WorldWideScience

Sample records for acoustical measurements

  1. Acoustics, computers and measurements

    Science.gov (United States)

    Truchard, James J.

    2003-10-01

    The human ear has created a high standard for the requirements of acoustical measurements. The transient nature of most acoustical signals has limited the success of traditional volt meters. Professor Hixson's pioneering work in electroacoustical measurements at ARL and The University of Texas helped set the stage for modern computer-based measurements. The tremendous performance of modern PCs and extensive libraries of signal processing functions in virtual instrumentation application software has revolutionized the way acoustical measurements are made. Today's analog to digital converters have up to 24 bits of resolution with a dynamic range of over 120 dB and a single PC processor can process 112 channels of FFTs at 4 kHz in real time. Wavelet technology further extends the capabilities for analyzing transients. The tools available for measurements in speech, electroacoustics, noise, and vibration represent some of the most advanced measurement tools available. During the last 50 years, Professor Hixson has helped drive this revolution from simple oscilloscope measurements to the modern high performance computer-based measurements.

  2. USE OF SCALE MODELING FOR ARCHITECTURAL ACOUSTIC MEASUREMENTS

    OpenAIRE

    ERÖZ, Ferhat

    2013-01-01

    In recent years, acoustic science and hearing has become important. Acoustic design used in tests of acoustic devices is crucial. Sound propagation is a complex subject, especially inside enclosed spaces. From the 19th century on, the acoustic measurements and tests were carried out using modeling techniques that are based on room acoustic measurement parameters.In this study, the effects of architectural acoustic design of modeling techniques and acoustic parameters were studied. In this con...

  3. Optical measurement of acoustic radiation pressure of the near-field acoustic levitation through transparent object

    CERN Document Server

    Nakamura, Satoshi; Sasao, Yasuhiro; Katsura, Kogure; Naoki, Kondo

    2013-01-01

    It is known that macroscopic objects can be levitated for few to several hundred micrometers by near-field acoustic field and this phenomenon is called near-field acoustic levitation (NFAL). Although there are various experiments conducted to measure integrated acoustic pressure on the object surface, up to now there was no direct method to measure pressure distribution. In this study we measured the acoustic radiation pressure of the near-field acoustic levitation via pressure-sensitive paint.

  4. Simultaneous measurements of room acoustic parameters using different measuring equipment

    DEFF Research Database (Denmark)

    Halmrast, Tor; Gade, Anders Christian; Winsvold, Bjørn

    1996-01-01

    In a cooperation between Stattsbyg, Norway, Norsonic, Norway, and Department of Acoustic Technology, a number of room acoustic parameters have been determined in Oslo Concert Hall. All measurements were carried out on the same day, using the same amplifier, microphone and loudspeaker, and the sam...

  5. Techniques in audio and acoustic measurement

    Science.gov (United States)

    Kite, Thomas D.

    2003-10-01

    Measurement of acoustic devices and spaces is commonly performed with time-delay spectrometry (TDS) or maximum length sequence (MLS) analysis. Both techniques allow an impulse response to be measured with a signal-to-noise ratio (SNR) that can be traded off against the measurement time. However, TDS suffers from long measurement times because of its linear sweep, while MLS suffers from the corruption of the impulse response by distortion. Recently a logarithmic sweep-based method has been devised which offers high SNR, short measurement times, and the ability to separate the linear impulse response from the impulse responses of distortion products. The applicability of these methods to audio and acoustic measurement will be compared.

  6. Measuring Norwegian dialect distances using acoustic features

    NARCIS (Netherlands)

    Heeringa, Wilbert; Johnson, Keith; Gooskens, Charlotte

    2009-01-01

    Levenshtein distance has become a popular tool for measuring linguistic dialect distances, and has been applied to Irish Gaelic, Dutch, German and other dialect groups. The method, in the current state of the art, depends upon phonetic transcriptions, even when acoustic differences are used the numb

  7. Acoustic Measurement of Potato Cannon Velocity

    Science.gov (United States)

    Courtney, Michael; Courtney, Amy

    2007-01-01

    Potato cannon velocity can be measured with a digitized microphone signal. A microphone is attached to the potato cannon muzzle, and a potato is fired at an aluminum target about 10 m away. Flight time can be determined from the acoustic waveform by subtracting the time in the barrel and time for sound to return from the target. The potato…

  8. Acoustical measurements in ancient Roman theatres

    Science.gov (United States)

    Farnetani, Andrea; Fausti, Patrizio; Pompoli, Roberto; Prodi, Nicola

    2001-05-01

    The Greek and Roman theatres are among the most precious and spectacular items of cultural heritage in the Mediterranean countries. The theatres are famous not only for their impressive architecture, but also for the acoustic qualities. For this reason it is important to consider these theatres as an acoustical heritage and to study their sound field. Within the activities of the ERATO (identification Evaluation and Revival of the Acoustical heritage of ancient Theatres and Odea) project, acoustical measurements were taken in well-preserved ancient Roman theatres at Aspendos (Turkey) and Jerash (Jordan). Roman theatres have an impressive stage building that forms a back wall in the orchestra area, and it was found that, from the analysis of the acoustical parameters, the reverberation time (e.g., 1.7 s at middle frequencies in the theatre of Aspendos) is quite long compared not only with other open-space theatres but also with closed spaces. Contrary to modern halls the clarity is high and this fact, together with a low sound level in most of the seats, gives the sound field a unique character.

  9. Measuring Acoustic Wave Transit Time in Furnace Based on Active Acoustic Source Signal

    Institute of Scientific and Technical Information of China (English)

    Zhen Luo; Feng Tian; Xiao-Ping Sun

    2007-01-01

    Accurate measurement of transit time for acoustic wave between two sensors installed on two sides of a furnace is a key to implementing the temperature field measurement technique based on acoustical method. A new method for measuring transit time of acoustic wave based on active acoustic source signal is proposed in this paper, which includes the followings: the time when the acoustic source signal arrives at the two sensors is measured first; then, the difference of two arriving time arguments is computed, thereby we get the transit time of the acoustic wave between two sensors installed on the two sides of the furnace. Avoiding the restriction on acoustic source signal and background noise, the new method can get the transit time of acoustic wave with higher precision and stronger ability of resisting noise interference.

  10. Acoustic measurement of potato cannon velocity

    CERN Document Server

    Courtney, M; Courtney, Amy; Courtney, Michael

    2006-01-01

    This article describes measurement of potato cannon velocity with a digitized microphone signal. A microphone is attached to the potato cannon muzzle and a potato is fired at an aluminum target about 10 m away. The potato's flight time can be determined from the acoustic waveform by subtracting the time in the barrel and time for sound to return from the target. The potato velocity is simply the flight distance divided by the flight time.

  11. New methods of measuring normal acoustic impedance

    OpenAIRE

    Wayman, James L.

    1984-01-01

    In recent years new methods based on signal processing technical have been developed to measure the normal acoustic impedance of materials. These methods proved to be considerably faster easier to implement than the SRW method rhey replace. Mathematical, hardware and software aspects of these techniques are discussed and results obtained over a frequency range of 200-4000 Hz for several architectural materials are presented. NPS Foundation Research Program http://archive....

  12. Measuring acoustic emissions in an avalanche slope

    Science.gov (United States)

    Reiweger, Ingrid; Schweizer, Jürg

    2014-05-01

    Measurements of acoustic emissions are a common technique for monitoring damage and predicting imminent failure of a material. Within natural hazards it has already been used to successfully predict the break-off of a hanging glacier. To explore the applicability of the acoustic emission (AE) technique for avalanche prediction, we installed two acoustic sensors (with 30 kHz and 60 kHz resonance frequency) in an avalanche prone slope at the Mittelgrat in the Parsenn ski area above Davos, Switzerland. The slope is north-east facing, frequently wind loaded, and approximately 35° steep. The AE signals - in particular the event energy and waiting time distributions - were compared with slope stability. The latter was determined by observing avalanche activity. The results of two winter's measurements yielded that the exponent β of the inverse cumulative distribution of event energy showed a significant drop (from a value of 3.5 to roughly 2.5) at very unstable conditions, i.e. on the three days during our measurement periods when spontaneous avalanches released on our study slope.

  13. Acoustic levitation methods for density measurements

    Science.gov (United States)

    Trinh, E. H.; Hsu, C. J.

    1986-01-01

    The capability of ultrasonic levitators operating in air to perform density measurements has been demonstrated. The remote determination of the density of ordinary liquids as well as low density solid metals can be carried out using levitated samples with size on the order of a few millimeters and at a frequency of 20 kHz. Two basic methods may be used. The first one is derived from a previously known technique developed for acoustic levitation in liquid media, and is based on the static equilibrium position of levitated samples in the earth's gravitational field. The second approach relies on the dynamic interaction between a levitated sample and the acoustic field. The first technique appears more accurate (1 percent uncertainty), but the latter method is directly applicable to a near gravity-free environment such as that found in space.

  14. Measurement of acoustic attenuation in South Pole ice

    NARCIS (Netherlands)

    Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S.W.; Bay, R.; Alba, J.L.B.; Beattie, K.; Beatty, J.J.; Bechet, S.; Becker, J.K.; Becker, K.H.; Benabderrahmane, M.L.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D.Z.; Bissok, M.; Blaufuss, E.; Boersma, D.J.; Bohm, C.; Boser, S.; Botner, O.; Bradley, L.; Braun, J.; Buitink, S.; Carson, M.; Chirkin, D.; Christy, B.; Clem, J.; Clevermann, F.; Cohen, S.; Colnard, C.; Cowen, D.F.; D'Agostino, M.V.; Danninger, M.; Clercq, C. De; Demirors, L.; Depaepe, O.; Descamps, F.; Desiati, P.; Vries-Uiterweerd, G. de; DeYoung, T.; Diaz-Velez, J.C.; Dreyer, J.; Dumm, J.P.; Duvoort, M.R.; Ehrlich, R.; Eisch, J.; Ellsworth, R.W.; Engdegard, O.; Euler, S.; Evenson, P.A.; Fadiran, O.; Fazely, A.R.; Feusels, T.; Filimonov, K.; Finley, C.; Foerster, M.M.; Fox, B.D.; Franckowiak, A.; Franke, R.; Gaisser, T.K.; Gallagher, J.; Ganugapati, R.; Geisler, M.; Gerhardt, L.; Gladstone, L.; Glusenkamp, T.; Goldschmidt, A.; Goodman, J.A.; Grant, D.; Griesel, T.; Gross, A.; Grullon, S.; Gunasingha, R.M.; Gurtner, M.; Gustafsson, L.; Ha, C.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Helbing, K.; Herquet, P.; Hickford, S.; Hill, G.C.; Hoffman, K.D.; Homeier, A.; Hoshina, K.; Hubert, D.; Huelsnitz, W.; Lafebre, S.J.

    2011-01-01

    Using the South Pole Acoustic Test Setup (SPATS) and a retrievable transmitter deployed in holes drilled for the IceCube experiment, we have measured the attenuation of acoustic signals by South Pole ice at depths between 190 m and 500 m. Three data sets, using different acoustic sources, have been

  15. Outdoor synthetic aperture acoustic ground target measurements

    Science.gov (United States)

    Bishop, Steven; Ngaya, Therese-Ann; Vignola, Joe; Judge, John; Marble, Jay; Gugino, Peter; Soumekh, Mehrdad; Rosen, Erik

    2010-04-01

    A novel outdoor synthetic aperture acoustic (SAA) system consists of a microphone and loudspeaker traveling along a 6.3-meter rail system. This is an extension from a prior indoor laboratory measurement system in which selected targets were insonified while suspended in air. Here, the loudspeaker and microphone are aimed perpendicular to their direction of travel along the rail. The area next to the rail is insonified and the microphone records the reflected acoustic signal, while the travel of the transceiver along the rail creates a synthetic aperture allowing imaging of the scene. Ground surfaces consisted of weathered asphalt and short grass. Several surface-laid objects were arranged on the ground for SAA imaging. These included rocks, concrete masonry blocks, grout covered foam blocks; foliage obscured objects and several spherical canonical targets such as a bowling ball, and plastic and metal spheres. The measured data are processed and ground targets are further analyzed for characteristics and features amenable for discrimination. This paper includes a description of the measurement system, target descriptions, synthetic aperture processing approach and preliminary findings with respect to ground surface and target characteristics.

  16. Acoustic CT system for temperature distribution measurement

    Institute of Scientific and Technical Information of China (English)

    Shinji Ohyama; Toyofumi Oga; Kazuo Oshima; Junya Takayama

    2008-01-01

    In this paper,a measurement method for crosssectional temperature distribution is addressed. A novel method based on an acoustic CT technique is proposed. Specifically,the temperature distributions are estimated using the time of flight data of several ultrasonic propagation paths. The times of the flight data contain both temperature and wind effect,and the method to select only temperature component is introduced. A filtered back projection method is applied to reconstruct the temperature distributions from the time of flight data. An experimental system was designed and fabricated to realize simultaneous temperature and wind velocity distribution measurements. Through this system,the effectiveness of the proposed measurement method is confirmed.

  17. Measurement of acoustical characteristics of mosques in Saudi Arabia

    Science.gov (United States)

    Abdou, Adel A.

    2003-03-01

    The study of mosque acoustics, with regard to acoustical characteristics, sound quality for speech intelligibility, and other applicable acoustic criteria, has been largely neglected. In this study a background as to why mosques are designed as they are and how mosque design is influenced by worship considerations is given. In the study the acoustical characteristics of typically constructed contemporary mosques in Saudi Arabia have been investigated, employing a well-known impulse response. Extensive field measurements were taken in 21 representative mosques of different sizes and architectural features in order to characterize their acoustical quality and to identify the impact of air conditioning, ceiling fans, and sound reinforcement systems on their acoustics. Objective room-acoustic indicators such as reverberation time (RT) and clarity (C50) were measured. Background noise (BN) was assessed with and without the operation of air conditioning and fans. The speech transmission index (STI) was also evaluated with and without the operation of existing sound reinforcement systems. The existence of acoustical deficiencies was confirmed and quantified. The study, in addition to describing mosque acoustics, compares design goals to results obtained in practice and suggests acoustical target values for mosque design. The results show that acoustical quality in the investigated mosques deviates from optimum conditions when unoccupied, but is much better in the occupied condition.

  18. Measuring Acoustic Nonlinearity by Collinear Mixing Waves

    Science.gov (United States)

    Liu, M.; Tang, G.; Jacobs, L. J.; Qu, J.

    2011-06-01

    It is well known that the acoustic nonlinearity parameter β is correlated to fatigue damage in metallic materials. Various methods have been developed to measure β. One of the most often used methods is the harmonic generation technique, in which β is obtained by measuring the magnitude of the second order harmonic waves. An inherent weakness of this method is the difficulty in distinguishing material nonlinearity from the nonlinearity of the measurement system. In this paper, we demonstrate the possibility of using collinear mixing waves to measure β. The wave mixing method is based on the interaction between two incident waves in a nonlinear medium. Under certain conditions, such interactions generate a third wave of different frequency. This generated third wave is also called resonant wave, because its amplitude is unbounded if the medium has no attenuation. Such resonant waves are less sensitive to the nonlinearity of the measurement system, and have the potential to identify the source location of the nonlinearity. In this work, we used a longitudinal wave and a shear wave as the incident waves. The resonant shear wave is measured experimentally on samples made of aluminum and steel, respectively. Numerical simulations of the tests were also performed using a finite difference method.

  19. Improvements in Elimination of Loudspeaker Distortion in Acoustic Measurements

    DEFF Research Database (Denmark)

    Agerkvist, Finn T.; Torras Rosell, Antoni; McWalter, Richard Ian

    2015-01-01

    This paper investigates the influence of nonlinear components that contaminate the linear response of acoustic transducers, and presents improved methods for eliminating the influence of nonlinearities in acoustic measurements. The method is evaluated with pure sinusoidal signals as well as swept...

  20. Relationships between subjective and objective acoustical measures in churches

    OpenAIRE

    António P. Carvalho; António E. Morgado; Luís Henrique

    1997-01-01

    This study reports on subjective and objective acoustical field measurements made in a survey of 36 Catholic churches in Portugal built in the last 14 centuries. Monaural acoustical measurements (RT, EDT, C80, D50, TS and L) were taken at several source/receiver locations in each church and a group of college students was asked to judge the subjective quality of music. The listeners in each church evaluated live music performances at similar locations in each room. Evaluation sheets were used...

  1. Acoustic wayfinding: A method to measure the acoustic contrast of different paving materials for blind people.

    Science.gov (United States)

    Secchi, Simone; Lauria, Antonio; Cellai, Gianfranco

    2017-01-01

    Acoustic wayfinding involves using a variety of auditory cues to create a mental map of the surrounding environment. For blind people, these auditory cues become the primary substitute for visual information in order to understand the features of the spatial context and orient themselves. This can include creating sound waves, such as tapping a cane. This paper reports the results of a research about the "acoustic contrast" parameter between paving materials functioning as a cue and the surrounding or adjacent surface functioning as a background. A number of different materials was selected in order to create a test path and a procedure was defined for the verification of the ability of blind people to distinguish different acoustic contrasts. A method is proposed for measuring acoustic contrast generated by the impact of a cane tip on the ground to provide blind people with environmental information on spatial orientation and wayfinding in urban places. PMID:27633240

  2. Taking advantage of acoustic inhomogeneities in photoacoustic measurements

    Science.gov (United States)

    Da Silva, Anabela; Handschin, Charles; Riedinger, Christophe; Piasecki, Julien; Mensah, Serge; Litman, Amélie; Akhouayri, Hassan

    2016-03-01

    Photoacoustic offers promising perspectives in probing and imaging subsurface optically absorbing structures in biological tissues. The optical uence absorbed is partly dissipated into heat accompanied with microdilatations that generate acoustic pressure waves, the intensity which is related to the amount of fluuence absorbed. Hence the photoacoustic signal measured offers access, at least potentially, to a local monitoring of the absorption coefficient, in 3D if tomographic measurements are considered. However, due to both the diffusing and absorbing nature of the surrounding tissues, the major part of the uence is deposited locally at the periphery of the tissue, generating an intense acoustic pressure wave that may hide relevant photoacoustic signals. Experimental strategies have been developed in order to measure exclusively the photoacoustic waves generated by the structure of interest (orthogonal illumination and detection). Temporal or more sophisticated filters (wavelets) can also be applied. However, the measurement of this primary acoustic wave carries a lot of information about the acoustically inhomogeneous nature of the medium. We propose a protocol that includes the processing of this primary intense acoustic wave, leading to the quantification of the surrounding medium sound speed, and, if appropriate to an acoustical parametric image of the heterogeneities. This information is then included as prior knowledge in the photoacoustic reconstruction scheme to improve the localization and quantification.

  3. Signal processing and field measurements for underwater acoustic communications

    OpenAIRE

    Zhang, Guosong

    2013-01-01

    The present dissertation presents new developments in the signal processing of receiver structures for high-rate underwater acoustic communications, and describes the field measurements that test the structures in real oceanic environments. The signalling methods of spectrally efficient spread spectrum are also investigated to achieve long range underwater acoustic communications. The digital signal processing is of significance in recovering distorted information, and compensating waveform d...

  4. Acoustic levitator for containerless measurements on low temperature liquids

    Energy Technology Data Exchange (ETDEWEB)

    Benmore, Chris J [Argonne National Laboratory (ANL); Weber, Richard [Argonne National Laboratory (ANL); Neuefeind, Joerg C [ORNL; Rey, Charles A A [Charles Ray, Inc.

    2009-01-01

    A single-axis acoustic levitator was constructed and used to levitate liquid and solid drops at temperatures from -40 to +40 C. The levitator consisted of: (i) two acoustic transducers mounted on a rigid vertical support that was bolted to an optical breadboard, (ii) a acoustic power supply that controlled acoustic intensity, relative phase of the drive to the transducers, and could modulate the acoustic forces at frequencies up to 1kHz, (iii) a video camera, and (iv) a system for providing a stream of controlled temperature gas flow over the sample. The acoustic transducers were operated at their resonant frequency of ~ 22 kHz and could produce sound pressure levels up to 160 dB. The force applied by the acoustic field could be modulated using a frequency generator to excite oscillations in the sample. Sample temperature was controlled using a modified Cryostream Plus and measured using thermocouples and an infrared thermal imager. The levitator was installed at x-ray beamline 11 ID-C at the Advanced Photon Source and used to investigate the structure of supercooled liquids.

  5. Hydrothermal vent flow and turbulence measurements with acoustic scintillation instrumentation

    Science.gov (United States)

    di Iorio, D.; Xu, G.

    2009-12-01

    Acoustically derived measurements of hydrothermal vent flow and turbulence were obtained from the active black smoker Dante in the Main Endeavour vent field, using scintillation analysis from one-way transmissions. The scintillation transmitter and receiver array formed a 93 m acoustic path through the buoyant plume 20 m above the structure. The acoustic path was parallel to the valley sidewall where the M2 tidal currents are approximately aligned along ridge due to topographic steering by the valley walls and hence most of the plume displacement is expected to occur along the acoustic path. On one deployment, data were collected for 6.5 weeks and vertical velocities range from 0.1 to 0.2 m/s showing a strong dependence on the spring/neap tidal cycle. The refractive index fluctuations which can be paramaterized in terms of the root-mean-square temperature fluctuations also shows a strong tidal modulation during spring tide.

  6. Field-Deployable Acoustic Digital Systems for Noise Measurement

    Science.gov (United States)

    Shams, Qamar A.; Wright, Kenneth D.; Lunsford, Charles B.; Smith, Charlie D.

    2000-01-01

    Langley Research Center (LaRC) has for years been a leader in field acoustic array measurement technique. Two field-deployable digital measurement systems have been developed to support acoustic research programs at LaRC. For several years, LaRC has used the Digital Acoustic Measurement System (DAMS) for measuring the acoustic noise levels from rotorcraft and tiltrotor aircraft. Recently, a second system called Remote Acquisition and Storage System (RASS) was developed and deployed for the first time in the field along with DAMS system for the Community Noise Flight Test using the NASA LaRC-757 aircraft during April, 2000. The test was performed at Airborne Airport in Wilmington, OH to validate predicted noise reduction benefits from alternative operational procedures. The test matrix was composed of various combinations of altitude, cutback power, and aircraft weight. The DAMS digitizes the acoustic inputs at the microphone site and can be located up to 2000 feet from the van which houses the acquisition, storage and analysis equipment. Digitized data from up to 10 microphones is recorded on a Jaz disk and is analyzed post-test by microcomputer system. The RASS digitizes and stores acoustic inputs at the microphone site that can be located up to three miles from the base station and can compose a 3 mile by 3 mile array of microphones. 16-bit digitized data from the microphones is stored on removable Jaz disk and is transferred through a high speed array to a very large high speed permanent storage device. Up to 30 microphones can be utilized in the array. System control and monitoring is accomplished via Radio Frequency (RF) link. This paper will present a detailed description of both systems, along with acoustic data analysis from both systems.

  7. Acoustic measurements of models of military style supersonic nozzle jets

    NARCIS (Netherlands)

    Kuo, C.W.; Veltin, J.; McLaughlin, D.K.

    2014-01-01

    Modern military aircraft jet engines are designed with variable-geometry nozzles to provide optimal thrust in different operating conditions, depending on the flight envelope. However, acoustic measurements for such nozzles are scarce, due to the cost involved in making full-scale measurements and t

  8. Measurement of thin films using very long acoustic wavelengths

    CERN Document Server

    Clement, G T; Adachi, H; Kamakura, T

    2013-01-01

    A procedure for measuring material thickness by means of necessarily-long acoustic wavelengths is examined. The approach utilizes a temporal phase lag caused by the impulse time of wave momentum transferred through a thin layer that is much denser than its surrounding medium. In air, it is predicted that solid or liquid layers below approximately 1/2000 of the acoustic wavelength will exhibit a phase shift with an arctangent functional dependence on thickness and layer density. The effect is verified for thin films on the scale of 10 microns using audible frequency sound (7 kHz). Soap films as thin as 100 nm are then measured using 40 kHz air ultrasound. The method's potential for imaging applications is demonstrated by combining the approach with near-field holography, resulting in reconstructions with sub-wavelength resolution in both the depth and lateral directions. Potential implications at very high and very low acoustic frequencies are discussed.

  9. Acoustic Liner Drag: Measurements on Novel Facesheet Perforate Geometries

    Science.gov (United States)

    Howerton, Brian M.; Jones, Michael G.

    2016-01-01

    Interest in characterization of the aerodynamic drag of acoustic liners has increased in the past several years. This paper details experiments in the NASA Langley Grazing Flow Impedance Tube to quantify the relative drag of several perforate-over-honeycomb liner configurations at flow speeds of centerline flow Mach number equals 0.3 and 0.5. Various perforate geometries and orientations are investigated to determine their resistance factors using a static pressure drop approach. Comparison of these resistance factors gives a relative measurement of liner drag. For these same flow conditions, acoustic measurements are performed with tonal excitation from 400 to 3000 hertz at source sound pressure levels of 140 and 150 decibels. Educed impedance and attenuation spectra are used to determine the impact of variations in perforate geometry on acoustic performance.

  10. Bimodal schwa: Evidence from acoustic measurements

    Science.gov (United States)

    Yamane-Tanaka, Noriko; Gick, Bryan; Bird, Sonya

    2001-05-01

    The question of whether schwa is targeted or targetless has been the subject of much debate (Browman et al., 1992; Browman and Goldstein, 1995; Gick, 1999, 2002). Gick (2002) found that there is a pharyngeal constriction during schwa relative to rest position, and concluded that schwa is not targetless. This experiment further showed a ``bimodal'' pattern in schwa in a nonrhotic speaker, indicating that the subject has distinct schwas in lexical words and function words. The present study examines the existence of the ``bimodal'' pattern in schwas in nonrhotic dialects through an acoustic experiment. It is predicted that there is a significant difference in formant values between lexical schwas and function schwas. Results to date indicate a significant difference in them between schwas in lexical versus function words, both between historical schwas and those derived from final /r/ reduction. Data from several additional nonrhotic subjects will be presented. Implications for intrusive r as well as for the phonological treatment of function words will be discussed. [Work funded by NSERC and SSHRC.

  11. Velocity and rotation measurements in acoustically levitated droplets

    Science.gov (United States)

    Saha, Abhishek; Basu, Saptarshi; Kumar, Ranganathan

    2012-10-01

    The velocity scale inside an acoustically levitated droplet depends on the levitator and liquid properties. Using Particle Imaging Velocimetry (PIV), detailed velocity measurements have been made in a levitated droplet of different diameters and viscosity. The maximum velocity and rotation are normalized using frequency and amplitude of acoustic levitator, and droplet viscosity. The non-dimensional data are fitted for micrometer- and millimeter-sized droplets levitated in different levitators for different viscosity fluids. It is also shown that the rotational speed of nanosilica droplets at an advanced stage of vaporization compares well with that predicted by exponentially fitted parameters.

  12. Measuring System for Interference Optical Fiber Acoustic Emission①

    Institute of Scientific and Technical Information of China (English)

    LUQizhu; ZHENGShengxuan

    1997-01-01

    A type of interference optical fiber acoustic emission sensor is described.With 10-10 m level resolution,megahertz-level frequency and response time less than 1 μs,this sensor possesses prominent measuring stability and can be used in state supervision and trouble diagnosis.

  13. Eliminating transducer distortion in acoustic measurements

    DEFF Research Database (Denmark)

    Agerkvist, Finn T.; Torras Rosell, Antoni; McWalter, Richard Ian

    2014-01-01

    to perform well even in noisy conditions. The limitations of the Total Harmonic Distortion, THD, measure is discussed and a new distortion measure, Total Distortion Ratio, TDR, which more accurately describes the amount of nonlinear power in the measured signal, is proposed....

  14. Acoustic measuring of partial discharge in power transformers

    International Nuclear Information System (INIS)

    Power transformers' reliability can be seriously affected by partial discharges. For this reason, it is necessary to implement technical methods to identify endangered equipment before catastrophic failures occur. A well-known method that can be applied either in the laboratory or in the field is the detection and localization of partial discharges, by means of the analysis of the acoustic signals they produced. An innovative partial discharge detector was developed based on the analysis of an acoustic or electrical PD signal envelope. This paper describes the architecture of the developed acoustic detector, which is composed of a set of ultrasonic sensors, signal conditioning and control modules, a graphical interface and the required software for the location of the affected area within the transformer. The conditioning and control modules perform analog to digital conversion, arrival time measurement, communication and control operations. Finally, some power transformer diagnostic testing is presented and discussed

  15. Broadband acoustic scattering measurements of underwater unexploded ordnance (UXO).

    Science.gov (United States)

    Bucaro, J A; Houston, B H; Saniga, M; Dragonette, L R; Yoder, T; Dey, S; Kraus, L; Carin, L

    2008-02-01

    In order to evaluate the potential for detection and identification of underwater unexploded ordnance (UXO) by exploiting their structural acoustic response, we carried out broadband monostatic scattering measurements over a full 360 degrees on UXO's (two mortar rounds, an artillery shell, and a rocket warhead) and false targets (a cinder block and a large rock). The measurement band, 1-140 kHz, includes a low frequency structural acoustics region in which the wavelengths are comparable to or larger than the target characteristic dimensions. In general, there are aspects that provide relatively high target strength levels ( approximately -10 to -15 dB), and from our experience the targets should be detectable in this structural acoustics band in most acoustic environments. The rigid body scattering was also calculated for one UXO in order to highlight the measured scattering features involving elastic responses. The broadband scattering data should be able to support feature-based separation of UXO versus false targets and identification of various classes of UXO as well.

  16. Measurement of acoustic attenuation in workrooms

    DEFF Research Database (Denmark)

    Rindel, Jens Holger

    1997-01-01

    Experimental work has been done in nine halls with volumes ranging from 693 to 123.978 cubic metres. The equivalent absorption area has been determined from absorption coefficients of the surfaces, calculated from reverberation time measurements and estimated from sound pressure level measurements...... in the stationary sound field produced by an omnidirectional sound source in the room. The project has shown that there is a need for a new alternative measuring method - the results based on the classical reverberation time measurements do not agree sufficiently well with the actual equivalent absorption areas...... in the rooms. But it has not been possible within the project to establish and verify an alternative method based on a simple measurement in the stationary sound field....

  17. Volumetric measurements of a spatially growing dust acoustic wave

    Science.gov (United States)

    Williams, Jeremiah D.

    2012-11-01

    In this study, tomographic particle image velocimetry (tomo-PIV) techniques are used to make volumetric measurements of the dust acoustic wave (DAW) in a weakly coupled dusty plasma system in an argon, dc glow discharge plasma. These tomo-PIV measurements provide the first instantaneous volumetric measurement of a naturally occurring propagating DAW. These measurements reveal over the measured volume that the measured wave mode propagates in all three spatial dimensional and exhibits the same spatial growth rate and wavelength in each spatial direction.

  18. Volumetric measurements of a spatially growing dust acoustic wave

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Jeremiah D. [Physics Department, Wittenberg University, Springfield, Ohio 45504 (United States)

    2012-11-15

    In this study, tomographic particle image velocimetry (tomo-PIV) techniques are used to make volumetric measurements of the dust acoustic wave (DAW) in a weakly coupled dusty plasma system in an argon, dc glow discharge plasma. These tomo-PIV measurements provide the first instantaneous volumetric measurement of a naturally occurring propagating DAW. These measurements reveal over the measured volume that the measured wave mode propagates in all three spatial dimensional and exhibits the same spatial growth rate and wavelength in each spatial direction.

  19. Energy Based Acoustic Measurement Senors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This research focuses on fully developing energy density sensors that will yield a significant benefit both for measurements of interest to NASA, as well as for...

  20. Acoustic Emissions to Measure Drought-Induced Cavitation in Plants

    Directory of Open Access Journals (Sweden)

    Linus De Roo

    2016-03-01

    Full Text Available Acoustic emissions are frequently used in material sciences and engineering applications for structural health monitoring. It is known that plants also emit acoustic emissions, and their application in plant sciences is rapidly increasing, especially to investigate drought-induced plant stress. Vulnerability to drought-induced cavitation is a key trait of plant water relations, and contains valuable information about how plants may cope with drought stress. There is, however, no consensus in literature about how this is best measured. Here, we discuss detection of acoustic emissions as a measure for drought-induced cavitation. Past research and the current state of the art are reviewed. We also discuss how the acoustic emission technique can help solve some of the main issues regarding quantification of the degree of cavitation, and how it can contribute to our knowledge about plant behavior during drought stress. So far, crossbreeding in the field of material sciences proved very successful, and we therefore recommend continuing in this direction in future research.

  1. A System for Acoustic Field Measurement Employing Cartesian Robot

    Directory of Open Access Journals (Sweden)

    Szczodrak Maciej

    2016-09-01

    Full Text Available A system setup for measurements of acoustic field, together with the results of 3D visualisations of acoustic energy flow are presented in the paper. Spatial sampling of the field is performed by a Cartesian robot. Automatization of the measurement process is achieved with the use of a specialized control system. The method is based on measuring the sound pressure (scalar and particle velocity(vector quantities. The aim of the system is to collect data with a high precision and repeatability. The system is employed for measurements of acoustic energy flow in the proximity of an artificial head in an anechoic chamber. In the measurement setup an algorithm for generation of the probe movement path is included. The algorithm finds the optimum path of the robot movement, taking into account a given 3D object shape present in the measurement space. The results are presented for two cases, first without any obstacle and the other - with an artificial head in the sound field.

  2. Optoelectronic hybrid fiber laser sensor for simultaneous acoustic and magnetic measurement.

    Science.gov (United States)

    Wang, Zhaogang; Zhang, Wentao; Huang, Wenzhu; Feng, Shengwen; Li, Fang

    2015-09-21

    An optoelectronic hybrid fiber optic acoustic and magnetic sensor (FOAMS) based on fiber laser sensing is proposed, which can measure acoustic and magnetic field simultaneously. A static magnetic field signal can be carried by an AC Lorentz force, and demodulated in frequency domain together with acoustic signals. Some experiments of acoustic pressure sensitivity, magnetic field sensitivity, and simultaneous acoustic and magnetic measurement on a fabricated FOAMS were carried out. The acoustic pressure sensitivity was about -164.7 dB (0 dB re 1 pm/μPa) and the magnetic field sensitivity was 0.6 dB (0 dB re 1 pm/ (T•A)). The experiment of simultaneous acoustic and magnetic measurement shows that the detections of acoustic and magnetic field have little effect on each other in dynamic range and simultaneously measuring acoustic and magnetic field is feasible. PMID:26406643

  3. Experimental measurement of acoustic plasmons in polycrystalline palladium

    Science.gov (United States)

    Garrity, Patrick L.

    2013-03-01

    An experimental study of collective oscillations in Pd covering the region of very low energy and momentum transfers is reported. Through Dynamic Electron Scattering spectroscopy, structure factor spectra were measured from 80 K to 298 K on a bulk polycrystalline Pd sample. Here we report the first experimental evidence of damped acoustic plasmons and their evolution to the single-particle excitation continuum. The acoustic plasmons follow a linear dispersion and are experimentally shown to be a separate and distinct resonance mode from acoustic surface plasmons. Calculations of the dielectric function employed a model that incorporates complete mixing of two conduction bands with contributions from both interband and intraband transitions. The model was used in computational studies that focused on specific experimental results to aid the characterization and understanding of the plasmon behavior. We found that the Pd acoustic plasmon energy matched the longitudinal phonon anomaly that has sparked numerous theoretical reports on the possible energetic coupling of these modes. Further experimental evidence of plasmon and phonon dynamical processes are found in the linewidth analysis of the data. The primary decay mechanism of the plasmons is interpreted to be strong phonon-assisted interband transitions. Further spectral features and the plasmon velocity are also reported.

  4. Acoustic transmission in SGUs: Plant and laboratory measurements

    International Nuclear Information System (INIS)

    As part of the UK development work an experimental programme is in progress to measure the acoustic transmission through an actual reactor SGU and also through a model tube bundle in the laboratory. This paper gives an outline of the experimental arrangements and examples of the preliminary results. The data from the laboratory measurements in particular is being used for comparison with theoretical studies carried out at the University of Keele which are reported in a separate paper to this Specialist's Meeting. The plant measurements are being carried out on a Superheater unit of the Prototype Fast Reactor (PFR) at Dounreay. These measurements are primarily aimed at providing information for a loose parts condition monitoring system which is operated on the PFR SGU, but results obtained will make a significant contribution to the acoustic leak detection programme. The Superheater used for the experiment has six blank steam tubes for experimental purposes. An impacting device has been inserted into one of the blank tubes and acoustic signals recorded on waveguides which are attached to the SGU shell. Recordings were made during a reactor shutdown with static sodium in the superheater and with the impacting device at five axial positions in both the inner and outer legs of the 'U' tube. Results are given for signal attenuation and location of the acoustic noise source. The laboratory measurements are being made using a 721-tube model tube bundle in a water tank. The tube bundle which is approximately 0.75m diameter x 3 metres long is not modelled to a specific design but is of realistic size and construction. A piezo-electric acoustic source is mounted centrally in the tube bundle and the transmitted signal is received by underwater microphones on the periphery of the bundle. Results from the first experiments with water filled tubes are given covering a frequency range of 6KHz to 80KHz. The preliminary results of the experimental programme are encouraging and

  5. The information content of anisotropic Baryon Acoustic Oscillation scale measurements

    OpenAIRE

    Ross, Ashley J.; Percival, Will J.; Manera, Marc

    2015-01-01

    Anisotropic measurements of the Baryon Acoustic Oscillation (BAO) feature within a galaxy survey enable joint inference about the Hubble parameter $H(z)$ and angular diameter distance $D_A(z)$. These measurements are typically obtained from moments of the measured 2-point clustering statistics, with respect to the cosine of the angle to the line of sight $\\mu$. The position of the BAO features in each moment depends on a combination of $D_A(z)$ and $H(z)$, and measuring the positions in two o...

  6. Acoustic impedances of ear canals measured by impedance tube

    DEFF Research Database (Denmark)

    Ciric, Dejan; Hammershøi, Dorte

    2007-01-01

    During hearing sensitivity tests, the sound field is commonly generated by an earphone placed on a subject ear. One of the factors that can affect the sound transmission in the ear is the acoustic impedance of the ear canal. Its importance is related to the contribution of other elements involved...... locations in an impedance tube. The end of the tube representing the measurement plane is placed at the ear canal entrance. Thus, the impedance seen from the entrance inward is measured on 25 subjects. Most subjects participated in the previous measurement of the ratio between the pressures at the open...

  7. Flow velocity measurement with the nonlinear acoustic wave scattering

    Science.gov (United States)

    Didenkulov, Igor; Pronchatov-Rubtsov, Nikolay

    2015-10-01

    A problem of noninvasive measurement of liquid flow velocity arises in many practical applications. To this end the most often approach is the use of the linear Doppler technique. The Doppler frequency shift of signal scattered from the inhomogeneities distributed in a liquid relatively to the emitted frequency is proportional to the sound frequency and velocities of inhomogeneities. In the case of very slow flow one needs to use very high frequency sound. This approach fails in media with strong sound attenuation because acoustic wave attenuation increases with frequency and there is limit in increasing sound intensity, i.e. the cavitation threshold. Another approach which is considered in this paper is based on the method using the difference frequency Doppler Effect for flows with bubbles. This method is based on simultaneous action of two high-frequency primary acoustic waves with closed frequencies on bubbles and registration of the scattered by bubbles acoustic field at the difference frequency. The use of this method is interesting since the scattered difference frequency wave has much lower attenuation in a liquid. The theoretical consideration of the method is given in the paper. The experimental examples confirming the theoretical equations, as well as the ability of the method to be applied in medical diagnostics and in technical applications on measurement of flow velocities in liquids with strong sound attenuation is described. It is shown that the Doppler spectrum form depends on bubble concentration velocity distribution in the primary acoustic beams crossing zone that allows one to measure the flow velocity distribution.

  8. Flow velocity measurement with the nonlinear acoustic wave scattering

    Energy Technology Data Exchange (ETDEWEB)

    Didenkulov, Igor, E-mail: din@appl.sci-nnov.ru [Institute of Applied Physics, 46 Ulyanov str., Nizhny Novgorod, 603950 (Russian Federation); Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., Nizhny Novgorod, 603950 (Russian Federation); Pronchatov-Rubtsov, Nikolay, E-mail: nikvas@rf.unn.ru [Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., Nizhny Novgorod, 603950 (Russian Federation)

    2015-10-28

    A problem of noninvasive measurement of liquid flow velocity arises in many practical applications. To this end the most often approach is the use of the linear Doppler technique. The Doppler frequency shift of signal scattered from the inhomogeneities distributed in a liquid relatively to the emitted frequency is proportional to the sound frequency and velocities of inhomogeneities. In the case of very slow flow one needs to use very high frequency sound. This approach fails in media with strong sound attenuation because acoustic wave attenuation increases with frequency and there is limit in increasing sound intensity, i.e. the cavitation threshold. Another approach which is considered in this paper is based on the method using the difference frequency Doppler Effect for flows with bubbles. This method is based on simultaneous action of two high-frequency primary acoustic waves with closed frequencies on bubbles and registration of the scattered by bubbles acoustic field at the difference frequency. The use of this method is interesting since the scattered difference frequency wave has much lower attenuation in a liquid. The theoretical consideration of the method is given in the paper. The experimental examples confirming the theoretical equations, as well as the ability of the method to be applied in medical diagnostics and in technical applications on measurement of flow velocities in liquids with strong sound attenuation is described. It is shown that the Doppler spectrum form depends on bubble concentration velocity distribution in the primary acoustic beams crossing zone that allows one to measure the flow velocity distribution.

  9. Acoustic doppler methods for remote measurements of ocean flows - a review

    Digital Repository Service at National Institute of Oceanography (India)

    Joseph, A.

    The evolution of acoustic doppler methods for remote measurements of ocean flows has been briefly reviewed in historical perspective. Both Eulerian and profiling methods have been discussed. Although the first acoustic Doppler current meter has been...

  10. Nonintrusive Monitoring and Control of Metallurgical Processes by Acoustic Measurements

    Science.gov (United States)

    Yu, Hao-Ling; Khajavi, Leili Tafaghodi; Barati, Mansoor

    2011-06-01

    The feasibility of developing a new online monitoring technique based on the characteristic acoustic response of gas bubbles in a liquid has been investigated. The method is intended to monitor the chemistry of the liquid through its relation to the bubble sound frequency. A low-temperature model consisting of water and alcohol mixtures was established, and the frequency of bubbles rising under varying concentrations of methanol was measured. It was shown that the frequency of the sound created by bubble pulsation varies with the percentage of alcohol in water. The frequency drops sharply with the increase in methanol content up to 20 wt pct, after which the decreases is gradual. Surface tension seems to be a critical liquid property affecting the sound frequency through its two-fold effects on the bubble size and the pulsation domain. The dependence between the frequency and the liquid composition suggests the feasibility of developing an acoustic-based technique for process control purposes.

  11. Acoustic ship signature measurements by cross-correlation method.

    Science.gov (United States)

    Fillinger, Laurent; Sutin, Alexander; Sedunov, Alexander

    2011-02-01

    Cross-correlation methods were applied for the estimation of the power spectral density and modulation spectrum of underwater noise generated by moving vessels. The cross-correlation of the signal from two hydrophones allows the separation of vessel acoustic signatures in a busy estuary. Experimental data recorded in the Hudson River are used for demonstration that cross-correlation method measured the same ship noise and ship noise modulation spectra as conventional methods. The cross-correlation method was then applied for the separation of the acoustic signatures of two ships present simultaneously. Presented methods can be useful for ship traffic monitoring and small ship classification, even in noisy harbor environments. PMID:21361436

  12. Simultaneous measurements of room-acoustic parameters using different measuring equipment?

    DEFF Research Database (Denmark)

    Halmrast, Tor; Gade, Anders Christian; Winsvold, Bjorn

    1998-01-01

    Often the results from different room-acoustic measurements in the same hall disagree, and the disagreement is just said to be due to different measuring equipment, or different rigging/temperature, etc. The room acoustic of the Oslo Concert Hall was measured simultaneously, using the following...... different measuring equipment: (1) MLS/MLSSA (Statsbygg), (2) Sweep-Tone (Tech. Univ. Denmark), and (3) Norsonic 840 with MLS+MatLab. For some of the measurements (4) Pistol and (5) Electrical Impulse were also used. The paper will compare the results from the different measuring equipment, for the most...... known room-acoustic parameters. For the reverberation time parameters RT and EDT, very good agreement was found between the three main measuring equipments. For Ts and C80 the agreement between these three is good/fair for the higher frequencies, but less good for the bass, especially C80. The...

  13. Determination of the elastic modulus of snow via acoustic measurements

    Science.gov (United States)

    Gerling, Bastian; van Herwijnen, Alec; Löwe, Henning

    2016-04-01

    The elastic modulus of snow is a key quantity from the viewpoint of avalanche research and forecasting, snow engineering or materials science in general. Since it is a fundamental property, many measurements have been reported in the literature. Due to differences in measurement methods, there is a lot of variation in the reported values. Especially values derived via computer tomography (CT) based numerical calculations using finite element methods are not corresponding to the results of other methods. The central issue is that CT based moduli are purely elastic whereas other methods may include viscoelastic deformation. In order to avoid this discrepancy we derived the elastic modulus of snow via wave propagation measurements and compared our results with CT based calculations. We measured the arrival times of acoustic pulses propagating through the snow samples to determine the P-wave velocity and in turn derive the elastic modulus along the direction of wave propagation. We performed a series of laboratory experiments to derive the P-wave modulus of snow in relation to density. The P-wave modulus ranged from 10 to 280 MPa for a snow density between 150 and 370 kg/m^3;. The moduli derived from the acoustic measurements correlated well with the CT-based values and both exhibited a power law trend over the entire density range. Encouraged by these results we used the acoustic method to investigate the temporal evolution of the elastic modulus. The rate of increase was very close to values mentioned in literature on the sintering rate of snow. Overall, our results are a first but important step towards a new measurement method to attain the elastic properties of snow.

  14. Acoustical measurements on stages of nine U.S. concert halls

    DEFF Research Database (Denmark)

    Gade, Anders Christian; Bradley, J S

    1993-01-01

    A measurement tour of nine U.S. concert halls included acoustical measurements on the stage of each hall. Two teams (from the National Research Council of Canada, and the Technical University of Denmark) made measurements of the acoustical quantities suggested by Gade: the ``support'' family of...... measures describing the acoustical conditions for the musicians on stage. This paper compares the results from the two measurement teams and discusses the influence of hall designs....

  15. Cosmological implications of baryon acoustic oscillation (BAO) measurements

    CERN Document Server

    Aubourg, Éric; Bautista, Julian E; Beutler, Florian; Bhardwaj, Vaishali; Bizyaev, Dmitry; Blanton, Michael; Blomqvist, Michael; Bolton, Adam S; Bovy, Jo; Brewington, Howard; Brinkmann, J; Brownstein, Joel R; Burden, Angela; Busca, Nicolás G; Carithers, William; Chuang, Chia-Hsun; Comparat, Johan; Cuesta, Antonio J; Dawson, Kyle S; Delubac, Timothée; Eisenstein, Daniel J; Font-Ribera, Andreu; Ge, Jian; Goff, J -M Le; Gontcho, Satya Gontcho A; Gott, J Richard; Gunn, James E; Guo, Hong; Guy, Julien; Hamilton, Jean-Christophe; Ho, Shirley; Honscheid, Klaus; Howlett, Cullan; Kirkby, David; Kitaura, Francisco S; Kneib, Jean-Paul; Lee, Khee-Gan; Long, Dan; Lupton, Robert H; Magaña, Mariana Vargas; Malanushenko, Viktor; Malanushenko, Elena; Manera, Marc; Maraston, Claudia; Margala, Daniel; McBride, Cameron K; Miralda-Escudé, Jordi; Myers, Adam D; Nichol, Robert C; Noterdaeme, Pasquier; Nuza, Sebastián E; Olmstead, Matthew D; Oravetz, Daniel; Pâris, Isabelle; Padmanabhan, Nikhil; Palanque-Delabrouille, Nathalie; Pan, Kaike; Pellejero-Ibanez, Marcos; Percival, Will J; Petitjean, Patrick; Pieri, Matthew M; Prada, Francisco; Reid, Beth; Roe, Natalie A; Ross, Ashley J; Ross, Nicholas P; Rossi, Graziano; Rubiño-Martín, Jose Alberto; Sánchez, Ariel G; Samushia, Lado; Santos, Ricardo Tanausú Génova; Scóccola, Claudia G; Schlegel, David J; Schneider, Donald P; Seo, Hee-Jong; Sheldon, Erin; Simmons, Audrey; Skibba, Ramin A; Slosar, Anže; Strauss, Michael A; Thomas, Daniel; Tinker, Jeremy L; Tojeiro, Rita; Vazquez, Jose Alberto; Viel, Matteo; Wake, David A; Weaver, Benjamin A; Weinberg, David H; Wood-Vasey, W M; Yèche, Christophe; Zehavi, Idit; Zhao, Gong-Bo

    2014-01-01

    We derive constraints on cosmological parameters and tests of dark energy models from the combination of baryon acoustic oscillation (BAO) measurements with cosmic microwave background (CMB) and Type Ia supernova (SN) data. We take advantage of high-precision BAO measurements from galaxy clustering and the Ly-alpha forest (LyaF) in the BOSS survey of SDSS-III. BAO data alone yield a high confidence detection of dark energy, and in combination with the CMB angular acoustic scale they further imply a nearly flat universe. Combining BAO and SN data into an "inverse distance ladder" yields a 1.7% measurement of $H_0=67.3 \\pm1.1$ km/s/Mpc. This measurement assumes standard pre-recombination physics but is insensitive to assumptions about dark energy or space curvature, so agreement with CMB-based estimates that assume a flat LCDM cosmology is an important corroboration of this minimal cosmological model. For open LCDM, our BAO+SN+CMB combination yields $\\Omega_m=0.301 \\pm 0.008$ and curvature $\\Omega_k=-0.003 \\pm ...

  16. Photo-acoustic tomography in a rotating measurement setting

    Science.gov (United States)

    Bal, Guillaume; Moradifam, Amir

    2016-10-01

    Photo-acoustic tomography (PAT) aims to leverage the photo-acoustic coupling between optical absorption of light sources and ultrasound (US) emission to obtain high contrast reconstructions of optical parameters with the high resolution of sonic waves. Quantitative PAT often involves a two-step procedure: first the map of sonic emission is reconstructed from US boundary measurements; and second optical properties of biological tissues are evaluated. We consider here a practical measurement setting in which such a separation does not apply. We assume that the optical source and an array of ultrasonic transducers are mounted on a rotating frame (in two or three dimensions) so that the light source rotates at the same time as the US measurements are acquired. As a consequence, we no longer have the option to reconstruct a map of sonic emission corresponding to a given optical illumination. We propose here a framework where the two steps are combined into one and an absorption map is directly reconstructed from the available US measurements.

  17. Measurement of stiffness of standing trees and felled logs using acoustics: A review.

    Science.gov (United States)

    Legg, Mathew; Bradley, Stuart

    2016-02-01

    This paper provides a review on the use of acoustics to measure stiffness of standing trees, stems, and logs. An outline is given of the properties of wood and how these are related to stiffness and acoustic velocity throughout the tree. Factors are described that influence the speed of sound in wood, including the different types of acoustic waves which propagate in tree stems and lumber. Acoustic tools and techniques that have been used to measure the stiffness of wood are reviewed. The reasons for a systematic difference between direct and acoustic measurements of stiffness for standing trees, and methods for correction, are discussed. Other techniques, which have been used in addition to acoustics to try to improve stiffness measurements, are also briefly described. Also reviewed are studies which have used acoustic tools to investigate factors that influence the stiffness of trees. These factors include different silvicultural practices, geographic and environmental conditions, and genetics.

  18. Acoustic measurements of models of military style supersonic nozzle jets

    Institute of Scientific and Technical Information of China (English)

    Ching-Wen Kuo; Jérémy Veltin; Dennis K. McLaughlin

    2014-01-01

    Modern military aircraft jet engines are designed with variable-geometry nozzles to provide optimal thrust in different operating conditions, depending on the flight envelope. How-ever, acoustic measurements for such nozzles are scarce, due to the cost involved in making full-scale measurements and the lack of details about the exact geometries of these nozzles. Thus the present effort at Pennsylvania State University (PSU) in partnership with GE Aviation and the NASA Glenn Research Center is aiming to study and characterize the acoustic field produced by supersonic jets issuing from converging-diverging military style nozzles, and to identify and test promising noise reduction techniques. An equally important objective is to develop methodology for using data obtained from small-and moderate-scale experiments to reliably predict the full-scale engine noise. The experimental results presented show reasonable agreement between small-scale and medium-scale jets, as well as between heated jets and heat-simulated ones.

  19. Acoustic measurements of models of military style supersonic nozzle jets

    Directory of Open Access Journals (Sweden)

    Ching-Wen Kuo

    2014-02-01

    Full Text Available Modern military aircraft jet engines are designed with variable-geometry nozzles to provide optimal thrust in different operating conditions, depending on the flight envelope. However, acoustic measurements for such nozzles are scarce, due to the cost involved in making full-scale measurements and the lack of details about the exact geometries of these nozzles. Thus the present effort at Pennsylvania State University (PSU in partnership with GE Aviation and the NASA Glenn Research Center is aiming to study and characterize the acoustic field produced by supersonic jets issuing from converging-diverging military style nozzles, and to identify and test promising noise reduction techniques. An equally important objective is to develop methodology for using data obtained from small- and moderate-scale experiments to reliably predict the full-scale engine noise. The experimental results presented show reasonable agreement between small-scale and medium-scale jets, as well as between heated jets and heat-simulated ones.

  20. Classification of heart valve condition using acoustic measurements

    Energy Technology Data Exchange (ETDEWEB)

    Clark, G. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    Prosthetic heart valves and the many great strides in valve design have been responsible for extending the life spans of many people with serious heart conditions. Even though the prosthetic valves are extremely reliable, they are eventually susceptible to long-term fatigue and structural failure effects expected from mechanical devices operating over long periods of time. The purpose of our work is to classify the condition of in vivo Bjork-Shiley Convexo-Concave (BSCC) heart valves by processing acoustic measurements of heart valve sounds. The structural failures of interest for Bscc valves is called single leg separation (SLS). SLS can occur if the outlet strut cracks and separates from the main structure of the valve. We measure acoustic opening and closing sounds (waveforms) using high sensitivity contact microphones on the patient`s thorax. For our analysis, we focus our processing and classification efforts on the opening sounds because they yield direct information about outlet strut condition with minimal distortion caused by energy radiated from the valve disc.

  1. Utilization of old vibro-acoustic measuring equipment to grasp basic concepts of vibration measurements

    DEFF Research Database (Denmark)

    Darula, Radoslav

    2013-01-01

    The aim of the paper is to show that even old vibro-acoustic (analog) equipment can be used as a very suitable teaching equipment to grasp basic principles of measurements in an era, when measurement equipments are more-or-less treated as ‘black-boxes’, i.e. the user cannot see directly how...

  2. A mixed method for measuring low-frequency acoustic properties of macromolecular materials

    Institute of Scientific and Technical Information of China (English)

    LIU; Hongwei; YAO; Lei; ZHAO; Hong; ZHANG; Jichuan; XUE; Zhaohong

    2006-01-01

    A mixed method for measuring low-frequency acoustic properties of macromolecular materials is presented.The dynamic mechanical parameters of materials are first measured by using Dynamic Mechanical Thermal Apparatus(DMTA) at low frequencies,usually less than 100 Hz; then based on the Principles of Time-Temperature Super position (TTS),these parameters are extended to the frequency range that acousticians are concerned about,usually from hundreds to thousands of hertz; finally the extended dynamic mechanical parameters are transformed into acoustic parameters with the help of acoustic measurement and inverse analysis.To test the feasibility and accuracy,we measure a kind of rubber sample in DMTA and acquire the basic acoustic parameters of the sample by using this method.While applying the basic parameters to calculating characteristics of the sample in acoustic pipe,a reasonable agreement of sound absorption coefficients is obtained between the calculations and measurements in the acoustic pipe.

  3. Instrumentation Suite for Acoustic Propagation Measurements in Complex Shallow Water Environments

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Obtain at-sea measurements to test theoretical and modeling predictions of acoustic propagation in dynamic, inhomogeneous, and nonisotropic shallow water...

  4. Aero-acoustic Measurement and Monitoring of Dynamic Pressure Fields Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This innovative and practical measurement and monitoring system optimally defines dynamic pressure fields, including sound fields. It is based on passive acoustic...

  5. Acoustic Environment of Admiralty Inlet: Broadband Noise Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jinshan; Deng, Zhiqun; Martinez, Jayson J.; Carlson, Thomas J.; Myers, Joshua R.; Weiland, Mark A.; Jones, Mark E.

    2011-09-30

    Admiralty Inlet has been selected as a potential tidal energy site. It is located near shipping lanes, is a highly variable acoustic environment, and is frequented by the highly endangered southern resident killer whale (SRKW). Resolving environmental impacts is the first step to receiving approval to deploy tidal turbines at Admiralty Inlet. Of particular concern is the potential for blade strike or other negative interactions between the SRKW and the tidal turbine. A variety of technologies including passive and active monitoring systems are being considered as potential tools to determine the presence of SRKW in the vicinity of the turbines. Broadband noise level measurements are critical for the determination of design and operation specifications of all marine and hydrokinetic energy capture technologies. Acoustic environment data at the proposed site was acquired at different depths using a cabled vertical line array (VLA) with four calibrated hydrophones. The sound pressure level (SPL) power spectrum density was estimated based on the fast Fourier transform. This study describes the first broadband SPL measurements for this site at different depths with frequency ranging from 10 kHz to 480 kHz in combination with other information. To understand the SPL caused by this bedload transport, three different pressure sensors with temperature and conductivity were also assembled on the VLA to measure the conditions at the hydrophone deployment depth. The broadband SPL levels at frequency ranges of 3 kHz to 7 kHz as a function of depth were estimated. Only the hydrophone at an average depth of 40 m showed the strong dependence of SPL with distance from the bottom, which was possibly caused by the cobbles shifting on the seabed. Automatic Identification System data were also studied to understand the SPL measurements.

  6. Acoustic measurements above a plate carrying Lamb waves

    CERN Document Server

    Talberg, Andreas Sørbrøden

    2016-01-01

    This article presents a set of acoustic measurements conducted on the Statoil funded Behind Casing Logging Set-Up, designed by SINTEF Petroleum Research to resemble an oil well casing. A set of simple simulations using COMSOL Multiphysics were also conducted and the results compared with the measurements. The experiments consists of measuring the pressure wave radiated of a set of Lamb waves propagating in a 3 mm thick steel plate, using the so called pitch-catch method. The Lamb waves were excited by a broadband piezoelectric immersion transducer with center frequency of 1 MHz. Through measurements and analysis the group velocity of the fastest mode in the plate was found to be 3138.5 m/s. Measuring the wave radiated into the water in a grid consisting of 8x33 measuring points, the spreading of the plate wave normal to the direction of propagation was investigated. Comparing the point where the amplitude had decreased 50 % relative to the amplitude measured at the axis pointing straight forward from the tran...

  7. Precise measurement technique for the stable acoustic cavitation bubble

    Institute of Scientific and Technical Information of China (English)

    HUANG Wei; CHEN Weizhong; LIU Yanan; GAO Xianxian; JIANG Lian; XU Junfeng; ZHU Yifei

    2005-01-01

    Based on the periodic oscillation of the stable acoustic cavitation bubble, we present a precise measurement technique for the bubble evolution. This technique comprises the lighting engineering of pulsing laser beam whose phase can be digitally shifted, and the long distance microphotographics. We used a laser, an acousto-optic modulator, a pulse generator, and a long distance microscope. The evolution of a levitated bubble can be directly shown by a series of bubble's images at different phases. Numerical simulation in the framework of the Rayleigh-Plesset bubble dynamics well supported the experimental result, and the ambient radius of the bubble, an important parameter related to the mass of the gas inside the bubble, was obtained at the same time.

  8. Thermodynamic properties of liquid gallium from picosecond acoustic velocity measurements

    International Nuclear Information System (INIS)

    Due to discrepancies in the literature data the thermodynamic properties of liquid gallium are still in debate. Accurate measurements of adiabatic sound velocities as a function of pressure and temperature have been obtained by the combination of laser picosecond acoustics and surface imaging on sample loaded in diamond anvil cell. From these results the thermodynamic parameters of gallium have been extracted by a numerical procedure up to 10 GPa and 570 K. It is demonstrated that a Murnaghan equation of state accounts well for the whole data set since the isothermal bulk modulus BT has been shown to vary linearly with pressure in the whole temperature range. No evidence for a previously reported liquid–liquid transition has been found in the whole pressure and temperature range explored. (paper)

  9. Surface Acoustic Wave Vibration Sensors for Measuring Aircraft Flutter

    Science.gov (United States)

    Wilson, William C.; Moore, Jason P.; Juarez, Peter D.

    2016-01-01

    Under NASA's Advanced Air Vehicles Program the Advanced Air Transport Technology (AATT) Project is investigating flutter effects on aeroelastic wings. To support that work a new method for measuring vibrations due to flutter has been developed. The method employs low power Surface Acoustic Wave (SAW) sensors. To demonstrate the ability of the SAW sensor to detect flutter vibrations the sensors were attached to a Carbon fiber-reinforced polymer (CFRP) composite panel which was vibrated at six frequencies from 1Hz to 50Hz. The SAW data was compared to accelerometer data and was found to resemble sine waves and match each other closely. The SAW module design and results from the tests are presented here.

  10. Pulsed electro-acoustic (PEA) measurements of embedded charge distributions

    Science.gov (United States)

    Dennison, J. R.; Pearson, Lee H.

    2013-09-01

    Knowledge of the spatial distribution and evolution of embedded charge in thin dielectric materials has important applications in semiconductor, high-power electronic device, high-voltage DC power cable insulation, high-energy and plasma physics apparatus, and spacecraft industries. Knowing how, where, and how much charge accumulates and how it redistributes and dissipates can predict destructive charging effects. Pulsed Electro-acoustic (PEA) measurements— and two closely related methods, Pressure Wave Propagation (PWP) and Laser Intensity Modulation (LIMM)— nondestructively probe such internal charge distributions. We review the instrumentation, methods, theory and signal processing of simple PEA experiments, as well as the related PPW and LIMM methods. We emphasize system improvements required to achieve high spatial resolution for in vacuo measurements of thin dielectrics charged using electron beam injection.

  11. Measurement of the Acoustic Nonlinearity Parameter for Biological Media.

    Science.gov (United States)

    Cobb, Wesley Nelson

    In vitro measurements of the acoustic nonlinearity parameter are presented for several biological media. With these measurements it is possible to predict the distortion of a finite amplitude wave in biological tissues of current diagnostic and research interest. The measurement method is based on the finite amplitude distortion of a sine wave that is emmitted by a piston source. The growth of the second harmonic component of this wave is measured by a piston receiver which is coaxial with and has the same size as the source. The experimental measurements and theory are compared in order to determine the nonlinearity parameter. The density, sound speed, and attenuation for the medium are determined in order to make this comparison. The theory developed for this study accounts for the influence of both diffraction and attenuation on the experimental measurements. The effects of dispersion, tissue inhomogeneity and gas bubbles within the excised tissues are studied. To test the measurement method, experimental results are compared with established values for the nonlinearity parameter of distilled water, ethylene glycol and glycerol. The agreement between these values suggests that the measurement uncertainty is (+OR-) 5% for liquids and (+OR-) 10% for solid tissues. Measurements are presented for dog blood and bovine serum albumen as a function of concentration. The nonlinearity parameters for liver, kidney and spleen are reported for both human and canine tissues. The values for the fresh tissues displayed little variation (6.8 to 7.8). Measurements for fixed, normal and cirrhotic tissues indicated that the nonlinearity parameter does not depend strongly on pathology. However, the values for fixed tissues were somewhat higher than those of the fresh tissues.

  12. Ultrasonic flow measurement and wall acoustic impedance effects.

    Science.gov (United States)

    Willatzen, M

    2004-03-01

    An examination of the influence of wall acoustic impedance effects on sound propagation in flowing liquids confined by cylindrical walls is presented. Special focus is given to the importance of the wall acoustic impedance value for ultrasonic flow meter performance. The mathematical model presented allows any radially-dependent axial flow profile to be examined in the linear flow acoustics regime where fluid flow speed is much smaller than the fluid sound speed everywhere in the fluid medium. PMID:14996531

  13. Acoustic measurements of F-16 aircraft operating in hush house, NSN 4920-02-070-2721

    Science.gov (United States)

    Miller, V. R.; Plzak, G. A.; Chinn, J. M.

    1981-09-01

    The purpose of this test program was to measure the acoustic environment in the hush house facility located at Kelly Air Force Base, Texas, during operation of the F-16 aircraft to ensure that aircraft structural acoustic design limits were not exceeded. The acoustic measurements showed that no sonic fatigue problems are anticipated with the F-16 aircraft aft fuselage structure during operation in the hush house. The measured acoustic levels were less than those measured in an F-16 aircraft water cooled hush house at Hill AFB, but were increased over that measured during ground run up. It was recommended that the acoustic loads measured in this program should be specified in the structural design criteria for aircraft which will be subjected to hush house operation or defining requirements for associated equipment.

  14. Outcomes Measurement in Voice Disorders: Application of an Acoustic Index of Dysphonia Severity

    Science.gov (United States)

    Awan, Shaheen N.; Roy, Nelson

    2009-01-01

    Purpose: The purpose of this experiment was to assess the ability of an acoustic model composed of both time-based and spectral-based measures to track change following voice disorder treatment and to serve as a possible treatment outcomes measure. Method: A weighted, four-factor acoustic algorithm consisting of shimmer, pitch sigma, the ratio of…

  15. Postoperative improvement in acoustic rhinometry measurements after septoplasty correlates with long-term satisfaction

    DEFF Research Database (Denmark)

    Toyserkani, N M; Frisch, Thomas; von Buchwald, Christian

    2013-01-01

    Not much is known about long-term satisfaction of septoplasty. Our goal was to compare pre- and postoperative acoustic rhinometry measurements with satisfaction 11 years after surgery.......Not much is known about long-term satisfaction of septoplasty. Our goal was to compare pre- and postoperative acoustic rhinometry measurements with satisfaction 11 years after surgery....

  16. Comparisons of auditorium acoustics measurements as a function of location in halls (A)

    DEFF Research Database (Denmark)

    Bradley, J. S.; Gade, Anders Christian; Siebein, G W

    1993-01-01

    parallel measurements of a number of modern room acoustics quantities using different equipment and measurement procedures. These results are compared on a seat-by-seat basis and the differences are explained in terms of earlier systematic studies of the effects of measurement procedure details....... The measurement results were also used to examine the influence of different measurement equipment and measurement procedures on the within hall variations of the various acoustical quantities. [Work partially supported by the Concert Hall Research Group.]...

  17. Acoustic emission measurements in petroleum-related rock mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Unander, Tor Erling

    2002-07-01

    Acoustic emission activity in rock has usually been studied in crystalline rock, which reflects that rock mechanics has also mostly been occupied with such rocks in relations to seismology, mining and tunneling. On the other hand, petroleum-related rock mechanics focuses on the behaviour of sedimentary rock. Thus, this thesis presents a general study of acoustic emission activity in sedimentary rock, primarily in sandstone. Chalk, limestone and shale have also been tested, but to much less degree because the AE activity in these materials is low. To simplify the study, pore fluids have not been used. The advent of the personal computer and computerized measuring equipment have made possible new methods both for measuring and analysing acoustic emissions. Consequently, a majority of this work is devoted to the development and implementation of new analysis techniques. A broad range of topics are treated: (1) Quantification of the AE activity level, assuming that the event rate best represents the activity. An algorithm for estimating the event rate and a methodology for objectively describing special changes in the activity e.g., onset determination, are presented. (2) Analysis of AE waveform data. A new method for determining the source energy of an AE event is presented, and it is shown how seismic source theory can be used to analyze even intermediate quality data. Based on these techniques, it is shown that a major part of the measured AE activity originates from a region close to the sensor, not necessarily representing the entire sample. (3) An improved procedure for estimating source locations is presented. The main benefit is a procedure that better handles arrival time data with large errors. Statistical simulations are used to quantify the uncertainties in the locations. The analysis techniques are developed with the application to sedimentary rock in mind, and in two articles, the techniques are used in the study of such materials. The work in the first

  18. Optimization of Acoustic Pressure Measurements for Impedance Eduction

    Science.gov (United States)

    Jones, M. G.; Watson, W. R.; Nark, D. M.

    2007-01-01

    As noise constraints become increasingly stringent, there is continued emphasis on the development of improved acoustic liner concepts to reduce the amount of fan noise radiated to communities surrounding airports. As a result, multiple analytical prediction tools and experimental rigs have been developed by industry and academia to support liner evaluation. NASA Langley has also placed considerable effort in this area over the last three decades. More recently, a finite element code (Q3D) based on a quasi-3D implementation of the convected Helmholtz equation has been combined with measured data acquired in the Langley Grazing Incidence Tube (GIT) to reduce liner impedance in the presence of grazing flow. A new Curved Duct Test Rig (CDTR) has also been developed to allow evaluation of liners in the presence of grazing flow and controlled, higher-order modes, with straight and curved waveguides. Upgraded versions of each of these two test rigs are expected to begin operation by early 2008. The Grazing Flow Impedance Tube (GFIT) will replace the GIT, and additional capabilities will be incorporated into the CDTR. The current investigation uses the Q3D finite element code to evaluate some of the key capabilities of these two test rigs. First, the Q3D code is used to evaluate the microphone distribution designed for the GFIT. Liners ranging in length from 51 to 610 mm are investigated to determine whether acceptable impedance eduction can be achieved with microphones placed on the wall opposite the liner. This analysis indicates the best results are achieved for liner lengths of at least 203 mm. Next, the effects of moving this GFIT microphone array to the wall adjacent to the liner are evaluated, and acceptable results are achieved if the microphones are placed off the centerline. Finally, the code is used to investigate potential microphone placements in the CDTR rigid wall adjacent to the wall containing an acoustic liner, to determine if sufficient fidelity can be

  19. PROGRESS OF ACOUSTIC WAVE TECHNIQUE AND ITS APPLICATION IN UNDERGROUND PRESSURE MEASUREMENT

    Institute of Scientific and Technical Information of China (English)

    周楚良; 李新元; 张晓龙

    1994-01-01

    This paper carries out the experiment study on the correlation between full stress-strain process of rock samples and the acoustic parameter change of rock by using the measurement system of KS acoustic wave data processing device. On the spot, the stability of surrounding rock is studied by means of experiments on the relationship between the change process (from elastic to plastic failure zone) in surrounding rock of roadway and the change law of acoustic parameters of rock. These acoustic parameters include wave amplitude, spectral amplitude, spectrum area, spectral density, wave velocity and attenuation coefficient etc.

  20. Research on the influence and correction method of depth scanning error to the underwater acoustic image measurement

    Institute of Scientific and Technical Information of China (English)

    MEI Jidan; ZHAI Chunpin; WANGYilin; HUI Junying

    2011-01-01

    The technology of underwater acoustic image measurement was a passive locating method with high precision in near field. To improve the precision of underwater acoustic image measurement, the influence of the depth scan error was analyzed and the correcti

  1. Use of an acoustic helium analyzer for measuring lung volumes.

    Science.gov (United States)

    Krumpe, P E; MacDannald, H J; Finley, T N; Schear, H E; Hall, J; Cribbs, D

    1981-01-01

    We have evaluated the use of an acoustic gas analyzer (AGA) for the measurement of total lung capacity (TLC) by single-breath helium dilution. The AGA has a rapid response time (0-90% response = 160 ms for 10% He), is linear for helium concentration of 0.1-10%, is stable over a wide range of ambient temperatures, and is small and portable. We plotted the output of the AGA vs. expired lung volume after a vital capacity breath of 10% He. However, since the AGA is sensitive to changes in speed of sound relative to air, the AGA output signal also reports an artifact due to alveolar gases. We corrected for this artifact by replotting a single-breath expiration after a vital capacity breath of room air. Mean alveolar helium concentration (HeA) was then measured by planimetry, using this alveolar gas curve as the base line. TLC was calculated using the HeA from the corrected AGA output and compared with TLC calculated from HeA simultaneously measured using a mass spectrometer (MS). In 12 normal subjects and 9 patients with chronic obstructive pulmonary disease (COPD) TLC-AGA and TLC-MS were compared by linear regression analysis; correlation coefficient (r) was 0.973 for normals and 0.968 for COPD patients (P less than 0.001). This single-breath; estimation of TLC using the corrected signal of the AGA vs. Expired volume seems ideally suited for the measurement of subdivisions of lung volume in field studies. PMID:7204187

  2. The Belt voice: Acoustical measurements and esthetic correlates

    Science.gov (United States)

    Bounous, Barry Urban

    This dissertation explores the esthetic attributes of the Belt voice through spectral acoustical analysis. The process of understanding the nature and safe practice of Belt is just beginning, whereas the understanding of classical singing is well established. The unique nature of the Belt sound provides difficulties for voice teachers attempting to evaluate the quality and appropriateness of a particular sound or performance. This study attempts to provide answers to the question "does Belt conform to a set of measurable esthetic standards?" In answering this question, this paper expands on a previous study of the esthetic attributes of the classical baritone voice (see "Vocal Beauty", NATS Journal 51,1) which also drew some tentative conclusions about the Belt voice but which had an inadequate sample pool of subjects from which to draw. Further, this study demonstrates that it is possible to scientifically investigate the realm of musical esthetics in the singing voice. It is possible to go beyond the "a trained voice compared to an untrained voice" paradigm when evaluating quantitative vocal parameters and actually investigate what truly beautiful voices do. There are functions of sound energy (measured in dB) transference which may affect the nervous system in predictable ways and which can be measured and associated with esthetics. This study does not show consistency in measurements for absolute beauty (taste) even among belt teachers and researchers but does show some markers with varying degrees of importance which may point to a difference between our cognitive learned response to singing and our emotional, more visceral response to sounds. The markers which are significant in determining vocal beauty are: (1) Vibrancy-Characteristics of vibrato including speed, width, and consistency (low variability). (2) Spectral makeup-Ratio of partial strength above the fundamental to the fundamental. (3) Activity of the voice-The quantity of energy being produced. (4

  3. Acoustic measurements of F-15 aircraft operating in hush house, NSN 4920-02-070-2721

    Science.gov (United States)

    Miller, V. R.; Plzak, G. A.; Chinn, J. M.

    1981-09-01

    The purpose of this test program was to measure the acoustic environment in the hush house facility located at Kelly Air Force Base, Texas, during operation of the F-15 aircraft to ensure that aircraft structural acoustic design limits were not exceeded. The acoustic measurements showed that no potential sonic fatigue problems are anticipated with the F-15 aircraft structure during operation in the hush house. However, since these acoustic levels were increased over those measuring during run up on a concrete pad, it is recommended that F-15 equipment qualification levels be checked. The data indicated that the noise field within the hush house is diffuse and that the acoustical energy in the hangar area is radiated from the region between the engine exhaust and the hush house muffler front edge toward the forward part of the hangar.

  4. Deriving content-specific measures of room acoustic perception using a binaural, nonlinear auditory model

    NARCIS (Netherlands)

    Van Dorp Schuitman, J.; De Vries, D.; Lindau, A.

    2013-01-01

    Acousticians generally assess the acoustic qualities of a concert hall or any other room using impulse response-based measures such as the reverberation time, clarity index, and others. These parameters are used to predict perceptual attributes related to the acoustic qualities of the room. Various

  5. Acoustic resonances in HID lamps: model and measurement

    Energy Technology Data Exchange (ETDEWEB)

    Hirsch, John [Philips Lighting BV, Lightlabs, Mathildelaan 1, 5600 JM Eindhoven (Netherlands); Baumann, Bernd; Wolff, Marcus [Hamburg University of Applied Sciences, Institute for Physical Sensors, Berliner Tor 21, 20099 Hamburg (Germany); Bhosle, Sounil [Universite Paul Sabatier, Toulouse (France); Valdivia Barrientos, Ricardo, E-mail: john.hirsch@philips.co [National Nuclear Research Institute, Highway Mexico-Toluca s/n, La Marquesa, Ocoyoacac, CP 52750 (Mexico)

    2010-06-16

    A finite element model including plasma simulation is used to calculate the amplitude of acoustic resonances in HID lamps in a 2D axisymmetric geometry. Simulation results are presented for different operation parameters and are compared with experimental data.

  6. Long range acoustic measurements of an undersea volcano.

    Science.gov (United States)

    Heaney, Kevin D; Campbell, Richard L; Snellen, Mirjam

    2013-10-01

    A seamount 8 km southeast of Sarigan Island erupted on 29 May 2010 and was visually observed. The recordings on two sets of hydrophones, operated by International Monitoring System (IMS) of the Comprehensive Test Ban Treaty Organization (CTBTO) are analyzed. Each array is a triplet of axial single hydrophones deployed as a 2 km triangle. Measurements of acoustic intensity for the path to the southern triplet are on the order of 6 dB lower than those received on the northern triplet. Temporal cross-correlation beamforming estimation is performed and the estimated arrival angles for the two arrays, 265° and 267° were consistent with the predicted geodesic arrival of 264.6° and 267.8°, respectively. Cross-correlation between single phones on the northern and southern arrays reveals a peak at 266°, with a cross-correlation of 0.1. Nx2D parabolic equation modeling predicts complete blockage due to seamount interaction along the geodesic path. Overprediction of the seamount blockage indicates that the 2D approximation is incorrect, and three-dimensional propagation must be used to explain the observations. This is demonstrated by the computation of the Adiabatic Mode Parabolic Equation Transmission Loss, which predicts a 5-10 dB lower reception at the southern site. PMID:24116524

  7. Effects of Various Architectural Parameters on Six Room Acoustical Measures in Auditoria.

    Science.gov (United States)

    Chiang, Wei-Hwa

    The effects of architectural parameters on six room acoustical measures were investigated by means of correlation analyses, factor analyses and multiple regression analyses based on data taken in twenty halls. Architectural parameters were used to estimate acoustical measures taken at individual locations within each room as well as the averages and standard deviations of all measured values in the rooms. The six acoustical measures were Early Decay Time (EDT10), Clarity Index (C80), Overall Level (G), Bass Ratio based on Early Decay Time (BR(EDT)), Treble Ratio based on Early Decay Time (TR(EDT)), and Early Inter-aural Cross Correlation (IACC80). A comprehensive method of quantifying various architectural characteristics of rooms was developed to define a large number of architectural parameters that were hypothesized to effect the acoustical measurements made in the rooms. This study quantitatively confirmed many of the principles used in the design of concert halls and auditoria. Three groups of room architectural parameters such as the parameters associated with the depth of diffusing surfaces were significantly correlated with the hall standard deviations of most of the acoustical measures. Significant differences of statistical relations among architectural parameters and receiver specific acoustical measures were found between a group of music halls and a group of lecture halls. For example, architectural parameters such as the relative distance from the receiver to the overhead ceiling increased the percentage of the variance of acoustical measures that was explained by Barron's revised theory from approximately 70% to 80% only when data were taken in the group of music halls. This study revealed the major architectural parameters which have strong relations with individual acoustical measures forming the basis for a more quantitative method for advancing the theoretical design of concert halls and other auditoria. The results of this study provide

  8. Thickness measurement of Ni thin film using dispersion characteristics of a surface acoustic wave

    International Nuclear Information System (INIS)

    In this study, we suggest a method to measure the thickness of thin films nondestructively using the dispersion characteristics of a surface acoustic wave propagating along the thin film surface. To measure the thickness of thin films, we deposited thin films with different thicknesses on a Si (100) wafer substrate by controlling the deposit time using the E-beam evaporation method. The thickness of the thin films was measured using a scanning electron microscope. Subsequently, the surface wave velocity of the thin films with different thicknesses was measured using the V(z) curve method of scanning acoustic microscopy. The correlation between the measured thickness and surface acoustic wave velocity was verified. The wave velocity of the film decreased as the film thickness increased. Therefore, thin film thickness can be determined by measuring the dispersion characteristics of the surface acoustic wave velocity.

  9. Application of an acoustic noise removal method to aircraft-based atmospheric temperature measurements

    Science.gov (United States)

    Hugo, Ronald J.; Nowlin, Scott R.; Hahn, Ila L.; Eaton, Frank D.; McCrae, Kim A.

    2003-01-01

    An acoustic noise removal method is used to reject engine acoustical disturbances from aircraft-based atmospheric temperature measurements. Removal of engine noise from atmospheric temperature measurements allows a larger wave number range to be fit while quantifying the magnitude of atmospheric temperature turbulence. The larger wave number range was found to result in a more statistically certain spectral slope estimate, with up to a 50% reduction in the standard deviation of measured spectral slopes. The noise removal technique was found to break down under conditions of weak atmospheric temperature turbulence where the engine acoustical disturbance can be several orders of magnitude larger than atmospheric temperature turbulence.

  10. Measuring Turbulence from Moored Acoustic Doppler Velocimeters. A Manual to Quantifying Inflow at Tidal Energy Sites

    Energy Technology Data Exchange (ETDEWEB)

    Kilcher, Levi [National Renewable Energy Lab. (NREL), Golden, CO (United States); Thomson, Jim [Univ. of Washington, Seattle, WA (United States); Talbert, Joe [Univ. of Washington, Seattle, WA (United States); DeKlerk, Alex [Univ. of Washington, Seattle, WA (United States)

    2016-03-01

    This work details a methodology for measuring hub height inflow turbulence using moored acoustic Doppler velocimiters (ADVs). This approach is motivated by the shortcomings of alternatives. For example, remote velocity measurements (i.e., from acoustic Doppler profilers) lack sufficient precision for device simulation, and rigid tower-mounted measurements are very expensive and technically challenging in the tidal environment. Moorings offer a low-cost, site-adaptable and robust deployment platform, and ADVs provide the necessary precision to accurately quantify turbulence.

  11. Measuring baryon acoustic oscillations from the clustering of voids

    Science.gov (United States)

    Liang, Yu; Zhao, Cheng; Chuang, Chia-Hsun; Kitaura, Francisco-Shu; Tao, Charling

    2016-07-01

    We investigate the necessary methodology to optimally measure the baryon acoustic oscillation (BAO) signal from voids, based on galaxy redshift catalogues. To this end, we study the dependence of the BAO signal on the population of voids classified by their sizes. We find for the first time the characteristic features of the correlation function of voids including the first robust detection of BAOs in mock galaxy catalogues. These show an anti-correlation around the scale corresponding to the smallest size of voids in the sample (the void exclusion effect), and dips at both sides of the BAO peak, which can be used to determine the significance of the BAO signal without any priori model. Furthermore, our analysis demonstrates that there is a scale-dependent bias for different populations of voids depending on the radius, with the peculiar property that the void population with the largest BAO significance corresponds to tracers with approximately zero bias on the largest scales. We further investigate the methodology on an additional set of 1000 realistic mock galaxy catalogues reproducing the SDSS-III/BOSS CMASS DR11 data, to control the impact of sky mask and radial selection function. Our solution is based on generating voids from randoms including the same survey geometry and completeness, and a post-processing cleaning procedure in the holes and at the boundaries of the survey. The methodology and optimal selection of void populations validated in this work have been used to perform the first BAO detection from voids in observations, presented in a companion paper.

  12. a Study of the Acoustical Termination on Practical Gas Pulsation Measurement

    Science.gov (United States)

    LAI, P. C.-C.

    2000-06-01

    It has been well recognized in the past that an anechoic termination, which can effectively eliminate the reflective acoustic wave, is required for measurement of exhaust gas pulsation from engines or machinery. In academic environment, the acoustic termination on the exhaust line can be well controlled by appropriate treatment. However, it is not unusual in practical industrial applications that the anechoic termination is not available. Therefore, a theoretical investigation was performed in order to understand the impact on the gas pulsation measurement without an anechoic termination. A simplified model of an exhaust line with different acoustic terminations was analyzed by both analytical and experimental approaches. Both one-microphone and two-microphone measurement methods, which are commonly used, were evaluated. The results clearly demonstrate that without an anechoic termination, the variations of the measurements will be substantial due to the reflective acoustic wave, as has been argued for years in the industry.

  13. Comparison of acoustic and strain gauge techniques for crack closure measurements

    Science.gov (United States)

    Buck, O.; Inman, R. V.; Frandsen, J. D.

    1976-01-01

    A quantitative study on the systems performances of the COD gauge and the acoustic transmission techniques to elastic deformation of part-through crack and compact tension specimens has been conducted. It is shown that the two instruments measure two completely different quantities: The COD gauge yields information on the length change of the specimen whereas the acoustic technique is sensitive directly to the amount of contract area between two surfaces, interfering with the acoustic signal. In another series of experiments, compression tests on parts with specifically prepared surfaces were performed so that the surface contact area could be correlated with the transmitted acoustic signal, as well as the acoustic with the COD gauge signal. A linear relation between contact area and COD gauge signal was obtained until full contact had been established.

  14. Underwater hybrid near-field acoustical holography based on the measurement of vector hydrophone array

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Hybrid near-field acoustical holography(NAH) is developed for reconstructing acoustic radiation from a cylindrical source in a complex underwater environment. In hybrid NAH,we combine statistically optimized near-field acoustical holography(SONAH) and broadband acoustical holography from intensity measurements(BAHIM) to reconstruct the underwater cylindrical source field. First,the BAHIM is utilized to regenerate as much acoustic pressures on the hologram surface as necessary,and then the acoustic pressures are taken as input to the formulation implemented numerically by SONAH. The main advantages of this technology are that the complex pressure on the hologram surface can be reconstructed without reference signal,and the measurement array can be smaller than the source,thus the practicability and efficiency of this technology are greatly enhanced. Numerical examples of a cylindrical source are demonstrated. Test results show that hybrid NAH can yield a more accurate reconstruction than conventional NAH. Then,an experiment has been carried out with a vector hydrophone array. The experimental results show the advantage of hybrid NAH in the reconstruction of an acoustic field and the feasibility of using a vector hydrophone array in an underwater NAH measurement,as well as the identification and localization of noise sources.

  15. Measurements and Simulation Studies of Piezoceramics for Acoustic Particle Detection

    CERN Document Server

    Salomon, K; Graf, K; Hoessl, J; Kappes, A; Karg, T; Katz, U; Lahmann, R; Naumann, C

    2005-01-01

    Calibration sources are an indispensable tool for all detectors. In acoustic particle detection the goal of a calibration source is to mimic neutrino signatures as expected from hadronic cascades. A simple and promising method for the emulation of neutrino signals are piezo ceramics. We will present results of measruements and simulations on these piezo ceramics.

  16. Simple discrimination method between False Acoustic Emission and Acoustic Emission revealed by piezoelectric sensors, in Gran Sasso mountain measurements (L)

    Science.gov (United States)

    Diodati, Paolo; Piazza, Stefano

    2004-07-01

    Recently it was shown, studying data acquired with in-situ measurements on the Gran Sasso mountain (Italy), for about ten years, by means of a high sensitivity transducer coupled to the free-end section of a stainless steel rod fixed by cement in a rock-drill hole 10 m high, about 2500 m above sea level, that Acoustic Emission (AE) can be affected by more than 90% False Acoustic Emission (FAE) of an electromagnetic origin. A very simple method to solve the problem of the discrimination between AE events due to elastic waves, from FAE signals, due to electromagnetic noise, both coming from the same ``reception-point,'' is presented. The reliability of the obtained separation is confirmed also by the reported amplitude and time distribution of AE events, typical of fracture dynamics and those of FAE events, similar to those of noise.

  17. A Monte-Carlo investigation of the uncertainty of acoustic decay measurements

    DEFF Research Database (Denmark)

    Cabo, David Pérez; Seoane, Manuel A. Sobreira; Jacobsen, Finn

    2012-01-01

    Measurement of acoustic decays can be problematic at low frequencies: short decays cannot be evaluated accurately. Several effects influencing the evaluation will be reviewed in this paper. As new contribution, the measurement uncertainty due to one-third octave band pass filters will be analysed...... been be set up: the model function is a model of the acoustic decays, where the modal density, the resonances of the system, and the amplitude and phase of the normal modes may be considered as random variables. Once the random input variables and the model function are defined, the uncertainty...... of acoustic decay measurements can be estimated. Different filters will be analysed: linear phase FIR and IIR filters both in their direct and time-reversed versions. © European Acoustics Association....

  18. On Mass Loading and Dissipation Measured with Acoustic Wave Sensors: A Review

    Directory of Open Access Journals (Sweden)

    Marina V. Voinova

    2009-01-01

    Full Text Available We summarize current trends in the analysis of physical properties (surface mass density, viscosity, elasticity, friction, and charge of various thin films measured with a solid-state sensor oscillating in a gaseous or liquid environment. We cover three different types of mechanically oscillating sensors: the quartz crystal microbalance with dissipation (QCM-D monitoring, surface acoustic wave (SAW, resonators and magnetoelastic sensors (MESs. The fourth class of novel acoustic wave (AW mass sensors, namely thin-film bulk acoustic resonators (TFBARs on vibrating membranes is discussed in brief. The paper contains a survey of theoretical results and practical applications of the sensors and includes a comprehensive bibliography.

  19. Field evaluation of boat-mounted acoustic Doppler instruments used to measure streamflow

    Science.gov (United States)

    Mueller, D.S.

    2003-01-01

    The use of instruments based on the Doppler principle for measuring water velocity and computing discharge is common within the U.S. Geological Survey (USGS). The instruments and software have changed appreciably during the last 5 years; therefore, the USGS has begun field validation of the instruments used to make discharge measurements from a moving boat. Instruments manufactured by SonTek/YSI and RD Instruments, Inc. were used to collect discharge data at five different sites. One or more traditional discharge measurements were made using a Price AA current meter and standard USGS procedures concurrent with the acoustic instruments at each site. Discharges measured with the acoustic instruments were compared with discharges measured with Price AA current meters and the USGS stage-discharge rating for each site. The mean discharges measured by each acoustic instrument were within 5 percent of the Price AA-based measurement and (or) discharge from the stage-discharge rating.

  20. Towards Measuring Continuous Acoustic Feature Convergence in Unconstrained Spoken Dialogues

    OpenAIRE

    Kousidis, Spyros; Dorran, David; Wang, Yi; Vaughan, Brian; Cullen, Charlie; Campbell, Dermot; McDonnell, Ciaran; Coyle, Eugene

    2008-01-01

    Acoustic/prosodic feature (a/p) convergence has been known to occur both in dialogues between humans, as well as in human-computer interactions. Understanding the form and function of convergence is desirable for developing next generation conversational agents, as this will help increase speech recognition performance and naturalness of synthesized speech. Currently, the underlying mechanisms by which continuous and bi-directional convergence occurs are not well understood. In this study, a ...

  1. Measurement of liquid surface acoustic wave amplitudes using HeNe laser homodyne techniques

    Science.gov (United States)

    Hickman, G. D.; Hsu, Y. L.; Lee, M. S.; Bourgeois, B. S.; Hsieh, S. T.

    1988-01-01

    Recent results in the measurement of small amplitude acoustic waves on the water surface are presented. The research was performed using laser homodyne techniques in a small laboratory water tank. The homodyne system consists of optical, acoustic, and data acquisition subsystems. The optical subsystem includes an HeNe laser and polarizing components. THe acoustic subsystem consists of standard low power transducers and a power amplifier. The data acquisition subsystem includes a spectrum analyzer and a personal computer. Measurements were made in the acoustic frequency range of 15 - 23 kHz and sound pressure levels of 120-180 dB re 1 micropascal. It is estimated that the homodyne technique can detect surface amplitude deformations on the order of 90 A.

  2. Comparison between psycho-acoustics and physio-acoustic measurement to determine optimum reverberation time of pentatonic angklung music concert hall

    Science.gov (United States)

    Sudarsono, Anugrah S.; Merthayasa, I. G. N.; Suprijanto

    2015-09-01

    This research tried to compare psycho-acoustics and Physio-acoustic measurement to find the optimum reverberation time of soundfield from angklung music. Psycho-acoustic measurement was conducted using a paired comparison method and Physio-acoustic measurement was conducted with EEG Measurement on T3, T4, FP1, and FP2 measurement points. EEG measurement was conducted with 5 persons. Pentatonic angklung music was used as a stimulus with reverberation time variation. The variation was between 0.8 s - 1.6 s with 0.2 s step. EEG signal was analysed using a Power Spectral Density method on Alpha Wave, High Alpha Wave, and Theta Wave. Psycho-acoustic measurement on 50 persons showed that reverberation time preference of pentatonic angklung music was 1.2 second. The result was similar to Theta Wave measurement on FP2 measurement point. High Alpha wave on T4 measurement gave different results, but had similar patterns with psycho-acoustic measurement

  3. Measurement of the acoustic nonlinearity parameter B/A of lossy medium in a focused field

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    An analytical description for the linear and nonlinear acoustic fields in lossy medium of a focusing source is derived. The relationship of pressure amplitudes at focus for fundamental and the second harmonic waves is discussed. At high linear focusing gain G, a new method using the insert substitution method for measuring the acoustic nonlinear parameter B /A of biological tissues is presented. Results for some biological tissues are experimentally obtained.

  4. Acoustic Measurements of a Large Civil Transport Main Landing Gear Model

    Science.gov (United States)

    Ravetta, Patricio A.; Khorrami, Mehdi R.; Burdisso, Ricardo A.; Wisda, David M.

    2016-01-01

    Microphone phased array acoustic measurements of a 26 percent-scale, Boeing 777-200 main landing gear model with and without noise reduction fairings installed were obtained in the anechoic configuration of the Virginia Tech Stability Tunnel. Data were acquired at Mach numbers of 0.12, 0.15, and 0.17 with the latter speed used as the nominal test condition. The fully and partially dressed gear with the truck angle set at 13 degrees toe-up landing configuration were the two most extensively tested configurations, serving as the baselines for comparison purposes. Acoustic measurements were also acquired for the same two baseline configurations with the truck angle set at 0 degrees. In addition, a previously tested noise reducing, toboggan-shaped fairing was re-evaluated extensively to address some of the lingering questions regarding the extent of acoustic benefit achievable with this device. The integrated spectra generated from the acoustic source maps reconfirm, in general terms, the previously reported noise reduction performance of the toboggan fairing as installed on an isolated gear. With the recent improvements to the Virginia Tech tunnel acoustic quality and microphone array capabilities, the present measurements provide an additional, higher quality database to the acoustic information available for this gear model.

  5. Comparison of acoustical and optical zooplankton measurements using an acoustic scattering model: A case study from the Arctic frontal zone

    Directory of Open Access Journals (Sweden)

    Szczucka Joanna

    2016-03-01

    Full Text Available High-frequency acoustic measurements supplemented by a modern optical method, Laser Optical Plankton Counter (LOPC, allowed us to perform a comparative analysis through the application of a mathematical model. We have studied the correspondence between measured and modelled echoes from zooplankton aggregations consisted mainly of two Calanus species. Data were collected from the upper 50 m water layer within the hydrographical frontal zone on the West Spitsbergen Shelf. The application of a “high-pass” model of sound scattering by fluid-like particles to the distribution of zooplankton sizes measured by LOPC resulted mostly in very good agreement between the measured (420 kHz BioSonics and modelled values, except for cases with very low zooplankton abundance or with occurrence of stronger scatterers (e.g. macrozooplankton, fish. An acoustic model validated for the elastic parameters of zooplankton confirmed that particles smaller than 1mmin diameter, although highly abundant, did not contribute significantly to the sound scattering process at a frequency of 420 kHz. The implementation of diverse complementary methods has great potential to obtain high spatial and temporal resolution in zooplankton distribution studies; however, their compatibility has to be tested first.

  6. A Methodology to Integrate Magnetic Resonance and Acoustic Measurements for Reservoir Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Parra, Jorge O.; Hackert, Chris L.; Collier, Hughbert A.; Bennett, Michael

    2002-01-29

    The objective of this project was to develop an advanced imaging method, including pore scale imaging, to integrate NMR techniques and acoustic measurements to improve predictability of the pay zone in hydrocarbon reservoirs. This is accomplished by extracting the fluid property parameters using NMR laboratory measurements and the elastic parameters of the rock matrix from acoustic measurements to create poroelastic models of different parts of the reservoir. Laboratory measurement techniques and core imaging are being linked with a balanced petrographical analysis of the core and theoretical model.

  7. A Methodology to Integrate Magnetic Resonance and Acoustic Measurements for Reservoir Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Parra, Ph.D., Jorge O.

    2002-06-10

    The objective of the project was to develop an advanced imaging method, including pore scale imaging, to integrate nuclear magnetic resonance (NMR) techniques and acoustic measurements to improve predictability of the pay zone in hydrocarbon reservoirs. This will be accomplished by extracting the fluid property parameters using NMR laboratory measurements and the elastic parameters of the rock matrix from acoustic measurements to create poroelastic models of different parts of the reservoir. Laboratory measurement techniques and core imaging were linked with a balanced petrographical analysis of cores and theoretical modeling.

  8. Measurement of acoustic field radiated by low frequency power ultrasonic transducer with laser-interferometer

    Institute of Scientific and Technical Information of China (English)

    QIAN Menglu; GAO Wen; HU Wenxiang

    2000-01-01

    Based on the piezo-optic effect of medium, the refractive index of medium is the function of its density, and so it's also the function of acoustic pressure. Therefore, acoustic pressure in the optical path everywhere can be determined absolutely by laser-interferometric technique and relative distribution of pressure in the middle and far acoustic field, which can be obtained from theory or experiment respectively. Theory and experiment of measurement of pressure in acoustic field with laser-interferometer are introduced. Distribution of pressure radiated by a power ultrasonic transducer is determined by laser interferometric technique.The theoretical and experimental results are in good agreement. The receiving sensitivity of a PVDF (Polyvinylidene fluoride) transducer in free field is also calibrated absolutely due to above results and its sensitivity is -118.5 dB.

  9. Analyzing excitation forces acting on a plate based on measured acoustic pressure.

    Science.gov (United States)

    Wu, Sean F; Zhou, Pan

    2016-07-01

    This paper presents a theoretical study on "seeing" through an elastic structure to uncover the root cause of sound and vibration by using nearfield acoustical holography (NAH) and normal modes expansion. This approach is of generality because vibro-acoustic responses on the surface of a vibrating structure can always be reconstructed, exactly or approximately. With these vibro-acoustic responses, excitation forces acting on the structure can always be determined, analytically or numerically, given any set of boundary conditions. As an example, the explicit formulations for reconstructing time-harmonic excitation forces, including point, line and surface forces, and their arbitrary combinations acting on a rectangular thin plate in vacuum mounted on an infinite baffle are presented. The reason for choosing this example is that the analytic solutions to vibro-acoustic responses are available, and in-depth analyses of results are possible. Results demonstrate that this approach allows one to identify excitation forces based on measured acoustic pressures and reveal their characteristics such as locations, types and amplitudes, as if one could "see" excitation forces acting behind the plate based on acoustic pressure measured on the opposite side. This approach is extendable to general elastic structures, except that in such circumstance numerical results must be sought. PMID:27475174

  10. Results of acoustic measurements during leak simulation experiments on a sodium-heated modular steam generator

    International Nuclear Information System (INIS)

    After a short description of the experimental arrangement at the micro-modular steam generator of the BOR-60 LMFBR Power Plant the acoustic measuring chains and their main properties are introduced. Acoustic signals of the background as well as the leak-induced noise have been analysed in frequency and time domain, respectively. One essential result is that frequency analysis of acoustic signals cannot be recommended as leak detection method. On the other hand, certain signal characteristics derived from signal analysis in time domain have been shown to meet the expectation of a considerable change in magnitude, even if a small water-to-sodium leak is occurring. Besides direct sound emitted in the leak region a secondary sound initiated in the vicinity of the acoustic transducer by reaction products of the sodium-water-reaction has been measured. Both of them have been used for acoustic detection of small leaks. The acoustic response of the modular steam generator to a large leak is characterized by a sudden considerable increase in sound level. Finally, some conclusions drawn from experimental results are presented. (author)

  11. Long-term continuous acoustical suspended-sediment measurements in rivers - Theory, application, bias, and error

    Science.gov (United States)

    Topping, David J.; Wright, Scott A.

    2016-05-04

    It is commonly recognized that suspended-sediment concentrations in rivers can change rapidly in time and independently of water discharge during important sediment‑transporting events (for example, during floods); thus, suspended-sediment measurements at closely spaced time intervals are necessary to characterize suspended‑sediment loads. Because the manual collection of sufficient numbers of suspended-sediment samples required to characterize this variability is often time and cost prohibitive, several “surrogate” techniques have been developed for in situ measurements of properties related to suspended-sediment characteristics (for example, turbidity, laser-diffraction, acoustics). Herein, we present a new physically based method for the simultaneous measurement of suspended-silt-and-clay concentration, suspended-sand concentration, and suspended‑sand median grain size in rivers, using multi‑frequency arrays of single-frequency side‑looking acoustic-Doppler profilers. The method is strongly grounded in the extensive scientific literature on the incoherent scattering of sound by random suspensions of small particles. In particular, the method takes advantage of theory that relates acoustic frequency, acoustic attenuation, acoustic backscatter, suspended-sediment concentration, and suspended-sediment grain-size distribution. We develop the theory and methods, and demonstrate the application of the method at six study sites on the Colorado River and Rio Grande, where large numbers of suspended-sediment samples have been collected concurrently with acoustic attenuation and backscatter measurements over many years. The method produces acoustical measurements of suspended-silt-and-clay and suspended-sand concentration (in units of mg/L), and acoustical measurements of suspended-sand median grain size (in units of mm) that are generally in good to excellent agreement with concurrent physical measurements of these quantities in the river cross sections at

  12. Long-term continuous acoustical suspended-sediment measurements in rivers - Theory, application, bias, and error

    Science.gov (United States)

    Topping, David J.; Wright, Scott A.

    2016-01-01

    It is commonly recognized that suspended-sediment concentrations in rivers can change rapidly in time and independently of water discharge during important sediment‑transporting events (for example, during floods); thus, suspended-sediment measurements at closely spaced time intervals are necessary to characterize suspended‑sediment loads. Because the manual collection of sufficient numbers of suspended-sediment samples required to characterize this variability is often time and cost prohibitive, several “surrogate” techniques have been developed for in situ measurements of properties related to suspended-sediment characteristics (for example, turbidity, laser-diffraction, acoustics). Herein, we present a new physically based method for the simultaneous measurement of suspended-silt-and-clay concentration, suspended-sand concentration, and suspended‑sand median grain size in rivers, using multi‑frequency arrays of single-frequency side‑looking acoustic-Doppler profilers. The method is strongly grounded in the extensive scientific literature on the incoherent scattering of sound by random suspensions of small particles. In particular, the method takes advantage of theory that relates acoustic frequency, acoustic attenuation, acoustic backscatter, suspended-sediment concentration, and suspended-sediment grain-size distribution. We develop the theory and methods, and demonstrate the application of the method at six study sites on the Colorado River and Rio Grande, where large numbers of suspended-sediment samples have been collected concurrently with acoustic attenuation and backscatter measurements over many years. The method produces acoustical measurements of suspended-silt-and-clay and suspended-sand concentration (in units of mg/L), and acoustical measurements of suspended-sand median grain size (in units of mm) that are generally in good to excellent agreement with concurrent physical measurements of these quantities in the river cross sections at

  13. Acoustic P-wave velocity measurements of cataclastic effects in rock salt

    International Nuclear Information System (INIS)

    Model tests are carried out, in order to investigate the cataclastic thermo-mechanical behaviour of rock salt around a simulated repository borehole. The measurements are performed during a transient period of heating and subsequent cooling. Acoustic crosshole measurements are carried out under conditions of compression, scale 1: 41/2. The relationship between cataclastic effects and the acoustic velocity differences is described. Macrofracturing only occurred under circumstances of cooling, when a heater was switched off. One of the model tests was used in the CEC benchmark exercise ''COSA''. Acoustic measuring tubes have been developed for the in situ research on structural changes in rock salt. The tests involved the performance of so-called hole measurements in two parallel boreholes, containing the measuring tubes. The most important observations of a test in an old room in the Asse Mine are the following. A bifurcating open fissure, about 6 to 8 mm wide, prevented the propagation of the acoustic wave; this demonstrates that such cracks and fissures are easily detectable by the applied method. The microcataclasis, particularly that near the roomside wall, causes a reduction of the acoustic velocities, the more so as the angle between the measuring direction and the roomside wall increases. During the injection of a gallery wall with epoxy resins (by GSF) acoustic crosshole measurements were carried out as well. A detailed picture was obtained of the process of the closing of the fractures. By core drilling after this test confirmation was obtained that the fractures were closed. The information that has been gathered, will be used for the interpretation of the crosshole measurements in the near future; these measurements will be carried out around a heater borehole in the HAW field, a large underground test (GSF-ECN)

  14. Pseudo working-point control measurement scheme for acoustic sensitivity of interferometric fiber-optic hydrophones

    Institute of Scientific and Technical Information of China (English)

    Zefeng Wang; Yongming Hu; Zhou Meng; Ming Ni

    2008-01-01

    A novel pseudo working-point control measurement scheme for the acoustic sensitivity of interferometric fiber-optic hydrophones is described and demonstrated.The measurement principle is introduced in detail.An experimental system,which interrogates an interferometric fiber-optic hydrophone with this method,is designed.The acoustic pressure phase sensitivity of the fiber-optic hydrophone is measured over the frequency range of 20-2500Hz.The measured acoustic sensitivity is about-156.5dB re 1rad/μPa with a fluctuation lower than ±1.2dB,which is in good agreement with the results obtained by the method of phase generated carrier.The experimental results testify the validity of this new method which has the advantages of no electric elements in the sensing head,the simplicity of signal processing,and wide working bandwidth.

  15. Theory and signal processing of acoustic correlation techniques for current velocity measurement

    Institute of Scientific and Technical Information of China (English)

    ZHU Weiqing; FENG Lei; WANG Changhong; WANG Yuling; QIU Wei

    2008-01-01

    A theoretical model and signal processing of acoustic correlation measurements to estimate current velocity are discussed. The sonar space-time correlation function of vol-ume reverberations within Fraunhofer zone is derived. The function, which is in exponential forms, is the theoretical model of acoustic correlation measurements. The characteristics of the correlation values around the maximum of the amplitude of the correlation function, where most information about current velocity is contained, are primarily analyzed. Localized Least Mean Squares (LLMS) criterion is put forward for velocity estimation. Sequential Quadratic Programming (SQP) method is adopted as the optimization method. So the systematic sig-nal processing method of acoustic correlation techniques for current velocity measurement is established. A prototype acoustic correlation current profiler (ACCP) underwent several sea trials, the results show that theoretical model approximately coincides with experimental re-sults. Current profiles including the speed and direction from ACCP are compared with those from acoustic Doppler current profiler (ADCP). The current profiles by both instruments agree reasonably well. Also, the standard deviation of velocity measurement by ACCP is statistically calculated and it is a little larger than predicted value.

  16. Broadband electrostatic acoustic transducer for ultrasonic measurements in liquids.

    Science.gov (United States)

    Cantrell, J H; Heyman, J S; Yost, W T; Torbett, M A; Breazeale, M A

    1979-01-01

    A broadband capacitive electrostatic acoustic transducer (ESAT) has been developed for use in a liquid environment at megahertz frequencies. The ESAT basically consists of a thin conductive membrane stretched over a metallic housing. The membrane functions as the ground plate of a parallel plate capacitor, the other plate being a dc biased electrode recessed approximately 10 mum from the electrically grounded membrane. An ultrasonic wave incident on the membrane varies the membrane-electrode gap spacing and generates an electrical signal proportional to the wave amplitude. The entire assembly is sealed for immersion in a liquid environment. Calibration of the ESAT with incident ultrasonic waves of constant displacement amplitude from 1 to 15 MHz reveals a decrease in signal response with increasing frequency independent of membrane tension. The use of the ESAT as a broadband ultrasonic transducer in liquids with a predictable frequency response is promising.

  17. Measurement Combination for Acoustic Source Localization in a Room Environment

    Directory of Open Access Journals (Sweden)

    Pertilä Pasi

    2008-01-01

    Full Text Available The behavior of time delay estimation (TDE is well understood and therefore attractive to apply in acoustic source localization (ASL. A time delay between microphones maps into a hyperbola. Furthermore, the likelihoods for different time delays are mapped into a set of weighted nonoverlapping hyperbolae in the spatial domain. Combining TDE functions from several microphone pairs results in a spatial likelihood function (SLF which is a combination of sets of weighted hyperbolae. Traditionally, the maximum SLF point is considered as the source location but is corrupted by reverberation and noise. Particle filters utilize past source information to improve localization performance in such environments. However, uncertainty exists on how to combine the TDE functions. Results from simulated dialogues in various conditions favor TDE combination using intersection-based methods over union. The real-data dialogue results agree with the simulations, showing a 45% RMSE reduction when choosing the intersection over union of TDE functions.

  18. Measurement of Aqueous Foam Rheology by Acoustic Levitation

    Science.gov (United States)

    McDaniel, J. Gregory; Holt, R. Glynn; Rogers, Rich (Technical Monitor)

    2000-01-01

    An experimental technique is demonstrated for acoustically levitating aqueous foam drops and exciting their spheroidal modes. This allows fundamental studies of foam-drop dynamics that provide an alternative means of estimating the viscoelastic properties of the foam. One unique advantage of the technique is the lack of interactions between the foam and container surfaces, which must be accounted for in other techniques. Results are presented in which a foam drop with gas volume fraction phi = 0.77 is levitated at 30 kHz and excited into its first quadrupole resonance at 63 +/- 3 Hz. By modeling the drop as an elastic sphere, the shear modulus of the foam was estimated at 75 +/- 3 Pa.

  19. Measuring baryon acoustic oscillations with future SKA surveys

    CERN Document Server

    Bull, Philip; Raccanelli, Alvise; Blake, Chris; Ferreira, Pedro G; Santos, Mario G; Schwarz, Dominik J

    2015-01-01

    The imprint of baryon acoustic oscillations (BAO) in large-scale structure can be used as a standard ruler for mapping out the cosmic expansion history, and hence for testing cosmological models. In this article we briefly describe the scientific background to the BAO technique, and forecast the potential of the Phase 1 and 2 SKA telescopes to perform BAO surveys using both galaxy catalogues and intensity mapping, assessing their competitiveness with current and future optical galaxy surveys. We find that a 25,000 sq. deg. intensity mapping survey on a Phase 1 array will preferentially constrain the radial BAO, providing a highly competitive 2% constraint on the expansion rate at z ~ 2. A 30,000 sq. deg. galaxy redshift survey on SKA2 will outperform all other planned experiments for z < 1.4.

  20. Methods of temperature measurement in a radio-acoustic tropospheric sounder

    Directory of Open Access Journals (Sweden)

    P. TRIVERO

    1976-06-01

    Full Text Available The temperature of the lower troposphere is inferred
    by measuring with a doppler radar the speed of a powerful acoustic wave,
    capable of periodically perturbing the index of refraction of air. Three
    methods for performing these measurements are described.

  1. Wideband Acoustic Immittance: Normative Study and Test-Retest Reliability of Tympanometric Measurements in Adults

    Science.gov (United States)

    Sun, Xiao-Ming

    2016-01-01

    Purpose: The purpose of this study was to present normative data of tympanometric measurements of wideband acoustic immittance and to characterize wideband tympanograms. Method: Data were collected in 84 young adults with strictly defined normal hearing and middle ear status. Energy absorbance (EA) was measured using clicks for 1/12-octave…

  2. Final Report. Geothermal Dual Acoustic Tool for Measurement of Rock Stress

    Energy Technology Data Exchange (ETDEWEB)

    Normann, Randy A [Perma Works LLC, Pattonville, TX (United States)

    2014-12-01

    This paper outlines the technology need for a rock formation stress measurement in future EGS wells. This paper reports on the results of work undertaken under a Phase I, DOE/SBIR on the feasibility to build an acoustic well logging tool for measuring rock formation stress.

  3. Final Report: Geothermal dual acoustic tool for measurement of rock stress

    Energy Technology Data Exchange (ETDEWEB)

    Normann, Randy A. [Perma Works LLC, Pattonville, TX (United States)

    2014-12-01

    This paper outlines the technology need for a rock formation stress measurement in future EGS wells. This paper reports on the results of work undertaken under a Phase I, DOE/SBIR on the feasibility to build an acoustic well logging tool for measuring rock formation stress.

  4. Final Report: Geothermal Dual Acoustic Tool for Measurement of Rock Stress

    Energy Technology Data Exchange (ETDEWEB)

    Normann, Randy A.

    2014-12-01

    This paper outlines the technology need for a rock formation stress measurement in future EGS wells. This paper reports on the results of work undertaken under a Phase I, DOE/SBIR on the feasibility to build an acoustic well logging tool for measuring rock formation stress.

  5. Acoustic measurements of the thermodynamic temperature between the triple point of mercury and 380 K

    Science.gov (United States)

    Benedetto, G.; Gavioso, R. M.; Spagnolo, R.; Marcarino, P.; Merlone, A.

    2004-02-01

    We have measured the differences between the Kelvin thermodynamic temperature and the temperature of the International Temperature Scale of 1990 on nine isotherms between the triple point of mercury and 380 K, by means of a primary acoustic thermometer. For the present measurements the standard uncertainty of (T - T90) ranges from 0.9 mK at 234 K to 1.7 mK at 380 K. The experimental method is based on the measurement of the acoustic resonance frequencies of an argon-filled spherical cavity and the microwave resonance frequencies of the same cavity when evacuated. The present results agree within the remarkably small combined uncertainties with both NIST acoustic thermometry ([1] Moldover M R et al 1999 J. Res. Natl Inst. Stand. Technol. 104 11-46 [2] Strouse G F et al 2002 Progress in primary acoustic thermometry at NIST: 273 K to 505 K 8th Temperature Symp. (Chicago, 21-24 October 2002)) and UCL acoustic thermometry ([3] Ewing M B and Trusler J P M 2000 J. Chem. Thermodyn. 32 1229-55) in the overlapping temperature range.

  6. Acoustic power measurement of high-intensity focused ultrasound transducer using a pressure sensor.

    Science.gov (United States)

    Zhou, Yufeng

    2015-03-01

    The acoustic power of high-intensity focused ultrasound (HIFU) is an important parameter that should be measured prior to each treatment to guarantee effective and safe outcomes. A new calibration technique was developed that involves estimating the pressure distribution, calculating the acoustic power using an underwater pressure blast sensor, and compensating the contribution of harmonics to the acoustic power. The output of a clinical extracorporeal HIFU system (center frequency of ~1 MHz, p+ = 2.5-57.2 MPa, p(-) = -1.8 to -13.9 MPa, I(SPPA) = 513-22,940 W/cm(2), -6 dB size of 1.6 × 10 mm: lateral × axial) was measured using this approach and then compared with that obtained using a radiation force balance. Similarities were found between each method at acoustic power ranging from 18.2 W to 912 W with an electrical-to-acoustic conversion efficiency of ~42%. The proposed method has advantages of low weight, smaller size, high sensitivity, quick response, high signal-to-noise ratio (especially at low power output), robust performance, and easy operation of HIFU exposimetry measurement.

  7. Traveling wave tube measurements for low-frequency properties of underwater acoustic materials

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A traveling wave tube measurement technique for measuring acoustic properties of underwater acoustic materials was developed. Water temperature and pressure environments of the ocean can be simulated in a water-filled tube, and the acoustic parameters of samples of underwater acoustic materials are measured in the range of low-frequency. A tested sample is located at central position of the tube. A pair of projectors is separately located at both ends of the tube. Using an active anechoic technique, the sound wave transmitting the tested sample is hardly reflected by the surface of secondary transducer. So the traveling sound field is built up in the tube. By separately calculating the transfer functions of every pair of double hydrophones in the sound fields from the both sides of the sample, its reflection coefficients and transmission coefficients are obtained. In the measurement system, the inside diameter of the tube is Φ208 mm, the working frequency range is from 100 to 4000 Hz, the maximum pressure is 5 MPa. The reflection coefficients and transmission coefficients of a water layer and a stainless steel layer samples are measured actually and calculated theoretically. The results show that the measured values are in good agreement with the values calculated, and the measurement uncertainty is not greater than 1.5 dB.

  8. Producing of Impedance Tube for Measurement of Acoustic Absorption Coefficient of Some Sound Absorber Materials

    Directory of Open Access Journals (Sweden)

    R. Golmohammadi

    2008-04-01

    Full Text Available Introduction & Objective: Noise is one of the most important harmful agents in work environment. In spit of industrial improvements, exposure with over permissible limit of noise is counted as one of the health complication of workers. In Iran, do not exact information of the absorption coefficient of acoustic materials. Iranian manufacturer have not laboratory for measured of sound absorbance of their products, therefore using of sound absorber is limited for noise control in industrial and non industrial constructions. The goal of this study was to design an impedance tube based on pressure method for measurement of the sound absorption coefficient of acoustic materials.Materials & Methods: In this study designing of measuring system and method of calculation of sound absorption based on a available equipment and relatively easy for measurement of the sound absorption coefficient related to ISO10534-1 was performed. Measuring system consist of heavy asbestos tube, a pure tone sound generator, calibrated sound level meter for measuring of some commonly of sound absorber materials was used. Results: In this study sound absorption coefficient of 23 types of available acoustic material in Iran was tested. Reliability of results by three repeat of measurement was tested. Results showed that the standard deviation of sound absorption coefficient of study materials was smaller than .Conclusion: The present study performed a necessary technology of designing and producing of impedance tube for determining of acoustical materials absorption coefficient in Iran.

  9. Measuring Ultrasonic Acoustic Velocity in a Thin Sheet of Graphite Epoxy Composite

    Science.gov (United States)

    2008-01-01

    A method for measuring the acoustic velocity in a thin sheet of a graphite epoxy composite (GEC) material was investigated. This method uses two identical acoustic-emission (AE) sensors, one to transmit and one to receive. The delay time as a function of distance between sensors determines a bulk velocity. A lightweight fixture (balsa wood in the current implementation) provides a consistent method of positioning the sensors, thus providing multiple measurements of the time delay between sensors at different known distances. A linear fit to separation, x, versus delay time, t, will yield an estimate of the velocity from the slope of the line.

  10. Use of Acoustic Doppler Instruments for Measuring Discharge in Streams with Appreciable Sediment Transport

    Science.gov (United States)

    Mueller, D.S.

    2002-01-01

    The use of Acoustic Doppler current profilers (ADCP) for measuring discharge in streams with sediment transport was discussed. The studies show that the acoustic frequency of an ADCP in combination with the sediment transport characteristics in a river causes the ADCP bottom-tracking algorithms to detect a moving bottom. A moving bottom causes bottom-tracking-referenced water velocities and discharges to be biased low. The results also show that the use of differential global positioning system (DGPS) data allows accurate measurement of water velocities and discharges in such cases.

  11. Laboratory investigation of a passive acoustic method for measurement of underwater gas seep ebullition.

    Science.gov (United States)

    Greene, Chad A; Wilson, Preston S

    2012-01-01

    Passive acoustic techniques are of interest as a low-power means of quantifying underwater point-source gas ebullition. Toward the development of systems for logging natural seep activity, laboratory experiments were performed that exploited the bubble's Minnaert natural frequency for the measurement of gas flow from a model seep. Results show agreement among acoustic, optical, and gas trap ebullition measurements over the range of emission rates from 0 to 10 bubbles per second. A mathematical model is proposed to account for the real gas behavior of bubbles which cannot be approximated as ideal, such as methane at marine depths exceeding 30 m. PMID:22280731

  12. Electron density measurement in gas discharge plasmas by optical and acoustic methods

    Science.gov (United States)

    Biagioni, A.; Anania, M. P.; Bellaveglia, M.; Chiadroni, E.; Cianchi, A.; Di Giovenale, D.; Di Pirro, G.; Ferrario, M.; Filippi, F.; Mostacci, A.; Pompili, R.; Shpakov, V.; Vaccarezza, C.; Villa, F.; Zigler, A.

    2016-08-01

    Plasma density represents a very important parameter for both laser wakefield and plasma wakefield acceleration, which use a gas-filled capillary plasma source. Several techniques can be used to measure the plasma density within a capillary discharge, which are mainly based on optical diagnostic methods, as for example the well-known spectroscopic method using the Stark broadening effect. In this work, we introduce a preliminary study on an alternative way to detect the plasma density, based on the shock waves produced by gas discharge in a capillary. Firstly, the measurements of the acoustic spectral content relative to the laser-induced plasmas by a solid target allowed us to understand the main properties of the acoustic waves produced during this kind of plasma generation; afterwards, we have extended such acoustic technique to the capillary plasma source in order to calibrate it by comparison with the stark broadening method.

  13. The influence of the group delay of digital filters on acoustic decay measurements

    DEFF Research Database (Denmark)

    Sobreira-Seoane, Manuel A.; Cabo, David Pérez; Jacobsen, Finn

    2012-01-01

    In this paper the error due to the phase response of digital filters on acoustic decay measurements is analyzed. There are two main sources of errors when an acoustic decay is filtered: the error due to the bandwidth of the filters related to their magnitude response, and the error due...... to their phase response. In this investigation the two components are separated and the phase error analyzed in terms of the group delay of the filters. Linear phase FIR filters and minimum phase IIR filters fulfilling the class 1 requirements of the IEC 61260 standard have been designed, and their errors...... compared. This makes it possible to explain the behavior of the phase error and develop recommendations for the use of each filtering technique. The paper is focused on the filtering techniques covered by current versions of the standards for measurement of acoustic decays and in the evaluation...

  14. Inverse estimation of the acoustic impedance of a porous woven hose from measured transmission coefficients.

    Science.gov (United States)

    Park, Chul-Min; Ih, Jeong-Guon; Nakayama, Yoshio; Takao, Hideo

    2003-01-01

    A porous tube, comprised of a resin-coated woven fabric has recently been used as an effective component for use in intake systems of internal combustion engines to reduce the intake noise. For the prediction of the acoustic performance of an engine intake system with a porous woven hose, the acoustic wall impedance of the hose must be known. However, the accurate measurement of the wall impedance of a porous woven hose is not easy because of its peculiar acoustical and structural characteristics. A new measurement technique is proposed herein, that is valid over the low to mid frequency ranges. The acoustics impedance is inversely estimated from an overdetermined set of measured pressure transmission coefficients for specimens of different lengths and the reflection coefficient of end termination. The method involves only one measurement setup, and, as a result, it is very simple. A variation of the proposed method, an inverse estimation method using one of the four-pole parameters is also proposed. An error sensitivity analysis was performed to investigate the effect of measurement error on the accuracy of the final result. The measured TL for samples with arbitrary lengths and arbitrary porous frequency are in reasonably good agreement with values predicted from curve-fitted impedance data. PMID:12558253

  15. Picosecond acoustics in vegetal cells: non invasive in vitro measurements at a sub-cell scale

    Science.gov (United States)

    Audoin, Bertrand; Rossignol, Clément; Chigarev, Nikolay; Ducousso, Mathieu; Forget, Guillaume; Guillemot, Fabien; Durrieu, Marie-Christine

    2010-01-01

    A 100 fs laser pulse passes through a single transparent cell and is absorbed at the surface of a metallic substrate. Picosecond acoustic waves are generated and propagate through the cell in contact with the metal. Interaction of the high frequency acoustic pulse with a probe laser light gives rise to stimulated Brillouin oscillations. The measurements are thus made with lasers for both the opto-acoustic generation and the acousto-optic detection. The technique offers perspectives for single cell imaging. The in plane resolution is limited by the pump and probe spot sizes, i.e ˜1 μm, and the in depth resolution is provided by the acoustic frequencies, typically in the GHz range. The effect of the technique on cell safety is discussed. Experiments achieved in vegetal cells illustrate reproducibility and sensitivity of the measurements. The acoustic responses of cell organelles are significantly different. The results support the potentialities of the hypersonic non invasive technique in the fields of bio-engineering and medicine.

  16. Measurements and computational fluid dynamics predictions of the acoustic impedance of orifices

    Science.gov (United States)

    Su, J.; Rupp, J.; Garmory, A.; Carrotte, J. F.

    2015-09-01

    The response of orifices to incident acoustic waves, which is important for many engineering applications, is investigated with an approach combining both experimental measurements and numerical simulations. This paper presents experimental data on acoustic impedance of orifices, which is subsequently used for validation of a numerical technique developed for the purpose of predicting the acoustic response of a range of geometries with moderate computational cost. Measurements are conducted for orifices with length to diameter ratios, L/D, of 0.5, 5 and 10. The experimental data is obtained for a range of frequencies using a configuration in which a mean (or bias) flow passes from a duct through the test orifices before issuing into a plenum. Acoustic waves are provided by a sound generator on the upstream side of the orifices. Computational fluid dynamics (CFD) calculations of the same configuration have also been performed. These have been undertaken using an unsteady Reynolds averaged Navier-Stokes (URANS) approach with a pressure based compressible formulation with appropriate characteristic based boundary conditions to simulate the correct acoustic behaviour at the boundaries. The CFD predictions are in very good agreement with the experimental data, predicting the correct trend with both frequency and orifice L/D in a way not seen with analytical models. The CFD was also able to successfully predict a negative resistance, and hence a reflection coefficient greater than unity for the L / D = 0.5 case.

  17. Acoustic measurements of F-4E aircraft operating in hush house, NSN 4920-02-070-2721

    Science.gov (United States)

    Miller, V. R.; Plzak, G. A.; Chinn, J. M.

    1981-09-01

    The primary purpose of this test program was to measure the acoustic environment in the hush house facility located at Kelly Air Force Base, Texas, during operation of the F-4E aircraft to ensure that aircraft structural acoustic design limits were not exceeded. The acoustic measurements showed that sonic fatigue problems are anticipated with the F-4E aircraft aft fuselage structure during operation in the hush house. The measured acoustic levels were less than those measured in an F-4E aircraft water cooled hush house at Hill AFB in the lower frequencies, but were increased over that measured during ground run up on some areas of the aircraft. It was recommended that the acoustic loads measured in this program should be specified in the structural design criteria for aircraft which will be subjected to hush house operation or defining requirements for associated equipment. Recommendations were also made to increase the fatigue life of the aft fuselage.

  18. Acoustic measurements of F100-PW-100 engine operating in hush house NSN 4920-02-070-2721

    Science.gov (United States)

    Miller, V. R.; Plzak, G. A.; Chinn, J. M.

    1981-09-01

    The purpose of this test program was to measure the acoustic environment in the hush house facility located at Kelly AFB Texas during operation of the F100-PW-100 engine to ensure that engine structural acoustic design limits were not exceeded. The acoustic measurements showed that no sonic fatigue problems are anticipated with the F100-PW-100 engine structure during operation in the hush house. The measured acoustic levels were less than those measured in an existing F100-PW-100 engine wet-cooled noise suppressor, but were increased over that measured during operation on an open test stand. It was recommended that the acoustic load increases measured in this program should be specified in the structural design criteria for engines which will be subjected to hush house operation or defining requirements for associated equipment.

  19. Direct measurement of the acoustic waves generated by femtosecond filaments in air

    CERN Document Server

    Wahlstrand, J K; Rosenthal, E W; Zahedpour, S; Milchberg, H M

    2014-01-01

    We present direct measurements of the gas acoustic dynamics following interaction of spatial single- and multi-mode 50 fs, 800 nm pulses in air at 10 Hz and 1 kHz repetition rates. Results are in excellent agreement with hydrodynamic simulations. Under no conditions for single filaments do we find on-axis enhancement of gas density; this occurs only with multi-filaments. We also investigate the propagation of probe beams in the gas density profile induced by a single extended filament. We find that light trapping in the expanding annular acoustic wave can create the impression of on-axis guiding in a limited temporal window.

  20. Functions of diffraction correction and analytical solutions in nonlinear acoustic measurement

    CERN Document Server

    Alliès, Laurent; Nadi, M

    2008-01-01

    This paper presents an analytical formulation for correcting the diffraction associated to the second harmonic of an acoustic wave, more compact than that usually used. This new formulation, resulting from an approximation of the correction applied to fundamental, makes it possible to obtain simple solutions for the second harmonic of the average acoustic pressure, but sufficiently precise for measuring the parameter of nonlinearity B/A in a finite amplitude method. Comparison with other expressions requiring numerical integration, show the solutions are precise in the nearfield.

  1. Remote sensing of temperature and wind using acoustic travel-time measurements

    Directory of Open Access Journals (Sweden)

    Manuela Barth

    2013-04-01

    Full Text Available A remote sensing technique to detect area-averaged temperature and flow properties within an area under investigation, utilizing acoustic travel-time measurements, is introduced. This technique uses the dependency of the speed of acoustic signals on the meteorological parameters temperature and wind along the propagation path. The method itself is scalable: It is applicable for investigation areas with an extent of some hundred square metres as well as for small-scale areas in the range of one square metre. Moreover, an arrangement of the acoustic transducers at several height levels makes it possible to determine profiles and gradients of the meteorological quantities. With the help of two examples the potential of this remote sensing technique for simultaneously measuring averaged temperature and flow fields is demonstrated. A comparison of time histories of temperature and wind values derived from acoustic travel-time measurements with point measurements shows a qualitative agreement whereas calculated root-mean-square errors differ for the two example applications. They amount to 1.4 K and 0.3 m/s for transducer distances of 60 m and 0.4 K and 0.2 m/s for transducer distances in the range of one metre.

  2. Numerical simulation and measurements of acoustic transmissions from Heard Island to the equatorial Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    PrasannaKumar, S.; Navelkar, G.S.; Murty, T.V.R.; Somayajulu, Y.K.; Saran, A.K.; Murty, C.S.

    of the Sub Tropical Convergence. Measured acoustic signals, received at the Indian listening station has a signal to noise ratio (SNR) of 20 dB on an average and confirmed their detectability over distances as far as 7000 km. The phase stability...

  3. Continuous measurements of discharge from a horizontal acoustic Doppler current profiler in a tidal river

    NARCIS (Netherlands)

    Hoitink, A.J.F.; Buschman, F.A.; Vermeulen, B.

    2009-01-01

    Acoustic Doppler current profilers (ADCPs) can be mounted horizontally at a river bank, yielding single-depth horizontal array observations of velocity across the river. This paper presents a semideterministic, semistochastic method to obtain continuous measurements of discharge from horizontal ADCP

  4. High accuracy acoustic relative humidity measurement in duct flow with air

    OpenAIRE

    Cees van der Geld; Twan Wernaart; Mart Grooten; Wilhelm van Schaik

    2010-01-01

    An acoustic relative humidity sensor for air-steam mixtures in duct flow is designed and tested. Theory, construction, calibration, considerations on dynamic response and results are presented. The measurement device is capable of measuring line averaged values of gas velocity, temperature and relative humidity (RH) instantaneously, by applying two ultrasonic transducers and an array of four temperature sensors. Measurement ranges are: gas velocity of 0–12 m/s with an error of ±0.13 m/s, temp...

  5. Acoustical Measurement and Biot Model for Coral Reef Detection and Quantification

    Directory of Open Access Journals (Sweden)

    Henry M. Manik

    2016-01-01

    Full Text Available Coral reefs are coastal resources and very useful for marine ecosystems. Nowadays, the existence of coral reefs is seriously threatened due to the activities of blast fishing, coral mining, marine sedimentation, pollution, and global climate change. To determine the existence of coral reefs, it is necessary to study them comprehensively. One method to study a coral reef by using a propagation of sound waves is proposed. In this research, the measurement of reflection coefficient, transmission coefficient, acoustic backscattering, hardness, and roughness of coral reefs has been conducted using acoustic instruments and numerical modeling using Biot theory. The results showed that the quantification of the acoustic backscatter can classify the type of coral reef.

  6. Accuracy of measurement of acoustic rhinometry applied to small experimental animals

    DEFF Research Database (Denmark)

    Kaise, Toshihiko; Ukai, Kotara; Pedersen, Ole Finn;

    1999-01-01

    Nasal obstruction is one of the major symptoms of allergic rhinitis. In the study of the mechanism of nasal obstruction, experiments on animal are useful. In adult humans, acoustic rhinometry has been used to evaluate nasal obstruction by determining nasal cavity dimensions in terms of cross......-sectional areas as a function of the distance from the nostril. We modified the equipment used on humans to assess dimensions of nasal airway geometry of small experimental animals. The purpose of this study was to investigate the accuracy of measurement of the modified acoustic rhinometry applied to small...... was 73.7 ± 20.0% of actual volume. The actual volume was estimated by impression material instilled into the nasal cavity of the animals (1M volume), and volume determined by acoustic rhinometry significantly correlated with 1M volume. Furthermore, there was a significant negative correlation between...

  7. Acoustic Reflex Measurements in Normal, Cochlear, and Retrocochlear Lesions -Part1

    Directory of Open Access Journals (Sweden)

    Navid Shahnaz

    1992-04-01

    Full Text Available The cut off points of 90th percentile of acoustic reflex thresholds were determined in the normal and sensory hearing loss.All subjects had measurable hearing(ANSI-1969≤110 dBHL in three frequencies of 500,1000 and 2000Hz.While hearing loss was more than 55dB, The cut off point was higher in studies that NR responses was included.In cases that hearing loss was less than 75dB, 90th percentile can be used in diganosis of retrochochlear lesions.Since Acoustic reflexes are absent in both mentioned pathologies in greater amount of hearing loss,It would be less efficient in diffrential diganisis of cochlear and retrochochlear lesions to use acoustic reflex thresholds under the mentioned circumstances.

  8. A measure of acoustic noise generated from transcranial magnetic stimulation coils.

    Science.gov (United States)

    Dhamne, Sameer C; Kothare, Raveena S; Yu, Camilla; Hsieh, Tsung-Hsun; Anastasio, Elana M; Oberman, Lindsay; Pascual-Leone, Alvaro; Rotenberg, Alexander

    2014-01-01

    The intensity of sound emanating from the discharge of magnetic coils used in repetitive transcranial magnetic stimulation (rTMS) can potentially cause acoustic trauma. Per Occupational Safety and Health Administration (OSHA) standards for safety of noise exposure, hearing protection is recommended beyond restricted levels of noise and time limits. We measured the sound pressure levels (SPLs) from four rTMS coils with the goal of assessing if the acoustic artifact levels are of sufficient amplitude to warrant protection from acoustic trauma per OSHA standards. We studied the SPLs at two frequencies (5 and 10 Hz), three machine outputs (MO) (60, 80 and 100%), and two distances from the coil (5 and 10 cm). We found that the SPLs were louder at closer proximity from the coil and directly dependent on the MO. We also found that in all studied conditions, SPLs were lower than the OSHA permissible thresholds for short (8 h) exposure.

  9. Coupling thermogravimetric and acoustic emission measurements: its application to study the inhibition of catalytic coke deposition

    Energy Technology Data Exchange (ETDEWEB)

    Ropital, Francois; Dascotte, Philippe; Marchand, Pierre [Institut Francais du Petrole, 1 Avenue Bois Preau, 92952 Rueil-Malmaison (France); Faure, Thierry; Lenain, Jean-Claude; Proust, Alain [Euro Physical Acoustics, 27 Rue Magellan, 94373 Sucy-en-Brie Cedex (France)

    2004-07-01

    In order to improve the knowledge on the high temperature behaviour of metallic materials, the coupling of several in situ physical analysis methods is a promising way. For this purpose a thermogravimetric balance has been equipped with a specific acoustic emission device in order to continuously measure the mass variation of the corrosion sample and the acoustic emission transient under experimental conditions of temperature and gas phase compositions that are representative of the industrial environments. The catalytic coke deposition condition that is a major problem for the refinery and petrochemical industries, has been studied with such a device. The carbon deposition on reactor walls can induce localised disruption in the process such as heat-transfer reduction and pressure drops. To prevent these perturbations, proper selections of the metallurgical or internal coating compositions of the equipment, or the injection of accurate amount of inhibitors have to be decided. The feasibility of the coupling at high temperature of thermogravimetric and acoustic emission has been demonstrated. This new technique has been applied to study the inhibition of the catalytic coke deposition on pure iron by sulphur additives in the temperature range of 650 deg. C and under different mixed atmospheres of hydrocarbon and hydrogen contents. Good correlation has been obtained between the coking rates measured by thermogravimetric measurements and the intensities of the acoustic emission parameters. (authors)

  10. Numerical investigation and electro-acoustic modeling of measurement methods for the in-duct acoustical source parameters

    Science.gov (United States)

    Jang, Seung-Ho; Ih, Jeong-Guon

    2003-02-01

    It is known that the direct method yields different results from the indirect (or load) method in measuring the in-duct acoustic source parameters of fluid machines. The load method usually comes up with a negative source resistance, although a fairly accurate prediction of radiated noise can be obtained from any method. This study is focused on the effect of the time-varying nature of fluid machines on the output results of two typical measurement methods. For this purpose, a simplified fluid machine consisting of a reservoir, a valve, and an exhaust pipe is considered as representing a typical periodic, time-varying system and the measurement situations are simulated by using the method of characteristics. The equivalent circuits for such simulations are also analyzed by considering the system as having a linear time-varying source. It is found that the results from the load method are quite sensitive to the change of cylinder pressure or valve profile, in contrast to those from the direct method. In the load method, the source admittance turns out to be predominantly dependent on the valve admittance at the calculation frequency as well as the valve and load admittances at other frequencies. In the direct method, however, the source resistance is always positive and the source admittance depends mainly upon the zeroth order of valve admittance.

  11. Numerical and experimental investigation of a low-frequency measurement technique: differential acoustic resonance spectroscopy

    Science.gov (United States)

    Yin, Hanjun; Zhao, Jianguo; Tang, Genyang; Ma, Xiaoyi; Wang, Shangxu

    2016-06-01

    Differential acoustic resonance spectroscopy (DARS) has been developed to determine the elastic properties of saturated rocks within the kHz frequency range. This laboratory technique is based on considerations from perturbation theory, wherein the resonance frequencies of the resonant cavity with and without a perturbation sample are used to estimate the acoustic properties of the test sample. In order to better understand the operating mechanism of DARS and therefore optimize the procedure, it is important to develop an accurate and efficient numerical model. Accordingly, this study presents a new multiphysics model by coupling together considerations from acoustics, solid mechanics, and electrostatics. The numerical results reveal that the newly developed model can successfully simulate the acoustic pressure field at different resonance modes, and that it can accurately reflect the measurement process. Based on the understanding of the DARS system afforded by the numerical simulation, we refine the system configuration by utilizing cavities of different lengths and appropriate radii to broaden the frequency bandwidth and ensure testing accuracy. Four synthetic samples are measured to test the performance of the optimized DARS system, in conjunction with ultrasonic and static measurements. For nonporous samples, the estimated bulk moduli are shown to be independent of the different measurement methods (i.e. DARS or ultrasonic techniques). In contrast, for sealed porous samples, the differences in bulk moduli between the low- and high-frequency techniques can be clearly observed; this discrepancy is attributed to frequency dispersion. In summary, the optimized DARS system with an extended frequency range of 500-2000 Hz demonstrates considerable utility in investigating the frequency dependence of the acoustic properties of reservoir rocks.

  12. Measuring acoustic energy density in microchannel acoustophoresis using a simple and rapid light-intensity method

    DEFF Research Database (Denmark)

    Barnkob, Rune; Iranmanesh, Ida; Wiklund, Martin;

    2012-01-01

    We present a simple and rapid method for measuring the acoustic energy density in microchannel acoustophoresis based on light-intensity measurements of a suspension of particles. The method relies on the assumption that each particle in the suspension undergoes single-particle acoustophoresis. It......, and it is an attractive alternative to particle tracking and particle image velocimetry for quantifying acoustophoretic performance in microchannels........ It is validated by the single-particle tracking method, and we show by proper re-scaling that the re-scaled light intensity plotted versus re-scaled time falls on a universal curve. The method allows for analysis of moderate-resolution images in the concentration range encountered in typical experiments......We present a simple and rapid method for measuring the acoustic energy density in microchannel acoustophoresis based on light-intensity measurements of a suspension of particles. The method relies on the assumption that each particle in the suspension undergoes single-particle acoustophoresis...

  13. Method based on broadband compressed pulse superposition to measure properties of underwater acoustic materials

    Institute of Scientific and Technical Information of China (English)

    LI Shui; MIAO Rongxing

    2001-01-01

    A method is proposed for the measurements of the performances of underwater acoustic finite sized large area material samples in a free field by using broadband pulse compression technique. As the result of which, the low-frequency cutoff of the standard tests is obviously reduced, and the broadband measurements are also realized. The experimental system provides measurements of complex reflection and transmission coefficients at continuous frequency points. From the data one can obtain the following acoustic parameters: echo reduction and insertion loss, absorption and attenuation coefficients, etc. The measurements are performed for two actual panels with the size 1 m×1 m in the frequency range from 2-20 kHz.

  14. Acoustic measurement of overall voice quality in sustained vowels and continuous speech

    OpenAIRE

    Maryn, Youri

    2010-01-01

    Measurement of dysphonia severity involves auditory-perceptual evaluations and acoustic analyses of sound waves. Meta-analysis of proportional associations between these two methods showed that many popular perturbation metrics and noise-to-harmonics and others ratios do not yield reasonable results. However, this meta-analysis demonstrated that the validity of specific autocorrelation- and cepstrum-based measures was much more convincing, and appointed ‘smoothed cepstral peak prominence’ as ...

  15. Coherent Combination of Baryon Acoustic Oscillation Statistics and Peculiar Velocity Measurements from Redshift Survey

    OpenAIRE

    Song, Yong-Seon

    2010-01-01

    New statistical method is proposed to coherently combine Baryon Acoustic Oscillation statistics (BAO) and peculiar velocity measurements exploiting decomposed density-density and velocity-velocity spectra in real space from the observed redshift distortions in redshift space, 1) to achieve stronger dark energy constraints, \\sigma(w)=0.06 and \\sigma(w_a)=0.20, which are enhanced from BAO or velocity measurements alone, and 2) to cross-check consistency of dark energy constraints from two diffe...

  16. Measurement of the space-time correlation function of thermal acoustic radiation

    Science.gov (United States)

    Passechnik, V. I.; Anosov, A. A.; Barabanenkov, Yu. N.; Sel'Sky, A. G.

    2003-09-01

    The space-time correlation function of thermal acoustic radiation pressure is measured for a stationary heated source (a narrow plasticine plate). The correlation dependence is obtained by the multiplication of two signals shifted in time with respect to each other and measured by two receivers. The dependence exhibits an oscillating behavior and changes sign when the source is displaced by half the spatial period of the correlation function.

  17. Underwater Acoustic Measurements to Estimate Wind and Rainfall in the Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    Sara Pensieri

    2015-01-01

    Full Text Available Oceanic ambient noise measurements can be analyzed to obtain qualitative and quantitative information about wind and rainfall phenomena over the ocean filling the existing gap of reliable meteorological observations at sea. The Ligurian Sea Acoustic Experiment was designed to collect long-term synergistic observations from a passive acoustic recorder and surface sensors (i.e., buoy mounted rain gauge and anemometer and weather radar to support error analysis of rainfall rate and wind speed quantification techniques developed in past studies. The study period included combination of high and low wind and rainfall episodes and two storm events that caused two floods in the vicinity of La Spezia and in the city of Genoa in 2011. The availability of high resolution in situ meteorological data allows improving data processing technique to detect and especially to provide effective estimates of wind and rainfall at sea. Results show a very good correspondence between estimates provided by passive acoustic recorder algorithm and in situ observations for both rainfall and wind phenomena and demonstrate the potential of using measurements provided by passive acoustic instruments in open sea for early warning of approaching coastal storms, which for the Mediterranean coastal areas constitutes one of the main causes of recurrent floods.

  18. Acoustic Measurement of Surface Wave Damping by a Meniscus.

    Science.gov (United States)

    Michel, Guillaume; Pétrélis, François; Fauve, Stéphan

    2016-04-29

    We investigate the reflection of gravity-capillary surface waves by a plane vertical barrier. The size of the meniscus is found to strongly affect reflection: the energy of the reflected wave with a pinned contact line is around twice the one corresponding to a fully developed meniscus. To perform these measurements, a new experimental setup similar to an acousto-optic modulator is developed and offers a simple way to measure the amplitude, frequency and direction of propagation of surface waves. PMID:27176523

  19. Acoustic method for measuring the sound speed of gases over small path lengths.

    Science.gov (United States)

    Olfert, J S; Checkel, M D; Koch, C R

    2007-05-01

    Acoustic "phase shift" methods have been used in the past to accurately measure the sound speed of gases. In this work, a phase shift method for measuring the sound speed of gases over small path lengths is presented. We have called this method the discrete acoustic wave and phase detection (DAWPD) method. Experimental results show that the DAWPD method gives accurate (+/-3.2 ms) and predictable measurements that closely match theory. The sources of uncertainty in the DAWPD method are examined and it is found that ultrasonic reflections and changes in the frequency ratio of the transducers (the ratio of driving frequency to resonant frequency) can be major sources of error. Experimentally, it is shown how these sources of uncertainty can be minimized. PMID:17552851

  20. Measurements of Acoustic Properties of Porous and Granular Materials and Application to Vibration Control

    Science.gov (United States)

    Park, Junhong; Palumbo, Daniel L.

    2004-01-01

    For application of porous and granular materials to vibro-acoustic controls, a finite dynamic strength of the solid component (frame) is an important design factor. The primary goal of this study was to investigate structural vibration damping through this frame wave propagation for various poroelastic materials. A measurement method to investigate the vibration characteristics of the frame was proposed. The measured properties were found to follow closely the characteristics of the viscoelastic materials - the dynamic modulus increased with frequency and the degree of the frequency dependence was determined by its loss factor. The dynamic stiffness of hollow cylindrical beams containing porous and granular materials as damping treatment was measured also. The data were used to extract the damping materials characteristics using the Rayleigh-Ritz method. The results suggested that the acoustic structure interaction between the frame and the structure enhances the dissipation of the vibration energy significantly.

  1. Flow acoustics modelling and implications for ultrasonic flow measurement based on the transit-time method.

    Science.gov (United States)

    Willatzen, M

    2004-05-01

    A comparison between three mathematical models frequently used in flow acoustics is presented and discussed with respect to ultrasonic flow-meter performance based on the transit-time method. The flow-meter spoolpiece geometry is assumed to be a cylindrical pipe. Semi-analytical calculations employing the Frobenius power series expansion method are shown for the cases of a constant-, linear-, parabolic-, and cubic-flow profiles although the Frobenius method presented can be applied to any smooth flow profile. It is shown that the so-called deviation of measurement, often used as a measure of the flow-meter accuracy, is strongly dependent on the acoustic mode excited and the flow profile. Furthermore, differences with respect to deviation of measurement results exist among the three mathematical models analyzed. PMID:15110538

  2. Early-age acoustic emission measurements in hydrating cement paste: Evidence for cavitation during solidification due to self-desiccation

    DEFF Research Database (Denmark)

    Lura, Pietro; Couch, J.; Jensen, Ole Mejlhede;

    2009-01-01

    . According to these experimental results, the acoustic emission measured around setting time was attributed to cavitation events occurring in the pores of the cement paste due to self-desiccation. This paper shows how acoustic emission might be used to indicate the time when the fluid–solid transition occurs...

  3. Acoustic input impedance of the avian inner ear measured in ostrich (Struthio camelus).

    Science.gov (United States)

    Muyshondt, Pieter G G; Aerts, Peter; Dirckx, Joris J J

    2016-09-01

    In both mammals and birds, the mechanical behavior of the middle ear structures is affected by the mechanical impedance of the inner ear. In this study, the aim was to quantify the acoustic impedance of the avian inner ear in the ostrich, which allows us to determine the effect on columellar vibrations and middle ear power flow in future studies. To determine the inner ear impedance, vibrations of the columella were measured for both the quasi-static and acoustic stimulus frequencies. In the frequency range of 0.3-4 kHz, we used electromagnetic stimulation of the ossicle and a laser Doppler vibrometer to measure the vibration response. At low frequencies, harmonic displacements were imposed on the columella using piezo stimulation and the resulting force response was measured with a force sensor. From these measurement data, the acoustic impedance of the inner ear could be determined. A simple RLC model in series of the impedance measurements resulted in a stiffness reactance of KIE = 0.20·10(12) Pa/m³, an inertial impedance of MIE = 0.652·10(6) Pa s(2)/m³, and a resistance of RIE = 1.57·10(9) Pa s/m. We found that values of the inner ear impedance in the ostrich are one to two orders in magnitude smaller than what is found in mammal ears. PMID:27473506

  4. Acoustic containerless experiment system: A non-contact surface tension measurement

    Science.gov (United States)

    Elleman, D. D.; Wang, T. G.; Barmatz, M.

    1988-01-01

    The Acoustic Containerless Experiment System (ACES) was flown on STS 41-B in February 1984 and was scheduled to be reflown in 1986. The primary experiment that was to be conducted with the ACES module was the containerless melting and processing of a fluoride glass sample. A second experiment that was to be conducted was the verification of a non-contact surface tension measurement technique using the molten glass sample. The ACES module consisted of a three-axis acoustic positioning module that was inside an electric furnace capable of heating the system above the melting temperature of the sample. The acoustic module is able to hold the sample with acoustic forces in the center of the chamber and, in addition, has the capability of applying a modulating force on the sample along one axis of the chamber so that the molten sample or liquid drop could be driven into one of its normal oscillation modes. The acoustic module could also be adjusted so that it could place a torque on the molten drop and cause the drop to rotate. In the ACES, a modulating frequency was applied to the drop and swept through a range of frequencies that would include the n = 2 mode. A maximum amplitude of the drop oscillation would indicate when resonance was reached and from that data the surface tension could be calculated. For large viscosity samples, a second technique for measuring surface tension was developed. The results of the ACES experiment and some of the problems encountered during the actual flight of the experiment will be discussed.

  5. Fusion of acoustic measurements with video surveillance for estuarine threat detection

    Science.gov (United States)

    Bunin, Barry; Sutin, Alexander; Kamberov, George; Roh, Heui-Seol; Luczynski, Bart; Burlick, Matt

    2008-04-01

    Stevens Institute of Technology has established a research laboratory environment in support of the U.S. Navy in the area of Anti-Terrorism and Force Protection. Called the Maritime Security Laboratory, or MSL, it provides the capabilities of experimental research to enable development of novel methods of threat detection in the realistic environment of the Hudson River Estuary. In MSL, this is done through a multi-modal interdisciplinary approach. In this paper, underwater acoustic measurements and video surveillance are combined. Stevens' researchers have developed a specialized prototype video system to identify, video-capture, and map surface ships in a sector of the estuary. The combination of acoustic noise with video data for different kinds of ships in Hudson River enabled estimation of sound attenuation in a wide frequency band. Also, it enabled the collection of a noise library of various ships that can be used for ship classification by passive acoustic methods. Acoustics and video can be used to determine a ship's position. This knowledge can be used for ship noise suppression in hydrophone arrays in underwater threat detection. Preliminary experimental results of position determination are presented in the paper.

  6. Shallow-water acoustic tomography from angle measurements instead of travel-time measurements.

    Science.gov (United States)

    Aulanier, Florian; Nicolas, Barbara; Mars, Jérôme I; Roux, Philippe; Brossier, Romain

    2013-10-01

    For shallow-water waveguides and mid-frequency broadband acoustic signals, ocean acoustic tomography (OAT) is based on the multi-path aspect of wave propagation. Using arrays in emission and reception and advanced array processing, every acoustic arrival can be isolated and matched to an eigenray that is defined not only by its travel time but also by its launch and reception angles. Classically, OAT uses travel-time variations to retrieve sound-speed perturbations; this assumes very accurate source-to-receiver clock synchronization. This letter uses numerical simulations to demonstrate that launch-and-reception-angle tomography gives similar results to travel-time tomography without the same requirement for high-precision synchronization.

  7. In-situ optical and acoustical measurements of the buoyant cyanobacterium p. Rubescens: spatial and temporal distribution patterns.

    Directory of Open Access Journals (Sweden)

    Hilmar Hofmann

    Full Text Available Optical (fluorescence and acoustic in-situ techniques were tested in their ability to measure the spatial and temporal distribution of plankton in freshwater ecosystems with special emphasis on the harmful and buoyant cyanobacterium P. rubescens. Fluorescence was measured with the multi-spectral FluoroProbe (Moldaenke FluoroProbe, MFP and a Seapoint Chlorophyll Fluorometer (SCF. In-situ measurements of the acoustic backscatter strength (ABS were conducted with three different acoustic devices covering multiple acoustic frequencies (614 kHz ADCP, 2 MHz ADP, and 6 MHz ADV. The MFP provides a fast and reliable technique to measure fluorescence at different wavelengths in situ, which allows discriminating between P. rubescens and other phytoplankton species. All three acoustic devices are sensitive to P. rubescens even if other scatterers, e.g., zooplankton or suspended sediment, are present in the water column, because P. rubescens containing gas vesicles has a strong density difference and hence acoustic contrast to the ambient water and other scatterers. After calibration, the combination of optical and acoustical measurements not only allows qualitative and quantitative observation of P. rubescens, but also distinction between P. rubescens, other phytoplankton, and zooplankton. As the measuring devices can sample in situ at high rates they enable assessment of plankton distributions at high temporal (minutes and spatial (decimeters resolution or covering large temporal (seasonal and spatial (basin scale scales.

  8. Self-oscillation acoustic system destined to measurement of stresses in mass rocks

    CERN Document Server

    Kwasniewski, Janusz; Dominik, Ireneusz; Dorobczynski, Lech

    2011-01-01

    The paper presents an electronic self-oscillation acoustic system (SAS) destined to measure of stresses variations in the elastic media. The system consists of piezoelectric detector, amplifier-limiter, pass-band filter, piezoelectric exciter and the frequency meter. The mass rock plays a role of delaying element, in which variations in stresses causing the variations of acoustic wave velocity of propagation, and successive variation in frequency of oscillations generated by system. The laboratory test permitted to estimate variations in frequency caused by variations in stresses of elastic medium. The principles of selection of frequency and other parameters of the electronic system in application to stresses measurement in condition of the mine were presented.

  9. Study on the High Precision Acoustic Measurement Techniques for Determining Temperature Field Around Seafloor Hydrothermal Vent

    Institute of Scientific and Technical Information of China (English)

    CAI Yong; FAN Wei; ZHOU Yan; FU Xian-qiao; FANG Hui; JIN Tao

    2012-01-01

    This paper presents the basis of acoustic method used for temperature field measurement of seafloor hydrothermal vent and two techniques of the parabolic interpolation and the bending compensation of propagation paths of acoustic signal are introduced.Experimental research is performed to exactly rebuild the temperature field around hot springs on the floor of Qiezishan Lake,Yunnan,China.The accuracy of the travel time estimation has been improved based on the aforementioned technique and method.At the same time,by comparison of the results of temperature field with different means,the max absolute error,the maximum relative error and the root mean square error are given.It shows that the technique and the method presented in the paper can be applied to the temperature field measurement detector around the seafloor hydrothermal vent.It also has a good accuracy.

  10. Acoustical measurements of expression devices in pipe organs.

    Science.gov (United States)

    Braasch, Jonas

    2008-03-01

    In this investigation, three different swell systems known in pipe organs, the swell box, the crescendo wheel, and the historic wind swell were measured and compared to each other. The dynamic range of the crescendo wheel was found to be most effective, and for frequencies near 2 kHz the increase in sound pressure level could be up to 50 dB between the softest and the loudest adjustment. The maximum dynamic range for the wind swell and the swell box were found to be 10-20 dB in the same frequency range. With its step-wise crescendo procedure, the crescendo wheel simulates the type of orchestra crescendo which is reached by successively adding further musical instruments. In contrast, the swell box and the wind swell produce a crescendo effect similar to the crescendo in which individual musical instruments perform a dynamic movement. This type of crescendo requires a continuous level increase but allows a smaller dynamic range. The disappearance of the wind swell is not surprising because it offers no advantage over the swell box, while being restricted to stops with free reeds.

  11. Local Measurement of Electron Density and Temperature in High Temperature Laser Plasma Using the Ion-Acoustic Dispersion

    Energy Technology Data Exchange (ETDEWEB)

    Froula, D H; Davis, P; Ross, S; Meezan, N; Divol, L; Price, D; Glenzer, S H; Rousseaux, C

    2005-09-20

    The dispersion of ion-acoustic fluctuations has been measured using a novel technique that employs multiple color Thomson-scattering diagnostics to measure the frequency spectrum for two separate thermal ion-acoustic fluctuations with significantly different wave vectors. The plasma fluctuations are shown to become dispersive with increasing electron temperature. We demonstrate that this technique allows a time resolved local measurement of electron density and temperature in inertial confinement fusion plasmas.

  12. Constraints on dark energy models from radial baryon acoustic scale measurements

    OpenAIRE

    Samushia, Lado; Ratra, Bharat

    2008-01-01

    We use the radial baryon acoustic oscillation (BAO) measurements of Gaztanaga et al. (2008) to constrain parameters of dark energy models. These constraints are comparable with constraints from other "non-radial" BAO data. The radial BAO data are consistent with the time-independent cosmological constant model but do not rule out time-varying dark energy. When we combine radial BAO and the Kowalski et al. (2008) Union type Ia supernova data we get very tight constraints on dark energy.

  13. Application of Wavelet Packet Analysis to the Measurement of the Baryon Acoustic Oscillation

    Science.gov (United States)

    Kadowaki, Kevin; Garcia, Noel; Ford, Taurean; Pando, Jesus; SDSS-FAST Collaboration

    2016-03-01

    We develop a method of wavelet packet analysis to measure the Baryon Acoustic Oscillation (BAO) peak and apply this method to the CMASS galaxy catalog from the SDSS Baryon Oscillation Spectroscopic Survey (BOSS) collaboration. We compare our results to a fiducial ?CDM flat cosmological model and detect a BAO signature in the power spectrum comparable to the previous consensus results of the BOSS collaboration. We find DA = 1365rd /rd , fid at z = . 54 . Member ID Forthcoming.

  14. Breath air measurement using wide-band frequency tuning IR laser photo-acoustic spectroscopy

    Science.gov (United States)

    Kistenev, Yury V.; Borisov, Alexey V.; Kuzmin, Dmitry A.; Bulanova, Anna A.; Boyko, Andrey A.; Kostyukova, Nadezhda Y.; Karapuzikov, Alexey A.

    2016-03-01

    The results of measuring of biomarkers in breath air of patients with broncho-pulmonary diseases using wide-band frequency tuning IR laser photo-acoustic spectroscopy and the methods of data mining are presented. We will discuss experimental equipment and various methods of intellectual analysis of the experimental spectra in context of above task. The work was carried out with partial financial support of the FCPIR contract No 14.578.21.0082 (ID RFMEFI57814X0082).

  15. Complete velocity distribution in river cross-sections measured by acoustic instruments

    Science.gov (United States)

    Cheng, R.T.; Gartner, J.W.

    2003-01-01

    To fully understand the hydraulic properties of natural rivers, velocity distribution in the river cross-section should be studied in detail. The measurement task is not straightforward because there is not an instrument that can measure the velocity distribution covering the entire cross-section. Particularly, the velocities in regions near the free surface and in the bottom boundary layer are difficult to measure, and yet the velocity properties in these regions play the most significant role in characterizing the hydraulic properties. To further characterize river hydraulics, two acoustic instruments, namely, an acoustic Doppler current profiler (ADCP), and a "BoogieDopp" (BD) were used on fixed platforms to measure the detailed velocity profiles across the river. Typically, 20 to 25 stations were used to represent a river cross-section. At each station, water velocity profiles were measured independently and/or concurrently by an ADCP and a BD. The measured velocity properties were compared and used in computation of river discharge. In a tow-tank evaluation of a BD, it has been confirmed that BD is capable of measuring water velocity at about 11 cm below the free-surface. Therefore, the surface velocity distribution across the river was extracted from the BD velocity measurements and used to compute the river discharge. These detailed velocity profiles and the composite velocity distribution were used to assess the validity of the classic theories of velocity distributions, conventional river discharge measurement methods, and for estimates of channel bottom roughness.

  16. Acoustic measurement method of the volume flux of a seafloor hydrothermal plume

    Science.gov (United States)

    Xu, G.; Jackson, D. R.; Bemis, K. G.; Rona, P. A.

    2011-12-01

    Measuring fluxes (volume, chemical, heat, etc.) of the deep sea hydrothermal vents has been a crucial but challenging task faced by the scientific community since the discovery of the vent systems. However, the great depths and complexities of the hydrothermal vents make traditional sampling methods laborious and almost daunting missions. Furthermore, the samples, in most cases both sparse in space and sporadic in time, are hardly enough to provide a result with moderate uncertainty. In September 2010, our Cabled Observatory Vent Imaging Sonar System (COVIS, http://vizlab.rutgers.edu/AcoustImag/covis.html) was connected to the Neptune Canada underwater ocean observatory network (http://www.neptunecanada.ca) at the Main Endeavour vent field on the Endeavour segment of the Juan de Fuca Ridge. During the experiment, the COVIS system produced 3D images of the buoyant plume discharged from the vent complex Grotto by measuring the back-scattering intensity of the acoustic signal. Building on the methodology developed in our previous work, the vertical flow velocity of the plume is estimated from the Doppler shift of the acoustic signal using geometric correction to compensate for the ambient horizontal currents. A Gaussian distribution curve is fitted to the horizontal back-scattering intensity profile to determine the back-scattering intensity at the boundary of the plume. Such a boundary value is used as the threshold in a window function for separating the plume from background signal. Finally, the volume flux is obtained by integrating the resulting 2D vertical velocity profile over the horizontal cross-section of the plume. In this presentation, we discuss preliminary results from the COVIS experiment. In addition, several alternative approaches are applied to determination of the accuracy of the estimated plume vertical velocity in the absence of direct measurements. First, the results from our previous experiment (conducted in 2000 at the same vent complex using a

  17. Design and Instrumentation of a Measurement and Calibration System for an Acoustic Telemetry System

    Directory of Open Access Journals (Sweden)

    Zhiqun Deng

    2010-03-01

    Full Text Available The Juvenile Salmon Acoustic Telemetry System (JSATS is an active sensing technology developed by the U.S. Army Corps of Engineers, Portland District, for detecting and tracking small fish. It is used primarily for evaluating behavior and survival of juvenile salmonids migrating through the Federal Columbia River Power System to the Pacific Ocean. It provides critical data for salmon protection and development of more “fish-friendly” hydroelectric facilities. The objective of this study was to design and build a Measurement and Calibration System (MCS for evaluating the JSATS components, because the JSATS requires comprehensive acceptance and performance testing in a controlled environment before it is deployed in the field. The MCS consists of a reference transducer, a water test tank lined with anechoic material, a motion control unit, a reference receiver, a signal conditioner and amplifier unit, a data acquisition board, MATLAB control and analysis interface, and a computer. The fully integrated MCS has been evaluated successfully at various simulated distances and using different encoded signals at frequencies within the bandwidth of the JSATS transmitter. The MCS provides accurate acoustic mapping capability in a controlled environment and automates the process that allows real-time measurements and evaluation of the piezoelectric transducers, sensors, or the acoustic fields. The MCS has been in use since 2009 for acceptance and performance testing of, and further improvements to, the JSATS.

  18. Design and instrumentation of a measurement and calibration system for an acoustic telemetry system.

    Science.gov (United States)

    Deng, Zhiqun; Weiland, Mark; Carlson, Thomas; Eppard, M Brad

    2010-01-01

    The Juvenile Salmon Acoustic Telemetry System (JSATS) is an active sensing technology developed by the U.S. Army Corps of Engineers, Portland District, for detecting and tracking small fish. It is used primarily for evaluating behavior and survival of juvenile salmonids migrating through the Federal Columbia River Power System to the Pacific Ocean. It provides critical data for salmon protection and development of more "fish-friendly" hydroelectric facilities. The objective of this study was to design and build a Measurement and Calibration System (MCS) for evaluating the JSATS components, because the JSATS requires comprehensive acceptance and performance testing in a controlled environment before it is deployed in the field. The MCS consists of a reference transducer, a water test tank lined with anechoic material, a motion control unit, a reference receiver, a signal conditioner and amplifier unit, a data acquisition board, MATLAB control and analysis interface, and a computer. The fully integrated MCS has been evaluated successfully at various simulated distances and using different encoded signals at frequencies within the bandwidth of the JSATS transmitter. The MCS provides accurate acoustic mapping capability in a controlled environment and automates the process that allows real-time measurements and evaluation of the piezoelectric transducers, sensors, or the acoustic fields. The MCS has been in use since 2009 for acceptance and performance testing of, and further improvements to, the JSATS. PMID:22319288

  19. Acoustic measurements for the combustion diagnosis of diesel engines fuelled with biodiesels

    Science.gov (United States)

    Zhen, Dong; Wang, Tie; Gu, Fengshou; Tesfa, Belachew; Ball, Andrew

    2013-05-01

    In this paper, an experimental investigation was carried out on the combustion process of a compression ignition (CI) engine running with biodiesel blends under steady state operating conditions. The effects of biodiesel on the combustion process and engine dynamics were analysed for non-intrusive combustion diagnosis based on a four-cylinder, four-stroke, direct injection and turbocharged diesel engine. The signals of vibration, acoustic and in-cylinder pressure were measured simultaneously to find their inter-connection for diagnostic feature extraction. It was found that the sound energy level increases with the increase of engine load and speed, and the sound characteristics are closely correlated with the variation of in-cylinder pressure and combustion process. The continuous wavelet transform (CWT) was employed to analyse the non-stationary nature of engine noise in a higher frequency range. Before the wavelet analysis, time synchronous average (TSA) was used to enhance the signal-to-noise ratio (SNR) of the acoustic signal by suppressing the components which are asynchronous. Based on the root mean square (RMS) values of CWT coefficients, the effects of biodiesel fractions and operating conditions (speed and load) on combustion process and engine dynamics were investigated. The result leads to the potential of airborne acoustic measurements and analysis for engine condition monitoring and fuel quality evaluation.

  20. Measurements of the acoustic field on austenitic welds: a way to higher reliability in ultrasonic tests

    International Nuclear Information System (INIS)

    In nuclear power plants many of the welds in austenitic tubes have to be inspected by means of ultrasonic techniques. If component-identical test pieces are available, they are used to qualify the ultrasonic test technology. Acoustic field measurements on such test blocks give information whether the beam of the ultrasonic transducer reaches all critical parts of the weld region and which transducer type is best suited. Acoustic fields have been measured at a bimetallic, a V-shaped and a narrow gap weld in test pieces of wall thickness 33, 25 and 17 mm, respectively. Compression wave transducers 45, 60 and 70 and 45 shear wave transducers have been included in the investigation. The results are presented: (1) as acoustic C-scans for one definite probe position, (2) as series of C-scans for the probe moving on a track perpendicular to the weld, (3) as scan along the weld and (4) as effective beam profile. The influence of the scanning electrodynamic probe is also discussed. (orig.)

  1. A method of estimating inspiratory flow rate and volume from an inhaler using acoustic measurements

    International Nuclear Information System (INIS)

    Inhalers are devices employed to deliver medication to the airways in the treatment of respiratory diseases such as asthma and chronic obstructive pulmonary disease. A dry powder inhaler (DPI) is a breath actuated inhaler that delivers medication in dry powder form. When used correctly, DPIs improve patients' clinical outcomes. However, some patients are unable to reach the peak inspiratory flow rate (PIFR) necessary to fully extract the medication. Presently clinicians have no reliable method of objectively measuring PIFR in inhalers. In this study, we propose a novel method of estimating PIFR and also the inspiratory capacity (IC) of patients' inhalations from a commonly used DPI, using acoustic measurements. With a recording device, the acoustic signal of 15 healthy subjects using a DPI over a range of varying PIFR and IC values was obtained. Temporal and spectral signal analysis revealed that the inhalation signal contains sufficient information that can be employed to estimate PIFR and IC. It was found that the average power (Pave) in the frequency band 300–600 Hz had the strongest correlation with PIFR (R2 = 0.9079), while the power in the same frequency band was also highly correlated with IC (R2 = 0.9245). This study has several clinical implications as it demonstrates the feasibility of using acoustics to objectively monitor inhaler use. (paper)

  2. Combined surface acoustic wave and surface plasmon resonance measurement of collagen and fibrinogen layers

    CERN Document Server

    Friedt, J M; Francis, L; Zhou, C; Campitelli, A; Friedt, Jean-Michel; Denis, Frederic; Francis, Laurent; Zhou, Cheng; Campitelli, Andrew

    2003-01-01

    We use an instrument combining optical (surface plasmon resonance) and acoustic (Love mode acoustic wave device) real-time measurements on a same surface for the identification of water content in collagen and fibrinogen protein layers. After calibration of the surface acoustic wave device sensitivity by copper electrodeposition, the bound mass and its physical properties -- density and optical index -- are extracted from the complementary measurement techniques and lead to thickness and water ratio values compatible with the observed signal shifts. Such results are especially usefully for protein layers with a high water content as shown here for collagen on an hydrophobic surface. We obtain the following results: collagen layers include 70+/-20 % water and are 16+/-3 to 19+/-3 nm thick for bulk concentrations ranging from 30 to 300 ug/ml. Fibrinogen layers include 50+/-10 % water for layer thicknesses in the 6+/-1.5 to 13+/-2 nm range when the bulk concentration is in the 46 to 460 ug/ml range.

  3. Linear and Nonlinear Acoustic Measurements of Buried Landmines: Detection Schemes Near Resonance

    Science.gov (United States)

    Sabatier, James M.

    2003-03-01

    Measurements of the acoustic impedance of an anti-personnel and anti-tank plastic, blast-hardened landmines reveal resonances in the frequency range between 100 and 1000 Hz. The top surface resonances are due to its complicated mechanical structure vibrating in air. The lowest mode results from the blast hardened design of the landmine. Typically, a portion or cavity of the landmine is designed to absorb the shock from an explosion that is intended to detonate the landmine but still allow the landmine to trigger its explosive device when a slow steady pressure is applied. The mechanical design of the blast hardened aspects results in a high Q simple harmonic oscillator resonance of the top surface. At higher frequencies the top surface behaves like thin circular plate acoustic modes. When these landmines are buried in soils, the modes are mass loaded. Resonances from measurements of the normal component of the acoustically induced soil surface particle velocity are used for detection schemes. Since the interface between the top plate and the soil responds to pressure fluctuations nonlinearly, characteristics of landmines, the soil, and the interface are rich in nonlinear physics and allow for new methods of landmine detection not previously exploited.

  4. Matching simulations with measured acoustic data from Roman Theatres using the ODEON programme

    DEFF Research Database (Denmark)

    Nielsen, Martin Lisa; Rindel, Jens Holger; Christensen, Claus Lynge;

    2005-01-01

    In the context of the ERATO research project (“identification, Evaluation and Revival of the Acoustical heritage of ancient Theatres and Odea”) funded by the European Union, acoustic measurements as well as computer simulations have been carried out in the Aspendos Theatre, Turkey and in the south...... theatre in Jerash, Jordan. The simulations are made with the ODEON software, for which a new frequency-dependent diffraction method is currently being developed for implementation in future versions of the programme. In order to make the virtual restorations of these ancient Roman theatres as correct....... The paper describes this exercise, the calculation parameters in ODEON that were adjusted in the process, and the extent to which it was successful....

  5. Twin-tube practical acoustic thermometry: theory and measurements up to 1000 °C

    Science.gov (United States)

    Sutton, G.; Edwards, G.; Veltcheva, R.; de Podesta, M.

    2015-08-01

    We present details of a Practical Acoustic Thermometer (PAT), in which temperature is inferred from measurements of the speed of sound along acoustic waveguides. We describe both the theory of operation, and measurements on three devices at temperatures up to 1000 °C. Because the relationship between the speed of sound in a simple gas and absolute temperature is well understood, the mean temperature along a tube may be estimated from measurements of the frequency-dependent propagation constant. A PAT device made from two tubes of different lengths allows the temperature measurement region to be localised, creating an instrument functionally similar to conventional contact thermometers. Three twin-tube PAT devices were constructed and tested. PAT-A, made of silica, served to validate the technique with differences between the acoustic thermometer and a reference thermocouple of less than 2 °C at temperatures in the range from 100 °C to 1000 °C. PAT-B and PAT-C were made of Inconel-600, potentially more suitable for use in harsh environments. The Inconel devices deviated from expected behaviour in a reproducible manner, which after calibration allowed measurements with errors of less than  ±1 °C in the range to 700 °C. No drift was observed up to 700 °C. The drift observed during prolonged exposure to higher temperatures is described and its likely causes discussed. In the longer term, similar technology may provide a means for the measurement of temperature in harsh environments such as those found in the nuclear industry.

  6. The influence of phonetic context and formant measurement location on acoustic vowel space

    Science.gov (United States)

    Turner, Greg S.; Hutchings, David T.; Sylvester, Betsy; Weismer, Gary

    2003-04-01

    One way of depicting vowel production is by describing vowels within an F1/F2 acoustic vowel space. This acoustic measure illustrates the dispersion of F1 and F2 values at a specific moment in time (e.g., the temporal midpoint of a vowel) for the vowels of a given language. This measure has recently been used to portray vowel production in individuals with communication disorders such as dysarthria and is moderately related to the severity of the speech disorder. Studies aimed at identifying influential factors effecting measurement stability of vowel space have yet to be completed. The focus of the present study is to evaluate the influence of phonetic context and spectral measurement location on vowel space in a group of neurologically normal American English speakers. For this study, vowel space was defined in terms of the dispersion of the four corner vowels produced within a CVC syllable frame, where C includes six stop consonants in all possible combinations with each vowel. Spectral measures were made at the midpoint and formant extremes of the vowels. A discussion will focus on individual and group variation in vowel space as a function of phonetic context and temporal measurement location.

  7. Measurement of impulse peak insertion loss from two acoustic test fixtures and four hearing protector conditions with an acoustic shock tube

    Directory of Open Access Journals (Sweden)

    William J Murphy

    2015-01-01

    Full Text Available Impulse peak insertion loss (IPIL was studied with two acoustic test fixtures and four hearing protector conditions at the E-A-RCAL Laboratory. IPIL is the difference between the maximum estimated pressure for the open-ear condition and the maximum pressure measured when a hearing protector is placed on an acoustic test fixture (ATF. Two models of an ATF manufactured by the French-German Research Institute of Saint-Louis (ISL were evaluated with high-level acoustic impulses created by an acoustic shock tube at levels of 134 decibels (dB, 150 dB, and 168 dB. The fixtures were identical except that the E-A-RCAL ISL fixture had ear canals that were 3 mm longer than the National Institute for Occupational Safety and Health (NIOSH ISL fixture. Four hearing protection conditions were tested: Combat Arms earplug with the valve open, ETYPlugs ® earplug, TacticalPro headset, and a dual-protector ETYPlugs earplug with TacticalPro earmuff. The IPILs measured for the E-A-RCAL fixture were 1.4 dB greater than the National Institute for Occupational Safety and Health (NIOSH ISL ATF. For the E-A-RCAL ISL ATF, the left ear IPIL was 2.0 dB greater than the right ear IPIL. For the NIOSH ATF, the right ear IPIL was 0.3 dB greater than the left ear IPIL.

  8. Near-field acoustic holography with sound pressure and particle velocity measurements

    DEFF Research Database (Denmark)

    Fernandez Grande, Efren

    of particle velocity measurements and combined pressure-velocity measurements in NAH, the relation between the near-field and the far-field radiation from sound sources via the supersonic acoustic intensity, and finally, the reconstruction of sound fields using rigid spherical microphone arrays. Measurement...... of the particle velocity has notable potential in NAH, and furthermore, combined measurement of sound pressure and particle velocity opens a new range of possibilities that are examined in this study. On this basis, sound field separation methods have been studied, and a new measurement principle based on double...... layer measurements of the particle velocity has been proposed. Also, the relation between near-field and far-field radiation from sound sources has been examined using the concept of the supersonic intensity. The calculation of this quantity has been extended to other holographic methods, and studied...

  9. Measurement of pipe wall thinning by ultra acoustic resonance technique using optical fiber

    International Nuclear Information System (INIS)

    This is the novel system for Pipe Wall Thickness measurement which is combined EAMT(Electro Magnetic Acoustic Transducer) and Optical Fiber Sensor. The conventional ultrasonic thickness meter is using in pipe wall thickness measurement. However, it is necessary to remove a heat insulator from pipe line. A characteristic of this novel system is that it is possible to measure without removing a heat insulator and on-line monitoring, because of measurement probe is attached between pipe surface and heat insulator. As a result of measured with this system, we could measure 30 mm thickness of carbon and stainless steel at the maximum and pipe specimen of elbow shape. Heat-resistant characteristic confirmed at 200 degrees C until about 7000 hours. (author)

  10. Multibeam volume acoustic backscatter imagery and reverberation measurements in the northeastern Gulf of Mexico

    Science.gov (United States)

    Gallaudet, Timothy C.; deMoustier, Christian P.

    2002-08-01

    Multibeam volume acoustic backscatter imagery and reverberation measurements are derived from data collected in 200-m-deep waters in the northeastern Gulf of Mexico, with the Toroidal Volume Search Sonar (TVSS), a 68-kHz cylindrical sonar operated by the U.S. Navy's Coastal System Station. The TVSS's 360-degree vertical imaging plane allows simultaneous identification of multiple volume scattering sources and their discrimination from backscatter at the sea surface or the seafloor. This imaging capability is used to construct a three-dimensional representation of a pelagic fish school near the bottom. Scattering layers imaged in the mixed layer and upper thermocline are attributed to assemblages of epipelagic zooplankton. The fine scale patchiness of these scatterers is assessed with the two-dimensional variance spectra of vertical volume scattering strength images in the upper and middle water column. Mean volume reverberation levels exhibit a vertical directionality which is attributed to the volume scattering layers. Boundary echo sidelobe interference and reverberation is shown to be the major limitation in obtaining bioacoustic data with the TVSS. Because net tow and trawl samples were not collected with the acoustic data, the analysis presented is based upon comparison to previous biologic surveys in the northeastern Gulf of Mexico and reference to the bioacoustic literature. copyright 2002 Acoustical Society of America.

  11. Angular measurement of acoustic reflection coefficients by the inversion of V(z, t) data with high frequency time-resolved acoustic microscopy

    Science.gov (United States)

    Chen, Jian; Bai, Xiaolong; Yang, Keji; Ju, Bing-Feng

    2012-01-01

    For inspection of mechanical properties and integrity of critical components such as integrated circuits or composite materials by acoustic methodology, it is imperative to evaluate their acoustic reflection coefficients, which are in close correlation with the elastic properties, thickness, density, and attenuation and interface adhesion of these layered structures. An experimental method based on angular spectrum to evaluate the acoustic coefficient as a function of the incident angle, θ, and frequency, ω, is presented with high frequency time-resolved acoustic microscopy. In order to achieve a high spatial resolution for evaluation of thin plates with thicknesses about one or two wavelengths, a point focusing transducer with a nominal center frequency of 25 MHz is adopted. By measuring the V(z, t) data in pulse mode, the reflection coefficient, R(θ, ω), can be reconstructed from its two-dimensional spectrum. It brings simplicity to experimental setup and measurement procedure since only single translation of the transducer in the vertical direction is competent for incident angle and frequency acquisition. It overcomes the disadvantages of the conventional methods requiring the spectroscopy for frequency scanning and/or ultrasonic goniometer for angular scanning. Two substrates of aluminum and Plexiglas and four stainless plates with various thicknesses of 100 μm, 150 μm, 200 μm, and 250 μm were applied. The acoustic reflection coefficients are consistent with the corresponding theoretical calculations. It opened the way of non-destructive methodology to evaluate the elastic and geometrical properties of very thin multi-layers structures simultaneously.

  12. Two-dimensional direction finding for low altitude target based on intensity measurement using an acoustic vector-sensor

    Institute of Scientific and Technical Information of China (English)

    CHEN Huawei; ZHAO Junwei

    2004-01-01

    A method of two-dimensional direction of arrival (DOA) estimation for low altitude target, which is based on intensity measurement using a three-dimensional differential pressure acoustic vector-sensor, is presented. With the perfect characteristics of acoustic vector sensor in the low frequency band, accurate DOA estimation is achieved under small array size. The validity of the proposed method was assessed by experiments on the noise signals radiated by a helicopter. The influence of acoustic sensor size, integral time and signal to noise ratio to the accuracy of DOA estimation were investigated, respectively. The performance comparisons demonstrated that it outperformed the traditional time-delay measurement based method for a small acoustic array.

  13. Indirect calibration of a large microphone array for in-duct acoustic measurements

    Science.gov (United States)

    Leclère, Q.; Pereira, A.; Finez, A.; Souchotte, P.

    2016-08-01

    This paper addresses the problem of in situ calibration of a pin hole-mounted microphone array for in-duct acoustic measurements. One approach is to individually measure the frequency response of each microphone, by submitting the probe to be calibrated and a reference microphone to the same pressure field. Although simple, this task may be very time consuming for large microphone arrays and eventually suffer from lack of access to microphones once they are installed on the test bench. An alternative global calibration procedure is thus proposed in this paper. The approach is based on the fact that the acoustic pressure can be expanded onto an analytically known spatial basis. A projection operator is defined allowing the projection of measurements onto the duct modal basis. The main assumption of the method is that the residual resulting from the difference between actual and projected measurements is mainly dominated by calibration errors. An iterative procedure to estimate the calibration factors of each microphone is proposed and validated through an experimental set-up. In addition, it is shown that the proposed scheme allows an optimization of physical parameters such as the sound speed and parameters associated to the test bench itself, such as the duct radius or the termination reflection coefficient.

  14. Ultrasonic Measurement of Strain Distribution Inside Object Cyclically Compressed by Dual Acoustic Radiation Force

    Science.gov (United States)

    Odagiri, Yoshitaka; Hasegawa, Hideyuki; Kanai, Hiroshi

    2008-05-01

    One possible way to evaluate acupuncture therapy quantitatively is to measure the change in the elastic property of muscle after application of the therapy. Many studies have been conducted to measure mechanical properties of tissues using ultrasound-induced acoustic radiation force. To assess mechanical properties, strain must be generated in an object. However, a single radiation force is not effective because it mainly generates translational motion when the object is much harder than the surrounding medium. In this study, two cyclic radiation forces are simultaneously applied to a muscle phantom from two opposite horizontal directions so that the object is cyclically compressed in the horizontal direction. By the horizontal compression, the object is expanded vertically based on its incompressibility. The resultant vertical displacement is measured using another ultrasound pulse. Two ultrasonic transducers for actuation were both driven by the sum of two continuous sinusoidal signals at two slightly different frequencies [1 MHz and (1 M + 5) Hz]. The displacement of several micrometers in amplitude, which fluctuated at 5 Hz, was measured by the ultrasonic phased tracking method. Increase in thickness inside the object was observed just when acoustic radiation forces increased. Such changes in thickness correspond to vertical expansion due to horizontal compression.

  15. Galaxy bias and its effects on the Baryon acoustic oscillations measurements

    Energy Technology Data Exchange (ETDEWEB)

    Mehta, Kushal T. [Univ. of Arizona, Tucson, AZ (United States); Seo, Hee -Jong [Univ. of California, Berkeley, CA (United States); Fermi National Accelerator Lab., Batavia, IL (United States); Eckel, Jonathan [Univ. of Arizona, Tucson, AZ (United States); Eisenstein, Daniel J. [Univ. of Arizona, Tucson, AZ (United States); Harvard Univ., Cambridge, MA (United States); Metchnik, Marc [Univ. of Arizona, Tucson, AZ (United States); Pinto, Philip [Univ. of Arizona, Tucson, AZ (United States); Xu, Xiaoying [Univ. of Arizona, Tucson, AZ (United States)

    2011-05-31

    The baryon acoustic oscillation (BAO) feature in the clustering of matter in the universe serves as a robust standard ruler and hence can be used to map the expansion history of the universe. We use high force resolution simulations to analyze the effects of galaxy bias on the measurements of the BAO signal. We apply a variety of Halo Occupation Distributions (HODs) and produce biased mass tracers to mimic different galaxy populations. We investigate whether galaxy bias changes the non-linear shifts on the acoustic scale relative to the underlying dark matter distribution presented by Seo et al. (2009). For the less biased HOD models (b < 3), we do not detect any shift in the acoustic scale relative to the no-bias case, typically 0.10% ± 0.10%. However, the most biased HOD models (b > 3) show a shift at moderate significance (0.79% ± 0.31% for the most extreme case). We test the one-step reconstruction technique introduced by Eisenstein et al. (2007) in the case of realistic galaxy bias and shot noise. The reconstruction scheme increases the correlation between the initial and final (z = 1) density fields achieving an equivalent level of correlation at nearly twice the wavenumber after reconstruction. Reconstruction reduces the shifts and errors on the shifts. We find that after reconstruction the shifts from the galaxy cases and the dark matter case are consistent with each other and with no shift. The 1σ systematic errors on the distance measurements inferred from our BAO measurements with various HODs after reconstruction are about 0.07%-0.15%.

  16. Compressive sensing beamforming based on covariance for acoustic imaging with noisy measurements.

    Science.gov (United States)

    Zhong, Siyang; Wei, Qingkai; Huang, Xun

    2013-11-01

    Compressive sensing, a newly emerging method from information technology, is applied to array beamforming and associated acoustic applications. A compressive sensing beamforming method (CSB-II) is developed based on sampling covariance matrix, assuming spatially sparse and incoherent signals, and then examined using both simulations and aeroacoustic measurements. The simulation results clearly show that the proposed CSB-II method is robust to sensing noise. In addition, aeroacoustic tests of a landing gear model demonstrate the good performance in terms of resolution and sidelobe rejection.

  17. Design and implementation of an efficient acoustically levitated drop reactor for in stillo measurements.

    Science.gov (United States)

    Field, Christopher R; Scheeline, Alexander

    2007-12-01

    We present the details necessary for building an efficient acoustic drop levitator with reduced electrical power consumption and greater drop stability compared to previous designs. The system is optimized so that the levitated drop may be used as a chemical reactor. By introducing a temperature, pressure, and relative humidity sensor for feedback control of a linear actuator for adjusting resonator length, we have built a completely automated system capable of continuous levitation for extended periods of time. The result is a system capable of portable operation and interfacing with a variety of detection instrumentation for in stillo (in drop) measurements. PMID:18163744

  18. All-Fiber DBR-Based Sensor Interrogation System for Measuring Acoustic Waves

    Directory of Open Access Journals (Sweden)

    Maria Iulia Comanici

    2012-01-01

    Full Text Available We investigate the use of all-fiber distributed Bragg reflector (DBR lasers for fiber optic sensing. We measure the steady-state strain response and show that it is very similar to that for a simple fiber Bragg grating (FBG. The lasers can be wavelength multiplexed and support multisensor operation without crosstalk. We also verify the principle of wavelength-to-power mapping, which can simplify sensor interrogation. Finally, we demonstrate that all-fiber DBR lasers can be used to detect acoustic waves.

  19. Integrated measurements of acoustical and optical thin layers I: Vertical scales of association

    Science.gov (United States)

    Benoit-Bird, Kelly J.; Moline, Mark A.; Waluk, Chad M.; Robbins, Ian C.

    2010-01-01

    This study combined measurements from multiple platforms with acoustic instruments on moorings and on a ship and optics on a profiler and an autonomous underwater vehicle (AUV) to examine the relationships between fluorescent, bioluminescent, and acoustically scattering layers in Monterey Bay during nighttime hours in July and August of 2006 and May of 2008. We identified thin bioluminescent layers that were strongly correlated with acoustic scattering at the same depth but were part of vertically broad acoustic features, suggesting layers of unique composition inside larger biomass features. These compositional thin layers nested inside larger biomass features may be a common ecosystem component and are likely to have significant ecological impacts but are extremely difficult to identify as most approaches capable of the vertical scales of measurement necessary for the identification of sub-meter scale patterns assess bulk properties rather than specific layer composition. Measurements of multiple types of thin layers showed that the depth offset between thin phytoplankton and zooplankton layers was highly variable with some layers found at the same depth but others found up to 16 m apart. The vertical offset between phytoplankton and zooplankton thin layers was strongly predicted by the fraction of the water column fluorescence contained within a thin phytoplankton layer. Thin zooplankton layers were only vertically associated with thin phytoplankton layers when the phytoplankton in a layer accounted for more than about 18-20% of the water column chlorophyll. Trophic interactions were likely occurring between phytoplankton and zooplankton thin layers but phytoplankton thin layers were exploited by zooplankton only when they represented a large fraction of the available phytoplankton, suggesting zooplankton have some knowledge of the available food over the entire water column. The horizontal extent of phytoplankton layers, discussed in the second paper in this

  20. Southeast Alaska Acoustic Measurement Facility (SEAFAC) environmental data base review, evaluation, and upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Strand, J.A.; Skalski, J.R.; Faulkner, L.L.; Rodman, C.W.; Carlile, D.W.; Ecker, R.M.; Nicholls, A.K.; Ramsdell, J.V.; Scott, M.J.

    1986-04-01

    This report summarizes the principal issues of public concern, the adequacy of the environmental data base to answer the issues of concern, and the additional data collection required to support a National Environmental Policy Act (NEPA) review of the proposed Southeast Alaska Acoustic Measurement Facility (SEAFAC). The report is based on a review of the readily available environmental literature and a site visit. Representatives of local, state, and federal agencies were also interviewed for their personal insights and concerns not discovered during the literature review.

  1. Measuring the distance-redshift relation with the baryon acoustic oscillations of galaxy clusters

    Science.gov (United States)

    Veropalumbo, A.; Marulli, F.; Moscardini, L.; Moresco, M.; Cimatti, A.

    2016-05-01

    We analyse the largest spectroscopic samples of galaxy clusters to date, and provide observational constraints on the distance-redshift relation from baryon acoustic oscillations. The cluster samples considered in this work have been extracted from the Sloan Digital Sky Survey at three median redshifts, z = 0.2, 0.3 and 0.5. The number of objects is 12 910, 42 215 and 11 816, respectively. We detect the peak of baryon acoustic oscillations for all the three samples. The derived distance constraints are rs/DV(z = 0.2) = 0.18 ± 0.01, rs/DV(z = 0.3) = 0.124 ± 0.004 and rs/DV(z = 0.5) = 0.080 ± 0.002. Combining these measurements with the sound horizon scale measured from the cosmic microwave background, we obtain robust constraints on cosmological parameters. Our results are in agreement with the standard Λ cold dark matter (ΛCDM) model. Specifically, we constrain the Hubble constant in a ΛCDM model, H_0 = 64_{-8}^{+17} km s^{-1} Mpc^{-1} , the density of curvature energy, in the oΛCDM context, Ω _K = -0.01_{-0.33}^{+0.34}, and finally the parameter of the dark energy equation of state in the wCDM case, w = -1.06_{-0.52}^{+0.49}. This is the first time the distance-redshift relation has been constrained using only the peak of baryon acoustic oscillations of galaxy clusters.

  2. Investigation of An Acoustic Temperature Transducer and its Application for Heater Temperature Measurement

    Directory of Open Access Journals (Sweden)

    Mohammad A.K. Alia

    2007-01-01

    Full Text Available Recent developments in temperature measurement have encouraged researchers to develop low-cost, simple structure, computerized generic transducers for environmental monitoring and industrial process control. The research presents a computerized technique which allows to measure temperature according to the variation of acoustic velocity (frequency in a closed waveguide. Signal conditioning and processing was carried out using labVIEW (G Language VIs. In order to evaluate the time characteristic of the transducer its response was compared with that of a reference detector (PT 100 for the same step input. Static characteristics of the transducer show a quasi-linear relationship between the measured temperature and the resonance frequency. Results of practical experiments show that in order to improve the response curve of the transducer and decrease the rising time interval it is advisable to implement thin-wall glass tubes or another material with lower thermal impedance.

  3. Measurement of Elastic Properties of Tissue by Shear Wave Propagation Generated by Acoustic Radiation Force

    Science.gov (United States)

    Tabaru, Marie; Azuma, Takashi; Hashiba, Kunio

    2010-07-01

    Acoustic radiation force (ARF) imaging has been developed as a novel elastography technology to diagnose hepatic disease and breast cancer. The accuracy of shear wave speed estimation, which is one of the applications of ARF elastography, is studied. The Young's moduli of pig liver and foie gras samples estimated from the shear wave speed were compared with those measured the static Young's modulus measurement. The difference in the two methods was 8%. Distance attenuation characteristics of the shear wave were also studied using finite element method (FEM) analysis. We found that the differences in the axial and lateral beam widths in pressure and ARF are 16 and 9% at F-number=0.9. We studied the relationship between two branch points in distance attenuation characteristics and the shape of ARF. We found that the maximum measurable length to estimate shear wave speed for one ARF excitation was 8 mm.

  4. Effects of Noise and Absorption on High Frequency Measurements of Acoustic-Backscatter from Fish

    Directory of Open Access Journals (Sweden)

    Masahiko Furusawa

    2015-01-01

    Full Text Available Quantitative echosounders operating at multiple frequencies (e.g., 18, 38, 70, 120, 200, 333, and 710 kHz are often used to observe fish and zooplankton and identify their species. At frequencies above 100 kHz, the absorption attenuation increases rapidly and decreases the signal-to-noise ratio (SNR. Also, incomplete compensation for the attenuation may result in measurement error. This paper addresses the effects of the attenuation and noise on high frequency measurements of acoustic backscatter from fish. It is shown that measurements of a fish with target strength of −40 dB at 200 m depth are limited by SNR to frequencies up to about 100 kHz. Above 100 kHz, absorption coefficients must be matched to local environmental conditions.

  5. High accuracy acoustic relative humidity measurement in duct flow with air.

    Science.gov (United States)

    van Schaik, Wilhelm; Grooten, Mart; Wernaart, Twan; van der Geld, Cees

    2010-01-01

    An acoustic relative humidity sensor for air-steam mixtures in duct flow is designed and tested. Theory, construction, calibration, considerations on dynamic response and results are presented. The measurement device is capable of measuring line averaged values of gas velocity, temperature and relative humidity (RH) instantaneously, by applying two ultrasonic transducers and an array of four temperature sensors. Measurement ranges are: gas velocity of 0-12 m/s with an error of ± 0.13 m/s, temperature 0-100 °C with an error of ± 0.07 °C and relative humidity 0-100% with accuracy better than 2 % RH above 50 °C. Main advantage over conventional humidity sensors is the high sensitivity at high RH at temperatures exceeding 50 °C, with accuracy increasing with increasing temperature. The sensors are non-intrusive and resist highly humid environments. PMID:22163610

  6. High Accuracy Acoustic Relative Humidity Measurement inDuct Flow with Air

    Directory of Open Access Journals (Sweden)

    Cees van der Geld

    2010-08-01

    Full Text Available An acoustic relative humidity sensor for air-steam mixtures in duct flow is designed and tested. Theory, construction, calibration, considerations on dynamic response and results are presented. The measurement device is capable of measuring line averaged values of gas velocity, temperature and relative humidity (RH instantaneously, by applying two ultrasonic transducers and an array of four temperature sensors. Measurement ranges are: gas velocity of 0–12 m/s with an error of ±0.13 m/s, temperature 0–100 °C with an error of ±0.07 °C and relative humidity 0–100% with accuracy better than 2 % RH above 50 °C. Main advantage over conventional humidity sensors is the high sensitivity at high RH at temperatures exceeding 50 °C, with accuracy increasing with increasing temperature. The sensors are non-intrusive and resist highly humid environments.

  7. Use of an Acoustic Doppler Current Profiler (ADCP) to Measure Hypersaline Bidirectional Discharge

    Science.gov (United States)

    Johnson, K.K.; Loving, B.L.; ,

    2002-01-01

    The U.S. Geological Survey measures the exchange of flow between the north and south parts of Great Salt Lake, Utah, as part of a monitoring program. Turbidity and bidirectional flow through the breach in the causeway that divides the lake into two parts makes it difficult to measure discharge with conventional streamflow techniques. An acoustic Doppler current profiler (ADCP) can be used to more accurately define the angles of flow and the location of the interface between the layers of flow. Because of the high salinity levels measured in Great Salt Lake (60-280 parts per thousand), special methods had to be developed to adjust ADCP-computed discharges for the increased speed of sound in hypersaline waters and for water entrained at the interface between flow layers.

  8. High accuracy acoustic relative humidity measurement in duct flow with air.

    Science.gov (United States)

    van Schaik, Wilhelm; Grooten, Mart; Wernaart, Twan; van der Geld, Cees

    2010-01-01

    An acoustic relative humidity sensor for air-steam mixtures in duct flow is designed and tested. Theory, construction, calibration, considerations on dynamic response and results are presented. The measurement device is capable of measuring line averaged values of gas velocity, temperature and relative humidity (RH) instantaneously, by applying two ultrasonic transducers and an array of four temperature sensors. Measurement ranges are: gas velocity of 0-12 m/s with an error of ± 0.13 m/s, temperature 0-100 °C with an error of ± 0.07 °C and relative humidity 0-100% with accuracy better than 2 % RH above 50 °C. Main advantage over conventional humidity sensors is the high sensitivity at high RH at temperatures exceeding 50 °C, with accuracy increasing with increasing temperature. The sensors are non-intrusive and resist highly humid environments.

  9. Direct and indirect measurement of rain drop size distributions using an acoustic water tank disdrometer

    International Nuclear Information System (INIS)

    Several rain drop size distribution (DSD) point measurement technologies exist, but all are unable to sample either short timescales or the large drop tail of the DSD due to inherent instrumental limitations. The development of an acoustic water tank disdrometer (AWTD) is described, which improves the sampling statistics by increasing the catchment area. This is achieved by distinguishing individual drops, locating them on the surface of the tank then converting the impact pressure into a drop size. Wavelet decomposition is used to distinguish the broadband, short duration impact events and a fast multilateration method is used to position the drop. Issues relating to the different types of noise are also investigated and mitigated. Also, further work on inverting the measured acoustic intensity into a DSD, by fitting sampling distributions, is presented. Six months of data were collected in the Eastern UK. The AWTD then converted the data into DSDs and the results were compared to a commercially available co-located laser precipitation monitor. The sampling errors are far lower due to the increased catchment size, and hence the large drop sized tail of the DSD is greatly improved. DSD results compare favourably to other disdrometers for drop diameters greater than 1.8 mm. Below this size individual drops become increasingly difficult to detect and are underestimated. (paper)

  10. Acoustic measurement of sediment dynamics in the coastal zones using wireless sensor networks

    Science.gov (United States)

    Sudhakaran, A., II; Paramasivam, A.; Seshachalam, S.; A, C.

    2014-12-01

    Analyzing of the impact of constructive or low energy waves and deconstructive or high energy waves in the ocean are very much significant since they deform the geometry of seashore. The deformation may lead to productive result and also to the end of deteriorate damage. Constructive waves results deposition of sediment which widens the beach where as deconstructive waves results erosion which narrows the beach. Validation of historic sediment transportation and prediction of the direction of movement of seashore is essential to prevent unrecoverable damages by incorporating precautionary measurements to identify the factors that influence sediment transportation if feasible. The objective of this study is to propose a more reliable and energy efficient Information and communication system to model the Coastal Sediment Dynamics. Various factors influencing the sediment drift at a particular region is identified. Consequence of source depth and frequency dependencies of spread pattern in the presence of sediments is modeled. Property of source depth and frequency on sensitivity to values of model parameters are determined. Fundamental physical reasons for these sediment interaction effects are given. Shallow to deep water and internal and external wave model of ocean is obtained intended to get acoustic data assimilation (ADA). Signal processing algorithms are used over the observed data to form a full field acoustic propagation model and construct sound speed profile (SSP). The inversions of data due to uncertainties at various depths are compared. The impact of sediment drift over acoustic data is identified. An energy efficient multipath routing scheme Wireless sensor networks (WSN) is deployed for the well-organized communication of data. The WSN is designed considering increased life time, decreased power consumption, free of threats and attacks. The practical data obtained from the efficient system to model the ocean sediment dynamics are evaluated with remote

  11. Measuring acoustic energy density in microchannel acoustophoresis using a simple and rapid light-intensity method.

    Science.gov (United States)

    Barnkob, Rune; Iranmanesh, Ida; Wiklund, Martin; Bruus, Henrik

    2012-07-01

    We present a simple and rapid method for measuring the acoustic energy density in microchannel acoustophoresis based on light-intensity measurements of a suspension of particles. The method relies on the assumption that each particle in the suspension undergoes single-particle acoustophoresis. It is validated by the single-particle tracking method, and we show by proper re-scaling that the re-scaled light intensity plotted versus re-scaled time falls on a universal curve. The method allows for analysis of moderate-resolution images in the concentration range encountered in typical experiments, and it is an attractive alternative to particle tracking and particle image velocimetry for quantifying acoustophoretic performance in microchannels. PMID:22522812

  12. Phased Acoustic Array Measurements of a 5.75 Percent Hybrid Wing Body Aircraft

    Science.gov (United States)

    Burnside, Nathan J.; Horne, William C.; Elmer, Kevin R.; Cheng, Rui; Brusniak, Leon

    2016-01-01

    Detailed acoustic measurements of the noise from the leading-edge Krueger flap of a 5.75 percent Hybrid Wing Body (HWB) aircraft model were recently acquired with a traversing phased microphone array in the AEDC NFAC (Arnold Engineering Development Complex, National Full Scale Aerodynamics Complex) 40- by 80-Foot Wind Tunnel at NASA Ames Research Center. The spatial resolution of the array was sufficient to distinguish between individual support brackets over the full-scale frequency range of 100 to 2875 Hertz. For conditions representative of landing and take-off configuration, the noise from the brackets dominated other sources near the leading edge. Inclusion of flight-like brackets for select conditions highlights the importance of including the correct number of leading-edge high-lift device brackets with sufficient scale and fidelity. These measurements will support the development of new predictive models.

  13. Digital image processing of sectorial oscillations for acoustically levitated drops and surface tension measurement

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A type of non-axisymmetric oscillations of acoustically levitated drops is excited by modulating the ultrasound field at proper frequencies. These oscillations are recorded by a high speed camera and analyzed with a digital image processing method. They are demonstrated to be the third mode sectorial oscillations, and their frequencies are found to decrease with the increase of equatorial radius of the drops, which can be described by a modified Rayleigh equation. These oscillations decay exponentially after the cessation of ultrasound field modulation. The decaying rates agree reasonably with Lamb’s prediction. The rotating rate of the drops accompanying the shape oscillations is found to be less than 1.5 rounds per second. The surface tension of aqueous ethanol has been measured according to the modified Rayleigh equation. The results agree well with previous reports, which demonstrates the possible application of this kind of sectorial oscillations in noncontact measurement of liquid surface tension.

  14. An innovative acoustic sensor for in-pile fission gas composition measurements

    International Nuclear Information System (INIS)

    In this article we propose a new method able to determine the fission gas composition using in situ ultrasonic waves measurements. To do so an acoustic resonator was connected to a fuel rodlet, in order to perform speed of sound measurements of gas mixture (Helium and fission gases) inside the plenum. By using a dedicated signal processing the peaks due to resonant frequencies inside the gas mixture were successfully extracted from the output signal. From these data, the variations of helium and fission gas molar fraction were calculated using an adapted virial state equation. It will be proved that these data provide important information about the kinetics of gas release and about the effects of high neutron and gamma irradiation on piezo-ceramic sensors. (authors)

  15. Electrical Resistance and Acoustic Emission Measurements for Monitoring the Structural Behavior of CFRP Laminate

    KAUST Repository

    Zhou, Wei

    2015-07-12

    Electrical resistance and acoustic emission (AE) measurement are jointly used to monitor the degradation in CFRP laminates subjected to tensile tests. The objective of this thesis is to perform a synergertic analysis between a passive and an active methods to better access how these perform when used for Structural Health Moni- toring (SHM). Laminates with three different stacking sequences: [0]4, [02/902]s and [+45/ − 45]2s are subjected to monotonic and cyclic tensile tests. In each laminate, we carefully investigate which mechanisms of degradation can or cannot be detect- ed by each technique. It is shown that most often, that acoustic emission signals start before any electrical detection is possible. This is is explained based on the redundance of the electrical network that makes it less sensitive to localized damages. Based on in depth study of AE signals clustering, a new classification is proposed to recognize the different damage mechanims based on only two parameters: the RA (rise time/amplitude) and the duration of the signal.

  16. Galaxy Bias and its Effects on the Baryon Acoustic Oscillations Measurements

    CERN Document Server

    Mehta, Kushal T; Eckel, Jonathan; Eisenstein, Daniel J; Metchnik, Marc; Pinto, Philip; Xu, Xiaoying

    2011-01-01

    The baryon acoustic oscillation (BAO) feature in the clustering of matter in the universe serves as a robust standard ruler and hence can be used to map the expansion history of the universe. We use high force resolution simulations to analyze the effects of galaxy bias on the measurements of the BAO signal. We apply a variety of Halo Occupation Distributions (HODs) and produce biased mass tracers to mimic different galaxy populations. We investigate whether galaxy bias changes the non-linear shifts on the acoustic scale relative to the underlying dark matter distribution presented by Seo et al (2009). For the less biased HOD models (b 3) show a shift at moderate significance (0.79% \\pm 0.31% for the most extreme case). We test the one-step reconstruction technique introduced by Eisenstein et al. (2007) in the case of realistic galaxy bias and shot noise. The reconstruction scheme increases the correlation between the initial and final (z = 1) density fields achieving an equivalent level of correlation at ne...

  17. Laboratory acoustic measurements of the attenuation factor Q in petroleum reservoirs during simulated pore pressure reduction

    Energy Technology Data Exchange (ETDEWEB)

    Donald, A.; Frempong, P.; Butt, S. [Dalhousie Univ., Halifax, NS (Canada); Nouri, A. [Dalhousie Univ., Halifax, NS (Canada). Dept. of Civil Engineering

    2003-07-01

    The relationship between seismic attenuation and mechanical changes in rock structure caused by pressure depletion encountered during the producing life of a hydrocarbon reservoir has not been the focus of many research efforts to date. This paper describes a series of time lapsed acoustic measurements that were conducted on saturated synthetic and reservoir rock under in-situ stress and pore pressure conditions. A weakly consolidated synthetic sandstone specimen and a stronger natural Cheverie sandstone were placed in a triaxial loading cell where axial and confining pressures were maintained constant and pore pressure reductions were applied to induce volumetric pore collapse. During the entire test, acoustic sensors, which had been placed on the apparatus, were subjected to high frequency compressional waves pulsed through the structure and sample. Throughout the test, the authors examined the seismic quality attenuation factor Q, and calculated over a broad frequency range. The proportional relationship between Q and effective stress from past studies was verified by the experimental results obtained. At the point of accelerated mechanical deformation, Q values decreased suddenly. They were proportional to the rate of change in pore volume within the specimen during pore pressure reduction. 13 refs., 8 figs.

  18. Quantitative measurement of ultrasound pressure field by optical phase contrast method and acoustic holography

    Science.gov (United States)

    Oyama, Seiji; Yasuda, Jun; Hanayama, Hiroki; Yoshizawa, Shin; Umemura, Shin-ichiro

    2016-07-01

    A fast and accurate measurement of an ultrasound field with various exposure sequences is necessary to ensure the efficacy and safety of various ultrasound applications in medicine. The most common method used to measure an ultrasound pressure field, that is, hydrophone scanning, requires a long scanning time and potentially disturbs the field. This may limit the efficiency of developing applications of ultrasound. In this study, an optical phase contrast method enabling fast and noninterfering measurements is proposed. In this method, the modulated phase of light caused by the focused ultrasound pressure field is measured. Then, a computed tomography (CT) algorithm used to quantitatively reconstruct a three-dimensional (3D) pressure field is applied. For a high-intensity focused ultrasound field, a new approach that combines the optical phase contrast method and acoustic holography was attempted. First, the optical measurement of focused ultrasound was rapidly performed over the field near a transducer. Second, the nonlinear propagation of the measured ultrasound was simulated. The result of the new approach agreed well with that of the measurement using a hydrophone and was improved from that of the phase contrast method alone with phase unwrapping.

  19. High-Frequency CTD Measurements for Accurate GPS/acoustic Sea-floor Crustal Deformation Measurement System

    Science.gov (United States)

    Tadokoro, K.; Yasuda, K.; Taniguchi, S.; Uemura, Y.; Matsuhiro, K.

    2015-12-01

    The GPS/acoustic sea-floor crustal deformation measurement system has developed as a useful tool to observe tectonic deformation especially at subduction zones. One of the factors preventing accurate GPS/acoustic sea-floor crustal deformation measurement is horizontal heterogeneity of sound speed in the ocean. It is therefore necessary to measure the gradient directly from sound speed structure. We report results of high-frequency CTD measurements using Underway CTD (UCTD) in the Kuroshio region. We perform the UCTD measurements on May 2nd, 2015 at two stations (TCA and TOA) above the sea-floor benchmarks installed across the Nankai Trough, off the south-east of Kii Peninsula, middle Japan. The number of measurement points is six at each station along circles with a diameter of 1.8 nautical miles around the sea-floor benchmark. The stations TCA and TOA are located on the edge and the interior of the Kuroshio current, respectively, judging from difference in sea water density measured at the two stations, as well as a satellite image of sea-surface temperature distribution. We detect a sound speed gradient of high speeds in the southern part and low speeds in the northern part at the two stations. At the TCA station, the gradient is noticeable down to 300 m in depth; the maximum difference in sound speed is +/- 5 m/s. The sound speed difference is as small as +/- 1.3 m/s at depths below 300 m, which causes seafloor benchmark positioning error as large as 1 m. At the TOA station, the gradient is extremely small down to 100 m in depth. The maximum difference in sound speed is less than +/- 0.3 m/s that is negligible small for seafloor benchmark positioning error. Clear gradient of high speed is observed to the depths; the maximum difference in sound speed is +/- 0.8-0.9 m/s, causing seafloor benchmark positioning error of several tens centimeters. The UCTD measurement is effective tool to detect sound speed gradient. We establish a method for accurate sea

  20. Structure of water + acetonitrile solutions from acoustic and positron annihilation measurements

    Energy Technology Data Exchange (ETDEWEB)

    Jerie, Kazimierz [Institute of Experimental Physics, University of WrocIaw, WrocIaw (Poland); Baranowski, Andrzej [Institute of Experimental Physics, University of WrocIaw, WrocIaw (Poland); Koziol, Stan [Waters Corp., 34 Maple St., Milford, MA 01757 (United States); Glinski, Jacek [Faculty of Chemistry, University of WrocIaw, WrocIaw (Poland)]. E-mail: glin@wchuwr.chem.uni.wroc.pl; Burakowski, Andrzej [Faculty of Chemistry, University of WrocIaw, WrocIaw (Poland)

    2005-03-14

    We report the results of acoustic and positron annihilation measurements in aqueous solutions of acetonitrile (CH{sub 3}CN). Hydrophobicity of the solute is discussed, as well as the possibility of describing the title system in terms of hydrophobic solvation. A new method of calculating the 'ideal' positronium lifetimes is proposed, based on the mean volume of cavities (holes) in liquid structure available for positronium pseudoatom. The results are almost identical with those obtained from molar volumes using the concept of Levay et al. On the other hand, the same calculations performed using the 'bubble' model of annihilation yield very different results. It seems that either acetonitrile forms with water clathrate-like hydrates of untypical architecture, or it is too weak hydrophobic agent to form clathrate-like hydrates at all. The former interpretation seems to be more probable.

  1. Structure of Aqueous Solutions of Acetonitrile Investigated by Acoustic and Positron Annihilation Measurements

    Science.gov (United States)

    Jerie, K.; Baranowski, A.; Koziol, S.; Burakowski, A.

    2005-05-01

    We report the results of acoustic and positron annihilation measurements in aqueous solutions of acetonitrile (CH3CN). Hydrophobicity of the solute is discussed, as well as the possibility of describing the title system in terms of hydrophobic solvation. The concept of Levay et al. of calculating the "ideal positronium lifetimes is applied, basing on the mean volume of cavities (holes) in liquid structure available for positronium pseudoatom. The same calculations performed using the Tao model of annihilation yield very different results. It can be concluded that either acetonitrile forms with water clathrate-like hydrates of untypical architecture, or it is too weak hydrophobic agent to form clathrate-like hydrates at all. The former interpretation seems to be more probable.

  2. Structure of water + acetonitrile solutions from acoustic and positron annihilation measurements

    Science.gov (United States)

    Jerie, Kazimierz; Baranowski, Andrzej; Koziol, Stan; Gliński, Jacek; Burakowski, Andrzej

    2005-03-01

    We report the results of acoustic and positron annihilation measurements in aqueous solutions of acetonitrile (CH 3CN). Hydrophobicity of the solute is discussed, as well as the possibility of describing the title system in terms of hydrophobic solvation. A new method of calculating the "ideal" positronium lifetimes is proposed, based on the mean volume of cavities (holes) in liquid structure available for positronium pseudoatom. The results are almost identical with those obtained from molar volumes using the concept of Levay et al. On the other hand, the same calculations performed using the "bubble" model of annihilation yield very different results. It seems that either acetonitrile forms with water clathrate-like hydrates of untypical architecture, or it is too weak hydrophobic agent to form clathrate-like hydrates at all. The former interpretation seems to be more probable.

  3. The effect of two different rooms on acoustical and perceptual measures of SATB choir sound

    Science.gov (United States)

    Hom, Kathryn S.

    The purpose of this study was to explore the effect of two different rooms (choir rehearsal room, performance hall) on acoustical (LTAS, one-third octave bands) and perceptual (singer [N = 11] survey, listener [N = 33] survey, Pitch Analyzer 2.1) measures of soprano, alto, tenor, and bass (SATB) choir sound. Primary findings of this investigation indicated: (a) significant differences in spectral energy comparisons of choir sound between rooms, (b) choristers' perceptions of hearing and monitoring their own voices differed significantly depending on room, (c) most choristers (82%) perceived that the choir performed best within the Performance Hall, (d) perceived pitch of selected sung vowels within recordings differed significantly based on room conditions, (e) 97% of listeners perceived a difference in choir sound between room recordings, and (f) most listeners (91%) indicated preference for the Rehearsal Room recording.

  4. A Methodology to Integrate Magnetic Resonance and Acoustic Measurements for Reservoir Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Parra, Jorge O.; Hackert, Chris L.; Ni, Qingwen; Collier, Hughbert A.

    2000-09-22

    This report contains eight sections. Some individual subsections contain lists of references as well as figures and conclusions when appropriate. The first section includes the introduction and summary of the first-year project efforts. The next section describes the results of the project tasks: (1) implementation of theoretical relations between effect dispersion and the stochastic medium, (2) imaging analyses using core and well log data, (3) construction of dispersion and attenuation models at the core and borehole scales in poroelastic media, (4) petrophysics and a catalog of core and well log data from Siberia Ridge field, (5) acoustic/geotechnical measurements and CT imaging of core samples from Florida carbonates, and (6) development of an algorithm to predict pore size distribution from NMR core data. The last section includes a summary of accomplishments, technology transfer activities and follow-on work for Phase II.

  5. Measurement of porcine haptoglobin in meat juice using surface acoustic wave biosensor technology.

    Science.gov (United States)

    Klauke, Thorsten N; Gronewold, Thomas M A; Perpeet, Markus; Plattes, Susanne; Petersen, Brigitte

    2013-11-01

    Aim of the study was the application of biosensor technique to measure the concentration of an acute phase protein (APP) within complex matrices from animal origin. For the first time, acute phase protein haptoglobin (Hp) was detected from unpurified meat juice of slaughter pigs by a label-free biosensor-system, the SAW-based sam®5 system. The system uses a sensor chip with specific antibodies to catch Hp while the mass-related phase shift is measured. The concentration is calculated as a function of these measured phase shifts. The results correlate very well with reference measurement results obtained by enzyme-linked immunosorbent assay (ELISA), R=0.98. The robust setup of the surface acoustic wave (SAW)-based system and its ability to measure within very short time periods qualifies it for large-scale analyses and is apt to identify rapidly pigs in the meat production process whose consumption would have an increased risk for consumers.

  6. Measurement of the open porosity of agricultural soils with acoustic waves

    Science.gov (United States)

    Luong, Jeanne; Mercatoris, Benoit; Destain, Marie-France

    2015-04-01

    soil, since there are more voids filled with air and water, increasing the viscous losses. Fellah et al. (2003) showed that porosity can be determined from phase speed and reflection coefficient. The propagation of acoustic waves in soil is investigated to develop a rapid method for the quantification of the porosity level of agricultural soils. In the present contribution, correlations are determined between the acoustic signatures of agricultural soil in function of its structural properties. In laboratory, compression tests are performed on unsaturated soil samples to reproduce different porosity levels. Ultrasonic pulses are sent through the considered samples. The propagated signals are treated in both time and frequency domains in order to determine the speed of the phase velocity and the reflection. Porosity is then determined and compared with water content measured by gravimetric method. Alaoui, A., Lipiec, J. & Gerke, H.H., 2011. A review of the changes in the soil pore system due to soil deformation: A hydrodynamic perspective. Soil and Tillage Research, 115-116, pp.1-15. Fellah Z.E.A., Berger S., Lauriks W., Depollier C., Aristegui C., Chapelon J.Y., 2003. Measuring the porosity and the tortuosity of porous materials via reflected waves at oblique incidence. The Journal of the Acoustical Society of America 113 (5), pp 2424-2433 Hamza, M.A. & Anderson, W.K., 2005. Soil compaction in cropping systems. Soil and Tillage Research, 82(2), pp.121-145. Lu, Z., 2005. Role of hysteresis in propagating acousitcs waves in soils. Geophysical Research Letter, pp.32:1-4. Lu, Z., Hickey, C.J. & Sabatier, J.M., 2004. Effects of compaction on the acoustic velocity in soils. Soil Science Society of America Journal, 68(1), pp.7-16. Lu, Z. & Sabatier, J.M., 2009. Effects of soil water potential and moisture content on sound speed. Soil Science Society of America Journal, 73(5), pp.1614-1625. Le Maitre, D.C., Kotzee, I.M. & O'Farrell, P.J., 2014. Impacts of land-cover change on

  7. Measurements of high-frequency acoustic scattering from glacially eroded rock outcrops.

    Science.gov (United States)

    Olson, Derek R; Lyons, Anthony P; Sæbø, Torstein O

    2016-04-01

    Measurements of acoustic backscattering from glacially eroded rock outcrops were made off the coast of Sandefjord, Norway using a high-frequency synthetic aperture sonar (SAS) system. A method by which scattering strength can be estimated from data collected by a SAS system is detailed, as well as a method to estimate an effective calibration parameter for the system. Scattering strength measurements from very smooth areas of the rock outcrops agree with predictions from both the small-slope approximation and perturbation theory, and range between -33 and -26 dB at 20° grazing angle. Scattering strength measurements from very rough areas of the rock outcrops agree with the sine-squared shape of the empirical Lambertian model and fall between -30 and -20 dB at 20° grazing angle. Both perturbation theory and the small-slope approximation are expected to be inaccurate for the very rough area, and overestimate scattering strength by 8 dB or more for all measurements of very rough surfaces. Supporting characterization of the environment was performed in the form of geoacoustic and roughness parameter estimates. PMID:27106331

  8. Measurements of high-frequency acoustic scattering from glacially-eroded rock outcrops

    CERN Document Server

    Olson, Derek R; Sæbo, Torstein

    2016-01-01

    Measurements of acoustic backscattering from glacially-eroded rock outcrops were made off the coast of Sandefjord, Norway using a high-frequency synthetic aperture sonar (SAS) system. A method by which scattering strength can be estimated from data collected by a SAS system is detailed, as well as a method to estimate an effective calibration parameter for the system. Scattering strength measurements from very smooth areas of the rock outcrops agree with predictions from both the small-slope approximation and perturbation theory, and range between -33 and -26 dB at 20$^\\circ$ grazing angle. Scattering strength measurements from very rough areas of the rock outcrops agree with the sine-squared shape of the empirical Lambertian model and fall between -30 and -20 dB at 20$^\\circ$ grazing angle. Both perturbation theory and the small-slope approximation are expected to be inaccurate for the very rough area, and overestimate scattering strength by 8 dB or more for all measurements of very rough surfaces. Supportin...

  9. Acoustical environment measurement at a very shallow port: Trial case in Hashirimizu Port

    Science.gov (United States)

    Ogasawara, Hanako; Mori, Kazuyoshi

    2016-07-01

    Recently, the needs for coastal environment measurement has been increasing for many purposes, such as fishing, weather forecasting, ocean noise measurement for power plants, and coastal security. Acoustical measurement is one of the solutions because it can cover a wide area with few sensors, and it is possible to monitor long term or in real time. In this study, a small-scale reciprocal sound travel experiment was carried out in Hashirimizu Port for coastal environment measurement, such as current speed and water temperature. Since the distance between the surface and the transducer becomes short according to the tidal effect, the direct signal is canceled by the surface-reflected signal under a specific condition. However, even under such a condition, mean water temperature could be estimated from the reciprocal travel time using bottom-reflected signals. The current along the travel path was a reasonable value. It is possible to obtain a special current speed with another reciprocal path, which is in a direction perpendicular to the current travel path.

  10. Evaluation of photo-acoustic infrared multigas analyzer in measuring concentrations of greenhouse gases emitted from feedlot soil/manure

    Science.gov (United States)

    Photo-acoustic infrared multigas analyzers (PIMAs) are being increasingly utilized to measure concentrations and fluxes of greenhouse gases (i.e., N2O, CO2, and CH4) at the soil surface because of their low cost, portability, and ease of operation. This research evaluated a PIMA in combination with ...

  11. Particle Filter Based Fault-tolerant ROV Navigation using Hydro-acoustic Position and Doppler Velocity Measurements

    DEFF Research Database (Denmark)

    Zhao, Bo; Blanke, Mogens; Skjetne, Roger

    2012-01-01

    This paper presents a fault tolerant navigation system for a remotely operated vehicle (ROV). The navigation system uses hydro-acoustic position reference (HPR) and Doppler velocity log (DVL) measurements to achieve an integrated navigation. The fault tolerant functionality is based on a modied...... the ROV kinematic states, even when sensor failures appear frequently....

  12. Acoustic and Perceptual Measurement of Expressive Prosody in High-Functioning Autism: Increased Pitch Range and What it Means to Listeners

    Science.gov (United States)

    Nadig, Aparna; Shaw, Holly

    2012-01-01

    Are there consistent markers of atypical prosody in speakers with high functioning autism (HFA) compared to typically-developing speakers? We examined: (1) acoustic measurements of pitch range, mean pitch and speech rate in conversation, (2) perceptual ratings of conversation for these features and overall prosody, and (3) acoustic measurements of…

  13. The application of acoustic emission measurements on laboratory testpieces to large scale pressure vessel monitoring

    International Nuclear Information System (INIS)

    A test pressure vessel containing 4 artificial defects was monitored for emission whilst pressure cycling to failure. Testpieces cut from both the failed vessel and from as-rolled plate material were tested in the laboratory. A marked difference in emission characteristics was observed between plate and vessel testpieces. Activity from vessel material was virtually constant after general yield and emission amplitudes were low. Plate testpieces showed maximum activity at general yield and more frequent high amplitude emissions. An attempt has been made to compare the system sensitivities between the pressure vessel test and laboratory tests. In the absence of an absolute calibration device, system sensitivities were estimated using dummy signals generated by the excitation of an emission sensor. The measurements have shown an overall difference in sensitivity between vessel and laboratory tests of approximately 25db. The reduced sensitivity in the vessel test is attributed to a combination of differences in sensors, acoustic couplant, attenuation, and dispersion relative to laboratory tests and the relative significance of these factors is discussed. Signal amplitude analysis of the emissions monitored from laboratory testpieces showed that, whith losses of the order of 25 to 30db, few emissions would be detected from the pressure vessel test. It is concluded that no reliable prediction of acoustic behaviour of a structure may be made from laboratory test unless testpieces of the actual structural material are used. A considerable improvement in detection sensitivity, is also required for reliable detection of defects in low strength ductile materials and an absolute method of system calibration is required between tests

  14. Measurement of the acoustic reflectivity of sirenia (Florida manatees) at 171 kHz.

    Science.gov (United States)

    Jaffe, Jules S; Simonet, Fernando; Roberts, Paul L D; Bowles, Ann E

    2007-01-01

    The Florida manatee (Trichechus manatus latirostris) is an endangered sirenian. At present, its adult population (approximately 2200) seems stable, but tenuous. Manatee-boat collisions are a significant proportion (approximately 25%) of mortalities. Here, the potential use of active sonar for detecting manatees by quantifying sonic reflectivity is explored. In order to estimate reflectivity two methods were used. One method measured live reflections from captive animals using a carefully calibrated acoustic and co-registered optical system. The other method consisted of the analysis of animal tissue in order to obtain estimates of the sound speed and density and to predict reflectivity. The impedance measurement predicts that for a lateral view, the tissue reflectivity is close to 0.13, with a critical grazing angle of 28 degrees. Data measured from live animals indicate that substantial reflections can be recorded, however in many instances observed "empirical target strengths" were less than an experimentally dependent -48-dB threshold. Conclusions favor the hypothesis that the animals reflect substantial amounts of sound; however, the reflections can often be specular, and therefore impractical for observation by a manatee detection sonar operating at 171 kHz. PMID:17297771

  15. Fiber-optic sensor-based remote acoustic emission measurement of composites

    Science.gov (United States)

    Yu, Fengming; Okabe, Yoji; Wu, Qi; Shigeta, Naoki

    2016-10-01

    Acoustic emission (AE) detection functioning at high temperatures could clarify the damage process in high heat-resistant composites. To achieve the high-temperature AE detection, a remote AE measurement based on a phase-shifted fiber Bragg grating (PS-FBG) sensor with a high sensitivity over a broad bandwidth was proposed. The common optical fibers were made from glass with good heat resistance. Hence, in this method, optical fiber was used as the waveguide to propagate the AE in the composite from a high-temperature environment to the room-temperature environment wherein the PS-FBG was located. Owing to the special AE detection configuration, this method was a new adhesive method for remote measurement (ADRM). The experiment and numerical simulation revealed that the PS-FBG sensor in the ADRM configuration demonstrated accurate remote sensing for the AE signals. This was because of the good waveguide system provided by the thin optical fiber and the sensitivity of the PS-FBG sensor to the axial strain in the core of the fiber. Consequently, the remote measurement utilizing the PS-FBG sensor in the ADRM configuration has a high potential for AE detection in high-temperature conditions.

  16. Resource Evaluation and Energy Production Estimate for a Tidal Energy Conversion Installation using Acoustic Flow Measurements

    Science.gov (United States)

    Gagnon, Ian; Baldwin, Ken; Wosnik, Martin

    2015-11-01

    The ``Living Bridge'' project plans to install a tidal turbine at Memorial Bridge in the Piscataqua River at Portsmouth, NH. A spatio-temporal tidal energy resource assessment was performed using long term bottom-deployed Acoustic Doppler Current Profilers ADCP. Two locations were evaluated: at the planned deployment location and mid-channel. The goal was to determine the amount of available kinetic energy that can be converted into usable electrical energy on the bridge. Changes in available kinetic energy with ebb/flood and spring/neap tidal cycles and electrical energy demand were analyzed. A system model is used to calculate the net energy savings using various tidal generator and battery bank configurations. Differences in the tidal characteristics between the two measurement locations are highlighted. Different resource evaluation methodologies were also analyzed, e.g., using a representative ADCP ``bin'' vs. a more refined, turbine-geometry-specific methodology, and using static bin height vs. bin height that move w.r.t. the free surface throughout a tidal cycle (representative of a bottom-fixed or floating turbine deployment, respectively). ADCP operating frequencies and bin sizes affect the standard deviation of measurements, and measurement uncertainties are evaluated. Supported by NSF-IIP grant 1430260.

  17. A New Method to Identify Quaternary Moraine:Acoustic Emission Stress Measurement

    Institute of Scientific and Technical Information of China (English)

    ZHAO Zhizhong; QIAO Yansong; TIAN Jiaorong; WANG Min; LI Mingze; HE Peiyuan; QIAN Fang

    2006-01-01

    How to effectively identify glacial sediments, especially Quaternary moraine, has been in dispute for decades. The traditional methods, e.g., sedimentary and geomorphologic ones, are facing challenge in eastern China where controversial moraine deposits are dominatingly distributed. Here,for the first time, we introduce the acoustic emission (AE) stress measurement, a kind of historical stress measurement, to identify Quaternary moraine. The results demonstrate that it can be employed to reconstruct stress information of glaciation remaining in gravels, and may shed light on the identification of Quaternary moraine in eastern China. First, we measured the AE stress of gravels of glacial origin that are underlying the Xidatan Glacier, eastern Kunlun Mountains in western China.Second, we calculated the stress according to the actual thickness of the glacier. The almost identical stress values suggest that the glacial gravels can memorize and preserve the overlying glacier-derived aplomb stress. And then we introduce this new approach to the controversial moraine in Mount Lushan, eastern China. The results indicate that the stress is attributed to the Quaternary glacier, and the muddy gravels in the controversial moraine in Mount Lushan are moraine deposits but not others.

  18. Measurements of shock-induced guided and surface acoustic waves along boreholes in poroelastic materials

    NARCIS (Netherlands)

    Chao, G.; Smeulders, D.M.J.; Van Dongen, M.E.H.

    2006-01-01

    Acoustic experiments on the propagation of guided waves along water-filled boreholes in water-saturated porous materials are reported. The experiments were conducted using a shock tube technique. An acoustic funnel structure was placed inside the tube just above the sample in order to enhance the ex

  19. MONITORING POWER PLANT EFFICIENCY USING THE MICROWAVE-EXCITED THERMAL-ACOUSTIC EFFECT TO MEASURE UNBURNED CARBON

    Energy Technology Data Exchange (ETDEWEB)

    Robert C. Brown; Robert J. Weber; Jeffrey J. Swetelitsch

    2005-01-01

    The objective of this project is to explore microwave-excited thermal-acoustic (META) phenomena for quantitative analysis of granular and powdered materials, with the culmination of the research to be an on-line carbon-in-ash monitor for coal-fired power plants. This technique of analyzing unburned carbon in fly ash could be a less tedious and time consuming method as compared to the traditional LOI manual procedure. Phase 1 of the research focused on off-line single-frequency thermal-acoustic measurements where an off-line fly ash monitor was constructed that could operate as analytical tool to explore instrument and methodology parameters for quantifying the microwave-excited thermal-acoustic effect of carbon in fly ash, and it was determined that the off-line thermal-acoustic technique could predict the carbon content of a random collection of fly ashes with a linear correlation constant of R{sup 2} = 0.778. Much higher correlations are expected for fly ashes generated from a single boiler. Phase 2 of the research developing a methodology to generate microwave spectra of various powders, including fly ash, coal, and inorganic minerals, and to determine if these microwave spectra could be used for chemical analyses. Although different minerals produced different responses, higher resolution microwave spectra would be required to be able to distinguish among minerals. Phase 3 of the research focused on the development of an on-line fly ash monitor that could be adapted to measure either a thermal-acoustic or thermal-elastic response to due microwave excitation of fly ash. The thermal-acoustic response was successfully employed for this purpose but the thermal-elastic response was too weak to yield a useful on-line device.

  20. Effects of measurement procedure and equipment on average room acoustic measurements

    DEFF Research Database (Denmark)

    Gade, Anders Christian; Bradley, J S; Siebein, G W

    1993-01-01

    . In some of the halls measurements were repeated using the procedures of the other teams to make it possible to separate the effects of different equipment and different procedures. The paper will present position-averaged results from the three teams and will discuss reasons for the differences observed...

  1. An assessment of the FlowCapt acoustic sensor for measuring snowdrift in the Indian Himalayas

    Indian Academy of Sciences (India)

    R K Das; P Datt; A Acharya

    2012-12-01

    Wind caused snow drifting plays a dominant role in the redistribution of snow mass that restructures a snowpack. Strong wind activity at the mountain tops results in uneven distribution of snow with erosion on windward side and deposition on leeward areas. Such snowdrift events are responsible for the formation of cornices, increase in the loading of avalanche release zones on the leeward side and consequent increase in the level of avalanche hazard. In this paper, we present the results of snowdrift measurement using an acoustic snow-drift meter, the FlowCapt, built by IAV Engineering, which was used during winter seasons of 2007–2010 at a field research station of Snow and Avalanche Study Establishment (SASE) in the western Himalayas. The aim of the study was to evaluate the suitability of the instrument in measuring snowdrift in the Himalayan weather conditions. Results proved the utility of the instrument as a useful tool to study drifting snow in remote areas. However, in the absence of conventional snow gauges for validation, the quality of the absolute snow flux data could not be ascertained.

  2. A Study of Acoustic Reflections in Full-Scale Rotor Low Frequency Noise Measurements Acquired in Wind Tunnels

    Science.gov (United States)

    Barbely, Natasha L.; Sim, Ben W.; Kitaplioglu, Cahit; Goulding, Pat, II

    2010-01-01

    Difficulties in obtaining full-scale rotor low frequency noise measurements in wind tunnels are addressed via residual sound reflections due to non-ideal anechoic wall treatments. Examples illustrated with the Boeing-SMART rotor test in the National Full-Scale Aerodynamics Complex (NFAC) 40- by 80-Foot Wind Tunnel facility demonstrated that these reflections introduced distortions in the measured acoustic time histories that are not representative of free-field rotor noise radiation. A simplified reflection analysis, based on the method of images, is used to examine the sound measurement quality in such "less-than-anechoic" environment. Predictions of reflection-adjusted acoustic time histories are qualitatively shown to account for some of the spurious fluctuations observed in wind tunnel noise measurements

  3. Exploring the feasibility of smart phone microphone for measurement of acoustic voice parameters and voice pathology screening.

    Science.gov (United States)

    Uloza, Virgilijus; Padervinskis, Evaldas; Vegiene, Aurelija; Pribuisiene, Ruta; Saferis, Viktoras; Vaiciukynas, Evaldas; Gelzinis, Adas; Verikas, Antanas

    2015-11-01

    The objective of this study is to evaluate the reliability of acoustic voice parameters obtained using smart phone (SP) microphones and investigate the utility of use of SP voice recordings for voice screening. Voice samples of sustained vowel/a/obtained from 118 subjects (34 normal and 84 pathological voices) were recorded simultaneously through two microphones: oral AKG Perception 220 microphone and SP Samsung Galaxy Note3 microphone. Acoustic voice signal data were measured for fundamental frequency, jitter and shimmer, normalized noise energy (NNE), signal to noise ratio and harmonic to noise ratio using Dr. Speech software. Discriminant analysis-based Correct Classification Rate (CCR) and Random Forest Classifier (RFC) based Equal Error Rate (EER) were used to evaluate the feasibility of acoustic voice parameters classifying normal and pathological voice classes. Lithuanian version of Glottal Function Index (LT_GFI) questionnaire was utilized for self-assessment of the severity of voice disorder. The correlations of acoustic voice parameters obtained with two types of microphones were statistically significant and strong (r = 0.73-1.0) for the entire measurements. When classifying into normal/pathological voice classes, the Oral-NNE revealed the CCR of 73.7% and the pair of SP-NNE and SP-shimmer parameters revealed CCR of 79.5%. However, fusion of the results obtained from SP voice recordings and GFI data provided the CCR of 84.60% and RFC revealed the EER of 7.9%, respectively. In conclusion, measurements of acoustic voice parameters using SP microphone were shown to be reliable in clinical settings demonstrating high CCR and low EER when distinguishing normal and pathological voice classes, and validated the suitability of the SP microphone signal for the task of automatic voice analysis and screening. PMID:26162450

  4. Measurement of surface acoustic wave velocity using phase shift mask and application on thin film of thermoelectric material

    Science.gov (United States)

    Li, Dongyao; Zhao, Peng; Gunning, Noel; Johnson, David; Zhao, Ji-Cheng; Cahill, David

    2014-03-01

    We describe a convenient approach for measuring the velocity vSAW of surface acoustic waves (SAWs) of the near-surface layer of a material through optical pump-probe measurements and apply this method, in combination with conventional picosecond acoustics, to determine a subset of the elastic constants of thin films of semiconducting misfit layered compounds. SAWs with a wavelength of 700 nm are generated and detected using an elastomeric polydimethylsiloxane (PDMS) phase-shift mask which is fabricated using a commercially-available Si grating as a mold. The velocity of SAWs of [(SnSe)1.04]m[MoSe2]n synthesized by elemental reactants show subtle variations in their elastic constants as a function of m and n. Precise measurements of elastic constants will enable a better understanding of interfacial stiffness in nanoscale multilayers and the effects of phonon focusing on thermal conductivity.

  5. A Correction of Random Incidence Absorption Coefficients for the Angular Distribution of Acoustic Energy under Measurement Conditions

    DEFF Research Database (Denmark)

    Jeong, Cheol-Ho

    2009-01-01

    tracing method for various room shapes and source positions. The averaged angular distribution is found to be similar to a Gaussian distribution. As a result, an angle-weighted absorption coefficient was proposed by considering the angular energy distribution to improve the agreement between......Most acoustic measurements are based on an assumption of ideal conditions. One such ideal condition is a diffuse and reverberant field. In practice, a perfectly diffuse sound field cannot be achieved in a reverberation chamber. Uneven incident energy density under measurement conditions can cause...... discrepancies between the measured value and the theoretical random incidence absorption coefficient. Therefore the angular distribution of the incident acoustic energy onto an absorber sample should be taken into account. The angular distribution of the incident energy density was simulated using the beam...

  6. Acoustic Emission Measurement with Fiber Bragg Gratings for Structure Health Monitoring

    Science.gov (United States)

    Banks, Curtis E.; Walker, James L.; Russell, Sam; Roth, Don; Mabry, Nehemiah; Wilson, Melissa

    2010-01-01

    Structural Health monitoring (SHM) is a way of detecting and assessing damage to large scale structures. Sensors used in SHM for aerospace structures provide real time data on new and propagating damage. One type of sensor that is typically used is an acoustic emission (AE) sensor that detects the acoustic emissions given off from a material cracking or breaking. The use of fiber Bragg grating (FBG) sensors to provide acoustic emission data for damage detection is studied. In this research, FBG sensors are used to detect acoustic emissions of a material during a tensile test. FBG sensors were placed as a strain sensor (oriented parallel to applied force) and as an AE sensor (oriented perpendicular to applied force). A traditional AE transducer was used to collect AE data to compare with the FBG data. Preliminary results show that AE with FBGs can be a viable alternative to traditional AE sensors.

  7. Measurement of acoustic glitches in solar-type stars from oscillation frequencies observed by Kepler

    CERN Document Server

    Mazumdar, A; Ballot, J; Antia, H M; Basu, S; Houdek, G; Mathur, S; Cunha, M S; Aguirre, V Silva; Garcia, R A; Salabert, D; Verner, G A; Christensen-Dalsgaard, J; Metcalfe, T S; Sanderfer, D T; Seader, S E; Smith, J C; Chaplin, W J

    2013-01-01

    For the very best and brightest asteroseismic solar-type targets observed by Kepler, the frequency precision is sufficient to determine the acoustic depths of the surface convective layer and the helium ionization zone. Such sharp features inside the acoustic cavity of the star, which we call acoustic glitches, create small oscillatory deviations from the uniform spacing of frequencies in a sequence of oscillation modes with the same spherical harmonic degree. We use these oscillatory signals to determine the acoustic locations of such features in 19 solar-type stars observed by the Kepler mission. Four independent groups of researchers utilized the oscillation frequencies themselves, the second differences of the frequencies and the ratio of the small and large separation to locate the base of the convection zone and the second helium ionization zone. Despite the significantly different methods of analysis, good agreement was found between the results of these four groups, barring a few cases. These results ...

  8. Using infrared cameras, fuzzy logic and acoustic temperature measurement to improve combustion in MWCs

    Energy Technology Data Exchange (ETDEWEB)

    Daimer, P.; Schaefers, W.; Hartenstein, H.U.; Licata, A.

    1998-07-01

    A significant step for the improvement of firing rate and combustion control is the use of infrared thermography. Such a system has been successfully applied by L. and C. Steinmuller GmbH (Steinmuller) a long period of time at the Stapelfele municipal waste combustor (MWC) located in Germany. A camera installed on the boiler top casing supplies instantaneous information on the combustion conditions on the grate. In the event of undesired changes in firing position or firing length, countermeasures may be instituted immediately. A control system based on fuzzy logic, divided into several stage each of which includes a short-term and a long-term strategy, has been developed for this purpose. This system reduces fluctuations during combustion to an unavoidable minimum. The acoustic temperature measurement system installed in the first pass of the boiler provides valuable information about the temperature distribution in the zone. This allows the control room operator to adjust the distribution of secondary air to the front and rear row of nozzles so that uniform temperature and flow distribution are maintained at all times. Both installations allow the firing system to operate at more optimized conditions which results in such positive effects as reduced emissions and increased steam production.

  9. Detection of atmospheric acoustic-gravity waves through ionospheric measurements using dense GPS arrays

    Science.gov (United States)

    Calais, E.; Haase, J. S.; Minster, B.

    2003-12-01

    The Global Positioning System (GPS) is now widely used to measure ionospheric electron content at both global and regional scales. It is also capable of detecting small-scale high-frequency ionospheric disturbances caused by atmospheric acoustic-gravity waves. We show examples of ionospheric perturbations caused by earthquakes, rocket launches, and large surface explosions. The neutral atmospheric waves triggered by these events couple with the motion of free electrons and ionized plasma at ionospheric heights and induce coherent fluctuations of electron densities and ionization layer boundaries that are detectable with GPS. In all cases, the ionospheric perturbations match fairly well observations made through other techniques as well as numerical models. The development of permanent networks of densely spaced and continuously recording GPS stations open up new opportunities for the study of infrasonic waves in the atmosphere and their coupling with small scale processes in the ionosphere. We show examples of infrasonic waves detected using the 250-station GPS network that covers the Los Angeles area (SCIGN). Although the signal-to-noise ratio of these perturbations is relatively small, we show that it can be considerably improved by multi-station array processing techniques derived from seismic array analysis. These techniques can also be used to determine the perturbation propagation azimuth and velocity and, eventually, to recover information about the sources of these perturbations.

  10. Measuring the parameters of sea-surface roughness by underwater acoustic systems: discussion of the device concept

    Science.gov (United States)

    Karaev, V. Yu.; Kanevsky, M. B.; Meshkov, E. M.

    2011-02-01

    We consider the concept of an underwater acoustic wave gauge designed to measure statistical characteristics of sea-surface roughness. It is proposed to be based on a centimeter-wave underwater sonar sending probing signals vertically upwards. It is shown that the use of three antennas in such a system is sufficient to measure all statistical second-order moments of sea roughness which is large-scale compared with the acoustic-radiation wavelength. This method can be used for the first time to measure the sea wave parameters which determine the characteristics of the reflected radar signals. The proposed acoustic wave gauge can be used as an independent measuring device, as well as an additional underwater unit of a conventional sea buoy. This will allow one to increase the amount of information about surface waves, which is received from the buoy, at a minimal cost and will make it possible to calibrate new remote sounding systems capable of measuring the variance of sea-surface slopes.

  11. Measurement of acoustic and anatomic changes in oral and maxillofacial surgery patients

    OpenAIRE

    Aalto, Daniel; Aaltonen, Olli; Happonen, Risto-Pekka; Jääsaari, Päivi; Kivelä, Atle; Kuortti, Juha; Luukinen, Jean-Marc; Malinen, Jarmo; Murtola, Tiina; Parkkola, Riitta; Saunavaara, Jani; Soukka, Tero; Vainio, Martti

    2013-01-01

    We describe an arrangement for simultaneous recording of speech and geometry of vocal tract in patients undergoing surgery involving this area. Experimental design is considered from an articulatory phonetic point of view. The speech and noise signals are recorded with an acoustic-electrical arrangement. The vocal tract is simultaneously imaged with MRI. A MATLAB-based system controls the timing of speech recording and MR image acquisition. The speech signals are cleaned from acoustic MRI noi...

  12. A rail system for circular synthetic aperture sonar imaging and acoustic target strength measurements: design/operation/preliminary results.

    Science.gov (United States)

    Kennedy, J L; Marston, T M; Lee, K; Lopes, J L; Lim, R

    2014-01-01

    A 22 m diameter circular rail, outfitted with a mobile sonar tower trolley, was designed, fabricated, instrumented with underwater acoustic transducers, and assembled on a 1.5 m thick sand layer at the bottom of a large freshwater pool to carry out sonar design and target scattering response studies. The mobile sonar tower translates along the rail via a drive motor controlled by customized LabVIEW software. The rail system is modular and assembly consists of separately deploying eight circular arc sections, measuring a nominal center radius of 11 m and 8.64 m arc length each, and having divers connect them together in the underwater environment. The system enables full scale measurements on targets of interest with 0.1° angular resolution over a complete 360° aperture, without disrupting target setup, and affording a level of control over target environment conditions and noise sources unachievable in standard field measurements. In recent use, the mobile cart carrying an instrumented sonar tower was translated along the rail in 720 equal position increments and acoustic backscatter data were acquired at each position. In addition, this system can accommodate both broadband monostatic and bistatic scattering measurements on targets of interest, allowing capture of target signature phenomena under diverse configurations to address current scientific and technical issues encountered in mine countermeasure and unexploded ordnance applications. In the work discussed here, the circular rail apparatus is used for acoustic backscatter testing, but this system also has the capacity to facilitate the acquisition of magnetic and optical sensor data from targets of interest. A brief description of the system design and operation will be presented along with preliminary processed results for data acquired from acoustic measurements conducted at the Naval Surface Warfare Center, Panama City Division Test Pond Facility. [Work Supported by the U.S. Office of Naval Research and

  13. Logopenic and nonfluent variants of primary progressive aphasia are differentiated by acoustic measures of speech production.

    Science.gov (United States)

    Ballard, Kirrie J; Savage, Sharon; Leyton, Cristian E; Vogel, Adam P; Hornberger, Michael; Hodges, John R

    2014-01-01

    Differentiation of logopenic (lvPPA) and nonfluent/agrammatic (nfvPPA) variants of Primary Progressive Aphasia is important yet remains challenging since it hinges on expert based evaluation of speech and language production. In this study acoustic measures of speech in conjunction with voxel-based morphometry were used to determine the success of the measures as an adjunct to diagnosis and to explore the neural basis of apraxia of speech in nfvPPA. Forty-one patients (21 lvPPA, 20 nfvPPA) were recruited from a consecutive sample with suspected frontotemporal dementia. Patients were diagnosed using the current gold-standard of expert perceptual judgment, based on presence/absence of particular speech features during speaking tasks. Seventeen healthy age-matched adults served as controls. MRI scans were available for 11 control and 37 PPA cases; 23 of the PPA cases underwent amyloid ligand PET imaging. Measures, corresponding to perceptual features of apraxia of speech, were periods of silence during reading and relative vowel duration and intensity in polysyllable word repetition. Discriminant function analyses revealed that a measure of relative vowel duration differentiated nfvPPA cases from both control and lvPPA cases (r(2) = 0.47) with 88% agreement with expert judgment of presence of apraxia of speech in nfvPPA cases. VBM analysis showed that relative vowel duration covaried with grey matter intensity in areas critical for speech motor planning and programming: precentral gyrus, supplementary motor area and inferior frontal gyrus bilaterally, only affected in the nfvPPA group. This bilateral involvement of frontal speech networks in nfvPPA potentially affects access to compensatory mechanisms involving right hemisphere homologues. Measures of silences during reading also discriminated the PPA and control groups, but did not increase predictive accuracy. Findings suggest that a measure of relative vowel duration from of a polysyllable word repetition task

  14. Measured sound speeds and acoustic nonlinearity parameter in liquid water up to 523 K and 14 MPa

    Science.gov (United States)

    Sturtevant, Blake T.; Pantea, Cristian; Sinha, Dipen N.

    2016-07-01

    Sound speed in liquid water at temperatures between 275 and 523 K and pressures up to 14 MPa were experimentally determined using a high temperature/high pressure capable acoustic resonance cell. The measurements enabled the determination of the temperature and pressure dependence of sound speed and thus the parameter of acoustic nonlinearly, B/A, over this entire P-T space. Most of the sound speeds measured in this work were found to be within 0.4% of the IAPWS-IF97 formulation, an international standard for calculating sound speed in water as a function of temperature and pressure. The values for B/A determined at laboratory ambient pressure and at temperatures up to 356 K, were found to be in general agreement with values calculated from the IAPWS-IF97 formulation. Additionally, B/A at 293 K was found to be 4.6, in agreement with established literature values.

  15. The use of waveguide acoustic probes for void fraction measurement in the evaporator of BN-350-Type reactor

    Energy Technology Data Exchange (ETDEWEB)

    Melnikov, V.I.; Nigmatulin, B.I.

    1995-09-01

    The present paper deals with some results of the experimental studies which have been carried out to investigate the steam generation dynamics in the Field tubes of sodium-water evaporators used in the BN-350 reactors. The void fraction measurements have been taken with the aid of waveguide acoustic transducers manufactured in accordance with a specially designed technology (waveguide acoustic transducers-WAT technology). Presented in this paper also the transducer design and calibration methods, as well as the diagram showing transducers arrengment in the evaporator. The transducers under test featured a waveguide of about 4 m in length and a 200-mm long sensitive element (probe). Besides, this paper specifies the void fraction data obtained through measurements in diverse points of the evaporator. The studies revealed that the period of observed fluctuations in the void fraction amounted to few seconds and was largely dependent on the level of water in the evaporator.

  16. Measurement of the dispersion of thermal ion-acoustic fluctuations in high-temperature laser plasmas using multiple wavelength Thomson-scattering

    Energy Technology Data Exchange (ETDEWEB)

    Froula, D H; Davis, P; Divol, L; Ross, J S; Meezan, N; Price, D; Glenzer, S H; Rousseaux, C

    2005-05-18

    The dispersion of ion-acoustic fluctuations has been measured using a novel technique that employed multiple color Thomson scattering to measure the frequency spectrum for two separate thermal ion-acoustic fluctuations with significantly different wave vectors. The plasma fluctuations are shown to become dispersive with increasing electron temperature. They demonstrate that this technique allows a time resolved local measurement of electron density and temperature in inertial confinement fusion plasmas.

  17. Measurement of acoustic glitches in solar-type stars from oscillation frequencies observed by Kepler

    Energy Technology Data Exchange (ETDEWEB)

    Mazumdar, A. [Homi Bhabha Centre for Science Education, TIFR, V. N. Purav Marg, Mankhurd, Mumbai 400088 (India); Monteiro, M. J. P. F. G.; Cunha, M. S. [Centro de Astrofísica da Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Ballot, J. [CNRS, Institut de Recherche en Astrophysique et Planétologie, 14 avenue Edouard Belin, F-31400 Toulouse (France); Antia, H. M. [Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005 (India); Basu, S. [Astronomy Department, Yale University, P.O. Box 208101, New Haven, CT 065208101 (United States); Houdek, G.; Silva Aguirre, V.; Christensen-Dalsgaard, J.; Metcalfe, T. S. [Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Mathur, S. [High Altitude Observatory, NCAR, P.O. Box 3000, Boulder, CO 80307 (United States); García, R. A. [Laboratoire AIM, CEA/DSM, CNRS, Université Paris Diderot, IRFU/SAp, Centre de Saclay, F-91191 Gif-sur-Yvette Cedex (France); Salabert, D. [Laboratoire Lagrange, UMR7293, Université de Nice Sophia-Antipolis, CNRS, Observatoire de la Côte d' Azur, F-06304 Nice (France); Verner, G. A.; Chaplin, W. J. [School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Sanderfer, D. T. [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Seader, S. E.; Smith, J. C. [SETI Institute/NASA Ames Research Center, Moffett Field, CA 94035 (United States)

    2014-02-10

    For the very best and brightest asteroseismic solar-type targets observed by Kepler, the frequency precision is sufficient to determine the acoustic depths of the surface convective layer and the helium ionization zone. Such sharp features inside the acoustic cavity of the star, which we call acoustic glitches, create small oscillatory deviations from the uniform spacing of frequencies in a sequence of oscillation modes with the same spherical harmonic degree. We use these oscillatory signals to determine the acoustic locations of such features in 19 solar-type stars observed by the Kepler mission. Four independent groups of researchers utilized the oscillation frequencies themselves, the second differences of the frequencies and the ratio of the small and large separation to locate the base of the convection zone and the second helium ionization zone. Despite the significantly different methods of analysis, good agreement was found between the results of these four groups, barring a few cases. These results also agree reasonably well with the locations of these layers in representative models of the stars. These results firmly establish the presence of the oscillatory signals in the asteroseismic data and the viability of several techniques to determine the location of acoustic glitches inside stars.

  18. Continuous measurements of suspended sediment loads using dual frequency acoustic Doppler profile signals

    Science.gov (United States)

    Antonini, Alessandro; Guerrero, Massimo; Rüther, Nils; Stokseth, Siri

    2016-04-01

    A huge thread to Hydropower plants (HPP) is incoming sediments in suspension from the rivers upstream. The sediments settle in the reservoir and reduce the effective head as well as the volume and reduce consequently the lifetime of the reservoir. In addition are the fine sediments causing severe damages to turbines and infrastructure of a HPP. For estimating the amount of in-coming sediments in suspension and the consequent planning of efficient counter measures, it is essential to monitor the rivers within the catchment of the HPP for suspended sediments. This work is considerably time consuming and requires highly educated personnel and is therefore expensive. Surrogate-indirect methods using acoustic and optic devices have bee developed since the last decades that may be efficiently applied for the continuous monitoring of suspended sediment loads. The presented study proposes therefore to establish a research station at a cross section of a river which is the main tributary to a reservoir of a HPP and equip this station with surrogate as well as with common method of measuring suspended load concentrations and related flow discharge and level. The logger at the research station delivers data automatically to a server. Therefore it is ensured that also large flood events are covered. Data during flood are of high interest to the HPP planners since they carried the most part of the sediment load in a hydrological year. Theses peaks can hardly be measured with common measurement methods. Preliminary results of the wet season 2015/2016 are presented. The data gives insight in the applicable range, in terms of scattering particles concentration-average size and corresponding flow discharge and level, eventually enabling the study of suspended sediment load-water flow correlations during peak events. This work is carried out as part of a larger research project on sustainable hydro power plants exposed to high sediment yield, SediPASS. SediPASS is funded by the

  19. Fire Fountains At Etna Volcano: What Do We Learn From Acoustic Measurements?

    Science.gov (United States)

    Vergniolle, S.

    Acoustic measurements were performed on Etna volcano (Italy) in July 2001, during two episodes of quasi fire fountains. They last about 4 h, are separated by quiet peri- ods of a few days and consist in a serie of explosions, whose intermittency increases in time from several minutes to several seconds. The waveform of every explosion is very similar to explosions at Stromboli, suggesting that the sound at Etna is also pro- duced by bursting large bubbles. The model for bubble vibration, at work at Stromboli, gives a very good fit between data and theory. When the eruptive episode reaches its climax, a bubble at Etna has a radius of 5 m, a length of 8 m for an overpressure of 0.39 MPa. Rising large expanding bubbles in a conduit distorts the top of the lava column and sloshing waves can be produced. The theoretical frequency is between 0.3 and 0.7 Hz for a radius of 5 m. Recorded acoustic pressure shows these frequen- cies. Their intensity is directly correlated to the intensity for bubble bursting (2 Hz), showing that frequencies between 0.3 Hz and 0.7 Hz are sloshing waves in a conduit radius of 5 m. Furthermore if the source of sound is monopole, gas and ejecta ve- locity is estimated at 92 m/s during episode climax, assuming a conduit radius of 5 m. Simultaneous measurements done with a radar produce exactly the same estimate [Duboclard et al., 2001]. The very good agreement between the synthetic waveform, the theoretical sloshing waves and the estimate of gas velocity shows that fire foun- tains at Etna correspond to a serie of bursting bubbles of radius 5 m, colliding during its climax to form an inner gas jet. The alternance between fire fountains and quiet periods is totally similar between Etna and Kilauea volcanoes (Hawaii). Therefore fire fountains at Etna might also be generated at depth by coalescence of a foam layer trapped at the top of the magma chamber. The total gas volume released by one fire fountain is equal to 7.4 × 106 m3 and has been

  20. Indirect measurement of cylinder pressure from diesel engines using acoustic emission

    Science.gov (United States)

    El-Ghamry, M.; Steel, J. A.; Reuben, R. L.; Fog, T. L.

    2005-07-01

    Indirect measurement of the cylinder pressure from diesel engines is possible using acoustic emission (AE). A method is demonstrated for a large two-stroke marine diesel engine and a small four-stroke diesel engine, which involves reconstructing the cylinder crank angle domain diagram from the AE generated during the combustion phase. Raw AE was used for modelling and reconstructing the pressure waveform in the time domain but this could not be used to model the pressure rise (compression). To overcome this problem the signal was divided into two sections representing the compression part of the signal and the fuel injection/expansion stroke. The compression part of the pressure signal was reconstructed by using polynomial fitting. An auto-regressive technique was used during the injection/expansion stroke. The rms AE signal is well correlated with the pressure signal in the time and frequency domain and complex cepstrum analysis was used to model the pressure signal for the complete combustion phase (compression, injection and expansion). The main advantage of using cepstral analysis is that the model uses the frequency content of the rms AE signal rather than the energy content of the rms AE signal, which gives an advantage when the signal has lower energy content, during the compression process. By calculating the engine running speed from the rms AE signal and selecting the proper cepstrum model correlated to the combustion rms AE energy content, an analytical algorithm was developed to give a wide range of applicability over the different conditions of engine speed, engine type and load. The pressure reconstructed from both AE and acceleration data are compared. AE has the advantage of a much higher signal-to-noise ratio and improved time resolution and is shown to be better than the acceleration.

  1. Acoustic velocity measurement by means of Laser Doppler Velocimetry: Development of an Extended Kalman Filter and validation in free-field measurement

    Science.gov (United States)

    Le Duff, Alain; Plantier, Guy; Valière, Jean C.; Gazengel, Bruno

    2016-03-01

    A signal processing technique, based on the use of an Extended Kalman Filter, has been developed to measure sound fields by means of Laser Doppler Velocimetry in weak flow. This method allows for the parametric estimation of both the acoustic particle and flow velocity for a forced sine-wave excitation where the acoustic frequency is known. The measurements are performed from the in-phase and the quadrature components of the Doppler downshifted signal thanks to an analog quadrature demodulation technique. Then, the estimated performance is illustrated by means of Monte-Carlo simulations obtained from synthesized signals and compared with asymptotic and analytical forms for the Cramer-Rao Bounds. Results allow the validity domain of the method to be defined and show the availability for free-field measurements in a large range. Finally, an application based on real data obtained in free field is presented.

  2. Acoustic Doppler Current Profiler Measurements in the Tailrace at John Day Dam

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Chris B.; Dibrani, Berhon; Serkowski, John A.; Richmond, Marshall C.; Titzler, P. Scott; Dennis, Gary W.

    2006-01-30

    Acoustic Doppler current profilers (ADCPs) were used to measure water velocities in the tailrace at John Day Dam over a two-week period in February 2005. Data were collected by the Pacific Northwest National Laboratory for the Hydraulic Design Section, Portland District, U.S. Army Corps of Engineers (USACE). The objective of this project was therefore to collect field measurements of water velocities in the near-field draft tube exit zone as well as the far-field tailrace to be used for improving these models. Field data were collected during the project using five separate ADCPs. Mobile ADCP data were collected using two ADCPs mounted on two separate boats. Data were collected by either holding the boat on-station at pre-defined locations for approximately 10 minutes or in moving transect mode when the boat would move over large distances during the data collection. Results from the mobile ADCP survey indicated a complex hydrodynamic flow field in the tailrace downstream of John Day Dam. A large gyre was noted between the skeleton section of the powerhouse and non-spilling portion of the spillway. Downstream of the spillway, the spillway flow is constrained against the navigation lock guide wall, and large velocities were noted in this region. Downstream of the guide wall, velocities decreased as the spillway jet dispersed. Near the tailrace island, the flow split was measured to be approximately equal on Day 2 (25.4 kcfs spillway/123 kcfs total). However, approximately 60% of the flow passed along the south shore of the island on Day 1 (15.0 kcfs spillway/150 kcfs total). At a distance of 9000 ft downstream of the dam, flows had equalized laterally and were generally uniform over the cross section. The collection of water velocities near the draft tube exit of an operating turbine unit is not routine, and equipment capable of measuring 3D water velocities in these zones are at the forefront of hydraulic measurement technology. Although the feasibility of

  3. Acoustic emission measurements of PWR weld material with inserted defects using advanced instrumentation

    International Nuclear Information System (INIS)

    Twenty-one steel tensile specimens containing realistic welding defects have been monitored for acoustic emission during loading to failure. A new design of broad frequency bandwidth point contact transducer was used and the resulting signal captured using a high speed transient recording system. The data was analysed using the techniques of statistical pattern recognition to separate different types of signals. The results show that it is possible to separate true acoustic emission from background noise and to distinguish between certain types of defect. (author)

  4. Measurement of acoustic and anatomic changes in oral and maxillofacial surgery patients

    CERN Document Server

    Aalto, Daniel; Happonen, Risto-Pekka; Jääsaari, Päivi; Kivelä, Atle; Kuortti, Juha; Luukinen, Jean-Marc; Malinen, Jarmo; Murtola, Tiina; Parkkola, Riitta; Saunavaara, Jani; Soukka, Tero; Vainio, Martti

    2013-01-01

    We describe an arrangement for simultaneous recording of speech and geometry of vocal tract in patients undergoing surgery involving this area. Experimental design is considered from an articulatory phonetic point of view. The speech and noise signals are recorded with an acoustic-electrical arrangement. The vocal tract is simultaneously imaged with MRI. A MATLAB-based system controls the timing of speech recording and MR image acquisition. The speech signals are cleaned from acoustic MRI noise by a non-linear signal processing algorithm. Finally, a vowel data set from pilot experiments is compared with validation data from anechoic chamber as well as with Helmholtz resonances of the vocal tract volume.

  5. Quantitative Measures of Anthropogenic Noise on Harbor Porpoises: Testing the Reliability of Acoustic Tag Recordings

    DEFF Research Database (Denmark)

    Wisniewska, Danuta Maria; Teilmann, Jonas; Hermannsen, Line;

    2016-01-01

    In recent years, several sound and movement recording tags have been developed to sample the acoustic fi eld experienced by cetaceans and their reactions to it. However, little is known about how tag placement and an animal’s orientation in the sound fi eld affect the reliability of on-animal rec......In recent years, several sound and movement recording tags have been developed to sample the acoustic fi eld experienced by cetaceans and their reactions to it. However, little is known about how tag placement and an animal’s orientation in the sound fi eld affect the reliability of on...

  6. Quantitative Measures of Anthropogenic Noise on Harbor Porpoises: Testing the Reliability of Acoustic Tag Recordings.

    Science.gov (United States)

    Wisniewska, Danuta M; Teilmann, Jonas; Hermannsen, Line; Johnson, Mark; Miller, Lee A; Siebert, Ursula; Madsen, Peter Teglberg

    2016-01-01

    In recent years, several sound and movement recording tags have been developed to sample the acoustic field experienced by cetaceans and their reactions to it. However, little is known about how tag placement and an animal's orientation in the sound field affect the reliability of on-animal recordings as proxies for actual exposure. Here, we quantify sound exposure levels recorded with a DTAG-3 tag on a captive harbor porpoise exposed to vessel noise in a controlled acoustic environment. Results show that flow noise is limiting onboard noise recordings, whereas no evidence of body shading has been found for frequencies of 2-20 kHz. PMID:26611092

  7. Subjective evaluation of a concert hall's acoustics using a free-format-type questionnaire and comparison with objective measurements

    Science.gov (United States)

    Okano, Toshiyuki; Beranek, Leo L.

    2002-11-01

    A free-format type of audiences' judgment of the acoustical properties of a hall and music critics' writings were used as the basis for this study. These subjective responses are related to the Dai-Ichi Seimei Hall in Tokyo. This hall is an oval-shaped, one-balcony space, seating 767 persons. Its primary use is for various types of chamber music and solo-instrument performances. Eight acoustical attributes were investigated, ''reverberation,'' ''clarity,'' ''loudness,'' ''intimacy,'' ''spaciousness,'' ''balance,'' ''localization,'' and ''timbre,'' plus ''general impression.'' Subjective comments about these attributes were obtained. Objective measurements were made in the hall and are compared with those made in several similar-sized halls of two shapes. In the rear seats of two oval-shaped halls the strength factor GE (determined in the first 80 ms of the impulse response) was greater than the GE found in the rear seats of similar-sized rectangular halls. The subjective results and the objective measurements were closely correlated, especially for reverberation, clarity, and warmth (a subcomponent of timbre). It was suggested that the greater strength GE in the rear seats made the hall seem smaller and thus more intimate. The subjective comments also confirmed the hall's wide applicability, indicating that the acoustical characteristics used for its design were well chosen.

  8. Measurement of Baryon Acoustic Oscillations in the Lyman-alpha Forest Fluctuations in BOSS Data Release 9

    CERN Document Server

    Slosar, Anže; Kirkby, David; Bailey, Stephen; Busca, Nicolás G; Delubac, Timothée; Rich, James; Bhardwaj, Vaishali; Blomqvist, Michael; Bolton, Adam S; Bovy, Jo; Brownstein, Joel; Carithers, Bill; Croft, Rupert A C; Dawson, Kyle S; Font-Ribera, Andreu; Goff, J -M Le; Ho, Shirley; Honscheid, Klaus; Lee, Khee-Gan; Margala, Daniel; McDonald, Patrick; Medolin, Bumbarija; Miralda-Escudé, Jordi; Myers, Adam D; Nichol, Robert C; Noterdaeme, Pasquier; Pâris, Isabelle; Petitjean, Patrick; Pieri, Matthew M; Roe, Yodovina Piškur N A; Ross, Nicholas P; Rossi, Graziano; Schlegel, David J; Schneider, Donald P; Sheldon, Erin S; Seljak, Uroš; Viel, Matteo; Weinberg, David H; Yèche, Christophe

    2013-01-01

    We use the Baryon Oscillation Spectroscopic Survey (BOSS) Data Release 9 (DR9) to detect and measure the position of the Baryonic Acoustic Oscillation (BAO) feature in the three-dimensional correlation function in the Lyman-alpha forest flux fluctuations at a redshift z=2.4. The feature is clearly detected at significance between 3 and 5 sigma (depending on the broadband model and method of error covariance matrix estimation) and is consistent with predictions of the standard LCDM model. We assess the biases in our method, stability of the error covariance matrix and possible systematic effects. We fit the resulting correlation function with several models that decouple the broadband and acoustic scale information. For an isotropic dilation factor, we measure 100x(alpha_iso-1) = -1.6 ^{+2.0+4.3+7.4}_{-2.0-4.1-6.8} (stat.) +/- 1.0 (syst.) (multiple statistical errors denote 1,2 and 3 sigma confidence limits) with respect to the acoustic scale in the fiducial cosmological model (flat LCDM with Omega_m=0.27, h=0...

  9. Acoustics Reflections of Full-Scale Rotor Noise Measurements in NFAC 40- by 80-Foot Wind Tunnel

    Science.gov (United States)

    Barbely, Natasha Lydia; Kitaplioglu, Cahit; Sim, Ben W.

    2012-01-01

    The objective of current research is to identify the extent of acoustic time history distortions due to wind tunnel wall reflections. Acoustic measurements from the recent full-scale Boeing-SMART rotor test (Fig. 2) will be used to illustrate the quality of noise measurement in the NFAC 40- by 80-Foot Wind Tunnel test section. Results will be compared to PSU-WOPWOP predictions obtained with and without adjustments due to sound reflections off wind tunnel walls. Present research assumes a rectangular enclosure as shown in Fig. 3a. The Method of Mirror Images7 is used to account for reflection sources and their acoustic paths by introducing mirror images of the rotor (i.e. acoustic source), at each and every wall surface, to enforce a no-flow boundary condition at the position of the physical walls (Fig. 3b). While conventional approach evaluates the "combined" noise from both the source and image rotor at a single microphone position, an alternative approach is used to simplify implementation of PSU-WOPWOP for this reflection analysis. Here, an "equivalent" microphone position is defined with respect to the source rotor for each mirror image that effectively renders the reflection analysis to be a one rotor, multiple microphones problem. This alternative approach has the advantage of allowing each individual "equivalent" microphone, representing the reflection pulse from the associated wall surface, to be adjusted by the panel absorption coefficient illustrated in Fig. 1a. Note that the presence of parallel wall surfaces requires an infinite number of mirror images (Fig. 3c) to satisfy the no-flow boundary conditions. In the present analysis, up to four mirror images (per wall surface) are accounted to achieve convergence in the predicted time histories

  10. Multi-point measurement of the acoustic particle velocity using a novel laser measurement method; Mehrpunktmessungen der Schallschnelle mittels neuartigem Lasermessverfahren

    Energy Technology Data Exchange (ETDEWEB)

    Haufe, Daniel; Schluessler, Raimund; Fischer, Andreas; Buettner, Lars; Czarske, Juergen [Technische Univ. Dresden (Germany). Professur fuer Mess- und Prueftechnik

    2012-07-01

    Reducing aircraft noise requires the analysis of the complex interaction between flow and sound phenomena in jet engine dampers. Therefore a Doppler global velocimeter with laser frequency modulation is used for the first time for the multi-point measurement of the acoustic particle velocity in a Kundt's tube. As a result, particle velocity amplitudes within the hearing range have been resolved, the minimal measurement uncertainty amounts to 3 mm/s at a measurement period of 1 s. The measurement technique has high potential in respect of analyzing and optimizing jet engine dampers. (orig.)

  11. Digital stroboscopic holographic interferometry for power flow measurements in acoustically driven membranes

    Science.gov (United States)

    Keustermans, William; Pires, Felipe; De Greef, Daniël; Vanlanduit, Steve J. A.; Dirckx, Joris J. J.

    2016-06-01

    Despite the importance of the eardrum and the ossicles in the hearing chain, it remains an open question how acoustical energy is transmitted between them. Identifying the transmission path at different frequencies could lead to valuable information for the domain of middle ear surgery. In this work a setup for stroboscopic holography is combined with an algorithm for power flow calculations. With our method we were able to accurately locate the power sources and sinks in a membrane. The setup enabled us to make amplitude maps of the out-of-plane displacement of a vibrating rubber membrane at subsequent instances of time within the vibration period. From these, the amplitude maps of the moments of force and velocities are calculated. The magnitude and phase maps are extracted from this amplitude data, and form the input for the power flow calculations. We present the algorithm used for the measurements and for the power flow calculations. Finite element models of a circular plate with a local energy source and sink allowed us to test and optimize this algorithm in a controlled way and without the present of noise, but will not be discussed below. At the setup an earphone was connected with a thin tube which was placed very close to the membrane so that sound impinges locally on the membrane, hereby acting as a local energy source. The energy sink was a little piece of foam carefully placed against the membrane. The laser pulses are fired at selected instants within the vibration period using a 30 mW HeNe continuous wave laser (red light, 632.8 nm) in combination with an acousto-optic modulator. A function generator controls the phase of these illumination pulses and the holograms are recorded using a CCD camera. We present the magnitude and phase maps as well as the power flow measurements on the rubber membrane. Calculation of the divergence of this power flow map provides a simple and fast way of identifying and locating an energy source or sink. In conclusion

  12. Measurement of the acoustic-to-optical phonon coupling in multicomponent systems

    NARCIS (Netherlands)

    Caretta, Antonio; Donker, Michiel C.; Perdok, Diederik W.; Abbaszadeh, Davood; Polyakov, Alexey O.; Havenith, Remco W. A.; Palstra, Thomas T. M.; van Loosdrecht, Paul H. M.

    2015-01-01

    In this paper we investigate the acoustic-to-optical up-conversion phonon processes in a multicomponent system. These processes take place during heat transport and limit the efficiency of heat flow. By combining time-resolved optical and heat capacity experiments we quantify the thermal coupling co

  13. Quantitative and Descriptive Comparison of Four Acoustic Analysis Systems: Vowel Measurements

    Science.gov (United States)

    Burris, Carlyn; Vorperian, Houri K.; Fourakis, Marios; Kent, Ray D.; Bolt, Daniel M.

    2014-01-01

    Purpose: This study examines accuracy and comparability of 4 trademarked acoustic analysis software packages (AASPs): Praat, WaveSurfer, TF32, and CSL by using synthesized and natural vowels. Features of AASPs are also described. Method: Synthesized and natural vowels were analyzed using each of the AASP's default settings to secure 9…

  14. Shallow Water Acoustic Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Supports experimental research where high-frequency acoustic scattering and surface vibration measurements of fluid-loaded and non-fluid-loaded structures...

  15. A Century of Acoustic Metrology

    DEFF Research Database (Denmark)

    Rasmussen, Knud

    1998-01-01

    The development in acoustic measurement technique over the last century is reviewed with special emphasis on the metrological aspect.......The development in acoustic measurement technique over the last century is reviewed with special emphasis on the metrological aspect....

  16. Measurement of the speed of sound in trabecular bone by using a time reversal acoustics focusing system

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kang Il [Kangwon National University, Chuncheon (Korea, Republic of); Choi, Bok-Kyoung [Maritime Security Research Center, KIOST, Ansan (Korea, Republic of)

    2014-10-15

    A new method for measuring the speed of sound (SOS) in trabecular bone by using a time reversal acoustics (TRA) focusing system was proposed and validated with measurements obtained by using the conventional pulse-transmission technique. The SOS measured in 14 bovine femoral trabecular bone samples by using the two methods was highly correlated each other, although the SOS measured by using the TRA focusing system was slightly lower by an average of 2.2 m/s. The SOS measured by using the two methods showed high correlation coefficients of r = 0.92 with the apparent bone density, consistent with the behavior in human trabecular bone in vitro. These results prove the efficacy of the new method based on the principle of TRA to measure the SOS in trabecular bone.

  17. Imaging electrical impedance from acoustic measurements by means of magnetoacoustic tomography with magnetic induction (MAT-MI).

    Science.gov (United States)

    Li, Xu; Xu, Yuan; He, Bin

    2007-02-01

    We have conducted computer simulation and experimental studies on magnetoacoustic-tomography with magnetic induction (MAT-MI) for electrical impedance imaging. In MAT-MI, the object to be imaged is placed in a static magnetic field, while pulsed magnetic stimulation is applied in order to induce eddy current in the object. In the static magnetic field, the Lorentz force acts upon the eddy current and causes acoustic vibrations in the object. The propagated acoustic wave is then measured around the object to reconstruct the electrical impedance distribution. In the present simulation study, a two-layer spherical model is used. Parameters of the model such as sample size, conductivity values, strength of the static and pulsed magnetic field, are set to simulate features of biological tissue samples and feasible experimental constraints. In the forward simulation, the electrical potential and current density are solved using Poisson's equation, and the acoustic pressure is calculated as the forward solution. The electrical impedance distribution is then reconstructed from the simulated pressure distribution surrounding the sample. The present computer simulation results suggest that MAT-MI can reconstruct conductivity images of biological tissue with high spatial resolution and high contrast. The feasibility of MAT-MI in providing high spatial resolution images containing impedance-related information has also been demonstrated in a phantom experiment.

  18. A METHODOLOGY TO INTEGRATE MAGNETIC RESONANCE AND ACOUSTIC MEASUREMENTS FOR RESERVOIR CHARACTERIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Jorge O. Parra; Chris L. Hackert; Lorna L. Wilson

    2002-09-20

    The work reported herein represents the third year of development efforts on a methodology to interpret magnetic resonance and acoustic measurements for reservoir characterization. In this last phase of the project we characterize a vuggy carbonate aquifer in the Hillsboro Basin, Palm Beach County, South Florida, using two data sets--the first generated by velocity tomography and the second generated by reflection tomography. First, we integrate optical macroscopic (OM), scanning electron microscope (SEM) and x-ray computed tomography (CT) images, as well as petrography, as a first step in characterizing the aquifer pore system. This pore scale integration provides information with which to evaluate nuclear magnetic resonance (NMR) well log signatures for NMR well log calibration, interpret ultrasonic data, and characterize flow units at the field scale between two wells in the aquifer. Saturated and desaturated NMR core measurements estimate the irreducible water in the rock and the variable T{sub 2} cut-offs for the NMR well log calibration. These measurements establish empirical equations to extract permeability from NMR well logs. Velocity and NMR-derived permeability and porosity relationships integrated with velocity tomography (based on crosswell seismic measurements recorded between two wells 100 m apart) capture two flow units that are supported with pore scale integration results. Next, we establish a more detailed picture of the complex aquifer pore structures and the critical role they play in water movement, which aids in our ability to characterize not only carbonate aquifers, but reservoirs in general. We analyze petrography and cores to reveal relationships between the rock physical properties that control the compressional and shear wave velocities of the formation. A digital thin section analysis provides the pore size distributions of the rock matrix, which allows us to relate pore structure to permeability and to characterize flow units at the

  19. Shallow water acoustic backscatter and reverberation measurements using a 68-kHz cylindrical array

    Science.gov (United States)

    Gallaudet, Timothy Cole

    2001-10-01

    The characterization of high frequency, shallow water acoustic backscatter and reverberation is important because acoustic systems are used in many scientific, commercial, and military applications. The approach taken is to use data collected by the Toroidal Volume Search Sonar (TVSS), a 68 kHz multibeam sonar capable of 360° imaging in a vertical plane perpendicular to its direction of travel. With this unique capability, acoustic backscatter imagery of the seafloor, sea surface, and horizontal and vertical planes in the volume are constructed from data obtained in 200m deep waters in the Northeastern Gulf of Mexico when the TVSS was towed 78m below the surface, 735m astern of a towship. The processed imagery provide a quasi-synoptic characterization of the spatial and temporal structure of boundary and volume acoustic backscatter and reverberation. Diffraction, element patterns, and high sidelobe levels are shown to be the most serious problems affecting cylindrical arrays such as the TVSS, and an amplitude shading method is presented for reducing the peak sidelobe levels of irregular-line and non-coplanar arrays. Errors in the towfish's attitude and motion sensor, and irregularities in the TVSS's transmitted beampattern produce artifacts in the TVSS-derived bathymetry and seafloor acoustic backscatter imagery. Correction strategies for these problems are described, which are unique in that they use environmental information extracted from both ocean boundaries. Sea surface and volume acoustic backscatter imagery are used to explore and characterize the structure of near-surface bubble clouds, schooling fish, and zooplankton. The simultaneous horizontal and vertical coverage provided by the TVSS is shown to be a primary advantage, motivating further use of multibeam sonars in these applications. Whereas boundary backscatter fluctuations are well described by Weibull, K, and Rayleigh mixture probability distributions, those corresponding to volume backscatter are

  20. Intensive sound speed monitoring in ocean and its impact on the GPS/acoustic seafloor geodetic measurement

    Science.gov (United States)

    Kido, Motoyuki

    2016-04-01

    GPS/acoustic (GPS/A) technique, based on GPS positioning and acoustic ranging, is now getting a popular tool to measure seafloor crustal movement. Several groups in the world have been intensively conducted campaign surveys in the region of scientifically interest. As the technology of measurement has been matured and plenty of data are accumulated, researchers are now aware of the limit of its precision mainly due to unexpected undulation of sound speed in ocean, which significantly degrades acoustic ranging. If sound speed structure keeps its figure during survey period, e.g., more than a couple of hours, it can be estimated by a moving survey to get sufficient paths from various directions to illustrate the structure. However the sound speed structure often varies quickly with in a hour due to internal gravitational wave excited by interaction of tidal current and seafloor topography. In this case one cannot separate temporal and spatial variations. We revisited our numerous sound speed profile data derived from numbers of XBT measurements, which were concurrently carried out with GPS/A survey along the Nankai Trough and Japan Trench. Among the measurements, we found notably short-period variation in sound speed profile through intensive XBT survey repeatedly cast every 6 minutes for one hour, which also appeared in residuals in traveltime of acoustic ranging. The same feature is also found in more moderate rate for semidiurnal undulation, in which vertical oscillation of the middle of the profile can be clearly seen rather than variation of absolute sound speed. This also reflects traveltime residuals in the GPS/A measurement. These typical frequencies represent dominant wavelengths of spatial sound speed variation. In the latter, local horizontal variation can be negligible in the vicinity of a point survey area and the traditional analysis can be applicable that assumes time-varying stratified sound speed structure. In the former case, on the contrary, local

  1. Simulation and measurement of different hydrophone components for acoustic particle detection; Simulation und Messung verschiedener Hydrophonkomponenten zur akustischen Teilchendetektion

    Energy Technology Data Exchange (ETDEWEB)

    Salomon, K.S.

    2007-01-26

    A study of piezoceramics as sensitive elements for the use in acoustical astroparticle physics is presented in this work. This study aims to develop underwater microphones (hydrophones) in order to detect thermoacoustic sound pulses, which are produced in neutrino interactions. The sensitive elements of the acoustical detectors, the piezo ceramics, are under investigation in this work. Therefore the equations of a piezo are solved in simulations to derive its macroscopic properties. Especially the impedance and the displacement of the piezo as response to applied voltage are of interest. This is correlated with the electrical and mechanical answer of a piezo when sending. For receiving the resulting voltage or the electrical charge due to applied stress are of interest. In the present studies cylinder and hollow cylinder were analyzed. Insight of the interrelationship between the displacement and the impedance is given. The impedance is fitted with an equivalent circuit, to derive the mechanical analog properties. Furthermore the effect of the piezo geometry to the resonance frequencies is explored. Further calculations were made to reveal the sound field produced by a piezo. Measurements of the impedance with a phase-gain-analyser are made. On the other side the displacement is measured using optical interferometry. Beside the simulation and measurements of the piezosensitive elements a study for a trigger-algorithm using the crosscorrelation is introduced. In this study in situ measurements with low signal amplitudes are used to describe noise. To this noise data signals were added and it was examined how well the signals can be reconstructed. Based on the result of this work and taking commercial available piezoceramic materials into account, the optimal sensitive element of an acoustic neutrino detector is a PZT-5A disc with a diameter of 5 mm and a height of 10 mm. A single detector of this kind is able to detect neutrinos with energies more then one PeV as it

  2. Design and Instrumentation of a Measurement and Calibration System for an Acoustic Telemetry System

    OpenAIRE

    Zhiqun Deng; Mark Weiland; Thomas Carlson; M. Brad Eppard

    2010-01-01

    The Juvenile Salmon Acoustic Telemetry System (JSATS) is an active sensing technology developed by the U.S. Army Corps of Engineers, Portland District, for detecting and tracking small fish. It is used primarily for evaluating behavior and survival of juvenile salmonids migrating through the Federal Columbia River Power System to the Pacific Ocean. It provides critical data for salmon protection and development of more “fish-friendly” hydroelectric facilities. The objective of this study was ...

  3. Modelling acoustic propagation beneath Antarctic sea ice using measured environmental parameters

    Science.gov (United States)

    Alexander, Polly; Duncan, Alec; Bose, Neil; Williams, Guy

    2016-09-01

    Autonomous underwater vehicles are improving and expanding in situ observations of sea ice for the validation of satellite remote sensing and climate models. Missions under sea ice, particularly over large distances (up to 100 km) away from the immediate vicinity of a ship or base, require accurate acoustic communication for monitoring, emergency response and some navigation systems. We investigate the propagation of acoustic signals in the Antarctic seasonal ice zone using the BELLHOP model, examining the influence of ocean and sea ice properties. We processed available observations from around Antarctica to generate input variables such as sound speed, surface reflection coefficient (R) and roughness parameters. The results show that changes in the sound speed profile make the most significant difference to the propagation of the direct path signal. The inclusion of the surface reflected signals from a flat ice surface was found to greatly decrease the transmission loss with range. When ice roughness was added, the transmission loss increased with roughness, in a manner similar to the direct path transmission loss results. The conclusions of this work are that: (1) the accuracy of acoustic modelling in this environment is greatly increased by using realistic sound speed data; (2) a risk averse ranging model would use only the direct path signal transmission; and (3) in a flat ice scenario, much greater ranges can be achieved if the surface reflected transmission paths are included. As autonomous missions under sea ice increase in scale and complexity, it will be increasingly important for operational procedures to include effective modelling of acoustic propagation with representative environmental data.

  4. Measuring fast-temporal sediment fluxes with an analogue acoustic sensor: a wind tunnel study

    OpenAIRE

    Poortinga, A.; Minnen, van, P.; Riksen, M.J.P.M.; Seeger, M.

    2010-01-01

    Research objective In this study, we test two passive traps (BEST sampler and MWAC sampler) and one acoustic device (saltiphone) in an aeolian sand wind tunnel to investigate how the experimental setup and the subsequent data processing affect the quantification of the aeolian sand flux. Type of research: Empirical research Method of data collection: Wind tunnel experiments Data comprises: - Wind velocity - Mass transport per height for different samplers - Analogue output of Saltiphone - Mas...

  5. The uncertainties calculation of acoustic method for measurement of dissipative properties of heterogeneous non-metallic materials

    Directory of Open Access Journals (Sweden)

    Мaryna O. Golofeyeva

    2015-12-01

    Full Text Available The effective use of heterogeneous non-metallic materials and structures needs measurement of reliable values of dissipation characteristics, as well as common factors of their change during the loading process. Aim: The aim of this study is to prepare the budget for measurement uncertainty of dissipative properties of composite materials. Materials and Methods: The method used to study the vibrational energy dissipation characteristics based on coupling of vibrations damping decrement and acoustic velocity in a non-metallic heterogeneous material is reviewed. The proposed method allows finding the dependence of damping on vibrations amplitude and frequency of strain-stress state of material. Results: Research of the accuracy of measurement method during the definition of decrement attenuation of fluctuations in synthegran was performed. The international approach for evaluation of measurements quality is used. It includes the common practice international rules for uncertainty expression and their summation. These rules are used as internationally acknowledged confidence measure to the measurement results, which includes testing. The uncertainties budgeting of acoustic method for measurement of dissipative properties of materials were compiled. Conclusions: It was defined that there are two groups of reasons resulting in errors during measurement of materials dissipative properties. The first group of errors contains of parameters changing of calibrated bump in tolerance limits, displacement of sensor in repeated placement to measurement point, layer thickness variation of contact agent because of irregular hold-down of resolvers to control surface, inaccuracy in reading and etc. The second group of errors is linked with density and Poisson’s ratio measurement errors, distance between sensors, time difference between signals of vibroacoustic sensors.

  6. On the measurement of high-energetic neutrinos with the IceCube neutrino telescope and with acoustic detection methods

    Energy Technology Data Exchange (ETDEWEB)

    Schunck, Matthias

    2011-10-07

    In this thesis, two subjects have been addressed to enhance the detection of astrophysical neutrinos with the existing IceCube neutrino telescope as well as to explore new detection methods, namely the acoustic detection. In the first part of this thesis, the determination of the acoustic attenuation length in South-Pole ice is presented. This is part of a feasibility study to investigate the acoustic neutrino detection as a possibility to enhance the detection of the highest-energy neutrinos. For this, the acoustic properties of the ice have to be known, and the South-Pole Acoustic Test Setup (SPATS) has been built to determine these. The attenuation length is determined using in-situ measurements with SPATS and a retrievable transmitter (pinger), which was deployed in a depth between 190 and 500 m into the water-filled drilling holes. Even though, the unknown angular-dependent sensitivities of the SPATS sensor channels cannot be avoided and are considered as the dominant systematic effect for these measurements. In this thesis, the acoustic attenuation length is calculated by comparing the energy contents of the pinger pulses recorded by the various SPATS sensor channels for different distances between the pinger and the respective channel. The energy was calculated from the Fourier spectra of the pinger pulses for a frequency range between 5 and 35 kHz. The attenuation coefficient is calculated for each channel individually and the weighted mean over the distribution of all considered channels leads to an attenuation length of 264{sup +52} {sub -37} m. The dependence of the attenuation on both depth and frequency has been investigated, showing no indications for either. In the second part, a new event reconstruction method based on a Top-Down approach is presented. The method has been implemented for the IC40 detector and applied to the muon energy reconstruction. The Top-Down method is based on the direct comparison of single measured events with a large sample

  7. On the measurement of high-energetic neutrinos with the IceCube neutrino telescope and with acoustic detection methods

    International Nuclear Information System (INIS)

    In this thesis, two subjects have been addressed to enhance the detection of astrophysical neutrinos with the existing IceCube neutrino telescope as well as to explore new detection methods, namely the acoustic detection. In the first part of this thesis, the determination of the acoustic attenuation length in South-Pole ice is presented. This is part of a feasibility study to investigate the acoustic neutrino detection as a possibility to enhance the detection of the highest-energy neutrinos. For this, the acoustic properties of the ice have to be known, and the South-Pole Acoustic Test Setup (SPATS) has been built to determine these. The attenuation length is determined using in-situ measurements with SPATS and a retrievable transmitter (pinger), which was deployed in a depth between 190 and 500 m into the water-filled drilling holes. Even though, the unknown angular-dependent sensitivities of the SPATS sensor channels cannot be avoided and are considered as the dominant systematic effect for these measurements. In this thesis, the acoustic attenuation length is calculated by comparing the energy contents of the pinger pulses recorded by the various SPATS sensor channels for different distances between the pinger and the respective channel. The energy was calculated from the Fourier spectra of the pinger pulses for a frequency range between 5 and 35 kHz. The attenuation coefficient is calculated for each channel individually and the weighted mean over the distribution of all considered channels leads to an attenuation length of 264+52-37 m. The dependence of the attenuation on both depth and frequency has been investigated, showing no indications for either. In the second part, a new event reconstruction method based on a Top-Down approach is presented. The method has been implemented for the IC40 detector and applied to the muon energy reconstruction. The Top-Down method is based on the direct comparison of single measured events with a large sample of simulated

  8. Relationships between preference ratings, sensory profiles, and acoustical measurements in concert halls.

    Science.gov (United States)

    Kuusinen, Antti; Pätynen, Jukka; Tervo, Sakari; Lokki, Tapio

    2014-01-01

    Preferences of concert hall acoustics are explored with preference mapping. The investigation is performed on previously gathered data from individual vocabulary profiling of nine concert halls and three pieces of symphonic music, namely, excerpts of compositions by Beethoven, Bruckner, and Mozart. Individual preferences are regressed onto a latent three-dimensional sensory space obtained by multiple factor analysis of descriptive sensory data. Overlaying individually estimated preference surfaces onto one another produces preference maps which illustrates both the overall preference of the stimuli as well as differences between individual listeners. A comparison of the maps between music motifs illustrates how each music signal affects the weighting of different acoustical qualities in preference judgments. Differences in preferences between individuals are pronounced in the excerpts of Beethoven and Bruckner, while the responses are more homogeneous for Mozart music motif. Overall, proximity is identified as the main aspect associated with preference, but also loudness, envelopment, and bass are important. A correlation analysis of objective parameters and subjective perceptions substantiates the importance of lateral sound energy for good concert hall acoustics. Particularly, the lateral early energy fraction at high frequencies is found to be associated with the perception of proximity, and hence, also with preference. PMID:24437764

  9. A Connection Model between the Positioning Mechanism and Ultrasonic Measurement System via a Web Browser to Assess Acoustic Target Strength

    Science.gov (United States)

    Ishii, Ken; Imaizumi, Tomohito; Abe, Koki; Takao, Yoshimi; Tamura, Shuko

    This paper details a network-controlled measurement system for use in fisheries engineering. The target strength (TS) of fish is important in order to convert acoustic integration values obtained during acoustic surveys into estimates of fish abundance. The target strength pattern is measured with the combination of the rotation system for the aspect of the sample and the echo data acquisition system using the underwater supersonic wave. The user interface of the network architecture is designed for collaborative use with researchers in other organizations. The flexible network architecture is based on the web direct-access model for the rotation mechanism. The user interface is available for monitoring and controlling via a web browser that is installed in any terminal PC (personal computer). Previously the combination of two applications was performed not by a web browser but by the exclusive interface program. So a connection model is proposed between two applications by indirect communication via the DCOM (Distributed Component Object Model) server and added in the web direct-access model. A prompt report system in the TS measurement system and a positioning and measurement system using an electric flatcar via a web browser are developed. By a secure network architecture, DCOM communications via both Intranet and LAN are successfully certificated.

  10. Improved WiggleZ Dark Energy Survey Distance Measurements to z = 1 with Reconstruction of the Baryonic Acoustic Feature

    CERN Document Server

    Kazin, Eyal A; Blake, Chris; Padmanabhan, Nikhil

    2014-01-01

    We present significant improvements in cosmic distance measurements from the WiggleZ Dark Energy Survey, achieved by applying the reconstruction of the baryonic acoustic feature technique. We show using both data and simulations that the reconstruction technique can often be effective despite patchiness of the survey, significant edge effects and shot-noise. We investigate three redshift bins in the redshift range 0.2<$z$<1, and in all three find improvement after reconstruction in the detection of the baryonic acoustic feature and its usage as a standard ruler. We measure model independent distance measures $D_{\\mathrm V}(r_{\\mathrm s}^\\mathrm{fid}/r_{\\mathrm s})$ of 1716 $\\pm$ 83 Mpc, 2221 $\\pm$ 101 Mpc, 2516 $\\pm$ 86 Mpc (68% CL) at effective redshifts z = 0.44, 0.6, 0.73, respectively, where $D_{\\mathrm V}$ is the volume-average-distance, and $r_{\\mathrm s}$ is the sound horizon at the end of the baryon drag epoch. These significantly improved 4.8, 4.5 and 3.4 percent accuracy measurements are equiv...

  11. Development of the velocity and the temperature measurement of fluid by using electromagnetic acoustic transducers without contact. Final report

    International Nuclear Information System (INIS)

    The purpose of the investigation is to measure the velocity and the temperature of fluid from the outside of piping by using electromagnetic acoustic transducers without contact i.e. dry condition. We developed these transducers such as transmitters and detectors for this purpose. The distribution of the static magnetic flux and the eddy current was also calculated. The calculation results were shown that a self-exciter type detector had high measurement resolution and low output voltage with increasing the distance between the surface of piping and the detector, compared with a external exciter type detector. The performance of the transducers was investigated from the propagation characteristics such as the sonic speed and the amplitude of the output voltage. All of detectors received the ultrasonic waves, when the piezoresonator was used as a transmitter. However, the detectors of the external exciter type and the self-external type could not receive the ultrasonic waves transmitted by the electromagnetic transmitter due to the low output voltage obtained by smaller size of the detectors. The acoustic velocity for water from the temperature between 10degC and 70degC was investigated by using the electromagnetic transmitter and detectors. The result was good agreement with the reference. On the other hands, the measurement of the fluid velocity could not achieved due to the low output voltage. (author)

  12. Acoustic vector sensor signal processing

    Institute of Scientific and Technical Information of China (English)

    SUN Guiqing; LI Qihu; ZHANG Bin

    2006-01-01

    Acoustic vector sensor simultaneously, colocately and directly measures orthogonal components of particle velocity as well as pressure at single point in acoustic field so that is possible to improve performance of traditional underwater acoustic measurement devices or detection systems and extends new ideas for solving practical underwater acoustic engineering problems. Although acoustic vector sensor history of appearing in underwater acoustic area is no long, but with huge and potential military demands, acoustic vector sensor has strong development trend in last decade, it is evolving into a one of important underwater acoustic technology. Under this background, we try to review recent progress in study on acoustic vector sensor signal processing, such as signal detection, DOA estimation, beamforming, and so on.

  13. Elastic properties of boron carbide films via surface acoustic waves measured by Brillouin light scattering

    Energy Technology Data Exchange (ETDEWEB)

    Salas, E.; Jimenez-Villacorta, F.; Jimenez Rioboo, R.J.; Prieto, C. [Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Cientificas, Cantoblanco, 28049 Madrid (Spain); Sanchez-Marcos, J. [Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Cientificas, Cantoblanco, 28049 Madrid (Spain); Departamento de Quimica-Fisica Aplicada, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Munoz-Martin, A.; Prieto, J.E.; Joco, V. [Centro de Microanalisis de Materiales, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain)

    2013-03-15

    Surface acoustic wave (SAW) velocity has been determined by high resolution Brillouin light scattering to study the mechano-elastic properties of boron carbide films prepared by radio frequency (RF) sputtering. The comparison of experimentally observed elastic behaviour with simulations made by considering film composition obtained from elastic recoil detection analysis-time of flight (ERDA-ToF) spectroscopy allows establishing that elastic properties are determined by that of crystalline boron carbide with a lessening of the SAW velocity values due to surface oxidation. (Copyright copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. [Measurement of evoked acoustic otoemissions: an early screening test of neonatal deafness].

    Science.gov (United States)

    Morgon, Alain

    2002-01-01

    Every child born with deafness displays a pathological language development. An early and specific approach is mandatory, hence requiring an universal hearing screening. Available evidence indicate that performing acoustic otoemissions prior to six months of age is the most reliable method. The recording of the AOE is performed successfully from the 30th week of conceptual age. To obtain AOE in the newborn, one needs to wait until the 3rd day post delivery in 98% of cases. The reliability of the test, the socio-economical cost, the consequences of the screening and the role of the family have to be discussed.

  15. Nasal cavity dimensions in guinea pig and rat measured by acoustic rhinometry and fluid-displacement method

    DEFF Research Database (Denmark)

    Straszek, Sune; Pedersen, O.F.

    2004-01-01

    The purpose of the study was to measure nasal passageway dimensions in guinea pigs and rats by use of acoustic rhinometry (AR) and by a previously described fluid-displacement method (FDM) (Straszek SP, Taagehoej F, Graff S, and Pedersen OF. J Appl Physiol 95: 635-642, 2003) to investigate...... the potential of AR in pharmacological research with these animals. We measured the area-distance relationships by AR of nasal cavities postmortem in five guinea pigs (Duncan Hartley, 400 g) and five rats (Wistar, 250 g) by using custom-made equipment scaled for the purpose. Nosepieces were made from plastic......-100%) of volume by FDM (see Table 2). We conclude that absolute nasal cavity dimensions are underestimated by AR in guinea pigs and rats. This does not preclude that relative changes may be correctly measured. In vivo trials with AR using rats have not yet been published. The FDM is possibly the most accurate...

  16. Long-term measurements of acoustic background noise in very deep sea

    Energy Technology Data Exchange (ETDEWEB)

    Riccobene, G. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, 95123 Catania (Italy)], E-mail: riccobene@lns.infn.it

    2009-06-01

    The NEMO (NEutrino Mediterranean Observatory) Collaboration installed, 25 km E offshore the port of Catania (Sicily) at 2000 m depth, an underwater laboratory to perform long-term tests of prototypes and new technologies for an underwater high energy neutrino km{sup 3}-scale detector in the Mediterranean Sea. In this framework the Collaboration deployed and successfully operated for about two years, starting from January 2005, an experimental apparatus for on-line monitoring of deep-sea noise. The station was equipped with four hydrophones and it is operational in the range 30 Hz-43 kHz. This interval of frequencies matches the range suitable for the proposed acoustic detection technique of high energy neutrinos. Hydrophone signals were digitized underwater at 96 kHz sampling frequency and 24 bits resolution. The stored data library, consisting of more than 2000 h of recordings, is a unique tool to model underwater acoustic noise at large depth, to characterize its variations as a function of environmental parameters, biological sources and human activities (ship traffic, etc.), and to determine the presence of cetaceans in the area.

  17. A wireless interrogation system exploiting narrowband acoustic resonator for remote physical quantity measurement.

    Science.gov (United States)

    Friedt, J-M; Droit, C; Martin, G; Ballandras, S

    2010-01-01

    Monitoring physical quantities using acoustic wave devices can be advantageously achieved using the wave characteristic dependence to various parametric perturbations (temperature, stress, and pressure). Surface acoustic wave (SAW) resonators are particularly well suited to such applications as their resonance frequency is directly influenced by these perturbations, modifying both the phase velocity and resonance conditions. Moreover, the intrinsic radio frequency (rf) nature of these devices makes them ideal for wireless applications, mainly exploiting antennas reciprocity and piezoelectric reversibility. In this paper, we present a wireless SAW sensor interrogation unit operating in the 434 MHz centered ISM band--selected as a tradeoff between antenna dimensions and electromagnetic wave penetration in dielectric media--based on the principles of a frequency sweep network analyzer. We particularly focus on the compliance with the ISM standard which reveals complicated by the need for switching from emission to reception modes similarly to radar operation. In this matter, we propose a fully digital rf synthesis chain to develop various interrogation strategies to overcome the corresponding difficulties and comply with the above-mentioned standard. We finally assess the reader interrogation range, accuracy, and dynamics.

  18. A wireless interrogation system exploiting narrowband acoustic resonator for remote physical quantity measurement

    Energy Technology Data Exchange (ETDEWEB)

    Friedt, J.-M [SENSeOR, 32 Avenue de l' Observatoire, 25044 Besancon (France); Droit, C.; Martin, G.; Ballandras, S. [Department of Time and Frequency, FEMTO-ST, 32 Avenue de l' Observatoire, 25044 Besancon (France)

    2010-01-15

    Monitoring physical quantities using acoustic wave devices can be advantageously achieved using the wave characteristic dependence to various parametric perturbations (temperature, stress, and pressure). Surface acoustic wave (SAW) resonators are particularly well suited to such applications as their resonance frequency is directly influenced by these perturbations, modifying both the phase velocity and resonance conditions. Moreover, the intrinsic radio frequency (rf) nature of these devices makes them ideal for wireless applications, mainly exploiting antennas reciprocity and piezoelectric reversibility. In this paper, we present a wireless SAW sensor interrogation unit operating in the 434 MHz centered ISM band--selected as a tradeoff between antenna dimensions and electromagnetic wave penetration in dielectric media--based on the principles of a frequency sweep network analyzer. We particularly focus on the compliance with the ISM standard which reveals complicated by the need for switching from emission to reception modes similarly to radar operation. In this matter, we propose a fully digital rf synthesis chain to develop various interrogation strategies to overcome the corresponding difficulties and comply with the above-mentioned standard. We finally assess the reader interrogation range, accuracy, and dynamics.

  19. Parametrization of acoustic boundary absorption and dispersion properties in time-domain source/receiver reflection measurement

    NARCIS (Netherlands)

    De Hoop, A.T.; Lam, C.H.; Kooij, B.J.

    2005-01-01

    Closed-form analytic time-domain expressions are obtained for the acoustic pressure associated with the reflection of a monopole point-source excited impulsive acoustic wave by a planar boundary with absorptive and dispersive properties. The acoustic properties of the boundary are modeled as a local

  20. The acoustics of public squares/places: A comparison between results from a computer simulation program and measurements in situ

    DEFF Research Database (Denmark)

    Paini, Dario; Rindel, Jens Holger; Gade, Anders;

    2004-01-01

    or a band during, for instance, music summer festivals) and the best position for the audience. A further result could be to propose some acoustic adjustments to achieve better acoustic quality by considering the acoustic parameters which are typically used for concert halls and opera houses....

  1. Study of baryon acoustic oscillations with SDSS DR12 data and measurement of $\\Omega_\\textrm{DE}(a)$

    CERN Document Server

    Hoeneisen, B

    2016-01-01

    We define Baryon Acoustic Oscillation (BAO) distances $\\hat{d}_\\alpha(z, z_c)$, $\\hat{d}_z(z, z_c)$, and $\\hat{d}_/(z, z_c)$ that do not depend on cosmological parameters. These BAO distances are measured as a function of redshift $z$ with the Sloan Digital Sky Survey (SDSS) data release DR12. From these BAO distances alone, or together with the correlation angle $\\theta_\\textrm{MC}$ of the Cosmic Microwave Background (CMB), we constrain the cosmological parameters in several scenarios. We find $4.3 \\sigma$ tension between the BAO plus $\\theta_\\textrm{MC}$ data and a cosmology with flat space and constant dark energy density $\\Omega_\\textrm{DE}(a)$. Releasing one and/or the other of these constraints obtains agreement with the data. We measure $\\Omega_\\textrm{DE}(a)$ as a function of $a$.

  2. Validation of HF radar probing of the vertical shear of surface currents by acoustic Doppler current profiler measurements

    Science.gov (United States)

    Ivonin, Dmitry V.; Broche, Pierre; Devenon, Jean-Luc; Shrira, Victor I.

    2004-04-01

    There exists no practical way of measuring vertical shear in the water just below the air/sea interface that contains information on air/water momentum fluxes. The paper is concerned with the validation of a recently proposed method of remote sensing of sea subsurface shear by means of a commonly used single-frequency HF radar based on the use of the second-order Bragg echo. To this end a dedicated field experiment was carried out off the French Mediterranean coast. In parallel with the HF radar probing, the independent simultaneous measurements of the subsurface shear profile were obtained by means of acoustic Doppler current profiler mounted on a floating platform, whose position was monitored by GPS. The comparison shows a fairly good agreement of the results (the discrepancy does not exceed 15%) and suggests a higher accuracy of the HF probing.

  3. Vibro-acoustics

    CERN Document Server

    Nilsson, Anders

    2015-01-01

    This three-volume book gives a thorough and comprehensive presentation of vibration and acoustic theories. Different from traditional textbooks which typically deal with some aspects of either acoustic or vibration problems, it is unique of this book to combine those two correlated subjects together. Moreover, it provides fundamental analysis and mathematical descriptions for several crucial phenomena of Vibro-Acoustics which are quite useful in noise reduction, including how structures are excited, energy flows from an excitation point to a sound radiating surface, and finally how a structure radiates noise to a surrounding fluid. Many measurement results included in the text make the reading interesting and informative. Problems/questions are listed at the end of each chapter and the solutions are provided. This will help the readers to understand the topics of Vibro-Acoustics more deeply. The book should be of interest to anyone interested in sound and vibration, vehicle acoustics, ship acoustics and inter...

  4. Handbook of Engineering Acoustics

    CERN Document Server

    Möser, Michael

    2013-01-01

    This book examines the physical background of engineering acoustics, focusing on empirically obtained engineering experience as well as on measurement techniques and engineering methods for prognostics. Its goal is not only to describe the state of art of engineering acoustics but also to give practical help to engineers in order to solve acoustic problems. It deals with the origin, the transmission and the methods of the abating different kinds of air-borne and structure-borne sounds caused by various mechanisms – from traffic to machinery and flow-induced sound. In addition the modern aspects of room and building acoustics, as well as psychoacoustics and active noise control, are covered.

  5. Measurement of baryon acoustic oscillations in the Lyman-α forest fluctuations in BOSS data release 9

    Energy Technology Data Exchange (ETDEWEB)

    Slosar, Anže [Brookhaven National Laboratory, Blgd 510, Upton NY 11375 (United States); Iršič, Vid [Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana (Slovenia); Kirkby, David; Blomqvist, Michael [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Bailey, Stephen; Carithers, Bill [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Busca, Nicolás G.; Aubourg, Éric; Bautista, Julian E. [APC, Université Paris Diderot-Paris 7, CNRS/IN2P3, CEA, Observatoire de Paris, 10, rue A. Domon and L. Duquet, Paris (France); Delubac, Timothée; Rich, James; Goff, J.-M. Le [CEA, Centre de Saclay, IRFU, F-91191 Gif-sur-Yvette (France); Bhardwaj, Vaishali [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 09195 (United States); Bolton, Adam S.; Brownstein, Joel; Dawson, Kyle S. [Department of Physics and Astronomy, University of Utah, 115 S 1400 E, Salt Lake City, UT 84112 (United States); Bovy, Jo [Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540 (United States); Croft, Rupert A.C.; Ho, Shirley [Bruce and Astrid McWilliams Center for Cosmology, Carnegie Mellon University, Pittsburgh, PA 15213 (United States); Font-Ribera, Andreu, E-mail: anze@bnl.gov [Institute of Theoretical Physics, University of Zurich, 8057 Zurich (Switzerland); and others

    2013-04-01

    We use the Baryon Oscillation Spectroscopic Survey (BOSS) Data Release 9 (DR9) to detect and measure the position of the Baryonic Acoustic Oscillation (BAO) feature in the three-dimensional correlation function in the Lyman-α flux fluctuations at a redshift z{sub eff} = 2.4. The feature is clearly detected at significance between 3 and 5 sigma (depending on the broadband model and method of error covariance matrix estimation) and is consistent with predictions of the standard ΛCDM model. We assess the biases in our method, stability of the error covariance matrix and possible systematic effects. We fit the resulting correlation function with several models that decouple the broadband and acoustic scale information. For an isotropic dilation factor, we measure 100 × (α{sub iso} − 1) = −1.6{sup +2.0+4.3+7.4}{sub −2.0−4.1−6.8} (stat.) ±1.0 (syst.) (multiple statistical errors denote 1,2 and 3 sigma confidence limits) with respect to the acoustic scale in the fiducial cosmological model (flat ΛCDM with Ω{sub m} = 0.27, h = 0.7). When fitting separately for the radial and transversal dilation factors we find marginalised constraints 100 × (α{sub ||} − 1) = −1.3{sup +3.5+7.6+12.3}{sub −3.3−6.7−10.2} (stat.) ±2.0 (syst.) and 100 × (α{sub p}erpendicular − 1) = −2.2{sup +7.4+17}{sub −7.1−15} (stat.) ±3.0 (syst.). The dilation factor measurements are significantly correlated with cross-correlation coefficient of ∼ −0.55. Errors become significantly non-Gaussian for deviations over 3 standard deviations from best fit value. Because of the data cuts and analysis method, these measurements give tighter constraints than a previous BAO analysis of the BOSS DR9 Lyman-α sample, providing an important consistency test of the standard cosmological model in a new redshift regime.

  6. Effects of a music therapy voice protocol on speech intelligibility, vocal acoustic measures, and mood of individuals with Parkinson's disease.

    Science.gov (United States)

    Haneishi, E

    2001-01-01

    This study examined the effects of a Music Therapy Voice Protocol (MTVP) on speech intelligibility, vocal intensity, maximum vocal range, maximum duration of sustained vowel phonation, vocal fundamental frequency, vocal fundamental frequency variability, and mood of individuals with Parkinson's disease. Four female patients, who demonstrated voice and speech problems, served as their own controls and participated in baseline assessment (study pretest), a series of MTVP sessions involving vocal and singing exercises, and final evaluation (study posttest). In study pre and posttests, data for speech intelligibility and all acoustic variables were collected. Statistically significant increases were found in speech intelligibility, as rated by caregivers, and in vocal intensity from study pretest to posttest as the results of paired samples t-tests. In addition, before and after each MTVP session (session pre and posttests), self-rated mood scores and selected acoustic variables were collected. No significant differences were found in any of the variables from the session pretests to posttests, across the entire treatment period, or their interactions as the results of two-way ANOVAs with repeated measures. Although not significant, the mean of mood scores in session posttests (M = 8.69) was higher than that in session pretests (M = 7.93). PMID:11796078

  7. Measurement of cantilever vibration using impedance-loaded surface acoustic wave sensor

    Science.gov (United States)

    Oishi, Masaki; Hamashima, Hiromitsu; Kondoh, Jun

    2016-07-01

    In this study, an impedance-loaded surface acoustic wave (SAW) sensor was demonstrated to monitor the vibration frequency. Commercialized pressure sensors and a variable capacitor were chosen as external sensors, which were connected to a reflector on a SAW device. As the reflection coefficient of the reflector depended on the impedance, the echo amplitude was influenced by changes in the impedance of the external sensor. The vibration frequency of the cantilever was determined by monitoring the echo amplitude of the SAW device. Moreover, the attenuation constant of an envelope was estimated. The results of our feasibility study indicate that the impedance-loaded SAW sensor can be applied as a detector for structural health monitoring.

  8. Acoustic and Perceptual Measurements of Prosody Production on the Profiling Elements of Prosodic Systems in Children by Children with Autism Spectrum Disorders

    Science.gov (United States)

    Diehl, Joshua John; Paul, Rhea

    2013-01-01

    Prosody production atypicalities are a feature of autism spectrum disorders (ASDs), but behavioral measures of performance have failed to provide detail on the properties of these deficits. We used acoustic measures of prosody to compare children with ASDs to age-matched groups with learning disabilities and typically developing peers. Overall,…

  9. REMORA 3: The first instrumented fuel experiment with on-line gas composition measurement by acoustic sensor

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, T.; Muller, E.; Federici, E. [CEA - Nuclear Energy Div., DEN - Fuel Research Dept. - Cadarache, F-13108 Saint-Paul-Lez-Durance (France); Rosenkrantz, E.; Ferrandis, J. Y. [CNRS - Univ. Montpellier 2, Southern Electronic Inst., UMR 5214, F-34095 Montpellier (France); Tiratay, X.; Silva, V. [CEA, Nuclear Energy Div., DEN, Nuclear Reactors and Facilities Dept., F-91191 Gif Sur Yvette (France); Machard, D. [EDF, SEPTEN, F-69628 Villeurbanne (France); Trillon, G. [AREVA-NP, F-69456 Lyon (France)

    2011-07-01

    With the aim to improve the knowledge of nuclear fuel behaviour, the development of advanced instrumentation used during in-pile experiments in Material Testing Reactor (MTR) is necessary. To obtain data on high Burn-Up MOX fuel performance under transient operating conditions, especially in order to differentiate between the kinetics of fission gas and helium releases and to acquire data on the degradation of the fuel conductivity, a highly instrumented in-pile experiment called REMORA 3 has been conducted by CEA and IES (Southern Electronic Inst. - CNRS - Montpellier 2 Univ.). A rodlet extracted from a fuel rod base irradiated for five cycles in a French EDF commercial PWR has been re-instrumented with a fuel centerline thermocouple, a pressure transducer and an advanced acoustic sensor. This latter, patented by CEA and IES, is 1 used in addition to pressure measurement to determine the composition of the gases located in the free volume and the molar fractions of fission gas and helium. This instrumented fuel rodlet has been re-irradiated in a specific rig, GRIFFONOS, located in the periphery of the OSIRIS experimental reactor core at CEA Saclay. First of all, an important design stage and test phases have been performed before the irradiation in order to optimize the response and the accuracy of the sensors: - To control the influence of the temperature on the acoustic sensor behaviour, a thermal mock-up has been built. - To determine the temperature of the gas located in the acoustic cavity as a function of the coolant temperature, and the average temperature of the gases located in the rodlet free volume as a function of the linear heat rate, thermal calculations have been achieved. The former temperature is necessary to calculate the molar fractions of the gases and the latter is used to calculate the total amount of released gas from the internal rod pressure measurements. - At the end of the instrumented rod manufacturing, specific internal free volume and

  10. Measuring sea ice permeability as a function of the attenuation and phase velocity shift of an acoustic wave

    Science.gov (United States)

    Hudier, E. J.; Bahoura, M.

    2012-12-01

    Sea ice is a two-phase porous medium consisting of a solid matrix of pure ice and a salty liquid phase. At spring when ice permeability increases, it has been observed that pressure gradients induced at the ice-water interface upstream and downstream of pressure ridge keels can cause sea water and brine to be forced through the ice water boundary. It suggests that salt and heat fluxes through the bottom ice layers may be a major factor controlling the decay of an ice sheet. Knowing how water flows through the ice matrix is fundamental to a modeling of ocean-ice heat exchanges integrating the advective import/export of latent heat that result from melting/freezing within the ice. Permeability is the measurement of the ease with which fluids flow through a porous medium, however one of the most tricky to measure without altering the porosity of the sampled medium. To further complicate the challenge, horizontal and vertical permeability of the ice, referred as ice anisotropy, is significant. Acoustic wave propagation through porous media have been theorized to relate the acoustic velocity and attenuation to the physical properties of the tested material. It is a non-invasive technique, and as such could provide more reliable measurements of sea ice permeability than anything presently used. Simulations combining the Biot's and squirt flow mechanisms are performed to investigate the effect of permeability on the attenuation and phase velocity as a function of frequency. We first present the attenuation dispersion curves for an isotropic sea ice, then low-frequency and high-frequency limits are determined. Optimal frequency range and resolution requirements are evaluated for testing.

  11. Heat flux measured acoustically at Grotto Vent, a hydrothermal vent cluster on the Endeavour Segment, Juan de Fuca Ridge

    Science.gov (United States)

    Xu, G.; Jackson, D. R.; Bemis, K. G.; Rona, P. A.

    2013-12-01

    Over the past several decades, quantifying the heat output has been a unanimous focus of studies at hydrothermal vent fields discovered around the global ocean. Despite their importance, direct measurements of hydrothermal heat flux are very limited due to the remoteness of most vent sites and the complexity of hydrothermal venting. Moreover, almost all the heat flux measurements made to date are snapshots and provide little information on the temporal variation that is expected from the dynamic nature of a hydrothermal system. The Cabled Observatory Vent Imaging Sonar (COVIS, https://sites.google.com/a/uw.edu/covis/) is currently connected to the Endeavour node of the NEPTUNE Canada observatory network (http://www.neptunecanada.ca) to monitor the hydrothermal plumes issuing from a vent cluster (Grotto) on the Endeavour Segment of the Juan de Fuca Ridge. COVIS is acquiring a long-term (20-months to date) time series of the vertical flow rate and volume flux of the hydrothermal plume above Grotto through the Doppler analysis of the acoustic backscatter data (Xu et al., 2013). We then estimate the plume heat flux from vertical flow rate and volume flux using our newly developed inverse method. In this presentation, we will briefly summarize the derivation of the inverse method and present the heat-flux time series obtained consequently with uncertainty quantification. In addition, we compare our heat-flux estimates with the one estimated from the plume in-situ temperatures measured using a Remotely Operative Vehicle (ROV) in 2012. Such comparison sheds light on the uncertainty of our heat flux estimation. Xu, G., Jackson, D., Bemis, K., and Rona, P., 2013, Observations of the volume flux of a seafloor hydrothermal plume using an acoustic imaging sonar, Geochemistry, Geophysics Geosystems, 2013 (in press).

  12. Non-contact acoustic emission measurement for condition monitoring of bearings in rotating machines using laser interferometry

    International Nuclear Information System (INIS)

    For advanced maintenance and safety in nuclear power plants, it is necessary to combine various technologies that are used to monitor the status of different equipment. Non-contact measurement methods offer technical advantages over contact measurement methods, such as the ability to perform spot measurements, adapt to high-temperature environments, and inspect dynamic parts. The acoustic emission (AE) method can detect earlier abnormal signs in bearings than vibration analysis, which is commonly used in power plants. The AE method is also able to detect various other events such as wear and leakage of materials. However, currently, non-contact AE measurement is not used for condition monitoring in power plants. To verify the feasibility of a non-contact AE measurement method using laser interferometry for condition monitoring technology, laboratory tests were conducted using a rotating machine fitted with bearings that had deliberately been made defective. The AE signals propagating from these defects were measured using a Michelson interferometer on the rotating polished shaft, and a piezoelectric sensor positioned on the bearing housing. This paper demonstrates that the non-contact AE method can detect various stages of deterioration in bearings, and therefore, the method can be considered as a useful future tool for condition monitoring of bearings in rotating machines. (author)

  13. Noise suppression in curved glass shells using macro-fiber-composite actuators studied by the means of digital holography and acoustic measurements

    Directory of Open Access Journals (Sweden)

    P. Mokrý

    2015-02-01

    Full Text Available The paper presents methods and experimental results of the semi-active control of noise transmission in a curved glass shell with attached piezoelectric macro fiber composite (MFC actuators. The semi-active noise control is achieved via active elasticity control of piezoelectric actuators by connecting them to an active electric shunt circuit that has a negative effective capacitance. Using this approach, it is possible to suppress the vibration of the glass shell in the normal direction with respect to its surface and to increase the acoustic transmission loss of the piezoelectric MFC-glass composite structure. The effect of the MFC actuators connected to the negative capacitance shunt circuit on the surface distribution of the normal vibration amplitude is studied using frequency-shifted digital holography (FSDH. The principle of the used FSDH method is described in the paper. The frequency dependence of the acoustic transmission loss through the piezoelectric MFC-glass composite structure is estimated using measurements of the specific acoustic impedance of the curved glass shell. The specific acoustic impedance is measured using two microphones and a laser Doppler vibrometer (LDV. The results from the LDV measurements are compared with the FSDH data. The results of the experiments show that using this approach, the acoustic transmission loss in a glass shell can be increased by 36 dB in the frequency range around 247 Hz and by 25 dB in the frequency range around 258 Hz. The experiments indicate that FSDH measurements provide an efficient tool that can be used for fast and accurate measurements of the acoustic transmission loss in large planar structures.

  14. Lattice swelling and modulus change in a helium-implanted tungsten alloy: X-ray micro-diffraction, surface acoustic wave measurements, and multiscale modelling

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, F.; Nguyen-Manh, D.; Gilbert, M. R.; Beck, C. E.; Eliason, J. K.; Maznev, A. A.; Liu, W.; Armstrong, D. E.J.; Nelson, K. A.; Dudarev, S. L.

    2015-02-26

    Using X-ray micro-diffraction and surface acoustic wave spectroscopy, we measure lattice swelling and elastic modulus changes in aW-1% Re alloy after implantation with 3110 appm of helium. An observed lattice expansion of a fraction of a per cent gives rise to an order of magnitude larger reduction in the surface acoustic wave velocity. A multiscale model, combining elasticity and density functional theory, is applied to the interpretation of observations. The measured lattice swelling is consistent with the relaxation volume of self-interstitial and helium-filled vacancy defects that dominate the helium-implanted material microstructure. Larger scale atomistic simulations using an empirical potential confirm the findings of the elasticity and density functional theory model for swelling. The reduction of surface acoustic wave velocity predicted by density functional theory calculations agrees remarkably well with experimental observations.

  15. Acoustical measurements of sound fields between the stage and the orchestra pit inside an historical opera house

    Science.gov (United States)

    Sato, Shin-Ichi; Prodi, Nicola; Sakai, Hiroyuki

    2001-05-01

    To clarify the relationship of the sound fields between the stage and the orchestra pit, we conducted acoustical measurements in a typical historical opera house, the Teatro Comunale of Ferrara, Italy. Orthogonal factors based on the theory of subjective preference and other related factors were analyzed. First, the sound fields for a singer on the stage in relation to the musicians in the pit were analyzed. And then, the sound fields for performers in the pit in relation to the singers on the stage were considered. Because physical factors vary depending on the location of the sound source, performers can move on the stage or in the pit to find the preferred sound field.

  16. Resolution of Forces and Strain Measurements from an Acoustic Ground Test

    Science.gov (United States)

    Smith, Andrew M.; LaVerde, Bruce T.; Hunt, Ronald; Waldon, James M.

    2013-01-01

    The Conservatism in Typical Vibration Tests was Demonstrated: Vibration test at component level produced conservative force reactions by approximately a factor of 4 (approx.12 dB) as compared to the integrated acoustic test in 2 out of 3 axes. Reaction Forces Estimated at the Base of Equipment Using a Finite Element Based Method were Validated: FEM based estimate of interface forces may be adequate to guide development of vibration test criteria with less conservatism. Element Forces Estimated in Secondary Structure Struts were Validated: Finite element approach provided best estimate of axial strut forces in frequency range below 200 Hz where a rigid lumped mass assumption for the entire electronics box was valid. Models with enough fidelity to represent diminishing apparent mass of equipment are better suited for estimating force reactions across the frequency range. Forward Work: Demonstrate the reduction in conservatism provided by; Current force limited approach and an FEM guided approach. Validate proposed CMS approach to estimate coupled response from uncoupled system characteristics for vibroacoustics.

  17. Aerodynamic and acoustical measures of speech, operatic, and Broadway vocal styles in a professional female singer.

    Science.gov (United States)

    Stone, R E; Cleveland, Thomas F; Sundberg, P Johan; Prokop, Jan

    2003-09-01

    Understanding how the voice is used in different styles of singing is commonly based on intuitive descriptions offered by performers who are proficient in only one style. Such descriptions are debatable, lack reproducibility, and lack scientifically derived explanations of the characteristics. We undertook acoustic and aerodynamic analyses of a female subject with professional experience in both operatic and Broadway styles of singing, who sang examples in these two styles. How representative the examples are of the respective styles was investigated by means of a listening test. Further, as a reference point, we compared the styles with her speech. Variation in styles associated with pitch and vocal loudness was investigated for various parameters: subglottal pressure, closed quotient, glottal leakage, H1-H2 difference (the level difference between the two lowest partials of the source spectrum), and glottal compliance (the ratio between the air volume displaced in a glottal pulse and the subglottal pressure). Formant frequencies, long-term-average spectrum, and vibrato characteristics were also studied. Characteristics of operatic style emerge as distinctly different from Broadway style, the latter being more similar to speaking. PMID:14513952

  18. Ocean acoustic hurricane classification.

    Science.gov (United States)

    Wilson, Joshua D; Makris, Nicholas C

    2006-01-01

    Theoretical and empirical evidence are combined to show that underwater acoustic sensing techniques may be valuable for measuring the wind speed and determining the destructive power of a hurricane. This is done by first developing a model for the acoustic intensity and mutual intensity in an ocean waveguide due to a hurricane and then determining the relationship between local wind speed and underwater acoustic intensity. From this it is shown that it should be feasible to accurately measure the local wind speed and classify the destructive power of a hurricane if its eye wall passes directly over a single underwater acoustic sensor. The potential advantages and disadvantages of the proposed acoustic method are weighed against those of currently employed techniques. PMID:16454274

  19. Communication Acoustics

    DEFF Research Database (Denmark)

    Blauert, Jens

    Communication Acoustics deals with the fundamentals of those areas of acoustics which are related to modern communication technologies. Due to the advent of digital signal processing and recording in acoustics, these areas have enjoyed an enormous upswing during the last 4 decades. The book...... the book a source of valuable information for those who want to improve or refresh their knowledge in the field of communication acoustics - and to work their way deeper into it. Due to its interdisciplinary character Communication Acoustics is bound to attract readers from many different areas, such as......: acoustics, cognitive science, speech science, and communication technology....

  20. Influence of impurity on acoustic measurements%杂质对气相声速测量的影响

    Institute of Scientific and Technical Information of China (English)

    刘强; 段远源; 冯晓娟; 林鸿

    2013-01-01

    Gaseous speed of sound is an important thermophysical property and has important applications in science and engineering. However, impurity significantly affects the acoustic measurement accuracy. A model for effects of impurity on acoustic measurement was present in this paper. The effects of impurities on measured speed of sound were related to the molar masses, specific isobaric heat capacities and molar fractions of impurity and sample. The effects of impurities on measured speed of sound of inert gases, propylene, propane, isobutane and CO2 were analyzed using the model. The results indicate that the measured speed of sound shows negative deviation when the mole mass or specific isobaric heat capacity of impurity is higher than that of the sample, otherwise, the measured speed of sound shows positive deviation.%气相声速是流体重要的热物理性质之一,在科学研究以及工程应用中具有重要的价值,但是样品中杂质对声速测量有着重要的影响.建立了杂质在低压下对气相声速测量影响的数学模型,揭示了杂质对纯工质声速的影响主要与其摩尔质量、比定压热容及摩尔成分相关,并且以惰性气体、丙烯、丙烷、异丁烷和二氧化碳中所含典型杂质为例进行了分析.结果表明,摩尔质量或比定压热容高于待测工质的杂质,会给声速测量带来负偏差,反之带来正偏差,并且杂质与工质的摩尔质量或比定压热容相差越大,对实验结果的影响越大.

  1. Low-frequency sound speed and attenuation in sandy seabottom from long-range broadband acoustic measurements.

    Science.gov (United States)

    Wan, Lin; Zhou, Ji-Xun; Rogers, Peter H

    2010-08-01

    A joint China-U.S. underwater acoustics experiment was conducted in the Yellow Sea with a very flat bottom and a strong and sharp thermocline. Broadband explosive sources were deployed both above and below the thermocline along two radial lines up to 57.2 km and a quarter circle with a radius of 34 km. Two inversion schemes are used to obtain the seabottom sound speed. One is based on extracting normal mode depth functions from the cross-spectral density matrix. The other is based on the best match between the calculated and measured modal arrival times for different frequencies. The inverted seabottom sound speed is used as a constraint condition to extract the seabottom sound attenuation by three methods. The first method involves measuring the attenuation coefficients of normal modes. In the second method, the seabottom sound attenuation is estimated by minimizing the difference between the theoretical and measured modal amplitude ratios. The third method is based on finding the best match between the measured and modeled transmission losses (TLs). The resultant seabottom attenuation, averaged over three independent methods, can be expressed as alpha=(0.33+/-0.02)f(1.86+/-0.04)(dB/m kHz) over a frequency range of 80-1000 Hz.

  2. Observations of near-inertial waves in acoustic Doppler current profiler measurements made during the Mixed Layer Dynamics Experiment

    Science.gov (United States)

    Chereskin, T. K.; Levine, M. D.; Harding, A. J.; Regier, L. A.

    1989-06-01

    Measurements of upper ocean shear made during the Mixed Layer Dynamics Experiment (MILDEX) provide evidence of large horizontal scale motion at near-inertial frequency. The measurements consist of shipboard acoustic Doppler current profiles. Four large-scale spatial surveys of 2-4 days duration were made by the R/V Wecoma as a set of boxes approximately 60 km per side around a drifting current meter buoy. Velocity time series from the drifting buoy and from sonar measurements made from FLIP also indicated the presence of motions at near-inertial frequency. Horizontal length and time scales of the motion are estimated from the phase of the shear vector measured during the spatial surveys. Estimates of the length scale of the waves range from 500 to 1000 km, and the frequency is approximately 1.1f. The behavior of the phase is found to be consistent with a model of narrow-band inertial waves with vertical structure such that there is a zero crossing in velocity at the base of the mixed layer (40-60 m).

  3. Relationship Between Distortion Product – Otoacoustic Emissions (DPOAEs) and High-Frequency Acoustic Immittance Measures

    Science.gov (United States)

    De Paula Campos, Ualace; Hatzopoulos, Stavros; Śliwa, Lech K.; Skarżyński, Piotr H.; Jędrzejczak, Wiesław W.; Skarżyński, Henryk; Carvallo, Renata Mota Mamede

    2016-01-01

    Background Pathologies that alter the impedance of the middle ear may consequently modify the DPOAE amplitude. The aim of this study was to correlate information from 2 different clinical procedures assessing middle ear status. Data from DPOAE responses (both DP-Gram and DP I/O functions) were correlated with data from multi-component tympanometry at 1000 Hz. Material/Methods The subjects were divided into a double-peak group (DPG) and a single-peak group (SPG) depending on 1000 Hz tympanogram pattern. Exclusion criteria (described in the Methods section) were applied to both groups and finally only 31 ears were assigned to each group. The subjects were also assessed with traditional tympanometry and behavioral audiometry. Results Compared to the single-peak group, in terms of the 226 Hz tympanometry data, subjects in the DPG group presented: (i) higher values of ear canal volume; (ii) higher peak pressure, and (iii) significantly higher values of acoustic admittance. DPOAE amplitudes were lower in the DPG group only at 6006 Hz, but the difference in amplitude between the DPG and SPG groups decreased as the frequency increased. Statistical differences were observed only at 1001 Hz and a borderline difference at 1501 Hz. In terms of DPOAE I/O functions, significant differences were observed only in 4 of the 50 tested points. Conclusions The 1000-Hz tympanometric pattern significantly affects the structure of DPOAE responses only at 1001 Hz. In this context, changes in the properties of the middle ear (as detected by the 1000 Hz tympanometry) can be considered as prime candidates for the observed variability in the DP-grams and the DP I/O functions. PMID:27299792

  4. Neutral temperature and electron-density measurements in the lower E region by vertical HF sounding in the presence of an acoustic wave

    International Nuclear Information System (INIS)

    An acoustic wave generated at ground level and propagating vertically through the lower ionosphere produces partial reflections of radio waves transmitted by a vertical sounder. The Doppler effect of the radio wave, produced by the acoustic wave motion, depends on the properties of the ionosphere and of the atmosphere. We show that this permits the determination of both the neutral-temperature and the electron-density profiles of the lower E region. The accuracy and the advantages of this method are discussed, and some experimental results are compared with those of other measurement techniques

  5. Relation of Structural and Vibratory Kinematics of the Vocal Folds to Two Acoustic Measures of Breathy Voice Based on Computational Modeling

    Science.gov (United States)

    Samlan, Robin A.; Story, Brad H.

    2011-01-01

    Purpose: To relate vocal fold structure and kinematics to 2 acoustic measures: cepstral peak prominence (CPP) and the amplitude of the first harmonic relative to the second (H1-H2). Method: The authors used a computational, kinematic model of the medial surfaces of the vocal folds to specify features of vocal fold structure and vibration in a…

  6. The broadband measurement facility for acoustic characteristics of underwater acoustic materials in free fields%水声材料构件声学特性自由场宽带测量装置

    Institute of Scientific and Technical Information of China (English)

    李水; 罗马奇; 易燕; 杜纪新

    2011-01-01

    介绍一套新建的水声材料构件声学特性自由场宽带测量装置,在开放消声水池中测量水声材料构件大面积样品的复声压反射系数(回声降低)、复声压透射系数(插入损失)和吸声系数,为研究和评定声纳水下声系统、潜艇声隐身等项目所用的水声材料构件设备声学特性提供了标准测试/校准系统.装置应用了宽带压缩脉冲叠加法和宽带指向性声源,最低测量频率为1 kHz,典型大面积样品尺寸为1.6 mx 1.8 m.利用不锈钢标准样品进行了验证试验,声学性能测量结果和理论值比较显示装置具有良好的测量精度,测量数据准确可靠.%A new broadband measurement facility for acoustic characteristics of underwater acoustic materials in free fields is described in this paper. The complex sound pressure reflection coefficients (echo reduction), complex transmission coefficients (insertion loss) and absorption coefficients can be measured for large area samples in an open anechoic tank. Moreover, it is a test (or calibration) standard system to investigate and assess the properties of underwater acoustic material devise in the sonar underwater acoustic system and submarine sound stealth engineering. The broadband compressed pulse superimposition method and the broadband directional sound source are applied in the facility. The lowest measurement frequency is 1 kHz for the typical large area samples with the size of 1.6 m×l.8 m. Utilizing the steel standard sample, the measurement results and theoretical values of acoustic properties have been compared, it shows that this facility can be provided with good precision and reliable measurement data.

  7. Acoustic Neuroma

    Science.gov (United States)

    An acoustic neuroma is a benign tumor that develops on the nerve that connects the ear to the brain. ... can press against the brain, becoming life-threatening. Acoustic neuroma can be difficult to diagnose, because the ...

  8. Acoustic mapping velocimetry

    Science.gov (United States)

    Muste, M.; Baranya, S.; Tsubaki, R.; Kim, D.; Ho, H.; Tsai, H.; Law, D.

    2016-05-01

    Knowledge of sediment dynamics in rivers is of great importance for various practical purposes. Despite its high relevance in riverine environment processes, the monitoring of sediment rates remains a major and challenging task for both suspended and bed load estimation. While the measurement of suspended load is currently an active area of testing with nonintrusive technologies (optical and acoustic), bed load measurement does not mark a similar progress. This paper describes an innovative combination of measurement techniques and analysis protocols that establishes the proof-of-concept for a promising technique, labeled herein Acoustic Mapping Velocimetry (AMV). The technique estimates bed load rates in rivers developing bed forms using a nonintrusive measurements approach. The raw information for AMV is collected with acoustic multibeam technology that in turn provides maps of the bathymetry over longitudinal swaths. As long as the acoustic maps can be acquired relatively quickly and the repetition rate for the mapping is commensurate with the movement of the bed forms, successive acoustic maps capture the progression of the bed form movement. Two-dimensional velocity maps associated with the bed form migration are obtained by implementing algorithms typically used in particle image velocimetry to acoustic maps converted in gray-level images. Furthermore, use of the obtained acoustic and velocity maps in conjunction with analytical formulations (e.g., Exner equation) enables estimation of multidirectional bed load rates over the whole imaged area. This paper presents a validation study of the AMV technique using a set of laboratory experiments.

  9. Correcting acoustic Doppler current profiler discharge measurement bias from moving-bed conditions without global positioning during the 2004 Glen Canyon Dam controlled flood on the Colorado River

    Science.gov (United States)

    Gartner, J.W.; Ganju, N.K.

    2007-01-01

    Discharge measurements were made by acoustic Doppler current profiler at two locations on the Colorado River during the 2004 controlled flood from Glen Canyon Dam, Arizona. Measurement hardware and software have constantly improved from the 1980s such that discharge measurements by acoustic profiling instruments are now routinely made over a wide range of hydrologic conditions. However, measurements made with instruments deployed from moving boats require reliable boat velocity data for accurate measurements of discharge. This is normally accomplished by using special acoustic bottom track pings that sense instrument motion over bottom. While this method is suitable for most conditions, high current flows that produce downstream bed sediment movement create a condition known as moving bed that will bias velocities and discharge to lower than actual values. When this situation exists, one solution is to determine boat velocity with satellite positioning information. Another solution is to use a lower frequency instrument. Discharge measurements made during the 2004 Glen Canyon controlled flood were subject to moving-bed conditions and frequent loss of bottom track. Due to site conditions and equipment availability, the measurements were conducted without benefit of external positioning information or lower frequency instruments. This paper documents and evaluates several techniques used to correct the resulting underestimated discharge measurements. One technique produces discharge values in good agreement with estimates from numerical model and measured hydrographs during the flood. ?? 2007, by the American Society of Limnology and Oceanography, Inc.

  10. Localization of small arms fire using acoustic measurements of muzzle blast and/or ballistic shock wave arrivals.

    Science.gov (United States)

    Lo, Kam W; Ferguson, Brian G

    2012-11-01

    The accurate localization of small arms fire using fixed acoustic sensors is considered. First, the conventional wavefront-curvature passive ranging method, which requires only differential time-of-arrival (DTOA) measurements of the muzzle blast wave to estimate the source position, is modified to account for sensor positions that are not strictly collinear (bowed array). Second, an existing single-sensor-node ballistic model-based localization method, which requires both DTOA and differential angle-of-arrival (DAOA) measurements of the muzzle blast wave and ballistic shock wave, is improved by replacing the basic external ballistics model (which describes the bullet's deceleration along its trajectory) with a more rigorous model and replacing the look-up table ranging procedure with a nonlinear (or polynomial) equation-based ranging procedure. Third, a new multiple-sensor-node ballistic model-based localization method, which requires only DTOA measurements of the ballistic shock wave to localize the point of fire, is formulated. The first method is applicable to situations when only the muzzle blast wave is received, whereas the third method applies when only the ballistic shock wave is received. The effectiveness of each of these methods is verified using an extensive set of real data recorded during a 7 day field experiment. PMID:23145587

  11. Prediction of acoustic comfort and acoustic silence in Goan Catholic churches

    OpenAIRE

    Menino A. S. M. P. Tavares; S. Rajagopalan; Satish J. Sharma; António P. O. Carvalho

    2009-01-01

    Acoustic Comfort and Acoustic Silence are determinants of tranquility in a worship space. The results presented here are part of a study that investigates the behaviour of acoustically constituted worship parameters in six Catholic churches (Goa, India). Acoustic comfort is quantified through an Acoustic Comfort Impression Index which measures the net comfort induced through the optimization of the desired subjective acoustic impressions for different types of music and different music source...

  12. A transient method for measuring the gas volume fraction in a mixed gas-liquid flow using acoustic resonance spectroscopy

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In this paper, the feasibility of measuring the gas volume fraction in a mixed gas-liquid flow by using an acoustic resonant spectroscopy (ARS) method in a transient way is studied theoretically and experimentally. Firstly, the effects of sizes and locations of a single air bubble in a cylindrical cavity with two open ends on resonant frequencies are investigated numerically. Then, a transient measurement system for ARS is established, and the trends of the resonant frequencies (RFs) and resonant amplitudes (RAs) in the cylindrical cavity with gas flux inside are investigated experimentally. The measurement results by the proposed transient method are compared with those by steady-state ones and numerical ones. The numerical results show that the RFs of the cavity are highly sensitive to the volume of the single air bubble. A tiny bubble volume perturbation may cause a prominent RF shift even though the volume of the air bubble is smaller than 0.1% of that of the cavity. When the small air bubble moves, the RF shift will change and reach its maximum value as it is located at the middle of the cavity. As the gas volume fraction of the two-phase flow is low, both the RFs and RAs from the measurement results decrease dramatically with the increasing gas volume, and this decreasing trend gradually becomes even as the gas volume fraction increases further. These experimental results agree with the theoretical ones qualitatively. In addition, the transient method for ARS is more suitable for measuring the gas volume fraction with randomness and instantaneity than the steady-state one, because the latter could not reflect the random and instant characteristics of the mixed fluid due to the time consumption for frequency sweeping. This study will play a very important role in the quantitative measurement of the gas volume fraction of multiphase flows.

  13. A transient method for measuring the gas volume fraction in a mixed gas-liquid flow using acoustic resonance spectroscopy

    Science.gov (United States)

    Chen, Dehua; Wang, Xiuming; Che, Chengxuan; Cong, Jiansheng; Xu, Delong; Wang, Xiaomin

    2010-08-01

    In this paper, the feasibility of measuring the gas volume fraction in a mixed gas-liquid flow by using an acoustic resonant spectroscopy (ARS) method in a transient way is studied theoretically and experimentally. Firstly, the effects of sizes and locations of a single air bubble in a cylindrical cavity with two open ends on resonant frequencies are investigated numerically. Then, a transient measurement system for ARS is established, and the trends of the resonant frequencies (RFs) and resonant amplitudes (RAs) in the cylindrical cavity with gas flux inside are investigated experimentally. The measurement results by the proposed transient method are compared with those by steady-state ones and numerical ones. The numerical results show that the RFs of the cavity are highly sensitive to the volume of the single air bubble. A tiny bubble volume perturbation may cause a prominent RF shift even though the volume of the air bubble is smaller than 0.1% of that of the cavity. When the small air bubble moves, the RF shift will change and reach its maximum value as it is located at the middle of the cavity. As the gas volume fraction of the two-phase flow is low, both the RFs and RAs from the measurement results decrease dramatically with the increasing gas volume, and this decreasing trend gradually becomes even as the gas volume fraction increases further. These experimental results agree with the theoretical ones qualitatively. In addition, the transient method for ARS is more suitable for measuring the gas volume fraction with randomness and instantaneity than the steady-state one, because the latter could not reflect the random and instant characteristics of the mixed fluid due to the time consumption for frequency sweeping. This study will play a very important role in the quantitative measurement of the gas volume fraction of multiphase flows.

  14. Room acoustic auralization with Ambisonics

    OpenAIRE

    Polack, Jean-Dominique; Leão Figueiredo, Fábio

    2012-01-01

    International audience During the year of 2009, the room acoustics group of the LAM (Équipe Lutheries, Acoustique, Musique de l’Institut Jean Le Rond d’Alembert - Université Pierre et Marie Curie, Paris) performed a series of acoustical measurements in music halls in Paris. The halls were chosen in regarding their importance to the historic, architectural or acoustic domains. The measured ensemble of fourteen rooms includes quite different architectural designs. The measurements were carri...

  15. Anal acoustic reflectometry

    DEFF Research Database (Denmark)

    Mitchell, Peter J; Klarskov, Niels; Telford, Karen J;

    2011-01-01

    Anal acoustic reflectometry is a new technique of assessing anal sphincter function. Five new variables reflecting anal canal function are measured: the opening and closing pressure, the opening and closing elastance, and hysteresis.......Anal acoustic reflectometry is a new technique of assessing anal sphincter function. Five new variables reflecting anal canal function are measured: the opening and closing pressure, the opening and closing elastance, and hysteresis....

  16. Additional acoustic attenuation of coastal turbid water -- Measurements compared with predictions using particle size di

    Institute of Scientific and Technical Information of China (English)

    WEN Hongtao; YANG Yanming; LIU Zhenwen; NIU Fuqiang

    2011-01-01

    Based on reverberation method, the viscous absorptions of 0.2-2.0 kg/m3 sediment and glass bead turbid seawater were measured. It is shown that the measurement results were more consistent with the prediction results using particle size distributions tech

  17. Signatures of the Primordial Universe from Its Emptiness: Measurement of Baryon Acoustic Oscillations from Minima of the Density Field

    Science.gov (United States)

    Kitaura, Francisco-Shu; Chuang, Chia-Hsun; Liang, Yu; Zhao, Cheng; Tao, Charling; Rodríguez-Torres, Sergio; Eisenstein, Daniel J.; Gil-Marín, Héctor; Kneib, Jean-Paul; McBride, Cameron; Percival, Will J.; Ross, Ashley J.; Sánchez, Ariel G.; Tinker, Jeremy; Tojeiro, Rita; Vargas-Magana, Mariana; Zhao, Gong-Bo

    2016-04-01

    Sound waves from the primordial fluctuations of the Universe imprinted in the large-scale structure, called baryon acoustic oscillations (BAOs), can be used as standard rulers to measure the scale of the Universe. These oscillations have already been detected in the distribution of galaxies. Here we propose to measure BAOs from the troughs (minima) of the density field. Based on two sets of accurate mock halo catalogues with and without BAOs in the seed initial conditions, we demonstrate that the BAO signal cannot be obtained from the clustering of classical disjoint voids, but it is clearly detected from overlapping voids. The latter represent an estimate of all troughs of the density field. We compute them from the empty circumsphere centers constrained by tetrahedra of galaxies using Delaunay triangulation. Our theoretical models based on an unprecedented large set of detailed simulated void catalogues are remarkably well confirmed by observational data. We use the largest recently publicly available sample of luminous red galaxies from SDSS-III BOSS DR11 to unveil for the first time a >3 σ BAO detection from voids in observations. Since voids are nearly isotropically expanding regions, their centers represent the most quiet places in the Universe, keeping in mind the cosmos origin and providing a new promising window in the analysis of the cosmological large-scale structure from galaxy surveys.

  18. Signatures of the Primordial Universe from Its Emptiness: Measurement of Baryon Acoustic Oscillations from Minima of the Density Field.

    Science.gov (United States)

    Kitaura, Francisco-Shu; Chuang, Chia-Hsun; Liang, Yu; Zhao, Cheng; Tao, Charling; Rodríguez-Torres, Sergio; Eisenstein, Daniel J; Gil-Marín, Héctor; Kneib, Jean-Paul; McBride, Cameron; Percival, Will J; Ross, Ashley J; Sánchez, Ariel G; Tinker, Jeremy; Tojeiro, Rita; Vargas-Magana, Mariana; Zhao, Gong-Bo

    2016-04-29

    Sound waves from the primordial fluctuations of the Universe imprinted in the large-scale structure, called baryon acoustic oscillations (BAOs), can be used as standard rulers to measure the scale of the Universe. These oscillations have already been detected in the distribution of galaxies. Here we propose to measure BAOs from the troughs (minima) of the density field. Based on two sets of accurate mock halo catalogues with and without BAOs in the seed initial conditions, we demonstrate that the BAO signal cannot be obtained from the clustering of classical disjoint voids, but it is clearly detected from overlapping voids. The latter represent an estimate of all troughs of the density field. We compute them from the empty circumsphere centers constrained by tetrahedra of galaxies using Delaunay triangulation. Our theoretical models based on an unprecedented large set of detailed simulated void catalogues are remarkably well confirmed by observational data. We use the largest recently publicly available sample of luminous red galaxies from SDSS-III BOSS DR11 to unveil for the first time a >3σ BAO detection from voids in observations. Since voids are nearly isotropically expanding regions, their centers represent the most quiet places in the Universe, keeping in mind the cosmos origin and providing a new promising window in the analysis of the cosmological large-scale structure from galaxy surveys.

  19. Stochastic dislocation kinetics and fractal structures in deforming metals probed by acoustic emission and surface topography measurements

    Energy Technology Data Exchange (ETDEWEB)

    Vinogradov, A. [Laboratory for the Physics of Strength of Materials and Intelligent Diagnostic Systems, Togliatti State University, Togliatti 445667 (Russian Federation); Laboratory of Hybrid Nanostructured Materials, NITU MISiS, Moscow 119490 (Russian Federation); Yasnikov, I. S. [Laboratory for the Physics of Strength of Materials and Intelligent Diagnostic Systems, Togliatti State University, Togliatti 445667 (Russian Federation); Estrin, Y. [Laboratory of Hybrid Nanostructured Materials, NITU MISiS, Moscow 119490 (Russian Federation); Centre for Advanced Hybrid Materials, Department of Materials Engineering, Monash University, Clayton, VIC 3800 (Australia)

    2014-06-21

    We demonstrate that the fractal dimension (FD) of the dislocation population in a deforming material is an important quantitative characteristic of the evolution of the dislocation structure. Thus, we show that peaking of FD signifies a nearing loss of uniformity of plastic flow and the onset of strain localization. Two techniques were employed to determine FD: (i) inspection of surface morphology of the deforming crystal by white light interferometry and (ii) monitoring of acoustic emission (AE) during uniaxial tensile deformation. A connection between the AE characteristics and the fractal dimension determined from surface topography measurements was established. As a common platform for the two methods, the dislocation density evolution in the bulk was used. The relations found made it possible to identify the occurrence of a peak in the median frequency of AE as a harbinger of plastic instability leading to necking. It is suggested that access to the fractal dimension provided by AE measurements and by surface topography analysis makes these techniques important tools for monitoring the evolution of the dislocation structure during plastic deformation—both as stand-alone methods and especially when used in tandem.

  20. Combined Environment Acoustic Chamber (CEAC)

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose: The CEAC imposes combined acoustic, thermal and mechanical loads on aerospace structures. The CEAC is employed to measure structural response and determine...

  1. High Performance Acousto-Optic Arrays based on Fiber Bragg Gratings for Measuring Launch Acoustics Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Intelligent Fiber Optic Systems Corporation (IFOS) proposes to prove the feasibility of innovations in acousto-optic sensor development for measurement of launch...

  2. Acoustic velocity measurement across the diameter of a liquid metal column

    Energy Technology Data Exchange (ETDEWEB)

    Calder, C.A.; Wilcox, W.W.

    1978-05-15

    Present techniques for measuring sound velocity in liquid metals have been limited by the use of transducers which cannot survive in extreme temperature conditions. These methods also require relatively long measurement times. An optical noncontacting method has been developed which may be used for extremely short experimental times and very high temperatures and pressures. This technique is being incorporated into an isobaric expansion apparatus in which a 1 mm diam wire sample in a high pressure argon gas environment is resistively heated to melt within a time period of only a few microseconds. Before instability of the liquid column occurs, thermal expansion, enthalpy, and temperature are measured. The addition of the sound velocity measurement permits a more complete determination of the thermophysical properties of the liquid metal.

  3. Acoustic measurement of lubricant-film thickness distribution in ball bearings

    OpenAIRE

    Zhang, J.; Drinkwater, B. W.; Dwyer-Joyce, R.S.

    2006-01-01

    An oil-film thickness monitoring system capable of providing an early warning of lubrication failure in rolling element bearings has been developed. The system is used to measure the lubricant-film thickness in a conventional deep groove ball bearing (shaft diameter 80 mm, ball diameter 12.7 mm). The measurement system comprises a 50 MHz broadband ultrasonic focused transducer mounted on the static outer raceway of the bearing. Typically the lubricant-films in rolling element bearings are bet...

  4. Comparison of bottom-track to global positioning system referenced discharges measured using an acoustic Doppler current profiler

    Science.gov (United States)

    Wagner, C.R.; Mueller, D.S.

    2011-01-01

    A negative bias in discharge measurements made with an acoustic Doppler current profiler (ADCP) can be caused by the movement of sediment on or near the streambed. The integration of a global positioning system (GPS) to track the movement of the ADCP can be used to avoid the systematic negative bias associated with a moving streambed. More than 500 discharge transects from 63 discharge measurements with GPS data were collected at sites throughout the US, Canada, and New Zealand with no moving bed to compare GPS and bottom-track-referenced discharges. Although the data indicated some statistical bias depending on site conditions and type of GPS data used, these biases were typically about 0.5% or less. An assessment of differential correction sources was limited by a lack of data collected in a range of different correction sources and different GPS receivers at the same sites. Despite this limitation, the data indicate that the use of Wide Area Augmentation System (WAAS) corrected positional data is acceptable for discharge measurements using GGA as the boat-velocity reference. The discharge data based on GPS-referenced boat velocities from the VTG data string, which does not require differential correction, were comparable to the discharges based on GPS-referenced boat velocities from the differentially-corrected GGA data string. Spatial variability of measure discharges referenced to GGA, VTG and bottom-tracking is higher near the channel banks. The spatial variability of VTG-referenced discharges is correlated with the spatial distribution of maximum Horizontal Dilution of Precision (HDOP) values and the spatial variability of GGA-referenced discharges is correlated with proximity to channel banks. ?? 2011 Published by Elsevier B.V.

  5. Age-related changes in liver, kidney, and spleen stiffness in healthy children measured with acoustic radiation force impulse imaging

    International Nuclear Information System (INIS)

    Objectives: To evaluate the feasibility and age-related changes of shear wave velocity (SWV) in normal livers, kidneys, and spleens of children using acoustic radiation force impulse (ARFI) imaging. Materials and methods: Healthy pediatric volunteers prospectively underwent abdominal ultrasonography and ARFI. The subjects were divided into three groups according to age: group 1: <5 years old; group 2: 5–10 years old; and group 3: >10 years old. The SWV was measured using a 4–9 MHz linear probe for group 1 and a 1–4 MHz convex probe for groups 2 and 3. Three valid SWV measurements were acquired for each organ. Results: Two hundred and two children (92 male, 110 female) with an average age of 8.1 years (±4.7) were included in this study and had a successful measurement rate of 97% (196/202). The mean SWVs were 1.12 m/s for the liver, 2.19 m/s for the right kidney, 2.33 m/s for the left kidney, and 2.25 m/s for the spleen. The SWVs for the right and left kidneys, and the spleen showed age-related changes in all children (p < 0.001). And the SWVs for the kidneys increased with age in group 1, and those for the liver changed with age in group 3. Conclusions: ARFI measurements are feasible for solid abdominal organs in children using high or low frequency probes. The mean ARFI SWV for the kidneys increased according to age in children less than 5 years of age and in the liver, it changed with age in children over 10

  6. Device for acoustic measurement of food texture using a piezoelectric sensor

    OpenAIRE

    Taniwaki, Mitsuru; Hanada, Takanori; Sakurai, Naoki

    2006-01-01

    We have developed a device that enables direct measurement of food texture. The device inserts a probe into a food sample and detects the vibration caused by the sample's fracture. A piezoelectric sensor was used to detect that vibration. The frequency response of the piezoelectric sensor was measured. Results showed that the sensor covered the full audio frequency range up to 20 kHz. The device probe was designed so that its resonance was not in the signal detection band. An octave multi-fil...

  7. Statistical relations among architectural features and objective acoustical measurements of concert halls

    DEFF Research Database (Denmark)

    Gade, Anders Christian; Siebein, G. W.; Chiang, W.;

    1993-01-01

    properties was developed. Architectural features of interest include both room average values and more-detailed subdivisions of surfaces including shape, volume, height, width, and sound absorption properties of materials. Regression modeling was performed for individual source–receiver paths as well...... as for entire rooms. Measurements data from all three teams were used in the models to assess the sensitivity of the models to expect variations in measurements. The results were compared to the previous work of Barron, Gade, and Hook among others. [Work supported by the National Science Foundation and Concert...

  8. Smartphones as experimental tools to measure acoustical and mechanical properties of vibrating rods

    Science.gov (United States)

    González, Manuel Á.; González, Miguel Á.

    2016-07-01

    Modern smartphones have calculation and sensor capabilities that make them suitable for use as versatile and reliable measurement devices in simple teaching experiments. In this work a smartphone is used, together with low cost materials, in an experiment to measure the frequencies emitted by vibrating rods of different materials, shapes and lengths. The results obtained with the smartphone have been compared with theoretical calculations and the agreement is good. Alternatively, physics students can perform the experiment described here and use their results to determine the dependencies of the obtained frequencies on the rod characteristics. In this way they will also practice research methods that they will probably use in their professional life.

  9. Measuring fast-temporal sediment fluxes with an analogue acoustic sensor: a wind tunnel study.

    Directory of Open Access Journals (Sweden)

    Ate Poortinga

    Full Text Available In aeolian research, field measurements are important for studying complex wind-driven processes for land management evaluation and model validation. Consequently, there have been many devices developed, tested, and applied to investigate a range of aeolian-based phenomena. However, determining the most effective application and data analysis techniques is widely debated in the literature. Here we investigate the effectiveness of two different sediment traps (the BEST trap and the MWAC catcher in measuring vertical sediment flux. The study was performed in a wind tunnel with sediment fluxes characterized using saltiphones. Contrary to most studies, we used the analogue output of five saltiphones mounted on top of each other to determine the total kinetic energy, which was then used to calculate aeolian sediment budgets. Absolute sediment losses during the experiments were determined using a balance located beneath the test tray. Test runs were conducted with different sand sizes and at different wind speeds. The efficiency of the two traps did not vary with the wind speed or sediment size but was affected by both the experimental setup (position of the lowest trap above the surface and number of traps in the saltation layer and the technique used to calculate the sediment flux. Despite this, good agreement was found between sediment losses calculated from the saltiphone and those measured using the balance. The results of this study provide a framework for measuring sediment fluxes at small time resolution (seconds to milliseconds in the field.

  10. Measuring fast-temporal sediment fluxes with an analogue acoustic sensor: a wind tunnel study

    NARCIS (Netherlands)

    Poortinga, A.; Minnen, van J.; Keijsers, J.G.S.; Riksen, M.J.P.M.; Goossens, D.; Seeger, K.M.

    2013-01-01

    In aeolian research, field measurements are important for studying complex wind-driven processes for land management evaluation and model validation. Consequently, there have been many devices developed, tested, and applied to investigate a range of aeolian-based phenomena. However, determining the

  11. Effective Use of Molecular Recognition in Gas Sensing: Results from Acoustic Wave and In-Situ FTIR Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Bodenhofer, K,; Gopel, W.; Hierlemann, A.; Ricco, A.J.

    1998-12-09

    To probe directly the analyte/film interactions that characterize molecular recognition in gas sensors, we recorded changes to the in-situ surface vibrational spectra of specifically fictionalized surface acoustic wave (SAW) devices concurrently with analyte exposure and SAW measurement of the extent of sorption. Fourier-lmnsform infrared external- reflectance spectra (FTIR-ERS) were collected from operating 97-MH2 SAW delay lines during exposure to a range of analytes as they interacted with thin-film coatings previously shown to be selective: cyclodextrins for chiral recognition, Ni-camphorates for Lewis bases such as pyridine and organophosphonates, and phthalocyanines for aromatic compounds. In most cases where specific chemical interactions-metal coordination, "cage" compound inclusion, or z stacking-were expected, analyte dosing caused distinctive changes in the IR spectr~ together with anomalously large SAW sensor responses. In contrast, control experiments involving the physisorption of the same analytes by conventional organic polymers did not cause similar changes in the IR spectra, and the SAW responses were smaller. For a given conventional polymer, the partition coefficients (or SAW sensor signals) roughly followed the analyte fraction of saturation vapor pressure. These SAW/FTIR results support earlier conclusions derived from thickness-shear mode resonator data.

  12. Spatial variation of deep diving odontocetes' occurrence around a canyon region in the Ligurian Sea as measured with acoustic techniques

    Science.gov (United States)

    Giorli, Giacomo; Neuheimer, Anna; Au, Whitlow

    2016-10-01

    Understanding the distribution of animals is of paramount importance for management and conservation, especially for species that are impacted by anthropogenic threats. In the case of marine mammals there has been a growing concern about the impact of human-made noise, in particular for beaked whales and other deep diving odontocetes. Foraging (measured via echolocation clicks at depth) was studied for Cuvier's beaked whale (Ziphius cavirostris), sperm whale (Physeter macrocephalus), long-finned pilot whales (Globicephala melas) and Risso's dolphin (Grampus griseus) using three passive acoustics recorders moored to the bottom of the ocean in a canyon area in the Ligurian Sea between July and December 2011. A Generalized Linear Model was used to test whether foraging was influenced by location and day of the year, including the possibility of interactions between predictors. Contrary to previous studies conducted by visual surveys in this area, all species were detected at all locations, suggesting habitat overlapping. However, significant differences were found in the occurrence of each species at different locations. Beaked and sperm whales foraged significantly more in the northern and western locations, while long-finned pilot whales and Risso's dolphins hunted more in the northern and eastern location.

  13. A comparison of acoustic cavitation detection thresholds measured with piezo-electric and fiber-optic hydrophone sensors.

    Science.gov (United States)

    Bull, Victoria; Civale, John; Rivens, Ian; Ter Haar, Gail

    2013-12-01

    A Fabry-Perot interferometer fiber-optic hydrophone (FOH) was investigated for use as an acoustic cavitation detector and compared with a piezo-ceramic passive cavitation detector (PCD). Both detectors were used to measure negative pressure thresholds for broadband emissions in 3% agar and ex vivo bovine liver simultaneously. FOH-detected half- and fourth-harmonic emissions were also studied. Three thresholds were defined and investigated: (i) onset of cavitation; (ii) 100% probability of cavitation; and (iii) a time-integrated threshold where broadband signals integrated over a 3-s exposure duration, averaged over 5-10 repeat exposures, become statistically significantly greater than noise. The statistical sensitiviy of FOH broadband detection was low compared with that of the PCD (0.43/0.31 in agar/liver). FOH-detected fourth-harmonic data agreed best with PCD broadband (sensitivity: 0.95/0.94, specificity: 0.89/0.76 in agar/liver). The FOH has potential as a cavitation detector, particularly in applications where space is limited or during magnetic resonance-guided studies.

  14. Operating limits for acoustic measurement of rolling bearing oil film thickness

    OpenAIRE

    Dwyer-Joyce, R.S.; Reddyhoff, T.; Drinkwater, B.

    2004-01-01

    An ultrasonic pulse striking a thin layer of liquid trapped between solid bodies will be partially reflected. The proportion reflected is a function of the layer stiffness, which in turn depends on the film thickness and its bulk modulus. In this work, measurements of reflection have been used to determine the thickness of oil films in elastohydrodynamic lubricated (EHL) contacts. A very thin liquid layer behaves like a spring when struck by an ultrasonic pulse. A simple quasi-static spring m...

  15. Operating Limits for Acoustic Measurement of Rolling Bearing Oil Film Thickness

    OpenAIRE

    Dwyer-Joyce, R.S.; Reddyhoff, T.; Drinkwater, B.

    2004-01-01

    An ultrasonic pulse striking a thin layer of liquid trapped between solid bodies will be partially reflected. The proportion reflected is a function of the layer stiffness, which in turn depends on the film thickness and its bulk modulus. In this work, measurements of reflection have been used to determine the thickness of oil films in elastohydrodynamic lubricated (EHL) contacts. A very thin liquid layer behaves like a spring when struck by an ultrasonic pulse. A simple quasi-static spring m...

  16. Measurements of acoustic responses of gaseous propellant injectors. [for rocket combustion

    Science.gov (United States)

    Janardan, B. A.; Daniel, B. R.; Zinn, B. T.

    1976-01-01

    Results are presented for an investigation intended to provide experimental data that can quantitatively describe the way in which various coaxial injector designs affect the stability of gaseous propellant rocket motors. The response factors of configurations that simulate the flow conditions in a gaseous-fuel injector element and a gaseous-oxidizer injector element are measured by using a modified impedance-tube technique and under cold-flow conditions simulating those observed in rocket motors with axial instability. The measured injector response factor data are presented and discussed. It is shown that there is reasonable agreement between the measured injector response factors and those predicted by the Feiler and Heidmann model (1967), and that the orifice length can be varied to shift the resonant frequency of the injector without any change in the magnitude of the response factor at resonance. A change in the injector open-area ratio is found to have a significant effect on the characteristics of the injector response factor.

  17. In-Situ Acoustic Measurements of Temperature Profile in Extreme Environments

    Energy Technology Data Exchange (ETDEWEB)

    Skliar, Mikhail [Univ. of Utah, Salt Lake City, UT (United States)

    2015-03-31

    A gasifier’s temperature is the primary characteristic that must be monitored to ensure its performance and the longevity of its refractory. One of the key technological challenges impacting the reliability and economics of coal and biomass gasification is the lack of temperature sensors that are capable of providing accurate, reliable, and long-life performance in an extreme gasification environment. This research has proposed, demonstrated, and validated a novel approach that uses a noninvasive ultrasound method that provides real-time temperature distribution monitoring across the refractory, especially the hot face temperature of the refractory. The essential idea of the ultrasound measurements of segmental temperature distribution is to use an ultrasound propagation waveguide across a refractory that has been engineered to contain multiple internal partial reflectors at known locations. When an ultrasound excitation pulse is introduced on the cold side of the refractory, it will be partially reflected from each scatterer in the US propagation path in the refractory wall and returned to the receiver as a train of partial echoes. The temperature in the corresponding segment can be determined based on recorded ultrasonic waveform and experimentally defined relationship between the speed of sound and temperature. The ultrasound measurement method offers a powerful solution to provide continuous real time temperature monitoring for the occasions that conventional thermal, optical and other sensors are infeasible, such as the impossibility of insertion of temperature sensor, harsh environment, unavailable optical path, and more. Our developed ultrasound system consists of an ultrasound engineered waveguide, ultrasound transducer/receiver, and data acquisition, logging, interpretation, and online display system, which is simple to install on the existing units with minimal modification on the gasifier or use with new units. This system has been successfully tested

  18. Short-Term Behavioural Responses of the Great Scallop Pecten maximus Exposed to the Toxic Alga Alexandrium minutum Measured by Accelerometry and Passive Acoustics

    Science.gov (United States)

    Coquereau, Laura; Jolivet, Aurélie; Hégaret, Hélène; Chauvaud, Laurent

    2016-01-01

    Harmful algal blooms produced by toxic dinoflagellates have increased worldwide, impacting human health, the environment, and fisheries. Due to their potential sensitivity (e.g., environmental changes), bivalves through their valve movements can be monitored to detect harmful algal blooms. Methods that measure valve activity require bivalve-attached sensors and usually connected cables to data transfers, leading to stress animals and limit the use to sessile species. As a non-intrusive and continuously deployable tool, passive acoustics could be an effective approach to detecting harmful algal blooms in real time based on animal sound production. This study aimed to detect reaction changes in the valve movements of adult Pecten maximus exposed to the toxic dinoflagellate Alexandrium minutum using both accelerometry and passive acoustic methods. Scallops were experimentally exposed to three ecologically relevant concentrations of A. minutum for 2 hours. The number of each type of valve movement and their sound intensity, opening duration, and valve-opening amplitude were measured. Four behaviours were identified: closures, expulsion, displacement, and swimming. The response of P. maximus to A. minutum occurred rapidly at a high concentration. The valve activity of P. maximus was different when exposed to high concentrations (500 000 cells L-1) of A. minutum compared to the non-toxic dinoflagellate Heterocapsa triquetra; the number of valve movements increased, especially closure and expulsion, which were detected acoustically. Thus, this study demonstrates the potential for acoustics and sound production changes in the detection of harmful algal blooms. However, field trials and longer duration experiments are required to provide further evidence for the use of acoustics as a monitoring tool in the natural environment where several factors may interfere with valve behaviours. PMID:27508498

  19. Thickness measurement of steel products with EMAT's (electromagnetic acoustic transducers) at temperatures up to 12000C

    International Nuclear Information System (INIS)

    In ferritic steel specimen the effect of phase transitions can be observed in the sound velocity and in the efficiency of ultrasonic generation in the temperature range up to 10000C. Especially above this temperature the decrease in sound velocity can be reliably compensated to measure the thickness of the specimen from the echo transit time. To reduce the lift-off effect of the EMAT, which deteriorates the signal to noise ratio especially in the region of high ultrasonic damping at temperatures above 10000C, it is proposed to guide the probes independently of the magnet close the surface of the specimen. (orig./HP)

  20. Acoustical Imaging

    CERN Document Server

    Litniewski, Jerzy; Kujawska, Tamara; 31st International Symposium on Acoustical Imaging

    2012-01-01

    The International Symposium on Acoustical Imaging is a unique forum for advanced research, covering new technologies, developments, methods and theories in all areas of acoustics. This interdisciplinary Symposium has been taking place continuously since 1968. In the course of the years the proceedings volumes in the Acoustical Imaging Series have become a reference for cutting-edge research in the field. In 2011 the 31st International Symposium on Acoustical Imaging was held in Warsaw, Poland, April 10-13. Offering both a broad perspective on the state-of-the-art as well as  in-depth research contributions by the specialists in the field, this Volume 31 in the Series contains an excellent collection of papers in six major categories: Biological and Medical Imaging Physics and Mathematics of Acoustical Imaging Acoustic Microscopy Transducers and Arrays Nondestructive Evaluation and Industrial Applications Underwater Imaging

  1. Acoustic textiles

    CERN Document Server

    Nayak, Rajkishore

    2016-01-01

    This book highlights the manufacturing and applications of acoustic textiles in various industries. It also includes examples from different industries in which acoustic textiles can be used to absorb noise and help reduce the impact of noise at the workplace. Given the importance of noise reduction in the working environment in several industries, the book offers a valuable guide for companies, educators and researchers involved with acoustic materials.

  2. Towards direct realisation of the SI unit of sound pressure in the audible hearing range based on optical free-field acoustic particle measurements

    International Nuclear Information System (INIS)

    Since the introduction of the International System of Units (the SI system) in 1960, weights, measures, standardised approaches, procedures, and protocols have been introduced, adapted, and extensively used. A major international effort and activity concentrate on the definition and traceability of the seven base SI units in terms of fundamental constants, and consequently those units that are derived from the base units. In airborne acoustical metrology and for the audible range of frequencies up to 20 kHz, the SI unit of sound pressure, the pascal, is realised indirectly and without any knowledge or measurement of the sound field. Though the principle of reciprocity was originally formulated by Lord Rayleigh nearly two centuries ago, it was devised in the 1940s and eventually became a calibration standard in the 1960s; however, it can only accommodate a limited number of acoustic sensors of specific types and dimensions. International standards determine the device sensitivity either through coupler or through free-field reciprocity but rely on the continuous availability of specific acoustical artefacts. Here, we show an optical method based on gated photon correlation spectroscopy that can measure sound pressures directly and absolutely in fully anechoic conditions, remotely, and without disturbing the propagating sound field. It neither relies on the availability or performance of any measurement artefact nor makes any assumptions of the device geometry and sound field characteristics. Most importantly, the required units of sound pressure and microphone sensitivity may now be experimentally realised, thus providing direct traceability to SI base units

  3. Acoustic telemetry.

    Energy Technology Data Exchange (ETDEWEB)

    Drumheller, Douglas Schaeffer; Kuszmaul, Scott S.

    2003-08-01

    Broadcasting messages through the earth is a daunting task. Indeed, broadcasting a normal telephone conversion through the earth by wireless means is impossible with todays technology. Most of us don't care, but some do. Industries that drill into the earth need wireless communication to broadcast navigation parameters. This allows them to steer their drill bits. They also need information about the natural formation that they are drilling. Measurements of parameters such as pressure, temperature, and gamma radiation levels can tell them if they have found a valuable resource such as a geothermal reservoir or a stratum bearing natural gas. Wireless communication methods are available to the drilling industry. Information is broadcast via either pressure waves in the drilling fluid or electromagnetic waves in the earth and well tubing. Data transmission can only travel one way at rates around a few baud. Given that normal Internet telephone modems operate near 20,000 baud, these data rates are truly very slow. Moreover, communication is often interrupted or permanently blocked by drilling conditions or natural formation properties. Here we describe a tool that communicates with stress waves traveling through the steel drill pipe and production tubing in the well. It's based on an old idea called Acoustic Telemetry. But what we present here is more than an idea. This tool exists, it's drilled several wells, and it works. Currently, it's the first and only acoustic telemetry tool that can withstand the drilling environment. It broadcasts one way over a limited range at much faster rates than existing methods, but we also know how build a system that can communicate both up and down wells of indefinite length.

  4. Acoustic Center or Time Origin?

    DEFF Research Database (Denmark)

    Staffeldt, Henrik

    1999-01-01

    The paper discusses the acoustic center in relation to measurements of loudspeaker polar data. Also, it presents the related concept time origin and discusses the deviation that appears between positions of the acoustic center found by wavefront based and time based measuring methods....

  5. Fundamental frequency and voice perturbation measures in smokers and non-smokers: An acoustic and perceptual study

    Science.gov (United States)

    Freeman, Allison

    This research examined the fundamental frequency and perturbation (jitter % and shimmer %) measures in young adult (20-30 year-old) and middle-aged adult (40-55 year-old) smokers and non-smokers; there were 36 smokers and 36 non-smokers. Acoustic analysis was carried out utilizing one task: production of sustained /a/. These voice samples were analyzed utilizing Multi-Dimensional Voice Program (MDVP) software, which provided values for fundamental frequency, jitter %, and shimmer %.These values were analyzed for trends regarding smoking status, age, and gender. Statistical significance was found regarding the fundamental frequency, jitter %, and shimmer % for smokers as compared to non-smokers; smokers were found to have significantly lower fundamental frequency values, and significantly higher jitter % and shimmer % values. Statistical significance was not found regarding fundamental frequency, jitter %, and shimmer % for age group comparisons. With regard to gender, statistical significance was found regarding fundamental frequency; females were found to have statistically higher fundamental frequencies as compared to males. However, the relationships between gender and jitter % and shimmer % lacked statistical significance. These results indicate that smoking negatively affects voice quality. This study also examined the ability of untrained listeners to identify smokers and non-smokers based on their voices. Results of this voice perception task suggest that listeners are not accurately able to identify smokers and non-smokers, as statistical significance was not reached. However, despite a lack of significance, trends in data suggest that listeners are able to utilize voice quality to identify smokers and non-smokers.

  6. Use of acoustic wave travel-time measurements to probe the near-surface layers of the Sun

    Science.gov (United States)

    Jefferies, S. M.; Osaki, Y.; Shibahashi, H.; Duvall, T. L., Jr.; Harvey, J. W.; Pomerantz, M. A.

    1994-01-01

    The variation of solar p-mode travel times with cyclic frequency nu is shown to provide information on both the radial variation of the acoustic potential and the depth of the effective source of the oscillations. Observed travel-time data for waves with frequency lower than the acoustic cutoff frequency for the solar atmosphere (approximately equals 5.5 mHz) are inverted to yield the local acoustic cutoff frequency nu(sub c) as a function of depth in the outer convection zone and lower atmosphere of the Sun. The data for waves with nu greater than 5.5 mHz are used to show that the source of the p-mode oscillations lies approximately 100 km beneath the base of the photosphere. This depth is deeper than that determined using a standard mixing-length calculation.

  7. Bayesian three-dimensional reconstruction of toothed whale trajectories: passive acoustics assisted with visual and tagging measurements.

    Science.gov (United States)

    Laplanche, Christophe

    2012-11-01

    The author describes and evaluates a Bayesian method to reconstruct three-dimensional toothed whale trajectories from a series of echolocation signals. Localization by using passive acoustic data (time of arrival of source signals at receptors) is assisted by using visual data (coordinates of the whale when diving and resurfacing) and tag information (movement statistics). The efficiency of the Bayesian method is compared to the standard minimum mean squared error statistical approach by comparing the reconstruction results of 48 simulated sperm whale (Physeter macrocephalus) trajectories. The use of the advanced Bayesian method reduces bias (standard deviation) with respect to the standard method up to a factor of 8.9 (13.6). The author provides open-source software which is functional with acoustic data which would be collected in the field from any three-dimensional receptor array design. This approach renews passive acoustics as a valuable tool to study the underwater behavior of toothed whales. PMID:23145606

  8. Radiation acoustics

    CERN Document Server

    Lyamshev, Leonid M

    2004-01-01

    Radiation acoustics is a developing field lying at the intersection of acoustics, high-energy physics, nuclear physics, and condensed matter physics. Radiation Acoustics is among the first books to address this promising field of study, and the first to collect all of the most significant results achieved since research in this area began in earnest in the 1970s.The book begins by reviewing the data on elementary particles, absorption of penetrating radiation in a substance, and the mechanisms of acoustic radiation excitation. The next seven chapters present a theoretical treatment of thermoradiation sound generation in condensed media under the action of modulated penetrating radiation and radiation pulses. The author explores particular features of the acoustic fields of moving thermoradiation sound sources, sound excitation by single high-energy particles, and the efficiency and optimal conditions of thermoradiation sound generation. Experimental results follow the theoretical discussions, and these clearl...

  9. Densitometry By Acoustic Levitation

    Science.gov (United States)

    Trinh, Eugene H.

    1989-01-01

    "Static" and "dynamic" methods developed for measuring mass density of acoustically levitated solid particle or liquid drop. "Static" method, unknown density of sample found by comparison with another sample of known density. "Dynamic" method practiced with or without gravitational field. Advantages over conventional density-measuring techniques: sample does not have to make contact with container or other solid surface, size and shape of samples do not affect measurement significantly, sound field does not have to be know in detail, and sample can be smaller than microliter. Detailed knowledge of acoustic field not necessary.

  10. Identifying open and closed system behaviors at Tungurahua volcano (Ecuador) using SO2 and seismo-acoustic measurements

    Science.gov (United States)

    Hidalgo, Silvana; Battaglia, Jean; Bernard, Benjamin; Steele, Alexander; Arellano, Santiago; Galle, Bo

    2014-05-01

    Tungurahua is one of the most active volcanoes in Ecuador. It is located in Central Ecuador, 160 km South of Quito and 8 km South of the touristic town of Baños. Tungurahua had one eruption every century since 1500, with an activity characterized by ash fallouts and pyroclastic and lava flows. The current eruptive period of Tungurahua began in 1999 with multiple episodes of explosive activity that have threatened the local population. The monitoring network is constituted by 5 short period and 5 broadband seismic stations, 4 DOAS permanent instruments, 4 tiltmeters, 2 permanent high resolution GPS, 4 digital cameras and 10 acoustic flow monitors. The correct interpretation of the different data acquired by this network allows a better understanding of the eruptive behavior of Tungurahua in order to provide early warning to the local population. Tungurahua changed its behavior from a continuously erupting volcano, as it was until 2008, to a sporadically erupting one, showing clear quiescence phases lasting from 40 to 184 days, and intense activity phases lasting from 15 to 70 days. Activity phases are characterized by Strombolian and Vulcanian eruptive styles, producing ash fallouts and in a few occasions pyroclastic flows. In terms of hazard to the local population, one of the goals of monitoring Tungurahura is to forecast the onset and evolution of eruptive phases. In particular the occurrence of large Vulcanian explosions which occur when the conduit is closed is a major issue. Since 2010 we focused our study on the relation between SO2 gas emissions, the seismic and acoustic energies of explosions and the tremor amplitudes. The first observation of comparing these different datasets is that the correlation between seismic and SO2 degassing is not straightforward, and actually the relation reflects the conditions at the vent: open or closed. The onset of eruptive phases in open conduit conditions can be identified which leads to an effective eruption forecasting

  11. Quantitative measurements of acoustical beats by means of the 'improper' use of sound card software

    Energy Technology Data Exchange (ETDEWEB)

    Ganci, S [Museo di Fisica e Meteo-sismologia ' G Sanguineti-G Leonardini' , Piazza N S dell' Orto, 8, 16043 Chiavari (Italy)

    2007-11-15

    Low-cost experiments on acoustical beats are carried out on a personal computer using standard software for a sound card in a non-canonical way, which provides a useful teaching method for a traditional classroom experiment. (letters and comments)

  12. Practical acoustic emission testing

    CERN Document Server

    2016-01-01

    This book is intended for non-destructive testing (NDT) technicians who want to learn practical acoustic emission testing based on level 1 of ISO 9712 (Non-destructive testing – Qualification and certification of personnel) criteria. The essential aspects of ISO/DIS 18436-6 (Condition monitoring and diagnostics of machines – Requirements for training and certification of personnel, Part 6: Acoustic Emission) are explained, and readers can deepen their understanding with the help of practice exercises. This work presents the guiding principles of acoustic emission measurement, signal processing, algorithms for source location, measurement devices, applicability of testing methods, and measurement cases to support not only researchers in this field but also and especially NDT technicians.

  13. Passive broadband acoustic thermometry

    Science.gov (United States)

    Anosov, A. A.; Belyaev, R. V.; Klin'shov, V. V.; Mansfel'd, A. D.; Subochev, P. V.

    2016-04-01

    The 1D internal (core) temperature profiles for the model object (plasticine) and the human hand are reconstructed using the passive acoustothermometric broadband probing data. Thermal acoustic radiation is detected by a broadband (0.8-3.5 MHz) acoustic radiometer. The temperature distribution is reconstructed using a priori information corresponding to the experimental conditions. The temperature distribution for the heated model object is assumed to be monotonic. For the hand, we assume that the temperature distribution satisfies the heat-conduction equation taking into account the blood flow. The average error of reconstruction determined for plasticine from the results of independent temperature measurements is 0.6 K for a measuring time of 25 s. The reconstructed value of the core temperature of the hand (36°C) generally corresponds to physiological data. The obtained results make it possible to use passive broadband acoustic probing for measuring the core temperatures in medical procedures associated with heating of human organism tissues.

  14. Acoustic backscatter measurements with a 153 kHz ADCP in the northeastern Gulf of Mexico: determination of dominant zooplankton and micronekton scatterers

    Science.gov (United States)

    Ressler, Patrick H.

    2002-11-01

    A 153 kHz narrowband acoustic Doppler current profiler (ADCP) was used to measure volume backscattering strength ( Sv) during a deepwater oceanographic survey of cetacean and seabird habitat in the northeastern Gulf of Mexico. Sv was positively related to zooplankton and micronekton biomass (wet displacement volume) in 'sea-truth' net hauls made with a 1 m 2 Multiple Opening-Closing Net Environmental Sensing System (MOCNESS). A subset of these MOCNESS tows was used to explore the relationship between the numerical densities of various taxonomic categories of zooplankton and the ADCP backscatter signal. Crustaceans, small fish, and fragments of non-gas-bearing siphonophores in the net samples all showed significant, positive correlations with the acoustic signal, while other types of gelatinous zooplankton, pteropod and atlantid molluscs, and gas-filled siphonophore floats showed no significant correlation with Sv. Previously published acoustic scattering models for zooplankton were used to calculate expected scattering for several general zooplankton types and sizes for comparison with the field data. Even though gelatinous material often made up a large fraction of the total biomass, crustaceans, small fish, and pteropods were most likely the important scatterers. Since only crustacean and small fish densities were significantly correlated with Sv, it is suggested that Sv at 153 kHz can be used as a relative proxy for the abundance of these organisms in the Gulf of Mexico.

  15. Room Acoustics

    Science.gov (United States)

    Kuttruff, Heinrich; Mommertz, Eckard

    The traditional task of room acoustics is to create or formulate conditions which ensure the best possible propagation of sound in a room from a sound source to a listener. Thus, objects of room acoustics are in particular assembly halls of all kinds, such as auditoria and lecture halls, conference rooms, theaters, concert halls or churches. Already at this point, it has to be pointed out that these conditions essentially depend on the question if speech or music should be transmitted; in the first case, the criterion for transmission quality is good speech intelligibility, in the other case, however, the success of room-acoustical efforts depends on other factors that cannot be quantified that easily, not least it also depends on the hearing habits of the listeners. In any case, absolutely "good acoustics" of a room do not exist.

  16. Acoustical Imaging

    CERN Document Server

    Akiyama, Iwaki

    2009-01-01

    The 29th International Symposium on Acoustical Imaging was held in Shonan Village, Kanagawa, Japan, April 15-18, 2007. This interdisciplinary Symposium has been taking place every two years since 1968 and forms a unique forum for advanced research, covering new technologies, developments, methods and theories in all areas of acoustics. In the course of the years the volumes in the Acoustical Imaging Series have developed and become well-known and appreciated reference works. Offering both a broad perspective on the state-of-the-art in the field as well as an in-depth look at its leading edge research, this Volume 29 in the Series contains again an excellent collection of seventy papers presented in nine major categories: Strain Imaging Biological and Medical Applications Acoustic Microscopy Non-Destructive Evaluation and Industrial Applications Components and Systems Geophysics and Underwater Imaging Physics and Mathematics Medical Image Analysis FDTD method and Other Numerical Simulations Audience Researcher...

  17. Battlefield acoustics

    CERN Document Server

    Damarla, Thyagaraju

    2015-01-01

    This book presents all aspects of situational awareness in a battlefield using acoustic signals. It starts by presenting the science behind understanding and interpretation of sound signals. The book then goes on to provide various signal processing techniques used in acoustics to find the direction of sound source, localize gunfire, track vehicles, and detect people. The necessary mathematical background and various classification and fusion techniques are presented. The book contains majority of the things one would need to process acoustic signals for all aspects of situational awareness in one location. The book also presents array theory, which is pivotal in finding the direction of arrival of acoustic signals. In addition, the book presents techniques to fuse the information from multiple homogeneous/heterogeneous sensors for better detection. MATLAB code is provided for majority of the real application, which is a valuable resource in not only understanding the theory but readers, can also use the code...

  18. Acoustics Research

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Fisheries acoustics data are collected from more than 200 sea-days each year aboard the FRV DELAWARE II and FRV ALBATROSS IV (decommissioned) and the FSV Henry B....

  19. Acoustic detection of pneumothorax

    Science.gov (United States)

    Mansy, Hansen A.; Royston, Thomas J.; Balk, Robert A.; Sandler, Richard H.

    2003-04-01

    This study aims at investigating the feasibility of using low-frequency (pneumothorax detection were tested in dogs. In the first approach, broadband acoustic signals were introduced into the trachea during end-expiration and transmitted waves were measured at the chest surface. Pneumothorax was found to consistently decrease pulmonary acoustic transmission in the 200-1200-Hz frequency band, while less change was observed at lower frequencies (ppneumothorax states (pPneumothorax was found to be associated with a preferential reduction of sound amplitude in the 200- to 700-Hz range, and a decrease of sound amplitude variation (in the 300 to 600-Hz band) during the respiration cycle (pPneumothorax changed the frequency and decay rate of percussive sounds. These results imply that certain medical conditions may be reliably detected using appropriate acoustic measurements and analysis. [Work supported by NIH/NHLBI #R44HL61108.

  20. The point source method for reconstructing an inclusion from boundary measurements in electrical impedance tomography and acoustic scattering

    Science.gov (United States)

    Erhard, Klaus; Potthast, Roland

    2003-10-01

    We employ the point source method (PSM) for the reconstruction of some field u on parts of a domain Omega from the Cauchy data for the field on the boundary partialOmega of the domain. Then, the boundary condition for a perfectly conducting inclusion or a sound-soft object in Omega can be used to find the location and shape of the inhomogeneity. The results show that we can detect perfectly conducting inclusions in impedance tomography from the voltages for one injected current. For acoustic scattering a sound-soft object is found from the knowledge of one (total) field and its normal derivative on partialOmega. The work redesigns the PSM, which was first proposed in the framework of inverse scattering, to solve inverse boundary value problems. Numerical examples are provided for impedance tomography and the sound-soft acoustic boundary value problem.

  1. Characterization of condenser microphones under different environmental conditions for accurate speed of sound measurements with acoustic resonators

    International Nuclear Information System (INIS)

    Condenser microphones are more commonly used and have been extensively modeled and characterized in air at ambient temperature and static pressure. However, several applications of interest for metrology and physical acoustics require to use these transducers in significantly different environmental conditions. Particularly, the extremely accurate determination of the speed of sound in monoatomic gases, which is pursued for a determination of the Boltzmann constant k by an acoustic method, entails the use of condenser microphones mounted within a spherical cavity, over a wide range of static pressures, at the temperature of the triple point of water (273.16 K). To further increase the accuracy achievable in this application, the microphone frequency response and its acoustic input impedance need to be precisely determined over the same static pressure and temperature range. Few previous works examined the influence of static pressure, temperature, and gas composition on the microphone's sensitivity. In this work, the results of relative calibrations of 1/4 in. condenser microphones obtained using an electrostatic actuator technique are presented. The calibrations are performed in pure helium and argon gas at temperatures near 273 K and in the pressure range between 10 and 600 kPa. These experimental results are compared with the predictions of a realistic model available in the literature, finding a remarkable good agreement. The model provides an estimate of the acoustic impedance of 1/4 in. condenser microphones as a function of frequency and static pressure and is used to calculate the corresponding frequency perturbations induced on the normal modes of a spherical cavity when this is filled with helium or argon gas.

  2. Characterization of condenser microphones under different environmental conditions for accurate speed of sound measurements with acoustic resonators.

    Science.gov (United States)

    Guianvarc'h, Cécile; Gavioso, Roberto M; Benedetto, Giuliana; Pitre, Laurent; Bruneau, Michel

    2009-07-01

    Condenser microphones are more commonly used and have been extensively modeled and characterized in air at ambient temperature and static pressure. However, several applications of interest for metrology and physical acoustics require to use these transducers in significantly different environmental conditions. Particularly, the extremely accurate determination of the speed of sound in monoatomic gases, which is pursued for a determination of the Boltzmann constant k by an acoustic method, entails the use of condenser microphones mounted within a spherical cavity, over a wide range of static pressures, at the temperature of the triple point of water (273.16 K). To further increase the accuracy achievable in this application, the microphone frequency response and its acoustic input impedance need to be precisely determined over the same static pressure and temperature range. Few previous works examined the influence of static pressure, temperature, and gas composition on the microphone's sensitivity. In this work, the results of relative calibrations of 1/4 in. condenser microphones obtained using an electrostatic actuator technique are presented. The calibrations are performed in pure helium and argon gas at temperatures near 273 K and in the pressure range between 10 and 600 kPa. These experimental results are compared with the predictions of a realistic model available in the literature, finding a remarkable good agreement. The model provides an estimate of the acoustic impedance of 1/4 in. condenser microphones as a function of frequency and static pressure and is used to calculate the corresponding frequency perturbations induced on the normal modes of a spherical cavity when this is filled with helium or argon gas. PMID:19655971

  3. Bayesian three-dimensional reconstruction of toothed whale trajectories: Passive acoustics assisted with visual and tagging measurements

    OpenAIRE

    Laplanche, Christophe

    2012-01-01

    International audience The author describes and evaluates a Bayesian method to reconstruct three-dimensional toothed whale trajectories from a series of echolocation signals. Localization by using passive acoustic data (time of arrival of source signals at receptors) is assisted by using visual data (coordinates of the whale when diving and resurfacing) and tag information (movement statistics). The efficiency of the Bayesian method is compared to the standard minimum mean squared error st...

  4. 声悬浮及声速测定实验仪的设计%Acoustic levitation and design of sound velocity measurement instrument

    Institute of Scientific and Technical Information of China (English)

    马国利

    2012-01-01

    《声速测定》是大学物理实验中比较普遍的一个综合性实验.在声速测定实验仪的基础上,改进了信号源,并制作了声悬浮配件,使其实现既可以用多种方式测量声速,又可演示声悬浮实验现象.声悬浮及声速测定实验仪悬浮稳定性强,声速测定准确,仪器造价低,使用方便,这样设计节省了实验室资源和空间.%The measurement of sound velocity is a commonly comprehensive experiment among university physics experiments. Our design idea is to, based on the original equipment, improve the signal source and make acoustic levitation parts so as to measure sound velocity in different ways; and demonstrate the experimental phenomena of acoustic levitation. The sound velocity measurement experiment instrument has strong levitation stability, accurate sound velocity measurement, low cost and convenient applications. This design saves laboratory resources and space.

  5. Acoustic biosensors.

    Science.gov (United States)

    Fogel, Ronen; Limson, Janice; Seshia, Ashwin A

    2016-06-30

    Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of cost, size and scalability, as well as potential additional features including integration with microfluidics and electronics, scaled sensitivities associated with smaller dimensions and higher operational frequencies, the ability to multiplex detection across arrays of hundreds of devices embedded in a single chip, increased throughput and the ability to interrogate a wider range of modes including within the same device. Additionally, device fabrication is often compatible with semiconductor volume batch manufacturing techniques enabling cost scalability and a high degree of precision and reproducibility in the manufacturing process. Integration with microfluidics handling also enables suitable sample pre-processing/separation/purification/amplification steps that could improve selectivity and the overall signal-to-noise ratio. Three device types are reviewed here: (i) bulk acoustic wave sensors, (ii) surface acoustic wave sensors, and (iii) micro/nano-electromechanical system (MEMS/NEMS) sensors. PMID:27365040

  6. Development of Millimeter-Wave Velocimetry and Acoustic Time-of-Flight Tomography for Measurements in Densely Loaded Gas-Solid Riser Flow

    Energy Technology Data Exchange (ETDEWEB)

    Fort, James A.; Pfund, David M.; Sheen, David M.; Pappas, Richard A.; Morgen, Gerald P.

    2007-04-01

    The MFDRC was formed in 1998 to advance the state-of-the-art in simulating multiphase turbulent flows by developing advanced computational models for gas-solid flows that are experimentally validated over a wide range of industrially relevant conditions. The goal was to transfer the resulting validated models to interested US commercial CFD software vendors, who would then propagate the models as part of new code versions to their customers in the US chemical industry. Since the lack of detailed data sets at industrially relevant conditions is the major roadblock to developing and validating multiphase turbulence models, a significant component of the work involved flow measurements on an industrial-scale riser contributed by Westinghouse, which was subsequently installed at SNL. Model comparisons were performed against these datasets by LANL. A parallel Office of Industrial Technology (OIT) project within the consortium made similar comparisons between riser measurements and models at NETL. Measured flow quantities of interest included volume fraction, velocity, and velocity-fluctuation profiles for both gas and solid phases at various locations in the riser. Some additional techniques were required for these measurements beyond what was currently available. PNNL’s role on the project was to work with the SNL experimental team to develop and test two new measurement techniques, acoustic tomography and millimeter-wave velocimetry. Acoustic tomography is a promising technique for gas-solid flow measurements in risers and PNNL has substantial related experience in this area. PNNL is also active in developing millimeter wave imaging techniques, and this technology presents an additional approach to make desired measurements. PNNL supported the advanced diagnostics development part of this project by evaluating these techniques and then by adapting and developing the selected technology to bulk gas-solids flows and by implementing them for testing in the SNL riser

  7. Correction of Teledyne Acoustic Doppler Current Profiler (ADCP) Bottom-Track Range Measurements for Instrument Pitch and Roll

    CERN Document Server

    Woodgate, Rebecca A

    2011-01-01

    The Workhorse Acoustic Doppler Current Profiler (ADCP) manufactured by Teledyne RD Instruments (RDI) uses a "Bottom-Tracking" algorithm to yield data intended to represent distance to the bottom. However, current RDI software processing does not take into account the pitch and roll of the instrument. This technical note outlines post-deployment computations required to correct the reported Bottom-Track Ranges for instrument pitch and roll in the scenario where the ADCP is upward-looking with Bottom-Tracking being used to estimate distance to the surface.

  8. Calculation fundamentals for sensitive elements of acoustic transformers of deformation

    International Nuclear Information System (INIS)

    Acoustic method of deformation measurement is considered, and the foundations of the calculation of sensitive elements of acoustic transformers of deformations are given. Acoustic method gives the possibility to measure deformations in almost inaccessible places, for example, in a reactor core. A sensible element transforming deformation into acoustic signal is the constriction of waveguide. Working characteristics and shapes of sensitive elements of an acoustic transformer of linear and angular displacements are presented

  9. An Integrated Laser-Induced Piezoelectric/Differential Confocal Surface Acoustic Wave System for Measurement of Thin Film Young’s Modulus

    Directory of Open Access Journals (Sweden)

    Xiaotang Hu

    2012-09-01

    Full Text Available The present paper presents the design and development results of a system setup for measuring Young’s modulus of thin films by laser-induced surface acoustic waves based on the integration of two detection methods, namely, piezoelectric transducer detection and differential confocal detection, which may be used for conducting consecutive or simultaneous measurements. After demonstrating the capabilities of each detection approach, it is shown how, depending on a wider range of applications, sample materials and measurement environments, the developed integrated system inherits and harnesses the main characteristics of its detection channels, resulting in an more practical and flexible equipment for determining Young’s modulus than traditional nanoindentation equipment, and also suitable for cross-validation purposes.

  10. Acoustic emission

    International Nuclear Information System (INIS)

    This paper is related to our activities on acoustic emission (A.E.). The work is made with different materials: metals and fibre reinforced plastics. At present, acoustic emission transducers are being developed for low and high temperature. A test to detect electrical discharges in electrical transformers was performed. Our experience in industrial tests to detect cracks or failures in tanks or tubes is also described. The use of A.E. for leak detection is considered. Works on pattern recognition of A.E. signals are also being performed. (Author)

  11. Simultaneously measuring thickness, density, velocity and attenuation of thin layers using V(z,t) data from time-resolved acoustic microscopy.

    Science.gov (United States)

    Chen, Jian; Bai, Xiaolong; Yang, Keji; Ju, Bing-Feng

    2015-02-01

    To meet the need of efficient, comprehensive and automatic characterization of the properties of thin layers, a nondestructive method using ultrasonic testing to simultaneously measure thickness, density, sound velocity and attenuation through V(z,t) data, recorded by time-resolved acoustic microscopy is proposed. The theoretical reflection spectrum of the thin layer at normal incidence is established as a function of three dimensionless parameters. The measured reflection spectrum R(θ,ω) is obtained from V(z,t) data and the measured thickness is derived from the signals when the lens is focused on the front and back surface of the thin layer, which are picked up from the V(z,t) data. The density, sound velocity and attenuation are then determined by the measured thickness and inverse algorithm utilizing least squares method to fit the theoretical and measured reflection spectrum at normal incidence. It has the capability of simultaneously measuring thickness, density, sound velocity and attenuation of thin layer in a single V(z,t) acquisition. An example is given for a thin plate immersed in water and the results are satisfactory. The method greatly simplifies the measurement apparatus and procedures, which improves the efficiency and automation for simultaneous measurement of basic mechanical and geometrical properties of thin layers.

  12. 4th Pacific Rim Underwater Acoustics Conference

    CERN Document Server

    Xu, Wen; Cheng, Qianliu; Zhao, Hangfang

    2016-01-01

    These proceedings are a collection of 16 selected scientific papers and reviews by distinguished international experts that were presented at the 4th Pacific Rim Underwater Acoustics Conference (PRUAC), held in Hangzhou, China in October 2013. The topics discussed at the conference include internal wave observation and prediction; environmental uncertainty and coupling to sound propagation; environmental noise and ocean dynamics; dynamic modeling in acoustic fields; acoustic tomography and ocean parameter estimation; time reversal and matched field processing; underwater acoustic localization and communication as well as measurement instrumentations and platforms. These proceedings provide insights into the latest developments in underwater acoustics, promoting the exchange of ideas for the benefit of future research.

  13. Numerical simulations and experimental measurements of steel and ice impacts on concrete for acoustic interrogation of delaminations in bridge decks

    Energy Technology Data Exchange (ETDEWEB)

    Mazzeo, Brian A.; Patil, Anjali N.; Klis, Jeffrey M. [Brigham Young University, Department of Electrical and Computer Engineering, Provo, Utah, 84602 (United States); Hurd, Randy C.; Truscott, Tadd T. [Brigham Young University, Department of Mechanical Engineering, Provo, Utah, 84602 (United States); Guthrie, W. Spencer [Brigham Young University, Department of Civil and Environmental Engineering, Provo, Utah, 84602 (United States)

    2014-02-18

    Delaminations in bridge decks typically result from corrosion of the top mat of reinforcing steel, which leads to a localized separation of the concrete cover from the underlying concrete. Because delaminations cannot be detected using visual inspection, rapid, large-area interrogation methods are desired to characterize bridge decks without disruption to traffic, without the subjectivity inherent in existing methods, and with increased inspector safety. To this end, disposable impactors such as water droplets or ice chips can be dropped using automatic dispensers onto concrete surfaces to excite mechanical vibrations while acoustic responses can be recorded using air-coupled microphones. In this work, numerical simulations are used to characterize the flexural response of a model concrete bridge deck subject to both steel and ice impactors, and the results are compared with similar experiments performed in the laboratory on a partially delaminated concrete bridge deck slab. The simulations offer greater understanding of the kinetics of impacts and the responses of materials.

  14. A high pulse repetition frequency ultrasound system for the ex vivo measurement of mechanical properties of crystalline lenses with laser-induced microbubbles interrogated by acoustic radiation force

    Science.gov (United States)

    Yoon, Sangpil; Aglyamov, Salavat; Karpiouk, Andrei; Emelianov, Stanislav

    2012-08-01

    A high pulse repetition frequency ultrasound system for an ex vivo measurement of mechanical properties of an animal crystalline lens was developed and validated. We measured the bulk displacement of laser-induced microbubbles created at different positions within the lens using nanosecond laser pulses. An impulsive acoustic radiation force was applied to the microbubble, and spatio-temporal measurements of the microbubble displacement were assessed using a custom-made high pulse repetition frequency ultrasound system consisting of two 25 MHz focused ultrasound transducers. One of these transducers was used to emit a train of ultrasound pulses and another transducer was used to receive the ultrasound echoes reflected from the microbubble. The developed system was operating at 1 MHz pulse repetition frequency. Based on the measured motion of the microbubble, Young’s moduli of surrounding tissue were reconstructed and the values were compared with those measured using the indentation test. Measured values of Young’s moduli of four bovine lenses ranged from 2.6 ± 0.1 to 26 ± 1.4 kPa, and there was good agreement between the two methods. Therefore, our studies, utilizing the high pulse repetition frequency ultrasound system, suggest that the developed approach can be used to assess the mechanical properties of ex vivo crystalline lenses. Furthermore, the potential of the presented approach for in vivo measurements is discussed.

  15. Acoustic effects of single electrostatic discharges

    Science.gov (United States)

    Orzech, Łukasz

    2015-10-01

    Electric discharges, depending on their character, can emit different types of energy, resulting in different effects. Single electrostatic discharges besides generation of electromagnetic pulses are also the source of N acoustic waves. Their specified parameters depending on amount of discharging charge enable determination of value of released charge in a function of acoustic descriptor (e.g. acoustic pressure). Presented approach is the basics of acoustic method for measurement of single electrostatic discharges, enabling direct and contactless measurement of value of charge released during ESD. Method for measurement of acoustic effect of impact of a single electrostatic discharge on the environment in a form of pressure shock wave and examples of acoustic descriptors in a form of equation Q=f(pa) are described. The properties of measuring system as well as the results of regression static analyses used to determine the described relationships are analysed in details.

  16. The noise environment of a school classroom due to the operation of utility helicopters. [acoustic measurements of helicopter noise during flight over building

    Science.gov (United States)

    Hilton, D. A.; Pegg, R. J.

    1974-01-01

    Noise measurements under controlled conditions have been made inside and outside of a school building during flyover operations of four different helicopters. The helicopters were operated at a condition considered typical for a police patrol mission. Flyovers were made at an altitude of 500 ft and an airspeed of 45 miles per hour. During these operations acoustic measurements were made inside and outside of the school building with the windows closed and then open. The outside noise measurements during helicopter flyovers indicate that the outside db(A) levels were approximately the same for all test helicopters. For the windows closed case, significant reductions for the inside measured db(A) values were noted for all overflights. These reductions were approximately 20 db(A); similar reductions were noted in other subjective measuring units. The measured internal db(A) levels with the windows open exceeded published classroom noise criteria values; however, for the windows-closed case they are in general agreement with the criteria values.

  17. Acoustic resonance phase locked photoacoustic spectrometer

    Science.gov (United States)

    Pilgrim, Jeffrey S.; Bomse, David S.; Silver, Joel A.

    2003-08-19

    A photoacoustic spectroscopy method and apparatus for maintaining an acoustic source frequency on a sample cell resonance frequency comprising: providing an acoustic source to the sample cell to generate a photoacoustic signal, the acoustic source having a source frequency; continuously measuring detection phase of the photoacoustic signal with respect to source frequency or a harmonic thereof; and employing the measured detection phase to provide magnitude and direction for correcting the source frequency to the resonance frequency.

  18. Factors associated with the impossibility to obtain reliable liver stiffness measurements by means of Acoustic Radiation Force Impulse (ARFI) elastography—Analysis of a cohort of 1031 subjects

    International Nuclear Information System (INIS)

    Introduction: Acoustic Radiation Force Impulse (ARFI) elastography is a non-invasive technique for liver fibrosis assessment. Aim: To assess the feasibility of ARFI elastography in a large cohort of subjects and to identify factors associated with impossibility to obtain reliable liver stiffness (LS) measurements by means of this technique. Methods: Our retrospective study included 1031 adult subjects with or without chronic liver disease. In each subject LS was assessed by means of ARFI elastography. Failure of ARFI measurements was defined if no valid measurement was obtained after at least 10 shots and unreliable in the following situations: fewer than 10 valid shots; or median value of 10 valid measurements with a success rate (SR) < 60% and/or an interquartile range interval (IQR) ≥ 30%. Results: Failure of LS measurements by means of ARFI was observed in 4 subjects (0.3%), unreliable measurements in 66 subjects (6.4%), so reliable measurements were obtained in 961 subjects (93.3%). In univariant analysis, the following risk factors were associated with failed and unreliable measurements: age over 58 years (OR = 0.49; 95% CI 0.30–0.80, p = 0.005), male gender (OR = 0.58; 95% CI 0.34–0.94, p = 0.04), BMI > 27.7 kg/m2 (OR = 0.23, 95% CI 0.13–0.41, p < 0.0001). In multivariate analysis all the factors mentioned above were independently associated with the risk of failed and unreliable measurements. Conclusions: Reliable LS measurements by means of ARFI elastography were obtained in 93.3% of cases. Older age, higher BMI and male gender were associated with the risk of failed and unreliable measurements, but their influence is limited as compared with Transient Elastography

  19. Factors associated with the impossibility to obtain reliable liver stiffness measurements by means of Acoustic Radiation Force Impulse (ARFI) elastography—Analysis of a cohort of 1031 subjects

    Energy Technology Data Exchange (ETDEWEB)

    Bota, Simona, E-mail: bota_simona1982@yahoo.com; Sporea, Ioan, E-mail: isporea@umft.ro; Sirli, Roxana, E-mail: roxanasirli@gmail.com; Popescu, Alina, E-mail: alinamircea.popescu@gmail.com; Danila, Mirela, E-mail: mireladanila@gmail.com; Jurchis, Ana, E-mail: ana.jurchis@yahoo.com; Gradinaru-Tascau, Oana, E-mail: bluonmyown@yahoo.com

    2014-02-15

    Introduction: Acoustic Radiation Force Impulse (ARFI) elastography is a non-invasive technique for liver fibrosis assessment. Aim: To assess the feasibility of ARFI elastography in a large cohort of subjects and to identify factors associated with impossibility to obtain reliable liver stiffness (LS) measurements by means of this technique. Methods: Our retrospective study included 1031 adult subjects with or without chronic liver disease. In each subject LS was assessed by means of ARFI elastography. Failure of ARFI measurements was defined if no valid measurement was obtained after at least 10 shots and unreliable in the following situations: fewer than 10 valid shots; or median value of 10 valid measurements with a success rate (SR) < 60% and/or an interquartile range interval (IQR) ≥ 30%. Results: Failure of LS measurements by means of ARFI was observed in 4 subjects (0.3%), unreliable measurements in 66 subjects (6.4%), so reliable measurements were obtained in 961 subjects (93.3%). In univariant analysis, the following risk factors were associated with failed and unreliable measurements: age over 58 years (OR = 0.49; 95% CI 0.30–0.80, p = 0.005), male gender (OR = 0.58; 95% CI 0.34–0.94, p = 0.04), BMI > 27.7 kg/m{sup 2} (OR = 0.23, 95% CI 0.13–0.41, p < 0.0001). In multivariate analysis all the factors mentioned above were independently associated with the risk of failed and unreliable measurements. Conclusions: Reliable LS measurements by means of ARFI elastography were obtained in 93.3% of cases. Older age, higher BMI and male gender were associated with the risk of failed and unreliable measurements, but their influence is limited as compared with Transient Elastography.

  20. Profile measurements and data from the 2011 Optics, Acoustics, and Stress In Situ (OASIS) project at the Martha's Vineyard Coastal Observatory

    Science.gov (United States)

    Sherwood, Christopher R.; Dickhudt, Patrick J.; Martini, Marinna A.; Montgomery, Ellyn T.; Boss, Emmanuel S.

    2012-01-01

    This report documents data collected by the U.S. Geological Survey (USGS) for the Coastal Model Applications and Field Measurements project under the auspices of the U.S. Navy Office of Naval Research Optics, Acoustics, and Stress In Situ (OASIS) Project. The objective of the measurements was to relate optical and acoustic properties of suspended particles to changes in particle size, concentration, and vertical distribution in the bottom boundary layer near the seafloor caused by wave- and current-induced stresses. This information on the physics of particle resuspension and aggregation and light penetration and water clarity will help improve models of sediment transport, benthic primary productivity, and underwater visibility. There is well-established technology for acoustic profiling, but optical profiles are more difficult to obtain because of the rapid attenuation of light in water. A specially modified tripod with a moving arm was designed to solve this problem by moving instruments vertically in the bottom boundary layer, between the bottom and about 2 meters above the seafloor. The profiling arm was designed, built, and tested during spring and summer 2011 by a team of USGS scientists, engineers, and technicians. To accommodate power requirements and the large data files recorded by some of the optical instruments, the tripod was connected via underwater cable to the Martha's Vineyard Coastal Observatory, operated by the Woods Hole Oceanographic Institution (WHOI). This afforded real-time Internet communication with the embedded computers aboard the tripod. Instruments were mounted on the profiling arm, and additional instruments were mounted elsewhere on the tripod and nearby on the seafloor. The tripod and a small mooring for a profiling current meter were deployed on September 17, 2011, at the Martha's Vineyard Coastal Observatory 12-meter-deep underwater node about 2 kilometers south of Martha's Vineyard, Massachusetts. Divers assisted in the

  1. Studies of a full-scale mechanical prototype line for the ANTARES neutrino telescope and tests of a prototype instrument for deep-sea acoustic measurements

    Energy Technology Data Exchange (ETDEWEB)

    Ageron, M. [CPPM-Centre de Physique des Particules de Marseille, CNRS/IN2P3 et Universite de la Mediterranee, 163 Avenue de Luminy, Case 902, 13288 Marseille Cedex 9 (France); Aguilar, J.A. [IFIC-Instituto de Fisica Corpuscular, Edificios Investigacion de Paterna, CSIC-Universitat de Valencia, Apdo. de Correos 22085, 46071 Valencia (Spain); Albert, A. [GRPHE-Groupe de Recherche en Physique des Hautes Energies, Universite de Haute Alsace, 61 Rue Albert Camus, 68093 Mulhouse Cedex (France); Ameli, F. [Dipartimento di Fisica dell' Universita ' La Sapienza' e Sezione INFN, P.le Aldo Moro 2, 00185 Roma (Italy); Anghinolfi, M. [Dipartimento di Fisica dell' Universita e Sezione INFN, Via Dodecaneso 33, 16146 Genova (Italy); Anton, G. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Physikalisches Institut, Erwin-Rommel-Str. 1, D-91058 Erlangen (Germany); Anvar, S.; Ardellier-Desages, F. [DSM/DAPNIA-Direction des Sciences de la Matiere, Laboratoire de Recherche sur les lois Fondamentales de l' Univers, CEA Saclay, 91191 Gif-sur-Yvette Cedex (France); Aslanides, E.; Aubert, J.-J. [CPPM-Centre de Physique des Particules de Marseille, CNRS/IN2P3 et Universite de la Mediterranee, 163 Avenue de Luminy, Case 902, 13288 Marseille Cedex 9 (France); Auer, R. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Physikalisches Institut, Erwin-Rommel-Str. 1, D-91058 Erlangen (Germany); Barbarito, E. [Dipartimento Interateneo di Fisica e Sezione INFN, Via E. Orabona 4, 70126 Bari (Italy); Basa, S. [LAM-Laboratoire d' Astrophysique de Marseille, CNRS/INSU et Universite de Provence, Traverse du Siphon-Les Trois Lucs, BP 8, 13012 Marseille Cedex 12 (France); Battaglieri, M. [Dipartimento di Fisica dell' Universita e Sezione INFN, Via Dodecaneso 33, 16146 Genova (Italy); Bazzotti, M.; Becherini, Y. [Dipartimento di Fisica dell' Universita e Sezione INFN, Viale Berti Pichat 6/2, 40127 Bologna (Italy)] (and others)

    2007-11-01

    A full-scale mechanical prototype line was deployed to a depth of 2500 m to test the leak tightness of the electronics containers and the pressure-resistant properties of an electromechanical cable under evaluation for use in the ANTARES deep-sea neutrino telescope. During a month-long immersion study, line parameter data were taken using miniature autonomous data loggers and shore-based optical time domain reflectometry. Details of the mechanical prototype line, the electromechanical cable and data acquisition are presented. Data taken during the immersion study revealed deficiencies in the pressure resistance of the electromechanical cable terminations at the entry points to the electronics containers. The improvements to the termination, which have been integrated into subsequent detection lines, are discussed. The line also allowed deep-sea acoustic measurements with a prototype hydrophone system. The technical setup of this system is described, and the first results of the data analysis are presented.

  2. Whistle characteristics and daytime dive behavior in pantropical spotted dolphins (Stenella attenuata) in Hawai'i measured using digital acoustic recording tags (DTAGs).

    Science.gov (United States)

    Silva, Tammy L; Mooney, T Aran; Sayigh, Laela S; Tyack, Peter L; Baird, Robin W; Oswald, Julie N

    2016-07-01

    This study characterizes daytime acoustic and dive behavior of pantropical spotted dolphins (Stenella attenuata) in Hawai'i using 14.58 h of data collected from five deployments of digital acoustic recording tags (DTAG3) in 2013. For each tagged animal, the number of whistles, foraging buzzes, dive profiles, and dive statistics were calculated. Start, end, minimum, and maximum frequencies, number of inflection points and duration were measured from 746 whistles. Whistles ranged in frequency from 9.7 ± 2.8 to 19.8 ± 4.2 kHz, had a mean duration of 0.7 ± 0.5 s and a mean of 1.2 ± 1.2 inflection points. Thirteen foraging buzzes were recorded across all tags. Mean dive depth and duration were 16 ± 9 m and 1.9 ± 1.0 min, respectively. Tagged animals spent the majority of time in the upper 10 m (76.9% ± 16.1%) of the water column. Both whistle frequency characteristics and dive statistics measured here were similar to previously reported values for spotted dolphins in Hawai'i. Shallow, short dive profiles combined with few foraging buzzes provide evidence that little spotted dolphin feeding behavior occurs during daytime hours. This work represents one of the first successful DTAG3 studies of small pelagic delphinids, providing rare insights into baseline bioacoustics and dive behavior. PMID:27475166

  3. Acoustic absorption by sunspots

    Science.gov (United States)

    Braun, D. C.; Labonte, B. J.; Duvall, T. L., Jr.

    1987-01-01

    The paper presents the initial results of a series of observations designed to probe the nature of sunspots by detecting their influence on high-degree p-mode oscillations in the surrounding photosphere. The analysis decomposes the observed oscillations into radially propagating waves described by Hankel functions in a cylindrical coordinate system centered on the sunspot. From measurements of the differences in power between waves traveling outward and inward, it is demonstrated that sunspots appear to absorb as much as 50 percent of the incoming acoustic waves. It is found that for all three sunspots observed, the amount of absorption increases linearly with horizontal wavenumber. The effect is present in p-mode oscillations with wavelengths both significantly larger and smaller than the diameter of the sunspot umbrae. Actual absorption of acoustic energy of the magnitude observed may produce measurable decreases in the power and lifetimes of high-degree p-mode oscillations during periods of high solar activity.

  4. Acoustic absorption by sunspots

    Energy Technology Data Exchange (ETDEWEB)

    Braun, D.C.; Labonte, B.J.; Duvall, T.L. Jr.

    1987-08-01

    The paper presents the initial results of a series of observations designed to probe the nature of sunspots by detecting their influence on high-degree p-mode oscillations in the surrounding photosphere. The analysis decomposes the observed oscillations into radially propagating waves described by Hankel functions in a cylindrical coordinate system centered on the sunspot. From measurements of the differences in power between waves traveling outward and inward, it is demonstrated that sunspots appear to absorb as much as 50 percent of the incoming acoustic waves. It is found that for all three sunspots observed, the amount of absorption increases linearly with horizontal wavenumber. The effect is present in p-mode oscillations with wavelengths both significantly larger and smaller than the diameter of the sunspot umbrae. Actual absorption of acoustic energy of the magnitude observed may produce measurable decreases in the power and lifetimes of high-degree p-mode oscillations during periods of high solar activity. 10 references.

  5. Evaluation of Acoustic Doppler Current Profiler to Measure Discharge at New York Power Authority's Niagara Power Project, Niagara Falls, New York

    Science.gov (United States)

    Zajd, Henry J.

    2007-01-01

    The need for accurate real-time discharge in the International Niagara River hydro power system requires reliable, accurate and reproducible data. The U.S. Geological Survey has been widely using Acoustic Doppler Current Profilers (ADCP) to accurately measure discharge in riverine channels since the mid-1990s. The use of the ADCP to measure discharge has remained largely untested at hydroelectric-generation facilities such as the New York Power Authority's (NYPA) Niagara Power Project in Niagara Falls, N.Y. This facility has a large, engineered diversion channel with the capacity of high volume discharges in excess of 100,000 cubic feet per second (ft3/s). Facilities such as this could benefit from the use of an ADCP, if the ADCP discharge measurements prove to be more time effective and accurate than those obtained from the flow-calculation techniques that are currently used. Measurements of diversion flow by an ADCP in the 'Pant Leg' diversion channel at the Niagara Power Project were made on November 6, 7, and 8, 2006, and compared favorably (within 1 percent) with those obtained concurrently by a conventional Price-AA current-meter measurement during one of the ADCP measurement sessions. The mean discharge recorded during each 2-hour individual ADCP measurement session compared favorably with (3.5 to 6.8 percent greater than) the discharge values computed by the flow-calculation method presently in use by NYPA. The use of ADCP technology to measure discharge could ultimately permit increased power-generation efficiency at the NYPA Niagara Falls Power Project by providing improved predictions of the amount of water (and thus the power output) available.

  6. 美国东南阿拉斯加潜艇水声试验场测量设施分析及改进综述%Analysis of Southeast Alaska Acoustic Measurement Facility

    Institute of Scientific and Technical Information of China (English)

    刘兴章; 陈涛

    2011-01-01

    The Southeast Alaska Acoustic Measurement Facility (SEAFAC) is currently the most advanced acoustic testing field for submarines. It is also the most important acoustic testing area of the United States in Pacific Ocean. It provides the capability to perform noise monitoring, measurement and evaluation for ships, to determine the sources of radiation noise, to assess vulnerability, and to develop quieting measures. SEAFAC is also capable of supporting submarine target strength measurements. In this paper, the history, main facility and ruction of SEAFAC are introduced and studied. It may be helpful for building acoustic testing field in China.%美国东南阿拉斯加潜艇水声试验场(SEAFAC)是目前世界上最先进的水声试验场,也是美国在太平洋最重要的水声检测机构,承担着对美国在役和新研各型舰艇实艇噪声监视及测量的任务.本文简要介绍该试验场的由来,组成及主要功能,并对我国水声试验场的建设提出建议.

  7. Study of baryon acoustic oscillations with SDSS DR12 data and measurements of $\\Omega_k$ and $\\Omega_\\textrm{DE}(a)$. Part II

    CERN Document Server

    Hoeneisen, B

    2016-01-01

    We define Baryon Acoustic Oscillation (BAO) observables $\\hat{d}_\\alpha(z, z_c)$, $\\hat{d}_z(z, z_c)$, and $\\hat{d}_/(z, z_c)$ that do not depend on any cosmological parameter. From each of these observables we recover the BAO correlation length $d_\\textrm{BAO}$ with its respective dependence on cosmological parameters. These BAO observables are measured as a function of redshift $z$ with the Sloan Digital Sky Survey (SDSS) data release DR12. From the BAO measurements alone, or together with the correlation angle $\\theta_\\textrm{MC}$ of the Cosmic Microwave Background (CMB), we constrain the curvature parameter $\\Omega_k$ and the dark energy density $\\Omega_\\textrm{DE}(a)$ as a function of the expansion parameter $a$ in several scenarios. These observables are further constrained with external measurements of $h$ and $\\Omega_\\textrm{b} h^2$. We find some tension between the data and a cosmology with flat space and constant dark energy density $\\Omega_\\textrm{DE}(a)$.

  8. Simple, all-optical, noncontact, depth-selective, narrowband surface acoustic wave measurement system for evaluating the Rayleigh velocity of small samples or areas.

    Science.gov (United States)

    Wang, Hsiao-Chuan; Fleming, Simon; Lee, Yung-Chun

    2009-03-10

    In this paper a new ultrasonic testing system is described that utilizes noncontact optical methods to generate and detect surface acoustic waves (SAWs) and has significant applications in the nondestructive evaluation of surface material. A narrowband SAW is generated with a new and straightforward grating mask image projection method that provides fast switching and a controllable frequency band, and hence control of the penetration depth of the ultrasonic wave. A narrowband SAW with center frequency above 30 MHz, and hence better depth resolution, is generated. The detection of the SAW is performed with a simplified design of an optical fiber interferometer that has good sensitivity and manoeuvrability without requiring additional auxiliary components. The novel combination of these two optical techniques permits the measurement of small samples that are otherwise difficult to measure, especially nondestructively. A model was constructed to simulate the temporal characteristics of the generated narrowband SAW and showed good agreement with experiment. Measurements on an aluminum sample and an extracted human incisor demonstrate the system's performance. PMID:19277076

  9. Comments on "Precise model measurements versus theoretical prediction of barrier insertion loss in presence of the ground" [J. Acoust. Soc. Am. 73, 44–54 (1983)

    DEFF Research Database (Denmark)

    Rasmussen, Karsten Bo

    1983-01-01

    Some of the theoretical curves in the article by J. Nicolas et al. [J. Acoust. soc. Am. 73, 44–54 (1983)] appear to be erroneous.......Some of the theoretical curves in the article by J. Nicolas et al. [J. Acoust. soc. Am. 73, 44–54 (1983)] appear to be erroneous....

  10. Memory-Effect on Acoustic Cavitation

    OpenAIRE

    Yavaṣ, Oğuz; Leiderer, Paul; Park, Hee K.; Grigoropoulos, Costas P.; Poon, Chie C.; Tam, Andrew C.

    1994-01-01

    The formation of bubbles at a liquid-solid interface due to acoustic cavitation depends particularly on the preconditions of the interface. Here, it wiIl be shown that following laser-induced bubble formation at the interface the acoustic cavitation efficiency is strongly enhanced. Optical reflectance measurements reveal that this observed enhancement of acoustic cavitation due to preceding laser-induced bubble formation, which could be termed as memory effect, decays in a few hundred microse...

  11. Ultrasound contrast agents : optical and acoustical characterization

    OpenAIRE

    Sijl, Jeroen

    2009-01-01

    This thesis describes the characterization of the dynamics and the acoustic responses of single BR14 (Bracco Research S.A., Geneva, Switzerland) ultra- sound contrast agent microbubbles under the in°uence of ultrasound. In Ch. 2 of this thesis we investigate the small amplitude behavior of isolated microbubbles acoustically. To ensure that the measured acoustic response orig- inates from one bubble only, it requires the isolation of a single microbubble within an ultrasound beam. Furthermore ...

  12. On the limits to miniaturization of fibre-optic transducers for precise and undesturbing measurement in electromagnetical and acoustical fields

    OpenAIRE

    Romaniuk, Ryszard S.

    1980-01-01

    Paper presents a digest of issues associated with application of optical fiber sensors in inaccessible places, in such a way as not to disturb the measured value. Fully dielectric optical fiber does not disturb the EM field distribution in the measured environment. Warsaw University of Technology Ryszard Romaniuk

  13. Acoustic measurements of a full-scale rotor with four tip shapes. Volume 1: Text, appendices A and B

    Science.gov (United States)

    Mosher, M.

    1984-01-01

    A full-scale helicopter with four different blade-tip geometries was tested in the 40- by 80-foot wind tunnel at Ames Research Center. Performance, loads, and noise were measured. The four tip shapes tested were rectangular, tapered, swept, and swept-tapered. Noise measurements from that test are presented in the form of tables and plots. The noise data include measurements of the sound pressure level in dB, dBA, and tone-corrected PNdB, for all of the conditions tested. Detailed measurements, 1/3-octave spectra and time-histories for some selected data are included as well as plots of dBA as function of test condition. Some performance measurements are given to aid interpretation of the noise data.

  14. Sensor development and calibration for acoustic neutrino detection in ice

    OpenAIRE

    Karg, Timo; Bissok, Martin; Laihem, Karim; Semburg, Benjamin; Tosi, Delia; Collaboration, for the IceCube

    2009-01-01

    A promising approach to measure the expected low flux of cosmic neutrinos at the highest energies (E > 1 EeV) is acoustic detection. There are different in-situ test installations worldwide in water and ice to measure the acoustic properties of the medium with regard to the feasibility of acoustic neutrino detection. The parameters of interest include attenuation length, sound speed profile, background noise level and transient backgrounds. The South Pole Acoustic Test Setup (SPATS) has been ...

  15. Application of acoustic-Doppler current profiler and expendable bathythermograph measurements to the study of the velocity structure and transport of the Gulf Stream

    Science.gov (United States)

    Joyce, T. M.; Dunworth, J. A.; Schubert, D. M.; Stalcup, M. C.; Barbour, R. L.

    1988-01-01

    The degree to which Acoustic-Doppler Current Profiler (ADCP) and expendable bathythermograph (XBT) data can provide quantitative measurements of the velocity structure and transport of the Gulf Stream is addressed. An algorithm is used to generate salinity from temperature and depth using an historical Temperature/Salinity relation for the NW Atlantic. Results have been simulated using CTD data and comparing real and pseudo salinity files. Errors are typically less than 2 dynamic cm for the upper 800 m out of a total signal of 80 cm (across the Gulf Stream). When combined with ADCP data for a near-surface reference velocity, transport errors in isopycnal layers are less than about 1 Sv (10 to the 6th power cu m/s), as is the difference in total transport for the upper 800 m between real and pseudo data. The method is capable of measuring the real variability of the Gulf Stream, and when combined with altimeter data, can provide estimates of the geoid slope with oceanic errors of a few parts in 10 to the 8th power over horizontal scales of 500 km.

  16. First results from Acoustic Doppler Current Profiler measurements of meltwater flux in a large supraglacial river in western Greenland compared with downstream proglacial river outflow

    Science.gov (United States)

    Pitcher, L. H.; Smith, L. C.; Overstreet, B. T.; Chu, V. W.; Rennermalm, A. K.; Cooper, M. G.; Gleason, C. J.; Yang, K.

    2015-12-01

    A vast network of seasonally evolving, thermally eroding supraglacial rivers on the southwestern Greenland Ice Sheet (GrIS) is the preeminent transporter of meltwater across this area of the ablation zone. Supraglacial rivers are important for estimating surface water storage and transport into moulins and into the en-, sub-, and proglacial environments. Yet, little is known about their role in the GrIS cryo-hydrologic system. To that end, supraglacial river discharge in a large river, the "Rio Behar" (67.05°, -49.02°; ~75 km from the Kangerlussuaq International Airport), was measured in situ over 300 times: approximately four times per hour over three consecutive days from July 19 - 22, 2015. The Rio Behar drains a ~ 70 km2 ice catchment and enters a large moulin in the Watson River land-ice watershed in western Greenland. River discharge was measured using a Sontek M9 Acoustic Doppler Current Profiler. Each profile records water temperature, depth-integrated velocity, channel width and channel bathymetry. This novel dataset can be used to assess diurnal variations in river discharge, slope, velocity, stream power, and channel incision in order to enhance process-level understanding of GrIS meltwater routing, storage and transport. Future work will compare supraglacial river discharge in the Rio Behar with in situ estimates of proglacial river outflow upstream of the Watson River bridge in Kangerlussuaq, Greenland.

  17. Opto-acoustic cell permeation

    Energy Technology Data Exchange (ETDEWEB)

    Visuri, S R; Heredia, N

    2000-03-09

    Optically generated acoustic waves have been used to temporarily permeate biological cells. This technique may be useful for enhancing transfection of DNA into cells or enhancing the absorption of locally delivered drugs. A diode-pumped frequency-doubled Nd:YAG laser operating at kHz repetition rates was used to produce a series of acoustic pulses. An acoustic wave was formed via thermoelastic expansion by depositing laser radiation into an absorbing dye. Generated pressures were measured with a PVDF hydrophone. The acoustic waves were transmitted to cultured and plated cells. The cell media contained a selection of normally- impermeable fluorescent-labeled dextran dyes. Following treatment with the opto-acoustic technique, cellular incorporation of dyes, up to 40,000 Molecular Weight, was noted. Control cells that did not receive opto-acoustic treatment had unremarkable dye incorporation. Uptake of dye was quantified via fluorescent microscopic analysis. Trypan Blue membrane exclusion assays and fluorescent labeling assays confirmed the vitality of cells following treatment. This method of enhanced drug delivery has the potential to dramatically reduce required drug dosages and associated side effects and enable revolutionary therapies.

  18. Acoustic Neuroma Educational Video

    Medline Plus

    Full Text Available Educational Video Home What is an AN What is an Acoustic Neuroma? Identifying an AN Symptoms Acoustic Neuroma Keywords Educational Video ... for pre- and post-treatment acoustic neuroma patients. Home What is an AN What is an Acoustic ...

  19. Acoustic cryocooler

    Science.gov (United States)

    Swift, Gregory W.; Martin, Richard A.; Radenbaugh, Ray

    1990-01-01

    An acoustic cryocooler with no moving parts is formed from a thermoacoustic driver (TAD) driving a pulse tube refrigerator (PTR) through a standing wave tube. Thermoacoustic elements in the TAD are spaced apart a distance effective to accommodate the increased thermal penetration length arising from the relatively low TAD operating frequency in the range of 15-60 Hz. At these low operating frequencies, a long tube is required to support the standing wave. The tube may be coiled to reduce the overall length of the cryocooler. One or two PTR's are located on the standing wave tube adjacent antinodes in the standing wave to be driven by the standing wave pressure oscillations. It is predicted that a heat input of 1000 W at 1000 K will maintian a cooling load of 5 W at 80 K.

  20. LDV measurement of small nonlinearities in flat and curved membranes. A model for eardrum nonlinear acoustic behaviour

    Science.gov (United States)

    Kilian, Gladiné; Pieter, Muyshondt; Joris, Dirckx

    2016-06-01

    Laser Doppler Vibrometry is an intrinsic highly linear measurement technique which makes it a great tool to measure extremely small nonlinearities in the vibration response of a system. Although the measurement technique is highly linear, other components in the experimental setup may introduce nonlinearities. An important source of artificially introduced nonlinearities is the speaker, which generates the stimulus. In this work, two correction methods to remove the effects of stimulus nonlinearity are investigated. Both correction methods were found to give similar results but have different pros and cons. The aim of this work is to investigate the importance of the conical shape of the eardrum as a source of nonlinearity in hearing. We present measurements on flat and indented membranes. The data shows that the curved membrane exhibit slightly higher levels of nonlinearity compared to the flat membrane.

  1. Through-container measurement of acoustic signatures for classification/discrimination of liquid explosives (LEs) and precursor threat liquids

    Science.gov (United States)

    Diaz, Aaron A.; Samuel, Todd J.; Tucker, Brian J.; Cinson, Anthony D.; Valencia, Juan D.; Gervais, Kevin L.; Thompson, Jason S.

    2008-03-01

    Work at the Pacific Northwest National Laboratory has demonstrated that ultrasonic property measurements can be effectively employed for the rapid and accurate classification/discrimination of liquids in small, carry-on, standard "stream-of-commerce" containers. This paper focuses on a set of laboratory measurements acquired with the PNNL prototype device as applied to several types of liquids (including threat liquids and precursor chemicals) to the manufacture of LEs in small commercially available plastic containers.

  2. Use of acoustic vortices in acoustic levitation

    DEFF Research Database (Denmark)

    Cutanda Henriquez, Vicente; Santillan, Arturo Orozco; Juhl, Peter Møller

    2009-01-01

    Acoustic fields are known to exert forces on the surfaces of objects. These forces are noticeable if the sound pressure is sufficiently high. Two phenomena where acoustic forces are relevant are: i) acoustic levitation, where strong standing waves can hold small objects at certain positions......, counterbalancing their weight, and ii) acoustic vortices, spinning sound fields that can impinge angular momentum and cause rotation of objects. In this contribution, both force-creating sound fields are studied by means of numerical simulations. The Boundary Element Method is employed to this end. The simulation...... of acoustical vortices uses an efficient numerical implementation based on the superposition of two orthogonal sound fields with a delay of 90° between them. It is shown that acoustic levitation and the use of acoustic vortices can be combined to manipulate objects in an efficient and controlled manner without...

  3. The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Measuring D_A and H at z=0.57 from the Baryon Acoustic Peak in the Data Release 9 Spectroscopic Galaxy Sample

    OpenAIRE

    Anderson, Lauren; Mena Requejo, Olga

    2013-01-01

    We present measurements of the angular diameter distance to and Hubble parameter at z = 0.57 from the measurement of the baryon acoustic peak in the correlation of galaxies from the Sloan Digital Sky Survey III Baryon Oscillation Spectroscopic Survey. Our analysis is based on a sample from Data Release 9 of 264 283 galaxies over 3275 square degrees in the redshift range 0.43 

  4. Acoustic dispersive prism

    OpenAIRE

    Hussein Esfahlani; Sami Karkar; Herve Lissek; Mosig, Juan R.

    2016-01-01

    The optical dispersive prism is a well-studied element, which allows separating white light into its constituent spectral colors, and stands in nature as water droplets. In analogy to this definition, the acoustic dispersive prism should be an acoustic device with capability of splitting a broadband acoustic wave into its constituent Fourier components. However, due to the acoustical nature of materials as well as the design and fabrication difficulties, there is neither any natural acoustic ...

  5. Measurement of the sound power incident on the walls of a reverberation room with near field acoustic holography

    DEFF Research Database (Denmark)

    Jacobsen, Finn; Tiana Roig, Elisabet

    2010-01-01

    The conventional method of measuring the insertion loss of a partition relies on an assumption of the sound field in the source room being diffuse combined with the classical relation between the spatial average of the mean square pressure in the source room and the incident sound power per unit ...

  6. Shear wave velocity measurements using acoustic radiation force impulse in young children with normal kidneys versus hydronephrotic kidneys

    Directory of Open Access Journals (Sweden)

    Beomseok Sohn

    2014-04-01

    Conclusion: Obtaining ARFI measurements of the kidney is feasible in young children with median SWVs of 1.75 m/sec in normal kidneys. Median SWVs increased in high-grade hydronephrotic kidneys but were not different between hydronephrotic kidneys with and without UPJO.

  7. Room acoustic properties of concert halls

    DEFF Research Database (Denmark)

    Gade, Anders Christian

    1996-01-01

    A large database of values of various room acoustic parameters has provided the basis for statistical analyses of how and how much the acoustic properties of concert halls are influenced by their size, shape, and absorption area (as deduced from measured reverberation time). The data have been...

  8. Experimental Verification of Acoustic Impedance Inversion

    Institute of Scientific and Technical Information of China (English)

    郭永刚; 王宁; 林俊轩

    2003-01-01

    Well controlled model experiments were carried out to verify acoustic impedance inversion scheme, and different methods of extracting impulse responses were investigated by practical data. The acoustic impedance profiles reconstructed from impulse responses are in good agreement with the measured value and theoretical value.

  9. An acoustical model based monitoring network

    NARCIS (Netherlands)

    Wessels, P.W.; Basten, T.G.H.; Eerden, F.J.M. van der

    2010-01-01

    In this paper the approach for an acoustical model based monitoring network is demonstrated. This network is capable of reconstructing a noise map, based on the combination of measured sound levels and an acoustic model of the area. By pre-calculating the sound attenuation within the network the noi

  10. Ocean currents measured by Shipboard Acoustic Doppler Current Profilers (SADCP) from global oceans accumulated at Joint Archive for SADCP from 2004 to 2013 (NODC Accession 0123302)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Absolute U- and V-component ocean current vectors from Shipboard Acoustic Doppler Current Profilers (SADCP), as both a high-frequency sampling (nominally 5 minutes...

  11. Measurement of the Indentation Modulus and the Local Internal Friction in Amorphous SiO2 Using Atomic Force Acoustic Microscopy

    Directory of Open Access Journals (Sweden)

    Zhang B.

    2016-03-01

    Full Text Available For the past two decades, atomic force acoustic microscopy (AFAM, an advanced scanning probe microscopy technique, has played a promising role in materials characterization with a good lateral resolution at micro/nano dimensions. AFAM is based on inducing out-of-plane vibrations in the specimen, which are generated by an ultrasonic transducer. The vibrations are sensed by the AFM cantilever when its tip is in contact with the material under test. From the cantilver’s contactresonance spectra, one determines the real and the imaginary part of the contact stiffness k*, and then from these two quantities the local indentation modulus M' and the local damping factor Qloc-1 can be obtained with a spatial resolution of less than 10 nm. Here, we present measured data of M' and of Qloc-1 for the insulating amorphous material, a-SiO2. The amorphous SiO2 layer was prepared on a crystalline Si wafer by means of thermal oxidation. There is a spatial distribution of the indentation modulus M' and of the internal friction Qloc-1. This is a consequence of the potential energy landscape for amorphous materials.

  12. The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Measuring D_A and H at z=0.57 from the Baryon Acoustic Peak in the Data Release 9 Spectroscopic Galaxy Sample

    CERN Document Server

    Anderson, Lauren; Bailey, Stephen; Beutler, Florian; Bolton, Adam S; Brinkmann, J; Brownstein, Joel R; Chuang, Chia-Hsun; Cuesta, Antonio J; Dawson, Kyle S; Eisenstein, Daniel J; Honscheid, Klaus; Kazin, Eyal A; Kirkby, David; Manera, Marc; McBride, Cameron K; Mena, O; Nichol, Robert C; Olmstead, Matthew D; Padmanabhan, Nikhil; Palanque-Delabrouille, N; Percival, Will J; Prada, Francisco; Ross, Ashley J; Ross, Nicolas P; Sanchez, Ariel G; Samushia, Lado; Schlegel, David J; Schneider, Donald P; Seo, Hee-Jong; Strauss, Michael A; Thomas, Daniel; Tinker, Jeremy L; Tojeiro, Rita; Verde, Licia; Weinberg, David H; Xu, Xiaoying; Yeche, Christophe

    2013-01-01

    We present measurements of the angular diameter distance to and Hubble parameter at z=0.57 from the measurement of the baryon acoustic peak in the correlation of galaxies from the Sloan Digital Sky Survey III Baryon Oscillation Spectroscopic Survey. Our analysis is based on a sample from Data Release 9 of 264,283 galaxies over 3275 square degrees in the redshift range 0.43measurement of the acoustic peak position across and along the line of sight in order to measure the cosmological distance scale. We find D_A(0.57) = 1408 +/- 45 Mpc and H(0.57) = 92.9 +/- 7.8 km/s/Mpc for our fiducial value of the sound horizon. These results from the anisotropic fitting are fully consistent with the analysis of the spherically averaged acoustic peak position presented in Anderson et al, 2012. Our distance measurements are a close match to the predictions of the standard cosmological model featuring a cosmological constant and zero spatial curvature.

  13. Year-long measurements of flow-through the dover strait by HF radar and acoustic doppler current profilers (ADCP)

    OpenAIRE

    Prandle, D.

    1993-01-01

    Contaminants from the Channel flow through the Dover Strait into the North Sea where they represent a significant fraction of the enhanced concentrations observed along the continental coast. Despite numerous previous investigations, the magnitude of this net flow and its dependency on various forcing factors remain uncertain. The new UK H.F. Radar system, OSCR (Ocean Surface Current Radar) developed for measuring nearshore surface currents offers a clear opportunity of establishing the magni...

  14. The design of a test procedure for the measurement of acoustic damping of materials at low stress.

    OpenAIRE

    Heidgerken, Ricky A.

    1983-01-01

    Approved for public release; distribution is unlimited A procedure for measuring the viscous damping of relatively large plate material (up to 40 inches x 14 inches x 2 inches) was developed utilizing the Hewlett-Packard 5451C Fourier Analyzer and impulse hammer technique under very low stress conditions. Testing environment can be lab air or nondistilled water in the temperature range from 30° F to 90° F. The test procedure includes modal analysis that is expand...

  15. Assessing the performance of the photo-acoustic infrared gas monitor for measuring CO(2), N(2)O, and CH(4) fluxes in two major cereal rotations.

    Science.gov (United States)

    Tirol-Padre, Agnes; Rai, Munmun; Gathala, Mahesh; Sharma, Sheetal; Kumar, Virender; Sharma, Parbodh C; Sharma, Dinesh K; Wassmann, Reiner; Ladha, Jagdish

    2014-01-01

    Rapid, precise, and globally comparable methods for monitoring greenhouse gas (GHG) fluxes are required for accurate GHG inventories from different cropping systems and management practices. Manual gas sampling followed by gas chromatography (GC) is widely used for measuring GHG fluxes in agricultural fields, but is laborious and time-consuming. The photo-acoustic infrared gas monitoring system (PAS) with on-line gas sampling is an attractive option, although it has not been evaluated for measuring GHG fluxes in cereals in general and rice in particular. We compared N2 O, CO2 , and CH4 fluxes measured by GC and PAS from agricultural fields under the rice-wheat and maize-wheat systems during the wheat (winter), and maize/rice (monsoon) seasons in Haryana, India. All the PAS readings were corrected for baseline drifts over time and PAS-CH4 (PCH4 ) readings in flooded rice were corrected for water vapor interferences. The PCH4 readings in ambient air increased by 2.3 ppm for every 1000 mg cm(-3) increase in water vapor. The daily CO2 , N2 O, and CH4 fluxes measured by GC and PAS from the same chamber were not different in 93-98% of all the measurements made but the PAS exhibited greater precision for estimates of CO2 and N2 O fluxes in wheat and maize, and lower precision for CH4 flux in rice, than GC. The seasonal GC- and PAS-N2 O (PN2 O) fluxes in wheat and maize were not different but the PAS-CO2 (PCO2 ) flux in wheat was 14-39% higher than that of GC. In flooded rice, the seasonal PCH4 and PN2 O fluxes across N levels were higher than those of GC-CH4 and GC-N2 O fluxes by about 2- and 4fold, respectively. The PAS (i) proved to be a suitable alternative to GC for N2 O and CO2 flux measurements in wheat, and (ii) showed potential for obtaining accurate measurements of CH4 fluxes in flooded rice after making correction for changes in humidity. PMID:23929733

  16. Liquid rocket combustion chamber acoustic characterization

    Directory of Open Access Journals (Sweden)

    Cândido Magno de Souza

    2010-09-01

    Full Text Available Over the last 40 years, many solid and liquid rocket motors have experienced combustion instabilities. Among other causes, there is the interaction of acoustic modes with the combustion and/or fluid dynamic processes inside the combustion chamber. Studies have been showing that, even if less than 1% of the available energy is diverted to an acoustic mode, combustion instability can be generated. On one hand, this instability can lead to ballistic pressure changes, couple with other propulsion systems such as guidance or thrust vector control, and in the worst case, cause motor structural failure. In this case, measures, applying acoustic techniques, must be taken to correct/minimize these influences on the combustion. The combustion chamber acoustic behavior in operating conditions can be estimated by considering its behavior in room conditions. In this way, acoustic tests can be easily performed, thus identifying the cavity modes. This paper describes the procedures to characterize the acoustic behavior in the inner cavity of four different configurations of a combustion chamber. Simple analytical models are used to calculate the acoustic resonance frequencies and these results are compared with acoustic natural frequencies measured at room conditions. Some comments about the measurement procedures are done, as well as the next steps for the continuity of this research. The analytical and experimental procedures results showed good agreement. However, limitations on high frequency band as well as in the identification of specific kinds of modes indicate that numerical methods able to model the real cavity geometry and an acoustic experimental modal analysis may be necessary for a more complete analysis. Future works shall also consider the presence of passive acoustic devices such as baffles and resonators capable of introducing damping and avoiding or limiting acoustic instabilities.

  17. Responsive acoustic surfaces

    DEFF Research Database (Denmark)

    Peters, Brady; Tamke, Martin; Nielsen, Stig Anton;

    2011-01-01

    Acoustic performance is defined by the parameter of reverberation time; however, this does not capture the acoustic experience in some types of open plan spaces. As many working and learning activities now take place in open plan spaces, it is important to be able to understand and design...... for the acoustic conditions of these spaces. This paper describes an experimental research project that studied the design processes necessary to design for sound. A responsive acoustic surface was designed, fabricated and tested. This acoustic surface was designed to create specific sonic effects. The design...... was simulated using custom integrated acoustic software and also using Odeon acoustic analysis software. The research demonstrates a method for designing space- and sound-defining surfaces, defines the concept of acoustic subspace, and suggests some new parameters for defining acoustic subspaces....

  18. Springer Handbook of Acoustics

    CERN Document Server

    Rossing, Thomas D

    2007-01-01

    Acoustics, the science of sound, has developed into a broad interdisciplinary field encompassing the academic disciplines of physics, engineering, psychology, speech, audiology, music, architecture, physiology, neuroscience, and others. The Springer Handbook of Acoustics is an unparalleled modern handbook reflecting this richly interdisciplinary nature edited by one of the acknowledged masters in the field, Thomas Rossing. Researchers and students benefit from the comprehensive contents spanning: animal acoustics including infrasound and ultrasound, environmental noise control, music and human speech and singing, physiological and psychological acoustics, architectural acoustics, physical and engineering acoustics, signal processing, medical acoustics, and ocean acoustics. This handbook reviews the most important areas of acoustics, with emphasis on current research. The authors of the various chapters are all experts in their fields. Each chapter is richly illustrated with figures and tables. The latest rese...

  19. Acoustic Spatiality

    Directory of Open Access Journals (Sweden)

    Brandon LaBelle

    2012-06-01

    Full Text Available Experiences of listening can be appreciated as intensely relational, bringing us into contact with surrounding events, bodies and things. Given that sound propagates and expands outwardly, as a set of oscillations from a particular source, listening carries with it a sensual intensity, whereby auditory phenomena deliver intrusive and disruptive as well as soothing and assuring experiences. The physicality characteristic of sound suggests a deeply impressionistic, locational "knowledge structure" – that is, the ways in which listening affords processes of exchange, of being in the world, and from which we extend ourselves. Sound, as physical energy reflecting and absorbing into the materiality around us, and even one's self, provides a rich platform for understanding place and emplacement. Sound is always already a trace of location.Such features of auditory experience give suggestion for what I may call an acoustical paradigm – how sound sets in motion not only the material world but also the flows of the imagination, lending to forces of signification and social structure, and figuring us in relation to each other. The relationality of sound brings us into a steady web of interferences, each of which announces the promise or problematic of being somewhere.

  20. Acoustic Neurinomas

    Directory of Open Access Journals (Sweden)

    Mohammad Faraji Rad

    2011-01-01

    Full Text Available Acoustic neuromas (AN are schwann cell-derived tumors that commonly arise from the vestibular portion of the eighth cranial nerve also known as vestibular schwannoma(VS causes unilateral hearing loss, tinnitus, vertigo and unsteadiness. In many cases, the tumor size may remain unchanged for many years following diagnosis, which is typically made by MRI. In the majority of cases the tumor is small, leaving the clinician and patient with the options of either serial scanning or active treatment by gamma knife radiosurgery (GKR or microneurosurgery. Despite the vast number of published treatment reports, comparative studies are few. The predominant clinical endpoints of AN treatment include tumor control, facial nerve function and hearing preservation. Less focus has been put on symptom relief and health-related quality of life (QOL. It is uncertain if treating a small tumor leaves the patient with a better chance of obtaining relief from future hearing loss, vertigo or tinnitus than by observing it without treatment.   In this paper we review the literature for the natural course, the treatment alternatives and the results of AN. Finally, we present our experience with a management strategy applied for more than 30 years.

  1. Cryogenic acoustic loss of pure and alloyed titanium

    Science.gov (United States)

    Matacz, A. L.; Veitch, P. J.; Blair, D. G.

    Low acoustic loss, high yield strength cryogenic materials are required for various high precision experiments, resonant-bar gravitational radiation antennae in particular. We report here acoustic loss measurements of commerically pure and alloyed titanium samples between 4.2 and 300 K. It is shown that machining damage of the surface significantly increased the acoustic loss of pure titanium, particularly below 100 K, and that the high strength alloy Ti-6AI-4V had significantly greater acoustic loss than pure titanium.

  2. Measurement system for wind turbine acoustic noise assessment based on IEC standard and Qin′s model

    Institute of Scientific and Technical Information of China (English)

    Sun Lei; Qin Shuren; Bo Lin; Xu Liping; Stephan Joeckel

    2008-01-01

    A novel measurement system specially used in noise emission assessment and verification of wind turbine generator systems is presented that complies with specifications given in IEC 61400-11 to ensure the process consistency and accuracy. Theory elements of the calculation formula used for the sound power level of wind turbine have been discussed for the first time, and detailed calculation procedure of tonality and audibility integrating narrowband analysis and psychoacoustics is described. With a microphone and two PXI cards inserted into a PC, this system is designed in Qin′s model using VMIDS development system. Benefiting from the virtual instrument architecture, it′s the first time that all assessment process have been integrated into an organic whole, which gives full advantages of its efficiency, price, and facility. Mass experiments show that its assessment results accord with the ones given by MEASNET member.

  3. Inverting Comet Acoustic Surface Sounding Experiment (CASSE) touchdown signals to measure the elastic modulus of comet material

    Science.gov (United States)

    Arnold, W.; Faber, C.; Knapmeyer, M.; Witte, L.; Schröder, S.; Tune, J.; Möhlmann, D.; Roll, R.; Chares, B.; Fischer, H.; Seidensticker, K.

    2014-07-01

    The landing of Philae on comet 67P/Churyumov-Gerasimenko is scheduled for November 11, 2014. Each of the three landing feet of Philae house a triaxial acceleration sensor of CASSE, which will thus be the first sensors to be in mechanical contact with the cometary surface. CASSE will be in listening mode to record the deceleration of the lander, when it impacts with the comet at a velocity of approx. 0.5 m/s. The analysis of this data yields information on the reduced elastic modulus and the yield stress of the comet's surface material. We describe a series of controlled landings of a lander model. The tests were conducted in the Landing & Mobility Test Facility (LAMA) of the DLR Institute of Space Systems in Bremen, Germany, where an industrial robot can be programmed to move landers or rovers along predefined paths, allowing to adapt landing procedures with predefined velocities. The qualification model of the Philae landing gear was used in the tests. It consists of three legs manufactured of carbon fiber and metal joints. A dead mass of the size and mass of the lander housing is attached via a damper above the landing gear to represent the lander structure as a whole. Attached to each leg is a foot with two soles and a mechanically driven fixation screw (''ice screw'') to secure the lander on the comet. The right soles, if viewed from the outside towards the lander body, house a Brüel & Kjaer DeltaTron 4506 triaxial piezoelectric accelerometer as used on the spacecraft. Orientation of the three axes was such that one of the axes, here the X-axis of the accelerometer, points downwards, while the Y- and Z-axes are horizontal. Data were recorded at a sampling rate of 8.2 kHz within a time gate of 2 s. In parallel, a video sequence was taken, in order to monitor the touchdown on the sand and the movement of the ice screws. Touchdown measurements were conducted on three types of ground with landing velocities between 0.1 to 1.1 m/s. Landings with low velocities were

  4. Measurement of the ultrasonic properties of human coronary arteries in vitro with a 50-MHz acoustic microscope

    Directory of Open Access Journals (Sweden)

    J.C. Machado

    2002-08-01

    Full Text Available Ultrasonic attenuation coefficient, wave propagation speed and integrated backscatter coefficient (IBC of human coronary arteries were measured in vitro over the -6 dB frequency bandwidth (36 to 67 MHz of a focused ultrasound transducer (50 MHz, focal distance 5.7 mm, f/number 1.7. Corrections were made for diffraction effects. Normal and diseased coronary artery sub-samples (N = 38 were obtained from 10 individuals at autopsy. The measured mean ± SD of the wave speed (average over the entire vessel wall thickness was 1581.04 ± 53.88 m/s. At 50 MHz, the average attenuation coefficient was 4.99 ± 1.33 dB/mm with a frequency dependence term of 1.55 ± 0.18 determined over the 36- to 67-MHz frequency range. The IBC values were: 17.42 ± 13.02 (sr.m-1 for thickened intima, 11.35 ± 6.54 (sr.m-1 for fibrotic intima, 39.93 ± 50.95 (sr.m-1 for plaque, 4.26 ± 2.34 (sr.m-1 for foam cells, 5.12 ± 5.85 (sr.m-1 for media and 21.26 ± 31.77 (sr.m-1 for adventitia layers. The IBC results indicate the possibility for ultrasound characterization of human coronary artery wall tissue layer, including the situations of diseased arteries with the presence of thickened intima, fibrotic intima and plaque. The mean IBC normalized with respect to the mean IBC of the media layer seems promising for use as a parameter to differentiate a plaque or a thickened intima from a fibrotic intima.

  5. Application of holography in jet acoustic studies

    Indian Academy of Sciences (India)

    G Pundarika; R Lakshminarayana; T S Sheshadri

    2004-08-01

    Source strength distribution on a jet boundary was obtained from measurements using the principle of acoustic holography. Measurements were conducted in an open field. Measurement of acoustic pressure on a cylindrical twodimensional contour located close to the vibrating jet boundary was used to obtain the acoustic source strength distribution at the jet boundary. Particular attention was focussed on back projection of the sound field on to a cylindrical surface. A jet emanating from 5 mm convergent nozzle was used for the holography experiments, assuming axisymmetry. Experimental results were compared with results obtained from holography

  6. Implementation and Comparison of Acoustic Travel-Time Measurement Procedures for the Helioseismic and Magnetic Imager Time-Distance Helioseismology Pipeline

    Science.gov (United States)

    Couvidat, S.; Zhao, J.; Birch, A. C.; Kosovichev, A. G.; Duvall, T. L., Jr.; Parchevsky, K.; Scherrer, P. H.

    2009-01-01

    The Helioseismic and Magnetic Imager (HMI) instrument on board the Solar Dynamics Observatory (SDO) satellite is designed to produce high-resolution Doppler velocity maps of oscillations at the solar surface with high temporal cadence. To take advantage of these high-quality oscillation data, a time-distance helioseismology pipeline has been implemented at the Joint Science Operations Center (JSOC) at Stanford University. The aim of this pipeline is to generate maps of acoustic travel times from oscillations on the solar surface, and to infer subsurface 3D flow velocities and sound-speed perturbations. The wave travel times are measured from cross covariances of the observed solar oscillation signals. For implementation into the pipeline we have investigated three different travel-time definitions developed in time-distance helioseismology: a Gabor wavelet fitting (Kosovichev and Duvall, 1997), a minimization relative to a reference cross-covariance function (Gizon and Birch, 2002), and a linearized version of the minimization method (Gizon and Birch, 2004). Using Doppler velocity data from the Michelson Doppler Imager (MDI) instrument on board SOHO, we tested and compared these definitions for the mean and difference travel-time perturbations measured from reciprocal signals. Although all three procedures return similar travel times in a quiet Sun region, the method of Gizon and Birch (2004) gives travel times that are significantly different from the others in a magnetic (active) region. Thus, for the pipeline implementation we chose the procedures of Kosovichev and Duvall (1997) and Gizon and Birch (2002). We investigated the relationships among these three travel-time definitions, their sensitivities to fitting parameters, and estimated the random errors they produce

  7. Implementation and Comparison of Acoustic Travel-Time Measurement Procedures for the Solar Dynamics Observatory-Helioseismic and Magnetic Imager Time-Distance Helioseismology Pipeline

    Science.gov (United States)

    Couvidat, S.; Zhao, J.; Birch, A. C.; Kosovichev, A. G.; Duvall, Thomas L., Jr.; Parchevsky, K.; Scherrer, P. H.

    2010-01-01

    The Helioseismic and Magnetic Imager (HMI) instrument onboard the Solar Dynamics Observatory (SDO) satellite is designed to produce high-resolution Doppler-velocity maps of oscillations at the solar surface with high temporal cadence. To take advantage of these high-quality oscillation data, a time - distance helioseismology pipeline (Zhao et al., Solar Phys. submitted, 2010) has been implemented at the Joint Science Operations Center (JSOC) at Stanford University. The aim of this pipeline is to generate maps of acoustic travel times from oscillations on the solar surface, and to infer subsurface 3D flow velocities and sound-speed perturbations. The wave travel times are measured from cross-covariances of the observed solar oscillation signals. For implementation into the pipeline we have investigated three different travel-time definitions developed in time - distance helioseismology: a Gabor-wavelet fitting (Kosovichev and Duvall, SCORE'96: Solar Convection and Oscillations and Their Relationship, ASSL, Dordrecht, 241, 1997), a minimization relative to a reference cross-covariance function (Gizon and Birch, Astrophys. J. 571, 966, 2002), and a linearized version of the minimization method (Gizon and Birch, Astrophys. J. 614, 472, 2004). Using Doppler-velocity data from the Michelson Doppler Imager (MDI) instrument onboard SOHO, we tested and compared these definitions for the mean and difference traveltime perturbations measured from reciprocal signals. Although all three procedures return similar travel times in a quiet-Sun region, the method of Gizon and Birch (Astrophys. J. 614, 472, 2004) gives travel times that are significantly different from the others in a magnetic (active) region. Thus, for the pipeline implementation we chose the procedures of Kosovichev and Duvall (SCORE'96: Solar Convection and Oscillations and Their Relationship, ASSL, Dordrecht, 241, 1997) and Gizon and Birch (Astrophys. J. 571, 966, 2002). We investigated the relationships among

  8. Acoustic source for generating an acoustic beam

    Energy Technology Data Exchange (ETDEWEB)

    Vu, Cung Khac; Sinha, Dipen N.; Pantea, Cristian

    2016-05-31

    An acoustic source for generating an acoustic beam includes a housing; a plurality of spaced apart piezo-electric layers disposed within the housing; and a non-linear medium filling between the plurality of layers. Each of the plurality of piezoelectric layers is configured to generate an acoustic wave. The non-linear medium and the plurality of piezo-electric material layers have a matching impedance so as to enhance a transmission of the acoustic wave generated by each of plurality of layers through the remaining plurality of layers.

  9. Method specificity of non-invasive blood pressure measurement: oscillometry and finger pulse pressure vs acoustic methods.

    Science.gov (United States)

    De Mey, C; Schroeter, V; Butzer, R; Roll, S; Belz, G G

    1995-10-01

    1. The agreement of blood pressure measurements by stethoscope auscultation (SBPa, DBPa-IV and DBPa-V), oscillometry (Dinamap; SBPo, and DBPo) and digital photoplethysmography (Finapres; SBPf, and DBPf) with the graphical analysis of the analogue microphone signals of vascular wall motion sound (SBPg and DBPg) was evaluated in eight healthy subjects in the presence of responses to the intravenous infusion of 1 microgram min-1 isoprenaline. 2. In general, there was good agreement between the SBP/DBP-measurements based on auscultatory Korotkoff-I- and IV-criteria and the reference method; the average method difference in estimating the isoprenaline responses for SBPa-SBPg was: -1.1, 95% CI: -5.4 to 3.1 mm Hg with a within-subject between-method repeatability coefficient (REP) of 11.6 mm Hg and for DBPa-IV-DBPg: 3.5, 95% CI: -0.5 to 6.5 mm Hg, REP: 11.5 mm Hg. The ausculatation of Korotkoff-V substantially overestimated the isoprenaline induced reduction of DBP: method difference DBPa-V-DBPg: -11.3, 95% CI: -17.8 to -4.7 mm Hg, REP: 31.8 mm Hg. 3. Oscillometry yielded good approximations for the SBP response to isoprenaline (average method difference SBPo-SBPg: -2.9, 95% CI: -9.0 to 3.3 mm Hg, REP: 17.6 mm Hg) but was poorly sensitive with regard to the DBP responses: method difference DBPo-DBPg: 6.5, 95% CI: -1.3 to 14.3 mm Hg, REP: 25.7 mm Hg. 4. Whilst the finger pulse pressure agreed well with regard to DBP (method difference for the DBP responses to isoprenaline: DBPf-DBPg: 1.8, 95% CI: -5.1 to 8.6 mm Hg, REP: 18.5 mm Hg) it was rather unsatisfactory with regard to SBP (method difference SBPf-SBPg: -14.1, 95% CI: -28.2 to -0.1 mm Hg, REP: 49.9 mm Hg).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8554929

  10. Canonical Acoustics and Its Application to Surface Acoustic Wave on Acoustic Metamaterials

    Science.gov (United States)

    Shen, Jian Qi

    2016-08-01

    In a conventional formalism of acoustics, acoustic pressure p and velocity field u are used for characterizing acoustic waves propagating inside elastic/acoustic materials. We shall treat some fundamental problems relevant to acoustic wave propagation alternatively by using canonical acoustics (a more concise and compact formalism of acoustic dynamics), in which an acoustic scalar potential and an acoustic vector potential (Φ ,V), instead of the conventional acoustic field quantities such as acoustic pressure and velocity field (p,u) for characterizing acoustic waves, have been defined as the fundamental variables. The canonical formalism of the acoustic energy-momentum tensor is derived in terms of the acoustic potentials. Both the acoustic Hamiltonian density and the acoustic Lagrangian density have been defined, and based on this formulation, the acoustic wave quantization in a fluid is also developed. Such a formalism of acoustic potentials is employed to the problem of negative-mass-density assisted surface acoustic wave that is a highly localized surface bound state (an eigenstate of the acoustic wave equations). Since such a surface acoustic wave can be strongly confined to an interface between an acoustic metamaterial (e.g., fluid-solid composite structures with a negative dynamical mass density) and an ordinary material (with a positive mass density), it will give rise to an effect of acoustic field enhancement on the acoustic interface, and would have potential applications in acoustic device design for acoustic wave control.

  11. Current situation of the study on Kaiser effect of rock acoustic emission in in-situ stress measurement%声发射Kaiser效应在地应力测量中的应用现状

    Institute of Scientific and Technical Information of China (English)

    李利峰; 邹正盛; 张庆

    2011-01-01

    Based on periodical literature, the statistics of papers on accoustic emission since recent twenty years were made. The principle and mechanism of acoustic emission, space positioning for the samples were presented.With the theory of elastic mechanics, six direction and four direction methods in space for in-sim measurement using the rock acoustic emission were derived. There are two sampling methods according to the different methods.Influence factors of acoustic emission in in-sim stress measurement, determining method of Kaiser Point and treatment technique for signal and noise were systematically expounded. Two methods which are different from the traditional in-situ measurement are introduced. Problems and research trend of the in-situ stress measurement using acoustic emission were analyzed.%对近20年来岩石声发射测量地应力的研究现状进行了分析,介绍了声发射的原理和机理及试样的空间定位方法.利用弹性力学原理推导了声发射方法测定地应力的空间6向和4向的计算过程,对应有两种常用的取样方式.系统地阐述了影响声发射地应力测量的因素、Kaiser点的确定方法以及信噪处理技术,简单介绍了不同于传统利用声发射测量地应力的另外两种方法.对声发射测量地应力中存在的问题和研究趋势进行了分析.

  12. Acoustic characterization of rehabilitated cloisters

    OpenAIRE

    A. P. O. Carvalho; S. R. C. Vilela

    2008-01-01

    This paper presents the results of field measurements in eight rehabilitated cloisters of old monasteries in Portugal (length: 20 to 35 m and height: 3.3 to 6.3 m) regarding their acoustic behavior to two objective parameters: RT and RASTI. The goal is to characterize the acoustic effect of the rehabilitation done on theses spaces to adapt them to new uses. All these cloisters had recently their galleries#8217; openings to the central yard closed with glass panels. Simple formulas were obtain...

  13. My 65 years in acoustics

    Science.gov (United States)

    Beranek, Leo L.

    2001-05-01

    My entry into acoustics began as research assistant to Professor F. V. Hunt at Harvard University. I received my doctorate in 1940 and directed the Electro-Acoustic Laboratory at Harvard from October 1940 until September 1945. In 1947, I became a tenured associate professor at MIT, and, with Richard H. Bolt, formed the consulting firm Bolt and Beranek, that later included Robert B. Newman, becoming BBN. My most significant contributions before 1970 were design of wedge-lined anechoic chambers, systemization of noise reduction in ventilation systems, design of the world's largest muffler for the testing of supersonic jet engines at NASA's Lewis Laboratory in Cleveland, speech interference level, NC noise criterion curves, heading New York Port Authority's noise study that resulted in mufflers on jet aircraft, and steep aircraft climb procedures, and publishing books titled, Acoustical Measurements, Acoustics, Noise Reduction, Noise and Vibration Control, and Music, Acoustics and Architecture. As President of BBN, I supervised the formation of the group that built and operated the ARPANET (1969), which, when split in two (using TCP/IP protocol) became the INTERNET (1984). Since then, I have written two books on Concert Halls and Opera Houses and have consulted on four concert halls and an opera house.

  14. Acoustic Neuroma Educational Video

    Medline Plus

    Full Text Available ... ANA Annual Reports Acoustic Neuroma Legacy Society Programs & Services Join/Renew Ways to Give ANA Discussion Forum ... ANA Annual Reports Acoustic Neuroma Legacy Society Programs & Services Search ANAUSA.org Connect with us! Educational Video ...

  15. Atlantic Herring Acoustic Surveys

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NEFSC Advanced Sampling Technologies Research Group conducts annual fisheries acoustic surveys using state-of-the-art acoustic, midwater trawling, and...

  16. Cystic acoustic neuromas

    OpenAIRE

    Chitkara, Naveen; Chanda, Rakesh; Yadav, S. P. S.; N.K. Sharma

    2002-01-01

    Predominantly cystic acoustic neuromas are rare and they usually present with clinical and radiological features different from their more common solid counterparts. Two cases of cystic acoustic neuromas are reported here.

  17. Acoustic Neuroma Educational Video

    Medline Plus

    Full Text Available ... is ANA? Mission Statement Board of Directors ANA Staff Medical Advisory Board News ANA Annual Reports Acoustic ... is ANA? Mission Statement Board of Directors ANA Staff Medical Advisory Board News ANA Annual Reports Acoustic ...

  18. Acoustic Neuroma Educational Video

    Medline Plus

    Full Text Available ... Watch and Wait Radiation Microsurgery Acoustic Neuroma Decision Tree Questions for Your Physician Questions to Ask Yourself ... Watch and Wait Radiation Microsurgery Acoustic Neuroma Decision Tree Questions for Your Physician Questions to Ask Yourself ...

  19. Acoustic Neuroma Educational Video

    Medline Plus

    Full Text Available ... Resources Patient Surveys Related Links Clinical Trials.gov Health Care Insurance Toolkit Additional Resources ANA Public Webinars © 2016 Acoustic Neuroma Association Acoustic Neuroma Association ® • ...

  20. Ionic association and solvation of the ionic liquid 1-hexyl-3-methylimidazolium chloride in molecular solvents revealed by vapor pressure osmometry, conductometry, volumetry, and acoustic measurements.

    Science.gov (United States)

    Sadeghi, Rahmat; Ebrahimi, Nosaibah

    2011-11-17

    A systematic study of osmotic coefficient, conductivity, volumetric and acoustic properties of solutions of ionic liquid 1-hexyl-3-methylimidazolium chloride ([C(6)mim][Cl]) in various molecular solvents has been made at different temperatures in order to study of ionic association and solvation behavior of [C(6)mim][Cl] in different solutions. Precise measurements on electrical conductances of solutions of [C(6)mim][Cl] in water, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, and acetonitrile at 293.15, 298.15, and 303.15 K are reported and analyzed with Barthel's low-concentration chemical model (lcCM) to obtain the limiting molar conductivities and association constants of this ionic liquid in the investigated solvents. Strong ion pairing was found for the ionic liquid in 2-propanol, 1-butanol, and 1-propanol, whereas ion association in acetonitrile, methanol and ethanol is rather weak and in water the ionic liquid is fully dissociated. In the second part of this work, the apparent molar volumes and isentropic compressibilities of [C(6)mim][Cl] in water, methanol, ethanol, acetonitrile, 1-propanol, 2-propanol, and 1-butanol are obtained at the 288.15-313.15 K temperature range at 5 K intervals at atmospheric pressure from the precise measurements of density and sound velocity. The infinite dilution apparent molar volume and isentropic compressibility values of the free ions and ion pairs of [C(6)mim][Cl] in the investigated solvents as well as the excess molar volume of the investigated solutions are determined and their variations with temperature and type of solvents are also studied. Finally, the experimental measurements of osmotic coefficient at 318.15 K for binary solutions of [C(6)mim][Cl] in water, methanol, ethanol, 2-propanol, and acetonitrile are taken using the vapor pressure osmometry (VPO) method and from which the values of the solvent activity, vapor pressure, activity coefficients, and Gibbs free energies are calculated. The results are

  1. Tutorial on architectural acoustics

    Science.gov (United States)

    Shaw, Neil; Talaske, Rick; Bistafa, Sylvio

    2002-11-01

    This tutorial is intended to provide an overview of current knowledge and practice in architectural acoustics. Topics covered will include basic concepts and history, acoustics of small rooms (small rooms for speech such as classrooms and meeting rooms, music studios, small critical listening spaces such as home theatres) and the acoustics of large rooms (larger assembly halls, auditoria, and performance halls).

  2. Inverse potential scattering in duct acoustics.

    Science.gov (United States)

    Forbes, Barbara J; Pike, E Roy; Sharp, David B; Aktosun, Tuncay

    2006-01-01

    The inverse problem of the noninvasive measurement of the shape of an acoustical duct in which one-dimensional wave propagation can be assumed is examined within the theoretical framework of the governing Klein-Gordon equation. Previous deterministic methods developed over the last 40 years have all required direct measurement of the reflectance or input impedance but now, by application of the methods of inverse quantum scattering to the acoustical system, it is shown that the reflectance can be algorithmically derived from the radiated wave. The potential and area functions of the duct can subsequently be reconstructed. The results are discussed with particular reference to acoustic pulse reflectometry.

  3. Acoustic Monitoring for Spaceflight Vehicle Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR will develop and demonstrate acoustic sensor technology enabling real-time, remotely performed measuring and monitoring of sound pressure levels and noise...

  4. CALCULATION OF ACOUSTIC EFFICIENCY OF PORTABLE ACOUSTIC SCREEN

    Directory of Open Access Journals (Sweden)

    Aleksandr Skvortsov

    2016-03-01

    Full Text Available The research of influence of life environment adverse factors on physical development and health of population is an actual problem of ecology. The aspects of the most actual problems of the modern world, namely environmental industrial noise pollution are considered in the article. Industrial facilities everywhere have noisy equipment. Noise is a significant factors of negative influenceon people and environment. Combined effects of noise and of other physical pollutions on people may cause amplification of their negative impact. If the noise pollution level from the object in a residential area exceeds the permissible levels (MPL, noise protection measures can be initiated. Today, the most common design decisions for noise protection are sound absorbing construction, noise screens and barriers, acousting housings, soundproff cabins. Many of them are popular, others are less known. The article deals with one of the most wide spread means of noise protection – a portable acoustic screen. The aim of the research is to determine the efficiency of portable acoustic screens. It is shown that the installation of such structures can reduce the average value of the sound level. The authors analyzed acoustic screens as device to reduce noise pollution. The authors offer a potable acoustic screen differing from the used easyness, mobility, minimum price and good sound protective properties. Effectiveness, a sound absorption coefficient and sound conductivity coefficient of a portable acoustic screen are evaluated. The descriptions of the algorithm calculations and the combination of technical solutions have practical originality. The results of the research demonstrate the advantages of the proposed solutions for reducing noise levels in the agro-industrial complex.

  5. Correlation reception of thermal acoustic radiation

    Science.gov (United States)

    Anosov, A. A.; Barabanenkov, Yu. N.; Sel'Skii, A. G.

    2003-11-01

    Correlated signals of thermal acoustic radiation from heated sources extending in the transverse direction (a pair of narrow plasticine plates and a wide plasticine strip) are measured. The measurements are performed by multiplying together the signals that are shifted in time with respect to each other and detected by two piezoelectric transducers. The values of the correlated signals of thermal acoustic radiation are determined by the spatial variation of temperature in the medium under study.

  6. Acoustic elliptical cylindrical cloaks

    Institute of Scientific and Technical Information of China (English)

    Ma Hua; Qu Shao-Bo; Xu Zhuo; Wang Jia-Fu

    2009-01-01

    By making a comparison between the acoustic equations and the 2-dimensional (2D) Maxwell equations, we obtain the material parameter equations (MPE) for acoustic elliptical cylindrical cloaks. Both the theoretical results and the numerical results indicate that an elliptical cylindrical cloak can realize perfect acoustic invisibility when the spatial distributions of mass density and bulk modulus are exactly configured according to the proposed equations. The present work is the meaningful exploration of designing acoustic cloaks that are neither sphere nor circular cylinder in shape, and opens up possibilities for making complex and multiplex acoustic cloaks with simple models such as spheres, circular or elliptic cylinders.

  7. Acoustically-Induced Electrical Signals

    Science.gov (United States)

    Brown, S. R.

    2014-12-01

    We have observed electrical signals excited by and moving along with an acoustic pulse propagating in a sandstone sample. Using resonance we are now studying the characteristics of this acousto-electric signal and determining its origin and the controlling physical parameters. Four rock samples with a range of porosities, permeabilities, and mineralogies were chosen: Berea, Boise, and Colton sandstones and Austin Chalk. Pore water salinity was varied from deionized water to sea water. Ag-AgCl electrodes were attached to the sample and were interfaced to a 4-wire electrical resistivity system. Under computer control, the acoustic signals were excited and the electrical response was recorded. We see strong acoustically-induced electrical signals in all samples, with the magnitude of the effect for each rock getting stronger as we move from the 1st to the 3rd harmonics in resonance. Given a particular fluid salinity, each rock has its own distinct sensitivity in the induced electrical effect. For example at the 2nd harmonic, Berea Sandstone produces the largest electrical signal per acoustic power input even though Austin Chalk and Boise Sandstone tend to resonate with much larger amplitudes at the same harmonic. Two effects are potentially responsible for this acoustically-induced electrical response: one the co-seismic seismo-electric effect and the other a strain-induced resistivity change known as the acousto-electric effect. We have designed experimental tests to separate these mechanisms. The tests show that the seismo-electric effect is dominant in our studies. We note that these experiments are in a fluid viscosity dominated seismo-electric regime, leading to a simple interpretation of the signals where the electric potential developed is proportional to the local acceleration of the rock. Toward a test of this theory we have measured the local time-varying acoustic strain in our samples using a laser vibrometer.

  8. ACOUSTICAL STANDARDS NEWS.

    Science.gov (United States)

    Stremmel, Neil; Struck, Christopher J

    2016-07-01

    American National Standards (ANSI Standards) developed by Accredited Standards Committees S1, S2, S3, S3/SC 1, and S12 in the areas of acoustics, mechanical vibration and shock, bioacoustics, animal bioacoustics, and noise, respectively, are published by the Acoustical Society of America (ASA). In addition to these standards, ASA publishes a catalog of Acoustical American National Standards. To receive a copy of the latest Standards catalog, please contact Neil Stremmel.Comments are welcomed on all material in Acoustical Standards News.This Acoustical Standards News section in JASA, as well as the National Catalog of Acoustical Standards and other information on the Standards Program of the Acoustical Society of America, are available via the ASA home page: http://acousticalsociety.org. PMID:27475185

  9. Acoustic streaming in microchannels

    DEFF Research Database (Denmark)

    Tribler, Peter Muller

    , the acoustic streaming flow, and the forces on suspended microparticles. The work is motivated by the application of particle focusing by acoustic radiation forces in medical, environmental and food sciences. Here acoustic streaming is most often unwanted, because it limits the focusability of particles...... work. Based on first- and second-order perturbation theory, assuming small acoustic amplitudes, we derived the time-dependent governing equations under adiabatic conditions. The adiabatic first- and second-order equations are solved analytically for the acoustic field between two orthogonally......-of-the-art in the field. Furthermore, the analytical solution for the acoustic streaming in rectangular channels with arbitrary large height-to-width ratios is derived. This accommodates the analytical theory of acoustic streaming to applications within acoustofluidics....

  10. Acoustics and Hearing

    CERN Document Server

    Damaske, Peter

    2008-01-01

    When one listens to music at home, one would like to have an acoustic impression close to that of being in the concert hall. Until recently this meant elaborate multi-channelled sound systems with 5 or more speakers. But head-related stereophony achieves the surround-sound effect in living rooms with only two loudspeakers. By virtue of their slight directivity as well as an electronic filter the limitations previously common to two-speaker systems can be overcome and this holds for any arbitrary two-channel recording. The book also investigates the question of how a wide and diffuse sound image can arise in concert halls and shows that the quality of concert halls decisively depends on diffuse sound images arising in the onset of reverberation. For this purpose a strong onset of reverberation is modified in an anechoic chamber by electroacoustic means. Acoustics and Hearing proposes ideas concerning signal processing in the auditory system that explain the measured results and the resultant sound effects plea...

  11. ISAT: The mega-fauna acoustic tracking system

    KAUST Repository

    De la Torre, Pedro

    2013-06-01

    The acoustic tracking module of the Integrated Satellite and Acoustic Telemetry (iSAT) system is discussed in detail. iSAT is capable of detecting the relative direction of an acoustic source by measuring the order of arrival (OOA) of the acoustic signal to each hydrophone in a triangular array. The characteristics of the hydrophones, the projector, and the target acoustic signal used for iSAT are described. Initially it is designed to study the movements of whale sharks (Rhincodon typus), but it could potentially be used to describe high resolution movements of other marine species. © 2013 IEEE.

  12. Measurement and Analysis of Coherent Flow Structures over Sand Dunes in the Missouri River near St. Louis, MO, by means of an Acoustic Doppler Current Profiler and a Multibeam Echo Sounder

    Science.gov (United States)

    Boldt, J.; Oberg, K. A.; Best, J. L.; Parsons, D. R.

    2011-12-01

    The topology, magnitude, and sediment transport capabilities of large-scale turbulence generated over alluvial sand dunes is influential in creating and maintaining dune morphology and in dominating both the flow field and the transport of suspended sediment above dune-covered beds. Combined measurements by means of an acoustic Doppler current profiler (ADCP) and a multibeam echo sounder (MBES) were made in order to examine flow over a series of sand dunes in the Missouri River, near St. Louis, MO, USA in October 2007. The bed topography of the Missouri River was mapped using a RESON 7125 MBES immediately before the ADCP data collection. Time series of velocity and acoustic backscatter were measured using a down-looking 1200 kHz ADCP while anchored at two locations in the dune field. The ADCP used in this study has a sampling rate of 2-3 Hz with 20-25 cm bin sizes. Two time series were collected having durations of 712 and 589 seconds at one location, while the third time series, collected about 4 meters upstream, was 2,270 seconds in duration. Measured streamwise velocities ranged from 0.1 to 2.7 ms-1 for all three stationary time series. Sediment concentration profiles were obtained at the same two locations as the stationary ADCP data using a P-61 sediment sampler and were compared to ADCP acoustic backscatter. Characteristics of turbulent flow structures in a sand bed river are presented. This paper presents data that can be used to investigate the issue of obtaining reliable estimates of turbulence parameters with an ADCP. The analyses will include mean velocity profiles, turbulence intensities, Reynolds shear stresses, quadrant analysis, power spectra, cross-correlation, and frequency analysis. Semi-periodic patterns were observed in each time series, characterized by periods of elevated acoustic backscatter with positive vertical velocities, followed by reduced acoustic backscatter with negative vertical velocities. The utility and limitations of combined

  13. Listening to the acoustics in concert halls

    Science.gov (United States)

    Beranek, Leo L.; Griesinger, David

    2001-05-01

    How does acoustics affect the symphonic music performed in a concert hall? The lecture begins with an illustrated discussion of the architectural features that influence the acoustics. Boston Symphony Hall, which was built in 1900 when only one facet of architectural design was known, now rates as one of the world's great halls. How this occurred will be presented. Music is composed with some acoustical environment in mind and this varies with time from the Baroque to the Romantic to the Modern musical period. Conductors vary their interpretation according to the hall they are in. Well-traveled listeners and music critics have favorite halls. The lecture then presents a list of 58 halls rank ordered according to their acoustical quality based on interviews of music critics and conductors. Modern acoustical measurements made in these halls are compared with their rankings. Music recordings will be presented that demonstrate how halls sound that have different measured acoustical parameters. Photographs of a number of recently built halls are shown as examples of how these known acoustical factors have been incorporated into architectural design.

  14. Acoustic Faraday rotation in Weyl semimetals

    Science.gov (United States)

    Liu, Donghao; Shi, Junren

    We investigate the phonon problems in Weyl semimetals, from which both the phonon Berry curvature and the phonon Damping could be obtained. We show that even without a magnetic field, the degenerate transverse acoustic modes could also be split due to the adiabatic curvature. In three dimensional case, acoustic Faraday rotation shows up. And furthermore, since the attenuation procedure could distinguish the polarized mode, single circularly polarized acoustic wave could be realized. We study the mechanism in the novel time reversal symmetry broken Weyl semimetal. New effects rise because of the linear dispersion, which give enlightenment in the measurement of this new kind of three-dimensional material.

  15. Envelope Solitons in Acoustically Dispersive Vitreous Silica

    Science.gov (United States)

    Cantrell, John H.; Yost, William T.

    2012-01-01

    Acoustic radiation-induced static strains, displacements, and stresses are manifested as rectified or dc waveforms linked to the energy density of an acoustic wave or vibrational mode via the mode nonlinearity parameter of the material. An analytical model is developed for acoustically dispersive media that predicts the evolution of the energy density of an initial waveform into a series of energy solitons that generates a corresponding series of radiation-induced static strains (envelope solitons). The evolutionary characteristics of the envelope solitons are confirmed experimentally in Suprasil W1 vitreous silica. The value (-11.9 plus or minus 1.43) for the nonlinearity parameter, determined from displacement measurements of the envelope solitons via a capacitive transducer, is in good agreement with the value (-11.6 plus or minus 1.16) obtained independently from acoustic harmonic generation measurements. The agreement provides strong, quantitative evidence for the validity of the model.

  16. Dyke leakage localization and hydraulic permeability estimation through self-potential and hydro-acoustic measurements: Self-potential 'abacus' diagram for hydraulic permeability estimation and uncertainty computation

    Science.gov (United States)

    Bolève, A.; Vandemeulebrouck, J.; Grangeon, J.

    2012-11-01

    In the present study, we propose the combination of two geophysical techniques, which we have applied to a dyke located in southeastern France that has a visible downstream flood area: the self-potential (SP) and hydro-acoustic methods. These methods are sensitive to two different types of signals: electric signals and water-soil pressure disturbances, respectively. The advantages of the SP technique lie in the high rate of data acquisition, which allows assessment of long dykes, and direct diagnosis in terms of leakage area delimitation and quantification. Coupled with punctual hydro-acoustic cartography, a leakage position can be precisely located, therefore allowing specific remediation decisions with regard to the results of the geophysical investigation. Here, the precise localization of leakage from an earth dyke has been identified using SP and hydro-acoustic signals, with the permeability of the preferential fluid flow area estimated by forward SP modeling. Moreover, we propose a general 'abacus' diagram for the estimation of hydraulic permeability of dyke leakage according to the magnitude of over water SP anomalies and the associated uncertainty.

  17. Springer handbook of acoustics

    CERN Document Server

    2014-01-01

    Acoustics, the science of sound, has developed into a broad interdisciplinary field encompassing the academic disciplines of physics, engineering, psychology, speech, audiology, music, architecture, physiology, neuroscience, and electronics. The Springer Handbook of Acoustics is also in his 2nd edition an unparalleled modern handbook reflecting this richly interdisciplinary nature edited by one of the acknowledged masters in the field, Thomas Rossing. Researchers and students benefit from the comprehensive contents. This new edition of the Handbook features over 11 revised and expanded chapters, new illustrations, and 2 new chapters covering microphone arrays  and acoustic emission.  Updated chapters contain the latest research and applications in, e.g. sound propagation in the atmosphere, nonlinear acoustics in fluids, building and concert hall acoustics, signal processing, psychoacoustics, computer music, animal bioacousics, sound intensity, modal acoustics as well as new chapters on microphone arrays an...

  18. Linearity of fisheries acoustics, with addition theorems

    OpenAIRE

    Foote, Kenneth G.

    1983-01-01

    An experiment to verify the basic linearity of fisheries acoustics is described. Herring (Clupea harengus L.) was the subject fish. Acoustic measurements consisted of the echo energy from aggregations of encaged but otherwise free-swimming fish, and the target strength functions of similar, anesthetized specimens. Periodic photographic observation of the encaged fish allowed characterization of their behavior through associated spatial and orientation distributions. The fish biology and hydro...

  19. One sensor acoustic emission localization in plates.

    Science.gov (United States)

    Ernst, R; Zwimpfer, F; Dual, J

    2016-01-01

    Acoustic emissions are elastic waves accompanying damage processes and are therefore used for monitoring the health state of structures. Most of the traditional acoustic emission techniques use a trilateration approach requiring at least three sensors on a 2D domain in order to localize sources of acoustic emission events. In this paper, we present a new approach which requires only a single sensor to identify and localize the source of acoustic emissions in a finite plate. The method proposed makes use of the time reversal principle and the dispersive nature of the flexural wave mode in a suitable frequency band. The signal shape of the transverse velocity response contains information about the propagated paths of the incoming elastic waves. This information is made accessible by a numerical time reversal simulation. The effect of dispersion is reversed and the original shape of the flexural wave is restored at the origin of the acoustic emission. The time reversal process is analyzed first for an infinite Mindlin plate, then by a 3D FEM simulation which in combination results in a novel acoustic emission localization process. The process is experimentally verified for different aluminum plates for artificially generated acoustic emissions (Hsu-Nielsen source). Good and reliable localization was achieved for a homogeneous quadratic aluminum plate with only one measurement. PMID:26372509

  20. Habilidades auditivas e medidas da imitância acústica em crianças de 4 a 6 anos de idade Auditory abilities and acoustic immittance measures in children from 4 to 6 year old

    Directory of Open Access Journals (Sweden)

    Rafaela Della Giacoma Prado Toscano

    2012-08-01

    Full Text Available OBJETIVO: avaliar o desempenho em habilidades auditivas e as condições de orelha média de crianças de 4 a 6 anos de idade. MÉTODO: foram aplicados os testes de detecção sonora (audiômetro pediátrico em 20dBNA, a Avaliação Simplificada do Processamento Auditivo (ASPA e as medidas de imitância acústica (handtymp com tom de 226Hz em 61 crianças com média de idade de 5,65 anos. Para comparar os resultados das provas de habilidades auditivas e das medidas da imitância acústica foi aplicado o teste exato de Fisher com nível de significância de pPURPOSE: to evaluate the performance of auditory abilities and conditions in the middle ear of children from 4 to 6 year old. METHOD: we applied the tests in order to detect sound (pediatric audiometer in 20dBHL, the Simplified Assessment of Auditory Processing (SAAP and the acoustic immittance measures (handtymp with a probe of 226Hz. In order to compare the results from the tests of auditory abilities and measures of acoustic impedance we applied Fisher's exact test with significance level of p <0.05. RESULTS: the study involved 61 children with a mean age of 5.65 years. There was some alteration in at least one of the investigated auditory skills in 24.6% of the children. Tympanometry was altered in 34.4% of the children and 64% were classified on the "fail" criterion for the measure of ipsilateral acoustic reflex. Younger children had higher incidence of middle ear disorders, but with no significant statistical difference between different ages as for the tests. CONCLUSION: younger children showed a higher occurrence of alterations in the tests of auditory abilities and measures of acoustic immittance. Research and monitoring programs for the conditions of the middle ear and auditory skills in preschool and school age can eliminate or minimize events that would alter the socio-linguistic development.

  1. Low frequency acoustic microscope

    Science.gov (United States)

    Khuri-Yakub, Butrus T.

    1986-11-04

    A scanning acoustic microscope is disclosed for the detection and location of near surface flaws, inclusions or voids in a solid sample material. A focused beam of acoustic energy is directed at the sample with its focal plane at the subsurface flaw, inclusion or void location. The sample is scanned with the beam. Detected acoustic energy specularly reflected and mode converted at the surface of the sample and acoustic energy reflected by subsurface flaws, inclusions or voids at the focal plane are used for generating an interference signal which is processed and forms a signal indicative of the subsurface flaws, inclusions or voids.

  2. Localized acoustic surface modes

    Science.gov (United States)

    Farhat, Mohamed; Chen, Pai-Yen; Bağcı, Hakan

    2016-04-01

    We introduce the concept of localized acoustic surface modes. We demonstrate that they are induced on a two-dimensional cylindrical rigid surface with subwavelength corrugations under excitation by an incident acoustic plane wave. Our results show that the corrugated rigid surface is acoustically equivalent to a cylindrical scatterer with uniform mass density that can be represented using a Drude-like model. This, indeed, suggests that plasmonic-like acoustic materials can be engineered with potential applications in various areas including sensing, imaging, and cloaking.

  3. Localized Acoustic Surface Modes

    KAUST Repository

    Farhat, Mohamed

    2015-08-04

    We introduce the concept of localized acoustic surface modes (ASMs). We demonstrate that they are induced on a two-dimensional cylindrical rigid surface with subwavelength corrugations under excitation by an incident acoustic plane wave. Our results show that the corrugated rigid surface is acoustically equivalent to a cylindrical scatterer with uniform mass density that can be represented using a Drude-like model. This, indeed, suggests that plasmonic-like acoustic materials can be engineered with potential applications in various areas including sensing, imaging, and cloaking.

  4. Agorá Acoustics - Effects of arcades on the acoustics of public squares

    DEFF Research Database (Denmark)

    Paini, Dario; Gade, Anders Christian; Rindel, Jens Holger

    2005-01-01

    This paper is part of a PhD work, dealing with the acoustics of the public squares (‘Agorá Acoustics’), especially when music (amplified or not) is played. Consequently, our approach will be to evaluate public squares using the same set of acoustics concepts for subjective evaluation and objective...... measurements as applied for concert halls and theatres. In this paper the acoustical effects of arcades will be studied, in terms of reverberation (EDT and T30), clarity (C80), intelligibility (STI) and other acoustical parameters. For this purpose, also the theory of coupled rooms is applied and compared...... with results. An acoustic modelling program, ODEON 7.0, was used for this investigation. Three different sizes of public squares were considered. In order to evaluate the ‘real’ effects of the arcades on the open square, models of all three squares were designed both with and without arcades. The sound source...

  5. Classifying Particles By Acoustic Levitation

    Science.gov (United States)

    Barmatz, Martin B.; Stoneburner, James D.

    1983-01-01

    Separation technique well suited to material processing. Apparatus with rectangular-cross-section chamber used to measure equilibrium positions of low-density spheres in gravitational field. Vertical acoustic forces generated by two opposing compression drivers exciting fundamental plane-wave mode at 1.2 kHz. Additional horizontal drivers centered samples along vertical axis. Applications in fusion-target separation, biological separation, and manufacturing processes in liquid or gas media.

  6. What Is an Acoustic Neuroma

    Science.gov (United States)

    ... org Connect with us! What is an Acoustic Neuroma? Each heading slides to reveal information. Important Points ... Neuroma Important Points To Know About an Acoustic Neuroma An acoustic neuroma, also called a vestibular schwannoma, ...

  7. Predicting Acoustics in Class Rooms

    DEFF Research Database (Denmark)

    Christensen, Claus Lynge; Rindel, Jens Holger

    2005-01-01

    Typical class rooms have fairly simple geometries, even so room acoustics in this type of room is difficult to predict using today's room acoustic computer modeling software. The reasons why acoustics of class rooms are harder to predict than acoustics of complicated concert halls might be explai......Typical class rooms have fairly simple geometries, even so room acoustics in this type of room is difficult to predict using today's room acoustic computer modeling software. The reasons why acoustics of class rooms are harder to predict than acoustics of complicated concert halls might...... with surface scattering is presented. Each of the two scattering effects is modeled as frequency dependent functions....

  8. Theoretical and experimental verification of acoustic focusing in metal cylinder structure

    Science.gov (United States)

    Xia, Jian-ping; Sun, Hong-xiang; Cheng, Qian; Xu, Zheng; Chen, Hao; Yuan, Shou-qi; Zhang, Shu-yi; Ge, Yong; Guan, Yi-jun

    2016-05-01

    We report the realization of a multifocal acoustic focusing lens using a simple metal cylinder structure immersed in water, as determined both experimentally and theoretically. The acoustic waves can be focused on one or more points, because the Mie-resonance modes are excited in the cylinder structure. The acoustic pressure fields measured in the Schlieren imaging system agree with the results calculated using the acoustic scattering theory. Interesting applications of multifocal focusing in the acoustic encryption communication are further discussed. Our work should be helpful in understanding the focusing mechanism and experimentally measuring the acoustic phenomena in cylinder structures.

  9. Visualizing underwater acoustic matched-field processing

    Science.gov (United States)

    Rosenblum, Lawrence; Kamgar-Parsi, Behzad; Karahalios, Margarida; Heitmeyer, Richard

    1991-06-01

    Matched-field processing is a new technique for processing ocean acoustic data measured by an array of hydrophones. It produces estimates of the location of sources of acoustic energy. This method differs from source localization techniques in other disciplines in that it uses the complex underwater acoustic environment to improve the accuracy of the source localization. An unexplored problem in matched-field processing has been to separate multiple sources within a matched-field ambiguity function. Underwater acoustic processing is one of many disciplines where a synthesis of computer graphics and image processing is producing new insight. The benefits of different volume visualization algorithms for matched-field display are discussed. The authors show how this led to a template matching scheme for identifying a source within the matched-field ambiguity function that can help move toward an automated source localization process.

  10. Subjective evaluation of restaurant acoustics in a virtual sound environment

    DEFF Research Database (Denmark)

    Nielsen, Nicolaj Østergaard; Marschall, Marton; Santurette, Sébastien;

    2016-01-01

    surveys report that noise complaints are on par with poor service. This study investigated the relation between objective acoustic parameters and subjective evaluation of acoustic comfort at five restaurants in terms of three parameters: noise annoyance, speech intelligibility, and privacy. At each...... location, customers filled out questionnaire surveys, acoustic parameters were measured, and recordings of restaurant acoustic scenes were obtained with a 64-channel spherical array. The acoustic scenes were reproduced in a virtual sound environment (VSE) with 64 loudspeakers placed in an anechoic room......, where listeners performed subjective evaluation of noise annoyance and privacy and a speech intelligibility test for each restaurant noise background. It was found that subjective evaluations of acoustic comfort correlate with occupancy rates and measured noise levels, that survey and listening test...

  11. D2声学测量系统的测试功能%Testing Function of The D2 Acoustic Measurement System

    Institute of Scientific and Technical Information of China (English)

    王延君

    2010-01-01

    @@ D2声学测量系统,是美国AcoustX公司专为影院的综合测试和测量而设计的一套声学测量工具,已经通过了卢卡斯的认证.其中包括如图1所示的4支话筒及支架、D2调制器、D2控制器、USBPre 数字音频接口及Win|RTA测试软件(在所附光盘上).

  12. How Does Speaking Clearly Influence Acoustic Measures? A Speech Clarity Study Using Long-term Average Speech Spectra in Korean Language

    OpenAIRE

    Noh, Heil; Lee, Dong-Hee

    2012-01-01

    Objectives To investigate acoustic differences between conversational and clear speech of Korean and to evaluate the influence of the gender on the speech clarity using the long-term average speech spectrum (LTASS). Methods Each subject's voice was recorded using a sound level meter connected to GoldWave program. Average long-term root mean square (RMS) of one-third octave bands speech spectrum was calculated from 100 to 10,000 Hz after normalizing to 70 dB overall level using the MATLAB prog...

  13. Acoustic estimation of suspended sediment concentration

    Institute of Scientific and Technical Information of China (English)

    ZHU; Weiqing(

    2001-01-01

    [1]Morse, P. H. , Theoretical Acoustics, New York: McGraw-Hill Book Co. , 1968.[2]Skudrjuk, E., Die Grundlagen der Akustik, Wien: Springer-Verlag, 1954.[3]Olshevskii, V. V., Statistical Characteristics of Sea Reverberation, Moscow: Nauka Publisher, 1966.[4]Thorne, P. D., Hardcastl, P. J., Soulsby, R. L., Analysis of acoustic measurements of suspended sediments, J. Geop.Res. , 1993, 98: 899.[5]Guo Jijie, Ren Laifa, Li Yunwu, ln-situ calibration of acoustic measurement of suspended sedienmt, Acta Oceanologica Sini-ca, 1998, (20): 120-125.[6]Zhang Shuying, Li Yunwu, Development and application of an acoustic suspended sediemnt monitoring system, Acta Oceanologica Sinica, 1998, (20): 114-119.[7]Zhang Shuying, Li Yunwu, A theoretical analysis of acoustic suspended sediment obsvervation, Acta Acoustica, 1999, (24):267-274.[8]Zhu Weiqing, Pan Feng, Zhu Min et al. , IOA-1 Multi-function Acoustic Doppler Current Profiler (MADCP), OCEAN'2000,Rhode Island, USA.

  14. Ocean acoustic reverberation tomography.

    Science.gov (United States)

    Dunn, Robert A

    2015-12-01

    Seismic wide-angle imaging using ship-towed acoustic sources and networks of ocean bottom seismographs is a common technique for exploring earth structure beneath the oceans. In these studies, the recorded data are dominated by acoustic waves propagating as reverberations in the water column. For surveys with a small receiver spacing (e.g., ocean acoustic reverberation tomography, is developed that uses the travel times of direct and reflected waves to image ocean acoustic structure. Reverberation tomography offers an alternative approach for determining the structure of the oceans and advancing the understanding of ocean heat content and mixing processes. The technique has the potential for revealing small-scale ocean thermal structure over the entire vertical height of the water column and along long survey profiles or across three-dimensional volumes of the ocean. For realistic experimental geometries and data noise levels, the method can produce images of ocean sound speed on a smaller scale than traditional acoustic tomography.

  15. Acoustic Signals and Systems

    DEFF Research Database (Denmark)

    2008-01-01

    The Handbook of Signal Processing in Acoustics will compile the techniques and applications of signal processing as they are used in the many varied areas of Acoustics. The Handbook will emphasize the interdisciplinary nature of signal processing in acoustics. Each Section of the Handbook...... will present topics on signal processing which are important in a specific area of acoustics. These will be of interest to specialists in these areas because they will be presented from their technical perspective, rather than a generic engineering approach to signal processing. Non-specialists, or specialists...... from different areas, will find the self-contained chapters accessible and will be interested in the similarities and differences between the approaches and techniques used in different areas of acoustics....

  16. Cochlear bionic acoustic metamaterials

    Science.gov (United States)

    Ma, Fuyin; Wu, Jiu Hui; Huang, Meng; Fu, Gang; Bai, Changan

    2014-11-01

    A design of bionic acoustic metamaterial and acoustic functional devices was proposed by employing the mammalian cochlear as a prototype. First, combined with the experimental data in previous literatures, it is pointed out that the cochlear hair cells and stereocilia cluster are a kind of natural biological acoustic metamaterials with the negative stiffness characteristics. Then, to design the acoustic functional devices conveniently in engineering application, a simplified parametric helical structure was proposed to replace actual irregular cochlea for bionic design, and based on the computational results of such a bionic parametric helical structure, it is suggested that the overall cochlear is a local resonant system with the negative dynamic effective mass characteristics. There are many potential applications in the bandboard energy recovery device, cochlear implant, and acoustic black hole.

  17. Computational Ocean Acoustics

    CERN Document Server

    Jensen, Finn B; Porter, Michael B; Schmidt, Henrik

    2011-01-01

    Since the mid-1970s, the computer has played an increasingly pivotal role in the field of ocean acoustics. Faster and less expensive than actual ocean experiments, and capable of accommodating the full complexity of the acoustic problem, numerical models are now standard research tools in ocean laboratories. The progress made in computational ocean acoustics over the last thirty years is summed up in this authoritative and innovatively illustrated new text. Written by some of the field's pioneers, all Fellows of the Acoustical Society of America, Computational Ocean Acoustics presents the latest numerical techniques for solving the wave equation in heterogeneous fluid–solid media. The authors discuss various computational schemes in detail, emphasizing the importance of theoretical foundations that lead directly to numerical implementations for real ocean environments. To further clarify the presentation, the fundamental propagation features of the techniques are illustrated in color. Computational Ocean A...

  18. Experimental study of geo-acoustic inversion uncertainty due to ocean sound-speed fluctuations.

    NARCIS (Netherlands)

    Siderius, M.; Nielsen, P.L.; Sellschopp, J.; Snellen, M.; Simons, D.G.

    2001-01-01

    Acoustic data measured in the ocean fluctuate due to the complex time-varying properties of the channel. When measured data are used for model-based, geo-acoustic inversion, how do acoustic fluctuations impact estimates for the seabed properties? In May 1999 SACLANT Undersea Research Center and TNO-

  19. An orientation calibration procedure for two acoustic vector sensor configurations

    OpenAIRE

    Basten, T.G.H.; Bree, H.E. de; Yntema, D.R.

    2009-01-01

    Acoustic vector sensors can be used for far field sound source localization, offering an alternative to far field beamforming. These sensors are able to measure the 3D acoustic particle velocity vector and the scalar value sound pressure. Two sensor configurations exist. The USP probe is based upon three orthogonally placed acoustic particle velocity sensors (Microflowns) and a single sound pressure sensor. In early 2009, also a completely integrated monolithic sound chip became available, wh...

  20. Reconstruction and prediction of multi-source acoustic field with the distributed source boundary point method based nearfield acoustic holography

    Institute of Scientific and Technical Information of China (English)

    BI; Chuanxing; CHEN; Jian; CHEN; Xinzhao

    2004-01-01

    In a multi-source acoustic field, the actual measured pressure is a scalar sum of pressures from all the sources. The pressure belonging to every source cannot be separated out with the existing techniques. Consequently, routine formulas cannot be used to reconstruct the acoustic source and predict the acoustic field directly. In this paper, a novel theoretical model of reconstruction and prediction of multi-source acoustic field in the distributed source boundary point method (DSBPM) based nearfield acoustic holography (NAH) is established. Three different methods, namely combination method with single surface measurement, combination method with multi-surface measurement and elimination method with multi-surface measurement, are proposed to realize the holographic reconstruction of sources. With these methods, the problem of reconstruction and prediction of acoustic field existing multiple coherent sources synchronously is solved effectively. Using the particular solutions constructed by the DSBPM to establish the vibro-acoustic transfer matrix, the calculation time, calculation precision and calculation stability are improved. These methods are valuable in localizing acoustic source and predicting acoustic field in engineering field.