WorldWideScience

Sample records for acquire organic nitrogen

  1. Uptake of organic nitrogen by plants

    Science.gov (United States)

    Torgny Nasholm; Knut Kielland; Ulrika. Ganeteg

    2009-01-01

    Languishing for many years in the shadow of plant inorganic nitrogen (N) nutrition research, studies of organic N uptake have attracted increased attention during the last decade. The capacity of plants to acquire organic N, demonstrated in laboratory and field settings, has thereby been well established. Even so, the ecological significance of organic N uptake for...

  2. Virtual Nitrogen Losses from Organic Food Production

    Science.gov (United States)

    Cattell Noll, L.; Galloway, J. N.; Leach, A. M.; Seufert, V.; Atwell, B.; Shade, J.

    2015-12-01

    Reactive nitrogen (Nr) is necessary for crop and animal production, but when it is lost to the environment, it creates a cascade of detrimental environmental impacts. The nitrogen challenge is to maximize the food production benefits of Nr, while minimizing losses to the environment. The first nitrogen footprint tool was created in 2012 to help consumers learn about the Nr losses to the environment that result from an individual's lifestyle choices. The nitrogen lost during food production was estimated with virtual nitrogen factors (VNFs) that quantify the amount of nitrogen lost to the environment per unit nitrogen consumed. Alternative agricultural systems, such as USDA certified organic farms, utilize practices that diverge from conventional production. In order to evaluate the potential sustainability of these alternative agricultural systems, our team calculated VNFs that reflect organic production. Initial data indicate that VNFs for organic grains and organic starchy roots are comparable to, but slightly higher than conventional (+10% and +20% respectively). In contrast, the VNF for organic vegetables is significantly higher (+90%) and the VNF for organic legumes is significantly lower (-90%). Initial data on organic meat production shows that organic poultry and organic pigmeat are comparable to conventional production (both <5% difference), but that the organic beef VNF is significantly higher (+30%). These data show that in some cases organic and conventional production are comparable in terms of nitrogen efficiency. However, since conventional production relies heavily on the creation of new reactive nitrogen (Haber-Bosch, biological nitrogen fixation) and organic production primarily utilizes already existing reactive nitrogen (manure, crop residue, compost), the data also show that organic production contributes less new reactive nitrogen to the environment than conventional production (approximately 70% less). Therefore, we conclude that on a local

  3. Characterisation and quantification of organic phosphorus and organic nitrogen components in aquatic systems: A Review

    Energy Technology Data Exchange (ETDEWEB)

    Worsfold, Paul J. [School of Earth, Ocean and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth PL48AA (United Kingdom)], E-mail: pworsfold@plymouth.ac.uk; Monbet, Philippe [School of Earth, Ocean and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth PL48AA (United Kingdom); Water Studies Centre, School of Chemistry, Monash University, Clayton 3800, Victoria (Australia); Tappin, Alan D.; Fitzsimons, Mark F.; Stiles, David A. [School of Earth, Ocean and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth PL48AA (United Kingdom); McKelvie, Ian D. [Water Studies Centre, School of Chemistry, Monash University, Clayton 3800, Victoria (Australia)

    2008-08-22

    This review provides a critical assessment of knowledge regarding the determination of organic phosphorus (OP) and organic nitrogen (ON) in aquatic systems, with an emphasis on biogeochemical considerations and analytical challenges. A general background on organic phosphorus and organic nitrogen precedes a discussion of sample collection, extraction, treatment/conditioning and preconcentration of organic phosphorus/nitrogen from sediments, including suspended particulate matter, and waters, including sediment porewaters. This is followed by sections on the determination of organic phosphorus/nitrogen components. Key techniques covered for organic phosphorus components are molecular spectrometry, atomic spectrometry and enzymatic methods. For nitrogen the focus is on the measurement of total organic nitrogen concentrations by carbon hydrogen nitrogen analysis and high temperature combustion, and organic nitrogen components by gas chromatography, high-performance liquid chromatography, gel electrophoresis, mass spectrometry, nuclear magnetic resonance spectrometry, X-ray techniques and enzymatic methods. Finally future trends and needs are discussed and recommendations made.

  4. Carbon and nitrogen isotopic signatures and nitrogen profile to identify adulteration in organic fertilizers.

    Science.gov (United States)

    Verenitch, Sergei; Mazumder, Asit

    2012-08-29

    Recently it has been shown that stable isotopes of nitrogen can be used to discriminate between organic and synthetic fertilizers, but the robustness of the approach is questionable. This work developed a comprehensive method that is far more robust in identifying an adulteration of organic nitrogen fertilizers. Organic fertilizers of various types (manures, composts, blood meal, bone meal, fish meal, products of poultry and plant productions, molasses and seaweed based, and others) available on the North American market were analyzed to reveal the most sensitive criteria as well as their quantitative ranges, which can be used in their authentication. Organic nitrogen fertilizers of known origins with a wide δ(15)N range between -0.55 and 28.85‰ (n = 1258) were characterized for C and N content, δ(13)C, δ(15)N, viscosity, pH, and nitrogen profile (urea, ammonia, organic N, water insoluble N, and NO3). A statistically significant data set of characterized unique organic nitrogen fertilizers (n = 335) of various known origins has been assembled. Deliberately adulterated samples of different types of organic fertilizers mixed with synthetic fertilizers at a wide range of proportions have been used to develop the quantitative critical characteristics of organic fertilizers as the key indicators of their adulteration. Statistical analysis based on the discriminant functions of the quantitative critical characteristics of organic nitrogen fertilizers from 14 different source materials revealed a very high average rate of correct classification. The developed methodology has been successfully used as a source identification tool for numerous commercial nitrogen fertilizers available on the North American market.

  5. Rapid estimation of organic nitrogen in oil shale waste waters

    Energy Technology Data Exchange (ETDEWEB)

    Jones, B.M.; Daughton, C.G.; Harris, G.J.

    1984-04-01

    Many of the characteristics of oil shale process waste waters (e.g., malodors, color, and resistance to biotreatment) are imparted by numerous nitrogenous heterocycles and aromatic amines. For the frequent performance assessment of waste treatment processes designed to remove these nitrogenous organic compounds, a rapid and colligative measurement of organic nitrogen is essential. Quantification of organic nitrogen in biological and agricultural samples is usually accomplished using the time-consuming, wet-chemical Kjeldahl method. For oil shale waste waters, whose primary inorganic nitorgen constituent is amonia, organic Kjeldahl nitrogen (OKN) is determined by first eliminating the endogenous ammonia by distillation and then digesting the sample in boiling H/sub 2/SO/sub 4/. The organic material is oxidized, and most forms of organically bound nitrogen are released as ammonium ion. After the addition of base, the ammonia is separated from the digestate by distillation and quantified by acidimetric titrimetry or colorimetry. The major failings of this method are the loss of volatile species such as aliphatic amines (during predistillation) and the inability to completely recover nitrogen from many nitrogenous heterocycles (during digestion). Within the last decade, a new approach has been developed for the quantification of total nitrogen (TN). The sample is first combusted, a

  6. Rapid estimation of organic nitrogen in oil shale wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Jones, B.M.; Harris, G.J.; Daughton, C.G.

    1984-03-01

    Many of the characteristics of oil shale process wastewaters (e.g., malodors, color, and resistance to biotreatment) are imparted by numerous nitrogen heterocycles and aromatic amines. For the frequent performance assessment of waste treatment procsses designed to remove these nitrogenous organic compounds, a rapid and colligative measurement of organic nitrogen is essential.

  7. Effect of organic manure on nitrogen mineralization, nitrogen accumulation, nitrogen use efficiency and apparent nitrogen recovery of cauliflower (Braccica oleracea L., var. Botrytis)

    NARCIS (Netherlands)

    Beah, A.A.; Norman, P.E.; Scholberg, J.M.S.; Lantinga, E.A.; Conteh, A.R.

    2015-01-01

    Aims: The main aim of the study was to assess the effects of organic manure on nitrogen mineralization, uptake, use and recovery of cauliflower.
    Methodology: Nitrogen is one of the major yield limiting nutrients in cauliflower production. However, organic manure is applied to supplement soil

  8. Improvements to the Characterization of Organic Nitrogen Chemistry

    Science.gov (United States)

    Excess atmospheric nitrogen deposition can cause significant harmful effects to ecosystems. Organic nitrogen deposition can be an important contributor to the total nitrogen budget, contributing 10-30%, however there are large uncertainties in the chemistry and deposition of thes...

  9. Ultraviolet-B Radiation and Nitrogen Affect Nutrient Concentrations and the Amount of Nutrients Acquired by Above-Ground Organs of Maize

    OpenAIRE

    Correia, Carlos M.; Coutinho, João F.; Bacelar, Eunice A.; Gonçalves, Berta M.; Björn, Lars Olof; Moutinho Pereira, José

    2012-01-01

    UV-B radiation effects on nutrient concentrations in above-ground organs of maize were investigated at silking and maturity at different levels of applied nitrogen under field conditions. The experiment simulated a 20% stratospheric ozone depletion over Portugal. At silking, UV-B increased N, K, Ca, and Zn concentrations, whereas at maturity Ca, Mg, Zn, and Cu increased and N, P and Mn decreased in some plant organs. Generally, at maturity, N, Ca, Cu, and Mn were lower, while P, K, and Zn con...

  10. Identifying organic nitrogen compounds in Rocky Mountain National Park aerosols

    Science.gov (United States)

    Beem, K. B.; Desyaterik, Y.; Ozel, M. Z.; Hamilton, J. F.; Collett, J. L.

    2010-12-01

    Nitrogen deposition is an important issue in Rocky Mountain National Park (RMNP). While inorganic nitrogen contributions to the ecosystems in this area have been studied, the sources of organic nitrogen are still largely unknown. To better understand the potential sources of organic nitrogen, filter samples were collected and analyzed for organic nitrogen species. Samples were collected in RMNP using a Thermo Fisher Scientific TSP (total suspended particulate) high-volume sampler with a PM2.5 impactor plate from April - November of 2008. The samples presented the opportunity to compare two different methods for identification of individual organic nitrogen species. The first type of analysis was performed with a comprehensive two dimensional gas chromatography (GCxGC) system using a nitrogen chemiluminescence detector (NCD). The filter samples were spiked with propanil in dichloromethane to use as an internal standard and were then extracted in water followed by solid phase extraction. The GCxGC system was comprised of a volatility based separation (DB5 column) followed by a polarity based separation (RXI-17 column). A NCD was used to specifically detect nitrogen compounds and remove the complex background matrix. Individual standards were used to identify peaks by comparing retention times. This method has the added benefit of an equimolar response for nitrogen so only a single calibration is needed for all species. In the second analysis, a portion of the same filter samples were extracted in DI water and analyzed with liquid chromatography coupled with mass spectroscopy (LC/MS). The separation was performed using a C18 column and a water-methanol gradient elution. Electrospray ionization into a time of flight mass spectrometer was used for detection. High accuracy mass measurement allowed unambiguous assignments of elemental composition of resulting ions. Positive and negative polarities were used since amines tend to show up in positive mode and nitrates in

  11. Ultraviolet-B radiation and nitrogen affect nutrient concentrations and the amount of nutrients acquired by above-ground organs of maize.

    Science.gov (United States)

    Correia, Carlos M; Coutinho, João F; Bacelar, Eunice A; Gonçalves, Berta M; Björn, Lars Olof; Moutinho Pereira, José

    2012-01-01

    UV-B radiation effects on nutrient concentrations in above-ground organs of maize were investigated at silking and maturity at different levels of applied nitrogen under field conditions. The experiment simulated a 20% stratospheric ozone depletion over Portugal. At silking, UV-B increased N, K, Ca, and Zn concentrations, whereas at maturity Ca, Mg, Zn, and Cu increased and N, P and Mn decreased in some plant organs. Generally, at maturity, N, Ca, Cu, and Mn were lower, while P, K, and Zn concentrations in stems and nitrogen-use efficiency (NUE) were higher in N-starved plants. UV-B and N effects on shoot dry biomass were more pronounced than on nutrient concentrations. Nutrient uptake decreased under high UV-B and increased with increasing N application, mainly at maturity harvest. Significant interactions UV-B x N were observed for NUE and for concentration and mass of some elements. For instance, under enhanced UV-B, N, Cu, Zn, and Mn concentrations decreased in leaves, except on N-stressed plants, whereas they were less affected by N nutrition. In order to minimize nutritional, economical, and environmental negative consequences, fertiliser recommendations based on element concentration or yield goals may need to be adjusted.

  12. Ultraviolet-B Radiation and Nitrogen Affect Nutrient Concentrations and the Amount of Nutrients Acquired by Above-Ground Organs of Maize

    Directory of Open Access Journals (Sweden)

    Carlos M. Correia

    2012-01-01

    Full Text Available UV-B radiation effects on nutrient concentrations in above-ground organs of maize were investigated at silking and maturity at different levels of applied nitrogen under field conditions. The experiment simulated a 20% stratospheric ozone depletion over Portugal. At silking, UV-B increased N, K, Ca, and Zn concentrations, whereas at maturity Ca, Mg, Zn, and Cu increased and N, P and Mn decreased in some plant organs. Generally, at maturity, N, Ca, Cu, and Mn were lower, while P, K, and Zn concentrations in stems and nitrogen-use efficiency (NUE were higher in N-starved plants. UV-B and N effects on shoot dry biomass were more pronounced than on nutrient concentrations. Nutrient uptake decreased under high UV-B and increased with increasing N application, mainly at maturity harvest. Significant interactions UV-B x N were observed for NUE and for concentration and mass of some elements. For instance, under enhanced UV-B, N, Cu, Zn, and Mn concentrations decreased in leaves, except on N-stressed plants, whereas they were less affected by N nutrition. In order to minimize nutritional, economical, and environmental negative consequences, fertiliser recommendations based on element concentration or yield goals may need to be adjusted.

  13. Organic nitrogen storage in mineral soil: Implications for policy and management

    Energy Technology Data Exchange (ETDEWEB)

    Bingham, Andrew H., E-mail: drew_bingham@nps.gov [Air Resources Division, National Park Service, P.O. Box 25287, Denver, CO 80225 (United States); Cotrufo, M. Francesca [Department of Soil and Crop Sciences and Natural Resources Ecology Laboratory, Colorado State University, 200 West Lake Street, Fort Collins, CO 80523 (United States)

    2016-05-01

    Nitrogen is one of the most important ecosystem nutrients and often its availability limits net primary production as well as stabilization of soil organic matter. The long-term storage of nitrogen-containing organic matter in soils was classically attributed to chemical complexity of plant and microbial residues that retarded microbial degradation. Recent advances have revised this framework, with the understanding that persistent soil organic matter consists largely of chemically labile, microbially processed organic compounds. Chemical bonding to minerals and physical protection in aggregates are more important to long-term (i.e., centuries to millennia) preservation of these organic compounds that contain the bulk of soil nitrogen rather than molecular complexity, with the exception of nitrogen in pyrogenic organic matter. This review examines for the first time the factors and mechanisms at each stage of movement into long-term storage that influence the sequestration of organic nitrogen in the mineral soil of natural temperate ecosystems. Because the factors which govern persistence are different under this newly accepted paradigm we examine the policy and management implications that are altered, such as critical load considerations, nitrogen saturation and mitigation consequences. Finally, it emphasizes how essential it is for this important but underappreciated pool to be better quantified and incorporated into policy and management decisions, especially given the lack of evidence for many soils having a finite capacity to sequester nitrogen. - Highlights: • We review the current framework for long-term nitrogen stabilization in soils. • We highlight the most important factors according to this framework. • We discuss how these factors may influence management and policy decisions.

  14. Organic nitrogen components in soils from southeast China*

    Science.gov (United States)

    Chen, Xian-you; Wu, Liang-huan; Cao, Xiao-chuang; Zhu, Yuan-hong

    2013-01-01

    Objective: To investigate the amounts of extractable organic nitrogen (EON), and the relationships between EON and total extractable nitrogen (TEN), especially the amino acids (AAs) adsorbed by soils, and a series of other hydrolyzed soil nitrogen indices in typical land use soil types from southeast China. Under traditional agricultural planting conditions, the functions of EON, especially AAs in the rhizosphere and in bulk soil zones were also investigated. Methods: Pot experiments were conducted using plants of pakchoi (Brassica chinensis L.) and rice (Oryza sativa L.). In the rhizosphere and bulk soil zone studies, organic nitrogen components were extracted with either distilled water, 0.5 mol/L K2SO4 or acid hydrolysis. Results: K2SO4-EON constituted more than 30% of TEN pools. K2SO4-extractable AAs accounted for 25% of EON pools and nearly 10% of TEN pools in rhizosphere soils. Overall, both K2SO4-EON and extractable AAs contents had positive correlations with TEN pools. Conclusions: EON represented a major component of TEN pools in garden and paddy soils under traditional planting conditions. Although only a small proportion of the EON was present in the form of water-extractable and K2SO4-extractable AAs, the release of AAs from soil exchangeable sites might be an important source of organic nitrogen (N) for plant growth. Our findings suggest that the content of most organic forms of N was significantly greater in rhizosphere than in bulk soil zone samples. However, it was also apparent that the TEN pool content was lower in rhizosphere than in bulk soil samples without added N. PMID:23549843

  15. Organic carbon, nitrogen and phosphorus contents of some tea soils

    International Nuclear Information System (INIS)

    Ahmed, M.S.; Zamir, M.R.; Sanauallah, A.F.M.

    2005-01-01

    Soil samples were collected from Rungicherra Tea-Estate of Moulvibazar district, Bangladesh. Organic carbon, organic matter, total nitrogen and available phosphorus content of the collected soil of different topographic positions have been determined. The experimental data have been analyzed statistically and plotted against topography and soil depth. Organic carbon and organic matter content varied from 0.79 to 1.24% and 1.37 to 2.14%. respectively. Total nitrogen and available phosphorus content of these soils varied respectively from 0.095 to 0.13% and 2.31 to 4.02 ppm. (author)

  16. Signatures of nitrogen stable isotope and determination of organic food authentication

    International Nuclear Information System (INIS)

    Yuan Yuwei; Zhang Zhiheng; Yang Guiling; Wang Qiang

    2009-01-01

    Chemical fertilizers were not permitted to be applied in organic agricultural production, so fertilizer as one of agricultural inputs is an important regulatory aspect in the organic food accreditation. Natural stable isotope abundances δ 15 N from different nitrogenous fertilizers are different, the same as in the agricultural products. Natural abundances δ 15 N in the agricultural products using organic fertilizer is higher than those in the products without using any fertilizer, while it is the lowest in the products using chemical nitrogenous fertilizer. Natural abundances δ 15 N are also affected by the ways of fertilizer treatment, the types of the crops and the growth stages as well as the different parts of crops. Generally, natural abundances of δ 15 N are preferred to trace nitrogenous fertilizer for the vegetables with shorter growing period, but not for the crops with longer growing period or nitrogen fixation. The techniques to trace the nitrogen abundances of δ 15 N in the crops play a positive role, which is useful for the determination of organic food authentication, perfecting the system of quality and supervision and protecting public health, therefore it has a theoretical and applied value. (authors)

  17. Improvements to the treatment of organic nitrogen chemistry & deposition in CMAQ

    Science.gov (United States)

    Excess atmospheric nitrogen deposition can cause significant harmful effects to ecosystems. Organic nitrogen deposition can be an important contributor to the total nitrogen budget, contributing 10-30%, however there are large uncertainties in the chemistry and deposition of thes...

  18. The effect of hydraulic lift on organic matter decomposition, soil nitrogen cycling, and nitrogen acquisition by a grass species.

    Science.gov (United States)

    Armas, Cristina; Kim, John H; Bleby, Timothy M; Jackson, Robert B

    2012-01-01

    Hydraulic lift (HL) is the passive movement of water through plant roots, driven by gradients in water potential. The greater soil-water availability resulting from HL may in principle lead to higher plant nutrient uptake, but the evidence for this hypothesis is not universally supported by current experiments. We grew a grass species common in North America in two-layer pots with three treatments: (1) the lower layer watered, the upper one unwatered (HL), (2) both layers watered (W), and (3) the lower layer watered, the upper one unwatered, but with continuous light 24 h a day to limit HL (no-HL). We inserted ingrowth cores filled with enriched-nitrogen organic matter ((15)N-OM) in the upper layer and tested whether decomposition, mineralization and uptake of (15)N were higher in plants performing HL than in plants without HL. Soils in the upper layer were significantly wetter in the HL treatment than in the no-HL treatment. Decomposition rates were similar in the W and HL treatments and lower in no-HL. On average, the concentration of NH(4)(+)-N in ingrowth cores was highest in the W treatment, and NO(3)(-)-N concentrations were highest in the no-HL treatment, with HL having intermediate values for both, suggesting differential mineralization of organic N among treatments. Aboveground biomass, leaf (15)N contents and the (15)N uptake in aboveground tissues were higher in W and HL than in no-HL, indicating higher nutrient uptake and improved N status of plants performing HL. However, there were no differences in total root nitrogen content or (15)N uptake by roots, indicating that HL affected plant allocation of acquired N to photosynthetic tissues. Our evidence for the role of HL in organic matter decomposition and nutrient cycling suggests that HL could have positive effects on plant nutrient dynamics and nutrient turnover.

  19. [Spatial characteristics of soil organic carbon and nitrogen storages in Songnen Plain maize belt].

    Science.gov (United States)

    Zhang, Chun-Hua; Wang, Zong-Ming; Ren, Chun-Ying; Song, Kai-Shan; Zhang, Bai; Liu, Dian-Wei

    2010-03-01

    By using the data of 382 typical soil profiles from the second soil survey at national and county levels, and in combining with 1:500000 digital soil maps, a spatial database of soil profiles was established. Based on this, the one meter depth soil organic carbon and nitrogen storage in Songnen Plain maize belt of China was estimated, with the spatial characteristics of the soil organic carbon and nitrogen densities as well as the relationships between the soil organic carbon and nitrogen densities and the soil types and land use types analyzed. The soil organic carbon and nitrogen storage in the maize belt was (163.12 +/- 26.48) Tg and (9.53 +/- 1.75) Tg, respectively, mainly concentrated in meadow soil, chernozem, and black soil. The soil organic carbon and nitrogen densities were 5.51-25.25 and 0.37-0.80 kg x m(-2), respectively, and the C/N ratio was about 7.90 -12.67. The eastern and northern parts of the belt had much higher carbon and nitrogen densities than the other parts of the belt, and upland soils had the highest organic carbon density [(19.07 +/- 2.44) kg x m(-2)], forest soils had the highest nitrogen density [(0.82 +/- 0.25) kg x m(-2)], while lowland soils had the lower organic carbon and nitrogen densities.

  20. Nitrogen cycling in organic farming systems with rotational grass-clover and arable crops

    DEFF Research Database (Denmark)

    Berntsen, Jørgen; Grant, Ruth; Olesen, Jørgen E.

    2006-01-01

    Organic farming is considered an effective means of reducing nitrogen losses compared with more intensive conventional farming systems. However, under certain conditions, organic farming may also be susceptible to large nitrogen (N) losses. This i especially the case for organic .....

  1. Atmospheric nitrogen deposition: Revisiting the question of the importance of the organic component

    International Nuclear Information System (INIS)

    Cornell, Sarah E.

    2011-01-01

    The organic component of atmospheric reactive nitrogen plays a role in biogeochemical cycles, climate and ecosystems. Although its deposition has long been known to be quantitatively significant, it is not routinely assessed in deposition studies and monitoring programmes. Excluding this fraction, typically 25-35%, introduces significant uncertainty in the determination of nitrogen deposition, with implications for the critical loads approach. The last decade of rainwater studies substantially expands the worldwide dataset, giving enough global coverage for specific hypotheses to be considered about the distribution, composition, sources and effects of organic-nitrogen deposition. This data collation and meta-analysis highlights knowledge gaps, suggesting where data-gathering efforts and process studies should be focused. New analytical techniques allow long-standing conjectures about the nature and sources of organic N to be investigated, with tantalising indications of the interplay between natural and anthropogenic sources, and between the nitrogen and carbon cycles. - Highlights: → Organic-nitrogen deposition is globally ubiquitous. → Geographic patterns can now be seen in the near-global dataset. → Organic N can be formed through interactions of biogenic and anthropogenic compounds. → Neglecting organic N in deposition assessments increases critical loads uncertainty - Routinely including the organic component of atmospheric deposition (known to be around 25-35% worldwide) would make the understanding and prediction of nitrogen biogeochemistry more robust. This paper makes a preliminary global synthesis based on literature reports.

  2. Organic carbon, nitrogen and phosphorus contents of some soils of kaliti tea-estate, Bangladesh

    International Nuclear Information System (INIS)

    Ahmed, M. S.; Shahin, M. M. H.; Sanaullah, A. F. M.

    2005-01-01

    Some soil samples were collected from Kaliti Tea-Estate of Moulvibazar district, Bangladesh. Total nitrogen, organic carbon, organic matter, carbon-nitrogen ratio and available phosphorus content of the collected soil samples of different depths and of different topographic positions have been determined. Total nitrogen was found 0.07 to 0.12 % organic carbon and organic matter content found to vary from 0.79 to 1.25 and 1.36 to 2.15 % respectively. Carbon-nitrogen ratio of these soils varied from 9.84 to 10.69, while available phosphorus content varied from 2.11 to 4.13 ppm. (author)

  3. Release of organic nitrogen compounds from Kerogen via catalytic hydropyrolysis

    Directory of Open Access Journals (Sweden)

    Bennett B

    2000-12-01

    Full Text Available High hydrogen pressure pyrolysis (hydropyrolysis was performed on samples of solvent extracted Kimmeridge Clay Formation source rock with a maturity equivalent to ca. 0.35% vitrinite reflectance. We describe the types and distributions of organic nitrogen compounds in the pyrolysis products (hydropyrolysates using GC-MS. Compounds identified included alkyl-substituted indoles, carbazoles, benzocarbazoles, quinolines and benzoquinolines. The distributions of the isomers of methylcarbazoles, C2-alkylcarbazoles and benzocarbazoles in the hydropyrolysates were compared to a typical North Sea oil. The hydropyrolysates compared to the North Sea oil, showed increased contributions from alkylcarbazole isomers where the nitrogen group is "exposed" (no alkyl substituents adjacent to the nitrogen functionality and appreciable levels of benzo[b]carbazole relative to benzo[a]- and benzo[c]carbazoles. Hydropyrolysis is found to be an ideal technique for liberating appreciable quantities of heterocyclic organic nitrogen compounds from geomacromolecules. The products released from the immature Kimmeridge Clay are thought to represent a potential source of nitrogen compounds in the bound phase (kerogen able to contribute to the free bitumen phase during catagenesis.

  4. [Studies on nitrogen, phosphorus and organic matter in ponds around Chaohu Lake].

    Science.gov (United States)

    Sun, Qing-ye; Ma, Xiu-ling; Yang, Gui-de; Chen, Zheng; Wu, Hong-lin; Xuan, Huai-xiang

    2010-07-01

    There are a lot of ponds around Chaohu Lake. According to location and runoff supply of ponds, the ponds are divided into three types: ponds inner vellage (PIV), ponds adjacent vellage (PAV) and ponds outer vellage (POV). The samples of water and sediment were collected from 136 ponds around Chaohu Lake and the contents of nitrogen, phosphorus and organic matter in water and sediments were analyzed in this study. The results showed that mean contents of total nitrogen (TN), NH4+ -N, NO3- -N, NO2- -N, total phosphorus (TP), soluble PO4(3-) -P and COD were 2.53, 0.65, 0.18, 0.02, 0.97, 0.38 and 51.58 mg x L(-1) in pond water, respectively; and mean contents of TN, NH4+ -N, NO3- -N, NO2- -N, TP, inorganic phosphorus (IP), organic phosphorus (OP) and loss of ignition (LOI) in pond sediment were 1575.36, 35.73, 13.30, 2.88, 933.19, 490.14, 414.75 mg x kg(-1) and 5.44%, respectively. The ponds of more than 90% presented eutrophication in the contents of total nitrogen and phosphorus in water. The contents of TN and NH4+ -N in water and sediment of PIV were significantly higher than that of POV. And the contents of inorganic nitrogen in pond water and sediment displayed a following order: NH4+ -N > NO3- -N > NO2- -N. Data analysis indicated that there was a significantly positive correlation between organic matter and total nitrogen and phosphorus in water and sediment. The nitrogen, phosphorus and organic matter in ponds mainly sourced farmlands and village land surface. The contents of nitrogen, phosphorus and organic matter in ponds were affected by location and runoff supply of ponds. By retaining nitrogen, phosphorus and organic matter in runoff, the ponds can effectively decrease nutrient content into Chaohu Lake.

  5. Improvements to the characterization of organic nitrogen chemistry and deposition in CMAQ

    Science.gov (United States)

    Excess atmospheric nitrogen deposition can cause significant harmful effects to ecosystems. Organic nitrogen deposition can be an important contributor to the total nitrogen budget, contributing 10-30%, however there are large uncertainties in the chemistry and deposition of thes...

  6. Volatile organic compounds and oxides of nitrogen. Further emission reductions

    Energy Technology Data Exchange (ETDEWEB)

    Froste, H [comp.

    1997-12-31

    This report presents the current status in relation to achievement of the Swedish Environmental target set by Parliament to reduce emission of volatile organic compounds by 50 per cent between 1988 and 2000. It also instructed the Agency to formulate proposed measures to achieve a 50 per cent reduction of emission of nitrogen oxides between 1985 and 2005. The report presents an overall account of emission trends for volatile organic compounds (from all sectors) and nitrogen oxides (from the industry sector) and steps proposed to achieve further emission reductions. 43 refs

  7. Volatile organic compounds and oxides of nitrogen. Further emission reductions

    Energy Technology Data Exchange (ETDEWEB)

    Froste, H. [comp.

    1996-12-31

    This report presents the current status in relation to achievement of the Swedish Environmental target set by Parliament to reduce emission of volatile organic compounds by 50 per cent between 1988 and 2000. It also instructed the Agency to formulate proposed measures to achieve a 50 per cent reduction of emission of nitrogen oxides between 1985 and 2005. The report presents an overall account of emission trends for volatile organic compounds (from all sectors) and nitrogen oxides (from the industry sector) and steps proposed to achieve further emission reductions. 43 refs

  8. Variation pattern of particulate organic carbon and nitrogen in oceans and inland waters

    Science.gov (United States)

    Huang, Changchun; Jiang, Quanliang; Yao, Ling; Yang, Hao; Lin, Chen; Huang, Tao; Zhu, A.-Xing; Zhang, Yimin

    2018-03-01

    We examined the relationship between, and variations in, particulate organic carbon (POC) and particulate organic nitrogen (PON) based on previously acquired ocean and inland water data. The latitudinal dependency of POC / PON is significant between 20 and 90° N but weak in low-latitude areas and in the Southern Hemisphere. The mean values of POC / PON in the Southern Hemisphere and Northern Hemisphere were 7.40 ± 3.83 and 7.80 ± 3.92, respectively. High values of POC / PON appeared between 80-90 (12.2 ± 7.5) and 70-80° N (9.4 ± 6.4), while relatively low POC / PON was found from 20 (6.6 ± 2.8) to 40° N (6.7 ± 2.7). The latitudinal variation of POC / PON in the Northern Hemisphere is much stronger than in the Southern Hemisphere due to the influence of more terrestrial organic matter. Higher POC and PON could be expected in coastal waters. POC / PON growth ranged from 6.89 ± 2.38 to 7.59 ± 4.22 in the Northern Hemisphere, with an increasing rate of 0.0024 km from the coastal to open ocean. Variations of POC / PON in lake water also showed a similar latitude-variation tendency of POC / PON with ocean water but were significantly regulated by the lakes' morphology, trophic state and climate. Small lakes and high-latitude lakes prefer relatively high POC / PON, and large lakes and low-latitude lakes tend to prefer low POC / PON. The coupling relationship between POC and PON in oceans is much stronger than in inland waters. Variations in POC, PON and POC / PON in inland waters should receive more attention due to the implications of these values for the global carbon and nitrogen cycles and the indeterminacy of the relationship between POC and PON.

  9. Dissolved organic nitrogen recalcitrance and bioavailable nitrogen quantification for effluents from advanced nitrogen removal wastewater treatment facilities

    International Nuclear Information System (INIS)

    Fan, Lu; Brett, Michael T.; Jiang, Wenju; Li, Bo

    2017-01-01

    The objective of this study was to determine the composition of nitrogen (N) in the effluents of advanced N removal (ANR) wastewater treatment plants (WWTPs). This study also tested two different experimental protocols for determining dissolved N recalcitrance. An analysis of 15 effluent samples from five WWTPs, showed effluent concentrations and especially effluent composition varied greatly from one system to the other, with total nitrogen (TN) ranging between 1.05 and 8.10 mg L −1 . Nitrate (NO 3 − ) accounted for between 38 ± 32% of TN, and ammonium accounted for a further 29 ± 28%. All of these samples were dominated by dissolved inorganic nitrogen (DIN; NO 3 −  + NH 4 + ), and uptake experiments indicated the DIN fraction was as expected highly bioavailable. Dissolved organic N (DON) accounted for 20 ± 11% for the total dissolved N in these effluents, and uptake experiments indicated the bioavailability of this fraction varied between 27 ± 26% depending on the WWTP assessed. These results indicate near complete DIN removal should be the primary goal of ANR treatment systems. The comparison of bioavailable nitrogen (BAN) quantification protocols showed that the dissolved nitrogen uptake bioassay approach was clearly a more reliable way to determine BAN concentrations compared to the conventional cell yield protocol. Moreover, because the nitrogen uptake experiment was much more sensitive, this protocol made it easier to detect extrinsic factors (such as biological contamination or toxicity) that could affect the accuracy of these bioassays. Based on these results, we recommend the nitrogen uptake bioassay using filtered and autoclaved samples to quantify BAN concentrations. However, for effluent samples indicating toxicity, algal bioassays will not accurately quantify BAN. - Highlights: • DIN was the dominated N pool for most of the tested effluent samples. • DON bioavailability considerably varied depending on the WWTP assessed.

  10. Sources of organic nitrogen at the serpentinite-hosted Lost City hydrothermal field.

    Science.gov (United States)

    Lang, S Q; Früh-Green, G L; Bernasconi, S M; Butterfield, D A

    2013-03-01

    The reaction of ultramafic rocks with water during serpentinization at moderate temperatures results in alkaline fluids with high concentrations of reduced chemical compounds such as hydrogen and methane. Such environments provide unique habitats for microbial communities capable of utilizing these reduced compounds in present-day and, possibly, early Earth environments. However, these systems present challenges to microbial communities as well, particularly due to high fluid pH and possibly the availability of essential nutrients such as nitrogen. Here we investigate the source and cycling of organic nitrogen at an oceanic serpentinizing environment, the Lost City hydrothermal field (30°N, Mid-Atlantic Ridge). Total hydrolizable amino acid (THAA) concentrations in the fluids range from 736 to 2300 nm and constitute a large fraction of the dissolved organic carbon (2.5-15.1%). The amino acid distributions, and the relative concentrations of these compounds across the hydrothermal field, indicate they most likely derived from chemolithoautotrophic production. Previous studies have identified the presence of numerous nitrogen fixation genes in the fluids and the chimneys. Organic nitrogen in actively venting chimneys has δ(15) N values as low as 0.1‰ which is compatible with biological nitrogen fixation. Total hydrolizable amino acids in the chimneys are enriched in (13) C by 2-7‰ compared to bulk organic matter. The distribution and absolute δ(13) C(THAA) values are compatible with a chemolithoautotrophic source, an attribution also supported by molar organic C/N ratios in most active chimneys (4.1-5.5) which are similar to those expected for microbial communities. In total, these data indicate nitrogen is readily available to microbial communities at Lost City. © 2013 Blackwell Publishing Ltd.

  11. [Relationship between Fe, Al oxides and stable organic carbon, nitrogen in the yellow-brown soils].

    Science.gov (United States)

    Heng, Li-Sha; Wang, Dai-Zhang; Jiang, Xin; Rao, Wei; Zhang, Wen-Hao; Guo, Chun-Yan; Li, Teng

    2010-11-01

    The stable organic carbon and nitrogen of the different particles were gained by oxidation of 6% NaOCl in the yellow-brown soils. The relationships between the contents of selective extractable Fe/Al and the stable organic carbon/nitrogen were investigated. It shown that amounts of dithionite-citrate-(Fe(d)) and oxalate-(Fe(o)) and pyrophosphate extractable (Fe(p)) were 6-60.8 g x kg(-1) and 0.13-4.8 g x kg(-1) and 0.03-0.47 g x kg(-1) in 2-250 microm particles, respectively; 43.1-170 g x kg(-1) and 5.9-14.0 g x kg(-1) and 0.28-0.78 g x kg(-1) in soils than in arid yellow-brown soils, and that of selective extractable Al are lower in the former than in the latter. Amounts of the stable organic carbon and nitrogen, higher in paddy yellow-brown soils than in arid yellow-brown soils, were 0.93-6.0 g x kg(-1) and 0.05-0.36 g x kg(-1) in 2-250 microm particles, respectively; 6.05-19.3 g x kg(-1) and 0.61-2.1 g x kg(-1) in stabilization index (SI(C) and SI(N)) of the organic carbon and nitrogen were 14.3-50.0 and 11.9-55.6 in 2-250 microm particles, respectively; 53.72-88.80 and 40.64-70.0 in soils than in paddy yellow-brown soils. The organic carbon and nitrogen are advantageously conserved in paddy yellow-brown soil. An extremely significant positive correlation of the stable organic carbon and nitrogen with selective extractable Fe/Al is observed. The most amounts between the stable organic carbon and nitrogen and selective extractable Fe/Al appear in clay particles, namely the clay particles could protect the soil organic carbon and nitrogen.

  12. Leaching of dissolved organic and inorganic nitrogen from legume-based grasslands

    DEFF Research Database (Denmark)

    Kusliene, Gedrime; Eriksen, Jørgen; Rasmussen, Jim

    2015-01-01

    Leaching of dissolved inorganic nitrogen (DIN) and dissolved organic nitrogen (DON) is a considerable loss pathway in grassland soils. We investigated the white clover (Trifolium repens) contribution to N transport and temporal N dynamics under a pure stand of white clover and white clover...

  13. Dissolved organic nitrogen recalcitrance and bioavailable nitrogen quantification for effluents from advanced nitrogen removal wastewater treatment facilities.

    Science.gov (United States)

    Fan, Lu; Brett, Michael T; Jiang, Wenju; Li, Bo

    2017-10-01

    The objective of this study was to determine the composition of nitrogen (N) in the effluents of advanced N removal (ANR) wastewater treatment plants (WWTPs). This study also tested two different experimental protocols for determining dissolved N recalcitrance. An analysis of 15 effluent samples from five WWTPs, showed effluent concentrations and especially effluent composition varied greatly from one system to the other, with total nitrogen (TN) ranging between 1.05 and 8.10 mg L -1 . Nitrate (NO 3 - ) accounted for between 38 ± 32% of TN, and ammonium accounted for a further 29 ± 28%. All of these samples were dominated by dissolved inorganic nitrogen (DIN; NO 3 -  + NH 4 + ), and uptake experiments indicated the DIN fraction was as expected highly bioavailable. Dissolved organic N (DON) accounted for 20 ± 11% for the total dissolved N in these effluents, and uptake experiments indicated the bioavailability of this fraction varied between 27 ± 26% depending on the WWTP assessed. These results indicate near complete DIN removal should be the primary goal of ANR treatment systems. The comparison of bioavailable nitrogen (BAN) quantification protocols showed that the dissolved nitrogen uptake bioassay approach was clearly a more reliable way to determine BAN concentrations compared to the conventional cell yield protocol. Moreover, because the nitrogen uptake experiment was much more sensitive, this protocol made it easier to detect extrinsic factors (such as biological contamination or toxicity) that could affect the accuracy of these bioassays. Based on these results, we recommend the nitrogen uptake bioassay using filtered and autoclaved samples to quantify BAN concentrations. However, for effluent samples indicating toxicity, algal bioassays will not accurately quantify BAN. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Organic Nitrogen in Atmospheric Drops and Particles: Concentrations, (Limited) Speciation, and Chemical Transformations

    Science.gov (United States)

    Anastasio, C.; Zhang, Q.

    2003-12-01

    While quite a bit is known of the concentrations, speciation, and chemistry of inorganic forms of nitrogen in the atmosphere, the same cannot be said for organic forms. Despite this, there is growing evidence that organic N (ON) is ubiquitous in the atmosphere, especially in atmospheric condensed phases such as fog/cloud drops and aerosol particles. Although the major compounds that make up organic N are generally unknown, as are the sources of these compounds, it is clear that there are significant fluxes of ON between the atmosphere and ecosystems. It also appears that organic N can have significant effects in both spheres. The goal of our recent work in this area has been to better describe the atmospheric component of the biogeochemistry of organic nitrogen. Based on particle, gas, and fogwater samples from Northern California we have made three major findings: 1) Organic N represents a significant component, approximately 20%, of the total atmospheric N loading in these samples. This is broadly consistent with studies from other locations. 2) Amino compounds, primarily as combined amino acids, account for approximately 20% of the measured ON in our condensed phase samples. Given the properties of amino acids, these compounds could significantly affect the chemical and physical properties of atmospheric particles. 3) Organic nitrogen in atmospheric particles and drops is transformed to inorganic forms - primarily ammonium, nitrate, and nitrogen oxides (NOx) - during exposure to sunlight and/or ozone. These chemical reactions likely increase the bioavailability of the condensed phase nitrogen pool and enhance its biological effects after deposition to ecosystems.

  15. Nitrogen-rich higher-molecular soil organic compounds patterned by lignin degradation products: Considerations on the nature of soil organic nitrogen

    Science.gov (United States)

    Liebner, Falk; Bertoli, Luca; Pour, Georg; Klinger, Karl; Ragab, Tamer; Rosenau, Thomas

    2016-04-01

    The pathways leading to accumulation of covalently bonded nitrogen in higher-molecular soil organic matter (SOM) are still a controversial issue in soil science and geochemistry. Similarly, structural elucidation of the variety of the types of nitrogenous moieties present in SOM is still in its infancy even though recent NMR studies suggest amide-type nitrogen to form the majority of organically bonded nitrogen which is, however, frequently not in accordance with the results of wet-chemical analyses. Following the modified polyphenol theory of Flaig and Kononova but fully aware of the imperfection of a semi-abiotic simulation approach, this work communicates the results of a study that investigated some potential nitrogen accumulation pathways occurring in the re-condensation branch of the theory following the reactions between well-known low-molecular lignin and carbohydrate degradation products with nitrogenous nucleophiles occurring in soils under aerobic conditions. Different low-molecular degradation products of lignin, cellulose, and hemicellulose, such as hydroquinone, methoxyhydroquinone, p-benzoquinone, 2,5-dihydroxy-[1,4]benzoquinone, glucose, xylose, and the respective polysaccharides, i.e. cellulose, xylan as well as various types of lignin were subjected to a joint treatment with oxygen and low-molecular N-nucleophiles, such as ammonia, amines, and amino acids in aqueous conditions, partly using respective 15N labeled compounds for further 15N CPMAS NMR studies. Product mixtures derived from mono- and polysaccharides have been comprehensively fractionated and analyzed by GC/MS after derivatization. Some of ammoxidized polyphenols and quinones have been analyzed by X-ray photoelectron spectroscopy. Some products, such as those obtained from ammoxidation of methoxy hydroquinone using 15N labeled ammonia were fractionated following the IHSS protocol. Individual humin (H), humic acid (HA), and fulvic acid (FA) fractions were subjected to elemental analyses

  16. Removal of organic nitrogen compounds in LCO reduces the hydrodesulphurization severity

    Energy Technology Data Exchange (ETDEWEB)

    Yang, H.; Chen, J.; Ring, Z. [National Centre for Upgrading Technology, Devon, AB (Canada)

    2006-07-01

    Canada and the United States committed to reducing diesel sulphur from 500 to 15 part per million by 2006. Refineries could benefit from a better understanding of the effects of feed matrix on sulphur removal by hydrodesulphurization (HDS) in selecting the right feed or feed pre-treatment options for their existing HDS units and achieve the required sulphur level at minimum cost. This paper presented a study that examined the influence of nitrogen compounds on the HDS activities of substituted dibenzothiophenes in light oil cycle over a nitrogen/molybdenum on alumina oxide (Al{sub 2}O{sub 3}) commercial catalyst using five light cycle oil feeds with different concentrations of organic nitrogen compounds. The paper discussed experiments that were conducted under conditions close to industrial HDS processes. The paper addressed feed preparation; the nitrogen effect on HDS reactivity of dibenzothiophene, 4-methyldibenzothiophene, and 4,6-dimethyl dibenzothiophene; sulphur composition analysis; hydrodenitrogenation; and kinetic modeling. It was concluded that organic nitrogen compounds have more of an inhibition effect on sulphur removal by the hydrogenation pathway than by the hydrogenolysis pathway. Nitrogen removal by feed pre-treatment was found to be an attractive alternative to achieve the ultra-low sulphur goal. 26 refs., 3 tabs., 9 figs.

  17. Organic Matter Loading Modifies the Microbial Community Responsible for Nitrogen Loss in Estuarine Sediments.

    Science.gov (United States)

    Babbin, Andrew R; Jayakumar, Amal; Ward, Bess B

    2016-04-01

    Coastal marine sediments, as locations of substantial fixed nitrogen loss, are very important to the nitrogen budget and to the primary productivity of the oceans. Coastal sediment systems are also highly dynamic and subject to periodic natural and anthropogenic organic substrate additions. The response to organic matter by the microbial community involved in nitrogen loss processes was evaluated using mesocosms of Chesapeake Bay sediments. Over the course of a 50-day incubation, rates of anammox and denitrification were measured weekly using (15)N tracer incubations, and samples were collected for genetic analysis. Rates of both nitrogen loss processes and gene abundances associated with them corresponded loosely, probably because heterogeneities in sediments obscured a clear relationship. The rates of denitrification were stimulated more, and the fraction of nitrogen loss attributed to anammox slightly reduced, by the higher organic matter addition. Furthermore, the large organic matter pulse drove a significant and rapid shift in the denitrifier community composition as determined using a nirS microarray, indicating that the diversity of these organisms plays an essential role in responding to anthropogenic inputs. We also suggest that the proportion of nitrogen loss due to anammox in these coastal estuarine sediments may be underestimated due to temporal dynamics as well as from methodological artifacts related to conventional sediment slurry incubation approaches.

  18. Nitrogen dynamics in organic and conventional cotton production systems in India

    Science.gov (United States)

    Duboc, O.; Adamtey, N.; Forster, D.; Cadisch, G.

    2012-04-01

    Ongoing population growth still represents a challenge to agricultural production (food, fiber and fuel material supply). In spite of the undeniable achievements reached with the "green revolution" technologies, there is a growing awareness among scientists and policy makers that diverse and integrated approaches which are both productive and sustainable are now necessary to meet the agricultural challenges. Integrated and organic agriculture are such alternatives which need to be better investigated and implemented. While long-term experiments in temperate regions have assessed the effect of organic agriculture on different crops and soil quality, there is currently a lack of reliable data from tropical regions, such as findings arising from long-term systems comparison trials. This has necessitated a long-term system comparison trials in Kenya, Bolivia and India by the Research Institute of Organic Agriculture (FiBL) and its partners (icipe, BioRe, Ecotop and Institute of Ecology) (www.systems-comparison.fibl.org). In India the project is based in Madhya Pradesh, in which organic and conventional production systems are being compared in a 2-yr crop rotation - cotton (yr 1) and soybean-wheat (yr 2). The field trial is planned for a time span of 10-20 years, in order to investigate long-term effects of those production systems on yields, soil characteristics, or economic return. A PhD study is incorporated into this project to investigate the effect of the production systems on soil characteristics. The main focus will be on nitrogen cycling under the different production systems. Particular attention will be given to nitrogen use efficiencies and the synchrony of nitrogen availability (e.g. nitrogen mineralization with the polyethylene bag technique, monitoring of soil mineral N) with plant nitrogen uptake, for which allometric equations will be calibrated in order to circumvent destructive sampling on the plots of the long-term experiment. Nitrogen losses

  19. Nitrogen isotopic composition of macromolecular organic matter in interplanetary dust particles

    Science.gov (United States)

    Aléon, Jérôme; Robert, François; Chaussidon, Marc; Marty, Bernard

    2003-10-01

    Nitrogen concentrations and isotopic compositions were measured by ion microprobe scanning imaging in two interplanetary dust particles L2021 K1 and L2036 E22, in which imaging of D/H and C/H ratios has previously evidenced the presence of D-rich macromolecular organic components. High nitrogen concentrations of 10-20 wt% and δ 15N values up to +400‰ are observed in these D-rich macromolecular components. The previous study of D/H and C/H ratios has revealed three different D-rich macromolecular phases. The one previously ascribed to macromolecular organic matter akin the insoluble organic matter (IOM) from carbonaceous chondrites is enriched in nitrogen by one order of magnitude compared to the carbonaceous chondrite IOM, although its isotopic composition is still similar to what is known from Renazzo (δ 15N = +208‰). The correlation observed in macromolecular organic material between the D- and 15N-excesses suggests that the latter originate probably from chemical reactions typical of the cold interstellar medium. These interstellar materials preserved to some extent in IDPs are therefore macromolecular organic components with various aliphaticity and aromaticity. They are heavily N-heterosubstituted as shown by their high nitrogen concentrations >10 wt%. They have high D/H ratios >10 -3 and δ 15N values ≥ +400‰. In L2021 K1 a mixture is observed at the micron scale between interstellar and chondritic-like organic phases. This indicates that some IDPs contain organic materials processed at various heliocentric distances in a turbulent nebula. Comparison with observation in comets suggests that these molecules may be cometary macromolecules. A correlation is observed between the D/H ratios and δ 15N values of macromolecular organic matter from IDPs, meteorites, the Earth and of major nebular reservoirs. This suggests that most macromolecular organic matter in the inner solar system was probably issued from interstellar precursors and further processed

  20. Nitrogen fixation by free-living organisms in rice soils. Studies with 15N

    International Nuclear Information System (INIS)

    Rao, V.R.; Charyulu, P.B.B.N.; Nayak, D.N.; Ramakrishna, C.

    1979-01-01

    Heterotrophic nitrogen fixation as influenced by water regime, organic matter, combined nitrogen and pesticides was investigated in several Indian rice soils by means of the 15 N 2 tracer technique. Soil submergence accelerated nitrogen fixation. Addition of cellulose to both non-flooded and flooded soils enhanced nitrogen fixation. Under submerged conditions, addition of sucrose, glucose and malate in that order stimulated nitrogen fixation in alluvial soil, while only sucrose enhanced nitrogen fixation in laterite soil. Nitrogen fixation in flooded alluvial and laterite soils decreased with increasing concentration of combined nitrogen. Nitrogen fixation was appreciable in acid sulphate and saline soils under both flooded and non-flooded conditions, despite high salinity and acidity. Application of certain pesticides at rates equivalent to recommended field level greatly influenced nitrogen fixation in flooded rice soils. Additions of benomyl (carbamate fungicide) and carbofuran (methyl carbamate insecticide) to alluvial and laterite soils resulted in significant stimulation of nitrogen fixation. Gamma-BHC stimulated nitrogen fixation only in alluvial soil, with considerable inhibition in a laterite soil. Nitrogen fixation by Azospirillum lipoferum was investigated by 15 N 2 . Large variations in 15 N 2 incorporation by A. lipoferum isolated from the roots of several rice cultivars was observed. Specific lines of rice harbouring A. lipoferum with high nitrogenase activity might be selected. Nitrogen fixed by heterotrophic organisms in a complex system such as soil could not be evaluated precisely. Indigenous nitrogen fixation in a flooded soil would be in the range of 5-10 kg N/ha, increasable 3 to 4-fold by appropriate fertilizers and cultural practices

  1. Municipal wastewater treatment for effective removal of organic matter and nitrogen

    International Nuclear Information System (INIS)

    Grebenevich, E.V.; Zaletova, N.A.; Terentieva, N.A.

    1987-01-01

    The organic matter, as well as nitrogen and phosphorus, are nutrient substances. Their excess concentrations in water receiving bodies lead to eutrophication, moreover, the nitrogen content in water bodies is standardized according the sanitary-toxicological criterion of harmfulness: NH 4 + -N ≤0,39-2,0 mgl - , NO 3 -N ≤9,1-10 mgl - . The municipal wastewater contain, usually, organic matter estimated by BOD 150-200 mgl - , and COD 300-400 mgl - , the nitrogen compounds 50-60 mgl - , and NH 4 + -N 20-25 mgl - . NO x -N are practically absent. Their presence indicated on discharge of industrial wastewater. The total phosphorus is present in the concentration of 15 mgl - , PO 4 - - P 5-8 mgl - . Activated sludge process has been most widely used in the USSR for municipal wastewater treatment. The activated sludge is biocenoses of heterotrophic and auto trophic microorganisms. They consume nutrient matters, transferring pollution of wastewater by means of enzyme systems in acceptable forms. C, N and P-containing matters are removed from wastewater by biological intake for cell synthesis. Moreover C- containing matters are removed by oxidation to CO 2 and H 2 O. P-containing compounds under definite conditions associate with solid fraction of activated sludge and thus simultaneously removed from wastewater. The removal of nitrogen in addition to biosynthesis is carried out only in the denitrification process, when oxygen of NO x -N is used for oxidation of organic matter and produced gaseous nitrogen escapes into the atmosphere

  2. Nitrogen mineralization in a simulated rhizosphere as influenced by low molecular weight organic substances

    OpenAIRE

    Begum, Shamim Ara; Kader, MD Abdul; Sleutel, Steven; De Neve, Stefaan

    2012-01-01

    Rhizodeposits consist of over 200 organic compounds, mainly low-molecular-weight organic substances (LMWOS) such as amino acids (AA), carbohydrates (CH) and carboxylic acids (CA), lipids and phenols. Those LMWOS influence nutrient turnover, particularly N turnover. However, the exact influence of these organic substances on nitrogen mineralization is yet unknown. Therefore, the stimulatory effects of low molecular weight organic substances on nitrogen mineralization in the rhizosphere of a si...

  3. Restoration and Purification of Dissolved Organic Nitrogen by Bacteria and Phytoremediation in Shallow Eutrophic Lakes Sediments

    Science.gov (United States)

    Li, Xin; Yue, Yi

    2018-06-01

    Endogenous organic nitrogen loadings in lake sediments have increased with human activity in recent decades. A 6-month field study from two disparate shallow eutrophic lakes could partly reveal these issues by analysing seasonal variations of biodegradation and phytoremediation in the sediment. This paper describes the relationship between oxidation reduction potential, temperature, microbial activity and phytoremediation in nitrogen cycling by calculation degradative index of dissolved organic nitrogen and amino acid decomposition. The index was being positive in winter and negative in summer while closely positive correlated with biodegradation. Our analysis revealed that rather than anoxic condition, biomass is the primary factor to dissolved organic nitrogen distribution and decomposition. Some major amino acids statistics also confirm the above view. The comparisons of organic nitrogen and amino acid in abundance and seasons in situ provides that demonstrated plants cue important for nitrogen removal by their roots adsorption and immobilization. In conclusion, enhanced microbial activity and phytoremediation with the seasons will reduce the endogenous nitrogen loadings by the coupled mineralization and diagenetic process.

  4. Improvements to the characterization of organic nitrogen chemistry and deposition in CMAQ (CMAS Presentation)

    Science.gov (United States)

    Excess atmospheric nitrogen deposition can cause significant harmful effects to ecosystems. Organic nitrogen deposition can be an important contributor to the total nitrogen budget, contributing 10-30%, however there are large uncertainties in the chemistry and deposition of thes...

  5. Effectiveness of liquid organic-nitrogen fertilizer in enhancing ...

    African Journals Online (AJOL)

    The ever increasing price of nitrogenous (N) fertilizers coupled with the deleterious effects of imbalanced N fertilizers on the environment necessitates the enhancement of N use efficiency of plants. The objectives of this study were to: (1) Evaluate the uptake of selected nutrients due to application of liquid organic-N ...

  6. ORGANIC CARBON AND TOTAL NITROGEN IN THE DENSIMETRIC FRACTIONS OF ORGANIC MATTER UNDER DIFFERENT SOIL MANAGEMEN

    Directory of Open Access Journals (Sweden)

    MARCELO RIBEIRO VILELA PRADO

    2016-01-01

    Full Text Available The evaluation of land use and management by the measurement of soil organic matter and its fractions has gained attention since it helps in the understanding of the dynamics of their contribution to soil productivity, especially in tropical environments. This study was conducted in the municipality of Colorado do Oeste, state of Rondônia, Brazil and its aim was to determinethe quantity of organic carbon and total nitrogen in the light and heavy fractions of organic matter in the surface layers of a typic hapludalf under different land use systems: Native Forest: open evergreen forest, reference environment; Agroforestry System 1: teak (Tectona grandis LF and kudzu (Pueraria montana; Agroforestry System 2: coffee (Coffea canephora, marandu palisade grass (Brachiaria brizantha cv. Marandu, “pinho cuiabano” (Parkia multijuga, teak and kudzu.; Agroforestry System 3: teak and cocoa (Theobroma cacao; Silvopasture System: teak, cocoa and marandu palisade grass; and Extensive Grazing System: marandu palisade grass. The experimental design was a randomized block in split-split plots (use systems versus soil layers of 0-0.05 and 0.05-0.10 m with three replications. The results showed that relative to Native Forest, the Agroforestry System 2 had equal- and greater amounts of organic carbon and total nitrogen respectively (light and heavy fractions in the soil organic matter, with the light fraction being responsible for storage of approximately 45% and 70% of the organic carbon and total nitrogen, respectively. Therefore, the light densimetric fraction proved to be useful in the early identification of the general decline of the soil organic matter in the land use systems evaluated.

  7. Increased nitrogen availability counteracts climatic change feedback from increased temperature on boreal forest soil organic matter degradation

    Science.gov (United States)

    Erhagen, Bjorn; Nilsson, Mats; Oquist, Mats; Ilstedt, Ulrik; Sparrman, Tobias; Schleucher, Jurgen

    2014-05-01

    Over the last century, the greenhouse gas concentrations in the atmosphere have increased dramatically, greatly exceeding pre-industrial levels that had prevailed for the preceding 420 000 years. At the same time the annual anthropogenic contribution to the global terrestrial nitrogen cycle has increased and currently exceeds natural inputs. Both temperature and nitrogen levels have profound effects on the global carbon cycle including the rate of organic matter decomposition, which is the most important biogeochemical process that returns CO2 to the atmosphere. Here we show for the first time that increasing the availability of nitrogen not only directly affects the rate of organic matter decomposition but also significantly affects its temperature dependence. We incubated litter and soil organic matter from a long-term (40 years) nitrogen fertilization experiment in a boreal Scots pine (Pinus silvestris L.) forest at different temperatures and determined the temperature dependence of the decomposition of the sample's organic matter in each case. Nitrogen fertilization did not affect the temperature sensitivity (Q10) of the decomposition of fresh plant litter but strongly reduced that for humus soil organic matter. The Q10 response of the 0-3 cm soil layer decreased from 2.5±0.35 to an average of 1.9±0.21 over all nitrogen treatments, and from 2.2±0.19 to 1.6±0.16 in response to the most intense nitrogen fertilization treatment in the 4-7 cm soil layer. Long-term nitrogen additions also significantly affected the organic chemical composition (as determined by 13C CP-MAS NMR spectroscopy) of the soil organic matter. These changes in chemical composition contributed significantly (p<0.05) to the reduced Q10 response. These new insights into the relationship between nitrogen availability and the temperature sensitivity of organic matter decomposition will be important for understanding and predicting how increases in global temperature and rising anthropogenic

  8. Growth response of four freshwater algal species to dissolved organic nitrogen of different concentration and complexity

    DEFF Research Database (Denmark)

    Fiedler, Dorothea; Graeber, Daniel; Badrian, Maria

    2015-01-01

    1. Dissolved organic nitrogen (DON) compounds dominate the nitrogen pool of many lakes, but their importance as nitrogen sources for freshwater phytoplankton is not fully understood. Previous growth experiments demonstrated the availability of urea and amino acids but often at unnaturally high...... (DCAA), natural organic matter (NOM)) or with nitrate as the sole nitrogen source. Monocultures of Chlamydomonas spp., Cyclotella meneghiniana, Microcystis aeruginosa and Anabaena flos-aquae were incubated with dissolved nitrogen compounds at concentrations ranging from 0.01 to 0.5 mg N L−1, which...... and their compound preferences. Therefore, DON composition can influence biomass and structure of phytoplankton communities. 6. These experiments demonstrate the importance of the main DON compounds for phytoplankton growth when no inorganic nitrogen is available. DON should in future be included in nitrogen budget...

  9. Effects of organic nitrogen and carbon sources on mycelial growth ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-10-19

    Oct 19, 2009 ... mycelial growth and polysaccharides production and their optimization in the ... Soybean meal was selected as the optimal organic nitrogen source for its significant ..... economy and high yield in industrial production. There-.

  10. Evaluation of the soil organic carbon, nitrogen and available ...

    African Journals Online (AJOL)

    The result obtained indicates that the level of these chemical properties were generally low as compared to standard measures and parameter for ratings soil fertility in the Nigerian Savanna. Keywords: Status of organic carbon, total nitrogen, available phosphorus, top horizons, research farm. Bowen Journal of Agriculture ...

  11. Organic materials: sources of nitrogen in the organic production of lettuce

    OpenAIRE

    MANOJLOVIC, Maja; CABILOVSKI, Ranko; BAVEC, Martina

    2010-01-01

    This paper presents the results of 2 experiments: an incubation experiment and a subsequent field experiment. An incubation experiment was set up in order to determine the mineralization potential of different organic materials (OMs) (well-rotted farmyard manure [FTM], guano [G], soybean seed [S], and forage pea seed [P]), the kinetics of mineral nitrogen (N) release, and the correlation between OM content and the quantity of mineralized N. The results of the incubation experiment were checke...

  12. Dynamics of dissolved and extractable organic nitrogen upon soil amendment with crop residues

    NARCIS (Netherlands)

    Ros, G.H.; Hoffland, E.

    2010-01-01

    Dissolved organic nitrogen (DON) is increasingly recognized as a pivotal pool in the soil nitrogen (N) cycle. Numerous devices and sampling procedures have been used to estimate its size, varying from in situ collection of soil solution to extraction of dried soil with salt solutions. Extractable

  13. Predicting nitrogen and acidity effects on long-term dynamics of dissolved organic matter

    International Nuclear Information System (INIS)

    Rowe, E.C.; Tipping, E.; Posch, M.; Oulehle, F.; Cooper, D.M.; Jones, T.G.; Burden, A.; Hall, J.; Evans, C.D.

    2014-01-01

    Increases in dissolved organic carbon (DOC) fluxes may relate to changes in sulphur and nitrogen pollution. We integrated existing models of vegetation growth and soil organic matter turnover, acid–base dynamics, and organic matter mobility, to form the ‘MADOC’ model. After calibrating parameters governing interactions between pH and DOC dissolution using control treatments on two field experiments, MADOC reproduced responses of pH and DOC to additions of acidifying and alkalising solutions. Long-term trends in a range of acid waters were also reproduced. The model suggests that the sustained nature of observed DOC increases can best be explained by a continuously replenishing potentially-dissolved carbon pool, rather than dissolution of a large accumulated store. The simulations informed the development of hypotheses that: DOC increase is related to plant productivity increase as well as to pH change; DOC increases due to nitrogen pollution will become evident, and be sustained, after soil pH has stabilised. -- Highlights: • A model of dissolved organic carbon (DOC) was developed by integrating simple models • MADOC simulates effects of sulphur and nitrogen deposition and interactions with pH. • Responses of DOC and pH to experimental acidification and alkalisation were reproduced. • The persistence of DOC increases will depend on continued supply of potential DOC. • DOC fluxes are likely determined by plant productivity as well as soil solution pH. -- Effects of changes in sulphur and nitrogen pollution on dissolved organic carbon fluxes are predicted by simulating soil organic matter cycling, the release of potentially-dissolved carbon, and interactions with soil pH

  14. Nitrogen reduction pathways in estuarine sediments: Influences of organic carbon and sulfide

    Science.gov (United States)

    Plummer, Patrick; Tobias, Craig; Cady, David

    2015-10-01

    Potential rates of sediment denitrification, anaerobic ammonium oxidation (anammox), and dissimilatory nitrate reduction to ammonium (DNRA) were mapped across the entire Niantic River Estuary, CT, USA, at 100-200 m scale resolution consisting of 60 stations. On the estuary scale, denitrification accounted for ~ 90% of the nitrogen reduction, followed by DNRA and anammox. However, the relative importance of these reactions to each other was not evenly distributed through the estuary. A Nitrogen Retention Index (NIRI) was calculated from the rate data (DNRA/(denitrification + anammox)) as a metric to assess the relative amounts of reactive nitrogen being recycled versus retained in the sediments following reduction. The distribution of rates and accompanying sediment geochemical analytes suggested variable controls on specific reactions, and on the NIRI, depending on position in the estuary and that these controls were linked to organic carbon abundance, organic carbon source, and pore water sulfide concentration. The relationship between NIRI and organic carbon abundance was dependent on organic carbon source. Sulfide proved the single best predictor of NIRI, accounting for 44% of its observed variance throughout the whole estuary. We suggest that as a single metric, sulfide may have utility as a proxy for gauging the distribution of denitrification, anammox, and DNRA.

  15. Dissolved organic nitrogen (DON) losses from nested artificially drained lowland catchments with contrasting soil types

    Science.gov (United States)

    Tiemeyer, Bärbel; Kahle, Petra; Lennartz, Bernd

    2010-05-01

    Artificial drainage is a common practice to improve moisture and aeration conditions of agricultural land. It shortens the residence time of water in the soil and may therefore contribute to the degradation of peatlands as well as to the still elevated level of diffuse pollution of surface water bodies, particularly if flow anomalies like preferential flow cause a further acceleration of water and solute fluxes. Especially in the case of nitrate, artificially drained sub-catchments are found to control the catchment-scale nitrate losses. However, it is frequently found that nitrate losses and nitrogen field balances do not match. At the same time, organic fertilizers are commonly applied and, especially in lowland catchments, organic soils have been drained for agricultural use. Thus, the question arises whether dissolved organic nitrogen (DON) forms an important component of the nitrogen losses from artificially drained catchments. However, in contrast to nitrate and even to dissolved organic carbon (DOC), this component is frequently overlooked, especially in nested catchment studies with different soil types and variable land use. Here, we will present data from a hierarchical water quantity and quality measurement programme in the federal state Mecklenburg-Vorpommern (North-Eastern Germany). The monitoring programme in the pleistocene lowland catchment comprises automatic sampling stations at a collector drain outlet (4.2 ha catchment), at a ditch draining arable land on mineral soils (179 ha), at a ditch mainly draining grassland on organic soils (85 ha) and at a brook with a small rural catchment (15.5 km²) of mixed land use and soil types. At all sampling stations, daily to weekly composite samples were taken, while the discharge and the meteorological data were recorded continuously. Water samples were analyzed for nitrate-nitrogen, ammonium-nitrogen and total nitrogen. We will compare two years: 2006/07 was a very wet year (P = 934 mm) with a high summer

  16. Bioavailability of autochthonous dissolved organic nitrogen in marine plankton communities

    DEFF Research Database (Denmark)

    Knudsen, Helle; Markager, Svend Stiig; Søndergaard, Morten

    The purpose of this study was to investigate the bioavailability of dissolved organic nitrogen (DON) produced during a phytoplankton bloom. The experiments were conducted with natural plankton communities as batch growth experiments over approximately 30 days with nitrogen limitation. Five to six...... times during the exponential and stationary phases of each experimental bloom the bioavailability of DON was measured over 60 days together with DOC and oxygen consumption. The overall aim was to quantify remineralization of the added nitrate. The results showed that maximum 33 % of the added nitrate...

  17. Decomposition rate of organic fertilizers: effect on yield, nitrogen availability and nitrogen stock in the soil

    NARCIS (Netherlands)

    Opheusden, van A.H.M.; Burgt, van der G.J.H.M.; Rietberg, P.I.

    2012-01-01

    The nitrogen of organic fertilizers does not fully mineralize within a season, and hence will partly become available in later years. This effect is taken into account for the first year but generally not in later fertilizer applications. If it would be taken into account, fertilizer use could be

  18. Minerilization of carbon and nitrogen of organic residues from ...

    African Journals Online (AJOL)

    Minerilization of carbon and nitrogen of organic residues from selected plants in a tropical cropping system. O M Onuh, HA Okorie. Abstract. No Abstract. Journal of Agriculture and Food Sciences Vol. 3 (1) 2005 pp. 11-24. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT.

  19. Yielding ability and weed suppression of potato and wheat under organic nitrogen management

    NARCIS (Netherlands)

    Delden, van A.

    2001-01-01

    Keywords: chickweed, early growth, leaf area expansion, light interception, light use efficiency, manure, mineralisation, modelling, organic farming, organic matter, soil nitrogen content , Solanum tuberosum L., specific leaf area , Stellaria media

  20. SOIL NITROGEN TRANSFORMATIONS AND ROLE OF LIGHT FRACTION ORGANIC MATTER IN FOREST SOILS

    Science.gov (United States)

    Depletion of soil organic matter through cultivation may alter substrate availability for microbes, altering the dynamic balance between nitrogen (N) immobilization and mineralization. Soil light fraction (LF) organic matter is an active pool that decreases upon cultivation, and...

  1. Effects of organic nitrogen and carbon sources on mycelial growth ...

    African Journals Online (AJOL)

    Grifola umbellate is a famous and expensive Chinese herb medicine and the main medicinal component is polysaccharide mainly produced by its mycelia. Effects of organic nitrogen and carbon resources on mycelial growth and polysaccharides production of a medicinal mushroom, G. umbellate were studied in the ...

  2. Dissolved organic nitrogen dynamics in the North Sea: A time series analysis (1995-2005)

    NARCIS (Netherlands)

    Van Engeland, T.; Soetaert, K.E.R.; Knuijt, A.; Laane, R.W.P.M.; Middelburg, J.J.

    2010-01-01

    Dissolved organic nitrogen (DON) dynamics in the North Sea was explored by means of long-term time series of nitrogen parameters from the Dutch national monitoring program. Generally, the data quality was good with little missing data points. Different imputation methods were used to verify the

  3. Reduction of nitrogen excretion and emission in poultry: A review for organic poultry.

    Science.gov (United States)

    Chalova, Vesela I; Kim, Jihyuk; Patterson, Paul H; Ricke, Steven C; Kim, Woo K

    2016-01-01

    Organic poultry is an alternative to conventional poultry which is rapidly developing as a response to customers' demand for better food and a cleaner environment. Although organic poultry manure can partially be utilized by organic horticultural producers, litter accumulation as well as excessive nitrogen still remains a challenge to maintain environment pureness, animal, and human health. Compared to conventional poultry, diet formulation without nitrogen overloading in organic poultry is even more complicated due to specific standards and regulations which limit the application of some supplements and imposes specific criteria to the ingredients in use. This is especially valid for methionine provision which supplementation as a crystalline form is only temporarily allowed. This review is focused on the utilization of various protein sources in the preparation of a diet composed of 100% organic ingredients which meet the avian physiology need for methionine, while avoiding protein overload. The potential to use unconventional protein sources such as invertebrates and microbial proteins to achieve optimal amino acid provision is also discussed.

  4. RESPONSE OF CHILE PEPPER (Capsicum annuum L. TO SALT STRESS AND ORGANIC AND INORGANIC NITROGEN SOURCES: II. NITROGEN AND WATER USE EFFICIENCIES, AND SALT TOLERANCE

    Directory of Open Access Journals (Sweden)

    Marco Antonio Huez Lopez

    2011-07-01

    Full Text Available The response to two nitrogen sources on water and nitrogen use efficiencies, and tolerance of salt-stressed chile pepper plants (Capsicum annuum L. cv. Sandia was investigated in a greenhouse experiment. Low, moderate and high (1.5, 4.5, and 6.5 dS m-1 salinity levels, and two rates of organic-N fertilizer (120 and 200 kg ha-1 and 120 kg ha-1 of inorganic fertilizer as ammonium nitrate were arranged in randomized complete block designs replicated four times. The liquid organic-N source was an organic, extracted with water from grass clippings. Water use decreased about 19 and 30% in moderate and high salt-stressed plants. Water use efficiency decreased only in high salt-stressed plants. Nitrogen use efficiency decreased either by increased salinity or increased N rates. An apparent increase in salt tolerance was noted when plants were fertilized with organic-N source compared to that of inorganic-N source.

  5. Influence of natural zeolite and nitrification inhibitor on organics degradation and nitrogen transformation during sludge composting.

    Science.gov (United States)

    Zhang, Junya; Sui, Qianwen; Li, Kun; Chen, Meixue; Tong, Juan; Qi, Lu; Wei, Yuansong

    2016-01-01

    Sludge composting is one of the most widely used treatments for sewage sludge resource utilization. Natural zeolite and nitrification inhibitor (NI) are widely used during composting and land application for nitrogen conservation, respectively. Three composting reactors (A--the control, B--natural zeolite addition, and C--3,4-dimethylpyrazole phosphate (DMPP) addition) were established to investigate the influence of NI and natural zeolite addition on organics degradation and nitrogen transformation during sludge composting conducted at the lab scale. The results showed that, in comparison with the control, natural zeolite addition accelerated organics degradation and the maturity of sludge compost was higher, while the DMPP addition slowed down the degradation of organic matters. Meanwhile, the nitrogen transformation functional genes including those responses for nitrification (amoA and nxrA) and denitrification (narG, nirS, nirK, and nosZ) were quantified through quantitative PCR (qPCR) to investigate the effects of natural zeolites and DMPP addition on nitrogen transformation. Although no significant difference in the abundance of nitrogen transformation functional genes was observed between treatments, addition of both natural zeolite and DMPP increases the final total nitrogen content by 48.6% and 23.1%, respectively. The ability of natural zeolite for nitrogen conservation was due to the absorption of NH3 by compost, and nitrogen conservation by DMPP was achieved by the source reduction of denitrification. Besides, it was assumed that the addition of natural zeolite and DMPP may affect the activity of these genes instead of the abundance.

  6. 40 CFR 62.14103 - Emission limits for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Science.gov (United States)

    2010-07-01

    ... combustor metals, acid gases, organics, and nitrogen oxides. 62.14103 Section 62.14103 Protection of... combustor metals, acid gases, organics, and nitrogen oxides. (a) The emission limits for municipal waste combustor metals are specified in paragraphs (a)(1) through (a)(3) of this section. (1) The owner or...

  7. Effects of combined application of organic and inorganic fertilizers plus nitrification inhibitor DMPP on nitrogen runoff loss in vegetable soils.

    Science.gov (United States)

    Yu, Qiaogang; Ma, Junwei; Zou, Ping; Lin, Hui; Sun, Wanchun; Yin, Jianzhen; Fu, Jianrong

    2015-01-01

    The application of nitrogen fertilizers leads to various ecological problems such as large amounts of nitrogen runoff loss causing water body eutrophication. The proposal that nitrification inhibitors could be used as nitrogen runoff loss retardants has been suggested in many countries. In this study, simulated artificial rainfall was used to illustrate the effect of the nitrification inhibitor DMPP (3,4-dimethyl pyrazole phosphate) on nitrogen loss from vegetable fields under combined organic and inorganic nitrogen fertilizer application. The results showed that during the three-time simulated artificial rainfall period, the ammonium nitrogen content in the surface runoff water collected from the DMPP application treatment increased by 1.05, 1.13, and 1.10 times compared to regular organic and inorganic combined fertilization treatment, respectively. In the organic and inorganic combined fertilization with DMPP addition treatment, the nitrate nitrogen content decreased by 38.8, 43.0, and 30.1% in the three simulated artificial rainfall runoff water, respectively. Besides, the nitrite nitrogen content decreased by 95.4, 96.7, and 94.1% in the three-time simulated artificial rainfall runoff water, respectively. A robust decline in the nitrate and nitrite nitrogen surface runoff loss could be observed in the treatments after the DMPP addition. The nitrite nitrogen in DMPP addition treatment exhibited a significant low level, which is near to the no fertilizer application treatment. Compared to only organic and inorganic combined fertilizer treatment, the total inorganic nitrogen runoff loss declined by 22.0 to 45.3% in the organic and inorganic combined fertilizers with DMPP addition treatment. Therefore, DMPP could be used as an effective nitrification inhibitor to control the soil ammonium oxidation in agriculture and decline the nitrogen runoff loss, minimizing the nitrogen transformation risk to the water body and being beneficial for the ecological environment.

  8. Nitrogen Turnover on Organic and Conventional Mixed Farms

    OpenAIRE

    Halberg, Niels; Kristensen, Erik Steen; Kristensen, Ib Sillebak

    1995-01-01

    Separate focus on crop fertilization or feeding practices inadequately describes nitrogen (N) loss from mixed dairy farms because of (1) interaction between animal and crop production and between the production system and the manager, and (2) uncertainties of herd N production and crop N utilization. Therefore a systems approach was used to study N turnover and N efficiency on 16 conventional and 14 organic private Danish farms with mixed animal (dairy) and crop production. There were signifi...

  9. ASN1-encoded asparagine synthetase in floral organs contributes to nitrogen filling in Arabidopsis seeds.

    Science.gov (United States)

    Gaufichon, Laure; Marmagne, Anne; Belcram, Katia; Yoneyama, Tadakatsu; Sakakibara, Yukiko; Hase, Toshiharu; Grandjean, Olivier; Clément, Gilles; Citerne, Sylvie; Boutet-Mercey, Stéphanie; Masclaux-Daubresse, Céline; Chardon, Fabien; Soulay, Fabienne; Xu, Xiaole; Trassaert, Marion; Shakiebaei, Maryam; Najihi, Amina; Suzuki, Akira

    2017-08-01

    Despite a general view that asparagine synthetase generates asparagine as an amino acid for long-distance transport of nitrogen to sink organs, its role in nitrogen metabolic pathways in floral organs during seed nitrogen filling has remained undefined. We demonstrate that the onset of pollination in Arabidopsis induces selected genes for asparagine metabolism, namely ASN1 (At3g47340), GLN2 (At5g35630), GLU1 (At5g04140), AapAT2 (At5g19950), ASPGA1 (At5g08100) and ASPGB1 (At3g16150), particularly at the ovule stage (stage 0), accompanied by enhanced asparagine synthetase protein, asparagine and total amino acids. Immunolocalization confined asparagine synthetase to the vascular cells of the silique cell wall and septum, but also to the outer and inner seed integuments, demonstrating the post-phloem transport of asparagine in these cells to developing embryos. In the asn1 mutant, aberrant embryo cell divisions in upper suspensor cell layers from globular to heart stages assign a role for nitrogen in differentiating embryos within the ovary. Induction of asparagine metabolic genes by light/dark and nitrate supports fine shifts of nitrogen metabolic pathways. In transgenic Arabidopsis expressing promoter Ca MV 35S ::ASN1 fusion, marked metabolomics changes at stage 0, including a several-fold increase in free asparagine, are correlated to enhanced seed nitrogen. However, specific promoter Napin2S ::ASN1 expression during seed formation and a six-fold increase in asparagine toward the desiccation stage result in wild-type seed nitrogen, underlining that delayed accumulation of asparagine impairs the timing of its use by releasing amide and amino nitrogen. Transcript and metabolite profiles in floral organs match the carbon and nitrogen partitioning to generate energy via the tricarboxylic acid cycle, GABA shunt and phosphorylated serine synthetic pathway. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  10. Isotopic patterns in caps and stipes in sporocarps reveal patterns of organic nitrogen use by ectomycorrhizal fungi

    Science.gov (United States)

    Hobbie, Erik; Ouimette, Andrew; Chen, Janet

    2016-04-01

    Current ecosystem models use inorganic nitrogen as the currency of nitrogen acquisition by plants. However, many trees may gain access to otherwise unavailable soil resources, such as soil organic nitrogen, through their symbioses with ectomycorrhizal fungi, and this pathway of nitrogen acquisition may therefore be important in understanding plant responses to environmental change. Different functional groups of ectomycorrhizal fungi vary in their ability to enzymatically access protein and other soil resources. Such fungal parameters as hyphal hydrophobicity, the presence of rhizomorphs (long-distance transport structures), and exploration strategies (e.g., short-distance versus long-distance, mat formation) correspond with how fungi interact with and explore the environment, and the proportions of different exploration types present will shift along environmental gradients such as nitrogen availability. Isotopic differences between caps and stipes may provide a means to test for organic nitrogen use, since caps and stipes differ in δ13C and δ15N as a result of variable proportions of protein and other classes of compounds, and protein should differ isotopically among de novo synthesis, litter sources, and soil sources. Here, we propose that (1) isotopic differences between caps and stipes could be related to organic nitrogen uptake and to the δ13C and δ15N values of different pools of soil-derived or de novo-synthesized amino acids; (2) these isotopic differences will reflect greater acquisition of soil-derived organic nitrogen by exploration types of greater enzymatic capabilities to degrade recalcitrant nitrogen forms, specifically long-distance, medium-distance fringe, and medium-distance mat exploration types. To test these hypotheses, we use a dataset of isotopic values, %N, and %C in 208 cap/stipe samples collected from Oregon, western USA. δ13C differences in caps and stipes in a multiple regression model had an adjusted r2 of 0.292 (p Ncap-stipe (20

  11. [Impacts of Land Use Changes on Soil Light Fraction and Particulate Organic Carbon and Nitrogen in Jinyun Mountain].

    Science.gov (United States)

    Lei, Li-guo; Jiang, Chang-sheng; Hao, Qing-ju

    2015-07-01

    Four land types including the subtropical evergreen broad-leaved forest, sloping farmland, orchard and abandoned land were selected to collect soil samples from 0 to 60 cm depth at the same altitude of sunny slope in the Jinyun Mountain in this study. Soil light fraction organic carbon and nitrogen ( LFOC and LFON), and particulate organic carbon and nitrogen (POC and PON) were determined and the distribution ratios and C/N ratios were calculated. The results showed that the contents of LFOC and LFON decreased significantly by 71. 42% and 38. 46% after the forest was changed into sloping farmland (P 0. 05), while the contents of LFOC and LFON increased significantly by 3. 77 and 1. 38 times after the sloping farmland was changed into abandoned land (P organic carbon and nitrogen accumulation; on the contrary, sloping farmland was easy to lose soil labile carbon and nitrogen. The LFOC and LFON distribution ratios were significantly reduced by 31. 20% and 30. 08%, respectively after the forest was changed into the sloping farmland, and increased by 18. 74% and 20. 33% respectively after the forest was changed into the orchard. Nevertheless, the distribution ratios of LFOC and LFON were changed little by converting the forest into the sloping farmland and orchard. The distribution ratios of LFOC, LFON, POC and PON all increased significantly after the farmland was abandoned (P organic carbon and nitrogen was enhanced after forest reclamation, while reduced after the sloping farmland was abandoned. The ratios of carbon to nitrogen in soil organic matter, light fraction organic matter and particulate organic matter were in the order of abandoned land (12. 93) > forest (8. 53) > orchard (7. 52) > sloping farmland (4. 40), abandoned land (16. 32) > forest (14. 29) > orchard (11. 32) > sloping farmland (7. 60), abandoned land (23. 41) > sloping farmland (13. 85 ) > forest (10. 30) > orchard (9. 64), which indicated that the degree of organic nitrogen mineralization was

  12. Worldwide organic soil carbon and nitrogen data

    Energy Technology Data Exchange (ETDEWEB)

    Zinke, P.J.; Stangenberger, A.G. [Univ. of California, Berkeley, CA (United States). Dept. of Forestry and Resource Management; Post, W.M.; Emanual, W.R.; Olson, J.S. [Oak Ridge National Lab., TN (United States)

    1986-09-01

    The objective of the research presented in this package was to identify data that could be used to estimate the size of the soil organic carbon pool under relatively undisturbed soil conditions. A subset of the data can be used to estimate amounts of soil carbon storage at equilibrium with natural soil-forming factors. The magnitude of soil properties so defined is a resulting nonequilibrium values for carbon storage. Variation in these values is due to differences in local and geographic soil-forming factors. Therefore, information is included on location, soil nitrogen content, climate, and vegetation along with carbon density and variation.

  13. Is an organic nitrogen source needed for cellulase production by Trichoderma reesei Rut-C30?

    DEFF Research Database (Denmark)

    Rodríguez Gómez, Divanery; Hobley, Timothy John

    2013-01-01

    The effect of organic and inorganic nitrogen sources on Trichoderma reesei Rut-C30 cellulase production was investigated in submerged cultivations. Stirred tank bioreactors and shake flasks, with and without pH control, respectively, were employed. The experimental design involved the addition...... of individual organic nitrogen sources (soy peptone, glutamate, glycine and alanine) within a basal medium containing Avicel (i.e. micro crystalline cellulose) and ammonium sulphate. It was found that in the shake flask experiments, the highest cellulase activities (~0.1 ± 0.02 FPU ml−1) were obtained...... with media containing soy peptone (3–6 g l−1) and glutamate (3.6 g l−1). However, these improvements in the cellulase titers in the presence of the organic nitrogen sources appeared to be related to smaller changes in the pH of the medium. This was confirmed using stirred tank bioreactors with pH control...

  14. Ultraviolet irradiation effects incorporation of nitrate and nitrite nitrogen into aquatic natural organic matter

    Science.gov (United States)

    Thorn, Kevin A.; Cox, Larry G.

    2012-01-01

    One of the concerns regarding the safety and efficacy of ultraviolet radiation for treatment of drinking water and wastewater is the fate of nitrate, particularly its photolysis to nitrite. In this study, 15N NMR was used to establish for the first time that UV irradiation effects the incorporation of nitrate and nitrite nitrogen into aquatic natural organic matter (NOM). Irradiation of 15N-labeled nitrate in aqueous solution with an unfiltered medium pressure mercury lamp resulted in the incorporation of nitrogen into Suwannee River NOM (SRNOM) via nitrosation and other reactions over a range of pH from approximately 3.2 to 8.0, both in the presence and absence of bicarbonate, confirming photonitrosation of the NOM. The major forms of the incorporated label include nitrosophenol, oxime/nitro, pyridine, nitrile, and amide nitrogens. Natural organic matter also catalyzed the reduction of nitrate to ammonia on irradiation. The nitrosophenol and oxime/nitro nitrogens were found to be susceptible to photodegradation on further irradiation when nitrate was removed from the system. At pH 7.5, unfiltered irradiation resulted in the incorporation of 15N-labeled nitrite into SRNOM in the form of amide, nitrile, and pyridine nitrogen. In the presence of bicarbonate at pH 7.4, Pyrex filtered (cutoff below 290–300 nm) irradiation also effected incorporation of nitrite into SRNOM as amide nitrogen. We speculate that nitrosation of NOM from the UV irradiation of nitrate also leads to production of nitrogen gas and nitrous oxide, a process that may be termed photo-chemodenitrification. Irradiation of SRNOM alone resulted in transformation or loss of naturally abundant heterocyclic nitrogens.

  15. Origin of Titan’s Nitrogen: Contributions from Organics in the Core

    Science.gov (United States)

    Miller, Kelly E.; Glein, Christopher R.; Waite, J. Hunter

    2017-10-01

    The origin of Titan’s atmosphere has been a puzzle for decades. The major atmospheric component is N2, with a 14N/15N ratio of ~168. This ratio is enriched in heavy N compared to the solar ratio of 441, but is similar to that measured in cometary comae for NH2 (127), a product of NH3 in the coma. These data have been used to argue that Titan’s nitrogen was accreted as NH3, and converted through shock or photochemical processes to N2. This model assumes that N2 and NH3 were the only major reservoirs of nitrogen in the early solar system. To test this model, further constraints on the building blocks of Titan are needed.Comets are thought to preserve the best records of the materials accreted to form outer solar system bodies. Measurements of Halley revealed the presence of an abundant refractory organic component coating cometary dust grains. The organic component constituted ~50 wt.% of the dust. This component has since been detected at other comets by later missions, including Deep Impact and most recently the Rosetta mission. Multiple instruments on Rosetta have converged on a dust-to-ice mass ratio at 67P/Churyumov-Gerasimenko between 1 and 4, suggesting that refractory materials are a significant component. Data from the Cometary Secondary Ion Mass Analyser (COSIMA) confirm that this refractory material includes abundant organics, with a bulk composition similar to insoluble organic matter (IOM) in chondrites. These data suggest that 67P is composed of ~25 wt.% refractory organics. Using these constraints from Rosetta and IOM as an analog material, we find via mass balance calculations that organic N represents a third major reservoir of nitrogen in the early solar system. This third reservoir could have been a source material for Titan’s atmosphere.We present a cosmochemical model for Titan’s atmosphere that incorporates this third reservoir via heating in a rocky core. We deduce the relative contributions of N2, NH3, and organic N to Titan

  16. Can δ(15)N in lettuce tissues reveal the use of synthetic nitrogen fertiliser in organic production?

    Science.gov (United States)

    Sturm, Martina; Kacjan-Maršić, Nina; Lojen, Sonja

    2011-01-30

    The nitrogen isotopic fingerprint (δ(15)N) is reported to be a promising indicator for differentiating between organically and conventionally grown vegetables. However, the effect on plant δ(15)N of split nitrogen fertilisation, which could enable farmers to cover up the use of synthetic fertiliser, is not well studied. In this study the use of δ(15)N in lettuce as a potential marker for identifying the use of synthetic nitrogen fertiliser was tested on pot-grown lettuce (Lactuca sativa L.) treated with synthetic and organic nitrogen fertilisers (single or split application). The effect of combined usage of synthetic and organic fertilisers on δ(15)N was also investigated. The δ(15)N values of whole plants treated with different fertilisers differed significantly when the fertiliser was applied in a single treatment. However, additional fertilisation (with isotopically the same or different fertiliser) did not cause a significant alteration of plant δ(15)N. The findings of the study suggest that the δ(15)N value of lettuce tissues could be used as a rough marker to reveal the history of nitrogen fertilisation, but only in the case of single fertiliser application. However, if the difference in δ(15)N between the applied synthetic and organic nitrogen fertilisers was > 9.1 ‰, the detection of split and combined usage of the fertilisers would have greater discriminatory power. 2010 Society of Chemical Industry.

  17. Utilization of inorganic and organic nitrogen by bacteria in marine systems

    International Nuclear Information System (INIS)

    Wheeler, P.A.; Kirchman, D.L.

    1986-01-01

    The relative contribution of various inorganic and organic forms of nitrogen to the nitrogen requirements of picoplankton was examined with 15 N tracers. Size fractionation was used to measure uptake by <1-μm size microorganisms, and inhibitors of protein synthesis were used to separate procaryotic from eucaryotic nitrogen uptake. Picoplankton utilized mainly ammonium and amino acids and only negligible amounts of nitrate and urea. Nearly all amino acid uptake was by procaryotes, while both procaryotes and eucaryotes utilized ammonium. About 78% of total ammonium uptake was by procaryotes, and a significant portion of this was due specifically to heterotrophic bacteria. Regeneration of ammonium was correlated with eucaryotic rather than procaryotic activity. Ammonium accounted for at least 20-60% of the summed ammonium plus amino acid utilization by bacteria. The results suggest that significant portion of ammonium uptake in the euphotic zone was by heterotrophic bacteria rather than solely by phytoplankton. This may invalidate the use of the Redfield C:N ratio for estimating rates of nitrogen assimilation in the euphotic zone from carbon assimilation rates

  18. Quantifying the production of dissolved organic nitrogen in headwater streams using 15N tracer additions

    Science.gov (United States)

    Laura T. Johnson; Jennifer L. Tank; Robert O. Hall; Patrick J. Mullholland; Stephen K. Hamilton; H. Maurice Valett; Jackson R. Webster; Melody J. Bernot; William H. McDowell; Bruce J. Peterson; Suzanne M. Thomas

    2013-01-01

    Most nitrogen (N) assimilation in lake and marine ecosystems is often subsequently released via autochthonous dissolved organic nitrogen (DON) production, but autochthonous DON production has yet to be quantified in flowing waters. We measured in-stream DON production following 24 h 15N-nitrate (NO3-...

  19. Analysis of microbial community and nitrogen transition with enriched nitrifying soil microbes for organic hydroponics.

    Science.gov (United States)

    Saijai, Sakuntala; Ando, Akinori; Inukai, Ryuya; Shinohara, Makoto; Ogawa, Jun

    2016-06-27

    Nitrifying microbial consortia were enriched from bark compost in a water system by regulating the amounts of organic nitrogen compounds and by controlling the aeration conditions with addition of CaCO 3 for maintaining suitable pH. Repeated enrichment showed reproducible mineralization of organic nitrogen via the conversion of ammonium ions ([Formula: see text]) and nitrite ions ([Formula: see text]) into nitrate ions ([Formula: see text]). The change in microbial composition during the enrichment was investigated by PCR-DGGE analysis with a focus on prokaryote, ammonia-oxidizing bacteria, nitrite-oxidizing bacteria, and eukaryote cell types. The microbial transition had a simple profile and showed clear relation to nitrogen ions transition. Nitrosomonas and Nitrobacter were mainly detected during [Formula: see text] and [Formula: see text] oxidation, respectively. These results revealing representative microorganisms acting in each ammonification and nitrification stages will be valuable for the development of artificial simple microbial consortia for organic hydroponics that consisted of identified heterotrophs and autotrophic nitrifying bacteria.

  20. Isotopic variations in the nitrogen of natural humic and bituminous organic substances

    International Nuclear Information System (INIS)

    Stiehl, G.; Lehmann, M.

    1980-01-01

    delta 15 N-values and nitrogen contents of a series of humic and bituminous organic sediments of different ranks were determined. The change of the isotopic abundance of nitrogen was investigated during heating in model experiments, using a gas flame coal. In the case of humic carbon coals the relative nitrogen contents vary from 0.8 to 1.4% and the delta 15 N-values from + 3.5 to + 6.3 parts per thousand increasing from the brown coal to anthracite ranks. During the coalification process both the delta 15 N-values and the relative nitrogen contents do not vary continuously with the rank, but pass through maxima and minima. Model experiments using a gas flame coal show the same trend. Nitrogen with delta 15 N-values of + 2.8 or -7 parts per thousand was released in pyrolysis experiments, applying a gas flame coal and a steam coal at temperatures of 650 and 1000 0 C, respectively. The investigated bituminous sediments yielded relative amounts of 0.1 to 0.8% with delta 15 N-values of + 4.2 to + 10.7 parts per thousand. The obtained results are discussed with respect to the elucidation of nitrogen genesis in natural gas deposits. (author)

  1. 40 CFR 60.33b - Emission guidelines for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Science.gov (United States)

    2010-07-01

    ... combustor metals, acid gases, organics, and nitrogen oxides. 60.33b Section 60.33b Protection of Environment... Constructed on or Before September 20, 1994 § 60.33b Emission guidelines for municipal waste combustor metals, acid gases, organics, and nitrogen oxides. (a) The emission limits for municipal waste combustor metals...

  2. Determination of the Fate of Dissolved Organic Nitrogen in the Three Wastewater Treatment Plants, Jordan

    Science.gov (United States)

    Wedyan, Mohammed; Al Harahsheh, Ahmed; Qnaisb, Esam

    2016-01-01

    This research aimed to assess the composition of total dissolved nitrogen (TDN) species, particularly dissolved organic nitrogen (DON), over the traditional wastewater treatment operations in three biological nutrient removal (BNR) wastewater treatment plants (WWTPs) in Jordan. It had been found that the DON percentage was up to 30% of TDN within…

  3. THE ROLE OF NITROGEN IN CHROMOPHORIC AND FLUORESCENT DISSOLVED ORGANIC MATTER FORMATION

    Science.gov (United States)

    Microbial and photochemical processes affect chromophoric dissolved organic matter (CDOM) dynamics in the ocean. Some evidence suggests that dissolved nitrogen plays a role in CDOM formation, although this has received little systematic attention in marine ecosystems. Coastal sea...

  4. LBA-ECO CD-02 Carbon, Nitrogen, Oxygen Stable Isotopes in Organic Material, Brazil

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set reports the measurement of stable carbon, nitrogen, and oxygen isotope ratios in organic material (plant, litter and soil samples) in forest canopy...

  5. LBA-ECO CD-02 Carbon, Nitrogen, Oxygen Stable Isotopes in Organic Material, Brazil

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set reports the measurement of stable carbon, nitrogen, and oxygen isotope ratios in organic material (plant, litter and soil samples) in forest...

  6. Characterization of free nitrogen fixing bacteria of the genus Azotobacter in organic vegetable-grown Colombian soils

    NARCIS (Netherlands)

    Jiménez Avella, Diego; Montaña, José Salvador; Martínez, María Mercedes

    With the purpose of isolating and characterizing free nitrogen fixing bacteria (FNFB) of the genus Azotobacter, soil samples were collected randomly from different vegetable organic cultures with neutral pH in different zones of Boyacá-Colombia. Isolations were done in selective free nitrogen

  7. Organic nitrogen rearranges both structure and activity of the soil-borne microbial seedbank.

    Science.gov (United States)

    Leite, Márcio F A; Pan, Yao; Bloem, Jaap; Berge, Hein Ten; Kuramae, Eiko E

    2017-02-15

    Use of organic amendments is a valuable strategy for crop production. However, it remains unclear how organic amendments shape both soil microbial community structure and activity, and how these changes impact nutrient mineralization rates. We evaluated the effect of various organic amendments, which range in Carbon/Nitrogen (C/N) ratio and degradability, on the soil microbiome in a mesocosm study at 32, 69 and 132 days. Soil samples were collected to determine community structure (assessed by 16S and 18S rRNA gene sequences), microbial biomass (fungi and bacteria), microbial activity (leucine incorporation and active hyphal length), and carbon and nitrogen mineralization rates. We considered the microbial soil DNA as the microbial seedbank. High C/N ratio favored fungal presence, while low C/N favored dominance of bacterial populations. Our results suggest that organic amendments shape the soil microbial community structure through a feedback mechanism by which microbial activity responds to changing organic inputs and rearranges composition of the microbial seedbank. We hypothesize that the microbial seedbank composition responds to changing organic inputs according to the resistance and resilience of individual species, while changes in microbial activity may result in increases or decreases in availability of various soil nutrients that affect plant nutrient uptake.

  8. Predicting nitrogen and acidity effects on long-term dynamics of dissolved organic matter

    OpenAIRE

    Rowe, E.C.; Tipping, E.; Posch, M.; Oulehle, Filip; Cooper, D.M.; Jones, T.G.; Burden, A.; Hall, J.; Evans, C.D.

    2014-01-01

    Increases in dissolved organic carbon (DOC) fluxes may relate to changes in sulphur and nitrogen pollution. We integrated existing models of vegetation growth and soil organic matter turnover, acid-base dynamics, and organic matter mobility, to form the ‘MADOC’ model. After calibrating parameters governing interactions between pH and DOC dissolution using control treatments on two field experiments, MADOC reproduced responses of pH and DOC to additions of acidifying and alkalising solutions. ...

  9. Dissolved organic nitrogen and carbon release by a marine unicellular diazotrophic cyanobacterium

    NARCIS (Netherlands)

    Benavides, M.; Agawin, N.S.R.; Aristegui, J.; Peene, J.; Stal, L.J.

    2013-01-01

    Dinitrogen (N-2) fixation rates may be underestimated when recently fixed N2 is released as dissolved organic nitrogen (DON). DON release (DONr) is substantial in the filamentous cyanobacterium Trichodesmium but has never been reported in unicellular diazotrophic cyanobacteria. We used axenic

  10. Dissolved organic nitrogen and carbon release by a marine unicellular diazotrophic cyanobacterium

    NARCIS (Netherlands)

    Benavides, M.; Agawin, N.S.R.; Aristegui, J.; Peene, J.; Stal, L.J.

    2013-01-01

    Dinitrogen (N2) fixation rates may be underestimated when recently fixed N2 is released as dissolved organic nitrogen (DON). DON release (DONr) is substantial in the filamentous cyanobacterium Trichodesmium but has never been reported in unicellular diazotrophic cyanobacteria. We used axenic

  11. Effect of organic matter application and water regimes on the transformation of fertilizer nitrogen in a Philippine soil

    International Nuclear Information System (INIS)

    Yoshida, Tomio; Padre, B.C. Jr.

    1975-01-01

    Greenhouse experiments using the tracer technique showed that about 20 per cent of the fertilizer nitrogen added as basal to the Maahas clay soil was immobilized in submerged soils to which no organic material was added. The addition of organic matter to the soil increases the amount of nitrogen immobilized and the magnitude depends on the carbon to nitrogen ratio of the materials added. More fertilizer nitrogen was immobilized in the soils under upland and alternate wet-and-dry conditions than under submerged soil conditions. The uptake of fertilizer nitrogen by rice plants growing under submerged soil conditions ceased at the vegetative stage of growth because only a small amount of available nitrogen remains in the soil at this time, but the rice plant continued to absorb gradually untagged nitrogen from the soil throughout the reproductive stages of growth. Losses of fertilizer nitrogen were great under the alternate wet-and-dry conditions (submerged-upland). The loss of nitrogen from the soil-plant system was reduced by the addition of rice straw, which also reduced the uptake of fertilizer nitrogen but not the total dry matter production under the experimental conditions. Fertilizer nitrogen immobilized during the first crop remained mostly in the soil throughout the full period of the second crop. The total nitrogen uptake by rice plants was not affected by the soil moisture tension under the upland conditions used in the study but the movement of nitrogen from the leaves to the panicles during the reproductive stage seemed to decrease as the soil moisture tension increased. (auth.)

  12. Spatial distribution of soils determines export of nitrogen and dissolved organic carbon from an intensively managed agricultural landscape

    DEFF Research Database (Denmark)

    Wohlfart, T; Exbrayat, J-F; Schelde, Kirsten

    2012-01-01

    nitrogen (TDN), nitrate (NO3−), ammonium nitrogen and dissolved organic carbon (DOC) concentrations were measured, and dissolved organic nitrogen (DON) was calculated for each grabbed sample. Electrical conductivity, pH and flow velocity were measured during sampling. Statistical analyses showed...... significant differences between the northern, southern and converged stream parts, especially for NO3− concentrations with average values between 1.4 mg N l−1 and 9.6 mg N l−1. Furthermore, throughout the sampling period DON concentrations increased to 2.8 mg N l−1 in the northern stream contributing up to 81...

  13. Bacterial microflora in Stichococcus bacillaris culture in nitrogenous-organic wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Bisz-Konarzewska, A.; Przytocka-Jusiak, M.; Rzeczycka, M.; Kowalska, A.

    1985-01-01

    The quantitative and qualitative composition of the population of heterotrophic bacteria accompanying Stichococcus bacillaris in culture in non-sterile nitrogenous-organic wastewater was examined. During 5 days of incubation the total number of bacteria did not show any marked changes and averaged 4 X 10(6) cells per ml. Twenty per cent of the isolated bacterial strains were gram-positive. Gram-negative rods were dominated by Enterobacteriaceae (40%) and Pseudomonas (17%).

  14. Metal-Organic Frameworks Derived Okra-like SnO2 Encapsulated in Nitrogen-Doped Graphene for Lithium Ion Battery.

    Science.gov (United States)

    Zhou, Xiangyang; Chen, Sanmei; Yang, Juan; Bai, Tao; Ren, Yongpeng; Tian, Hangyu

    2017-04-26

    A facile process is developed to prepare SnO 2 -based composites through using metal-organic frameworks (MOFs) as precursors. The nitrogen-doped graphene wrapped okra-like SnO 2 composites (SnO 2 @N-RGO) are successfully synthesized for the first time by using Sn-based metal-organic frameworks (Sn-MOF) as precursors. When utilized as an anode material for lithium-ion batteries, the SnO 2 @N-RGO composites possess a remarkably superior reversible capacity of 1041 mA h g -1 at a constant current of 200 mA g -1 after 180 charge-discharge processes and excellent rate capability. The excellent performance can be primarily ascribed to the unique structure of 1D okra-like SnO 2 in SnO 2 @N-RGO which are actually composed of a great number of SnO 2 primary crystallites and numerous well-defined internal voids, can effectively alleviate the huge volume change of SnO 2 , and facilitate the transport and storage of lithium ions. Besides, the structural stability acquires further improvement when the okra-like SnO 2 are wrapped by N-doped graphene. Similarly, this synthetic strategy can be employed to synthesize other high-capacity metal-oxide-based composites starting from various metal-organic frameworks, exhibiting promising application in novel electrode material field of lithium-ion batteries.

  15. On the water-soluble organic nitrogen concentration and mass size distribution during the fog season in the Po Valley, Italy.

    Science.gov (United States)

    Montero-Martínez, Guillermo; Rinaldi, Matteo; Gilardoni, Stefania; Giulianelli, Lara; Paglione, Marco; Decesari, Stefano; Fuzzi, Sandro; Facchini, Maria Cristina

    2014-07-01

    The study of organic nitrogen gained importance in recent decades due to its links with acid rain, pollution, and eutrophication. In this study, aerosol and fog water samples collected from two sites in Italy during November 2011 were analyzed to characterize their organic nitrogen content. Organic nitrogen contributed 19-25% of the total soluble nitrogen in the aerosol and around 13% in fog water. The largest water soluble organic nitrogen concentrations in the PM1.2 fraction occurred during the diurnal period with mean values of 2.03 and 2.16 μg-N m(-3) (154 and 145 nmol-N m(-3)) at Bologna and San Pietro Capofiume (SPC), respectively. The mean PM10 WSON concentration during diurnal periods at SPC was 2.30 μg-N m(-3) (164 nmol-N m(-3)) while it was 1.34 and 0.82 μg-N m(-3) (95.7 and 58.5 nmol-N m(-3)) in the night and fog water samples, respectively. Aerosol mass distribution profiles obtained during fog changed significantly with respect to those estimated in periods without fog periods due to fog scavenging, which proved to be over 80% efficient. Linear correlations suggested secondary processes related to combustion and, to a lesser extent, biomass burning, as plausible sources of WSON. Regarding the inorganic nitrogen fraction, the results showed that ammonium was the largest soluble inorganic nitrogen component in the samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Bulk deposition of organic and inorganic nitrogen in southwest China from 2008 to 2013

    International Nuclear Information System (INIS)

    Song, Ling; Kuang, Fuhong; Skiba, Ute; Zhu, Bo; Liu, Xuejun; Levy, Peter; Dore, Anthony; Fowler, David

    2017-01-01

    China is regarded as one of the nitrogen deposition hotspots in the world. Measurements to-date have focused mainly on the North China Plain, ignoring the fact that atmospheric chemical and physical properties vary across the country and that there may be other hotspots regions that should be investigated. For this reason we have conducted a six year study, measuring the bulk deposition of reduced (NH 4 -N), oxidized (NO 3 -N), and dissolved organic nitrogen (DON) at three contrasting sites in the Sichuan province, southwest China. The study sites were a high altitude forest in the Gongga Mountains (GG), an agriculture dominated region in Yanting (YT) and an urban site in the mega city Chengdu (CD). The annual average bulk deposition fluxes of total dissolved nitrogen (TDN) were 7.4, 23.1 and 36.6 kg N ha −1 yr −1 at GG, YT and CD sites, respectively, during the study period 2008 to 2013. The contributions of NH 4 -N, NO 3 -N and DON to the TDN were in the range of 48.4–57.8%, 28.8–43.7%, and 8.0–15.6%, respectively. DON bulk deposition was mainly dominated by agricultural activities. TDN bulk deposition fluxes showed increasing trends at the agricultural and urban sites from 2008 to 2013, but there was little change at the remote forest (GG) site. While reduced N dominated bulk N deposition at all the three sites, its contribution showed a decreasing trend, suggesting a gradual increase in the importance of oxidized N. These results reveal the value of long term monitoring in detecting changes in the atmospheric chemical composition of this rapidly changing region, and their inclusion in the policy debate regarding which sources should be controlled in order to reduce the long term impacts of N deposition, especially for southwest China, where there are few measurements of N deposition. - Highlights: • A region in southwest China was identified as a nitrogen deposition hotspot. • Agriculture was identified as the main source of organic nitrogen

  17. Nitrogen removal capacity and bacterial community dynamics of a Canon biofilter system at different organic matter concentrations.

    Science.gov (United States)

    García-Ruiz, María J; Maza-Márquez, Paula; González-López, Jesús; Osorio, Francisco

    2018-02-01

    Three Canon bench-scale bioreactors with a volume of 2 L operating in parallel were configured as submerged biofilters. In the present study we investigated the effects of a high ammonium concentration (320 mgNH 4 + · L -1 ) and different concentrations of organic matter (0, 100 and 400 mgCOD·L -1 ) on the nitrogen removal capacity and the bacterial community structure. After 60 days, the Canon biofilters operated properly under concentrations of 0 and 100 mgCOD·L -1 of organic matter, with nitrogen removal efficiencies up to 85%. However, a higher concentration of organic matter (400 mgCOD·L -1 ) produced a partial inhibition of nitrogen removal (68.1% efficiency). The addition of higher concentrations of organic matter a modified the bacterial community structure in the Canon biofilter, increasing the proliferation of heterotrophic bacteria related to the genera of Thauera, Longilinea, Ornatilinea, Thermomarinilinea, unclassified Chlorobiales and Denitratisoma. However, heterotrophic bacteria co-exist with Nitrosomonas and Candidatus Scalindua. Thus, our study confirms the co-existence of different microbial activities (AOB, Anammox and denitrification) and the adaptation of a fixed-biofilm system to different concentrations of organic matter. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. [Mechanisms for the increased fertilizer nitrogen use efficiency of rice in wheat-rice rotation system under combined application of inorganic and organic fertilizers].

    Science.gov (United States)

    Liu, Yi-Ren; Li, Xiang; Yu, Jie; Shen, Qi-Rong; Xu, Yang-Chun

    2012-01-01

    A pot experiment was conducted to study the effects of combined application of organic and inorganic fertilizers on the nitrogen uptake by rice and the nitrogen supply by soil in a wheat-rice rotation system, and approach the mechanisms for the increased fertilizer nitrogen use efficiency of rice under the combined fertilization from the viewpoint of microbiology. Comparing with applying inorganic fertilizers, combined application of organic and inorganic fertilizers decreased the soil microbial biomass carbon and nitrogen and soil mineral nitrogen contents before tillering stage, but increased them significantly from heading to filling stage. Under the combined fertilization, the dynamics of soil nitrogen supply matched best the dynamics of rice nitrogen uptake and utilization, which promoted the nitrogen accumulation in rice plant and the increase of rice yield and biomass, and increased the fertilizer nitrogen use efficiency of rice significantly. Combined application of inorganic and organic fertilizers also promoted the propagation of soil microbes, and consequently, more mineral nitrogen in soil was immobilized by the microbes at rice early growth stage, and the immobilized nitrogen was gradually released at the mid and late growth stages of rice, being able to better satisfy the nitrogen demand of rice in its various growth and development stages.

  19. Evaluation of leachate dissolved organic nitrogen discharge effect on wastewater effluent quality.

    Science.gov (United States)

    Bolyard, Stephanie C; Reinhart, Debra R

    2017-07-01

    Nitrogen is limited more and more frequently in wastewater treatment plant (WWTP) effluents because of the concern of causing eutrophication in discharge waters. Twelve leachates from eight landfills in Florida and California were characterized for total nitrogen (TN) and dissolved organic nitrogen (DON). The average concentration of TN and DON in leachate was approximately 1146mg/L and 40mg/L, respectively. Solid-phase extraction was used to fractionate the DON based on hydrophobic (recalcitrant fraction) and hydrophilic (bioavailable fraction) chemical properties. The average leachate concentrations of bioavailable (bDON) and recalcitrant (rDON) DON were 16.5mg/L and 18.4mg/L, respectively. The rDON fraction was positively correlated, but with a low R 2 , with total leachate apparent color dissolved UV 254 , chemical oxygen demand (COD), and humic acid (R 2 equals 0.38, 0.49, and 0.40, respectively). The hydrophobic fraction of DON (rDON) was highly colored. This fraction was also associated with over 60% of the total leachate COD. Multiple leachate and wastewater co-treatment simulations were carried out to assess the effects of leachate on total nitrogen wastewater effluent quality using removals for four WWTPs under different scenarios. The calculated pass through of DON suggests that leachate could contribute to significant amounts of nitrogen discharged to aquatic systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Fate of dissolved organic nitrogen in two stage trickling filter process.

    Science.gov (United States)

    Simsek, Halis; Kasi, Murthy; Wadhawan, Tanush; Bye, Christopher; Blonigen, Mark; Khan, Eakalak

    2012-10-15

    Dissolved organic nitrogen (DON) represents a significant portion of nitrogen in the final effluent of wastewater treatment plants (WWTPs). Biodegradable portion of DON (BDON) can support algal growth and/or consume dissolved oxygen in the receiving waters. The fate of DON and BDON has not been studied for trickling filter WWTPs. DON and BDON data were collected along the treatment train of a WWTP with a two-stage trickling filter process. DON concentrations in the influent and effluent were 27% and 14% of total dissolved nitrogen (TDN). The plant removed about 62% and 72% of the influent DON and BDON mainly by the trickling filters. The final effluent BDON values averaged 1.8 mg/L. BDON was found to be between 51% and 69% of the DON in raw wastewater and after various treatment units. The fate of DON and BDON through the two-stage trickling filter treatment plant was modeled. The BioWin v3.1 model was successfully applied to simulate ammonia, nitrite, nitrate, TDN, DON and BDON concentrations along the treatment train. The maximum growth rates for ammonia oxidizing bacteria (AOB) and nitrite oxidizing bacteria, and AOB half saturation constant influenced ammonia and nitrate output results. Hydrolysis and ammonification rates influenced all of the nitrogen species in the model output, including BDON. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. [Effect of Different Purple Parent Rock on Removal Rates of Nitrogen, Phosphorus and Organics in Landscape Water].

    Science.gov (United States)

    Huang, Xue-jiao; Liu, Xiao-chen; Li, Zhen-lun; Shi, Wen-hao; Yang, Shan

    2015-05-01

    In order to understand the impacts of physicochemical properties of purple parent rock on the removal rates of nitrogen, phosphorus and organics in landscape water systems, four types of purple parent rocks including Peng-lai-zhen Formation (S1) , Sha-xi-miao Formation (S2) , Fei-xian-guan Formation (S3) and Sui-ning Formation (S4) , which distribute widely in Chongqing, were selected and autoclaved, and added to unsterile landscape water collected from Chong-de Lake in Southwest University, and the landscape water only was used as control. And several indicators such as total nitrogen and phosphorus and so on of every disposal were investigated periodically. The results indicated that: (1) The highest removal rates of total nitrogen, total phosphorus and Ammonia nitrogen were observed in Sl, which were 45.1%, 62.3% and 90%, respectively; the highest removal rate of COD was 94.5% in S4; the ammonia nitrogen content in the purple parent rocks was not obviously changed before and after the experiments, which indicated that the adsorption of ammonia nitrogen on purple parent rock surface was not the main reason for the decrease of ammonia nitrogen in water. (2) Arsenate had inhibitory effect on the sulfate-reducing bacteria, while copper and magnesium had promoting effect on gram-negative bacteria. (3) The microbial diversity was positively correlated to total nitrogen in water. (4) Based on the PCA analyses of microbial community structure and environmental factors, the mineral elements released from parent rock affected the structure and composition of microbial community in the test water, and then influenced the removal rates of nitrogen, phosphorus and organics in water systems.

  2. Identification of Reactive and Refractory Components of Dissolved Organic Nitrogen by FT-ICR Mass Spectrometry

    Science.gov (United States)

    Cooper, W. T.; Podgorski, D. C.; Osborne, D. M.; Corbett, J.; Chanton, J.

    2010-12-01

    Dissolved organic nitrogen is an often overlooked but potentially significant bioavailable component of dissolved organic matter. Studies of bulk DON turnover have been reported, but the compositions of the reactive and refractory components of DON are largely unknown. Here we show the unique ability of atmospheric pressure photoionization (APPI) coupled to ultrahigh resolution mass spectrometry to identify the reactive and refractory components of DON. Figure 1 is an isolated 0.30 m/z window from an ultrahigh resolution APPI FT-ICR mass spectrum of DON in surface waters draining an agricultural area in South Florida. Using this optimized, negative-ion APPI strategy we have been able to identify the reactive and refractory components of DON in these nitrogen-rich waters. Similar results were observed with samples from soil porewaters in sedge-dominated fens and sphagnum-dominated bogs within the Glacial Lake Agassiz Peatlands (GLAP) of northern Minnesota. Surprisingly, microbes appear to initially use similar enzymatic pathways to degrade DON and DOC, often with little release of nitrogen. Figure 1. Isolated 0.30 m/z window at nominal mass 432 from negative-ion APPI FT-ICR mass spectrum of DOM from waters draining an agricultural area in South Florida. Peaks marked contain nitrogen.

  3. Effect of organic fertiliser residues from rice production on nitrogen fixation of soya (Glycine max L. Merrill, Chiang Mai 60 variety

    Directory of Open Access Journals (Sweden)

    Nattida Luangmaka

    2013-09-01

    Full Text Available A field study was undertaken on the residual effect of organic fertilisers applied to the preceding rice cropping on nitrogen fixation of soya in a rice-soya cropping system. The experiment was conducted on a farmer’s lowland paddy in Mae Rim district, Chiang Mai province, Thailand. Organic fertiliser treatments assigned were: 1 control (no fertiliser, 2 animal manure of cattle (AM, 3 compost (CP, 4 azolla (AZ, 5 AM + CP, 6 AM + AZ, 7 CP + AZ and 8 AM + CP + AZ. Soya seeds were planted without rhizobial inoculation in December 2011, four months after the application of organic fertilisers. Nodule weight, total shoot nitrogen accumulation and relative ureide index at various growth stages were recorded as the indices of nitrogen fixation. Results of the study demonstrate that the residues from the application the organic fertilisers of narrow C/N ratios during the land preparation for rice cropping four months before soya cultivation promoted nitrogen fixation by native rhizobia.

  4. Comparison of five organic wastes regarding their behaviour during composting: Part 2, nitrogen dynamic

    International Nuclear Information System (INIS)

    Guardia, A. de; Mallard, P.; Teglia, C.; Marin, A.; Le Pape, C.; Launay, M.; Benoist, J.C.; Petiot, C.

    2010-01-01

    This paper aimed to compare household waste, separated pig solids, food waste, pig slaughterhouse sludge and green algae regarding processes ruling nitrogen dynamic during composting. For each waste, three composting simulations were performed in parallel in three similar reactors (300 L), each one under a constant aeration rate. The aeration flows applied were comprised between 100 and 1100 L/h. The initial waste and the compost were characterized through the measurements of their contents in dry matter, total carbon, Kjeldahl and total ammoniacal nitrogen, nitrite and nitrate. Kjeldahl and total ammoniacal nitrogen and nitrite and nitrate were measured in leachates and in condensates too. Ammonia and nitrous oxide emissions were monitored in continue. The cumulated emissions in ammonia and in nitrous oxide were given for each waste and at each aeration rate. The paper focused on process of ammonification and on transformations and transfer of total ammoniacal nitrogen. The parameters of nitrous oxide emissions were not investigated. The removal rate of total Kjeldahl nitrogen was shown being closely tied to the ammonification rate. Ammonification was modelled thanks to the calculation of the ratio of biodegradable carbon to organic nitrogen content of the biodegradable fraction. The wastes were shown to differ significantly regarding their ammonification ability. Nitrogen balances were calculated by subtracting nitrogen losses from nitrogen removed from material. Defaults in nitrogen balances were assumed to correspond to conversion of nitrate even nitrite into molecular nitrogen and then to the previous conversion by nitrification of total ammoniacal nitrogen. The pool of total ammoniacal nitrogen, i.e. total ammoniacal nitrogen initially contained in waste plus total ammoniacal nitrogen released by ammonification, was calculated for each experiment. Then, this pool was used as the referring amount in the calculation of the rates of accumulation, stripping and

  5. Molecular composition and bioavailability of dissolved organic nitrogen in a lake flow-influenced river in south Florida, USA

    Science.gov (United States)

    Dissolved organic nitrogen (DON) represents a large percentage of the total nitrogen in rivers and estuaries, and can contribute to coastal eutrophication and hypoxia. This study reports on the composition and bioavailability of DON along the Caloosahatchee River (Florida), a heavily managed system ...

  6. Modelling the ecosystem effects of nitrogen deposition: Model of Ecosystem Retention and Loss of Inorganic Nitrogen (MERLIN

    Directory of Open Access Journals (Sweden)

    B. J. Cosby

    1997-01-01

    Full Text Available A catchment-scale mass-balance model of linked carbon and nitrogen cycling in ecosystems has been developed for simulating leaching losses of inorganic nitrogen. The model (MERLIN considers linked biotic and abiotic processes affecting the cycling and storage of nitrogen. The model is aggregated in space and time and contains compartments intended to be observable and/or interpretable at the plot or catchment scale. The structure of the model includes the inorganic soil, a plant compartment and two soil organic compartments. Fluxes in and out of the ecosystem and between compartments are regulated by atmospheric deposition, hydrological discharge, plant uptake, litter production, wood production, microbial immobilization, mineralization, nitrification, and denitrification. Nitrogen fluxes are controlled by carbon productivity, the C:N ratios of organic compartments and inorganic nitrogen in soil solution. Inputs required are: 1 temporal sequences of carbon fluxes and pools- 2 time series of hydrological discharge through the soils, 3 historical and current external sources of inorganic nitrogen; 4 current amounts of nitrogen in the plant and soil organic compartments; 5 constants specifying the nitrogen uptake and immobilization characteristics of the plant and soil organic compartments; and 6 soil characteristics such as depth, porosity, bulk density, and anion/cation exchange constants. Outputs include: 1 concentrations and fluxes of NO3 and NH4 in soil solution and runoff; 2 total nitrogen contents of the organic and inorganic compartments; 3 C:N ratios of the aggregated plant and soil organic compartments; and 4 rates of nitrogen uptake and immobilization and nitrogen mineralization. The behaviour of the model is assessed for a combination of land-use change and nitrogen deposition scenarios in a series of speculative simulations. The results of the simulations are in broad agreement with observed and hypothesized behaviour of nitrogen

  7. Higher molecular weight dissolved organic nitrogen turnover as affected by soil management history

    DEFF Research Database (Denmark)

    Lønne Enggrob, Kirsten

    of different management histories on the turnover of high Mw DON. Further, we distinguished between several classes of high Mw DON, i.e., 1-10 kDa and >10 kDa. 3. Materials and methods With the use of micro-lysimeters, the turnover of triple-labeled (15N, 14C and 13C) high Mw DON was studied in a sandy soil......High molecular weight dissolved organic nitrogen turnover as affected by soil management history *Kirsten Lønne Enggrob,1 Lars Elsgaard,1 and Jim Rasmussen1 1Aarhus University, Dept. of Agroecology, Foulum, Denmark 1. Introduction Dissolved organic nitrogen (DON) play an important role in soil N...... are presented for 14CO2 evolution during 14 days of incubation. 4. Results and conclusion Results showed that the turnover rate of high Mw DON was dependent on both the Mw size of DON and on the soil liming history. Evidence showing where in the DON Mw sizes the bottleneck lies will be presented....

  8. Recent studies of the ocean nitrogen cycle

    Science.gov (United States)

    Eppley, R. W.

    1984-01-01

    The nitrogen cycle in the ocean is dominated by the activities of organisms. External nitrogen inputs from land and from the atmosphere are small compared with rates of consumption and production by organisms and with rates of internal rearrangements of nitrogen pools within the ocean. The chief reservoirs of nitrogen are, in decreasing order of size: nitrogen in sediments, dissolved N2, nitrate, dissolved organic nitrogen (DON), particulate organic nitrogen (PON) (mostly organisms and their by-products). The biogenic fluxes of nitrogen were reviewed. The rate of PON decomposition in the surface layer must be comparable to the rate of ammonium consumption; and at the same time the nitrate consumption rate will be similar to the rates of: (1) sinking of PON out of the surface layer and its decompositon at depth, (2) the rate of nitrification at depth, and (3) the rate of nitrate return to the surface layer by upwelling.

  9. QTL analysis of symbiotic nitrogen fixation in a black bean RIL population

    Science.gov (United States)

    Dry bean (Phaseolus vulgaris L) acquires nitrogen (N) from the atmosphere through symbiotic nitrogen fixation (SNF) but it has a low efficiency to fix nitrogen. The objective of this study is to map the genes controlling nitrogen fixation in common bean. A mapping population consisting of 122 recomb...

  10. Nitrogen Cycling in the Mycorrhizosphere: Multipartite Interactions and Plant Nitrogen Uptake Vary with Fertilization Legacy

    Science.gov (United States)

    Hestrin, R.; Lehmann, J.

    2017-12-01

    Soil microbes play an important role in rhizosphere nutrient cycling and plant productivity. In this study, the contributions of soil microbes to organic matter mineralization and plant nitrogen uptake were investigated using incubation and microcosm experiments. Microbial inocula included arbuscular mycorrhizal fungi and microbial communities sampled across a long-term gradient of nitrogen fertilization. Stable isotopes, nanoSIMS imaging, and phospholipid fatty acid analysis were used to track carbon and nitrogen movement from organic matter into microbes, mycorrhizal fungi, and plants. Results show that multipartite relationships between plants and microbes increased plant growth and access to nitrogen from organic matter, and that nitrogen fertilization history had a lasting effect on microbial contributions to fungal and plant nitrogen uptake. This research links rhizosphere ecology and land management with terrestrial biogeochemistry.

  11. Characterizing the transformation and transfer of nitrogen during the aerobic treatment of organic wastes and digestates

    Energy Technology Data Exchange (ETDEWEB)

    Zeng Yang, E-mail: yang.zeng@irstea.fr [Irstea, UR GERE, 17 avenue de Cucille, CS 64427, F-35044 Rennes Cedex (France); Universite Europeenne de Bretagne, F-35000 Rennes (France); Guardia, Amaury de; Daumoin, Mylene; Benoist, Jean-Claude [Irstea, UR GERE, 17 avenue de Cucille, CS 64427, F-35044 Rennes Cedex (France)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Ammonia emissions varied depending on the nature of wastes and the treatment conditions. Black-Right-Pointing-Pointer Nitrogen losses resulted from ammonia emissions and nitrification-denitrification. Black-Right-Pointing-Pointer Ammonification can be estimated from biodegradable carbon and carbon/nitrogen ratio. Black-Right-Pointing-Pointer Ammonification was the main process contributing to N losses. Black-Right-Pointing-Pointer Nitrification rate was negatively correlated to stripping rate of ammonia nitrogen. - Abstract: The transformation and transfer of nitrogen during the aerobic treatment of seven wastes were studied in ventilated air-tight 10-L reactors at 35 Degree-Sign C. Studied wastes included distinct types of organic wastes and their digestates. Ammonia emissions varied depending on the kind of waste and treatment conditions. These emissions accounted for 2-43% of the initial nitrogen. Total nitrogen losses, which resulted mainly from ammonia emissions and nitrification-denitrification, accounted for 1-76% of the initial nitrogen. Ammonification was the main process responsible for nitrogen losses. An equation which allows estimating the ammonification flow of each type of waste according to its biodegradable carbon and carbon/nitrogen ratio was proposed. As a consequence of the lower contribution of storage and leachate rates, stripping and nitrification rates of ammonia nitrogen were negatively correlated. This observation suggests the possibility of promotingnitrification in order to reduce ammonia emissions.

  12. Organic amendment of crop soil and its relation to hotspots of bacterial nitrogen cycling

    Science.gov (United States)

    Pereg, Lily; McMillan, Mary

    2015-04-01

    Crop production in Australian soils requires a high use of fertilisers, including N, P and K for continues utilisation of the soil. Growers often grow crops in rotation of summer crop, such as cotton with winter crop, such as wheat in the same field. Growers are getting more and more aware about sustainability of the soil resources and the more adventurous ones use soil amendments, such as organic supplements in addition to the chemical fertilisers. We have collected soil samples from fields that were cultivated in preparation for planting cotton and tested the soil for its bacterial populations with potential to perform different functions, including those related to the nitrogen cycling. One of our aims was to determine whether organic amendments create hotspots for bacterial functions related to bacterial nitrogen cycling. This pan of the project will be discussed in this presentation.

  13. Utilization of 15N-labelled nitrogen fertilizer in dependence on organic manuring and carbon and nitrogen contents of loess chernozem profiles with different stratification

    International Nuclear Information System (INIS)

    Greilich, J.

    1988-01-01

    In an outdoor model experiment with different total C and N contents in five profile variants of loess chernozem, the utilization of 15 N-labelled mineral fertilizer N by maize was investigated over three years. The total nitrogen uptake in the variants correlated with the yields at nearly uniform nitrogen contents in dry matter. Total C and N contents of the profile variants and one organic manure application per year had no statistically significant effects on the 15 N-labelled fertilizer N proportion in total N content of biomass. As a result of the low yields obtained from the variants with low total C and N contents of soil, mineral fertilizer utilization was found to be lower, too, in most of these variants. Organic manuring had no essential effect on mineral fertilizer N utilization. (author)

  14. Organics and nitrogen removal from textile auxiliaries wastewater with A2O-MBR in a pilot-scale

    International Nuclear Information System (INIS)

    Sun, Faqian; Sun, Bin; Hu, Jian; He, Yangyang; Wu, Weixiang

    2015-01-01

    Highlights: • A pilot-scale A 2 O-MBR system treating textile auxiliaries wastewater was assessed. • Organic matter and recycle ratio strongly affected the performance of the system. • GC/MS analysis found some refractory organics in the MBR permeate. • Combination of organic foulants and inorganic compounds caused membrane fouling. - Abstract: The removal of organic compounds and nitrogen in an anaerobic–anoxic–aerobic membrane bioreactor process (A 2 O-MBR) for treatment of textile auxiliaries (TA) wastewater was investigated. The results show that the average effluent concentrations of chemical oxygen demand (COD), ammonium nitrogen (NH 4 + –N) and total nitrogen (TN) were about 119, 3 and 48 mg/L under an internal recycle ratio of 1.5. The average removal efficiency of COD, NH 4 + –N and TN were 87%, 96% and 55%, respectively. Gas chromatograph–mass spectrometer analysis indicated that, although as much as 121 different types of organic compounds were present in the TA wastewater, only 20 kinds of refractory organic compounds were found in the MBR effluent, which could be used as indicators of effluents from this kind of industrial wastewater. Scanning electron microscopy analysis revealed that bacterial foulants were significant contributors to membrane fouling. An examination of foulants components by wavelength dispersive X-ray fluorescence showed that the combination of organic foulants and inorganic compounds enhanced the formation of gel layer and thus caused membrane fouling. The results will provide valuable information for optimizing the design and operation of wastewater treatment system in the textile industry

  15. Nitrogen, Sulfur, and Oxygen Isotope Ratios of Animal- and Plant-Based Organic Fertilizers Used in South Korea.

    Science.gov (United States)

    Shin, Woo-Jin; Ryu, Jong-Sik; Mayer, Bernhard; Lee, Kwang-Sik; Kim, Insu

    2017-05-01

    Organic fertilizers are increasingly used in agriculture in Asia and elsewhere. Tracer techniques are desirable to distinguish the fate of nutrients added to agroecosystems with organic fertilizers from those contained in synthetic fertilizers. Therefore, we determined the nitrogen, sulfur, and oxygen isotope ratios of nitrogen- and sulfur-bearing compounds in animal- and plant-based organic fertilizers (ABOF and PBOF, respectively) used in South Korea to evaluate whether they are isotopically distinct. The δN values of total and organic nitrogen for ABOF ranged from +7 to +19‰ and were higher than those of PBOF (generally fertilizer compounds in the plant-soil-water system, whereas PBOFs have similar δN values to synthetic fertilizers. However, δO values for nitrate (δO) from organic fertilizer samples (fertilizers. The δS values of total sulfur, organic sulfur compounds (e.g., carbon-bonded sulfur and hydriodic acid-reducible sulfur), and sulfate for ABOFs yielded wide and overlapping ranges of +0.3 to +6.3, +0.9 to +7.2, and -2.6 to +14.2‰, whereas those for PBOFs varied from -3.4 to +7.7, +1.4 to +9.4, and -4.1 to +12.5‰, respectively, making it challenging to distinguish the fate of sulfur compounds from ABOF and PBOF in the environment using sulfur isotopes. We conclude that the δN values of ABOFs and the O values of organic fertilizers are distinct from those of synthetic fertilizers and are a promising tool for tracing the fate of nutrients added by organic fertilizers to agroecosystems. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  16. Nitrogen and carbon isotopes in soil with special reference to the diagnosis of organic matter

    International Nuclear Information System (INIS)

    Wada, Eitaro; Nakamura, Koichi.

    1980-01-01

    Distributions of nitrogen and carbon isotopes in terrestrial ecosystems are described based on available data and our recent findings for soil organic matters. Major processes regulating N-isotope and C-isotope ratios in biogenic substances are discussed. The biological di-nitrogen fixation and the precipitation are major sources which lower the delta 15 N value for forested soil organic matters. Denitrification enhances delta 15 N value for soil in cultivated fields. An addition of chemical fertilizer lowers 15 N content in soils. The permiation of soil water is an important factor controlling vertical profiles of delta 15 N in soil systems. Among soil organic matters, non-hydrolizable fraction seems to give unique low delta 15 N value, suggesting the utility of delta 15 N analysis in studying the nature of the fractions. delta 13 C of soil organic matter is significantly lower than that for marine sediments. delta 13 C for soil humus varies with respect to chemical forms as well as an age of soil organic matters. The variation is large in paddy fields. It is, thus, probable that delta 13 C is an useful parameter in studying the early epidiagenesis of soil organic matters. Based on the known delta 15 N-delta 13 C relationships, a two-source mixing model has been applied to assess sources of organic matters in coastal sediment. (author)

  17. Evaluation of the symbiotic nitrogen fixation in soybean by labelling of soil organic matter

    International Nuclear Information System (INIS)

    Ruschel, A.P.; Freitas, J.R. de; Vose, P.B.

    1982-01-01

    An experiment was carried out using the isotopic dilution method to evaluate symbiotic nitrogen fixation in soybean grown in soil labelled with 15 N enriched organic matter. Symbiotic N 2 -fixed was 71-76% of total N in the plant. Non nodulated soybean utilized 56-59% N from organic matter and 40% from soil. Roots of nodulated plants had lower NdN 2 than aereal plant parts. The advantage of using labelled organic matter as compared with 15 N-fertilizer addition in evaluating N 2 -fixation is discussed. (Author) [pt

  18. Organic forms dominate hydrologic nitrogen export from a lowland tropical watershed.

    Science.gov (United States)

    Taylor, Philip G; Wieder, William R; Weintraub, Samantha; Cohen, Sagy; Cleveland, Cory C; Townsend, Alan R

    2015-05-01

    Observations of high dissolved inorganic nitrogen (DIN) concentrations in stream water have reinforced the notion that primary tropical rain forests cycle nitrogen (N) in relative excess compared to phosphorus. Here we test this notion by evaluating hydrologic N export from a small watershed on the Osa Peninsula, Costa Rica, where prior research has shown multiple indicators of conservative N cycling throughout the ecosystem. We repeatedly measured a host of factors known to influence N export for one year, including stream water chemistry and upslope litterfall, soil N availability and net N processing rates, and soil solution chemistry at the surface, 15- and 50-cm depths. Contrary to prevailing assumptions about the lowland N cycle, we find that dissolved organic nitrogen (DON) averaged 85% of dissolved N export for 48 of 52 consecutive weeks. For most of the year stream water nitrate (NO3-) export was very low, which reflected minimal net N processing and DIN leaching from upslope soils. Yet, for one month in the dry season, NO3- was the major component of N export due to a combination of low flows and upslope nitrification that concentrated NO3- in stream water. Particulate organic N (PON) export was much larger than dissolved forms at 14.6 kg N x ha(-1) x yr(-1), driven by soil erosion during storms. At this rate, PON export was slightly greater than estimated inputs from free-living N fixation and atmospheric N deposition, which suggests that erosion-driven PON export could constrain ecosystem level N stocks over longer timescales. This phenomenon is complimentary to the "DON leak" hypothesis, which postulates that the long-term accumulation of ecosystem N in unpolluted ecosystems is constrained by the export of organic N independently of biological N demand. Using an established global sediment generation model, we illustrate that PON erosion may be an important vector for N loss in tropical landscapes that are geomorphically active. This study supports an

  19. Linking annual N2O emission in organic soils to mineral nitrogen input as estimated by heterotrophic respiration and soil C/N ratio.

    Science.gov (United States)

    Mu, Zhijian; Huang, Aiying; Ni, Jiupai; Xie, Deti

    2014-01-01

    Organic soils are an important source of N2O, but global estimates of these fluxes remain uncertain because measurements are sparse. We tested the hypothesis that N2O fluxes can be predicted from estimates of mineral nitrogen input, calculated from readily-available measurements of CO2 flux and soil C/N ratio. From studies of organic soils throughout the world, we compiled a data set of annual CO2 and N2O fluxes which were measured concurrently. The input of soil mineral nitrogen in these studies was estimated from applied fertilizer nitrogen and organic nitrogen mineralization. The latter was calculated by dividing the rate of soil heterotrophic respiration by soil C/N ratio. This index of mineral nitrogen input explained up to 69% of the overall variability of N2O fluxes, whereas CO2 flux or soil C/N ratio alone explained only 49% and 36% of the variability, respectively. Including water table level in the model, along with mineral nitrogen input, further improved the model with the explanatory proportion of variability in N2O flux increasing to 75%. Unlike grassland or cropland soils, forest soils were evidently nitrogen-limited, so water table level had no significant effect on N2O flux. Our proposed approach, which uses the product of soil-derived CO2 flux and the inverse of soil C/N ratio as a proxy for nitrogen mineralization, shows promise for estimating regional or global N2O fluxes from organic soils, although some further enhancements may be warranted.

  20. Bioavailability of dissolved organic nitrogen (DON) in wastewaters from animal feedlots and storage lagoons

    Science.gov (United States)

    Dissolved organic nitrogen (DON) transport from animal agriculture to surface waters can lead to eutrophication and dissolved oxygen depletion. Biodegradable DON (BDON) is a portion of DON that is mineralized by bacteria while bioavailable DON (ABDON) is utilized by bacteria and/or algae. This stu...

  1. Soil organic carbon and nitrogen accumulation on coal mine spoils reclaimed with maritime pine (Pinus pinaster Aiton) in Agacli-Istanbul.

    Science.gov (United States)

    Sever, Hakan; Makineci, Ender

    2009-08-01

    Mining operations on open coal mines in Agacli-Istanbul have resulted in the destruction of vast amounts of land. To rehabilitate these degraded lands, plantations on this area began in 1988. Twelve tree species were planted, however, the most planted tree species was maritime pine (Pinus pinaster Aiton). This study performed on 14 sample plots randomly selected in maritime pine plantations on coal mine soil/spoils in 2005. Soil samples were taken from eight different soil layers (0-1, 1-3, 3-5, 5-10, 10-20, 20-30, 30-40 and 40-50 cm) into the soil profile. On soil samples; fine soil fraction (<2 mm), soil acidity (pH), organic carbon (C(org)) and total nitrogen (N(t)) contents were investigated, and results were compared statistically among soil layers. As a result, 17 years after plantations, total forest floor accumulation determined as 17,973.20 kg ha(-1). Total nitrogen and organic matter amounts of forest floor were 113.90 and 14,640.92 kg ha(-1) respectively. Among soil layers, the highest levels of organic carbon (1.77%) and total nitrogen (0.096%) and the lowest pH value (pH 5.38) were found in 0-1 cm soil layer, and the variation differs significantly among soil layers. Both organic carbon and total nitrogen content decreased, pH values increased from 0-1 to 5-10 cm layer. In conclusion, according to results obtained maritime pine plantations on coal mine spoils; slow accumulation and decomposition of forest floor undergo simultaneously. Depending on these changes organic carbon and total nitrogen contents increased in upper layer of soil/spoil.

  2. Organic carbon and nitrogen stable isotopes in the intertidal sediments from the Yangtze Estuary, China

    International Nuclear Information System (INIS)

    Liu, M. . E-mail mliu@geo.ecnu.edu.cn; Hou, L.J.; Xu, S.Y.; Ou, D.N.; Yang, Y.; Yu, J.; Wang, Q.

    2006-01-01

    The natural isotopic compositions and C/N elemental ratios of sedimentary organic matter were determined in the intertidal flat of the Yangtze Estuary. The results showed that the ratios of carbon and nitrogen stable isotopes were respectively -29.8 per mille to - 26.0 per mille and 1.6 per mille -5.5 per mille in the flood season (July), while they were -27.3 per mille to - 25.6 per mille and 1.7 per mille -7.8 per mille in the dry season (February), respectively. The δ 13 C signatures were remarkably higher in July than in February, and gradually increased from the freshwater areas to the brackish areas. In contrast, there were relatively complex seasonal and spatial changes in stable nitrogen isotopes. It was also reflected that δ 15 N and C/N compositions had been obviously modified by organic matter diagenesis and biological processing, and could not be used to trace the sources of organic matter at the study area. In addition, it was considered that the mixing inputs of terrigenous and marine materials generally dominated sedimentary organic matter in the intertidal flat. The contribution of terrigenous inputs to sedimentary organic matter was roughly estimated according to the mixing balance model of stable carbon isotopes

  3. Removal of nitrogen and organic matter in a submerged-membrane bioreactor operating in a condition of simultaneous nitrification and denitrification

    Directory of Open Access Journals (Sweden)

    Izabela Major Barbosa

    2016-04-01

    Full Text Available This study evaluated the removal of nitrogen and organic matter in a membrane bioreactor system operating in a condition of simultaneous nitrification and denitrification controlled by intermittent aeration. A submerged-membrane system in a bioreactor was used in a pilot scale to treat domestic wastewater. The dissolved oxygen concentration was maintained between 0.5 and 0.8 mg L-1. The concentration of the mixed liquor suspended solids (MLSS in the system ranged from 1 to 6 g L-1. The system efficiency was evaluated by the removal efficiency of organic matter, quantified by Chemical Oxygen Demand (COD, Biochemical Oxygen Demand (BOD5 and Total Organic Carbon (TOC. Nitrogen removal was assessed by quantifying Total Kjeldahl Nitrogen (TKN and ammonia nitrogen. During the system start-up, the removal efficiencies of COD and NTK were around 90% and 80%, respectively. After the simultaneous nitrification and denitrification (SND conditions were established, the removal efficiencies of COD and NTK were 70% and 99%, respectively. These results showed that sewage treatment with the membrane bioreactor (MBR system, operating with simultaneous nitrification and denitrification conditions, was able to remove organic matter and promote nitrification and denitrification in a single reactor, producing a high-quality permeate.

  4. Transformation of fertilizer nitrogen in soil

    International Nuclear Information System (INIS)

    Soechting, H.

    1980-01-01

    Pot experiments are described in which the transformations between nitrogen added as fertilizer urea, plant-assimilated nitrogen, and different chemical fractions of soil or added straw nitrogen were studied with 15 N as a tracer. The data indicated that: (a) The transformation of added fertilizer nitrogen to immobilized amide nitrogen is decreased with added decomposable organic carbon. The transformation to immobilized α-amino N is increased, on the other hand, by the addition of decomposable organic carbon. (b) The freshly immobilized amide nitrogen is more readily remineralized than the α-amino form. The immobilization of added nitrogen continues in the presence of growing plants. (c) Mineralization of nitrogen added as 15 N-labelled straw is also increased with increasing fertilizer-nitrogen additions. (author)

  5. Effect of Phosphorous and Potassium Fertilization on Nitrogen Utilized by wheat Grown in Saline Soil Amended with Organic Manures

    International Nuclear Information System (INIS)

    Soliman, S.M.; Gadalla, A.M.; Kotb, E.A.; Mostafa, S.M.A.; Mansour, M.M.F.

    2008-01-01

    This study was carried out on poor saline soil located at Wad Ras Sudr, South Saini Governorate, and suffers from shortage of water resources. Therefore, we aimed to utilize this soil as well as the saline ground water for plant production. Organic fertilizers such as green manure(GM) or poultry manure(PM) can be used as nutrient sources, where it improves the physical, chemical and biological properties of the soil. Economically, the yield improvement and nutrient supply will reflect the potential use of such organic materials. Also, phosphorus and/or potassium supplementation separately or in combination with green or poultry manures improved the growth of wheat plants under such adverse condition of salinity. Application of 15 N technique indicated that labeled nitrogen added as ammonium sulphate (AS) to investigate and discrimination between the different N sources i.e. nitrogen derived from fertilizer (Ndff) and nitrogen derived from soil (Ndfs) as well as nitrogen use efficiency (FUE %)

  6. Acquiring beam data for a flattening-filter free linear accelerator using organic scintillators

    International Nuclear Information System (INIS)

    Beierholm, A.R.; Behrens, C.F.; Hoffmann, L.; Andersen, C.E.

    2013-01-01

    Fibre-coupled organic scintillators have been proven a credible alternative to clinically implemented methods for radiotherapy dosimetry, primarily due to their water equivalence and good spatial resolution. Furthermore, the fast response of the scintillators can be exploited to perform time-resolved dosimetry on a highly detailed level. In this study, we present beam data for a Varian TrueBeam linear accelerator, which is capable of delivering flattening-filter free (FFF 1 ) clinical X-ray beams. The beam data have been acquired using an in-house developed dosimetry system based on fibre-coupled organic scintillators. The presented data exhibit high accuracy and precision when compared with data obtained using commercial dosimetry methods, and agree well with results published in the literature. -- Highlights: •A dosimetry system based on fibre-coupled organic scintillators is presented. •The system is used for radiotherapy beams with and without flattening filter. •Measurements show good agreement with various commercial dosimeters

  7. Sources of Nitrogen for Winter Wheat in Organic Cropping Systems

    DEFF Research Database (Denmark)

    Petersen, Søren O; Schjønning, Per; Olesen, Jørgen E

    2013-01-01

    mineralizable N (PMN), microbial biomass N (MBN)] were monitored during two growth periods; at one site, biomass C/N ratios were also determined. Soil for labile N analysis was shielded from N inputs during spring application to isolate cumulated system effects. Potentially mineralizable N and MBN were...... explained 76 and 82% of the variation in grain N yields in organic cropping systems in 2007 and 2008, showing significant effects of, respectively, topsoil N, depth of A horizon, cumulated inputs of N, and N applied to winter wheat in manure. Thus, soil properties and past and current management all......In organic cropping systems, legumes, cover crops (CC), residue incorporation, and manure application are used to maintain soil fertility, but the contributions of these management practices to soil nitrogen (N) supply remain obscure. We examined potential sources of N for winter wheat (Triticum...

  8. Dissolved organic carbon and dissolved organic nitrogen data collected using bottle in a world wide distribution from 02 September 1998 to 02 November 2003 (NODC Accession 0002403)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) data were collected using bottle casts in a world wide distribution. Data were collected from 02...

  9. Organics and nitrogen removal from textile auxiliaries wastewater with A{sup 2}O-MBR in a pilot-scale

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Faqian [Institute of Environmental Science and Technology, Zhejiang University, Hangzhou 310058 (China); Sun, Bin [Institute of Environmental Science and Technology, Zhejiang University, Hangzhou 310058 (China); Shanghai Electric Group Co. Ltd. Central Academe, Shanghai 200070 (China); Hu, Jian; He, Yangyang [Institute of Environmental Science and Technology, Zhejiang University, Hangzhou 310058 (China); Wu, Weixiang, E-mail: weixiang@zju.edu.cn [Institute of Environmental Science and Technology, Zhejiang University, Hangzhou 310058 (China)

    2015-04-09

    Highlights: • A pilot-scale A{sup 2}O-MBR system treating textile auxiliaries wastewater was assessed. • Organic matter and recycle ratio strongly affected the performance of the system. • GC/MS analysis found some refractory organics in the MBR permeate. • Combination of organic foulants and inorganic compounds caused membrane fouling. - Abstract: The removal of organic compounds and nitrogen in an anaerobic–anoxic–aerobic membrane bioreactor process (A{sup 2}O-MBR) for treatment of textile auxiliaries (TA) wastewater was investigated. The results show that the average effluent concentrations of chemical oxygen demand (COD), ammonium nitrogen (NH{sub 4}{sup +}–N) and total nitrogen (TN) were about 119, 3 and 48 mg/L under an internal recycle ratio of 1.5. The average removal efficiency of COD, NH{sub 4}{sup +}–N and TN were 87%, 96% and 55%, respectively. Gas chromatograph–mass spectrometer analysis indicated that, although as much as 121 different types of organic compounds were present in the TA wastewater, only 20 kinds of refractory organic compounds were found in the MBR effluent, which could be used as indicators of effluents from this kind of industrial wastewater. Scanning electron microscopy analysis revealed that bacterial foulants were significant contributors to membrane fouling. An examination of foulants components by wavelength dispersive X-ray fluorescence showed that the combination of organic foulants and inorganic compounds enhanced the formation of gel layer and thus caused membrane fouling. The results will provide valuable information for optimizing the design and operation of wastewater treatment system in the textile industry.

  10. A method to acquire CT organ dose map using OSL dosimeters and ATOM anthropomorphic phantoms

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Da; Li, Xinhua; Liu, Bob [Division of Diagnostic Imaging Physics and Webster Center for Advanced Research and Education in Radiation, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts 02114 (United States); Gao, Yiming; Xu, X. George [Nuclear Engineering Program, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States)

    2013-08-15

    Purpose: To present the design and procedure of an experimental method for acquiring densely sampled organ dose map for CT applications, based on optically stimulated luminescence (OSL) dosimeters “nanoDots” and standard ATOM anthropomorphic phantoms; and to provide the results of applying the method—a dose data set with good statistics for the comparison with Monte Carlo simulation result in the future.Methods: A standard ATOM phantom has densely located holes (in 3 × 3 cm or 1.5 × 1.5 cm grids), which are too small (5 mm in diameter) to host many types of dosimeters, including the nanoDots. The authors modified the conventional way in which nanoDots are used, by removing the OSL disks from the holders before inserting them inside a standard ATOM phantom for dose measurements. The authors solved three technical difficulties introduced by this modification: (1) energy dependent dose calibration for raw OSL readings; (2) influence of the brief background exposure of OSL disks to dimmed room light; (3) correct pairing between the dose readings and measurement locations. The authors acquired 100 dose measurements at various positions in the phantom, which was scanned using a clinical chest protocol with both angular and z-axis tube current modulations.Results: Dose calibration was performed according to the beam qualities inside the phantom as determined from an established Monte Carlo model of the scanner. The influence of the brief exposure to dimmed room light was evaluated and deemed negligible. Pairing between the OSL readings and measurement locations was ensured by the experimental design. The organ doses measured for a routine adult chest scan protocol ranged from 9.4 to 18.8 mGy, depending on the composition, location, and surrounding anatomy of the organs. The dose distribution across different slices of the phantom strongly depended on the z-axis mA modulation. In the same slice, doses to the soft tissues other than the spinal cord demonstrated

  11. A method to acquire CT organ dose map using OSL dosimeters and ATOM anthropomorphic phantoms

    International Nuclear Information System (INIS)

    Zhang, Da; Li, Xinhua; Liu, Bob; Gao, Yiming; Xu, X. George

    2013-01-01

    Purpose: To present the design and procedure of an experimental method for acquiring densely sampled organ dose map for CT applications, based on optically stimulated luminescence (OSL) dosimeters “nanoDots” and standard ATOM anthropomorphic phantoms; and to provide the results of applying the method—a dose data set with good statistics for the comparison with Monte Carlo simulation result in the future.Methods: A standard ATOM phantom has densely located holes (in 3 × 3 cm or 1.5 × 1.5 cm grids), which are too small (5 mm in diameter) to host many types of dosimeters, including the nanoDots. The authors modified the conventional way in which nanoDots are used, by removing the OSL disks from the holders before inserting them inside a standard ATOM phantom for dose measurements. The authors solved three technical difficulties introduced by this modification: (1) energy dependent dose calibration for raw OSL readings; (2) influence of the brief background exposure of OSL disks to dimmed room light; (3) correct pairing between the dose readings and measurement locations. The authors acquired 100 dose measurements at various positions in the phantom, which was scanned using a clinical chest protocol with both angular and z-axis tube current modulations.Results: Dose calibration was performed according to the beam qualities inside the phantom as determined from an established Monte Carlo model of the scanner. The influence of the brief exposure to dimmed room light was evaluated and deemed negligible. Pairing between the OSL readings and measurement locations was ensured by the experimental design. The organ doses measured for a routine adult chest scan protocol ranged from 9.4 to 18.8 mGy, depending on the composition, location, and surrounding anatomy of the organs. The dose distribution across different slices of the phantom strongly depended on the z-axis mA modulation. In the same slice, doses to the soft tissues other than the spinal cord demonstrated

  12. Fast-freezing with liquid nitrogen preserves bulk dissolved organic matter concentrations, but not its composition

    DEFF Research Database (Denmark)

    Thieme, Lisa; Graeber, Daniel; Kaupenjohann, Martin

    2016-01-01

    -freezing with liquid nitrogen) on DOM concentrations measured as organic carbon (DOC) concentrations and on spectroscopic properties of DOM from different terrestrial ecosystems (forest and grassland). Fresh and differently frozen throughfall, stemflow, litter leachate and soil solution samples were analyzed for DOC...... concentrations, UV-vis absorption and fluorescence excitation–emission matrices combined with parallel factor analysis (PARAFAC). Fast-freezing with liquid nitrogen prevented a significant decrease of DOC concentrations observed after freezing at −18 °C. Nonetheless, the share of PARAFAC components 1 (EXmax...... component 4 (EXmax: 280 nm, EXmax: 328 nm) to total fluorescence was not affected by freezing. We recommend fast-freezing with liquid nitrogen for preservation of bulk DOC concentrations of samples from terrestrial sources, whereas immediate measuring is preferable to preserve spectroscopic properties...

  13. Development and evaluation of a radial anaerobic/aerobic reactor treating organic matter and nitrogen in sewage

    Directory of Open Access Journals (Sweden)

    L. H. P. Garbossa

    2005-12-01

    Full Text Available The design and performance of a radial anaerobic/aerobic immobilized biomass (RAAIB reactor operating to remove organic matter, solids and nitrogen from sewage are discussed. The bench-scale RAAIB was divided into five concentric chambers. The second and fourth chambers were packed with polyurethane foam matrices. The performance of the reactor in removing organic matter and producing nitrified effluent was good, and its configuration favored the transfer of oxygen to the liquid mass due to its characteristics and the fixed polyurethane foam bed arrangement in concentric chambers. Partial denitrification of the liquid also took place in the RAAIB. The reactor achieved an organic matter removal efficiency of 84%, expressed as chemical oxygen demand (COD, and a total Kjeldahl nitrogen (TKN removal efficiency of 96%. Average COD, nitrite and nitrate values for the final effluent were 54 mg.L-1, 0.3 mg.L-1 and 22.1 mg.L-1, respectively.

  14. Plant biomass, soil microbial community structure and nitrogen cycling under different organic amendment regimes; a

    NARCIS (Netherlands)

    Heijboer, Amber; Berge, ten Hein F.M.; Ruiter, de Peter C.; Jørgensen, Helene Bracht; Kowalchuk, George A.; Bloem, Jaap

    2016-01-01

    Sustainable agriculture requires nutrient management options that lead to a profitable crop yield with relatively low nitrogen (N) losses to the environment. We studied whether the addition of contrasting organic amendments together with inorganic fertilizer can promote both requirements

  15. Emiliania Huxleyi (Prymnesiophyceae): Nitrogen-metabolism genes and their expression in response to external nitrogen souces

    DEFF Research Database (Denmark)

    Bruhn, Annette; LaRoche, Julie; Richardson, Katherine

    2010-01-01

    The availability and composition of dissolved nitrogen in ocean waters are factors that influence species composition in natural phytoplankton communities. The same factors affect the ratio of organic to inorganic carbon incorporation in calcifying species, such as the coccolithophore Emiliania...... huxleyi (Lohman) W. W. Hay et H. Mohler. E. huxleyi has been shown to thrive on various nitrogen sources, including dissolved organic nitrogen. Nevertheless, assimilation of dissolved nitrogen under nitrogen-replete and -limited conditions is not well understood in this ecologically important species....... In this study, the complete amino acid sequences for three functional genes involved in nitrogen metabolism in E. huxleyi were identified: a putative formamidase, a glutamine synthetase (GSII family), and assimilatory nitrate reductase. Expression patterns of the three enzymes in cells grown on inorganic...

  16. Effects of Organic and Inorganic Nitrogen on the Growth and Production of Domoic Acid by Pseudo-nitzschia multiseries and P. australis (Bacillariophyceae) in Culture.

    Science.gov (United States)

    Martin-Jézéquel, Véronique; Calu, Guillaume; Candela, Leo; Amzil, Zouher; Jauffrais, Thierry; Séchet, Véronique; Weigel, Pierre

    2015-11-26

    Over the last century, human activities have altered the global nitrogen cycle, and anthropogenic inputs of both inorganic and organic nitrogen species have increased around the world, causing significant changes to the functioning of aquatic ecosystems. The increasing frequency of Pseudo-nitzschia spp. in estuarine and coastal waters reinforces the need to understand better the environmental control of its growth and domoic acid (DA) production. Here, we document Pseudo-nitzschia spp. growth and toxicity on a large set of inorganic and organic nitrogen (nitrate, ammonium, urea, glutamate, glutamine, arginine and taurine). Our study focused on two species isolated from European coastal waters: P. multiseries CCL70 and P. australis PNC1. The nitrogen sources induced broad differences between the two species with respect to growth rate, biomass and cellular DA, but no specific variation could be attributed to any of the inorganic or organic nitrogen substrates. Enrichment with ammonium resulted in an enhanced growth rate and cell yield, whereas glutamate did not support the growth of P. multiseries. Arginine, glutamine and taurine enabled good growth of P. australis, but without toxin production. The highest DA content was produced when P. multiseries grew with urea and P. australis grew with glutamate. For both species, growth rate was not correlated with DA content but more toxin was produced when the nitrogen source could not sustain a high biomass. A significant negative correlation was found between cell biomass and DA content in P. australis. This study shows that Pseudo-nitzschia can readily utilize organic nitrogen in the form of amino acids, and confirms that both inorganic and organic nitrogen affect growth and DA production. Our results contribute to our understanding of the ecophysiology of Pseudo-nitzschia spp. and may help to predict toxic events in the natural environment.

  17. Investigation on thiosulfate-involved organics and nitrogen removal by a sulfur cycle-based biological wastewater treatment process.

    Science.gov (United States)

    Qian, Jin; Lu, Hui; Cui, Yanxiang; Wei, Li; Liu, Rulong; Chen, Guang-Hao

    2015-02-01

    Thiosulfate, as an intermediate of biological sulfate/sulfite reduction, can significantly improve nitrogen removal potential in a biological sulfur cycle-based process, namely the Sulfate reduction-Autotrophic denitrification-Nitrification Integrated (SANI(®)) process. However, the related thiosulfate bio-activities coupled with organics and nitrogen removal in wastewater treatment lacked detailed examinations and reports. In this study, S2O3(2-) transformation during biological SO4(2-)/SO3(2-) co-reduction coupled with organics removal as well as S2O3(2-) oxidation coupled with chemolithotrophic denitrification were extensively evaluated under different experimental conditions. Thiosulfate is produced from the co-reduction of sulfate and sulfite through biological pathway at an optimum pH of 7.5 for organics removal. And the produced S2O3(2-) may disproportionate to sulfide and sulfate during both biological S2O3(2-) reduction and oxidation most possibly carried out by Desulfovibrio-like species. Dosing the same amount of nitrate, pH was found to be the more direct factor influencing the denitritation activity than free nitrous acid (FNA) and the optimal pH for denitratation (7.0) and denitritation (8.0) activities were different. Spiking organics significantly improved both denitratation and denitritation activities while minimizing sulfide inhibition of NO3(-) reduction during thiosulfate-based denitrification. These findings in this study can improve the understanding of mechanisms of thiosulfate on organics and nitrogen removal in biological sulfur cycle-based wastewater treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. The ectomycorrhizal fungus Paxillus involutus converts organic matter in plant litter using a trimmed brown-rot mechanism involving Fenton chemistry

    DEFF Research Database (Denmark)

    Rineau, Francois; Roth, Doris; Shah, Firoz

    2012-01-01

    chemistry similar to that of brown-rot fungi. The set of enzymes expressed by Pa. involutus during the degradation of the organic matter was similar to the set of enzymes involved in the oxidative degradation of wood by brown-rot fungi. However, Pa. involutus lacked transcripts encoding extracellular...... the mycorrhizal fungi. To capture the nitrogen, the fungi must at least partly disrupt the recalcitrant organic matterprotein complexes within which the nitrogen is embedded. This disruption process is poorly characterized. We used spectroscopic analyses and transcriptome profiling to examine the mechanism...... by which the ectomycorrhizal fungus Paxillus involutus degrades organic matter when acquiring nitrogen from plant litter. The fungus partially degraded polysaccharides and modified the structure of polyphenols. The observed chemical changes were consistent with a hydroxyl radical attack, involving Fenton...

  19. Competition for inorganic and organic forms of nitrogen and phosphorous between phytoplankton and bacteria during an Emiliania huxleyi spring bloom

    Directory of Open Access Journals (Sweden)

    V. Martin-Jézéquel

    2008-03-01

    Full Text Available Using 15N and 33P, we measured the turnover of organic and inorganic nitrogen (N and phosphorus (P substrates, and the partitioning of N and P from these sources into two size fractions of marine osmotrophs during the course of a phytoplankton bloom in a nutrient manipulated mesocosm. The larger size fraction (>0.8 μm, mainly consisting of the coccolithophorid Emiliania huxleyi, but also including an increasing amount of large particle-associated bacteria as the bloom proceeded, dominated uptake of the inorganic forms NH4+, NO3−, and PO43−. The uptake of N from leucine, and P from ATP and dissolved DNA, was initially dominated by the 0.8–0.2 μm size fraction, but shifted towards dominance by the >0.8 μm size fraction as the system turned to an increasing degree of N-deficiency. Normalizing uptake to biomass of phytoplankton and heterotrophic bacteria revealed that organisms in the 0.8–0.2 μm size fraction had higher specific affinity for leucine-N than those in the >0.8 μm size fraction when N was deficient, whereas the opposite was the case for NH4+. There was no such difference regarding the specific affinity for P substrates. Since heterotrophic bacteria seem to acquire N from organic compounds like leucine more efficiently than phytoplankton, our results suggest different structuring of the microbial food chain in N-limited relative to P-limited environments.

  20. Reduction of nitrogen compounds in oceanic basement and its implications for HCN formation and abiotic organic synthesis.

    Science.gov (United States)

    Holm, Nils G; Neubeck, Anna

    2009-10-22

    Hydrogen cyanide is an excellent organic reagent and is central to most of the reaction pathways leading to abiotic formation of simple organic compounds containing nitrogen, such as amino acids, purines and pyrimidines. Reduced carbon and nitrogen precursor compounds for the synthesis of HCN may be formed under off-axis hydrothermal conditions in oceanic lithosphere in the presence of native Fe and Ni and are adsorbed on authigenic layer silicates and zeolites. The native metals as well as the molecular hydrogen reducing CO2 to CO/CH4 and NO3-/NO2- to NH3/NH4+ are a result of serpentinization of mafic rocks. Oceanic plates are conveyor belts of reduced carbon and nitrogen compounds from the off-axis hydrothermal environments to the subduction zones, where compaction, dehydration, desiccation and diagenetic reactions affect the organic precursors. CO/CH4 and NH3/NH4+ in fluids distilled out of layer silicates and zeolites in the subducting plate at an early stage of subduction will react upon heating and form HCN, which is then available for further organic reactions to, for instance, carbohydrates, nucleosides or even nucleotides, under alkaline conditions in hydrated mantle rocks of the overriding plate. Convergent margins in the initial phase of subduction must, therefore, be considered the most potent sites for prebiotic reactions on Earth. This means that origin of life processes are, perhaps, only possible on planets where some kind of plate tectonics occur.

  1. Reduction of nitrogen compounds in oceanic basement and its implications for HCN formation and abiotic organic synthesis

    Directory of Open Access Journals (Sweden)

    Neubeck Anna

    2009-10-01

    Full Text Available Abstract Hydrogen cyanide is an excellent organic reagent and is central to most of the reaction pathways leading to abiotic formation of simple organic compounds containing nitrogen, such as amino acids, purines and pyrimidines. Reduced carbon and nitrogen precursor compounds for the synthesis of HCN may be formed under off-axis hydrothermal conditions in oceanic lithosphere in the presence of native Fe and Ni and are adsorbed on authigenic layer silicates and zeolites. The native metals as well as the molecular hydrogen reducing CO2 to CO/CH4 and NO3-/NO2- to NH3/NH4+ are a result of serpentinization of mafic rocks. Oceanic plates are conveyor belts of reduced carbon and nitrogen compounds from the off-axis hydrothermal environments to the subduction zones, where compaction, dehydration, desiccation and diagenetic reactions affect the organic precursors. CO/CH4 and NH3/NH4+ in fluids distilled out of layer silicates and zeolites in the subducting plate at an early stage of subduction will react upon heating and form HCN, which is then available for further organic reactions to, for instance, carbohydrates, nucleosides or even nucleotides, under alkaline conditions in hydrated mantle rocks of the overriding plate. Convergent margins in the initial phase of subduction must, therefore, be considered the most potent sites for prebiotic reactions on Earth. This means that origin of life processes are, perhaps, only possible on planets where some kind of plate tectonics occur.

  2. Prognostic value of severity indicators of nursing-home-acquired pneumonia versus community-acquired pneumonia in elderly patients

    Directory of Open Access Journals (Sweden)

    Ugajin M

    2014-02-01

    Full Text Available Motoi Ugajin, Kenichi Yamaki, Natsuko Hirasawa, Takanori Kobayashi, Takeo Yagi Department of Respiratory Medicine, Ichinomiya-Nishi Hospital, Ichinomiya City, Japan Background: The credibility of prognostic indicators in nursing-home-acquired pneumonia (NHAP is not clear. We previously reported a simple prognostic indicator in community-acquired pneumonia (CAP: blood urea nitrogen to serum albumin (B/A ratio. This retrospective study investigated the prognostic value of severity indicators in NHAP versus CAP in elderly patients. Methods: Patients aged ≥65 years and hospitalized because of NHAP or CAP within the previous 3 years were enrolled. Demographics, coexisting illnesses, laboratory and microbiological findings, and severity scores (confusion, urea, respiratory rate, blood pressure, and age ≥65 [CURB-65] scale; age, dehydration, respiratory failure, orientation disturbance, and pressure [A-DROP] scale; and pneumonia severity index [PSI] were retrieved from medical records. The primary outcome was mortality within 28 days of admission. Results: In total, 138 NHAP and 307 CAP patients were enrolled. Mortality was higher in NHAP (18.1% than in CAP (4.6% (P<0.001. Patients with NHAP were older and had lower functional status and a higher rate of do-not-resuscitate orders, heart failure, and cerebrovascular diseases. The NHAP patients more frequently had typical bacterial pathogens. Using the receiver-operating characteristics curve for predicting mortality, the area under the curve in NHAP was 0.70 for the A-DROP scale, 0.69 for the CURB-65 scale, 0.67 for the PSI class, and 0.65 for the B/A ratio. The area under the curve in CAP was 0.73 for the A-DROP scale, 0.76 for the CURB-65 scale, 0.81 for the PSI class, and 0.83 for the B/A ratio. Conclusion: Patient mortality was greater in NHAP than in CAP. Patient characteristics, coexisting illnesses, and detected pathogens differed greatly between NHAP and CAP. The existing severity indicators

  3. Influence of composted dairy manure and perennial forage on soil carbon and nitrogen fractions during transition into organic management

    Science.gov (United States)

    Composted dairy manure (CDM) is among the management practices used in transitioning from a conventional to an organic agricultural system. The objectives of this study are to evaluate the impact of several organic nitrogen (N) sources on: (i) soil organic C (SOC) and soil total N (STN) content; (ii...

  4. Dissolved organic nitrogen dynamics in the North Sea: A time series analysis (1995-2005)

    Science.gov (United States)

    Van Engeland, T.; Soetaert, K.; Knuijt, A.; Laane, R. W. P. M.; Middelburg, J. J.

    2010-09-01

    Dissolved organic nitrogen (DON) dynamics in the North Sea was explored by means of long-term time series of nitrogen parameters from the Dutch national monitoring program. Generally, the data quality was good with little missing data points. Different imputation methods were used to verify the robustness of the patterns against these missing data. No long-term trends in DON concentrations were found over the sampling period (1995-2005). Inter-annual variability in the different time series showed both common and station-specific behavior. The stations could be divided into two regions, based on absolute concentrations and the dominant times scales of variability. Average DON concentrations were 11 μmol l -1 in the coastal region and 5 μmol l -1 in the open sea. Organic fractions of total dissolved nitrogen (TDN) averaged 38 and 71% in the coastal zone and open sea, respectively, but increased over time due to decreasing dissolved inorganic nitrogen (DIN) concentrations. In both regions intra-annual variability dominated over inter-annual variability, but DON variation in the open sea was markedly shifted towards shorter time scales relative to coastal stations. In the coastal zone a consistent seasonal DON cycle existed with high values in spring-summer and low values in autumn-winter. In the open sea seasonality was weak. A marked shift in the seasonality was found at the Dogger Bank, with DON accumulation towards summer and low values in winter prior to 1999, and accumulation in spring and decline throughout summer after 1999. This study clearly shows that DON is a dynamic actor in the North Sea and should be monitored systematically to enable us to understand fully the functioning of this ecosystem.

  5. Innovative process scheme for removal of organic matter, phosphorus and nitrogen from pig manure

    DEFF Research Database (Denmark)

    Karakashev, Dimitar Borisov; Schmidt, Jens Ejbye; Angelidaki, Irini

    2008-01-01

    blanket (UASB) reactor, partial oxidation), nitrogen (oxygen-limited autotrophic nitrification-denitrification, OLAND) and phosphorus (phosphorus removal by precipitation as struvite, PRS) from pig manure were tested. Results obtained showed that microfiltration was unsuitable for pig manure treatment....... PRS treated effluent was negatively affecting the further processing of the pig manure in UASB, and was therefore not included in the final process flow scheme. In a final scheme (PIGMAN concept) combination of the following successive process steps was used: thermophilic anaerobic digestion...... with sequential separation by decanter centrifuge, post-digestion in UASB reactor, partial oxidation and finally OLAND process. This combination resulted in reduction of the total organic, nitrogen and phosphorus contents by 96%, 88%, and 81%, respectively....

  6. Yield and Nitrogen Assimilation of Potato Varieties (Solanum tuberosum L.) as Affected by Saline Water Irrigation and Organic Manure

    International Nuclear Information System (INIS)

    Hamdy, A.; Gadalla, A.M.; El-Kholi, A.F.; Galal, Y.G.M.; Ismail, M.M.

    2008-01-01

    The experiment was carried out in lysimeter under controlled greenhouse conditions. Saline water was applied in different levels, i.e. fresh water, 3 and 6 dS/m. Organic manure were applied to soil at rates of 0, 2.6 and 5.2 kg/m2. Basal recommended doses of P and K were applied. Labelled urea (10% a.e.) was applied at rate of 200 kg N/ha. 15 N technique was used to evaluate N-uptake and fertilizer efficiency. Comparison held between the two potato varieties indicated that higher reduction in shoot dry weight was recorded with Nicola variety than Spunta one which irrigated with 6 dS/m water salinity level. Addition of 2.6 kg/m 2 organic rate induced an increase in N uptake with fresh water and 3 dS/m salinity then tended to decrease with 6 dS/m level as compared to the untreated control. Concerning the nitrogen fertilization, data of 15 N analysis showed that, water salinity levels combined with organic addition rates were frequently affected the nitrogen derived from fertilizer and consequently the fertilizer use efficiency. Most of nitrogen was derived from the applied nitrogen fertilizer with maximum accumulation in tuber rather than shoots or roots of both potato varieties. Gradual increase of tuber starch with increasing salinity levels was noticed with addition of 2.6 kg/m 2 of organic matter. In general, Spunta variety showed some superiority in tuber starch over those of Nicola variety tuber

  7. Low light intensity and nitrogen starvation modulate the chlorophyll content of Scenedesmus dimorphus.

    Science.gov (United States)

    Ferreira, V S; Pinto, R F; Sant'Anna, C

    2016-03-01

    Chlorophyll is a photosynthetic pigment found in plants and algal organisms and is a bioproduct with human health benefits and a great potential for use in the food industry. The chlorophyll content in microalgae strains varies in response to environmental factors. In this work, we assessed the effect of nitrogen depletion and low light intensity on the chlorophyll content of the Scenedesmus dimorphus microalga. The growth of S. dimorphus under low light intensity led to a reduction in cell growth and volume as well as increased cellular chlorophyll content. Nitrogen starvation led to a reduction in cell growth and the chlorophyll content, changes in the yield and productivity of chlorophylls a and b. Transmission electron microscopy was used to investigate the ultrastructural changes in the S. dimorphus exposed to nitrogen and light deficiency. In contrast to nitrogen depletion, low light availability was an effective mean for increasing the total chlorophyll content of green microalga S. dimorphus. The findings acquired in this work are of great biotechnological importance to extend knowledge of choosing the right culture condition to stimulate the effectiveness of microalgae strains for chlorophyll production purposes. © 2015 The Society for Applied Microbiology.

  8. Tracing the Origins of Nitrogen Bearing Organics Toward Orion KL with Alma

    Science.gov (United States)

    Carroll, Brandon; Crockett, Nathan; Wilkins, Olivia H.; Bergin, Edwin; Blake, Geoffrey

    2017-06-01

    A comprehensive analysis of a broadband 1.2 THz wide spectral survey of the Orion Kleinmann-Low nebula (Orion KL) has shown that nitrogen bearing complex organics trace systematically hotter gas than O-bearing organics toward this source. The origin of this O/N dichotomy remains a mystery. If complex molecules originate from grain surfaces, N-bearing species may be more difficult to remove from grain surfaces than O-bearing organics. Theoretical studies, however, have shown that hot (T=300 K) gas phase chemistry can produce high abundances of N-bearing organics while suppressing the formation of O-bearing complex molecules. In order to distinguish these distinct formation pathways we have obtained extremely high angular resolution observations of methyl cyanide (CH_3CN) using the Atacama Large Millimeter/Submillimeter Array (ALMA) toward Orion KL. By simultaneously imaging ^{13}CH_3CN and CH_2DCN we map the temperature structure and D/H ratio of CH_3CN. We will present updated results of these observations and discuss their implications for the formation of N-bearing organics in the interstellar medium.

  9. Studies on organic carbon, nitrogen and phosphorous in the sediments of Mandovi Estuary, Goa

    Digital Repository Service at National Institute of Oceanography (India)

    Nasnolkar, C.M.; Shirodkar, P.V.; Singbal, S.Y.S.

    indicated a significant linear variation with clay and silt. The organic carbon varies from 1.04 to 32.77 mg.g sup(-1) and the total nitrogen and total phosphorous varies from 3.81 to 32.71 mg.g sup(-1) and from 0.46 to 6.74 mg.g sup(-1) respectively. A...

  10. Identification of genotypic variation for nitrogen response in potato (Solanum tuberosum) under low nitrogen input circumstances

    NARCIS (Netherlands)

    Tiemens-Hulscher, M.; Lammerts Van Bueren, E.; Struik, P.C.

    2009-01-01

    Nitrogen is an essential nutrient for crop growth. The demand for nitrogen in the potato crop is relatively high. However, in organic farming nitrogen input is rather limited, compared with conventional farming. In this research nine potato varieties were tested at three nitrogen levels. Genotypic

  11. Stable isotope compositions of organic carbon and contents of organic carbon and nitrogen of lacustrine sediments from sub-arid northern Tanzania

    International Nuclear Information System (INIS)

    Muzuka, A.N.N.

    2006-01-01

    The stable isotope compositions of organic carbon (OC), and contents of OC and nitrogen for four sediment cores recovered from lakes Makat (located in the Ngorongoro Crater), Ndutu and Masek (located in the Serengeti Plains) are used to document sources of organic matter (OM) and climatic changes in sub-arid northern Tanzania during the late Pleistocene-Holocene period. Accelerate mass spectrometer (AMS) 14 C ages on total OM for sediments collected from the Ngorongoro Crater Lake indicate that the sedimentation rate is approximately 17 cm/ka. The δ 13 C values from the 20 cm long core (short core) show a downcore increase, whereas that of 500 cm long core (long core), show two peaks enriched in 13 C and three peaks depleted in 13 C. A general downcore increase in the δ 13 C values for the short core suggests changes in the relative proportion of C 3 and C 4 fraction increasing downcore. Similarly, low and high peaks in the long core suggest changes in the relative proportion of C 3 and C 4 with low values having high proportion of C 3 type of material, probably indicating changes in precipitation and lake levels in the area. Deposition of OM depleted in 13 C took place during periods of high precipitation and high lake levels. Although high content of OC and nitrogen in some core sections are associated with elevated C/N ratio values, diagenetic alteration of isotope signature is unlikely to have caused OC and isotope enrichment in sections having high contents of OC and nitrogen. The OC isotope record from Lake Ndutu shows a general downcore decrease in δ 13 C values and contents of OC and nitrogen. (author)

  12. Amount, composition and seasonality of dissolved organic carbon and nitrogen export from agriculture in contrasting climates

    DEFF Research Database (Denmark)

    Graeber, Daniel; Meerhof, Mariana; Zwirnmann, Elke

    2014-01-01

    Agricultural catchments are potentially important but often neglected sources of dissolved organic matter (DOM), of which a large part is dissolved organic carbon (DOC) and nitrogen (DON). DOC is an important source of aquatic microbial respiration and DON may be an important source of nitrogen...... to aquatic ecosystems. However, there is still a lack of comprehensive studies on the amount, composition and seasonality of DOM export from agricultural catchments in different climates. The aim of our study was to assess the amount, composition and seasonality of DOM in a total of four streams in the wet......-temperate and subtropical climate of Denmark and Uruguay, respectively. In each climate, we investigated one stream with extensive agriculture (mostly pasture) and one stream with intensive agriculture (mostly intensively used arable land) in the catchment. We sampled each stream taking grab samples fortnightly for two...

  13. Synergic Adsorption–Biodegradation by an Advanced Carrier for Enhanced Removal of High-Strength Nitrogen and Refractory Organics

    KAUST Repository

    Ahmad, Muhammad; Liu, Sitong; Mahmood, Nasir; Mahmood, Asif; Ali, Muhammad; Zheng, Maosheng; Ni, Jinren

    2017-01-01

    Coking wastewater contains not only high-strength nitrogen but also toxic biorefractory organics. This study presents simultaneous removal of high-strength quinoline, carbon, and ammonium in coking wastewater by immobilized bacterial communities

  14. Chitin: 'Forgotten' Source of Nitrogen: From Modern Chitin to Thermally Mature Kerogen: Lessons from Nitrogen Isotope Ratios

    Science.gov (United States)

    Schimmelmann, A.; Wintsch, R.P.; Lewan, M.D.; DeNiro, M.J.

    1998-01-01

    Chitinous biomass represents a major pool of organic nitrogen in living biota and is likely to have contributed some of the fossil organic nitrogen in kerogen. We review the nitrogen isotope biogeochemistry of chitin and present preliminary results suggesting interaction between kerogen and ammonium during thermal maturation. Modern arthropod chitin may shift its nitrogen isotope ratio by a few per mil depending on the chemical method of chitin preparation, mostly because N-containing non-amino-sugar components in chemically complex chitin cannot be removed quantitatively. Acid hydrolysis of chemically complex chitin and subsequent ion-chromatographic purification of the "deacetylated chitin-monomer" D-glucosamine (in hydrochloride form) provides a chemically well-defined, pure amino-sugar substrate for reproducible, high-precision determination of ??15N values in chitin. ??15N values of chitin exhibited a variability of about one per mil within an individual's exoskeleton. The nitrogen isotope ratio differed between old and new exoskeletons by up to 4 per mil. A strong dietary influence on the ??15N value of chitin is indicated by the observation of increasing ??15N values of chitin from marine crustaceans with increasing trophic level. Partial biodegradation of exoskeletons does not significantly influence ??15N values of remaining, chemically preserved amino sugar in chitin. Diagenesis and increasing thermal maturity of sedimentary organic matter, including chitin-derived nitrogen-rich moieties, result in humic compounds much different from chitin and may significantly change bulk ??15N values. Hydrous pyrolysis of immature source rocks at 330??C in contact with 15N-enriched NH4Cl, under conditions of artificial oil generation, demonstrates the abiogenic incorporation of inorganic nitrogen into carbon-bound nitrogen in kerogen. Not all organic nitrogen in natural, thermally mature kerogen is therefore necessarily derived from original organic matter, but may

  15. Nitrogen isotopes from terrestrial organic matter as a new paleoclimatic proxy for pre-quaternary time

    Science.gov (United States)

    Tramoy, romain; Schnyder, johann; thuy Nguyen Tu, thanh; Yans, johan; Storme, jean yves; Sebilo, mathieu; Derenne, sylvie; Jacob, jérémy; Baudin, françois

    2014-05-01

    Marine and lacustrine sedimentary organic matter is often dominated by algal-bacterial production. Its nitrogen isotopic composition (δ15Norg) is frequently used to reconstruct biogeochemical processes involved in the nitrogen cycle, such as N utilization by organisms (e.g. Altabet et al., 1995), denitrification and diagenesis processes (e.g. Altabet et al., 1995; Sebilo et al., 2003; Gälman et al., 2009) or to evidence N sources variability (e.g. Hodell and Schelske, 1998; Vreca and Muri, 2006) . However, all these parameters and processes make N isotopic signals in marine and lacustrine environments often very complex to interpret. After pioneer studies, Mariotti et al. (1981), Austin and Vitousek (1998), Amundson et al. (2003), Swap et al. (2004), and Liu and Wang (2008) have shown that the δ15Norg of modern or quaternary terrestrial plants seem to be positively correlated with temperature and negatively correlated with precipitations. Therefore, δ15Norg of terrestrial OM might be a better record for paleoclimatic studies than δ15Norg of sedimentary OM dominated by algal-bacterial production. Recently, promising organic nitrogen isotopic data (δ15Norg) have been published on lignites from the Dieppe-Hampshire Basin (Paleocene-Eocene transition, Normandy (Storme et al., 2012). Authors suggest that the δ15Norg recorded local paleoclimatic and paleoenvironmental conditions. Following these results, the aim of this work is to test the use of stable nitrogen isotopes in terrestrial OM as a new paleoclimatic marker for pre-quaternary geological series. Does δ15Norg constitute a valuable tool to reconstruct past climates? What are the limits in the use of this proxy and possible methodological bias related to organic sources or diagenetic processes? To address these questions, δ15Norg must be measured in samples from periods associated with large and well documented climate change. We therefore selected a Liassic continental sedimentary succession from

  16. Soil Minerals: AN Overlooked Mediator of Plant-Microbe Competition for Organic Nitrogen in the Rhizosphere

    Science.gov (United States)

    Grandy, S.; Jilling, A.; Keiluweit, M.

    2016-12-01

    Recent research on the rate limiting steps in soil nitrogen (N) availability have shifted in focus from mineralization to soil organic matter (SOM) depolymerization. To that end, Schimel and Bennett (2004) argued that together with enzymatic breakdown of polymers to monomers, microsite processes and plant-microbial competition collectively drive N cycling. Here we present new conceptual models arguing that while depolymerization is a critical first step, mineral-organic associations may ultimately regulate the provisioning of bioavailable organic N, especially in the rhizosphere. Mineral-associated organic matter (MAOM) is a rich reservoir for N in soils and often holds 5-7x more N than particulate or labile fractions. However, MAOM is considered largely unavailable to plants as a source of N due to the physicochemical forces on mineral surfaces that stabilize organic matter. We argue that in rhizosphere hotspots, MAOM is in fact a potentially mineralizable and important source of nitrogen for plants. Several biochemical strategies enable plants and microbes to compete with mineral-organic interactions and effectively access MAOM. In particular, root-deposited low molecular weight compounds in the form of root exudates facilitate the biotic and abiotic destabilization and subsequent bioavailability of MAOM. We believe that the competitive balance between the potential fates of assimilable organic N — bound to mineral surfaces or dissolved and available for assimilation — depends on the specific interaction between and properties of the clay, soil solution, mineral-bound organic matter, and microbial community. For this reason, the plant-soil-MAOM interplay is enhanced in rhizosphere hotspots relative to non-rhizosphere environments, and likely strongly regulates plant-microbe competition for N. If these hypotheses are true, we need to reconsider potential soil N cycle responses to changes in climate and land use intensity, focusing on the processes by which

  17. The Influence of Leaf Fall and Organic Carbon Availability on Nitrogen Cycling in a Headwater Stream

    Science.gov (United States)

    Thomas, S. A.; Kristin, A.; Doyle, B.; Goodale, C. L.; Gurwick, N. P.; Lepak, J.; Kulkari, M.; McIntyre, P.; McCalley, C.; Raciti, S.; Simkin, S.; Warren, D.; Weiss, M.

    2005-05-01

    The study of allochthonous carbon has a long and distinguished history in stream ecology. Despite this legacy, relatively little is known regarding the influence of leaf litter on nutrient dynamics. We conducted 15N-NO3 tracer additions to a headwater stream in upstate New York before and after autumn leaf fall to assess the influence of leaf litter on nitrogen spiraling. In addition, we amended the stream with labile dissolved organic carbon (as acetate) midway through each experiment to examine whether organic carbon availability differentially stimulated nitrogen cycling. Leaf standing stocks increased from 53 to 175 g dry mass m-2 and discharge more than tripled (6 to 20 L s-1) between the pre- and post-leaf fall period. In contrast, nitrate concentration fell from approximately 50 to less then 10 ug L-1. Despite higher discharge, uptake length was shorter following leaf fall under both ambient (250 and 72 m, respectively) and DOC amended (125 and 45 m) conditions. Uptake velocity increased dramatically following leaf fall, despite a slight decline in the areal uptake rate. Dissolved N2 gas samples were also collected to estimate denitrification rates under each experimental condition. The temporal extent of increased nitrogen retention will also be explored.

  18. Dynamics of nitrogen in an oxic paleudalf soil with the incorporation of 15N-tagged organic nitrogen (maize straw) and 15N-tagged mineral nitrogen (ammonium sulphate)

    International Nuclear Information System (INIS)

    Freitas, J.R. de.

    1984-12-01

    An experiment, carried out under field conditions in 12 lysimeters, each containing 3.0 ton of Oxic Paleudalf soil with four replicates, is described. This objective is labelling soil organic N. Nitrogen was incorporated into soil as maize straw, non-labelled and labelled with 15 N and ammonium sulphate - 15 N. The soil was sampled every 15 days in three different depths. N as NH + 4 , NO - 3 , total-N and (%)C and (%) moisture was analysed. (M.A.C.) [pt

  19. Growing media constituents determine the microbial nitrogen conversions in organic growing media for horticulture.

    Science.gov (United States)

    Grunert, Oliver; Reheul, Dirk; Van Labeke, Marie-Christine; Perneel, Maaike; Hernandez-Sanabria, Emma; Vlaeminck, Siegfried E; Boon, Nico

    2016-05-01

    Vegetables and fruits are an important part of a healthy food diet, however, the eco-sustainability of the production of these can still be significantly improved. European farmers and consumers spend an estimated €15.5 billion per year on inorganic fertilizers and the production of N-fertilizers results in a high carbon footprint. We investigated if fertilizer type and medium constituents determine microbial nitrogen conversions in organic growing media and can be used as a next step towards a more sustainable horticulture. We demonstrated that growing media constituents showed differences in urea hydrolysis, ammonia and nitrite oxidation and in carbon dioxide respiration rate. Interestingly, mixing of the growing media constituents resulted in a stimulation of the function of the microorganisms. The use of organic fertilizer resulted in an increase in amoA gene copy number by factor 100 compared to inorganic fertilizers. Our results support our hypothesis that the activity of the functional microbial community with respect to nitrogen turnover in an organic growing medium can be improved by selecting and mixing the appropriate growing media components with each other. These findings contribute to the understanding of the functional microbial community in growing media and its potential role towards a more responsible horticulture. © 2016 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  20. Nitrogen-modified carbon nanostructures derived from metal-organic frameworks as high performance anodes for Li-ion batteries

    International Nuclear Information System (INIS)

    Shen, Cai; Zhao, Chongchong; Xin, Fengxia; Cao, Can; Han, Wei-Qiang

    2015-01-01

    Here, we report preparation of nitrogen-modified nanostructure carbons through carbonization of Cu-based metal organic nanofibers at 700 °C under argon gas atmosphere. After removal of copper through chemical treatment with acids, pure N-modified nanostructure carbon with a nitrogen content of 8.62 wt% is obtained. When use as anodes for lithium-ion battery, the nanostructure carbon electrode has a discharge capacity of 853.1 mAh g −1 measured at a current of 500 mA g −1 after 800 cycles.

  1. Effect of organic nitrogen concentration on the efficiency of trickling filters

    Science.gov (United States)

    Kopeć, Łukasz; Drewnowski, Jakub; Fernandez-Morales, F. J.

    2018-02-01

    The study was conducted in Poland at six selected wastewater treatment plants (WWTP) based on the trickling filters Bioclere® technology. The aim of the study was to find the relationship between the influent organic nitrogen concentration and the purification efficiency expressed as effluent COD concentration. In the tests performed, the COD to BOD5 relationship was close to 2 and the ratio of BOD5 to TN was lower than 4. The research indicated that this specific chemical composition of raw wastewater causes appearance of filamentous bacteria on the surface of trickling filter filling and strongly affect the effluent quality.

  2. Biological nitrogen fixation in three long-term organic and conventional arable crop rotation experiments in Denmark

    DEFF Research Database (Denmark)

    Pandey, Arjun; Li, Fucui; Askegaard, Margrethe

    2017-01-01

    Biological nitrogen (N) fixation (BNF) by legumes in organic cropping systems has been perceived as a strategy to substitute N import from conventional sources. However, the N contribution by legumes varies considerably depending on legumes species, as well as local soil and climatic conditions...

  3. Increasing plant use of organic nitrogen with elevation is reflected in nitrogen uptake rates and ecosystem delta15N.

    Science.gov (United States)

    Averill, Colin; Finzi, Adrien

    2011-04-01

    It is hypothesized that decreasing mean annual temperature and rates of nitrogen (N) cycling causes plants to switch from inorganic to organic forms of N as the primary mode of N nutrition. To test this hypothesis, we conducted field experiments and collected natural-abundance delta15N signatures of foliage, soils, and ectomycorrhizal sporocarps along a steep elevation-climate gradient in the White Mountains, New Hampshire, USA. Here we show that with increasing elevation organic forms of N became the dominant source of N taken up by hardwood and coniferous tree species based on dual-labeled glycine uptake analysis, an important confirmation of an emerging theory for the biogeochemistry of the N cycle. Variation in natural abundance foliar delta15N with elevation was also consistent with increasing organic N uptake, though a simple, mass balance model demonstrated that the uptake of delta15N depleted inorganic N, rather than fractionation upon transfer of N from mycorrhizal fungi, best explains variations in foliar delta15N with elevation.

  4. The nitrogen cycle on Mars

    Science.gov (United States)

    Mancinelli, Rocco L.

    1989-01-01

    Nirtogen is an essential element for the evolution of life, because it is found in a variety of biologically important molecules. Therefore, N is an important element to study from a exobiological perspective. In particular, fixed nitrogen is the biologically useful form of nitrogen. Fixed nitrogen is generally defines as NH3, NH4(+), NO(x), or N that is chemically bound to either inorganic or organic molecules, and releasable by hydrolysis to NH3 or NH4(+). On Earth, the vast majority of nitrogen exists as N2 in the atmosphere, and not in the fixes form. On early Mars the same situations probably existed. The partial pressure of N2 on early Mars was thought to be 18 mb, significantly less than that of Earth. Dinitrogen can be fixed abiotically by several mechanisms. These mechanisms include thernal shock from meteoritic infall and lightning, as well as the interaction of light and sand containing TiO2 which produces NH3 that would be rapidly destroyed by photolysis and reaction with OH radicals. These mechanisms could have been operative on primitive Mars.The chemical processes effecting these compounds and possible ways of fixing or burying N in the Martian environment are described. Data gathered in this laboratory suggest that the low abundance of nitrogen along (compared to primitive Earth) may not significantly deter the origin and early evolution of a nitrogen utilizing organisms. However, the conditions on current Mars with respect to nitrogen are quite different, and organisms may not be able to utilize all of the available nitrogen.

  5. State factor relationships of dissolved organic carbon and nitrogen losses from unpolluted temperate forest watersheds

    Science.gov (United States)

    Perakis, S.S.; Hedin, L.O.

    2007-01-01

    We sampled 100 unpolluted, old-growth forested watersheds, divided among 13 separate study areas over 5 years in temperate southern Chile and Argentina, to evaluate relationships among dominant soil-forming state factors and dissolved carbon and nitrogen concentrations in watershed streams. These watersheds provide a unique opportunity to examine broad-scale controls over carbon (C) and nitrogen (N) biogeochemistry in the absence of significant human disturbance from chronic N deposition and land use change. Variations in the ratio dissolved organic carbon (DOC) to nitrogen (DON) in watershed streams differed by underlying soil parent material, with average C:N = 29 for watersheds underlain by volcanic ash and basalt versus C:N = 73 for sedimentary and metamorphic parent materials, consistent with stronger adsorption of low C:N hydrophobic materials by amorphous clays commonly associated with volcanic ash and basalt weathering. Mean annual precipitation was related positively to variations in both DOC (range: 0.2-9.7 mg C/L) and DON (range: 0.008-0.135 mg N/L) across study areas, suggesting that variations in water volume and concentration may act synergistically to influence C and N losses across dry to wet gradients in these forest ecosystems. Dominance of vegetation by broadleaf versus coniferous trees had negligible effects on organic C and N concentrations in comparison to abiotic factors. We conclude that precipitation volume and soil parent material are important controls over chemical losses of dissolved organic C and N from unpolluted temperate forest watersheds. Our results raise the possibility that biotic imprints on watershed C and N losses may be less pronounced in naturally N-poor forests than in areas impacted by land use change and chronic N deposition. Copyright 2007 by the American Geophysical Union.

  6. Nitrogen-doped titanium dioxide photocatalysts for visible response prepared by using organic compounds

    Directory of Open Access Journals (Sweden)

    Yoshio Nosaka, Masami Matsushita, Junichi Nishino and Atsuko Y. Nosaka

    2005-01-01

    Full Text Available In order to utilize visible light in photocatalytic reactions, nitrogen atoms were doped in commercially available photocatalytic TiO2 powders by using an organic compound such as urea and guanidine. Analysis by X-ray photoelectron spectroscopy (XPS indicated that N atoms were incorporated into two different sites of the bulk phase of TiO2. A significant shift of the absorption edge to a lower energy and a higher absorption in the visible light region were observed. These N-doped TiO2 powders exhibited photocatalytic activity for the decomposition of 2-propanol in aqueous solution under visible light irradiation. The photocatalytic activity increased with the decrease of doped N atoms in O site, while decreased with decrease of the other sites. Degradation of photocatalytic activity based on the release of nitrogen atoms was observed for the reaction in the aqueous suspension system.

  7. Cotton responses to simulated insect damage: radiation-use efficiency, canopy architecture and leaf nitrogen content as affected by loss of reproductive organs

    International Nuclear Information System (INIS)

    Sadras, V.O.

    1996-01-01

    Key cotton pests feed preferentially on reproductive organs which are normally shed after injury. Loss of reproductive organs in cotton may decrease the rate of leaf nitrogen depletion associated with fruit growth and increase nitrogen uptake and reduction by extending the period of root and leaf growth compared with undamaged plants. Higher levels of leaf nitrogen resulting from more assimilation and less depletion could increase the photosynthetic capacity of damaged crops in relation to undamaged controls. To test this hypothesis, radiation-use efficiency (RUE = g dry matter per MJ of photosynthetically active radiation intercepted by the canopy) of crops in which flowerbuds and young fruits were manually removed was compared with that of undamaged controls. Removal of fruiting structures did not affect RUE when cotton was grown at low nitrogen supply and high plant density. In contrast, under high nitrogen supply and low plant density, fruit removal increased seasonal RUE by 20–27% compared to controls. Whole canopy measurements, however, failed to detect the expected variations in foliar nitrogen due to damage. Differences in RUE between damaged and undamaged canopies were in part associated with changes in plant and canopy structure (viz. internode number and length, canopy height, branch angle) that modified light distribution within the canopy. These structural responses and their influence on canopy light penetration and photosynthesis are synthetised in coefficients of light extinction (k) that were 10 to 30% smaller in damaged crops than in controls and in a positive correlation between RUE−1 and k for crops grown under favourable conditions (i.e. high nitrogen, low density). Changes in plant structure and their effects on canopy architecture and RUE should be considered in the analysis of cotton growth after damage by insects that induce abscission of reproductive organs. (author)

  8. Net mineralization nitrogen and soil chemical changes with application of organic wastes with ‘Fermented Bokashi Compost’ - doi: 10.4025/actasciagron.v35i2.15133

    Directory of Open Access Journals (Sweden)

    Cácio Luiz Boechat

    2012-12-01

    Full Text Available The use of organic wastes in agricultural soils is one of the possible ways to employ these materials. The aims of this study were to evaluate the effectiveness of organic wastes and Fermented Bokashi Compost (FBC, to establish the most efficient use of organic wastes for a soil, changing the net nitrogen mineralization and soil chemical properties. The experimental design was completely randomized in a 6 x 2 x 5 factorial, being five organic wastes plus an control (soil without waste, with or without FBC, evaluated at 0, 7, 42, 70 and 91 days of incubation, with three replicates, under laboratory conditions. The organic wastes enhanced the soil chemical properties and increased nitrogen concentration in soil. However, the net nitrogen mineralization was affected by C/N ratio of wastes and incubation time. The FBC mixed with the wastes accelerated and enhanced organic matter degradation, resulting in quickly available quantity of net nitrogen. The wastes can be considered potentially useful as organic fertilizer but their usefulness appears to depend on knowing the C/N ratio of each one. The FBC can be used when one wants a more accelerated degradation, resulting in a quicker quantity of available nutrients to the plants.

  9. Identification of Systemic Acquired Resistance–Related Volatile Organic Compounds and their Role in Plant Immunity

    OpenAIRE

    Bichlmeier, Marlies

    2017-01-01

    Systemic acquired resistance (SAR) is an inducible immune response that depends on ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1), which is essential for SAR signalling. In contrast to SAR, local resistance remains intact in Arabidopsis (Arabidopsis thaliana) eds1-2 mutant plants in response to Pseudomonas syringae delivering the effector protein AvrRpm1. I utilized the SAR-specific phenotype of the eds1-2 mutant to identify volatile organic compounds (VOCs) related to SAR. To this end, SAR was indu...

  10. Metal-Organic-Framework-Mediated Nitrogen-Doped Carbon for CO2 Electrochemical Reduction

    KAUST Repository

    Wang, Riming; Sun, Xiaohui; Ould-Chikh, Samy; Osadchii, Dmitrii; Bai, Fan; Kapteijn, Freek; Gascon, Jorge

    2018-01-01

    A nitrogen-doped carbon was synthesized through the pyrolysis of the well-known metal-organic framework ZIF-8, followed by a subsequent acid treatment, and has been applied as a catalyst in the electrochemical reduction of carbon dioxide. The resulting electrode shows Faradaic efficiencies to carbon monoxide as high as ∼78%, with hydrogen being the only byproduct. The pyrolysis temperature determines the amount and the accessibility of N species in the carbon electrode, in which pyridinic-N and quaternary-N species play key roles in the selective formation of carbon monoxide.

  11. Metal-Organic-Framework-Mediated Nitrogen-Doped Carbon for CO2 Electrochemical Reduction

    KAUST Repository

    Wang, Riming

    2018-04-11

    A nitrogen-doped carbon was synthesized through the pyrolysis of the well-known metal-organic framework ZIF-8, followed by a subsequent acid treatment, and has been applied as a catalyst in the electrochemical reduction of carbon dioxide. The resulting electrode shows Faradaic efficiencies to carbon monoxide as high as ∼78%, with hydrogen being the only byproduct. The pyrolysis temperature determines the amount and the accessibility of N species in the carbon electrode, in which pyridinic-N and quaternary-N species play key roles in the selective formation of carbon monoxide.

  12. Identification of genotypic variation for nitrogen response in potato (Solanum tuberosum) under low nitrogen input circumstances

    OpenAIRE

    Tiemens-Hulscher, M.; Lammerts Van Bueren, E.; Struik, P.C.

    2009-01-01

    Nitrogen is an essential nutrient for crop growth. The demand for nitrogen in the potato crop is relatively high. However, in organic farming nitrogen input is rather limited, compared with conventional farming. In this research nine potato varieties were tested at three nitrogen levels. Genotypic variation for yield, leaf area index, period of maximum soil cover, sensitivity for N-shortage and nitrogen efficiency under low input circumstances was found. However, in these experiments varietie...

  13. Export of nitrogen from catchments: A worldwide analysis

    International Nuclear Information System (INIS)

    Alvarez-Cobelas, M.; Angeler, D.G.; Sanchez-Carrillo, S.

    2008-01-01

    This study reviews nitrogen export rates from 946 rivers of the world to determine the influence of quantitative (runoff, rainfall, inhabitant density, catchment area, percentage of land use cover, airborne deposition, fertilizer input) and qualitative (dominant type of forest, occurrence of stagnant waterbodies, dominant land use, occurrence of point sources, runoff type) environmental factors on nitrogen fluxes. All fractions (total, nitrate, ammonia, dissolved organic and particulate organic) of nitrogen export showed a left-skewed distribution, which suggests a relatively pristine condition for most systems. Total nitrogen export showed the highest variability whereas total organic nitrogen export comprised the dominant fraction of export. Nitrogen export rates were only weakly explained by our qualitative and quantitative environmental variables. Our study suggests that the consideration of spatial and temporal scales is important for predicting nitrogen export rates using simple and easy-to-get environmental variables. Regionally based modelling approaches prove more useful than global-scale analyses. - Spatial and temporal scales are important determinants for nitrogen export from catchments and emphasis should be put on regional approaches

  14. Highly functionalized organic nitrates in the southeast United States: Contribution to secondary organic aerosol and reactive nitrogen budgets

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ben H.; Mohr, Claudia; Lopez-Hilfiker, Felipe D.; Lutz, Anna; Hallquist, Mattias; Lee, Lance; Romer, Paul; Cohen, Ronald C.; Iyer, Siddharth; Kurtén, Theo; Hu, Weiwei; Day, Douglas A.; Campuzano-Jost, Pedro; Jimenez, Jose L.; Xu, Lu; Ng, Nga Lee; Guo, Hongyu; Weber, Rodney J.; Wild, Robert J.; Brown, Steven S.; Koss, Abigail; de Gouw, Joost; Olson, Kevin; Goldstein, Allen H.; Seco, Roger; Kim, Saewung; McAvey, Kevin; Shepson, Paul B.; Starn, Tim; Baumann, Karsten; Edgerton, Eric S.; Liu, Jiumeng; Shilling, John E.; Miller, David O.; Brune, William; Schobesberger, Siegfried; D' Ambro, Emma L.; Thornton, Joel A.

    2016-01-25

    Organic nitrates (ON = RONO2 + RO2NO2) are an important reservoir, if not sink, of atmospheric nitrogen oxides (NOx=NO+NO2). ON formed from isoprene oxidation alone are responsible for the export of 8 to 30% of anthropogenic NOx out of the U.S. continental boundary layer [Horowitz et al., 1998; Liang et al., 1998]. Regional NOx budgets and tropospheric ozone (O3) production, are therefore particularly sensitive to uncertainties in the yields and fates of ON [Beaver et al., 2012; Browne et al., 2013]. The yields implemented in modeling studies are determined from laboratory experiments in which only a few of the first generation gaseous ON or the total gas and particle-phase ON have been quantified [Perring et al., 2013 and references therein], while production of highly functionalized ON capable of strongly partitioning to the particle-phase have been inferred [Farmer et al., 2010; Ng et al., 2007; Nguyen et al., 2011; Perraud et al., 2012; Rollins et al., 2012], or directly measured [Ehn et al., 2014]. Addition of a nitrate (–ONO2) functional group to a hydrocarbon is estimated to lower the equilibrium saturation vapor pressure by 2.5 to 3 orders of magnitude [e.g. Capouet and Muller, 2006]. Thus, organic nitrate formation can potentially enhance particle-phase partitioning of hydrocarbons in regions with elevated levels of nitrogen oxides, contributing to secondary organic aerosol (SOA) formation [Ng et al., 2007]. There has, however, been no high time-resolved measurements of speciated ON in the particle-phase. We utilize a newly developed high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) using Iodide-adduct ionization [B H Lee et al., 2014a] with a filter inlet for gases and aerosols (FIGAERO) [Lopez-Hilfiker et al., 2014] that allows alternating in situ measurement of the molecular composition of gas and particle phases. We present observations of speciated ON in the particle-phase obtained during the 2013 Southern Oxidant

  15. [Effects of nitrogen deposition on the concentration and spectral characteristics of dissolved organic matter in soil solution in a young Cunninghamia lanceolata plantation.

    Science.gov (United States)

    Yuan, Xiao Chun; Chen, Yue Min; Yuan, Shuo; Zheng, Wei; Si, You Tao; Yuan, Zhi Peng; Lin, Wei Sheng; Yang, Yu Sheng

    2017-01-01

    To study the effects of nitrogen deposition on the concentration and spectral characteristics of dissolved organic matter (DOM) in the forest soil solution from the subtropical Cunninghamia lanceolata plantation, using negative pressure sampling method, the dynamics of DOM in soil solutions from 0-15 and 15-30 cm soil layer was monitored for two years and the spectroscopic features of DOM were analyzed. The results showed that nitrogen deposition significantly reduced the concentration of dissolved organic carbon (DOC), and increased the aromatic index (AI) and the humic index (HIX), but had no significant effect on dissolved organic nitrogen (DON) concentration in both soil layers. There was obvious seasonal variation in DOM concentration of the soil solution, which was prominently higher in summer and autumn than in spring and winter.Fourier-transform infrared (FTIR) absorption spectrometry indicated that the DOM in forest soil solution had absorption peaks in the similar position of six regions, being the highest in wave number of 1145-1149 cm -1 . Three-dimensional fluorescence spectra indicated that DOM was mainly consisted of protein-like substances (Ex/Em=230 nm/300 nm) and microbial degradation products (Ex/Em=275 nm/300 nm). The availability of protein-like substances from 0-15 cm soil layer was reduced in the nitrogen treatments. Nitrogen deposition significantly reduced the concentration of DOC in soil solution, maybe largely by reducing soil pH, inhibiting soil carbon mineralization and stimulating plant growth. In particular, the decline of DOC concentration in the surface layer was due to the production inhibition of the protein-like substances and carboxylic acids. Short-term nitrogen deposition might be beneficial to the maintenance of soil fertility, while the long-term accumulation of nitrogen deposition might lead to the hard utilization of soil nutrients.

  16. Stable Isotopic Composition of Dissolved Organic Nitrogen Fueling Brown Tide in a Semi-Arid Texas Estuary

    Science.gov (United States)

    Campbell, J.; Felix, J. D. D.; Wetz, M.; Cira, E.

    2017-12-01

    Harmful algal blooms (HABs) have the potential to adversely affect the water quality of estuaries and, consequently, their ability to support healthy and diverse ecosystems. Since the early 1990s, Baffin Bay, a semi-arid south Texas estuary, has progressively experienced harmful algal blooms. The primary species of HAB native to the Baffin Bay region, Aureoumbra lagunensis, is unable to utilize nitrate as a nutrient source, but instead relies on forms of reduced nitrogen (such as dissolved organic nitrogen (DON) and ammonium (NH4+)) for survival. DON levels in Baffin Bay (77 ± 10 µM) exceed the DON concentrations of not only typical Texas estuaries, but estuaries worldwide. Additionally, DON accounts for 90% of the total dissolved nitrogen (TDN) in Baffin Bay, followed by NH4+ at 8%, and NO3-+NO2- contributing 2%. Due to the dependence of A. lagunensis on the reduced forms of nitrogen as an energy source and the elevated concentrations of DON throughout the bay, it is important to identify the origin of this nitrogen as well as how it's being processed as it cycles through the ecosystem. The presented work investigates the stable isotopic composition of reactive nitrogen (Nr) (δ15N-DON, δ15N-NH4+, and δ15N-NO3-) in Baffin Bay samples collected monthly at nine stations over the period of one year. The work provides preliminary evidence of Nr sources and mechanisms driving favorable conditions for HAB proliferation. This information can be useful and applicable to estuarine ecosystems in various settings, advancing scientific progress towards mitigating blooms. Additionally, since the elevated concentrations of DON make Baffin Bay uniquely suited to investigate its sources and processing, this project will aid in characterizing the role of this largely unstudied form of Nr, which could provide insight and change perceptions about the role of DON in nitrogen dynamics.

  17. Nitrogen in Chinese coals

    Science.gov (United States)

    Wu, D.; Lei, J.; Zheng, B.; Tang, X.; Wang, M.; Hu, Jiawen; Li, S.; Wang, B.; Finkelman, R.B.

    2011-01-01

    Three hundred and six coal samples were taken from main coal mines of twenty-six provinces, autonomous regions, and municipalities in China, according to the resource distribution and coal-forming periods as well as the coal ranks and coal yields. Nitrogen was determined by using the Kjeldahl method at U. S. Geological Survey (USGS), which exhibit a normal frequency distribution. The nitrogen contents of over 90% Chinese coal vary from 0.52% to 1.41% and the average nitrogen content is recommended to be 0.98%. Nitrogen in coal exists primarily in organic form. There is a slight positive relationship between nitrogen content and coal ranking. ?? 2011 Science Press, Institute of Geochemistry, CAS and Springer Berlin Heidelberg.

  18. Evolution of nitrogen species in landfill leachates under various stabilization states.

    Science.gov (United States)

    Zhao, Renzun; Gupta, Abhinav; Novak, John T; Goldsmith, C Douglas

    2017-11-01

    In this study, nitrogen species in landfill leachates under various stabilization states were investigated with emphasis on organic nitrogen. Ammonium nitrogen was found to be approximately 1300mg/L in leachates from younger landfill units (less than 10years old), and approximately 500mg/L in leachates from older landfill units (up to 30years old). The concentration and aerobic biodegradability of organic nitrogen decreased with landfill age. A size distribution study showed that most organic nitrogen in landfill leachates is nitrogen (TON, mg/L-N, R 2 =0.88 and 0.98 for untreated and treated samples, respectively). The slopes of the regression curves of untreated (protein=0.45TON) and treated (protein=0.31TON) leachates indicated that the protein is more biodegradable than the other organic nitrogen species in landfill leachates. XAD-8 resin was employed to isolate the hydrophilic fraction of leachate samples, and it was found that the hydrophilic fraction proportion in terms of organic nitrogen decreased with landfill age. Solid-state 15 N nuclear magnetic resonance (NMR) was utilized to identify the nitrogen species. Proteinaceous materials were found to be readily biodegradable, while heterocyclic nitrogen species were found to be resistant to biodegradation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Influence of basal application of organic wastes on absorption and translocation of 15N-tagged nitrogen fertilizer in tea plants

    International Nuclear Information System (INIS)

    Watanabe, Ikuo; Ikegaya, Kenjiro; Hiramine, Shigeo

    1979-01-01

    Influence of the basal application of rape seed oil cake and shavings pig manure compost on the absorption, translocation and utilization of top-dressed 15 N-tagged ammonium sulfate in tea plants were studied. Nitrogen uptake and dry weights of new shoots increased in rape seed oil cake and shavings pig manure compost treatments as compared with ammonium sulfate treatments. The high rate of nitrogen absorption per the weight of rootlets in rape seed oil cake treatments suggested that the enhanced root activity might contribute to the increase. And the increase in shavings pig manure compost treatments could be due to the increase of the quantity of rootlets. The absorbed tagged nitrogen was 34% of total absorbed nitrogen in rape seed oil cake treatments, and 67% in shavings pig manure treatments. The results suggested that available nitrogen contents in soil originated from the basal nitrogen might be low in shavings pig manure compost treatments in comparison with rape seed oil cake treatments. Total nitrogen and nitrogen contents of amino acid fraction of ''a bud and two leaves'' of new shoots were relatively high in shavings pig manure compost treatments. With the growth of new shoots, nitrogen contents of protein fraction decreased in old leaves, branches and trunks in ammonium sulfate and rape seed oil cake treatments. This fact suggested that the storage protein might be present in these organs. (author)

  20. Nitrogen fertilization of coffee: organic compost and Crotalaria juncea L.

    Directory of Open Access Journals (Sweden)

    João Batista Silva Araujo

    2013-12-01

    Full Text Available Information concerning the response of coffee to organic fertilizers is scarce. This study evaluates the effect of different doses of compost and Crotalaria juncea L. on growth, production and nitrogen nutrition of coffee trees. The treatments consisted of compost at rates of 25, 50, 75 and 100% of the recommended fertilization, with or without the aerial part of C. juncea. C. juncea was grown with NH4-N (2% 15N and applied to coffee. The use of C. juncea increased growth in height and diameter of the coffee canopy. In the first year, the percentage of N derived from C. juncea reached 8.5% at seven months and 4.1% at fifteen months after fertilization. In the second year, the percentage of N derived from C. juncea reached 17.9% N at the early harvest, five months after fertilization. Increased rates of compost increased pH , P , K , Ca , Mg , sum of bases , effective CEC, base saturation and organic matter and reduced potential acidity. 15N allowed the identification of the N contribution from C. juncea with percentage of leaf N derived from Crotalaria juncea from 9.2 to 17.9%.

  1. Influence of nitrogen and phosphorus sources on mycorrhizal lettuces under organic farming

    Science.gov (United States)

    Scotti, Riccardo; Seguel, Alex; Cornejo, Pablo; Rao, Maria A.; Borie, Fernando

    2010-05-01

    Arbuscular mycorrhizal fungi (AMF) develop symbiotic associations with plants roots. These associations are very common in the natural environment and can provide a range of benefits to the host plant. AMF improve nutrition, enhance resistance to soil-borne pests and disease, increase resistance to drought and tolerance to heavy metals, and contribute to a better soil structure. However, agricultural intensive managements, such as the use of mineral fertilizes, pesticides, mouldboard tillage, monocultures and use of non-mycorrhizal crops, are detrimental to AMF. As a consequence, agroecosystems are impoverished in AMF and may not provide the full range of benefits to the crop. Organic farming systems may be less unfavourable to AMF because they exclude the use of water-soluble fertilisers and most pesticides, and generally they plan diverse crop rotations. The AMF develop the most common type of symbiosis in nature: about 90% of the plants are mycorrhizal and many agricultural crops are mycorrhizal. One of more mycorrhizal crops is lettuce, that is very widespread in intensive agricultural under greenhouse. Therefore, cultivated lettuce is know to be responsive to mycorrhizal colonization which can reach 80% of root length and contribute to phosphorus and nitrogen absorption by this plant specie. For this work four different lettuce cultivars (Romana, Milanesa, Grande Lagos and Escarola) were used to study mycorrhization under organic agricultural system, supplying compost from agricultural waste (1 kg m-2) as background fertilization for all plots, red guano as phosphorus source (75 U ha-1 and 150 U ha-1 of P2O5), lupine flour as nitrogen source (75 and 150 U/ha of N) and a combination of both. Lettuce plants were cultivated under greenhouse and after two months of growing, plants were harvested and dried and fresh weight of lettuce roots and shoots were evaluated. The number of spores, percentage of colonization, total mycelium and glomalin content were also

  2. Organic carbon and nitrogen export from a tropical dam-impacted floodplain system

    Science.gov (United States)

    Zurbrügg, R.; Suter, S.; Lehmann, M. F.; Wehrli, B.; Senn, D. B.

    2013-01-01

    Tropical floodplains play an important role in organic matter transport, storage, and transformation between headwaters and oceans. However, the fluxes and quality of organic carbon (OC) and organic nitrogen (ON) in tropical river-floodplain systems are not well constrained. We explored the quantity and characteristics of dissolved and particulate organic matter (DOM and POM, respectively) in the Kafue River flowing through the Kafue Flats (Zambia), a tropical river-floodplain system in the Zambezi River basin. During the flooding season, > 80% of the Kafue River water passed through the floodplain, mobilizing large quantities of OC and ON, which resulted in a net export of 69-119 kg OC km-2 d-1 and 3.8-4.7 kg ON km-2 d-1, 80% of which was in the dissolved form. The elemental C : N ratio of ~ 20, the comparatively high δ13C values of -25‰ to -21‰, and its spectroscopic properties (excitation-emission matrices) showed that DOM in the river was mainly of terrestrial origin. Despite a threefold increase in OC loads due to inputs from the floodplain, the characteristics of the riverine DOM remained relatively constant along the sampled 410-km river reach. This suggests that floodplain DOM displayed properties similar to those of DOM leaving the upstream reservoir and implied that the DOM produced in the reservoir was relatively short-lived. In contrast, the particulate fraction was 13C-depleted (-29‰) and had a C : N ratio of ~ 8, which indicated that POM originated from phytoplankton production in the reservoir and in the floodplain, rather than from plant debris or resuspended sediments. While the upstream dam had little effect on the DOM pool, terrestrial particles were retained, and POM from algal and microbial sources was released to the river. A nitrogen mass balance over the 2200 km2 flooded area revealed an annual deficit of 15 500-22 100 t N in the Kafue Flats. The N isotope budget suggests that these N losses are balanced by intense N-fixation. Our

  3. Organic Nitrogen-Driven Stimulation of Arbuscular Mycorrhizal Fungal Hyphae Correlates with Abundance of Ammonia Oxidizers

    Science.gov (United States)

    Bukovská, Petra; Gryndler, Milan; Gryndlerová, Hana; Püschel, David; Jansa, Jan

    2016-01-01

    Large fraction of mineral nutrients in natural soil environments is recycled from complex and heterogeneously distributed organic sources. These sources are explored by both roots and associated mycorrhizal fungi. However, the mechanisms behind the responses of arbuscular mycorrhizal (AM) hyphal networks to soil organic patches of different qualities remain little understood. Therefore, we conducted a multiple-choice experiment examining hyphal responses to different soil patches within the root-free zone by two AM fungal species (Rhizophagus irregularis and Claroideoglomus claroideum) associated with Medicago truncatula, a legume forming nitrogen-fixing root nodules. Hyphal colonization of the patches was assessed microscopically and by quantitative real-time PCR (qPCR) using AM taxon-specific markers, and the prokaryotic and fungal communities in the patches (pooled per organic amendment treatment) were profiled by 454-amplicon sequencing. Specific qPCR markers were then designed and used to quantify the abundance of prokaryotic taxa showing the strongest correlation with the pattern of AM hyphal proliferation in the organic patches as per the 454-sequencing. The hyphal density of both AM fungi increased due to nitrogen (N)-containing organic amendments (i.e., chitin, DNA, albumin, and clover biomass), while no responses as compared to the non-amended soil patch were recorded for cellulose, phytate, or inorganic phosphate amendments. Abundances of several prokaryotes, including Nitrosospira sp. (an ammonium oxidizer) and an unknown prokaryote with affiliation to Acanthamoeba endosymbiont, which were frequently recorded in the 454-sequencing profiles, correlated positively with the hyphal responses of R. irregularis to the soil amendments. Strong correlation between abundance of these two prokaryotes and the hyphal responses to organic soil amendments by both AM fungi was then confirmed by qPCR analyses using all individual replicate patch samples. Further

  4. Assessment of free-living nitrogen fixing microorganisms for commercial nitrogen fixation. [economic analysis of ammonia production

    Science.gov (United States)

    Stokes, B. O.; Wallace, C. J.

    1978-01-01

    Ammonia production by Klebsiella pneumoniae is not economical with present strains and improving nitrogen fixation to its theoretical limits in this organism is not sufficient to achieve economic viability. Because the value of both the hydrogen produced by this organism and the methane value of the carbon source required greatly exceed the value of the ammonia formed, ammonia (fixed nitrogen) should be considered the by-product. The production of hydrogen by KLEBSIELLA or other anaerobic nitrogen fixers should receive additional study, because the activity of nitrogenase offers a significant improvement in hydrogen production. The production of fixed nitrogen in the form of cell mass by Azotobacter is also uneconomical and the methane value of the carbon substrate exceeds the value of the nitrogen fixed. Parametric studies indicate that as efficiencies approach the theoretical limits the economics may become competitive. The use of nif-derepressed microorganisms, particularly blue-green algae, may have significant potential for in situ fertilization in the environment.

  5. Isotopic composition of skeleton-bound organic nitrogen in reef-building symbiotic corals: A new method and proxy evaluation at Bermuda

    Science.gov (United States)

    Wang, X. T.; Sigman, D. M.; Cohen, A. L.; Sinclair, D. J.; Sherrell, R. M.; Weigand, M. A.; Erler, D. V.; Ren, H.

    2015-01-01

    The skeleton-bound organic nitrogen in reef-building symbiotic corals may be a high-resolution archive of ocean nitrogen cycle dynamics and a tool for understanding coral biogeochemistry and physiological processes. However, the existing methods for measuring the isotopic composition of coral skeleton-bound organic nitrogen (hereafter, CS-δ15N) either require too much skeleton material or have low precision, limiting the applications of this relatively new proxy. In addition, the controlling factors on CS-δ15N remain poorly understood: the δ15N of source nitrogen and the internal nitrogen cycle of the coral/zooxanthellae symbiosis may both be important. Here, we describe a new ("persulfate/denitrifier"-based) method for measuring CS-δ15N, requiring only 5 mg of skeleton material and yielding a long-term precision better than 0.2‰ (1σ). Using this new method, we investigate CS-δ15N at Bermuda. Ten modern Diploria labyrinthiformis coral cores/colonies from 4 sampling sites were measured for CS-δ15N. Nitrogen concentrations (nitrate + nitrite, ammonium, and dissolved organic nitrogen) and δ15N of plankton were also measured at these coral sites. Among the 4 sampling sites, CS-δ15N shows an increase with proximity to the island, from ∼3.8‰ to ∼6.8‰ vs. atmospheric N2, with the northern offshore site having a CS-δ15N 1-2‰ higher than the δ15N of thermocline nitrate in the surrounding Sargasso Sea. Two annually resolved CS-δ15N time series suggest that the offshore-inshore CS-δ15N gradient has persisted since at least the 1970s. Plankton δ15N among these 4 sites also has an inshore increase, but of only ∼1‰. Coral physiological change must explain the remaining (∼2‰) inshore increase in CS-δ15N, and previous work points to the coral/zooxanthellae N cycle as a control on host tissue (and thus carbonate skeletal) δ15N. The CS-δ15N gradient is hypothesized to result mainly from varying efficiency in the internal nitrogen recycling of the

  6. Energy transfer in Anabaena variabilis filaments adapted to nitrogen-depleted and nitrogen-enriched conditions studied by time-resolved fluorescence.

    Science.gov (United States)

    Onishi, Aya; Aikawa, Shimpei; Kondo, Akihiko; Akimoto, Seiji

    2017-09-01

    Nitrogen is among the most important nutritious elements for photosynthetic organisms such as plants, algae, and cyanobacteria. Therefore, nitrogen depletion severely compromises the growth, development, and photosynthesis of these organisms. To preserve their integrity under nitrogen-depleted conditions, filamentous nitrogen-fixing cyanobacteria reduce atmospheric nitrogen to ammonia, and self-adapt by regulating their light-harvesting and excitation energy-transfer processes. To investigate the changes in the primary processes of photosynthesis, we measured the steady-state absorption and fluorescence spectra and time-resolved fluorescence spectra (TRFS) of whole filaments of the nitrogen-fixing cyanobacterium Anabaena variabilis at 77 K. The filaments were grown in standard and nitrogen-free media for 6 months. The TRFS were measured with a picosecond time-correlated single photon counting system. Despite the phycobilisome degradation, the energy-transfer paths within phycobilisome and from phycobilisome to both photosystems were maintained. However, the energy transfer from photosystem II to photosystem I was suppressed and a specific red chlorophyll band appeared under the nitrogen-depleted condition.

  7. Methane, Ethane, and Nitrogen Stability on Titan

    Science.gov (United States)

    Hanley, J.; Grundy, W. M.; Thompson, G.; Dustrud, S.; Pearce, L.; Lindberg, G.; Roe, H. G.; Tegler, S.

    2017-12-01

    Many outer solar system bodies are likely to have a combination of methane, ethane and nitrogen. In particular the lakes of Titan are known to consist of these species. Understanding the past and current stability of these lakes requires characterizing the interactions of methane and ethane, along with nitrogen, as both liquids and ices. Our cryogenic laboratory setup allows us to explore ices down to 30 K through imaging, and transmission and Raman spectroscopy. Our recent work has shown that although methane and ethane have similar freezing points, when mixed they can remain liquid down to 72 K. Concurrently with the freezing point measurements we acquire transmission or Raman spectra of these mixtures to understand how the structural features change with concentration and temperature. Any mixing of these two species together will depress the freezing point of the lake below Titan's surface temperature, preventing them from freezing. We will present new results utilizing our recently acquired Raman spectrometer that allow us to explore both the liquid and solid phases of the ternary system of methane, ethane and nitrogen. In particular we will explore the effect of nitrogen on the eutectic of the methane-ethane system. At high pressure we find that the ternary creates two separate liquid phases. Through spectroscopy we determined the bottom layer to be nitrogen rich, and the top layer to be ethane rich. Identifying the eutectic, as well as understanding the liquidus and solidus points of combinations of these species, has implications for not only the lakes on the surface of Titan, but also for the evaporation/condensation/cloud cycle in the atmosphere, as well as the stability of these species on other outer solar system bodies. These results will help interpretation of future observational data, and guide current theoretical models.

  8. Effects of contrasting catch crops on nitrogen availability and nitrous oxide emissions in an organic cropping system

    DEFF Research Database (Denmark)

    Li, Xiaoxi; Petersen, Søren O; Sørensen, Peter

    2015-01-01

    Legume-based catch crops (LBCCs) may act as an important source of nitrogen (N) in organic crop rotations because of biological N fixation. However, the potential risk of high nitrous oxide (N2O) emissions needs to be taken into account when including LBCCs in crop rotations. Here, we report...

  9. Leaching of organic carbon and nitrogen from peatland-dominated catchments

    International Nuclear Information System (INIS)

    Kortelainen, P.

    1992-01-01

    The area of 13 study catchments is 2.5-56-3 km 2 and 37-87 % of the catchments is covered by peatlands. Ditching intensities varied from 0 to 100 %. Median total organic carbon (TOC) in runoff waters from the catchments was 10-30 mg/l - 1 and median nitrogen (N tot ) 380-1000 μg/1 -1 . The annual leaching of TOC and Ntot was calculated for five catchments for which daily runoff data was available. The range for mean annual leaching of TOC and N tot from the catchments was 4700-7300 kg/km 2 a and 190-250 kg/km -2 a -1 , respectively. The variation between different years was high and annual leaching was closely related to annual runoff. The regional variation in the leaching of TOC and N tot was small compared to the annual variation

  10. Nitrogen concentration estimation with hyperspectral LiDAR

    Directory of Open Access Journals (Sweden)

    O. Nevalainen

    2013-10-01

    Full Text Available Agricultural lands have strong impact on global carbon dynamics and nitrogen availability. Monitoring changes in agricultural lands require more efficient and accurate methods. The first prototype of a full waveform hyperspectral Light Detection and Ranging (LiDAR instrument has been developed at the Finnish Geodetic Institute (FGI. The instrument efficiently combines the benefits of passive and active remote sensing sensors. It is able to produce 3D point clouds with spectral information included for every point which offers great potential in the field of remote sensing of environment. This study investigates the performance of the hyperspectral LiDAR instrument in nitrogen estimation. The investigation was conducted by finding vegetation indices sensitive to nitrogen concentration using hyperspectral LiDAR data and validating their performance in nitrogen estimation. The nitrogen estimation was performed by calculating 28 published vegetation indices to ten oat samples grown in different fertilization conditions. Reference data was acquired by laboratory nitrogen concentration analysis. The performance of the indices in nitrogen estimation was determined by linear regression and leave-one-out cross-validation. The results indicate that the hyperspectral LiDAR instrument holds a good capability to estimate plant biochemical parameters such as nitrogen concentration. The instrument holds much potential in various environmental applications and provides a significant improvement to the remote sensing of environment.

  11. [Nitrogen Fraction Distributions and Impacts on Soil Nitrogen Mineralization in Different Vegetation Restorations of Karst Rocky Desertification].

    Science.gov (United States)

    Hu, Ning; Ma, Zhi-min; Lan, Jia-cheng; Wu, Yu-chun; Chen, Gao-qi; Fu, Wa-li; Wen, Zhi-lin; Wang, Wen-jing

    2015-09-01

    In order to illuminate the impact on soil nitrogen accumulation and supply in karst rocky desertification area, the distribution characteristics of soil nitrogen pool for each class of soil aggregates and the relationship between aggregates nitrogen pool and soil nitrogen mineralization were analyzed in this study. The results showed that the content of total nitrogen, light fraction nitrogen, available nitrogen and mineral nitrogen in soil aggregates had an increasing tendency along with the descending of aggregate-size, and the highest content was occurred in 5mm and 2-5 mm classes, and the others were the smallest. With the positive vegetation succession, the weight percentage of > 5 mm aggregate-size classes was improved and the nitrogen storage of macro-aggregates also was increased. Accordingly, the capacity of soil supply mineral nitrogen and storage organic nitrogen were intensified.

  12. An advanced technique for speciation of organic nitrogen in atmospheric aerosols

    Science.gov (United States)

    Samy, S.; Robinson, J.; Hays, M. D.

    2011-12-01

    The chemical composition of organic nitrogen (ON) in the environment is a research topic of broad significance. The topic intersects the branches of atmospheric, aquatic, and ecological science; thus, a variety of instrumentation, analytical methods, and data interpretation tools have evolved for determination of ON. Recent studies that focus on atmospheric particulate nitrogen (N) suggest a significant fraction (20-80%) of total N is bound in organic compounds. The sources, bioavailability and transport mechanisms of these N-containing compounds can differ, producing a variety of environmental consequences. Amino acids (AA) are a key class of atmospheric ON compounds that can contribute to secondary organic aerosol (SOA) formation and potentially influence water cycles, air pollutant scavenging, and the radiation balance. AA are water-soluble organic compounds (WSOC) that can significantly alter the acid-base chemistry of aerosols, and may explain the buffering capacity that impacts heterogeneous atmospheric chemistry. The chemical transformations that N-containing organic compounds (including AA) undergo can increase the light-absorbing capacity of atmospheric carbon via formation of 'brown carbon'. Suggested sources of atmospheric AA include: marine surface layer transport from bursting sea bubbles, the suspension of bacteria, fungi, algae, pollen, spores, or biomass burning. Methodology for detection of native (underivatized) amino acids (AA) in atmospheric aerosols has been developed and validated (Samy et al., 2011). This presentation describes the use of LC-MS (Q-TOF) and microwave-assisted gas phase hydrolysis for detection of free and combined amino acids in aerosols collected in a Southeastern U.S. forest environment. Accurate mass detection and the addition of isotopically labeled surrogates prior to sample preparation allows for sensitive quantitation of target AA in a complex aerosol matrix. A total of 16 native AA were detected above the reporting

  13. Mineralization of nitrogen by protozoan activity in soil

    NARCIS (Netherlands)

    Kuikman, P.

    1990-01-01

    In general, more than 95% of the nitrogen in soils is present in organic forms. This nitrogen is not directly available to plants unless microbial decomposition takes place with the release of mineral nitrogen. In modern agriculture, nitrogen is often applied to arable soils as a fertilizer

  14. The organic nature and atmosphere-climate dependency of nitrogen loss from forest watershed ecosystems

    OpenAIRE

    Brookshire, E. N. J.

    2006-01-01

    In this dissertation I describe how coupled internal cycling and external forcing from the atmosphere and climate can regulate the dynamics of nitrogen (N) loss from forest watersheds. I address three major gaps in our understanding of the global N cycle: 1) the role of dissolved organic N (DON) in internal N cycling in low-N ecosystems; 2) The influence of atmospheric pollution on DON production and loss from forests; and 3) the inherent climate sensitivity of forest N cycling and loss. In...

  15. Nitrogen fixation in Red Sea seagrass meadows

    KAUST Repository

    Abdallah, Malak

    2017-05-01

    Seagrasses are key coastal ecosystems, providing many ecosystem services. Seagrasses increase biodiversity as they provide habitat for a large set of organisms. In addition, their structure provides hiding places to avoid predation. Seagrasses can grow in shallow marine coastal areas, but several factors regulate their growth and distribution. Seagrasses can uptake different kinds of organic and inorganic nutrients through their leaves and roots. Nitrogen and phosphorous are the most important nutrients for seagrass growth. Biological nitrogen fixation is the conversion of atmospheric nitrogen into ammonia by diazotrophic bacteria. This process provides a significant source of nitrogen for seagrass growth. The nitrogen fixation is controlled by the nif genes which are found in diazotrophs. The main goal of the project is to measure nitrogen fixation rates on seagrass sediments, in order to compare among various seagrass species from the Red Sea. Moreover, we will compare the fixing rates of the Vegetated areas with the bare sediments. This project will help to ascertain the role of nitrogen fixing bacteria in the development of seagrass meadows.

  16. Examining the role of dissolved organic nitrogen in stream ecosystems across biomes and Critical Zone gradients

    Science.gov (United States)

    Wymore, A.; Rodriguez-Cardona, B.; Coble, A. A.; Potter, J.; Lopez Lloreda, C.; Perez Rivera, K.; De Jesus Roman, A.; Bernal, S.; Martí Roca, E.; Kram, P.; Hruska, J.; Prokishkin, A. S.; McDowell, W. H.

    2016-12-01

    Watershed nitrogen exports are often dominated by dissolved organic nitrogen (DON); yet, little is known about the role ambient DON plays in ecosystems. As an organic nutrient, DON may serve as either an energy source or as a nutrient source. One hypothesized control on DON is nitrate (NO3-) availability. Here we examine the interaction of NO3- and DON in streams across temperate forests, tropical rainforests, and Mediterranean and taiga biomes. Experimental streams also drain contrasting Critical Zones which provide gradients of vegetation, soil type and lithology (e.g. volcaniclastic, granitic, ultramafic, Siberian Traps Flood Basalt) in which to explore how the architecture of the Critical Zone affects microbial biogeochemical reactions. Streams ranged in background dissolved organic carbon (DOC) concentration (1-50 mg C/L) and DOC: NO3- ratios (10-2000). We performed a series of ecosystem-scale NO3- additions in multiple streams within each environment and measured the change in DON concentration. Results demonstrate that there is considerable temporal and spatial variation across systems with DON both increasing and decreasing in response to NO3- addition. Ecologically this suggests that DON can serve as both a nutrient source and an energy source to aquatic microbial communities. In contrast, DOC concentrations rarely changed in response to NO3- additions suggesting that the N-rich fraction of the ambient dissolved organic matter pool is more bioreactive than the C-rich fraction. Contrasting responses of the DON and DOC pools indicate different mechanisms controlling their respective cycling. It is likely that DON plays a larger role in ecosystems than previously recognized.

  17. MgO-templated nitrogen-containing carbons derived from different organic compounds for capacitor electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Konno, Hidetaka; Onishi, Hiroaki; Azumi, Kazuhisa [Laboratory of Advanced Materials Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo 060-8628 (Japan); Yoshizawa, Noriko [Energy Technology Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8569 (Japan)

    2010-01-15

    Carbons containing nitrogen (C-N composites) were derived from three commercial organic compounds, poly(vinylpyrrolidone) (PVP), polyacrylamide (PAA), and trimethylolmelamine (TMM) using the MgO template method. The C-N composites formed in nitrogen at 700-1000 C had nitrogen content, W{sub N}, of 3-23 mass% and the specific surface area by N{sub 2} adsorption, S{sub BET}, of 60-2000 m{sup 2} g{sup -1} without activation. Generally high nitrogen content of the starting compound led to larger W{sub N}, but W{sub N} was not proportional to the N/C mole ratio in the compounds. The value of S{sub BET} strongly depended on the compound: S{sub BET} (PVP) > S{sub BET} (PAA) >> S{sub BET} (TMM). There was a tendency for W{sub N} to decrease with increasing S{sub BET}. The capacitance measured in 1 mol dm{sup -3} H{sub 2}SO{sub 4} by cyclic voltammetry, C{sub M} in F g{sup -1}, suggested that both W{sub N} and S{sub BET} are influential in gaining large C{sub M}. For the composites with W{sub N} > 5 mass%, the capacitance normalized by S{sub BET}, C{sub A} = C{sub M}/S{sub BET}, was 0.17-0.65 F m{sup -2}, which was larger than the electric double layer capacitance (0.05-0.15 F m{sup -2}), indicating that the pseudo-capacitance contributes significantly to C{sub M}. The value of C{sub A} increased with increasing W{sub N}, but a correlation between C{sub A} and particular nitrogen species on the surface measured by XPS was obscure. It was suggested that the large C{sub A} is not simply explained by redox reactions of the surface functional groups. The composite derived from PAA at 900 C showed 234 F g{sup -1} at 2 mV s{sup -1} and 181 F g{sup -1} at 100 mV s{sup -1} with acceptable yield of the composite. (author)

  18. Response of hydrolytic enzyme activities and nitrogen mineralization to fertilizer and organic matter application in subtropical paddy soils

    Science.gov (United States)

    Kader, Mohammed Abdul; Yeasmin, Sabina; Akter, Masuda; Sleutel, Steven

    2016-04-01

    Driving controllers of nitrogen (N) mineralization in paddy soils, especially under anaerobic soil conditions, remain elusive. The influence of exogenous organic matter (OM) and fertilizer application on the activities of five relevant enzymes (β-glucosaminidase, β-glucosidase, L-glutaminase, urease and arylamidase) was measured in two long-term field experiments. One 18-years field experiment was established on a weathered terrace soil with a rice-wheat crop rotation at the Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU) having five OM treatments combined with two mineral N fertilizer levels. Another 30-years experiment was established on a young floodplain soil with rice-rice crop rotation at the Bangladesh Agricultural University (BAU) having eight mineral fertilizer treatments combined with organic manure. At BSMRAU, N fertilizer and OM amendments significantly increased all enzyme activities, suggesting them to be primarily determined by substrate availability. At BAU, non-responsiveness of β-glucosidase activity suggested little effect of the studied fertilizer and OM amendments on general soil microbial activity. Notwithstanding probably equal microbial demand for N, β-glucosaminidase and L-glutaminase activities differed significantly among the treatments (P>0.05) and followed strikingly opposite trends and correlations with soil organic N mineralization. So enzymatic pathways to acquire N differed by treatment at BAU, indicating differences in soil N quality and bio-availability. L-glutaminase activity was significantly positively correlated to the aerobic and anaerobic N mineralization rates at both field experiments. Combined with negative correlations between β-glucosaminidase activity and N mineralization rates, it appears that terminal amino acid NH2 hydrolysis was a rate-limiting step for soil N mineralization at BAU. Future investigations with joint quantification of polyphenol accumulation and binding of N, alongside an

  19. A seasonal nitrogen deposition budget for Rocky Mountain National Park.

    Science.gov (United States)

    Benedict, K B; Carrico, C M; Kreidenweis, S M; Schichtel, B; Malm, W C; Collett, J L

    2013-07-01

    Nitrogen deposition is a concern in many protected ecosystems around the world, yet few studies have quantified a complete reactive nitrogen deposition budget including all dry and wet, inorganic and organic compounds. Critical loads that identify the level at which nitrogen deposition negatively affects an ecosystem are often defined using incomplete reactive nitrogen budgets. Frequently only wet deposition of ammonium and nitrate are considered, despite the importance of other nitrogen deposition pathways. Recently, dry deposition pathways including particulate ammonium and nitrate and gas phase nitric acid have been added to nitrogen deposition budgets. However, other nitrogen deposition pathways, including dry deposition of ammonia and wet deposition of organic nitrogen, still are rarely included. In this study, a more complete seasonal nitrogen deposition budget was constructed based on observations during a year-long study period from November 2008 to November 2009 at a location on the east side of Rocky Mountain National Park (RMNP), Colorado, USA. Measurements included wet deposition of ammonium, nitrate, and organic nitrogen, PM2.5 (particulate matter with an aerodynamic diameter less than 2.5 microm, nitrate, and ammonium) concentrations of ammonium, nitrate, and organic nitrogen, and atmospheric gas phase concentrations of ammonia, nitric acid, and NO2. Dry deposition fluxes were determined from measured ambient concentrations and modeled deposition velocities. Total reactive nitrogen deposition by all included pathways was found to be 3.65 kg N x ha(-1) yr(-1). Monthly deposition fluxes ranged from 0.06 to 0.54 kg N x ha(-1)yr(-1), with peak deposition in the month of July and the least deposition in December. Wet deposition of ammonium and nitrate were the two largest deposition pathways, together contributing 1.97 kg N x ha(-1)yr(-1) or 54% of the total nitrogen deposition budget for this region. The next two largest deposition pathways were wet

  20. Organic carbon and nitrogen export from a tropical dam-impacted floodplain system

    Directory of Open Access Journals (Sweden)

    R. Zurbrügg

    2013-01-01

    Full Text Available Tropical floodplains play an important role in organic matter transport, storage, and transformation between headwaters and oceans. However, the fluxes and quality of organic carbon (OC and organic nitrogen (ON in tropical river-floodplain systems are not well constrained. We explored the quantity and characteristics of dissolved and particulate organic matter (DOM and POM, respectively in the Kafue River flowing through the Kafue Flats (Zambia, a tropical river-floodplain system in the Zambezi River basin. During the flooding season, > 80% of the Kafue River water passed through the floodplain, mobilizing large quantities of OC and ON, which resulted in a net export of 69–119 kg OC km−2 d−1 and 3.8–4.7 kg ON km−2 d−1, 80% of which was in the dissolved form. The elemental C : N ratio of ~ 20, the comparatively high δ13C values of −25‰ to −21‰, and its spectroscopic properties (excitation-emission matrices showed that DOM in the river was mainly of terrestrial origin. Despite a threefold increase in OC loads due to inputs from the floodplain, the characteristics of the riverine DOM remained relatively constant along the sampled 410-km river reach. This suggests that floodplain DOM displayed properties similar to those of DOM leaving the upstream reservoir and implied that the DOM produced in the reservoir was relatively short-lived. In contrast, the particulate fraction was 13C-depleted (−29‰ and had a C : N ratio of ~ 8, which indicated that POM originated from phytoplankton production in the reservoir and in the floodplain, rather than from plant debris or resuspended sediments. While the upstream dam had little effect on the DOM pool, terrestrial particles were retained, and POM from algal and microbial sources was released to the river. A nitrogen mass balance over the 2200 km2 flooded area revealed an annual deficit of 15 500–22 100 t N in

  1. Fate of bulk organic matter, nitrogen, and pharmaceutically active compounds in batch experiments simulating soil aquifer treatment (SAT) using primary effluent

    KAUST Repository

    Abel, Chol D T

    2013-06-30

    Reduction of bulk organic matter, nitrogen, and pharmaceutically active compounds from primary effluent during managed aquifer recharge was investigated using laboratory-scale batch reactors. Biologically stable batch reactors were spiked with different concentrations of sodium azide to inhibit biological activity and probe the effect of microbial activity on attenuation of various pollutants of concern. The experimental results obtained revealed that removal of dissolved organic carbon correlated with active microbial biomass. Furthermore, addition of 2 mM of sodium azide affected nitrite-oxidizing bacteria leading to accumulation of nitrite-nitrogen in the reactors while an ammonium-nitrogen reduction of 95.5 % was achieved. Removal efficiencies of the hydrophilic neutral compounds phenacetin, paracetamol, and caffeine were independent of the extent of the active microbial biomass and were >90 % in all reactors, whereas removal of pentoxifylline was dependent on the biological stability of the reactor. However, hydrophobic ionic compounds exhibited removal efficiency >80 % in batch reactors with the highest biological activity as evidenced by high concentration of adenosine triphosphate. © 2013 Springer Science+Business Media Dordrecht.

  2. Fate of bulk organic matter, nitrogen, and pharmaceutically active compounds in batch experiments simulating soil aquifer treatment (SAT) using primary effluent

    KAUST Repository

    Abel, Chol D T; Sharma, Saroj K.; Maeng, Sungkyu; Magic-Knezev, Aleksandra; Kennedy, Maria Dolores; Amy, Gary L.

    2013-01-01

    Reduction of bulk organic matter, nitrogen, and pharmaceutically active compounds from primary effluent during managed aquifer recharge was investigated using laboratory-scale batch reactors. Biologically stable batch reactors were spiked with different concentrations of sodium azide to inhibit biological activity and probe the effect of microbial activity on attenuation of various pollutants of concern. The experimental results obtained revealed that removal of dissolved organic carbon correlated with active microbial biomass. Furthermore, addition of 2 mM of sodium azide affected nitrite-oxidizing bacteria leading to accumulation of nitrite-nitrogen in the reactors while an ammonium-nitrogen reduction of 95.5 % was achieved. Removal efficiencies of the hydrophilic neutral compounds phenacetin, paracetamol, and caffeine were independent of the extent of the active microbial biomass and were >90 % in all reactors, whereas removal of pentoxifylline was dependent on the biological stability of the reactor. However, hydrophobic ionic compounds exhibited removal efficiency >80 % in batch reactors with the highest biological activity as evidenced by high concentration of adenosine triphosphate. © 2013 Springer Science+Business Media Dordrecht.

  3. Thermal degradation of the vapours of organic nitrogen compounds in the presence of the air

    International Nuclear Information System (INIS)

    Brault, A.; Chevalier, G.; Kerfanto, M.; Loyer, H.

    1983-04-01

    Following a quick survey of the literature on the products originated during the thermal degradation of some organic nitrogen compounds, the experimental results obtained by applying a technique previously used for other organic compounds are presented. The compounds investigated include: methyl and ethylamines at the origin of the bad smells of many gaseous wastes, trilaurylamine and tetraethylenediamine sometimes used in nuclear facilities. Attention is brought on the emission of noxious products during thermal degradation in the presence of the air, at various temperatures, viz. either usual combustion gases such as carbon monoxide, or nitro-derivatives such as hydrogen cyanide present whatever the compound investigated when temperatures are below 850 0 C [fr

  4. Technical Note: Comparison between a direct and the standard, indirect method for dissolved organic nitrogen determination in freshwater environments with high dissolved inorganic nitrogen concentrations

    DEFF Research Database (Denmark)

    Graeber, Daniel; Gelbrecht, Jörg; Kronvang, Brian

    2012-01-01

    Research on dissolved organic nitrogen (DON) in aquatic systems with high dissolved inorganic nitrogen (DIN, the sum of NO3–, NO2– and NH4+) concentrations is often hampered by high uncertainties regarding the determined DON concentration. The reason is that DON is determined indirectly...... accuracy at high DIN : TDN ratios, we investigated the DON measurement accuracy of this standard approach according to the DIN : TDN ratio and compared it to the direct measurement of DON by size-exclusion chromatography (SEC) for freshwater systems. For this, we used standard compounds and natural samples...... separation of DON from DIN. For SEC, DON recovery rates were 91–108% for five pure standard compounds and 89–103% for two standard compounds, enriched with DIN. Moreover, SEC resulted in 93–108% recovery rates for DON concentrations of natural samples at a DIN : TDN ratio of 0.8 and the technique...

  5. Dissecting hormonal pathways in nitrogen-fixing rhizobium symbioses

    NARCIS (Netherlands)

    Zeijl, van Arjan

    2017-01-01

    Nitrogen is a key element for plant growth. To meet nitrogen demands, some plants establish an endosymbiotic relationship with nitrogen-fixing rhizobium or Frankia bacteria. This involves formation of specialized root lateral organs, named nodules. These nodules are colonized

  6. Molecular Basis on Nitrogen Utilization in Rice(Recent Topics of the Agricultunal Biological Science in Tohoku University)

    OpenAIRE

    Toshihiko, HAYAKAWA; Soichi, KOJIMA; Mayumi, TABUCHI; Toru, KUDO; Tomoyuki, YAMAYA; Laboratory of Plant Cell Biochemistry, Department of Applied Plant Science, Division of Life Science, Graduate School of Agricultural Science, Tohoku University; Laboratory of Plant Cell Biochemistry, Department of Applied Plant Science, Division of Life Science, Graduate School of Agricultural Science, Tohoku University; Laboratory of Plant Cell Biochemistry, Department of Applied Plant Science, Division of Life Science, Graduate School of Agricultural Science, Tohoku University; Laboratory of Plant Cell Biochemistry, Department of Applied Plant Science, Division of Life Science, Graduate School of Agricultural Science, Tohoku University; Laboratory of Plant Cell Biochemistry, Department of Applied Plant Science, Division of Life Science, Graduate School of Agricultural Science, Tohoku University

    2008-01-01

    Rice (Oryza sativa L.) is the major provision for half of the world population and is the important model crop in terms of synteny. Nitrogen is a massive prerequisite element for rice during its life span. During evolutionary processes, rice has acquired strategic systems of nitrogen metabolism for the survival, i.e., the highly efficient ammonium assimilation in roots and nitrogen remobilization (nitrogen recycling). In our laboratory, research is underway to elucidate molecular mechanisms, ...

  7. Terrestrial nitrogen cycles: Some unanswered questions

    Science.gov (United States)

    Vitousek, P.

    1984-01-01

    Nitrogen is generally considered to be the element which most often limits the growth of plants in both natural and agricultural ecosystems. It regulates plant growth because photosynthetic rates are strongly dependent on the concentration of nitrogen in leaves, and because relatively large mounts of protein are required for cell division and growth. Yet nitrogen is abundant in the biosphere - the well-mixed pool in the atmosphere is considered inexhaustible compared to biotic demand, and the amount of already fixed organic nitrogen in soils far exceeds annual plant uptake in terrestrial ecosystems. In regions where natural vegetation is not nitrogen limited, continuous cultivation induces nitrogen deficiency. Nitrogen loss from cultivated lands is more rapid than that of other elements, and nitrogen fertilization is generally required to maintain crop yield under any continuous system. The pervasiveness of nitrogen deficiency in many natural and most managed sites is discussed.

  8. Properties of non-stoichiometric nitrogen doped LPCVD silicon thin films

    Energy Technology Data Exchange (ETDEWEB)

    Mansour, F.; Mahamdi, R. [Departement d' Electronique, Universite Mentouri, Constantine (Algeria); Beghoul, M.R. [Departement d' Electronique, Universite de Jijel (Algeria); Temple-Boyer, P. [CNRS, LAAS, Toulouse (France); Universite de Toulouse, UPS, INSA, INP, ISAE, LAAS, Toulouse (France); Bouridah, H.

    2010-02-15

    The influence of nitrogen on the internal structure and so on the electrical properties of silicon thin films obtained by low-pressure chemical vapor deposition (LPCVD) was studied using several investigation methods. We found by using Raman spectroscopy and SEM observations that a strong relationship exists between the structural order of the silicon matrix and the nitrogen ratio in film before and after thermal treatment. As a result of the high disorder caused by nitrogen on silicon network during the deposit phase of films, the crystallization phenomena in term of nucleation and crystalline growth were found to depend upon the nitrogen content. Resistivity measurements results show that electrical properties of NIDOS films depend significantly on structural properties. It was appeared that for high nitrogen content, the films tend to acquire an insulator behavior. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Metabolism of organic acids, nitrogen and amino acids in chlorotic leaves of 'Honeycrisp' apple (Malus domestica Borkh) with excessive accumulation of carbohydrates.

    Science.gov (United States)

    Wang, Huicong; Ma, Fangfang; Cheng, Lailiang

    2010-07-01

    Metabolite profiles and activities of key enzymes in the metabolism of organic acids, nitrogen and amino acids were compared between chlorotic leaves and normal leaves of 'Honeycrisp' apple to understand how accumulation of non-structural carbohydrates affects the metabolism of organic acids, nitrogen and amino acids. Excessive accumulation of non-structural carbohydrates and much lower CO(2) assimilation were found in chlorotic leaves than in normal leaves, confirming feedback inhibition of photosynthesis in chlorotic leaves. Dark respiration and activities of several key enzymes in glycolysis and tricarboxylic acid (TCA) cycle, ATP-phosphofructokinase, pyruvate kinase, citrate synthase, aconitase and isocitrate dehydrogenase were significantly higher in chlorotic leaves than in normal leaves. However, concentrations of most organic acids including phosphoenolpyruvate (PEP), pyruvate, oxaloacetate, 2-oxoglutarate, malate and fumarate, and activities of key enzymes involved in the anapleurotic pathway including PEP carboxylase, NAD-malate dehydrogenase and NAD-malic enzyme were significantly lower in chlorotic leaves than in normal leaves. Concentrations of soluble proteins and most free amino acids were significantly lower in chlorotic leaves than in normal leaves. Activities of key enzymes in nitrogen assimilation and amino acid synthesis, including nitrate reductase, glutamine synthetase, ferredoxin and NADH-dependent glutamate synthase, and glutamate pyruvate transaminase were significantly lower in chlorotic leaves than in normal leaves. It was concluded that, in response to excessive accumulation of non-structural carbohydrates, glycolysis and TCA cycle were up-regulated to "consume" the excess carbon available, whereas the anapleurotic pathway, nitrogen assimilation and amino acid synthesis were down-regulated to reduce the overall rate of amino acid and protein synthesis.

  10. Laboratory Investigation of Mineralization of Refractory Nitrogen from Sewage Treatment Plants.

    Science.gov (United States)

    Benoit, Gaboury; Wang, Peng

    2017-12-01

    Laboratory studies were conducted and modeled to evaluate whether refractory organic nitrogen in tertiary-treated wastewater effluent could become bioavailable by conversion to mineral forms. Multiday incubations of effluent collected from the Branford and New Haven, Connecticut, waste water treatment plants (WWTP) revealed low but steady conversion of organic nitrogen to nitrate (NO 3 - ). In Branford, the principal form of organic nitrogen was dissolved, and in New Haven it was particulate. Modeling suggested that in both the cases conversion to NO 3 - from organic forms occurred at several per cent per day, and appeared to happen via the intermediary NH 4 + . The results suggest that organic nitrogen may be an important source of bioavailable N, contributing to the problem of hypoxia in Long Island Sound and other estuaries.

  11. Laboratory Investigation of Mineralization of Refractory Nitrogen from Sewage Treatment Plants

    Science.gov (United States)

    Benoit, Gaboury; Wang, Peng

    2017-12-01

    Laboratory studies were conducted and modeled to evaluate whether refractory organic nitrogen in tertiary-treated wastewater effluent could become bioavailable by conversion to mineral forms. Multiday incubations of effluent collected from the Branford and New Haven, Connecticut, waste water treatment plants (WWTP) revealed low but steady conversion of organic nitrogen to nitrate (NO3 -). In Branford, the principal form of organic nitrogen was dissolved, and in New Haven it was particulate. Modeling suggested that in both the cases conversion to NO3 - from organic forms occurred at several per cent per day, and appeared to happen via the intermediary NH4 +. The results suggest that organic nitrogen may be an important source of bioavailable N, contributing to the problem of hypoxia in Long Island Sound and other estuaries.

  12. Organic carbon and nitrogen in the surface sediments of world oceans and seas: distribution and relationship to bottom topography

    Energy Technology Data Exchange (ETDEWEB)

    Premuzic, E.T.

    1980-06-01

    Information dealing with the distribution of organic carbon and nitrogen in the top sediments of world oceans and seas has been gathered and evaluated. Based on the available information a master chart has been constructed which shows world distribution of sedimentary organic matter in the oceans and seas. Since organic matter exerts an influence upon the settling properties of fine inorganic particles, e.g. clay minerals and further, the interaction between organic matter and clay minerals is maximal, a relationship between the overall bottom topography and the distribution of clay minerals and organic matter should be observable on a worldwide basis. Initial analysis of the available data indicates that such a relationship does exist and its significance is discussed.

  13. The fate of fixed nitrogen in marine sediments with low organic loading: an in situ study

    DEFF Research Database (Denmark)

    Bonaglia, Stefano; Hylén, Astrid; Rattray, Jane E.

    2017-01-01

    Given the increasing impacts of human activities on global nitrogen (N) cycle, investigations on N transformation processes in the marine environment have drastically increased in the last years. Benthic N cycling has mainly been studied in anthropogenically impacted estuaries and coasts, while its...... sediments worldwide (range 34–344 µmol N m−2 d−1). Anammox accounted for 18–26 % of the total N2 production. Absence of free hydrogen sulfide and low concentrations of dissolved iron in sediment pore waters suggested that denitrification and DNRA were driven by organic matter oxidation rather than...... chemolithotrophy. DNRA was as important as denitrification at a shallow, coastal station situated in the northern Bothnian Bay. At this pristine and fully oxygenated site, ammonium regeneration through DNRA contributed more than one third to the total dissolved nitrogen (TDN) diffusing from the sediment...

  14. Synergic Adsorption–Biodegradation by an Advanced Carrier for Enhanced Removal of High-Strength Nitrogen and Refractory Organics

    KAUST Repository

    Ahmad, Muhammad

    2017-03-29

    Coking wastewater contains not only high-strength nitrogen but also toxic biorefractory organics. This study presents simultaneous removal of high-strength quinoline, carbon, and ammonium in coking wastewater by immobilized bacterial communities composed of a heterotrophic strain Pseudomonas sp. QG6 (hereafter referred as QG6), ammonia-oxidizing bacteria (AOB), and anaerobic ammonium oxidation bacteria (anammox). The bacterial immobilization was implemented with the help of a self-designed porous cubic carrier that created structured microenvironments including an inner layer adapted for anaerobic bacteria, a middle layer suitable for coaggregation of certain aerobic and anaerobic bacteria, and an outer layer for heterotrophic bacteria. By coating functional polyurethane foam (FPUF) with iron oxide nanoparticles (IONPs), the biocarrier (IONPs-FPUF) could provide a good outer-layer barrier for absorption and selective treatment of aromatic compounds by QG6, offer a conducive environment for anammox in the inner layer, and provide a mutualistic environment for AOB in the middle layer. Consequently, simultaneous nitrification and denitrification were reached with the significant removal of up to 322 mg L (98%) NH, 311 mg L (99%) NO, and 633 mg L (97%) total nitrogen (8 mg L averaged NO concentration was recorded in the effluent), accompanied by an efficient removal of chemical oxygen demand by 3286 mg L (98%) and 350 mg L (100%) quinoline. This study provides an alternative way to promote synergic adsorption and biodegradation with the help of a modified biocarrier that has great potential for treatment of wastewater containing high-strength carbon, toxic organic pollutants, and nitrogen.

  15. Synergic Adsorption-Biodegradation by an Advanced Carrier for Enhanced Removal of High-Strength Nitrogen and Refractory Organics.

    Science.gov (United States)

    Ahmad, Muhammad; Liu, Sitong; Mahmood, Nasir; Mahmood, Asif; Ali, Muhammad; Zheng, Maosheng; Ni, Jinren

    2017-04-19

    Coking wastewater contains not only high-strength nitrogen but also toxic biorefractory organics. This study presents simultaneous removal of high-strength quinoline, carbon, and ammonium in coking wastewater by immobilized bacterial communities composed of a heterotrophic strain Pseudomonas sp. QG6 (hereafter referred as QG6), ammonia-oxidizing bacteria (AOB), and anaerobic ammonium oxidation bacteria (anammox). The bacterial immobilization was implemented with the help of a self-designed porous cubic carrier that created structured microenvironments including an inner layer adapted for anaerobic bacteria, a middle layer suitable for coaggregation of certain aerobic and anaerobic bacteria, and an outer layer for heterotrophic bacteria. By coating functional polyurethane foam (FPUF) with iron oxide nanoparticles (IONPs), the biocarrier (IONPs-FPUF) could provide a good outer-layer barrier for absorption and selective treatment of aromatic compounds by QG6, offer a conducive environment for anammox in the inner layer, and provide a mutualistic environment for AOB in the middle layer. Consequently, simultaneous nitrification and denitrification were reached with the significant removal of up to 322 mg L -1 (98%) NH 4 , 311 mg L -1 (99%) NO 2 , and 633 mg L -1 (97%) total nitrogen (8 mg L -1 averaged NO 3 concentration was recorded in the effluent), accompanied by an efficient removal of chemical oxygen demand by 3286 mg L -1 (98%) and 350 mg L -1 (100%) quinoline. This study provides an alternative way to promote synergic adsorption and biodegradation with the help of a modified biocarrier that has great potential for treatment of wastewater containing high-strength carbon, toxic organic pollutants, and nitrogen.

  16. Natural isotopic composition of nitrogen as a tracer of origin for suspended organic matter in the Scheldt estuary

    International Nuclear Information System (INIS)

    Mariotti, A.; Lancelot, C.; Billen, G.

    1984-01-01

    The natural isotopic composition of suspended particulate organic nitrogen was determined in the Southern Bight of the North Sea and in the Scheldt estuary. These data show that delta 15 N constitutes a convenient tracer of the origin of the suspended matter. In the winter, in the absence of intensive primary production, the suspended organic matter of the Scheldt estuary is a mixture of two components: a continental detrital component characterized by a low delta value of 1.5per mille and a marine component with a mean delta value of 8per mille. During the phytoplankton flowering period, lasting from early May to October, intensive primary production occurs throughout the estuary giving rise to a third source of organic matter. This material is characterized by high delta values reflecting the isotopic composition of ammonia, the nitrogenous nutrient assimilated by phytoplankton in the estuary. The nitrification process occuring in the mixing area of the Scheldt estuary leads to higher downstream delta values of ammonia (> 20per mille) which permits the distinction between estuarine from fresh-water phytoplankton. Simple isotopic budget calculations show that, both in the upstream part and in the downstream part, autochthonous phytoplanktonic material contributes a major part of the total suspended matter in the Scheldt estuary during summer. (author)

  17. Leaching behavior of total organic carbon, nitrogen, and phosphorus from banana peel.

    Science.gov (United States)

    Jiang, Ruixue; Sun, Shujuan; Xu, Yan; Qiu, Xiudong; Yang, Jili; Li, Xiaochen

    2015-01-01

    The leaching behavior of organic carbon and nutrient compounds from banana peel (BP) was investigated in batch assays with respect to particle size, contact time, pH value, and temperature. The granularity, contact time, pH, and temperature caused no significant effects on the leaching of total phosphorus (TP) from the BP. The maximum leached total nitrogen (TN) content was found at pH 5.0 and 90 minutes, while no significant effects were caused by the granularity and temperature. The maximum leached total organic carbon (TOC) content was found by using a powder of 40 mesh, 150 minutes and at pH 6.0, while the temperature had no effect on the TOC leaching. The proportions of the TN, TP, and TOC contents leached from the dried BP ranged from 33.6% to 40.9%, 60.4% to 72.7%, and 8.2% to 9.9%, respectively, indicating that BP could be a potential pollution source for surface and ground water if discharged as domestic waste or reutilized without pretreatment.

  18. Biochar amendment for batch composting of nitrogen rich organic waste: Effect on degradation kinetics, composting physics and nutritional properties.

    Science.gov (United States)

    Jain, Mayur Shirish; Jambhulkar, Rohit; Kalamdhad, Ajay S

    2018-04-01

    Composting is an efficient technology to reduce pathogenic bodies and stabilize the organic matter in organic wastes. This research work investigates an effect of biochar as amendment to improve the composting efficiency and its effect on degradation kinetics, physical and nutritional properties. Biochar (2.5, 5 and 10% (w/w)) were added into a mixture of Hydrilla verticillata, cow dung and sawdust having ratio of 8:1:1 (control), respectively. Biochar addition resulted in advanced thermophilic temperatures (59 °C) and could improve the physical properties of composting process. Owing to addition of 5% biochar as a bulking agent in composting mixture, the final product from composting, total nitrogen increased by 45% compared to the other trials, and air-filled porosity decreased by 39% and was found to be within recommended range from literature studies. Considering temperature, degradation rate and nitrogen transformation the amendment of 5% biochar is recommended for Hydrilla verticillata composting. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. The Complete Genome and Phenome of a Community-Acquired Acinetobacter baumannii

    Science.gov (United States)

    Farrugia, Daniel N.; Elbourne, Liam D. H.; Hassan, Karl A.; Eijkelkamp, Bart A.; Tetu, Sasha G.; Brown, Melissa H.; Shah, Bhumika S.; Peleg, Anton Y.; Mabbutt, Bridget C.; Paulsen, Ian T.

    2013-01-01

    Many sequenced strains of Acinetobacter baumannii are established nosocomial pathogens capable of resistance to multiple antimicrobials. Community-acquired A. baumannii in contrast, comprise a minor proportion of all A. baumannii infections and are highly susceptible to antimicrobial treatment. However, these infections also present acute clinical manifestations associated with high reported rates of mortality. We report the complete 3.70 Mbp genome of A. baumannii D1279779, previously isolated from the bacteraemic infection of an Indigenous Australian; this strain represents the first community-acquired A. baumannii to be sequenced. Comparative analysis of currently published A. baumannii genomes identified twenty-four accessory gene clusters present in D1279779. These accessory elements were predicted to encode a range of functions including polysaccharide biosynthesis, type I DNA restriction-modification, and the metabolism of novel carbonaceous and nitrogenous compounds. Conversely, twenty genomic regions present in previously sequenced A. baumannii strains were absent in D1279779, including gene clusters involved in the catabolism of 4-hydroxybenzoate and glucarate, and the A. baumannii antibiotic resistance island, known to bestow resistance to multiple antimicrobials in nosocomial strains. Phenomic analysis utilising the Biolog Phenotype Microarray system indicated that A. baumannii D1279779 can utilise a broader range of carbon and nitrogen sources than international clone I and clone II nosocomial isolates. However, D1279779 was more sensitive to antimicrobial compounds, particularly beta-lactams, tetracyclines and sulphonamides. The combined genomic and phenomic analyses have provided insight into the features distinguishing A. baumannii isolated from community-acquired and nosocomial infections. PMID:23527001

  20. Utilization of organic nitrogen by arbuscular mycorrhizal fungi-is there a specific role for protists and ammonia oxidizers?

    Czech Academy of Sciences Publication Activity Database

    Bukovská, Petra; Bonkowski, M.; Konvalinková, Tereza; Beskid, Olena; Hujslová, Martina; Püschel, David; Řezáčová, Veronika; Gutierrez-Nunez, M.S.; Gryndler, Milan; Jansa, Jan

    2018-01-01

    Roč. 28, č. 3 (2018), s. 269-283 ISSN 0940-6360 R&D Projects: GA ČR(CZ) GA18-04892S; GA MŠk(CZ) LK11224 Institutional support: RVO:61388971 Keywords : N-15-labeling * Metatranscriptomics * Organic nitrogen (N) Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 3.047, year: 2016

  1. Atypical pathogens and challenges in community-acquired pneumonia

    African Journals Online (AJOL)

    Atypical organisms such as Mycoplasma pneumoniae, Chlamydia pneumoniae, and Legionella pneumophila are implicated in up to 40 percent of cases of community-acquired pneumonia. Antibiotic treatment is empiric and includes coverage for both typical and atypical organisms. Doxycycline, a fluoroquinolone with ...

  2. The potential bioavailability of mineral-associated organic nitrogen in the rhizosphere.

    Science.gov (United States)

    Jilling, A.; Grandy, S.; Keiluweit, M.

    2017-12-01

    Nitrogen (N) transformations and bioavailability limit both plant productivity and N losses in most ecosystems. Recent research has focused on the mineralization path that N takes—from polymeric to monomeric and finally inorganic forms—and how these pools and processes influence the bioavailability of soil N. By contrast, there has been inadequate exploration of the N-sources that dominate the production of bioavailable N. In a new conceptual framework, we propose that mineral-associated organic matter (MAOM) is an overlooked, but critical, source of organic N, especially in the rhizosphere. We hypothesize that root-deposited low molecular weight exudates enhance the direct and indirect (via microbial communities) destabilization, solubilization, and subsequent bioavailable of MAOM. To test this conceptual framework, we conducted a laboratory incubation to examine the capacity for MAOM to supply N and to determine whether the soil-microbial response to root exudates facilitates the release and subsequent degradation of mineral-bound N. We isolated silt and clay organic matter fractions from two agricultural soils and added sterile sand to create a soil in which MAOM was the sole source of organic N. We applied three solution treatments: 13C-labelled glucose, to stimulate microbial activity and potentially the production of extracellular enzymes capable of liberating N; 13C-labelled oxalic acid, which has been demonstrated to dissolve metal-organic bonds and possibly destabilize mineral-bound and N-rich organic matter; and water, to serve as a control. Over the 12-day incubation, we observed an increase in enzyme activities and C- and N-cycling rates following glucose additions. Oxalic acid additions initially suppressed microbial activity, but eventually favored a slower-growing community with greater oxidative enzyme potential. Results suggest that C additions stimulate a microbial SOM-mining response. We will further assess the abiotic effect of organic acids

  3. Deposition of reactive nitrogen during the Rocky Mountain Airborne Nitrogen and Sulfur (RoMANS) study

    International Nuclear Information System (INIS)

    Beem, Katherine B.; Raja, Suresh; Schwandner, Florian M.; Taylor, Courtney; Lee, Taehyoung; Sullivan, Amy P.; Carrico, Christian M.; McMeeking, Gavin R.; Day, Derek; Levin, Ezra; Hand, Jenny; Kreidenweis, Sonia M.; Schichtel, Bret; Malm, William C.; Collett, Jeffrey L.

    2010-01-01

    Increases in reactive nitrogen deposition are a growing concern in the U.S. Rocky Mountain west. The Rocky Mountain Airborne Nitrogen and Sulfur (RoMANS) study was designed to improve understanding of the species and pathways that contribute to nitrogen deposition in Rocky Mountain National Park (RMNP). During two 5-week field campaigns in spring and summer of 2006, the largest contributor to reactive nitrogen deposition in RMNP was found to be wet deposition of ammonium (34% spring and summer), followed by wet deposition of nitrate (24% spring, 28% summer). The third and fourth most important reactive nitrogen deposition pathways were found to be wet deposition of organic nitrogen (17%, 12%) and dry deposition of ammonia (14%, 16%), neither of which is routinely measured by air quality/deposition networks operating in the region. Total reactive nitrogen deposition during the spring campaign was determined to be 0.45 kg ha -1 and more than doubled to 0.95 kg ha -1 during the summer campaign. - The reactive nitrogen deposition budget for Rocky Mountain National Park.

  4. Freezing and fractionation: effects of preservation on carbon and nitrogen stable isotope ratios of some limnetic organisms.

    Science.gov (United States)

    Wolf, J Marshall; Johnson, Brett; Silver, Douglas; Pate, William; Christianson, Kyle

    2016-03-15

    Stable isotopes of carbon and nitrogen have become important natural tracers for studying food-web structure and function. Considerable research has demonstrated that chemical preservatives and fixatives shift the isotopic ratios of aquatic organisms. Much less is known about the effects of freezing as a preservation method although this technique is commonly used. We conducted a controlled experiment to test the effects of freezing (-10 °C) and flash freezing (–79 °C) on the carbon and nitrogen isotope ratios of zooplankton (Cladocera), Mysis diluviana and Rainbow Trout (Oncorhynchus mykiss). Subsamples (~0.5 mg) of dried material were analyzed for percentage carbon, percentage nitrogen, and the relative abundance of stable carbon and nitrogen isotopes (δ13C and δ15N values) using a Carlo Erba NC2500 elemental analyzer interfaced to a ThermoFinnigan MAT Delta Plus isotope ratio mass spectrometer. The effects of freezing were taxon-dependent. Freezing had no effect on the isotopic or elemental values of Rainbow Trout muscle. Effects on the δ13C and δ15N values of zooplankton and Mysis were statistically significant but small relative to typical values of trophic fractionation. The treatment-control offsets had larger absolute values for Mysis (δ13C: ≤0.76 ± 0.41‰, δ15N: ≤0.37 ± 0.16‰) than for zooplankton (δ13C: ≤0.12 ± 0.06‰, δ15N: ≤0.30 ± 0.27‰). The effects of freezing were more variable for the δ13C values of Mysis, and more variable for the δ15N values of zooplankton. Generally, both freezing methods reduced the carbon content of zooplankton and Mysis, but freezing had a negative effect on the %N of zooplankton and a positive effect on the %N of Mysis. The species-dependencies and variability of freezing effects on aquatic organisms suggest that more research is needed to understand the mechanisms responsible for freezing-related fractionation before standardized protocols for freezing as a preservation method can be adopted.

  5. Functions of innate and acquired immune system are reduced in domestic pigeons (Columba livia domestica) given a low protein diet

    Science.gov (United States)

    Mabuchi, Yuko; Frankel, Theresa L.

    2016-01-01

    Racing pigeons are exposed to and act as carriers of diseases. Dietary protein requirement for their maintenance has not been determined experimentally despite their being domesticated for over 7000 years. A maintenance nitrogen (protein) requirement (MNR) for pigeons was determined in a balance study using diets containing 6, 10 and 14% crude protein (CP). Then, the effects of feeding the diets were investigated to determine whether they were adequate to sustain innate and acquired immune functions. Nitrogen intake from the 6% CP diet was sufficient to maintain nitrogen balance and body weight in pigeons. However, the immune functions of phagocytosis, oxidative burst and lymphocyte proliferation in pigeons fed this diet were reduced compared with those fed 10 and 14% CP diets. Pigeons given the 6 and 10% CP diets had lower antibody titres following inoculation against Newcastle disease (ND) than those on the 14% CP diet. A confounding factor found on autopsy was the presence of intestinal parasites in some of the pigeons given the 6 and 10% CP diets; however, none of the pigeons used to measure MNR or acquired immunity to ND were infested with parasites. In conclusion, neither the 6 nor 10% CP diets adequately sustained acquired immune function of pigeons. PMID:27069640

  6. Influence of Nitrogen Source on 2,4-diacetylphloroglucinol Production by the Biocontrol Strain Pf-5

    OpenAIRE

    M, Hultberg; B, Alsanius

    2008-01-01

    The production of 2,4-diacetylphloroglucinol (DAPG) by the biocontrol agent Pseudomonas fluorescens Pf-5 was studied in nutrient-solution based media with varying nitrogen content. No production of DAPG was observed when organic nitrogen was omitted from the media, regardless of the inorganic nitrogen source used. Furthermore, a micromolar concentration range of organic nitrogen was insufficient to sustain production. When a millimolar concentration range of organic nitrogen was used, DAPG pr...

  7. Nitrogen and phosphorus release from organic wastes and suitability as bio-based fertilizers in a circular economy

    DEFF Research Database (Denmark)

    Case, Sean; Jensen, Lars Stoumann

    2018-01-01

    The drive to a more circular economy has created increasing interest in recycling organic wastes as bio-based fertilizers. This study screened 15 different manures, digestates, sludges, composts, industry by-products, and struvites. Nitrogen (N) and phosphorous (P) release was compared following...... of the material (r = −0.6). Composted, dried, or raw organic waste materials released less N (mean of 10.8 ± 0.5%, 45.3 ± 7.2%, and 47.4 ± 3.2% of total N added respectively) than digestates, industry-derived organic fertilizer products, and struvites (mean of 58.2 ± 2.8%, 77.7 ± 6.0%, and 100.0 ± 13.1% of total...

  8. The Global Nitrogen Cycle

    Science.gov (United States)

    Galloway, J. N.

    2003-12-01

    transfer depended on the reactivity of the emitted material. At the lower extreme of reactivity are the noble gases, neon and argon. Most neon and argon emitted during the degassing of the newly formed Earth is still in the atmosphere, and essentially none has been transferred to the hydrosphere or crust. At the other extreme are carbon and sulfur. Over 99% of the carbon and sulfur emitted during degassing are no longer in the atmosphere, but reside in the hydrosphere or the crust. Nitrogen is intermediate. Of the ˜6×106 TgN in the atmosphere, hydrosphere, and crust, ˜2/3 is in the atmosphere as N2 with most of the remainder in the crust. The atmosphere is a large nitrogen reservoir primarily, because the triple bond of the N2 molecule requires a significant amount of energy to break. In the early atmosphere, the only sources of such energy were solar radiation and electrical discharges.At this point we had an earth with mostly N2 and devoid of life. How did we get to an earth with mostly N2 and teeming with life? First, N2 had to be converted into reactive N (Nr). (The term reactive nitrogen (Nr) includes all biologically active, photochemically reactive, and radiatively active nitrogen compounds in the atmosphere and biosphere of the Earth. Thus, Nr includes inorganic reduced forms of nitrogen (e.g., NH3 and NH4+), inorganic oxidized forms (e.g., NOx, HNO3, N2O, and NO3-), and organic compounds (e.g., urea, amines, and proteins).) The early atmosphere was reducing and had limited NH3. However, NH3 was a necessary ingredient in forming early organic matter. One possibility for NH3 generation was the cycling of seawater through volcanics (Holland, 1984). Under such a process, NH3 could then be released to the atmosphere where, when combined with CH4, H2, H2O, and electrical energy, organic molecules including amino acids could be formed (Miller, 1953). In essence, electrical discharges and UV radiation can convert mixtures of reduced gases into mixtures of organic

  9. Elevated rates of organic carbon, nitrogen, and phosphorus accumulation in a highly impacted mangrove wetland

    Science.gov (United States)

    Sanders, Christian J.; Eyre, Bradley D.; Santos, Isaac R.; Machado, Wilson; Luiz-Silva, Wanilson; Smoak, Joseph M.; Breithaupt, Joshua L.; Ketterer, Michael E.; Sanders, Luciana; Marotta, Humberto; Silva-Filho, Emmanoel

    2014-04-01

    The effect of nutrient enrichment on mangrove sediment accretion and carbon accumulation rates is poorly understood. Here we quantify sediment accretion through radionuclide tracers to determine organic carbon (OC), total nitrogen (TN), and total phosphorus (TP) accumulation rates during the previous 60 years in both a nutrient-enriched and a pristine mangrove forest within the same geomorphological region of southeastern Brazil. The forest receiving high nutrient loads has accumulated OC, TN, and TP at rates that are fourfold, twofold, and eightfold respectively, higher than those from the undisturbed mangrove. Organic carbon and TN stable isotopes (δ13C and δ15N) reflect an increased presence of organic matter (OM) originating with either phytoplankton, benthic algae, or another allochthonous source within the more rapidly accumulated sediments of the impacted mangrove. This suggests that the accumulation rate of OM in eutrophic mangrove systems may be enhanced through the addition of autochthonous and allochthonous nonmangrove material.

  10. CHEMISTRY OF FOG WATERS IN CALIFORNIA'S CENTRAL VALLEY - PART 3: CONCENTRATIONS AND SPECIATION OF ORGANIC AND INORGANIC NITROGEN. (R825433)

    Science.gov (United States)

    Although organic nitrogen (ON) has been found to be a ubiquitous and significant component in wet and dry deposition, almost nothing is known about its concentration or composition in fog waters. To address this gap, we have investigated the concentration and composition of ON...

  11. Carbon and nitrogen stoichiometry across stream ecosystems

    Science.gov (United States)

    Wymore, A.; Kaushal, S.; McDowell, W. H.; Kortelainen, P.; Bernhardt, E. S.; Johnes, P.; Dodds, W. K.; Johnson, S.; Brookshire, J.; Spencer, R.; Rodriguez-Cardona, B.; Helton, A. M.; Barnes, R.; Argerich, A.; Haq, S.; Sullivan, P. L.; López-Lloreda, C.; Coble, A. A.; Daley, M.

    2017-12-01

    Anthropogenic activities are altering carbon and nitrogen concentrations in surface waters globally. The stoichiometry of carbon and nitrogen regulates important watershed biogeochemical cycles; however, controls on carbon and nitrogen ratios in aquatic environments are poorly understood. Here we use a multi-biome and global dataset (tropics to Arctic) of stream water chemistry to assess relationships between dissolved organic carbon (DOC) and nitrate, ammonium and dissolved organic nitrogen (DON), providing a new conceptual framework to consider interactions between DOC and the multiple forms of dissolved nitrogen. We found that across streams the total dissolved nitrogen (TDN) pool is comprised of very little ammonium and as DOC concentrations increase the TDN pool shifts from nitrate to DON dominated. This suggests that in high DOC systems, DON serves as the primary source of nitrogen. At the global scale, DOC and DON are positively correlated (r2 = 0.67) and the average C: N ratio of dissolved organic matter (molar ratio of DOC: DON) across our data set is approximately 31. At the biome and smaller regional scale the relationship between DOC and DON is highly variable (r2 = 0.07 - 0.56) with the strongest relationships found in streams draining the mixed temperate forests of the northeastern United States. DOC: DON relationships also display spatial and temporal variability including latitudinal and seasonal trends, and interactions with land-use. DOC: DON ratios correlated positively with gradients of energy versus nutrient limitation pointing to the ecological role (energy source versus nutrient source) that DON plays with stream ecosystems. Contrary to previous findings we found consistently weak relationships between DON and nitrate which may reflect DON's duality as an energy or nutrient source. Collectively these analyses demonstrate how gradients of DOC drive compositional changes in the TDN pool and reveal a high degree of variability in the C: N ratio

  12. Dissolved organic carbon and nitrogen release from boreal Holocene permafrost and seasonally frozen soils of Alaska

    Science.gov (United States)

    Wickland, Kimberly P.; Waldrop, Mark P.; Aiken, George R.; Koch, Joshua C.; Torre Jorgenson, M.; Striegl, Robert G.

    2018-06-01

    Permafrost (perennially frozen) soils store vast amounts of organic carbon (C) and nitrogen (N) that are vulnerable to mobilization as dissolved organic carbon (DOC) and dissolved organic and inorganic nitrogen (DON, DIN) upon thaw. Such releases will affect the biogeochemistry of permafrost regions, yet little is known about the chemical composition and source variability of active-layer (seasonally frozen) and permafrost soil DOC, DON and DIN. We quantified DOC, total dissolved N (TDN), DON, and DIN leachate yields from deep active-layer and near-surface boreal Holocene permafrost soils in interior Alaska varying in soil C and N content and radiocarbon age to determine potential release upon thaw. Soil cores were collected at three sites distributed across the Alaska boreal region in late winter, cut in 15 cm thick sections, and deep active-layer and shallow permafrost sections were thawed and leached. Leachates were analyzed for DOC, TDN, nitrate (NO3 ‑), and ammonium (NH4 +) concentrations, dissolved organic matter optical properties, and DOC biodegradability. Soils were analyzed for C, N, and radiocarbon (14C) content. Soil DOC, TDN, DON, and DIN yields increased linearly with soil C and N content, and decreased with increasing radiocarbon age. These relationships were significantly different for active-layer and permafrost soils such that for a given soil C or N content, or radiocarbon age, permafrost soils released more DOC and TDN (mostly as DON) per gram soil than active-layer soils. Permafrost soil DOC biodegradability was significantly correlated with soil Δ14C and DOM optical properties. Our results demonstrate that near-surface Holocene permafrost soils preserve greater relative potential DOC and TDN yields than overlying seasonally frozen soils that are exposed to annual leaching and decomposition. While many factors control the fate of DOC and TDN, the greater relative yields from newly thawed Holocene permafrost soils will have the largest

  13. Long-term atmospheric wet deposition of dissolved organic nitrogen in a typical red-soil agro-ecosystem, Southeastern China.

    Science.gov (United States)

    Cui, Jian; Zhou, Jing; Peng, Ying; He, Yuan Q; Yang, Hao; Xu, Liang J; Chan, Andy

    2014-05-01

    Dissolved organic nitrogen (DON) from atmospheric deposition has been a growing concern in the world and atmospheric nitrogen (N) deposition is increasing quickly in China especially Southeastern China. In our study, DON wet deposition was estimated by collecting and analyzing rainwater samples continuously over eight years (2005-2012) in a typical red-soil farmland ecosystem, Southeast China. Results showed that the volume-weighted-average DON concentration varied from 0.2 to 3.3 mg N L(-1) with an average of 1.2 mg N L(-1). DON flux ranged from 5.7 to 71.6 kg N ha(-1) year(-1) and averaged 19.7 kg N ha(-1) year(-1) which accounted for 34.6% of the total dissolved nitrogen (TDN) in wet deposition during the eight-year period. Analysis of DON concentration and flux, contribution of DON to TDN, rainfall, rain frequency, air temperature and wind frequency and the application of pig manure revealed possible pollution sources. Significant positive linear relation of annual DON flux and usage of pig manure (Pcycle in the red-soil agro-ecosystem in the future.

  14. Carbon-nitrogen interactions in forest ecosystems

    DEFF Research Database (Denmark)

    Gundersen, Per; Berg, Bjørn; Currie, W.S.

    This report is a summary of the main results from the EU project “Carbon – Nitrogen Interactions in Forest Ecosystems” (CNTER). Since carbon (C) and nitrogen (N) are bound together in organic matter we studied both the effect of N deposition on C cycling in forest ecosystems, and the effect of C ...

  15. MRI of fetal acquired brain lesions

    International Nuclear Information System (INIS)

    Prayer, Daniela; Brugger, Peter C.; Kasprian, Gregor; Witzani, Linde; Helmer, Hanns; Dietrich, Wolfgang; Eppel, Wolfgang; Langer, Martin

    2006-01-01

    Acquired fetal brain damage is suspected in cases of destruction of previously normally formed tissue, the primary cause of which is hypoxia. Fetal brain damage may occur as a consequence of acute or chronic maternal diseases, with acute diseases causing impairment of oxygen delivery to the fetal brain, and chronic diseases interfering with normal, placental development. Infections, metabolic diseases, feto-fetal transfusion syndrome, toxic agents, mechanical traumatic events, iatrogenic accidents, and space-occupying lesions may also qualify as pathologic conditions that initiate intrauterine brain damage. MR manifestations of acute fetal brain injury (such as hemorrhage or acute ischemic lesions) can easily be recognized, as they are hardly different from postnatal lesions. The availability of diffusion-weighted sequences enhances the sensitivity in recognizing acute ischemic lesions. Recent hemorrhages are usually readily depicted on T2 (*) sequences, where they display hypointense signals. Chronic fetal brain injury may be characterized by nonspecific changes that must be attributable to the presence of an acquired cerebral pathology. The workup in suspected acquired fetal brain injury also includes the assessment of extra-CNS organs that may be affected by an underlying pathology. Finally, the placenta, as the organ that mediates oxygen delivery from the maternal circulation to the fetus, must be examined on MR images

  16. MRI of fetal acquired brain lesions

    Energy Technology Data Exchange (ETDEWEB)

    Prayer, Daniela [Department of Radiodiagnostics, Medical University of Vienna (Austria)]. E-mail: daniela.prayer@meduniwien.ac.at; Brugger, Peter C. [Center of Anatomy and Cell Biology, Medical University of Vienna (Austria); Kasprian, Gregor [Department of Radiodiagnostics, Medical University of Vienna (Austria); Witzani, Linde [Department of Radiodiagnostics, Medical University of Vienna (Austria); Helmer, Hanns [Department of Obstetrics and Gynecology, Medical University of Vienna (Austria); Dietrich, Wolfgang [Department of Neurosurgery, Medical University of Vienna (Austria); Eppel, Wolfgang [Department of Obstetrics and Gynecology, Medical University of Vienna (Austria); Langer, Martin [Department of Obstetrics and Gynecology, Medical University of Vienna (Austria)

    2006-02-15

    Acquired fetal brain damage is suspected in cases of destruction of previously normally formed tissue, the primary cause of which is hypoxia. Fetal brain damage may occur as a consequence of acute or chronic maternal diseases, with acute diseases causing impairment of oxygen delivery to the fetal brain, and chronic diseases interfering with normal, placental development. Infections, metabolic diseases, feto-fetal transfusion syndrome, toxic agents, mechanical traumatic events, iatrogenic accidents, and space-occupying lesions may also qualify as pathologic conditions that initiate intrauterine brain damage. MR manifestations of acute fetal brain injury (such as hemorrhage or acute ischemic lesions) can easily be recognized, as they are hardly different from postnatal lesions. The availability of diffusion-weighted sequences enhances the sensitivity in recognizing acute ischemic lesions. Recent hemorrhages are usually readily depicted on T2 (*) sequences, where they display hypointense signals. Chronic fetal brain injury may be characterized by nonspecific changes that must be attributable to the presence of an acquired cerebral pathology. The workup in suspected acquired fetal brain injury also includes the assessment of extra-CNS organs that may be affected by an underlying pathology. Finally, the placenta, as the organ that mediates oxygen delivery from the maternal circulation to the fetus, must be examined on MR images.

  17. Influence of temperature upon the mobilization of nitrogen in peat

    Directory of Open Access Journals (Sweden)

    Armi Kaila

    1953-01-01

    Full Text Available The preliminary experiments the results of which are recorded in the present paper, have been carried out in order to obtain some information on the microbiological and chemical mobilization of peat nitrogen at various temperatures. In the incubation experiment at 5°, 20°, 35°, 50°, and 65CC the accumulation of ammonia nitrogen increased with a rising temperature except in the limed series where a minimum was found at 20°. The maximum of nitrate-nitrogen lay at 20 in both the series. The amount of nitrite-nitrogen was almost negligible in all the samples. The mineral nitrogen in the samples incubated at 50° and 65° represented 10—20 % of the total nitrogen. Thus, the organic nitrogen in peat soils can be mobilized to a marked extent, if the conditions are favourable. Accumulation of mineral nitrogen could be stated also at the lower temperatures where the reutilization of released nitrogen in the synthesis of new microbial substance is always more intensive than in the range of thermophilic organisms. Even at 5° a release of nitrogen was noticable. In these experiments liming did not show any beneficial effect upon the accumulation of mineral nitrogen, on the contrary, the values for total nitrogen and ammonia nitrogen were lower in the limed series. The nitrate formation was generally somewhat higher in the limed samples than in the corresponding unlimed ones. It was supposed that the considerable increase in the ammonia content of the samples incubated at 50° and 65° was partly due to purely chemical transformations, since the mere heating of moist samples at 75° for two hours brought about a marked accumulation of ammonia nitrogen. The treatment with dry heat was less effective except when the temperature was raised to 200° in which case a carbonization of the peat took place. The losses of organic matter and of total nitrogen due to the heating were almost negligible at the temperatures below 150°. At 150° and at 200

  18. Stable Isotopes of Nitrogen in Fossil Cladoceran Exoskeletons: Implications for Nitrogen Sources in the Central Baltic Sea During the Past Century

    Science.gov (United States)

    Struck, Ulrich; Voss, Maren; von Bodungen, Bodo; Mumm, Nicolai

    The ratios of stable nitrogen isotopes were analysed in zooplankton exoskeletons extracted from dated sediment cores from the Gotland Basin of the central Baltic Sea. Combined with results on δ15N of bulk sediment, organic carbon concentrations, and abundances of exoskeletons of Bosminalongispinamaritima in the sediment, the data are used to evaluate significant sources of nitrogen in the food web over the past century. Nitrogen isotopic composition of bulk sediments ranges from 2.5 to 4.5ö, that of exokeletons varies between 0.4 and 6.2ö. The two are positively correlated. A marked increase in the abundance of Bosmina since 1965 (from less than 500 specimen to more than 5000 specimencm3 of sediment) is correlated with a significant increase in sedimentary organic carbon concentrations (from 4% to more than 10%). The isotopic data do not identify increased land-derived nitrate as the dominant nitrogen source fuelling the increase. Instead, we postulate that nitrogen fixation by diazotrophic bacteria has been one of the larger sources of nitrogen in the Baltic Sea, as it is today.

  19. Mineral nitrogen sources differently affect root glutamine synthetase isoforms and amino acid balance among organs in maize.

    Science.gov (United States)

    Prinsi, Bhakti; Espen, Luca

    2015-04-03

    Glutamine synthetase (GS) catalyzes the first step of nitrogen assimilation in plant cell. The main GS are classified as cytosolic GS1 and plastidial GS2, of which the functionality is variable according to the nitrogen sources, organs and developmental stages. In maize (Zea mays L.) one gene for GS2 and five genes for GS1 subunits are known, but their roles in root metabolism are not yet well defined. In this work, proteomic and biochemical approaches have been used to study root GS enzymes and nitrogen assimilation in maize plants re-supplied with nitrate, ammonium or both. The plant metabolic status highlighted the relevance of root system in maize nitrogen assimilation during both nitrate and ammonium nutrition. The analysis of root proteomes allowed a study to be made of the accumulation and phosphorylation of six GS proteins. Three forms of GS2 were identified, among which only the phosphorylated one showed an accumulation trend consistent with plastidial GS activity. Nitrogen availabilities enabled increments in root total GS synthetase activity, associated with different GS1 isoforms according to the nitrogen sources. Nitrate nutrition induced the specific accumulation of GS1-5 while ammonium led to up-accumulation of both GS1-1 and GS1-5, highlighting co-participation. Moreover, the changes in thermal sensitivity of root GS transferase activity suggested differential rearrangements of the native enzyme. The amino acid accumulation and composition in roots, xylem sap and leaves deeply changed in response to mineral sources. Glutamine showed the prevalent changes in all nitrogen nutritions. Besides, the ammonium nutrition was associated with an accumulation of asparagine and reducing sugars and a drop in glutamic acid level, significantly alleviated by the co-provision with nitrate. This work provides new information about the multifaceted regulation of the GS enzyme in maize roots, indicating the involvement of specific isoenzymes/isoforms, post

  20. Cover Crops and Fertilization Alter Nitrogen Loss in Organic and Conventional Conservation Agriculture Systems

    Science.gov (United States)

    Shelton, Rebecca E.; Jacobsen, Krista L.; McCulley, Rebecca L.

    2018-01-01

    Agroecosystem nitrogen (N) loss produces greenhouse gases, induces eutrophication, and is costly for farmers; therefore, conservation agricultural management practices aimed at reducing N loss are increasingly adopted. However, the ecosystem consequences of these practices have not been well-studied. We quantified N loss via leaching, NH3 volatilization, N2O emissions, and N retention in plant and soil pools of corn conservation agroecosystems in Kentucky, USA. Three systems were evaluated: (1) an unfertilized, organic system with cover crops hairy vetch (Vicia villosa), winter wheat (Triticum aestivum), or a mix of the two (bi-culture); (2) an organic system with a hairy vetch cover crop employing three fertilization schemes (0 N, organic N, or a fertilizer N-credit approach); and (3) a conventional system with a winter wheat cover crop and three fertilization schemes (0 N, urea N, or organic N). In the unfertilized organic system, cover crop species affected NO3-N leaching (vetch > bi-culture > wheat) and N2O-N emissions and yield during corn growth (vetch, bi-culture > wheat). Fertilization increased soil inorganic N, gaseous N loss, N leaching, and yield in the organic vetch and conventional wheat systems. Fertilizer scheme affected the magnitude of growing season N2O-N loss in the organic vetch system (organic N > fertilizer N-credit) and the timing of loss (organic N delayed N2O-N loss vs. urea) and NO3-N leaching (urea >> organic N) in the conventional wheat system, but had no effect on yield. Cover crop selection and N fertilization techniques can reduce N leaching and greenhouse gas emissions without sacrificing yield, thereby enhancing N conservation in both organic and conventional conservation agriculture systems. PMID:29403512

  1. Cover Crops and Fertilization Alter Nitrogen Loss in Organic and Conventional Conservation Agriculture Systems

    Directory of Open Access Journals (Sweden)

    Rebecca E. Shelton

    2018-01-01

    Full Text Available Agroecosystem nitrogen (N loss produces greenhouse gases, induces eutrophication, and is costly for farmers; therefore, conservation agricultural management practices aimed at reducing N loss are increasingly adopted. However, the ecosystem consequences of these practices have not been well-studied. We quantified N loss via leaching, NH3 volatilization, N2O emissions, and N retention in plant and soil pools of corn conservation agroecosystems in Kentucky, USA. Three systems were evaluated: (1 an unfertilized, organic system with cover crops hairy vetch (Vicia villosa, winter wheat (Triticum aestivum, or a mix of the two (bi-culture; (2 an organic system with a hairy vetch cover crop employing three fertilization schemes (0 N, organic N, or a fertilizer N-credit approach; and (3 a conventional system with a winter wheat cover crop and three fertilization schemes (0 N, urea N, or organic N. In the unfertilized organic system, cover crop species affected NO3-N leaching (vetch > bi-culture > wheat and N2O-N emissions and yield during corn growth (vetch, bi-culture > wheat. Fertilization increased soil inorganic N, gaseous N loss, N leaching, and yield in the organic vetch and conventional wheat systems. Fertilizer scheme affected the magnitude of growing season N2O-N loss in the organic vetch system (organic N > fertilizer N-credit and the timing of loss (organic N delayed N2O-N loss vs. urea and NO3-N leaching (urea >> organic N in the conventional wheat system, but had no effect on yield. Cover crop selection and N fertilization techniques can reduce N leaching and greenhouse gas emissions without sacrificing yield, thereby enhancing N conservation in both organic and conventional conservation agriculture systems.

  2. Effect of Different Sources of Nitrogen and Organic Fertilizers on Yield and Yield Components of Ajowan (Trachyspermum ammi L.

    Directory of Open Access Journals (Sweden)

    zahra saydi

    2017-09-01

    Full Text Available Introduction Ajowan (Trachyspermum ammi L. is an annual medicinal plant of the family Apiaceae which can reach 30 -100 cm in height. and its growth is highly depended on the availability of mineral nutrients in the soil. But, it has been shown that utilization of chemical fertilizers for growth promotion of Ajown could have negative impacts on environment and ecological systems. Nowadays, sustainable agriculture is the best approach to overcome such problems and prevent the excess accumulation of chemical fertilizers deposited within the soil. Application of bio-fertilizers as an alternative to chemical fertilizers is a new sustainable approach which have been raised in the new era of Agriculture. Therefore, this study was conducted to investigate the application of various source of biological fertilizers such as Vermicompost, Alkazotplus and Humic Acid in combination with nitrogen fertilizers on growth behavior, yield and yield components of Ajowan under Ahvaz growing condition. Materials and methods This research was conducted at the Agricultural Research Station of Shahid Chamran University in 2014-2015 to determine the effects of different sources of nitrogen and organic fertilizers on the yield and yield components of Ajowan based on two way randomized complete block design with three replications. The first factor of the experiment was Application of four different nitrogen sources including: Urea (U, Sulfur-coated Urea (SCU, %50 Sulfur-coated urea (1/2 SCU + Alkazot Plus biological fertilizer and Control (no nitrogen source used. Organic fertilizers were also applied at four levels, consisting of Humic Acid, Vermicompost, %50 Vermicompost + Humic Acid and Control (no organic Fertilizer as the second factor. After soil preparation, approximately four Kg.ha-1 of the seeds were planted on the rows with 30 cm distance. Plant height, number of sub branches, number of umbels per plant, number of seeds per umbel , 1000 seeds weight, biological

  3. Nitrogen-doped ordered mesoporous carbon with a high surface area, synthesized through organic-inorganic coassembly, and its application in supercapacitors.

    Science.gov (United States)

    Song, Yanfang; Li, Li; Wang, Yonggang; Wang, Congxiao; Guo, Zaipin; Xia, Yongyao

    2014-07-21

    A new nitrogen-doped ordered mesoporous carbon (N-doped OMC) is synthesized by using an organic-inorganic coassembly method, in which resol is used as the carbon precursor, dicyandiamide as the nitrogen precursor, silicate oligomers as the inorganic precursors, and F127 as the soft template. The N-doped OMC possesses a surface area as high as 1374 m(2)  g(-1) and a large pore size of 7.4 nm. As an electrode material for supercapacitors, the obtained carbon exhibits excellent cycling stability and delivers a reversible specific capacitance as high as 308 F g(-1) in 1 mol L(-1) H(2)SO(4) aqueous electrolyte, of which 58 % of the capacity is due to pseudo-capacitance. The large specific capacitance is attributed to proper pore size distributions, large surface area, and high nitrogen content. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Energy saving processes for nitrogen removal in organic wastewater from food processing industries in Thailand.

    Science.gov (United States)

    Johansen, N H; Suksawad, N; Balslev, P

    2004-01-01

    Nitrogen removal from organic wastewater is becoming a demand in developed communities. The use of nitrite as intermediate in the treatment of wastewater has been largely ignored, but is actually a relevant energy saving process compared to conventional nitrification/denitrification using nitrate as intermediate. Full-scale results and pilot-scale results using this process are presented. The process needs some additional process considerations and process control to be utilized. Especially under tropical conditions the nitritation process will round easily, and it must be expected that many AS treatment plants in the food industry already produce NO2-N. This uncontrolled nitrogen conversion can be the main cause for sludge bulking problems. It is expected that sludge bulking problems in many cases can be solved just by changing the process control in order to run a more consequent nitritation. Theoretically this process will decrease the oxygen consumption for oxidation by 25% and the use of carbon source for the reduction will be decreased by 40% compared to the conventional process.

  5. Enzymology and ecology of the nitrogen cycle.

    Science.gov (United States)

    Martínez-Espinosa, Rosa María; Cole, Jeffrey A; Richardson, David J; Watmough, Nicholas J

    2011-01-01

    The nitrogen cycle describes the processes through which nitrogen is converted between its various chemical forms. These transformations involve both biological and abiotic redox processes. The principal processes involved in the nitrogen cycle are nitrogen fixation, nitrification, nitrate assimilation, respiratory reduction of nitrate to ammonia, anaerobic ammonia oxidation (anammox) and denitrification. All of these are carried out by micro-organisms, including bacteria, archaea and some specialized fungi. In the present article, we provide a brief introduction to both the biochemical and ecological aspects of these processes and consider how human activity over the last 100 years has changed the historic balance of the global nitrogen cycle.

  6. Molecular characterization of water soluble organic nitrogen in marine rainwater by ultra-high resolution electrospray ionization mass spectrometry

    Directory of Open Access Journals (Sweden)

    K. E. Altieri

    2012-04-01

    Full Text Available Atmospheric water soluble organic nitrogen (WSON is a subset of the complex organic matter in aerosols and rainwater, which impacts cloud condensation processes and aerosol chemical and optical properties and may play a significant role in the biogeochemical cycle of N. However, its sources, composition, connections to inorganic N, and variability are largely unknown. Rainwater samples were collected on the island of Bermuda (32.27° N, 64.87° W, which experiences both anthropogenic and marine influenced air masses. Samples were analyzed by ultra-high resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry to chemically characterize the WSON. Elemental compositions of 2281 N containing compounds were determined over the mass range m/z+ 50 to 500. The five compound classes with the largest number of elemental formulas identified, in order from the highest number of formulas to the lowest, contained carbon, hydrogen, oxygen, and nitrogen (CHON+, CHON compounds that contained sulfur (CHONS+, CHON compounds that contained phosphorus (CHONP+, CHON compounds that contained both sulfur and phosphorus (CHONSP+, and compounds that contained only carbon, hydrogen, and nitrogen (CHN+. Compared to rainwater collected in the continental USA, average O:C ratios of all N containing compound classes were lower in the marine samples whereas double bond equivalent values were higher, suggesting a reduced role of secondary formation mechanisms. Despite their prevalence in continental rainwater, no organonitrates or nitrooxy-organosulfates were detected, but there was an increased presence of organic S and organic P containing compounds in the marine rainwater. Cluster analysis showed a clear chemical distinction between samples collected during the cold season (October to March which have anthropogenic air mass origins and samples collected during the warm season (April to September with remote

  7. Understanding Nitrogen Fixation

    Energy Technology Data Exchange (ETDEWEB)

    Paul J. Chirik

    2012-05-25

    The purpose of our program is to explore fundamental chemistry relevant to the discovery of energy efficient methods for the conversion of atmospheric nitrogen (N{sub 2}) into more value-added nitrogen-containing organic molecules. Such transformations are key for domestic energy security and the reduction of fossil fuel dependencies. With DOE support, we have synthesized families of zirconium and hafnium dinitrogen complexes with elongated and activated N-N bonds that exhibit rich N{sub 2} functionalization chemistry. Having elucidated new methods for N-H bond formation from dihydrogen, C-H bonds and Broensted acids, we have since turned our attention to N-C bond construction. These reactions are particularly important for the synthesis of amines, heterocycles and hydrazines with a range of applications in the fine and commodity chemicals industries and as fuels. One recent highlight was the discovery of a new N{sub 2} cleavage reaction upon addition of carbon monoxide which resulted in the synthesis of an important fertilizer, oxamide, from the diatomics with the two strongest bonds in chemistry. Nitrogen-carbon bonds form the backbone of many important organic molecules, especially those used in the fertilizer and pharamaceutical industries. During the past year, we have continued our work in the synthesis of hydrazines of various substitution patterns, many of which are important precursors for heterocycles. In most instances, the direct functionalization of N{sub 2} offers a more efficient synthetic route than traditional organic methods. In addition, we have also discovered a unique CO-induced N{sub 2} bond cleavage reaction that simultaneously cleaves the N-N bond of the metal dinitrogen compound and assembles new C-C bond and two new N-C bonds. Treatment of the CO-functionalized core with weak Broensted acids liberated oxamide, H{sub 2}NC(O)C(O)NH{sub 2}, an important slow release fertilizer that is of interest to replace urea in many applications. The

  8. Biophysical Controls over Carbon and Nitrogen Stocks in Desert Playa Wetlands

    Science.gov (United States)

    McKenna, O. P.; Sala, O. E.

    2014-12-01

    Playas are ephemeral desert wetlands situated at the bottom of closed catchments. Desert playas in the Southwestern US have not been intensively studied despite their potential importance for the functioning of desert ecosystems. We want to know which geomorphic and ecological variables control of the stock size of soil organic carbon, and soil total nitrogen in playas. We hypothesize that the magnitude of carbon and nitrogen stocks depends on: (a) catchment size, (b) catchment slope, (d) catchment vegetation cover, (e) bare-ground patch size, and (f) catchment soil texture. We chose thirty playas from across the Jornada Basin (Las Cruces, NM) ranging from 0.5-60ha in area and with varying catchment characteristics. We used the available 5m digital elevation map (DEM) to calculate the catchment size and catchment slope for these thirty playas. We measured percent cover, and patch size using the point-intercept method with three 10m transects in each catchment. We used the Bouyoucos-hydrometer soil particle analysis to determine catchment soil texture. Stocks of organic carbon and nitrogen were measured from soil samples at four depths (0-10 cm, 10-30 cm, 30-60 cm, 60-100 cm) using C/N combustion analysis. In terms of nitrogen and organic carbon storage, we found soil nitrogen values in the top 10cm ranging from 41.963-214.365 gN/m2, and soil organic carbon values in the top 10cm ranging from 594.339-2375.326 gC/m2. The results of a multiple regression analysis show a positive relationship between catchment slope and both organic carbon and nitrogen stock size (nitrogen: y= 56.801 +47.053, R2=0.621; organic carbon: y= 683.200 + 499.290x, R2= 0.536). These data support our hypothesis that catchment slope is one of factors controlling carbon and nitrogen stock in desert playas. We also applied our model to the 69 other playas of the Jornada Basin and estimated stock sizes (0-10cm) between 415.07-447.97 Mg for total soil nitrogen and 4627.99-5043.51 Mg for soil organic

  9. The Effect of Organic Phosphorus and Nitrogen Enriched Manure on Nutritive Value of Sweet Corn Stover

    Science.gov (United States)

    Lukiwati, D. R.; Pujaningsih, R. I.; Murwani, R.

    2018-02-01

    The experiment aimed to evaluate the effect of some manure enriched with phosphorus (P) and nitrogen (N) organic (‘manure plus’) on crude protein and mineral production of sweet corn (Zea mays saccharata)and quality of fermented stover as livestock feed. A field experiment was conducted on a vertisol soil (low pH, nitrogen and low available Bray II extractable P). Randomized block design with 9 treatments in 3 replicates was used in this experiment. The treatments were T1(TSP), T2 (SA), T3 (TSP+SA), T4 (manure), T5 (manure+PR), T6 (manure+guano), T7 (manure+N-legume), T8 (manure+PR+N-legume), T9 (manure +guano+N-legume). Data were analyzed using analysis of variance (ANOVA) and the differences between treatment means were examined by Duncan Multiple Range Test (DMRT). Results of the experiment showed that the treatment significantly affected to the crude protein and calcium production of stover and nutrient concentration of fermented stover, but it is not affected to P production of stover. The result of DMRT showed that the effect of ‘manure plus’ was not significantly different on CP and Ca production of stover, mineral concentration, in vitro DMD and OMD of fermented stover, compared to inorganic fertilization. Conclusion, manure enriched with organic NP, resulted in similar on CP and Ca production of stover and nutrient concentration of fermented stover compared to inorganic fertilizer. Thus, organic-NP enriched manure could be an alternative and viable technology to utilize low grade of phosphate rock, guano and Gliricidea sepium to produce sweet corn in vertisol soil.

  10. Study on ionizing radiation effects in diesel and crude oil: organic compounds, hydrocarbon, sulfur and nitrogen

    International Nuclear Information System (INIS)

    Andrade, Luana dos Santos

    2014-01-01

    Petroleum is the most important energy and pollution source in the world, nowadays. New technologies in petrochemical industry aim to minimize energy spending at the process and to reduce pollution products. Sulfur and nitrogen compounds generate environmental problems; the most relevant is air pollution that affects the population health directly. The nuclear technology has been used in environmental protection through pollutants removal by free radicals produced at action of the radiation in water molecule. The objective of this study is to evaluate the radiation effects on oil and diesel, mainly in the hydrocarbons, organic sulfur, and nitrogen compounds. It was studied a molecule model of sulfur, named benzothiophene, diesel and crude oil samples. The samples were irradiated using a Co-60 source, Gammacell type. The total sulfur concentration in the samples was determined by X-ray fluorescence spectrometry, and organic compounds were analyzed by gas chromatography coupled to mass spectrometry (GC-MS). The study of molecular model showed that 95% was degraded at 20 kGy dose rate. Irradiation at 15 kGy of absorbed dose showed some cracking in petrol hydrocarbons, however with higher doses it was observed polymerization and low efficiency of cracking. It was observed that the sulfur compounds from diesel and petroleum was efficiently reduced. The applied doses of 15 kGy and 30 kGy were the most efficient on desulfurization of petroleum, and for diesel the highest variation was observed with 30 kGy and 50 kGy of absorbed dose. The distillation and chromatographic separation using an open column with palladium chloride as stationary phase showed a preferential separation of organic sulfur compounds in petroleum. (author)

  11. Leaf nitrogen remobilisation for plant development and grain filling.

    Science.gov (United States)

    Masclaux-Daubresse, C; Reisdorf-Cren, M; Orsel, M

    2008-09-01

    A major challenge of modern agriculture is to reduce the excessive input of fertilisers and, at the same time, to improve grain quality without affecting yield. One way to achieve this goal is to improve plant nitrogen economy through manipulating nitrogen recycling, and especially nitrogen remobilisation, from senescing plant organs. In this review, the contribution of nitrogen remobilisation efficiency (NRE) to global nitrogen use efficiency (NUE), and tools dedicated to the determination of NRE are described. An overall examination of the physiological, metabolic and genetic aspects of nitrogen remobilisation is presented.

  12. Water Soluble Organic Nitrogen (WSON) in Ambient Fine Particles Over a Megacity in South China: Spatiotemporal Variations and Source Apportionment

    Science.gov (United States)

    Yu, Xu; Yu, Qingqing; Zhu, Ming; Tang, Mingjin; Li, Sheng; Yang, Weiqiang; Zhang, Yanli; Deng, Wei; Li, Guanghui; Yu, Yuegang; Huang, Zhonghui; Song, Wei; Ding, Xiang; Hu, Qihou; Li, Jun; Bi, Xinhui; Wang, Xinming

    2017-12-01

    Organic nitrogen aerosols are complex mixtures and important compositions in ambient fine particulate matters (PM2.5), yet their sources and spatiotemporal patterns are not well understood particularly in regions influenced by intensive human activities. In this study, filter-based ambient PM2.5 samples at four stations (one urban, two rural, plus one urban roadside) and PM samples from combustion sources (vehicle exhaust, ship emission, and biomass burning) were collected in the coastal megacity Guangzhou, south China, for determining water soluble organic nitrogen (WSON) along with other organic and inorganic species. The annual average WSON concentrations, as well as the ratios of WSON to water soluble total nitrogen, were all significantly higher at rural sites than urban sites. Average WSON concentrations at the four sites during the wet season were quite near each other, ranging from 0.41 to 0.49 μg/m3; however, they became 2 times higher at the rural sites than at the urban sites during the dry season. Five major sources for WSON were identified through positive matrix factorization analysis. Vehicle emission (29.3%), biomass burning (22.8%), and secondary formation (20.2%) were three dominant sources of WSON at the urban station, while vehicle emission (45.4%) and dust (28.6%) were two dominant sources at the urban roadside station. At the two rural sites biomass burning (51.1% and 34.1%, respectively) and secondary formation (17.8% and 30.5%, respectively) were dominant sources of WSON. Ship emission contributed 8-12% of WSON at the four sites. Natural vegetation seemed to have very minor contribution to WSON.

  13. Forest fuel reduces the nitrogen load

    International Nuclear Information System (INIS)

    Lundborg, A.

    1993-03-01

    A study of the literature was made on the basis of the following hypothesis: ''If nitrogen-rich felling residues are removed from the forest, the nitrogen load on the forest ecosystem is decreased and the risk of nitrogen saturation also decreases''. The study was designed to provide information on how the nitrogen situation is influenced if felling residues are removed from nitrogen-loaded forests and used as fuel. Felling residues release very little nitrogen during the first years after felling. They can immobilize nitrogen from the surroundings, make up a considerable addition to the nitrogen store in the soil, but also release nitrogen in later stages of degradation. The slash has an influence on the soil climate and thus on soil processes. Often there is an increase in the mineralization of litter and humus below the felling residues. At the same time, nitrification is favoured, particularly if the slash is left in heaps. Felling residues contain easily soluble nutrients that stimulate the metabolization of organic matter that otherwise is rather resistant to degradation. The slash also inhibits the clear-cut vegetation and its uptake of nitrogen. These effects result in increased leaching of nitrogen and minerals if the felling residues are left on the site. (99 refs.)

  14. Efficient assimilation of cyanobacterial nitrogen by water hyacinth.

    Science.gov (United States)

    Qin, Hongjie; Zhang, Zhiyong; Liu, Minhui; Wang, Yan; Wen, Xuezheng; Yan, Shaohua; Zhang, Yingying; Liu, Haiqin

    2017-10-01

    A 15 N labeling technique was used to study nitrogen transfer from cyanobacterium Microcystis aeruginosa to water hyacinth. 15 N atom abundance in M. aeruginosa peaked (15.52%) after cultivation in 15 N-labeled medium for 3weeks. Over 87% of algal nitrogen was transferred into water hyacinth after the 4-week co-cultivation period. The nitrogen quickly super-accumulated in the water hyacinth roots, and the labeled nitrogen was re-distributed to different organs (i.e., roots, stalks, and leaves). This study provides a new strategy for further research on cyanobacterial bloom control, nitrogen migration, and nitrogen cycle in eutrophic waters. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Coupled effects of light and nitrogen source on the urea cycle and nitrogen metabolism over a diel cycle in the marine diatom Thalassiosira pseudonana.

    Science.gov (United States)

    Bender, Sara J; Parker, Micaela S; Armbrust, E Virginia

    2012-03-01

    Diatoms are photoautotrophic organisms capable of growing on a variety of inorganic and organic nitrogen sources. Discovery of a complete urea cycle in diatoms was surprising, as this pathway commonly functions in heterotrophic organisms to rid cells of waste nitrogen. To determine how the urea cycle is integrated into cellular nitrogen metabolism and energy management, the centric diatom Thalassiosira pseudonana was maintained in semi-continuous batch cultures on nitrate, ammonium, or urea as the sole nitrogen source, under a 16: 8 light: dark cycle and at light intensities that were low, saturating, or high for growth. Steady-state transcript levels were determined for genes encoding enzymes linked to the urea cycle, urea hydrolysis, glutamine synthesis, pyrimidine synthesis, photorespiration, and energy storage. Transcript abundances were significantly affected by nitrogen source, light intensity and a diel cycle. The impact of N source on differential transcript accumulation was most apparent under the highest light intensity. Models of cellular metabolism under high light were developed based on changes in transcript abundance and predicted enzyme localizations. We hypothesize that the urea cycle is integrated into nitrogen metabolism through its connection to glutamine and in the eventual production of urea. These findings have important implications for nitrogen flow in the cell over diel cycles at surface ocean irradiances. Copyright © 2011 Elsevier GmbH. All rights reserved.

  16. Effect of Vertical Annealing on the Nitrogen Dioxide Response of Organic Thin Film Transistors

    Directory of Open Access Journals (Sweden)

    Sihui Hou

    2018-03-01

    Full Text Available Nitrogen dioxide (NO2 sensors based on organic thin-film transistors (OTFTs were fabricated by conventional annealing (horizontal and vertical annealing processes of organic semiconductor (OSC films. The NO2 responsivity of OTFTs to 15 ppm of NO2 is 1408% under conditions of vertical annealing and only 72% when conventional annealing is applied. Moreover, gas sensors obtained by vertical annealing achieve a high sensing performance of 589% already at 1 ppm of NO2, while showing a preferential response to NO2 compared with SO2, NH3, CO, and H2S. To analyze the mechanism of performance improvement of OTFT gas sensors, the morphologies of 6,13-bis(triisopropylsilylethynyl-pentacene (TIPS-pentacene films were characterized by atomic force microscopy (AFM in tapping mode. The results show that, in well-aligned TIPS-pentacene films, a large number of effective grain boundaries inside the conducting channel contribute to the enhancement of NO2 gas sensing performance.

  17. [Effects of organic-inorganic mixed fertilizers on rice yield and nitrogen use efficiency].

    Science.gov (United States)

    Zhang, Xiao-li; Meng, Lin; Wang, Qiu-jun; Luo, Jia; Huang, Qi-wei; Xu, Yang-chun; Yang, Xing-ming; Shen, Qi-rong

    2009-03-01

    A field experiment was carried to study the effects of organic-inorganic mixed fertilizers on rice yield, nitrogen (N) use efficiency, soil N supply, and soil microbial diversity. Rapeseed cake compost (RCC), pig manure compost (PMC), and Chinese medicine residue compost (MRC) were mixed with chemical N, P and K fertilizers. All the treatments except CK received the same rate of N. The results showed that all N fertilizer application treatments had higher rice yield (7918.8-9449.2 kg x hm(-2)) than the control (6947.9 kg x hm(-2)). Compared with that of chemical fertilizers (CF) treatment (7918.8 kg x hm(-2)), the yield of the three organic-inorganic mixed fertilizers treatments ranged in 8532.0-9449.2 kg x hm(-2), and the increment was 7.7%-19.3%. Compared with treatment CF, the treatments of organic-inorganic mixed fertilizers were significantly higher in N accumulation, N transportation efficiency, N recovery rate, agronomic N use efficiency, and physiological N use efficiency. These mixed fertilizers treatments promoted rice N uptake and improved soil N supply, and thus, increased N use efficiency, compared with treatments CF and CK. Neighbor joining analysis indicated that soil bacterial communities in the five treatments could be classified into three categories, i.e., CF and CK, PMC and MRC, and RCC, implying that the application of exogenous organic materials could affect soil bacterial communities, while applying chemical fertilizers had little effect on them.

  18. Distribution and sources of organic carbon, nitrogen and their isotopic signatures in sediments from the Ayeyarwady (Irrawaddy) continental shelf, northern Andaman Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Ramaswamy, V.; Gaye, B.; Shirodkar, P.V.; Rao, P.S.; Chivas, A.R.; Wheeler, D.; Thwin, S.

    Total organic carbon (TOC), total nitrogen (TN) and their delta sup(13) C and delta sup (15) N values were determined from 110 sediment samples from the Ayeyarwady (Irrawaddy) continental shelf, northern Andaman Sea to decipher the concentration...

  19. EFFECT OF BLUE GREEN ALGAE ON SOIL NITROGEN

    African Journals Online (AJOL)

    Yagya Prasad Paudel

    2012-07-31

    Jul 31, 2012 ... associated with soil dessication at the end of the cultivation cycle and algal growth ... blue-green algae (BGA) on soil nitrogen was carried out from June to December 2005. .... Nitrogen fixation by free living Micro-organisms.

  20. Organic carbon and nitrogen availability determine bacterial community composition in paddy fields of the Indo-Gangetic plain.

    Science.gov (United States)

    Kumar, Arvind; Rai, Lal Chand

    2017-07-01

    Soil quality is an important factor and maintained by inhabited microorganisms. Soil physicochemical characteristics determine indigenous microbial population and rice provides food security to major population of the world. Therefore, this study aimed to assess the impact of physicochemical variables on bacterial community composition and diversity in conventional paddy fields which could reflect a real picture of the bacterial communities operating in the paddy agro-ecosystem. To fulfill the objective; soil physicochemical characterization, bacterial community composition and diversity analysis was carried out using culture-independent PCR-DGGE method from twenty soils distributed across eight districts. Bacterial communities were grouped into three clusters based on UPGMA cluster analysis of DGGE banding pattern. The linkage of measured physicochemical variables with bacterial community composition was analyzed by canonical correspondence analysis (CCA). CCA ordination biplot results were similar to UPGMA cluster analysis. High levels of species-environment correlations (0.989 and 0.959) were observed and the largest proportion of species data variability was explained by total organic carbon (TOC), available nitrogen, total nitrogen and pH. Thus, results suggest that TOC and nitrogen are key regulators of bacterial community composition in the conventional paddy fields. Further, high diversity indices and evenness values demonstrated heterogeneity and co-abundance of the bacterial communities.

  1. Enzymology of biological nitrogen fixation. Final report, May 1, 1987--April 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    Biological nitrogen fixation is of central importance in the earth`s nitrogen economy. Fixation of nitrogen is accomplished by a variety of microorganisms, all of them procaryotic. Some operate independently and some function symbiotically or associatively with photosynthesizing plants. Biological nitrogen fixation is accomplished via the reaction: N{sub 2} + 8H{sup +} + 8e{sup {minus}} {yields} 2NH{sub 3} + H{sub 2}. This reaction requires a minimum of 16 ATP under ideal laboratory conditions, so it is obvious that the energy demand of the reaction is very high. When certain nitrogen-fixing organisms are supplied fixed nitrogen (e.g., ammonium) the organisms use the fixed nitrogen and turn off their nitrogenase system, thus conserving energy. When the fixed nitrogen is exhausted, the organism reactivates its nitrogenase. The system is turned off by dinitrogenase reductase ADP-ribosyl transferase (DRAT) and turned back on by dinitrogenase reductase-activating glycohydrolase (DRAG). The authors have investigated the details of how DRAT and DRAG are formed, how they function, and the genetics of their formation and operation.

  2. Modeling Nitrogen Decrease in Water Lettuce Ponds from Waste Stabilization Ponds

    Science.gov (United States)

    Putri, Gitta Agnes; Sunarsih

    2018-02-01

    This paper presents about the dynamic modeling of the Water Lettuce ponds as a form of improvement from the Water Hyacinth ponds. The purpose of this paper is to predict nitrogen decrease and nitrogen transformation in Water Lettuce ponds integrated with Waste Stabilization Ponds. The model consists of 4 mass balances, namely Dissolved Organic Nitrogen (DON), Particulate Organic Nitrogen (PON), ammonium (NH4+), Nitrate and Nitrite (NOx). The process of nitrogen transformation which considered in a Water Lettuce ponds, namely hydrolysis, mineralization, nitrification, denitrification, plant and bacterial uptake processes. Numerical simulations are performed by giving the values of parameters and the initial values of nitrogen compounds based on a review of previous studies. Numerical results show that the rate of change in the concentration of nitrogen compounds in the integration ponds of waste stabilization and water lettuce decreases and reaches stable at different times.

  3. Cycling of grain legume residue nitrogen

    DEFF Research Database (Denmark)

    Jensen, E.S.

    1995-01-01

    Symbiotic nitrogen fixation by legumes is the main input of nitrogen in ecological agriculture. The cycling of N-15-labelled mature pea (Pisum sativum L.) residues was studied during three years in small field plots and lysimeters. The residual organic labelled N declined rapidly during the initial...... management methods in order to conserve grain legume residue N sources within the soil-plant system....

  4. Governing processes for reactive nitrogen compounds in the European atmosphere

    DEFF Research Database (Denmark)

    Hertel, Ole; Skjøth, Carsten Ambelas; Reis, S.

    2012-01-01

    +)), oxidized nitrogen (NOy: nitrogen monoxide (NO) + nitrogen dioxide (NO2) and their reaction products) as well as organic nitrogen compounds (organic N). Pollution abatement strategies need to take into account the differences in the governing processes of these compounds when assessing their impact...... on ecosystem services, biodiversity, human health and climate. NOx (NO+NO2) emitted from traffic affects human health in urban areas where the presence of buildings increases the residence time in streets. In urban areas this leads to enhanced exposure of the population to NOx concentrations. NOx emissions.......5 and PM10 (mass of aerosols with an aerodynamic diameter of less than 2.5 and 10 mu m, respectively) with an impact on radiation balance as well as potentially on human health. Little is known quantitatively and qualitatively about organic N in the atmosphere, other than that it contributes a significant...

  5. Agronomic performance and chemical response of sunflower ( Helianthus annuus L.) to some organic nitrogen sources and conventional nitrogen fertilizers under sandy soil conditions

    Energy Technology Data Exchange (ETDEWEB)

    Helmy, A. M.; Fawzy Ramadan, M. F.

    2009-07-01

    Sunflower ( Helianthus annuus L.) is an option for oilseed production, particularly in dry land areas due to good root system development. In this study, two field experiments were performed in the El-Khattara region (Sharkia Governorate, Egypt) during the 2005 season. The objective of this research was to determine the effect of organic nitrogen (ON) sources and their combinations as well as to compare the effect of ON and ammonium sulfate (AS) as a conventional fertilizer added individually or in combination on growth, yield components, oil percentage and the uptake of some macro nutrients by sunflowers grown on sandy soil.The treatments of chicken manure (CM) and a mixture of farmyard manure (FYM) with CM were superior to the other treatments and gave the highest yield, dry matter yield, NPK uptake by plants at all growth stages along with seed yield at the mature stage. The effect of the different ON on crop yield and its components may follow the order; CM> palma residues (PR)> FYM. This was more emphasized when the materials were mixed with AS at a ratio of 3:1 and 1:1. The uptake of nitrogen (N), phosphorus (P) and potassium (K) by plants was affected by the addition of different N sources and treatments. The highest nutrient content and uptake by straw were obtained when treated with CM followed by PR at all growth stages, while it was PR followed by CM for seeds. Oil recovery was shown to respond to the N supply and the changes in individual fatty acids were not statistically different. However, it seems that the application of organic fertilizers resulted in an increase in total unsaturated fatty acids compared to the control. (Author) 58 refs.

  6. Bacterial nitrogen fixation in sand bioreactors treating winery wastewater with a high carbon to nitrogen ratio.

    Science.gov (United States)

    Welz, Pamela J; Ramond, Jean-Baptiste; Braun, Lorenz; Vikram, Surendra; Le Roes-Hill, Marilize

    2018-02-01

    Heterotrophic bacteria proliferate in organic-rich environments and systems containing sufficient essential nutrients. Nitrogen, phosphorus and potassium are the nutrients required in the highest concentrations. The ratio of carbon to nitrogen is an important consideration for wastewater bioremediation because insufficient nitrogen may result in decreased treatment efficiency. It has been shown that during the treatment of effluent from the pulp and paper industry, bacterial nitrogen fixation can supplement the nitrogen requirements of suspended growth systems. This study was conducted using physicochemical analyses and culture-dependent and -independent techniques to ascertain whether nitrogen-fixing bacteria were selected in biological sand filters used to treat synthetic winery wastewater with a high carbon to nitrogen ratio (193:1). The systems performed well, with the influent COD of 1351 mg/L being reduced by 84-89%. It was shown that the nitrogen fixing bacterial population was influenced by the presence of synthetic winery effluent in the surface layers of the biological sand filters, but not in the deeper layers. It was hypothesised that this was due to the greater availability of atmospheric nitrogen at the surface. The numbers of culture-able nitrogen-fixing bacteria, including presumptive Azotobacter spp. exhibited 1-2 log increases at the surface. The results of this study confirm that nitrogen fixation is an important mechanism to be considered during treatment of high carbon to nitrogen wastewater. If biological treatment systems can be operated to stimulate this phenomenon, it may obviate the need for nitrogen addition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Nitrogen dynamics in a soil-sugar cane system

    International Nuclear Information System (INIS)

    Oliveira, Julio Cesar Martins de; Reichardt, Klaus; Bacchi, Osny O.S.; Timm, Luis Carlos; Tominaga, Tania Toyomi; Castro Navarro, Roberta de; Cassaro, Fabio Augusto Meira; Dourado-Neto, Durval; Trivelin, Paulo Cesar Ocheuse; Piccolo, Marisa de Cassia

    2000-01-01

    Results of an organic matter management experiment of a sugar cane crop are reported for the first cropping year. Sugar cane was planted in October 1997, and labeled with a 15 N fertilizer pulse to study the fate of organic matter in the soil-plant system. A nitrogen balance is presented, partitioning the system in plant components (stalk, tip and straw), soil components (five soil organic matter fractions) and evaluating leaching losses. The 15 N label permitted to determine, at the end of the growing season, amounts of nitrogen derived from the fertilizer, present in the above mentioned compartments. (author)

  8. Concentration, composition, bioavailability, and N-nitrosodimethylamine formation potential of particulate and dissolved organic nitrogen in wastewater effluents: A comparative study

    International Nuclear Information System (INIS)

    Hu, Haidong; Ma, Haijun; Ding, Lili; Geng, Jinju; Xu, Ke; Huang, Hui; Zhang, Yingying; Ren, Hongqiang

    2016-01-01

    Wastewater-derived organic nitrogen (org-N) can act as both nutrients and carcinogenic nitrogenous disinfection byproduct precursors. In this study, the concentration, composition, bioavailability, and N-nitrosodimethylamine (NDMA) formation potential of particulate organic nitrogen (PON) from three different municipal wastewater treatment plants were characterized and compared with that of effluent dissolved organic nitrogen (DON). The average effluent PON and DON concentrations ranged from 0.09 to 0.55 mg N/L and from 0.91 to 1.88 mg N/L, respectively. According to principal component analysis, org-N composition and characterization differed in PON and DON samples (n = 20). Compared with DON, PON tended to be enriched in protein and nucleic acids, and showed a more proteinaceous character. Composition of org-N functional groups estimated from the X-ray photoelectron spectroscopy N 1s spectra indicate no significant differences in the molecular weight distribution of the protein-like materials between PON and DON. Moreover, PON exhibited a significantly higher bioavailability (61.0 ± 13.3%) compared to DON (38.5 ± 12.4%, p < 0.05, t-test) and a significantly higher NDMA yields (791.4 ± 404.0 ng/mg-N) compared to DON (374.8 ± 62.5 ng/mg-N, p < 0.05, t-test). Accordingly, PON contributed to approximately 12.3–41.7% of the total bioavailable org-N and 22.0–38.4% of the total NDMA precursors in wastewater effluents. Thus, the potential adverse effects of PON on wastewater discharge and reuse applications should not be overlooked, even though it only accounted for 7.4–26.8% of the total effluent org-N. - Highlights: • The concentration, composition, bioavailability, and NDMA FP of PON and DON in wastewater effluents are compared. • PON is enriched in protein and nucleic acids. • PON is more bioavailable and shows higher NDMA yields compared to DON. • PON contributes12–42% of total bioavailable org-N and 22–38% of total NDMA precursors.

  9. Concentration, composition, bioavailability, and N-nitrosodimethylamine formation potential of particulate and dissolved organic nitrogen in wastewater effluents: A comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Haidong; Ma, Haijun; Ding, Lili; Geng, Jinju; Xu, Ke; Huang, Hui; Zhang, Yingying; Ren, Hongqiang, E-mail: hqren@nju.edu.cn

    2016-11-01

    Wastewater-derived organic nitrogen (org-N) can act as both nutrients and carcinogenic nitrogenous disinfection byproduct precursors. In this study, the concentration, composition, bioavailability, and N-nitrosodimethylamine (NDMA) formation potential of particulate organic nitrogen (PON) from three different municipal wastewater treatment plants were characterized and compared with that of effluent dissolved organic nitrogen (DON). The average effluent PON and DON concentrations ranged from 0.09 to 0.55 mg N/L and from 0.91 to 1.88 mg N/L, respectively. According to principal component analysis, org-N composition and characterization differed in PON and DON samples (n = 20). Compared with DON, PON tended to be enriched in protein and nucleic acids, and showed a more proteinaceous character. Composition of org-N functional groups estimated from the X-ray photoelectron spectroscopy N 1s spectra indicate no significant differences in the molecular weight distribution of the protein-like materials between PON and DON. Moreover, PON exhibited a significantly higher bioavailability (61.0 ± 13.3%) compared to DON (38.5 ± 12.4%, p < 0.05, t-test) and a significantly higher NDMA yields (791.4 ± 404.0 ng/mg-N) compared to DON (374.8 ± 62.5 ng/mg-N, p < 0.05, t-test). Accordingly, PON contributed to approximately 12.3–41.7% of the total bioavailable org-N and 22.0–38.4% of the total NDMA precursors in wastewater effluents. Thus, the potential adverse effects of PON on wastewater discharge and reuse applications should not be overlooked, even though it only accounted for 7.4–26.8% of the total effluent org-N. - Highlights: • The concentration, composition, bioavailability, and NDMA FP of PON and DON in wastewater effluents are compared. • PON is enriched in protein and nucleic acids. • PON is more bioavailable and shows higher NDMA yields compared to DON. • PON contributes12–42% of total bioavailable org-N and 22–38% of total NDMA precursors.

  10. [Effects of nitrogen and irrigation water application on yield, water and nitrogen utilization and soil nitrate nitrogen accumulation in summer cotton].

    Science.gov (United States)

    Si, Zhuan Yun; Gao, Yang; Shen, Xiao Jun; Liu, Hao; Gong, Xue Wen; Duan, Ai Wang

    2017-12-01

    A field experiment was carried out to study the effects of nitrogen and irrigation water application on growth, yield, and water and nitrogen use efficiency of summer cotton, and to develop the optimal water and nitrogen management model for suitable yield and less nitrogen loss in summer cotton field in the Huang-Huai region. Two experimental factors were arranged in a split plot design. The main plots were used for arranging nitrogen factor which consisted of five nitrogen fertilizer le-vels(0, 60, 120, 180, 240 kg·hm -2 , referred as N 0 , N 1 , N 2 , N 3 , N 4 ), and the subplots for irrigation factor which consisted of three irrigation quota levels (30, 22.5, 15 mm, referred as I 1 , I 2 , I 3 ). There were 15 treatments with three replications. Water was applied with drip irrigation system. Experimental results showed that both irrigation and nitrogen fertilization promoted cotton growth and yield obviously, but nitrogen fertilizer showed more important effects than irrigation and was the main factor of regulating growth and yield of summer cotton in the experimental region. With the increase of nitrogen fertilization rate and irrigation amount, the dry mater accumulation of reproductive organs, the above-ground biomass at the flowering-bolling stage and seed cotton yield increased gradually, reached peak values at nitrogen fertilization rate of 180 kg·hm -2 and decreased slowly with the nitrogen fertilization rate further increased. The maximum yield of 4016 kg·hm -2 was observed in the treatment of N 3 I 1 . Increasing nitrogen fertilizer amount would improve significantly total N absorption of shoots and N content of stem and leaf, but decrease nitrogen partial factor productivity. The maximum irrigation-water use efficiency of 5.40 kg·m -3 and field water use efficiency of 1.24 kg·m -3 were found in the treatments of N 3 I 3 and N 3 I 1 , respectively. With increasing nitrogen fertilization amount, soil NO 3 - -N content increased and the main soil

  11. Dissolved organic carbon and nitrogen mineralization strongly affect co2 emissions following lime application to acidic soil

    International Nuclear Information System (INIS)

    Shaaban, M.; Peng, Q.; Lin, S.; Wu, Y.

    2014-01-01

    Emission of greenhouse gases from agricultural soils has main contribution to the climatic change and global warming. Dynamics of dissolved organic carbon (DOC) and nitrogen mineralization can affect CO/sub 2/ emission from soils. Influence of DOC and nitrogen mineralization on CO/sub 2/ emissions following lime application to acidic soil was investigated in current study. Laboratory experiment was conducted under aerobic conditions with 25% moisture contents (66% water-filled pore space) at 25 degree C in the dark conditions. Different treatments of lime were applied to acidic soil as follows: CK (control), L (low rate of lime: 0.2g lime / 100 g soil) and H (high rate of lime: 0.5g lime /100g soil). CO/sub 2/ emissions were measured by gas chromatography and dissolved organic carbon, NH4 +-N, NO/sub 3/ --N and soil pH were measured during incubation study. Addition of lime to acidic soil significantly increased the concentration of DOC and N mineralization rate. Higher concentrations of DOC and N mineralization, consequently, increased the CO/sub 2/ emissions from lime treated soils. Cumulative CO/sub 2/ emission was 75% and 71% higher from L and H treatments as compared to CK. The results of current study suggest that DOC and N mineralization are critical in controlling gaseous emissions of CO/sub 2/ from acidic soils following lime application. (author)

  12. Soil Microbial Communities and Gas Dynamics Contribute to Arbuscular Mycorrhizal Nitrogen Uptake and Transfer to Plants

    Science.gov (United States)

    Hestrin, R.; Harrison, M. J.; Lehmann, J.

    2016-12-01

    Arbuscular mycorrhizal fungi (AMF) associate with most terrestrial plants and influence ecosystem ecology and biogeochemistry. There is evidence that AMF play a role in soil nitrogen cycling, in part by taking up nitrogen and transferring it to plants. However, many aspects of this process are poorly understood, including the factors that control fungal access to nitrogen stored in soil organic matter. In this study, we used stable isotopes and root exclusion to track nitrogen movement from organic matter into AMF and host plants. AMF significantly increased total plant biomass and nitrogen content, but both AMF and other soil microbes seemed to compete with plants for nitrogen. Surprisingly, gaseous nitrogen species also contributed significantly to plant nitrogen content under alkaline soil conditions. Our current experiments investigate whether free-living microbial communities that have evolved under a soil nitrogen gradient influence AMF access to soil organic nitrogen and subsequent nitrogen transfer to plants. This research links interactions between plants, mycorrhizal symbionts, and free-living microbes with terrestrial carbon and nitrogen dynamics.

  13. Method of removing nitrogen monoxide from a nitrogen monoxide-containing gas using a water-soluble iron ion-dithiocarbamate, xanthate or thioxanthate

    Science.gov (United States)

    Liu, D. Kwok-Keung; Chang, Shih-Ger

    1987-08-25

    The present invention relates to a method of removing of nitrogen monoxide from a nitrogen monoxide-containing gas which method comprises contacting a nitrogen oxide-containing gas with an aqueous solution of water soluble organic compound-iron ion chelate complex. The NO absorption efficiency of ferrous urea-dithiocarbamate and ferrous diethanolamine-xanthate as a function of time, oxygen content and solution ph is presented. 3 figs., 1 tab.

  14. [Interactions of straw, nitrogen fertilizer and bacterivorous nematodes on soil labile carbon and nitrogen and greenhouse gas emissions].

    Science.gov (United States)

    Zhang, Teng-Hao; Wang, Nan; Liu, Man-Qiang; Li, Fang-Hui; Zhu, Kang-Li; Li, Hui-Xin; Hu, Feng

    2014-11-01

    A 3 x 2 factorial design of microcosm experiment was conducted to investigate the interactive effects of straw, nitrogen fertilizer and bacterivorous nematodes on soil microbial biomass carbon (C(mic)) and nitrogen (N(mic)), dissolved organic carbon (DOC) and nitrogen (DON), mineral nitrogen (NH(4+)-N and NO(3-)-N), and greenhouse gas (CO2, N2O and CH4) emissions. Results showed that straw amendment remarkably increased the numbers of bacterivorous nematodes and the contents of Cmic and Nmic, but Cmic and Nmic decreased with the increasing dose of nitrogen fertilization. The effects of bacterivorous nematodes strongly depended on either straw or nitrogen fertilization. The interactions of straw, nitrogen fertilization and bacterivorous nematodes on soil DOC, DON and mineral nitrogen were strong. Straw and nitrogen fertilization increased DOC and mineral nitrogen contents, but their influences on DON depended on the bacterivorous nematodes. The DOC and mineral nitrogen were negatively and positively influenced by the bacterivorous nematodes, re- spectively. Straw significantly promoted CO2 and N2O emissions but inhibited CH4 emission, while interactions between nematodes and nitrogen fertilization on emissions of greenhouse gases were obvious. In the presence of straw, nematodes increased cumulative CO2 emissions with low nitrogen fertilization, but decreased CO2 and N2O emissions with high nitrogen fertilization on the 56th day after incubation. In summary, mechanical understanding the soil ecological process would inevitably needs to consider the roles of soil microfauna.

  15. Host-derived viral transporter protein for nitrogen uptake in infected marine phytoplankton

    Science.gov (United States)

    Chambouvet, Aurélie; Milner, David S.; Attah, Victoria; Terrado, Ramón; Lovejoy, Connie; Moreau, Hervé; Derelle, Évelyne; Richards, Thomas A.

    2017-01-01

    Phytoplankton community structure is shaped by both bottom–up factors, such as nutrient availability, and top–down processes, such as predation. Here we show that marine viruses can blur these distinctions, being able to amend how host cells acquire nutrients from their environment while also predating and lysing their algal hosts. Viral genomes often encode genes derived from their host. These genes may allow the virus to manipulate host metabolism to improve viral fitness. We identify in the genome of a phytoplankton virus, which infects the small green alga Ostreococcus tauri, a host-derived ammonium transporter. This gene is transcribed during infection and when expressed in yeast mutants the viral protein is located to the plasma membrane and rescues growth when cultured with ammonium as the sole nitrogen source. We also show that viral infection alters the nature of nitrogen compound uptake of host cells, by both increasing substrate affinity and allowing the host to access diverse nitrogen sources. This is important because the availability of nitrogen often limits phytoplankton growth. Collectively, these data show that a virus can acquire genes encoding nutrient transporters from a host genome and that expression of the viral gene can alter the nutrient uptake behavior of host cells. These results have implications for understanding how viruses manipulate the physiology and ecology of phytoplankton, influence marine nutrient cycles, and act as vectors for horizontal gene transfer. PMID:28827361

  16. Antibiotic resistance in community-acquired urinary tract infections

    African Journals Online (AJOL)

    of community-acquired UTI organisms to amoxycillin and co-trimoxazole was .... Treatment of uncomplicated urinary tract infection in non-pregnant women. Postgrad ... Single-dose antibiotic treatment for symptomatic uri- nary tract infections in ...

  17. The Effect of Application of Nitrogen Fertilizer and Nano-Organic Manure on Yield, Yield Components and Essential Oil of Fennel (Foeniculum vulgar Mill.

    Directory of Open Access Journals (Sweden)

    S Khoshpeyk

    2017-03-01

    Full Text Available Introduction Since discovery of food, clothing and shelter, human wanted to improve their physical sufferings, and using experience separated toxic plants from non – toxic ones and medicinal herbs from non – medicine. Medicinal herbs are agricultural products which have a very important role in the health of people in society. Among the medicinal herbs, fennel with scientific name (Foeniculum vulgare Mill. traditionally was used for treating problems such as Inflammation and Cramping. Now, one of the main objectives of the modern agriculture is decreasing the consumption of fertilizers and greater the use of organic fertilizers especially livestock fertilizers. The use of organic fertilizers in nano-dimensions can absorb the nutrients needed to plant. Better use of nano- technology for producing organic fertilizers, suitable for recruiting plant can help plants in variable environmental conditions and be effective in the growth, quantity and quality performance (Sumner, 2000. By the considering the same management of organic and chemical fertilizers consumption especially nano–organic fertilizers, is of great importance and necessitate further research and consideration in all kinds of plants, medical and aromatic herbs and plants in particular. Materials and Methods A factorial experiment, arranged in a randomized complete blocks design with three replications, was conducted in the Saffron Research Institute at Torbat - Heydarieh University in 2014. The geographical location of the experimental station was 35º 20´ N and 59º 13´ E with the altitude of 1450 m. Factors, including utilization of nano-organic fertilizer in four levels (zero, 10, 20 and 30 tons per hectare and nitrogen fertilizers application in four levels (0, 25 , 50 and 75 kg per hectare. Each experimental plot was 3 m long and 2 m wide and contained 4 rows with 50 cm distance. Seeds were directly sown by hand in late May. First irrigation was done 10 days after seedling

  18. Nitrogen in rock: Occurrences and biogeochemical implications

    Science.gov (United States)

    Holloway, J.M.; Dahlgren, R.A.

    2002-01-01

    There is a growing interest in the role of bedrock in global nitrogen cycling and potential for increased ecosystem sensitivity to human impacts in terrains with elevated background nitrogen concentrations. Nitrogen-bearing rocks are globally distributed and comprise a potentially large pool of nitrogen in nutrient cycling that is frequently neglected because of a lack of routine analytical methods for quantification. Nitrogen in rock originates as organically bound nitrogen associated with sediment, or in thermal waters representing a mixture of sedimentary, mantle, and meteoric sources of nitrogen. Rock nitrogen concentrations range from trace levels (>200 mg N kg -1) in granites to ecologically significant concentrations exceeding 1000 mg N kg -1 in some sedimentary and metasedimentary rocks. Nitrate deposits accumulated in arid and semi-arid regions are also a large potential pool. Nitrogen in rock has a potentially significant impact on localized nitrogen cycles. Elevated nitrogen concentrations in water and soil have been attributed to weathering of bedrock nitrogen. In some environments, nitrogen released from bedrock may contribute to nitrogen saturation of terrestrial ecosystems (more nitrogen available than required by biota). Nitrogen saturation results in leaching of nitrate to surface and groundwaters, and, where soils are formed from ammonium-rich bedrock, the oxidation of ammonium to nitrate may result in soil acidification, inhibiting revegetation in certain ecosystems. Collectively, studies presented in this article reveal that geologic nitrogen may be a large and reactive pool with potential for amplification of human impacts on nitrogen cycling in terrestrial and aquatic ecosystems.

  19. 长江口外海域沉积物中有机物的来源及分布%Spatial distributions of organic carbon and nitrogen and their isotopic compositions in sediments of the Changjiang Estuary and its adjacent sea area

    Institute of Scientific and Technical Information of China (English)

    高建华; 汪亚平; 潘少明; 张瑞; 李军; 白风龙

    2008-01-01

    The spatial distribution patterns of total organic carbon and total nitrogen show significant correlations with currents of the East China Sea Shelf. Corresponding to distributions of these currents, the study area could be divided into four different parts. Total organic carbon, total nitrogen, and organic carbon and nitrogen stable isotopes in sediments show linear correlations with mean grain size, respectively, thus "grain size effect" is an important factor that influences their distributions. C/N ratios can reflect source information of organic matter to a certain degree. In contrast, nitrogen stable isotope shows different spatial distribution patterns with C/N and organic carbon stable isotope, according to their relationships and regional distributions. The highest contribution (up to 50%) of terrestrial organic carbon appears near the Changjiang Estuary with isolines projecting towards northeast, indicating the influence of the Changjiang dilution water. Terrestrial particulate organic matter suffers from effects of diagenesis, benthos and incessant inputting of dead organic matter of plankton,after depositing in seabed. Therefore, the contribution of terrestrial organic carbon to particulate organic matter is obviously greater than that to organic matter in sediments in the same place.

  20. EarthN: A new Earth System Nitrogen Model

    OpenAIRE

    Goldblatt, Colin; Johnson, Benjamin

    2018-01-01

    The amount of nitrogen in the atmosphere, oceans, crust, and mantle have important ramifications for Earth’s biologic and geologic history. Despite this importance, the history and cycling of nitrogen in the Earth system is poorly constrained over time. For example, various models and proxies contrastingly support atmospheric mass stasis, net outgassing, or net ingassing over time. In addition, the amount available to and processing of nitrogen by organisms is intricately linked with and prov...

  1. EarthN: A new Earth System Nitrogen Model

    OpenAIRE

    Johnson, Benjamin W.; Goldblatt, Colin

    2018-01-01

    The amount of nitrogen in the atmosphere, oceans, crust, and mantle have important ramifications for Earth's biologic and geologic history. Despite this importance, the history and cycling of nitrogen in the Earth system is poorly constrained over time. For example, various models and proxies contrastingly support atmospheric mass stasis, net outgassing, or net ingassing over time. In addition, the amount available to and processing of nitrogen by organisms is intricately linked with and prov...

  2. Transformation of nitrogen and distribution of nitrogen-related bacteria in a polluted urban stream.

    Science.gov (United States)

    Jiao, Y; Jin, W B; Zhao, Q L; Zhang, G D; Yan, Y; Wan, J

    2009-01-01

    Most researchers focused on either nitrogen species or microbial community for polluted urban stream while ignoring the interaction between them and its effect on nitrogen transformation, which restricted the rational selection of an effective and feasible remediation technology. Taking Buji stream in Shenzhen (China) as target stream, the distribution of nitrogen-related bacteria was investigated by most probable number (MPN) besides analysis of nitrogen species etc. The nitrogen-related bacteria in sediment were 10(2) times richer than those in water. Owing to their faster growth, the MPN of ammonifying bacteria and denitrifying bacteria were 10(5) and 10(2) times higher than those of nitrifying bacteria, respectively. The ammonifying bacteria numbers were significantly related to BOD5 in water, while nitrifying bacteria in sediment correlated well with nitrate in water. Thus, nitrification occurred mainly in sediment surface and was limited by low proportion of nitrifying bacteria. The denitrifying bacteria in sediment had good relationship with BOD5 and nitrite and nitrate in water. Low DO and rich organic compounds were beneficial to denitrification but unfavourable to nitrification. Denitrification was restricted by low nitrite and nitrate concentration. These results could be served as a reference for implementing the remediation scheme of nitrogen polluted urban stream.

  3. A mechanistic, globally-applicable model of plant nitrogen uptake, retranslocation and fixation

    Science.gov (United States)

    Fisher, J. B.; Tan, S.; Malhi, Y.; Fisher, R. A.; Sitch, S.; Huntingford, C.

    2008-12-01

    Nitrogen is one of the nutrients that can most limit plant growth, and nitrogen availability may be a controlling factor on biosphere responses to climate change. We developed a plant nitrogen assimilation model based on a) advective transport through the transpiration stream, b) retranslocation whereby carbon is expended to resorb nitrogen from leaves, c) active uptake whereby carbon is expended to acquire soil nitrogen, and d) biological nitrogen fixation whereby carbon is expended for symbiotic nitrogen fixers. The model relies on 9 inputs: 1) net primary productivity (NPP), 2) plant C:N ratio, 3) available soil nitrogen, 4) root biomass, 5) transpiration rate, 6) saturated soil depth,7) leaf nitrogen before senescence, 8) soil temperature, and 9) ability to fix nitrogen. A carbon cost of retranslocation is estimated based on leaf nitrogen and compared to an active uptake carbon cost based on root biomass and available soil nitrogen; for nitrogen fixers both costs are compared to a carbon cost of fixation dependent on soil temperature. The NPP is then allocated to optimize growth while maintaining the C:N ratio. The model outputs are total plant nitrogen uptake, remaining NPP available for growth, carbon respired to the soil and updated available soil nitrogen content. We test and validate the model (called FUN: Fixation and Uptake of Nitrogen) against data from the UK, Germany and Peru, and run the model under simplified scenarios of primary succession and climate change. FUN is suitable for incorporation into a land surface scheme of a General Circulation Model and will be coupled with a soil model and dynamic global vegetation model as part of a land surface model (JULES).

  4. Gross Nitrogen Mineralization in Surface Sediments of the Yangtze Estuary

    Science.gov (United States)

    Liu, Min; Li, Xiaofei; Yin, Guoyu; Zheng, Yanling; Deng, Fengyu

    2016-01-01

    Nitrogen mineralization is a key biogeochemical process transforming organic nitrogen to inorganic nitrogen in estuarine and coastal sediments. Although sedimentary nitrogen mineralization is an important internal driver for aquatic eutrophication, few studies have investigated sedimentary nitrogen mineralization in these environments. Sediment-slurry incubation experiments combined with 15N isotope dilution technique were conducted to quantify the potential rates of nitrogen mineralization in surface sediments of the Yangtze Estuary. The gross nitrogen mineralization (GNM) rates ranged from 0.02 to 5.13 mg N kg-1 d-1 in surface sediments of the study area. The GNM rates were generally higher in summer than in winter, and the relative high rates were detected mainly at sites near the north branch and frontal edge of this estuary. The spatial and temporal distributions of GNM rates were observed to depend largely on temperature, salinity, sedimentary organic carbon and nitrogen contents, and extracellular enzyme (urease and L-glutaminase) activities. The total mineralized nitrogen in the sediments of the Yangtze Estuary was estimated to be about 6.17 × 105 t N yr-1, and approximately 37% of it was retained in the estuary. Assuming the retained mineralized nitrogen is totally released from the sediments into the water column, which contributed 12–15% of total dissolved inorganic nitrogen (DIN) sources in this study area. This result indicated that the mineralization process is a significant internal nitrogen source for the overlying water of the Yangtze Estuary, and thus may contribute to the estuarine and coastal eutrophication. PMID:26991904

  5. A greenhouse experiment for the identification of spectral indices for crop water and nitrogen status assessment

    Science.gov (United States)

    Marino Gallina, Pietro; Bechini, Luca; Cabassi, Giovanni; Cavalli, Daniele; Chiaradia, Enrico Antonio; Corti, Martina; Ferrante, Antonio; Martinetti, Livia; Masseroni, Daniele; Morgutti, Silvia; Nocito, Fabio Francesco; Facchi, Arianna

    2015-04-01

    Improvements in crop production depend on the correct adoption of agronomic and irrigation management strategies. The use of high spatial and temporal resolution monitoring methods may be used in precision agriculture to improve the efficiency in water and nutrient input management, guaranteeing the environmental sustainability of agricultural productions. In the last decades, many indices for the monitoring of water or nitrogen status of crops were developed by using multispectral images and, more recently, hyperspectral and thermal images acquired by satellite of airborne platforms. To date, however, comprehensive studies aimed at identifying indices as independent as possible for the management of the two types of stress are still scarce in the literature. Moreover, the chemometric approach for the statistical analysis of the acquired images is not yet widely experienced in this research area. In this context, this work presents the set-up of a greenhouse experiment that will start in February 2015 in Milan (Northern Italy), which aims to the objectives described above. The experiment will be carried out on two crops with a different canopy geometry (rice and spinach) subjected to four nitrogen treatments, for a total of 96 pots. Hyperspectral scanner and thermal images will be acquired at four phenological stages. At each phenological phase, acquisitions will be conducted on one-fourth of the pots, in the first instance in good water conditions and, subsequently, at different time steps after the cessation of irrigation. During the acquisitions, measurements of leaf area index and biomass, chlorophyll and nitrogen content in the plants, soil water content, stomatal conductance and leaf water potential will be performed. Moreover, on leaf samples, destructive biochemical analysis will be conducted to evaluate the physiological stress status of crops in the light of different irrigation and nutrient levels. Multivariate regression analysis between the acquired

  6. Comparing carbon to carbon: Organic and inorganic carbon balances across nitrogen fertilization gradients in rainfed vs. irrigated Midwest US cropland

    Science.gov (United States)

    Hamilton, S. K.; McGill, B.

    2017-12-01

    The top meter of the earth's soil contains about twice the amount of carbon than the atmosphere. Agricultural management practices influence whether a cropland soil is a net carbon source or sink. These practices affect both organic and inorganic carbon cycling although the vast majority of studies examine the former. We will present results from several rarely-compared carbon fluxes: carbon dioxide emissions and sequestration from lime (calcium carbonate) weathering, dissolved gases emitted from groundwater-fed irrigation, dissolved organic carbon (DOC) leaching to groundwater, and soil organic matter storage. These were compared in a corn-soybean-wheat rotation under no-till management across a nitrogen fertilizer gradient where half of the replicated blocks are irrigated with groundwater. DOC and liming fluxes are also estimated from a complementary study in neighboring plots comparing a gradient of management practices from conventional to biologically-based annuals and perennials. These studies were conducted at the Kellogg Biological Station Long Term Ecological Research site in Michigan where previous work estimated that carbon dioxide emissions from liming accounted for about one quarter of the total global warming impact (GWI) from no-till systems—our work refines that figure. We will present a first time look at the GWI of gases dissolved in groundwater that are emitted when the water equilibrates with the atmosphere. We will explore whether nitrogen fertilizer and irrigation increase soil organic carbon sequestration by producing greater crop biomass and residues or if they enhance microbial activity, increasing decomposition of organic matter. These results are critical for more accurately estimating how intensive agricultural practices affect the carbon balance of cropping systems.

  7. Biochar Decelerates Soil Organic Nitrogen Cycling but Stimulates Soil Nitrification in a Temperate Arable Field Trial

    Science.gov (United States)

    Prommer, Judith; Wanek, Wolfgang; Hofhansl, Florian; Trojan, Daniela; Offre, Pierre; Urich, Tim; Schleper, Christa; Sassmann, Stefan; Kitzler, Barbara; Soja, Gerhard; Hood-Nowotny, Rebecca Clare

    2014-01-01

    Biochar production and subsequent soil incorporation could provide carbon farming solutions to global climate change and escalating food demand. There is evidence that biochar amendment causes fundamental changes in soil nutrient cycles, often resulting in marked increases in crop production, particularly in acidic and in infertile soils with low soil organic matter contents, although comparable outcomes in temperate soils are variable. We offer insight into the mechanisms underlying these findings by focusing attention on the soil nitrogen (N) cycle, specifically on hitherto unmeasured processes of organic N cycling in arable soils. We here investigated the impacts of biochar addition on soil organic and inorganic N pools and on gross transformation rates of both pools in a biochar field trial on arable land (Chernozem) in Traismauer, Lower Austria. We found that biochar increased total soil organic carbon but decreased the extractable organic C pool and soil nitrate. While gross rates of organic N transformation processes were reduced by 50–80%, gross N mineralization of organic N was not affected. In contrast, biochar promoted soil ammonia-oxidizer populations (bacterial and archaeal nitrifiers) and accelerated gross nitrification rates more than two-fold. Our findings indicate a de-coupling of the soil organic and inorganic N cycles, with a build-up of organic N, and deceleration of inorganic N release from this pool. The results therefore suggest that addition of inorganic fertilizer-N in combination with biochar could compensate for the reduction in organic N mineralization, with plants and microbes drawing on fertilizer-N for growth, in turn fuelling the belowground build-up of organic N. We conclude that combined addition of biochar with fertilizer-N may increase soil organic N in turn enhancing soil carbon sequestration and thereby could play a fundamental role in future soil management strategies. PMID:24497947

  8. Biochar decelerates soil organic nitrogen cycling but stimulates soil nitrification in a temperate arable field trial.

    Directory of Open Access Journals (Sweden)

    Judith Prommer

    Full Text Available Biochar production and subsequent soil incorporation could provide carbon farming solutions to global climate change and escalating food demand. There is evidence that biochar amendment causes fundamental changes in soil nutrient cycles, often resulting in marked increases in crop production, particularly in acidic and in infertile soils with low soil organic matter contents, although comparable outcomes in temperate soils are variable. We offer insight into the mechanisms underlying these findings by focusing attention on the soil nitrogen (N cycle, specifically on hitherto unmeasured processes of organic N cycling in arable soils. We here investigated the impacts of biochar addition on soil organic and inorganic N pools and on gross transformation rates of both pools in a biochar field trial on arable land (Chernozem in Traismauer, Lower Austria. We found that biochar increased total soil organic carbon but decreased the extractable organic C pool and soil nitrate. While gross rates of organic N transformation processes were reduced by 50-80%, gross N mineralization of organic N was not affected. In contrast, biochar promoted soil ammonia-oxidizer populations (bacterial and archaeal nitrifiers and accelerated gross nitrification rates more than two-fold. Our findings indicate a de-coupling of the soil organic and inorganic N cycles, with a build-up of organic N, and deceleration of inorganic N release from this pool. The results therefore suggest that addition of inorganic fertilizer-N in combination with biochar could compensate for the reduction in organic N mineralization, with plants and microbes drawing on fertilizer-N for growth, in turn fuelling the belowground build-up of organic N. We conclude that combined addition of biochar with fertilizer-N may increase soil organic N in turn enhancing soil carbon sequestration and thereby could play a fundamental role in future soil management strategies.

  9. Biochar decelerates soil organic nitrogen cycling but stimulates soil nitrification in a temperate arable field trial.

    Science.gov (United States)

    Prommer, Judith; Wanek, Wolfgang; Hofhansl, Florian; Trojan, Daniela; Offre, Pierre; Urich, Tim; Schleper, Christa; Sassmann, Stefan; Kitzler, Barbara; Soja, Gerhard; Hood-Nowotny, Rebecca Clare

    2014-01-01

    Biochar production and subsequent soil incorporation could provide carbon farming solutions to global climate change and escalating food demand. There is evidence that biochar amendment causes fundamental changes in soil nutrient cycles, often resulting in marked increases in crop production, particularly in acidic and in infertile soils with low soil organic matter contents, although comparable outcomes in temperate soils are variable. We offer insight into the mechanisms underlying these findings by focusing attention on the soil nitrogen (N) cycle, specifically on hitherto unmeasured processes of organic N cycling in arable soils. We here investigated the impacts of biochar addition on soil organic and inorganic N pools and on gross transformation rates of both pools in a biochar field trial on arable land (Chernozem) in Traismauer, Lower Austria. We found that biochar increased total soil organic carbon but decreased the extractable organic C pool and soil nitrate. While gross rates of organic N transformation processes were reduced by 50-80%, gross N mineralization of organic N was not affected. In contrast, biochar promoted soil ammonia-oxidizer populations (bacterial and archaeal nitrifiers) and accelerated gross nitrification rates more than two-fold. Our findings indicate a de-coupling of the soil organic and inorganic N cycles, with a build-up of organic N, and deceleration of inorganic N release from this pool. The results therefore suggest that addition of inorganic fertilizer-N in combination with biochar could compensate for the reduction in organic N mineralization, with plants and microbes drawing on fertilizer-N for growth, in turn fuelling the belowground build-up of organic N. We conclude that combined addition of biochar with fertilizer-N may increase soil organic N in turn enhancing soil carbon sequestration and thereby could play a fundamental role in future soil management strategies.

  10. Analysis of carbon and nitrogen signatures with laser-induced breakdown spectroscopy; the quest for organics under Mars-like conditions

    Science.gov (United States)

    Dequaire, T.; Meslin, P.-Y.; Beck, P.; Jaber, M.; Cousin, A.; Rapin, W.; Lasne, J.; Gasnault, O.; Maurice, S.; Buch, A.; Szopa, C.; Coll, P.

    2017-05-01

    Organic matter has been continuously delivered by meteorites and comets to Mars since its formation, and possibly formed in situ by abiogenic and/or biogenic processes. This organic matter may be preserved from the harsh oxidizing environment of Mars in specific locations. Together with water, organic molecules are necessary to the emergence of life as we know it. Since the first martian landers, scientists have been searching for organics and until today, only one positive detection has been made by a Gas Chromatography Mass Spectrometer (GCMS) instrument onboard the Curiosity rover. In this article we investigate a complementary approach to guide the search for organic matter using ChemCam, the first Laser-Induced Breakdown Spectroscopy (LIBS) instrument on Mars. This experimental study focuses on the analysis of carbon and nitrogen LIBS signatures in organoclay samples and allows the determination of the critical level (Lc) and limit of detection (LoD) of these elements with LIBS under Mars-like conditions, giving new insights into the search of organic matter on Mars.

  11. Dissolved organic nitrogen and its biodegradable portion in a water treatment plant with ozone oxidation.

    Science.gov (United States)

    Wadhawan, Tanush; Simsek, Halis; Kasi, Murthy; Knutson, Kristofer; Prüβ, Birgit; McEvoy, John; Khan, Eakalak

    2014-05-01

    Biodegradability of dissolved organic nitrogen (DON) has been studied in wastewater, freshwater and marine water but not in drinking water. Presence of biodegradable DON (BDON) in water prior to and after chlorination may promote formation of nitrogenous disinfectant by-products and growth of microorganisms in the distribution system. In this study, an existing bioassay to determine BDON in wastewater was adapted and optimized, and its application was tested on samples from four treatment stages of a water treatment plant including ozonation and biologically active filtration. The optimized bioassay was able to detect BDON in 50 μg L(-1) as N of glycine and glutamic solutions. BDON in raw (144-275 μg L(-1) as N), softened (59-226 μg L(-1) as N), ozonated (190-254 μg L(-1) as N), and biologically filtered (17-103 μg L(-1) as N) water samples varied over a sampling period of 2 years. The plant on average removed 30% of DON and 68% of BDON. Ozonation played a major role in increasing the amount of BDON (31%) and biologically active filtration removed 71% of BDON in ozonated water. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Impact of Crab Bioturbation on Nitrogen-Fixation Rates in Red Sea Mangrove Sediment

    KAUST Repository

    Qashqari, Maryam S.

    2017-05-01

    Mangrove plants are a productive ecosystem that provide several benefits for marine organisms and industry. They are considered to be a food source and habitat for many organisms. However, mangrove growth is limited by nutrient availability. According to some recent studies, the dwarfism of the mangrove plants is due to the limitation of nitrogen in the environment. Biological nitrogen fixation is the process by which atmospheric nitrogen is fixed into ammonium. Then, this fixed nitrogen can be uptaken by plants. Hence, biological nitrogen fixation increases the input of nitrogen in the mangrove ecosystem. In this project, we focus on measuring the rates of nitrogen fixation on Red Sea mangrove (Avicennia marina) located at Thuwal, Saudi Arabia. The nitrogen fixation rates are calculated by the acetylene reduction assay. The experimental setup will allow us to analyze the effect of crab bioturbation on nitrogen fixing rates. This study will help to better understand the nitrogen dynamics in mangrove ecosystems in Saudi Arabia. Furthermore, this study points out the importance of the sediment microbial community in mangrove trees development. Finally, the role of nitrogen fixing bacteria should be taken in account for future restoration activities.

  13. Is it really organic? – Multi-isotopic analysis as a tool to discriminate between organic and conventional plants

    DEFF Research Database (Denmark)

    Laursen, K.H.; Mihailova, A.; Kelly, S.D.

    2013-01-01

    for discrimination of organically and conventionally grown plants. The study was based on wheat, barley, faba bean and potato produced in rigorously controlled long-term field trials comprising 144 experimental plots. Nitrogen isotope analysis revealed the use of animal manure, but was unable to discriminate between......Novel procedures for analytical authentication of organic plant products are urgently needed. Here we present the first study encompassing stable isotopes of hydrogen, carbon, nitrogen, oxygen, magnesium and sulphur as well as compound-specific nitrogen and oxygen isotope analysis of nitrate...... plants that were fertilised with synthetic nitrogen fertilisers or green manures from atmospheric nitrogen fixing legumes. This limitation was bypassed using oxygen isotope analysis of nitrate in potato tubers, while hydrogen isotope analysis allowed complete discrimination of organic and conventional...

  14. Bioavailability of wastewater derived dissolved organic nitrogen to green microalgae Selenastrum capricornutum, Chlamydomonas reinhardtii, and Chlorella vulgaris with/without presence of bacteria.

    Science.gov (United States)

    Sun, Jingyi; Simsek, Halis

    2017-07-01

    Effluent dissolved organic nitrogen (DON) is problematic in nutrient sensitive surface waters and needs to be reduced to meet demanding total dissolved nitrogen discharge limits. Bioavailable DON (ABDON) is a portion of DON utilized by algae or algae+bacteria, while biodegradable DON (BDON) is a portion of DON decomposable by bacteria. ABDON and BDON in a two-stage trickling filter (TF) wastewater treatment plant was evaluated using three different microalgal species, Selenastrum capricornutum, Chlamydomonas reinhardtii and Chlorella vulgaris and mixed cultured bacteria. Results showed that up to 80% of DON was bioavailable to algae or algae+bacteria inoculum while up to 60% of DON was biodegradable in all the samples. Results showed that C. reinhardtii and C. vulgaris can be used as a test species the same as S. capricornutum since there were no significant differences among these three algae species based on their ability to remove nitrogen species. Copyright © 2017. Published by Elsevier B.V.

  15. Xylem sap nitrogen compounds of some Crotalaria species

    Directory of Open Access Journals (Sweden)

    Vitória Angela Pierre

    1999-01-01

    Full Text Available Thirteen species of Crotalaria were analysed for nitrogen compounds in the xylem root bleeding sap. Amino acids were the main form of organic nitrogen found, but only traces of ureides were present. Of the four species analysed for amino acid composition, asparagine was found to be the major amino acid, accounting for over 68% of the nitrogen transported. No striking deviations from this general pattern was found between species, between vegetative and floral stages of development, or between nodulated and non-nodulated plants. It was concluded that the Crotalaria species studied here have an asparagine-based nitrogen metabolism, consistent with many other non-ureide-producing legume species.

  16. Nitrogen utilization and environmental losses in organic greenhouse lettuce amended with two distinct biochars.

    Science.gov (United States)

    Pereira, Engil Isadora Pujol; Conz, Rafaela Feola; Six, Johan

    2017-11-15

    The potential of biochar to prevent nitrogen (N) losses and improve plant performance were studied across various levels of N input for two growing seasons in mesocosms simulating an organic lettuce production system. A silt loam soil was amended with pine chip (PC) and walnut shell (WS) biochar (10tha -1 ) in combination with five organic N fertilization rates (0, 56, 112, 168, and 225kgNha -1 ). The N output through harvest, leachate, and N 2 O emissions were measured to assess N utilization and environmental losses of biochar-amended soils. For both biochars, only at the 100% N fertilization rate was lettuce biomass production improved with significant increases in N use efficiency (NUE); however, only PC biochar decreased N losses via leaching (at 100% N fertilization rate) and seasonal N 2 O emissions (at 50% N fertilization rate). Thus, due to increases in plant biomass and decreases in N losses, PC biochar significantly decreased the ratio of N lost over N exported in biomass. Findings from this study suggest that both WS and PC biochars can improve organic lettuce production but only at 225kgNha -1 . Decreases in N losses via leachate and N 2 O emissions vary with fertilization level and biochar type. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Hybrid process for nitrogen oxides reduction

    Energy Technology Data Exchange (ETDEWEB)

    Epperly, W.R.; Sprague, B.N.

    1991-09-10

    This patent describes a process for reducing the nitrogen oxide concentration in the effluent from the combustion of a carbonaceous fuel. It comprises introducing into the effluent a first treatment agent comprising a nitrogenous composition selected from the group consisting of urea, ammonia, hexamethylenetetramine, ammonium salts of organic acids, 5- or 6-membered heterocyclic hydrocarbons having at least one cyclic nitrogen, hydroxy amino hydrocarbons, NH{sub 4}-lignosulfonate, fur-furylamine, tetrahydrofurylamine, hexamethylenediamine, barbituric acid, guanidine, guanidine carbonate, biguanidine, guanylurea sulfate, melamine, dicyandiamide, biuret, 1.1{prime}-azobisformamide, methylol urea, methylol urea-urea condensation product, dimethylol urea, methyl urea, dimethyl urea, calcium cyanamide, and mixtures thereof under conditions effective to reduce the nitrogen oxides concentration and ensure the presence of ammonia in the effluent; introducing into the effluent a second treatment agent comprising an oxygenated hydrocarbon at an effluent temperature of about 500{degrees} F. to about 1600{degrees} F. under conditions effective to oxidize nitric oxide in the effluent to nitrogen dioxide and ensure the presence of ammonia at a weight ratio of ammonia to nitrogen dioxide of about 1:5 to about 5:1; and contacting the effluent with an aqueous scrubbing solution having a pH of 12 or lower under conditions effective to cause nitrogen dioxide to be absorbed therein.

  18. Effects of wetland recovery on soil labile carbon and nitrogen in the Sanjiang Plain.

    Science.gov (United States)

    Huang, Jingyu; Song, Changchun; Nkrumah, Philip Nti

    2013-07-01

    Soil management significantly affects the soil labile organic factors. Understanding carbon and nitrogen dynamics is extremely helpful in conducting research on active carbon and nitrogen components for different kinds of soil management. In this paper, we examined the changes in microbial biomass carbon (MBC), microbial biomass nitrogen (MBN), dissolved organic carbon (DOC), and dissolved organic nitrogen (DON) to assess the effect and mechanisms of land types, organic input, soil respiration, microbial species, and vegetation recovery under Deyeuxia angustifolia freshwater marshes (DAMs) and recovered freshwater marsh (RFM) in the Sanjiang Plain, Northeast China. Identifying the relationship among the dynamics of labile carbon, nitrogen, and soil qualification mechanism using different land management practices is therefore important. Cultivation and land use affect intensely the DOC, DON, MBC, and MBN in the soil. After DAM soil tillage, the DOC, DON, MBC, and MBN at the surface of the agricultural soil layer declined significantly. In contrast, their recovery was significant in the RFM surface soil. A long time was needed for the concentration of cultivated soil total organic carbon and total nitrogen to be restored to the wetland level. The labile carbon and nitrogen fractions can reach a level similar to that of the wetland within a short time. Typical wetland ecosystem signs, such as vegetation, microbes, and animals, can be recovered by soil labile carbon and nitrogen fraction restoration. In this paper, the D. angustifolia biomass attained natural wetland level after 8 years, indicating that wetland soil labile fractions can support wetland eco-function in a short period of time (4 to 8 years) for reconstructed wetland under suitable environmental conditions.

  19. NEMA, a functional-structural model of nitrogen economy within wheat culms after flowering. I. Model description.

    Science.gov (United States)

    Bertheloot, Jessica; Cournède, Paul-Henry; Andrieu, Bruno

    2011-10-01

    Models simulating nitrogen use by plants are potentially efficient tools to optimize the use of fertilizers in agriculture. Most crop models assume that a target nitrogen concentration can be defined for plant tissues and formalize a demand for nitrogen, depending on the difference between the target and actual nitrogen concentrations. However, the teleonomic nature of the approach has been criticized. This paper proposes a mechanistic model of nitrogen economy, NEMA (Nitrogen Economy Model within plant Architecture), which links nitrogen fluxes to nitrogen concentration and physiological processes. A functional-structural approach is used: plant aerial parts are described in a botanically realistic way and physiological processes are expressed at the scale of each aerial organ or root compartment as a function of local conditions (light and resources). NEMA was developed for winter wheat (Triticum aestivum) after flowering. The model simulates the nitrogen (N) content of each photosynthetic organ as regulated by Rubisco turnover, which depends on intercepted light and a mobile N pool shared by all organs. This pool is enriched by N acquisition from the soil and N release from vegetative organs, and is depleted by grain uptake and protein synthesis in vegetative organs; NEMA accounts for the negative feedback from circulating N on N acquisition from the soil, which is supposed to follow the activities of nitrate transport systems. Organ N content and intercepted light determine dry matter production via photosynthesis, which is distributed between organs according to a demand-driven approach. NEMA integrates the main feedbacks known to regulate plant N economy. Other novel features are the simulation of N for all photosynthetic tissues and the use of an explicit description of the plant that allows how the local environment of tissues regulates their N content to be taken into account. We believe this represents an appropriate frame for modelling nitrogen in

  20. NEMA, a functional-structural model of nitrogen economy within wheat culms after flowering. II. Evaluation and sensitivity analysis.

    Science.gov (United States)

    Bertheloot, Jessica; Wu, Qiongli; Cournède, Paul-Henry; Andrieu, Bruno

    2011-10-01

    Simulating nitrogen economy in crop plants requires formalizing the interactions between soil nitrogen availability, root nitrogen acquisition, distribution between vegetative organs and remobilization towards grains. This study evaluates and analyses the functional-structural and mechanistic model of nitrogen economy, NEMA (Nitrogen Economy Model within plant Architecture), developed for winter wheat (Triticum aestivum) after flowering. NEMA was calibrated for field plants under three nitrogen fertilization treatments at flowering. Model behaviour was investigated and sensitivity to parameter values was analysed. Nitrogen content of all photosynthetic organs and in particular nitrogen vertical distribution along the stem and remobilization patterns in response to fertilization were simulated accurately by the model, from Rubisco turnover modulated by light intercepted by the organ and a mobile nitrogen pool. This pool proved to be a reliable indicator of plant nitrogen status, allowing efficient regulation of nitrogen acquisition by roots, remobilization from vegetative organs and accumulation in grains in response to nitrogen treatments. In our simulations, root capacity to import carbon, rather than carbon availability, limited nitrogen acquisition and ultimately nitrogen accumulation in grains, while Rubisco turnover intensity mostly affected dry matter accumulation in grains. NEMA enabled interpretation of several key patterns usually observed in field conditions and the identification of plausible processes limiting for grain yield, protein content and root nitrogen acquisition that could be targets for plant breeding; however, further understanding requires more mechanistic formalization of carbon metabolism. Its strong physiological basis and its realistic behaviour support its use to gain insights into nitrogen economy after flowering.

  1. Effects of potassium application on the accumulated nitrogen source and yield of peanut

    International Nuclear Information System (INIS)

    Wang Yuefu; Kang Yujie; Wang Minglun; Zhao Changxing

    2013-01-01

    Pot experiments and were carried out respectively to study the effects of different potassium application on soil nitrogen uptake, fertilizer nitrogen uptake, nodule nitrogen fixation and their proportion and yield of peanut (Arachis Hypogaea L.) by "1"5N tracer technique, and explore the reasons, which may provide a theoretical basis and technical guidance for peanut production in the scientific fertilizer application. Results showed that nitrogen in peanut all mainly accumulated in the kernel for different treatments of potassium fertilizer application. However, with increasing of potassium application, the increasing extent of nitrogen content of stems was the biggest during all the peanut organs, with nut shells the smallest. Properly increasing the amount of potassium can improve nitrogen content, "1"5N abundance, nitrogen and "1"5N accumulation of every organ, and promote absorption and utilization three nitrogen-source especially with the most effect for the kernel biomass (economic output). The ratio of fertilizer nitrogen, soil nitrogen and atmospheric nitrogen absorbed by peanut was respectively between 12.37%-13.10%, 38.29%-45.10%, and 42.53%-48.31% respectively. Properly increasing potassium fertilizer application improved the absorption ratio of fertilizer nitrogen and nodule nitrogen fixation, reduced the proportion of soil uptake and enhanced fertilizer nitrogen use efficiency. However, the influences of excessive application of potassium fertilizer decreased. (authors)

  2. Evaluation of Data for Collisions of Electrons with Nitrogen Molecule and Nitrogen Molecular Ion. Summary Report of an IAEA Consultants Meeting

    International Nuclear Information System (INIS)

    Chung, Hyun-Kyung; Mason, Nigel J.

    2014-02-01

    A Consultants' Meeting (CM) on Evaluation of Data for Collisions of Electrons with Nitrogen Molecules and Nitrogen Molecular Ions was held at IAEA Headquarters in Vienna, Austria, from 5th to 6th December 2013. The meeting was organized in collaboration between the European eMOL project led by Prof N. J. Mason of the Open University, UK, and the Atomic and Molecular Data Unit of the IAEA. Seven experts from six countries participated in the meeting to evaluate currently available electron scattering data for nitrogen and nitrogen molecular ions and to develop general guidelines for data evaluation as a structured small group activity

  3. Bulk deposition of organic and inorganic nitrogen in southwest China from 2008 to 2013.

    Science.gov (United States)

    Song, Ling; Kuang, Fuhong; Skiba, Ute; Zhu, Bo; Liu, Xuejun; Levy, Peter; Dore, Anthony; Fowler, David

    2017-08-01

    China is regarded as one of the nitrogen deposition hotspots in the world. Measurements to-date have focused mainly on the North China Plain, ignoring the fact that atmospheric chemical and physical properties vary across the country and that there may be other hotspots regions that should be investigated. For this reason we have conducted a six year study, measuring the bulk deposition of reduced (NH 4 -N), oxidized (NO 3 -N), and dissolved organic nitrogen (DON) at three contrasting sites in the Sichuan province, southwest China. The study sites were a high altitude forest in the Gongga Mountains (GG), an agriculture dominated region in Yanting (YT) and an urban site in the mega city Chengdu (CD). The annual average bulk deposition fluxes of total dissolved nitrogen (TDN) were 7.4, 23.1 and 36.6 kg N ha -1 yr -1 at GG, YT and CD sites, respectively, during the study period 2008 to 2013. The contributions of NH 4 -N, NO 3 -N and DON to the TDN were in the range of 48.4-57.8%, 28.8-43.7%, and 8.0-15.6%, respectively. DON bulk deposition was mainly dominated by agricultural activities. TDN bulk deposition fluxes showed increasing trends at the agricultural and urban sites from 2008 to 2013, but there was little change at the remote forest (GG) site. While reduced N dominated bulk N deposition at all the three sites, its contribution showed a decreasing trend, suggesting a gradual increase in the importance of oxidized N. These results reveal the value of long term monitoring in detecting changes in the atmospheric chemical composition of this rapidly changing region, and their inclusion in the policy debate regarding which sources should be controlled in order to reduce the long term impacts of N deposition, especially for southwest China, where there are few measurements of N deposition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Dissolved organic carbon and nitrogen release from Holocene permafrost and seasonally frozen soils

    Science.gov (United States)

    Wickland, K.; Waldrop, M. P.; Koch, J. C.; Jorgenson, T.; Striegl, R. G.

    2017-12-01

    Permafrost (perennially frozen) soils store vast amounts of carbon (C) and nitrogen (N) that are vulnerable to mobilization to the atmosphere as greenhouse gases and to terrestrial and aquatic ecosystems as dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) upon thaw. Such releases will affect the biogeochemistry of arctic and boreal regions, yet little is known about active layer (seasonally frozen) and permafrost source variability that determines DOC and TDN mobilization. We quantified DOC and TDN leachate yields from a range of active layer and permafrost soils in Alaska varying in age and C and N content to determine potential release upon thaw. Soil cores from the upper 1 meter were collected in late winter, when soils were frozen, from three locations representing a range in geographic position, landscape setting, permafrost depth, and soil types across interior Alaska. Two 15 cm-thick segments were extracted from each core: a deep active-layer horizon and a shallow permafrost horizon. Soils were thawed and leached for DOC and TDN yields, dissolved organic matter optical properties, and DOC biodegradability; soils were analyzed for C and N content, and radiocarbon content. Soils had wide-ranging C and N content (<1-44% C, <0.1-2.3% N), and varied in radiocarbon age from 450-9200 years before present - thus capturing typical ranges of boreal and arctic soils. Soil DOC and TDN yields increased linearly with soil C and N content, and decreased with increasing radiocarbon age. However, across all sites DOC and TDN yields were significantly greater from permafrost soils (0.387 ± 0.324 mg DOC g-1 soil; 0.271 ± 0.0271 mg N g-1 soil) than from active layer soils (0.210 ± 0.192 mg DOC g-1 soil; 0.00716 ± 0.00569 mg N g-1 soil). DOC biodegradability increased with increasing radiocarbon age, and was statistically similar for active layer and permafrost soils. Our findings suggest that the continuously frozen state of permafrost soils has preserved

  5. Redistribution of soil nitrogen, carbon and organic matter by mechanical disturbance during whole-tree harvesting in northern hardwoods

    Science.gov (United States)

    Ryan, D.F.; Huntington, T.G.; Wayne, Martin C.

    1992-01-01

    To investigate whether mechanical mixing during harvesting could account for losses observed from forest floor, we measured surface disturbance on a 22 ha watershed that was whole-tree harvested. Surface soil on each 10 cm interval along 81, randomly placed transects was classified immediately after harvesting as mineral or organic, and as undisturbed, depressed, rutted, mounded, scarified, or scalped (forest floor scraped away). We quantitatively sampled these surface categories to collect soil in which preharvest forest floor might reside after harvest. Mechanically mixed mineral and organic soil horizons were readily identified. Buried forest floor under mixed mineral soil occurred in 57% of mounds with mineral surface soil. Harvesting disturbed 65% of the watershed surface and removed forest floor from 25% of the area. Mechanically mixed soil under ruts with organic or mineral surface soil, and mounds with mineral surface soil contained organic carbon and nitrogen pools significantly greater than undisturbed forest floor. Mechanical mixing into underlying mineral soil could account for the loss of forest floor observed between the preharvest condition and the second growing season after whole-tree harvesting. ?? 1992.

  6. Catalytic/non-catalytic combination process for nitrogen oxides reduction

    International Nuclear Information System (INIS)

    Luftglass, B.K.; Sun, W.H.; Hofmann, J.E.

    1992-01-01

    This patent describes a process for the reduction of nitrogen oxides in the effluent from the combustion of a carbonaceous fuel. It comprises introducing a nitrogenous treatment agent comprising urea, one or more of the hydrolysis products of urea, ammonia, compounds which produce ammonia as a by-product, ammonium salts of organic acids, 5- or 6-membered heterocyclic hydrocarbons having at least one cyclic nitrogen, hydroxy amino hydrocarbons, or mixtures thereof into the effluent at an effluent temperature between about 1200 degrees F and about 2100 degrees F; and contacting the treated effluent under conditions effective to reduce the nitrogen oxides in the effluent with a catalyst effective for the reduction of nitrogen oxides in the presence of ammonia

  7. Characterization of organic nitrogen in aerosols at a forest site in the southern Appalachian Mountains

    Science.gov (United States)

    Chen, Xi; Xie, Mingjie; Hays, Michael D.; Edgerton, Eric; Schwede, Donna; Walker, John T.

    2018-05-01

    This study investigates the composition of organic particulate matter in PM2.5 in a remote montane forest in the southeastern US, focusing on the role of organic nitrogen (N) in sulfur-containing secondary organic aerosol (nitrooxy-organosulfates) and aerosols associated with biomass burning (nitro-aromatics). Bulk water-soluble organic N (WSON) represented ˜ 14 % w/w of water-soluble total N (WSTN) in PM2.5 on average across seasonal measurement campaigns conducted in the spring, summer, and fall of 2015. The largest contributions of WSON to WSTN were observed in spring ( ˜ 18 % w/w) and the lowest in the fall ( ˜ 10 % w/w). On average, identified nitro-aromatic and nitrooxy-organosulfate compounds accounted for a small fraction of WSON, ranging from ˜ 1 % in spring to ˜ 4 % in fall, though were observed to contribute as much as 28 % w/w of WSON in individual samples that were impacted by local biomass burning. The highest concentrations of oxidized organic N species occurred during summer (average of 0.65 ng N m-3) along with a greater relative abundance of higher-generation oxygenated terpenoic acids, indicating an association with more aged aerosol. The highest concentrations of nitro-aromatics (e.g., nitrocatechol and methyl-nitrocatechol), levoglucosan, and aged SOA tracers were observed during fall, associated with aged biomass burning plumes. Nighttime nitrate radical chemistry is the most likely formation pathway for nitrooxy-organosulfates observed at this low NOx site (generally chemistry and deposition of reactive N.

  8. Modelling nitrogen saturation and carbon accumulation in heathland soils under elevated nitrogen deposition

    International Nuclear Information System (INIS)

    Evans, C.D.; Caporn, S.J.M.; Carroll, J.A.; Pilkington, M.G.; Wilson, D.B.; Ray, N.; Cresswell, N.

    2006-01-01

    A simple model of nitrogen (N) saturation, based on an extension of the biogeochemical model MAGIC, has been tested at two long-running heathland N manipulation experiments. The model simulates N immobilisation as a function of organic soil C/N ratio, but permits a proportion of immobilised N to be accompanied by accumulation of soil carbon (C), slowing the rate of C/N ratio change and subsequent N saturation. The model successfully reproduced observed treatment effects on soil C and N, and inorganic N leaching, for both sites. At the C-rich upland site, N addition led to relatively small reductions in soil C/N, low inorganic N leaching, and a substantial increase in organic soil C. At the C-poor lowland site, soil C/N ratio decreases and N leaching increases were much more dramatic, and soil C accumulation predicted to be smaller. The study suggests that (i) a simple model can effectively simulate observed changes in soil and leachate N; (ii) previous model predictions based on a constant soil C pool may overpredict future N leaching; (iii) N saturation may develop most rapidly in dry, organic-poor, high-decomposition systems; and (iv) N deposition may lead to significantly enhanced soil C sequestration, particularly in wet, nutrient-poor, organic-rich systems. - Enhanced carbon sequestration may slow the rate of nitrogen saturation in heathlands

  9. Anticipatory parental care: acquiring resources for offspring prior to conception.

    OpenAIRE

    Boutin, S; Larsen, K W; Berteaux, D

    2000-01-01

    Many organisms acquire and defend resources outside the breeding season and this is thought to be for immediate survival and reproductive benefits. Female red squirrels (Tamiasciurus hudsonicus) acquire traditional food cache sites up to four months prior to the presence of any physiological or behavioural cues associated with mating or offspring dependency. They subsequently relinquish these resources to one of their offspring at independence (ten months later). We experimentally show that a...

  10. Nitrogen assimilation in denitrifier Bacillus azotoformans LMG 9581T.

    Science.gov (United States)

    Sun, Yihua; De Vos, Paul; Willems, Anne

    2017-12-01

    Until recently, it has not been generally known that some bacteria can contain the gene inventory for both denitrification and dissimilatory nitrate (NO 3 - )/nitrite (NO 2 - ) reduction to ammonium (NH 4 + ) (DNRA). Detailed studies of these microorganisms could shed light on the differentiating environmental drivers of both processes without interference of organism-specific variation. Genome analysis of Bacillus azotoformans LMG 9581 T shows a remarkable redundancy of dissimilatory nitrogen reduction, with multiple copies of each denitrification gene as well as DNRA genes nrfAH, but a reduced capacity for nitrogen assimilation, with no nas operon nor amtB gene. Here, we explored nitrogen assimilation in detail using growth experiments in media with different organic and inorganic nitrogen sources at different concentrations. Monitoring of growth, NO 3 - NO 2 - , NH 4 + concentration and N 2 O production revealed that B. azotoformans LMG 9581 T could not grow with NH 4 + as sole nitrogen source and confirmed the hypothesis of reduced nitrogen assimilation pathways. However, NH 4 + could be assimilated and contributed up to 50% of biomass if yeast extract was also provided. NH 4 + also had a significant but concentration-dependent influence on growth rate. The mechanisms behind these observations remain to be resolved but hypotheses for this deficiency in nitrogen assimilation are discussed. In addition, in all growth conditions tested a denitrification phenotype was observed, with all supplied NO 3 - converted to nitrous oxide (N 2 O).

  11. Vertical nitrogen flux from the oceanic photic zone by diel migrant zooplankton and nekton

    Science.gov (United States)

    Longhurst, Alan R.; Glen Harrison, W.

    1988-06-01

    Where the photic zone is a biological steady-state, the downward flux of organic material across the pycnocline to the interior of the ocean is thought to be balanced by upward turbulent flux of inorganic nitrogen across the nutricline. This model ignores a significant downward dissolved nitrogen flux caused by the diel vertical migration of interzonal zooplankton and nekton that feed in the photic zone at night and excrete nitrogenous compounds at depth by day. In the oligotrophic ocean this flux can be equivalent to the flux of particulate organic nitrogen from the photic zone in the form of faecal pellets and organic flocculates. Where nitrogen is the limiting plant nutrient, and the flux by diel migration of interzonal plankton is significant compared to other nitrogen exports from the photic zone, there must be an upward revision of previous estimates for the ratio of new to total primary production in the photic zone if a nutrient balance is to be maintained. This upward revision is of the order 5-100% depending on the oceanographic regime.

  12. The order of administration of macrolides and beta-lactams may impact the outcomes of hospitalized patients with community-acquired pneumonia: results from the community-acquired pneumonia organization.

    Science.gov (United States)

    Peyrani, Paula; Wiemken, Timothy L; Metersky, Mark L; Arnold, Forest W; Mattingly, William A; Feldman, Charles; Cavallazzi, Rodrigo; Fernandez-Botran, Rafael; Bordon, Jose; Ramirez, Julio A

    2018-01-01

    The beneficial effect of macrolides for the treatment of community-acquired pneumonia (CAP) in combination with beta-lactams may be due to their anti-inflammatory activity. In patients with pneumococcal meningitis, the use of steroids improves outcomes only if they are administered before beta-lactams. The objective of this study was to compare outcomes in hospitalized patients with CAP when macrolides were administered before, simultaneously with, or after beta-lactams. Secondary data analysis of the Community-Acquired Pneumonia Organization (CAPO) International Cohort Study database. Study groups were defined based on the sequence of administration of macrolides and beta-lactams. The study outcomes were time to clinical stability (TCS), length of stay (LOS) and in-hospital mortality. Accelerated failure time models were used to evaluate the adjusted impact of sequential antibiotic administration and time-to-event outcomes, while a logistic regression model was used to evaluate their adjusted impact on mortality. A total of 99 patients were included in the macrolide before group and 305 in the macrolide after group. Administration of a macrolide before a beta-lactam compared to after a beta-lactam reduced TCS (3 vs. 4 days, p = .011), LOS (6 vs. 7 days, p = .002) and mortality (3 vs. 7.2%, p = .228). The administration of macrolides before beta-lactams was associated with a statistically significant decrease in TCS and LOS and a non-statistically significant decrease in mortality. The beneficial effect of macrolides in hospitalized patient with CAP may occur only if administered before beta-lactams.

  13. FIREX (Fire Influence on Regional and Global Environments Experiment): Measurements of Nitrogen Containing Volatile Organic Compounds

    Science.gov (United States)

    Warneke, C.; Schwarz, J. P.; Yokelson, R. J.; Roberts, J. M.; Koss, A.; Coggon, M.; Yuan, B.; Sekimoto, K.

    2017-12-01

    A combination of a warmer, drier climate with fire-control practices over the last century have produced a situation in which we can expect more frequent fires and fires of larger magnitude in the Western U.S. and Canada. There are urgent needs to better understand the impacts of wildfire and biomass burning (BB) on the atmosphere and climate system, and for policy-relevant science to aid in the process of managing fires. The FIREX (Fire Influence on Regional and Global Environment Experiment) research effort is a multi-year, multi-agency measurement campaign focused on the impact of BB on climate and air quality from western North American wild fires, where research takes place on scales ranging from the flame-front to the global atmosphere. FIREX includes methods development and small- and large-scale laboratory and field experiments. FIREX will include: emission factor measurements from typical North American fuels in the fire science laboratory in Missoula, Montana; mobile laboratory deployments; ground site measurements at sites influenced by BB from several western states. The main FIREX effort will be a large field study with multiple aircraft and mobile labs in the fire season of 2019. One of the main advances of FIREX is the availability of various new measurement techniques that allows for smoke evaluation in unprecedented detail. The first major effort of FIREX was the fire science laboratory measurements in October 2016, where a large number of previously understudied Nitrogen containing volatile organic compounds (NVOCs) were measured using H3O+CIMS and I-CIMS instruments. The contribution of NVOCs to the total reactive Nitrogen budget and the relationship to the Nitrogen content of the fuel are investigated.

  14. Significance of Isotopically Labile Organic Hydrogen in Thermal Maturation of Organic Matter

    Energy Technology Data Exchange (ETDEWEB)

    Arndt Schimmelmann; Maria Mastalerz

    2010-03-30

    Isotopically labile organic hydrogen in fossil fuels occupies chemical positions that participate in isotopic exchange and in chemical reactions during thermal maturation from kerogen to bitumen, oil and gas. Carbon-bound organic hydrogen is isotopically far less exchangeable than hydrogen bound to nitrogen, oxygen, or sulfur. We explore why organic hydrogen isotope ratios express a relationship with organic nitrogen isotope ratios in kerogen at low to moderate maturity. We develop and apply new techniques to utilize organic D/H ratios in organic matter fractions and on a molecular level as tools for exploration for fossil fuels and for paleoenvironmental research. The scope of our samples includes naturally and artificially matured substrates, such as coal, shale, oil and gas.

  15. Exogenous Glycine Nitrogen Enhances Accumulation of Glycosylated Flavonoids and Antioxidant Activity in Lettuce (Lactuca sativa L.)

    OpenAIRE

    Xiao Yang; Xiaoxian Cui; Xiaoxian Cui; Li Zhao; Doudou Guo; Lei Feng; Shiwei Wei; Chao Zhao; Chao Zhao; Danfeng Huang

    2017-01-01

    Glycine, the simplest amino acid in nature and one of the most abundant free amino acids in soil, is regarded as a model nutrient in organic nitrogen studies. To date, many studies have focused on the uptake, metabolism and distribution of organic nitrogen in plants, but few have investigated the nutritional performance of plants supplied with organic nitrogen. Lettuce (Lactuca sativa L.), one of the most widely consumed leafy vegetables worldwide, is a significant source of antioxidants and ...

  16. Prognostic value of severity indicators of nursing-home-acquired pneumonia versus community-acquired pneumonia in elderly patients.

    Science.gov (United States)

    Ugajin, Motoi; Yamaki, Kenichi; Hirasawa, Natsuko; Kobayashi, Takanori; Yagi, Takeo

    2014-01-01

    The credibility of prognostic indicators in nursing-home-acquired pneumonia (NHAP) is not clear. We previously reported a simple prognostic indicator in community-acquired pneumonia (CAP): blood urea nitrogen to serum albumin (B/A) ratio. This retrospective study investigated the prognostic value of severity indicators in NHAP versus CAP in elderly patients. Patients aged ≥65 years and hospitalized because of NHAP or CAP within the previous 3 years were enrolled. Demographics, coexisting illnesses, laboratory and microbiological findings, and severity scores (confusion, urea, respiratory rate, blood pressure, and age ≥65 [CURB-65] scale; age, dehydration, respiratory failure, orientation disturbance, and pressure [A-DROP] scale; and pneumonia severity index [PSI]) were retrieved from medical records. The primary outcome was mortality within 28 days of admission. In total, 138 NHAP and 307 CAP patients were enrolled. Mortality was higher in NHAP (18.1%) than in CAP (4.6%) (Pscale, 0.69 for the CURB-65 scale, 0.67 for the PSI class, and 0.65 for the B/A ratio. The area under the curve in CAP was 0.73 for the A-DROP scale, 0.76 for the CURB-65 scale, 0.81 for the PSI class, and 0.83 for the B/A ratio. Patient mortality was greater in NHAP than in CAP. Patient characteristics, coexisting illnesses, and detected pathogens differed greatly between NHAP and CAP. The existing severity indicators had less prognostic value for NHAP than for CAP.

  17. Bioavailability of nitrogen from sewage sludge using 15N-labelled ammonium sulphate

    International Nuclear Information System (INIS)

    El-Motaium, R.A.

    2001-01-01

    The high nutrient nitrogen and organic matter contents of sewage sludge (SS) make it a potential organic fertilizer for sandy soil. In this study, 15 N-labelled ammonium sulphate was used to investigate the availability of nitrogen from irradiated and non-irradiated sewage sludge to tomato plants. The application of sewage sludge to sandy soil increased dry matter production (DMP), nitrogen yield (NY) and nitrogen recovery (NR) over two successive years. A positive relationship was found between sludge application rate and DMP and NY. The increase was significantly higher (P=0.05) in irradiated than non-irradiated sewage sludge. Total nitrogen derived from non-irradiated sewage sludge are : 48.0, 63.7, 73.5, 105.2 Kg/ha, whereas, the total nitrogen derived from irradiated sewage sludge are: 55.1, 72.5, 88.9, 141.4 Kg/ha corresponding to application rates of 10 t/ha, 20 t/ha, 30 t/ha, respectively. This was attributed to higher dry matter production in the later than the former. A highly significant correlation (0.945**) was found between dry matter production and sludge nitrogen yield (i.e. nitrogen derived from sewage sludge). Fertilizer nitrogen yield (total nitrogen derived from fertilizer) was high in treatment receiving mineral fertilizer, however, the 15 N recovery by tomato was only 13.8%. Soil did not contribute well towards total nitrogen yield in tomato and most nitrogen was derived from sewage sludge. Percent nitrogen derived from sewage sludge was in the range 88-92%, depending on the application rate

  18. A Mycorrhizal-Specific Ammonium Transporter from Lotus japonicus Acquires Nitrogen Released by Arbuscular Mycorrhizal Fungi1

    Science.gov (United States)

    Guether, Mike; Neuhäuser, Benjamin; Balestrini, Raffaella; Dynowski, Marek; Ludewig, Uwe; Bonfante, Paola

    2009-01-01

    In mycorrhizal associations, the fungal partner assists its plant host by providing nitrogen (N) in addition to phosphate. Arbuscular mycorrhizal (AM) fungi have access to inorganic or organic forms of N and translocate them via arginine from the extra- to the intraradical mycelium, where the N is transferred to the plant without any carbon skeleton. However, the molecular form in which N is transferred, as well as the involved mechanisms, is still under debate. NH4+ seems to be the preferential transferred molecule, but no plant ammonium transporter (AMT) has been identified so far. Here, we offer evidence of a plant AMT that is involved in N uptake during mycorrhiza symbiosis. The gene LjAMT2;2, which has been shown to be the highest up-regulated gene in a transcriptomic analysis of Lotus japonicus roots upon colonization with Gigaspora margarita, has been characterized as a high-affinity AMT belonging to the AMT2 subfamily. It is exclusively expressed in the mycorrhizal roots, but not in the nodules, and transcripts have preferentially been located in the arbusculated cells. Yeast (Saccharomyces cerevisiae) mutant complementation has confirmed its functionality and revealed its dependency on acidic pH. The transport experiments using Xenopus laevis oocytes indicated that, unlike other plant AMTs, LjAMT2;2 transports NH3 instead of NH4+. Our results suggest that the transporter binds charged ammonium in the apoplastic interfacial compartment and releases the uncharged NH3 into the plant cytoplasm. The implications of such a finding are discussed in the context of AM functioning and plant phosphorus uptake. PMID:19329566

  19. Soil organic nitrogen mineralization across a global latitudinal gradient

    Science.gov (United States)

    D.L. Jones; K. Kielland; F.L. Sinclair; R.A. Dahlgren; K.K. Newsham; J.F. Farrar; D.V. Murphy

    2009-01-01

    Understanding and accurately predicting the fate of carbon and nitrogen in the terrestrial biosphere remains a central goal in ecosystem science. Amino acids represent a key pool of C and N in soil, and their availability to plants and microorganisms has been implicated as a major driver in regulating ecosystem functioning. Because of potential differences in...

  20. A Compilation of Global Soil Microbial Biomass Carbon, Nitrogen, and Phosphorus Data

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides the concentrations of soil microbial biomass carbon (C), nitrogen (N) and phosphorus (P), soil organic carbon, total nitrogen, and total...

  1. Gene Deletions Resulting in Increased Nitrogen Release by Azotobacter vinelandii: Application of a Novel Nitrogen Biosensor

    Science.gov (United States)

    Eberhart, Lauren J.; Ohlert, Janet M.; Knutson, Carolann M.; Plunkett, Mary H.

    2015-01-01

    Azotobacter vinelandii is a widely studied model diazotrophic (nitrogen-fixing) bacterium and also an obligate aerobe, differentiating it from many other diazotrophs that require environments low in oxygen for the function of the nitrogenase. As a free-living bacterium, A. vinelandii has evolved enzymes and transporters to minimize the loss of fixed nitrogen to the surrounding environment. In this study, we pursued efforts to target specific enzymes and further developed screens to identify individual colonies of A. vinelandii producing elevated levels of extracellular nitrogen. Targeted deletions were done to convert urea into a terminal product by disrupting the urease genes that influence the ability of A. vinelandii to recycle the urea nitrogen within the cell. Construction of a nitrogen biosensor strain was done to rapidly screen several thousand colonies disrupted by transposon insertional mutagenesis to identify strains with increased extracellular nitrogen production. Several disruptions were identified in the ammonium transporter gene amtB that resulted in the production of sufficient levels of extracellular nitrogen to support the growth of the biosensor strain. Further studies substituting the biosensor strain with the green alga Chlorella sorokiniana confirmed that levels of nitrogen produced were sufficient to support the growth of this organism when the medium was supplemented with sufficient sucrose to support the growth of the A. vinelandii in coculture. The nature and quantities of nitrogen released by urease and amtB disruptions were further compared to strains reported in previous efforts that altered the nifLA regulatory system to produce elevated levels of ammonium. These results reveal alternative approaches that can be used in various combinations to yield new strains that might have further application in biofertilizer schemes. PMID:25888177

  2. Carbon and nitrogen isotopic compositions of particulate organic matter and biogeochemical processes in the eutrophic Danshuei Estuary in northern Taiwan

    International Nuclear Information System (INIS)

    Liu, K.-K.; Kao, S.-J.; Wen, L.-S.; Chen, K.-L.

    2007-01-01

    The Danshuei Estuary is distinctive for the relatively short residence time (1-2 d) of its estuarine water and the very high concentration of ammonia, which is the dominant species of dissolved inorganic nitrogen in the estuary, except near the river mouth. These characteristics make the dynamics of nitrogen cycling distinctively different from previously studied estuaries and result in unusual isotopic compositions of particulate nitrogen (PN). The δ 15 N PN values ranging from - 16.4 per mille to 3.8 per mille lie in the lower end of nitrogen isotopic compositions (- 16.4 to + 18.7 per mille ) of suspended particulate matter observed in estuaries, while the δ 13 C values of particulate organic carbon (POC) and the C/N (organic carbon to nitrogen) ratios showed rather normal ranges from - 25.5 per mille to - 19.0 per mille and from 6.0 to 11.3, respectively. There were three major types of particulate organic matter (POM) in the estuary: natural terrigenous materials consisting mainly of soils and bedrock-derived sediments, anthropogenic wastes and autochthonous materials from the aquatic system. During the typhoon induced flood period in August 2000, the flux-weighted mean of δ 13 C POC values was - 24.4 per mille , that of δ 15 N PN values was + 2.3 per mille and that of C/N ratio was 9.3. During non-typhoon periods, the concentration-weighted mean was - 23.6 per mille for δ 13 C POC , - 2.6 per mille for δ 15 N PN and 8.0 for C/N ratio. From the distribution of δ 15 N PN values of highly polluted estuarine waters, we identified the waste-dominated samples and calculated their mean properties: δ 13 C POC value of - 23.6 ± 0.7 per mille , δ 15 N PN value of - 3.0 ± 0.1 per mille and C/N ratio of 8.0 ± 1.4. Using a three end-member mixing model based on δ 15 N PN values and C/N ratios, we calculated contributions of the three major allochthonous sources of POC, namely, wastes, soils and bedrock-derived sediments, to the estuary. Their contributions

  3. Real-time analysis of nitrogen translocation in plants

    International Nuclear Information System (INIS)

    Hayashi, Hiroaki

    2000-01-01

    Nitrogen absorbed by roots is transported to the leaves through xylem vessels and then retranslocated to the new leaves, such as root and storage organs through sieve tubes. It is very important to know how this nitrogen movement occurs in the plants and what mechanisms are involved in controlling this movement in order to increase the efficiency of fertilizer. In this experiments, 13 N and 15 N was used to detect the nitrogen circulation in plants, in combination with the technique for positron detection in real time and for collection of sap in sieve tubes and analysis of 15 N in it. By using 13 N, nitrogen movement from root to shoot was analyzed within 10 min after 13 N was applied to the roots. On the other hand, nitrogen retranslocation through sieve tubes was detected by the analysis of 15 N in the phloem sap over 6 hrs. All data suggest the dynamic translocation of nitrogen in rice plants. (author)

  4. Dissolved organic nitrogen (DON) profile during backwashing cycle of drinking water biofiltration.

    Science.gov (United States)

    Liu, Bing; Gu, Li; Yu, Xin; Yu, Guozhong; Zhang, Huining; Xu, Jinli

    2012-01-01

    A comprehensive investigation was made in this study on the variation of dissolved organic nitrogen (DON) during a whole backwashing cycle of the biofiltration for drinking water treatment. In such a cycle, the normalized DON concentration (C(effluent)/C(influent)) was decreased from 0.98 to 0.90 in the first 1.5h, and then gradually increased to about 1.5 in the following 8h. Finally, it remained stable until the end of this 24-hour cycle. This clearly 3-stage profile of DON could be explained by three aspects as follows: (1) the impact of the backwashing on the biomass and the microbial activity; (2) the release of soluble microbial products (SMPs) during the biofiltration; (3) the competition between heterotrophic bacteria and nitrifying bacteria. All the facts supported that more DON was generated during later part of the backwashing cycle. The significance of the conclusion is that the shorter backwashing intervals between backwashing for the drinking water biofilter should further decrease the DON concentration in effluent of biofilter. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  5. Recent developments in the structural organization and regulation of nitrogen fixation genes in Herbaspirillum seropedicae.

    Science.gov (United States)

    Pedrosa, F O; Benelli, E M; Yates, M G; Wassem, R; Monteiro, R A; Klassen, G; Steffens, M B; Souza, E M; Chubatsu, L S; Rigo, L U

    2001-10-04

    Herbaspirillum seropedicae is a nitrogen-fixing bacterium found in association with economically important gramineae. Regulation of nitrogen fixation involves the transcriptional activator NifA protein. The regulation of NifA protein and its truncated mutant proteins is described and compared with that of other nitrogen fixation bacteria. Nitrogen fixation control in H. seropedicae, of the beta-subgroup of Proteobacteria, has regulatory features in common with Klebsiella pneumoniae, of the gamma-subgroup, at the level of nifA expression and with rhizobia and Azospirillum brasilense, of the alpha-subgroup, at the level of control of NifA by oxygen.

  6. Pre- and post-impoundment nitrogen in the lower Missouri River

    Science.gov (United States)

    Blevins, Dale W.; Wilkison, Donald H.; Niesen, Shelley L.

    2013-01-01

    Large water-sample sets collected from 1899 through 1902, 1907, and in the early 1950s allow comparisons of pre-impoundment and post-impoundment (1969 through 2008) nitrogen concentrations in the lower Missouri River. Although urban wastes were not large enough to detectably increase annual loads of total nitrogen at the beginning of the 20th century, carcass waste, stock-yard manure, and untreated human wastes measurably increased ammonia and organic-nitrogen concentrations during low flows. Average total-nitrogen concentrations in both periods were about 2.5 mg/l, but much of the particulate-organic nitrogen, which was the dominant form of nitrogen around 1900, has been replaced by nitrate. This change in speciation was caused by the nearly 80% decrease in suspended-sediment concentrations that occurred after impoundment, modern agriculture, drainage of riparian wetlands, and sewage treatment. Nevertheless, bioavailable nitrogen has not been low enough to limit primary production in the Missouri River since the beginning of the 20th century. Nitrate concentrations have increased more rapidly from 2000 through 2008 (5 to 12% per year), thus increasing bioavailable nitrogen delivered to the Mississippi River and affecting Gulf Coast hypoxia. The increase in nitrate concentrations with distance downstream is much greater during the post-impoundment period. If strategies to decrease total-nitrogen loads focus on particulate N, substantial decreases will be difficult because particulate nitrogen is now only 23% of total nitrogen in the Missouri River. A strategy aimed at decreasing particulates also could further exacerbate land loss along the Gulf of Mexico, which has been sediment starved since Missouri River impoundment. In contrast, strategies or benchmarks aimed at decreasing nitrate loads could substantially decrease nitrogen loadings because nitrates now constitute over half of the Missouri's nitrogen input to the Mississippi. Ongoing restoration and creation

  7. 3D analysis of the morphology and spatial distribution of nitrogen in nitrogen-doped carbon nanotubes by energy-filtered transmission electron microscopy tomography.

    Science.gov (United States)

    Florea, Ileana; Ersen, Ovidiu; Arenal, Raul; Ihiawakrim, Dris; Messaoudi, Cédric; Chizari, Kambiz; Janowska, Izabela; Pham-Huu, Cuong

    2012-06-13

    We present here the application of the energy-filtered transmission electron microscopy (EFTEM) in the tomographic mode to determine the precise 3D distribution of nitrogen within nitrogen-doped carbon nanotubes (N-CNTs). Several tilt series of energy-filtered images were acquired on the K ionization edges of carbon and nitrogen on a multiwalled N-CNT containing a high amount of nitrogen. Two tilt series of carbon and nitrogen 2D maps were then calculated from the corresponding energy-filtered images by using a proper extraction procedure of the chemical signals. Applying iterative reconstruction algorithms provided two spatially correlated C and N elemental-selective volumes, which were then simultaneously analyzed with the shape-sensitive reconstruction deduced from Zero-Loss recordings. With respect to the previous findings, crucial information obtained by analyzing the 3D chemical maps was that, among the two different kind of arches formed in these nanotubes (transversal or rounded ones depending on their morphology), the transversal arches contain more nitrogen than do the round ones. In addition, a detailed analysis of the shape-sensitive volume allowed the observation of an unexpected change in morphology along the tube axis: close to the round arches (with less N), the tube is roughly cylindrical, whereas near the transversal ones (with more N), its shape changes to a prism. This relatively new technique is very powerful in the material science because it combines the ability of the classical electron tomography to solve 3D structures and the chemical selectivity of the EFTEM imaging.

  8. Ectomycorrhizal fungi decompose soil organic matter using oxidative mechanisms adapted from saprotrophic ancestors.

    Science.gov (United States)

    Shah, Firoz; Nicolás, César; Bentzer, Johan; Ellström, Magnus; Smits, Mark; Rineau, Francois; Canbäck, Björn; Floudas, Dimitrios; Carleer, Robert; Lackner, Gerald; Braesel, Jana; Hoffmeister, Dirk; Henrissat, Bernard; Ahrén, Dag; Johansson, Tomas; Hibbett, David S; Martin, Francis; Persson, Per; Tunlid, Anders

    2016-03-01

    Ectomycorrhizal fungi are thought to have a key role in mobilizing organic nitrogen that is trapped in soil organic matter (SOM). However, the extent to which ectomycorrhizal fungi decompose SOM and the mechanism by which they do so remain unclear, considering that they have lost many genes encoding lignocellulose-degrading enzymes that are present in their saprotrophic ancestors. Spectroscopic analyses and transcriptome profiling were used to examine the mechanisms by which five species of ectomycorrhizal fungi, representing at least four origins of symbiosis, decompose SOM extracted from forest soils. In the presence of glucose and when acquiring nitrogen, all species converted the organic matter in the SOM extract using oxidative mechanisms. The transcriptome expressed during oxidative decomposition has diverged over evolutionary time. Each species expressed a different set of transcripts encoding proteins associated with oxidation of lignocellulose by saprotrophic fungi. The decomposition 'toolbox' has diverged through differences in the regulation of orthologous genes, the formation of new genes by gene duplications, and the recruitment of genes from diverse but functionally similar enzyme families. The capacity to oxidize SOM appears to be common among ectomycorrhizal fungi. We propose that the ancestral decay mechanisms used primarily to obtain carbon have been adapted in symbiosis to scavenge nutrients instead. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  9. Ultrasound coupled with Fenton oxidation pre-treatment of sludge to release organic carbon, nitrogen and phosphorus

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Changxiu [School of Environment, Tsinghua University, Beijing 100084 (China); Jiang, Jianguo, E-mail: jianguoj@mail.tsinghua.edu.cn [School of Environment, Tsinghua University, Beijing 100084 (China); Key Laboratory for Solid Waste Management and Environment Safety, Ministry of Education of China (China); Collaborative Innovation Center for Regional Environmental Quality, Tsinghua University, Beijing (China); Li, De' an [School of Environment, Tsinghua University, Beijing 100084 (China)

    2015-11-01

    We focused on the effects of ultrasound and Fenton reagent in ultrasonic coupling Fenton oxidation (U + F) pre-treatment processes on the disintegration of wastewater treatment plant sludge. The results demonstrated that U + F treatment could significantly increase soluble COD, TOC, total N, proteins, total P and PO{sub 4}{sup 3−} concentrations in sludge supernatant. This method was more effective than ultrasonic (U) or Fenton oxidation (F) treatment alone. U + F treatment increased the soluble COD by 2.1- and 1.4-fold compared with U and F alone, respectively. U + F treatment increased the total N and P by 1.7- and 2.2-fold, respectively, compared with F alone. After U + F treatment, sludge showed a considerably finer particle size and looser microstructure based on scanning electron microscopy, and the highest OH· signal intensity increased from 568.7 by F treatment to 1106.3 using electron spin resonance. This demonstrated that U + F treatment induces disintegration of sludge and release of organic carbon, nitrogen and phosphorus better. - Highlights: • Combined ultrasound–Fenton pre-treatment was proposed for sludge disintegration. • Ultrasound–Fenton significantly increased carbon, nitrogen and phosphorus release. • Higher level of OH· was detected after combined disintegration than Fenton.

  10. Ultrasound coupled with Fenton oxidation pre-treatment of sludge to release organic carbon, nitrogen and phosphorus

    International Nuclear Information System (INIS)

    Gong, Changxiu; Jiang, Jianguo; Li, De'an

    2015-01-01

    We focused on the effects of ultrasound and Fenton reagent in ultrasonic coupling Fenton oxidation (U + F) pre-treatment processes on the disintegration of wastewater treatment plant sludge. The results demonstrated that U + F treatment could significantly increase soluble COD, TOC, total N, proteins, total P and PO 4 3− concentrations in sludge supernatant. This method was more effective than ultrasonic (U) or Fenton oxidation (F) treatment alone. U + F treatment increased the soluble COD by 2.1- and 1.4-fold compared with U and F alone, respectively. U + F treatment increased the total N and P by 1.7- and 2.2-fold, respectively, compared with F alone. After U + F treatment, sludge showed a considerably finer particle size and looser microstructure based on scanning electron microscopy, and the highest OH· signal intensity increased from 568.7 by F treatment to 1106.3 using electron spin resonance. This demonstrated that U + F treatment induces disintegration of sludge and release of organic carbon, nitrogen and phosphorus better. - Highlights: • Combined ultrasound–Fenton pre-treatment was proposed for sludge disintegration. • Ultrasound–Fenton significantly increased carbon, nitrogen and phosphorus release. • Higher level of OH· was detected after combined disintegration than Fenton

  11. Current emission trends for nitrogen oxides, sulfur dioxide, and volatile organic compounds by month and state: Methodology and results

    International Nuclear Information System (INIS)

    Kohout, E.J.; Miller, D.J.; Nieves, L.A.; Rothman, D.S.; Saricks, C.L.; Stodolsky, F.; Hanson, D.A.

    1990-08-01

    This report presents estimates of monthly sulfur dioxide (SO 2 ), nitrogen oxides (NO x ), and nonmethane voltatile organic compound (VOC) emissions by sector, region, and state in the contiguous United States for the years 1975 through 1988. This work has been funded as part of the National Acid Precipitation Assessment Program's Emissions and Controls Task Group by the US Department of Energy (DOE) Office of Fossil Energy (FE). The DOE project officer is Edward C. Trexler, DOE/FE Office of Planning and Environment

  12. Different nitrogen sources change the transcriptome of welan gum-producing strain Sphingomonas sp. ATCC 31555.

    Science.gov (United States)

    Xu, Xiaopeng; Nie, Zuoming; Zheng, Zhiyong; Zhu, Li; Zhang, Hongtao; Zhan, Xiaobei

    2017-09-01

    To reveal effects of different nitrogen sources on the expressions and functions of genes in Sphingomonas sp. ATCC 31555, it was cultivated in medium containing inorganic nitrogen (IN), organic nitrogen (ON), or inorganic-organic combined nitrogen (CN). Welan gum production and bacterial biomass were determined, and RNA sequencing (RNA-seq) was performed. Differentially expressed genes (DEGs) between the different ATCC 31555 groups were identified, and their functions were analyzed. Welan gum production and bacterial biomass were significantly higher in the ON and CN groups compared with those in the IN group. RNA-seq produced 660 unigenes, among which 488, 731, and 844 DEGs were identified between the IN vs. ON, IN vs. CN, and ON vs. CN groups, respectively. All the DEGs were related significantly to metabolic process and signal transduction. DEGs between the IN vs. CN and ON vs. CN groups were potentially associated with bacterial chemotaxis. Real-time PCR confirmed the expressions of selected DEGs. Organic nitrogen led to higher bacterial biomass and welan gum production than inorganic nitrogen, which might reflect differences in gene expression associated with metabolic process, signal transduction, and bacterial chemotaxis induced by different nitrogen sources.

  13. Comparisons between three nitrogen fertilizers (nitric, ammoniacal and uric) in an andic soil of the Comoro Islands. Studies in a controlled medium with nitrogen 15

    International Nuclear Information System (INIS)

    Egoumenides, C.; Pichot, J.; Haribou, A.

    1980-01-01

    The fixation rate (nitrogen in the plant + nitrogen remaining in the soil) was measured for nitrogen from three different labelled fertilizers: calcium nitrate, ammonium sulfate and urea. This experiment, which was realized in pots with and without cultures led to the following observations: the same fixation rates occur for all fertilizers, which are greater when cultures are employed then when they are not employed (86% ans 72% respectively); the utilization rate of nitrogen fertilizers by plants is significantly higher with the nitric form of fertilizer than with the two other forms (73% and 63% respectively). With cultures, the nitrogen nonutilized by the plant is found in nitrogen organic forms of the soil. On the other hand, in the case of bare soil, the reorganization of nitrogen fertilizers (above all nitric fertilizers) is found to be highly limited, the greatest proportion of the fertilizer's nitrogen remaining in the mineral form [fr

  14. Local cytokine profile and cytological status in children with community-acquired pneumonia arising on the background of the reduced resistance of the organism

    Directory of Open Access Journals (Sweden)

    T. G. Malanicheva

    2017-01-01

    Full Text Available Research objective: to study the features of the cytokine profile and cytological status in children with community-acquired pneumonia, proceeding against a background of reduced resistance of the organism for improving treatment methods. 53 children aged 3 to 7 years were examined. The main group consisted of 30 children with community-acquired pneumonia, which ran against a background of reduced resistance of the body. The comparison group consisted of 23 children with community-acquired pneumonia who had good resistance. Local immunity was studied on the basis of  valuation of cytokine status parameters (tumor necrotic factor-α, interleukin-8, and interferon-γ and cellular composition with an estimate of destructive changes in neutrophils in induced sputum. It was revealed that in the main group of children there is a depression of the neutrophils’ release into the bronchial secretion and a marked increase in the number of neutrophils with maximum signs of destruction of the nucleus and cytoplasm against the background of cytokine status imbalance, manifested in an increase in the content of the tumor necrotic factor-α and a decrease in interleukin-8 and interferon- γ. Inclusion in the traditional therapy of community-acquired pneumonia in children who have a reduced resistance, anti-inflammatory drug fenspiride, eliminates the imbalance of proinflammatory cytokines and increases the release of functionally complete neutrophils in the bronchial secret.

  15. Intra-annual variability of carbon and nitrogen stable isotopes in suspended organic matter in waters of the western continental shelf of India

    Directory of Open Access Journals (Sweden)

    M. V. Maya

    2011-11-01

    Full Text Available Intra-annual variations of δ13C and δ15N of water-column suspended particulate organic matter (SPOM have been investigated to understand the biogeochemical cycling of C and N in the Western Continental Shelf of India (WCSI. The key issues being addressed are: how the δ15N of SPOM is affected by seasonally varying processes of organic matter production and respiration and how it relates to the δ15N of sedimentary organic matter that appears to show a decreasing trend despite an apparent intensification of seasonal oxygen deficiency over the past few decades? A secondary objective was to evaluate the sources of organic carbon. Elemental carbon and nitrogen concentrations, C/N ratios in SPOM, along with ancillary chemical and biological variables including phytoplankton pigment abundance were also determined on a seasonal basis (from March 2007 to September 2008, with the partial exception of the southwest (SW monsoon period. The results reveal significant shifts in isotopic signatures, especially δ15N, of SPOM before and after the onset of SW monsoon. Very low δ15N values, reaching a minimum of −4.17 ‰, are found during the pre-monsoon period. Our results provide the first direct evidence for the addition of substantial amounts of isotopically light nitrogen by the diazotrophs, especially Trichodesmium, in the region. The δ15N of SPOM is generally lower than the mean value (7.38 ‰ for surficial sediments, presumably because of diagenetic enrichment. The results support the view that sedimentary δ15N may not necessarily reflect denitrification intensity in the overlying waters due to diverse sources of nitrogen and variability of its isotopic composition. The observed intra-annual variability of δ13C of SPOM during the pre-monsoon and post-monsoon periods is generally small. Phytoplankton production and probably species

  16. Influence of sulfur and nitrogen supply on the susceptibility of Pisum sativum to SO/sub 2/

    Energy Technology Data Exchange (ETDEWEB)

    Klein, H; Jaeger, H J; Steubing, L

    1974-01-01

    The susceptibility of Pisum to SO/sub 2/ injury was examined in relation to the sulfur and nitrogen nutrition. The injury was measured by comparing the dry matter yield to control and treated plants. SO/sub 2/ effects on metabolism were established by determining the content of organic and inorganic sulfur and, indirectly, by measuring total nitrogen, amino acid nitrogen, and protein nitrogen. The plants grown in nutrient solutions deficient in sulfur or nitrogen showed a decreased sensitivity to SO/sub 2/ pollution compared to the control. The higher content of amino acid nitrogen and organic sulfur of the plants grown in a nitrogen-deficient solution suggests that an increased synthesis of sulfur containing amino acids occurs. The slighter injury of the plants deficient in sulfur may be explained by the delayed sulfur supply.

  17. Ultrasmall Tin Nanodots Embedded in Nitrogen-Doped Mesoporous Carbon: Metal-Organic-Framework Derivation and Electrochemical Application as Highly Stable Anode for Lithium Ion Batteries

    International Nuclear Information System (INIS)

    Dai, Ruoling; Sun, Weiwei; Wang, Yong

    2016-01-01

    Highlights: • Sn-based metal-organic-framework (MOF) is prepared. • Ultrasmall tin nanodots (2–3 nm) are embedded in nitrogen-doped mesoporous carbon. • The Sn/C composite anode shows high capacity and ultralong cycle life. - Abstract: This work reports a facile metal-organic-framework based approach to synthesize Sn/C composite, in which ultrasmall Sn nanodots with typical size of 2–3 nm are uniformly embedded in the nitrogen-doped porous carbon matrix (denoted as Sn@NPC). The effect of thermal treatment and nitrogen doping are also explored. Owing to the delicate size control and confined volume change within carbon matrix, the Sn@NPC composite can exhibit reversible capacities of 575 mAh g −1 (Sn contribution: 1091 mAh g −1 ) after 500 cycles at 0.2 A g −1 and 507 mAh g −1 (Sn contribution: 1077 mAh g −1 ) after 1500 cycles at 1 A g −1 . The excellent long-life electrochemical stability of the Sn@NPC anode has been mainly attributed to the uniform distribution of ultrasmall Sn nanodots and the highly-conductive and flexible N-doped carbon matrix, which can effectively facilitate lithium ion/electron diffusion, buffer the large volume change and improve the structure stability of the electrode during repetitive cycling with lithium ions.

  18. Geochemistry of organic carbon and nitrogen in surface sediments of coastal Bohai Bay inferred from their ratios and stable isotopic signatures

    International Nuclear Information System (INIS)

    Gao Xuelu; Yang Yuwei; Wang Chuanyuan

    2012-01-01

    Total organic carbon (TOC), total nitrogen (TN) and their δ 13 C and δ 15 N values were determined for 42 surface sediments from coastal Bohai Bay in order to determine the concentration and identify the source of organic matter. The sampling sites covered both the marine region of coastal Bohai Bay and the major rivers it connects with. More abundant TOC and TN in sediments from rivers than from the marine region reflect the situation that most of the terrestrial organic matter is deposited before it meets the sea. The spatial variation in δ 13 C and δ 15 N signatures implies that the input of organic matter from anthropogenic activities has a more significant influence on its distribution than that from natural processes. Taking the area as a whole, surface sediments in the marine region of coastal Bohai Bay are dominated by marine derived organic carbon, which on average accounts for 62 ± 11% of TOC.

  19. HOW ROMANIAN FINANCIAL AND INTERNAL AUDITORS ACQUIRE ACCOUNTING INFORMATION SYSTEMS KNOWLEDGE AND COMPETENCES?

    Directory of Open Access Journals (Sweden)

    Cardos Vasile - Daniel

    2011-07-01

    Full Text Available Research theme in this article we investigate how Romanian financial and internal auditors acquire accounting information systems knowledge and competences and how they use this knowledge to improve their activity in order to fulfill their mission as required by the professional standards. Objectives our main purpose is to establish through what type of courses Romanian financial and internal auditors acquiring accounting information systems knowledge and competences and how useful these courses are perceived by the auditors. Prior work audit professional organizations prescribed that auditors must acquire, maintain and develop their knowledge and competences. Information technology and information systems are considered to be a main knowledge component of professional development programs. The scientific literature indicates that auditors have to enhance their information systems knowledge in order to cope with the increasing complexity of the client's entities accounting information systems. We consider that our article embraces Curtis et al. (2009 call for research on how auditors obtain information systems knowledge. Methodology an electronic questionnaire was created and sent to Romanian financial and internal auditors, which were required to indicate the number of accounting information systems course they attended and how the knowledge gained improved their activity. Results We concluded that financial auditors acquire accounting information systems knowledge mainly by attending the courses organized by the Chamber of Financial Auditors of Romanian, while internal auditors by attending the course organized by the companies they are working with. Implications - The results of this study might be used by Romanian professional audit organizations in reconsidering their priorities regarding the accounting information systems knowledge and competence needs of their constituents. Originality/Contribution Our study is the first one to

  20. Nitrogen Utilization and Environmental Losses from Organic Farming and Biochar's Potential to Improve N Efficiency.

    Science.gov (United States)

    Pereira, E. I.; SIX, J. W. U. A.

    2014-12-01

    The response of plant performance and nitrogen (N) dynamics to biochar amendments were studied across various levels of N input for two growing seasons in mesocosms representing an organic lettuce production systems. A silt loam soil was amended with pine chip (PC) and walnut shell (WS) biochar (10 t ha-1) in combination with five organic N fertilization rates 0%, 25%, 50%, 75%, and 100% of 225 kg N ha-1. N output through harvest, leachate, and nitrous oxide (N2O) emissions were determined to assess N utilization and environmental losses of biochar-amended soils. Analysis of plant performance indicate that PC and WS biochar did not provide any increases in plant biomass in soils that received less than business-as-usual fertilization rates. At 100% N fertilization rate, biochar amendments (both PC and WS) improved lettuce biomass production, which resulted in significant increases in NUE with no effects on N2O emissions. Furthermore, N losses via leaching were decreased by PC biochar at 100% N fertilization rates. Thus, due to increases in plant biomass and decreases in N losses via leachate, PC biochar significantly decreased the ratio of N lost over N exported in biomass. Findings from this study suggest that biochar can provide some beneficial effects to organic farming systems, however, not in all circumstances, given the effects seem to vary with biochar type and fertilization level.

  1. PSYCHOLOGICAL AND PEDAGOGICAL FACTORS OF STUDENT SELF-STUDY ORGANIZATION ON ACQUIRING FOREIGN LANGUAGE COMMUNICATIVE COMPETENCE

    Directory of Open Access Journals (Sweden)

    Iryna Zadorozhna

    2016-12-01

    Full Text Available Psychological and pedagogical prerequisites of student self-study organization on acquiring foreign language communicative competence have been defined and characterized. It has been proved that self-study effectiveness depends on self-regulation and motivation. The latter is amplified by creating a situation of development, modelling personally meaningful learning context aimed at creating a real product; collaborative learning, incorporating modern technologies, using problematic tasks, regular feedback, professionally-oriented learning. On the basis of scientific literature analysis it has been concluded that self-regulation of future foreign language teachers has the following structure: defining objectives, modelling meaningful conditions, action programming, results evaluation, program correction. Ways of developing self-control, self-evaluation and self-correction have been analyzed in the article. Pedagogical preconditions of effective self-study are the following: student knowledge of efficient methods and procedures of foreign language learning; selection of procedures and strategies adequate to the defined goals; an appropriate level of student information culture; ability to manage time and control results; timely correction on the basis of current control and self-control.

  2. Biological nitrogen fixation in non-legume plants.

    Science.gov (United States)

    Santi, Carole; Bogusz, Didier; Franche, Claudine

    2013-05-01

    Nitrogen is an essential nutrient in plant growth. The ability of a plant to supply all or part of its requirements from biological nitrogen fixation (BNF) thanks to interactions with endosymbiotic, associative and endophytic symbionts, confers a great competitive advantage over non-nitrogen-fixing plants. Because BNF in legumes is well documented, this review focuses on BNF in non-legume plants. Despite the phylogenic and ecological diversity among diazotrophic bacteria and their hosts, tightly regulated communication is always necessary between the microorganisms and the host plant to achieve a successful interaction. Ongoing research efforts to improve knowledge of the molecular mechanisms underlying these original relationships and some common strategies leading to a successful relationship between the nitrogen-fixing microorganisms and their hosts are presented. Understanding the molecular mechanism of BNF outside the legume-rhizobium symbiosis could have important agronomic implications and enable the use of N-fertilizers to be reduced or even avoided. Indeed, in the short term, improved understanding could lead to more sustainable exploitation of the biodiversity of nitrogen-fixing organisms and, in the longer term, to the transfer of endosymbiotic nitrogen-fixation capacities to major non-legume crops.

  3. Revisiting nitrogen species in covalent triazine frameworks

    KAUST Repository

    Osadchii, Dmitrii Yu.

    2017-11-28

    Covalent triazine frameworks (CTFs) are porous organic materials promising for applications in catalysis and separation due to their high stability, adjustable porosity and intrinsic nitrogen functionalities. CTFs are prepared by ionothermal trimerization of aromatic nitriles, however, multiple side reactions also occur under synthesis conditions, and their influence on the material properties is still poorly described. Here we report the systematic characterization of nitrogen in CTFs using X-ray photoelectron spectroscopy (XPS). With the use of model compounds, we could distinguish several types of nitrogen species. By combining these data with textural properties, we unravel the influence that the reaction temperature, the catalyst and the monomer structure and composition have on the properties of the resulting CTF materials.

  4. Revisiting nitrogen species in covalent triazine frameworks

    KAUST Repository

    Osadchii, Dmitrii Yu.; Olivos Suarez, Alma Itzel; Bavykina, Anastasiya V.; Gascon, Jorge

    2017-01-01

    Covalent triazine frameworks (CTFs) are porous organic materials promising for applications in catalysis and separation due to their high stability, adjustable porosity and intrinsic nitrogen functionalities. CTFs are prepared by ionothermal trimerization of aromatic nitriles, however, multiple side reactions also occur under synthesis conditions, and their influence on the material properties is still poorly described. Here we report the systematic characterization of nitrogen in CTFs using X-ray photoelectron spectroscopy (XPS). With the use of model compounds, we could distinguish several types of nitrogen species. By combining these data with textural properties, we unravel the influence that the reaction temperature, the catalyst and the monomer structure and composition have on the properties of the resulting CTF materials.

  5. Bioremediation of oil-contaminated shorelines: Effects of different nitrogen sources

    International Nuclear Information System (INIS)

    Ramstad, S.; Sveum, P.

    1995-01-01

    The present study was designed to examine the fate and effect of various nitrogen sources in oil-contaminated sediments in a continuous-flow seawater column system fed with nutrient-enriched seawater. Degradation of oil components is stimulated by a supply of an enhanced concentration of nitrogen. The most pronounced effect was found with nitrate, compared to ammonium and organic nitrogen. Ammonium was more readily sorbed by the sediment system, either by chemical adsorption or by microbial immobilization

  6. High-nitrogen compost as a medium for organic container-grown crops.

    Science.gov (United States)

    Raviv, Michael; Oka, Yuji; Katan, Jaacov; Hadar, Yitzhak; Yogev, Anat; Medina, Shlomit; Krasnovsky, Arkady; Ziadna, Hammam

    2005-03-01

    Compost was tested as a medium for organic container-grown crops. Nitrogen (N) loss during composting of separated cow manure (SCM) was minimized using high C/N (wheat straw, WS; grape marc, GM) or a slightly acidic (orange peels, OP) additives. N conservation values in the resultant composts were 82%, 95% and 98% for GM-SCM, OP-SCM and WS-SCM, respectively. Physical characteristics of the composts were compatible with use as growing media. The nutritional contribution of the composts was assessed using cherry tomato (Lycopersicon esculantum Mill.) and by means of incubation experiments. Media were either unfertilized or fertilized with guano (sea-bird manure). Plant responses suggest that N availability is the main variable affecting growth. Unfertilized OP-SCM and WS-SCM supplied the N needed for at least 4 months of plant growth. Root-galling index (GI) of tomato roots and number of eggs of the nematode Meloidogyne javanica were reduced by the composts, with the highest reduction obtained by OP-SCM and WS-SCM, at 50% concentrations. These composts, but not peat, reduced the incidence of crown and root-rot disease in tomato as well as the population size of the causal pathogen, Fusarium oxysporum f. sp. radicis-lycopersici.

  7. Mobilization of interactions between functional diversity of plant and soil organisms on nitrogen availability and use

    Science.gov (United States)

    Drut, Baptiste; Cassagne, Nathalie; Cannavacciuolo, Mario; Brauman, Alain; Le Floch, Gaëtan; Cobo, Jose; Fustec, Joëlle

    2017-04-01

    Keywords: legumes, earthworms, microorganisms, nitrogen, interactions Both aboveground and belowground biodiversity and their interactions can play an important role in crop productivity. Plant functional diversity, such as legume based intercrops have been shown to improve yields through plant complementarity for nitrogen use (Corre-Hellou et al., 2006). Moreover, plant species or plant genotype may influence the structure of soil microorganism communities through the composition of rhizodeposits in the rhizosphere (Dennis et al., 2010). Belowground diversity can also positively influence plant performance especially related to functional dissimilarity between soil organisms (Eisenhauer, 2012). Earthworms through their burrowing activity influence soil microbial decomposers and nutrient availability and have thus been reported to increase plant growth (Brown, 1995; Brown et al., 2004). We hypothesize that i) plant functional (genetic and/or specific) diversity associated to functional earthworms diversity are key drivers of interactions balance to improve crop performances and ii) the improvement of plant performances can be related to change in the structure of soil microorganism communities due to the diversity of rhizodeposits and the burrowing activity of earthworms. In a first mesocosm experiment, we investigated the effect of a gradient of plant diversity - one cultivar of wheat (Triticum aestivum L.), 3 different wheat cultivars, and 3 different cultivars intercropped with clover (Trifolium hybridum L.) - and the presence of one (endogeic) or two (endogeic and anecic) categories of earthworms on biomass and nitrogen accumulation of wheat. In a second mesocosm experiment, we investigated the influence of three species with different rhizodeposition - wheat, rapeseed (Brassica napus L. ) and faba bean (Vicia faba L.) in pure stand or intercropped - and the presence of endogeic earthworms on microbial activity and nitrogen availability. In the first experiment

  8. Reaction of thiolesters with nitrogen ylides

    Czech Academy of Sciences Publication Activity Database

    Voltrová, Svatava; Šrogl, Jiří

    -, č. 10 (2008), s. 1677-1679 ISSN 1434-193X Institutional research plan: CEZ:AV0Z40550506 Keywords : thiolesters * nitrogen ylides * ammonium salts * tetrahydrothiophenes * 1,2-thiolata shift Subject RIV: CC - Organic Chemistry Impact factor: 3.016, year: 2008

  9. Natural abundances of /sup 15/N as a source indicator for near-shore marine sedimentary and dissolved nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Sweeney, R E; Kaplan, I R [California Univ., Los Angeles (USA). Inst. of Geophysics and Planetary Physics

    1980-04-01

    The nitrogen isotope ratios of 42 sediment samples of total nitrogen and 38 dissolved pore-water ammonium samples from Santa Barbara Basin sediment cores were measured. The range of delta/sup 15/N values for total nitrogen was +2.89 to +9.4 per thousand with a mean of +6.8 per thousand and for pore water ammonium, +8.2 to +12.4 per thousand with a mean of 10.2 per thousand. The results suggest that the dissolved ammonium in the pore water is produced from bacterial degradation of marine organic matter. The range of delta /sup 15/N values for total nitrogen in the sediment is interpreted as resulting from an admixture of nitrogen derived from marine (+10 per thousand) and terrestrial (+2 per thousand) cores. The marine component of this mixture, composed principally of calcium carbonate with smaller amounts of opal and organic matter, contains approximately 1.0% nitrogen. The terrestrial component, which comprises over 80% of the sediment, contains approximately 0.1% organically bound nitrogen and accounts for > 25% of the total nitrogen in Santa Barbara Basin sediment.

  10. Carbono orgânico e Nitrogênio em agregados de um Latossolo Vermelho distrófico sob duas coberturas vegetais Organic carbon and Nitrogen in aggregates of a Dystrophic Red Latosol under two vegetation covers

    Directory of Open Access Journals (Sweden)

    Renato Ribeiro Passos

    2007-10-01

    Full Text Available A matéria orgânica do solo apresenta constituição variada, incluindo desde frações ativas a mais estáveis, com diferentes taxas de ciclagem. Práticas de manejo alteram os teores de carbono orgânico e N, a qualidade da matéria orgânica e a agregação dos solos. Este trabalho foi realizado com o objetivo de caracterizar o carbono orgânico e o N em agregados de um Latossolo Vermelho distrófico de Minas Gerais sob vegetação natural de Cerradão e sob cultivo com milho durante 30 anos. Para isso, retiraram-se amostras do solo em quatro pontos diferentes nas profundidades de 5-10 e 15-20 cm, que foram fracionadas, por via seca, nas classes de agregados de: 4,75-2,0; 2,0-1,0; 1,0-0,5; 0,5-0,25; 0,25-0,105; e Soil organic matter is constituted by a vast array of compounds that include active and more stable fractions, with different cycling rates. Management practices affect organic carbon and nitrogen contents, organic matter quality, and soil aggregation. The present study aimed to characterize organic carbon and nitrogen in aggregates of a Dystrophic Red Latosol of Minas Gerais State, Brazil, in an area of native vegetation (Cerradão and another one that has been for 30 years under conventional corn cultivation. Soil samples were collected at depths of 5-10 and 15-20 cm at four different sites. The dried samples were fractioned in the following aggregate classes: diameter 4.75-2.0; 2.0-1.0; 1.0-0.5; 0.5-0.25; 0.25-0.105; and less than 0.105 mm. Total organic carbon (COT, water soluble organic carbon (COS, total nitrogen (NT and anaerobically-mineralized nitrogen (NMA were determined for each sample. On average, the COT contents of soil aggregates under conventional tillage were higher, while NT contents were greater in the aggregates of the Cerradão surface layer. The COS and NMA contents, that correspond to more active fractions of organic matter, were significantly higher in aggregates of Cerradão soil. Aggregates of smaller size

  11. Long-term nitrogen behavior under treated wastewater infiltration basins in a soil-aquifer treatment (SAT) system.

    Science.gov (United States)

    Mienis, Omer; Arye, Gilboa

    2018-05-01

    The long term behavior of total nitrogen and its components was investigated in a soil aquifer treatment system of the Dan Region Reclamation Project (Shafdan), Tel-Aviv, Israel. Use is made of the previous 40 years' secondary data for the main nitrogen components (ammonium, nitrate and organic nitrogen) in recharged effluent and observation wells located inside an infiltration basin. The wells were drilled to 106 and 67 m, both in a similar position within the basin. The transport characteristics of each nitrogen component were evaluated based on chloride travel-time, calculated by a cross-correlation between its concentration in the recharge effluent and the observation wells. Changes in the source of recharge effluent, wastewater treatment technology and recharge regime were found to be the main factors affecting turnover in total nitrogen and its components. During aerobic operation of the infiltration basins, most organic nitrogen and ammonium will be converted to nitrate. Total nitrogen removal in the upper part of the aquifer was found to be 47-63% by denitrification and absorption, and overall removal, including the lower part of the aquifer, was 49-83%. To maintain the aerobic operation of the infiltration fields, the total nitrogen load should remain below 10 mg/L. Above this limit, ammonium and organic nitrogen will be displaced into the aquifer. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Nitrogen metabolism in a grapevine in vitro system

    Directory of Open Access Journals (Sweden)

    Nuria Llorens

    2002-09-01

    Full Text Available Ammonium, nitrate, nitrite, protein and individual and total amino acid contents were determined in grapevine (cv Sauvignon cultured in vitro. The enzyme activities of nitrate and nitrite reductases, glutamine synthetase, glutamate synthetase and dehydrogenase were also determined. The nitrogen taken up by the plants was 70% of the total nitrogen in the medium after 75 days of in vitro culture. Most of the nitrogen taken up was recovered in the leaves, yet only ammonia and amino acid concentrations were significantly higher in leaves. In roots, glutamine was the most abundant amino acid. In leaves, the most abundant amino acids were aspartate, glutamate, glutamine, alanine, arginine and g-aminobutirate. All enzyme activities were higher in roots than in leaves. These results suggest that both roots and leaves incorporate inorganic nitrogen into organic forms.

  13. Nitrogen-responsive genes are differentially regulated in planta during Fusarium oxyspsorum f. sp. lycopersici infection.

    Science.gov (United States)

    Divon, Hege H; Rothan-Denoyes, Beatrice; Davydov, Olga; DI Pietro, Antonio; Fluhr, Robert

    2005-07-01

    SUMMARY Nitrogen is an essential growth component whose availability will limit microbial spread, and as such it serves as a key control point in dictating an organism's adaptation to various environments. Little is known about fungal nutrition in planta. To enhance our understanding of this process we examined the transcriptional adaptation of Fusarium oxysporum f. sp. lycopersici, the causal agent for vascular wilt in tomato, during nutritional stress and plant colonization. Using RT-PCR and microarray technology we compared fungal gene expression in planta to axenic nitrogen starvation culture. Several expressed sequence tags, representing at least four genes, were identified that are concomitantly induced during nitrogen starvation and in planta growth. Three of these genes show similarity to a general amino acid permease, a peptide transporter and an uricase, all functioning in organic nitrogen acquisition. We further show that these genes represent a distinguishable subset of the nitrogen-responsive transcripts that respond to amino acids commonly available in the plant. Our results indicate that nitrogen starvation partially mimics in planta growth conditions, and further suggest that minute levels of organic nitrogen sources dictate the final outcome of fungal gene expression in planta. The nature of the identified transcripts suggests modes of nutrient uptake and survival for Fusarium during colonization.

  14. 21 CFR 862.1515 - Nitrogen (amino-nitrogen) test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nitrogen (amino-nitrogen) test system. 862.1515... Systems § 862.1515 Nitrogen (amino-nitrogen) test system. (a) Identification. A nitrogen (amino-nitrogen) test system is a device intended to measure amino acid nitrogen levels in serum, plasma, and urine...

  15. Differences in microbiological profile between community-acquired, healthcare-associated and hospital-acquired infections.

    Science.gov (United States)

    Cardoso, Teresa; Ribeiro, Orquídea; Aragão, Irene; Costa-Pereira, Altamiro; Sarmento, António

    2013-01-01

    Microbiological profiles were analysed and compared for intra-abdominal, urinary, respiratory and bloodstream infections according to place of acquisition: community-acquired, with a separate analysis of healthcare-associated, and hospital-acquired. Prospective cohort study performed at a university tertiary care hospital over 1 year. Inclusion criteria were meeting the Centers for Disease Control definition of intra-abdominal, urinary, respiratory and bloodstream infections. A total of 1035 patients were included in the study. More than 25% of intra-abdominal infections were polymicrobial; multi-drug resistant gram-negatives were 38% in community-acquired, 50% in healthcare-associated and 57% in hospital-acquired. E. coli was the most prevalent among urinary infections: 69% in community-acquired, 56% in healthcare-associated and 26% in hospital-acquired; ESBL producers' pathogens were 10% in healthcare-associated and 3% in community-acquired and hospital-acquired. In respiratory infections Streptococcus pneumoniae was the most prevalent in community-acquired (54%) and MRSA in healthcare-associated (24%) and hospital-acquired (24%). A significant association was found between MRSA respiratory infection and hospitalization in the previous year (adjusted OR = 6.3), previous instrumentation (adjusted OR = 4.3) and previous antibiotic therapy (adjusted OR = 5.7); no cases were documented among patients without risk factors. Hospital mortality rate was 10% in community-acquired, 14% in healthcare-associated and 19% in hospital-acquired infection. This study shows that healthcare-associated has a different microbiologic profile than those from community or hospital acquired for the four main focus of infection. Knowledge of this fact is important because the existing guidelines for community-acquired are not entirely applicable for this group of patients.

  16. Uptake of fertilizer nitrogen and soil nitrogen by rice using 15N-labelled nitrogen fertilizer

    International Nuclear Information System (INIS)

    Reddy, K.R.; Patrick, W.H. Jr.

    1980-01-01

    Data from five field experiments using labelled nitrogen fertilizer were used to determine the relative effects of soil nitrogen and fertilizer nitrogen on rice yield. Yield of grain was closely correlated with total aboveground nitrogen uptake (soil + fertilizer), less closely correlated with soil nitrogen uptake and not significantly correlated with fertilizer nitrogen uptake. When yield increase rather than yield was correlated with fertilizer nitrogen uptake, the correlation coefficient was statistically significant. (orig.)

  17. Lipids as paleomarkers to constrain the marine nitrogen cycle.

    Science.gov (United States)

    Rush, Darci; Sinninghe Damsté, Jaap S

    2017-06-01

    Global climate is, in part, regulated by the effect of microbial processes on biogeochemical cycling. The nitrogen cycle, in particular, is driven by microorganisms responsible for the fixation and loss of nitrogen, and the reduction-oxidation transformations of bio-available nitrogen. Within marine systems, nitrogen availability is often the limiting factor in the growth of autotrophic organisms, intrinsically linking the nitrogen and carbon cycles. In order to elucidate the state of these cycles in the past, and help envisage present and future variability, it is essential to understand the specific microbial processes responsible for transforming bio-available nitrogen species. As most microorganisms are soft-bodied and seldom leave behind physical fossils in the sedimentary record, recalcitrant lipid biomarkers are used to unravel microbial processes in the geological past. This review emphasises the recent advances in marine nitrogen cycle lipid biomarkers, underlines the missing links still needed to fully elucidate past shifts in this biogeochemically-important cycle, and provides examples of biomarker applications in the geological past. © 2017 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  18. Organic carbon source and C/N ratio affect inorganic nitrogen profile in the biofloc-based culture media of Pacific white shrimp (Litopenaeus vannamei

    Directory of Open Access Journals (Sweden)

    Muhammad Hanif Azhar

    2016-03-01

    Full Text Available Organic carbon source and C/N ratio play an important role in aquaculture system with biofloc technology application. Nitrogen control by adding carbohydrates to the water to stimulate heterotrophic bacterial growth by converting nitrogen into bacterial biomass. The study investigated the effect molasses, tapioca, tapioca by product and rice bran as carbon sources in a biofloc media at three different C/N ratios i.e. 10, 15, and 20 on total ammonia reduction in biofloc media. Five liters of biofloc media in a conical tank was prepared for each replicate, which consisted of 500 mL of biofloc suspension collected from a shrimp culture unit with biofloc technology application and 4.5 L seawater. Pacific white shrimp culture was performed in 40L glass aquaria at a shrimp density of 30/aquarium. There was a significant interaction between carbon source and the C/N ratio applied (P<0.05. The use of molasses resulted in the highest reduction rate irrespective to the C/N ratio. Keywords: molasses, tapioca, tapioca by product, rice bran, biofloc, total ammonia nitrogen

  19. Exogenous nutrients and carbon resource change the responses of soil organic matter decomposition and nitrogen immobilization to nitrogen deposition

    Science.gov (United States)

    He, Ping; Wan, Song-Ze; Fang, Xiang-Min; Wang, Fang-Chao; Chen, Fu-Sheng

    2016-01-01

    It is unclear whether exogenous nutrients and carbon (C) additions alter substrate immobilization to deposited nitrogen (N) during decomposition. In this study, we used laboratory microcosm experiments and 15N isotope tracer techniques with five different treatments including N addition, N+non-N nutrients addition, N+C addition, N+non-N nutrients+C addition and control, to investigate the coupling effects of non-N nutrients, C addition and N deposition on forest floor decomposition in subtropical China. The results indicated that N deposition inhibited soil organic matter and litter decomposition by 66% and 38%, respectively. Soil immobilized 15N following N addition was lowest among treatments. Litter 15N immobilized following N addition was significantly higher and lower than that of combined treatments during the early and late decomposition stage, respectively. Both soil and litter extractable mineral N were lower in combined treatments than in N addition treatment. Since soil N immobilization and litter N release were respectively enhanced and inhibited with elevated non-N nutrient and C resources, it can be speculated that the N leaching due to N deposition decreases with increasing nutrient and C resources. This study should advance our understanding of how forests responds the elevated N deposition. PMID:27020048

  20. Cryopreservation of human sperm: efficacy and use of a new nitrogen-free controlled rate freezer versus liquid nitrogen vapour freezing.

    Science.gov (United States)

    Creemers, E; Nijs, M; Vanheusden, E; Ombelet, W

    2011-12-01

    Preservation of spermatozoa is an important aspect of assisted reproductive medicine. The aim of this study was to investigate the efficacy and use of a recently developed liquid nitrogen and cryogen-free controlled rate freezer and this compared with the classical liquid nitrogen vapour freezing method for the cryopreservation of human spermatozoa. Ten patients entering the IVF programme donated semen samples for the study. Samples were analysed according to the World Health Organization guidelines. No significant difference in total sperm motility after freeze-thawing between the new technique and classical technique was demonstrated. The advantage of the new freezing technique is that it uses no liquid nitrogen during the freezing process, hence being safer to use and clean room compatible. Investment costs are higher for the apparatus but running costs are only 1% in comparison with classical liquid nitrogen freezing. In conclusion, post-thaw motility of samples frozen with the classical liquid nitrogen vapour technique was comparable with samples frozen with the new nitrogen-free freezing technique. This latter technique can thus be a very useful asset to the sperm cryopreservation laboratory. © 2011 Blackwell Verlag GmbH.

  1. Nitrogen fixation by free-living microorganisms in tropical rice soils using labelled fertilizer. Part of a coordinated programme on isotope techniques in studies of biological nitrogen fixation for the dual purpose of increasing crop production and decreasing nitrogen fertilizer use to conserve the environment

    International Nuclear Information System (INIS)

    Rao, V.R.

    1981-11-01

    Both acetylene-reduction and 15 N techniques were used to study heterotrophic N fixation in the rhizosphere of rice plants. Soils subjected to flooding in 4 soil types in both greenhouse and the field were found to stimulate greater heterotrophic nitrogen fixation than moist soils. The addition of organic materials, in particular, cellulose and rice straw, in general, enhanced nitrogen fixed by heterotrophic organisms living in the rhizosphere of rice plants. The highest amount of N fixed was 38 kg N/ha, and was obtained in a flooded lateritic soil to which had been added cellulose. Heterotrophic nitrogen fixation was influenced by soil type. In this study, the lowest value for fixed N was recorded in an acid sulphate soil of low pH. The addition of increasing amounts of inorganic nitrogen fertilizer in the form of ammonium sulphate suppressed rhizospheric nitrogen fixation in all soils, but the extent of suppression differed in the different soils. Benomyl fungicide and methyl carbamate insecticide had a stimulatory effect on heterotrophic nitrogen fixation in soils under rice roots. Different rice cultivars stimulated strains of Azospirillum to varying extent, and thus did not fix nitrogen to the same extent. It is thus possible that varieties of rice could be selected on the basis of their ability to support non-symbiotic N fixation in their rhizosphere

  2. Oxygen vacancy rich Cu2O based composite material with nitrogen doped carbon as matrix for photocatalytic H2 production and organic pollutant removal.

    Science.gov (United States)

    Lu, Lele; Xu, Xinxin; Yan, Jiaming; Shi, Fa-Nian; Huo, Yuqiu

    2018-02-06

    A nitrogen doped carbon matrix supported Cu 2 O composite material (Cu/Cu2O@NC) was fabricated successfully with a coordination polymer as precursor through calcination. In this composite material, Cu 2 O particles with a size of about 6-10 nm were dispersed evenly in the nitrogen doped carbon matrix. After calcination, some coordinated nitrogen atoms were doped in the lattice of Cu 2 O and replace oxygen atoms, thus generating a large number of oxygen vacancies. In Cu/Cu2O@NC, the existence of oxygen vacancies has been confirmed by electron spin resonance (ESR) and X-ray photoelectron spectroscopy (XPS). Under visible light irradiation, Cu/Cu2O@NC exhibits excellent H 2 production with the rate of 379.6 μmol h -1 g -1 . Its photocatalytic activity affects organic dyes, such as Rhodamine B (RhB) and methyl orange (MO). In addition to photocatalysis, Cu/Cu2O@NC also exhibits striking catalytic activity in reductive conversion of 4-nitrophenol to 4-aminophenol with in presence of sodium borohydride (NaBH 4 ). The conversion efficiency reaches almost 100% in 250 s with the quantity of Cu/Cu2O@NC as low as 5 mg. The outstanding H 2 production and organic pollutants removal are attributed to the oxygen vacancy. We expect that Cu/Cu2O@NC will find its way as a new resource for hydrogen energy as well as a promising material in water purification.

  3. Determination of the ''1''4N to ''1''5N ratio in nitrogen-containing samples

    International Nuclear Information System (INIS)

    Aidarhanova, G.; Baktybaev, D.T.; Burtebaeva, N.; Burtebaev, N.; Djazairov-Kakhramanov, V.; Zazulin, D.M.; Urazaliev, R.U.; Ramazanova, S.B.; Baimaganova, G.Sh.; Ramazanova, R.H.

    2001-01-01

    It is known that nitrogen nutrition plays very important role in increase of plant crop and the albumin content in food rural cultures. Producers widely use nitrogen fertilizers. Their non-controlled or too extensive use can lead to contamination of air and water , resulting in hazardous sequences for human health and environment. The studies related to determination of nitrogen nutrition efficiency are based on utilization of the ''1''5N isotope, in view of determination of the best forms, time and place for introduction of nitrogen fertilizers, in order to provide the most reasonable nitrogen consumption by plants, avoiding waste and reducing the nitrogen fertilizer volumes required for obtaining a desired level of crop. In the course of natural experiments, scientists of various countries studied the processes of nitrogen consumption by plants from fertilizers, the processes responsible for nitrogen fixing in soil, nitrogen losses in a gaseous form or in liquids, in a form of solutions with ground water. The studies have shown that a fresh organic mass (manure) introduced to soil causes acceleration of decomposition of organic substance and renewal of the humus composition in soil. These phenomena can be detected by means of radioactive or stable isotopes

  4. Molecular nitrogen fixation and nitrogen cycle in nature

    Energy Technology Data Exchange (ETDEWEB)

    Virtanen, A I

    1952-01-01

    The origin of nitrogen oxides in the atmosphere is discussed. Evidently only a small proportion of the nitrate-and nitrite-nitrogen found in the precipitation is formed through electric discharges from molecular nitrogen, photochemical nitrogen fixation being probably of greater importance. Formation of nitrate nitrogen through atmospheric oxidation of nitrous oxide (N/sub 2/O) evaporating from the soil is also considered likely. Determination of nitrogen compounds at different altitudes is indispensable for gaining information of the N/sub 2/-fixation in the atmosphere and, in general, of the origin of nitrogen oxides and their decomposition. International cooperation is needed for this as well as for the quantitative determination of the nitrogen compounds removed from the soil by leaching and brought by waters into the seas.

  5. Carbon-nitrogen-water interactions: is model parsimony fruitful?

    Science.gov (United States)

    Puertes, Cristina; González-Sanchis, María; Lidón, Antonio; Bautista, Inmaculada; Lull, Cristina; Francés, Félix

    2017-04-01

    It is well known that carbon and nitrogen cycles are highly intertwined and both should be explained through the water balance. In fact, in water-controlled ecosystems nutrient deficit is related to this water scarcity. For this reason, the present study compares the capability of three models in reproducing the interaction between the carbon and nitrogen cycles and the water cycle. The models are BIOME-BGCMuSo, LEACHM and a simple carbon-nitrogen model coupled to the hydrological model TETIS. Biome-BGCMuSo and LEACHM are two widely used models that reproduce the carbon and nitrogen cycles adequately. However, their main limitation is that these models are quite complex and can be too detailed for watershed studies. On the contrary, the TETIS nutrient sub-model is a conceptual model with a vertical tank distribution over the active soil depth, dividing it in two layers. Only the input of the added litter and the losses due to soil respiration, denitrification, leaching and plant uptake are considered as external fluxes. Other fluxes have been neglected. The three models have been implemented in an experimental plot of a semi-arid catchment (La Hunde, East of Spain), mostly covered by holm oak (Quercus ilex). Plant transpiration, soil moisture and runoff have been monitored daily during nearly two years (26/10/2012 to 30/09/2014). For the same period, soil samples were collected every two months and taken to the lab in order to obtain the concentrations of dissolved organic carbon, microbial biomass carbon, ammonium and nitrate. In addition, between field trips soil samples were placed in PVC tubes with resin traps and were left incubating (in situ buried cores). Thus, mineralization and nitrification accumulated fluxes for two months, were obtained. The ammonium and nitrate leaching accumulated for two months were measured using ion-exchange resin cores. Soil respiration was also measured every field trip. Finally, water samples deriving from runoff, were collected

  6. [Effects of elevated atmospheric CO2 and nitrogen application on cotton biomass, nitrogen utilization and soil urease activity].

    Science.gov (United States)

    Lyu, Ning; Yin, Fei-hu; Chen, Yun; Gao, Zhi-jian; Liu, Yu; Shi, Lei

    2015-11-01

    under the ambient CO2- (360 µmol · mol(-1)) treatment. The order of nitrogen accumulation content in organs was bud > leaf > stem > root. Soil urease activity of both layers increased significantly with the elevation of CO2 concentration in all the nitrogen treatments. Under each CO2 concentration treatment, the soil urease activity in the upper layer (0-20 cm) increased significantly with nitrogen application, while the urease activity under the application of 300 kg · hm(-2) nitrogen was highest in the lower layer (20- 40 cm). The average soil urease activity in the upper layer (0-20 cm) was significantly higher than that in the lower layer (20-40 cm). This study suggested that the cotton dry matter accumulation and nitrogen absorption content were significantly increased in response to the elevated CO2 concentration (540 µmol · mol(-1)) and higher nitrogen addition (300 kg · hm(-2)).

  7. Barley Benefits from Organic Nitrogen in Plant Residues Applied to Soil using 15N Isotope Dilution

    International Nuclear Information System (INIS)

    Gadalla, A.M.; Galal, Y.G.M.; Abdel Aziz, H.A.; El-Degwy, S.M.A.; Abd El-Haleem, M.

    2008-01-01

    The experiment was carried out in pots (sandy soil cultivated with Barley plant) under greenhouse conditions, at Inshas, Egypt. The aim was to evaluate the transformation of nitrogen applied either as mineral form ( 15 NH 4 ) 2 SO 4 , or as organic-material-N (plant residues) .Basal recommended doses of P and K were applied. Labeled 15 N as( 15 NH 4 ) 2 SO 4 (5 % a.e) or plant residues (ground leuceana forage, compost, and mixture of them) were applied at a rate of 20 kg N/ ha). 15 N technique was used to evaluate N-uptake and fertilizer use efficiency. The treatments were arranged in a completely randomized block design under greenhouse conditions. The obtained results showed that the dry weight of barley shoots was positively affected by reinforcement of mineral- N with organic-N. On the other hand, the highest dry weight was estimated with leuceana either applied alone or reinforced with mineral N. Similar trend was noticed with N uptake but only with organic N, while with treatment received 50% organic-N. plus 50% mineral- N. the best value of N uptake was recorded with mixture of leuceana and compost. The amount of Ndff was lowest where fertilizer 15 N was applied alone. Comparing Ndff for the three organic treatments which received a combination of fertilizer- 15 N+organic-material-N, results showed that the highest Ndff was occurred with mixture of leuceana and compost, whereas the lowest was induced with individual leuceana treatment. 15 N recovery in shoots of barley ranged between 22.14 % to 82.16 %. The lowest occurred with application of mineral 15 N alone and; the highest occurred where mineral 15 N was mixed with compost or leucaena-compost mixture

  8. Cyanobacteria in CELSS: Growth strategies for nutritional variation and nitrogen cycling

    Science.gov (United States)

    Fry, I. V.; Packer, L.

    1990-01-01

    Cyanobacteria (blue-green algae) are versatile organisms which are capable of adjusting their cellular levels of carbohydrate, protein, and lipid in response to changes in the environment. Under stress conditions there is an imbalance between nitrogen metabolism and carbohydrate/lipid synthesis. The lesion in nitrogen assimilation is at the level of transport: the stress condition diverts energy from the active accumulation of nitrate to the extrusion of salt, and probably inhibits a cold-labile ATP'ace in the case of cold shock. Both situations affect the bioenergetic status of the cell such that the nitrogenous precursors for protein synthesis are depleted. Dispite the inhibition of protein synthesis and growth, photosynthetic reductant generation is relatively unaffected. The high O2 reductant would normally lead to photo-oxidative damage of cellular components; however, the organism copes by channeling the 'excess' reductant into carbon storage products. The increase in glycogen (28 to 35 percent dry weight increase) and the elongation of lipid fatty acid side chains (2 to 5 percent dry weight increase) at the expense of protein synthesis (25 to 34 percent dry weight decrease) results in carbohydrate, lipid and protein ratios that are closer to those required in the human diet. In addition, the selection of nitrogen fixing mutants which excrete ammonium ions present an opportunity to tailor these micro-organisms to meet the specific need for a sub-system to reverse potential loss of fixed nitrogen material.

  9. Re-assessing the nitrogen signal in continental margin sediments: New insights from the high northern latitudes

    Science.gov (United States)

    Knies, Jochen; Brookes, Steven; Schubert, Carsten J.

    2007-01-01

    Organic and inorganic nitrogen and their isotopic signatures were studied in continental margin sediments off Spitsbergen. We present evidence that land-derived inorganic nitrogen strongly dilutes the particulate organic signal in coastal and fjord settings and accounts for up to 70% of the total nitrogen content. Spatial heterogeneity in inorganic nitrogen along the coast is less likely to be influenced by clay mineral assemblages or various substrates than by the supply of terrestrial organic matter (TOM) within eroded soil material into selected fjords and onto the shelf. The δ15N signal of the inorganic nitrogen ( δ15N inorg) in sediments off Spitsbergen seems to be appropriate to trace TOM supply from various climate- and ecosystem zones and elucidates the dominant transport media of terrigenous sediments to the marine realm. Moreover, we postulate that with the study of sedimentary δ15N inorg in the Atlantic-Arctic gateway, climatically induced changes in catchment's vegetations in high northern latitudes may be reconstructed. The δ15N org signal is primarily controlled by the availability of nitrate in the dominating ocean current systems and the corresponding degree of utilization of the nitrate pool in the euphotic zone. Not only does this new approach allow for a detailed view into the nitrogen cycle for settings with purely primary-produced organic matter supply, it also provides new insights into both the deposition of marine and terrestrial nitrogen and its ecosystem response to (paleo-) climate changes.

  10. Ammonia Nitrogen Added to Diets Deficient in Dispensable Amino Acid Nitrogen Is Poorly Utilized for Urea Production in Growing Pigs.

    Science.gov (United States)

    Mansilla, Wilfredo D; Silva, Kayla E; Zhu, Cuilan L; Nyachoti, Charles M; Htoo, John K; Cant, John P; de Lange, Cornelis Fm

    2017-12-01

    production across splanchnic organs when pigs are fed diets deficient in DAA nitrogen. © 2017 American Society for Nutrition.

  11. Community acquired urinary tract infection: etiology and bacterial susceptibility

    Directory of Open Access Journals (Sweden)

    Dias Neto José Anastácio

    2003-01-01

    Full Text Available PURPOSE: Urinary tract infections (UTI are one of the most common infectious diseases diagnosed. UTI account for a large proportion of antibacterial drug consumption and have large socio-economic impacts. Since the majority of the treatments begins or is done completely empirically, the knowledge of the organisms, their epidemiological characteristics and their antibacterial susceptibility that may vary with time is mandatory. OBJECTIVE: The aim of this study was to report the prevalence of uropathogens and their antibiotic susceptibility of the community acquired UTI diagnosed in our institution and to provide a national data. METHODS: We analyzed retrospectively the results of urine cultures of 402 patients that had community acquired urinary tract infection in the year of 2003. RESULTS: The mean age of the patients in this study was 45.34 ± 23.56 (SD years. There were 242 (60.2% females and 160 (39.8% males. The most commonly isolated organism was Escherichia coli (58%. Klebsiella sp. (8.4% and Enterococcus sp.(7.9% were reported as the next most common organisms. Of all bacteria isolated from community acquired UTI, only 37% were sensitive to ampicillin, 51% to cefalothin and 52% to trimethoprim/sulfamethoxazole. The highest levels of susceptibility were to imipenem (96%, ceftriaxone (90%, amikacin (90%, gentamicin (88%, levofloxacin (86%, ciprofloxacin (73%, nitrofurantoin (77% and norfloxacin (75%. CONCLUSION: Gram-negative agents are the most common cause of UTI. Fluoroquinolones remains the choice among the orally administered antibiotics, followed by nitrofurantoin, second and third generation cephalosporins. For severe disease that require parenteral antibiotics the choice should be aminoglycosides, third generation cephalosporins, fluoroquinolones or imipenem, which were the most effective.

  12. The impact of four decades of annual nitrogen addition on dissolved organic matter in a boreal forest soil

    Science.gov (United States)

    Rappe-George, M. O.; Gärdenäs, A. I.; Kleja, D. B.

    2013-03-01

    Addition of mineral nitrogen (N) can alter the concentration and quality of dissolved organic matter (DOM) in forest soils. The aim of this study was to assess the effect of long-term mineral N addition on soil solution concentration of dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) in Stråsan experimental forest (Norway spruce) in central Sweden. N was added yearly at two levels of intensity and duration: the N1 treatment represented a lower intensity but a longer duration (43 yr) of N addition than the shorter N2 treatment (24 yr). N additions were terminated in the N2 treatment in 1991. The N treatments began in 1967 when the spruce stands were 9 yr old. Soil solution in the forest floor O, and soil mineral B, horizons were sampled during the growing seasons of 1995 and 2009. Tension and non-tension lysimeters were installed in the O horizon (n = 6), and tension lysimeters were installed in the underlying B horizon (n = 4): soil solution was sampled at two-week intervals. Although tree growth and O horizon carbon (C) and N stock increased in treatments N1 and N2, the concentration of DOC in O horizon leachates was similar in both N treatments and control. This suggests an inhibitory direct effect of N addition on O horizon DOC. Elevated DON and nitrate in O horizon leachates in the ongoing N1 treatment indicated a move towards N saturation. In B horizon leachates, the N1 treatment approximately doubled leachate concentrations of DOC and DON. DON returned to control levels, but DOC remained elevated in B horizon leachates in N2 plots nineteen years after termination of N addition. We propose three possible explanations for the increased DOC in mineral soil: (i) the result of decomposition of a larger amount of root litter, either directly producing DOC or (ii) indirectly via priming of old SOM, and/or (iii) a suppression of extracellular oxidative enzymes.

  13. The impact of four decades of annual nitrogen addition on dissolved organic matter in a boreal forest soil

    Directory of Open Access Journals (Sweden)

    M. O. Rappe-George

    2013-03-01

    Full Text Available Addition of mineral nitrogen (N can alter the concentration and quality of dissolved organic matter (DOM in forest soils. The aim of this study was to assess the effect of long-term mineral N addition on soil solution concentration of dissolved organic carbon (DOC and dissolved organic nitrogen (DON in Stråsan experimental forest (Norway spruce in central Sweden. N was added yearly at two levels of intensity and duration: the N1 treatment represented a lower intensity but a longer duration (43 yr of N addition than the shorter N2 treatment (24 yr. N additions were terminated in the N2 treatment in 1991. The N treatments began in 1967 when the spruce stands were 9 yr old. Soil solution in the forest floor O, and soil mineral B, horizons were sampled during the growing seasons of 1995 and 2009. Tension and non-tension lysimeters were installed in the O horizon (n = 6, and tension lysimeters were installed in the underlying B horizon (n = 4: soil solution was sampled at two-week intervals. Although tree growth and O horizon carbon (C and N stock increased in treatments N1 and N2, the concentration of DOC in O horizon leachates was similar in both N treatments and control. This suggests an inhibitory direct effect of N addition on O horizon DOC. Elevated DON and nitrate in O horizon leachates in the ongoing N1 treatment indicated a move towards N saturation. In B horizon leachates, the N1 treatment approximately doubled leachate concentrations of DOC and DON. DON returned to control levels, but DOC remained elevated in B horizon leachates in N2 plots nineteen years after termination of N addition. We propose three possible explanations for the increased DOC in mineral soil: (i the result of decomposition of a larger amount of root litter, either directly producing DOC or (ii indirectly via priming of old SOM, and/or (iii a suppression of extracellular oxidative enzymes.

  14. Fertilizers nitrogen balance under maizl and winter rye in lysimentric experiments

    International Nuclear Information System (INIS)

    Ionova, O.N.

    1979-01-01

    The balance of the labelled 15 N nitrogen fertilizers in lysimentric experiment carried oUt in the turf-podsolic medium loamy soil has been studied. The results of two year experiment (1976-1977) have shown that depending on the doses and time of introduction the use of fertilizer nitrogen by maize varied from 51 to 58 % and by winter rye from 52 to 59 %. Consolidation in the organic substance of soil constituted 18-26 and 17-33 %, respectively. The losses of fertilizer nitrogen varied (14-29 % under maize and 9-23 % under winter rye). Nitrogen losses as a result of atmospheric precipitation infiltration both under maize and winter rye occured mainly at the expense of nitrogen of soil and reached considerable dimensions (31 kg) only under conditions of exceeding moistening of 1976. The losses of fertilizer nitrogen caused by washing out do not exceed 1 % for two years. The main losses of fertilizer nitrogen occurred in the form of gaseous nitrogen compounds

  15. Behaviour of electroinsulating polyethylene and polyvinil-chloride-based materials in the contact with nitrogen oxides

    International Nuclear Information System (INIS)

    Korolev, V.M.; Koroleva, G.N.; Il'yukhina, Ya.A.

    1987-01-01

    The compatibility of electric cable sheaths on polyethylene and polyvinylchloride base with nitrogen tetroxide has been studied. It is shown, that the cables with polyethylene sheaths are compatible with N 2 O 4 and can be used in the conditions of the contact with it within 5 hours. Polyvinylchloride is incompatible with nitrogen oxide and polyvinylchloride based cables can be used only with oxides concentraton don't exceeding 0,5 g/l. Under the effect of high concentrations before dismounting or conducting works after accidents, these cables need special treatment for eliminating impact sensitivity acquired in the conditions of contamination

  16. [Hyperspectral remote sensing diagnosis models of rice plant nitrogen nutritional status].

    Science.gov (United States)

    Tan, Chang-Wei; Zhou, Qing-Bo; Qi, La; Zhuang, Heng-Yang

    2008-06-01

    The correlations of rice plant nitrogen content with raw hyperspectral reflectance, first derivative hyperspectral reflectance, and hyperspectral characteristic parameters were analyzed, and the hyperspectral remote sensing diagnosis models of rice plant nitrogen nutritional status with these remote sensing parameters as independent variables were constructed and validated. The results indicated that the nitrogen content in rice plant organs had a variation trend of stem plant nitrogen nutritional status, with the decisive coefficients (R2) being 0.7996 and 0.8606, respectively; while the model with vegetation index (SDr - SDb) / (SDr + SDb) as independent variable, i. e., y = 365.871 + 639.323 ((SDr - SDb) / (SDr + SDb)), was most fit rice plant nitrogen content, with R2 = 0.8755, RMSE = 0.2372 and relative error = 11.36%, being able to quantitatively diagnose the nitrogen nutritional status of rice.

  17. Utilization of organic nitrogen by arbuscular mycorrhizal fungi-is there a specific role for protists and ammonia oxidizers?

    Science.gov (United States)

    Bukovská, Petra; Bonkowski, Michael; Konvalinková, Tereza; Beskid, Olena; Hujslová, Martina; Püschel, David; Řezáčová, Veronika; Gutiérrez-Núñez, María Semiramis; Gryndler, Milan; Jansa, Jan

    2018-04-01

    Arbuscular mycorrhizal (AM) fungi can significantly contribute to plant nitrogen (N) uptake from complex organic sources, most likely in concert with activity of soil saprotrophs and other microbes releasing and transforming the N bound in organic forms. Here, we tested whether AM fungus (Rhizophagus irregularis) extraradical hyphal networks showed any preferences towards certain forms of organic N (chitin of fungal or crustacean origin, DNA, clover biomass, or albumin) administered in spatially discrete patches, and how the presence of AM fungal hyphae affected other microbes. By direct 15 N labeling, we also quantified the flux of N to the plants (Andropogon gerardii) through the AM fungal hyphae from fungal chitin and from clover biomass. The AM fungal hyphae colonized patches supplemented with organic N sources significantly more than those receiving only mineral nutrients, organic carbon in form of cellulose, or nothing. Mycorrhizal plants grew 6.4-fold larger and accumulated, on average, 20.3-fold more 15 N originating from the labeled organic sources than their nonmycorrhizal counterparts. Whereas the abundance of microbes (bacteria, fungi, or Acanthamoeba sp.) in the different patches was primarily driven by patch quality, we noted a consistent suppression of the microbial abundances by the presence of AM fungal hyphae. This suppression was particularly strong for ammonia oxidizing bacteria. Our results indicate that AM fungi successfully competed with the other microbes for free ammonium ions and suggest an important role for the notoriously understudied soil protists to play in recycling organic N from soil to plants via AM fungal hyphae.

  18. Nitrogen transformations in wetlands: Effects of water flow patterns

    Energy Technology Data Exchange (ETDEWEB)

    Davidsson, T.

    1997-11-01

    In this thesis, I have studied nitrogen turnover processes in water meadows. A water meadow is a wetland where water infiltrates through the soil of a grassland field. It is hypothesized that infiltration of water through the soil matrix promotes nutrient transformations compared to surface flow of water, by increasing the contact between water, nutrients, soil organic matter and bacteria. I have studied how the balance between nitrogen removal (denitrification, assimilative uptake, adsorption) and release (mineralization, desorption) processes are affected by water flow characteristics. Mass balance studies and direct denitrification measurements at two field sites showed that, although denitrification was high, net nitrogen removal in the water meadows was poor. This was due to release of ammonium and dissolved organic nitrogen (DON) from the soils. In laboratory studies, using {sup 15}N isotope techniques, I have shown that nitrogen turnover is considerably affected by hydrological conditions and by soil type. Infiltration increased virtually all the nitrogen processes, due to deeper penetration of nitrate and oxygen, and extended zones of turnover processes. On the contrary, soils and sediments with surface water flow, diffusion is the main transfer mechanism. The relation between release and removal processes sometimes resulted in shifts towards net nitrogen production. This occurred in infiltration treatments when ammonium efflux was high in relation to denitrification. It was concluded that ammonium and DON was of soil origin and hence not a product of dissimilatory nitrate reduction to ammonium. Both denitrification potential and mineralization rates were higher in peaty than in sandy soil. Vertical or horizontal subsurface flow is substantial in many wetland types, such as riparian zones, tidal salt marshes, fens, root-zone systems and water meadows. Moreover, any environment where aquatic and terrestrial ecosystems meet, and where water level fluctuates

  19. Is the distribution of nitrogen-fixing cyanobacteria in the oceans related to temperature?

    Science.gov (United States)

    Stal, Lucas J

    2009-07-01

    Approximately 50% of the global natural fixation of nitrogen occurs in the oceans supporting a considerable part of the new primary production. Virtually all nitrogen fixation in the ocean occurs in the tropics and subtropics where the surface water temperature is 25°C or higher. It is attributed almost exclusively to cyanobacteria. This is remarkable firstly because diazotrophic cyanobacteria are found in other environments irrespective of temperature and secondly because primary production in temperate and cold oceans is generally limited by nitrogen. Cyanobacteria are oxygenic phototrophic organisms that evolved a variety of strategies protecting nitrogenase from oxygen inactivation. Free-living diazotrophic cyanobacteria in the ocean are of the non-heterocystous type, namely the filamentous Trichodesmium and the unicellular groups A-C. I will argue that warm water is a prerequisite for these diazotrophic organisms because of the low-oxygen solubility and high rates of respiration allowing the organism to maintain anoxic conditions in the nitrogen-fixing cell. Heterocystous cyanobacteria are abundant in freshwater and brackish environments in all climatic zones. The heterocyst cell envelope is a tuneable gas diffusion barrier that optimizes the influx of both oxygen and nitrogen, while maintaining anoxic conditions inside the cell. It is not known why heterocystous cyanobacteria are absent from the temperate and cold oceans and seas.

  20. New nitrogen uptake strategy: specialized snow roots.

    Science.gov (United States)

    Onipchenko, Vladimir G; Makarov, Mikhail I; van Logtestijn, Richard S P; Ivanov, Viktor B; Akhmetzhanova, Assem A; Tekeev, Dzhamal K; Ermak, Anton A; Salpagarova, Fatima S; Kozhevnikova, Anna D; Cornelissen, Johannes H C

    2009-08-01

    The evolution of plants has yielded a wealth of adaptations for the acquisition of key mineral nutrients. These include the structure, physiology and positioning of root systems. We report the discovery of specialized snow roots as a plant strategy to cope with the very short season for nutrient uptake and growth in alpine snow-beds, i.e. patches in the landscape that remain snow-covered well into the summer. We provide anatomical, chemical and experimental (15)N isotope tracking evidence that the Caucasian snow-bed plant Corydalis conorhiza forms extensive networks of specialized above-ground roots, which grow against gravity to acquire nitrogen directly from within snow packs. Snow roots capture nitrogen that would otherwise partly run off down-slope over a frozen surface, thereby helping to nourish these alpine ecosystems. Climate warming is changing and will change mountain snow regimes, while large-scale anthropogenic N deposition has increased snow N contents. These global changes are likely to impact on the distribution, abundance and functional significance of snow roots.

  1. Organic nitrogen and carbon in atmospheric dry and wet depositions in the southern East China Sea: its implication for new production in coastal region

    Science.gov (United States)

    Chen, H. Y.; Yeh, J. X.; Lin, C. T.

    2016-02-01

    We collected 11 sets of size-segregated particulate aerosol (include coarse and fine particles) and 53 rain samples from January to December 2014 at a coastal city (Keelung) on the southern East China Sea. Here we present measurements of water-soluble inorganic/organic nitrogen and carbon (WSIN/WSON and WSIC/WSOC, respectively) in aerosol samples and dissolved inorganic/organic nitrogen and carbon (DIN/DON and DIC/DOC, respectively) in rain samples. In addition, 4-d back trajectories of air masses arriving daily at the sampling site were calculated to determine the potential aerosol source regions. The concentrations of water-soluble species in particulate aerosols were relatively high in March (WSON: 223±48 nmol m-3; WSOC: 203±51 nmol m-3) and dissolved species in rain samples were high in December (DON: 157±69 μM; DOC: 294±168 μM), which occur frequently during the spring and winter. The monsoon system of East Asia play a key role on the atmospheric composition of nitrogen and carbon, with higher loadings in northerly (winter to spring) than southerly (summer to autumn) monsoon periods, owing to strong emissions from the East Asian continent. Our results indicate that biomass burning and dust events yielded the largest concentrations of ON and OC not only on particulate aerosols but also in precipitations. For aerosols, the amounts of WSON and WSOC accounted for 42±8% and 80±7% of the water-soluble total nitrogen (WSTN) and carbon (WSTC), respectively. Additionally, the concentrations of DON and DOC accounted for 40±5% and 75±3% of total dissolved nitrogen (TDN) and carbon (TDC), respectively, for precipitations. By using dry and wet deposition flux estimations, we estimated that the fluxes of WSTN/TDN and WSTC/TDC were 47.1±24.4 / 266±20 mmol m-2 yr-1 and 23±9 / 153±3 mmol m-2 yr-1, respectively. These results suggest that atmospheric deposition contributed approximately 25-34% of the annual biological new production in the southern East China Sea.

  2. Assessment of watershed scale nitrogen cycling and dynamics by hydrochemical modeling

    Science.gov (United States)

    Onishi, T.; Hiramatsu, K.; Somura, H.

    2017-12-01

    Nitrogen cycling in terrestrial areas is affecting water quality and ecosystem of aquatic area such as lakes and oceans through rivers. Owing to the intensive researches on nitrogen cycling in each different type of ecosystem, we acquired rich knowledge on nitrogen cycling of each ecosystem. On the other hand, since watershed are composed of many different kinds of ecosystems, nitrogen cycling in a watershed as a complex of these ecosystems is not well quantified. Thus, comprehensive understanding of nitrogen cycling of watersheds by modelling efforts are required. In this study, we attempted to construct hydrochemical model of the Ise Bay watershed to reproduce discharge, TN, and NO3 concentration. The model is based on SWAT (Soil and Water Assessment Tools) model. As anthropogenic impacts related to both hydrological cycling and nitrogen cycling, agricultural water intake/drainage, and domestic water intake/drainage were considered. In addition, fertilizer input to agricultural lands were also considered. Calibration period and validation period are 2004-2006, and 2007-2009, respectively. As a result of calibration using 2000 times LCS (Latin Cubic Sampling) method, discharge of rivers were reproduced fairly well with NS of 0.6-0.8. In contrast, the calibration result of TN and NO3 concentration tended to show overestimate values in spite of considering parameter uncertainties. This implies that unimplemented denitrification processes in the model. Through exploring the results, it is indicated that riparian areas, and agricultural drainages might be important spots for denitrification. Based on the result, we also attempted to evaluate the impact of climate change on nitrogen cycling. Though it is fully explored, this result will also be reported.

  3. Automated surveillance system for hospital-acquired urinary tract infections in Denmark

    DEFF Research Database (Denmark)

    Condell, Orla; Gubbels, Sophie; Nielsen, J

    2016-01-01

    BACKGROUND: The Danish Hospital-Acquired Infections Database (HAIBA) is an automated surveillance system using hospital administrative, microbiological, and antibiotic medication data. AIM: To define and evaluate the case definition for hospital-acquired urinary tract infection (HA-UTI) and to de......BACKGROUND: The Danish Hospital-Acquired Infections Database (HAIBA) is an automated surveillance system using hospital administrative, microbiological, and antibiotic medication data. AIM: To define and evaluate the case definition for hospital-acquired urinary tract infection (HA-UTI......) and to describe surveillance data from 2010 to 2014. METHODS: The HA-UTI algorithm defined a laboratory-diagnosed UTI as a urine culture positive for no more than two micro-organisms with at least one at ≥10(4)cfu/mL, and a probable UTI as a negative urine culture and a relevant diagnosis code or antibiotic...... treatment. UTI was considered hospital-acquired if a urine sample was collected ≥48h after admission and UTI was calculated per 10,000 risk-days. For validation, prevalence was calculated for each day and compared to point prevalence survey (PPS) data. FINDINGS: HAIBA...

  4. Further contributions to the understanding of nitrogen removal in waste stabilization ponds.

    Science.gov (United States)

    Bastos, R K X; Rios, E N; Sánchez, I A

    2018-06-01

    A set of experiments were conducted in Brazil in a pilot-scale waste stabilization pond (WSP) system (a four-maturation-pond series) treating an upflow anaerobic sludge blanket (UASB) reactor effluent. Over a year and a half the pond series was monitored under two flow rate conditions, hence also different hydraulic retention times and surface loading rates. On-site and laboratory trials were carried out to assess: (i) ammonia losses by volatilization using acrylic capture chambers placed at the surface of the ponds; (ii) organic nitrogen sedimentation rates using metal buckets placed at the bottom of the ponds for collecting settled particulate matter; (iii) nitrogen removal by algal uptake based on the nitrogen content of the suspended particulate matter in samples from the ponds' water column. In addition, nitrification and denitrification rates were measured in laboratory-based experiments using pond water and sediment samples. The pond system achieved high nitrogen removal (69% total nitrogen and 92% ammonia removal). The average total nitrogen removal rates varied from 10,098 to 3,849 g N/ha·d in the first and the last ponds, respectively, with the following fractions associated with the various removal pathways: (i) 23.5-45.6% sedimentation of organic nitrogen; (ii) 13.1-27.8% algal uptake; (iii) 1.2-3.1% ammonia volatilization; and (iv) 0.15-0.34% nitrification-denitrification.

  5. Nitrogen

    Science.gov (United States)

    Apodaca, Lori E.

    2013-01-01

    The article presents an overview of the nitrogen chemical market as of July 2013, including the production of ammonia compounds. Industrial uses for ammonia include fertilizers, explosives, and plastics. Other topics include industrial capacity of U.S. ammonia producers CF Industries Holdings Inc., Koch Nitrogen Co., PCS Nitrogen, Inc., and Agrium Inc., the impact of natural gas prices on the nitrogen industry, and demand for corn crops for ethanol production.

  6. WHO environmental health criteria for oxides of nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    A report in preparation by the World Health Organization (WHO), Geneva, on the Environmental Health Criteria for Oxides of Nitrogen is summarized. This report will be published under the joint sponsorship of the United Nations Environment Program (UNEP) and WHO. Chemistry and analytical methods, sources of oxides of nitrogen, environmental levels and exposures, effects on experimental animals, effects on man, and evaluation of health risks are discussed. Further research on the reaction of sensitive biological systems to nitrogen dioxide and oxidants, on the biological effects of nitric acid and nitrates, on the possibility of delayed effects, on epidemiological studies of occupational and community groups, and on asthmatic subjects and persons with cardiopulmonary disease was recommended.

  7. Climate-mediated nitrogen and carbon dynamics in a tropical watershed

    Science.gov (United States)

    Ballantyne, A. P.; Baker, P. A.; Fritz, S. C.; Poulter, B.

    2011-06-01

    Climate variability affects the capacity of the biosphere to assimilate and store important elements, such as nitrogen and carbon. Here we present biogeochemical evidence from the sediments of tropical Lake Titicaca indicating that large hydrologic changes in response to global glacial cycles during the Quaternary were accompanied by major shifts in ecosystem state. During prolonged glacial intervals, lake level was high and the lake was in a stable nitrogen-limited state. In contrast, during warm dry interglacials lake level fell and rates of nitrogen concentrations increased by a factor of 4-12, resulting in a fivefold to 24-fold increase in organic carbon concentrations in the sediments due to increased primary productivity. Observed periods of increased primary productivity were also associated with an apparent increase in denitrification. However, the net accumulation of nitrogen during interglacial intervals indicates that increased nitrogen supply exceeded nitrogen losses due to denitrification, thereby causing increases in primary productivity. Although primary productivity in tropical ecosystems, especially freshwater ecosystems, tends to be nitrogen limited, our results indicate that climate variability may lead to changes in nitrogen availability and thus changes in primary productivity. Therefore some tropical ecosystems may shift between a stable state of nitrogen limitation and a stable state of nitrogen saturation in response to varying climatic conditions.

  8. MIL-100 derived nitrogen-embodied carbon shells embedded with iron nanoparticles

    Science.gov (United States)

    Mao, Chengyu; Kong, Aiguo; Wang, Yuan; Bu, Xianhui; Feng, Pingyun

    2015-06-01

    The use of metal-organic frameworks (MOFs) as templates and precursors to synthesize new carbon materials with controllable morphology and pre-selected heteroatom doping holds promise for applications as efficient non-precious metal catalysts. Here, we report a facile pyrolysis pathway to convert MIL-100 into nitrogen-doped carbon shells encapsulating Fe nanoparticles in a comparative study involving multiple selected nitrogen sources. The hierarchical porous architecture, embedded Fe nanoparticles, and nitrogen decoration endow this composite with a superior oxygen reduction activity. Furthermore, the excellent durability and high methanol tolerance even outperform the commercial Pt-C catalyst.The use of metal-organic frameworks (MOFs) as templates and precursors to synthesize new carbon materials with controllable morphology and pre-selected heteroatom doping holds promise for applications as efficient non-precious metal catalysts. Here, we report a facile pyrolysis pathway to convert MIL-100 into nitrogen-doped carbon shells encapsulating Fe nanoparticles in a comparative study involving multiple selected nitrogen sources. The hierarchical porous architecture, embedded Fe nanoparticles, and nitrogen decoration endow this composite with a superior oxygen reduction activity. Furthermore, the excellent durability and high methanol tolerance even outperform the commercial Pt-C catalyst. Electronic supplementary information (ESI) available: Material synthesis and elemental analysis, electrochemistry measurements, and additional figures. See DOI: 10.1039/c5nr02346g

  9. An application of nitrogen microwave-induced plasma mass spectrometry to isotope dilution analysis of selenium in marine organisms

    Energy Technology Data Exchange (ETDEWEB)

    Shirasaki, Toshihiro [Hitachi Instruments Engineering Co. Ltd., Hitachinaka, Ibaraki (Japan); Yoshinaga, Jun; Morita, Masatoshi; Okumoto, Toyoharu; Oishi, Konosuke

    1996-01-01

    Nitrogen microwave-induced plasma mass spectrometry was studied for its applicability to the isotope dilution analysis of selenium in biological samples. Spectroscopic interference by calcium, which is present in high concentrations in biological samples, was investigated. No detectable background spectrum was observed for the major selenium isotopes of {sup 78}Se and {sup 80}Se. No detectable interferences by sodium, potassium, calcium and phosphorus on the isotope ratio {sup 80}Se/{sup 78}Se were observed up to concentration of 200 mg/ml. The method was applied to the analysis of selenium in biological reference materials of marine organisms. The results showed good agreement between the certified and found values. (author).

  10. Spectral measurements at different spatial scales in potato: relating leaf, plant and canopy nitrogen status

    Science.gov (United States)

    Jongschaap, Raymond E. E.; Booij, Remmie

    2004-09-01

    Chlorophyll contents in vegetation depend on soil nitrogen availability and on crop nitrogen uptake, which are important management factors in arable farming. Crop nitrogen uptake is important, as nitrogen is needed for chlorophyll formation, which is important for photosynthesis, i.e. the conversion of absorbed radiance into plant biomass. The objective of this study was to estimate leaf and canopy nitrogen contents by near and remote sensing observations and to link observations at leaf, plant and canopy level. A theoretical base is presented for scaling-up leaf optical properties to whole plants and crops, by linking different optical recording techniques at leaf, plant and canopy levels through the integration of vertical nitrogen distribution. Field data come from potato experiments in The Netherlands in 1997 and 1998, comprising two potato varieties: Eersteling and Bintje, receiving similar nitrogen treatments (0, 100, 200 and 300 kg N ha -1) in varying application schemes to create differences in canopy nitrogen status during the growing season. Ten standard destructive field samplings were performed to follow leaf area index and crop dry weight evolution. Samples were analysed for inorganic nitrogen and total nitrogen contents. At sampling dates, spectral measurements were taken both at leaf level and at canopy level. At leaf level, an exponential relation between SPAD-502 readings and leaf organic nitrogen contents with a high correlation factor of 0.91 was found. At canopy level, an exponential relation between canopy organic nitrogen contents and red edge position ( λrep, nm) derived from reflectance measurements was found with a good correlation of 0.82. Spectral measurements (SPAD-502) at leaf level of a few square mm were related to canopy reflectance measurements (CropScan™) of approximately 0.44 m 2. Statistical regression techniques were used to optimise theoretical vertical nitrogen profiles that allowed scaling-up leaf chlorophyll measurements

  11. Organic fertilisers and nitrogen availability

    NARCIS (Netherlands)

    Blok, C.; Streminska, M.; Vermeulen, T.; Klein, P.

    2017-01-01

    Liquid organic fertilisers allow growers to abandon the use of conventional de novo (mined or synthesised) fertilisers without the need for major technological adaptions in the greenhouse. It was decided to run a cultivation experiment to find practical information for producers and growers when

  12. Curiosity Search: Producing Generalists by Encouraging Individuals to Continually Explore and Acquire Skills throughout Their Lifetime.

    Science.gov (United States)

    Stanton, Christopher; Clune, Jeff

    2016-01-01

    Natural animals are renowned for their ability to acquire a diverse and general skill set over the course of their lifetime. However, research in artificial intelligence has yet to produce agents that acquire all or even most of the available skills in non-trivial environments. One candidate algorithm for encouraging the production of such individuals is Novelty Search, which pressures organisms to exhibit different behaviors from other individuals. However, we hypothesized that Novelty Search would produce sub-populations of specialists, in which each individual possesses a subset of skills, but no one organism acquires all or most of the skills. In this paper, we propose a new algorithm called Curiosity Search, which is designed to produce individuals that acquire as many skills as possible during their lifetime. We show that in a multiple-skill maze environment, Curiosity Search does produce individuals that explore their entire domain, while a traditional implementation of Novelty Search produces specialists. However, we reveal that when modified to encourage intra-life behavioral diversity, Novelty Search can produce organisms that explore almost as much of their environment as Curiosity Search, although Curiosity Search retains a significant performance edge. Finally, we show that Curiosity Search is a useful helper objective when combined with Novelty Search, producing individuals that acquire significantly more skills than either algorithm alone.

  13. Organic and Inorganic Nitrogen Fertilization Effects on Some Physiological and Agronomical Traits of Chickpea (Cicer arietinum L. in Irrigated Condition

    Directory of Open Access Journals (Sweden)

    Ali Namvar

    2013-09-01

    Full Text Available The effects of organic and inorganic nitrogen fertilization on some physiological and agronomical traits of chickpea (Cicer arietinum L. cv. ILC 482, investigated at the Experimental Farm of the Agriculture Faculty, University of Mohaghegh Ardabili. The trial was laid out in spilt plot design based on randomized complete block with four replications. Experimental factors were mineral nitrogen fertilizer at four levels (0, 50, 75 and 100 kg urea/ha in the main plots, and two levels of inoculation with Rhizobium bacteria (with and without inoculation as sub plots. N application and Rh. inoculation showed positive effects on physiological and agronomical traits of chickpea. The highest value of leaf RWC recorded in 50 kg urea/ha that was statistically in par with 75 kg urea/ha application while, usage of 75 kg urea/ha showed the maximum stem RWC. The maximum CMS obtained form application of 75 kg urea/ha. Chlorophyll content, leaf area index and grains protein content showed their maximum values in the highest level of nitrogen usage (100 kg urea/ha. Moreover, inoculated plants had the highest magnitudes of all physiological traits. In the case of agronomical traits, the highest values of plant height, number of primary and secondary branches, number of pods per plant, number of grains per plant, grain and biological yield were obtained from the highest level of nitrogen fertilizer (100 kg urea/ha and Rh. inoculation. Application of 75 kg urea/ha was statistically in par with 100 kg urea/ha in all of these traits. The results pointed out that some N fertilization (i.e. between 50 and 75 kg urea/ha as starter can be beneficial to improve growth, development, physiological traits and total yield of inoculated chickpea.

  14. Nitrogen cycling in a turbid, tidal estuary

    NARCIS (Netherlands)

    Andersson, M.G.I.

    2007-01-01

    In this thesis I investigated nitrification, dissolved inorganic and organic nitrogen uptake, and the relative importance of nitrification and ammonium assimilation. I have also investigated exchange with marshes and sediments. Nitrification, oxidation of ammonium to nitrate is the first step for

  15. Distribution and Sources of Carbon, Nitrogen, Phosphorus and ...

    Indian Academy of Sciences (India)

    69

    School of Environmental Sciences, Jawaharlal Nehru University, New Delhi – 110067 ... and macroalgae may be major contributors of organic matter in the lagoon. .... 3.2 Analysis of Carbon, Nitrogen, Phosphorus and Biogenic Silica.

  16. Mekanisme Penambatan Nitrogen Udara oleh Bakteri Rhizobium Menginspirasi Perkembangan Teknologi Pemupukan Organik yang Ramah Lingkungan

    Directory of Open Access Journals (Sweden)

    GEDE MENAKA ADNYANA

    2014-01-01

    Full Text Available Interaction of microbes with human living in the nature are able to seen from their capabilitiesimproving the environmental by composting waste of agriculture to become organic fertilizer. In thecontrary, the epidemic and infectious phatogens are also its contribution. In agriculture sector, the livingof microbes has been explored to keep the soil fertile, and to improve growth and plant production.The symbiosis of Rhizobium bacteria with the specific host plant from legumes is able to run because ofboth side giving a signal, where host plant give an organic molecoles called inducer. From the bacteriaside, also give an organic materials called nod factor. The step of nitrogen fixation mechanism can bedescribed from infection of root legume as the first step, followed by the nitrogen fixation by thebacteroid and synthesis of the nitrogen organic by host plant as the last step. These natural processesinspire finding and development of the ecologically organic fertilizer technology.

  17. Effects of nitrogen fertilizer application on greenhouse gas emissions and economics of corn production.

    Science.gov (United States)

    Kim, Seungdo; Dale, Bruce E

    2008-08-15

    Nitrogen fertilizer plays an important role in corn cultivation in terms of both economic and environmental aspects. Nitrogen fertilizer positively affects corn yield and the soil organic carbon level, but it also has negative environmental effects through nitrogen-related emissions from soil (e.g., N20, NOx, NO3(-) leaching, etc.). Effects of nitrogen fertilizer on greenhouse gas emissions associated with corn grain are investigated via life cycle assessment. Ecoefficiency analysis is also used to determine an economically and environmentally optimal nitrogen application rate (NAR). The ecoefficiency index in this study is defined as the ratio of economic return due to nitrogen fertilizer to the greenhouse gas emissions of corn cultivation. Greenhouse gas emissions associated with corn grain decrease as NAR increases at a lower NAR until a minimum greenhouse gas emission level is reached because corn yield and soil organic carbon level increase with NAR. Further increasing NAR after a minimum greenhouse gas emission level raises greenhouse gas emissions associated with corn grain. Increased greenhouse gas emissions of corn grain due to nitrous oxide emissions from soil are much higher than reductions of greenhouse gas emissions of corn grain due to corn yield and changes in soil organic carbon levels at a higher NAR. Thus, there exists an environmentally optimal NAR in terms of greenhouse gas emissions. The trends of the ecoefficiency index are similar to those of economic return to nitrogen and greenhouse gas emissions associated with corn grain. Therefore, an appropriate NAR could enhance profitability as well as reduce greenhouse gas emissions associated with corn grain.

  18. Physico-chemical protection, rather than biochemical composition, governs the responses of soil organic carbon decomposition to nitrogen addition in a temperate agroecosystem.

    Science.gov (United States)

    Tan, Wenbing; Wang, Guoan; Huang, Caihong; Gao, Rutai; Xi, Beidou; Zhu, Biao

    2017-11-15

    The heterogeneous responses of soil organic carbon (SOC) decomposition in different soil fractions to nitrogen (N) addition remain elusive. In this study, turnover rates of SOC in different aggregate fractions were quantified based on changes in δ 13 C following the conversion of C 3 to C 4 vegetation in a temperate agroecosystem. The turnover of both total organic matter and specific organic compound classes within each aggregate fraction was inhibited by N addition. Moreover, the intensity of inhibition increases with decreasing aggregate size and increasing N addition level, but does not vary among chemical compound classes within each aggregate fraction. Overall, the response of SOC decomposition to N addition is dependent on the physico-chemical protection of SOC by aggregates and minerals, rather than the biochemical composition of organic substrates. The results of this study could help to understand the fate of SOC in the context of increasing N deposition. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Temperature sensitivity differences with depth and season between carbon, nitrogen, and phosphorus cycling enzyme activities in an ombrotrophic peatland system

    Science.gov (United States)

    Steinweg, J. M.; Kostka, J. E.; Hanson, P. J.; Schadt, C. W.

    2017-12-01

    Northern peatlands have large amounts of soil organic matter due to reduced decomposition. Breakdown of organic matter is initially mediated by extracellular enzymes, the activity of which may be controlled by temperature, moisture, and substrate availability, all of which vary seasonally throughout the year and with depth. In typical soils the majority of the microbial biomass and decomposition occurs within the top 30cm due to reduced organic matter inputs in the subsurface however peatlands by their very nature contain large amounts of organic matter throughout their depth profile. We hypothesized that potential enzyme activity would be greatest at the surface of the peat due to a larger microbial biomass compared to 40cm and 175cm below the surface and that temperature sensitivity would be greatest at the surface during winter but lowest during the summer due to high temperatures and enzyme efficiency. Peat samples were collected in February, July, and August 2012 from the DOE Spruce and Peatland Responses Under Climatic and Environmental Change project at Marcell Experimental Forest S1 bog. We measured potential activity of hydrolytic enzymes involved in three different nutrient cycles: beta-glucosidase (carbon), leucine amino peptidase (nitrogen), and phosphatase (phosphorus) at 15 temperature points ranging from 3°C to 65°C. Enzyme activity decreased with depth as expected but there was no concurrent change in activation energy (Ea). The reduction in enzyme activity with depth indicates a smaller pool which coincided with a decreased microbial biomass. Differences in enzyme activity with depth also mirrored the changes in peat composition from the acrotelm to the catotelm. Season did play a role in temperature sensitivity with Ea of β-glucosidase and phosphatase being the lowest in August as expected but leucine amino peptidase (a nitrogen acquiring enzyme) Ea was not influenced by season. As temperatures rise, especially in winter months, enzymatic

  20. Stabilization of organic matter and nitrogen immobilization during mechanical-biological treatment and landfilling of residual municipal solid waste

    International Nuclear Information System (INIS)

    Heiss-Ziegler, C.

    2000-04-01

    Synthesis of humic substances and nitrogen immobilization during mechanical-biological treatment of waste and the behavior of biologically stabilized waste under anaerobic landfill conditions were investigated. Samples were taken from a large-scale treatment plant. Anaerobic conditions were simulated in lab scale test cells. Humic substances were analyzed photometrically and gravimetrically. The nitrogen immobilization was investigated by sequential leaching tests and by analyzing the non acid hydrolyzable nitrogen. Humic acids were mainly synthesized during the beginning of the intensive rotting phase. Later on in the process no significant changes occurred. The humic acid content rose up to 6,8 % DS org. It correlated well with the stability parameters respiration activity and accumulated gas production. In the coarse of the treatment the nitrogen load emitted during the consecutive leaching tests dropped from 50 % down to less than 20 % total nitrogen. The non acid hydrolyzable nitrogen rose from 17 up to 42 % Kjeldahl nitrogen content. Nevertheless the mechanical-biological treatment is not significantly shortening the aftercare period of a landfill concerning liquid nitrogen emissions. The reduced nitrogen emission potential is released more slowly. When reactive waste material was exposed to anaerobic conditions, humic and fulvic acids were synthesized up to the point when intensive gas production started and then were remineralized. Stabilized waste materials after treatment of various intensity behaved differently under anaerobic conditions. Steady and decreasing humic acid contents were observed. (author)

  1. Thermal degradation of N-rich organic laboratory analogues: new insight on the cosmomaterials organic precursor composition

    Science.gov (United States)

    Bonnet, J.-Y.; Quirico, E.; Buch, A.; Szopa, C.; Fray, N.; Cottin, H.; Thissen, R.

    2011-10-01

    The observed organic matter in the different objects, carbonaceous chondrites and IDPs, accessible to laboratory analyses is the result of a complex history. This history is divided into several phases the first of which take place into the presolar nebula and is followed by post accretional processes on the parent bodies [1, 2]. In the carbonaceous chondrites organic matter (both soluble and insoluble), nitrogen is a very minor constituent about 2wt%, but in micrometer scale localized zone of some IDPs the nitrogen content can reach values as high as 20wt% [1, 3]. Additionally, the Insoluble Organic Matter (IOM) polyaromatic structure suggests a formation through thermal processes of the organic precursor(s). In this IOM N-bearing cycles have been identified but not chemical functions like amino groups. The precursor(s) of all the organic matter observed in IOM and IDPs could then be nitrogen rich. To test this scenario, N-rich laboratory analogues, (polymeric solids) were thermally degraded at four different temperatures to simulate short time thermal processes in the solar nebula.

  2. Particulate Organic Matter Affects Soil Nitrogen Mineralization under Two Crop Rotation Systems.

    Directory of Open Access Journals (Sweden)

    Rongyan Bu

    Full Text Available Changes in the quantity and/or quality of soil labile organic matter between and after different types of cultivation system could play a dominant role in soil nitrogen (N mineralization. The quantity and quality of particulate organic matter (POM and potentially mineralizable-N (PMN contents were measured in soils from 16 paired rice-rapeseed (RR/cotton-rapeseed (CR rotations sites in Hubei province, central China. Then four paired soils encompassing low (10th percentile, intermediate (25th and 75th percentiles, and high (90th percentile levels of soil PMN were selected to further study the effects of POM on soil N mineralization by quantifying the net N mineralization in original soils and soils from which POM was removed. Both soil POM carbon (POM-C and N (POM-N contents were 45.8% and 55.8% higher under the RR rotation compared to the CR rotation, respectively. The PMN contents were highly correlated with the POM contents. The PMN and microbial biomass N (MBN contents concurrently and significantly decreased when POM was removed. The reduction rate of PMN was positively correlated with changes in MBN after the removal of POM. The reduction rates of PMN and MBN after POM removal are lower under RR rotations (38.0% and 16.3%, respectively than CR rotations (45.6% and 19.5%, respectively. Furthermore, infrared spectroscopy indicated that compounds with low-bioavailability accumulated (e.g., aromatic recalcitrant materials in the soil POM fraction under the RR rotation but not under the CR rotation. The results of the present study demonstrated that POM plays a vital role in soil N mineralization under different rotation systems. The discrepancy between POM content and composition resulting from different crop rotation systems caused differences in N mineralization in soils.

  3. Effects of organic matter removal and soil compaction on fifth-year mineral soil carbon and nitrogen contents for sites across the United States and Canada

    Science.gov (United States)

    Felipe G. Sanchez; Allan E. Tiarks; J. Marty Kranabetter; Deborah S. Page-Dumroese; Robert F. Powers; Paul T. Sanborn; William K. Chapman

    2006-01-01

    This study describes the main treatment effects of organic matter removal and compaction and a split-plot effect of competition control on mineral soil carbon (C) and nitrogen (N) pools. Treatment effects on soil C and N pools are discussed for 19 sites across five locations (British Columbia, Northern Rocky Mountains, Pacific Southwest, and Atlantic and Gulf coasts)...

  4. Nitrogen removal in maturation waste stabilisation ponds via biological uptake and sedimentation of dead biomass.

    Science.gov (United States)

    Camargo Valero, M A; Mara, D D; Newton, R J

    2010-01-01

    In this work a set of experiments was undertaken in a pilot-scale WSP system to determine the importance of organic nitrogen sedimentation on ammonium and total nitrogen removals in maturation ponds and its seasonal variation under British weather conditions, from September 2004 to May 2007. The nitrogen content in collected sediment samples varied from 4.17% to 6.78% (dry weight) and calculated nitrogen sedimentation rates ranged from 273 to 2868 g N/ha d. High ammonium removals were observed together with high concentrations of chlorophyll-a in the pond effluent. Moreover, chlorophyll-a had a very good correlation with the corresponding increment of VSS (algal biomass) and suspended organic nitrogen (biological nitrogen uptake) in the maturation pond effluents. Therefore, when ammonium removal reached its maximum, total nitrogen removal was very poor as most of the ammonia taken up by algae was washed out in the pond effluent in the form of suspended solids. After sedimentation of the dead algal biomass, it was clear that algal-cell nitrogen was recycled from the sludge layer into the pond water column. Recycled nitrogen can either be taken up by algae or washed out in the pond effluent. Biological (mainly algal) uptake of inorganic nitrogen species and further sedimentation of dead biomass (together with its subsequent mineralization) is one of the major mechanisms controlling in-pond nitrogen recycling in maturation WSP, particularly when environmental and operational conditions are favourable for algal growth.

  5. [Effect of Long-Term Fertilization on Organic Nitrogen Functional Groups in Black Soil as Revealed by Synchrotron-Based X-Ray Absorption Near-Edge Structure Spectroscopy].

    Science.gov (United States)

    Li, Hui; Gao, Qiang; Wang, Shuai; Zhu, Ping; Zhang, Jin-jing; Zhao, Yi-dong

    2015-07-01

    Nitrogen (N) is a common limiting nutrient in crop production. The N content of soil has been used as an important soil fertility index. Organic N is the major form of N in soil. In most agricultural surface soils, more than 90% of total N occurs in organic forms. Therefore, understanding the compositional characteristics of soil organic N functional groups can provide the scientific basis for formulating the reasonable farmland management strategies. Synchrotron radiation soft X-ray absorption near-edge structure (N K-edge XANES) spectroscopy is the most powerful tool to characterize in situ organic N functional groups compositions in soil. However, to our most knowledge, no studies have been conducted to examine the organic N functional groups compositions of soil using N K-edge XANES spectroscopy under long-term fertilization practices. Based on a long-term field experiment (started in 1990) in a black soil (Gongzhuling, Northeast China), we investigated the differences in organic N functional groups compositions in bulk soil and clay-size soil fraction among fertilization patterns using synchrotron-based N K- edge XANES spectroscopy. Composite soil samples (0-20 cm) were collected in 2008. The present study included six treatments: farmland fallow (FALL), no-fertilization control (CK), chemical nitrogen, phosphorus, and potassium fertilization (NPK), NPK in combination with organic manure (NPKM), 1.5 times of NPKM (1.5 NPKM), and NPK in combination with maize straw (NPKS). The results showed that N K-edge XANES spectra of all the treatments under study exhibited characteristic absorption peaks in the ranges of 401.2-401.6 and 402.7-403.1 eV, which were assigned as amides/amine-N and pyrrole-N, respectively. These characteristic absorption peaks were more obvious in clay-size soil fraction than in bulk soil. The results obtained from the semi-quantitative analysis of N K-edge XANES spectra indicated that the relative proportion of amides/amine-N was the highest

  6. Reactive Nitrogen Monitoring Gaps: Issues, Activities and Needs

    Science.gov (United States)

    In this article we demonstrate the importance of ammonia and organic nitrogen to total N deposition budgets and review the current activities to close these monitoring gaps. Finally, remaining monitoring needs and issues are discussed.

  7. Bioconversion of nitrogen in an eco-technical system for egg production

    Directory of Open Access Journals (Sweden)

    A. Gencheva

    2015-03-01

    Full Text Available Abstract. The present paper aims to assess nitrogen circulation in an eco-technical system for egg production. The experiments were conducted in modelled conditions in an anthropogenic ecosystem of the “mesocosm” type, in which the unit of the bio-consumers and three eco-technological chains modelling the unit of the bio-decomposers are modelled: manure storing for decontamination /a recommendation on good farming practices/, composting and anaerobic decomposition in an installation for biogas production. A new criterion was implemented for the assessment of the chemical heterogeneity in the biogenic nitrogen cycle in the modified trophic chain – retention coefficient /k/, which is defined as the ratio of nitrogen introduced into the system / nitrogen content in the feed: its quantity in the secondary biological production x 100. The chemical heterogeneity at the level of organisms /differences in the individual components of eggs/ and at the biocenotic level is established. The biogenic nitrogen cycle in the eco-technical chain for egg production is characterized by an uneven distribution in both products of the outflow. The largest amount of nitrogen is found in the egg whites (k = 0.45, while it decreases significantly in egg yolks (k = 0.17 and reaches k = 0.03 in the egg shell, a.k.a. heterogeneity on the level of organisms is established. The nitrogen compounds introduced through the feed ration are concentrated in manure (k = 25.33. Losses of nitrogen are established in two of the manure utilization technologies. The quantity of /k/ in the compost is 20.32, a.k.a. the loss of nitrogen compounds is 19.8%. The biggest losses are found in manure storage; according to the recommendations on good farming practices (k = 18.82 or the reduction of nitrogen is 25.7% compared with fresh manure. Due to redistribution of the chemical elements /a significant part of C, H and O are included in biogas/, there is nitrogen concentration in bio slime

  8. Effects of Nitrogen Fertilizers on the Growth and Nitrate Content of Lettuce (Lactuca sativa L.)

    Science.gov (United States)

    Liu, Cheng-Wei; Sung, Yu; Chen, Bo-Ching; Lai, Hung-Yu

    2014-01-01

    Nitrogen is an essential element for plant growth and development; however, due to environmental pollution, high nitrate concentrations accumulate in the edible parts of these leafy vegetables, particularly if excessive nitrogen fertilizer has been applied. Consuming these crops can harm human health; thus, developing a suitable strategy for the agricultural application of nitrogen fertilizer is important. Organic, inorganic, and liquid fertilizers were utilized in this study to investigate their effect on nitrate concentrations and lettuce growth. The results of this pot experiment show that the total nitrogen concentration in soil and the nitrate concentration in lettuce increased as the amount of nitrogen fertilizer increased. If the recommended amount of inorganic fertilizer (200 kg·N·ha−1) is used as a standard of comparison, lettuce augmented with organic fertilizers (200 kg·N·ha−1) have significantly longer and wider leaves, higher shoot, and lower concentrations of nitrate. PMID:24758896

  9. Nitrogen transformations in stratified aquatic microbial ecosystems

    DEFF Research Database (Denmark)

    Revsbech, Niels Peter; Risgaard-Petersen, N.; Schramm, Andreas

    2006-01-01

    Abstract  New analytical methods such as advanced molecular techniques and microsensors have resulted in new insights about how nitrogen transformations in stratified microbial systems such as sediments and biofilms are regulated at a µm-mm scale. A large and ever-expanding knowledge base about n...... performing dissimilatory reduction of nitrate to ammonium have given new dimensions to the understanding of nitrogen cycling in nature, and the occurrence of these organisms and processes in stratified microbial communities will be described in detail.......Abstract  New analytical methods such as advanced molecular techniques and microsensors have resulted in new insights about how nitrogen transformations in stratified microbial systems such as sediments and biofilms are regulated at a µm-mm scale. A large and ever-expanding knowledge base about...... nitrogen fixation, nitrification, denitrification, and dissimilatory reduction of nitrate to ammonium, and about the microorganisms performing the processes, has been produced by use of these techniques. During the last decade the discovery of anammmox bacteria and migrating, nitrate accumulating bacteria...

  10. Soil organic matter

    International Nuclear Information System (INIS)

    1976-01-01

    The nature, content and behaviour of the organic matter, or humus, in soil are factors of fundamental importance for soil productivity and the development of optimum conditions for growth of crops under diverse temperate, tropical and arid climatic conditions. In the recent symposium on soil organic matter studies - as in the two preceding ones in 1963 and 1969 - due consideration was given to studies involving the use of radioactive and stable isotopes. However, the latest symposium was a departure from previous efforts in that non-isotopic approaches to research on soil organic matter were included. A number of papers dealt with the behaviour and functions of organic matter and suggested improved management practices, the use of which would contribute to increasing agricultural production. Other papers discussed the turnover of plant residues, the release of plant nutrients through the biodegradation of organic compounds, the nitrogen economy and the dynamics of transformation of organic forms of nitrogen. In addition, consideration was given to studies on the biochemical transformation of organic matter, characterization of humic acids, carbon-14 dating and the development of modern techniques and their impact on soil organic matter research

  11. RESPONSE OF CHILE PEPPER (Capsicum annuum L. TO SALT STRESS AND ORGANIC AND INORGANIC NITROGEN SOURCES: I.GROWTH AND YIELD

    Directory of Open Access Journals (Sweden)

    Marco Antonio Huez Lopez

    2010-10-01

    Full Text Available The effect of two sources of nitrogen on plant growth, and fruit yield of chile pepper (Capsicum annuum L. cv. Sandia grown in greenhouse to increased salinity   were evaluated. An organic source extracted from grass clippings in rates of 120 and 200 kg N ha-1, and another inorganic (ammonium nitrate in rate of 120 kg ha-1 were combined with low, moderate and high (1.5, 4.5, and 6.5 dS m-1 salinity levels arranged in a randomized complete block design replicated four times. Salinity treatments reduced dry matter production, leaf area, relative growth rate and net assimilation rate but increased leaf area ratio. Mean fresh fruit yields decreased for each N rate and source combinations as soil salinity increased. The organic fertilizer produced higher fruit yields tan the inorganic fertilizer. The highest fruit yield was obtained with the increased rate of organic N.    The fruit number was more affected by salinity than the individual fruit weight. This organic fertilizer may be an effective N source for chile pepper and other vegetable crops grown under non- and salt-stressed conditions.

  12. Nitrogen deposition alters nitrogen cycling and reduces soil carbon content in low-productivity semiarid Mediterranean ecosystems

    International Nuclear Information System (INIS)

    Ochoa-Hueso, Raúl; Maestre, Fernando T.; Ríos, Asunción de los; Valea, Sergio; Theobald, Mark R.; Vivanco, Marta G.; Manrique, Esteban; Bowker, Mathew A.

    2013-01-01

    Anthropogenic N deposition poses a threat to European Mediterranean ecosystems. We combined data from an extant N deposition gradient (4.3–7.3 kg N ha −1 yr −1 ) from semiarid areas of Spain and a field experiment in central Spain to evaluate N deposition effects on soil fertility, function and cyanobacteria community. Soil organic N did not increase along the extant gradient. Nitrogen fixation decreased along existing and experimental N deposition gradients, a result possibly related to compositional shifts in soil cyanobacteria community. Net ammonification and nitrification (which dominated N-mineralization) were reduced and increased, respectively, by N fertilization, suggesting alterations in the N cycle. Soil organic C content, C:N ratios and the activity of β-glucosidase decreased along the extant gradient in most locations. Our results suggest that semiarid soils in low-productivity sites are unable to store additional N inputs, and that are also unable to mitigate increasing C emissions when experiencing increased N deposition. -- Highlights: •Soil organic N does not increase along the extant N deposition gradient. •Reduced N fixation is related to compositional shifts in soil cyanobacteria community. •Nitrogen cycling is altered by simulated N deposition. •Soil organic C content decrease along the extant N deposition gradient. •Semiarid soils are unable to mitigate CO 2 emissions after increased N deposition. -- N deposition alters N cycling and reduces soil C content in semiarid Mediterranean ecosystems

  13. Carbon mineralisation in litter and soil organic matter in forests with different nitrogen status

    Energy Technology Data Exchange (ETDEWEB)

    Karlsson, Patrik

    2000-07-01

    The objective of this thesis was to investigate the effect of both organic and inorganic nitrogen (N) on carbon (C) mineralisation of litter and soil organic matter, in order to increase the understanding of factors affecting decomposition and, ultimately, soil C sequestration. Fresh recently fallen needle litter with three contrasting total N concentrations were sampled, along with litter, humus and mineral soil layers from coniferous and deciduous forest sites in Europe. The sampled substrates were incubated in the laboratory at constant temperature (15 deg C) and near-optimal moisture. The fresh needles further received additions of ammonium and nitrate. Initial C mineralisation rates were higher in fresh N-rich needles than in fresh N-poor needles. However, after a 559-day incubation at 15 deg C cumulative C mineralisation was lower in the fresh N-rich needles than in the fresh N-poor needles. Negative effects of high N on C mineralisation were also found in litter and humus layers in the European forests and at sites with N-fertilisation trials, where low C mineralisation rates were associated with high total N concentrations. During early stages of decomposition, addition of ammonium and nitrate to fresh needles did not increase cumulative C mineralisation, suggesting that the decomposing organisms were not limited by low N supply even in the low-N needles. The initially higher C mineralisation in N-rich compared with N-poor needles is suggested to be a consequence of higher C quality in the N-rich substrates. In later stages of decomposition, the question why N seemed to have a negative effect on decomposition could not be satisfactorily answered, although there were indications that recalcitrant N-containing compounds were formed in fresh needles with high N concentration. This thesis presents some probable explanations of the negative effect on decomposition of high N.

  14. Bioturbation: impact on the marine nitrogen cycle.

    Science.gov (United States)

    Laverock, Bonnie; Gilbert, Jack A; Tait, Karen; Osborn, A Mark; Widdicombe, Steve

    2011-01-01

    Sediments play a key role in the marine nitrogen cycle and can act either as a source or a sink of biologically available (fixed) nitrogen. This cycling is driven by a number of microbial remineralization reactions, many of which occur across the oxic/anoxic interface near the sediment surface. The presence and activity of large burrowing macrofauna (bioturbators) in the sediment can significantly affect these microbial processes by altering the physicochemical properties of the sediment. For example, the building and irrigation of burrows by bioturbators introduces fresh oxygenated water into deeper sediment layers and allows the exchange of solutes between the sediment and water column. Burrows can effectively extend the oxic/anoxic interface into deeper sediment layers, thus providing a unique environment for nitrogen-cycling microbial communities. Recent studies have shown that the abundance and diversity of micro-organisms can be far greater in burrow wall sediment than in the surrounding surface or subsurface sediment; meanwhile, bioturbated sediment supports higher rates of coupled nitrification-denitrification reactions and increased fluxes of ammonium to the water column. In the present paper we discuss the potential for bioturbation to significantly affect marine nitrogen cycling, as well as the molecular techniques used to study microbial nitrogen cycling communities and directions for future study.

  15. Transcriptional Activities of the Microbial Consortium Living with the Marine Nitrogen-Fixing Cyanobacterium Trichodesmium Reveal Potential Roles in Community-Level Nitrogen Cycling.

    Science.gov (United States)

    Lee, Michael D; Webb, Eric A; Walworth, Nathan G; Fu, Fei-Xue; Held, Noelle A; Saito, Mak A; Hutchins, David A

    2018-01-01

    Trichodesmium is a globally distributed cyanobacterium whose nitrogen-fixing capability fuels primary production in warm oligotrophic oceans. Like many photoautotrophs, Trichodesmium serves as a host to various other microorganisms, yet little is known about how this associated community modulates fluxes of environmentally relevant chemical species into and out of the supraorganismal structure. Here, we utilized metatranscriptomics to examine gene expression activities of microbial communities associated with Trichodesmium erythraeum (strain IMS101) using laboratory-maintained enrichment cultures that have previously been shown to harbor microbial communities similar to those of natural populations. In enrichments maintained under two distinct CO 2 concentrations for ∼8 years, the community transcriptional profiles were found to be specific to the treatment, demonstrating a restructuring of overall gene expression had occurred. Some of this restructuring involved significant increases in community respiration-related transcripts under elevated CO 2 , potentially facilitating the corresponding measured increases in host nitrogen fixation rates. Particularly of note, in both treatments, community transcripts involved in the reduction of nitrate, nitrite, and nitrous oxide were detected, suggesting the associated organisms may play a role in colony-level nitrogen cycling. Lastly, a taxon-specific analysis revealed distinct ecological niches of consistently cooccurring major taxa that may enable, or even encourage, the stable cohabitation of a diverse community within Trichodesmium consortia. IMPORTANCE Trichodesmium is a genus of globally distributed, nitrogen-fixing marine cyanobacteria. As a source of new nitrogen in otherwise nitrogen-deficient systems, these organisms help fuel carbon fixation carried out by other more abundant photoautotrophs and thereby have significant roles in global nitrogen and carbon cycling. Members of the Trichodesmium genus tend to

  16. Benefits from restoring wetlands for nitrogen abatement: A case study of Gotland

    International Nuclear Information System (INIS)

    Gren, I.M.

    1992-01-01

    The values of nitrogen abatement by measures involving restoration of wetlands, sewage treatment plants and agriculture are calculated and compared. The analytical results show that the value of wetlands is likely to exceed the values of other measures due to the multi-functionality of wetlands and their self-organizing ability. The multi-functionality implies that, in addition to nitrogen abatement, other outputs like buffering of water and biodiversity are produced and the self-organizing feature reduces the rate at which future values of outputs are discounted. According to the empirical results applied to Gotland, a Swedish island in the Baltic with high concentrations of nitrate in the ground water, the imputed value of wetlands exceeds the corresponding values of the other nitrogen abatement measures by several hundred per cent. 21 refs, 6 tabs

  17. Forest fuel reduces the nitrogen load - calculations of nitrogen flows

    International Nuclear Information System (INIS)

    Burstroem, F.; Johansson, Jan.

    1995-12-01

    Nitrogen deposition in Sweden has increased strongly during recent decades, particularly in southern Sweden. Nitrogen appears to be largely accumulated in biomass and in the soil. It is therefore desirable to check the accumulation of nitrogen in the forest. The most suitable way of doing this is to remove more nitrogen-rich biomass from the forest, i.e., increase the removal of felling residues from final fellings and cleanings. An ecological condition for intensive removal of fuel is that the ashes are returned. The critical load for nitrogen, CL(N), indicates the level of nitrogen deposition that the forest can withstand without leading to ecological changes. Today, nitrogen deposition is higher than the CL(N) in almost all of Sweden. CL(N) is calculated in such a manner that nitrogen deposition should largely be balanced by nitrogen losses through harvesting during a forest rotation. The value of CL(N) thus largely depends on how much nitrogen is removed with the harvested biomass. When both stems and felling residues are harvested, the CL(N) is about three times higher than in conventional forestry. The increase is directly related to the amount of nitrogen in the removed biofuel. Use of biofuel also causes a certain amount of nitrogen emissions. From the environmental viewpoint there is no difference between the sources of the nitrogen compounds. An analysis of the entire fuel chain shows that, compared with the amount of nitrogen removed from the forest with the fuel, about 5 % will be emitted as nitrogen oxides or ammonia during combustion, and a further ca 5 % during handling and transports. A net amount of about 90 % of biomass nitrogen is removed from the system and becomes inert nitrogen (N 2 ). 60 refs, 3 figs, 4 tabs, 11 appendices

  18. Nitrogen-Bearing, Indigenous Carbonaceous Matter in the Nakhla Mars Meteorite

    Science.gov (United States)

    Thomas-Keprta, K. L.; Clemett, S. J.; Messenger, S.; Rahman, Z.; Gibson, E. K.; Wentworth, S. J.; McKay, D. S.

    2017-01-01

    We report the identification of discrete assemblages of nitrogen (N)-rich organic matter entrapped within interior fracture surfaces of the martian meteorite Nakhla. Based on context, composition and isotopic measurements this organic matter is of demonstrably martian origin. The presence of N-bearing organic species is of considerable importance to the habitable potential and chemical evolution of the martian regolith.

  19. Isotope Investigations of Nitrogen Compounds in Different Aquatic Ecosystems in Cyprus, Russia and Ukraine

    Energy Technology Data Exchange (ETDEWEB)

    Voropaev, A.; Voerkelius, S.; Eichinger, L. [Hydroisotop GmbH, Schweitenkirchen (Germany); Grinenko, V. [Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, Moscow (Russian Federation)

    2013-07-15

    The isotope analyses of nitrogen compounds is a powerful tool for the investigation of anrthropogenic influence on the nitrogen cycle in terrestrial and aquatic ecosystems. The isotopic composition of nitrogen and oxygen in nitrates from different groundwater aquifers in Cyprus reflects anthropogenic inputs of nitrogen mainly from industrial fertilizer application in agriculture. Significant denitrification as identified at many sampling sites is an important process, which reduces nitrate concentrations in groundwater. In surface water ecosystems anthropogenic influences and natural environmental changes are detected by the isotopic composition of nitrogen in suspended organic material and in bottom sediments. In the oligotrophic fresh water of Lake Galich in Russia the waste water outflow is a reason for the local increase of {delta}{sup 15}N values in bottom sediments, where the nitrogen and carbon isotopic compositions of unpolluted sediments are very homogeneous. In the Neva estuary in russia the lateral destribution of {delta}{sup 15}N values in upper layers of bottom sediments reflects changes in the mixing pattern of marine and continental organic matter caused by a flood protection dam building in the Dneprovsko-Bugsky estuary in Ukraine - probably the increasing influence of anthropogenic {sup 15}N enriched nutrient load. (author)

  20. Improvement of wine terroir management according to biogeochemical cycle of nitrogen in soil

    Science.gov (United States)

    Najat, Nassr; Aude, Langenfeld; Mohammed, Benbrahim; Lionel, Ley; Laurent, Deliere; Jean-Pascal, Goutouly; David, Lafond; Marie, Thiollet-Scholtus

    2015-04-01

    Good wine terroir production implies a well-balanced Biogeochemical Cycle of Nitrogen (BCN) at field level i.e. in soil and in plant. Nitrogen is very important for grape quality and soil sustainability. The mineralization of organic nitrogen is the main source of mineral nitrogen for the vine. This mineralization depends mainly on the soil microbial activity. This study is focused on the functional microbial populations implicated in the BCN, in particular nitrifying bacteria. An experimental network with 6 vine sites located in Atlantic coast (Loire valley and Bordeaux) and in North-East (Alsace) of France has been set up since 2012. These vine sites represent a diversity of environmental factors (i.e. soil and climate). The adopted approach is based on the measure of several indicators to assess nitrogen dynamic in soil, i.e. nitrogen mineralization, regarding microbial biomass and activity. Statistical analyses are performed to determine the relationship between biological indicator and nitrogen mineralisation regarding farmer's practices. The variability of the BCN indicators seems to be correlated to the physical and chemical parameters in the soil of the field. For all the sites, the bacterial biomass is correlated to the rate and kinetic of nitrogen in soil, however this bioindicator depend also on others parameters. Moreover, the functional bacterial diversity depends on the soil organic matter content. Differences in the bacterial biomass and kinetic of nitrogen mineralization are observed between the sites with clayey (Loire valley site) and sandy soils (Bordeaux site). In some tested vine systems, effects on bacterial activity and nitrogen dynamic are also observed depending on the farmer's practices: soil tillage, reduction of inputs, i.e. pesticides and fertilizers, and soil cover management between rows. The BCN indicators seem to be strong to assess the dynamics of the nitrogen in various sites underline the functional diversity of the soils. These

  1. Controls on Biogeochemical Cycling of Nitrogen in Urban Ecosystems

    Science.gov (United States)

    Templer, P. H.; Hutyra, L.; Decina, S.; Rao, P.; Gately, C.

    2017-12-01

    Rates of atmospheric nitrogen deposition are declining across much of the United States and Europe, yet they remain substantially elevated by almost an order of magnitude over pre-industrial levels and occur as hot spots in urban areas. We measured atmospheric inputs of inorganic and organic nitrogen in multiple urban sites around the Boston Metropolitan area, finding that urban rates are substantially elevated compared to nearby rural areas, and that the range of these atmospheric inputs are as large as observed urban to rural gradients. Within the City of Boston, the variation in deposition fluxes can be explained by traffic intensity, vehicle emissions, and spring fertilizer additions. Throughfall inputs of nitrogen are approximately three times greater than bulk deposition inputs in the city, demonstrating that the urban canopy amplifies rates of nitrogen reaching the ground surface. Similar to many other metropolitan areas of the United States, the City of Boston has 25% canopy cover; however, 25% of this tree canopy is located above impervious pavement. Throughfall inputs that do not have soil below the canopy to retain excess nitrogen may lead to greater inputs of nitrogen into nearby waterways through runoff. Most measurement stations for atmospheric nitrogen deposition are intentionally located away from urban areas and point sources of pollution to capture regional trends. Our data show that a major consequence of this network design is that hotspots of nitrogen deposition and runoff into urban and coastal waterways is likely underestimated to a significant degree. A more complete determination of atmospheric nitrogen deposition and its fate in urban ecosystems is critical for closing regional nitrogen budgets and for improving our understanding of biogeochemical nitrogen cycling across multiple spatial scales.

  2. Atmospheric organic nitrogen deposition: analysis of nationwide data and a case study in Northeast China.

    Science.gov (United States)

    Jiang, C M; Yu, W T; Ma, Q; Xu, Y G; Zou, H; Zhang, S C; Sheng, W P

    2013-11-01

    The origin of atmospheric dissolved organic nitrogen (DON) deposition is not very clear at present. Across China, the DON deposition was substantially larger than that of world and Europe, and we found significant positive correlation between contribution of DON and the deposition flux with pristine site data lying in outlier, possibly reflecting the acute air quality problems in China. For a case study in Northeast China, we revealed the deposited DON was mainly derived from intensive agricultural activities rather than the natural sources by analyzing the compiled dataset across China and correlating DON flux with NH4(+)-N and NO3(-)-N. Crop pollens and combustion of fossil fuels for heating probably contributed to summer and autumn DON flux respectively. Overall, in Northeast China, DON deposition could exert important roles in agro-ecosystem nutrient management and carbon sequestration of natural ecosystems; nationally, it was suggested to found rational network for monitoring DON deposition. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  3. Phosphorus and nitrogen in the eutrophication of waters

    International Nuclear Information System (INIS)

    Salonen, S.; Frisk, T.; Kaermeniemi, T.; Niemi, J.; Pitkaenen, H.; Silvo, K.; Vuoristo, H.

    1992-01-01

    This report is a summary of the contribution of nitrogen and phosphorus in the eutrophication process of inland and coastal waters. Special attention was paid to the mechanisms of these nutrients in regulating biological processes and to the methods available in estimating their effects in the eutrophication of water bodies. The report includes five chapters which are entitled: Introduction, which is a general background to the subject with special attention to the requirements of the Finnish Water Act. Phosphorus and nitrogen as factors regulating biological processes. The topics included are: definition of eutrophication, forms of phosphorus and nitrogen and their sources to inland and coastal waters, effects of these nutrients as growth factors of phytoplankton and macrophytes and consequences of eutrophication. Estimation of the effects of phosphorus and nitrogen. The topics discussed from the point of view of the tasks of the National Board of Waters and the Environment are: estimation of the effects of phosphorus and nitrogen in the planning and supervision of industry, fish farming, peat production, municipalities, agriculture and forestry. A brief state-of-the art of the research carried out in the National Board of Waters and the Environment is given. Methods of estimating the effects of phosphorus and nitrogen loading in waters. The topics are: relationships between phosphorus and nitrogen concentrations in waters, material balances, water quality models, classification of waters and different groups of organisms as indicators of water quality. Conclusions for the estimation of the effects of phosphorus and nitrogen in receiving waters

  4. Estimation of Corn Yield and Soil Nitrogen via Soil Electrical Conductivity Measurement Treated with Organic, Chemical and Biological Fertilizers

    Directory of Open Access Journals (Sweden)

    H. Khalilzade

    2016-02-01

    Full Text Available Introduction Around the world maize is the second crop with the most cultivated areas and amount of production, so as the most important strategic crop, have a special situation in policies, decision making, resources and inputs allocation. On the other side, negative environmental consequences of intensive consumption of agrochemicals resulted to change view concerning food production. One of the most important visions is sustainable production of enough food plus attention to social, economic and environmental aspects. Many researchers stated that the first step to achieve this goal is optimization and improvement of resources use efficiencies. According to little knowledge on relation between soil electrical conductivity and yield of maize, beside the environmental concerns about nitrogen consumption and need to replace chemical nitrogen by ecological inputs, this study designed and aimed to evaluate agroecological characteristics of corn and some soil characteristics as affected by application of organic and biological fertilizers under field conditions. Materials and Methods In order to probing the possibility of grain yield and soil nitrogen estimation via measurement of soil properties, a field experiment was conducted during growing season 2010 at Research Station, Ferdowsi University of Mashhad, Iran. A randomized complete block design (RCBD with three replications was used. Treatments included: 1- manure (30 ton ha-1, 2-vermicompost (10 ton ha-1, 3- nitroxin (containing Azotobacter sp. and Azospirillum sp., inoculation was done according to Kennedy et al., 4- nitrogen as urea (400 kg ha-1 and 5- control (without fertilizer. Studied traits were soil pH, soil EC, soil respiration rate, N content of soil and maize yield. Soil respiration rate was measured using equation 1: CO2= (V0- V× N×22 Equation 1 In which V0 is the volume of consumed acid for control treatment titration, V is of the volume of consumed acid for sample treatment

  5. Learning-by-Being-Acquired

    DEFF Research Database (Denmark)

    Colombo, Massimo Gaetano; Moreira, Solon; Rabbiosi, Larissa

    2016-01-01

    In horizontal acquisitions, the post-acquisition integration of the R&D function often damages the inventive labor force and results in lower innovative productivity of acquired inventors. In this paper we study post-acquisition integration in terms of R&D team reorganization-i.e., the creation...... of new teams with both inventors of the acquiring and acquired firms-and assess the impact of this integration action in the period that immediately follows the acquisition. Drawing on social identity and self-categorization theories, we argue that R&D team reorganization increases the acquired inventors...

  6. Sources and transformation of dissolved and particulate organic nitrogen in the North Pacific Subtropical Gyre indicated by compound-specific δ15N analysis of amino acids

    Science.gov (United States)

    Yamaguchi, Yasuhiko T.; McCarthy, Matthew D.

    2018-01-01

    This study explores the use of compound-specific nitrogen isotopes of amino acids (δ15NAA) of coupled dissolved and particulate organic nitrogen (DON, PON) samples as a new approach to examine relative sources, transformation processes, and the potential coupling of these two major forms of N cycle in the ocean water column. We measured δ15NAA distributions in high-molecular-weight dissolved organic nitrogen (HMW DON) and suspended PON in the North Pacific Subtropical Gyre (NPSG) from surface to mesopelagic depths. A new analytical approach achieved far greater δ15NAA measurement precision for DON than earlier work, allowing us to resolve previously obscured differences in δ15NAA signatures, both with depth and between ON pools. We propose that δ15N values of total hydrolysable amino acids (THAA) represents a proxy for proteinaceous ON δ15N values in DON and PON. Together with bulk δ15N values, this allows δ15N values and changes in bulk, proteinaceous, and ;other-N; to be directly evaluated. These novel measurements suggest three main conclusions. First, the δ15NAA signatures of both surface and mesopelagic HMW DON suggest mainly heterotrophic bacterial sources, with mesopelagic HMW DON bearing signatures of far more degraded material compared to surface material. These results contrast with a previous proposal that HMW DON δ15NAA patterns are essentially ;pre-formed; by cyanobacteria in the surface ocean, undergo little change with depth. Second, different δ15NAA values and patterns of HMW DON vs. suspended PON in the surface NPSG suggest that sources and cycling of these two N reservoirs are surpisingly decoupled. Based on molecular δ15N signatures, we propose a new hypothesis that production of surface HMW DON is ultimately derived from subsurface nitrate, while PON in the mixed layer is strongly linked to N2 fixation and N recycling. In contrast, the comparative δ15NAA signatures of HMW DON vs. suspended PON in the mesopelagic also suggest a

  7. Transformation of nitrogenous fertilizers of surface and deep application in calcareous soil

    International Nuclear Information System (INIS)

    Zuo Dongfeng

    1990-01-01

    The transformations of 15 N labelled fertilizer N in calcareous soil were studied under greennhouse conditions. The experimental results indicate that the ratio of fixed ammonium is closely related to the methods of fertilizer application to the soil. When fertilizer N applied as deep dressing the fixation of nitrogen by clay minerals and microorganisms may markedly reduce the losses of nitrogen, but the amount of nitrogen fixed by the clay minerals and that by microorganisms showed negative correlation (r = -0.9185 ** ). The more the amount of fixed nitrogen by clay minerals, the less by microorganisms. No obvious interrelation between the residual utilization of urea, ammonium bicarbonate, ammonium sulfate and the ammount of nitrogen fixed by organisms can be observed, but the residual utilization of these fertilizers by the succeeding crop has been related to the total amount of mineral nitrogen

  8. Carbon and nitrogen burial in a plateau lake during eutrophication and phytoplankton blooms.

    Science.gov (United States)

    Huang, Changchun; Zhang, Linlin; Li, Yunmei; Lin, Chen; Huang, Tao; Zhang, Mingli; Zhu, A-Xing; Yang, Hao; Wang, Xiaolei

    2018-03-01

    Organic carbon (OC) buried in lake sediment is an important component of the global carbon cycle. The impact of eutrophication on OC burial in lakes should be addressed due to worldwide lake eutrophication. Fourteen 210 Pb- and 137 Cs-dated sediment cores taken in Dianchi Lake (China) in August 2006 (seven cores) and July 2014 (seven cores) were analyzed to evaluate the response of the organic carbon accumulation rate (OCAR) to eutrophication and algal blooms over the past hundred years. The mean value of OCAR before eutrophication occurred in 1979, 16.62±7.53 (mean value±standard deviation), increased to 54.33±27.29gm -2 yr -1 after eutrophication. It further increased to 61.98±28.94gm -2 yr -1 after algal blooms occurred (1989). The accumulation rate of organic nitrogen (ONAR) is coupled with OCAR. The high loss rate of OC and organic nitrogen (ON) leads to a long-term burial efficiency of only 10% and 5% of OC and ON. However, this efficiency can still lead to an increase in OCAR by a factor of 4.55 during algal blooms in Dianchi Lake. Dianchi Lake stored 1.26±0.32 Tg carbon and 0.071±0.018 Tg nitrogen, including 0.94±0.23 Tg OC and 0.32±0.14 Tg inorganic carbon, 0.066±0.018 Tg ON, 0.002±0.001 Tg nitrate nitrogen (NO 3 -N) and 0.003±0.001 Tg ammonium nitrogen (NH 4 -N) between 1900 and 2012. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Governing processes for reactive nitrogen compounds in the European atmosphere

    Directory of Open Access Journals (Sweden)

    O. Hertel

    2012-12-01

    Full Text Available Reactive nitrogen (Nr compounds have different fates in the atmosphere due to differences in the governing processes of physical transport, deposition and chemical transformation. Nr compounds addressed here include reduced nitrogen (NHx: ammonia (NH3 and its reaction product ammonium (NH4+, oxidized nitrogen (NOy: nitrogen monoxide (NO + nitrogen dioxide (NO2 and their reaction products as well as organic nitrogen compounds (organic N. Pollution abatement strategies need to take into account the differences in the governing processes of these compounds when assessing their impact on ecosystem services, biodiversity, human health and climate. NOx (NO + NO2 emitted from traffic affects human health in urban areas where the presence of buildings increases the residence time in streets. In urban areas this leads to enhanced exposure of the population to NOx concentrations. NOx emissions generally have little impact on nearby ecosystems because of the small dry deposition rates of NOx. These compounds need to be converted into nitric acid (HNO3 before removal through deposition is efficient. HNO3 sticks quickly to any surface and is thereby either dry deposited or incorporated into aerosols as nitrate (NO3. In contrast to NOx compounds, NH3 has potentially high impacts on ecosystems near the main agricultural sources of NH3 because of its large ground-level concentrations along with large dry deposition rates. Aerosol phase NH4+ and NO3 contribute significantly to background PM2.5 and PM10 (mass of aerosols with an aerodynamic diameter of less than 2.5 and 10 μm, respectively with an impact on radiation balance as well as potentially on human

  10. Microbial nitrogen transformation potential in surface run-off leachate from a tropical landfill

    International Nuclear Information System (INIS)

    Mangimbulude, Jubhar C.; Straalen, Nico M. van; Röling, Wilfred F.M.

    2012-01-01

    Highlights: ► Microbial nitrogen transformations can alleviate toxic ammonium discharge. ► Aerobic ammonium oxidation was rate-limiting in Indonesian landfill leachate. ►Organic nitrogen ammonification was most dominant. ► Anaerobic nitrate reduction and ammonium oxidation potential were also high. ► A two-stage aerobic-anaerobic nitrogen removal system needs to be implemented. - Abstract: Ammonium is one of the major toxic compounds and a critical long-term pollutant in landfill leachate. Leachate from the Jatibarang landfill in Semarang, Indonesia, contains ammonium in concentrations ranging from 376 to 929 mg N L −1 . The objective of this study was to determine seasonal variation in the potential for organic nitrogen ammonification, aerobic nitrification, anaerobic nitrate reduction and anaerobic ammonium oxidation (anammox) at this landfilling site. Seasonal samples from leachate collection treatment ponds were used as an inoculum to feed synthetic media to determine potential rates of nitrogen transformations. Aerobic ammonium oxidation potential ( −1 h −1 ) was more than a hundred times lower than the anaerobic nitrogen transformation processes and organic nitrogen ammonification, which were of the same order of magnitude. Anaerobic nitrate oxidation did not proceed beyond nitrite; isolates grown with nitrate as electron acceptor did not degrade nitrite further. Effects of season were only observed for aerobic nitrification and anammox, and were relatively minor: rates were up to three times higher in the dry season. To completely remove the excess ammonium from the leachate, we propose a two-stage treatment system to be implemented. Aeration in the first leachate pond would strongly contribute to aerobic ammonium oxidation to nitrate by providing the currently missing oxygen in the anaerobic leachate and allowing for the growth of ammonium oxidisers. In the second pond the remaining ammonium and produced nitrate can be converted by a

  11. Linking Global Patterns of Nitrogen Resorption with Nitrogen Mineralization During Litter Decomposition

    Science.gov (United States)

    Deng, M.; Liu, L.; Jiang, L.

    2017-12-01

    The nitrogen (N) cycle in terrestrial ecosystems is strongly influenced by resorption prior to litter fall and by mineralization after litter fall. Although both resorption and mineralization make N available to plants and are influenced by climate, their linkage in a changing environment remains largely unknown. Here, we show that, at the global scale, increasing N resorption efficiency has a negative effect on the N mineralization rate. With increasing temperature and precipitation, the increasing rate of the N cycle is closely related to the shift from the more conservative resorption pathway to an acquiring mineralization pathway. Furthermore, systems with faster N-cycle rates support plants with higher foliar N:P ratios and microbes with lower fungi:bacteria ratios. We highlight the importance of considering the geographic pattern and the dynamic interaction between N resorption and N mineralization, which should be incorporated into earth-system models to improve the simulation of nutrient constraints on ecosystem productivity.

  12. Origin and biochemical cycling of particulate nitrogen in the Mandovi estuary

    Digital Repository Service at National Institute of Oceanography (India)

    Fernandes, L

    for particulate organic carbon (POC) and particulate organic nitrogen (PON), delta sup(13) C sub(POC), total hydrolysable amino acid enantiomers (L- and D- amino acids) concentration and composition. Delta sup(13)C sub(POC) values were depleted (-32 to -25 ppt...

  13. Effect of Continuous Agriculture of Grassland Soils of the Argentine Rolling Pampa on Soil Organic Carbon and Nitrogen

    Directory of Open Access Journals (Sweden)

    Luis A. Milesi Delaye

    2013-01-01

    Full Text Available Long-term soil organic carbon (SOC and soil organic nitrogen (SON following cultivation of grassland soils (100/120-year tillage (T + 20/30-year no tillage (NT of the Rolling Pampa were studied calibrating the simple AMG model coupled with the natural 13C abundance measurements issued from long-term experiments and validating it on a data set obtained by a farmer survey and by long-term NT experiments. The multisite survey and NT trials permitted coverage of the history of the 140 years with agriculture. The decrease in SOC and SON storage that occurred during the first twenty years by a loss through biological activity was 27% for SOC and 32% for SON. The calibrated model described the SOC storage evolution very well and permitted an accurate simultaneous estimation of their three parameters. The validated model simulated well SOC and SON evolution. Overall, the results analyzed separately for the T and NT period indicated that the active pool has a rapid turnover (MRT ~9 and 13 years, resp. which represents 50% of SOC in the native prairie soil and 20% of SOC at equilibrium after NT period. NT implementation on soils with the highest soil organic matter reserves will continue to decrease (17% for three decades later under current annual addition.

  14. Characterization of free nitrogen fixing bacteria of the genus Azotobacter in organic vegetable-grown Colombian soils

    Directory of Open Access Journals (Sweden)

    Diego Javier Jiménez

    2011-09-01

    Full Text Available With the purpose of isolating and characterizing free nitrogen fixing bacteria (FNFB of the genus Azotobacter, soil samples were collected randomly from different vegetable organic cultures with neutral pH in different zones of Boyacá-Colombia. Isolations were done in selective free nitrogen Ashby-Sucrose agar obtaining a recovery of 40%. Twenty four isolates were evaluated for colony and cellular morphology, pigment production and metabolic activities. Molecular characterization was carried out using amplified ribosomal DNA restriction analysis (ARDRA. After digestion of 16S rDNA Y1-Y3 PCR products (1487pb with AluI, HpaII and RsaI endonucleases, a polymorphism of 16% was obtained. Cluster analysis showed three main groups based on DNA fingerprints. Comparison between ribotypes generated by isolates and in silico restriction of 16S rDNA partial sequences with same restriction enzymes was done with Gen Workbench v.2.2.4 software. Nevertheless, Y1-Y2 PCR products were analysed using BLASTn. Isolate C5T from tomato (Lycopersicon esculentum grown soils presented the same in silico restriction patterns with A. chroococcum (AY353708 and 99% of similarity with the same sequence. Isolate C5CO from cauliflower (Brassica oleracea var. botrytis grown soils showed black pigmentation in Ashby-Benzoate agar and high similarity (91% with A. nigricans (AB175651 sequence. In this work we demonstrated the utility of molecular techniques and bioinformatics tools as a support to conventional techniques in characterization of the genus Azotobacter from vegetable-grown soils.

  15. Nitrogen-fixing symbiosis inferred from stable isotope analysis of fossil tree rings from the Oligocene of Ethiopia

    Science.gov (United States)

    Erik L. Gulbranson; Bonnie F. Jacobs; William C. Hockaday; Michael C. Wiemann; Lauren A. Michel; Kaylee Richards; John W. Kappelman

    2017-01-01

    The acquisition of reduced nitrogen (N) is essential for plant life, and plants have developed numerous strategies and symbioses with soil microorganisms to acquire this form of N. The evolutionary history of specific symbiotic relationships of plants with soil bacteria, however, lacks evidence from the fossil record confirming these mutualistic relationships. Here we...

  16. The complete genome of Zunongwangia profunda SM-A87 reveals its adaptation to the deep-sea environment and ecological role in sedimentary organic nitrogen degradation

    Directory of Open Access Journals (Sweden)

    Zhou Bai-Cheng

    2010-04-01

    Full Text Available Abstract Background Zunongwangia profunda SM-A87, which was isolated from deep-sea sediment, is an aerobic, gram-negative bacterium that represents a new genus of Flavobacteriaceae. This is the first sequenced genome of a deep-sea bacterium from the phylum Bacteroidetes. Results The Z. profunda SM-A87 genome has a single 5 128 187-bp circular chromosome with no extrachromosomal elements and harbors 4 653 predicted protein-coding genes. SM-A87 produces a large amount of capsular polysaccharides and possesses two polysaccharide biosynthesis gene clusters. It has a total of 130 peptidases, 61 of which have signal peptides. In addition to extracellular peptidases, SM-A87 also has various extracellular enzymes for carbohydrate, lipid and DNA degradation. These extracellular enzymes suggest that the bacterium is able to hydrolyze organic materials in the sediment, especially carbohydrates and proteinaceous organic nitrogen. There are two clustered regularly interspaced short palindromic repeats in the genome, but their spacers do not match any sequences in the public sequence databases. SM-A87 is a moderate halophile. Our protein isoelectric point analysis indicates that extracellular proteins have lower predicted isoelectric points than intracellular proteins. SM-A87 accumulates organic osmolytes in the cell, so its extracelluar proteins are more halophilic than its intracellular proteins. Conclusion Here, we present the first complete genome of a deep-sea sedimentary bacterium from the phylum Bacteroidetes. The genome analysis shows that SM-A87 has some common features of deep-sea bacteria, as well as an important capacity to hydrolyze sedimentary organic nitrogen.

  17. Mechanisms of realization of THz-waves of nitrogen oxide occurrence physiological effects

    Directory of Open Access Journals (Sweden)

    Vyacheslav F. Kirichuk

    2013-11-01

    Full Text Available In this review, there is generalized material of many experimental researches in interaction of THz-waves molecular emission and absorption spectrum (MEAS of nitrogen oxide occurrence with bioobjects. Thrombocytes and experimental animals were used as bioobjects. The experiments let indicate changes caused by THz-waves: at the cellular, tissular, system, organismic levels. There are all data of changes in physiological mechanisms of reglations at all levels: autocrine, paracrine, endocrine and nervous. There is a complex overview of experimental material firstly performed in the article. There had been shown that the effect of THz-waves of the given occurrence is realized by the changed activity of nitroxidergic system. It had been proved that THz-waves of nitrogen oxide occurrence can stimulate nitrogen oxide producing in organs and tissues in condition of its low concentration. Possible mechanisms of antiaggregative effect of the given waves had been described. There had been shown the possibility of regulating of vascular tone and system hemodynamics with the help of the studying these frequencies. The represented data of lipid peroxidation and enzymatic and nonenzymatic components of organism system under the influence of THz-waves of nitrogen oxide occurrence in stress conditions. Besides, there were shown changes of stress-regulating system activity and in concentration of important mediators - catecholamines and glucocorticosteroids. These data let characterize mechanism of realization of THz-waves basic effects. The research had shown the possibility of THz-waves of nitrogen oxide occurrence usage as a method of natural physiological noninvasive regulation of significant organism functions.

  18. Simulation of Nitrogen and Phosphorus Losses in Loess Landforms of Northern Iran

    Science.gov (United States)

    Kiani, F.; Behtarinejad, B.; Najafinejad, A.; Kaboli, R.

    2018-02-01

    Population growth, urban expansion and intensive agriculture and thus increased use of fertilizers aimed at increasing the production capacity cause extensive loss of nutrients such as nitrogen and phosphorus and lead to reduced quality of soil and water. Therefore, identification of nutrients in the soil and their potential are essential. The aim of this study was to evaluate the capability of the SWAT model in simulating runoff, sediment, and nitrogen and phosphorus losses in Tamer catchment. Runoff and sediment measured at Tamar gauging station were used to calibrate and validate the model. Simulated values were generally consistent with the data observed during calibration and validation period (0.6 organic nitrogen and nitrate and soluble phosphorus and mineral phosphorus attached to the sediments showed the greatest sensitivity to the type of land use. Results also showed that the average nutrient loss caused by erosion in this catchment, was 6.99 kg/ha for nitrogen, 0.35 kg/ha for nitrate, 1.3 kg/ha for organic phosphorus, 0.015 kg/ha for soluble phosphorus, and 0.45 kg/ha for mineral phosphorus.

  19. Spatial Variation of Soil Organic Carbon and Total Nitrogen in the Coastal Area of Mid-Eastern China.

    Science.gov (United States)

    Xu, Yan; Pu, Lijie; Liao, Qilin; Zhu, Ming; Yu, Xue; Mao, Tianying; Xu, Chenxing

    2017-07-14

    Soils play an important role in sequestrating atmospheric CO₂. Coastal tidal flats have been intensively reclaimed for food security and living spaces worldwide. We aimed to identify the changes of soil organic carbon (SOC) and total nitrogen (TN) following coastal reclamation and their spatial variation in the coastal area of mid-Eastern China to provide information for coastal cropland management. We measured SOC and TN of 463 soil samples in the coastal plain of mid-Eastern China. The results showed that SOC and TN increased highly from the uncultivated coastal tidal flat (2.49 g·kg -1 and 0.21 g·kg -1 , respectively) to the cropland (10.73 g·kg -1 and 1.3 g·kg -1 , respectively). After long-term cultivation, SOC and TN in the old farmland (12.98 g·kg -1 and 1.49 g·kg -1 , respectively) were greater than those in the young farmland (5.76 g·kg -1 and 0.86 g·kg -1 , respectively). The density of SOC in the uncultivated coastal tidal flat, young farmland, and old farmland were 0.68 kg·C·m -2 , 1.52 kg·C·m -2 , and 3.31 kg·C·m -2 , respectively. The density of TN in the uncultivated coastal tidal flat, young farmland and old farmland were 0.05 kg·N·m -2 , 0.23 kg·N·m -2 , and 0.38 kg·N·m -2 , respectively. The C/N (11.17) in the uncultivated coastal tidal flat was highest comparing to that in the young and old farmland due to lower nitrogen. The C/N increased from 6.78 to 8.71 following cultivation. Reclaimed coastal tidal flats had high carbon and nitrogen sequestration potential that not only mitigated the threat of global warming, but also improved soil fertility for crop production. Coastal management of cropland should consider the spatial distribution of SOC and TN to improve ecosystem services of coastal soils.

  20. Carbon and nitrogen - The key to biological activity, diversity and productivity in a Haplic Acrisol

    International Nuclear Information System (INIS)

    Okae-Anti, Daniel; Torkpo, Addison; Kankam-Boadu, Maryross; Agyei Frimpong, Kwame; Obuobi, Daniel

    2004-10-01

    Soil organic matter is important because it impacts all soil quality functions. Much less information is available on the dynamics of the residual carbon and nitrogen content and their distribution in continuously cropped arable fields. We described the values of the soil properties, pH, moisture content, organic carbon and total nitrogen considering them to be random variables. We treated their spatial variation as a function of the distance between observations within the study site, a continuously-cropped field dominated by Haplic Acrisols. We discussed the nature and structure of the modeled functions, the semivariograms, and interpreted these in the light of the potential of these soils to sustain agricultural productivity. At these sites there had been no conversion of natural forests to agriculture so the paper does not discuss soil carbon storage for either the regional or global storage. All the properties studied showed spatial non-stationarity for the distances covered, indicating that the variance between pairs of observations increased as separating distances also increased. pH, moisture content and total nitrogen were fitted with the power model whereas the linear model best fitted organic carbon. Total nitrogen had the least nugget variance and pH the highest estimated exponent, α, from the power equations. The soils are highly variable in terms of input or return of organic residue to provide a sink for carbon and nitrogen and the breakdown of these materials as affected by pH, moisture availability and microorganisms. (author)

  1. Carbon and nitrogen - The key to biological activity, diversity and productivity in a Haplic Acrisol

    Energy Technology Data Exchange (ETDEWEB)

    Okae-Anti, Daniel [Department of Soil Science, School of Agriculture, University of Cape Coast, Cape Coast (Ghana); [Abdus Salam International Centre for Theoretical Physics, Trieste (Italy)] E-mail: dokaent@yahoo.co.uk; Torkpo, Addison; Kankam-Boadu, Maryross; Agyei Frimpong, Kwame [Department of Soil Science, School of Agriculture, University of Cape Coast, Cape Coast (Ghana); Obuobi, Daniel [Department of Computer Science and Information Technology, University of Cape Coast, Cape Coast (Ghana)

    2004-10-01

    Soil organic matter is important because it impacts all soil quality functions. Much less information is available on the dynamics of the residual carbon and nitrogen content and their distribution in continuously cropped arable fields. We described the values of the soil properties, pH, moisture content, organic carbon and total nitrogen considering them to be random variables. We treated their spatial variation as a function of the distance between observations within the study site, a continuously-cropped field dominated by Haplic Acrisols. We discussed the nature and structure of the modeled functions, the semivariograms, and interpreted these in the light of the potential of these soils to sustain agricultural productivity. At these sites there had been no conversion of natural forests to agriculture so the paper does not discuss soil carbon storage for either the regional or global storage. All the properties studied showed spatial non-stationarity for the distances covered, indicating that the variance between pairs of observations increased as separating distances also increased. pH, moisture content and total nitrogen were fitted with the power model whereas the linear model best fitted organic carbon. Total nitrogen had the least nugget variance and pH the highest estimated exponent, {alpha}, from the power equations. The soils are highly variable in terms of input or return of organic residue to provide a sink for carbon and nitrogen and the breakdown of these materials as affected by pH, moisture availability and microorganisms. (author)

  2. Protein as a sole source of nitrogen for in vitro grown tobacco plantlets

    Czech Academy of Sciences Publication Activity Database

    Synková, Helena; Hýsková, V.; Garčeková, K.; Křížová, S.; Ryšlavá, H.

    2016-01-01

    Roč. 60, č. 4 (2016), s. 635-644 ISSN 0006-3134 Institutional support: RVO:61389030 Keywords : glutamate-dehydrogenase * inorganic nitrogen * nitrate transport * organic nitrogen * amino-acids * metabolism * seedlings * leaves * roots * assimilation * ammonium * casein * chlorophyll fluorescence * nitrate * photosynthesis Subject RIV: EF - Botanics Impact factor: 1.551, year: 2016

  3. Epithelioid angiomatosis in the acquired immunodeficiency syndrome: morphology and differential diagnosis

    NARCIS (Netherlands)

    Walford, N.; van der Wouw, P. A.; Das, P. K.; ten Velden, J. J.; Hulsebosch, H. J.

    1990-01-01

    A rare vascular proliferation found as a skin lesion in patients suffering from the acquired immunodeficiency syndrome and sometimes referred to as epithelioid angiomatosis is believed to be a manifestation of infection by the cat scratch bacillus or a related organism. We describe the histological

  4. A case of community-acquired Acinetobacter baumannii meningitis - has the threat moved beyond the hospital?

    NARCIS (Netherlands)

    Lowman, Warren; Kalk, Thomas; Menezes, Colin N.; John, Melanie A.; Grobusch, Martin P.

    2008-01-01

    Acinetobacter baumannii is a prolific nosocomial pathogen renowned for its multidrug-resistant nature. We report a case of community-acquired meningitis due to A. baumannii. The case highlights the potential pathogenicity of this organism and raises concerns that this highly adaptable organism may

  5. Herbicides effect on the nitrogen fertilizer assimilation by sensitive plants

    International Nuclear Information System (INIS)

    Ladonin, V.F.; Samojlov, L.N.

    1976-01-01

    It has been established in studying the effect of herbicides on pea plants that the penetration of the preparations into the tissues of leaves and stems results in a slight increase of the rate of formation of dry substance in the leaves of the treated plants within 24 hours after treatment as compared with control, whereas in the last period of the analysis the herbicides strongly inhibit the formation of dry substance in leaves. The applied herbicide doses have resulted in drastic changes of the distribution of the plant-assimilated nitrogen between the protein and non-protein fractions in the leaves and stems of pea. When affected by the studied herbicides, the fertilizer nitrogen supply to the pea plants changes and the rate of the fertilizer nitrogen assimilation by the plants varies noticeably. The regularities of the fertilizer nitrogen inclusion in the protein and non-protein nitrogen compounds of the above-ground pea organs have been studied

  6. Ammonia nitrogen removal from aqueous solution by local agricultural wastes

    Science.gov (United States)

    Azreen, I.; Lija, Y.; Zahrim, A. Y.

    2017-06-01

    Excess ammonia nitrogen in the waterways causes serious distortion to environment such as eutrophication and toxicity to aquatic organisms. Ammonia nitrogen removal from synthetic solution was investigated by using 40 local agricultural wastes as potential low cost adsorbent. Some of the adsorbent were able to remove ammonia nitrogen with adsorption capacity ranging from 0.58 mg/g to 3.58 mg/g. The highest adsorption capacity was recorded by Langsat peels with 3.58 mg/g followed by Jackfruit seeds and Moringa peels with 3.37 mg/g and 2.64 mg/g respectively. This experimental results show that the agricultural wastes can be utilized as biosorbent for ammonia nitrogen removal. The effect of initial ammonia nitrogen concentration, pH and stirring rate on the adsorption process were studied in batch experiment. The adsorption capacity reached maximum value at pH 7 with initial concentration of 500 mg/L and the removal rate decreased as stirring rate was applied.

  7. Investigation of nitrogen transformations in a southern California constructed wastewater treatment wetland

    Science.gov (United States)

    Sartoris, J.J.; Thullen, J.S.; Barber, L.B.; Salas, D.E.

    2000-01-01

    A 9.9-ha combined habitat and wastewater treatment demonstration wetland was constructed and planted in the summer of 1994, at Eastern Municipal Water District’s (EMWD) Hemet/San Jacinto Regional Water Reclamation Facility (RWRF) in southern California. From January 1996 through September 1997, the marsh–pond–marsh wetland system was operated to polish an average of 3785 m3 d−1 (1×106 gal day−1) of secondary-treated effluent from the RWRF. Nitrogen removal was a major objective of this wetland treatment. Weekly inflow/outflow water quality monitoring of the wetland was supplemented with biannual, 45-station synoptic surveys within the system to determine internal distribution patterns of the nitrogen species (total ammonia, nitrite, nitrate, and organic nitrogen), total organic carbon (TOC), and ultraviolet absorbance at 254 nm (UV254). Synoptic surveys were carried out during May 22 and September 17, 1996, and May 6 and September 25, 1997 and the results were mapped using the ARC/INFO processing package and inverse distance weighted mathematical techniques. Distribution patterns of the various nitrogen species, TOC, and UV254 within the wetland indicate that the nitrogen dynamics of the system are influenced both by variations in treatment plant loading, and, increasingly, by the degree of coverage and maturity of the emergent vegetation.

  8. Differential Sensitivity of Nitrogen-Fixing, Azolla Microphylla to ...

    African Journals Online (AJOL)

    Michael Horsfall

    photosynthesizing and nitrogen fixing micro-organisms contributing significantly ... Pesticide treatment with increasing doses accelerated the formation of reactive ... increased amount of proline in all the insecticide treated concentrations was .... monitoring the nitrite formation from ... centrifuged for 10 minutes in high speed.

  9. Nitrogen Transformation in a Long-Term Maize-Bean cropping system Amended with Repeated Applications of Organic and Inorganic Nutrient Sources

    International Nuclear Information System (INIS)

    Kibunja, C.N.

    2002-01-01

    Nitrogen is the most limiting element to agriculture productivity and inorganic fertilisers are too expensive for mos small-scale farmers in Kenya. The element is also susceptible to loss through leaching. There is need to improve the rate of field recoveries of applied nitrogen by the crops and the build-up of soil organic N reserves, which contribute to long term soil fertility. The long-term field plots at the National Agriculture Research Laboratories crop rotation and organic/inorganic management strategies. It was set up in 1976 to investigate the effect of continuous application of farmyard manure, crop residues and NP fertilisers on soil chemical properties and yields in a maize-bean rotation system. The main treatments are levels of inorganic fertilisers (N and P), 3 rates of manure application with or without stover retention. maize (Zea mays L.) hybrid '512' is planted at the start of the long rains season (March-Sept) while beans (Phaseolus vulgaris L) cultivar 'Mwezi moja' are planted during the following season (Oct-Jan) on residual fertiliser inputs. both plants are planted as mono-crops. The trial was used to follow the movement and distribution of available mineral N from 0 to 300 cm down the soil profile for a period of 2 years. Labelled 15 N fertiliser (10% a.e) as Calcium Ammonium Nitrate (CAN) at the rate 60 kg N ha -1 yr -1 was applied to maize in 1*2 m 2 micro-plots. Soils were sampled at various levels upto 3m, three times per season for two years and analyzed for available mineral N (NH 4 + N +No 3 - -N) and total nitrogen. The result of the first year indicated that the prevalent form of inorganic N found in the soil was in the form NO 3 - N. A substantial amount of NO 3 - N (1045-23.3 mg N kg soil - 1) was found in the plough layer (20 cm) of the soil at the beginning of the season. The concentration of NO 3 - -N in the first one metre decreased with depth as the crop matured due to plant uptake and loss through leaching. A bulge of

  10. Anaerobic nitrogen turnover by sinking diatom aggregates at varying ambient oxygen levels

    DEFF Research Database (Denmark)

    Stief, Peter; Kamp, Anja; Thamdrup, Bo

    2016-01-01

    nitrate supply. Sinking diatom aggregates can contribute directly to fixed-nitrogen loss in low-oxygen environments in the ocean and vastly expand the ocean volume in which anaerobic nitrogen turnover is possible, despite relatively high ambient oxygen levels. Depending on the extent of intracellular......In the world’s oceans, even relatively low oxygen levels inhibit anaerobic nitrogen cycling by free-living microbes. Sinking organic aggregates, however, might provide oxygen-depleted microbial hotspots in otherwise oxygenated surface waters. Here, we show that sinking diatom aggregates can host...

  11. Modelling and mapping of spatial differentiated impacts of nitrogen input to ecosystems within the framework of the UNECE-Convention of Air Pollution Prevention. Part IV. The impact of anthropogenous nitrogen deposition on the diversity and functionality of soil organisms; Modellierung und Kartierung raeumlich differenzierter Wirkungen von Stickstoffeintraegen in Oekosysteme im Rahmen der UNECE-Luftreinhaltekonvention. Teilbericht IV. Der Einfluss anthropogener Stickstoffeintraege auf die Diversitaet und Funktion von Bodenorganismen

    Energy Technology Data Exchange (ETDEWEB)

    Birkhofer, Klaus; Wolters, Volkmar [Giessen Univ. (Germany). Inst. fuer Tieroekologie

    2010-03-15

    Semi-natural ecosystems are exposed to high atmospheric deposition for decades. In contrary to sulphur deposition which could be significantly reduced due to international conventions on air pollution prevention during the last decades, deposition of both, reduced and oxidized nitrogen is still on a very high level in average 40 kg N ha{sup -1} yr{sup -1} in forest ecosystems in Germany. The FuE-Project ''Modelling and mapping of spatial differentiated impacts of nitrogen input to ecosystems within the framework of the UNECE - Convention of Air Pollution Prevention'' was jointly conducted by 4 partner institutions and studied impacts of atmospheric nitrogen deposition and climate change on physicochemical properties of forest soils, nutrient storage and nutrient export (Karlsruhe Research Centre, IMK-IFU) as well as biodiversity of vegetation (OeKO-DATA and Waldkundeinstitut Eberswalde) and soil organisms (Giessen University). Work carried out at Institute of Animal Ecology (Justus Liebig University Giessen) focused on a Meta-Analysis about the impact of N-deposition on the diversity of soil organisms. Based on 1457 relevant publications soil organisms are threatened most in semi-natural ecosystems and experimental increases of nitrogen reduced soil organism diversity in forest ecosystems. Fungi communities were affected most seriously, with a strong decline of diversity in Mycorrhiza communities in response to experimental nitrogen addition. If N-deposition generally affects soil fauna and bacterial communities remains unclear, as the database is either too small or as results are not unequivocal. Those limitations are also present summarizing the impact of N-deposition on functions and services provided by soil organisms, the current literature database does not provide enough results to predict the impact of N-deposition on decomposition processes and nutrient cycling in soils. (orig.)

  12. Modelling and mapping of spatial differentiated impacts of nitrogen input to ecosystems within the framework of the UNECE-Convention of Air Pollution Prevention. Part IV. The impact of anthropogenous nitrogen deposition on the diversity and functionality of soil organisms; Modellierung und Kartierung raeumlich differenzierter Wirkungen von Stickstoffeintraegen in Oekosysteme im Rahmen der UNECE-Luftreinhaltekonvention. Teilbericht IV. Der Einfluss anthropogener Stickstoffeintraege auf die Diversitaet und Funktion von Bodenorganismen

    Energy Technology Data Exchange (ETDEWEB)

    Birkhofer, Klaus; Wolters, Volkmar [Giessen Univ. (Germany). Inst. fuer Tieroekologie

    2010-03-15

    Semi-natural ecosystems are exposed to high atmospheric deposition for decades. In contrary to sulphur deposition which could be significantly reduced due to international conventions on air pollution prevention during the last decades, deposition of both, reduced and oxidized nitrogen is still on a very high level in average 40 kg N ha{sup -1} yr{sup -1} in forest ecosystems in Germany. The FuE-Project ''Modelling and mapping of spatial differentiated impacts of nitrogen input to ecosystems within the framework of the UNECE - Convention of Air Pollution Prevention'' was jointly conducted by 4 partner institutions and studied impacts of atmospheric nitrogen deposition and climate change on physicochemical properties of forest soils, nutrient storage and nutrient export (Karlsruhe Research Centre, IMK-IFU) as well as biodiversity of vegetation (OeKO-DATA and Waldkundeinstitut Eberswalde) and soil organisms (Giessen University). Work carried out at Institute of Animal Ecology (Justus Liebig University Giessen) focused on a Meta-Analysis about the impact of N-deposition on the diversity of soil organisms. Based on 1457 relevant publications soil organisms are threatened most in semi-natural ecosystems and experimental increases of nitrogen reduced soil organism diversity in forest ecosystems. Fungi communities were affected most seriously, with a strong decline of diversity in Mycorrhiza communities in response to experimental nitrogen addition. If N-deposition generally affects soil fauna and bacterial communities remains unclear, as the database is either too small or as results are not unequivocal. Those limitations are also present summarizing the impact of N-deposition on functions and services provided by soil organisms, the current literature database does not provide enough results to predict the impact of N-deposition on decomposition processes and nutrient cycling in soils. (orig.)

  13. Acquired neuropathies.

    Science.gov (United States)

    Lozeron, Pierre; Trocello, Jean-Marc; Kubis, Nathalie

    2013-09-01

    Acquired neuropathies represent most of the neuropathies encountered in clinical practice. Hundreds of causes have been identified even though up to 41% of patients are still classified as idiopathic (Rajabally and Shah in J Neurol 258:1431-1436, 1). Routine evaluation relies on comprehensive medical history taking, clinical examination, nerve conduction studies and laboratory tests. Other investigations such as nerve biopsy or nerve or muscle imaging are performed in specific settings. This review focuses on recent advances in acquired neuropathies.

  14. Localization of Haemophilus ducreyi in naturally acquired chancroidal ulcers.

    Science.gov (United States)

    Bauer, Margaret E; Townsend, Carisa A; Ronald, Allan R; Spinola, Stanley M

    2006-08-01

    Haemophilus ducreyi causes the sexually transmitted genital ulcer disease chancroid. In human inoculation experiments, bacteria colocalize with neutrophils and macrophages but remain extracellular. The organism also colocalizes with collagen and fibrin but not with keratinocytes, fibroblasts, laminin, or fibronectin. These relationships are established by 48 h postinoculation and persist through the pustular stage of disease. To extend these observations to the ulcerative stage of disease, and to compare results in the human model with those of natural disease, we obtained biopsies from patients with naturally acquired chancroid. All ulcers were culture positive for H. ducreyi and histologically very similar to pustules from the human model. Staining with H. ducreyi-specific monoclonal antibodies demonstrated H. ducreyi within 5 biopsies. The organism was chiefly found within the granulocytic infiltrate of the ulcer. Dual staining for H. ducreyi and eukaryotic tissue components showed that H. ducreyi colocalized with neutrophils and fibrin at the ulcerative stage of disease. No bacteria were associated with keratinocytes, fibroblasts, or collagen. Overall, these findings are consistent with results from the human model. This is the first reported study to localize bacteria specifically identified as H. ducreyi within naturally acquired chancroid.

  15. Competition between roots and microorganisms for nitrogen: mechanisms and ecological relevance

    Science.gov (United States)

    Kuzyakov, Yakov; Xu, Xingliang

    2014-05-01

    Demand of all living organisms on the same nutrients forms the basis for interspecific competition between plants and microorganisms in soils. This competition is especially strong in the rhizosphere. To evaluate competitive and mutualistic interactions between plants and microorganisms and to analyse ecological consequences of these interactions, we analysed 424 data pairs from 41 15N-labelling studies that investigated 15N redistribution between roots and microorganisms. Calculated Michaelis-Menten kinetics based on Km (Michaelis constant) and Vmax (maximum uptake capacity) values from 77 studies on the uptake of nitrate, ammonia, and amino acids by roots and microorganisms clearly showed that, shortly after nitrogen (N) mobilization from soil organic matter and litter, microorganisms take up most N. Lower Km values of microorganisms suggest that they are especially efficient at low N concentrations, but can also acquire more N at higher N concentrations (Vmax) compared with roots. Because of the unidirectional flow of nutrients from soil to roots, plants are the winners for N acquisition in the long run. Therefore, despite strong competition between roots and microorganisms for N, a temporal niche differentiation reflecting their generation times leads to mutualistic relationships in the rhizosphere. This temporal niche differentiation is highly relevant ecologically because it: protects ecosystems from N losses by leaching during periods of slow or no root uptake; continuously provides roots with available N according to plant demand; and contributes to the evolutionary development of mutualistic interactions between roots and microorganisms.

  16. Influence of nitrogen sources on amino acid production by aspergillus niger

    International Nuclear Information System (INIS)

    Almani, F.; Dahot, M.U.

    2007-01-01

    The effect of different organic and inorganic nitrogen sources in 0.1% and 0.2% concentration on the production of amino acid was studied using a wild strain of Aspergillus niger. The rate of amino acid biosynthesis was found to be higher when 0.2% corn steep liquor was incorporated in the mineral medium. It was concluded from the study that the amino acid synthesis by wild strain depends not only on the nature and type of nitrogen sources used but the concentration of nitrogen source also play an important in the accumulation of free amino acids in the medium. (author)

  17. Nitrogen in biogenic and abiogenic minerals from Paleozoic black shales: an NRA study

    International Nuclear Information System (INIS)

    Gallien, J.-P.; Orberger, B.; Daudin, L.; Pinti, D.L.; Pasava, J.

    2004-01-01

    Nuclear reaction analyses were performed on feldspars, quartz, abiogenic and biogenic sulfides and phosphates in organic matter-rich black shales. The goal was to study N-fractionation in black shales during diagenesis and contemporaneous hydrothermalism. Light elements (N, C) together with heavier ones (K, Ca, Ni, Fe, Zn) were analyzed by PIXE. Due to the heterogeneous sample composition, a scanning mode was used. Each phase was identified before extracting the corresponding spectra for quantification. Six phases, carrying nitrogen (and C), have been identified. K-feldspars are the richest in N (1.0-2.4 wt.%), followed by organic carbon (0.67 wt.%). Quartz, biogenic and abiogenic sulfides and phosphates contain N in the range of 0.56-1.08 wt.%. The present N-distribution in the black shales is explained by a two-step nitrogen release: (1) organic matter decay produces N, P, S nutriments for the development of a hydrothermal vent fauna and (2) biomineralization of this vent fauna liberates nitrogen to early diagenetic fluids. The extreme N enrichment of feldspars is related to its crystal structure, favoring the potassium substitution by NH 4 + , and the N-uptake during organic matter replacement

  18. Fungal endophyte Phomopsis liquidambari affects nitrogen transformation processes and related microorganisms in the rice rhizosphere

    Directory of Open Access Journals (Sweden)

    Bo eYang

    2015-09-01

    Full Text Available The endophytic fungus Phomopsis liquidambari performs an important ecosystem service by assisting its host with acquiring soil nitrogen (N, but little is known regarding how this fungus influences soil N nutrient properties and microbial communities. In this study, we investigated the impact of P. liquidambari on N dynamics,the abundance and composition of N cycling genes in rhizosphere soil treated with three levels of N (urea. Ammonia-oxidizing archaea (AOA, ammonia-oxidizing bacteria (AOB and diazotrophs were assayed using quantitative real-time polymerase chain reaction and denaturing gradient gel electrophoresis at four rice growing stages (S0: before planting, S1: tillering stage, S2: grain filling stage, and S3: ripening stage. A significant increase in the available nitrate and ammonium contents was found in the rhizosphere soil of endophyte-infected rice under low N conditions. Moreover, P. liquidambari significantly increased the potential nitrification rates (PNR, affected the abundance and community structure of AOA, AOB and diazotrophs under low N conditions in the S1 and S2 stages. The root exudates were determined due to their important role in rhizosphere interactions. P. liquidambari colonization altered the exudation of organic compounds by rice roots and P. liquidambari increased the concentration of soluble saccharides, total free amino acids and organic acids

  19. Catchment hydrochemical processes controlling acidity and nitrogen in forest stream water

    International Nuclear Information System (INIS)

    Foelster, Jens

    2001-01-01

    Atmospheric deposition of air pollutants has been a severe threat to terrestrial and forest ecosystems for several decades. In Sweden sulphur deposition has caused acidification of soils and runoff, while nitrogen deposition only had a minor or local impact on runoff quality so far. During the last three decades, emission control has caused a decline in sulphur deposition, whereas nitrogen deposition on the other hand, has continued to increase to a rate several times above the natural background level. Long term changes in runoff acidity and nitrogen chemistry after these changes in deposition are of great concern. Monitoring of small, well-defined catchments including hydrochemistry of precipitation, soil and runoff, is a valuable tool for addressing this concern. When interpreting runoff data from such sites, the near-stream zone has been identified to be of crucial importance. The main objective for this thesis was to explain how catchment processes were related to short-term variation and long-term trends in the hydrochemistry of forest stream water. The field work was conducted on the strongly acidified and nitrogen limited Kindla catchment, with a special emphasis on the relationship between the near-stream zone and both stream acidity and nitrogen leaching. Furthermore, time series of hydrochemistry in forest stream water from 13 catchments were analysed for changes in acidity and nitrogen leaching. In three of these sites, soil water from E- and B-horizons was also analysed with regards to these questions. The investigations revealed that the near-stream zone was a net source of acidity in runoff at Kindla due to leaching of organic acids, although this contribution was overshadowed by sulphate from upland soils and deposition. The near-stream zone was also the main source for both organic nitrogen and nitrate to the stream, but the leaching rate was low, especially for inorganic nitrogen. In the 13 reference streams, sulphate concentrations declined in

  20. Microbial incorporation of nitrogen in stream detritus

    Science.gov (United States)

    Diane M. Sanzone; Jennifer L. Tank; Judy L. Meyer; Patrick J. Mulholland; Stuart E.G. Findlay

    2001-01-01

    We adapted the chloroform fumigation method to determine microbial nitrogen (N) and microbial incorporation of 15N on three common substrates [leaves, wood and fine benthic organic matter (FBOM)] in three forest streams. We compared microbial N and 15 content of samples collected during a 6-week15N-NH...

  1. Determination of Meteorite Porosity Using Liquid Nitrogen

    Science.gov (United States)

    Kohout, T.; Kletetschka, G.; Pesonen, L. J.; Wasilewski, P. J.

    2005-01-01

    We introduce a new harmless method for porosity measurement suitable for meteorite samples. The method is a modification of the traditional Archimedean method based on immersion of the samples in a liquid medium like water or organic liquids. In our case we used liquid nitrogen for its chemically inert characteristics.

  2. Nitrogen availability for nitrogen fixing cyanobacteria upon growth ...

    African Journals Online (AJOL)

    The filamentous cyanobacterium Nostoc PCC 7120 is able to convert dinitrogen to ammonia in the absence of combined nitrogen. The expression of 20% of coding sequences from all major metabolic categories was examined in nitrogen fixing and non-nitrogen fixing growth conditions. The expression data were correlated ...

  3. Carbon and nitrogen isotopic analysis of coral-associated nitrogen in rugose corals of the Middle Devonian, implications for paleoecology and paleoceanography.

    Science.gov (United States)

    Hickey, A. N.; Junium, C. K.; Uveges, B. T.; Ivany, L. C.; Martindale, R. C.

    2017-12-01

    The Middle Devonian Appalachian Basin of Central New York hosts an extraordinary diversity of well-studied fossil invertebrates within the shallow marine sequences of the Givetian Age, Hamilton Group. Of particular interest are a series of aerially expansive coral beds with diverse assemblages of rugose corals. These well-preserved specimens provide an excellent opportunity to test the feasibility of δ15N and δ13C analyses in rugose corals in an effort to resolve outstanding issues regarding their paleoecology and ontogeny as well environmental dynamics within the Devonian Appalachian Basin. Here we present carbon and nitrogen isotope analyses of the rugose corals Heliophyllum and Siphonophrentis from the Joshua Coral Bed. Corals were cleaned of the host calcareous shale and sonicated sequentially in deionized water and methanol, and then oxidatively cleaned. Cleaned corals were sectioned into 0.5cm billets to obtain enough residual organic material for analysis. The organic content of the corals is low, but nanoEA allows for serial sampling of 5-10 samples per coral. Coral sections were decarbonated and the residual organic material is filtered and dried prior to analysis. Coral organic matter is analyzed in triplicate using nanoEA, which is a cryo-trapping, capillary focusing technique for δ15N and δ13C. The δ15N of organic matter extracted from rugose corals is, on average, enriched by 2-4‰ relative to the bulk nitrogen in the host rock. As well, the δ13C of organic carbon from the corals is 13C-enriched relative to the bulk rock, but to a lesser degree (no more than 1.5‰). Assuming that the bulk rock carbon and nitrogen are largely representative of the long-term primary production background, the modest enrichment is consistent with a trophic effect, and that rugose corals are likely planktivores. In an individual coral, δ15N ranges by 3-4‰ over its length, and when adjusted for trophic enrichment varies around the average δ15N of bulk

  4. Transformation of saturated nitrogen-containing heterocyclic compounds by microorganisms.

    Science.gov (United States)

    Parshikov, Igor A; Silva, Eliane O; Furtado, Niege A J C

    2014-02-01

    The saturated nitrogen-containing heterocyclic compounds include many drugs and compounds that may be used as synthons for the synthesis of other pharmacologically active substances. The need for new derivatives of saturated nitrogen-containing heterocycles for organic synthesis, biotechnology and the pharmaceutical industry, including optically active derivatives, has increased interest in microbial synthesis. This review provides an overview of microbial technologies that can be valuable to produce new derivatives of saturated nitrogen-containing heterocycles, including hydroxylated derivatives. The chemo-, regio- and enantioselectivity of microbial processes can be indispensable for the synthesis of new compounds. Microbial processes carried out with fungi, including Beauveria bassiana, Cunninghamella verticillata, Penicillium simplicissimum, Aspergillus niger and Saccharomyces cerevisiae, and bacteria, including Pseudomonas sp., Sphingomonas sp. and Rhodococcus erythropolis, biotransform many substrates efficiently. Among the biological activities of saturated nitrogen-containing heterocyclic compounds are antimicrobial, antitumor, antihypertensive and anti-HIV activities; some derivatives are effective for the treatment and prevention of malaria and trypanosomiasis, and others are potent glycosidase inhibitors.

  5. Experimental identification of nitrogen-vacancy complexes in nitrogen implanted silicon

    Science.gov (United States)

    Adam, Lahir Shaik; Law, Mark E.; Szpala, Stanislaw; Simpson, P. J.; Lawther, Derek; Dokumaci, Omer; Hegde, Suri

    2001-07-01

    Nitrogen implantation is commonly used in multigate oxide thickness processing for mixed signal complementary metal-oxide-semiconductor and System on a Chip technologies. Current experiments and diffusion models indicate that upon annealing, implanted nitrogen diffuses towards the surface. The mechanism proposed for nitrogen diffusion is the formation of nitrogen-vacancy complexes in silicon, as indicated by ab initio studies by J. S. Nelson, P. A. Schultz, and A. F. Wright [Appl. Phys. Lett. 73, 247 (1998)]. However, to date, there does not exist any experimental evidence of nitrogen-vacancy formation in silicon. This letter provides experimental evidence through positron annihilation spectroscopy that nitrogen-vacancy complexes indeed form in nitrogen implanted silicon, and compares the experimental results to the ab initio studies, providing qualitative support for the same.

  6. Nitrogen acquisition in Agave tequilana from degradation of endophytic bacteria.

    Science.gov (United States)

    Beltran-Garcia, Miguel J; White, James F; Prado, Fernanda M; Prieto, Katia R; Yamaguchi, Lydia F; Torres, Monica S; Kato, Massuo J; Medeiros, Marisa H G; Di Mascio, Paolo

    2014-11-06

    Plants form symbiotic associations with endophytic bacteria within tissues of leaves, stems, and roots. It is unclear whether or how plants obtain nitrogen from these endophytic bacteria. Here we present evidence showing nitrogen flow from endophytic bacteria to plants in a process that appears to involve oxidative degradation of bacteria. In our experiments we employed Agave tequilana and its seed-transmitted endophyte Bacillus tequilensis to elucidate organic nitrogen transfer from (15)N-labeled bacteria to plants. Bacillus tequilensis cells grown in a minimal medium with (15)NH4Cl as the nitrogen source were watered onto plants growing in sand. We traced incorporation of (15)N into tryptophan, deoxynucleosides and pheophytin derived from chlorophyll a. Probes for hydrogen peroxide show its presence during degradation of bacteria in plant tissues, supporting involvement of reactive oxygen in the degradation process. In another experiment to assess nitrogen absorbed as a result of endophytic colonization of plants we demonstrated that endophytic bacteria potentially transfer more nitrogen to plants and stimulate greater biomass in plants than heat-killed bacteria that do not colonize plants but instead degrade in the soil. Findings presented here support the hypothesis that some plants under nutrient limitation may degrade and obtain nitrogen from endophytic microbes.

  7. Nitrogen nutrition effects on developm