Kiat; Sirivichayakul, Sunee; Buranapraditkun, Supranee; Krause, Werner

    2016-01-01

    Currently, there is no drug known that is able to eradicate either HIV or HIV-infected host cells. The effectiveness of all available treatments is based on the prevention of viral replication. We investigated whether the monoclonal, CD52 receptor-targeting antibody, alemtuzumab, which is currently approved for the treatment of multiple sclerosis, is able to eliminate HIV-infected immune cells. In blood samples from healthy donors and from HIV-1-infected subjects who were either treatment-naïve or resistant to HAART, we studied whether the CD52 expression on T cells and their subsets (CD3, CD4, CD8), B cells (CD19), dendritic cells (CD123) and monocytes (CD11c) is retained in HIV-1 infection and whether alemtuzumab is able to eradicate infected cells, using four-colour flow cytometry. We found that CD52 expression on immune cells is retained in HIV-1 infection regardless of CD4 cell count, viral load and treatment status, and is amenable to alemtuzumab-induced depletion. For the first time it could be shown in vitro that HIV-1-infected immune cells can be eliminated by using the monoclonal antibody alemtuzumab.

  12. Validating the pivotal role of the immune system in low-dose radiation-induced tumor inhibition in Lewis lung cancer-bearing mice.

    Science.gov (United States)

    Zhou, Lei; Zhang, Xiaoying; Li, Hui; Niu, Chao; Yu, Dehai; Yang, Guozi; Liang, Xinyue; Wen, Xue; Li, Min; Cui, Jiuwei

    2018-04-01

    Although low-dose radiation (LDR) possesses the two distinct functions of inducing hormesis and adaptive responses, which result in immune enhancement and tumor inhibition, its clinical applications have not yet been elucidated. The major obstacle that hinders the application of LDR in the clinical setting is that the mechanisms underlying induction of tumor inhibition are unclear, and the risks associated with LDR are still unknown. Thus, to overcome this obstacle and elucidate the mechanisms mediating the antitumor effects of LDR, in this study, we established an in vivo lung cancer model to investigate the participation of the immune system in LDR-induced tumor inhibition and validated the pivotal role of the immune system by impairing immunity with high-dose radiation (HDR) of 1 Gy. Additionally, the LDR-induced adaptive response of the immune system was also observed by sequential HDR treatment in this mouse model. We found that LDR-activated T cells and natural killer cells and increased the cytotoxicity of splenocytes and the infiltration of T cells in the tumor tissues. In contrast, when immune function was impaired by HDR pretreatment, LDR could not induce tumor inhibition. However, when LDR was administered before HDR, the immunity could be protected from impairment, and tumor growth could be inhibited to some extent, indicating the induction of the immune adaptive response by LDR. Therefore, we demonstrated that immune enhancement played a key role in LDR-induced tumor inhibition. These findings emphasized the importance of the immune response in tumor radiotherapy and may help promote the application of LDR as a novel approach in clinical practice. © 2018 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  13. A trade-off between natural and acquired antibody production in a reptile: implications for long-term resistance to disease

    Directory of Open Access Journals (Sweden)

    Franziska C. Sandmeier

    2012-08-01

    Vertebrate immune systems are understood to be complex and dynamic, with trade-offs among different physiological components (e.g., innate and adaptive immunity within individuals and among taxonomic lineages. Desert tortoises (Gopherus agassizii immunised with ovalbumin (OVA showed a clear trade-off between levels of natural antibodies (NAbs; innate immune function and the production of acquired antibodies (adaptive immune function. Once initiated, acquired antibody responses included a long-term elevation in antibodies persisting for more than one year. The occurrence of either (a high levels of NAbs or (b long-term elevations of acquired antibodies in individual tortoises suggests that long-term humoral resistance to pathogens may be especially important in this species, as well as in other vertebrates with slow metabolic rates, concomitantly slow primary adaptive immune responses, and long life-spans.

  14. The impact of shift work induced chronic circadian disruption on IL-6 and TNF-α immune responses

    Directory of Open Access Journals (Sweden)

    Spallek Michael

    2010-07-01

    Full Text Available Abstract AIM Sleep disturbances induce proinflammatory immune responses, which might increase cardiovascular disease risk. So far the effects of acute sleep deprivation and chronic sleep illnesses on the immune system have been investigated. The particular impact of shift work induced chronic circadian disruption on specific immune responses has not been addressed so far. Methods Pittsburgh-Sleep-Quality-Index (PSQI questionnaire and blood sampling was performed by 225 shift workers and 137 daytime workers. As possible markers the proinflammatory cytokines IL-6 and TNF-α and lymphocyte cell count were investigated. A medical examination was performed and biometrical data including age, gender, height, weight, waist and hip circumference and smoking habits were collected by a structured interview. Results Shift workers had a significantly higher mean PSQI score than day workers (6.73 vs. 4.66; p Conclusion Shift work induces chronic sleep debt. Our data reveals that chronic sleep debt might not always lead to an activation of the immune system, as we did not observe differences in lymphocyte count or level of IL-6 or TNF-α serum concentration between shift workers and day workers. Therefore chronic sleep restriction might be eased by a long-term compensating immune regulation which (in healthy protects against an overstimulation of proinflammatory immune mechanisms and moderates metabolic changes, as they are known from short-term sleep deprivation or sleep related breathing disorders.

  15. Inducible nitric-oxide synthase plays a minimal role in lymphocytic choriomeningitis virus-induced, T cell-mediated protective immunity and immunopathology

    DEFF Research Database (Denmark)

    Bartholdy, C; Nansen, A; Christensen, Jeanette Erbo

    1999-01-01

    -mediated immune response was found to be unaltered in iNOS-deficient mice compared with wild-type C57BL/6 mice, and LCMV- induced general immunosuppression was equally pronounced in both strains. In vivo analysis revealed identical kinetics of virus clearance, as well as unaltered clinical severity of systemic......By using mice with a targetted disruption in the gene encoding inducible nitric-oxide synthase (iNOS), we have studied the role of nitric oxide (NO) in lymphocytic choriomeningitis virus (LCMV)-induced, T cell-mediated protective immunity and immunopathology. The afferent phase of the T cell...... LCMV infection in both strains. Concerning the outcome of intracerebral infection, no significant differences were found between iNOS-deficient and wild-type mice in the number or composition of mononuclear cells found in the cerebrospinal fluid on day 6 post-infection. Likewise, NO did not influence...

  16. Acquired immune deficiency syndrome: specific aspects of the disease in Haiti.

    Science.gov (United States)

    Guerin, J M; Malebranche, R; Elie, R; Laroche, A C; Pierre, G D; Arnoux, E; Spira, T J; Dupuy, J M; Seemayer, T A; Pean-Guichard, C

    1984-01-01

    This paper presents clinical data on 41 patients (29 male and 12 female) from Haiti who presented with acquired immunedeficiency syndrome (AIDS). Their mean age was 32 years (range 17-61 years). 4 of thes cases were homosexual or bisexual; none was an illicit drug user or a hemophiliac. In addition, 3 of the female patients had sexual contact with a male partner with AIDS. 4 patients had received blood transfusions before their illness. The most prominent clinical symptom in this series was chronic diarrhea of 2-33 months' duration, which occurrred in 39 patients (95%). Also reporte were marked weight loss (95%), fatigue (95%), prolonger fever (90%), and nodular or maculopapular skin lesions (54%). Opportunistic infections in this series included oroesophageal candidiasis (88%) and intestinal cryptosporidiosis (31%). Tuberculosis developed in 22% of patients. Immunologic evaluation revealed profoundly depressed T-helper cells and an inverted T-helper/T-suppressor cell ratio. Biologic markers included elevated alpha-1 thymosin and beta-2 microglobulin levels, elevated immune complexes, and the presence of acid-labile interferon. Of interest were differences in the clinical expression of AIDS between this series and cases in the US. The Haitian data suggest a higher incidencs of female cases,a predominance of gastrointestinal symptoms rather than respiratory symptoms and lymphadenopathy, a frequent association with tuberculosis, and a relatively low incidence of Kaposi's sarcoma or P. carinii pneumonia compared to the situation in the US. As in the US, where most AIDS cases are concentrated in New York and California, most AIDS cases in Haiti are found in residents of Port-au-Prince and Carrefour, which are centers for male and female prostitution.

  17. Serratia marcescens Induces Apoptotic Cell Death in Host Immune Cells via a Lipopolysaccharide- and Flagella-dependent Mechanism*

    Science.gov (United States)

    Ishii, Kenichi; Adachi, Tatsuo; Imamura, Katsutoshi; Takano, Shinya; Usui, Kimihito; Suzuki, Kazushi; Hamamoto, Hiroshi; Watanabe, Takeshi; Sekimizu, Kazuhisa

    2012-01-01

    Injection of Serratia marcescens into the blood (hemolymph) of the silkworm, Bombyx mori, induced the activation of c-Jun NH2-terminal kinase (JNK), followed by caspase activation and apoptosis of blood cells (hemocytes). This process impaired the innate immune response in which pathogen cell wall components, such as glucan, stimulate hemocytes, leading to the activation of insect cytokine paralytic peptide. S. marcescens induced apoptotic cell death of silkworm hemocytes and mouse peritoneal macrophages in vitro. We searched for S. marcescens transposon mutants with attenuated ability to induce apoptosis of silkworm hemocytes. Among the genes identified, disruption mutants of wecA (a gene involved in lipopolysaccharide O-antigen synthesis), and flhD and fliR (essential genes in flagella synthesis) showed reduced motility and impaired induction of mouse macrophage cell death. These findings suggest that S. marcescens induces apoptosis of host immune cells via lipopolysaccharide- and flagella-dependent motility, leading to the suppression of host innate immunity. PMID:22859304

  18. Tumor suppressor maspin as a modulator of host immune response to cancer

    Directory of Open Access Journals (Sweden)

    Sijana H. Dzinic

    2015-10-01

    Full Text Available Despite the promising clinical outcome, the primary challenge of the curative cancer immunotherapy is to overcome the dichotomy of the immune response: tumor-evoked immunostimulatory versus tumor-induced immunosuppressive. The goal needs to be two-fold, to re-establish sustainable antitumor-cancer immunity and to eliminate immunosuppression. The successful elimination of cancer cells by immunosurveillance requires the antigenic presentation of the tumor cells or tumor-associated antigens and the expression of immunostimulatory cytokines and chemokines by cancer and immune cells. Tumors are heterogeneous and as such, some of the tumor cells are thought to have stem cell characteristics that enable them to suppress or desensitize the host immunity due to acquired epigenetic changes. A central mechanism underlying tumor epigenetic instability is the increased histone deacetylase (HDAC-mediated repression of HDAC-target genes regulating homeostasis and differentiation. It was noted that pharmacological HDAC inhibitors are not effective in eliminating tumor cells partly because they may induce immunosuppression. We have shown that epithelial-specific tumor suppressor maspin, an ovalbumin-like non-inhibitory serine protease inhibitor, reprograms tumor cells toward better differentiated phenotypes by inhibiting HDAC1. Recently, we uncovered a novel function of maspin in directing host immunity towards tumor elimination. In this review, we discuss the maspin and maspin/HDAC1 interplay in tumor biology and immunology. We propose that maspin based therapies may eradicate cancer.

  19. Vaginal immunization to elicit primary T-cell activation and dissemination.

    Directory of Open Access Journals (Sweden)

    Elena Pettini

    Full Text Available Primary T-cell activation at mucosal sites is of utmost importance for the development of vaccination strategies. T-cell priming after vaginal immunization, with ovalbumin and CpG oligodeoxynucleotide adjuvant as model vaccine formulation, was studied in vivo in hormone-synchronized mice and compared to the one induced by the nasal route. Twenty-four hours after both vaginal or nasal immunization, antigen-loaded dendritic cells were detected within the respective draining lymph nodes. Vaginal immunization elicited a strong recruitment of antigen-specific CD4(+ T cells into draining lymph nodes that was more rapid than the one observed following nasal immunization. T-cell clonal expansion was first detected in iliac lymph nodes, draining the genital tract, and proliferated T cells disseminated towards distal lymph nodes and spleen similarly to what observed following nasal immunization. T cells were indeed activated by the antigen encounter and acquired homing molecules essential to disseminate towards distal lymphoid organs as confirmed by the modulation of CD45RB, CD69, CD44 and CD62L marker expression. A multi-type Galton Watson branching process, previously used for in vitro analysis of T-cell proliferation, was applied to model in vivo CFSE proliferation data in draining lymph nodes 57 hours following immunization, in order to calculate the probabilistic decision of a cell to enter in division, rest in quiescence or migrate/die. The modelling analysis indicated that the probability of a cell to proliferate was higher following vaginal than nasal immunization. All together these data show that vaginal immunization, despite the absence of an organized mucosal associated inductive site in the genital tract, is very efficient in priming antigen-specific CD4(+ T cells and inducing their dissemination from draining lymph nodes towards distal lymphoid organs.

  20. Comparative Assessment of Induced Immune Responses Following Intramuscular Immunization with Fusion and Cocktail of LeIF, LACK and TSA Genes Against Cutaneous Leishmaniasis in BALB/c Mice.

    Science.gov (United States)

    Maspi, Nahid; Ghaffarifar, Fatemeh; Sharifi, Zohreh; Dalimi, Abdolhossein; Dayer, Mohammad Saaid

    2018-02-01

    In the present study, we evaluated induced immune responses following DNA vaccine containing cocktail or fusion of LeIF, LACK and TSA genes or each gene alone. Mice were injected with 100 µg of each plasmid containing the gene of insert, plasmid DNA alone as the first control group or phosphate buffer saline as the second control group. Then, cellular and humoral responses, lesion size were measured for all groups. All vaccinated mice induced Th1 immune responses against Leishmania characterized by higher IFN-γ and IgG2a levels compared with control groups (p < 0.05). In addition, IFN-γ levels increased in groups immunized with fusion and cocktail vaccines in comparison with LACK (p < 0.001) and LeIF (p < 0.01) groups after challenge. In addition, fusion and cocktail groups produced higher IgG2a values than groups vaccinated with a gene alone (p < 0.05). Lesion progression delayed for all immunized groups compared with control groups from 5th week post-infection (p < 0.05). Mean lesion size decreased in immunized mice with fusion DNA than three groups vaccinated with one gene alone (p < 0.05). While, lesion size decreased significantly in cocktail recipient group than LeIF recipient group (p < 0.05). There was no difference in lesion size between fusion and cocktail groups. Overall, immunized mice with cocktail and fusion vaccines showed stronger Th1 response by production of higher IFN-γ and IgG2a and showed smaller mean lesion size. Therefore, use of multiple antigens can improve induced immune responses by DNA vaccination.

  1. Cross-immunity among mammary carcinomas in C3H/HE mice immunized with gamma-irradiated tumor cells

    International Nuclear Information System (INIS)

    Waga, Takashi

    1980-01-01

    By immunization with gamma-irradiated (13,000 rad) tumor cells, cross-immunity between ascites mammary carcinomas and among solid mammary carcinomas in C3H/He mice was studied. The results were as follows: (1) Two ascites mammary carcinomas designated MM 46 (high vitality) and MM 48 (intermediate vitality) were used in this experiment. The immunization with the tumor of high vitality (MM 46) induced strong cross-immunity against the challenge of the tumor of intermediate vitality (MM 48). The immunization with the tumor of intermediate vitality (MM 48) induced weak cross-immunity against the challenge of the tumor of high vitality (MM 46). (2) Three solid mammary carcinomas designated MT 10 (intermediate vitality), MT 7 (high vitality) and MT X (the highest vitality) were used in this experiment. The immunization with the tumor of high vitality (MT 7) induced strong cross-immunity against the challenge of the tumor of intermediate vitality (MT 10), and induced moderate cross-immunity against the challenge of the tumor of the highest vitality (MT X). The immunization with the tumor of intermediate vitality (MT 10) induced moderate cross-immunity against the challenge of the tumor of high vitality (MT 7), but could not induce any cross-immunity against the challenge of the tumor of the highest vitality (MT X). (author)

  2. Experimentally induced spermatophore production and immune responses reveal a trade-off in crickets

    OpenAIRE

    Angela M. Kerr; Susan N. Gershman; Scott K. Sakaluk

    2010-01-01

    The energetic demands of the immune system and reproduction are often high and can lead to trade-offs between these 2 life-history traits. In decorated crickets, Gryllodes sigillatus, much of a male's reproductive effort is devoted to calling, and to the synthesis of a spermatophylax, a large, gelatinous, non--sperm-containing mass forming part of the spermatophore and consumed by the female after mating. We employed a reciprocal design in which we experimentally induced an immune response in...

  3. Monoterpenes Support Systemic Acquired Resistance within and between Plants.

    Science.gov (United States)

    Riedlmeier, Marlies; Ghirardo, Andrea; Wenig, Marion; Knappe, Claudia; Koch, Kerstin; Georgii, Elisabeth; Dey, Sanjukta; Parker, Jane E; Schnitzler, Jörg-Peter; Vlot, A Corina

    2017-06-01

    This study investigates the role of volatile organic compounds in systemic acquired resistance (SAR), a salicylic acid (SA)-associated, broad-spectrum immune response in systemic, healthy tissues of locally infected plants. Gas chromatography coupled to mass spectrometry analyses of SAR-related emissions of wild-type and non-SAR-signal-producing mutant plants associated SAR with monoterpene emissions. Headspace exposure of Arabidopsis thaliana to a mixture of the bicyclic monoterpenes α-pinene and β-pinene induced defense, accumulation of reactive oxygen species, and expression of SA- and SAR-related genes, including the SAR regulatory AZELAIC ACID INDUCED1 ( AZI1 ) gene and three of its paralogs. Pinene-induced resistance was dependent on SA biosynthesis and signaling and on AZI1 Arabidopsis geranylgeranyl reductase1 mutants with reduced monoterpene biosynthesis were SAR-defective but mounted normal local resistance and methyl salicylate-induced defense responses, suggesting that monoterpenes act in parallel with SA The volatile emissions from SAR signal-emitting plants induced defense in neighboring plants, and this was associated with the presence of α-pinene, β-pinene, and camphene in the emissions of the "sender" plants. Our data suggest that monoterpenes, particularly pinenes, promote SAR, acting through ROS and AZI1 , and likely function as infochemicals in plant-to-plant signaling, thus allowing defense signal propagation between neighboring plants. © 2017 American Society of Plant Biologists. All rights reserved.

  4. Experimentally-induced immune activation in natural hosts of SIV induces significant increases in viral replication and CD4+ T cell depletion

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Ruy M [Los Alamos National Laboratory

    2008-01-01

    Chronically SIVagm-infected African green monkeys (AGMs) have a remarkably stable non-pathogenic disease course, with levels of immune activation in chronic SIVagm infection similar to those observed in uninfected monkeys and stable viral loads (VLs) for long periods of time. In vivo administration of lipopolysaccharide (LPS) or an IL-2/diphtheria toxin fusion protein (Ontak) to chronically SIVagm-infected AGMs triggered increases in immune activation and subsequently of viral replication and depletion of intestinal CD4{sup +} T cells. Our study indicates that circulating microbial products can increase viral replication by inducing immune activation and increasing the number of viral target cells, thus demonstrating that immune activation and T cell prolifeation are key factors in AIDS pathogenesis.

  5. Community-acquired pneumonia in older patients: does age influence systemic cytokine levels in community-acquired pneumonia?

    LENUS (Irish Health Repository)

    Kelly, Emer

    2009-03-01

    Community-acquired pneumonia (CAP) is a major cause of death in the elderly. The age-related increase in comorbid illnesses plays a part but the effect of aging on the immune response may be equally important. We aimed to evaluate patients with CAP for evidence of a muted response to infection in elderly patients admitted to hospital compared with a younger patient group.

  6. HPV-16 L1 genes with inactivated negative RNA elements induce potent immune responses

    International Nuclear Information System (INIS)

    Rollman, Erik; Arnheim, Lisen; Collier, Brian; Oeberg, Daniel; Hall, Haakan; Klingstroem, Jonas; Dillner, Joakim; Pastrana, Diana V.; Buck, Chris B.; Hinkula, Jorma; Wahren, Britta; Schwartz, Stefan

    2004-01-01

    Introduction of point mutations in the 5' end of the human papillomavirus type 16 (HPV-16) L1 gene specifically inactivates negative regulatory RNA processing elements. DNA vaccination of C57Bl/6 mice with the mutated L1 gene resulted in improved immunogenicity for both neutralizing antibodies as well as for broad cellular immune responses. Previous reports on the activation of L1 by codon optimization may be explained by inactivation of the regulatory RNA elements. The modified HPV-16 L1 DNA that induced anti-HPV-16 immunity may be seen as a complementary approach to protein subunit immunization against papillomavirus

  7. Immune response to UV-induced tumors: mediation of progressor tumor rejection by natural killer cells

    International Nuclear Information System (INIS)

    Streeter, P.R.; Fortner, G.W.

    1986-01-01

    Skin tumors induced in mice by chronic ultraviolet (UV) irradiation are highly antigenic and can induce a state of transplantation immunity in syngeneic animals. In the present study, the authors compared the in vitro cytolytic activity of splenic lymphocytes from mice immunized with either regressor or progressor UV-tumors. The results of this comparison implicated tumor-specific cytolytic T (Tc) lymphocytes in rejection of regressor UV-tumors, and revealed that immunization with the progressor UV-tumor 2237 failed to elicit detectable levels of progressor tumor-specific Tc cells even as the tumors rejected. Following in vitro resensitization of spleen cells from either regressor or progressor tumor immune animals, the authors found NK-like lymphocytes with anti-tumor activity. As the authors had not detected cells with this activity in splenic lymphocyte preparations prior to in vitro resensitization, the authors examined lymphocytes from the local tumor environment during the course of progressor tumor rejection for this activity. This analysis revealed NK lymphocytes exhibiting significant levels of cytolytic activity against UV-tumors. These results implicate NK cells as potential effector cells in the rejection of progressor UV-tumors by immune animals, and suggests that these cells may be regulated by T lymphocytes

  8. Immune-regulating effects of exercise on cigarette smoke-induced inflammation

    Science.gov (United States)

    Madani, Ashkan; Alack, Katharina; Richter, Manuel Jonas; Krüger, Karsten

    2018-01-01

    Long-term cigarette smoking (LTCS) represents an important risk factor for cardiac infarction and stroke and the central risk factor for the development of a bronchial carcinoma, smoking-associated interstitial lung fibrosis, and chronic obstructive pulmonary disease. The pathophysiologic development of these diseases is suggested to be promoted by chronic and progressive inflammation. Cigarette smoking induces repetitive inflammatory insults followed by a chronic and progressive activation of the immune system. In the pulmonary system of cigarette smokers, oxidative stress, cellular damage, and a chronic activation of pattern recognition receptors are described which are followed by the translocation of the NF-kB, the release of pro-inflammatory cytokines, chemokines, matrix metalloproteases, and damage-associated molecular patterns. In parallel, smoke pollutants cross directly through the alveolus–capillary interface and spread through the systemic bloodstream targeting different organs. Consequently, LTCS induces a systemic low-grade inflammation and increased oxidative stress in the vascular system. In blood, these processes promote an increased coagulation and endothelial dysfunction. In muscle tissue, inflammatory processes activate catabolic signaling pathways followed by muscle wasting and sarcopenia. In brain, several characteristics of neuroinflammation were described. Regular exercise training has been shown to be an effective nonpharmacological treatment strategy in smoke-induced pulmonary diseases. It is well established that exercise training exerts immune-regulating effects by activating anti-inflammatory signaling pathways. In this regard, the release of myokines from contracting skeletal muscle, the elevations of cortisol and adrenalin, the reduced expression of Toll-like receptors, and the increased mobilization of immune-regulating leukocyte subtypes might be of vital importance. Exercise training also increases the local and systemic

  9. Immunization with Recombinantly Expressed LRP4 Induces Experimental Autoimmune Myasthenia Gravis in C57BL/6 Mice.

    Science.gov (United States)

    Ulusoy, Canan; Çavuş, Filiz; Yılmaz, Vuslat; Tüzün, Erdem

    2017-07-01

    Myasthenia gravis (MG) is an autoimmune disease of the neuromuscular junction (NMJ), characterized with muscle weakness. While MG develops due to acetylcholine receptor (AChR) antibodies in most patients, antibodies to muscle-specific receptor tyrosine kinase (MuSK) or low-density lipoprotein receptor-related protein 4 (LRP4) may also be identified. Experimental autoimmune myasthenia gravis (EAMG) has been previously induced by both LRP4 immunization and passive transfer of LRP4 antibodies. Our aim was to confirm previous results and to test the pathogenic effects of LRP4 immunization in a commonly used mouse strain C57BL/6 (B6) using a recombinantly expressed human LRP4 protein. B6 mice were immunized with human LRP4 in CFA, Torpedo Californica AChR in CFA or only CFA. Clinical and pathogenic aspects of EAMG were compared among groups. LRP4- and AChR-immunized mice showed comparable EAMG clinical severity. LRP4-immunized mice displayed serum antibodies to LRP4 and NMJ IgG and complement factor C3 deposits. IgG2 was the dominant anti-LRP4 isotype. Cultured lymph node cells of LRP4- and AChR-immunized mice gave identical pro-inflammatory cytokine (IL-6, IFN-γ and IL-17) responses to LRP4 and AChR stimulation, respectively. Our results confirm the EAMG-inducing action of LRP4 immunization and identify B6 as a LRP4-EAMG-susceptible mouse strain. Demonstration of complement fixing anti-LRP4 antibodies in sera and complement/IgG deposits at the NMJ of LRP4-immunized mice indicates complement activation as a putative pathogenic mechanism. We have thus developed a practical LRP4-induced EAMG model using a non-conformational protein and a widely available mouse strain for future investigation of LRP4-related MG.

  10. Exposure to low infective doses of HCV induces cellular immune responses without consistently detectable viremia or seroconversion in chimpanzees

    International Nuclear Information System (INIS)

    Shata, Mohamed Tarek; Tricoche, Nancy; Perkus, Marion; Tom, Darley; Brotman, Betsy; McCormack, Patricia; Pfahler, Wolfram; Lee, Dong-Hun; Tobler, Leslie H.; Busch, Michael; Prince, Alfred M.

    2003-01-01

    In hepatitis C virus (HCV) infection, there is accumulating data suggesting the presence of cellular immune responses to HCV in exposed but seemingly uninfected populations. Some studies have suggested cross-reactive antigens rather than prior HCV exposure as the main reason for the immune responses. In this study we address this question by analyzing the immune response of chimpanzees that have been sequentially exposed to increasing doses of HCV virions. The level of viremia, as well as the immune responses to HCV at different times after virus inoculation, were examined. Our data indicate that HCV infective doses as low as 1-10 RNA (+) virions induce detectable cellular immune responses in chimpanzees without consistently detectable viremia or persistent seroconversion. However, increasing the infective doses of HCV to 100 RNA (+) virions overcame the low-inoculum-induced immune response and produced high-level viremia followed by seroconversion

  11. Immunizations, neonatal hyperbilirubinemia and animal-induced injuries.

    Science.gov (United States)

    Bennett, Sean R; Brennan, Beth; Bernstein, Henry H

    2007-08-01

    To report recent research findings and new recommendations on immunizations, neonatal hyperbilirubinemia, and animal-induced injuries. Vaccines against rotavirus and human papilloma virus have entered clinical use. Varicella outbreaks among previously vaccinated children have prompted the recommendation for a two-dose varicella vaccine series. Broader coverage for influenza vaccination is now recommended in the US and Canada. Diagnosis and treatment of neonatal hyperbilirubinemia uses population and hour-based norms for total serum bilirubin and assessment of risk factors. Delayed cord clamping is not apparently a risk factor for jaundice but warrants more study. Universal predischarge screening shows promise but is not yet officially recommended. New treatments for hyperbilirubinemia are being evaluated. Dogs are the chief cause of animal bites in children and the largest reservoir for rabies worldwide. In North America and Europe, cats and wild animals cause most human rabies. Postexposure prophylaxis should follow region-appropriate guidelines. New vaccines are available against rotavirus and human papilloma virus. Changes have been made to official immunization recommendations. Appropriate vaccine use can reduce the pediatric disease burden further. Hyperbilirubinemia is the subject of ongoing study, which may lead to improved diagnosis and treatment protocols and reduce the incidence of acute bilirubin encephalopathy. The best tool for rabies prevention after an animal bite is prompt postexposure prophylaxis.

  12. Colorectal irradiation induced immune response: 'toll like receptors' therapeutic manipulation

    International Nuclear Information System (INIS)

    Lacave-Lapalun, Jean-Victor

    2013-01-01

    Exposure of the abdomino-pelvic sphere to ionizing radiation is associated with a high incidence of complications. Radiation therapy may cause short and / or long-term harmful effects. In the most severe cases and in the absence of heavy treatments, the appearance of ulcers may induce the death of patients. Clinical trials are being conducted with Mesenchymal Stem Cells (MSC) to cure theses complications. Others studies indicate that the injection of bacterial motifs limits the radiotoxicity in the intestine. They stimulate receptors (Toll-Like- Receptors (TLR)) located on the surface of epithelial and intestinal immune cells. The first aim of this doctoral work is to characterize the effects of TLR stimulation on immunity and tissue repair using a model of localized colorectal irradiation at 20 Gy (acute effects of radiotherapy) on a rat. The thesis then aims to potentiate the effects of the MSC treatment when adding TLR ligands upon localized colorectal irradiation at 27 Gy (accidental complications). This work, using a 20 Gy exposure, show that TLR stimulation improves homeostasis (normalization of T cells, induction of regulatory T cells (Treg) and macrophages 'anti-inflammatory' M2). On the 27 Gy colorectal model, the injection of TLR ligand before CSM transplant improves the immune climate by reducing pro-inflammatory cytokines and inducting Treg and M2 cells. These modulations could contribute to improving the implantation and effectiveness of CSM. The observations have all shown that the stimulation of immunity is an approach to minimize radiation-induced lesions. (author) [fr

  13. Room Temperature Stable PspA-Based Nanovaccine Induces Protective Immunity

    Directory of Open Access Journals (Sweden)

    Danielle A. Wagner-Muñiz

    2018-03-01

    Full Text Available Streptococcus pneumoniae is a major causative agent of pneumonia, a debilitating disease particularly in young and elderly populations, and is the leading worldwide cause of death in children under the age of five. While there are existing vaccines against S. pneumoniae, none are protective across all serotypes. Pneumococcal surface protein A (PspA, a key virulence factor of S. pneumoniae, is an antigen that may be incorporated into future vaccines to address the immunological challenges presented by the diversity of capsular antigens. PspA has been shown to be immunogenic and capable of initiating a humoral immune response that is reactive across approximately 94% of pneumococcal strains. Biodegradable polyanhydrides have been studied as a nanoparticle-based vaccine (i.e., nanovaccine platform to stabilize labile proteins, to provide adjuvanticity, and enhance patient compliance by providing protective immunity in a single dose. In this study, we designed a room temperature stable PspA-based polyanhydride nanovaccine that eliminated the need for a free protein component (i.e., 100% encapsulated within the nanoparticles. Mice were immunized once with the lead nanovaccine and upon challenge, presented significantly higher survival rates than animals immunized with soluble protein alone, even with a 25-fold reduction in protein dose. This lead nanovaccine formulation performed similarly to protein adjuvanted with Alum, however, with much less tissue reactogenicity at the site of immunization. By eliminating the free PspA from the nanovaccine formulation, the lead nanovaccine was efficacious after being stored dry for 60 days at room temperature, breaking the need for maintaining the cold chain. Altogether, this study demonstrated that a single dose PspA-based nanovaccine against S. pneumoniae induced protective immunity and provided thermal stability when stored at room temperature for at least 60 days.

  14. Evaluation of a Salmonella Enteritidis vaccine and related ELISA for respective induction and assessment of acquired immunity to the vaccine and/or Echinacea purpurea in Awassi Ewes.

    Science.gov (United States)

    Barbour, Elie K; Assi, Chibli A Abou; Shaib, Houssam; Hamadeh, Shadi; Murtada, Muhammad; Mahmoud, Ghassan; Yaghmoor, Soonham; Iyer, Archana; Harakeh, Steve; Kumosani, Taha

    2015-05-05

    The aim of this study was to evaluate an experimental Salmonella Enteritidis (SE) bacterin and an indirect ELISA system to assess quantitatively the acquired immunity in Awassi ewes to the vaccine and/or Echinacea purpurea (EP) dried roots. Four treatments of the ewes were included in the experimental design, with 6 ewes/treatment. The first treatment (T1) had the controls that were non-vaccinated and non-treated with EP. The T2 ewes were only treated with EP. The T3 and T4 ewes were vaccinated at D1 (initiation of trial) and D10, while the T4 ewes were additionally administered the EP dried roots. Blood was collected from the jugular vein of all ewes at D1, D10, D21 and D45. The construction of the vaccine and the ELISA are detailed within the manuscript. The ELISA was able to detect quantitatively the significant acquired primary and secondary immunity to the vaccine in T3 and T4 ewes, compared to their low level of background immunities at initiation of the experiment (p0.05) in T1 control ewes, and in the T2 ewes that were given only the (EP) (p>0.05). Moreover, the ELISA was able to uncover the significant seroconversion of secondary immune response in T4 ewes at D21 compared to that at D10 (pewes. This is the first work in literature that reports the need to supplement the vaccination by the experimental SE bacterin with daily oral intake of 250mg of EP-dried roots, effective the first vaccination day and up to 21 days, for obtaining a statistically significant seroconversion. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Recombinant Kunjin virus replicon vaccines induce protective T-cell immunity against human papillomavirus 16 E7-expressing tumour

    International Nuclear Information System (INIS)

    Herd, Karen A.; Harvey, Tracey; Khromykh, Alexander A.; Tindle, Robert W.

    2004-01-01

    The persistence of the E7 oncoprotein in transformed cells in human papillomavirus (HPV)-associated cervical cancer provides a tumour-specific antigen to which immunotherapeutic strategies may be directed. Self-replicating RNA (replicon) vaccine vectors derived from the flavivirus Kunjin (KUN) have recently been reported to induce T-cell immunity. Here, we report that inclusion of a CTL epitope of HPV16 E7 protein into a polyepitope encoded by a KUN vector induced E7-directed T-cell responses and protected mice against challenge with an E7-expressing epithelial tumour. We found replicon RNA packaged into virus-like particles to be more effective than naked replicon RNA or plasmid DNA constructed to allow replicon RNA transcription in vivo. Protective immunity was induced although the E7 CTL epitope was subdominant in the context of other CTL epitopes in the polyepitope. The results demonstrate the efficacy of the KUN replicon vector system for inducing protective immunity directed towards a virally encoded human tumour-specific antigen, and for inducing multi-epitopic CTL responses

  16. The role of haloaerosolotherapy in immunorehabilitation of convalescents after community acquired pneumonia

    Directory of Open Access Journals (Sweden)

    Olha Lemko

    2015-02-01

    Full Text Available Aim: Investigation of the peculiarities of different haloaerosoltherapy regimes influence (treatment with different intensity of haloaerosol load upon non-specific defense and cellular immunity at convalescents after community acquired pneumonia. Objectives: patients with community acquired pneumonia in the early convalescence period (after completing antibiotic therapy, who received treatment in conditions of artificial rock salt aerosol medium (haloaerosoltherapy. Material and Methods. 42 patients with non-severe community acquired pneumonia were examined in the early convalescence period before and after the course of haloaerosoltherapy, which was prescribed after antibacterial therapy. Immunological studies included: evaluation of phagocytic activity of neutrophils (PhAN - the percentage of phagocytic neutrophils, phagocytic number (PhN - average number of latex particles absorbed by a neutrophil; metabolism of neutrophils in the test with nitroblue tetrasolium (NBT-test spontaneous and induced, which allowed to assess the functional reserve of neutrophils (FR; calculation of cytochemical coefficient (CCC for lysosomal cationic proteins (LCP and for myeloperoxidase (MPO of neutrophils; number of T- and B-lymphocytes and their subpopulations (CD3+ -, CD4+ -, CD8+ -, CD22+ - lymphocytes, calculation the number of 0- lymphocytes and the ratio of CD4+ /CD8+ lymphocytes. Laboratory examinations were also conducted in 21 practically healthy individuals (control group. Two regimes of haloaerosoltherapy were used in recovery treatment of patients with community acquired pneumonia: treating complex №1 (TC-1 with standard haloaerosol load and with increased haloaerosol load (TC-2. Results. After completion the antibiotic therapy at patients with community acquired pneumonia the moderate inhibition of phagocytic activity of neutrophils (47,6±0,58% to 55,5±1,14% in control group remained and was accompanied with a decrease in neutrophil bactericidal

  17. Inflammation promotes oral squamous carcinoma immune evasion via induced programmed death ligand-1 surface expression.

    Science.gov (United States)

    Lu, Wanlu; Lu, Libing; Feng, Yun; Chen, Jiao; Li, Yan; Kong, Xiangli; Chen, Sixiu; Li, Xiaoyu; Chen, Qianming; Zhang, Ping

    2013-05-01

    The association between inflammation and cancer provides a new target for tumor biotherapy. The inflammatory cells and molecules within the tumor microenvironment have decisive dual roles in antitumor immunity and immune evasion. In the present study, phytohemagglutinin (PHA) was used to stimulate peripheral blood mononuclear cells (PBMCs) to simulate the tumor inflammatory microenvironment. The effect of immune cells and inflammatory cytokines on the surface expression of programmed cell death-1 ligand 1 (PD-L1) and tumor immune evasion was investigated using flow cytometry (FCM) and an in vivo xenotransplantation model. Based on the data, PHA-activated, but not resting, immune cells were able to promote the surface expression of PD-L1 in Tca8113 oral squamous carcinoma cells via the secretion of inflammatory cytokines, but not by cell-cell contact. The majority of the inflammatory cytokines had no significant effect on the proliferation, cell cycle progression and apoptosis of the Tca8113 cells, although they each induced the expression of PD-L1 in a dose-dependent manner. In total, 99% of the Tca8113 cells expressed PD-L1 following treatment with the supernatant of PHA-stimulated PBMCs. The PHA-supernatant pretreated Tca8113 cells unusually induced Tca8113 antigen-specific CD8 + T cell apoptosis in vitro and the evasion of antigen-specific T cell attraction in a nude mouse tumor-bearing model. These results indicate a new mechanism for the promotion of tumor immune evasion by the tumor inflammatory microenvironment.

  18. A single intranasal immunization with a subunit vaccine formulation induces higher mucosal IgA production than live respiratory syncytial virus

    International Nuclear Information System (INIS)

    Garg, Ravendra; Theaker, Michael; Martinez, Elisa C.; Drunen Littel-van den Hurk, Sylvia van

    2016-01-01

    Respiratory syncytial virus (RSV) causes serious respiratory illness in infants and elderly. RSV infection induces short-lived immunity, which leaves people prone to re-infection. In contrast, the RSV fusion (F) protein formulated with a novel adjuvant (∆F/TriAdj) elicits long term protective immunity. A comparison of RSV-immunized mice to mice vaccinated with a single dose of ∆F/TriAdj showed no difference in IgG1 and IgG2a production; however, local IgA secreting memory B cell development and B cell IgA production were significantly lower in RSV vaccinated mice than in ∆F/TriAdj-immunized mice. This indicates a potential reason as to why long-term immunity is not induced by RSV infection. The comparison also revealed that germinal center lymphocyte populations were higher in ∆F/TriAdj-vaccinated mice. Furthermore, ∆F/TriAdj induced higher gene expression of activation-induced cytidine deaminase (AID), as well as IL-6, IL-21, TGF-β cytokines, which are key players in IgA class switch recombination, ultimately leading to a sustained long-term memory response. - Highlights: •Immune responses to adjuvanted RSV F protein, ∆F/TriAdj, and RSV were compared. •∆F/TriAdj stimulates more local IgA production than RSV. •∆F/TriAdj induces more local IgA secreting memory B cells than RSV. •Germinal center lymphocyte populations are higher in ∆F/TriAdj-vaccinated mice. •∆F/TriAdj induces higher gene expression of AID, IL-6, IL-21, and TGF-β than RSV.

  19. A single intranasal immunization with a subunit vaccine formulation induces higher mucosal IgA production than live respiratory syncytial virus

    Energy Technology Data Exchange (ETDEWEB)

    Garg, Ravendra [VIDO-InterVac, University of Saskatchewan, Saskatoon, SK S7N 5E3 (Canada); Theaker, Michael [Microbiology & Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E3 (Canada); Martinez, Elisa C. [VIDO-InterVac, University of Saskatchewan, Saskatoon, SK S7N 5E3 (Canada); Microbiology & Immunology, University of Saskatchewan, Saskatoon, Canada SK S7N 5E3 (Canada); Drunen Littel-van den Hurk, Sylvia van, E-mail: sylvia.vandenhurk@usask.ca [VIDO-InterVac, University of Saskatchewan, Saskatoon, SK S7N 5E3 (Canada); Microbiology & Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E3 (Canada)

    2016-12-15

    Respiratory syncytial virus (RSV) causes serious respiratory illness in infants and elderly. RSV infection induces short-lived immunity, which leaves people prone to re-infection. In contrast, the RSV fusion (F) protein formulated with a novel adjuvant (∆F/TriAdj) elicits long term protective immunity. A comparison of RSV-immunized mice to mice vaccinated with a single dose of ∆F/TriAdj showed no difference in IgG1 and IgG2a production; however, local IgA secreting memory B cell development and B cell IgA production were significantly lower in RSV vaccinated mice than in ∆F/TriAdj-immunized mice. This indicates a potential reason as to why long-term immunity is not induced by RSV infection. The comparison also revealed that germinal center lymphocyte populations were higher in ∆F/TriAdj-vaccinated mice. Furthermore, ∆F/TriAdj induced higher gene expression of activation-induced cytidine deaminase (AID), as well as IL-6, IL-21, TGF-β cytokines, which are key players in IgA class switch recombination, ultimately leading to a sustained long-term memory response. - Highlights: •Immune responses to adjuvanted RSV F protein, ∆F/TriAdj, and RSV were compared. •∆F/TriAdj stimulates more local IgA production than RSV. •∆F/TriAdj induces more local IgA secreting memory B cells than RSV. •Germinal center lymphocyte populations are higher in ∆F/TriAdj-vaccinated mice. •∆F/TriAdj induces higher gene expression of AID, IL-6, IL-21, and TGF-β than RSV.

  20. Immune-relevant thrombocytes of common carp undergo parasite-induced nitric oxide-mediated apoptosis.

    Science.gov (United States)

    Fink, Inge R; Ribeiro, Carla M S; Forlenza, Maria; Taverne-Thiele, Anja; Rombout, Jan H W M; Savelkoul, Huub F J; Wiegertjes, Geert F

    2015-06-01

    Common carp thrombocytes account for 30-40% of peripheral blood leukocytes and are abundant in the healthy animals' spleen, the thrombopoietic organ. We show that, ex vivo, thrombocytes from healthy carp express a large number of immune-relevant genes, among which several cytokines and Toll-like receptors, clearly pointing at immune functions of carp thrombocytes. Few studies have described the role of fish thrombocytes during infection. Carp are natural host to two different but related protozoan parasites, Trypanoplasma borreli and Trypanosoma carassii, which reside in the blood and tissue fluids. We used the two parasites to undertake controlled studies on the role of fish thrombocytes during these infections. In vivo, but only during infection with T. borreli, thrombocytes were massively depleted from the blood and spleen leading to severe thrombocytopenia. Ex vivo, addition of nitric oxide induced a clear and rapid apoptosis of thrombocytes from healthy carp, supporting a role for nitric oxide-mediated control of immune-relevant thrombocytes during infection with T. borreli. The potential advantage for parasites to selectively deplete the host of thrombocytes via nitric oxide-induced apoptosis is discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Maternal immunity enhances systemic recall immune responses upon oral immunization of piglets with F4 fimbriae.

    Science.gov (United States)

    Nguyen, Ut V; Melkebeek, Vesna; Devriendt, Bert; Goetstouwers, Tiphanie; Van Poucke, Mario; Peelman, Luc; Goddeeris, Bruno M; Cox, Eric

    2015-06-23

    F4 enterotoxigenic Escherichia coli (ETEC) cause diarrhoea and mortality in piglets leading to severe economic losses. Oral immunization of piglets with F4 fimbriae induces a protective intestinal immune response evidenced by an F4-specific serum and intestinal IgA response. However, successful oral immunization of pigs with F4 fimbriae in the presence of maternal immunity has not been demonstrated yet. In the present study we aimed to evaluate the effect of maternal immunity on the induction of a systemic immune response upon oral immunization of piglets. Whereas F4-specific IgG and IgA could be induced by oral immunization of pigs without maternal antibodies and by intramuscular immunization of pigs with maternal antibodies, no such response was seen in the orally immunized animals with maternal antibodies. Since maternal antibodies can mask an antibody response, we also looked by ELIspot assays for circulating F4-specific antibody secreting cells (ASCs). Enumerating the F4-specific ASCs within the circulating peripheral blood mononuclear cells, and the number of F4-specific IgA ASCs within the circulating IgA(+) B-cells revealed an F4-specific immune response in the orally immunized animals with maternal antibodies. Interestingly, results suggest a more robust IgA booster response by oral immunization of pigs with than without maternal antibodies. These results demonstrate that oral immunization of piglets with F4-specific maternal antibodies is feasible and that these maternal antibodies seem to enhance the secondary systemic immune response. Furthermore, our ELIspot assay on enriched IgA(+) B-cells could be used as a screening procedure to optimize mucosal immunization protocols in pigs with maternal immunity.

  2. Oral immunization of mice with gamma-irradiated Brucella neotomae induces protection against intraperitoneal and intranasal challenge with virulent B. abortus 2308.

    Science.gov (United States)

    Dabral, Neha; Martha-Moreno-Lafont; Sriranganathan, Nammalwar; Vemulapalli, Ramesh

    2014-01-01

    Brucella spp. are Gram-negative, facultative intracellular coccobacilli that cause one of the most frequently encountered zoonosis worldwide. Humans naturally acquire infection through consumption of contaminated dairy and meat products and through direct exposure to aborted animal tissues and fluids. No vaccine against brucellosis is available for use in humans. In this study, we tested the ability of orally inoculated gamma-irradiated B. neotomae and B. abortus RB51 in a prime-boost immunization approach to induce antigen-specific humoral and cell mediated immunity and protection against challenge with virulent B. abortus 2308. Heterologous prime-boost vaccination with B. abortus RB51 and B. neotomae and homologous prime-boost vaccination of mice with B. neotomae led to the production of serum and mucosal antibodies specific to the smooth LPS. The elicited serum antibodies included the isotypes of IgM, IgG1, IgG2a, IgG2b and IgG3. All oral vaccination regimens induced antigen-specific CD4(+) and CD8(+) T cells capable of secreting IFN-γ and TNF-α. Upon intra-peritoneal challenge, mice vaccinated with B. neotomae showed the highest level of resistance against virulent B. abortus 2308 colonization in spleen and liver. Experiments with different doses of B. neotomae showed that all tested doses of 10(9), 10(10) and 10(11) CFU-equivalent conferred significant protection against the intra-peritoneal challenge. However, a dose of 10(11) CFU-equivalent of B. neotomae was required for affording protection against intranasal challenge as shown by the reduced bacterial colonization in spleens and lungs. Taken together, these results demonstrate the feasibility of using gamma-irradiated B. neotomae as an effective and safe oral vaccine to induce protection against respiratory and systemic infections with virulent Brucella.

  3. 255Gy irradiated tachyzoites of Toxoplasma gondii induce intestinal immune response in C57BL/6J immunized by oral route

    Energy Technology Data Exchange (ETDEWEB)

    Galisteo Junior, Andres Jimenez; Alves, Janaina Baptista [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil). Lab. de Biologia Molecular]. E-mail: galisteo@usp.br; Hiramoto, Roberto Mitsuyoshi [Instituto Adolfo Lutz, Sao Paulo, SP (Brazil). Secao de Parasitoses Sistemicas]. E-mail: hiramoto@usp.br; Carmo, Claudia Villano do; Andrade Junior, Heitor Franco de [Instituto de Medicina Tropical de Sao Paulo, Sao Paulo, SP (Brazil). Lab. de Protozoologia]. E-mail: hfandrad@usp.br

    2005-07-01

    Toxoplasmosis, a prevalent widespread infection in man and animals, occurs mainly through ingestion of water and food contaminated with oocyst from cat feces, causing usually benign disease in humans, except in intrauterine fetal infection or in immunodeficient patients. We study the oral route for the development of a vaccine for toxoplasmosis, using parasites irradiated with 60 Cobalt, as an alternative for vaccine development to this worldwide parasitic infection. We evaluated the development of immunity at serum or mucosal levels, and their efficiency in protect the mice against challenge with oral cysts of the ME-49 strain. C57Bl/6j isogenic mice were immunized by oral route with 10{sup 7} 255 Gy irradiated tachyzoites from RH strain, at several protocols using milk as anti-peptic adjuvant and alum hydroxide as antacid. The preparations of irradiated tachyzoites induced production of serum IgG and IgA in immunized mice, as determined by ELISA, with IgG2a as the dominant subclass, similar to chronic infection. Their use with adjuvant allowed the excretion of significant amounts of IgA in stools also IgG, despite a lesser extent. All oral preparations induced some quantitative protection against challenge, which was similar to the parenteral route only isolated alum hydroxide was used as adjuvant. All these data support the possibility of the development of an oral vaccine against toxoplasmosis, using irradiated tachyzoites, which would be possible tool in near future for use in field baits, for immunizing either domestic or wild felids. (author)

  4. 255Gy irradiated tachyzoites of Toxoplasma gondii induce intestinal immune response in C57BL/6J immunized by oral route

    International Nuclear Information System (INIS)

    Galisteo Junior, Andres Jimenez; Alves, Janaina Baptista; Hiramoto, Roberto Mitsuyoshi; Carmo, Claudia Villano do; Andrade Junior, Heitor Franco de

    2005-01-01

    Toxoplasmosis, a prevalent widespread infection in man and animals, occurs mainly through ingestion of water and food contaminated with oocyst from cat feces, causing usually benign disease in humans, except in intrauterine fetal infection or in immunodeficient patients. We study the oral route for the development of a vaccine for toxoplasmosis, using parasites irradiated with 60 Cobalt, as an alternative for vaccine development to this worldwide parasitic infection. We evaluated the development of immunity at serum or mucosal levels, and their efficiency in protect the mice against challenge with oral cysts of the ME-49 strain. C57Bl/6j isogenic mice were immunized by oral route with 10 7 255 Gy irradiated tachyzoites from RH strain, at several protocols using milk as anti-peptic adjuvant and alum hydroxide as antacid. The preparations of irradiated tachyzoites induced production of serum IgG and IgA in immunized mice, as determined by ELISA, with IgG2a as the dominant subclass, similar to chronic infection. Their use with adjuvant allowed the excretion of significant amounts of IgA in stools also IgG, despite a lesser extent. All oral preparations induced some quantitative protection against challenge, which was similar to the parenteral route only isolated alum hydroxide was used as adjuvant. All these data support the possibility of the development of an oral vaccine against toxoplasmosis, using irradiated tachyzoites, which would be possible tool in near future for use in field baits, for immunizing either domestic or wild felids. (author)

  5. Duox2-induced innate immune responses in the respiratory epithelium and intranasal delivery of Duox2 DNA using polymer that mediates immunization.

    Science.gov (United States)

    Jeon, Yung Jin; Kim, Hyun Jik

    2018-05-01

    Respiratory mucosa especially nasal epithelium is well known as the first-line barrier of air-borne pathogens. High levels of reactive oxygen species (ROS) are detected in in vitro cultured human epithelial cells and in vivo lung. With identification of NADPH oxidase (Nox) system of respiratory epithelium, the antimicrobial role of ROS has been studied. Duox2 is the most abundant Nox isoform and produces the regulated amount of ROS in respiratory epithelium. Duox2-derived ROS are involved in antiviral innate immune responses but more studies are needed to verify the mechanism. In respiratory epithelium, Duox2-derived ROS is critical for recognition of virus through families retinoic acid-inducible gene-I (RIG-I) and melanoma differentiation-associated protein 5 (MDA5) at the early stage of antiviral innate immune responses. Various secreted interferons (IFNs) play essential roles for antiviral host defense by downstream cell signaling, and transcription of IFN-stimulated genes is started to suppress viral replication. Type I and type III IFNs are verified more responsible for influenza A virus (IAV) infection in respiratory epithelium and Duox2 is required to regulate IFN-related immune responses. Transient overexpression of Duox2 using cationic polymer polyethylenimine (PEI) induces secretion of type I and type III IFNs and significantly attenuated IAV replication in respiratory epithelium. Here, we discuss Duox2-mediated antiviral innate immune responses and the role of Duox2 as a mucosal vaccine to resist respiratory viral infection.

  6. Immunity to Fasciola hepatica in the rat

    International Nuclear Information System (INIS)

    Armour, J.; Dargie, J.D.

    1974-01-01

    Experiments were carried out which demonstrated an acquired immunity to Fasciola hapatica in the rat. It was shown that this immunity could be transferred to recipients using either lymphoid cells or serum from infected donor rats. The extent of the protection obtained by cells appeared to be related to the quantity and persistence of the antigenic stimulus in the donor. Likewise, the degree of immunity conferred by immune serum was dependent upon the volume transferred. The significance of these results in relation to the mechanism of immunity to fascioliasis is discussed

  7. Immune responses against SARS-coronavirus nucleocapsid protein induced by DNA vaccine

    International Nuclear Information System (INIS)

    Zhao Ping; Cao Jie; Zhao Lanjuan; Qin Zhaolin; Ke Jinshan; Pan Wei; Ren Hao; Yu Jianguo; Qi Zhongtian

    2005-01-01

    The nucleocapsid (N) protein of SARS-coronavirus (SARS-CoV) is the key protein for the formation of the helical nucleocapsid during virion assembly. This protein is believed to be more conserved than other proteins of the virus, such as spike and membrane glycoprotein. In this study, the N protein of SARS-CoV was expressed in Escherichia coli DH5α and identified with pooled sera from patients in the convalescence phase of SARS. A plasmid pCI-N, encoding the full-length N gene of SARS-CoV, was constructed. Expression of the N protein was observed in COS1 cells following transfection with pCI-N. The immune responses induced by intramuscular immunization with pCI-N were evaluated in a murine model. Serum anti-N immunoglobulins and splenocytes proliferative responses against N protein were observed in immunized BALB/c mice. The major immunoglobulin G subclass recognizing N protein was immunoglobulin G2a, and stimulated splenocytes secreted high levels of gamma interferon and IL-2 in response to N protein. More importantly, the immunized mice produced strong delayed-type hypersensitivity (DTH) and CD8 + CTL responses to N protein. The study shows that N protein of SARS-CoV not only is an important B cell immunogen, but also can elicit broad-based cellular immune responses. The results indicate that the N protein may be of potential value in vaccine development for specific prophylaxis and treatment against SARS

  8. Sulfasalazine Attenuates Staphylococcal Enterotoxin B-Induced Immune Responses

    Directory of Open Access Journals (Sweden)

    Teresa Krakauer

    2015-02-01

    Full Text Available Staphylococcal enterotoxin B (SEB and related exotoxins are important virulence factors produced by Staphylococcus aureus as they cause human diseases such as food poisoning and toxic shock. These toxins bind directly to cells of the immune system resulting in hyperactivation of both T lymphocytes and monocytes/macrophages. The excessive release of proinflammatory cytokines from these cells mediates the toxic effects of SEB. This study examined the inhibitory activities of an anti-inflammatory drug, sulfasalazine, on SEB-stimulated human peripheral blood mononuclear cells (PBMC. Sulfasalazine dose-dependently inhibited tumor necrosis factor α, interleukin 1 (IL-1 β, IL-2, IL-6, interferon γ (IFNγ, and various chemotactic cytokines from SEB-stimulated human PBMC. Sulfasalazine also potently blocked SEB-induced T cell proliferation and NFκB activation. These results suggest that sulfasalazine might be useful in mitigating the toxic effects of SEB by blocking SEB-induced host inflammatory cascade and signaling pathways.

  9. Intranasal immunization with protective antigen of Bacillus anthracis induces a long-term immunological memory response.

    Science.gov (United States)

    Woo, Sun-Je; Kang, Seok-Seong; Park, Sung-Moo; Yang, Jae Seung; Song, Man Ki; Yun, Cheol-Heui; Han, Seung Hyun

    2015-10-01

    Although intranasal vaccination has been shown to be effective for the protection against inhalational anthrax, establishment of long-term immunity has yet to be achieved. Here, we investigated whether intranasal immunization with recombinant protective antigen (rPA) of Bacillus anthracis induces immunological memory responses in the mucosal and systemic compartments. Intranasal immunization with rPA plus cholera toxin (CT) sustained PA-specific antibody responses for 6 months in lung, nasal washes, and vaginal washes as well as serum. A significant induction of PA-specific memory B cells was observed in spleen, cervical lymph nodes (CLNs) and lung after booster immunization. Furthermore, intranasal immunization with rPA plus CT remarkably generated effector memory CD4(+) T cells in the lung. PA-specific CD4(+) T cells preferentially increased the expression of Th1- and Th17-type cytokines in lung, but not in spleen or CLNs. Collectively, the intranasal immunization with rPA plus CT promoted immunologic memory responses in the mucosal and systemic compartments, providing long-term immunity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Immunization of Mice with a Live Transconjugant Shigella Hybrid Strain Induced Th1 and Th17 Cell-Mediated Immune Responses and Confirmed Passive Protection Against Heterologous Shigellae.

    Science.gov (United States)

    Nag, D; Koley, H; Sinha, R; Mukherjee, P; Sarkar, C; Withey, J H; Gachhui, R

    2016-02-01

    An avirulent, live transconjugant Shigella hybrid (LTSHΔstx) strain was constructed in our earlier study by introducing a plasmid vector, pPR1347, into a Shiga toxin gene deleted Shigella dysenteriae 1. Three successive oral administrations of LTSHΔstx to female adult mice produced comprehensive passive heterologous protection in their offspring against challenge with wild-type shigellae. Production of NO and different cytokines such asIL-12p70, IL-1β and IL-23 in peritoneal mice macrophages indicated that LTSHΔstx induced innate and adaptive immunity in mice. Furthermore, production of IFN-γ, IL-10 and IL-17 in LTSH-primed splenic CD4+ T cell suggested that LTSHΔstx may induce Th1 and Th17 cell-mediated immune responses. Exponential increase of the serum IgG and IgA titre against whole shigellae was observed in immunized adult mice during and after the immunization with the highest peak on day 35. Antigen-specific sIgA was also determined from intestinal lavage of immunized mice. The stomach extracts of neonates from immunized mice, mainly containing mother's milk, contained significant levels of anti-LTSHΔstx immunoglobulin. These studies suggest that the LTSHΔstx could be a new live oral vaccine candidate against shigellosis in the near future. © 2015 The Foundation for the Scandinavian Journal of Immunology.

  11. Reversibility of alcohol-induced immune depression

    DEFF Research Database (Denmark)

    Tønnesen, H; Kaiser, A H; Nielsen, B B

    1992-01-01

    Alcohol abusers have suppressed cellular immune function. The aim of the study was to investigate the time of sobriety required to normalize immune function. Delayed hypersensitivity was investigated during disulfiram controlled abstinence in ten heavy alcoholics and in seven moderate drinkers...... months of abstinence. The results suggest that while 2 weeks of abstinence from alcohol will improve the depressed cellular immunity, 2 months of sobriety is necessary to normalize it....

  12. Immune Reconstitution Kinetics following Intentionally Induced Mixed Chimerism by Nonmyeloablative Transplantation.

    Directory of Open Access Journals (Sweden)

    Nayoun Kim

    Full Text Available Establishing mixed chimerism is a promising approach for inducing donor-specific transplant tolerance. The establishment and maintenance of mixed chimerism may enable long-term engraftment of organ transplants while minimizing the use of immunosuppressants. Several protocols for inducing mixed chimerism have been reported; however, the exact mechanism underlying the development of immune tolerance remains to be elucidated. Therefore, understanding the kinetics of engraftment during early post-transplant period may provide insight into establishing long-term mixed chimerism and permanent transplant tolerance. In this study, we intentionally induced allogeneic mixed chimerism using a nonmyeloablative regimen by host natural killer (NK cell depletion and T cell-depleted bone marrow (BM grafts in a major histocompatibility complex (MHC-mismatched murine model and analyzed the kinetics of donor (C57BL/6 and recipient (BALB/c engraftment in the weeks following transplantation. Donor BM cells were well engrafted and stabilized without graft-versus-host disease (GVHD as early as one week post-bone marrow transplantation (BMT. Donor-derived thymic T cells were reconstituted four weeks after BMT; however, the emergence of newly developed T cells was more obvious at the periphery as early as two weeks after BMT. Also, the emergence and changes in ratio of recipient- and donor-derived NKT cells and antigen presenting cells (APCs including dendritic cells (DCs and B cells were noted after BMT. Here, we report a longitudinal analysis of the development of donor- and recipient-originated hematopoietic cells in various lymphatic tissues of intentionally induced mixed chimerism mouse model during early post-transplant period. Through the understanding of immune reconstitution at early time points after nonmyeloablative BMT, we suggest guidelines on intentionally inducing durable mixed chimerism.

  13. Epicutaneous immunization with type II collagen inhibits both onset and progression of chronic collagen-induced arthritis.

    Directory of Open Access Journals (Sweden)

    Jessica Strid

    Full Text Available Epicutaneous immunization is a potential non-invasive technique for antigen-specific immune-modulation. Topical application of protein antigens to barrier-disrupted skin induces potent antigen-specific immunity with a strong Th2-bias. In this study, we investigate whether the autoimmune inflammatory response of chronic collagen-induced arthritis (CCIA in DBA/1-TCR-beta Tg mice can be modified by epicutaneous immunization. We show that epicutaneous immunization with type II collagen (CII inhibited development and progression of CCIA and, importantly, also ameliorated ongoing disease as indicated by clinical scores of disease severity, paw swelling and joints histology. Treated mice show reduced CII-driven T cell proliferation and IFN-gamma production, as well as significantly lower levels of CII-specific IgG2a serum antibodies. In contrast, CII-driven IL-4 production and IgE antibody levels were increased consistent with skewing of the CII response from Th1 to Th2 in treated mice. IL-4 production in treated mice was inversely correlated with disease severity. Moreover, T cells from treated mice inhibited proliferation and IFN-gamma production by T cells from CCIA mice, suggesting induction of regulatory T cells that actively inhibit effector responses in arthritic mice. The levels of CD4(+CD25(+ T cells were however not increased following epicutaneous CII treatment. Together, these results suggest that epicutaneous immunization may be used as an immune-modulating procedure to actively re-programme pathogenic Th1 responses, and could have potential as a novel specific and simple treatment for chronic autoimmune inflammatory diseases such as rheumatoid arthritis.

  14. A case of pembrolizumab-induced type-1 diabetes mellitus and discussion of immune checkpoint inhibitor-induced type 1 diabetes.

    Science.gov (United States)

    Chae, Young Kwang; Chiec, Lauren; Mohindra, Nisha; Gentzler, Ryan; Patel, Jyoti; Giles, Francis

    2017-01-01

    Immune checkpoint inhibitors such as pembrolizumab, ipilimumab, and nivolumab, now FDA-approved for use in treating several types of cancer, have been associated with immune-related adverse effects. Specifically, the antibodies targeting the programmed-cell death-1 immune checkpoint, pembrolizumab and nivolumab, have been rarely reported to induce the development of type 1 diabetes mellitus. Here we describe a case of a patient who developed antibody-positive type 1 diabetes mellitus following treatment with pembrolizumab in combination with systemic chemotherapy for metastatic adenocarcinoma of the lung. We will also provide a brief literature review of other rarely reported cases of type 1 diabetes presenting after treatment with pembrolizumab and nivolumab, as well as discussion regarding potential mechanisms of this adverse effect and its importance as these drugs continue to become even more widespread.

  15. Relish2 mediates bursicon homodimer-induced prophylactic immunity in the mosquito Aedes aegypti

    Science.gov (United States)

    Bursicon is a neuropeptide hormone consisting of two cystine-knot proteins (burs a and burs ß), responsible for cuticle tanning and other developmental processes in insects. Recent studies show that each bursicon subunit forms homodimers that induce prophylactic immunity in Drosophila melanogaster. ...

  16. Defence mechanisms and immune evasion in the interplay between the humane immune system and Plasmodium falciparum

    DEFF Research Database (Denmark)

    Theander, T G

    1992-01-01

    Immunity to P. falciparum malaria is developed as a result of long term exposure to the parasite and depends on immunological memory. The key directors in immune recognition and regulation of the immunological responses are the T-cells. It seems reasonable to propose that immunity is acquired when...... with development of immunity. Several mechanisms seem to be operating. 1) Induction of the immune response to some macromolecules is avoided because the parasites are living inside host cells during part of their life cycle, and the reaction to other molecules is apparently avoided by mimicry of host molecules. 2...

  17. Cis-urocanic acid, a sunlight-induced immunosuppressive factor, activates immune suppression via the 5-HT2A receptor

    Science.gov (United States)

    Walterscheid, Jeffrey P.; Nghiem, Dat X.; Kazimi, Nasser; Nutt, Leta K.; McConkey, David J.; Norval, Mary; Ullrich, Stephen E.

    2006-01-01

    Exposure to UV radiation induces skin cancer and suppresses the immune response. To induce immune suppression, the electromagnetic energy of UV radiation must be absorbed by an epidermal photoreceptor and converted into a biologically recognizable signal. Two photoreceptors have been recognized: DNA and trans-urocanic acid (UCA). Trans-UCA is normally found in the outermost layer of skin and isomerizes to the cis isomer upon exposure to UV radiation. Although UCA was identified as a UV photoreceptor years ago, and many have documented its ability to induce immune suppression, its exact mode of action remains elusive. Particularly vexing has been the identity of the molecular pathway by which cis-UCA mediates immune suppression. Here we provide evidence that cis-UCA binds to the serotonin [5-hydroxytryptamine (5-HT)] receptor with relatively high affinity (Kd = 4.6 nM). Anti-cis-UCA antibody precipitates radiolabeled 5-HT, and the binding is inhibited by excess 5-HT and/or excess cis-UCA. Similarly, anti-5-HT antibody precipitates radiolabeled cis-UCA, and the binding is inhibited by excess 5-HT or excess cis-UCA. Calcium mobilization was activated when a mouse fibroblast line, stably transfected with the human 5-HT2A receptor, was treated with cis-UCA. Cis-UCA-induced calcium mobilization was blocked with a selective 5-HT2A receptor antagonist. UV- and cis-UCA-induced immune suppression was blocked by antiserotonin antibodies or by treating the mice with 5-HT2A receptor antagonists. Our findings identify cis-UCA as a serotonin receptor ligand and indicate that the immunosuppressive effects of cis-UCA and UV radiation are mediated by activation of the 5-HT2A receptor. PMID:17085585

  18. Evaluation of Mucosal and Systemic Immune Responses Elicited by GPI-0100-Adjuvanted Influenza Vaccine Delivered by Different Immunization Strategies

    NARCIS (Netherlands)

    Liu, Heng; Patil, Harshad P.; de Vries-Idema, Jacqueline; Wilschut, Jan; Huckriede, Anke

    2013-01-01

    Vaccines for protection against respiratory infections should optimally induce a mucosal immune response in the respiratory tract in addition to a systemic immune response. However, current parenteral immunization modalities generally fail to induce mucosal immunity, while mucosal vaccine delivery

  19. Maize Prolamins Could Induce a Gluten-Like Cellular Immune Response in Some Celiac Disease Patients

    Science.gov (United States)

    Ortiz-Sánchez, Juan P.; Cabrera-Chávez, Francisco; Calderón de la Barca, Ana M.

    2013-01-01

    Celiac disease (CD) is an autoimmune-mediated enteropathy triggered by dietary gluten in genetically prone individuals. The current treatment for CD is a strict lifelong gluten-free diet. However, in some CD patients following a strict gluten-free diet, the symptoms do not remit. These cases may be refractory CD or due to gluten contamination; however, the lack of response could be related to other dietary ingredients, such as maize, which is one of the most common alternatives to wheat used in the gluten-free diet. In some CD patients, as a rare event, peptides from maize prolamins could induce a celiac-like immune response by similar or alternative pathogenic mechanisms to those used by wheat gluten peptides. This is supported by several shared features between wheat and maize prolamins and by some experimental results. Given that gluten peptides induce an immune response of the intestinal mucosa both in vivo and in vitro, peptides from maize prolamins could also be tested to determine whether they also induce a cellular immune response. Hypothetically, maize prolamins could be harmful for a very limited subgroup of CD patients, especially those that are non-responsive, and if it is confirmed, they should follow, in addition to a gluten-free, a maize-free diet. PMID:24152750

  20. Priming of innate antimycobacterial immunity by heat-killed Listeria monocytogenes induces sterilizing response in the adult zebrafish tuberculosis model

    Directory of Open Access Journals (Sweden)

    Hanna Luukinen

    2018-01-01

    Full Text Available Mycobacterium tuberculosis remains one of the most problematic infectious agents, owing to its highly developed mechanisms to evade host immune responses combined with the increasing emergence of antibiotic resistance. Host-directed therapies aiming to optimize immune responses to improve bacterial eradication or to limit excessive inflammation are a new strategy for the treatment of tuberculosis. In this study, we have established a zebrafish-Mycobacterium marinum natural host-pathogen model system to study induced protective immune responses in mycobacterial infection. We show that priming adult zebrafish with heat-killed Listeria monocytogenes (HKLm at 1 day prior to M. marinum infection leads to significantly decreased mycobacterial loads in the infected zebrafish. Using rag1−/− fish, we show that the protective immunity conferred by HKLm priming can be induced through innate immunity alone. At 24 h post-infection, HKLm priming leads to a significant increase in the expression levels of macrophage-expressed gene 1 (mpeg1, tumor necrosis factor α (tnfa and nitric oxide synthase 2b (nos2b, whereas superoxide dismutase 2 (sod2 expression is downregulated, implying that HKLm priming increases the number of macrophages and boosts intracellular killing mechanisms. The protective effects of HKLm are abolished when the injected material is pretreated with nucleases or proteinase K. Importantly, HKLm priming significantly increases the frequency of clearance of M. marinum infection by evoking sterilizing immunity (25 vs 3.7%, P=0.0021. In this study, immune priming is successfully used to induce sterilizing immunity against mycobacterial infection. This model provides a promising new platform for elucidating the mechanisms underlying sterilizing immunity and to develop host-directed treatment or prevention strategies against tuberculosis. This article has an associated First Person interview with the first author of the paper.

  1. Recombinant Lactobacillus plantarum induces immune responses to cancer testis antigen NY-ESO-1 and maturation of dendritic cells

    Science.gov (United States)

    Mobergslien, Anne; Vasovic, Vlada; Mathiesen, Geir; Fredriksen, Lasse; Westby, Phuong; Eijsink, Vincent GH; Peng, Qian; Sioud, Mouldy

    2015-01-01

    Given their safe use in humans and inherent adjuvanticity, Lactic Acid Bacteria may offer several advantages over other mucosal delivery strategies for cancer vaccines. The objective of this study is to evaluate the immune responses in mice after oral immunization with Lactobacillus (L) plantarum WCFS1 expressing a cell-wall anchored tumor antigen NY-ESO-1. And to investigate the immunostimulatory potency of this new candidate vaccine on human dendritic cells (DCs). L. plantarum displaying NY-ESO-1 induced NY-ESO-1 specific antibodies and T-cell responses in mice. By contrast, L. plantarum displaying conserved proteins such as heat shock protein-27 and galectin-1, did not induce immunity, suggesting that immune tolerance to self-proteins cannot be broken by oral administration of L. plantarum. With respect to immunomodulation, immature DCs incubated with wild type or L. plantarum-NY-ESO-1 upregulated the expression of co-stimulatory molecules and secreted a large amount of interleukin (IL)-12, TNF-α, but not IL-4. Moreover, they upregulated the expression of immunosuppressive factors such as IL-10 and indoleamine 2,3-dioxygenase. Although L. plantarum-matured DCs expressed inhibitory molecules, they stimulated allogeneic T cells in-vitro. Collectively, the data indicate that L. plantarum-NY-ESO-1 can evoke antigen-specific immunity upon oral administration and induce DC maturation, raising the potential of its use in cancer immunotherapies. PMID:26185907

  2. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade

    Science.gov (United States)

    McGranahan, Nicholas; Furness, Andrew J. S.; Rosenthal, Rachel; Ramskov, Sofie; Lyngaa, Rikke; Saini, Sunil Kumar; Jamal-Hanjani, Mariam; Wilson, Gareth A.; Birkbak, Nicolai J.; Hiley, Crispin T.; Watkins, Thomas B. K.; Shafi, Seema; Murugaesu, Nirupa; Mitter, Richard; Akarca, Ayse U.; Linares, Joseph; Marafioti, Teresa; Henry, Jake Y.; Van Allen, Eliezer M.; Miao, Diana; Schilling, Bastian; Schadendorf, Dirk; Garraway, Levi A.; Makarov, Vladimir; Rizvi, Naiyer A.; Snyder, Alexandra; Hellmann, Matthew D.; Merghoub, Taha; Wolchok, Jedd D.; Shukla, Sachet A.; Wu, Catherine J.; Peggs, Karl S.; Chan, Timothy A.; Hadrup, Sine R.; Quezada, Sergio A.; Swanton, Charles

    2016-01-01

    As tumors grow, they acquire mutations, some of which create neoantigens that influence the response of patients to immune checkpoint inhibitors. We explored the impact of neoantigen intratumor heterogeneity (ITH) on antitumor immunity. Through integrated analysis of ITH and neoantigen burden, we demonstrate a relationship between clonal neoantigen burden and overall survival in primary lung adenocarcinomas. CD8+ tumor-infiltrating lymphocytes reactive to clonal neoantigens were identified in early-stage non–small cell lung cancer and expressed high levels of PD-1. Sensitivity to PD-1 and CTLA-4 blockade in patients with advanced NSCLC and melanoma was enhanced in tumors enriched for clonal neoantigens. T cells recognizing clonal neoantigens were detectable in patients with durable clinical benefit. Cytotoxic chemotherapy–induced subclonal neoantigens, contributing to an increased mutational load, were enriched in certain poor responders. These data suggest that neoantigen heterogeneity may influence immune surveillance and support therapeutic developments targeting clonal neoantigens. PMID:26940869

  3. In vivo immunoprotective role of Indigofera tinctoria and Scoparia dulcis aqueous extracts against chronic noise stress induced immune abnormalities in Wistar albino rats

    Directory of Open Access Journals (Sweden)

    Boothapandi Madakkannu

    Full Text Available Indigofera tinctoria and Scoparia dulcis are being widely used in Indian folk medicine for the treatment of various disorders. Environmental noise pollution is thought to be an important factor for many health problems and it causes immune abnormalities. In the present study immune-regulating potential of I. tinctoria and S. dulcis aqueous extracts on innate and adaptive immune system of wistar albino rats was evaluated during normal and chronic noise induced stress conditions. The results demonstrated that both I. tinctoria and S. dulcis aqueous extracts (200 mg/kg b.w showed immunostimulant effect on both innate and adaptive immune response of wistar albino rat compared to control group under normal condition. The noise stress (100 dB for 1 h, 20 days induced animals showed suppressive effects on immune response by decreasing macrophage phagocytosis, antibody secretion by spleen cells, humoral immune response, proliferation of lymphocytes, cytotoxicity, TNF α expression, granzyme B and perforin expression in splenic NK cells. Similarly, noise stress also caused DNA damage in tissues. However, the suppressed effects induced by noise stress on rat immune system were significantly prevented by oral administration of both I. tinctoria and S. dulcis aqueous extracts. Considering all these results it is suggested that the selected medicinal plant’s aqueous extracts have the potential to prevent the effects of noise stress induced rat immune system and explore a strong immunostimulant potential applicable to clinical practices. Keywords: Indigofera tinctoria, Scoparia dulcis, Chronic noise stress, Immunomodulatory, Innate immunity, Adaptive immunity

  4. Indispensable Role of Proteases in Plant Innate Immunity.

    Science.gov (United States)

    Balakireva, Anastasia V; Zamyatnin, Andrey A

    2018-02-23

    Plant defense is achieved mainly through the induction of microbe-associated molecular patterns (MAMP)-triggered immunity (MTI), effector-triggered immunity (ETI), systemic acquired resistance (SAR), induced systemic resistance (ISR), and RNA silencing. Plant immunity is a highly complex phenomenon with its own unique features that have emerged as a result of the arms race between plants and pathogens. However, the regulation of these processes is the same for all living organisms, including plants, and is controlled by proteases. Different families of plant proteases are involved in every type of immunity: some of the proteases that are covered in this review participate in MTI, affecting stomatal closure and callose deposition. A large number of proteases act in the apoplast, contributing to ETI by managing extracellular defense. A vast majority of the endogenous proteases discussed in this review are associated with the programmed cell death (PCD) of the infected cells and exhibit caspase-like activities. The synthesis of signal molecules, such as salicylic acid, jasmonic acid, and ethylene, and their signaling pathways, are regulated by endogenous proteases that affect the induction of pathogenesis-related genes and SAR or ISR establishment. A number of proteases are associated with herbivore defense. In this review, we summarize the data concerning identified plant endogenous proteases, their effect on plant-pathogen interactions, their subcellular localization, and their functional properties, if available, and we attribute a role in the different types and stages of innate immunity for each of the proteases covered.

  5. Immune Responses Involved in Mycobacterium Tuberculosis Infection

    Directory of Open Access Journals (Sweden)

    Roghayeh Teimourpour

    2016-09-01

    Full Text Available Background and Objectives: Mycobacterium tuberculosis is the causative agent of tuberculosis (TB. Approximately one-third of the world's population is infected with M. tuberculosis. Despite the availability of drug and vaccine, it remains one of the leading causes of death in humans especially in developing countries. Epidemiological studies have indicated that only 10-30% of people exposed to tubercle bacillus are infected with M. tuberculosis, and at least 90% of the infected people finally do not acquire TB. The studies have indicated that the host efficient immune system has essential roles in the control of TB infection such that the highest rate of mortality and morbidity is seen in immunocompromised patients such as people infected with HIV. M. tuberculosis is an obligatory intracellular bacterium. It enters the body mainly through the respiratory tract and alveolar macrophages combat this pathogen most commonly. In addition to alveolar macrophages, various T-cell subpopulations need to be activated to overcome this bacterium's resistance to the host defense systems. CD4+ T cells, through production of several cytokines such as IFN-γ and TNF-α, and CD8+ T cells, through cytotoxic activities and induction of apoptosis in infected cells, play critical roles in inducing appropriate immune responses against M. tuberculosis. Although cell-mediated immunity is the cornerstone of host responses against TB and the recent studies have provided evidence for the importance of humoral and innate immune system in the control of TB, a profound understanding of the immune responses would provide a basis for development of new generations of vaccines and drugs. The present study addresses immune responses involved in M. tuberculosis infection.

  6. Isolation and Purification of an Antibacterial Protein from Immune Induced Haemolymph of American Cockroach, Periplaneta americana

    Directory of Open Access Journals (Sweden)

    Hamid Reza Basseri

    2016-10-01

    Full Text Available Background: Antimicrobial peptides play a role as effectors substances in the immunity of vertebrate and inverte­brate hosts. In the current study, antimicrobial peptide was isolated from the haemolymph of the American cock­roach, Periplaneta americana.Methods: Micrococcus luteus as Gram-positive bacteria and Escherichia coli as Gram-negative bacteria were candi­date for injection. Induction was done by injecting both bacteria into the abdominal cavity of two groups of cock­roaches separately. The haemolymphs were collected 24 hours after post injection and initially tested against both bacteria. Subsequently, the immune induced haemolymph was purified by high performance liquid chromatography (HPLC to separate the proteins responsible for the antibacterial activity.Results: The non-induced haemolymph did not show any activity against both bacteria whereas induced haemo­lymph exhibited high activity against M. luteus but did less against E. coli. Two fractions showed antibacterial activ­ity against M. luteus. Finally the molecular weight of the isolated antibacterial proteins were determined as 72 kDa and 62 kDa using SDS-PAGE.Conclusion: Induced haemolymph of American cockroaches has the ability to produce peptides to combat against Gram-positive bacteria when an immune challenge is mounted. Further work has to be done to sequence of the pro­tein, which it would be advantageous.

  7. Co-immunization with virus-like particle and DNA vaccines induces protection against respiratory syncytial virus infection and bronchiolitis

    Science.gov (United States)

    Hwang, Hye Suk; Kwon, Young-Man; Lee, Jong Seok; Yoo, Si-Eun; Lee, Yu-Na; Ko, Eun-Ju; Kim, Min-Chul; Cho, Min-Kyoung; Lee, Young-Tae; Jung, Yu-Jin; Lee, Ji-Yun; Li, Jian Dong; Kang, Sang-Moo

    2014-01-01

    This study demonstrates that immunization with non-replicating virus-like particle (FFG VLP) containing RSV F and G glycoproteins together with RSV F DNA induced T helper type 1 antibody responses to RSV F similar to live RSV infection. Upon RSV challenge 21 weeks after immunization, FFG VLP vaccination induced protection against RSV infection as shown by clearance of lung viral loads, and the absence of eosinophil infiltrates, and did not cause lung pathology. In contrast, formalin-inactivated RSV (FI-RSV) vaccination showed significant pulmonary eosinophilia, severe mucus production, and extensive histopathology resulting in a hallmark of pulmonary pathology. Substantial lung pathology was also observed in mice with RSV re-infections. High levels of systemic and local inflammatory cytokine-secreting cells were induced in mice with FI-RSV but not with FFG VLP immunization after RSV challenge. Therefore, the results provide evidence that recombinant RSV FFG VLP vaccine can confer long-term protection against RSV without causing lung pathology. PMID:25110201

  8. Epithelial-to-mesenchymal transition (EMT) induced by inflammatory priming elicits mesenchymal stromal cell-like immune-modulatory properties in cancer cells.

    Science.gov (United States)

    Ricciardi, M; Zanotto, M; Malpeli, G; Bassi, G; Perbellini, O; Chilosi, M; Bifari, F; Krampera, M

    2015-03-17

    Epithelial-to-mesenchymal transition (EMT) has a central role in cancer progression and metastatic dissemination and may be induced by local inflammation. We asked whether the inflammation-induced acquisition of mesenchymal phenotype by neoplastic epithelial cells is associated with the onset of mesenchymal stromal cell-like immune-regulatory properties that may enhance tumour immune escape. Cell lines of lung adenocarcinoma (A549), breast cancer (MCF7) and hepatocellular carcinoma (HepG2) were co-cultured with T, B and NK cells before and after EMT induction by either the supernatant of mixed-lymphocyte reactions or inflammatory cytokines. EMT occurrence following inflammatory priming elicited multiple immune-regulatory effects in cancer cells resulting in NK and T-cell apoptosis, inhibition of lymphocyte proliferation and stimulation of regulatory T and B cells. Indoleamine 2,3-dioxygenase, but not Fas ligand pathway, was involved at least in part in these effects, as shown by the use of specific inhibitors. EMT induced by inflammatory stimuli confers to cancer cells some mesenchymal stromal cell-like immune-modulatory properties, which could be a cue for cancer progression and metastatic dissemination by favouring immune escape.

  9. Immunization of baboons with attenuated schistosomula of Schistosoma haematobium: levels of protection induced by immunization with larvae irradiated with 20 and 60 krad

    International Nuclear Information System (INIS)

    Harrison, R.A.; Bickle, Q.D.; Sturrock, R.F.; Taylor, M.G.; Webbe, G.; Kiare, S.; James, E.R.; Andrews, B.J.

    1990-01-01

    The authors have demonstrated that baboons can be immunized with S. haemotobium schistosomula irradiated with 20 krad in a regimen that induces 90% protection. While this high level of protection has stimulated a discussion on the feasibility of a human volunteer trial (Von Lichtenberg, 1985), results of further studies particularly on (i) the pathogensis of immunization per se (Byram et al., 1989), (ii) the longevity of protection, and (iii) the protective efficacy of cryopreserved irradiated S. haemotobium schistosomula (R. Harrison et al., in preparation), prevent recommending this form of vaccination for human application. (author)

  10. A new concept in prophylaxis and therapy: paramunization by poxvirus inducers

    Directory of Open Access Journals (Sweden)

    Anton Mayr

    1999-07-01

    Full Text Available The so-called primitive, innate or paraspecific immune system is the phylogenetically older part of the complex immune system. It enables the organism to immediately attack various foreign substances, infectious pathogens, toxins and transformed cells of the organism itself. ,,Paramunity" is defined as an optimal regulated and activated, antigen-nonspecific defence, acquired through continuous active and succesful confrontation with endogenous and exogenous noxes or by means of ,,paramunization" with so called ,,paramunity inducers". Paramunity inducers based on different pox virus species (e.g. Baypamun®, Duphapind®, Conpind have turned out to be effective and safe when applied with human beings as well as with animals. Pox virus inducers activate phagocytosis and NK-cells in addition to regulation of various cytokines, notably interferon a and g, IL 1, 2, CSF and TNF which comprise the network of the complex paraspecific immune system. The results of experimental work as well as practical use in veterinary medicine have shown that paramunization by pox inducers goes far beyond the common understanding of so-called ,,immuno-therapy". They are ,,bioregulators", because they have 1. a regulatory effect on a disturbed immune system in the sense of an optimal homoeostasis, and 2. simultaneously a regulatory effect between the immune, nervous, circulatory and hormone system. Therefore, the use of paramunization by pox inducers opens a new way of prophylaxis and therapy, not only with regard to infections, but also with regard to different other indications.

  11. Immune checkpoint inhibitor-induced gastrointestinal and hepatic injury: pathologists' perspective.

    Science.gov (United States)

    Karamchandani, Dipti M; Chetty, Runjan

    2018-04-27

    Immune checkpoint inhibitors (CPIs) are a relatively new class of 'miracle' dugs that have revolutionised the treatment and prognosis of some advanced-stage malignancies, and have increased the survival rates significantly. This class of drugs includes cytotoxic T lymphocyte antigen-4 inhibitors such as ipilimumab; programmed cell death protein-1 inhibitors such as nivolumab, pembrolizumab and avelumab; and programmed cell death protein ligand-1 inhibitors such as atezolizumab. These drugs stimulate the immune system by blocking the coinhibitory receptors on the T cells and lead to antitumoural response. However, a flip side of these novel drugs is immune-related adverse events (irAEs), secondary to immune-mediated process due to disrupted self-tolerance. The irAEs in the gastrointestinal (GI) tract/liver may result in diarrhoea, colitis or hepatitis. An accurate diagnosis of CPI-induced colitis and/or hepatitis is essential for optimal patient management. As we anticipate greater use of these drugs in the future given the significant clinical response, pathologists need to be aware of the spectrum of histological findings that may be encountered in GI and/or liver biopsies received from these patients, as well as differentiate them from its histopathological mimics. This present review discusses the clinical features, detailed histopathological features, management and the differential diagnosis of the luminal GI and hepatic irAEs that may be encountered secondary to CPI therapy. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  12. Immunity induced shortly after DNA vaccination of rainbow trout against rhabdoviruses protects against heterologous virus but not against bacterial pathogens

    DEFF Research Database (Denmark)

    Lorenzen, Niels; Lorenzen, Ellen; Einer-Jensen, Katja

    2002-01-01

    whereas no increased survival was found upon challenge with bacterial pathogens. Within two months after vaccination, the cross-protection disappeared while the specific immunity to homologous virus remained high. The early immunity induced by the DNA vaccines thus appeared to involve short-lived non......It was recently reported that DNA vaccination of rainbow trout fingerlings against viral hemorrhagic septicaemia virus (VHSV) induced protection within 8 days after intramuscular injection of plasmid DNA. In order to analyse the specificity of this early immunity, fish were vaccinated with plasmid...... DNA encoding the VHSV or the infectious haematopoietic necrosis virus (IHNV) glycoprotein genes and later challenged with homologous or heterologous pathogens. Challenge experiments revealed that immunity established shortly after vaccination was cross-protective between the two viral pathogens...

  13. Periodontitis induced by Porphyromonas gingivalis drives periodontal microbiota dysbiosis and insulin resistance via an impaired adaptive immune response.

    Science.gov (United States)

    Blasco-Baque, Vincent; Garidou, Lucile; Pomié, Céline; Escoula, Quentin; Loubieres, Pascale; Le Gall-David, Sandrine; Lemaitre, Mathieu; Nicolas, Simon; Klopp, Pascale; Waget, Aurélie; Azalbert, Vincent; Colom, André; Bonnaure-Mallet, Martine; Kemoun, Philippe; Serino, Matteo; Burcelin, Rémy

    2017-05-01

    To identify a causal mechanism responsible for the enhancement of insulin resistance and hyperglycaemia following periodontitis in mice fed a fat-enriched diet. We set-up a unique animal model of periodontitis in C57Bl/6 female mice by infecting the periodontal tissue with specific and alive pathogens like Porphyromonas gingivalis ( Pg ), Fusobacterium nucleatum and Prevotella intermedia . The mice were then fed with a diabetogenic/non-obesogenic fat-enriched diet for up to 3 months. Alveolar bone loss, periodontal microbiota dysbiosis and features of glucose metabolism were quantified. Eventually, adoptive transfer of cervical (regional) and systemic immune cells was performed to demonstrate the causal role of the cervical immune system. Periodontitis induced a periodontal microbiota dysbiosis without mainly affecting gut microbiota. The disease concomitantly impacted on the regional and systemic immune response impairing glucose metabolism. The transfer of cervical lymph-node cells from infected mice to naive recipients guarded against periodontitis-aggravated metabolic disease. A treatment with inactivated Pg prior to the periodontal infection induced specific antibodies against Pg and protected the mouse from periodontitis-induced dysmetabolism. Finally, a 1-month subcutaneous chronic infusion of low rates of lipopolysaccharides from Pg mimicked the impact of periodontitis on immune and metabolic parameters. We identified that insulin resistance in the high-fat fed mouse is enhanced by pathogen-induced periodontitis. This is caused by an adaptive immune response specifically directed against pathogens and associated with a periodontal dysbiosis. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  14. MHC class II-associated invariant chain linkage of antigen dramatically improves cell-mediated immunity induced by adenovirus vaccines

    DEFF Research Database (Denmark)

    Holst, Peter Johannes; Mandrup Jensen, Camilla Maria; Orskov, Cathrine

    2008-01-01

    The ideal vaccine induces a potent protective immune response, which should be rapidly induced, long-standing, and of broad specificity. Recombinant adenoviral vectors induce potent Ab and CD8+ T cell responses against transgenic Ags within weeks of administration, and they are among the most...

  15. Innate Immune Responses of Drosophila melanogaster Are Altered by Spaceflight

    Science.gov (United States)

    Marcu, Oana; Lera, Matthew P.; Sanchez, Max E.; Levic, Edina; Higgins, Laura A.; Shmygelska, Alena; Fahlen, Thomas F.; Nichol, Helen; Bhattacharya, Sharmila

    2011-01-01

    Alterations and impairment of immune responses in humans present a health risk for space exploration missions. The molecular mechanisms underpinning innate immune defense can be confounded by the complexity of the acquired immune system of humans. Drosophila (fruit fly) innate immunity is simpler, and shares many similarities with human innate immunity at the level of molecular and genetic pathways. The goals of this study were to elucidate fundamental immune processes in Drosophila affected by spaceflight and to measure host-pathogen responses post-flight. Five containers, each containing ten female and five male fruit flies, were housed and bred on the space shuttle (average orbit altitude of 330.35 km) for 12 days and 18.5 hours. A new generation of flies was reared in microgravity. In larvae, the immune system was examined by analyzing plasmatocyte number and activity in culture. In adults, the induced immune responses were analyzed by bacterial clearance and quantitative real-time polymerase chain reaction (qPCR) of selected genes following infection with E. coli. The RNA levels of relevant immune pathway genes were determined in both larvae and adults by microarray analysis. The ability of larval plasmatocytes to phagocytose E. coli in culture was attenuated following spaceflight, and in parallel, the expression of genes involved in cell maturation was downregulated. In addition, the level of constitutive expression of pattern recognition receptors and opsonins that specifically recognize bacteria, and of lysozymes, antimicrobial peptide (AMP) pathway and immune stress genes, hallmarks of humoral immunity, were also reduced in larvae. In adults, the efficiency of bacterial clearance measured in vivo following a systemic infection with E. coli post-flight, remained robust. We show that spaceflight altered both cellular and humoral immune responses in Drosophila and that the disruption occurs at multiple interacting pathways. PMID:21264297

  16. Innate immune responses of Drosophila melanogaster are altered by spaceflight.

    Directory of Open Access Journals (Sweden)

    Oana Marcu

    2011-01-01

    Full Text Available Alterations and impairment of immune responses in humans present a health risk for space exploration missions. The molecular mechanisms underpinning innate immune defense can be confounded by the complexity of the acquired immune system of humans. Drosophila (fruit fly innate immunity is simpler, and shares many similarities with human innate immunity at the level of molecular and genetic pathways. The goals of this study were to elucidate fundamental immune processes in Drosophila affected by spaceflight and to measure host-pathogen responses post-flight. Five containers, each containing ten female and five male fruit flies, were housed and bred on the space shuttle (average orbit altitude of 330.35 km for 12 days and 18.5 hours. A new generation of flies was reared in microgravity. In larvae, the immune system was examined by analyzing plasmatocyte number and activity in culture. In adults, the induced immune responses were analyzed by bacterial clearance and quantitative real-time polymerase chain reaction (qPCR of selected genes following infection with E. coli. The RNA levels of relevant immune pathway genes were determined in both larvae and adults by microarray analysis. The ability of larval plasmatocytes to phagocytose E. coli in culture was attenuated following spaceflight, and in parallel, the expression of genes involved in cell maturation was downregulated. In addition, the level of constitutive expression of pattern recognition receptors and opsonins that specifically recognize bacteria, and of lysozymes, antimicrobial peptide (AMP pathway and immune stress genes, hallmarks of humoral immunity, were also reduced in larvae. In adults, the efficiency of bacterial clearance measured in vivo following a systemic infection with E. coli post-flight, remained robust. We show that spaceflight altered both cellular and humoral immune responses in Drosophila and that the disruption occurs at multiple interacting pathways.

  17. STING-Dependent Cytosolic DNA Sensing Promotes Radiation-Induced Type I Interferon-Dependent Antitumor Immunity in Immunogenic Tumors.

    Science.gov (United States)

    Deng, Liufu; Liang, Hua; Xu, Meng; Yang, Xuanming; Burnette, Byron; Arina, Ainhoa; Li, Xiao-Dong; Mauceri, Helena; Beckett, Michael; Darga, Thomas; Huang, Xiaona; Gajewski, Thomas F; Chen, Zhijian J; Fu, Yang-Xin; Weichselbaum, Ralph R

    2014-11-20

    Ionizing radiation-mediated tumor regression depends on type I interferon (IFN) and the adaptive immune response, but several pathways control I IFN induction. Here, we demonstrate that adaptor protein STING, but not MyD88, is required for type I IFN-dependent antitumor effects of radiation. In dendritic cells (DCs), STING was required for IFN-? induction in response to irradiated-tumor cells. The cytosolic DNA sensor cyclic GMP-AMP (cGAMP) synthase (cGAS) mediated sensing of irradiated-tumor cells in DCs. Moreover, STING was essential for radiation-induced adaptive immune responses, which relied on type I IFN signaling on DCs. Exogenous IFN-? treatment rescued the cross-priming by cGAS or STING-deficient DCs. Accordingly, activation of STING by a second messenger cGAMP administration enhanced antitumor immunity induced by radiation. Thus radiation-mediated antitumor immunity in immunogenic tumors requires a functional cytosolic DNA-sensing pathway and suggests that cGAMP treatment might provide a new strategy to improve radiotherapy. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Immune responses induced by recombinant Bacillus subtilis expressing the spike protein of transmissible gastroenteritis virus in pigs.

    Science.gov (United States)

    Mou, Chunxiao; Zhu, Liqi; Xing, Xianping; Lin, Jian; Yang, Qian

    2016-07-01

    Transmissible gastroenteritis (TGE) causes severe diarrhea in suckling piglets, results in enormous economic loss in swine-producing areas of the world. To develop an effective, safe, and convenient vaccine for the prevention of TGE, we have constructed a recombinant Bacillus subtilis strain (B. subtilis CotGSG) displaying the transmissible gastroenteritis virus (TGEV) spike (S) protein and discussed its immune function to intestinal submucosal dendritic cells (DCs). Our results showed that the recombinant B. subtilis had the ability to recruit more DCs to sample B. subtilis CotGSG, migrate to MLNs, and induce immune responses. Immunized piglets with B. subtilis CotGSG could significantly elevate the specific SIgA titers in feces, IgG titers and neutralizing antibodies in serum. Collectively, our results suggested that recombinant B. subtilis CotGSG expressing the TGEV S protein could effectively induce immune responses via DCs, and provided a perspective on potential novel strategy and approach that may be applicable to the development of the next generation of TGEV vaccines. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Aryl Hydrocarbon Receptor (AhR Modulates Cockroach Allergen-Induced Immune Responses through Active TGFβ1 Release

    Directory of Open Access Journals (Sweden)

    Yufeng Zhou

    2014-01-01

    Full Text Available Background. Aryl hydrocarbon receptor (AhR, a multifunctional regulator that senses and responds to environmental stimuli, plays a role in normal cell development and immune regulation. Recent evidence supports a significant link between environmental exposure and AhR in the development of allergic diseases. We sought to investigate whether AhR plays a role in mediating cockroach allergen-induced allergic immune responses. Methods. AhR expression in human lung fibroblasts from asthmatic and healthy individuals and in cockroach extract (CRE treated human lung fibroblasts (WI-38 was examined. The role of AhR in modulating CRE induced TGFβ1 production was investigated by using AhR agonist, TCDD, antagonist CH122319, and knockdown of AhR. The role of latent TGFβ1 binding protein-1 (LTBP1 in mediating TCDD induced active TGFβ1 release was also examined. Results. AhR expression was higher in airway fibroblasts from asthmatic subjects as compared to healthy controls. AhR in fibroblasts was activated by TCDD with an increased expression of cyp1a1 and cyp1b1. Increased AhR expression was observed in CRE-treated fibroblasts. Importantly, CRE induced TGFβ1 production in fibroblasts was significantly enhanced by TCDD but inhibited by CH122319. Reduced TGFβ1 production was further confirmed in fibroblasts with AhR knockdown. Moreover, AhR knockdown inhibited CRE induced fibroblast differentiation. Furthermore, TCDD induced active TGFβ1 release was significantly inhibited by LTBP1 knockdown. Conclusion. These results provide evidence for the role of AhR in modulating cockroach allergen-induced immune responses through controlling the active TGFβ1 release, suggesting a possible synergistic effect between exposure to allergens and environmental chemicals on the development of allergic diseases.

  20. Immune System Modifications Induced in a Mouse Model of Chronic Exposure to (90)Sr.

    Science.gov (United States)

    Synhaeve, Nicholas; Musilli, Stefania; Stefani, Johanna; Nicolas, Nour; Delissen, Olivia; Dublineau, Isabelle; Bertho, Jean-Marc

    2016-03-01

    Strontium 90 ((90)Sr) remains in the environment long after a major nuclear disaster occurs. As a result, populations living on contaminated land are potentially exposed to daily ingesting of low quantities of (90)Sr. The potential long-term health effects of such chronic contamination are unknown. In this study, we used a mouse model to evaluate the effects of (90)Sr ingestion on the immune system, the animals were chronically exposed to (90)Sr in drinking water at a concentration of 20 kBq/l, for a daily ingestion of 80-100 Bq/day. This resulted in a reduced number of CD19(+) B lymphocytes in the bone marrow and spleen in steady-state conditions. In contrast, the results from a vaccine experiment performed as a functional test of the immune system showed that in response to T-dependent antigens, there was a reduction in IgG specific to tetanus toxin (TT), a balanced Th1/Th2 response inducer antigen, but not to keyhole limpet hemocyanin (KLH), a strong Th2 response inducer antigen. This was accompanied by a reduction in Th1 cells in the spleen, consistent with the observed reduction in specific IgG concentration. The precise mechanisms by which (90)Sr acts on the immune system remain to be elucidated. However, our results suggest that (90)Sr ingestion may be responsible for some of the reported effects of internal contamination on the immune system in civilian populations exposed to the Chernobyl fallout.

  1. In vivo immunoprotective role of Indigofera tinctoria and Scoparia dulcis aqueous extracts against chronic noise stress induced immune abnormalities in Wistar albino rats.

    Science.gov (United States)

    Madakkannu, Boothapandi; Ravichandran, Ramanibai

    2017-01-01

    Indigofera tinctoria and Scoparia dulcis are being widely used in Indian folk medicine for the treatment of various disorders. Environmental noise pollution is thought to be an important factor for many health problems and it causes immune abnormalities. In the present study immune-regulating potential of I. tinctoria and S. dulcis aqueous extracts on innate and adaptive immune system of wistar albino rats was evaluated during normal and chronic noise induced stress conditions. The results demonstrated that both I. tinctoria and S. dulcis aqueous extracts (200 mg/kg b.w) showed immunostimulant effect on both innate and adaptive immune response of wistar albino rat compared to control group under normal condition. The noise stress (100 dB for 1 h, 20 days) induced animals showed suppressive effects on immune response by decreasing macrophage phagocytosis, antibody secretion by spleen cells, humoral immune response, proliferation of lymphocytes, cytotoxicity, TNF α expression, granzyme B and perforin expression in splenic NK cells. Similarly, noise stress also caused DNA damage in tissues. However, the suppressed effects induced by noise stress on rat immune system were significantly prevented by oral administration of both I. tinctoria and S. dulcis aqueous extracts. Considering all these results it is suggested that the selected medicinal plant's aqueous extracts have the potential to prevent the effects of noise stress induced rat immune system and explore a strong immunostimulant potential applicable to clinical practices.

  2. TU-CD-303-03: Localized Radiation Can Induce Systemic Anti-Cancer Immune and Non-Immune Responses and How We Might Utilize It

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, M. [National Institutes of Health (United States)

    2015-06-15

    these advances in cancer biology research will give medical physicists a new perspective in daily clinical physics practice and in future radiation therapy technological development. Furthermore, academic medical physics should continue to be an integral part of the multidisciplinary cancer research community, harnessing our newly acquired understanding of radiation effects, and developing novel cost-effective treatment strategies to better combat cancer. Learning Objectives: Understand that localized radiation can lead to non-localized secondary effects such as radiation-induced immune response, bystander effect, and abscopal effect. Understand that the non-localized radiation effects may be harnessed to improve cancer treatment. Learn examples of physics participation in multidisciplinary research to advance cancer biology. Recognize the challenges and possibilities of physics applications in cancer research. Chang: NIH 5RC2CA148487-02 and 1U54CA151652-01 Graves: IDEA award (19IB-0106) from the California Breast Cancer Research Program (CBCRP), and by NIH P01 CA67166.

  3. TU-CD-303-03: Localized Radiation Can Induce Systemic Anti-Cancer Immune and Non-Immune Responses and How We Might Utilize It

    International Nuclear Information System (INIS)

    Ahmed, M.

    2015-01-01

    these advances in cancer biology research will give medical physicists a new perspective in daily clinical physics practice and in future radiation therapy technological development. Furthermore, academic medical physics should continue to be an integral part of the multidisciplinary cancer research community, harnessing our newly acquired understanding of radiation effects, and developing novel cost-effective treatment strategies to better combat cancer. Learning Objectives: Understand that localized radiation can lead to non-localized secondary effects such as radiation-induced immune response, bystander effect, and abscopal effect. Understand that the non-localized radiation effects may be harnessed to improve cancer treatment. Learn examples of physics participation in multidisciplinary research to advance cancer biology. Recognize the challenges and possibilities of physics applications in cancer research. Chang: NIH 5RC2CA148487-02 and 1U54CA151652-01 Graves: IDEA award (19IB-0106) from the California Breast Cancer Research Program (CBCRP), and by NIH P01 CA67166

  4. Exploratory study on Th1 epitope-induced protective immunity against Coxiella burnetii infection.

    Directory of Open Access Journals (Sweden)

    Xiaolu Xiong

    Full Text Available Coxiella burnetii is a Gram-negative bacterium that causes Q fever in humans. In the present study, 131 candidate peptides were selected from the major immunodominant proteins (MIPs of C. burnetii due to their high-affinity binding capacity for the MHC class II molecule H2 I-A(b based on bioinformatic analyses. Twenty-two of the candidate peptides with distinct MIP epitopes were well recognized by the IFN-γ recall responses of CD4(+ T cells from mice immunized with parental proteins in an ELISPOT assay. In addition, 7 of the 22 peptides could efficiently induce CD4(+ T cells from mice immunized with C. burnetii to rapidly proliferate and significantly increase IFN-γ production. Significantly higher levels of IL-2, IL-12p70, IFN-γ, and TNF-α were also detected in serum from mice immunized with a pool of the 7 peptides. Immunization with the pool of 7 peptides, but not the individual peptides, conferred a significant protection against C. burnetii infection in mice, suggesting that these Th1 peptides could work together to efficiently activate CD4(+ T cells to produce the Th1-type immune response against C. burnetii infection. These observations could contribute to the rational design of molecular vaccines for Q fever.

  5. New Real-Time PCR Assays for Detection of Inducible and Acquired Clarithromycin Resistance in the Mycobacterium abscessus Group.

    Science.gov (United States)

    Shallom, Shamira J; Moura, Natalia S; Olivier, Kenneth N; Sampaio, Elizabeth P; Holland, Steven M; Zelazny, Adrian M

    2015-11-01

    Members of the Mycobacterium abscessus group (MAG) cause lung, soft tissue, and disseminated infections. The oral macrolides clarithromycin and azithromycin are commonly used for treatment. MAG can display clarithromycin resistance through the inducible erm(41) gene or via acquired mutations in the rrl (23S rRNA) gene. Strains harboring a truncation or a T28C substitution in erm(41) lose the inducible resistance trait. Phenotypic detection of clarithromycin resistance requires extended incubation (14 days), highlighting the need for faster methods to detect resistance. Two real-time PCR-based assays were developed to assess inducible and acquired clarithromycin resistance and tested on a total of 90 clinical and reference strains. A SYBR green assay was designed to distinguish between a full-length and truncated erm(41) gene by temperature shift in melting curve analysis. Single nucleotide polymorphism (SNP) allele discrimination assays were developed to distinguish T or C at position 28 of erm(41) and 23S rRNA rrl gene mutations at position 2058 and/or 2059. Truncated and full-size erm(41) genes were detected in 21/90 and 69/90 strains, respectively, with 64/69 displaying T at nucleotide position 28 and 5/69 containing C at that position. Fifteen isolates showed rrl mutations conferring clarithromycin resistance, including A2058G (11 isolates), A2058C (3 isolates), and A2059G (1 isolate). Targeted sequencing and phenotypic assessment of resistance concurred with molecular assay results. Interestingly, we also noted cooccurring strains harboring an active erm(41), inactive erm(41), and/or acquired mutational resistance, as well as slowly growing MAG strains and also strains displaying an inducible resistance phenotype within 5 days, long before the recommended 14-day extended incubation. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  6. VAR2CSA and protective immunity against pregnancy-associated Plasmodium falciparum malaria

    DEFF Research Database (Denmark)

    Hviid, L; Salanti, A

    2007-01-01

    People living in areas with stable transmission of P. falciparum parasites acquire protective immunity to malaria over a number of years and following multiple disease episodes. Immunity acquired this way is mediated by IgG with specificity for parasite-encoded, clonally variant surface antigens...... that the selective placental accumulation of IEs that characterizes pregnancy-associated malaria (PAM) is caused by an immunologically and functionally unique subset of VSA (VSAPAM) that is only expressed by parasites infecting pregnant women, and that protective immunity to PAM is mediated by IgG with specificity...

  7. Attenuation of phosphamidon-induced oxidative stress and immune dysfunction in rats treated with N-acetylcysteine

    Directory of Open Access Journals (Sweden)

    S.G. Suke

    2008-09-01

    Full Text Available The effect of N-acetylcysteine, a thiolic antioxidant, on attenuation of phosphamidon-induced oxidative stress and immune dysfunction was evaluated in adult male Wistar rats weighing 200-250 g. Rats were divided into four groups, 8 animals/group, and treated with phosphamidon, N-acetylcysteine or the combination of both for 28 days. Oral administration of phosphamidon (1.74 mg/kg, an organophosphate insecticide, increased serum malondialdehyde (3.83 ± 0.18 vs 2.91 ± 0.24 nmol/mL; P < 0.05 and decreased erythrocyte superoxide dismutase (567.8 ± 24.36 vs 749.16 ± 102.61 U/gHb; P < 0.05, catalase activity (1.86 ± 0.18 vs 2.43 ± 0.08 U/gHb; P < 0.05 and whole blood glutathione levels (1.25 ± 0.21 vs 2.28 ± 0.08 mg/gHb; P < 0.05 showing phosphamidon-induced oxidative stress. Phosphamidon exposure markedly suppressed humoral immune response as assessed by antibody titer to ovalbumin (4.71 ± 0.51 vs 8.00 ± 0.12 -log2; P < 0.05, and cell-mediated immune response as assessed by leukocyte migration inhibition (25.24 ± 1.04 vs 70.8 ± 1.09%; P < 0.05 and macrophage migration inhibition (20.38 ± 0.99 vs 67.16 ± 5.30%; P < 0.05 response. Phosphamidon exposure decreased IFN-у levels (40.7 ± 3.21 vs 55.84 ± 3.02 pg/mL; P < 0.05 suggesting a profound effect of phosphamidon on cell-mediated immune response. A phosphamidon-induced increase in TNF-α level (64.19 ± 6.0 vs 23.16 ± 4.0 pg/mL; P < 0.05 suggests a contributory role of immunocytes in oxidative stress. Co-administration of N-acetylcysteine (3.5 mmol/kg, orally with phosphamidon attenuated the adverse effects of phosphamidon. These findings suggest that oral N-acetylcysteine treatment exerts protective effect and attenuates free radical injury and immune dysfunction caused by subchronic phosphamidon exposure.

  8. Acquired cutis laxa following urticarial vasculitis associated with IgA myeloma.

    Science.gov (United States)

    Turner, Ryan B; Haynes, Harley A; Granter, Scott R; Miller, Danielle M

    2009-06-01

    Cutis laxa (CL) is an inherited or acquired connective tissue disorder characterized clinically by loosely hanging skin folds. There is often preceding cutaneous inflammatory eruption (ie, urticaria, eczema, erythema multiforme), and there is frequently internal organ involvement of the gastrointestinal, urogenital, pulmonary, and cardiovascular systems. Histologically, there are degenerative changes in the dermal elastic fibers. Of the few reports on this rare disorder, authors have speculated about an immune-mediated destruction of elastic fibers, and monoclonal gammopathies, such as multiple myeloma or heavy chain deposition disease, have a recognized association with CL. We report an unusual case of rapidly progressing acquired CL associated with leukocytoclastic vasculitis, IgA myeloma, and an immune complex-mediated glomerulonephritis. Light microscopy of the lax skin revealed complete absence of elastic fibers in areas of vasculitis.

  9. Transcutaneous immunization with a novel imiquimod nanoemulsion induces superior T cell responses and virus protection.

    Science.gov (United States)

    Lopez, Pamela Aranda; Denny, Mark; Hartmann, Ann-Kathrin; Alflen, Astrid; Probst, Hans Christian; von Stebut, Esther; Tenzer, Stefan; Schild, Hansjörg; Stassen, Michael; Langguth, Peter; Radsak, Markus P

    2017-09-01

    Transcutaneous immunization (TCI) is a novel vaccination strategy utilizing the skin associated lymphatic tissue to induce immune responses. TCI using a cytotoxic T lymphocyte (CTL) epitope and the Toll-like receptor 7 (TLR7) agonist imiquimod mounts strong CTL responses by activation and maturation of skin-derived dendritic cells (DCs) and their migration to lymph nodes. However, TCI based on the commercial formulation Aldara only induces transient CTL responses that needs further improvement for the induction of durable therapeutic immune responses. Therefore we aimed to develop a novel imiquimod solid nanoemulsion (IMI-Sol) for TCI with superior vaccination properties suited to induce high quality T cell responses for enhanced protection against infections. TCI was performed by applying a MHC class I or II restricted epitope along with IMI-Sol or Aldara (each containing 5% Imiquimod) on the shaved dorsum of C57BL/6, IL-1R, Myd88, Tlr7 or Ccr7 deficient mice. T cell responses as well as DC migration upon TCI were subsequently analyzed by flow cytometry. To determine in vivo efficacy of TCI induced immune responses, CTL responses and frequency of peptide specific T cells were evaluated on day 8 or 35 post vaccination and protection in a lymphocytic choriomeningitis virus (LCMV) infection model was assessed. TCI with the imiquimod formulation IMI-Sol displayed equal skin penetration of imiquimod compared to Aldara, but elicited superior CD8 + as well as CD4 + T cell responses. The induction of T-cell responses induced by IMI-Sol TCI was dependent on the TLR7/MyD88 pathway and independent of IL-1R. IMI-Sol TCI activated skin-derived DCs in skin-draining lymph nodes more efficiently compared to Aldara leading to enhanced protection in a LCMV infection model. Our data demonstrate that IMI-Sol TCI can overcome current limitations of previous imiquimod based TCI approaches opening new perspectives for transcutaneous vaccination strategies and allowing the use of this

  10. Physical Activities, Exercises, and Their Effects to the Immune System

    OpenAIRE

    Nurmasitoh, Titis

    2015-01-01

    Every systems in human body correlate to maintain homeostasis. One of those systems which contribute to maintain homeostasis is the immune system. The immune system defends physiological functions against foreign substances and cancer cells through a complex and multilayered mechanism. The ability to defend against foreign substances and abnormal cells is done by two types of immune system, which are Innate immune system and adaptive/acquired immune system. There are also certain factors that...

  11. Tetranychus urticae mites do not mount an induced immune response against bacteria.

    Science.gov (United States)

    Santos-Matos, Gonçalo; Wybouw, Nicky; Martins, Nelson E; Zélé, Flore; Riga, Maria; Leitão, Alexandre B; Vontas, John; Grbić, Miodrag; Van Leeuwen, Thomas; Magalhães, Sara; Sucena, Élio

    2017-06-14

    The genome of the spider mite Tetranychus urticae , a herbivore, is missing important elements of the canonical Drosophila immune pathways necessary to fight bacterial infections. However, it is not known whether spider mites can mount an immune response and survive bacterial infection. In other chelicerates, bacterial infection elicits a response mediated by immune effectors leading to the survival of infected organisms. In T. urticae , infection by either Escherichia coli or Bacillus megaterium did not elicit a response as assessed through genome-wide transcriptomic analysis. In line with this, spider mites died within days even upon injection with low doses of bacteria that are non-pathogenic to Drosophila Moreover, bacterial populations grew exponentially inside the infected spider mites. By contrast, Sancassania berlesei , a litter-dwelling mite, controlled bacterial proliferation and resisted infections with both Gram-negative and Gram-positive bacteria lethal to T. urticae This differential mortality between mite species was absent when mites were infected with heat-killed bacteria. Also, we found that spider mites harbour in their gut 1000-fold less bacteria than S. berlesei We show that T. urticae has lost the capacity to mount an induced immune response against bacteria, in contrast to other mites and chelicerates but similarly to the phloem feeding aphid Acyrthosiphon pisum Hence, our results reinforce the putative evolutionary link between ecological conditions regarding exposure to bacteria and the architecture of the immune response. © 2017 The Authors.

  12. Effect of simultaneous vaccination with H1N1 and GAD-alum on GAD65-induced immune response.

    Science.gov (United States)

    Tavira, Beatriz; Cheramy, Mikael; Axelsson, Stina; Åkerman, Linda; Ludvigsson, Johnny; Casas, Rosaura

    2017-07-01

    A European Phase III trial of GAD formulated with aluminium hydroxide (GAD-alum) failed to reach its primary endpoint (preservation of stimulated C-peptide secretion from baseline to 15 months in type 1 diabetes patients), but subgroup analysis showed a clinical effect when participants from Nordic countries were excluded, raising concern as to whether the mass vaccination of the Swedish and Finnish populations with the Pandemrix influenza vaccine could have influenced the study outcomes. In the current study, we aimed to assess whether Pandemrix vaccination affects the specific immune responses induced by GAD-alum and the C-peptide response. In this secondary analysis, we analysed data acquired from the Swedish participants in the Phase III GAD-alum trial who received subcutaneous GAD-alum vaccination (two doses, n = 43; four doses, n = 46) or placebo (n = 48). GAD autoantibodies (GADA) and H1N1 autoantibodies, GAD 65 -induced cytokine secretion and change in fasting and stimulated C-peptide levels from baseline to 15 months were analysed with respect to the relative time between H1N1 vaccination and the first injection of GAD-alum. GADA levels at 15 months were associated with the relative time between GAD-alum and Pandemrix administration in participants who received two doses of the GAD-alum vaccine (p = 0.015, r = 0.4). Both in participants treated with two doses and four doses of GAD-alum, GADA levels were higher when the relative time between vaccines was ≥210 days (p < 0.05). In the group that received two doses of GAD-alum, levels of several GAD 65 -induced cytokines were higher in participants who received the H1N1 vaccination and the first GAD-alum injection at least 150 days apart, and the change in fasting and stimulated C-peptide at 15 months was associated with the relative time between vaccines. Neither of these effects were observed in individuals who received four doses of GAD-alum. In individuals who received two doses of GAD

  13. Safety and immune regulatory properties of canine induced pluripotent stem cell-derived mesenchymal stem cells.

    Science.gov (United States)

    Chow, Lyndah; Johnson, Valerie; Regan, Dan; Wheat, William; Webb, Saiphone; Koch, Peter; Dow, Steven

    2017-12-01

    Mesenchymal stem cells (MSCs) exhibit broad immune modulatory activity in vivo and can suppress T cell proliferation and dendritic cell activation in vitro. Currently, most MSC for clinical usage are derived from younger donors, due to ease of procurement and to the superior immune modulatory activity. However, the use of MSC from multiple unrelated donors makes it difficult to standardize study results and compare outcomes between different clinical trials. One solution is the use of MSC derived from induced pluripotent stem cells (iPSC); as iPSC-derived MSC have nearly unlimited proliferative potential and exhibit in vitro phenotypic stability. Given the value of dogs as a spontaneous disease model for pre-clinical evaluation of stem cell therapeutics, we investigated the functional properties of canine iPSC-derived MSC (iMSC), including immune modulatory properties and potential for teratoma formation. We found that canine iMSC downregulated expression of pluripotency genes and appeared morphologically similar to conventional MSC. Importantly, iMSC retained a stable phenotype after multiple passages, did not form teratomas in immune deficient mice, and did not induce tumor formation in dogs following systemic injection. We concluded therefore that iMSC were phenotypically stable, immunologically potent, safe with respect to tumor formation, and represented an important new source of cells for therapeutic modulation of inflammatory disorders. Copyright © 2017. Published by Elsevier B.V.

  14. SjCRT, a recombinant Schistosoma japonicum calreticulin, induces maturation of dendritic cells and a Th1-polarized immune response in mice

    Directory of Open Access Journals (Sweden)

    Lizhen Ma

    2017-11-01

    Full Text Available Abstract Background It is well known that immunization of radiation-attenuated (RA schistosoma cercariae or schistosomula can induce high levels of protective immunity against schistosoma cercariae reinfection in many animals. Many studies have shown that the Th1 cellular immune response is crucial for the protective effect elicited by RA schistosomula. However, the molecular mechanism of this strong protective immunity remains unclear. Methods The expression profiles of Schistosoma japonicum calreticulin (SjCRT in RA and normal schistosoma-derived cells were investigated by flow cytometry. The effect of recombinant SjCRT (rSjCRT on mouse dendritic cells (DCs was determined by FACS, ELISA and RT-PCR analysis. We also analyzed the effects of SjCRT on the activation of spleen cells from mice immunized with rSjCRT by detecting lymphocyte proliferation and the cytokine profiles of splenocytes. Results We found that the expression level of SjCRT in the cells from RA larvae was significantly higher than that in cells from normal schistosomula at early stages of development (day 4. The results of effect of rSjCRT on mouse DCs showed that rSjCRT could induce phenotypic and functional maturation of DCs, and SjCRT bound to the surface of DCs through the CD91 receptor and could be engulfed by DCs. The results of activation of splenocytes from mice immunized with rSjCRT also demonstrate that rSjCRT can effectively stimulate the proliferative response of splenic lymphocytes, elicit splenocytes from immunized mice to secrete high levels of IFN-γ, TNF-α and IL-4, and activate CD4+ T cells to produce high levels of IFN-γ. Conclusion SjCRT is one of the immunostimulatory molecules released from RA schistosomula cells, might play a crucial role in conferring a Th1-polarized immune response induced by RA cercariae/schistosomula in mice, and is a candidate molecule responsible for the high levels of protective immunity induced by RA schistosomula.

  15. Pertussis Maternal Immunization: Narrowing the Knowledge Gaps on the Duration of Transferred Protective Immunity and on Vaccination Frequency

    Directory of Open Access Journals (Sweden)

    María Emilia Gaillard

    2017-09-01

    Full Text Available Maternal safety through pertussis vaccination and subsequent maternal–fetal-antibody transfer are well documented, but information on infant protection from pertussis by such antibodies and by subsequent vaccinations is scarce. Since mice are used extensively for maternal-vaccination studies, we adopted that model to narrow those gaps in our understanding of maternal pertussis immunization. Accordingly, we vaccinated female mice with commercial acellular pertussis (aP vaccine and measured offspring protection against Bordetella pertussis challenge and specific-antibody levels with or without revaccination. Maternal immunization protected the offspring against pertussis, with that immune protection transferred to the offspring lasting for several weeks, as evidenced by a reduction (4–5 logs, p < 0.001 in the colony-forming-units recovered from the lungs of 16-week-old offspring. Moreover, maternal-vaccination-acquired immunity from the first pregnancy still conferred protection to offspring up to the fourth pregnancy. Under the conditions of our experimental protocol, protection to offspring from the aP-induced immunity is transferred both transplacentally and through breastfeeding. Adoptive-transfer experiments demonstrated that transferred antibodies were more responsible for the protection detected in offspring than transferred whole spleen cells. In contrast to reported findings, the protection transferred was not lost after the vaccination of infant mice with the same or other vaccine preparations, and conversely, the immunity transferred from mothers did not interfere with the protection conferred by infant vaccination with the same or different vaccines. These results indicated that aP-vaccine immunization of pregnant female mice conferred protective immunity that is transferred both transplacentally and via offspring breastfeeding without compromising the protection boostered by subsequent infant vaccination. These results

  16. Escherichia coli O157:H7 induces stronger plant immunity than Salmonella enterica Typhimurium SL1344.

    Science.gov (United States)

    Roy, Debanjana; Panchal, Shweta; Rosa, Bruce A; Melotto, Maeli

    2013-04-01

    Consumption of fresh produce contaminated with bacterial human pathogens has resulted in various, sometimes deadly, disease outbreaks. In this study, we assessed plant defense responses induced by the fully pathogenic bacteria Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium SL1344 in both Arabidopsis thaliana and lettuce (Lactuca sativa). Unlike SL1344, O157:H7 induced strong plant immunity at both pre-invasion and post-invasion steps of infection. For instance, O157:H7 triggered stomatal closure even under high relative humidity, an environmental condition that generally weakens plant defenses against bacteria in the field and laboratory conditions. SL1344 instead induced a transient stomatal immunity. We also observed that PR1 gene expression was significantly higher in Arabidopsis leaves infected with O157:H7 compared with SL1344. These results suggest that plants may recognize and respond to some human pathogens more effectively than others. Furthermore, stomatal immunity can diminish the penetration of human pathogens through the leaf epidermis, resulting in low bacterial titers in the plant apoplast and suggesting that additional control measures can be employed to prevent food contamination. The understanding of how plant responses can diminish bacterial contamination is paramount in preventing outbreaks and improving the safety of food supplies.

  17. HCV-specific immune responses induced by CIGB-230 in combination with IFN-α plus ribavirin

    Science.gov (United States)

    Amador-Cañizares, Yalena; Martínez-Donato, Gillian; Álvarez-Lajonchere, Liz; Vasallo, Claudia; Dausá, Mariacarla; Aguilar-Noriega, Daylen; Valenzuela, Carmen; Raíces, Ivette; Dubuisson, Jean; Wychowski, Czeslaw; Cinza-Estévez, Zurina; Castellanos, Marlén; Núñez, Magdalys; Armas, Anny; González, Yaimé; Revé, Ismariley; Guerra, Ivis; Pérez Aguiar, Ángel; Dueñas-Carrera, Santiago

    2014-01-01

    AIM: To analyze hepatitis C virus (HCV)-specific immune responses in chronically infected patients under triple therapy with interferon-α (IFN-α) plus ribavirin and CIGB-230. METHODS: CIGB-230 was administered in different schedules with respect to IFN-α plus ribavirin therapy. Paired serum and peripheral blood mononuclear cells (PBMC) samples from baseline and end of treatment were analyzed. The HCV-specific humoral response was tested by enzyme-linked immunosorbent assay, neutralizing antibodies were evaluated by cell culture HCV neutralization assays, PBMC proliferation was assayed by carboxyfluorescein succinimidyl ester staining and IFN-γ secretion was assessed by enzyme-linked immunospot. Data on virological and histological response and their association with immune variables are also provided. RESULTS: From week 12 to week 48, all groups of patients showed a significant reduction in mean leukocyte counts. Statistically significant reductions in antibody titers were frequent, but only individuals immunized with CIGB-230 as early add-on treatment sustained the core-IgG response, and the neutralizing antibody response was enhanced only in patients receiving CIGB-230. Cell-mediated immune responses also tended to decline, but significant reductions in IFN-γ secretion and total absence of core-specific lymphoproliferation were exclusive of the control group. Only CIGB-230-immunized individuals showed de novo induced lymphoproliferative responses against the structural antigens. Importantly, it was demonstrated that the quality of the CIGB-230-induced immune response depended on the number of doses and timing of administration in relation to the antiviral therapy. Specifically, the administration of 6 doses of CIGB-230 as late add-on to therapy increased the neutralizing antibody activity and the de novo core-specific IFN-γ secretion, both of which were associated with the sustained virological response. CONCLUSION: CIGB-230, combined with IFN

  18. Different protein of Echinococcus granulosus stimulates dendritic induced immune response.

    Science.gov (United States)

    Wang, Yana; Wang, Qiang; Lv, Shiyu; Zhang, Shengxiang

    2015-06-01

    Cystic echinococcosis is a chronic infectious disease that results from a host/parasite interaction. Vaccination with ferritin derived from Echinococcus granulosus is a potential preventative treatment. To understand whether ferritin is capable of inducing a host immune response, we investigated the response of dendritic cells (DCs) to both recombinant ferritin protein and the hydatid fluid (HF) of E. granulosus. We evaluated the immunomodulatory potential of these antigens by performing, immunocytochemistry, electron microscopy and in vivo imaging of monocyte-derived murine DCs. During antigen stimulation of DCs, ferritin cause DCs maturation and induced higher levels of surface marker expression and activated T-cell proliferation and migration. On contrary, HF failed to induce surface marker expression and to stimulate T-cell proliferation. In response to HF, DCs produced interleukin-6 (IL-6), but no IL-12 and IL-10. DCs stimulated with ferritin produced high levels of cytokines. Overall, HF appears to induce host immunosuppression in order to ensure parasite survival via inhibits DC maturation and promotes Th2-dependent secretion of cytokines. Although ferritin also promoted DC maturation and cytokine release, it also activates CD4+T-cell proliferation, but regard of the mechanism of the Eg.ferritin induce host to eradicate E. granulosus were not clear.

  19. Ocular myasthenia gravis induced by human acetylcholine receptor ϵ subunit immunization in HLA DR3 transgenic mice.

    Science.gov (United States)

    Wu, Xiaorong; Tuzun, Erdem; Saini, Shamsher S; Wang, Jun; Li, Jing; Aguilera-Aguirre, Leopoldo; Huda, Ruksana; Christadoss, Premkumar

    2015-12-01

    Extraocular muscles (EOM) are preferentially involved in myasthenia gravis (MG) and acetylcholine receptor (AChR) antibody positive MG patients may occasionally present with isolated ocular symptoms. Although experimental autoimmune myasthenia gravis (EAMG) induced by whole AChR immunization closely mimics clinical and immunopathological aspects of MG, EOM are usually not affected. We have previously developed an EAMG model, which imitates EOM symptoms of MG by immunization of human leukocyte antigen (HLA) transgenic mice with α or γ-subunits of human AChR (H-AChR). To investigate the significance of the ϵ-subunit in ocular MG, we immunized HLA-DR3 and HLA-DQ8 transgenic mice with recombinant H-AChR ϵ-subunit expressed in Escherichia coli. HLA-DR3 transgenic mice showed significantly higher clinical ocular and generalized MG severity scores and lower grip strength values than HLA-DQ8 mice. H-AChR ϵ-subunit-immunized HLA-DR3 transgenic mice had higher serum anti-AChR antibody (IgG, IgG1, IgG2b, IgG2c and IgM) levels, neuromuscular junction IgG and complement deposit percentages than ϵ-subunit-immunized HLA-DQ8 transgenic mice. Control mice immunized with E. coli extract or complete Freund adjuvant (CFA) did not show clinical and immunopathological features of ocular and generalized EAMG. Lymph node cells of ϵ-subunit-immunized HLA-DR3 mice showed significantly higher proliferative responses than those of ϵ-subunit-immunized HLA-DQ8 mice, crude E. coli extract-immunized and CFA-immunized transgenic mice. Our results indicate that the human AChR ϵ-subunit is capable of inducing myasthenic muscle weakness. Diversity of the autoimmune responses displayed by mice expressing different HLA class II molecules suggests that the interplay between HLA class II alleles and AChR subunits might have a profound impact on the clinical course of MG. Copyright © 2015 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  20. Nickel-induced hypersensitivity: etiology, immune reactions, prevention and therapy.

    Science.gov (United States)

    Hostýnek, Jurij J

    2002-08-01

    As a contact allergen causing type I and type IV hypersensitivity, mediated by reagins and allergen-specific T lymphocytes, expressed in a wide range of cutaneous eruptions following dermal or systemic exposure, nickel has acquired the distinction of being among the most frequent causes of hypersensitivity, occupationally as well as among the general population. In synoptic form the many effects that nickel has on the organism are presented, to provide a comprehensive picture of the aspects of that metal with many biologically noxious, but metallurgically indispensable characteristics. This paper reviews the epidemiology, the prognosis for occupational and non-occupational nickel allergic hypersensitivity (NAH), the many types of exposure and the resulting immune responses, immunotoxicity and rate of diffusion through the skin. Alternatives towards prevention and remediation, topical and systemic, for this pervasive and increasing form of morbidity resulting from multiple types of exposure are discussed. Merits and limitations of preventive measures in industry and private life are considered, as well as the effectiveness of topical and systemic therapy in treating NAH.

  1. Candesartan ameliorates impaired fear extinction induced by innate immune activation.

    Science.gov (United States)

    Quiñones, María M; Maldonado, Lizette; Velazquez, Bethzaly; Porter, James T

    2016-02-01

    Patients with post-traumatic stress disorder (PTSD) tend to show signs of a relatively increased inflammatory state suggesting that activation of the immune system may contribute to the development of PTSD. In the present study, we tested whether activation of the innate immune system can disrupt acquisition or recall of auditory fear extinction using an animal model of PTSD. Male adolescent rats received auditory fear conditioning in context A. The next day, an intraperitoneal injection of lipopolysaccharide (LPS; 100 μg/kg) prior to auditory fear extinction in context B impaired acquisition and recall of extinction. LPS (100 μg/kg) given after extinction training did not impair extinction recall suggesting that LPS did not affect consolidation of extinction. In contrast to cued fear extinction, contextual fear extinction was not affected by prior injection of LPS (100 μg/kg). Although LPS also reduced locomotion, we could dissociate the effects of LPS on extinction and locomotion by using a lower dose of LPS (50 μg/kg) which impaired locomotion without affecting extinction. In addition, 15 h after an injection of 250 μg/kg LPS in adult rats, extinction learning and recall were impaired without affecting locomotion. A sub-chronic treatment with candesartan, an angiotensin II type 1 receptor blocker, prevented the LPS-induced impairment of extinction in adult rats. Our results demonstrate that activation of the innate immune system can disrupt auditory fear extinction in adolescent and adult animals. These findings also provide direction for clinical studies of novel treatments that modulate the innate immune system for stress-related disorders like PTSD. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. The immune system, natural autoantibodies and general homeostasis in health and disease.

    Science.gov (United States)

    Poletaev, A; Boura, P

    2011-10-01

    It is generally accepted that the destination of the immune system is not only to discriminate between self and non-self but also to mount responses against non-self. During the last decades, it became evident that weak self-reactivity is a necessary condition for immune homeostasis. Natural self reactivity and the internal image created by autoantibodies, participate greatly to the maintenance of homeostasis. Under conditions of increased or altered antigenic pressure, the homeostatic status is disrupted and the organism becomes vulnerable to the emergence of diseases. "Immunculus" is the self-reactive and interconnected entity of the immune system, provided by a complicated network of natural autoantibobies of different specificity, as a mosaic picture. Quantitative changes in each part of the image are related to variations of expression of relative antigens. The immune system takes in account image information from the continuous screening of the antigenic status and compares between presented state and the desired (optimal) one. Substantial and prolonged deviations from the optimal state, triggers the induction of compensatory and reparative processes, aiming to restore molecular and functional homeostasis. So, natural autoimmunity through the ability of natural a-Abs to induce mechanisms of natural and acquired immunity, aims to prevent pathogenic processes and maintain or restore health status.

  3. [The role of gut microbiota in the regulation of the immune response].

    Science.gov (United States)

    Alarcón, Pedro; González, Margarita; Castro, Érica

    2016-07-01

    The gastrointestinal tract hosts around 10(14) bacterial microorganisms, in a constantly growing density from the stomach to the distal colon. This microbiota is composed by more than 500 species of bacteria, which are quickly acquired after birth, fairly stable during the host’s life, and essential for human homeostasis. These bacteria have important functions, such as stimulating the immune system, protecting the host from invading bacteria and viruses, and improving digestion, especially of complex carbohydrates. Also, the gut microbiota interacts directly with the immune system. However, the interaction of the intestinal epithelium and its microbiota with the immune system has yet to be fully understood. Secretory immunoglobulin A, produced by the plasma cells in Peyer’s patches and in the lamina propria, maintains non-invasive commensal bacteria and neutralize invasive pathogens. Dendritic cells migrate from the lamina propria of the secondary lymphoid organs to regulate gut immunity. They also have a key role maintaining luminal IgA and inducing the growth of regulatory T cells. Dendritic cells supervise the gut microenvironment too, keeping an immunological equilibrium and tolerance. The importance of the gut microbiota in regulating the immune system lies mostly in the homeostasis-or positive equilibrium. Thus, many diseases are a consequence of poor interactions or a loss of this equilibrium.

  4. Novel adenoviral vector induces T-cell responses despite anti-adenoviral neutralizing antibodies in colorectal cancer patients.

    Science.gov (United States)

    Morse, Michael A; Chaudhry, Arvind; Gabitzsch, Elizabeth S; Hobeika, Amy C; Osada, Takuya; Clay, Timothy M; Amalfitano, Andrea; Burnett, Bruce K; Devi, Gayathri R; Hsu, David S; Xu, Younong; Balcaitis, Stephanie; Dua, Rajesh; Nguyen, Susan; Balint, Joseph P; Jones, Frank R; Lyerly, H Kim

    2013-08-01

    First-generation, E1-deleted adenovirus subtype 5 (Ad5)-based vectors, although promising platforms for use as cancer vaccines, are impeded in activity by naturally occurring or induced Ad-specific neutralizing antibodies. Ad5-based vectors with deletions of the E1 and the E2b regions (Ad5 [E1-, E2b-]), the latter encoding the DNA polymerase and the pre-terminal protein, by virtue of diminished late phase viral protein expression, were hypothesized to avoid immunological clearance and induce more potent immune responses against the encoded tumor antigen transgene in Ad-immune hosts. Indeed, multiple homologous immunizations with Ad5 [E1-, E2b-]-CEA(6D), encoding the tumor antigen carcinoembryonic antigen (CEA), induced CEA-specific cell-mediated immune (CMI) responses with antitumor activity in mice despite the presence of preexisting or induced Ad5-neutralizing antibody. In the present phase I/II study, cohorts of patients with advanced colorectal cancer were immunized with escalating doses of Ad5 [E1-, E2b-]-CEA(6D). CEA-specific CMI responses were observed despite the presence of preexisting Ad5 immunity in a majority (61.3 %) of patients. Importantly, there was minimal toxicity, and overall patient survival (48 % at 12 months) was similar regardless of preexisting Ad5 neutralizing antibody titers. The results demonstrate that, in cancer patients, the novel Ad5 [E1-, E2b-] gene delivery platform generates significant CMI responses to the tumor antigen CEA in the setting of both naturally acquired and immunization-induced Ad5-specific immunity.

  5. Evaluation of humoral and cell-mediated inducible immunity to Haemophilus ducreyi in an animal model of chancroid.

    Science.gov (United States)

    Desjardins, M; Filion, L G; Robertson, S; Kobylinski, L; Cameron, D W

    1996-01-01

    To study the mechanisms of inducible immunity to Haemophilus ducreyi infection in the temperature-dependent rabbit model of chancroid, we conducted passive immunization experiments and characterized the inflammatory infiltrate of chancroidal lesions. Polyclonal immunoglobulin G was purified from immune sera raised against H. ducreyi 35000 whole-cell lysate or a pilus preparation and from naive control rabbits. Rabbits were passively immunized with 24 or 48 mg of purified polyclonal immunoglobulin G intravenously, followed 24 h after infusion by homologous titered infectious challenge. Despite titratable antibody, no significant difference in infection or disease was observed. We then evaluated the immunohistology of lesions produced by homologous-strain challenge in sham-immunized rabbits and those protectively vaccinated by pilus preparation immunization. Immunohistochemical stains for CD5 and CD4 T-lymphocyte markers were performed on lesion sections 4, 10, 15, and 21 days from infection. Lesions of pilus preparation vaccinees compared with those of controls had earlier infiltration with significantly more T lymphocytes (CD5+) and with a greater proportion of CD4+ T lymphocytes at day 4 (33% +/- 55% versus 9.7% +/- 2%; P = 0.002), corroborating earlier sterilization (5.0 +/- 2 versus 13.7 +/- 0.71 days; P < 0.001) and lesion resolution. Intraepithelial challenge of pilus-vaccinated rabbits with 100 micrograms of the pilus preparation alone produced indurated lesions within 48 h with lymphoid and plasmacytoid infiltration, edema, and extravasation of erythrocytes. We conclude that passive immunization may not confer a vaccine effect in this model and that active vaccination with a pilus preparation induces a delayed-type hypersensitivity skin test response and confers protection through cell-mediated immunity seen as an amplified lymphocytic infiltrate and accelerated maturation of the T-lymphocyte response. PMID:8613391

  6. Reinfection immunity in schistosomiasis

    International Nuclear Information System (INIS)

    Kamiya, Haruo

    1987-01-01

    Schistosomiasis is one of the most important parasitic diseases in the world, especially in endemic areas of developing countries. This situation has prompted parasitologist to attempt intensive researches on immune mechanisms, especially those of reinfection immunity associated with eliminating challenge infection. The current knowledge of reinfection immunity against Schistosoma spp. infection was therefore reviewed briefly and discussed with special reference to our data on protective immune responses induced by radiation-attenuated cercarial infection. A recently developed technique of compressed organ autoradiography (COA) has contributed to assessing parasite attrition in immune animals following challenge infection. Our study using COA has demonstrated that major attrition of schistosomula from challenge infection occurs in the skin of CBA/Ca mice vaccinated with 20 Krad gamma radiation-attenuated cercariae of S. mansoni, while in both lungs and liver of similarly vaccinated guinea pig model. Furthermore, gamma-irradiation to cercariae affected their migration potential and surface-antigen profiles. The immunizing stimuli of gamma radiation-attenuated cercariae profoundly affected the expression of responsiveness in vaccinated animals. The change in antigenic profiles and migration potential of those vaccinating population was discussed in relation to the kinetics of reinfection immunity induced in vaccinated amimal models. These works might provide a base line data to develop a practical vaccine for schistosomiasis using defined antigens. It must be emphasized that these vaccines could serve as a practical prophylactic measure for schistosomiasis in the endemic areas, even if the vaccines fail to induce sterilizing immunity. (author). 141 refs

  7. Can VHS Virus Bypass the Protective Immunity Induced by DNA Vaccination in Rainbow Trout?

    Directory of Open Access Journals (Sweden)

    Dagoberto Sepúlveda

    Full Text Available DNA vaccines encoding viral glycoproteins have been very successful for induction of protective immunity against diseases caused by rhabdoviruses in cultured fish species. However, the vaccine concept is based on a single viral gene and since RNA viruses are known to possess high variability and adaptation capacity, this work aimed at evaluating whether viral haemorrhagic septicaemia virus (VHSV, an RNA virus and member of Rhabdoviridae family, was able to evade the protective immune response induced by the DNA vaccination of rainbow trout. The experiments comprised repeated passages of a highly pathogenic VHSV isolate in a fish cell line in the presence of neutralizing fish serum (in vitro approach, and in rainbow trout immunized with the VHS DNA vaccine (in vivo approach. For the in vitro approach, the virus collected from the last passage (passaged virus was as sensitive as the parental virus to serum neutralization, suggesting that the passaging did not promote the selection of virus populations able to bypass the neutralization by serum antibodies. Also, in the in vivo approach, where virus was passaged several times in vaccinated fish, no increased virulence nor increased persistence in vaccinated fish was observed in comparison with the parental virus. However, some of the vaccinated fish did get infected and could transmit the infection to naïve cohabitant fish. The results demonstrated that the DNA vaccine induced a robust protection, but also that the immunity was non-sterile. It is consequently important not to consider vaccinated fish as virus free in veterinary terms.

  8. Cell-mediated immune responses in the head-associated lymphoid tissues induced to a live attenuated avian coronavirus vaccine.

    Science.gov (United States)

    Gurjar, Rucha S; Gulley, Stephen L; van Ginkel, Frederik W

    2013-12-01

    Humoral immunity is important for controlling viral diseases of poultry, but recent studies have indicated that cytotoxic T cells also play an important role in the immune response to infectious bronchitis virus (IBV). To better understand the cell mediated immune responses to IBV in the mucosal and systemic immune compartments chickens were ocularly vaccinated with IBV. This induced a lymphocyte expansion in head-associated lymphoid tissues (HALT) and to a lesser extent in the spleen, followed by a rapid decline, probably due to homing of lymphocytes out of these organs and contraction of the lymphocyte population. This interpretation was supported by observations that changes in mononuclear cells were mirrored by that in CD3(+)CD44(+) T cell abundance, which presumably represent T effector cells. Increased interferon gamma (IFN-γ) expression was observed in the mucosal immune compartment, i.e., HALT, after primary vaccination, but shifted to the systemic immune compartment after boosting. In contrast, the expression of cytotoxicity-associated genes, i.e., granzyme A (GZMA) and perforin mRNA, remained associated with the HALT after boosting. Thus, an Ark-type IBV ocular vaccine induces a central memory IFN-γ response in the spleen while the cytotoxic effector memory response, as measured by GZMA and perforin mRNA expression, remains associated with CALT after boosting. Copyright © 2013. Published by Elsevier Ltd.

  9. Perturbation of gut bacteria induces a coordinated cellular immune response in the purple sea urchin larva

    Science.gov (United States)

    CH Ho, Eric; Buckley, Katherine M; Schrankel, Catherine S; Schuh, Nicholas W; Hibino, Taku; Solek, Cynthia M; Bae, Koeun; Wang, Guizhi; Rast, Jonathan P

    2016-01-01

    The purple sea urchin (Strongylocentrotus purpuratus) genome sequence contains a complex repertoire of genes encoding innate immune recognition proteins and homologs of important vertebrate immune regulatory factors. To characterize how this immune system is deployed within an experimentally tractable, intact animal, we investigate the immune capability of the larval stage. Sea urchin embryos and larvae are morphologically simple and transparent, providing an organism-wide model to view immune response at cellular resolution. Here we present evidence for immune function in five mesenchymal cell types based on morphology, behavior and gene expression. Two cell types are phagocytic; the others interact at sites of microbial detection or injury. We characterize immune-associated gene markers for three cell types, including a perforin-like molecule, a scavenger receptor, a complement-like thioester-containing protein and the echinoderm-specific immune response factor 185/333. We elicit larval immune responses by (1) bacterial injection into the blastocoel and (2) seawater exposure to the marine bacterium Vibrio diazotrophicus to perturb immune state in the gut. Exposure at the epithelium induces a strong response in which pigment cells (one type of immune cell) migrate from the ectoderm to interact with the gut epithelium. Bacteria that accumulate in the gut later invade the blastocoel, where they are cleared by phagocytic and granular immune cells. The complexity of this coordinated, dynamic inflammatory program within the simple larval morphology provides a system in which to characterize processes that direct both aspects of the echinoderm-specific immune response as well as those that are shared with other deuterostomes, including vertebrates. PMID:27192936

  10. Pre-existing vector immunity does not prevent replication deficient adenovirus from inducing efficient CD8 T-cell memory and recall responses

    DEFF Research Database (Denmark)

    Steffensen, Maria Abildgaard; Jensen, Benjamin Anderschou Holbech; Holst, Peter Johannes

    2012-01-01

    directed against epitopes in the adenoviral vector seemed to correlate with repression of the induced response in re-vaccinated B-cell deficient mice. More importantly, despite a repressed primary effector CD8 T-cell response in Ad5-immune animals subjected to vaccination, memory T cells were generated...... that provided the foundation for an efficient recall response and protection upon subsequent viral challenge. Furthermore, the transgene specific response could be efficiently boosted by homologous re-immunization. Taken together, these studies indicate that adenoviral vectors can be used to induce efficient CD......8 T-cell memory even in individuals with pre-existing vector immunity....

  11. General applicability of chicken egg yolk antibodies: the performance of IgY immunoglobulins raised against the hypoxia-inducible factor 1alpha

    OpenAIRE

    Camenisch, G; Tini, M; Chilov, D; Kvietikova, I; Srinivas, V; Caro, J; Spielmann, P; Wenger, R H; Gassmann, M

    1999-01-01

    Avian embryos and neonates acquire passive immunity by transferring maternal immunoglobulins from serum to egg yolk. Despite being a convenient source of antibodies, egg yolk immunoglobulins (IgY) from immunized hens have so far received scant attention in research. Here we report the generation and rapid isolation of IgY from the egg yolk of hens immunized against the alpha subunit of the human hypoxia-inducible factor 1 (HIF-1alpha). Anti-HIF-1alpha IgY antibodies were affinity purified and...

  12. Altered Cellular Metabolism Drives Trained Immunity.

    Science.gov (United States)

    Sohrabi, Yahya; Godfrey, Rinesh; Findeisen, Hannes M

    2018-04-04

    Exposing innate immune cells to an initial insult induces a long-term proinflammatory response due to metabolic and epigenetic alterations which encompass an emerging new concept called trained immunity. Recent studies provide novel insights into mechanisms centered on metabolic reprogramming which induce innate immune memory in hematopoietic stem cells and monocytes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Protective Immunity and Reduced Renal Colonization Induced by Vaccines Containing Recombinant Leptospira interrogans Outer Membrane Proteins and Flagellin Adjuvant

    Science.gov (United States)

    Monaris, D.; Sbrogio-Almeida, M. E.; Dib, C. C.; Canhamero, T. A.; Souza, G. O.; Vasconcellos, S. A.; Ferreira, L. C. S.

    2015-01-01

    Leptospirosis is a global zoonotic disease caused by different Leptospira species, such as Leptospira interrogans, that colonize the renal tubules of wild and domestic animals. Thus far, attempts to develop effective leptospirosis vaccines, both for humans and animals, have failed to induce immune responses capable of conferring protection and simultaneously preventing renal colonization. In this study, we evaluated the protective immunity induced by subunit vaccines containing seven different recombinant Leptospira interrogans outer membrane proteins, including the carboxy-terminal portion of the immunoglobulinlike protein A (LigAC) and six novel antigens, combined with aluminum hydroxide (alum) or Salmonella flagellin (FliC) as adjuvants. Hamsters vaccinated with the different formulations elicited high antigen-specific antibody titers. Immunization with LigAC, either with alum or flagellin, conferred protective immunity but did not prevent renal colonization. Similarly, animals immunized with LigAC or LigAC coadministered with six leptospiral proteins with alum adjuvant conferred protection but did not reduce renal colonization. In contrast, immunizing animals with the pool of seven antigens in combination with flagellin conferred protection and significantly reduced renal colonization by the pathogen. The present study emphasizes the relevance of antigen composition and added adjuvant in the efficacy of antileptospirosis subunit vaccines and shows the complex relationship between immune responses and renal colonization by the pathogen. PMID:26108285

  14. Poly (I:C) enhances the anti-tumor activity of canine parvovirus NS1 protein by inducing a potent anti-tumor immune response.

    Science.gov (United States)

    Gupta, Shishir Kumar; Yadav, Pavan Kumar; Tiwari, A K; Gandham, Ravi Kumar; Sahoo, A P

    2016-09-01

    The canine parvovirus NS1 (CPV2.NS1) protein selectively induces apoptosis in the malignant cells. However, for an effective in vivo tumor treatment strategy, an oncolytic agent also needs to induce a potent anti-tumor immune response. In the present study, we used poly (I:C), a TLR3 ligand, as an adjuvant along with CPV2.NS1 to find out if the combination can enhance the oncolytic activity by inducing a potent anti-tumor immune response. The 4T1 mammary carcinoma cells were used to induce mammary tumor in Balb/c mice. The results suggested that poly (I:C), when given along with CPV2.NS1, not only significantly reduced the tumor growth but also augmented the immune response against tumor antigen(s) as indicated by the increase in blood CD4+ and CD8+ counts and infiltration of immune cells in the tumor tissue. Further, blood serum analysis of the cytokines revealed that Th1 cytokines (IFN-γ and IL-2) were significantly upregulated in the treatment group indicating activation of cell-mediated immune response. The present study reports the efficacy of CPV2.NS1 along with poly (I:C) not only in inhibiting the mammary tumor growth but also in generating an active anti-tumor immune response without any visible toxicity. The results of our study may help in developing CPV2.NS1 and poly (I: C) combination as a cancer therapeutic regime to treat various malignancies.

  15. Cocoa Diet and Antibody Immune Response in Preclinical Studies

    Directory of Open Access Journals (Sweden)

    Mariona Camps-Bossacoma

    2017-06-01

    Full Text Available The ability of cocoa to interact with the immune system in vitro and in vivo has been described. In the latter context, a cocoa-enriched diet in healthy rats was able to modify the immune system’s functionality. This fact could be observed in the composition and functionality of lymphoid tissues, such as the thymus, spleen, and lymph nodes. Consequently, immune effector mechanisms, such as antibody synthesis, were modified. A cocoa-enriched diet in young rats was able to attenuate the serum levels of immunoglobulin (Ig G, IgM, and IgA and also the intestinal IgM and IgA secretion. Moreover, in immunized rats, the intake of cocoa decreased specific IgG1, IgG2a, IgG2c, and IgM concentrations in serum. This immune-regulator potential was then tested in disease models in which antibodies play a pathogenic role. A cocoa-enriched diet was able to partially prevent the synthesis of autoantibodies in a model of autoimmune arthritis in rats and was also able to protect against IgE and T helper 2-related antibody synthesis in two rat models of allergy. Likewise, a cocoa-enriched diet prevented an oral sensitization process in young rats. In this review, we will focus on the influence of cocoa on the acquired branch of the immune function. Therefore, we will focus on how a cocoa diet influences lymphocyte function both in the systemic and intestinal immune system. Likewise, its potential role in preventing some antibody-induced immune diseases is also included. Although further studies must characterize the particular cocoa components responsible for such effects and nutritional studies in humans need to be carried out, cocoa has potential as a nutraceutical agent in some hypersensitivity status.

  16. A DNA vaccine co-expressing Trichinella spiralis MIF and MCD-1 with murine ubiquitin induces partial protective immunity in mice.

    Science.gov (United States)

    Tang, F; Xu, L; Yan, R; Song, X; Li, X

    2013-03-01

    Co-expression of Trichinella spiralis macrophage migration inhibitory factor (TsMIF) with T. spiralis cystatin-like domain protein (TsMCD-1) in a DNA vaccine induces a Th1 immune response and partial protection against T. spiralis infection. The present study evaluated whether co-expression of mouse ubiquitin (Ub) with TsMIF and TsMCD-1 might improve the immune response against T. spiralis infection. Groups of BALB/c mice were immunized twice at 2-week intervals with 100 μg of plasmid DNA encoding either a TsMIF-TsMCD-1 fusion protein (pVAX1-Tsmif-Tsmcd-1) or an Ub-co-expressing triple fusion protein Ub-TsMIF-TsMCD-1 (pVAX1-Ub-Tsmif-Tsmcd-1). Control animals were immunized with pVAX1-Ub or blank vector plasmid. Specific antibody levels (IgG, IgG1, IgG2a, IgG2b, IgM, IgA, IgE) against the recombinant protein TsMIF-TsMCD-1, serum cytokines (interferon (IFN)-γ, interleukin (IL)-4, IL-5, transforming growth factor (TGF)-β1 and IL-17), CD4+/CD8+ T cells and cytotoxic T lymphocyte (CTL) responses were monitored. Challenge infection was performed 2 weeks after the second immunization and worm burden was assayed at 35 days post-challenge. Antibody responses induced by pVAX1-Ub-Tsmif-Tsmcd-1 were significantly lower than for TsMIF-TsMCD-1, but the vaccine induced increased levels of Th1 cytokine (IFN-γ) and increased T-cell cytotoxicity. The reduction of worm burden (37.95%) following immunization with pVAX1-Ub-Tsmif-Tsmcd-1 was significantly greater than that induced by the pVAX1-Tsmif-Tsmcd-1 vaccine (23.17%; P< 0.05).

  17. Can VHS virus bypass the protective immunity induced by DNA vaccination in rainbow trout?

    DEFF Research Database (Denmark)

    Sepúlveda, Dagoberto; Lorenzen, Niels

    2016-01-01

    DNA vaccines encoding viral glycoproteins have been very successful for induction of protective immunity against diseases caused by rhabdoviruses in cultured fish species. However, the vaccine concept is based on a single viral gene and since RNA viruses are known to possess high variability...... and adaptation capacity, this work aimed at evaluating whether viral haemorrhagic septicaemia virus (VHSV), an RNA virus and member of Rhabdoviridae family, was able to evade the protective immune response induced by the DNA vaccination of rainbow trout. The experiments comprised repeated passages of a highly...... pathogenic VHSV isolate in a fish cell line in the presence of neutralizing fish serum (in vitro approach), and in rainbow trout immunized with the VHS DNA vaccine (in vivo approach). For the in vitro approach, the virus collected from the last passage (passaged virus) was as sensitive as the parental virus...

  18. Binding of human papilloma virus L1 virus-like particles to dendritic cells is mediated through heparan sulfates and induces immune activation

    NARCIS (Netherlands)

    de Witte, Lot; Zoughlami, Younes; Aengeneyndt, Birgit; David, Guido; van Kooyk, Yvette; Gissmann, Lutz; Geijtenbeek, Teunis B. H.

    2007-01-01

    Immunization using human papilloma virus (HPV)-L1 virus-like particles (VLPs) induces a robust and effective immune response, which has recently resulted in the implementation of the HPV-L1 VLP vaccination in health programs. However, during infection, HPV can escape immune surveillance leading to

  19. Oral immune therapy: targeting the systemic immune system via the gut immune system for the treatment of inflammatory bowel disease.

    Science.gov (United States)

    Ilan, Yaron

    2016-01-01

    Inflammatory bowel diseases (IBD) are associated with an altered systemic immune response leading to inflammation-mediated damage to the gut and other organs. Oral immune therapy is a method of systemic immune modulation via alteration of the gut immune system. It uses the inherit ability of the innate system of the gut to redirect the systemic innate and adaptive immune responses. Oral immune therapy is an attractive clinical approach to treat autoimmune and inflammatory disorders. It can induce immune modulation without immune suppression, has minimal toxicity and is easily administered. Targeting the systemic immune system via the gut immune system can serve as an attractive novel therapeutic method for IBD. This review summarizes the current data and discusses several examples of oral immune therapeutic methods for using the gut immune system to generate signals to reset systemic immunity as a treatment for IBD.

  20. Two complex, adenovirus-based vaccines that together induce immune responses to all four dengue virus serotypes.

    Science.gov (United States)

    Holman, David H; Wang, Danher; Raviprakash, Kanakatte; Raja, Nicholas U; Luo, Min; Zhang, Jianghui; Porter, Kevin R; Dong, John Y

    2007-02-01

    Dengue virus infections can cause hemorrhagic fever, shock, encephalitis, and even death. Worldwide, approximately 2.5 billion people live in dengue-infested regions with about 100 million new cases each year, although many of these infections are believed to be silent. There are four antigenically distinct serotypes of dengue virus; thus, immunity from one serotype will not cross-protect from infection with the other three. The difficulties that hamper vaccine development include requirements of the natural conformation of the envelope glycoprotein to induce neutralizing immune responses and the necessity of presenting antigens of all four serotypes. Currently, the only way to meet these requirements is to use a mixture of four serotypes of live attenuated dengue viruses, but safety remains a major problem. In this study, we have developed the basis for a tetravalent dengue vaccine using a novel complex adenovirus platform that is capable of expressing multiple antigens de novo. This dengue vaccine is constructed as a pair of vectors that each expresses the premembrane and envelope genes of two different dengue virus serotypes. Upon vaccination, the vaccine expressed high levels of the dengue virus antigens in cells to mimic a natural infection and induced both humoral and cellular immune responses against multiple serotypes of dengue virus in an animal model. Further analyses show the humoral responses were indeed neutralizing against all four serotypes. Our studies demonstrate the concept of mimicking infections to induce immune responses by synthesizing dengue virus membrane antigens de novo and the feasibility of developing an effective tetravalent dengue vaccine by vector-mediated expression of glycoproteins of the four serotypes.

  1. Hantavirus Gc induces long-term immune protection via LAMP-targeting DNA vaccine strategy.

    Science.gov (United States)

    Jiang, Dong-Bo; Zhang, Jin-Peng; Cheng, Lin-Feng; Zhang, Guan-Wen; Li, Yun; Li, Zi-Chao; Lu, Zhen-Hua; Zhang, Zi-Xin; Lu, Yu-Chen; Zheng, Lian-He; Zhang, Fang-Lin; Yang, Kun

    2018-02-01

    Hemorrhagic fever with renal syndrome (HFRS) occurs widely throughout Eurasia. Unfortunately, there is no effective treatment, and prophylaxis remains the best option against the major pathogenic agent, hantaan virus (HTNV), which is an Old World hantavirus. However, the absence of cellular immune responses and immunological memory hampers acceptance of the current inactivated HFRS vaccine. Previous studies revealed that a lysosome-associated membrane protein 1 (LAMP1)-targeting strategy involving a DNA vaccine based on the HTNV glycoprotein Gn successfully conferred long-term immunity, and indicated that further research on Gc, another HTNV antigen, was warranted. Plasmids encoding Gc and lysosome-targeted Gc, designated pVAX-Gc and pVAX-LAMP/Gc, respectively, were constructed. Proteins of interest were identified by fluorescence microscopy following cell line transfection. Five groups of 20 female BALB/c mice were subjected to the following inoculations: inactivated HTNV vaccine, pVAX-LAMP/Gc, pVAX-Gc, and, as the negative controls, pVAX-LAMP or the blank vector pVAX1. Humoral and cellular immunity were assessed by enzyme-linked immunosorbent assays (ELISAs) and 15-mer peptide enzyme-linked immunospot (ELISpot) epitope mapping assays. Repeated immunization with pVAX-LAMP/Gc enhanced adaptive immune responses, as demonstrated by the specific and neutralizing antibody titers and increased IFN-γ production. The inactivated vaccine induced a comparable humoral reaction, but the negative controls only elicited insignificant responses. Using a mouse model of HTNV challenge, the in vivo protection conferred by the inactivated vaccine and Gc-based constructs (with/without LAMP recombination) was confirmed. Evidence of pan-epitope reactions highlighted the long-term cellular response to the LAMP-targeting strategy, and histological observations indicated the safety of the LAMP-targeting vaccines. The long-term protective immune responses induced by pVAX-LAMP/Gc may be

  2. Sex-biased terminal investment in offspring induced by maternal immune challenge in the house wren (Troglodytes aedon).

    Science.gov (United States)

    Bowers, E Keith; Smith, Rebecca A; Hodges, Christine J; Zimmerman, Laura M; Thompson, Charles F; Sakaluk, Scott K

    2012-07-22

    The reproductive costs associated with the upregulation of immunity have been well-documented and constitute a fundamental trade-off between reproduction and self-maintenance. However, recent experimental work suggests that parents may increase their reproductive effort following immunostimulation as a form of terminal parental investment as prospects for future reproduction decline. We tested the trade-off and terminal investment hypotheses in a wild population of house wrens (Troglodytes aedon) by challenging the immune system of breeding females with lipopolysaccharide, a potent but non-lethal antigen. Immunized females showed no evidence of reproductive costs; instead, they produced offspring of higher phenotypic quality, but in a sex-specific manner. Relative to control offspring, sons of immunized females had increased body mass and their sisters exhibited higher cutaneous immune responsiveness to phytohaemagglutinin injection, constituting an adaptive strategy of sex-biased allocation by immune-challenged females to enhance the reproductive value of their offspring. Thus, our results are consistent with the terminal investment hypothesis, and suggest that maternal immunization can induce pronounced transgenerational effects on offspring phenotypes.

  3. Mechanism of immune tolerance induced by donor derived immature dendritic cells in rat high-risk corneal transplantation

    Directory of Open Access Journals (Sweden)

    Xu-Dong Zhao

    2013-06-01

    Full Text Available AIM: To study the role of immature dendritic cells (imDCs on immune tolerance in rat penetrating keratoplasty (PKP in high-risk eyes and to investigate the mechanism of immune hyporesponsiveness induced by donor-derived imDCs. METHODS: Seventy-five SD rats (recipient and 39 Wistar rats (donor were randomly divided into 3 groups: control, imDC and mature dendritic cell (mDC group respectively. Using a model of orthotopic corneal transplantation in which allografts were placed in neovascularized high-risk eyes of recipient rat. Corneal neovascularization was induced by alkaline burn in the central cornea of recipient rat. Recipients in imDC group or mDC group were injected donor bone marrow-derived imDCs or mDCs of 1×106 respectively 1 week before corneal transplantation via tail vein. Control rat received the same volume of PBS. In each group, 16 recipients were kept for determination of survival time and other 9 recipients were executed on day 3, 7 and 14 after transplantation. Cornea was harvested for hematoxylin-eosin staining and acute rejection evaluation, Western blot was used to detect the expression level of Foxp3. RESULTS: The mean survival time of imDC group was significantly longer than that of control and mDC groups (all P<0.05. The expression level of Foxp3 on CD4+CD25+T cells of imDC group (2.24±0.18 was significantly higher than that in the control (1.68±0.09 and mDC groups (1.46±0.13 (all P<0.05. CONCLUSION: Donor-derived imDC is an effective treatment in inducing immune hyporesponsiveness in rat PKP. The mechanism of immune tolerance induced by imDC might be inhibit T lymphocytes responsiveness by regulatory T cells.

  4. Pregnancy induces transcriptional activation of the peripheral innate immune system and increases oxidative DNA damage among healthy third trimester pregnant women.

    Directory of Open Access Journals (Sweden)

    Xinyin Jiang

    Full Text Available BACKGROUND: Pregnancy induces physiological adaptations that may involve, or contribute to, alterations in the genomic landscape. Pregnancy also increases the nutritional demand for choline, an essential nutrient that can modulate epigenomic and transcriptomic readouts secondary to its role as a methyl donor. Nevertheless, the interplay between human pregnancy, choline and the human genome is largely unexplored. METHODOLOGY/PRINCIPAL FINDINGS: As part of a controlled feeding study, we assessed the influence of pregnancy and choline intake on maternal genomic markers. Healthy third trimester pregnant (n = 26, wk 26-29 gestation and nonpregnant (n = 21 women were randomized to choline intakes of 480 mg/day, approximating the Adequate Intake level, or 930 mg/day for 12-weeks. Blood leukocytes were acquired at study week 0 and study week 12 for microarray, DNA damage and global DNA/histone methylation measurements. A main effect of pregnancy that was independent of choline intake was detected on several of the maternal leukocyte genomic markers. Compared to nonpregnant women, third trimester pregnant women exhibited higher (P<0.05 transcript abundance of defense response genes associated with the innate immune system including pattern recognition molecules, neutrophil granule proteins and oxidases, complement proteins, cytokines and chemokines. Pregnant women also exhibited higher (P<0.001 levels of DNA damage in blood leukocytes, a genomic marker of oxidative stress. No effect of choline intake was detected on the maternal leukocyte genomic markers with the exception of histone 3 lysine 4 di-methylation which was lower among pregnant women in the 930 versus 480 mg/d choline intake group. CONCLUSIONS: Pregnancy induces transcriptional activation of the peripheral innate immune system and increases oxidative DNA damage among healthy third trimester pregnant women.

  5. Co-adjuvant effects of retinoic acid and IL-15 induce inflammatory immunity to dietary antigens

    Science.gov (United States)

    Under physiological conditions the gut-associated lymphoid tissues not only prevent the induction of a local inflammatory immune response, but also induce systemic tolerance to fed antigens. A notable exception is coeliac disease, where genetically susceptible individuals expressing human leukocyte...

  6. The role of recombinant IL-12 in enhancing immune responses induced by hepatitis B vaccine in mice

    International Nuclear Information System (INIS)

    Lu Qun; Zhou Lixia; Zhao Yanrong; Miao Xiaoguang; Jin Jie; Ke Jinshan; Qin Xuliang; He Zheng

    2007-01-01

    Objective: To study the role played by recombinant IL-12 in enhancing the intensity and quality of the immune response to hepatitis B vaccine in mice, and investigate the possibility of adding recombinant IL-12 as adjuvants to hepatitis B therapeutic vaccine. Methods: Recombinant IL-12 was injected together with hepatitis B vaccine into mice and special anti-HBsAb in the mice and the cellular immune responses were examined. Results: Recombinant IL-12 can obviously enhance T lymphocyte multiplication activity, accelerate excretion of cytokines IFN-γ and IL-2, and increase the IgG2a antibody in mice. Conclusion: Recombinant IL-12 can remarkably strengthen the cellular immune responses induced by the hepatitis B vaccine, and modulate the immune responses toward Thl. (authors)

  7. SagE induces highly effective protective immunity against Streptococcus iniae mainly through an immunogenic domain in the extracellular region.

    Science.gov (United States)

    Sun, Yun; Sun, Li; Xing, Ming-qing; Liu, Chun-sheng; Hu, Yong-hua

    2013-11-12

    Streptococcus iniae is a Gram-positive bacterium and a severe pathogen of a wide range of farmed fish. S. iniae possesses a virulence-associated streptolysin S cluster composed of several components, one of which is SagE. SagE a transmembrane protein with one major extracellular region named ECR. This study aimed to develop a SagE-based DNA candidate vaccine against streptococcosis and examine the immunoprotective mechanism of the vaccine. We constructed a DNA vaccine, pSagE, based on the sagE gene and examined its immunological property in a Japanese flounder (Paralichthys olivaceus) model. The results showed that at 7 days post-vaccination, expression of SagE at transcription and translation levels was detected in the tissues of the vaccinated fish. After challenge with S. iniae at one and two months post-vaccination, pSagE-vaccinated fish exhibited relative percent survival (RPS) of 95% and 88% respectively. Immunological analysis showed that (i) pSagE significantly upregulated the expression of a wide range of immune genes, (ii) pSagE induced the production of specific serum antibodies that bound whole-cell S. iniae, and (iii) treatment of S. iniae with pSagE-induced antibodies blocked bacterial invasion of host cells. To localize the immunoprotective domain of SagE, the ECR-expressing DNA vaccine pSagEECR was constructed. Immunization analysis showed that flounder vaccinated with pSagEECR exhibited a RPS of 68%, and that pSagEECR induced serum antibody production and immune gene expression in a manner similar to, though to lower magnitudes than, those induced by pSagE. We in this study developed a DNA vaccine, pSagE, which induces highly protective immunity against S. iniae. The protective effect of pSagE is probably due to its ability to elicit systemic immune response, in particular that of the humoral branch, which leads to production of specific serum antibodies that impair bacterial infection. These results add insights to the immunoprotective mechanism

  8. Immunity booster

    International Nuclear Information System (INIS)

    Stefanescu, Ioan; Titescu, Gheorghe; Tamaian, Radu; Haulica, Ion; Bild, Walther

    2002-01-01

    The immunity booster is, according to its patent description, microbiologically pure water with an D/(D+H) isotopic concentration of 100 ppm, with physical-chemical characteristics similar to those of distilled water. It is obtained by sterilization of a mixture of deuterium depleted water, with a 25 ppm isotopic concentration, with distilled water in a volume ratio of 4:6. Unlike natural immunity boosters (bacterial agents as Bacillus Chalmette-Guerin, Corynebacterium parvum; lipopolysaccharides; human immunoglobulin) or synthetical products (levamysol; isoprinosyne with immunostimulating action), which cause hypersensitivity and shocks, thrill, fever, sickness and the immunity complex disease, the water of 100 ppm D/(D + H) isotopic concentration is a toxicity free product. The testing for immune reaction of the immunity booster led to the following results: - an increase of cell action capacity in the first immunity shielding stage (macrophages), as evidenced by stimulation of a number of essential characterizing parameters, as well as of the phagocytosis capacity, bactericide capacity, and opsonic capacity of serum; - an increase of the number of leucocyte particularly of the granulocyte in peripheral blood, produced especially when medullar toxic agents like caryolysine are used; - it hinders the effect of lowering the number of erythrocytes in peripheral blood produced by experimentally induced chronic inflammation; - an increase of nonspecific immunity defence capacity against specific bacterial aggression of both Gram-positive bacteria (Streptococcus pneumoniae 558 ) and of the Gram-negative ones (Klebsiella pneumoniae 507 ); - an increase of immunity - stimulating activity (proinflamatory), like that of levamisole as evidenced by the test of stimulation of experimentally induced inflammation by means of carrageenan. The following advantages of the immunity booster are stressed: - it is toxicity free and side effect free; - can be orally administrated as

  9. Stress-induced enhancement of leukocyte trafficking into sites of surgery or immune activation

    Science.gov (United States)

    Viswanathan, Kavitha; Dhabhar, Firdaus S.

    2005-04-01

    Effective immunoprotection requires rapid recruitment of leukocytes into sites of surgery, wounding, infection, or vaccination. In contrast to immunosuppressive chronic stressors, short-term acute stressors have immunoenhancing effects. Here, we quantify leukocyte infiltration within a surgical sponge to elucidate the kinetics, magnitude, subpopulation, and chemoattractant specificity of an acute stress-induced increase in leukocyte trafficking to a site of immune activation. Mice acutely stressed before sponge implantation showed 200-300% higher neutrophil, macrophage, natural killer cell, and T cell infiltration than did nonstressed animals. We also quantified the effects of acute stress on lymphotactin- (LTN; a predominantly lymphocyte-specific chemokine), and TNF-- (a proinflammatory cytokine) stimulated leukocyte infiltration. An additional stress-induced increase in infiltration was observed for neutrophils, in response to TNF-, macrophages, in response to TNF- and LTN, and natural killer cells and T cells in response to LTN. These results show that acute stress initially increases trafficking of all major leukocyte subpopulations to a site of immune activation. Tissue damage-, antigen-, or pathogen-driven chemoattractants subsequently determine which subpopulations are recruited more vigorously. Such stress-induced increases in leukocyte trafficking may enhance immunoprotection during surgery, vaccination, or infection, but may also exacerbate immunopathology during inflammatory (cardiovascular disease or gingivitis) or autoimmune (psoriasis, arthritis, or multiple sclerosis) diseases. chemokine | psychophysiological stress | surgical sponge | wound healing | lymphotactin

  10. Phylogeny, longevity and evolution of adaptive immunity

    Czech Academy of Sciences Publication Activity Database

    Vinkler, Michal; Albrecht, Tomáš

    2011-01-01

    Roč. 60, č. 3 (2011), s. 277-282 ISSN 0139-7893 R&D Projects: GA ČR GA206/08/0640; GA ČR GA206/08/1281; GA ČR GAP505/10/1871 Institutional research plan: CEZ:AV0Z60930519 Keywords : acquired immunity * evolutionary immunology * immunological priming * innate immunity * invertebrates Subject RIV: EG - Zoology Impact factor: 0.554, year: 2011

  11. Polar Lipids of Burkholderia pseudomallei Induce Different Host Immune Responses

    Science.gov (United States)

    Gonzalez-Juarrero, Mercedes; Mima, Naoko; Trunck, Lily A.; Schweizer, Herbert P.; Bowen, Richard A.; Dascher, Kyle; Mwangi, Waithaka; Eckstein, Torsten M.

    2013-01-01

    Melioidosis is a disease in tropical and subtropical regions of the world that is caused by Burkholderia pseudomallei. In endemic regions the disease occurs primarily in humans and goats. In the present study, we used the goat as a model to dissect the polar lipids of B. pseudomallei to identify lipid molecules that could be used for adjuvants/vaccines or as diagnostic tools. We showed that the lipidome of B. pseudomallei and its fractions contain several polar lipids with the capacity to elicit different immune responses in goats, namely rhamnolipids and ornithine lipids which induced IFN-γ, whereas phospholipids and an undefined polar lipid induced strong IL-10 secretion in CD4+ T cells. Autologous T cells co-cultured with caprine dendritic cells (cDCs) and polar lipids of B. pseudomallei proliferated and up-regulated the expression of CD25 (IL-2 receptor) molecules. Furthermore, we demonstrated that polar lipids were able to up-regulate CD1w2 antigen expression in cDCs derived from peripheral blood monocytes. Interestingly, the same polar lipids had only little effect on the expression of MHC class II DR antigens in the same caprine dendritic cells. Finally, antibody blocking of the CD1w2 molecules on cDCs resulted in decreased expression for IFN-γ by CD4+ T cells. Altogether, these results showed that polar lipids of B. pseudomallei are recognized by the caprine immune system and that their recognition is primarily mediated by the CD1 antigen cluster. PMID:24260378

  12. Polar lipids of Burkholderia pseudomallei induce different host immune responses.

    Directory of Open Access Journals (Sweden)

    Mercedes Gonzalez-Juarrero

    Full Text Available Melioidosis is a disease in tropical and subtropical regions of the world that is caused by Burkholderia pseudomallei. In endemic regions the disease occurs primarily in humans and goats. In the present study, we used the goat as a model to dissect the polar lipids of B. pseudomallei to identify lipid molecules that could be used for adjuvants/vaccines or as diagnostic tools. We showed that the lipidome of B. pseudomallei and its fractions contain several polar lipids with the capacity to elicit different immune responses in goats, namely rhamnolipids and ornithine lipids which induced IFN-γ, whereas phospholipids and an undefined polar lipid induced strong IL-10 secretion in CD4(+ T cells. Autologous T cells co-cultured with caprine dendritic cells (cDCs and polar lipids of B. pseudomallei proliferated and up-regulated the expression of CD25 (IL-2 receptor molecules. Furthermore, we demonstrated that polar lipids were able to up-regulate CD1w2 antigen expression in cDCs derived from peripheral blood monocytes. Interestingly, the same polar lipids had only little effect on the expression of MHC class II DR antigens in the same caprine dendritic cells. Finally, antibody blocking of the CD1w2 molecules on cDCs resulted in decreased expression for IFN-γ by CD4(+ T cells. Altogether, these results showed that polar lipids of B. pseudomallei are recognized by the caprine immune system and that their recognition is primarily mediated by the CD1 antigen cluster.

  13. Visible light induced changes in the immune response through an eye-brain mechanism (photoneuroimmunology).

    Science.gov (United States)

    Roberts, J E

    1995-07-01

    The immune system is susceptible to a variety of stresses. Recent work in neuroimmunology has begun to define how mood alteration, stress, the seasons, and daily rhythms can have a profound effect on immune response through hormonal modifications. Central to these factors may be light through an eye-brain hormonal modulation. In adult primates, only visible light (400-700 nm) is received by the retina. This photic energy is then transduced and delivered to the visual cortex and by an alternative pathway to the suprachiasmatic nucleus (SCN). The SCN is a part of the hypothalamic region in the brain believed to direct circadian rhythm. Visible light exposure also modulates the pituitary and pineal gland which leads to neuroendocrine changes. Melatonin, norepinephrine and acetylcholine decrease with light activation, while cortisol, serotonin, gaba and dopamine levels increase. The synthesis of vasoactive intestinal polypeptide (VIP), gastrin releasing peptide (GRP) and neuropeptide Y (NPY) in rat SCN has been shown to be modified by light. These induced neuroendocrine changes can lead to alterations in mood and circadian rhythm. All of these neuroendocrine changes can lead to immune modulation. An alternative pathway for immune modulation by light is through the skin. Visible light (400-700 nm) can penetrate epidermal and dermal layers of the skin and may directly interact with circulating lymphocytes to modulate immune function. However, even in the presence of phototoxic agents such as eosin and rose bengal, visible light did not produce suppression of contact hypersensitivity with suppresser cells. In contrast to visible light, in vivo exposure to UV-B (280-320 nm) and UV-A (320-400 nm) radiation can only alter normal human immune function by a skin mediated response. Each UV subgroup (B, A) induces an immunosuppressive response but by differing mechanisms involving the regulation of differing interleukins and growth factors. Some effects observed in humans are

  14. Previous 60-Co radiation from Paratrygon aiereba mucus induces the production of highly responsive antibodies and a better immune response in mice

    Energy Technology Data Exchange (ETDEWEB)

    Thomazi, Gabriela Ortega Coelho; Alves, Glaucie Jussilane; Turíbio, Thompson de Oliveira; Rocha, André Moreira; Aires, Raquel da Silva; Jácome, Larissa Barros Silvestre; Spencer, Patrick Jack, E-mail: gabiortegacoelho@usp.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil). Centro de Biotecnologia; Costa, Andrea da; Rodrigues, Jaqueline Pollizeli; Galisteo Júnior, Andrés Jimenez; Andrade Júnior, Heitor Franco de, E-mail: hfandrad@usp.br, E-mail: raquelaires@itpacporto.com.br [Universidade de São Paulo (USP), São Paulo, SP (Brazil). Laboratório de Protozoologia; Seibert, Carla Simone, E-mail: seibertcs@uft.edu.br [Universidade Federal do Tocantins (UFT), Porto Nacional, TO (Brazil)

    2017-07-01

    Wounds from stinging freshwater stingrays are painful, difficult to heal and cause extensive necrosis and systemic phenomena. The treatment is symptomatic, of low efficiency and there is no therapy, which causes more suffering to the injured. This study aimed to evaluate the immune response induced by the native or irradiated by 60-Co gamma from Paratrygon aiereba mucus. IPEN’s Committee on Ethics in the Use of Animals (n.º126/2013) and lanes captured under license from the Chico Mendes Institute for Biodiversity Conservation (n.º6781-1/2014) approved this research. For the assays, sera from Swiss mice previously immunized against native or irradiated mucus were used. The proliferation of splenic B cells in response to mucus was evaluated by the In Vitro Induced Antibody Production method and serum and splenic cytokines were also quantified. Our data demonstrate that the irradiated mucus of P. aiereba induces greater production of antibodies and more immunological memory in the mice. Spleen cells from animals immunized against irradiated mucus produced IFN-γ, TNF-α and IL-10, and serum TNF-α (immunized group against irradiated mucus) and IL-6 and IL-17 (immunized group against native mucus). The results corroborate the use of ionizing radiation, with production of highly responsive antibodies and better immune response, besides proving that Paratrygon aiereba mucus is capable of stimulating cellular and humoral adaptive immune response, contributing to the continuity of associated investigations. (author)

  15. Previous 60-Co radiation from Paratrygon aiereba mucus induces the production of highly responsive antibodies and a better immune response in mice

    International Nuclear Information System (INIS)

    Thomazi, Gabriela Ortega Coelho; Alves, Glaucie Jussilane; Turíbio, Thompson de Oliveira; Rocha, André Moreira; Aires, Raquel da Silva; Jácome, Larissa Barros Silvestre; Spencer, Patrick Jack

    2017-01-01

    Wounds from stinging freshwater stingrays are painful, difficult to heal and cause extensive necrosis and systemic phenomena. The treatment is symptomatic, of low efficiency and there is no therapy, which causes more suffering to the injured. This study aimed to evaluate the immune response induced by the native or irradiated by 60-Co gamma from Paratrygon aiereba mucus. IPEN’s Committee on Ethics in the Use of Animals (n.º126/2013) and lanes captured under license from the Chico Mendes Institute for Biodiversity Conservation (n.º6781-1/2014) approved this research. For the assays, sera from Swiss mice previously immunized against native or irradiated mucus were used. The proliferation of splenic B cells in response to mucus was evaluated by the In Vitro Induced Antibody Production method and serum and splenic cytokines were also quantified. Our data demonstrate that the irradiated mucus of P. aiereba induces greater production of antibodies and more immunological memory in the mice. Spleen cells from animals immunized against irradiated mucus produced IFN-γ, TNF-α and IL-10, and serum TNF-α (immunized group against irradiated mucus) and IL-6 and IL-17 (immunized group against native mucus). The results corroborate the use of ionizing radiation, with production of highly responsive antibodies and better immune response, besides proving that Paratrygon aiereba mucus is capable of stimulating cellular and humoral adaptive immune response, contributing to the continuity of associated investigations. (author)

  16. Tumor-reactive immune cells protect against metastatic tumor and induce immunoediting of indolent but not quiescent tumor cells.

    Science.gov (United States)

    Payne, Kyle K; Keim, Rebecca C; Graham, Laura; Idowu, Michael O; Wan, Wen; Wang, Xiang-Yang; Toor, Amir A; Bear, Harry D; Manjili, Masoud H

    2016-09-01

    Two major barriers to cancer immunotherapy include tumor-induced immune suppression mediated by myeloid-derived suppressor cells and poor immunogenicity of the tumor-expressing self-antigens. To overcome these barriers, we reprogrammed tumor-immune cell cross-talk by combined use of decitabine and adoptive immunotherapy, containing tumor-sensitized T cells and CD25(+) NKT cells. Decitabine functioned to induce the expression of highly immunogenic cancer testis antigens in the tumor, while also reducing the frequency of myeloid-derived suppressor cells and the presence of CD25(+) NKT cells rendered T cells, resistant to remaining myeloid-derived suppressor cells. This combinatorial therapy significantly prolonged survival of animals bearing metastatic tumor cells. Adoptive immunotherapy also induced tumor immunoediting, resulting in tumor escape and associated disease-related mortality. To identify a tumor target that is incapable of escape from the immune response, we used dormant tumor cells. We used Adriamycin chemotherapy or radiation therapy, which simultaneously induce tumor cell death and tumor dormancy. Resultant dormant cells became refractory to additional doses of Adriamycin or radiation therapy, but they remained sensitive to tumor-reactive immune cells. Importantly, we discovered that dormant tumor cells contained indolent cells that expressed low levels of Ki67 and quiescent cells that were Ki67 negative. Whereas the former were prone to tumor immunoediting and escape, the latter did not demonstrate immunoediting. Our results suggest that immunotherapy could be highly effective against quiescent dormant tumor cells. The challenge is to develop combinatorial therapies that could establish a quiescent type of tumor dormancy, which would be the best target for immunotherapy. © The Author(s).

  17. Fungal Innate Immunity Induced by Bacterial Microbe-Associated Molecular Patterns (MAMPs

    Directory of Open Access Journals (Sweden)

    Simon Ipcho

    2016-06-01

    Full Text Available Plants and animals detect bacterial presence through Microbe-Associated Molecular Patterns (MAMPs which induce an innate immune response. The field of fungal–bacterial interaction at the molecular level is still in its infancy and little is known about MAMPs and their detection by fungi. Exposing Fusarium graminearum to bacterial MAMPs led to increased fungal membrane hyperpolarization, a putative defense response, and a range of transcriptional responses. The fungus reacted with a different transcript profile to each of the three tested MAMPs, although a core set of genes related to energy generation, transport, amino acid production, secondary metabolism, and especially iron uptake were detected for all three. Half of the genes related to iron uptake were predicted MirA type transporters that potentially take up bacterial siderophores. These quick responses can be viewed as a preparation for further interactions with beneficial or pathogenic bacteria, and constitute a fungal innate immune response with similarities to those of plants and animals.

  18. Evaluation of mucosal and systemic immune responses elicited by GPI-0100- adjuvanted influenza vaccine delivered by different immunization strategies.

    Directory of Open Access Journals (Sweden)

    Heng Liu

    Full Text Available Vaccines for protection against respiratory infections should optimally induce a mucosal immune response in the respiratory tract in addition to a systemic immune response. However, current parenteral immunization modalities generally fail to induce mucosal immunity, while mucosal vaccine delivery often results in poor systemic immunity. In order to find an immunization strategy which satisfies the need for induction of both mucosal and systemic immunity, we compared local and systemic immune responses elicited by two mucosal immunizations, given either by the intranasal (IN or the intrapulmonary (IPL route, with responses elicited by a mucosal prime followed by a systemic boost immunization. The study was conducted in BALB/c mice and the vaccine formulation was an influenza subunit vaccine supplemented with GPI-0100, a saponin-derived adjuvant. While optimal mucosal antibody titers were obtained after two intrapulmonary vaccinations, optimal systemic antibody responses were achieved by intranasal prime followed by intramuscular boost. The latter strategy also resulted in the best T cell response, yet, it was ineffective in inducing nose or lung IgA. Successful induction of secretory IgA, IgG and T cell responses was only achieved with prime-boost strategies involving intrapulmonary immunization and was optimal when both immunizations were given via the intrapulmonary route. Our results underline that immunization via the lungs is particularly effective for priming as well as boosting of local and systemic immune responses.

  19. Evaluation of Mucosal and Systemic Immune Responses Elicited by GPI-0100- Adjuvanted Influenza Vaccine Delivered by Different Immunization Strategies

    Science.gov (United States)

    Liu, Heng; Patil, Harshad P.; de Vries-Idema, Jacqueline; Wilschut, Jan; Huckriede, Anke

    2013-01-01

    Vaccines for protection against respiratory infections should optimally induce a mucosal immune response in the respiratory tract in addition to a systemic immune response. However, current parenteral immunization modalities generally fail to induce mucosal immunity, while mucosal vaccine delivery often results in poor systemic immunity. In order to find an immunization strategy which satisfies the need for induction of both mucosal and systemic immunity, we compared local and systemic immune responses elicited by two mucosal immunizations, given either by the intranasal (IN) or the intrapulmonary (IPL) route, with responses elicited by a mucosal prime followed by a systemic boost immunization. The study was conducted in BALB/c mice and the vaccine formulation was an influenza subunit vaccine supplemented with GPI-0100, a saponin-derived adjuvant. While optimal mucosal antibody titers were obtained after two intrapulmonary vaccinations, optimal systemic antibody responses were achieved by intranasal prime followed by intramuscular boost. The latter strategy also resulted in the best T cell response, yet, it was ineffective in inducing nose or lung IgA. Successful induction of secretory IgA, IgG and T cell responses was only achieved with prime-boost strategies involving intrapulmonary immunization and was optimal when both immunizations were given via the intrapulmonary route. Our results underline that immunization via the lungs is particularly effective for priming as well as boosting of local and systemic immune responses. PMID:23936066

  20. Physicians' obligations to patients infected with Ebola: echoes of acquired immune deficiency syndrome.

    Science.gov (United States)

    Minkoff, Howard; Ecker, Jeffrey

    2015-04-01

    Physicians across the United States are engaged in training in the identification, isolation, and initial care of patients with Ebola. Some will be asked to do more. The issue this viewpoint will address is the moral obligation of physicians to participate in these activities. In order to do so the implicit contract between society and its physicians will be considered, as will many of the arguments that are redolent of those that were litigated 30 years ago when acquired immune deficiency syndrome (AIDS) was raising public fears to similar levels, and some physicians were publically proclaiming their unwillingness to render care to those individuals. We will build the case that if steps are taken to reduce risks-optimal personal protective equipment and training-to what is essentially the lowest possible level then rendering care should be seen as obligatory. If not, as in the AIDS era there will be an unfair distribution of risk, with those who take their obligations seriously having to go beyond their fair measure of exposure. It would also potentially undermine patients' faith in the altruism of physicians and thereby degrade the esteem in which our profession is held and the trust that underpins the therapeutic relationship. Finally there is an implicit contract with society. Society gives tremendously to us; we encumber a debt from all society does and offers, a debt for which recompense is rarely sought. The mosaic of moral, historical, and professional imperatives to render care to the infected all echoes the words of medicine's moral leaders in the AIDS epidemic. Arnold Relman perhaps put it most succinctly, "the risk of contracting the patient's disease is one of the risks that is inherent in the profession of medicine. Physicians who are not willing to accept that risk…ought not be in the practice of medicine." Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Immune-regulating effects of exercise on cigarette smoke-induced inflammation

    Directory of Open Access Journals (Sweden)

    Madani A

    2018-04-01

    Full Text Available Ashkan Madani,1 Katharina Alack,2 Manuel Jonas Richter,3,4 Karsten Krüger1 1Department of Exercise and Health, Institute of Sports Science, Leibniz University Hannover, Germany; 2Department of Sports Medicine, University of Giessen, Germany; 3Department of Internal Medicine, Justus Liebig University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC, Germany; 4German Center for Lung Research (DZL, Giessen, Germany Abstract: Long-term cigarette smoking (LTCS represents an important risk factor for cardiac infarction and stroke and the central risk factor for the development of a bronchial carcinoma, smoking-associated interstitial lung fibrosis, and chronic obstructive pulmonary disease. The pathophysiologic development of these diseases is suggested to be promoted by chronic and progressive inflammation. Cigarette smoking induces repetitive inflammatory insults followed by a chronic and progressive activation of the immune system. In the pulmonary system of cigarette smokers, oxidative stress, cellular damage, and a chronic activation of pattern recognition receptors are described which are followed by the translocation of the NF-kB, the release of pro-inflammatory cytokines, chemokines, matrix metalloproteases, and damage-associated molecular patterns. In parallel, smoke pollutants cross directly through the alveolus–capillary interface and spread through the systemic bloodstream targeting different organs. Consequently, LTCS induces a systemic low-grade inflammation and increased oxidative stress in the vascular system. In blood, these processes promote an increased coagulation and endothelial dysfunction. In muscle tissue, inflammatory processes activate catabolic signaling pathways followed by muscle wasting and sarcopenia. In brain, several characteristics of neuroinflammation were described. Regular exercise training has been shown to be an effective nonpharmacological treatment strategy in smoke-induced pulmonary diseases

  2. Hyperthermic treatment at 56 °C induces tumour-specific immune protection in a mouse model of prostate cancer in both prophylactic and therapeutic immunization regimens.

    Science.gov (United States)

    De Sanctis, Francesco; Sandri, Sara; Martini, Matteo; Mazzocco, Marta; Fiore, Alessandra; Trovato, Rosalinda; Garetto, Stefano; Brusa, Davide; Ugel, Stefano; Sartoris, Silvia

    2018-06-14

    Most active cancer immunotherapies able to induce a long-lasting protection against tumours are based on the activation of tumour-specific cytotoxic T lymphocytes (CTLs). Cell death by hyperthermia induces apoptosis followed by secondary necrosis, with the production of factors named "danger associated molecular pattern" (DAMP) molecules (DAMPs), that activate dendritic cells (DCs) to perform antigen uptake, processing and presentation, followed by CTLs cross priming. In many published studies, hyperthermia treatment of tumour cells is performed at 42-45 °C; these temperatures mainly promote cell surface expression of DAMPs. Treatment at 56 °C of tumour cells was shown to induce DAMPs secretion rather than their cell surface expression, improving DC activation and CTL cross priming in vitro. Thus we tested the relevance of this finding in vivo on the generation of a tumour-specific memory immune response, in the TRAMP-C2 mouse prostate carcinoma transplantable model. TRAMP-C2 tumour cells treated at 56 °C were able not only to activate DCs in vitro but also to trigger a tumour-specific CTL-dependent immune response in vivo. Prophylactic vaccination with 56 °C-treated TRAMP-C2 tumour cells alone provided protection against TRAMP-C2 tumour growth in vivo, whilst in the therapeutic regimen, control of tumour growth was achieved combining immunization with adjuvant chemotherapy. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Analysis of antibodies to newly described Plasmodium falciparum merozoite antigens supports MSPDBL2 as a predicted target of naturally acquired immunity.

    Science.gov (United States)

    Tetteh, Kevin K A; Osier, Faith H A; Salanti, Ali; Kamuyu, Gathoni; Drought, Laura; Failly, Marilyne; Martin, Christophe; Marsh, Kevin; Conway, David J

    2013-10-01

    Prospective studies continue to identify malaria parasite genes with particular patterns of polymorphism which indicate they may be under immune selection, and the encoded proteins require investigation. Sixteen new recombinant protein reagents were designed to characterize three such polymorphic proteins expressed in Plasmodium falciparum schizonts and merozoites: MSPDBL1 (also termed MSP3.4) and MSPDBL2 (MSP3.8), which possess Duffy binding-like (DBL) domains, and SURFIN4.2, encoded by a member of the surface-associated interspersed (surf) multigene family. After testing the antigenicities of these reagents by murine immunization and parasite immunofluorescence, we analyzed naturally acquired antibody responses to the antigens in two cohorts in coastal Kenya in which the parasite was endemic (Chonyi [n = 497] and Ngerenya [n = 461]). As expected, the prevalence and levels of serum antibodies increased with age. We then investigated correlations with subsequent risk of clinical malaria among children <11 years of age during 6 months follow-up surveillance. Antibodies to the polymorphic central region of MSPDBL2 were associated with reduced risk of malaria in both cohorts, with statistical significance remaining for the 3D7 allelic type after adjustment for individuals' ages in years and antibody reactivity to whole-schizont extract (Chonyi, risk ratio, 0.51, and 95% confidence interval [CI], 0.28 to 0.93; Ngerenya, risk ratio, 0.38, and 95% CI, 0.18 to 0.82). For the MSPDBL1 Palo Alto allelic-type antigen, there was a protective association in one cohort (Ngerenya, risk ratio, 0.53, and 95% CI, 0.32 to 0.89), whereas the other antigens showed no protective associations after adjustment. These findings support the prediction that antibodies to the polymorphic region of MSPDBL2 contribute to protective immunity.

  4. Systemic BCG immunization induces persistent lung mucosal multifunctional CD4 T(EM cells which expand following virulent mycobacterial challenge.

    Directory of Open Access Journals (Sweden)

    Daryan A Kaveh

    Full Text Available To more closely understand the mechanisms of how BCG vaccination confers immunity would help to rationally design improved tuberculosis vaccines that are urgently required. Given the established central role of CD4 T cells in BCG induced immunity, we sought to characterise the generation of memory CD4 T cell responses to BCG vaccination and M. bovis infection in a murine challenge model. We demonstrate that a single systemic BCG vaccination induces distinct systemic and mucosal populations of T effector memory (T(EM cells in vaccinated mice. These CD4+CD44(hiCD62L(loCD27⁻ T cells concomitantly produce IFN-γ and TNF-α, or IFN-γ, IL-2 and TNF-α and have a higher cytokine median fluorescence intensity MFI or 'quality of response' than single cytokine producing cells. These cells are maintained for long periods (>16 months in BCG protected mice, maintaining a vaccine-specific functionality. Following virulent mycobacterial challenge, these cells underwent significant expansion in the lungs and are, therefore, strongly associated with protection against M. bovis challenge. Our data demonstrate that a persistent mucosal population of T(EM cells can be induced by parenteral immunization, a feature only previously associated with mucosal immunization routes; and that these multifunctional T(EM cells are strongly associated with protection. We propose that these cells mediate protective immunity, and that vaccines designed to increase the number of relevant antigen-specific T(EM in the lung may represent a new generation of TB vaccines.

  5. Pathogen exploitation of an abscisic acid- and jasmonate-inducible MAPK phosphatase and its interception by Arabidopsis immunity.

    Science.gov (United States)

    Mine, Akira; Berens, Matthias L; Nobori, Tatsuya; Anver, Shajahan; Fukumoto, Kaori; Winkelmüller, Thomas M; Takeda, Atsushi; Becker, Dieter; Tsuda, Kenichi

    2017-07-11

    Phytopathogens promote virulence by, for example, exploiting signaling pathways mediated by phytohormones such as abscisic acid (ABA) and jasmonate (JA). Some plants can counteract pathogen virulence by invoking a potent form of immunity called effector-triggered immunity (ETI). Here, we report that ABA and JA mediate inactivation of the immune-associated MAP kinases (MAPKs), MPK3 and MPK6, in Arabidopsis thaliana ABA induced expression of genes encoding the protein phosphatases 2C (PP2Cs), HAI1 , HAI2 , and HAI3 through ABF/AREB transcription factors. These three HAI PP2Cs interacted with MPK3 and MPK6 and were required for ABA-mediated MPK3/MPK6 inactivation and immune suppression. The bacterial pathogen Pseudomonas syringae pv. tomato ( Pto ) DC3000 activates ABA signaling and produces a JA-mimicking phytotoxin, coronatine (COR), that promotes virulence. We found that Pto DC3000 induces HAI1 through COR-mediated activation of MYC2, a master transcription factor in JA signaling. HAI1 dephosphorylated MPK3 and MPK6 in vitro and was necessary for COR-mediated suppression of MPK3/MPK6 activation and immunity. Intriguingly, upon ETI activation, A. thaliana plants overcame the HAI1-dependent virulence of COR by blocking JA signaling. Finally, we showed conservation of induction of HAI PP2Cs by ABA and JA in other Brassicaceae species. Taken together, these results suggest that ABA and JA signaling pathways, which are hijacked by the bacterial pathogen, converge on the HAI PP2Cs that suppress activation of the immune-associated MAPKs. Also, our data unveil interception of JA-signaling activation as a host counterstrategy against the bacterial suppression of MAPKs during ETI.

  6. Immunotherapy of murine leukemia. Efficacy of passive serum therapy of Friend leukemia virus-induced disease in immunocompromised mice

    International Nuclear Information System (INIS)

    Genovesi, E.V.; Livnat, D.; Collins, J.J.

    1983-01-01

    Previous studies have demonstrated that the passive therapy of Friend murine leukemia virus (F-MuLV)-induced disease with chimpanzee anti-F-MuLV serum is accompanied by the development of host antiviral humoral and cellular immunity, the latter measurable in adoptive transfer protocols and by the ability of serum-protected mice to resist virus rechallenge. The present study was designed to further examine the contribution of various compartments of the host immune system to serum therapy itself, as well as to the acquired antiviral immunity that develops in serum-protected mice, through the use of naturally immunocompromised animals [e.g., nude athymic mice and natural killer (NK)-deficient beige mutant mice] or mice treated with immunoabrogating agents such as sublethal irradiation, cyclophosphamide [Cytoxan (Cy)], cortisone, and 89 Sr. The studies in nude mice indicate that while mature T-cells are not needed for effective serum therapy, they do appear to be necessary for the long-term resistance of serum-protected mice to virus rechallenge and for the generation of the cell population(s) responsible for adoptive transfer of antiviral immunity. Furthermore, this acquired resistance is not due to virus neutralization by serum antibodies since antibody-negative, Cy-treated, serum-protected mice still reject the secondary virus infection. Lastly, while the immunocompromise systems examined did effect various host antiviral immune responses, none of them, including the NK-deficient beige mutation, significantly diminished the efficacy of the passive serum therapy of F-MuLV-induced disease

  7. Mechanisms of vasculitis : How pauci-immune is ANCA-associated renal vasculitis?

    NARCIS (Netherlands)

    van Paassen, P.; Tervaert, J. W. Cohen; Heeringa, P.

    2007-01-01

    Both the innate and the acquired immune system are involved in the pathophysiology of renal vasculitis. However, anti-neutrophil cytoplasmic antibody (ANCA)-associated renal vasculitis is characterized by a 'pauci-immune' pattern of immunofluorescence during kidney biopsy, indicating the relative

  8. Studies on cross-immunity among syngeneic tumors by immunization with gamma-irradiated tumor cells

    International Nuclear Information System (INIS)

    Ito, Izumi

    1977-01-01

    In order to clarify whether cross-immunity among 3-methyl-cholanthrene (MCA)-induced sarcomas in C3H/He mice can be established or not, transplantations of syngeneic tumors were carried out in mice immunized with gamma-irradiated (13,000 rad 60 Co) tumor cells and in those immunized with living tumor cells thereafter. The following results were obtained. By using immunizing procedure with only gamma-irradiated tumor cells, a pair of tumors originating from one and the same mouse showed cross-resistance to each other. However, no such evidence was seen among tumors originating from different mice. Cross-immunity among syngeneic tumors originating from different mice could be clearly observed, when immunizing procedure using living tumor cells was added after the treatment with gamma-irradiated tumor cells. It was considered that common antigenicity among MCA-induced sarcoma cells was decreased by gamma-irradiation and that individual differences of tumor antigenecity were shown distinctly under such conditions. (auth.)

  9. Circumsporozoite Protein-Specific Kd-Restricted CD8+ T Cells Mediate Protective Antimalaria Immunity in Sporozoite-Immunized MHC-I-Kd Transgenic Mice

    Directory of Open Access Journals (Sweden)

    Jing Huang

    2014-01-01

    Full Text Available Although the roles of CD8+ T cells and a major preerythrocytic antigen, the circumsporozoite (CS protein, in contributing protective antimalaria immunity induced by radiation-attenuated sporozoites, have been shown by a number of studies, the extent to which these players contribute to antimalaria immunity is still unknown. To address this question, we have generated C57BL/6 (B6 transgenic (Tg mice, expressing Kd molecules under the MHC-I promoter, called MHC-I-Kd-Tg mice. In this study, we first determined that a single immunizing dose of IrPySpz induced a significant level of antimalaria protective immunity in MHC-I-Kd-Tg mice but not in B6 mice. Then, by depleting various T-cell subsets in vivo, we determined that CD8+ T cells are the main mediator of the protective immunity induced by IrPySpz. Furthermore, when we immunized (MHC-I-Kd-Tg × CS-Tg F1 mice with IrPySpz after crossing MHC-I-Kd-Tg mice with PyCS-transgenic mice (CS-Tg, which are unable to mount PyCS-specific immunity, we found that IrPySpz immunization failed to induce protective antimalaria immunity in (MHC-I-Kd-Tg × CS-Tg F1 mice, thus indicating the absence of PyCS antigen-dependent immunity in these mice. These results indicate that protective antimalaria immunity induced by IrPySpz in MHC-I-Kd-Tg mice is mediated by CS protein-specific, Kd-restricted CD8+ T cells.

  10. Acquired Protective Immunity in Atlantic Salmon Salmo salar against the Myxozoan Kudoa thyrsites Involves Induction of MHIIβ+ CD83+ Antigen-Presenting Cells.

    Science.gov (United States)

    Braden, Laura M; Rasmussen, Karina J; Purcell, Sara L; Ellis, Lauren; Mahony, Amelia; Cho, Steven; Whyte, Shona K; Jones, Simon R M; Fast, Mark D

    2018-01-01

    The histozoic myxozoan parasite Kudoa thyrsites causes postmortem myoliquefaction and is responsible for economic losses to salmon aquaculture in the Pacific Northwest. Despite its importance, little is known about the host-parasite relationship, including the host response to infection. The present work sought to characterize the immune response in Atlantic salmon during infection, recovery, and reexposure to K. thyrsites After exposure to infective seawater, infected and uninfected smolts were sampled three times over 4,275 degree-days. Histological analysis revealed infection severity decreased over time in exposed fish, while in controls there was no evidence of infection. Following a secondary exposure of all fish, severity of infection in the controls was similar to that measured in exposed fish at the first sampling time but was significantly reduced in reexposed fish, suggesting the acquisition of protective immunity. Using immunohistochemistry, we detected a population of MHIIβ + cells in infected muscle that followed a pattern of abundance concordant with parasite prevalence. Infiltration of these cells into infected myocytes preceded destruction of the plasmodium and dissemination of myxospores. Dual labeling indicated a majority of these cells were CD83 + /MHIIβ + Using reverse transcription-quantitative PCR, we detected significant induction of cellular effectors, including macrophage/dendritic cells ( mhii / cd83 / mcsf ), B cells ( igm / igt ), and cytotoxic T cells ( cd8 / nkl ), in the musculature of infected fish. These data support a role for cellular effectors such as antigen-presenting cells (monocyte/macrophage and dendritic cells) along with B and T cells in the acquired protective immune response of Atlantic salmon against K. thyrsites . Copyright © 2017 American Society for Microbiology.

  11. Prime immunization with rotavirus VLP 2/6 followed by boosting with an adenovirus expressing VP6 induces protective immunization against rotavirus in mice

    Directory of Open Access Journals (Sweden)

    Qu Jianguo

    2011-01-01

    Full Text Available Abstract Background Rotavirus (RV is the main cause of severe gastroenteritis in children. An effective vaccination regime against RV can substantially reduce morbidity and mortality. Previous studies have demonstrated the efficacy of virus-like particles formed by RV VP2 and VP6 (VLP2/6, as well as that of recombinant adenovirus expressing RV VP6 (rAd, in eliciting protective immunities against RV. However, the efficacy of such prime-boost strategy, which incorporates VLP and rAd in inducing protective immunities against RV, has not been addressed. We assessed the immune effects of different regimens in mice, including rAd prime-VLP2/6 boost (rAd+VLP, VLP2/6 prime-rAd boost (VLP+rAd, rAd alone, and VLP alone. Results Mice immunized with the VLP+rAd regimen elicit stronger humoral, mucosal, and cellular immune responses than those immunized with other regimens. RV challenging experiments showed that the highest reduction (92.9% in viral shedding was achieved in the VLP+rAd group when compared with rAd+VLP (25%, VLP alone (75%, or rAd alone (40% treatment groups. The reduction in RV shedding in mice correlated with fecal IgG (r = 0.95773, P = 0.04227 and IgA (r = 0.96137, P = 0.038663. Conclusions A VLP2/6 prime-rAd boost regimen is effective in conferring immunoprotection against RV challenge in mice. This finding may lay the groundwork for an alternative strategy in novel RV vaccine development.

  12. Non-specific immunization against babesiosis

    International Nuclear Information System (INIS)

    Cox, F.E.G.

    1980-01-01

    The rodent babesias, Babesia rodhaini and the less virulent B. microti, are useful models with which to study immunity to and immunization against babesiosis. In contrast with the difficulty in inducing specific immunity to these parasites it is comparatively easy to induce non-specific immunity by prior exposure to related and unrelated intra-erythrocytic protozoa, micro-organisms such as Mycobacterium bovis (BCG) and Corynebacterium parvum, microbial extracts and muramyl dipeptide. This non-specific immunity is long lasting and extremely effective. It is characterized by the facts that (a) it occurs early in the infection at the height of the first peak of parasitaemia, and (b) it involves the intra-erythrocytic death of the parasites. After the primary parasitaemia has resolved, some parasites continue to persist at a low level and when introduced into clean mice produce only low-level 'attenuated' infections in these. Non-specific immunity is not equally effective in all strains of mice. It is suggested that immunity to babesiosis, and infections caused by other intra-erythrocytic protozoa, involves two mechanisms, the first non-specific and the second specific. The actual balance between these two mechanisms varies from parasite to parasite and from host to host. An effective vaccine would have to be based on an understanding of the roles of non-specific immunity in the actual disease under consideration, and would ideally combine an adjuvant that would also stimulate non-specific immunity and an attenuated strain of parasite that would induce a specific response. (author)

  13. Mechanism study of tumor-specific immune responses induced by laser immunotherapy

    Science.gov (United States)

    Li, Xiaosong; Zhou, Feifan; Le, Henry; Wolf, Roman F.; Howard, Eric; Nordquist, Robert E.; Hode, Tomas; Liu, Hong; Chen, Wei R.

    2011-03-01

    Laser immunotherapy (LIT) has shown its efficacy against late-stage, metastatic cancers, both in pre-clinical studies and clinical pilot trials. However, the possible mechanism of LIT is still not fully understood. In our previous studies, we have shown that LIT induces tumor-specific antibodies that strongly bind to the target tumors. Tumor resistance in cured animals demonstrated long-term immunological effect of LIT. Successful transfer of adoptive immunity using spleen cells from LIT-cured animals indicated a long-term immunological memory of the host system. In clinical trials for the treatment of late-stage melanoma patients and breast cancer patients, the similar long-term, systemic effects have also been observed. To further study the immunological mechanism of LIT, immuno-histochemical analysis of patient tumor samples has performed before and after LIT treatment. Our results showed strong evidence that LIT significantly increases the infiltration of immune cells in the target tumors. Specifically, LIT appeared to drive the infiltrating immune cell populations in the direction of CD4, CD8 and CD68 T-cells. It is possible that activation and enhancement of both humeral and cellular arms of the host immune system are achievable by the treatment of LIT. These special features of LIT have contributed to the success of patient treatment. The underlying mechanism of LIT appears to be an in-situ autologous whole-cell cancer vaccination, using all components of tumors as sources of tumor antigens. Our preliminary mechanistic studies and future in-depth studies will contribute to the understanding and development of LIT as an effective modality for the treatment of late stage cancer patients who are facing severely limited options.

  14. Immunometabolic Pathways in BCG-Induced Trained Immunity

    NARCIS (Netherlands)

    Arts, R.J.; Carvalho, A.; Rocca, C. La; Palma, C.; Rodrigues, F.; Silvestre, R.; Kleinnijenhuis, J.; Lachmandas, E.; Goncalves, L.G.; Belinha, A.; Cunha, C.; Oosting, M.; Joosten, L.A.; Matarese, G.; Crevel, R. van; Netea, M.G.

    2016-01-01

    The protective effects of the tuberculosis vaccine Bacillus Calmette-Guerin (BCG) on unrelated infections are thought to be mediated by long-term metabolic changes and chromatin remodeling through histone modifications in innate immune cells such as monocytes, a process termed trained immunity.

  15. Coxsackievirus A 16 infection does not interfere with the specific immune response induced by an enterovirus 71 inactivated vaccine in rhesus monkeys.

    Science.gov (United States)

    Wang, Jingjing; Qi, Sudong; Zhang, Xiaolong; Zhang, Ying; Liu, Longding; Che, Yanchun; He, Zhanlong; Zhao, Yuan; Lu, Shuaiyao; Yu, Wenhai; Li, Qihan

    2014-07-31

    Hand, foot and mouth disease is usually caused by enterovirus 71 (EV71) and coxsackievirus A 16 (CA16), which are members of the Picornaviridae family. In the present study, the characteristics of the immune response induced by an EV71 inactivated vaccine (made from human diploid cells) were explored in the presence of CA16 infection, based on the previously established neonatal rhesus monkey model. The typical clinical manifestations, including body temperature, viral viremia and virus shedding in the mouth, pharynx and feces, were characterized. A specific neutralizing antibody assay showed that the specific immune response induced by the EV71 inactivated vaccine was active against EV71 but not against CA16. No remarkable fluctuation in proinflammatory cytokine release was identified in the serum of immunized monkeys with EV71 vaccine and CA16 infections subsequently. The results showed that the specific immune response induced by the EV71 inactivated vaccine is effective against EV71 infection but is not affected by CA16 infection. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. [Effect of vitamine A on mice immune response induced by specific periodontal pathogenic bacteria-immunization].

    Science.gov (United States)

    Lin, Xiao-Ping; Zhou, Xiao-Jia; Liu, Hong-Li; DU, Li-Li; Toshihisa, Kawai

    2010-12-01

    The aim of this study was to investigate the effect of vitamine-A deficiency on the induction of specific periodontal pathogenic bacteria A. actinomycetetemcomitans(Aa) immunization. BALB/c mice were fed with vitamine A-depleted diet or control regular diet throughout the whole experiment period. After 2 weeks, immunized formalin-killed Aa to build immunized models, 6 weeks later, sacrificed to determine specific antibody-IgG, IgM and sub-class IgG antibody titers in serum, and concentration of IL-10, IFN-γ, TNF-α and RANKL in T cell supernatant were measured by ELISA and T cell proliferation was measured by cintilography. SPSS 11.5 software package was used for statistical analysis. The levels of whole IgG and IgM antibody which were immunized by Aa significantly elevated, non-immune group was unable to produce any antibody. Compared with Aa immunized+RD group, the level of whole IgG in Aa immunized+VAD group was significantly higher (Pvitamin-A diet can increase the immunized mice's susceptibility to periodontal pathogenic bacteria and trigger or aggravate immune inflammatory response. Adequate vitamin A is an important factor in maintaining body health. Supported by Natural Science Foundation of Liaoning Province (Grant No.20092139) and Science and Technology Program of Shenyang Municipality (Grant No.F10-149-9-32).

  17. Laser-induced immune modulation inhibits tumor growth in vivo (Conference Presentation)

    Science.gov (United States)

    Ottaviani, Giulia; Martinelli, Valentina; Rupel, Katia; Caronni, Nicoletta; Naseem, Asma; Zandonà, Lorenzo; Perinetti, Giuseppe; Gobbo, Margherita; Di Lenarda, Roberto; Bussani, Rossana; Benvenuti, Federica; Giacca, Mauro; Biasotto, Matteo; Zacchigna, Serena

    2017-02-01

    Photobiomodulation stands as a recommended therapy for oral mucositis induced by oncological therapies. However, its mechanisms of action and, more importantly, its safety in cancer patients, are still unclear. We assessed cancer cell metabolism and proliferation in vitro and in vivo after exposure to different laser protocols. We exploited both ectopic melanoma and a more physiological oral carcinogenesis mouse model, followed by molecular, histological and immunohistochemical characterization. Laser irradiation resulted in a slightly increase in cell metabolism and proliferation in vitro, albeit each protocol exerted a difference response. Of notice, in vivo laser light reduced tumour growth and invasiveness, indicating e beneficial effect on tumor microenvironment. Laser-treated tumors were surrounded and infiltrated by immune cells, mainly lymphocytes and dendritic cells, paralleled by an enhanced secretion of type I interferons. In contrast, the number of pro-angiogenic macrophages was reduced in response to laser irradiation, with consequent normalization of the tumor vasculature. Based on these finding we have also started exploring the effect of photobiomodulation on lymphocyte response in an experimental model of vaccination. Preliminary data indicate that laser light induced antigen-specific CD8+ and CD4+ T cell responses. In conclusion, our data point toward photobiomodulation as an effective strategy to boost the immune response in vivo, with relevant, therapeutic activities in both cancer and vaccination experimental models. These results support the safe use of laser light on cancer patients and open the way to innovative therapeutic opportunities.

  18. Community-Acquired Pneumonia: a Comparison between elderly and nonelderly patients

    Directory of Open Access Journals (Sweden)

    S. Jafari

    2006-08-01

    Full Text Available Background: Community-acquired pneumonia could be a life-threatening condition especially in elderly patients. The factors influencing the outcome in elderly patients are thought to be different from those in young adults. We compared the clinical and paraclinical profiles in elderly and nonelderly patients with community-acquired pneumonias. Methods: In this cross-sectional study, seventy nine patients who were hospitalized with community acquired pneumonia over a period of one year were included. Patients' medical records were reviewed; and data related to comorbid conditions, signs and symptoms, laboratory and radiographic findings were gathered using a checklist. Results: The clinical features, laboratory parameters and complications from pneumonia were almost similar in 41 elderly (group I, age ≥65years and 38 young (group II, age<65years subjects. Delirium was seen more in elderly group (p=0.05. The average body temperature and pulse rate were significantly higher in nonelderly group. Sixty one percent of elderly patients and 21% of young patients have Po2 less than 60 (p=0.02. Smoking (29.1%, neurological disturbances (19%, congestive heart failure (15.2%, chronic obstructive pulmonary disease and diabetes mellitus (13.9% were associated comorbidities in both groups. In non elderly group, immune compromise and IV drug use were more common as underlying comorbid conditions. Two of three mortalities were due to elder patients. Conclusion: Community acquired pneumonia could have more serious clinical and abnormal laboratory features in the elderly than younger patients. Mortality rate may be higher in older patients. Comorbid conditions are frequently seen in both elderly and nonelderly patients with community acquired pneumonia, but IV drug use and immune compromise are more frequent in nonelderly patients.

  19. Investigation of HIFU-induced anti-tumor immunity in a murine tumor model

    Directory of Open Access Journals (Sweden)

    Lyerly H Kim

    2007-07-01

    Full Text Available Abstract Background High intensity focused ultrasound (HIFU is an emerging non-invasive treatment modality for localized treatment of cancers. While current clinical strategies employ HIFU exclusively for thermal ablation of the target sites, biological responses associated with both thermal and mechanical damage from focused ultrasound have not been thoroughly investigated. In particular, endogenous danger signals from HIFU-damaged tumor cells may trigger the activation of dendritic cells. This response may play a critical role in a HIFU-elicited anti-tumor immune response which can be harnessed for more effective treatment. Methods Mice bearing MC-38 colon adenocarcinoma tumors were treated with thermal and mechanical HIFU exposure settings in order to independently observe HIFU-induced effects on the host's immunological response. In vivo dendritic cell activity was assessed along with the host's response to challenge tumor growth. Results Thermal and mechanical HIFU were found to increase CD11c+ cells 3.1-fold and 4-fold, respectively, as compared to 1.5-fold observed for DC injection alone. In addition, thermal and mechanical HIFU increased CFSE+ DC accumulation in draining lymph nodes 5-fold and 10-fold, respectively. Moreover, focused ultrasound treatments not only caused a reduction in the growth of primary tumors, with tumor volume decreasing by 85% for thermal HIFU and 43% for mechanical HIFU, but they also provided protection against subcutaneous tumor re-challenge. Further immunological assays confirmed an enhanced CTL activity and increased tumor-specific IFN-γ-secreting cells in the mice treated by focused ultrasound, with cytotoxicity induced by mechanical HIFU reaching as high as 27% at a 10:1 effector:target ratio. Conclusion These studies present initial encouraging results confirming that focused ultrasound treatment can elicit a systemic anti-tumor immune response, and they suggest that this immunity is closely related to

  20. Trivalent Human Papillomavirus (HPV) VLP vaccine covering HPV type 58 can elicit high level of humoral immunity but also induce immune interference among component types.

    Science.gov (United States)

    Zhang, Ting; Xu, Yufei; Qiao, Liang; Wang, Youchun; Wu, Xueling; Fan, Dongsheng; Peng, Qinglin; Xu, Xuemei

    2010-04-26

    Both Human Papillomavirus (HPV) type 16/18 bivalent vaccine and type 16/18/6/11 quadrivalent vaccine have been proved to be safe and effective, and licensed for public use. However, these two vaccines do not quite match the distribution of HPV types in China, Southeast Asia and Latin America, where HPV 58 is highly prevalent. Here we produced three types of virus-like particles (VLPs) in baculovirus expression system, formulated a trivalent vaccine containing HPV 16, 18, and 58 L1 VLPs and examined its in vitro neutralizing titers. This vaccine could induce high level and long-term humoral immunity against the component types. But immune interference was observed when comparing type specific neutralizing antibody levels induced by trivalent vaccine to those by corresponding monovalent vaccines. This kind of interference would become more obvious when formulating more types of VLPs into multivalent vaccines, but could be greatly overcome by decreasing the antigen dosage and adding a proper adjuvant. Copyright 2010 Elsevier Ltd. All rights reserved.

  1. Pre-existing vector immunity does not prevent replication deficient adenovirus from inducing efficient CD8 T-cell memory and recall responses.

    Directory of Open Access Journals (Sweden)

    Maria Abildgaard Steffensen

    Full Text Available Adenoviral vectors have shown a great potential for vaccine development due to their inherent ability to induce potent and protective CD8 T-cell responses. However, a critical issue regarding the use of these vectors is the existence of inhibitory immunity against the most commonly used Ad5 vector in a large part of the human population. We have recently developed an improved adenoviral vaccine vector system in which the vector expresses the transgene tethered to the MHC class II associated invariant chain (Ii. To further evaluate the potential of this system, the concept of pre-existing inhibitory immunity to adenoviral vectors was revisited to investigate whether the inhibition previously seen with the Ad5 vector also applied to the optimized vector system. We found this to be the case, and antibodies dominated as the mechanism underlying inhibitory vector immunity. However, presence of CD8 T cells directed against epitopes in the adenoviral vector seemed to correlate with repression of the induced response in re-vaccinated B-cell deficient mice. More importantly, despite a repressed primary effector CD8 T-cell response in Ad5-immune animals subjected to vaccination, memory T cells were generated that provided the foundation for an efficient recall response and protection upon subsequent viral challenge. Furthermore, the transgene specific response could be efficiently boosted by homologous re-immunization. Taken together, these studies indicate that adenoviral vectors can be used to induce efficient CD8 T-cell memory even in individuals with pre-existing vector immunity.

  2. Sm29, but not Sm22.6 retains its ability to induce a protective immune response in mice previously exposed to a Schistosoma mansoni infection.

    Directory of Open Access Journals (Sweden)

    Clarice Carvalho Alves

    2015-02-01

    Full Text Available BACKGROUND: A vaccine against schistosomiasis would have a great impact in disease elimination. Sm29 and Sm22.6 are two parasite tegument proteins which represent promising antigens to compose a vaccine. These antigens have been associated with resistance to infection and reinfection in individuals living in endemic area for the disease and induced partial protection when evaluated in immunization trials using naïve mice. METHODOLOGY/PRINCIPALS FINDINGS: In this study we evaluated rSm29 and rSm22.6 ability to induce protection in Balb/c mice that had been previously infected with S. mansoni and further treated with Praziquantel. Our results demonstrate that three doses of the vaccine containing rSm29 were necessary to elicit significant protection (26%-48%. Immunization of mice with rSm29 induced a significant production of IL-2, IFN-γ, IL-17, IL-4; significant production of specific antibodies; increased percentage of CD4+ central memory cells in comparison with infected and treated saline group and increased percentage of CD4+ effector memory cells in comparison with naïve Balb/c mice immunized with rSm29. On the other hand, although immunization with Sm22.6 induced a robust immune response, it failed to induce protection. CONCLUSION/SIGNIFICANCE: Our results demonstrate that rSm29 retains its ability to induce protection in previously infected animals, reinforcing its potential as a vaccine candidate.

  3. Epidemiology of Acquired Immune Deficiency Syndrome and Cerebrovascular Disease in a Post Antiretroviral Era.

    Science.gov (United States)

    Kucab, Phillip; Bhattacharya, Pratik

    2017-06-01

    People with acquired immune deficiency syndrome (AIDS) develop ischemic stroke through distinct mechanisms. These include infections such as syphilis, tuberculosis, varicella, and other conditions such as cocaine abuse, endocarditis, and hypercoagulability. The effect of improved awareness, detection, and treatment with highly active antiretroviral therapy (HAART) on the incidence and outcome of AIDS patients with stroke is unknown. Data from the Nationwide Inpatient Sample from 1995 to 2010 were analyzed. Patients with ischemic stroke and AIDS were identified using ICD-9 (International Classification of Diseases) codes. Time trends for demographics, survival, and frequency of AIDS-associated conditions were analyzed. Proportion of AIDS among stroke patients increased significantly during the study. Median age of all strokes decreased from 75 years in 1995 to 72 years in 2010. Conversely, median age for men with stroke and AIDS increased from 43 years to 53 years; and for women with stroke and AIDS, from 41 years to 51 years. Death rates from stroke in the AIDS patients declined. In recent years, the death rates from stroke are similar to patients without HIV/AIDS. Stroke patients with AIDS had increased odds of syphilis (odds ratio [OR]: 33.50), varicella (OR: 48.34), tuberculosis (OR: 137.48), endocarditis (OR: 5.19), cocaine abuse (OR: 26.05), and hypercoagulability (OR: 4.82). In the HAART era, the median age of incident stroke in AIDS has increased and the mortality from stroke has improved. Research should focus on optimal management of dyslipidemia while on HAART. Whether HAART can reduce the incidence and improve survival of stroke needs to be explored. Copyright © 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  4. Experimental demonstration of a parasite-induced immune response in wild birds: Darwin's finches and introduced nest flies.

    Science.gov (United States)

    Koop, Jennifer A H; Owen, Jeb P; Knutie, Sarah A; Aguilar, Maria A; Clayton, Dale H

    2013-08-01

    Ecological immunology aims to explain variation among hosts in the strength and efficacy of immunological defenses. However, a shortcoming has been the failure to link host immune responses to actual parasites under natural conditions. Here, we present one of the first experimental demonstrations of a parasite-induced immune response in a wild bird population. The recently introduced ectoparasitic nest fly Philornis downsi severely impacts the fitness of Darwin's finches and other land birds in the Galápagos Islands. An earlier study showed that female medium ground finches (Geospiza fortis) had P. downsi-binding antibodies correlating with presumed variation in fly exposure over time. In the current study, we experimentally manipulated fly abundance to test whether the fly does, in fact, cause changes in antibody levels. We manipulated P. downsi abundance in nests and quantified P. downsi-binding antibody levels of medium ground finch mothers, fathers, and nestlings. We also quantified host behaviors, such as preening, which can integrate with antibody-mediated defenses against ectoparasites. Philornis downsi-binding antibody levels were significantly higher among mothers at parasitized nests, compared to mothers at (fumigated) nonparasitized nests. Mothers with higher antibody levels tended to have fewer parasites in their nests, suggesting that antibodies play a role in defense against parasites. Mothers showed no behavioral changes that would enhance the effectiveness of the immune response. Neither adult males, nor nestlings, had P. downsi-induced immunological or behavioral responses that would enhance defense against flies. None of the parasitized nests fledged any offspring, despite the immune response by mothers. Thus, this study shows that, while the immune response of mothers appeared to be defensive, it was not sufficient to rescue current reproductive fitness. This study further shows the importance of testing the fitness consequences of immune

  5. Interleukin-17-induced protein lipocalin 2 is dispensable for immunity to oral candidiasis.

    Science.gov (United States)

    Ferreira, Maria Carolina; Whibley, Natasha; Mamo, Anna J; Siebenlist, Ulrich; Chan, Yvonne R; Gaffen, Sarah L

    2014-03-01

    Oropharyngeal candidiasis (OPC; thrush) is an opportunistic fungal infection caused by the commensal microbe Candida albicans. Immunity to OPC is strongly dependent on CD4+ T cells, particularly those of the Th17 subset. Interleukin-17 (IL-17) deficiency in mice or humans leads to chronic mucocutaneous candidiasis, but the specific downstream mechanisms of IL-17-mediated host defense remain unclear. Lipocalin 2 (Lcn2; 24p3; neutrophil gelatinase-associated lipocalin [NGAL]) is an antimicrobial host defense factor produced in response to inflammatory cytokines, particularly IL-17. Lcn2 plays a key role in preventing iron acquisition by bacteria that use catecholate-type siderophores, and lipocalin 2(-/-) mice are highly susceptible to infection by Escherichia coli and Klebsiella pneumoniae. The role of Lcn2 in mediating immunity to fungi is poorly defined. Accordingly, in this study, we evaluated the role of Lcn2 in immunity to oral infection with C. albicans. Lcn2 is strongly upregulated following oral infection with C. albicans, and its expression is almost entirely abrogated in mice with defective IL-17 signaling (IL-17RA(-/-) or Act1(-/-) mice). However, Lcn2(-/-) mice were completely resistant to OPC, comparably to wild-type (WT) mice. Moreover, Lcn2 deficiency mediated protection from OPC induced by steroid immunosuppression. Therefore, despite its potent regulation during C. albicans infection, Lcn2 is not required for immunity to mucosal candidiasis.

  6. Loss of Roquin induces early death and immune deregulation but not autoimmunity

    Science.gov (United States)

    Bertossi, Arianna; Aichinger, Martin; Sansonetti, Paola; Lech, Maciej; Neff, Frauke; Pal, Martin; Wunderlich, F. Thomas; Anders, Hans-Joachim; Klein, Ludger

    2011-01-01

    The substitution of one amino acid in the Roquin protein by the sanroque mutation induces a dramatic autoimmune syndrome in mice. This is believed to occur through ectopic expression of inducible T cell co-stimulator (ICOS) and unrestrained differentiation of follicular T helper cells, which induce spontaneous germinal center reactions to self-antigens. In this study, we demonstrate that tissue-specific ablation of Roquin in T or B cells, in the entire hematopoietic system, or in epithelial cells of transplanted thymi did not cause autoimmunity. Loss of Roquin induced elevated expression of ICOS through T cell–intrinsic and –extrinsic mechanisms, which itself was not sufficient to break self-tolerance. Instead, ablation of Roquin in the hematopoietic system caused defined changes in immune homeostasis, including the expansion of macrophages, eosinophils, and T cell subsets, most dramatically CD8 effector–like T cells, through cell-autonomous and nonautonomous mechanisms. Germline Roquin deficiency led to perinatal lethality, which was partially rescued on the genetic background of an outbred strain. However, not even complete absence of Roquin resulted in overt self-reactivity, suggesting that the sanroque mutation induces autoimmunity through an as yet unknown mechanism. PMID:21844204

  7. Wernicke’s Encephalopathy: An Unusual Consequence of the Acquired Immune Deficiency Syndrome—Case Report and Literature Review

    Directory of Open Access Journals (Sweden)

    Timothy R. Larsen

    2013-01-01

    Full Text Available Introduction. Wernicke’s encephalopathy is a well-described syndrome characterized by the classic triad of confusion, ataxia, and ophthalmoplegia. Wernicke’s encephalopathy results from thiamine (vitamin B1 deficiency. Common causes include alcoholism and gastric disorders. Wernicke’s has been described in patients with acquired immune deficiency syndrome (AIDS; however, given these patients’ immunosuppressed state, the diagnosis of Wernicke’s encephalopathy is not apparent. Case Presentation. A 31-year-old previously healthy male presented to the ER complaining of progressive dyspnea. Workup revealed HIV/AIDS and PCP pneumonia. He was treated and improved. On day 14 he became confused and developed nystagmus and ataxia. Considering his immunocompromised state, infectious and neoplastic etiologies topped the differential diagnosis. CT head was negative. Lumbar puncture was unremarkable. Brain MRI revealed increased T2 signal in the medial thalamus bilaterally. Intravenous thiamine was administered resulting in resolution of symptoms. Discussion. The classic triad of Wernicke’s encephalopathy occurs in 10% of cases. When immunosuppressed patients develop acute neurologic symptoms infectious or neoplastic etiologies must be excluded. However, given the relative safety of thiamine supplementation, there should be a low threshold for initiating therapy in order to reverse the symptoms and prevent progression to Korsakoff dementia, which is permanent.

  8. Toxoplasma gondii vs ionizing radiation: intestinal immunity induced in C57bl/6j mice by irradiated tachyzoites

    International Nuclear Information System (INIS)

    Galisteo Junior, Andres Jimenez.

    2004-01-01

    We study the oral route for the development of a vaccine for toxoplasmosis, using parasites irradiated with 60 Cobalt, as an alternative for vaccine development to this worldwide parasitic infection. We evaluated the development of immunity at serum or mucosal levels, and their efficiency in protect the mice against challenge with oral cysts of the Me-49 strain. C57Bl/6j isogenic mice were immunized by oral route with 107 255 Gy irradiated tachyzoites from RH strain, at several protocols using milk as anti-peptic adjuvant and alum hydroxide as antacid. The preparations of irradiated tachyzoites induced production of serum IgG and IgA in immunized mice, as determined by ELISA, with IgG2a as the dominant subclass, similar to chronic infection. Their use with adjuvant allowed the excretion of significant amounts of IgA in stools also IgG, despite a lesser extent. There are suggestion of tolerance induction at mucosal level, with lower antigen induced proliferation and lower in vitro antibody production by spleen and gut lymphocytes, with the latter doses, specially when milk was used as adjuvant. All oral preparations induced some quantitative protection against challenge, which was similar to the parenteral route only isolated alum hydroxide was used as adjuvant. All these data support the possibility of the development of an oral vaccine against toxoplasmosis, using irradiated tachyzoites, which would be possible tool in near future for use in field baits, for immunizing either domestic or wild felines. (author)

  9. Rotavirus nonstructural protein 1 antagonizes innate immune response by interacting with retinoic acid inducible gene I

    Directory of Open Access Journals (Sweden)

    Qin Lan

    2011-12-01

    Full Text Available Abstract Background The nonstructural protein 1 (NSP1 of rotavirus has been reported to block interferon (IFN signaling by mediating proteasome-dependent degradation of IFN-regulatory factors (IRFs and (or the β-transducin repeat containing protein (β-TrCP. However, in addition to these targets, NSP1 may subvert innate immune responses via other mechanisms. Results The NSP1 of rotavirus OSU strain as well as the IRF3 binding domain truncated NSP1 of rotavirus SA11 strain are unable to degrade IRFs, but can still inhibit host IFN response, indicating that NSP1 may target alternative host factor(s other than IRFs. Overexpression of NSP1 can block IFN-β promoter activation induced by the retinoic acid inducible gene I (RIG-I, but does not inhibit IFN-β activation induced by the mitochondrial antiviral-signaling protein (MAVS, indicating that NSP1 may target RIG-I. Immunoprecipitation experiments show that NSP1 interacts with RIG-I independent of IRF3 binding domain. In addition, NSP1 induces down-regulation of RIG-I in a proteasome-independent way. Conclusions Our findings demonstrate that inhibition of RIG-I mediated type I IFN responses by NSP1 may contribute to the immune evasion of rotavirus.

  10. The host immune response to Clostridium difficile infection

    Science.gov (United States)

    2013-01-01

    Clostridium difficile infection (CDI) is the most common infectious cause of healthcare-acquired diarrhoea. Outcomes of C. difficile colonization are varied, from asymptomatic carriage to fulminant colitis and death, due in part to the interplay between the pathogenic virulence factors of the bacterium and the counteractive immune responses of the host. Secreted toxins A and B are the major virulence factors of C. difficile and induce a profound inflammatory response by intoxicating intestinal epithelial cells causing proinflammatory cytokine release. Host cell necrosis, vascular permeability and neutrophil infiltration lead to an elevated white cell count, profuse diarrhoea and in severe cases, dehydration, hypoalbuminaemia and toxic megacolon. Other bacterial virulence factors, including surface layer proteins and flagella proteins, are detected by host cell surface signal molecules that trigger downstream cell-mediated immune pathways. Human studies have identified a role for serum and faecal immunoglobulin levels in protection from disease, but the recent development of a mouse model of CDI has enabled studies into the precise molecular interactions that trigger the immune response during infection. Key effector molecules have been identified that can drive towards a protective anti-inflammatory response or a damaging proinflammatory response. The limitations of current antimicrobial therapies for CDI have led to the development of both active and passive immunotherapies, none of which have, as yet been formally approved for CDI. However, recent advances in our understanding of the molecular basis of host immune protection against CDI may provide an exciting opportunity for novel therapeutic developments in the future. PMID:25165542

  11. Vorinostat-induced autophagy switches from a death-promoting to a cytoprotective signal to drive acquired resistance.

    Science.gov (United States)

    Dupéré-Richer, D; Kinal, M; Ménasché, V; Nielsen, T H; Del Rincon, S; Pettersson, F; Miller, W H

    2013-02-07

    Histone deacetylase inhibitors (HDACi) have shown promising activity against hematological malignancies in clinical trials and have led to the approval of vorinostat for the treatment of cutaneous T-cell lymphoma. However, de novo or acquired resistance to HDACi therapy is inevitable, and their molecular mechanisms are still unclear. To gain insight into HDACi resistance, we developed vorinostat-resistant clones from the hematological cell lines U937 and SUDHL6. Although cross-resistant to some but not all HDACi, the resistant cell lines exhibit dramatically increased sensitivity toward chloroquine, an inhibitor of autophagy. Consistent with this, resistant cells growing in vorinostat show increased autophagy. Inhibition of autophagy in vorinostat-resistant U937 cells by knockdown of Beclin-1 or Lamp-2 (lysosome-associated membrane protein 2) restores sensitivity to vorinostat. Interestingly, autophagy is also activated in parental U937 cells by de novo treatment with vorinostat. However, in contrast to the resistant cells, inhibition of autophagy decreases sensitivity to vorinostat. These results indicate that autophagy can switch from a proapoptotic signal to a prosurvival function driving acquired resistance. Moreover, inducers of autophagy (such as mammalian target of rapamycin inhibitors) synergize with vorinostat to induce cell death in parental cells, whereas the resistant cells remain insensitive. These data highlight the complexity of the design of combination strategies using modulators of autophagy and HDACi for the treatment of hematological malignancies.

  12. Immunity and fitness in a wild population of Eurasian kestrels Falco tinnunculus

    Science.gov (United States)

    Parejo, Deseada; Silva, Nadia

    2009-10-01

    The immune system of vertebrates consists of several components that partly interact and complement each other. Therefore, the assessment of the overall effectiveness of immune defence requires the simultaneous measurement of different immune components. In this study, we investigated intraspecific variability of innate [i.e. natural antibodies (NAb) and complement] and acquired (i.e. leucocyte profiles) immunity and its relationship with fitness correlates (i.e. blood parasite load and reproductive success in adults and body mass and survival until fledging in nestlings) in the Eurasian kestrel Falco tinnunculus. Immunity differed between nestlings and adults and also between adult males and females. Adult kestrels with higher levels of complement were less parasitised by Haemoproteus, and males with higher values of NAbs showed a higher reproductive success. In nestlings, the H/L ratio was negatively related to body mass. Survival until fledging was predicted by all measured immunological variables of nestlings as well as by their fathers' level of complement. This is the first time that innate immunity is linked to survival in a wild bird. Thus, intraspecific variation in different components of immunity predicts variation in fitness prospects in kestrels, which highlights the importance of measuring innate immune components together with components of the acquired immunity in studies assessing the effectiveness of the immune system in wild animals.

  13. Cholesterol Accumulation in Dendritic Cells Links the Inflammasome to Acquired Immunity.

    Science.gov (United States)

    Westerterp, Marit; Gautier, Emmanuel L; Ganda, Anjali; Molusky, Matthew M; Wang, Wei; Fotakis, Panagiotis; Wang, Nan; Randolph, Gwendalyn J; D'Agati, Vivette D; Yvan-Charvet, Laurent; Tall, Alan R

    2017-06-06

    Autoimmune diseases such as systemic lupus erythematosus (SLE) are associated with increased cardiovascular disease and reduced plasma high-density lipoprotein (HDL) levels. HDL mediates cholesterol efflux from immune cells via the ATP binding cassette transporters A1 and G1 (ABCA1/G1). The significance of impaired cholesterol efflux pathways in autoimmunity is unknown. We observed that Abca1/g1-deficient mice develop enlarged lymph nodes (LNs) and glomerulonephritis suggestive of SLE. This lupus-like phenotype was recapitulated in mice with knockouts of Abca1/g1 in dendritic cells (DCs), but not in macrophages or T cells. DC-Abca1/g1 deficiency increased LN and splenic CD11b + DCs, which displayed cholesterol accumulation and inflammasome activation, increased cell surface levels of the granulocyte macrophage-colony stimulating factor receptor, and enhanced inflammatory cytokine secretion. Consequently, DC-Abca1/g1 deficiency enhanced T cell activation and T h 1 and T h 17 cell polarization. Nlrp3 inflammasome deficiency diminished the enlarged LNs and enhanced T h 1 cell polarization. These findings identify an essential role of DC cholesterol efflux pathways in maintaining immune tolerance. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Two doses of bovine viral diarrhea virus DNA vaccine delivered by electroporation induce long-term protective immune responses.

    Science.gov (United States)

    van Drunen Littel-van den Hurk, Sylvia; Lawman, Zoe; Snider, Marlene; Wilson, Don; van den Hurk, Jan V; Ellefsen, Barry; Hannaman, Drew

    2013-02-01

    Bovine viral diarrhea virus (BVDV) is a pathogen of major importance in cattle, so there is a need for new effective vaccines. DNA vaccines induce balanced immune responses and are relatively inexpensive and thus promising for both human and veterinary applications. In this study, newborn calves with maternal antibodies were vaccinated intramuscularly (i.m.) with a BVDV E2 DNA vaccine with the TriGrid Delivery System for i.m. delivery (TDS-IM). Two doses of this vaccine spaced 6 or 12 weeks apart were sufficient to induce significant virus-neutralizing antibody titers, numbers of activated T cells, and reduction in viral shedding and clinical presentations after BVDV-2 challenge. In contrast to the placebo-treated animals, the vaccinated calves did not lose any weight, which is an excellent indicator of the well-being of an animal and has a significant economic impact. Furthermore, the interval between the two vaccinations did not influence the magnitude of the immune responses or degree of clinical protection, and a third immunization was not necessary or beneficial. Since electroporation may enhance not only the magnitude but also the duration of immunity after DNA immunization, the interval between vaccination and challenge was extended in a second trial, which showed that two doses of this E2 DNA vaccine again significantly reduced clinical disease against BVDV for several months. These results are promising and support this technology for use against infectious diseases in cattle and large species, including humans, in general.

  15. ERAP1 overexpression in HPV-induced malignancies: A possible novel immune evasion mechanism.

    Science.gov (United States)

    Steinbach, Alina; Winter, Jan; Reuschenbach, Miriam; Blatnik, Renata; Klevenz, Alexandra; Bertrand, Miriam; Hoppe, Stephanie; von Knebel Doeberitz, Magnus; Grabowska, Agnieszka K; Riemer, Angelika B

    2017-01-01

    Immune evasion of tumors poses a major challenge for immunotherapy. For human papillomavirus (HPV)-induced malignancies, multiple immune evasion mechanisms have been described, including altered expression of antigen processing machinery (APM) components. These changes can directly influence epitope presentation and thus T-cell responses against tumor cells. To date, the APM had not been studied systematically in a large array of HPV + tumor samples. Therefore in this study, systematic expression analysis of the APM was performed on the mRNA and protein level in a comprehensive collection of HPV16 + cell lines. Subsequently, HPV + cervical tissue samples were examined by immunohistochemistry. ERAP1 (endoplasmic reticulum aminopeptidase 1) was the only APM component consistently altered - namely overexpressed - in HPV16 + tumor cell lines. ERAP1 was also found to be overexpressed in cervical intraepithelial neoplasia and cervical cancer samples; expression levels were increasing with disease stage. On the functional level, the influence of ERAP1 expression levels on HPV16 E7-derived epitope presentation was investigated by mass spectrometry and in cytotoxicity assays with HPV16-specific T-cell lines. ERAP1 overexpression did not cause a complete destruction of any of the HPV epitopes analyzed, however, an influence of ERAP1 overexpression on the presentation levels of certain HPV epitopes could be demonstrated by HPV16-specific CD8 + T-cells. These showed enhanced killing toward HPV16 + CaSki cells whose ERAP1 expression had been attenuated to normal levels. ERAP1 overexpression may thus represent a novel immune evasion mechanism in HPV-induced malignancies, in cases when presentation of clinically relevant epitopes is reduced by overactivity of this peptidase.

  16. The CD8+ T Cell-Mediated Immunity Induced by HPV-E6 Uploaded in Engineered Exosomes Is Improved by ISCOMATRIXTM Adjuvant

    Science.gov (United States)

    Manfredi, Francesco; di Bonito, Paola; Ridolfi, Barbara; Anticoli, Simona; Arenaccio, Claudia; Chiozzini, Chiara; Baz Morelli, Adriana; Federico, Maurizio

    2016-01-01

    We recently described the induction of an efficient CD8+ T cell-mediated immune response against a tumor-associated antigen (TAA) uploaded in engineered exosomes used as an immunogen delivery tool. This immune response cleared tumor cells inoculated after immunization, and controlled the growth of tumors implanted before immunization. We looked for new protocols aimed at increasing the CD8+ T cell specific response to the antigen uploaded in engineered exosomes, assuming that an optimized CD8+ T cell immune response would correlate with a more effective depletion of tumor cells in the therapeutic setting. By considering HPV-E6 as a model of TAA, we found that the in vitro co-administration of engineered exosomes and ISCOMATRIXTM adjuvant, i.e., an adjuvant composed of purified ISCOPREPTM saponin, cholesterol, and phospholipids, led to a stronger antigen cross-presentation in both B- lymphoblastoid cell lines ( and monocyte-derived immature dendritic cells compared with that induced by the exosomes alone. Consistently, the co-inoculation in mice of ISCOMATRIXTM adjuvant and engineered exosomes induced a significant increase of TAA-specific CD8+ T cells compared to mice immunized with the exosomes alone. This result holds promise for effective usage of exosomes as well as alternative nanovesicles in anti-tumor therapeutic approaches. PMID:27834857

  17. Recombinant TgHSP70 Immunization Protects against Toxoplasma gondii Brain Cyst Formation by Enhancing Inducible Nitric Oxide Expression

    Directory of Open Access Journals (Sweden)

    Neide M. Silva

    2017-04-01

    Full Text Available Toxoplasma gondii is known to cause congenital infection in humans and animals and severe disease in immunocompromised individuals; consequently development of vaccines against the parasite is highly necessary. Under stress conditions, T. gondii expresses the highly immunogenic heat shock protein 70 (TgHSP70. Here, we assessed the protective efficacy of rTgHSP70 immunization combined with Alum in oral ME-49 T. gondii infection and the mechanisms involved on it. It was observed that immunized mice with rTgHSP70 or rTgHSP70 adsorbed in Alum presented a significantly reduced number of cysts in the brain that was associated with increased iNOS+ cell numbers in the organ, irrespective the use of the adjuvant. Indeed, ex vivo experiments showed that peritoneal macrophages pre-stimulated with rTgHSP70 presented increased NO production and enhanced parasite killing, and the protein was able to directly stimulate B cells toward antibody producing profile. In addition, rTgHSP70 immunization leads to high specific antibody titters systemically and a mixed IgG1/IgG2a response, with predominance of IgG1 production. Nonetheless, it was observed that the pretreatment of the parasite with rTgHSP70 immune sera was not able to control T. gondii internalization and replication by NIH fibroblast neither peritoneal murine macrophages, nor anti-rTgHSP70 antibodies were able to kill T. gondii by complement-mediated lysis, suggesting that these mechanisms are not crucial to resistance. Interestingly, when in combination with Alum, rTgHSP70 immunization was able to reduce inflammation in the brain of infected mice and in parallel anti-rTgHSP70 immune complexes in the serum. In conclusion, immunization with rTgHSP70 induces massive amounts of iNOS expression and reduced brain parasitism, suggesting that iNOS expression and consequently NO production in the brain is a protective mechanism induced by TgHSP70 immunization, therefore rTgHSP70 can be a good candidate for

  18. The role of medicaments, exosomes and miRNA molecules in modulation of macrophage immune activity

    Directory of Open Access Journals (Sweden)

    Katarzyna Nazimek

    2015-01-01

    Full Text Available Macrophages play an important role in innate immunity, in induction and orchestration of acquired immune response as well as in the maintenance of tissue homeostasis. Macrophages as antigen presenting cells induce or inhibit the development of immune response and as effector cells play an important role in innate immunity to infectious agents and in delayed--type hypersensitivity as well. Thus, either up- or down-regulation of their activity leads to the impairment of different biological processes. This often results in the development of immunological diseases or inflammatory response associated with metabolic, cardiovascular or neuroendocrine disorders. Therefore, the possibility of modulation of macrophage function should allow for elaboration of new effective therapeutic strategies. Noteworthy, interaction of medicaments with macrophages may directly mediate their therapeutic activity or is an additional beneficial effect increasing efficacy of treatment. Further, macrophage differentiation is regulated by miRNA-223, while expression of miRNA-146 and miRNA-155 may modulate and/or be a result of the current cell phenotype. Present review is focused on the current knowledge about the action of medicaments, microRNA molecules, exosomes and related vesicles on macrophages leading to modulation of their biological activity.

  19. [Effects of cell-mediated immunity induced by intramuscular chitosan-pJME/ GM-CSF nano-DNA vaccine in BAlb/c mice].

    Science.gov (United States)

    Zhai, Yong-Zhen; Zhou, Yan; Ma, Li; Feng, Guo-He

    2014-07-01

    This study aimed to investigate the immune adjuvant effect and mechanism induced by chitosan nanoparticles carrying pJME/GM-CSF. In this study, plasmid DNA (pJME/GM-CSF) was encapsulated in chitosan to prepare chitosan-pJME/GM-CSF nanoparticles using a complex coacervation process. Immunohistochemistry was used to detect the type of infiltrating cells at the site of intramuscular injection. The phenotype and functional changes of splenic DCs were measured by flow cytometry after different immunogens were injected intramuscularly. The killing activity of CTLs was assessed using the lactate dehydrogenase (LDH) release assay. The preparation of chitosan-pJME/GM-CSF nanoparticles matched the expected theoretical results. Our results also found that, after pJME/GM-CSF injection, the incoming cells were a mixture of macrophages, neutrophils, and immature DCs. Meanwhile, pJME/GM-CSF increased the expression of MHC class II molecules on splenic DCs, and enhanced their Ag capture and presentation functions. Cell-mediated immunity was induced by the vaccine. Furthermore, chitosan-pJME/GM-CSF nanoparticles outperformed the administration of standard pJME/GM-CSF in terms of DC recruitment, antigen processing and presentation, and vaccine enhancement. These findings reveal that chitosan could be used as delivery vector for DNA vaccine intramuscular immunizations, and enhance pJME/GM-CSF-induced cellular immune responses.

  20. Bee venom phospholipase A2 induces a primary type 2 response that is dependent on the receptor ST2 and confers protective immunity.

    Science.gov (United States)

    Palm, Noah W; Rosenstein, Rachel K; Yu, Shuang; Schenten, Dominik D; Florsheim, Esther; Medzhitov, Ruslan

    2013-11-14

    Venoms consist of toxic components that are delivered to their victims via bites or stings. Venoms also represent a major class of allergens in humans. Phospholipase A2 (PLA2) is a conserved component of venoms from multiple species and is the major allergen in bee venom. Here we examined how bee venom PLA2 is sensed by the innate immune system and induces a type 2 immune response in mice. We found that bee venom PLA2 induced a T helper type 2 (Th2) cell-type response and group 2 innate lymphoid cell activation via the enzymatic cleavage of membrane phospholipids and release of interleukin-33. Furthermore, we showed that the IgE response to PLA2 could protect mice from future challenge with a near-lethal dose of PLA2. These data suggest that the innate immune system can detect the activity of a conserved component of venoms and induce a protective immune response against a venom toxin. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Immunization with Clinical HIV-1 Env Proteins Induces Broad Antibody Dependent Cellular Cytotoxicity-Mediating Antibodies in a Rabbit Vaccination Model.

    Science.gov (United States)

    Karlsson, Ingrid; Borggren, Marie; Jensen, Sanne Skov; Heyndrickx, Leo; Stewart-Jones, Guillaume; Scarlatti, Gabriella; Fomsgaard, Anders

    2017-11-17

    The induction of both neutralizing antibodies and non-neutralizing antibodies with effector functions, for example, antibody-dependent cellular cytotoxicity (ADCC), is desired in the search for effective vaccines against HIV-1. In the pursuit of novel immunogens capable of inducing an efficient antibody response, rabbits were immunized with selected antigens using different prime-boost strategies. We immunized 35 different groups of rabbits with Env antigens from clinical HIV-1 subtypes A and B, including immunization with DNA alone, protein alone, and DNA prime with protein boost. The rabbit sera were screened for ADCC activity using a GranToxiLux-based assay with human peripheral blood mononuclear cells as effector cells and CEM.NKR CCR5 cells coated with HIV-1 envelope as target cells. The groups with the highest ADCC activity were further characterized for cross-reactivity between HIV-1 subtypes. The immunogen inducing the most potent and broadest ADCC response was a trimeric gp140. The ADCC activity was highest against the HIV-1 subtype corresponding to the immunogen. The ADCC activity did not necessarily reflect neutralizing activity in the pseudovirus-TZMbl assay, but there was an overall correlation between the two antiviral activities. We present a rabbit vaccination model and an assay suitable for screening HIV-1 vaccine candidates for the induction of ADCC-mediating antibodies in addition to neutralizing antibodies. The antigens and/or immunization strategies capable of inducing antibodies with ADCC activity did not necessarily induce neutralizing activity and vice versa. Nevertheless, we identified vaccine candidates that were able to concurrently induce both types of responses and that had ADCC activity that was cross-reactive between different subtypes. When searching for an effective vaccine candidate, it is important to evaluate the antibody response using a model and an assay measuring the desired function.

  2. TIPE2, a negative regulator of innate and adaptive immunity that maintains immune homeostasis.

    Science.gov (United States)

    Sun, Honghong; Gong, Shunyou; Carmody, Ruaidhri J; Hilliard, Anja; Li, Li; Sun, Jing; Kong, Li; Xu, Lingyun; Hilliard, Brendan; Hu, Shimin; Shen, Hao; Yang, Xiaolu; Chen, Youhai H

    2008-05-02

    Immune homeostasis is essential for the normal functioning of the immune system, and its breakdown leads to fatal inflammatory diseases. We report here the identification of a member of the tumor necrosis factor-alpha-induced protein-8 (TNFAIP8) family, designated TIPE2, that is required for maintaining immune homeostasis. TIPE2 is preferentially expressed in lymphoid tissues, and its deletion in mice leads to multiorgan inflammation, splenomegaly, and premature death. TIPE2-deficient animals are hypersensitive to septic shock, and TIPE2-deficient cells are hyper-responsive to Toll-like receptor (TLR) and T cell receptor (TCR) activation. Importantly, TIPE2 binds to caspase-8 and inhibits activating protein-1 and nuclear factor-kappaB activation while promoting Fas-induced apoptosis. Inhibiting caspase-8 significantly blocks the hyper-responsiveness of TIPE2-deficient cells. These results establish that TIPE2 is an essential negative regulator of TLR and TCR function, and its selective expression in the immune system prevents hyperresponsiveness and maintains immune homeostasis.

  3. Merck Ad5/HIV induces broad innate immune activation that predicts CD8⁺ T-cell responses but is attenuated by preexisting Ad5 immunity.

    Science.gov (United States)

    Zak, Daniel E; Andersen-Nissen, Erica; Peterson, Eric R; Sato, Alicia; Hamilton, M Kristina; Borgerding, Joleen; Krishnamurty, Akshay T; Chang, Joanne T; Adams, Devin J; Hensley, Tiffany R; Salter, Alexander I; Morgan, Cecilia A; Duerr, Ann C; De Rosa, Stephen C; Aderem, Alan; McElrath, M Juliana

    2012-12-11

    To better understand how innate immune responses to vaccination can lead to lasting protective immunity, we used a systems approach to define immune signatures in humans over 1 wk following MRKAd5/HIV vaccination that predicted subsequent HIV-specific T-cell responses. Within 24 h, striking increases in peripheral blood mononuclear cell gene expression associated with inflammation, IFN response, and myeloid cell trafficking occurred, and lymphocyte-specific transcripts decreased. These alterations were corroborated by marked serum inflammatory cytokine elevations and egress of circulating lymphocytes. Responses of vaccinees with preexisting adenovirus serotype 5 (Ad5) neutralizing antibodies were strongly attenuated, suggesting that enhanced HIV acquisition in Ad5-seropositive subgroups in the Step Study may relate to the lack of appropriate innate activation rather than to increased systemic immune activation. Importantly, patterns of chemoattractant cytokine responses at 24 h and alterations in 209 peripheral blood mononuclear cell transcripts at 72 h were predictive of subsequent induction and magnitude of HIV-specific CD8(+) T-cell responses. This systems approach provides a framework to compare innate responses induced by vectors, as shown here by contrasting the more rapid, robust response to MRKAd5/HIV with that to yellow fever vaccine. When applied iteratively, the findings may permit selection of HIV vaccine candidates eliciting innate immune response profiles more likely to drive HIV protective immunity.

  4. Protective MCMV immunity by vaccination of the salivary gland via Wharton's duct: replication-deficient recombinant adenovirus expressing individual MCMV genes elicits protection similar to that of MCMV.

    Science.gov (United States)

    Liu, Guangliang; Zhang, Fangfang; Wang, Ruixue; London, Lucille; London, Steven D

    2014-04-01

    Salivary glands, a major component of the mucosal immune system, confer antigen-specific immunity to mucosally acquired pathogens. We investigated whether a physiological route of inoculation and a subunit vaccine approach elicited MCMV-specific and protective immunity. Mice were inoculated by retrograde perfusion of the submandibular salivary glands via Wharton's duct with tcMCMV or MCMV proteins focused to the salivary gland via replication-deficient adenovirus expressing individual MCMV genes (gB, gH, IE1; controls: saline and replication deficient adenovirus without MCMV inserts). Mice were evaluated for MCMV-specific antibodies, T-cell responses, germinal center formation, and protection against a lethal MCMV challenge. Retrograde perfusion with tcMCMV or adenovirus expressed MCMV proteins induced a 2- to 6-fold increase in systemic and mucosal MCMV-specific antibodies, a 3- to 6-fold increase in GC marker expression, and protection against a lethal systemic challenge, as evidenced by up to 80% increased survival, decreased splenic pathology, and decreased viral titers from 10(6) pfu to undetectable levels. Thus, a focused salivary gland immunization via a physiological route with a protein antigen induced systemic and mucosal protective immune responses. Therefore, salivary gland immunization can serve as an alternative mucosal route for administering vaccines, which is directly applicable for use in humans.

  5. Killer B Lymphocytes and their Fas Ligand Positive Exosomes as Inducers of Immune Tolerance

    Directory of Open Access Journals (Sweden)

    Steven Karl Lundy

    2015-03-01

    Full Text Available Induction of immune tolerance is a key process by which the immune system is educated to modulate reactions against benign stimuli such as self-antigens and commensal microbes. Understanding and harnessing the natural mechanisms of immune tolerance may become an increasingly useful strategy for treating many types of allergic and autoimmune diseases, as well as for improving the acceptance of solid organ transplants. Our laboratory and others have been interested in the natural ability of some B lymphocytes to express the death-inducing molecule Fas ligand (FasL, and their ability to kill T helper (TH lymphocytes. We have recently shown that experimental transformation of human B cells by a non-replicative variant of Epstein-Barr virus (EBV consistently resulted in high expression of functional FasL protein. The production and release of FasL+ exosomes that co-expressed MHC Class II molecules and had the capacity to kill antigen-specific TH cells was also observed. Several lines of evidence indicate that FasL+ B cells and FasL+MHCII+ exosomes have important roles in natural immune tolerance and have a great deal of therapeutic potential. Taken together, these findings suggest that EBV-immortalized human B lymphoblastoid cell lines could be used as cellular factories for FasL+ exosomes, which would be employed to therapeutically establish and/or regain immune tolerance toward specific antigens. The goals of this review are to summarize current knowledge of the roles of FasL+ B cells and exosomes in immune regulation, and to suggest methods of manipulating killer B cells and FasL+ exosomes for clinical purposes.

  6. Recombinant in vitro assembled hepatitis C virus core particles induce strong specific immunity enhanced by formulation with an oil-based adjuvant

    Directory of Open Access Journals (Sweden)

    NELSON ACOSTA-RIVERO

    2009-01-01

    Full Text Available In the present work, immunogenicity of recombinant in vitro assembled hepatitis C virus core particles, HCcAg.120-VLPs, either alone or in combination with different adjuvants was evaluated in BALB/c mice. HCcAg.120-VLPs induced high titers of anti-HCcAg.120 antibodies and virus-specific cellular immune responses. Particularly, HCcAg.120-VLPs induced specific delayed type hypersensitivity, and generated a predominant T helper 1 cytokine pro file in immunized mice. In addition, HCcAg.120-VLPs prime splenocytes proliferate in vitro against different HCcAg.120-specific peptides, depending on either the immunization route or the adjuvant used. Remarkably, immunization with HCcAg.120-VLPs/Montanide ISA888 formulation resulted in a significant control of vaccinia virus titer in mice after challenge with a recombinant vaccinia virus expressing HCV core protein, vvCore. Animals immunized with this formulation had a marked increase in the number of IFN-γ producing spleen cells, after stimulation with P815 cells infected with vvCore. These results suggest the use of recombinant HCV core particles as components of therapeutic or preventive vaccine candidates against HCV.

  7. Olive leaf down-regulates the oxidative stress and immune dysregulation in streptozotocin-induced diabetic mice.

    Science.gov (United States)

    Park, Jung-Hyun; Jung, Ji-Hye; Yang, Jin-Young; Kim, Hyun-Sook

    2013-11-01

    Type 1 diabetes is an endocrinologic disorder characterized by uncontrolled glucose regulation and oxidative stress. Olive leaves have been studied extensively for their antioxidant activity and capacity to improve immune function. We hypothesized that olive leaf powder supplementation will be effective in inhibiting the oxidative stress and immune dysregulation in streptozotocin (STZ)-induced diabetic mice. Mice were assigned to 1 of 5 groups: control (C), STZ-induced diabetes (D), and STZ-induced diabetes supplemented with very low dose (VLOL), low dose (LOL), or high dose of olive leaf powder (HOL). Blood glucose in the VLOL and LOL groups was lower than that in the D group (P LOL groups. Nitric oxide levels decreased in the VLOL and LOL groups, as compared with the D group. The messenger RNA expression levels of inducible nitric oxide synthase were significantly decreased in the VLOL and HOL groups, and interferon-γ levels were significantly decreased in the liver of the VLOL, LOL, and HOL groups compared with the levels in the D group. Interleukin-17 levels were significantly decreased in the VLOL and HOL groups. Th1 and Th17 cytokine levels were increased in the D group but decreased in all the experimental groups. Th2 cytokine levels were increased in all olive leaf-supplemented groups compared with those in the D group. These results indicate a reduction in the levels of proinflammatory cytokines, suggesting that olive leaves have the potential to provide therapeutic inhibition of diabetic complications. © 2013.

  8. Occupationally-acquired noise-induced hearing loss: a senseless workplace hazard.

    Science.gov (United States)

    Kurmis, Andrew P; Apps, Stacey A

    2007-01-01

    Occupational noise-induced hearing loss (ONIHL) describes an acquired hearing deficiency directly attributable to excessive workplace noise exposure. Data suggest that excessive noise attributes to approximately 37% of all adult causes of hearing loss and remains a significant contributor to employment-related morbidity internationally. Typically insidiously-acquired, often without frank progressive symptomatology, regional medical agencies continue to struggle with this potentially debilitating condition. The aim of the study was to provide a synopsis of the current understanding of ONIHL, its impact on individual workers and the wider international community, and to identify barriers to more uniform adoption of personal hearing protection. A review of the contemporary literature was performed using defined keyword searches and OVID, PubMed, and Google Scholar as primary electronic search engines. A number of published works were identified, describing aspects of the relationship between workplace-related noise exposure and subsequent development of employee hearing impairment, which demonstrate an overwhelming gender imbalance, with up to 97% of affected individuals being male. Industry-specific associations (e.g., mining, manufacturing and heavy construction) were well documented, as were links to toxin-specific exposures, in the recognized development of hearing loss. However, evidence of integration of appraisal of the topically-current area of genetic susceptibility was often lacking. Much discordance still exists among international agencies in the prescriptive regulation and enforcement of "safe" exposure limits. Despite a high level of public awareness regarding the importance of hearing preservation and increasingly stringent international occupational health, safety and welfare requirements mandating provision of safer work environments, ONIHL continues to be a significant occupational hazard. ONIHL is permanent and may cause significant disability, for

  9. Vaccination with dengue virus-like particles induces humoral and cellular immune responses in mice

    Directory of Open Access Journals (Sweden)

    Zhang Quanfu

    2011-06-01

    Full Text Available Abstract Background The incidence of dengue, an infectious disease caused by dengue virus (DENV, has dramatically increased around the world in recent decades and is becoming a severe public health threat. However, there is currently no specific treatment for dengue fever, and licensed vaccine against dengue is not available. Vaccination with virus-like particles (VLPs has shown considerable promise for many viral diseases, but the effect of DENV VLPs to induce specific immune responses has not been adequately investigated. Results By optimizing the expression plasmids, recombinant VLPs of four antigenically different DENV serotypes DENV1-4 were successfully produced in 293T cells. The vaccination effect of dengue VLPs in mice showed that monovalent VLPs of each serotype stimulated specific IgG responses and potent neutralizing antibodies against homotypic virus. Tetravalent VLPs efficiently enhanced specific IgG and neutralizing antibodies against all four serotypes of DENV. Moreover, vaccination with monovalent or tetravalent VLPs resulted in the induction of specific cytotoxic T cell responses. Conclusions Mammalian cell expressed dengue VLPs are capable to induce VLP-specific humoral and cellular immune responses in mice, and being a promising subunit vaccine candidate for prevention of dengue virus infection.

  10. Cationic amino acid transporter 2 enhances innate immunity during Helicobacter pylori infection.

    Directory of Open Access Journals (Sweden)

    Daniel P Barry

    Full Text Available Once acquired, Helicobacter pylori infection is lifelong due to an inadequate innate and adaptive immune response. Our previous studies indicate that interactions among the various pathways of arginine metabolism in the host are critical determinants of outcomes following infection. Cationic amino acid transporter 2 (CAT2 is essential for transport of L-arginine (L-Arg into monocytic immune cells during H. pylori infection. Once within the cell, this amino acid is utilized by opposing pathways that lead to elaboration of either bactericidal nitric oxide (NO produced from inducible NO synthase (iNOS, or hydrogen peroxide, which causes macrophage apoptosis, via arginase and the polyamine pathway. Because of its central role in controlling L-Arg availability in macrophages, we investigated the importance of CAT2 in vivo during H. pylori infection. CAT2(-/- mice infected for 4 months exhibited decreased gastritis and increased levels of colonization compared to wild type mice. We observed suppression of gastric macrophage levels, macrophage expression of iNOS, dendritic cell activation, and expression of granulocyte-colony stimulating factor in CAT2(-/- mice suggesting that CAT2 is involved in enhancing the innate immune response. In addition, cytokine expression in CAT2(-/- mice was altered from an antimicrobial Th1 response to a Th2 response, indicating that the transporter has downstream effects on adaptive immunity as well. These findings demonstrate that CAT2 is an important regulator of the immune response during H. pylori infection.

  11. SABP2, a methyl salicylate esterase is required for the systemic acquired resistance induced by acibenzolar-S-methyl in plants.

    Science.gov (United States)

    Tripathi, Diwaker; Jiang, Yu-Lin; Kumar, Dhirendra

    2010-08-04

    Tobacco SABP2, a 29kDa protein catalyzes the conversion of methyl salicylic acid (MeSA) into salicylic acid (SA) to induce SAR. Pretreatment of plants with acibenzolar-S-methyl (ASM), a functional analog of salicylic acid induces systemic acquired resistance (SAR). Data presented in this paper suggest that SABP2 catalyzes the conversion of ASM into acibenzolar to induce SAR. Transgenic SABP2-silenced tobacco plants when treated with ASM, fail to express PR-1 proteins and do not induce robust SAR expression. When treated with acibenzolar, full SAR is induced in SABP2-silenced plants. These results show that functional SABP2 is required for ASM-mediated induction of resistance. Copyright (c) 2010 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  12. Early IFN-gamma production after YF 17D vaccine virus immunization in mice and its association with adaptive immune responses.

    Directory of Open Access Journals (Sweden)

    Patrícia C C Neves

    Full Text Available Yellow Fever vaccine is one of the most efficacious human vaccines ever made. The vaccine (YF 17D virus induces polyvalent immune responses, with a mixed TH1/TH2 CD4(+ cell profile, which results in robust T CD8(+ responses and high titers of neutralizing antibody. In recent years, it has been suggested that early events after yellow fever vaccination are crucial to the development of adequate acquired immunity. We have previously shown that primary immunization of humans and monkeys with YF 17D virus vaccine resulted in the early synthesis of IFN-γ. Herein we have demonstrated, for the first time that early IFN-γ production after yellow fever vaccination is a feature also of murine infection and is much more pronounced in the C57BL/6 strain compared to the BALB/c strain. Likewise, in C57BL/6 strain, we have observed the highest CD8(+ T cells responses as well as higher titers of neutralizing antibodies and total anti-YF IgG. Regardless of this intense IFN-γ response in mice, it was not possible to see higher titers of IgG2a in relation to IgG1 in both mice lineages. However, IgG2a titers were positively correlated to neutralizing antibodies levels, pointing to an important role of IFN-γ in eliciting high quality responses against YF 17D, therefore influencing the immunogenicity of this vaccine.

  13. Acquired von Willebrand syndrome: A rare disorder of heterogeneous etiology

    Directory of Open Access Journals (Sweden)

    P Kasatkar

    2013-01-01

    Full Text Available Context: Acquired von Willebrand syndrome (AVWS is a rare bleeding disorder that mimics the inherited form of von Willebrand disease (VWD in terms of laboratory findings and clinical presentation. Aims: To study the etiology of acquired VWD. Settings and Design: The patients referred from various hospitals in and out of Mumbai were included in the study. Materials and Methods: Six patients with AVWS diagnosed at this center over the last 10 years were analyzed against 171 patients with inherited VWD. The differential diagnosis of AVWS was made based on reduced levels of von Willebrand antigen and von Willebrand ristocetin cofactor, decrease in ristocetin induced platelet aggregation, absence of correction in mixing studies with no prior history of bleeding problems and a negative family history for bleeding disorders. Results: In three patients, the disease was associated with systematic lupus erythematosus, out of which one was also associated with Kikuchi lymphadenitis and second with autoimmune hemolytic anemia. Fourth case was associated with hypothyroidism and fifth was a case of dermatitis and vitiligo. The last patient was a case of hemophilia A with Burkitts lymphoma, who developed autoantibodies to von Willebrand factor. Except two patients, all other patients responded to immune suppressive therapy with corticosteroids, while the patient with hypothyroidism responded to oral thyroxine. Conclusion: AVWS is a rare condition and may often be missed or diagnosed as inherited disease associated with heterogeneous disease conditions.

  14. Immunity induced by a broad class of inorganic crystalline materials is directly controlled by their chemistry

    NARCIS (Netherlands)

    G.R. Williams (Gareth); K. Fierens (Kaat); S.G. Preston (Stephen); A.C. Lunn; O. Rysnik (Oliwia); S. de Prijck (Sofie); M. Kool (Mirjam); H.C. Buckley (Hannah); B.N.M. Lambrecht (Bart); D. O'Hare (Dermot); J.M. Austyn (Jonathan)

    2014-01-01

    textabstractThere is currently no paradigm in immunology that enables an accurate prediction of how the immune system will respond to any given agent. Here we show that the immunological responses induced by members of a broad class of inorganic crystalline materials are controlled purely by their

  15. CMV immune evasion and manipulation of the immune system with aging.

    Science.gov (United States)

    Jackson, Sarah E; Redeker, Anke; Arens, Ramon; van Baarle, Debbie; van den Berg, Sara P H; Benedict, Chris A; Čičin-Šain, Luka; Hill, Ann B; Wills, Mark R

    2017-06-01

    Human cytomegalovirus (HCMV) encodes numerous proteins and microRNAs that function to evade the immune response and allow the virus to replicate and disseminate in the face of a competent innate and acquired immune system. The establishment of a latent infection by CMV, which if completely quiescent at the level of viral gene expression would represent an ultimate in immune evasion strategies, is not sufficient for lifelong persistence and dissemination of the virus. CMV needs to reactivate and replicate in a lytic cycle of infection in order to disseminate further, which occurs in the face of a fully primed secondary immune response. Without reactivation, latency itself would be redundant for the virus. It is also becoming clear that latency is not a totally quiescent state, but is characterized by limited viral gene expression. Therefore, the virus also needs immune evasion strategies during latency. An effective immune response to CMV is required or viral replication will cause morbidity and ultimately mortality in the host. There is clearly a complex balance between virus immune evasion and host immune recognition over a lifetime. This poses the important question of whether long-term evasion or manipulation of the immune response driven by CMV is detrimental to health. In this meeting report, three groups used the murine model of CMV (MCMV) to examine if the contribution of the virus to immune senescence is set by the (i) initial viral inoculum, (ii) inflation of T cell responses, (iii) or the balance between functionally distinct effector CD4+ T cells. The work of other groups studying the CMV response in humans is discussed. Their work asks whether the ability to make immune responses to new antigens is compromised by (i) age and HCMV carriage, (ii) long-term exposure to HCMV giving rise to an overall immunosuppressive environment and increased levels of latent virus, or (iii) adapted virus mutants (used as potential vaccines) that have the capacity to

  16. Enhanced cellular immune response against SIV Gag induced by immunization with DNA vaccines expressing assembly and release-defective SIV Gag proteins

    International Nuclear Information System (INIS)

    Bu Zhigao; Ye Ling; Compans, Richard W.; Yang Chinglai

    2003-01-01

    Codon-optimized genes were synthesized for the SIVmac239 Gag, a mutant Gag with mutations in the major homology region, and a chimeric Gag containing a protein destruction signal at the N-terminus of Gag. The mutant and chimeric Gag were expressed at levels comparable to that observed for the wild-type Gag protein but their stability and release into the medium were found to be significantly reduced. Immunization of mice with DNA vectors encoding the mutant or chimeric Gag induced fourfold higher levels of anti-SIV Gag CD4 T cell responses than the DNA vector encoding the wild-type SIV Gag. Moreover, anti-SIV Gag CD8 T cell responses induced by DNA vectors encoding the mutant or chimeric Gag were found to be 5- to 10-fold higher than those induced by the DNA construct for the wild-type Gag. These results indicate that mutations disrupting assembly and/or stability of the SIV Gag protein effectively enhance its immunogenicity when expressed from DNA vaccines

  17. Immunity to transplantable nitrosourea-induced neurogenic tumors. III. Systemic adoptive transfer of immunity

    International Nuclear Information System (INIS)

    Shibuya, N.; Hochgeschwender, U.; Kida, Y.; Hochwald, G.M.; Thorbecke, G.J.; Cravioto, H.

    1984-01-01

    The effect of intravenously injected tumor immune spleen cells on growth of 3 X 10 5 gliosarcoma T 9 cells injected intradermally (ID) or intracerebrally (IC) into sublethally irradiated CDF rats was evaluated. Spleen cells from donor rats with sufficient immunity to reject 5 X 10 5 T 9 cells inhibited the growth of T 9 cells mixed with spleen cells in a ratio of 1:25 and injected ID, but could not act after intravenous transfer. However, donor rats which had rejected increasing T 9 challenge doses up to 1 X 10 7 cells produced immune spleen cells which, upon IV transfer, could inhibit growth of ID T 9 challenge but not of EB-679, an unrelated glioma, in recipient rats. Rejection of IC T 9 challenge was also obtained after IV transfer, in recipients of such ''hyperimmune'' spleen cells, but was less (60% maximum) than that noted after ID T 9 challenge (100% maximum). The removal of B cells from the transferred spleen cells did not affect the results, suggesting that the specific immunity was mediated by T cells. The authors conclude that the special immunological circumstances of tumors growing in the brain renders them less accessible to rejection by systemically transferred immune cells, but it is nevertheless possible to effect a significant incidence of rejection of syngeneic tumor growth in the brain by the intravenous transfer of hyperimmune spleen cells

  18. Tumor vaccine composed of C-class CpG oligodeoxynucleotides and irradiated tumor cells induces long-term antitumor immunity

    Directory of Open Access Journals (Sweden)

    Cerkovnik Petra

    2010-09-01

    Full Text Available Abstract Background An ideal tumor vaccine should activate both effector and memory immune response against tumor-specific antigens. Beside the CD8+ T cells that play a central role in the generation of a protective immune response and of long-term memory, dendritic cells (DCs are important for the induction, coordination and regulation of the adaptive immune response. The DCs can conduct all of the elements of the immune orchestra and are therefore a fundamental target and tool for vaccination. The present study was aimed at assessing the ability of tumor vaccine composed of C-class CpG ODNs and irradiated melanoma tumor cells B16F1 followed by two additional injections of CpG ODNs to induce the generation of a functional long-term memory response in experimental tumor model in mice (i.p. B16F1. Results It has been shown that the functional memory response in vaccinated mice persists for at least 60 days after the last vaccination. Repeated vaccination also improves the survival of experimental animals compared to single vaccination, whereas the proportion of animals totally protected from the development of aggressive i.p. B16F1 tumors after vaccination repeated three times varies between 88.9%-100.0%. Additionally, the long-term immune memory and tumor protection is maintained over a prolonged period of time of at least 8 months. Finally, it has been demonstrated that following the vaccination the tumor-specific memory cells predominantly reside in bone marrow and peritoneal tissue and are in a more active state than their splenic counterparts. Conclusions In this study we demonstrated that tumor vaccine composed of C-class CpG ODNs and irradiated tumor cells followed by two additional injections of CpG ODNs induces a long-term immunity against aggressive B16F1 tumors.

  19. Necrotizing herpetic retinopathies. A spectrum of herpes virus-induced diseases determined by the immune state of the host.

    Science.gov (United States)

    Guex-Crosier, Y; Rochat, C; Herbort, C P

    1997-12-01

    Necrotizing herpetic retinopathies (NHR), a new spectrum of diseases induced by viruses of the herpes family (herpes simplex virus, varicella-zoster virus and cytomegalovirus), includes acute retinal necrosis (ARN) occurring in apparently immunocompetent patients and progressive outer retinal necrosis (PORN) described in severely immuno-compromised patients. Signs of impaired cellular immunity were seen in 16% of ARN patients in a review of 216 reported cases, indicating that immune dysfunction is not only at the origin of PORN but might also be at the origin of ARN. The aim of this study was to correlate clinical findings in NHR patients with their immunologic parameters. Charts from patients with the diagnosis of ARN or PORN seen from 1990 to 1995 were reviewed. Clinical characteristics and disease patterns were correlated with immunological parameters taking into account CD4 lymphocyte rate in AIDS patients and blood-lymphocyte subpopulation determination by flow cytometry, cutaneous delayed type hypersensitivity testing and lymphocytic proliferation rate to seven antigens in HIV-negative patients. During the period considered, 11 patients and 7 patients fulfilled the criteria of ARN and PORN respectively. Immune dysfunctions were identified in most patients. Mild type of ARN and classical ARN were associated with discrete immune dysfunctions, ARN with features of PORN was seen in more immunodepressed patients and classical PORN was always seen in severely immunodepressed HIV patients. Our findings suggest that NHR is a continuous spectrum of diseases induced by herpes viruses, whose clinical expression depends on the immune state of the host going from mild or classical ARN at one end in patients with non-detectable or slight immune dysfunction to PORN in severely immunodepressed patients at the other end and with intermediary forms between these extremes.

  20. rBCG30-induced immunity and cross-protection against Mycobacterium leprae challenge are enhanced by boosting with the Mycobacterium tuberculosis 30-kilodalton antigen 85B.

    Science.gov (United States)

    Gillis, Thomas P; Tullius, Michael V; Horwitz, Marcus A

    2014-09-01

    Leprosy remains a major global health problem and typically occurs in regions in which tuberculosis is endemic. Vaccines are needed that protect against both infections and do so better than the suboptimal Mycobacterium bovis BCG vaccine. Here, we evaluated rBCG30, a vaccine previously demonstrated to induce protection superior to that of BCG against Mycobacterium tuberculosis and Mycobacterium bovis challenge in animal models, for efficacy against Mycobacterium leprae challenge in a murine model of leprosy. rBCG30 overexpresses the M. tuberculosis 30-kDa major secretory protein antigen 85B, which is 85% homologous with the M. leprae homolog (r30ML). Mice were sham immunized or immunized intradermally with BCG or rBCG30 and challenged 2.5 months later by injection of viable M. leprae into each hind footpad. After 7 months, vaccine efficacy was assessed by enumerating the M. leprae bacteria per footpad. Both BCG and rBCG30 induced significant protection against M. leprae challenge. In the one experiment in which a comparison between BCG and rBCG30 was feasible, rBCG30 induced significantly greater protection than did BCG. Immunization of mice with purified M. tuberculosis or M. leprae antigen 85B also induced protection against M. leprae challenge but less so than BCG or rBCG30. Notably, boosting rBCG30 with M. tuberculosis antigen 85B significantly enhanced r30ML-specific immune responses, substantially more so than boosting BCG, and significantly augmented protection against M. leprae challenge. Thus, rBCG30, a vaccine that induces improved protection against M. tuberculosis, induces cross-protection against M. leprae that is comparable or potentially superior to that induced by BCG, and boosting rBCG30 with antigen 85B further enhances immune responses and protective efficacy. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  1. Transit through the flea vector induces a pretransmission innate immunity resistance phenotype in Yersinia pestis.

    Directory of Open Access Journals (Sweden)

    Viveka Vadyvaloo

    2010-02-01

    Full Text Available Yersinia pestis, the agent of plague, is transmitted to mammals by infected fleas. Y. pestis exhibits a distinct life stage in the flea, where it grows in the form of a cohesive biofilm that promotes transmission. After transmission, the temperature shift to 37 degrees C induces many known virulence factors of Y. pestis that confer resistance to innate immunity. These factors are not produced in the low-temperature environment of the flea, however, suggesting that Y. pestis is vulnerable to the initial encounter with innate immune cells at the flea bite site. In this study, we used whole-genome microarrays to compare the Y. pestis in vivo transcriptome in infective fleas to in vitro transcriptomes in temperature-matched biofilm and planktonic cultures, and to the previously characterized in vivo gene expression profile in the rat bubo. In addition to genes involved in metabolic adaptation to the flea gut and biofilm formation, several genes with known or predicted roles in resistance to innate immunity and pathogenicity in the mammal were upregulated in the flea. Y. pestis from infected fleas were more resistant to phagocytosis by macrophages than in vitro-grown bacteria, in part attributable to a cluster of insecticidal-like toxin genes that were highly expressed only in the flea. Our results suggest that transit through the flea vector induces a phenotype that enhances survival and dissemination of Y. pestis after transmission to the mammalian host.

  2. Costs and benefits of experimentally induced changes in the allocation of growth versus immune function under differential exposure to ectoparasites.

    Directory of Open Access Journals (Sweden)

    Natalia Pitala

    2010-05-01

    Full Text Available Ecological immunology has focused on the costs of investment in immunocompetence. However, understanding optimal resource allocation to immune defence requires also identification of its benefits, which are likely to occur only when parasites are abundant.We manipulated the abundance of parasitic hen fleas in blue tit (Cyanistes caeruleus nests, and supplemented their hosts, the nestlings, with methionine (a sulphur amino acid enhancing cell-mediated immunity during day 3-6. We found a significant interaction between these two experimental factors on the development of immune defences and growth rates. Only in parasitized nests did methionine supplementation boost immune (PHA response, and did nestling with experimentally increased immunocompetence show a relatively faster growth rate than control nestlings between days 6-9. Hence, the allocation of resources into immune defence and its growth-benefits are apparent only in presence of parasites. The main cost of methionine-induced increased allocation to the immune system was an increase in mortality, independently of ectoparasites. Nestlings in all treatments compensated initial growth reduction and all reached equal body size at day 16 (just prior to fledging, indicating a lack of long-term benefits. In addition, methionine treatment tended (P = 0.09 to lower circulating plasma immunoglobulin levels, possibly indicating a trade-off between the cell-mediated and humoral components of the immune system.We found no strong benefits of an increased investment in immunocompetence in a parasite-rich environment. Any deviation from the growth trajectory (due to changes in allocation induced by methionine is largely detrimental for survival. Hence, while costs are apparent identifying the benefits of investment in immunocompetence during ontogeny is challenging.

  3. HDAC inhibition induces HIV-1 protein and enables immune-based clearance following latency reversal

    DEFF Research Database (Denmark)

    Wu, Guoxin; Swanson, Michael; Talla, Aarthi

    2017-01-01

    Promising therapeutic approaches for eradicating HIV include transcriptional activation of provirus from latently infected cells using latency-reversing agents (LRAs) and immune-mediated clearance to purge reservoirs. Accurate detection of cells capable of producing viral antigens and virions......, and the measurement of clearance of infected cells, is essential to assessing therapeutic efficacy. Here, we apply enhanced methodology extending the sensitivity limits for the rapid detection of subfemtomolar HIV gag p24 capsid protein in CD4+ T cells from ART-suppressed HIV+ individuals, and we show viral protein...... induction following treatment with LRAs. Importantly, we demonstrate that clinical administration of histone deacetylase inhibitors (HDACis; vorinostat and panobinostat) induced HIV gag p24, and ex vivo stimulation produced sufficient viral antigen to elicit immune-mediated cell killing using anti-gp120/CD3...

  4. Leptin as immune mediator: Interaction between neuroendocrine and immune system.

    Science.gov (United States)

    Procaccini, Claudio; La Rocca, Claudia; Carbone, Fortunata; De Rosa, Veronica; Galgani, Mario; Matarese, Giuseppe

    2017-01-01

    Leptin is an adipocyte-derived hormone/cytokine that links nutritional status with neuroendocrine and immune functions. Initially described as an anti-obesity hormone, leptin has subsequently been shown to exert pleiotropic effects, being also able to influence haematopoiesis, thermogenesis, reproduction, angiogenesis, and more importantly immune homeostasis. As a cytokine, leptin can affect both innate and adaptive immunity, by inducing a pro-inflammatory response and thus playing a key role in the regulation of the pathogenesis of several autoimmune/inflammatory diseases. In this review, we discuss the most recent advances on the role of leptin as immune-modulator in mammals and we also provide an overview on its main functions in non-mammalian vertebrates. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Sustained and transient oscillations and chaos induced by delayed antiviral immune response in an immunosuppressive infection model.

    Science.gov (United States)

    Shu, Hongying; Wang, Lin; Watmough, James

    2014-01-01

    Sustained and transient oscillations are frequently observed in clinical data for immune responses in viral infections such as human immunodeficiency virus, hepatitis B virus, and hepatitis C virus. To account for these oscillations, we incorporate the time lag needed for the expansion of immune cells into an immunosuppressive infection model. It is shown that the delayed antiviral immune response can induce sustained periodic oscillations, transient oscillations and even sustained aperiodic oscillations (chaos). Both local and global Hopf bifurcation theorems are applied to show the existence of periodic solutions, which are illustrated by bifurcation diagrams and numerical simulations. Two types of bistability are shown to be possible: (i) a stable equilibrium can coexist with another stable equilibrium, and (ii) a stable equilibrium can coexist with a stable periodic solution.

  6. Steric-electronic effects in malarial peptides inducing sterile immunity

    Energy Technology Data Exchange (ETDEWEB)

    Moreno-Vranich, Armando [Fundacion Instituto de Inmunologia de Colombia (FIDIC), Bogota (Colombia); Patarroyo, Manuel E., E-mail: mepatarr@mail.com [Fundacion Instituto de Inmunologia de Colombia (FIDIC), Bogota (Colombia); Universidad Nacional de Colombia, Bogota (Colombia)

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer Is it evident that the residues position are relevant regarding of {phi} angular value. Black-Right-Pointing-Pointer The geometry considered for detailing the alterations undergone by HABPs. Black-Right-Pointing-Pointer The inter planar interactions ruled by clashes between the atoms making them up. -- Abstract: Conserved Plasmodium falciparum high activity binding peptides' (HABPs) most relevant proteins involved in malaria parasite invasion are immunologically silent; critical binding residues must therefore be specifically replaced to render them highly immunogenic and protection-inducing. Such changes have a tremendous impact on these peptides' steric-electronic effects, such as modifications to peptide length peptide bonds and electronic orbitals' disposition, to allow a better fit into immune system MHCII molecules and better interaction with the TCR which might account for the final immunological outcome.

  7. The relation of innate and adaptive immunity with viral-induced acute asthma attacks: Focusing on IP-10 and cathelicidin.

    Science.gov (United States)

    Arikoglu, T; Akyilmaz, E; Yildirim, D D; Batmaz, S B; Ulger, S T; Aslan, G; Kuyucu, S

    Despite growing evidence suggesting potential association between innate and adaptive immunity in viral-induced acute asthma, there is paucity of data in this area. This study aimed to investigate the association of innate and adaptive immunity with acute asthma attacks by analysing the role of IFN-γ-inducible protein 10 (IP-10), TLR2, cathelicidin, vitamin D and cytokines. This prospective study included 33 patients with viral-induced acute asthma and 30 children with controlled asthma. Nasopharyngeal swab samples were collected for virus identification and asthma attack scores assessed in acute asthma group. Blood sampling for IP-10, TLR2, cathelicidin, vitamin D levels, and spirometric indices were employed. Serum IP-10 and cathelicidin levels of acute asthma group were significantly higher and vitamin D levels were lower than controlled asthma group (IP-10; p=0.006, cathelicidin; p=0.002, vitamin D; pasthma attack severity (p=0.03) in acute asthma group. Higher cathelicidin values showed significant positive relation to IP-10 (beta coefficient: 33, p=0.02). Serum IP-10 levels higher than 38.9pg/ml (sensitivity: 85%, specificity: 47%, p=0.002) were predictive of virus-induced asthma. Serum IP-10 and vitamin D levels were found to be significantly related to viral-asthma attacks (IP-10; aOR: 8.93, p=0.03 and vitamin D; aOR: 0.82, p=0.001). Innate immunity biomarkers such as serum IP-10 and cathelicidin can be used to predict viral-induced acute asthma. These biomarkers may provide potential new treatment targets for acute asthma. Copyright © 2016 SEICAP. Published by Elsevier España, S.L.U. All rights reserved.

  8. Ficolins do not alter host immune responses to lipopolysaccharide-induced inflammation in vivo

    DEFF Research Database (Denmark)

    Genster, Ninette; Østrup, Olga; Schjalm, Camilla

    2017-01-01

    . Yet, the contribution of ficolins to inflammatory disease processes remains elusive. To address this, we investigated ficolin deficient mice during a lipopolysaccharide (LPS)-induced model of systemic inflammation. Although murine serum ficolin was shown to bind LPS in vitro, there was no difference...... an unaltered spleen transcriptome profile in ficolin deficient mice compared to wildtype mice. Collectively, results from this study demonstrate that ficolins are not involved in host response to LPS-induced systemic inflammation.......Ficolins are a family of pattern recognition molecules that are capable of activating the lectin pathway of complement. A limited number of reports have demonstrated a protective role of ficolins in animal models of infection. In addition, an immune modulatory role of ficolins has been suggested...

  9. Immunization with Paracoccidioides brasiliensis radioattenuated yeast cells induces Th1 immune response in Balb/C mice

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Estefania M.N.; Andrade, Antero S.R. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN-CNEN/MG), Belo Horizonte, MG (Brazil)], e-mail: estefaniabio@yahoo.com.br, e-mail: antero@cdtn.br; Resende, Maria Aparecida de [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Microbiologia], e-mail: maresend@mono.icb.ufmg.br; Reis, Bernardo S.; Goes, Alfredo M. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Bioquimica e Imunologia], e-mail: goes@mono.icb.ufmg.br, e-mail: brsgarbi@mono.icb.ufmg.br

    2009-07-01

    Paracoccidioides brasiliensis is the agent of paracoccidioidomycosis, the most prevalent mycosis in Latin America. To date, there is no effective vaccine. In our laboratory yeast cells of P. brasiliensis were attenuated by gamma irradiation. We defined an absorbed dose in which the pathogen loses the reproductive ability, while retaining the morphology, the synthesis and secretion of proteins and the oxidative metabolism. The immunization with these cells was able to confer protection in BALB/c mice. The aim of the present work was evaluate the immune response pathway activated in mice immunized with P. brasiliensis radioattenuated yeast cells. The protector effect was evaluated in BALB/c mice groups immunized once or twice, respectively. Each group was divided in three sub groups that were challenge 30, 45 or 60 days after the immunization. These groups were called G1A, G1B and G1C in the group immunized once and G2A, G2B and G2C in the group immunized twice. Recovery of CFUs and cytokines determination (IFN - {gamma}, IL - 10 and IL IV 4) were performed three months post challenge. Quantitative RT-PCR was the method of choice used to quantify the expression of cytokines. The sera were collected weekly to evaluate the IgG antibody titers and the IgG1 and IgG2a pattern in the course of infection. A significant reduction in CFUs recovery was verified 90 days post challenge in mice submitted to one immunization: 73.0%, 96.0% and 76.3% for sub-groups G1A, G1B and G1C, respectively. In the group submitted to two immunizations, a remarkable increase in the protection was obtained. No CFUs was recovered from sub-groups G2B and G2C and very few CFUs (reduction of 98.6%) were recovered from the lungs of sub group G2A. In mice submitted to one immunization, Th1 and Th2 cytokines were simultaneously produced. In the group submitted to two immunizations, levels of IL-10 and IL-4 were very low, while IFN-{gamma} production was maintained indicating that a Th1 pattern was

  10. Immunization with Paracoccidioides brasiliensis radioattenuated yeast cells induces Th1 immune response in Balb/C mice

    International Nuclear Information System (INIS)

    Martins, Estefania M.N.; Andrade, Antero S.R.; Resende, Maria Aparecida de; Reis, Bernardo S.; Goes, Alfredo M.

    2009-01-01

    Paracoccidioides brasiliensis is the agent of paracoccidioidomycosis, the most prevalent mycosis in Latin America. To date, there is no effective vaccine. In our laboratory yeast cells of P. brasiliensis were attenuated by gamma irradiation. We defined an absorbed dose in which the pathogen loses the reproductive ability, while retaining the morphology, the synthesis and secretion of proteins and the oxidative metabolism. The immunization with these cells was able to confer protection in BALB/c mice. The aim of the present work was evaluate the immune response pathway activated in mice immunized with P. brasiliensis radioattenuated yeast cells. The protector effect was evaluated in BALB/c mice groups immunized once or twice, respectively. Each group was divided in three sub groups that were challenge 30, 45 or 60 days after the immunization. These groups were called G1A, G1B and G1C in the group immunized once and G2A, G2B and G2C in the group immunized twice. Recovery of CFUs and cytokines determination (IFN - γ, IL - 10 and IL IV 4) were performed three months post challenge. Quantitative RT-PCR was the method of choice used to quantify the expression of cytokines. The sera were collected weekly to evaluate the IgG antibody titers and the IgG1 and IgG2a pattern in the course of infection. A significant reduction in CFUs recovery was verified 90 days post challenge in mice submitted to one immunization: 73.0%, 96.0% and 76.3% for sub-groups G1A, G1B and G1C, respectively. In the group submitted to two immunizations, a remarkable increase in the protection was obtained. No CFUs was recovered from sub-groups G2B and G2C and very few CFUs (reduction of 98.6%) were recovered from the lungs of sub group G2A. In mice submitted to one immunization, Th1 and Th2 cytokines were simultaneously produced. In the group submitted to two immunizations, levels of IL-10 and IL-4 were very low, while IFN-γ production was maintained indicating that a Th1 pattern was dominant. For

  11. Evaluation of Th1/Th2-Related Immune Response against Recombinant Proteins of Brucella abortus Infection in Mice.

    Science.gov (United States)

    Im, Young Bin; Park, Woo Bin; Jung, Myunghwan; Kim, Suk; Yoo, Han Sang

    2016-06-28

    Brucellosis is a zoonotic disease caused by Brucella, a genus of gram-negative bacteria. Cytokines have key roles in the activation of innate and acquired immunities. Despite several research attempts to reveal the immune responses, the mechanism of Brucella infection remains unclear. Therefore, immune responses were analyzed in mice immunized with nine recombinant proteins. Cytokine production profiles were analyzed in the RAW 264.7 cells and naive splenocytes after stimulation with three recombinant proteins, metal-dependent hydrolase (r0628), bacterioferritin (rBfr), and thiamine transporter substrate-binding protein (rTbpA). Immune responses were analyzed by ELISA and ELISpot assay after immunization with proteins in mice. The production levels of NO, TNF-α, and IL-6 were time-dependently increased after having been stimulated with proteins in the RAW 264.7 cells. In naive splenocytes, the production of IFN-γ and IL-2 was increased after stimulation with the proteins. It was concluded that two recombinant proteins, r0628 and rTbpA, showed strong immunogenicity that was induced with Th1-related cytokines IFN-γ, IL-2, and TNF-α more than Th2-related cytokines IL-6, IL-4, and IL-5 in vitro. Conversely, a humoral immune response was activated by increasing the number of antigen-secreting cells specifically. Furthermore, these could be candidate diagnosis antigens for better understanding of brucellosis.

  12. Immune Thrombocytopenia as a Consequence of Rocky Mountain Spotted Fever.

    Science.gov (United States)

    Baldeo, Cherisse; Seegobin, Karan; Zuberi, Lara

    2017-01-01

    Primary immune thrombocytopenia (ITP) - also called idiopathic thrombocytopenic purpura or immune thrombocytopenic purpura - is an acquired thrombocytopenia caused by autoantibodies against platelet antigens. It is one of the more common causes of thrombocytopenia in otherwise asymptomatic adults. Rocky Mountain spotted fever (RMSF) is a potentially lethal, but curable, tick-borne disease. We present a case of ITP that was triggered by RMSF.

  13. Mechanisms underlying UV-induced immune suppression

    International Nuclear Information System (INIS)

    Ullrich, Stephen E.

    2005-01-01

    Skin cancer is the most prevalent form of human neoplasia. Estimates suggest that in excess of one million new cases of skin cancer will be diagnosed this year alone in the United States (www.cancer.org/statistics). Fortunately, because of their highly visible location, skin cancers are more rapidly diagnosed and more easily treated than other types of cancer. Be that as it may, approximately 10,000 Americans a year die from skin cancer. The cost of treating non-melanoma skin cancer is estimated to be in excess of US$ 650 million a year [J.G. Chen, A.B. Fleischer, E.D. Smith, C. Kancler, N.D. Goldman, P.M. Williford, S.R. Feldman, Cost of non-melanoma skin cancer treatment in the United States, Dermatol. Surg. 27 (2001) 1035-1038], and when melanoma is included, the estimated cost of treating skin cancer in the United States is estimated to rise to US$ 2.9 billion annually (www.cancer.org/statistics). Because the morbidity and mortality associated with skin cancer is a major public health problem, it is important to understand the mechanisms underlying skin cancer development. The primary cause of skin cancer is the ultraviolet (UV) radiation found in sunlight. In addition to its carcinogenic potential, UV radiation is also immune suppressive. In fact, data from studies with both experimental animals and biopsy proven skin cancer patients suggest that there is an association between the immune suppressive effects of UV radiation and its carcinogenic potential. The focus of this manuscript will be to review the mechanisms underlying the induction of immune suppression following UV exposure. Particular attention will be directed to the role of soluble mediators in activating immune suppression

  14. Non-specific immunization against parasites

    International Nuclear Information System (INIS)

    Cox, F.E.G.

    1981-01-01

    Non-specific resistance to tumours can be induced by pretreating animals with micro-organisms, microbial extracts or various synthetic substances. Mycobacterium bovis, Corynebacterium parvum and a number of other micro-organisms also protect mice against rodent piroplasms and there is evidence that they are also protective against other parasites including Schistosoma mansoni. The actual mechanisms of non-specific immunity are still unclear but it is influenced by both the genetic make-up of the host and the nature of the parasite. Non-specific immunization may be a possible alternative to specific immunization and may avoid many of the potential immunopathological changes induced during parasite infections. Irradiated vaccines (Dictyocaulus viviparus, schistomiasis) are mentioned marginally only

  15. Human vaccination against Plasmodium vivax Duffy-binding protein induces strain-transcending antibodies

    OpenAIRE

    Payne, Ruth O.; Silk, Sarah E.; Elias, Sean C.; Milne, Kathryn H.; Rawlinson, Thomas A.; Llewellyn, David; Shakri, A. Rushdi; Jin, Jing; Labb?, Genevi?ve M.; Edwards, Nick J.; Poulton, Ian D.; Roberts, Rachel; Farid, Ryan; J?rgensen, Thomas; Alanine, Daniel G.W.

    2017-01-01

    BACKGROUND: Plasmodium vivax is the most widespread human malaria geographically; however, no effective vaccine exists. Red blood cell invasion by the P. vivax merozoite depends on an interaction between the Duffy antigen receptor for chemokines (DARC) and region II of the parasite's Duffy-binding protein (PvDBP_RII). Naturally acquired binding-inhibitory antibodies against this interaction associate with clinical immunity, but it is unknown whether these responses can be induced by human vac...

  16. Protective immunity and safety of a genetically modified influenza virus vaccine.

    Directory of Open Access Journals (Sweden)

    Rafael Polidoro Alves Barbosa

    Full Text Available Recombinant influenza viruses are promising viral platforms to be used as antigen delivery vectors. To this aim, one of the most promising approaches consists of generating recombinant viruses harboring partially truncated neuraminidase (NA segments. To date, all studies have pointed to safety and usefulness of this viral platform. However, some aspects of the inflammatory and immune responses triggered by those recombinant viruses and their safety to immunocompromised hosts remained to be elucidated. In the present study, we generated a recombinant influenza virus harboring a truncated NA segment (vNA-Δ and evaluated the innate and inflammatory responses and the safety of this recombinant virus in wild type or knock-out (KO mice with impaired innate (Myd88 -/- or acquired (RAG -/- immune responses. Infection using truncated neuraminidase influenza virus was harmless regarding lung and systemic inflammatory response in wild type mice and was highly attenuated in KO mice. We also demonstrated that vNA-Δ infection does not induce unbalanced cytokine production that strongly contributes to lung damage in infected mice. In addition, the recombinant influenza virus was able to trigger both local and systemic virus-specific humoral and CD8+ T cellular immune responses which protected immunized mice against the challenge with a lethal dose of homologous A/PR8/34 influenza virus. Taken together, our findings suggest and reinforce the safety of using NA deleted influenza viruses as antigen delivery vectors against human or veterinary pathogens.

  17. Blocking antibodies induced by immunization with a hypoallergenic parvalbumin mutant reduce allergic symptoms in a mouse model of fish allergy.

    Science.gov (United States)

    Freidl, Raphaela; Gstoettner, Antonia; Baranyi, Ulrike; Swoboda, Ines; Stolz, Frank; Focke-Tejkl, Margarete; Wekerle, Thomas; van Ree, Ronald; Valenta, Rudolf; Linhart, Birgit

    2017-06-01

    Fish is a frequent elicitor of severe IgE-mediated allergic reactions. Beside avoidance, there is currently no allergen-specific therapy available. Hypoallergenic variants of the major fish allergen, parvalbumin, for specific immunotherapy based on mutation of the 2 calcium-binding sites have been developed. This study sought to establish a mouse model of fish allergy resembling human disease and to investigate whether mouse and rabbit IgG antibodies induced by immunization with a hypoallergenic mutant of the major carp allergen protect against allergic symptoms in sensitized mice. C3H/HeJ mice were sensitized with recombinant wildtype Cyp c 1 or carp extract by intragastric gavage. Antibody, cellular immune responses, and epitope specificity in sensitized mice were investigated by ELISA, rat basophil leukemia assay, T-cell proliferation experiments using recombinant wildtype Cyp c 1, and overlapping peptides spanning the Cyp c 1 sequence. Anti-hypoallergenic Cyp c 1 mutant mouse and rabbit sera were tested for their ability to inhibit IgE recognition of Cyp c 1, Cyp c 1-specific basophil degranulation, and Cyp c 1-induced allergic symptoms in the mouse model. A mouse model of fish allergy mimicking human disease regarding IgE epitope recognition and symptoms as close as possible was established. Administration of antisera generated in mice and rabbits by immunization with a hypoallergenic Cyp c 1 mutant inhibited IgE binding to Cyp c 1, Cyp c 1-induced basophil degranulation, and allergic symptoms caused by allergen challenge in sensitized mice. Antibodies induced by immunization with a hypoallergenic Cyp c 1 mutant protect against allergic reactions in a murine model of fish allergy. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Sunlight Effects on Immune System: Is There Something Else in addition to UV-Induced Immunosuppression?

    Directory of Open Access Journals (Sweden)

    D. H. González Maglio

    2016-01-01

    Full Text Available Sunlight, composed of different types of radiation, including ultraviolet wavelengths, is an essential source of light and warmth for life on earth but has strong negative effects on human health, such as promoting the malignant transformation of skin cells and suppressing the ability of the human immune system to efficiently detect and attack malignant cells. UV-induced immunosuppression has been extensively studied since it was first described by Dr. Kripke and Dr. Fisher in the late 1970s. However, skin exposure to sunlight has not only this and other unfavorable effects, for example, mutagenesis and carcinogenesis, but also a positive one: the induction of Vitamin D synthesis, which performs several roles within the immune system in addition to favoring bone homeostasis. The impact of low levels of UV exposure on the immune system has not been fully reported yet, but it bears interesting differences with the suppressive effect of high levels of UV radiation, as shown by some recent studies. The aim of this article is to put some ideas in perspective and pose some questions within the field of photoimmunology based on established and new information, which may lead to new experimental approaches and, eventually, to a better understanding of the effects of sunlight on the human immune system.

  19. Sunlight Effects on Immune System: Is There Something Else in addition to UV-Induced Immunosuppression?

    Science.gov (United States)

    Paz, M. L.; Leoni, J.

    2016-01-01

    Sunlight, composed of different types of radiation, including ultraviolet wavelengths, is an essential source of light and warmth for life on earth but has strong negative effects on human health, such as promoting the malignant transformation of skin cells and suppressing the ability of the human immune system to efficiently detect and attack malignant cells. UV-induced immunosuppression has been extensively studied since it was first described by Dr. Kripke and Dr. Fisher in the late 1970s. However, skin exposure to sunlight has not only this and other unfavorable effects, for example, mutagenesis and carcinogenesis, but also a positive one: the induction of Vitamin D synthesis, which performs several roles within the immune system in addition to favoring bone homeostasis. The impact of low levels of UV exposure on the immune system has not been fully reported yet, but it bears interesting differences with the suppressive effect of high levels of UV radiation, as shown by some recent studies. The aim of this article is to put some ideas in perspective and pose some questions within the field of photoimmunology based on established and new information, which may lead to new experimental approaches and, eventually, to a better understanding of the effects of sunlight on the human immune system. PMID:28070504

  20. Pathogenic Leptospira species acquire factor H and vitronectin via the surface protein LcpA.

    Science.gov (United States)

    da Silva, Ludmila Bezerra; Miragaia, Lidia Dos Santos; Breda, Leandro Carvalho Dantas; Abe, Cecilia Mari; Schmidt, Mariana Costa Braga; Moro, Ana Maria; Monaris, Denize; Conde, Jonas Nascimento; Józsi, Mihály; Isaac, Lourdes; Abreu, Patrícia Antônia Estima; Barbosa, Angela Silva

    2015-03-01

    Upon infection, pathogenic Leptospira species bind several complement regulators in order to overcome host innate immunity. We previously characterized a 20-kDa leptospiral surface protein which interacts with C4b binding protein (C4BP): leptospiral complement regulator-acquiring protein A (LcpA). Here we show that LcpA also interacts with human factor H (FH), which remains functionally active once bound to the protein. Antibodies directed against short consensus repeat 20 (SCR20) inhibited binding of FH to LcpA by approximately 90%, thus confirming that this particular domain is involved in the interaction. We have also shown for the first time that leptospires bind human vitronectin and that the interaction is mediated by LcpA. Coincubation with heparin blocked LcpA-vitronectin interaction in a dose-dependent manner, strongly suggesting that binding may occur through the heparin binding domains of vitronectin. LcpA also bound to the terminal pathway component C9 and inhibited Zn(2+)-induced polymerization and membrane attack complex (MAC) formation. Competitive binding assays indicated that LcpA interacts with C4BP, FH, and vitronectin through distinct sites. Taken together, our findings indicate that LcpA may play a role in leptospiral immune evasion. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  1. Mycoplasma hyopneumoniae and Mycoplasma flocculare differential domains from orthologous surface proteins induce distinct cellular immune responses in mice.

    Science.gov (United States)

    Leal, Fernanda Munhoz Dos Anjos; Virginio, Veridiana Gomes; Martello, Carolina Lumertz; Paes, Jéssica Andrade; Borges, Thiago J; Jaeger, Natália; Bonorino, Cristina; Ferreira, Henrique Bunselmeyer

    2016-07-15

    Mycoplasma hyopneumoniae and Mycoplasma flocculare are two genetically close species found in the swine respiratory tract. Despite their similarities, while M. hyopneumoniae is the causative agent of porcine enzootic pneumonia, M. flocculare is a commensal bacterium. Genomic and transcriptional comparative analyses so far failed to explain the difference in pathogenicity between these two species. We then hypothesized that such difference might be, at least in part, explained by amino acid sequence and immunological or functional differences between ortholog surface proteins. In line with that, it was verified that approximately 85% of the ortholog surface proteins from M. hyopneumoniae 7448 and M. flocculare present one or more differential domains. To experimentally assess possible immunological implications of this kind of difference, the extracellular differential domains from one pair of orthologous surface proteins (MHP7448_0612, from M. hyopneumoniae, and MF_00357, from M. flocculare) were expressed in E. coli and used to immunize mice. The recombinant polypeptides (rMHP61267-169 and rMF35767-196, respectively) induced distinct cellular immune responses. While, rMHP61267-169 induced both Th1 and Th2 responses, rMF35767-196 induced just an early pro-inflammatory response. These results indicate that immunological properties determined by differential domains in orthologous surface protein might play a role in pathogenicity, contributing to elicit specific and differential immune responses against each species. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Polysaccharide isolated from Aloe vera gel suppresses ovalbumin-induced food allergy through inhibition of Th2 immunity in mice.

    Science.gov (United States)

    Lee, Dajeong; Kim, Hyuk Soon; Shin, Eunju; Do, Seon-Gil; Lee, Chong-Kil; Kim, Young Mi; Lee, Min Bum; Min, Keun Young; Koo, Jimo; Kim, Su Jeong; Nam, Seung Taek; Kim, Hyun Woo; Park, Young Hwan; Choi, Wahn Soo

    2018-05-01

    An allergic reaction occurs when the immune system overreacts to harmless substance called allergen that gains access to the body. Food allergy is a hypersensitive immune reaction to food proteins and the number of patients with food allergy has recently increased. Aloe Vera is used for wellness and medicinal purposes. In particular, Aloe vera has been reported to enhance immunity. However, the effect of Aloe vera on food allergy is not yet known. In this study, we investigated the effects of processed Aloe vera gel (PAG) containing low molecular weight Aloe polysaccharide (AP) on ovalbumin (OVA)-induced food allergy in mice. Allergic symptoms, rectal temperature, and diarrhea were measured in OVA-induced food allergy mice. Other allergic parameters were also analyzed by RT-PCR, ELISA, flow cytometry, and other biochemical methods. As the results, PAG suppressed the decrease of body temperature, diarrhea, and allergic symptoms in OVA-induced food allergy mice. PAG also reduced serum concentrations of type 2 helper T cell (Th2) cytokines (Interleukin-(IL)-4, IL-5, and IL-13) as well as histamine, mast cell protease-1 (MCP-1), and immunoglobulin (Ig)E. PAG blocked the degranulation of mast cells and infiltration of eosinophils in intestine. Furthermore, PAG suppressed the population of Th2 cells in spleen and mesenteric lymph nodes. PAG also increased the production of IL-10 and population of type 1 regulatory T (Tr1) cells in mice with food allergy. Taken together, our findings suggest that PAG suppressed Th2 immune responses through, at least partially, stimulating the secretion of IL-10 in food allergy mice. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  3. How does ionizing irradiation contribute to the induction of anti-tumor immunity?

    Directory of Open Access Journals (Sweden)

    Yvonne eRubner

    2012-07-01

    Full Text Available Radiotherapy (RT with ionizing irradiation is commonly used to locally attack tumors. It induces a stop of cancer cell proliferation and finally leads to tumor cell death. During the last years it has become more and more evident that besides a timely and locally restricted radiation-induced immune suppression, a specific immune activation against the tumor and its metastases is achievable by rendering the tumor cells visible for immune attack. The immune system is involved in tumor control and we here outline how RT induces anti-inflammation when applied in low doses and contributes in higher doses to the induction of anti-tumor immunity. We especially focus on how local irradiation induces abscopal effects. The latter are partly mediated by a systemic activation of the immune system against the individual tumor cells. Dendritic cells are the key players in the initiation and regulation of adaptive anti-tumor immune responses. They have to take up tumor antigens and consecutively present tumor peptides in the presence of appropriate co-stimulation. We review how combinations of RT with further immune stimulators such as AnnexinA5 and hyperthermia foster the dendritic cell-mediated induction of anti-tumor immune responses and present reasonable combination schemes of standard tumor therapies with immune therapies. It can be concluded that RT leads to targeted killing of the tumor cells and additionally induces non-targeted systemic immune effects. Multimodal tumor treatments should therefore tend to induce immunogenic tumor cell death forms within a tumor microenvironment that stimulates immune cells.

  4. How Does Ionizing Irradiation Contribute to the Induction of Anti-Tumor Immunity?

    International Nuclear Information System (INIS)

    Rubner, Yvonne; Wunderlich, Roland; Rühle, Paul-Friedrich; Kulzer, Lorenz; Werthmöller, Nina; Frey, Benjamin; Weiss, Eva-Maria; Keilholz, Ludwig; Fietkau, Rainer; Gaipl, Udo S.

    2012-01-01

    Radiotherapy (RT) with ionizing irradiation is commonly used to locally attack tumors. It induces a stop of cancer cell proliferation and finally leads to tumor cell death. During the last years it has become more and more evident that besides a timely and locally restricted radiation-induced immune suppression, a specific immune activation against the tumor and its metastases is achievable by rendering the tumor cells visible for immune attack. The immune system is involved in tumor control and we here outline how RT induces anti-inflammation when applied in low doses and contributes in higher doses to the induction of anti-tumor immunity. We especially focus on how local irradiation induces abscopal effects. The latter are partly mediated by a systemic activation of the immune system against the individual tumor cells. Dendritic cells are the key players in the initiation and regulation of adaptive anti-tumor immune responses. They have to take up tumor antigens and consecutively present tumor peptides in the presence of appropriate co-stimulation. We review how combinations of RT with further immune stimulators such as AnnexinA5 and hyperthermia foster the dendritic cell-mediated induction of anti-tumor immune responses and present reasonable combination schemes of standard tumor therapies with immune therapies. It can be concluded that RT leads to targeted killing of the tumor cells and additionally induces non-targeted systemic immune effects. Multimodal tumor treatments should therefore tend to induce immunogenic tumor cell death forms within a tumor microenvironment that stimulates immune cells.

  5. Dynamic expression of leukocyte innate immune genes in whole blood from horses with lipopolysaccharide-induced acute systemic inflammation

    DEFF Research Database (Denmark)

    Vinther, Anne Mette L.; Skovgaard, Kerstin; Heegaard, Peter M. H.

    2015-01-01

    Background: In horses, insights into the innate immune processes in acute systemic inflammation are limited even though these processes may be highly important for future diagnostic and therapeutic advances in high-mortality disease conditions as the systemic inflammatory response syndrome (SIRS......) and sepsis. Therefore, the aim of this study was to investigate the expression of 31 selected blood leukocyte immune genes in an equine model of acute systemic inflammation to identify significantly regulated genes and to describe their expression dynamics during a 24-h experimental period. Systemic...... expressions in blood leukocytes during equine acute LPS-induced systemic inflammation thoroughly characterized a highly regulated and dynamic innate immune response. These results provide new insights into the molecular mechanisms of equine systemic inflammation....

  6. Yulangsan polysaccharide improves redox homeostasis and immune impairment in D-galactose-induced mimetic aging.

    Science.gov (United States)

    Doan, Van Minh; Chen, Chunxia; Lin, Xing; Nguyen, Van Phuc; Nong, Zhihuan; Li, Weisi; Chen, Qingquan; Ming, Jianjun; Xie, Qiuqiao; Huang, Renbin

    2015-05-01

    Yulangsan polysaccharide (YLSP) is a traditional Chinese medicine used in long-term treatment as a modulator of brain dysfunction and immunity. In this study, we evaluated the protective effect of YLSP against D-galactose-induced impairment of oxidative stress and the immune system and evaluated its possible mechanism of action. D-galactose was subcutaneously injected into the dorsal neck of mice daily for 8 weeks to establish the aging model. YLSP was simultaneously administered once daily. The results indicate that YLSP significantly improves the general appearance of the aging mice. YLSP significantly increased the levels of antioxidant enzymes, such as super oxide dismutase, glutathione peroxidase, catalase and total anti-oxidation capability, while decreasing the content of malondialdehyde in different tissues, including the liver, brain, and serum. YLSP also increased the interleukin-2 level while decreasing the interleukin-6 level. Moreover, YLSP significantly inhibited advanced glycation end product formation. Furthermore, YLSP decreased p21 and p53 gene expressions in the liver and brain of D-galactose-treated mice. These results suggest that YLSP may have a protective effect suppressing the aging process by enhancing antioxidant activity and immunity, as well as modulating aging-related gene expression.

  7. PML-RARA-targeted DNA vaccine induces protective immunity in a mouse model of leukemia.

    Science.gov (United States)

    Padua, Rose Ann; Larghero, Jerome; Robin, Marie; le Pogam, Carol; Schlageter, Marie-Helene; Muszlak, Sacha; Fric, Jan; West, Robert; Rousselot, Philippe; Phan, Thi Hai; Mudde, Liesbeth; Teisserenc, Helene; Carpentier, Antoine F; Kogan, Scott; Degos, Laurent; Pla, Marika; Bishop, J Michael; Stevenson, Freda; Charron, Dominique; Chomienne, Christine

    2003-11-01

    Despite improved molecular characterization of malignancies and development of targeted therapies, acute leukemia is not curable and few patients survive more than 10 years after diagnosis. Recently, combinations of different therapeutic strategies (based on mechanisms of apoptosis, differentiation and cytotoxicity) have significantly increased survival. To further improve outcome, we studied the potential efficacy of boosting the patient's immune response using specific immunotherapy. In an animal model of acute promyelocytic leukemia, we developed a DNA-based vaccine by fusing the human promyelocytic leukemia-retinoic acid receptor-alpha (PML-RARA) oncogene to tetanus fragment C (FrC) sequences. We show for the first time that a DNA vaccine specifically targeted to an oncoprotein can have a pronounced effect on survival, both alone and when combined with all-trans retinoic acid (ATRA). The survival advantage is concomitant with time-dependent antibody production and an increase in interferon-gamma (IFN-gamma). We also show that ATRA therapy on its own triggers an immune response in this model. When DNA vaccination and conventional ATRA therapy are combined, they induce protective immune responses against leukemia progression in mice and may provide a new approach to improve clinical outcome in human leukemia.

  8. Waning of maternal immunity and the impact of diseases: the example of myxomatosis in natural rabbit populations.

    Science.gov (United States)

    Fouchet, D; Marchandeau, S; Langlais, M; Pontier, D

    2006-09-07

    Myxomatosis is a leporipoxvirus that infects the european rabbit, inducing a high mortality rate. Observations lead us to hypothesize that a rabbit carrying maternal antibodies (or having recovered) can be infected (or re-infected) upon being exposed (or re-exposed) to the virus. Infection will lead to mild disease, boosting host immune protection. Using a modelling approach we show that this phenomenon may lead to a difference of impact of myxomatosis according to its transmission rate. Young are exposed when they still carry maternal antibodies and develop a mild disease in high transmission populations. Our results show that the impact of myxomatosis is generally higher in epidemic situations compared to populations where the virus circulates all the year. As a consequence, waning of acquired immunity and the continuous supply of newborn along the year may reduce the impact of the disease.

  9. CD8 T cells primed in the gut-associated lymphoid tissue induce immune-mediated cholangitis in mice.

    Science.gov (United States)

    Seidel, Daniel; Eickmeier, Ira; Kühl, Anja A; Hamann, Alf; Loddenkemper, Christoph; Schott, Eckart

    2014-02-01

    The pathogenesis of primary sclerosing cholangitis (PSC) remains poorly understood. Since PSC predominantly occurs in patients with inflammatory bowel disease, autoimmunity triggered by activated T cells migrating from the gut to the liver is a possible mechanism. We hypothesized that T cells primed in the gut-associated lymphoid tissue (GALT) by a specific antigen migrate to the liver and cause cholangitis when they recognize the same antigen on cholangiocytes. We induced ovalbumin-dependent colitis in mice that express ovalbumin in biliary epithelia (ASBT-OVA mice) and crossed ASBT-OVA mice with mice that express ovalbumin in enterocytes (iFABP-OVA mice). We analyzed T-cell activation in the GALT and crossreactivity to the same antigen in the liver as well as the effects of colitis per se on antigen-presentation and T-cell activation in the liver. Intrarectal application of ovalbumin followed by transfer of CD8 OT-I T cells led to antigen-dependent colitis. CD8 T cells primed in the GALT acquired effector function and the capability to migrate to the liver, where they caused cholangitis in a strictly antigen-dependent manner. Likewise, cholangitis developed in mice expressing ovalbumin simultaneously in biliary epithelia and enterocytes after transfer of OT-I T cells. Dextran sodium sulfate colitis led to increased levels of inflammatory cytokines in the portal venous blood, induced activation of resident liver dendritic cells, and promoted the induction of T-cell-dependent cholangitis. Our data strengthen the notion that immune-mediated cholangitis is caused by T cells primed in the GALT and provide the first link between colitis and cholangitis in an antigen-dependent mouse model. © 2013 by the American Association for the Study of Liver Diseases.

  10. Feeding Our Immune System: Impact on Metabolism

    Directory of Open Access Journals (Sweden)

    Isabelle Wolowczuk

    2008-01-01

    Full Text Available Endogenous intestinal microflora and environmental factors, such as diet, play a central role in immune homeostasis and reactivity. In addition, microflora and diet both influence body weight and insulin-resistance, notably through an action on adipose cells. Moreover, it is known since a long time that any disturbance in metabolism, like obesity, is associated with immune alteration, for example, inflammation. The purpose of this review is to provide an update on how nutrients-derived factors (mostly focusing on fatty acids and glucose impact the innate and acquired immune systems, including the gut immune system and its associated bacterial flora. We will try to show the reader how the highly energy-demanding immune cells use glucose as a main source of fuel in a way similar to that of insulin-responsive adipose tissue and how Toll-like receptors (TLRs of the innate immune system, which are found on immune cells, intestinal cells, and adipocytes, are presently viewed as essential actors in the complex balance ensuring bodily immune and metabolic health. Understanding more about these links will surely help to study and understand in a more fundamental way the common observation that eating healthy will keep you and your immune system healthy.

  11. Enhanced pulmonary immunization with aerosolized inactivated influenza vaccine containing delta inulin adjuvant.

    Science.gov (United States)

    Murugappan, Senthil; Frijlink, Henderik W; Petrovsky, Nikolai; Hinrichs, Wouter L J

    2015-01-23

    Vaccination is the primary intervention to contain influenza virus spread during seasonal and pandemic outbreaks. Pulmonary vaccination is gaining increasing attention for its ability to induce both local mucosal and systemic immune responses without the need for invasive injections. However, pulmonary administration of whole inactivated influenza virus (WIV) vaccine induces a Th2 dominant systemic immune response while a more balanced Th1/Th2 vaccine response may be preferred and only induces modest nasal immunity. This study evaluated immunity elicited by pulmonary versus intramuscular (i.m.) delivery of WIV, and tested whether the immune response could be improved by co-administration of delta (δ)-inulin, a novel carbohydrate-based particulate adjuvant. After pulmonary administration both unadjuvanted and δ-inulin adjuvanted WIV induced a potent systemic immune response, inducing higher serum anti-influenza IgG titers and nasal IgA titers than i.m. administration. Moreover, the addition of δ-inulin induced a more balanced Th1/Th2 response and induced higher nasal IgA titers versus pulmonary WIV alone. Pulmonary WIV alone or with δ-inulin induced hemagglutination inhibition (HI) titers>40, titers which are considered protective against influenza virus. In conclusion, in this study we have shown that δ-inulin adjuvanted WIV induces a better immune response after pulmonary administration than vaccine alone. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Phase I study utilizing a novel antigen-presenting cell-targeted vaccine with Toll-like receptor stimulation to induce immunity to self-antigens in cancer patients.

    Science.gov (United States)

    Morse, Michael A; Chapman, Robert; Powderly, John; Blackwell, Kimberly; Keler, Tibor; Green, Jennifer; Riggs, Renee; He, Li-Zhen; Ramakrishna, Venky; Vitale, Laura; Zhao, Biwei; Butler, Stephen A; Hobeika, Amy; Osada, Takuya; Davis, Thomas; Clay, Timothy; Lyerly, H Kim

    2011-07-15

    The use of tumor-derived proteins as cancer vaccines is complicated by tolerance to these self-antigens. Tolerance may be broken by immunization with activated, autologous, ex vivo generated and antigen-loaded, antigen-presenting cells (APC); however, targeting tumor antigen directly to APC in vivo would be a less complicated strategy. We wished to test whether targeted delivery of an otherwise poorly immunogenic, soluble antigen to APC through their mannose receptors (MR) would induce clinically relevant immunity. Two phase I studies were conducted with CDX-1307, a vaccine composed of human chorionic gonadotropin beta-chain (hCG-β) fused to an MR-specific monoclonal antibody, administered either locally (intradermally) or systemically (intravenously) in patients with advanced epithelial malignancies. An initial dose escalation of single-agent CDX-1307 was followed by additional cohorts of CDX-1307 combined with granulocyte-macrophage colony-stimulating factor (GM-CSF) and the Toll-like receptor (TLR) 3 agonist polyinosinic-polycytidylic acid (poly-ICLC) and TLR7/8 agonist resiquimod to activate the APC. CDX-1307 induced consistent humoral and T-cell responses to hCG-β when coadministered with TLR agonists. Greater immune responses and clinical benefit, including the longest duration of stable disease, were observed with immunization combined with local TLR agonists. Immune responses were induced equally efficiently in patients with elevated and nonelevated levels of serum hCG-β. Antibodies within the serum of vaccinated participants had tumor suppressive function in vitro. Toxicity consisted chiefly of mild injection site reactions. APC targeting and activation induce adaptive immunity against poorly immunogenic self-antigens which has implications for enhancing the efficacy of cancer immunotherapy.

  13. Immunization of mice with LRP4 induces myasthenia similar to MuSK-associated myasthenia gravis.

    Science.gov (United States)

    Mori, Shuuichi; Motohashi, Norio; Takashima, Rumi; Kishi, Masahiko; Nishimune, Hiroshi; Shigemoto, Kazuhiro

    2017-11-01

    Since the first report of experimental animal models of myasthenia gravis (MG) with autoantibodies against low-density lipoprotein receptor-related protein 4 (LRP4), there have not been any major reports replicating the pathogenicity of anti-LRP4 antibodies (Abs). Recent clinical studies have cast doubt on the specificity and pathogenicity of anti-LRP4 antibodies for MG, highlighting the need for further research. In this study, we purified antigens corresponding to the extracellular region of human LRP4 stably expressed with chaperones in 293 cells and used these antigens to immunize female A/J mice. Immunization with LRP4 protein caused mice to develop myasthenia having similar electrophysiological and histological features as are observed in MG patients with circulating Abs against muscle-specific kinase (MuSK). Our results clearly demonstrate that active immunization of mice with LRP4 proteins causes myasthenia similar to the MG induced by anti-MuSK Abs. Further experimental and clinical studies are required to prove the pathogenicity of anti-LRP4 Abs in MG patients. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Immune Thrombocytopenia as a Consequence of Rocky Mountain Spotted Fever

    OpenAIRE

    Baldeo, Cherisse; Seegobin, Karan; Zuberi, Lara

    2017-01-01

    Primary immune thrombocytopenia (ITP) – also called idiopathic thrombocytopenic purpura or immune thrombocytopenic purpura – is an acquired thrombocytopenia caused by autoantibodies against platelet antigens. It is one of the more common causes of thrombocytopenia in otherwise asymptomatic adults. Rocky Mountain spotted fever (RMSF) is a potentially lethal, but curable, tick-borne disease. We present a case of ITP that was triggered by RMSF.

  15. Immune Thrombocytopenia as a Consequence of Rocky Mountain Spotted Fever

    Directory of Open Access Journals (Sweden)

    Cherisse Baldeo

    2017-10-01

    Full Text Available Primary immune thrombocytopenia (ITP – also called idiopathic thrombocytopenic purpura or immune thrombocytopenic purpura – is an acquired thrombocytopenia caused by autoantibodies against platelet antigens. It is one of the more common causes of thrombocytopenia in otherwise asymptomatic adults. Rocky Mountain spotted fever (RMSF is a potentially lethal, but curable, tick-borne disease. We present a case of ITP that was triggered by RMSF.

  16. Combined local and systemic immunization is essential for durable T-cell mediated heterosubtypic immunity against influenza A virus

    DEFF Research Database (Denmark)

    Uddbäck, Ida Elin Maria; Pedersen, Line M I; Pedersen, Sara R

    2016-01-01

    nucleoprotein have previously been found to induce short-term protection in mice. In this study we confirm that systemic (subcutaneous (s.c.) immunization rapidly induced heterosubtypic protection predominantly mediated by CD8 T cells, but within three months clinical protection completely disappeared. Local......The threat from unpredictable influenza virus pandemics necessitates the development of a new type of influenza vaccine. Since the internal proteins are highly conserved, induction of T cells targeting these antigens may provide the solution. Indeed, adenoviral (Ad) vectors expressing flu...... (intranasal (i.n.)) immunization elicited delayed, but more lasting protection despite relatively inefficient immunization. However, by far, the most robust protection was induced by simultaneous, combined (i.n. + s.c.) vaccination, and, notably, in this case clinical protection lasted at least 8 months...

  17. DDA/TDB liposomes containing soluble Leishmania major antigens induced a mixed Th1/Th2 immune response in BALB/c mice

    Directory of Open Access Journals (Sweden)

    Mansure Hojatizade

    2017-04-01

    Full Text Available Objective(s: Leishmaniasis is a complex parasitic disease that represents a major public health problem. Despite numerous attempts over the past decades, yet there is no effective vaccine against human leishmaniasis probably due to the lack of suitable adjuvants. In this study, a first generation liposomal-based Leishmania vaccine was developed using soluble Leishmania major antigens (SLA and á, Ü-trehalose6, 6'-dibehenat (TDB as an immunostimulatory adjuvant. In this liposome structure, the cationic lipid Dimethyldioctadecylammonium (DDA provides intrinsic adjuvant activity and cholesterol was added as a membrane stabilizer. Liposomes containing SLA were prepared.Materials and Methods: BALB/c mice were subcutaneously (sc immunized with Lip (DDA/TDB/CHOL-SLA+, Lip (DDA/TDB-SLA+, Lip (DDA-SLA+, Lip (DDA/CHOL-SLA+, SLA or Tris-HCl buffer. Immunization was done every two weeks for three weeks. The immunized mice were then challenged sc in the left footpad with 1×106 stationary phase L. major promastigotes (50 ìl, at 2 weeks after last booster injection.Results: mice immunized with any of the liposomal formulations containing SLA (Lip-SLA+, substantially increased footpad swelling and parasite loads of foot and spleen with no significant difference compared to Tris-HCl buffer or SLA alone. Lip-SLA+ formulations induced a mixed Th1/Th2 immune response characterized by IFN-ã and IL-4 production as well as high levels of IgG1 anti-Leishmania antibody. Conclusion: immunization with liposomes containing DDA and/or TDB in combination with SLA induces a mixed Th1/Th2 immune response and is not an appropriate strategy for preferential induction of a Th1 response and protection against leishmaniasis.

  18. Effect of dietary antioxidant supplementation (Cuminum cyminum) on bacterial susceptibility of diabetes-induced rats.

    Science.gov (United States)

    Moubarz, Gehan; Embaby, Mohamed A; Doleib, Nada M; Taha, Mona M

    2016-01-01

    Diabetic patients are at risk of acquiring infections. Chronic low-grade inflammation is an important factor in the pathogenesis of diabetic complication. Diabetes causes generation of reactive oxygen species that increases oxidative stress, which may play a role in the development of complications as immune-deficiency and bacterial infection. The study aimed to investigate the role of a natural antioxidant, cumin, in the improvement of immune functions in diabetes. Diabetes was achieved by interperitoneal injection of streptozotocin (STZ). Bacterial infection was induced by application of Staphylococcus aureus suspension to a wound in the back of rats. The antioxidant was administered for 6 weeks. Results revealed a decrease in blood glucose levels in diabetic rats (p cumin may serve as anti-diabetic treatment and may help in attenuating diabetic complications by improving immune functions. Therefore, a medical dietary antioxidant supplementation is important to improve the immune functions in diabetes.

  19. Anterior Chamber-Associated Immune Deviation (ACAID: An Acute Response to Ocular Insult Protects from Future Immune-Mediated Damage?

    Directory of Open Access Journals (Sweden)

    Robert E. Cone

    2009-01-01

    Full Text Available The “immune privilege” that inhibits immune defense mechanisms that could lead to damage to sensitive ocular tissue is based on the expression of immunosuppressive factors on ocular tissue and in ocular fluids. In addition to this environmental protection, the injection of antigen into the anterior chamber or infection in the anterior chamber induces a systemic suppression of potentially damaging cell-mediated and humoral responses to the antigen. Here we discuss evidence that suggests that Anterior Chamber-Associated Immune Deviation (ACAID a is initiated by an ocular response to moderate inflammation that leads to a systemic immunoregulatory response. Injection into the anterior chamber induces a rise in TNF-α and MCP-1 in aqueous humor and an infiltration of circulating F4/80 + monocytes that home to the iris. The induction of ACAID is dependent on this infiltration of circulating monocytes that eventually emigrate to the thymus and spleen where they induce regulatory T cells that inhibit the inductive or effector phases of a cell-mediated immune response. ACAID therefore protects the eye from the collateral damage of an immune response to infection by suppressing a future potentially damaging response to infection.

  20. Autoimmunity and dysmetabolism of human acquired immunodeficiency syndrome.

    Science.gov (United States)

    Huang, Yan-Mei; Hong, Xue-Zhi; Xu, Jia-Hua; Luo, Jiang-Xi; Mo, Han-You; Zhao, Hai-Lu

    2016-06-01

    Acquired immunodeficiency syndrome (AIDS) remains ill-defined by lists of symptoms, infections, tumors, and disorders in metabolism and immunity. Low CD4 cell count, severe loss of body weight, pneumocystis pneumonia, and Kaposi's sarcoma are the major disease indicators. Lines of evidence indicate that patients living with AIDS have both immunodeficiency and autoimmunity. Immunodeficiency is attributed to deficits in the skin- and mucosa-defined innate immunity, CD4 T cells and regulatory T cells, presumably relating human immunodeficiency virus (HIV) infection. The autoimmunity in AIDS is evident by: (1) overproduction of autoantibodies, (2) impaired response of CD4 cells and CD8 cells, (3) failure of clinical trials of HIV vaccines, and (4) therapeutic benefits of immunosuppression following solid organ transplantation and bone marrow transplantation in patients at risk of AIDS. Autoantibodies are generated in response to antigens such as debris and molecules de novo released from dead cells, infectious agents, and catabolic events. Disturbances in metabolic homeostasis occur at the interface of immunodeficiency and autoimmunity in the development of AIDS. Optimal treatments favor therapeutics targeting on the regulation of metabolism to restore immune homeostasis.

  1. Understanding and Targeting Epigenetic Alterations in Acquired Bone Marrow Failure

    Science.gov (United States)

    2014-05-01

    hematopoiesis, lym- phatics and immunity. Blood. 2013 Nov 13. [Epub ahead of print] 8. West RR, Hsu AP, Holland SM, Cuellar- Rodriguez J, Hickstein DD. Acquired...MA 02114 11Department of Molecular Biology and 12Department of Bioinformatics and Computational Biology, Genentech, South San Francisco , CA 94080...other groups (Subramanian et al., 2005). We identified gene sets enriched in HSCs (Ramalho- Santos et al., 2002) and apoptosis (http:// www.genome.jp

  2. EFFECT OF PHLEBODIUM DECUMANUM ON THE IMMUNE RESPONSE INDUCED BY TRAINING IN SEDENTARY UNIVERSITY STUDENTS

    Directory of Open Access Journals (Sweden)

    Jose A. Gonzalez-Jurado

    2011-06-01

    Full Text Available Exercise training is considered a good model to provoke different degrees of immune dysfunction affecting physical performance and some physiological responses related to oxidative stress and low grade inflammation. Phlebodium decumanum is a polypodiaceae may induce shown immunomodulating effects, specifically directed to the release of proinflammatory cytokines by macrophages in response to various stimuli, as reported different in vitro studies. The aim of this study was to evaluate the modulating effect of phlebodium decumanum, on the immune response induced by physical exercise. Thirty-one subjects (males only were randomly divided into two groups: Group PD (n = 18; age: 22.1 ± 1.81, weight 74.21 ± 8.74 kg that was treated with phlebodium decumanum; Group P (n = 13; age: 22.5 ± 1.63, weight 78 ± 12.5 kg that was treated with a placebo. Before and after one month training program performed by both groups (three times a week, the following performance parameters and immune response variables were measured: Dynamic Maximum Force; Interval-Training; Tennis test; pro-inflammatory (TNF , IL6 and anti-inflammatory (TNFα-IIrs, IL1-ra cytokines levels. Data were statistically analyzed with Mann- Whitney U test and Wilcoxon paired test (p < 0.05. Statistically significant differences were recorded within groups before and after the training program. PD group showed a significant improvement in the performance parameters (Strength Muscle Test: dorsal: p < 0.002; deltoids: p < 0.03; and pectorals: p < 0.07; Interval Training: p < 0.06; Tennis Test: p < 0.02. Cytokine levels resulted in a more positive profile in the PD group rather than in the P group, in which higher levels of IL-6 (p < 0.02 and a reduction of TNF-IIrs (p < 0.003 and IL1-ra (p < 0.03 were recorded. In this study the use of phlebodium decumanum demonstrated beneficial effects in the modulation of the immune response during physical performance

  3. Unified-planning, graded-administration, and centralized-controlling: a management modality for treating acquired immune deficiency syndrome with Chinese medicine in Henan Province of China.

    Science.gov (United States)

    Xu, Li-Ran; Guo, Hui-jun; Liu, Zhi-bin; Li, Qiang; Yang, Ji-ping; He, Ying

    2015-04-01

    Henan Province in China has a major epidemic of human immunodeficiency virus/acquired immune deficiency syndrome (HIV/AIDS). Chinese medicine (CM) has been used throughout the last decade, and a management modality was developed, which can be described by unified-planning, graded-administration, and centralized-controlling (UGC). The UGC modality has one primary concept (patient-centered medicine from CM theory), four basic foundations (classifying administrative region, characteristics of CM on disease treatment, health resource conditions, and distribution of patients living with HIV), six important relationships (the "three uniformities and three combinations," and the six relationships therein guide the treatment of AIDS with CM), and four key sections (management, operation, records, and evaluation). In this article, the authors introduce the UGC modality, which could be beneficial to developing countries or resource-limited areas for the management of chronic infectious disease.

  4. Immune-related Colitis Induced by the Long-term Use of Nivolumab in a Patient with Non-small Cell Lung Cancer.

    Science.gov (United States)

    Yasuda, Yuichiro; Urata, Yoshiko; Tohnai, Rie; Ito, Shoichi; Kawa, Yoshitaka; Kono, Yuko; Hattori, Yoshihiro; Tsuda, Masahiro; Sakuma, Toshiko; Negoro, Shunichi; Satouchi, Miyako

    2018-05-01

    We herein report a case of immune-related colitis induced by the long-term use of nivolumab. A 62-year-old Japanese man was treated with nivolumab at 3 mg/kg every 2 weeks for advanced lung adenocarcinoma. The patient was admitted to our hospital due to non-bloody watery diarrhea after the 70th dose of nivolumab. A biopsy specimen of the colon mucosa revealed evidence of colitis with cryptitis and crypt microabscesses. He was diagnosed with immune-related colitis and started on predonisolone 60 mg/day. Subsequently, his symptoms remarkably resolved. Consideration of immune-related adverse events up to several years after the initiation of nivolumab is important.

  5. Protective Immunity Induced by DNA Vaccination against Ranavirus Infection in Chinese Giant Salamander Andrias davidianus

    Directory of Open Access Journals (Sweden)

    Zhong-Yuan Chen

    2018-01-01

    Full Text Available Andrias davidianus ranavirus (ADRV is an emerging viral pathogen that causes severe systemic hemorrhagic disease in Chinese giant salamanders. There is an urgent need for developing an effective vaccine against this fatal disease. In this study, DNA vaccines containing the ADRV 2L gene (pcDNA-2L and the 58L gene (pcDNA-58L were respectively constructed, and their immune protective effects were evaluated in Chinese giant salamanders. In vitro and in vivo expression of the vaccine plasmids were confirmed in transfected cells and muscle tissues of vaccinated Chinese giant salamanders by using immunoblot analysis or RT-PCR. Following ADRV challenge, the Chinese giant salamanders vaccinated with pcDNA-2L showed a relative percent survival (RPS of 66.7%, which was significant higher than that in Chinese giant salamanders immunized with pcDNA-58L (RPS of 3.3%. Moreover, the specific antibody against ADRV was detected in Chinese giant salamanders vaccinated with pcDNA-2L at 14 and 21 days post-vaccination by indirect enzyme-linked immunosorbent assay (ELISA. Transcriptional analysis revealed that the expression levels of immune-related genes including type I interferon (IFN, myxovirus resistance (Mx, major histocompatibility complex class IA (MHC IA, and immunoglobulin M (IgM were strongly up-regulated after vaccination with pcDNA-2L. Furthermore, vaccination with pcDNA-2L significantly suppressed the virus replication, which was seen by a low viral load in the spleen of Chinese giant salamander survivals after ADRV challenge. These results indicated that pcDNA-2L could induce a significant innate immune response and an adaptive immune response involving both humoral and cell-mediated immunity that conferred effective protection against ADRV infection, and might be a potential vaccine candidate for controlling ADRV disease in Chinese giant salamanders.

  6. Innate immune genes including a mucin-like gene, mul-1, induced by ionizing radiation in Caenorhabditis elegans.

    Science.gov (United States)

    Kimura, Takafumi; Takanami, Takako; Sakashita, Tetsuya; Wada, Seiichi; Kobayashi, Yasuhiko; Higashitani, Atsushi

    2012-10-01

    The effect of radiation on the intestine has been studied for more than one hundred years. It remains unclear, however, whether this organ uses specific defensive mechanisms against ionizing radiation. The infection with Pseudomonas aeruginosa (PA14) in Caenorhabditis elegans induces up-regulation of innate immune response genes. Here, we found that exposure to ionizing radiation also induces certain innate immune response genes such as F49F1.6 (termed mul-1), clec-4, clec-67, lys-1 and lys-2 in the intestine. Moreover, pre-treatment with ionizing radiation before seeding on PA14 lawn plate significantly increased survival rate in the nematode. We also studied transcription pathway of the mul-1 in response to ionizing radiation. Induction of mul-1 gene was highly dependent on the ELT-2 transcription factor and p38 MAPK. Moreover, the insulin/IGF-1 signal pathway works to enhance induction of this gene. The mul-1 gene showed a different induction pattern from the DNA damage response gene, ced-13, which implies that the expression of this gene might be triggered as an indirect effect of radiation. Silencing of the mul-1 gene led to growth retardation after treatment with ionizing radiation. We describe the cross-tolerance between the response to radiation exposure and the innate immune system.

  7. Effective Respiratory CD8 T-Cell Immunity to Influenza Virus Induced by Intranasal Carbomer-Lecithin-Adjuvanted Non-replicating Vaccines

    Science.gov (United States)

    Gasper, David J.; Neldner, Brandon; Plisch, Erin H.; Rustom, Hani; Imai, Hirotaka; Kawaoka, Yoshihiro; Suresh, M.

    2016-01-01

    CD8+ cytotoxic T lymphocytes (CTLs) are critical for clearing many viral infections, and protective CTL memory can be induced by vaccination with attenuated viruses and vectors. Non-replicating vaccines are typically potentiated by the addition of adjuvants that enhance humoral responses, however few are capable of generating CTL responses. Adjuplex is a carbomer-lecithin-based adjuvant demonstrated to elicit robust humoral immunity to non-replicating antigens. We report that mice immunized with non-replicating Adjuplex-adjuvanted vaccines generated robust antigen-specific CTL responses. Vaccination by the subcutaneous or the intranasal route stimulated systemic and mucosal CTL memory respectively. However, only CTL memory induced by intranasal vaccination was protective against influenza viral challenge, and correlated with an enhancement of memory CTLs in the airways and CD103+ CD69+ CXCR3+ resident memory-like CTLs in the lungs. Mechanistically, Myd88-deficient mice mounted primary CTL responses to Adjuplex vaccines that were similar in magnitude to wild-type mice, but exhibited altered differentiation of effector cell subsets. Immune potentiating effects of Adjuplex entailed alterations in the frequency of antigen-presenting-cell subsets in vaccine draining lymph nodes, and in the lungs and airways following intranasal vaccination. Further, Adjuplex enhanced the ability of dendritic cells to promote antigen-induced proliferation of naïve CD8 T cells by modulating antigen uptake, its intracellular localization, and rate of processing. Taken together, we have identified an adjuvant that elicits both systemic and mucosal CTL memory to non-replicating antigens, and engenders protective CTL-based heterosubtypic immunity to influenza A virus in the respiratory tract. Further, findings presented in this manuscript have provided key insights into the mechanisms and factors that govern the induction and programming of systemic and protective memory CTLs in the

  8. Functional analysis of Arabidopsis immune-related MAPKs uncovers a role for MPK3 as negative regulator of inducible defences

    KAUST Repository

    Frei dit Frey, Nicolas

    2014-06-30

    Background Mitogen-activated protein kinases (MAPKs) are key regulators of immune responses in animals and plants. In Arabidopsis, perception of microbe-associated molecular patterns (MAMPs) activates the MAPKs MPK3, MPK4 and MPK6. Increasing information depicts the molecular events activated by MAMPs in plants, but the specific and cooperative contributions of the MAPKs in these signalling events are largely unclear. Results In this work, we analyse the behaviour of MPK3, MPK4 and MPK6 mutants in early and late immune responses triggered by the MAMP flg22 from bacterial flagellin. A genome-wide transcriptome analysis reveals that 36% of the flg22-upregulated genes and 68% of the flg22-downregulated genes are affected in at least one MAPK mutant. So far MPK4 was considered as a negative regulator of immunity, whereas MPK3 and MPK6 were believed to play partially redundant positive functions in defence. Our work reveals that MPK4 is required for the regulation of approximately 50% of flg22-induced genes and we identify a negative role for MPK3 in regulating defence gene expression, flg22-induced salicylic acid accumulation and disease resistance to Pseudomonas syringae. Among the MAPK-dependent genes, 27% of flg22-upregulated genes and 76% of flg22-downregulated genes require two or three MAPKs for their regulation. The flg22-induced MAPK activities are differentially regulated in MPK3 and MPK6 mutants, both in amplitude and duration, revealing a highly interdependent network. Conclusions These data reveal a new set of distinct functions for MPK3, MPK4 and MPK6 and indicate that the plant immune signalling network is choreographed through the interplay of these three interwoven MAPK pathways.

  9. Perturbations in immune responses induced by concurrent subchronic exposure to arsenic and endosulfan

    International Nuclear Information System (INIS)

    Aggarwal, Manoj; Naraharisetti, Suresh Babu; Dandapat, S.; Degen, G.H.; Malik, J.K.

    2008-01-01

    The metalloid arsenic and the chlorinated insecticide endosulfan are common environmental contaminants. Humans, animals, and birds are exposed to these chemicals through water and food. Although health effects due to either arsenic or endosulfan exposure are documented, the toxicological impact of co-exposure to these environmental pollutants is unpredictable and unknown. The present study was undertaken to assess whether concurrent exposure to arsenic and endosulfan induces significant alterations in immunological functions. Day-old chicks were exposed to 3.7 ppm of arsenic via drinking water and to 30 ppm of endosulfan-mixed feed either individually or concurrently for up to 60 days. All the chicks were vaccinated with Ranikhet disease virus (F-strain; RD-F) on days 1 and 30. During the course of study and at term, parameters of cellular and humoral immunity were determined. None of the treatments altered the absolute body weight or body weight gain, except arsenic significantly reduced weight gain on day 60. Absolute, but not the relative, weights of spleen, thymus and bursa of Fabricius were significantly reduced in all the treatment groups. The metalloid and insecticide combination significantly depressed the ability of peripheral blood and splenic lymphocytes to proliferate in response to antigen RD-F and mitogen Con A. The delayed type hypersensitivity response to 2,4-dinitro-1-chlorobenzene or to PHA-P was also significantly decreased. Nitric oxide production by RD-F or lipopolysaccharide-stimulated peripheral blood and splenic mononuclear cells was significantly suppressed following concurrent exposure to arsenic and endosulfan. Furthermore, the combined exposure also decreased the antibody response to RD-F. The suppression of cellular and humoral immune responses was also evident following administration of individual compounds, and it was not exacerbated following concurrent exposure. To our knowledge, this is the first report describing the suppression

  10. Inactivated Recombinant Rabies Viruses Displaying Canine Distemper Virus Glycoproteins Induce Protective Immunity against Both Pathogens.

    Science.gov (United States)

    da Fontoura Budaszewski, Renata; Hudacek, Andrew; Sawatsky, Bevan; Krämer, Beate; Yin, Xiangping; Schnell, Matthias J; von Messling, Veronika

    2017-04-15

    recombinant rabies viruses carrying only the CDV attachment protein according to the same immunization scheme died. Irrespective of the CDV antigens used, all animals developed protective titers against rabies virus, illustrating that a bivalent rabies virus-based vaccine against CDV induces protective immune responses against both pathogens. Copyright © 2017 American Society for Microbiology.

  11. Epstein-Barr virus myelitis and Castleman's disease in a patient with acquired immune deficiency syndrome: a case report

    Directory of Open Access Journals (Sweden)

    Balderacchi Jasminka

    2011-05-01

    Full Text Available Abstract Introduction Few cases of Epstein-Barr virus myelitis have been described in the literature. Multi-centric Castleman's disease is a lymphoproliferative disorder that is well known for its associations with the human immunodeficiency virus, human herpes virus 8, and Kaposi's sarcoma. The concurrent presentation of these two diseases in a patient at the same time is extremely unusual. Case Presentation We describe the case of a 43-year-old Caucasian man with acquired immune deficiency syndrome who presented with fever, weight loss and diffuse lymphadenopathy, and was diagnosed with multi-centric Castleman's disease. He presented three weeks later with lower extremity weakness and urinary retention, at which time cerebrospinal fluid contained lymphocytic pleocytosis and elevated protein. Magnetic resonance imaging demonstrated abnormal spinal cord signal intensity over several cervical and thoracic segments, suggesting the diagnosis of myelitis. Our patient was ultimately diagnosed with Epstein-Barr virus myelitis, as Epstein-Barr virus DNA was detected by polymerase chain reaction in the cerebrospinal fluid. Conclusion To the best of our knowledge, this is the first case of multi-centric Castleman's disease followed by acute Epstein-Barr virus myelitis in a human immunodeficiency virus-infected patient. Clinicians caring for human immunodeficiency virus-infected patients should be vigilant about monitoring patients with increasing lymphadenopathy, prompting thorough diagnostic investigations when necessary.

  12. Possible Immune Regulation of Natural Killer T Cells in a Murine Model of Metal Ion-Induced Allergic Contact Dermatitis

    Directory of Open Access Journals (Sweden)

    Kenichi Kumagai

    2016-01-01

    Full Text Available Metal often causes delayed-type hypersensitivity reactions, which are possibly mediated by accumulating T cells in the inflamed skin, called irritant or allergic contact dermatitis. However, accumulating T cells during development of a metal allergy are poorly characterized because a suitable animal model is unavailable. We have previously established novel murine models of metal allergy and found accumulation of both metal-specific T cells and natural killer (NK T cells in the inflamed skin. In our novel models of metal allergy, skin hypersensitivity responses were induced through repeated sensitizations by administration of metal chloride and lipopolysaccharide into the mouse groin followed by metal chloride challenge in the footpad. These models enabled us to investigate the precise mechanisms of the immune responses of metal allergy in the inflamed skin. In this review, we summarize the immune responses in several murine models of metal allergy and describe which antigen-specific responses occur in the inflamed skin during allergic contact dermatitis in terms of the T cell receptor. In addition, we consider the immune regulation of accumulated NK T cells in metal ion–induced allergic contact dermatitis.

  13. Oral administration of type-II collagen peptide 250-270 suppresses specific cellular and humoral immune response in collagen-induced arthritis.

    Science.gov (United States)

    Zhu, Ping; Li, Xiao-Yan; Wang, Hong-Kun; Jia, Jun-Feng; Zheng, Zhao-Hui; Ding, Jin; Fan, Chun-Mei

    2007-01-01

    Oral antigen is an attractive approach for the treatment of autoimmune and inflammatory diseases. Establishment of immune markers and methods in evaluating the effects of antigen-specific cellular and humoral immune responses will help the application of oral tolerance in the treatment of human diseases. The present article observed the effects of chicken collagen II (CII), the recombinant polymerized human collagen II 250-270 (rhCII 250-270) peptide and synthesized human CII 250-270 (syCII 250-270) peptide on the induction of antigen-specific autoimmune response in rheumatoid arthritis (RA) peripheral blood mononuclear cells (PBMC) and on the specific cellular and humoral immune response in collagen-induced arthritis (CIA) and mice fed with CII (250-270) prior to immunization with CII. In the study, proliferation, activation and intracellular cytokine production of antigen-specific T lymphocytes were simultaneously analyzed by bromodeoxyuridine (BrdU) incorporation and flow cytometry at the single-cell level. The antigen-specific antibody and antibody-forming cells were detected by ELISA and ELISPOT, respectively. CII (250-270) was found to have stimulated the response of specific lymphocytes in PBMC from RA patients, including the increase expression of surface activation antigen marker CD69 and CD25, and DNA synthesis. Mice, fed with CII (250-270) before CII immunization, had significantly lower arthritic scores than the mice immunized with CII alone, and the body weight of the former increased during the study period. Furthermore, the specific T cell activity, proliferation and secretion of interferon (IFN)-gamma in spleen cells were actively suppressed in CII (250-270)-fed mice, and the serum anti-CII, anti-CII (250-270) antibody activities and the frequency of specific antibody-forming spleen cells were significantly lower in CII (250-270)-fed mice than in mice immunized with CII alone. These observations suggest that oral administration of CII (250-270) can

  14. Pomegranate extract and exercise provide additive benefits on improvement of immune function by inhibiting inflammation and oxidative stress in high-fat-diet-induced obesity in rats.

    Science.gov (United States)

    Zhao, Fei; Pang, Wentao; Zhang, Ziyi; Zhao, Jialong; Wang, Xin; Liu, Ye; Wang, Xun; Feng, Zhihui; Zhang, Yong; Sun, Wenyan; Liu, Jiankang

    2016-06-01

    Obesity is reported to be associated with immune dysfunction and a state of low-grade, chronic inflammation. Either pomegranate extract (PomE) or exercise (Ex) has been shown to have antiobesity, anti-inflammatory and antioxidant effects. Nevertheless, no study has addressed the additive benefits of PomE and Ex on the restoration of obesity-induced immune defects. The present work aims to study the effect of PomE and Ex as a combined intervention on immune function and the underlying mechanism involved in inflammation and oxidative stress in rats with high-fat-diet (HFD)-induced obesity. Our results demonstrate that the combination of PomE and Ex showed additive benefits on inhibition of HFD-induced body weight increase and improvement of HFD-induced immune dysfunction, including (a) attenuating the abnormality of histomorphology of the spleen, (b) increasing the ratio of the CD4+:CD8+ T cell subpopulations in splenocytes and peripheral blood mononuclear cells (PBMC), (c) inhibition of apoptosis in splenocytes and PBMC, (d) normalizing peritoneal macrophage phenotypes and (e) restoring immunomodulating factors in serum. We also find that immune dysfunction in HFD-fed rats was associated with increased inflammatory cytokine secretion and oxidative stress biomarkers, and that the combination of PomE and Ex effectively inhibited the inflammatory response and decreased oxidative damage. The effect of PomE and Ex as a combined intervention is greater than the effect of either PomE or Ex alone, showing that PomE and Ex may be additively effective in improving immune function in HFD-fed rats by inhibiting inflammation and decreasing oxidative stress. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Genome-wide RNAi screen reveals a new role of a WNT/CTNNB1 signaling pathway as negative regulator of virus-induced innate immune responses.

    Science.gov (United States)

    Baril, Martin; Es-Saad, Salwa; Chatel-Chaix, Laurent; Fink, Karin; Pham, Tram; Raymond, Valérie-Ann; Audette, Karine; Guenier, Anne-Sophie; Duchaine, Jean; Servant, Marc; Bilodeau, Marc; Cohen, Eric; Grandvaux, Nathalie; Lamarre, Daniel

    2013-01-01

    To identify new regulators of antiviral innate immunity, we completed the first genome-wide gene silencing screen assessing the transcriptional response at the interferon-β (IFNB1) promoter following Sendai virus (SeV) infection. We now report a novel link between WNT signaling pathway and the modulation of retinoic acid-inducible gene I (RIG-I)-like receptor (RLR)-dependent innate immune responses. Here we show that secretion of WNT2B and WNT9B and stabilization of β-catenin (CTNNB1) upon virus infection negatively regulate expression of representative inducible genes IFNB1, IFIT1 and TNF in a CTNNB1-dependent effector mechanism. The antiviral response is drastically reduced by glycogen synthase kinase 3 (GSK3) inhibitors but restored in CTNNB1 knockdown cells. The findings confirm a novel regulation of antiviral innate immunity by a canonical-like WNT/CTNNB1 signaling pathway. The study identifies novel avenues for broad-spectrum antiviral targets and preventing immune-mediated diseases upon viral infection.

  16. Genome-wide RNAi screen reveals a new role of a WNT/CTNNB1 signaling pathway as negative regulator of virus-induced innate immune responses.

    Directory of Open Access Journals (Sweden)

    Martin Baril

    Full Text Available To identify new regulators of antiviral innate immunity, we completed the first genome-wide gene silencing screen assessing the transcriptional response at the interferon-β (IFNB1 promoter following Sendai virus (SeV infection. We now report a novel link between WNT signaling pathway and the modulation of retinoic acid-inducible gene I (RIG-I-like receptor (RLR-dependent innate immune responses. Here we show that secretion of WNT2B and WNT9B and stabilization of β-catenin (CTNNB1 upon virus infection negatively regulate expression of representative inducible genes IFNB1, IFIT1 and TNF in a CTNNB1-dependent effector mechanism. The antiviral response is drastically reduced by glycogen synthase kinase 3 (GSK3 inhibitors but restored in CTNNB1 knockdown cells. The findings confirm a novel regulation of antiviral innate immunity by a canonical-like WNT/CTNNB1 signaling pathway. The study identifies novel avenues for broad-spectrum antiviral targets and preventing immune-mediated diseases upon viral infection.

  17. The CD8⁺ T Cell-Mediated Immunity Induced by HPV-E6 Uploaded in Engineered Exosomes Is Improved by ISCOMATRIXTM Adjuvant.

    Science.gov (United States)

    Manfredi, Francesco; di Bonito, Paola; Ridolfi, Barbara; Anticoli, Simona; Arenaccio, Claudia; Chiozzini, Chiara; Baz Morelli, Adriana; Federico, Maurizio

    2016-11-09

    We recently described the induction of an efficient CD8⁺ T cell-mediated immune response against a tumor-associated antigen (TAA) uploaded in engineered exosomes used as an immunogen delivery tool. This immune response cleared tumor cells inoculated after immunization, and controlled the growth of tumors implanted before immunization. We looked for new protocols aimed at increasing the CD8⁺ T cell specific response to the antigen uploaded in engineered exosomes, assuming that an optimized CD8⁺ T cell immune response would correlate with a more effective depletion of tumor cells in the therapeutic setting. By considering HPV-E6 as a model of TAA, we found that the in vitro co-administration of engineered exosomes and ISCOMATRIX TM adjuvant, i.e., an adjuvant composed of purified ISCOPREP TM saponin, cholesterol, and phospholipids, led to a stronger antigen cross-presentation in both B- lymphoblastoid cell lines ( and monocyte-derived immature dendritic cells compared with that induced by the exosomes alone. Consistently, the co-inoculation in mice of ISCOMATRIX TM adjuvant and engineered exosomes induced a significant increase of TAA-specific CD8⁺ T cells compared to mice immunized with the exosomes alone. This result holds promise for effective usage of exosomes as well as alternative nanovesicles in anti-tumor therapeutic approaches.

  18. Pathogen recognition in the innate immune response.

    Science.gov (United States)

    Kumar, Himanshu; Kawai, Taro; Akira, Shizuo

    2009-04-28

    Immunity against microbial pathogens primarily depends on the recognition of pathogen components by innate receptors expressed on immune and non-immune cells. Innate receptors are evolutionarily conserved germ-line-encoded proteins and include TLRs (Toll-like receptors), RLRs [RIG-I (retinoic acid-inducible gene-I)-like receptors] and NLRs (Nod-like receptors). These receptors recognize pathogens or pathogen-derived products in different cellular compartments, such as the plasma membrane, the endosomes or the cytoplasm, and induce the expression of cytokines, chemokines and co-stimulatory molecules to eliminate pathogens and instruct pathogen-specific adaptive immune responses. In the present review, we will discuss the recent progress in the study of pathogen recognition by TLRs, RLRs and NLRs and their signalling pathways.

  19. The innate and adaptive immune response induced by alveolar macrophages exposed to ambient particulate matter

    International Nuclear Information System (INIS)

    Miyata, Ryohei; Eeden, Stephan F. van

    2011-01-01

    Emerging epidemiological evidence suggests that exposure to particulate matter (PM) air pollution increases the risk of cardiovascular events but the exact mechanism by which PM has adverse effects is still unclear. Alveolar macrophages (AM) play a major role in clearing and processing inhaled PM. This comprehensive review of research findings on immunological interactions between AM and PM provides potential pathophysiological pathways that interconnect PM exposure with adverse cardiovascular effects. Coarse particles (10 μm or less, PM 10 ) induce innate immune responses via endotoxin-toll-like receptor (TLR) 4 pathway while fine (2.5 μm or less, PM 2.5 ) and ultrafine particles (0.1 μm or less, UFP) induce via reactive oxygen species generation by transition metals and/or polyaromatic hydrocarbons. The innate immune responses are characterized by activation of transcription factors [nuclear factor (NF)-κB and activator protein-1] and the downstream proinflammatory cytokine [interleukin (IL)-1β, IL-6, and tumor necrosis factor-α] production. In addition to the conventional opsonin-dependent phagocytosis by AM, PM can also be endocytosed by an opsonin-independent pathway via scavenger receptors. Activation of scavenger receptors negatively regulates the TLR4-NF-κB pathway. Internalized particles are subsequently subjected to adaptive immunity involving major histocompatibility complex class II (MHC II) expression, recruitment of costimulatory molecules, and the modulation of the T helper (Th) responses. AM show atypical antigen presenting cell maturation in which phagocytic activity decreases while both MHC II and costimulatory molecules remain unaltered. PM drives AM towards a Th1 profile but secondary responses in a Th1- or Th-2 up-regulated milieu drive the response in favor of a Th2 profile.

  20. Intradermal Immunization of Leishmania donovani Centrin Knock-Out Parasites in Combination with Salivary Protein LJM19 from Sand Fly Vector Induces a Durable Protective Immune Response in Hamsters.

    Directory of Open Access Journals (Sweden)

    Jacqueline Araújo Fiuza

    2016-01-01

    Full Text Available Visceral leishmaniasis (VL is a neglected tropical disease and is fatal if untreated. There is no vaccine available against leishmaniasis. The majority of patients with cutaneous leishmaniasis (CL or VL develop a long-term protective immunity after cure from infection, which indicates that development of an effective vaccine against leishmaniasis is possible. Such protection may also be achieved by immunization with live attenuated parasites that do not cause disease. We have previously reported a protective response in mice, hamsters and dogs with Leishmania donovani centrin gene knock-out parasites (LdCen-/-, a live attenuated parasite with a cell division specific centrin1 gene deletion. In this study we have explored the effects of salivary protein LJM19 as an adjuvant and intradermal (ID route of immunization on the efficacy of LdCen-/- parasites as a vaccine against virulent L. donovani.To explore the potential of a combination of LdCen-/- parasites and salivary protein LJM19 as vaccine antigens, LdCen-/- ID immunization followed by ID challenge with virulent L. donovani were performed in hamsters in a 9-month follow up study. We determined parasite burden (serial dilution, antibody production (ELISA and cytokine expression (qPCR in these animals. Compared to controls, animals immunized with LdCen-/- + LJM19 induced a strong antibody response, a reduction in spleen and liver parasite burden and a higher expression of pro-inflammatory cytokines after immunization and one month post-challenge. Additionally, a low parasite load in lymph nodes, spleen and liver, and a non-inflamed spleen was observed in immunized animals 9 months after the challenge infection.Our results demonstrate that an ID vaccination using LdCen-/-parasites in combination with sand fly salivary protein LJM19 has the capability to confer long lasting protection against visceral leishmaniasis that is comparable to intravenous or intracardial immunization.

  1. Pandemic influenza 1918 H1N1 and 1968 H3N2 DNA vaccines induce cross-reactive immunity in ferrets against infection with viruses drifted for decades

    DEFF Research Database (Denmark)

    Bragstad, Karoline; Martel, Cyril; Thomsen, Joakim S.

    2011-01-01

    Please cite this paper as: Bragstad et al. (2010) Pandemic influenza 1918 H1N1 and 1968 H3N2 DNA vaccines induce cross-reactive immunity in ferrets against infection with viruses drifted for decades. Influenza and Other Respiratory Viruses 5(1), 13-23. Background Alternative influenza vaccines...... and vaccine production forms are needed as the conventional protein vaccines do not induce broad cross-reactivity against drifted strains. Furthermore, fast vaccine production is especially important in a pandemic situation, and broader vaccine reactivity would diminish the need for frequent change...... in the vaccine formulations. Objective In this study, we compared the ability of pandemic influenza DNA vaccines to induce immunity against distantly related strains within a subtype with the immunity induced by conventional trivalent protein vaccines against homologous virus challenge. Methods Ferrets were...

  2. Plasmodium berghei: immunosuppression of the cell-mediated immune response induced by nonviable antigenic preparations

    International Nuclear Information System (INIS)

    Gross, A.; Frankenburg, S.

    1989-01-01

    In this work, plasmodial antigens were examined for their ability to suppress the cellular immune response during lethal Plasmodium berghei infection. Splenic enlargement and the number and function of white spleen cells were assessed after injection of normal mice with irradiated parasitized erythrocytes (IPE) or with parasitized erythrocytes (PE) membranes. Both IPE and PE membranes caused splenomegaly and an increase in the number of splenic white cells with concurrent alteration of the relative proportions of T cells and macrophages. The percentage of T lymphocytes was fractionally diminished, but there was a marked increase in Lyt 2.2 positive (suppressor and cytotoxic) T subsets and in the number of splenic macrophage precursors. The pathological enlargement of the spleen was induced by various plasma membrane-derived antigens containing both proteins and carbohydrates. Splenocytes of mice injected with liposomes containing deoxycholate-treated PE or PE fractions showed both diminished interleukin 2 production and a decreased response to mitogen. It appears that some of the changes in the cellular immune response during P. berghei infection are a consequence of the massive provision of a wide spectrum of antigens, capable of suppressing the immune response. Thus, it may be appropriate to evaluate the possible negative effect of parasite epitopes that are candidates for vaccine

  3. C3d enhanced DNA vaccination induced humoral immune response to glycoprotein C of pseudorabies virus

    International Nuclear Information System (INIS)

    Tong Tiezhu; Fan Huiying; Tan Yadi; Xiao Shaobo; Ling Jieyu; Chen Huanchun; Guo Aizhen

    2006-01-01

    Murine C3d were utilized to enhance immunogenicity of pseudorabies virus (PrV) gC DNA vaccination. Three copies of C3d and four copies of CR2-binding domain M28 4 were fused, respectively, to truncated gC gene encoding soluble glycoprotein C (sgC) in pcDNA3.1. BALB/c mice were, respectively, immunized with recombinant plasmids, blank vector, and inactivated vaccine. The antibody ELISA titer for sgC-C3d 3 DNA was 49-fold more than that for sgC DNA, and the neutralizing antibody obtained 8-fold rise. Protection of mice from death after lethal PrV (316 LD 5 ) challenge was augmented from 25% to 100%. Furthermore, C3d fusion increased Th2-biased immune response by inducing IL-4 production. The IL-4 level for sgC-C3d 3 DNA immunization approached that for the inactivated vaccine. Compared to C3d, M28 enhanced sgC DNA immunogenicity to a lesser extent. In conclusion, we demonstrated that murine C3d fusion significantly enhanced gC DNA immunity by directing Th1-biased to a balanced and more effective Th1/Th2 response

  4. Type 2 immunity and wound healing: evolutionary refinement of adaptive immunity by helminths

    Science.gov (United States)

    Gause, William C.; Wynn, Thomas A.; Allen, Judith E.

    2013-01-01

    Helminth-induced type 2 immune responses, which are characterized by the T helper 2 cell-associated cytokines interleukin-4 (IL-4) and IL-13, mediate host protection through enhanced tissue repair, the control of inflammation and worm expulsion. In this Opinion article, we consider type 2 immunity in the context of helminth-mediated tissue damage. We examine the relationship between the control of helminth infection and the mechanisms of wound repair, and we provide a new understanding of the adaptive type 2 immune response and its contribution to both host tolerance and resistance. PMID:23827958

  5. Local oral immunization with synthetic peptides induces a dual mucosal IgG and salivary IgA antibody response and prevents colonization of Streptococcus mutans.

    Science.gov (United States)

    Lehner, T; Haron, J; Bergmeier, L A; Mehlert, A; Beard, R; Dodd, M; Mielnik, B; Moore, S

    1989-01-01

    A small cell surface antigen of Streptococcus mutans was partially sequenced and the amino terminal peptides of 11, 15 and 20 amino acid residues and a dimer of the 15 and 20 residues peptides were synthesized. The synthetic peptides (SP) were used in topical oral immunization of the gingivomucosal epithelium of macaque monkeys. Sequential examination for antibodies over a period of up to 30 weeks revealed that six applications of the linear or cyclized SP11 and a random SP11 induced negligible or very low antibody levels. In contrast, the SP17 (SP15 with added cysteine at each terminus), SP21 (SP20 with one cysteine) and the dimer (SP35) induced significant anti-SP as well as anti-native streptococcal antibodies in the gingival fluid and in saliva. The functional significance of this immune response was examined by studying its effect on oral colonization of S. mutans following feeding of a carbohydrate-rich diet. Whereas control animals, sham-immunized with a random SP of 11 residues, showed increased colonization of the teeth by S. mutans, there was no colonization or a significant reduction in colonization of animals immunized with the cyclized SP17, linear SP21 or dimerized SP35. These experiments suggest that local immunization with SP derived from the sequences of a streptococcal cell surface antigen induce a dual local immune response of gingival IgG and salivary IgA antibodies against the SP and native SA. These antibodies may be involved in preventing colonization of S. mutans, which is the principal agent in the development of dental caries. PMID:2759661

  6. A nonproliferating parvovirus vaccine vector elicits sustained, protective humoral immunity following a single intravenous or intranasal inoculation.

    Science.gov (United States)

    Palmer, Gene A; Brogdon, Jennifer L; Constant, Stephanie L; Tattersall, Peter

    2004-02-01

    An ideal vaccine delivery system would elicit persistent protection following a single administration, preferably by a noninvasive route, and be safe even in the face of immunosuppression, either inherited or acquired, of the recipient. We have exploited the unique life cycle of the autonomous parvoviruses to develop a nonproliferating vaccine platform that appears to both induce priming and continually boost a protective immune response following a single inoculation. A crippled parvovirus vector was constructed, based on a chimera between minute virus of mice (MVM) and LuIII, which expresses Borrelia burgdorferi outer surface protein A (OspA) instead of its coat protein. The vector was packaged into an MVM lymphotropic capsid and inoculated into naive C3H/HeNcr mice. Vaccination with a single vector dose, either intravenously or intranasally, elicited high-titer anti-OspA-specific antibody that provided protection from live spirochete challenge and was sustained over the lifetime of the animal. Both humoral and cell-mediated Th(1) immunity was induced, as shown by anti-OspA immunoglobulin G2a antibody and preferential gamma interferon production by OspA-specific CD4(+) T cells.

  7. Convergence of the innate and adaptive immunity during human aging

    Directory of Open Access Journals (Sweden)

    Branca Isabel Pereira

    2016-11-01

    Full Text Available Aging is associated with profound changes in the human immune system, a phenomenon referred to as immunosenescence. This complex immune remodeling affects the adaptive immune system and the CD8+ T cell compartment in particular, leading to the accumulation of terminally differentiated T cells, which can rapidly exert their effector functions at the expenses of a limited proliferative potential. In this review we will discuss evidence suggesting that senescent αβCD8+ T cells acquire the hallmarks of innate-like T cells and use recently acquired NK cell receptors as an alternative mechanism to mediate rapid effector functions. These cells concomitantly lose expression of co-stimulatory receptors and exhibit decreased TCR signaling suggesting a functional shift away from antigen specific activation. The convergence of innate and adaptive features in senescent T cells challenges the classic division between innate and adaptive immune systems. Innate-like T cells are particularly important for stress and tumor surveillance and we propose a new role for these cells in aging, where the acquisition of innate-like functions may represent a beneficial adaptation to an increased burden of malignancy with age, although it may also pose a higher risk of autoimmune disorders.

  8. Suppression of adaptive immunity to heterologous antigens during Plasmodium infection through hemozoin-induced failure of dendritic cell function

    Directory of Open Access Journals (Sweden)

    Phillips R

    2006-04-01

    Full Text Available Abstract Background Dendritic cells (DCs are central to the initiation and regulation of the adaptive immune response during infection. Modulation of DC function may therefore allow evasion of the immune system by pathogens. Significant depression of the host's systemic immune response to both concurrent infections and heterologous vaccines has been observed during malaria infection, but the mechanisms underlying this immune hyporesponsiveness are controversial. Results Here, we demonstrate that the blood stages of malaria infection induce a failure of DC function in vitro and in vivo, causing suboptimal activation of T cells involved in heterologous immune responses. This effect on T-cell activation can be transferred to uninfected recipients by DCs isolated from infected mice. Significantly, T cells activated by these DCs subsequently lack effector function, as demonstrated by a failure to migrate to lymphoid-organ follicles, resulting in an absence of B-cell responses to heterologous antigens. Fractionation studies show that hemozoin, rather than infected erythrocyte (red blood cell membranes, reproduces the effect of intact infected red blood cells on DCs. Furthermore, hemozoin-containing DCs could be identified in T-cell areas of the spleen in vivo. Conclusion Plasmodium infection inhibits the induction of adaptive immunity to heterologous antigens by modulating DC function, providing a potential explanation for epidemiological studies linking endemic malaria with secondary infections and reduced vaccine efficacy.

  9. Downmodulation of Vaccine-Induced Immunity and Protection against the Intracellular Bacterium Francisella tularensis by the Inhibitory Receptor FcγRIIB

    Directory of Open Access Journals (Sweden)

    Brian J. Franz

    2015-01-01

    Full Text Available Fc gamma receptor IIB (FcγRIIB is the only Fc gamma receptor (FcγR which negatively regulates the immune response, when engaged by antigen- (Ag- antibody (Ab complexes. Thus, the generation of Ag-specific IgG in response to infection or immunization has the potential to downmodulate immune protection against infection. Therefore, we sought to determine the impact of FcγRIIB on immune protection against Francisella tularensis (Ft, a Category A biothreat agent. We utilized inactivated Ft (iFt as an immunogen. Naïve and iFt-immunized FcγRIIB knockout (KO or wildtype (WT mice were challenged with Ft-live vaccine strain (LVS. While no significant difference in survival between naïve FcγRIIB KO versus WT mice was observed, iFt-immunized FcγRIIB KO mice were significantly better protected than iFt-immunized WT mice. Ft-specific IgA in serum and bronchial alveolar lavage, as well as IFN-γ, IL-10, and TNF-α production by splenocytes harvested from iFt-immunized FcγRIIB KO, were also significantly elevated. In addition, iFt-immunized FcγRIIB KO mice exhibited a reduction in proinflammatory cytokine levels in vivo at 5 days after challenge, which correlates with increased survival following Ft-LVS challenge in published studies. Thus, these studies demonstrate for the first time the ability of FcγRIIB to regulate vaccine-induced IgA production and downmodulate immunity and protection. The immune mechanisms behind the above observations and their potential impact on vaccine development are discussed.

  10. Signatures of selection acting on the innate immunity gene Toll-like receptor 2 (TLR2) during the evolutionary history of rodents.

    Science.gov (United States)

    Tschirren, B; Råberg, L; Westerdahl, H

    2011-06-01

    Patterns of selection acting on immune defence genes have recently been the focus of considerable interest. Yet, when it comes to vertebrates, studies have mainly focused on the acquired branch of the immune system. Consequently, the direction and strength of selection acting on genes of the vertebrate innate immune defence remain poorly understood. Here, we present a molecular analysis of selection on an important receptor of the innate immune system of vertebrates, the Toll-like receptor 2 (TLR2), across 17 rodent species. Although purifying selection was the prevalent evolutionary force acting on most parts of the rodent TLR2, we found that codons in close proximity to pathogen-binding and TLR2-TLR1 heterodimerization sites have been subject to positive selection. This indicates that parasite-mediated selection is not restricted to acquired immune system genes like the major histocompatibility complex, but also affects innate defence genes. To obtain a comprehensive understanding of evolutionary processes in host-parasite systems, both innate and acquired immunity thus need to be considered. © 2011 The Authors. Journal of Evolutionary Biology © 2011 European Society For Evolutionary Biology.

  11. Evidence that shock-induced immune suppression is mediated by adrenal hormones and peripheral beta-adrenergic receptors.

    Science.gov (United States)

    Cunnick, J E; Lysle, D T; Kucinski, B J; Rabin, B S

    1990-07-01

    Our previous work has demonstrated that presentations of mild foot-shock to Lewis rats induces a suppression of splenic and peripheral blood lymphocyte responses to nonspecific T-cell mitogens. The present study demonstrated that adrenalectomy prevented the shock-induced suppression of the mitogenic response of peripheral blood T-cells but did not attenuate the suppression of splenic T-cells. Conversely, the beta-adrenergic receptor antagonists, propranolol and nadolol, attenuated the shock-induced suppression of splenic T-cells in a dose-dependent manner but did not attenuate suppression of the blood mitogen response. These data indicate that distinct mechanisms mediate the shock-induced suppression of T-cell responsiveness to mitogens in the spleen and the peripheral blood. The results indicate that the peripheral release of catecholamines is responsible for splenic immune suppression and that adrenal hormones, which do not interact with beta-adrenergic receptors, are responsible for shock-induced suppression of blood mitogenic responses.

  12. Hapten-Induced Contact Hypersensitivity, Autoimmune Reactions, and Tumor Regression: Plausibility of Mediating Antitumor Immunity

    Directory of Open Access Journals (Sweden)

    Dan A. Erkes

    2014-01-01

    Full Text Available Haptens are small molecule irritants that bind to proteins and elicit an immune response. Haptens have been commonly used to study allergic contact dermatitis (ACD using animal contact hypersensitivity (CHS models. However, extensive research into contact hypersensitivity has offered a confusing and intriguing mechanism of allergic reactions occurring in the skin. The abilities of haptens to induce such reactions have been frequently utilized to study the mechanisms of inflammatory bowel disease (IBD to induce autoimmune-like responses such as autoimmune hemolytic anemia and to elicit viral wart and tumor regression. Hapten-induced tumor regression has been studied since the mid-1900s and relies on four major concepts: (1 ex vivo haptenation, (2 in situ haptenation, (3 epifocal hapten application, and (4 antigen-hapten conjugate injection. Each of these approaches elicits unique responses in mice and humans. The present review attempts to provide a critical appraisal of the hapten-mediated tumor treatments and offers insights for future development of the field.

  13. Self-consuming innate immunity in Arabidopsis

    DEFF Research Database (Denmark)

    Hofius, Daniel; Mundy, John; Petersen, Morten

    2009-01-01

    Programmed cell death (PCD) associated with the pathogen-induced hypersensitive response (HR) is a hallmark of plant innate immunity. HR PCD is triggered upon recognition of pathogen effector molecules by host immune receptors either directly or indirectly via effector modulation of host targets...

  14. Immunization with influenza virus hemagglutinin globular region containing the receptor-binding pocket.

    Science.gov (United States)

    Jeon, Sung Ho; Arnon, Ruth

    2002-01-01

    The globular region of hemagglutinin (residues 91-261) membrane glycoprotein of influenza virus that encompasses the binding zone to the oligosaccharide receptor of target cells has been cloned by reverse transcriptase-polymerase chain reaction (RT-PCR). This protein segment (denoted HA91-261 peptide) induced significant immune response in mice. The serum antibodies and lung homogenates from the immunized mice cross-reacted with native virus particles. The cellular immunity was manifested by proliferative splenocyte responses and cytokine release indicating T helper type 1 activity. The plasmid DNA containing this segment (denoted pHA91-261) provoked, in addition, a significant cytotoxic T lymphocyte (CTL) response, whereas the HA91-261 protein fragment led to no such response. Both the DNA and the protein fragment of HA91-261 induced significant protection against viral challenge, although the immune response they induce might be along different pathways. Interestingly, the combined DNA priming-protein boosting immunization regimen did not induce protection against viral challenges even though it led to significant humoral immune responses similar to that induced by the peptide vaccine.

  15. Protein Kinase G Induces an Immune Response in Cows Exposed to Mycobacterium avium Subsp. paratuberculosis

    Directory of Open Access Journals (Sweden)

    Horacio Bach

    2018-01-01

    Full Text Available To establish infection, pathogens secrete virulence factors, such as protein kinases and phosphatases, to modulate the signal transduction pathways used by host cells to initiate immune response. The protein MAP3893c is annotated in the genome sequence of Mycobacterium avium subspecies paratuberculosis (MAP, the causative agent of Johne’s disease, as the serine/threonine protein kinase G (PknG. In this work, we report that PknG is a functional kinase that is secreted within macrophages at early stages of infection. The antigen is able to induce an immune response from cattle exposed to MAP in the form of interferon gamma production after stimulation of whole blood with PknG. These findings suggest that PknG may contribute to the pathogenesis of MAP by phosphorylating macrophage signalling and/or adaptor molecules as observed with other pathogenic mycobacterial species.

  16. Induced ER-chaperones regulate a novel receptor-like kinase to mediate a viral innate immune response

    Science.gov (United States)

    Caplan, Jeffrey L.; Zhu, Xiaohong; Mamillapalli, Padmavathi; Marathe, Rajendra; Anandalakshmi, Radhamani; Dinesh-Kumar, S. P.

    2009-01-01

    Summary The plant innate immune response requires a rapid, global reprogramming of cellular processes. Here we employed two complementary proteomic methods, two-dimensional differential in-gel electrophoresis (2D-DIGE) and iTRAQ, to identify differentially regulated proteins early during a defense response. Besides defense-related proteins, the constituents of the largest category of up-regulated proteins were cytoplasmic- and endoplasmic reticulum (ER)-residing molecular chaperones. Silencing of ER-resident protein disulfide isomerases, NbERp57 and NbP5, and the calreticulins, NbCRT2 and NbCRT3, lead to a partial loss of N immune receptor-mediated defense against Tobacco mosaic virus (TMV). Furthermore, NbCRT2 and NbCRT3 are required for the expression of a novel induced receptor-like kinase (IRK). IRK is a plasma membrane-localized protein required for the N-mediated hypersensitive response programmed cell death (HR-PCD) and resistance to TMV. These data support a model in which ER-resident chaperones are required for the accumulation of membrane bound or secreted proteins that are necessary for innate immunity. PMID:19917500

  17. Dengue infections in non-immune travellers to Thailand.

    Science.gov (United States)

    Massad, E; Rocklov, J; Wilder-Smith, A

    2013-02-01

    Dengue is the most frequent arboviral disease and is expanding geographically. Dengue is also increasingly being reported in travellers, in particular in travellers to Thailand. However, data to quantify the risk of travellers acquiring dengue when travelling to Thailand are lacking. Using mathematical modelling, we set out to estimate the risk of non-immune persons acquiring dengue when travelling to Thailand. The model is deterministic with stochastic parameters and assumes a Poisson distribution for the mosquitoes' biting rate and a Gamma distribution for the probability of acquiring dengue from an infected mosquito. From the force of infection we calculated the risk of dengue acquisition for travellers to Thailand arriving in a typical year (averaged over a 17-year period) in the high season of transmission. A traveller arriving in the high season of transmission and remaining for 7 days has a risk of acquiring dengue of 0·2% (95% CI 0·16-0·23), whereas the risk for travel of 15 and 30 days' duration is 0·46% (95% CI 0·41-0·50) and 0·81% (95% CI 0·76-0·87), respectively. Our data highlight that the risk of non-immune travellers acquiring dengue in Thailand is substantial. The incidence of 0·81% after a 1-month stay is similar to that reported in prospective seroconversion studies in Israeli travellers to Thailand, highlighting that our models are consistent with actual data. Risk estimates based on mathematical modelling offer more detailed information depending on various travel scenarios, and will help the travel medicine provider give better evidence-based advice for travellers to dengue-endemic countries.

  18. Recombinant Forms of Leishmania amazonensis Excreted/Secreted Promastigote Surface Antigen (PSA Induce Protective Immune Responses in Dogs.

    Directory of Open Access Journals (Sweden)

    Elodie Petitdidier

    2016-05-01

    Full Text Available Preventive vaccination is a highly promising strategy for interrupting leishmaniasis transmission that can, additionally, contribute to elimination. A vaccine formulation based on naturally excreted secreted (ES antigens was prepared from L. infantum promastigote culture supernatant. This vaccine achieved successful results in Phase III trials and was licensed and marketed as CaniLeish. We recently showed that newly identified ES promastigote surface antigen (PSA, from both viable promastigotes and axenically-grown amastigotes, represented the major constituent and the highly immunogenic antigen of L. infantum and L. amazonensis ES products. We report here that three immunizations with either the recombinant ES LaPSA-38S (rPSA or its carboxy terminal part LaPSA-12S (Cter-rPSA, combined with QA-21 as adjuvant, confer high levels of protection in naive L. infantum-infected Beagle dogs, as checked by bone marrow parasite absence in respectively 78.8% and 80% of vaccinated dogs at 6 months post-challenge. The parasite burden in infected vaccinated dogs was significantly reduced compared to placebo group, as measured by q-PCR. Moreover, our results reveal humoral and cellular immune response clear-cut differences between vaccinated and control dogs. An early increase in specific IgG2 antibodies was observed in rPSA/QA-21- and Cter-rPSA/QA-21-immunized dogs only. They were found functionally active in vitro and were highly correlated with vaccine protection. In vaccinated protected dogs, IFN-γ and NO productions, as well as anti-leishmanial macrophage activity, were increased. These data strongly suggest that ES PSA or its carboxy-terminal part, in recombinant forms, induce protection in a canine model of zoonotic visceral leishmaniasis by inducing a Th1-dominant immune response and an appropriate specific antibody response. These data suggest that they could be considered as important active components in vaccine candidates.

  19. Trichomonas vaginalis α-Actinin 2 Modulates Host Immune Responses by Inducing Tolerogenic Dendritic Cells via IL-10 Production from Regulatory T Cells.

    Science.gov (United States)

    Lee, Hye-Yeon; Kim, Juri; Ryu, Jae-Sook; Park, Soon-Jung

    2017-08-01

    Trichomonas vaginalis is a pathogen that triggers severe immune responses in hosts. T. vaginalis α-actinin 2, Tvα-actinin 2, has been used to diagnose trichomoniasis. This study was undertaken to examine the role of Tvα-actinin 2 as an antigenic molecule to induce immune responses from humans. Western blot analysis using anti-Tvα-actinin 2 antibodies indicated its presence in the secreted proteins of T. vaginalis. ELISA was employed to measure cytokine production by vaginal epithelial cells, prostate cells, mouse dendritic cells (DCs), or T cells stimulated with T. vaginalis or Tvα-actinin 2 protein. Both T. vaginalis and rTvα-actinin 2 induced cytokine production from epithelial cell lines, including IL-10. Moreover, CD4+CD25- regulatory T cells (Treg cells) incubated with rTvα-actinin 2-treated DCs produced high levels of IL-10. These data indicate that Tvα-actinin 2 modulates immune responses via IL-10 production by Treg cells.

  20. Host-microbiota interplay in mediating immune disorders.

    Science.gov (United States)

    Felix, Krysta M; Tahsin, Shekha; Wu, Hsin-Jung Joyce

    2018-04-01

    To maintain health, the immune system must maintain a delicate balance between eliminating invading pathogens and avoiding immune disorders such as autoimmunity and allergies. The gut microbiota provide essential health benefits to the host, particularly by regulating immune homeostasis. Dysbiosis, an alteration and imbalance of the gut microbiota, is associated with the development of several autoimmune diseases in both mice and humans. In this review, we discuss recent advances in understanding how certain factors, such as age and gender, affect the gut microbiota, which in turn can influence the development of autoimmune diseases. The age factor in microbiota-dependent immune disorders indicates a window of opportunity for future diagnostic and therapeutic approaches. We also discuss unique commensal bacteria with strong immunomodulatory activity. Finally, we provide an overview of the potential molecular mechanisms whereby gut microbiota induce autoimmunity, as well as the evidence that gut microbiota trigger extraintestinal diseases by inducing the migration of gut-derived immune cells. Elucidating the interaction of gut microbiota and the host immune system will help us understand the pathogenesis of immune disorders, and provide us with new foundations to develop novel immuno- or microbe-targeted therapies. © 2017 New York Academy of Sciences.

  1. Deceptive Imprinting and Immune Refocusing in Vaccine Design

    Science.gov (United States)

    A large number of the world’s most widespread and problematic pathogens evade host immune responses by inducing strain specific immunity to immunodominant epitopes with high mutation rates capable of altering antigenic profiles. The immune system appears to be decoyed into reacting to these immunod...

  2. Vaccination with Recombinant Baculovirus Expressing Ranavirus Major Capsid Protein Induces Protective Immunity in Chinese Giant Salamander, Andrias davidianus

    Directory of Open Access Journals (Sweden)

    Xiaoyuan Zhou

    2017-07-01

    Full Text Available The Chinese giant salamander iridovirus (CGSIV, belonging to the genus Ranavirus in the family Iridoviridae, is the causative agent of an emerging infectious disease causing high mortality of more than 90% and economic losses in Chinese giant salamanders in China. In this study, a recombinant baculovirus-based vaccine expressing the CGSIV major capsid protein (MCP was developed and its protective immunity in Chinese giant salamanders was evaluated. The recombinant Autographa californica nucleopolyhedrosis virus (AcNPV, expressing CGSIV MCP, designated as AcNPV-MCP, was generated with the highest titers of 1 × 108 plaque forming units/mL (PFU/mL and confirmed by Western blot and indirect immunofluorescence (IIF assays. Western blot analysis revealed that the expressed MCP reacted with mouse anti-MCP monoclonal antibodies at the band of about 53 kDa. The results of IIF indicated that the MCP was expressed in the infected Spodoptera frugiperda 9 (Sf9 cells with the recombinant baculovirus, and the Chinese giant salamander muscle cells also transduced with the AcNPV-MCP. Immunization with the recombinant baculovirus of AcNPV-MCP elicited robust specific humoral immune responses detected by ELISA and neutralization assays and potent cellular immune responses in Chinese giant salamanders. Importantly, the effective immunization conferred highly protective immunity for Chinese giant salamanders against CGSIV challenge and produced a relative percent of survival rate of 84%. Thus, the recombinant baculovirus expressing CGSIV MCP can induce significant immune responses involving both humoral and cell-mediated immunity in Chinese giant salamanders and might represent a potential baculovirus based vaccine candidate for Chinese giant salamanders against CGSIV.

  3. Methyl salicylate is a critical mobile signal for plant systemic acquired resistance.

    Science.gov (United States)

    Park, Sang-Wook; Kaimoyo, Evans; Kumar, Dhirendra; Mosher, Stephen; Klessig, Daniel F

    2007-10-05

    In plants, the mobile signal for systemic acquired resistance (SAR), an organism-wide state of enhanced defense to subsequent infections, has been elusive. By stimulating immune responses in mosaic tobacco plants created by grafting different genetic backgrounds, we showed that the methyl salicylate (MeSA) esterase activity of salicylic acid-binding protein 2 (SABP2), which converts MeSA into salicylic acid (SA), is required for SAR signal perception in systemic tissue, the tissue that does not receive the primary (initial) infection. Moreover, in plants expressing mutant SABP2 with unregulated MeSA esterase activity in SAR signal-generating, primary infected leaves, SAR was compromised and the associated increase in MeSA levels was suppressed in primary infected leaves, their phloem exudates, and systemic leaves. SAR was also blocked when SA methyl transferase (which converts SA to MeSA) was silenced in primary infected leaves, and MeSA treatment of lower leaves induced SAR in upper untreated leaves. Therefore, we conclude that MeSA is a SAR signal in tobacco.

  4. Hospital-Acquired Pneumonia in Newborns with Birth Weight Less Than 1500 Grams: Risk Factors and Causes

    Directory of Open Access Journals (Sweden)

    Folic Nevena

    2016-12-01

    Full Text Available Low birth weight newborns (≤1500 grams are at a high risk of acquiring hospital infections due to the immaturity of the immune system, lack of efficient structural barriers, and an incomplete development of endogenous microbial flora.

  5. Pipecolic Acid Orchestrates Plant Systemic Acquired Resistance and Defense Priming via Salicylic Acid-Dependent and -Independent Pathways.

    Science.gov (United States)

    Bernsdorff, Friederike; Döring, Anne-Christin; Gruner, Katrin; Schuck, Stefan; Bräutigam, Andrea; Zeier, Jürgen

    2016-01-01

    We investigated the relationships of the two immune-regulatory plant metabolites, salicylic acid (SA) and pipecolic acid (Pip), in the establishment of plant systemic acquired resistance (SAR), SAR-associated defense priming, and basal immunity. Using SA-deficient sid2, Pip-deficient ald1, and sid2 ald1 plants deficient in both SA and Pip, we show that SA and Pip act both independently from each other and synergistically in Arabidopsis thaliana basal immunity to Pseudomonas syringae. Transcriptome analyses reveal that SAR establishment in Arabidopsis is characterized by a strong transcriptional response systemically induced in the foliage that prepares plants for future pathogen attack by preactivating multiple stages of defense signaling and that SA accumulation upon SAR activation leads to the downregulation of photosynthesis and attenuated jasmonate responses systemically within the plant. Whereas systemic Pip elevations are indispensable for SAR and necessary for virtually the whole transcriptional SAR response, a moderate but significant SA-independent component of SAR activation and SAR gene expression is revealed. During SAR, Pip orchestrates SA-dependent and SA-independent priming of pathogen responses in a FLAVIN-DEPENDENT-MONOOXYGENASE1 (FMO1)-dependent manner. We conclude that a Pip/FMO1 signaling module acts as an indispensable switch for the activation of SAR and associated defense priming events and that SA amplifies Pip-triggered responses to different degrees in the distal tissue of SAR-activated plants. © 2016 American Society of Plant Biologists. All rights reserved.

  6. Risky sexual behaviour and human immunodeficiency virus (HIV) and acquired immune deficiency syndrome (AIDS) among healthcare workers.

    Science.gov (United States)

    Khamisa, Natasha; Mokgobi, Maboe

    2018-01-01

    South Africa is known to have one of the highest prevalence rates of human immunodeficiency virus (HIV) and acquired immune deficiency syndrome (AIDS) globally, with one in seven healthcare workers being HIV-positive. An HIV-positive healthcare workforce is less equipped to respond to the increasing spread of the epidemic. Assessment of the factors contributing to high HIV prevalence rates among healthcare workers is important in planning the development of human resources. This review sought to identify and understand predominant risky sexual behaviours among healthcare workers in HIV and AIDS-affected countries. This study reviewed articles focusing on sexual behaviour among healthcare workers. Major health science databases (e.g. ProQuest, Cochrane, PubMed and CINAHL) were searched for combinations of keywords including 'healthcare workers', 'risky sexual behaviour' and 'HIV and AIDS'. Articles from a range of countries met inclusion and exclusion criteria. Findings of the study revealed three main contributing factors: unprotected sex, multiple sex partners and sexual violence. Sexual violence emerged as the dominant risk factor in the majority of the studies. Most research was conducted in developed countries where the HIV infection rate is much lower than it is in developing countries. More research needs to be conducted in developing countries and appropriate strategies should be implemented to reduce sexual violence among healthcare workers. Appropriate procedures on reporting sexual violence coupled with education on HIV and AIDS as well as influencing attitudes and belief systems could assist in reducing the spread of HIV and AIDS within the healthcare workforce while minimising the effect on patient care.

  7. Pathogen-induced maternal effects result in enhanced immune responsiveness across generations.

    Science.gov (United States)

    Rosengaus, Rebeca B; Hays, Nicole; Biro, Colette; Kemos, James; Zaman, Muizz; Murray, Joseph; Gezahegn, Bruck; Smith, Wendy

    2017-05-01

    Parental investment theory postulates that adults can accurately perceive cues from their surroundings, anticipate the needs of future offspring based on those cues, and selectively allocate nongenetic resources to their progeny. Such context-dependent parental contributions can result in phenotypically variable offspring. Consistent with these predictions, we show that bacterially exposed Manduca sexta mothers oviposited significantly more variable embryos (as measured by mass, volume, hatching time, and hatching success) relative to naïve and control mothers. By using an in vivo "clearance of infection" assay, we also show that challenged larvae born to heat-killed- or live- Serratia -injected mothers, supported lower microbial loads and cleared the infection faster than progeny of control mothers. Our data support the notion that mothers can anticipate the future pathogenic risks and immunological needs of their unborn offspring, providing progeny with enhanced immune protection likely through transgenerational immune priming. Although the inclusion of live Serratia into oocytes does not appear to be the mechanism by which mothers confer protection to their young, other mechanisms, including epigenetic modifications in the progeny due to maternal pathogenic stress, may be at play. The adaptive nature of maternal effects in the face of pathogenic stress provides insights into parental investment, resource allocation, and life-history theories and highlights the significant role that pathogen-induced maternal effects play as generators and modulators of evolutionary change.

  8. CTA1-DD adjuvant promotes strong immunity against human immunodeficiency virus type 1 envelope glycoproteins following mucosal immunization.

    Science.gov (United States)

    Sundling, Christopher; Schön, Karin; Mörner, Andreas; Forsell, Mattias N E; Wyatt, Richard T; Thorstensson, Rigmor; Karlsson Hedestam, Gunilla B; Lycke, Nils Y

    2008-12-01

    Strategies to induce potent and broad antibody responses against the human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins (Env) at both systemic and mucosal sites represent a central goal for HIV-1 vaccine development. Here, we show that the non-toxic CTA1-DD adjuvant promoted mucosal and systemic humoral and cell-mediated immune responses following intranasal (i.n.) immunizations with trimeric or monomeric forms of HIV-1 Env in mice and in non-human primates. Env-specific IgG subclasses in the serum of immunized mice reflected a balanced Th1/Th2 type of response. Strikingly, i.n. immunizations with Env and the CTA1-DD adjuvant induced substantial levels of mucosal anti-Env IgA in bronchial alveolar lavage and also detectable levels in vaginal secretions. By contrast, parenteral immunizations of Env formulated in Ribi did not stimulate mucosal IgA responses, while the two adjuvants induced a similar distribution of Env-specific IgG-subclasses in serum. A single parenteral boost with Env in Ribi adjuvant into mice previously primed i.n. with Env and CTA1-DD, augmented the serum anti-Env IgG levels to similar magnitudes as those observed after three intraperitoneal immunizations with Env in Ribi. The augmenting potency of CTA1-DD was similar to that of LTK63 or CpG oligodeoxynucleotides (ODN). However, in contrast to CpG ODN, the effect of CTA1-DD and LTK63 appeared to be independent of MyD88 and toll-like receptor signalling. This is the first demonstration that CTA1-DD augments specific immune responses also in non-human primates, suggesting that this adjuvant could be explored further as a clinically safe mucosal vaccine adjuvant for humoral and cell-mediated immunity against HIV-1 Env.

  9. Chronic activation of the epithelial immune system of the fruit fly's salivary glands has a negative effect on organismal growth and induces a peculiar set of target genes

    Directory of Open Access Journals (Sweden)

    Abdelsadik Ahmed

    2010-04-01

    Full Text Available Abstract Background Epithelial and especially mucosal immunity represents the first line of defence against the plethora of potential pathogens trying to invade via the gastrointestinal tract. The salivary glands of the fruit fly are an indispensable part of the gastrointestinal tract, but their contribution to the mucosal immunity has almost completely been neglected. Our major goal was to elucidate if the fly's salivary glands are able to mount an immune response and what the major characteristics of this immune response are. Results Ectopic activation of the IMD-pathway within the salivary gland cells is able to induce an immune response, indicating that the salivary glands are indeed immune competent. This reaction is characterized by the concurrent expression of numerous antimicrobial peptide genes. In addition, ectopic activation of the salivary gland's immune response induces morphological changes such as dwarfism throughout all developmental stages and a significantly decreased length of the salivary glands themselves. DNA-microarray analyses of the reaction revealed a complex pattern of up- and downregulated genes. Gene ontology analyses of regulated genes revealed a significant increase in genes associated with ribosomal and proteasomal function. On the other hand, genes coding for peptide receptors and some potassium channels are downregulated. In addition, the comparison of the transcriptional events induced following IMD-activation in the trachea and the salivary glands shows also only a small overlap, indicating that the general IMD-activated core transcriptome is rather small and that the tissue specific component of this response is dominating. Among the regulated genes, those that code for signaling associated protease activity are significantly modulated. Conclusions The salivary glands are immune-competent and they contribute to the overall intestinal immune system. Although they produce antimicrobial peptides, their overall

  10. Advances of Immune Checkpoint Inhibitors in Tumor Immunotherapy

    Science.gov (United States)

    Guo, Qiao

    2018-01-01

    Immune checkpoints are cell surface molecules that can fine-tune the immune responses, they are crucial for modulating the duration and amplitude of immune reactions while maintaining self-tolerance in order to minimize autoimmune responses. Numerous studies have demonstrated that tumors cells can directly express immune-checkpoint molecules, or induce many inhibitory molecules expression in the tumor microenvironment to inhibit the anti-tumor immunity. Releasing these brakes has emerged as an exciting strategy to cure cancer. In the past few years, clinical trials with therapeutic antibodies targeting to the checkpoint molecules CTLA-4 and PD-1 have rekindled the hope for cancer immunotherapy. In contrast to the conventional treatment, checkpoint inhibitors induce broad and durable antitumor responses. In the future, treatment may involve combination therapy to target different checkpoint molecules and stages of the adaptive immune responses. In this review, we summarized the recent advances of the study and development of other checkpoint molecules in tumor immunotherapy.

  11. Immune response and biochemistry of calves immunized with rMSP1a ( Anaplasma marginale using carbon nanotubes as carrier molecules

    Directory of Open Access Journals (Sweden)

    Bruna Torres Silvestre

    2018-05-01

    Full Text Available Abstract Vaccination against Anaplasma marginale has been considered an important control strategy for bovine anaplasmosis. Recently, mice immunized with rMSP1 a linked to carbon nanotubes (MWNT showed significant immune responses, generating a new possibility for use of an inactivated vaccine. The objective of this study was to investigate the cellular and humoral responses in calves immunized with MWNT+rMSP1a , associated with inactivated vaccine of A. marginale produced in vitro, and evaluate the toxic effects of the MWNT on renal and hepatic function. rMSP1a was covalently linked to MWNT. Inactivated vaccine (AmUFMG2 was produced by cultivating A. marginale in IDE8 cells. Twenty-four Holstein calves were divided (four groups and immunized subcutaneously with PBS and non-carboxylated MWNT (control, G1, AmUFMG2 (G2, MWNT+rMSP1a (G3, and AmUFMG2 with MWNT+rMSP1a (G4. Blood samples were collected for total leukocyte counts, biochemical profiling and evaluation of the cellular and humoral response. Immunization with MWNT+rMSP1a induced increase in the total number of leukocytes, NK cells, in the lymphocyte populations and higher levels of antibodies compared to calves immunized only with AmUFMG2. Furthermore, MWNT did not induce changes in the biochemical profile. These data indicate that MWNT+rMSP1a were able to induce the immune responses more efficiently than AmUFMG2 alone, without generating toxicity.

  12. Protective immunity induced in mice by F8.1 and F8.2 antigens purified from Schistosoma mansoni eggs

    Directory of Open Access Journals (Sweden)

    Claudia Campra Ferreira

    1998-01-01

    Full Text Available Schistosoma mansoni soluble egg antigens (SEA were fractionated by isoelectric focusing, resulting in 20 components, characterized by pH, absorbance and protein concentration. The higher absorbance fractions were submitted to electrophoresis, and fraction 8 (F8 presented a specific pattern of bands on its isoelectric point. Protein 3 was observed only on F8, and so, it was utilized to rabbit immunization, in order to evaluate its capacity of inducing protective immunity. IgG antibodies from rabbit anti-F8 serum were coupled to Sepharose, and used to obtain the specific antigen by affinity chromatography. This antigen, submitted to electrophoresis, presented two proteic bands (F8.1 and F8.2, which were transferred to nitrocellulose membrane (PVDF and sequenciated. The homology of F8.2 to known proteins was determined using the Basic Local Alignment Search Tool program (BLASTp. Significant homologies were obtained for the rabbit cytosolic Ca2+ uptake inhibitor, and for the bird a1-proteinase inhibitor. Immunization of mice with F8.1 and F8.2, in the presence of Corynebacterium parvum and Al(OH3 as adjuvant, induced a significant protection degree against challenge infection, as observed by the decrease on worm burden recovered from portal system.

  13. The innate and adaptive immune response induced by alveolar macrophages exposed to ambient particulate matter

    Energy Technology Data Exchange (ETDEWEB)

    Miyata, Ryohei; Eeden, Stephan F. van, E-mail: Stephan.vanEeden@hli.ubc.ca

    2011-12-15

    Emerging epidemiological evidence suggests that exposure to particulate matter (PM) air pollution increases the risk of cardiovascular events but the exact mechanism by which PM has adverse effects is still unclear. Alveolar macrophages (AM) play a major role in clearing and processing inhaled PM. This comprehensive review of research findings on immunological interactions between AM and PM provides potential pathophysiological pathways that interconnect PM exposure with adverse cardiovascular effects. Coarse particles (10 {mu}m or less, PM{sub 10}) induce innate immune responses via endotoxin-toll-like receptor (TLR) 4 pathway while fine (2.5 {mu}m or less, PM{sub 2.5}) and ultrafine particles (0.1 {mu}m or less, UFP) induce via reactive oxygen species generation by transition metals and/or polyaromatic hydrocarbons. The innate immune responses are characterized by activation of transcription factors [nuclear factor (NF)-{kappa}B and activator protein-1] and the downstream proinflammatory cytokine [interleukin (IL)-1{beta}, IL-6, and tumor necrosis factor-{alpha}] production. In addition to the conventional opsonin-dependent phagocytosis by AM, PM can also be endocytosed by an opsonin-independent pathway via scavenger receptors. Activation of scavenger receptors negatively regulates the TLR4-NF-{kappa}B pathway. Internalized particles are subsequently subjected to adaptive immunity involving major histocompatibility complex class II (MHC II) expression, recruitment of costimulatory molecules, and the modulation of the T helper (Th) responses. AM show atypical antigen presenting cell maturation in which phagocytic activity decreases while both MHC II and costimulatory molecules remain unaltered. PM drives AM towards a Th1 profile but secondary responses in a Th1- or Th-2 up-regulated milieu drive the response in favor of a Th2 profile.

  14. Tumor-Derived Exosomes and Their Role in Tumor-Induced Immune Suppression

    Directory of Open Access Journals (Sweden)

    Theresa L. Whiteside

    2016-10-01

    Full Text Available Tumor-derived exosomes (TEX are emerging as critical components of an intercellular information network between the tumor and the host. The tumor escapes from the host immune system by using a variety of mechanisms designed to impair or eliminate anti-tumor immunity. TEX carrying a cargo of immunoinhibitory molecules and factors represent one such mechanism. TEX, which are present in all body fluids of cancer patients, deliver negative molecular or genetic signals to immune cells re-programming their functions. Although TEX can also stimulate immune activity, in the microenvironments dominated by the tumor, TEX tend to mediate immune suppression thus promoting tumor progression. The TEX content, in part resembling that of the parent cell, may serve as a source of cancer biomarkers. TEX also interfere with immune therapies. A better understanding of TEX and their contribution to cancer progression and cancer patients’ response to immune therapies represents a challenging new field of investigation.

  15. Innate-Type and Acquired-Type Allergy Regulated by IL-33

    Directory of Open Access Journals (Sweden)

    Tomohiro Yoshimoto

    2014-01-01

    Full Text Available We propose two types of allergic response: IgE-dependent and IgE-independent, and designate these as 'acquired-type allergy' and 'innate-type allergy', respectively. IL-33 stimulates both innate (basophils, mast cells, or group 2 innate lymphoid cells and acquired (Th2 cells allergy-related cells to induce and/or augment Th2 cytokine production, which leads to eosinophilic inflammation in vivo. Thus, IL-33 is an essential regulator for both 'innate-type allergy' and 'acquired-type allergy', and might be an attractive therapeutic target for allergic diseases.

  16. how to evade the immune system?

    Indian Academy of Sciences (India)

    HCV usually induces robust immune responses, but it frequently escapes the immune defense to establish persistent infection. The fact that HCV exists as an evolving quasispecies plays an important role in the selection of escape mutants. Furthermore, several viral proteins interfere with cellular functions, in particular, ...

  17. Immune Evasion, Immunopathology and the Regulation of the Immune System

    Directory of Open Access Journals (Sweden)

    Bruno Faivre

    2013-02-01

    Full Text Available Costs and benefits of the immune response have attracted considerable attention in the last years among evolutionary biologists. Given the cost of parasitism, natural selection should favor individuals with the most effective immune defenses. Nevertheless, there exists huge variation in the expression of immune effectors among individuals. To explain this apparent paradox, it has been suggested that an over-reactive immune system might be too costly, both in terms of metabolic resources and risks of immune-mediated diseases, setting a limit to the investment into immune defenses. Here, we argue that this view neglects one important aspect of the interaction: the role played by evolving pathogens. We suggest that taking into account the co-evolutionary interactions between the host immune system and the parasitic strategies to overcome the immune response might provide a better picture of the selective pressures that shape the evolution of immune functioning. Integrating parasitic strategies of host exploitation can also contribute to understand the seemingly contradictory results that infection can enhance, but also protect from, autoimmune diseases. In the last decades, the incidence of autoimmune disorders has dramatically increased in wealthy countries of the northern hemisphere with a concomitant decrease of most parasitic infections. Experimental work on model organisms has shown that this pattern may be due to the protective role of certain parasites (i.e., helminths that rely on the immunosuppression of hosts for their persistence. Interestingly, although parasite-induced immunosuppression can protect against autoimmunity, it can obviously favor the spread of other infections. Therefore, we need to think about the evolution of the immune system using a multidimensional trade-off involving immunoprotection, immunopathology and the parasitic strategies to escape the immune response.

  18. Ozone-Induced Nasal Type 2 Immunity in Mice Is Dependent on Innate Lymphoid Cells.

    Science.gov (United States)

    Kumagai, Kazuyoshi; Lewandowski, Ryan; Jackson-Humbles, Daven N; Li, Ning; Van Dyken, Steven J; Wagner, James G; Harkema, Jack R

    2016-06-01

    Epidemiological studies suggest that elevated ambient concentrations of ozone are associated with activation of eosinophils in the nasal airways of atopic and nonatopic children. Mice repeatedly exposed to ozone develop eosinophilic rhinitis and type 2 immune responses. In this study, we determined the role of innate lymphoid cells (ILCs) in the pathogenesis of ozone-induced eosinophilic rhinitis by using lymphoid-sufficient C57BL/6 mice, Rag2(-/-) mice that are devoid of T cells and B cells, and Rag2(-/-)Il2rg(-/-) mice that are depleted of all lymphoid cells including ILCs. The animals were exposed to 0 or 0.8 ppm ozone for 9 consecutive weekdays (4 h/d). Mice were killed 24 hours after exposure, and nasal tissues were selected for histopathology and gene expression analysis. ILC-sufficient C57BL/6 and Rag2(-/-) mice exposed to ozone developed marked eosinophilic rhinitis and epithelial remodeling (e.g., epithelial hyperplasia and mucous cell metaplasia). Chitinase-like proteins and alarmins (IL-33, IL-25, and thymic stromal lymphopoietin) were also increased morphometrically in the nasal epithelium of ozone-exposed C57BL/6 and Rag2(-/-) mice. Ozone exposure elicited increased expression of Il4, Il5, Il13, St2, eotaxin, MCP-2, Gob5, Arg1, Fizz1, and Ym2 mRNA in C57BL/6 and Rag2(-/-) mice. In contrast, ozone-exposed ILC-deficient Rag2(-/-)Il2rg(-/-) mice had no nasal lesions or overexpression of Th2- or ILC2-related transcripts. These results indicate that ozone-induced eosinophilic rhinitis, nasal epithelial remodeling, and type 2 immune activation are dependent on ILCs. To the best of our knowledge, this is the first study to demonstrate that ILCs play an important role in the nasal pathology induced by repeated ozone exposure.

  19. Influenza vaccination of cancer patients during PD-1 blockade induces serological protection but may raise the risk for immune-related adverse events.

    Science.gov (United States)

    Läubli, Heinz; Balmelli, Catharina; Kaufmann, Lukas; Stanczak, Michal; Syedbasha, Mohammedyaseen; Vogt, Dominik; Hertig, Astrid; Müller, Beat; Gautschi, Oliver; Stenner, Frank; Zippelius, Alfred; Egli, Adrian; Rothschild, Sacha I

    2018-05-22

    Immune checkpoint inhibiting antibodies were introduced into routine clinical practice for cancer patients. Checkpoint blockade has led to durable remissions in some patients, but may also induce immune-related adverse events (irAEs). Lung cancer patients show an increased risk for complications, when infected with influenza viruses. Therefore, vaccination is recommended. However, the efficacy and safety of influenza vaccination during checkpoint blockade and its influence on irAEs is unclear. Similarly, the influence of vaccinations on T cell-mediated immune reactions in patients during PD-1 blockade remains poorly defined. We vaccinated 23 lung cancer patients and 11 age-matched healthy controls using a trivalent inactivated influenza vaccine to investigate vaccine-induced immunity and safety during checkpoint blockade. We did not observe significant differences between patients and healthy controls in vaccine-induced antibody titers against all three viral antigens. Influenza vaccination resulted in protective titers in more than 60% of patients/participants. In cancer patients, the post-vaccine frequency of irAEs was 52.2% with a median time to occurrence of 3.2 months after vaccination. Six of 23 patients (26.1%) showed severe grade 3/4 irAEs. This frequency of irAEs might be higher than the rate previously published in the literature and the rate observed in a non-study population at our institution (all grades 25.5%, grade 3/4 9.8%). Although this is a non-randomized trial with a limited number of patients, the increased rate of immunological toxicity is concerning. This finding should be studied in a larger patient population.

  20. Immunization with Brugia malayi Myosin as Heterologous DNA Prime Protein Boost Induces Protective Immunity against B. malayi Infection in Mastomys coucha.

    Directory of Open Access Journals (Sweden)

    Jyoti Gupta

    Full Text Available The current control strategies employing chemotherapy with diethylcarbamazine, ivermectin and albendazole have reduced transmission in some filaria-endemic areas, there is growing interest for complementary approaches, such as vaccines especially in light of threat of parasite developing resistance to mainstay drugs. We earlier demonstrated recombinant heavy chain myosin of B. malayi (Bm-Myo as a potent vaccine candidate whose efficacy was enhanced by heterologous DNA prime/protein boost (Myo-pcD+Bm-Myo vaccination in BALB/c mice. BALB/c mouse though does not support the full developmental cycle of B. malayi, however, the degree of protection may be studied in terms of transformation of challenged infective larvae (L3 to next stage (L4 with an ease of delineating the generated immunological response of host. In the current investigation, DNA vaccination with Bm-Myo was therefore undertaken in susceptible rodent host, Mastomys coucha (M. coucha which sustains the challenged L3 and facilitates their further development to sexually mature adult parasites with patent microfilaraemia. Immunization schedule consisted of Myo-pcD and Myo-pcD+Bm-Myo followed by B. malayi L3 challenge and the degree of protection was evaluated by observing microfilaraemia as well as adult worm establishment. Myo-pcD+Bm-Myo immunized animals not only developed 78.5% reduced blood microfilarial density but also decreased adult worm establishment by 75.3%. In addition, 75.4% of the recovered live females revealed sterilization over those of respective control animals. Myo-pcD+Bm-Myo triggered higher production of specific IgG and its isotypes which induced marked cellular adhesion and cytotoxicity (ADCC to microfilariae (mf and L3 in vitro. Both Th1 and Th2 cytokines were significantly up-regulated displaying a mixed immune response conferring considerable protection against B. malayi establishment by engendering a long-lasting effective immune response and therefore emerges

  1. Peptide pool immunization and CD8+ T cell reactivity

    DEFF Research Database (Denmark)

    Rasmussen, Susanne B; Harndahl, Mikkel N; Buus, Anette Stryhn

    2013-01-01

    Mice were immunized twice with a pool of five peptides selected among twenty 8-9-mer peptides for their ability to form stable complexes at 37°C with recombinant H-2K(b) (half-lives 10-15h). Vaccine-induced immunity of splenic CD8(+) T cells was studied in a 24h IFNγ Elispot assay. Surprisingly...... peptides induced normal peptide immunity i.e. the specific T cell reactivity in the Elispot culture was strictly dependent on exposure to the immunizing peptide ex vivo. However, immunization with two of the peptides, a VSV- and a Mycobacterium-derived peptide, resulted in IFNγ spot formation without...... peptide in the Elispot culture. Immunization with a mixture of the VSV-peptide and a "normal" peptide also resulted in IFNγ spot formation without addition of peptide to the assay culture. Peptide-tetramer staining of CD8(+) T cells from mice immunized with a mixture of VSV-peptide and "normal" peptide...

  2. Salecan protected against concanavalin A-induced acute liver injury by modulating T cell immune responses and NMR-based metabolic profiles

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Qi; Xu, Xi, E-mail: xuxi@njust.edu.cn; Yang, Xiao; Weng, Dan; Wang, Junsong; Zhang, Jianfa

    2017-02-15

    Salecan, a water-soluble extracellular β-glucan produced by Agrobacterium sp. ZX09, has been reported to exhibit a wide range of biological effects. The aims of the present study were to investigate the protective effect of salecan against Concanavalin A (ConA)-induced hepatitis, a well-established animal model of immune-mediated liver injury, and to search for possible mechanisms. C57BL/6 mice were pretreated with salecan followed by ConA injection. Salecan treatment significantly reduced ConA-induced acute liver injury, and suppressed the expression and secretion of inflammatory cytokines including interferon (IFN)-γ, interleukin (IL)-6 and IL-1β in ConA-induced liver injury model. The high expression levels of chemokines and adhesion molecules such as MIP-1α, MIP-1β, ICAM-1, MCP-1 and RANTES in the liver induced by ConA were also down-regulated after salecan treatment. Salecan inhibited the infiltration and activation of inflammatory cells, especially T cells, in the liver induced by ConA. Moreover, salecan reversed the metabolic profiles of ConA-treated mice towards the control group by partly recovering the metabolic perturbations induced by ConA. Our results suggest the preventive and therapeutic potential of salecan in immune-mediated hepatitis. - Highlights: • Salecan treatment significantly reduced ConA-induced liver injury. • Salecan suppressed the expression and secretion of inflammatory cytokines. • Salecan decreased the expression of chemokines and adhesion molecules in liver. • Salecan inhibited the infiltration and activation of T cells induced by ConA. • Salecan partly recovered the metabolic perturbations induced by ConA.

  3. Ubiquitin-fusion degradation pathway: A new strategy for inducing CD8 cells specific for mycobacterial HSP65

    International Nuclear Information System (INIS)

    Shen Jianying; Hisaeda, Hajime; Chou Bin; Yu Qingsheng; Tu Liping; Himeno, Kunisuke

    2008-01-01

    The ubiquitin-proteasome system (UPS) plays an indispensable role in inducing MHC class I-restricted CD8 + T cells. In this study, we exploited UPS to induce CD8 + T cells specific for mycobacterial HSP65 (mHSP65), one of the leading vaccine candidates against infection with Mycobacterium tuberculosis. A chimeric DNA termed pU-HSP65 encoding a fusion protein between murine ubiquitin and mHSP65 was constructed, and C57BL/6 (B6) mice were immunized with the DNA using gene gun bombardment. Mice immunized with the chimeric DNA acquired potent resistance against chall