Lamb Wave-Based Acoustic Radiation Force-Driven Particle Ring Formation Inside a Sessile Droplet.
Destgeer, Ghulam; Ha, Byunghang; Park, Jinsoo; Sung, Hyung Jin
2016-04-05
We demonstrate an acoustofluidic device using Lamb waves (LWs) to manipulate polystyrene (PS) microparticles suspended in a sessile droplet of water. The LW-based acoustofluidic platform used in this study is advantageous in that the device is actuated over a range of frequencies without changing the device structure or electrode pattern. In addition, the device is simple to operate and cheap to fabricate. The LWs, produced on a piezoelectric substrate, attenuate inside the fluid and create acoustic streaming flow (ASF) in the form of a poloidal flow with toroidal vortices. The PS particles experience direct acoustic radiation force (ARF) in addition to being influenced by the ASF, which drive the concentration of particles to form a ring. This phenomenon was previously attributed to the ASF alone, but the present experimental results confirm that the ARF plays an important role in forming the particle ring, which would not be possible in the presence of only the ASF. We used a range of actuation frequencies (45-280 MHz), PS particle diameters (1-10 μm), and droplet volumes (5, 7.5, and 10 μL) to experimentally demonstrate this phenomenon.
Magnetohydrodynamic Shearing Waves
Johnson, B M
2006-01-01
I consider the nonaxisymmetric linear theory of an isothermal magnetohydrodynamic (MHD) shear flow. The analysis is performed in the shearing box, a local model appropriate for a thin disk geometry. Linear perturbations in this model can be decomposed in terms of shearing waves (shwaves), which appear spatially as plane waves in a frame comoving with the shear. The time dependence of these waves cannot in general be expressed in terms of a frequency eigenvalue as in a normal mode decomposition, and numerical integration of a set of first-order amplitude equations is required for a complete characterization of their behavior. Their generic time dependence, however, is oscillatory with slowly-varying frequency and amplitude, and one can construct accurate analytic solutions by applying the Wentzel-Kramers-Brillouin method to the full set of amplitude equations. For the bulk of wavenumber space, therefore, the shwaves are well-approximated as modes with time-dependent frequencies and amplitudes. The incompressiv...
Shear Wave Imaging of Breast Tissue by Color Doppler Shear Wave Elastography.
Yamakoshi, Yoshiki; Nakajima, Takahito; Kasahara, Toshihiro; Yamazaki, Mayuko; Koda, Ren; Sunaguchi, Naoki
2017-02-01
Shear wave elastography is a distinctive method to access the viscoelastic characteristic of the soft tissue that is difficult to obtain by other imaging modalities. This paper proposes a novel shear wave elastography [color Doppler shear wave imaging (CD SWI)] for breast tissue. Continuous shear wave is produced by a small lightweight actuator, which is attached to the tissue surface. Shear wave wavefront that propagates in tissue is reconstructed as a binary pattern that consists of zero and the maximum flow velocities on color flow image (CFI). Neither any modifications of the ultrasound color flow imaging instrument nor a high frame rate ultrasound imaging instrument is required to obtain the shear wave wavefront map. However, two conditions of shear wave displacement amplitude and shear wave frequency are needed to obtain the map. However, these conditions are not severe restrictions in breast imaging. This is because the minimum displacement amplitude is [Formula: see text] for an ultrasonic wave frequency of 12 MHz and the shear wave frequency is available from several frequencies suited for breast imaging. Fourier analysis along time axis suppresses clutter noise in CFI. A directional filter extracts shear wave, which propagates in the forward direction. Several maps, such as shear wave phase, velocity, and propagation maps, are reconstructed by CD SWI. The accuracy of shear wave velocity measurement is evaluated for homogeneous agar gel phantom by comparing with the acoustic radiation force impulse method. The experimental results for breast tissue are shown for a shear wave frequency of 296.6 Hz.
Shear wave speed recovery in sonoelastography using crawling wave data.
Lin, Kui; McLaughlin, Joyce; Renzi, Daniel; Thomas, Ashley
2010-07-01
The crawling wave experiment, in which two harmonic sources oscillate at different but nearby frequencies, is a development in sonoelastography that allows real-time imaging of propagating shear wave interference patterns. Previously the crawling wave speed was recovered and used as an indicator of shear stiffness; however, it is shown in this paper that the crawling wave speed image can have artifacts that do not represent a change in stiffness. In this paper, the locations and shapes of some of the artifacts are exhibited. In addition, a differential equation is established that enables imaging of the shear wave speed, which is a quantity strongly correlated with shear stiffness change. The full algorithm is as follows: (1) extract the crawling wave phase from the spectral variance data; (2) calculate the crawling wave phase wave speed; (3) solve a first-order PDE for the phase of the wave emanating from one of the sources; and (4) compute and image the shear wave speed on a grid in the image plane.
Seismic shear waves as Foucault pendulum
Snieder, Roel; Sens-Schönfelder, Christoph; Ruigrok, Elmer; Shiomi, Katsuhiko
2016-03-01
Earth's rotation causes splitting of normal modes. Wave fronts and rays are, however, not affected by Earth's rotation, as we show theoretically and with observations made with USArray. We derive that the Coriolis force causes a small transverse component for P waves and a small longitudinal component for S waves. More importantly, Earth's rotation leads to a slow rotation of the transverse polarization of S waves; during the propagation of S waves the particle motion behaves just like a Foucault pendulum. The polarization plane of shear waves counteracts Earth's rotation and rotates clockwise in the Northern Hemisphere. The rotation rate is independent of the wave frequency and is purely geometric, like the Berry phase. Using the polarization of ScS and ScS2 waves, we show that the Foucault-like rotation of the S wave polarization can be observed. This can affect the determination of source mechanisms and the interpretation of observed SKS splitting.
Estimation of seabed shear-wave velocity profiles using shear-wave source data.
Dong, Hefeng; Nguyen, Thanh-Duong; Duffaut, Kenneth
2013-07-01
This paper estimates seabed shear-wave velocity profiles and their uncertainties using interface-wave dispersion curves extracted from data generated by a shear-wave source. The shear-wave source generated a seismic signature over a frequency range between 2 and 60 Hz and was polarized in both in-line and cross-line orientations. Low-frequency Scholte- and Love-waves were recorded. Dispersion curves of the Scholte- and Love-waves for the fundamental mode and higher-order modes are extracted by three time-frequency analysis methods. Both the vertically and horizontally polarized shear-wave velocity profiles in the sediment are estimated by the Scholte- and Love-wave dispersion curves, respectively. A Bayesian approach is utilized for the inversion. Differential evolution, a global search algorithm is applied to estimate the most-probable shear-velocity models. Marginal posterior probability profiles are computed by Metropolis-Hastings sampling. The estimated vertically and horizontally polarized shear-wave velocity profiles fit well with the core and in situ measurements.
Shear wave speed and dispersion measurements using crawling wave chirps.
Hah, Zaegyoo; Partin, Alexander; Parker, Kevin J
2014-10-01
This article demonstrates the measurement of shear wave speed and shear speed dispersion of biomaterials using a chirp signal that launches waves over a range of frequencies. A biomaterial is vibrated by two vibration sources that generate shear waves inside the medium, which is scanned by an ultrasound imaging system. Doppler processing of the acquired signal produces an image of the square of vibration amplitude that shows repetitive constructive and destructive interference patterns called "crawling waves." With a chirp vibration signal, successive Doppler frames are generated from different source frequencies. Collected frames generate a distinctive pattern which is used to calculate the shear speed and shear speed dispersion. A special reciprocal chirp is designed such that the equi-phase lines of a motion slice image are straight lines. Detailed analysis is provided to generate a closed-form solution for calculating the shear wave speed and the dispersion. Also several phantoms and an ex vivo human liver sample are scanned and the estimation results are presented.
Nongeometrically converted shear waves in marine streamer data
Drijkoningen, G.G.; El Allouche, N.; Thorbecke, J.W.; Bada, G.
2012-01-01
Under certain circumstances, marine streamer data contain nongeometrical shear body wave arrivals that can be used for imaging. These shear waves are generated via an evanescent compressional wave in the water and convert to propagating shear waves at the water bottom. They are called “nongeometrica
Propagation of waves in shear flows
Fabrikant, A L
1998-01-01
The state of the art in a theory of oscillatory and wave phenomena in hydrodynamical flows is presented in this book. A unified approach is used for waves of different physical origins. A characteristic feature of this approach is that hydrodynamical phenomena are considered in terms of physics; that is, the complement of the conventionally employed formal mathematical approach. Some physical concepts such as wave energy and momentum in a moving fluid are analysed, taking into account induced mean flow. The physical mechanisms responsible for hydrodynamic instability of shear flows are conside
Fan-structure waves in shear ruptures
Tarasov, Boris
2016-04-01
This presentation introduces a recently identified shear rupture mechanism providing a paradoxical feature of hard rocks - the possibility of shear rupture propagation through the highly confined intact rock mass at shear stress levels significantly less than frictional strength. According to the fan-mechanism the shear rupture propagation is associated with consecutive creation of small slabs in the fracture tip which, due to rotation caused by shear displacement of the fracture interfaces, form a fan-structure representing the fracture head. The fan-head combines such unique features as: extremely low shear resistance (below the frictional strength), self-sustaining stress intensification in the rupture tip (providing easy formation of new slabs), and self-unbalancing conditions in the fan-head (making the failure process inevitably spontaneous and violent). An important feature of the fan-mechanism is the fact that for the initial formation of the fan-structure an enhanced local shear stress is required, however, after completion of the fan-structure it can propagate as a dynamic wave through intact rock mass at shear stresses below the frictional strength. Paradoxically low shear strength of pristine rocks provided by the fan-mechanism determines the correspondingly low transient strength of the lithosphere, which favours generation of new earthquake faults in the intact rock mass adjoining pre-existing faults in preference to frictional stick-slip instability along these faults. The new approach reveals an alternative role of pre-existing faults in earthquake activity: they represent local stress concentrates in pristine rock adjoining the fault where special conditions for the fan-mechanism nucleation are created, while further dynamic propagation of the new fault (earthquake) occurs at low field stresses even below the frictional strength.
Surface Shear, Persistent Wave Groups and Rogue Waves
Chafin, Clifford
2014-01-01
We investigate the interaction of waves with surface flows by considering the full set of conserved quantities, subtle but important surface elevations induced by wave packets and by directly considering the necessary forces to prevent packet spreading in the deep water limit. Narrow surface shear flows are shown to exert strong localizing and stabilizing forces on wavepackets to maintain their strength and amplify their intensity even in the linear regime. Necessary criticisms of some earlier notions of stress and angular momentum of waves are included and we argue that nonlinearity enters the system in a way that makes the formation of rogue waves nonperturbative. Quantitative bounds on the surface shear flow necessary to stabilize packets of any wave amplitude are given.
Demonstration of Shear Waves, Lamb Waves, and Rayleigh Waves by Mode Conversion.
Leung, W. P.
1980-01-01
Introduces an experiment that can be demonstrated in the classroom to show that shear waves, Rayleigh waves, and Lamb waves can be easily generated and observed by means of mode conversion. (Author/CS)
Shear waves in inhomogeneous, compressible fluids in a gravity field.
Godin, Oleg A
2014-03-01
While elastic solids support compressional and shear waves, waves in ideal compressible fluids are usually thought of as compressional waves. Here, a class of acoustic-gravity waves is studied in which the dilatation is identically zero, and the pressure and density remain constant in each fluid particle. These shear waves are described by an exact analytic solution of linearized hydrodynamics equations in inhomogeneous, quiescent, inviscid, compressible fluids with piecewise continuous parameters in a uniform gravity field. It is demonstrated that the shear acoustic-gravity waves also can be supported by moving fluids as well as quiescent, viscous fluids with and without thermal conductivity. Excitation of a shear-wave normal mode by a point source and the normal mode distortion in realistic environmental models are considered. The shear acoustic-gravity waves are likely to play a significant role in coupling wave processes in the ocean and atmosphere.
Shear stresses and mean flow in shoaling and breaking waves
Stive, M.J.F.; De Vriend, H.J.
1994-01-01
We investigate the vertical, wave averaged distributions of shear stresses and Eulerian flow in normally incident, shoaling and breaking waves. It is found that shear stresses are solely due to wave amplitude variations, which can be caused by shoaling, boundary layer dissipation and/or breaking wav
From supersonic shear wave imaging to full-field optical coherence shear wave elastography
Nahas, Amir; Tanter, Mickaël; Nguyen, Thu-Mai; Chassot, Jean-Marie; Fink, Mathias; Claude Boccara, A.
2013-12-01
Elasticity maps of tissue have proved to be particularly useful in providing complementary contrast to ultrasonic imaging, e.g., for cancer diagnosis at the millimeter scale. Optical coherence tomography (OCT) offers an endogenous contrast based on singly backscattered optical waves. Adding complementary contrast to OCT images by recording elasticity maps could also be valuable in improving OCT-based diagnosis at the microscopic scale. Static elastography has been successfully coupled with full-field OCT (FF-OCT) in order to realize both micrometer-scale sectioning and elasticity maps. Nevertheless, static elastography presents a number of drawbacks, mainly when stiffness quantification is required. Here, we describe the combination of two methods: transient elastography, based on speed measurements of shear waves induced by ultrasonic radiation forces, and FF-OCT, an en face OCT approach using an incoherent light source. The use of an ultrafast ultrasonic scanner and an ultrafast camera working at 10,000 to 30,000 images/s made it possible to follow shear wave propagation with both modalities. As expected, FF-OCT is found to be much more sensitive than ultrafast ultrasound to tiny shear vibrations (a few nanometers and micrometers, respectively). Stiffness assessed in gel phantoms and an ex vivo rat brain by FF-OCT is found to be in good agreement with ultrasound shear wave elastography.
Shear wave elastography with a new reliability indicator
Directory of Open Access Journals (Sweden)
Christoph F. Dietrich
2016-09-01
Full Text Available Non-invasive methods for liver stiffness assessment have been introduced over recent years. Of these, two main methods for estimating liver fibrosis using ultrasound elastography have become established in clinical practice: shear wave elastography and quasi-static or strain elastography. Shear waves are waves with a motion perpendicular (lateral to the direction of the generating force. Shear waves travel relatively slowly (between 1 and 10 m/s. The stiffness of the liver tissue can be assessed based on shear wave velocity (the stiffness increases with the speed. The European Federation of Societies for Ultrasound in Medicine and Biology has published Guidelines and Recommendations that describe these technologies and provide recommendations for their clinical use. Most of the data available to date has been published using the Fibroscan (Echosens, France, point shear wave speed measurement using an acoustic radiation force impulse (Siemens, Germany and 2D shear wave elastography using the Aixplorer (SuperSonic Imagine, France. More recently, also other manufacturers have introduced shear wave elastography technology into the market. A comparison of data obtained using different techniques for shear wave propagation and velocity measurement is of key interest for future studies, recommendations and guidelines. Here, we present a recently introduced shear wave elastography technology from Hitachi and discuss its reproducibility and comparability to the already established technologies.
Shear wave elastography with a new reliability indicator
Dong, Yi
2016-01-01
Non-invasive methods for liver stiffness assessment have been introduced over recent years. Of these, two main methods for estimating liver fibrosis using ultrasound elastography have become established in clinical practice: shear wave elastography and quasi-static or strain elastography. Shear waves are waves with a motion perpendicular (lateral) to the direction of the generating force. Shear waves travel relatively slowly (between 1 and 10 m/s). The stiffness of the liver tissue can be assessed based on shear wave velocity (the stiffness increases with the speed). The European Federation of Societies for Ultrasound in Medicine and Biology has published Guidelines and Recommendations that describe these technologies and provide recommendations for their clinical use. Most of the data available to date has been published using the Fibroscan (Echosens, France), point shear wave speed measurement using an acoustic radiation force impulse (Siemens, Germany) and 2D shear wave elastography using the Aixplorer (SuperSonic Imagine, France). More recently, also other manufacturers have introduced shear wave elastography technology into the market. A comparison of data obtained using different techniques for shear wave propagation and velocity measurement is of key interest for future studies, recommendations and guidelines. Here, we present a recently introduced shear wave elastography technology from Hitachi and discuss its reproducibility and comparability to the already established technologies. PMID:27679731
Second harmonic generation of shear waves in crystals.
Jiang, Wenhua; Cao, Wenwu
2004-02-01
Nonlinear self-interaction of shear waves in electro-elastic crystals is investigated based on the rotationally invariant state function. Theoretical analyses are conducted for cubic, hexagonal, and trigonal crystals. The calculations show that nonlinear self-interaction of shear waves has some characteristics distinctly different from that of longitudinal waves. First, the process of self-interaction to generate its own second harmonic wave is permitted only in some special wave propagation directions for a shear wave. Second, the geometrical nonlinearity originated from finite strain does not contribute to the second harmonic generation (SHG) of shear waves. Therefore, unlike the case of longitudinal wave, the second-order elastic constants do not involve in the nonlinear parameter of the second harmonic generation of shear waves. Third, unlike the nonlinearity parameter of the longitudinal waves, the nonlinear parameter of the shear wave exhibits strong anisotropy, which is directly related to the symmetry of the crystal. In the calculations, the electromechanical coupling nonlinearity is considered for the 6 mm and 3 m symmetry crystals. Complement to the SHG of longitudinal waves already in use, the SHG of shear waves provides more measurements for the determination of third-order elastic constants of solids. The method is applied to a Z-cut lithium niobate (LiNbO3) crystal, and its third-order elastic constant c444 is determined.
Opportunities for shear energy scaling in bulk acoustic wave resonators.
Jose, Sumy; Hueting, Raymond J E
2014-10-01
An important energy loss contribution in bulk acoustic wave resonators is formed by so-called shear waves, which are transversal waves that propagate vertically through the devices with a horizontal motion. In this work, we report for the first time scaling of the shear-confined spots, i.e., spots containing a high concentration of shear wave displacement, controlled by the frame region width at the edge of the resonator. We also demonstrate a novel methodology to arrive at an optimum frame region width for spurious mode suppression and shear wave confinement. This methodology makes use of dispersion curves obtained from finite-element method (FEM) eigenfrequency simulations for arriving at an optimum frame region width. The frame region optimization is demonstrated for solidly mounted resonators employing several shear wave optimized reflector stacks. Finally, the FEM simulation results are compared with measurements for resonators with Ta2O5/ SiO2 stacks showing suppression of the spurious modes.
Reverberant shear wave fields and estimation of tissue properties
Parker, Kevin J.; Ormachea, Juvenal; Zvietcovich, Fernando; Castaneda, Benjamin
2017-02-01
The determination of shear wave speed is an important subject in the field of elastography, since elevated shear wave speeds can be directly linked to increased stiffness of tissues. MRI and ultrasound scanners are frequently used to detect shear waves and a variety of estimators are applied to calculate the underlying shear wave speed. The estimators can be relatively simple if plane wave behavior is assumed with a known direction of propagation. However, multiple reflections from organ boundaries and internal inhomogeneities and mode conversions can create a complicated field in time and space. Thus, we explore the mathematics of multiple component shear wave fields and derive the basic properties, from which efficient estimators can be obtained. We approach this problem from the historic perspective of reverberant fields, a conceptual framework used in architectural acoustics and related fields. The framework can be recast for the alternative case of shear waves in a bounded elastic media, and the expected value of displacement patterns in shear reverberant fields are derived, along with some practical estimators of shear wave speed. These are applied to finite element models and phantoms to illustrate the characteristics of reverberant fields and provide preliminary confirmation of the overall framework.
Latorre-Ossa, Heldmuth; Gennisson, Jean-Luc; De Brosses, Emilie; Tanter, Mickaël
2012-04-01
The study of new tissue mechanical properties such as shear nonlinearity could lead to better tissue characterization and clinical diagnosis. This work proposes a method combining static elastography and shear wave elastography to derive the nonlinear shear modulus by applying the acoustoelasticity theory in quasi-incompressible soft solids. Results demonstrate that by applying a moderate static stress at the surface of the investigated medium, and by following the quantitative evolution of its shear modulus, it is possible to accurately and quantitatively recover the local Landau (A) coefficient characterizing the shear nonlinearity of soft tissues.
Shear waves in a ﬂuid saturated elastic plate
Indian Academy of Sciences (India)
A Pradhan; S K Samal; N C Mahanti
2002-12-01
In the present context, we consider the propagation of shear waves in the transverse isotropic ﬂuid saturated porous plate. The frequency spectrum for SH-modes in the plate has been studied. It is observed that the frequency of the propagation is damped due to the two-phase character of the porous medium. The dimensionless phase velocities of the shear waves have also been calculated and presented graphically. It is interesting to note that the frequency and phase velocity of shear waves in porous media differ signiﬁcantly in comparison to that in isotropic elastic media.
Shear waves in vegetal tissues at ultrasonic frequencies
Fariñas, M. D.; Sancho-Knapik, D.; Peguero-Pina, J. J.; Gil-Pelegrín, E.; Gómez Álvarez-Arenas, T. E.
2013-03-01
Shear waves are investigated in leaves of two plant species using air-coupled ultrasound. Magnitude and phase spectra of the transmission coefficient around the first two orders of the thickness resonances (normal and oblique incidence) have been measured. A bilayer acoustic model for plant leaves (comprising the palisade parenchyma and the spongy mesophyll) is proposed to extract, from measured spectra, properties of these tissues like: velocity and attenuation of longitudinal and shear waves and hence Young modulus, rigidity modulus, and Poisson's ratio. Elastic moduli values are typical of cellular solids and both, shear and longitudinal waves exhibit classical viscoelastic losses. Influence of leaf water content is also analyzed.
Short wave stability of homogeneous shear flows with variable topography
Institute of Scientific and Technical Information of China (English)
窦华书; V. GANESH
2014-01-01
For the stability problem of homogeneous shear flows in sea straits of arbitrary cross section, a sufficient condition for stability is derived under the condition of inviscid flow. It is shown that there is a critical wave number, and if the wave number of a normal mode is greater than this critical wave number, the mode is stable.
Excitation of fundamental shear horizontal wave by using face-shear (d36) piezoelectric ceramics
Miao, Hongchen; Dong, Shuxiang; Li, Faxin
2016-05-01
The fundamental shear horizontal (SH0) wave in plate-like structures is extremely useful for non-destructive testing (NDT) and structural health monitoring (SHM) as it is non-dispersive. However, currently, the SH0 wave is usually excited by electromagnetic acoustic transducers (EMAT) whose energy conversion efficiency is fairly low. The face-shear ( d 36 ) mode piezoelectrics is more promising for SH0 wave excitation, but this mode cannot appear in conventional piezoelectric ceramics. Recently, by modifying the symmetry of poled PbZr1-xTixO3 (PZT) ceramics via ferroelastic domain engineering, we realized the face-shear d 36 mode in both soft and hard PZT ceramics. In this work, we further improved the face-shear properties of PZT-4 and PZT-5H ceramics via lateral compression under elevated temperature. It was found that when bonded on a 1 mm-thick aluminum plate, the d 36 type PZT-4 exhibited better face-shear performance than PZT-5H. We then successfully excite SH0 wave in the aluminum plate using a face-shear PZT-4 square patch and receive the wave using a face-shear 0.72[Pb(Mg1/3Nb2/3)O3]-0.28[PbTiO3] (PMN-PT) patch. The frequency response and directionality of the excited SH0 wave were also investigated. The SH0 wave can be dominated over the Lamb waves (S0 and A0 waves) from 160 kHz to 280 kHz. The wave amplitude reaches its maxima along the two main directions (0° and 90°). The amplitude can keep over 80% of the maxima when the deviate angle is less than 30°, while it vanishes quickly at the 45° direction. The excited SH0 wave using piezoelectric ceramics could be very promising in the fields of NDT and SHM.
Image reconstruction with acoustic radiation force induced shear waves
McAleavey, Stephen A.; Nightingale, Kathryn R.; Stutz, Deborah L.; Hsu, Stephen J.; Trahey, Gregg E.
2003-05-01
Acoustic radiation force may be used to induce localized displacements within tissue. This phenomenon is used in Acoustic Radiation Force Impulse Imaging (ARFI), where short bursts of ultrasound deliver an impulsive force to a small region. The application of this transient force launches shear waves which propagate normally to the ultrasound beam axis. Measurements of the displacements induced by the propagating shear wave allow reconstruction of the local shear modulus, by wave tracking and inversion techniques. Here we present in vitro, ex vivo and in vivo measurements and images of shear modulus. Data were obtained with a single transducer, a conventional ultrasound scanner and specialized pulse sequences. Young's modulus values of 4 kPa, 13 kPa and 14 kPa were observed for fat, breast fibroadenoma, and skin. Shear modulus anisotropy in beef muscle was observed.
Convertion Shear Wave Velocity to Standard Penetration Resistance
Madun, A.; Tajuddin, S. A. A.; Abdullah, M. E.; Abidin, M. H. Z.; Sani, S.; Siang, A. J. L. M.; Yusof, M. F.
2016-07-01
Multichannel Analysis Surface Wave (MASW) measurement is one of the geophysics exploration techniques to determine the soil profile based on shear wave velocity. Meanwhile, borehole intrusive technique identifies the changes of soil layer based on soil penetration resistance, i.e. standard penetration test-number of blows (SPT-N). Researchers across the world introduced many empirical conversions of standard penetration test blow number of borehole data to shear wave velocity or vice versa. This is because geophysics test is a non-destructive and relatively fast assessment, and thus should be promoted to compliment the site investigation work. These empirical conversions of shear wave velocity to SPT-N blow can be utilised, and thus suitable geotechnical parameters for design purposes can be achieved. This study has demonstrated the conversion between MASW and SPT-N value. The study was conducted at the university campus and Sejagung Sri Medan. The MASW seismic profiles at the University campus test site and Sejagung were at a depth of 21 m and 13 m, respectively. The shear wave velocities were also calculated empirically using SPT-N value, and thus both calculated and measured shear wave velocities were compared. It is essential to note that the MASW test and empirical conversion always underestimate the actual shear wave velocity of hard layer or rock due to the effect of soil properties on the upper layer.
Simulation of Random Waves and Associated Laminar Bottom Shear Stresses
Institute of Scientific and Technical Information of China (English)
Mao-Lin SHEN; Ching-Jer HUANG
2008-01-01
This work presents a new approach for simulating the random waves in viscous fluids and the associated bottom shear stresses. By generating the incident random waves in a numerical wave flume and solving the unsteady two-dimensional Navier-Stokes equations and the fully nonlinear free surface boundary conditions for the fluid flows in the flume, the viscous flows and laminar bottom shear stresses induced by random waves are determined. The deterministic spectral amplitude method implemented by use of the fast Fourier transform algorithm was adopted to generate the incident random waves. The accuracy of the numerical scheme is confirmed by comparing the predicted wave spectrum with the target spectrum and by comparing the numerical transfer function between the shear stress and the surface elevation with the theoretical transfer function. The maximum bottom shear stress caused by random waves, computed by this wave model, is compared with that obtained by Myrhaug's model (1995). The transfer function method is also employed to determine the maximum shear stress, and is proved accurate.
Algebraically growing waves in ducts with sheared mean flow
Nayfeh, A. H.; Telionis, D. P.
1974-01-01
Analysis of the behavior of standing and traveling acoustic waves in a smooth duct with a fluid flow having a sheared mean velocity profile, when the waves grow algebraically as they travel along the duct axis. It is shown that standing waves growing algebraically with the axial distance cannot exist in a smooth duct when the duct wall have a finite resistance. The existence of traveling waves subject to the same law of growth is also dismissed under realistic flow conditions.
Drift Wave Test Particle Transport in Reversed Shear Profile
Energy Technology Data Exchange (ETDEWEB)
Horton, W.; Park, H.B.; Kwon, J.M.; Stronzzi, D.; Morrison, P.J.; Choi, D.I.
1998-06-01
Drift wave maps, area preserving maps that describe the motion of charged particles in drift waves, are derived. The maps allow the integration of particle orbits on the long time scale needed to describe transport. Calculations using the drift wave maps show that dramatic improvement in the particle confinement, in the presence of a given level and spectrum of E x B turbulence, can occur for q(r)-profiles with reversed shear. A similar reduction in the transport, i.e. one that is independent of the turbulence, is observed in the presence of an equilibrium radial electric field with shear. The transport reduction, caused by the combined effects of radial electric field shear and both monotonic and reversed shear magnetic q-profiles, is also investigated.
Cardiac Shear Wave Velocity Detection in the Porcine Heart.
Vos, Hendrik J; van Dalen, Bas M; Heinonen, Ilkka; Bosch, Johan G; Sorop, Oana; Duncker, Dirk J; van der Steen, Antonius F W; de Jong, Nico
2017-04-01
Cardiac muscle stiffness can potentially be estimated non-invasively with shear wave elastography. Shear waves are present on the septal wall after mitral and aortic valve closure, thus providing an opportunity to assess stiffness in early systole and early diastole. We report on the shear wave recordings of 22 minipigs with high-frame-rate echocardiography. The waves were captured with 4000 frames/s using a programmable commercial ultrasound machine. The wave pattern was extracted from the data through a local tissue velocity estimator based on one-lag autocorrelation. The wave propagation velocity was determined with a normalized Radon transform, resulting in median wave propagation velocities of 2.2 m/s after mitral valve closure and 4.2 m/s after aortic valve closure. Overall the velocities ranged between 0.8 and 6.3 m/s in a 95% confidence interval. By dispersion analysis we found that the propagation velocity only mildly increased with shear wave frequency.
Acoustomicrofluidic application of quasi-shear surface waves.
Darinskii, A N; Weihnacht, M; Schmidt, H
2017-02-20
The paper analyzes the possibility of using predominantly boundary polarized surface acoustic waves for actuating fluidic effects in microchannels fabricated inside containers made of PDMS. The aim is to remove a shortcoming peculiar to conventionally utilized predominantly vertically polarized waves. Such waves strongly attenuate while they propagate under container side walls because of the leakage into them. Due to a specific feature of PDMS - extremely small shear elastic modulus - losses of boundary polarized modes should be far smaller. The amplitude of vertical mechanical displacements can be increased right inside the channel owing to the scattering of acoustic fields. As an example, the predominantly vertically polarized surface wave on 128YX LiNbO3 is compared with the quasi-shear leaky wave on 64YX LiNbO3. Our computations predict that, given the electric power supplied to the launching transducer, the quasi-shear wave will drive the fluid more efficiently than the surface wave on 128YX LiNbO3 when the container wall thickness is larger than 25-30 wavelengths, if there are no additional scatterers inside the channel. In the presence of a scatterer, such as a thin gold strip, the quasi-shear wave can be more efficient when the wall thickness exceeds 10-15 wavelengths.
Shear wave anisotropy in D" region beneath the western Pacific
Institute of Scientific and Technical Information of China (English)
DAI Zhi-yang; LIU Bin; WANG Xiao-xiang; ZHA Xian-jie; ZHANG Hu; YANG Feng-qin
2007-01-01
Using seismic shear phases from 47 Tonga-Fiji and its adjacent region events recorded by the CENC and IRIS, and from 26 northeast Asia and north Pacific events recorded by IRIS, we studied the shear wave anisotropy in D" region beneath the western Pacific utilizing the ScS-S differential travel time method and obtained the splitting time values between the radial and transverse components of each ScS wave corresponding to each core-mantle boundary (CMB) reflection point. We found that most shear waves involved horizontally polarized shear wave components traveling faster than vertically polarized shear wave components through the D" region. The splitting time values of ScS wave range from (0.91 s to 3.21 s with an average value of 1.1 s. The strength of anisotropy varies from (0.45% to 1.56% with an average value of 0.52%. The observations and analyses show that in the D" region beneath the western Pacific the lateral flow is expected to be dominant and the vertical transverse isotropy may be the main anisotropic structure. This structure feature may be explained by the shape preferred orientation of the CMB chemical reaction products or partial melt and the lattice preferred orientation of the lower mantle materials caused by the lateral flow at lowermost mantle.
Explicit wave action conservation for water waves on vertically sheared flows
Quinn, B. E.; Toledo, Y.; Shrira, V. I.
2017-04-01
This paper addresses a major shortcoming of the current generation of wave models, namely their inability to describe wave propagation upon ambient currents with vertical shear. The wave action conservation equation (WAE) for linear waves propagating in horizontally inhomogeneous vertically-sheared currents is derived following Voronovich (1976). The resulting WAE specifies conservation of a certain depth-averaged quantity, the wave action, a product of the wave amplitude squared, eigenfunctions and functions of the eigenvalues of the boundary value problem for water waves upon a vertically sheared current. The formulation of the WAE is made explicit using known asymptotic solutions of the boundary value problem which exploit the smallness of the current magnitude compared to the wave phase velocity and/or its vertical shear and curvature; the adopted approximations are shown to be sufficient for most of the conceivable applications. In the limit of vanishing current shear, the new formulation reduces to that of Bretherton and Garrett (1968) without shear and the invariant is calculated with the current magnitude taken at the free surface. It is shown that in realistic oceanic conditions, the neglect of the vertical structure of the currents in wave modelling which is currently universal might lead to significant errors in wave amplitude. The new WAE which takes into account the vertical shear can be better coupled to modern circulation models which resolve the three-dimensional structure of the uppermost layer of the ocean.
Shear Flow Dispersion Under Wave and Current
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
The longitudinal dispersion of solute in open channel flow with short period progressive waves is investigated. The waves induce second order drift velocity in the direction of propagation and enhance the mixing process in concurrent direction. The 1-D wave-period-averaged dispersion equation is derived and an expression for the wave-current induced longitudinal dispersion coefficient (WCLDC) is proposed based on Fischer's expression (1979) for dispersion in unidirectional flow. The result shows that the effect of waves on dispersion is mainly due to the cross-sectional variation of the drift velocity. Furthermore, to obtain a more practical expression of the WCLDC, the longitudinal dispersion coefficient due to Seo and Cheong (1998) is modified to incluee the effect of drift velocity. Laboratory experiments have been conducted to verify the proposed expression. The experimental results, together with dimensional analysis, show that the wave effect can be reflected by the ratio between the wave amplitude and wave period. A comparative study between the cases with and without waves demonstrates that the magnitude of the longitudinal dispersion coefficient is increased under the presence of waves.
Magnetic resonance imaging of shear wave propagation in excised tissue.
Bishop, J; Poole, G; Leitch, M; Plewes, D B
1998-01-01
The propagation of shear waves in ex vivo tissue samples, agar/gel phantoms, and human volunteers was investigated. A moving coil apparatus was constructed to generate low acoustic frequency shear perturbations of 50 to 400 Hz. Oscillating gradients phase-locked with the shear stimulus were used to generate a series of phase contrast images of the shear waves at different time-points throughout the wave cycle. Quantitative measurements of wave velocity and attenuation were obtained to evaluate the effects of temperature, frequency, and tissue anisotropy. Results of these experiments demonstrate significant variation in shear wave behavior with tissue type, whereas frequency and anisotropic behavior was mixed. Temperature-dependent behavior related mainly to the presence of fat. Propagation velocities ranged from 1 to 5 m/sec, and attenuation coefficients of from 1 to 3 nepers/unit wavelength, depending on tissue type. These results confirm the potential of elastic imaging attributable to the intrinsic variability of elastic properties observed in normal tissue, although some difficulty may be experienced in clinical implementation because of viscous attenuation in fat.
Arnal, Bastien; Pernot, Mathieu; Tanter, Mickael
2011-08-01
The clinical applicability of high-intensity focused ultrasound (HIFU) for noninvasive therapy is currently hampered by the lack of robust and real-time monitoring of tissue damage during treatment. The goal of this study is to show that the estimation of local tissue elasticity from shear wave imaging (SWI) can lead to a precise mapping of the lesion. HIFU treatment and monitoring were respectively performed using a confocal setup consisting of a 2.5-MHz single element transducer focused at 34 mm on ex vivo samples and an 8-MHz ultrasound diagnostic probe. Ultrasound-based strain imaging was combined with shear wave imaging on the same device. The SWI sequences consisted of 2 successive shear waves induced at different lateral positions. Each wave was created with pushing beams of 100 μs at 3 depths. The shear wave propagation was acquired at 17,000 frames/s, from which the elasticity map was recovered. HIFU sonications were interleaved with fast imaging acquisitions, allowing a duty cycle of more than 90%. Thus, elasticity and strain mapping was achieved every 3 s, leading to real-time monitoring of the treatment. When thermal damage occurs, tissue stiffness was found to increase up to 4-fold and strain imaging showed strong shrinkages that blur the temperature information. We show that strain imaging elastograms are not easy to interpret for accurate lesion characterization, but SWI provides a quantitative mapping of the thermal lesion. Moreover, the concept of shear wave thermometry (SWT) developed in the companion paper allows mapping temperature with the same method. Combined SWT and shear wave imaging can map the lesion stiffening and temperature outside the lesion, which could be used to predict the eventual lesion growth by thermal dose calculation. Finally, SWI is shown to be robust to motion and reliable in vivo on sheep muscle.
Miao, Hongchen; Huan, Qiang; Wang, Qiangzhong; Li, Faxin
2017-02-01
The non-dispersive fundamental shear horizontal (SH0) wave in plate-like structures is of practical importance in non-destructive testing (NDT) and structural health monitoring (SHM). Theoretically, an omnidirectional SH0 transducer phased array system can be used to inspect defects in a large plate in the similar manner to the phased array transducers used in medical B-scan ultrasonics. However, very few omnidirectional SH0 transducers have been proposed so far. In this work, an omnidirectional SH0 wave piezoelectric transducer (OSH-PT) was proposed, which consists of a ring array of twelve face-shear (d24) trapezoidal PZT elements. Each PZT element can produce face-shear deformation under applied voltage, resulting in circumferential shear deformation in the OSH-PT and omnidirectional SH0 waves in the hosting plate. Both finite element simulations and experiments were conducted to examine the performance of the proposed OSH-PT. Experimental testing shows that the OSH-PT exhibits good omnidirectional properties, no matter it is used as a SH0 wave transmitter or a SH0 wave receiver. This work may greatly promote the applications of SH0 waves in NDT and SHM.
Wave-current interaction, experiments with controlled uniform shear
Simon, Bruno; Touboul, Julien; Rey, Vincent
2016-04-01
Vertically varying currents have a non negligible impact on the propagation of waves. Even though the analytical aspect of the interaction between wave and sheared current is being an active subject of research, experimental data remain rare. Here, the effects of a uniformly shear were investigated in the 10 m long by 0.3 m wide wave flume of the Université de Toulon, France. The main difficulty of the study was to produce several conditions of current with constant shear (du/dz = cst) that would persist along the channel. This was achieved by using curved wire screens upstream the channel (Dunn and Tavoularis, 2007). The geometry and properties of the screens were adjusted to deflect the streamline towards the channel bed or the free surface in order to change the velocity profile. The study focused on regular wave propagating against the current for several wave frequencies and amplitudes. Properties of the free surface and flow velocity are discussed for current with positive and negative shear in order to quantify the influence of the current on the waves. ACKNOWLEDGEMENTS The DGA (Direction Générale de l'Armement, France) is acknowledged for its financial support through the ANR grant N° ANR-13-ASTR-0007.
Could linear hysteresis contribute to shear wave losses in tissues?
Parker, Kevin J
2015-04-01
For nearly 100 y in the study of cyclical motion in materials, a particular phenomenon called "linear hysteresis" or "ideal hysteretic damping" has been widely observed. More recently in the field of shear wave elastography, the basic mechanisms underlying shear wave losses in soft tissues are in question. Could linear hysteresis play a role? An underlying theoretical question must be answered: Is there a real and causal physical model that is capable of producing linear hysteresis over a band of shear wave frequencies used in diagnostic imaging schemes? One model that can approximately produce classic linear hysteresis behavior, by examining a generalized Maxwell model with a specific power law relaxation spectrum, is described here. This provides a theoretical plausibility for the phenomenon as a candidate for models of tissue behavior.
Two-dimensional shear wave speed and crawling wave speed recoveries from in vitro prostate data.
Lin, Kui; McLaughlin, Joyce R; Thomas, Ashley; Parker, Kevin; Castaneda, Benjamin; Rubens, Deborah J
2011-07-01
The crawling wave experiment was developed to capture a shear wave induced moving interference pattern that is created by two harmonic vibration sources oscillating at different but almost the same frequencies. Using the vibration sonoelastography technique, the spectral variance image reveals a moving interference pattern. It has been shown that the speed of the moving interference pattern, i.e., the crawling wave speed, is proportional to the shear wave speed with a nonlinear factor. This factor can generate high-speed artifacts in the crawling wave speed images that do not actually correspond to increased stiffness. In this paper, an inverse algorithm is developed to reconstruct both the crawling wave speed and the shear wave speed using the phases of the crawling wave and the shear wave. The feature for the data is the application to in vitro prostate data, while the features for the algorithm include the following: (1) A directional filter is implemented to obtain a wave moving in only one direction; and (2) an L(1) minimization technique with physics inspired constraints is employed to calculate the phase of the crawling wave and to eliminate jump discontinuities from the phase of the shear wave. The algorithm is tested on in vitro prostate data measured at the Rochester Center for Biomedical Ultrasound and University of Rochester. Each aspect of the algorithm is shown to yield image improvement. The results demonstrate that the shear wave speed images can have less artifacts than the crawling wave images. Examples are presented where the shear wave speed recoveries have excellent agreement with histology results on the size, shape, and location of cancerous tissues in the glands.
Examination of Existing Shear Wave Velocity and Shear Modulus Correlations in Soils
1987-09-01
in Terms of Characteristic Indices of Soil," Butsuri- Tanko (Geophysical Exploration) (in Japanese), Vol 29, No. 4, pp 34-41. . 1978a. "Empirical Shear...34Physical Background of the Statistically Obtained S-Wave Velocity Equation in Terms of Soil Indexes," Butsuri- Tanko (Geophysical Explo- ration) (in Japanese
Shear wave speeds at the base of the mantle
Castle, John C.; Hilst, R.D. van der; Creager, K.C.; Winchester, John P.
2006-01-01
We inverted 4864 ScS-S and 1671 S(diff)-SKS residual travel times for shear wave speed anomalies at the base of the Earth's mantle. We applied ellipticity corrections, accounted for mantle structure outside of the basal layer using mantle tomography models, and employed finite size sensitivity kerne
Ormachea, Juvenal; Lavarello, Roberto J; McAleavey, Stephen A; Parker, Kevin J; Castaneda, Benjamin
2016-09-01
Elastography provides tissue stiffness information that attempts to characterize the elastic properties of tissue. However, there is still limited literature comparing elastographic modalities for tissue characterization. This study focuses on two quantitative techniques using different vibration sources that have not been compared to date: crawling wave sonoelastography (CWS) and single tracking location shear wave elasticity imaging (STL-SWEI). To understand each technique's performance, shear wave speed (SWS) was measured in homogeneous phantoms and ex vivo beef liver tissue. Then, the contrast, contrast-to-noise ratio (CNR), and lateral resolution were measured in an inclusion and two-layer phantoms. The SWS values obtained with both modalities were validated with mechanical measurements (MM) which serve as ground truth. The SWS results for the three different homogeneous phantoms (10%, 13%, and 16% gelatin concentrations) and ex vivo beef liver tissue showed good agreement between CWS, STL-SWEI, and MM as a function of frequency. For all gelatin phantoms, the maximum accuracy errors were 2.52% and 2.35% using CWS and STL-SWEI, respectively. For the ex vivo beef liver, the maximum accuracy errors were 9.40% and 7.93% using CWS and STL-SWEI, respectively. For lateral resolution, contrast, and CNR, both techniques obtained comparable measurements for vibration frequencies less than 300 Hz (CWS) and distances between the push beams ( ∆x ) between 3 mm and 5.31 mm (STL-SWEI). The results obtained in this study agree over an SWS range of 1-6 m/s. They are expected to agree in perfectly linear, homogeneous, and isotropic materials, but the SWS overlap is not guaranteed in all materials because each of the three methods have unique features.
Shear horizontal (SH) ultrasound wave propagation around smooth corners.
Petcher, P A; Burrows, S E; Dixon, S
2014-04-01
Shear horizontal (SH) ultrasound guided waves are being used in an increasing number of non-destructive testing (NDT) applications. One advantage SH waves have over some wave types, is their ability to propagate around curved surfaces with little energy loss; to understand the geometries around which they could propagate, the wave reflection must be quantified. A 0.83mm thick aluminium sheet was placed in a bending machine, and a shallow bend was introduced. Periodically-poled magnet (PPM) electromagnetic acoustic transducers (EMATs), for emission and reception of SH waves, were placed on the same side of the bend, so that reflected waves were received. Additional bending of the sheet demonstrated a clear relationship between bend angles and the reflected signal. Models suggest that the reflection is a linear superposition of the reflections from each bend segment, such that sharp turns lead to a larger peak-to-peak amplitude, in part due to increased phase coherence.
Mellema, Daniel C; Song, Pengfei; Kinnick, Randall R; Urban, Matthew W; Greenleaf, James F; Manduca, Armando; Chen, Shigao
2016-09-01
Ultrasound shear wave elastography (SWE) utilizes the propagation of induced shear waves to characterize the shear modulus of soft tissue. Many methods rely on an acoustic radiation force (ARF) "push beam" to generate shear waves. However, specialized hardware is required to generate the push beams, and the thermal stress that is placed upon the ultrasound system, transducer, and tissue by the push beams currently limits the frame-rate to about 1 Hz. These constraints have limited the implementation of ARF to high-end clinical systems. This paper presents Probe Oscillation Shear Elastography (PROSE) as an alternative method to measure tissue elasticity. PROSE generates shear waves using a harmonic mechanical vibration of an ultrasound transducer, while simultaneously detecting motion with the same transducer under pulse-echo mode. Motion of the transducer during detection produces a "strain-like" compression artifact that is coupled with the observed shear waves. A novel symmetric sampling scheme is proposed such that pulse-echo detection events are acquired when the ultrasound transducer returns to the same physical position, allowing the shear waves to be decoupled from the compression artifact. Full field-of-view (FOV) two-dimensional (2D) shear wave speed images were obtained by applying a local frequency estimation (LFE) technique, capable of generating a 2D map from a single frame of shear wave motion. The shear wave imaging frame rate of PROSE is comparable to the vibration frequency, which can be an order of magnitude higher than ARF based techniques. PROSE was able to produce smooth and accurate shear wave images from three homogeneous phantoms with different moduli, with an effective frame rate of 300 Hz. An inclusion phantom study showed that increased vibration frequencies improved the accuracy of inclusion imaging, and allowed targets as small as 6.5 mm to be resolved with good contrast (contrast-to-noise ratio ≥ 19 dB) between the target and
Directory of Open Access Journals (Sweden)
H. Z. Baumert
2009-03-01
Full Text Available This paper extends a turbulence closure-like model for stably stratified flows into a new dynamic domain in which turbulence is generated by internal gravity waves rather than mean shear. The model turbulent kinetic energy (TKE, K balance, its first equation, incorporates a term for the energy transfer from internal waves to turbulence. This energy source is in addition to the traditional shear production. The second variable of the new two-equation model is the turbulent enstrophy (Ω. Compared to the traditional shear-only case, the Ω-equation is modified to account for the effect of the waves on the turbulence time and space scales. This modification is based on the assumption of a non-zero constant flux Richardson number in the limit of vanishing mean shear when turbulence is produced exclusively by internal waves. This paper is part 1 of a continuing theoretical development. It accounts for mean shear- and internal wave-driven mixing only in the two limits of mean shear and no waves and waves but no mean shear, respectively.
The new model reproduces the wave-turbulence transition analyzed by D'Asaro and Lien (2000b. At small energy density E of the internal wave field, the turbulent dissipation rate (ε scales like ε~E^{2}. This is what is observed in the deep sea. With increasing E, after the wave-turbulence transition has been passed, the scaling changes to ε~E^{1}. This is observed, for example, in the highly energetic tidal flow near a sill in Knight Inlet. The new model further exhibits a turbulent length scale proportional to the Ozmidov scale, as observed in the ocean, and predicts the ratio between the turbulent Thorpe and Ozmidov length scales well within the range observed in the ocean.
High-frequency shear-horizontal surface acoustic wave sensor
Branch, Darren W
2013-05-07
A Love wave sensor uses a single-phase unidirectional interdigital transducer (IDT) on a piezoelectric substrate for leaky surface acoustic wave generation. The IDT design minimizes propagation losses, bulk wave interferences, provides a highly linear phase response, and eliminates the need for impedance matching. As an example, a high frequency (.about.300-400 MHz) surface acoustic wave (SAW) transducer enables efficient excitation of shear-horizontal waves on 36.degree. Y-cut lithium tantalate (LTO) giving a highly linear phase response (2.8.degree. P-P). The sensor has the ability to detect at the pg/mm.sup.2 level and can perform multi-analyte detection in real-time. The sensor can be used for rapid autonomous detection of pathogenic microorganisms and bioagents by field deployable platforms.
Fracture detection in crystalline rock using ultrasonic shear waves
Energy Technology Data Exchange (ETDEWEB)
Waters, K.H.; Palmer, S.P.; Farrell, W.E.
1978-12-01
An ultrasonic shear wave reflection profiling system for use in the detection of water-filled cracks occurring within a crystalline rock mass is being tested in a laboratory environment. Experiments were performed on an irregular tensile crack induced approximately 0.5 m below one circular face of a 1.0-m-dia, 1.8-m-long granite cylinder. Good reflection data were obtained from this irregular crack with the crack either air filled or water filled. Data were collected that suggest a frequency-dependent S/sub H/ wave reflection coefficient for a granite-water interface. Waves that propagate along the free surface of a rock mass (surface waves) can severely hinder the detection of reflected events. Two methods of reducing this surface wave noise were investigated. The first technique uses physical obstructions (such as a slit trench) to scatter the surface waves. The second technique uses a linear array of receivers located on the free surface to cancel waves that are propagating parallel to the array (e.g., surface waves), thus enhancing waves with propagation vectors orthogonal to the linear array (e.g., reflected events). Deconvolution processing was found to be another method useful in surface wave cancellation.
Miao, Hongchen; Huan, Qiang; Li, Faxin
2016-11-01
The fundamental shear horizontal (SH0) wave in plate-like structures is of great importance in non-destructive testing (NDT) and structural health monitoring (SHM) as it is non-dispersive, while excitation or reception of SH0 waves using piezoelectrics is always a challenge. In this work, we firstly demonstrate via finite element simulations that face-shear piezoelectrics is superior to thickness-shear piezoelectrics in driving SH waves. Next, by using a newly defined face-shear d24 PZT wafer as an actuator and face-shear d36 PMN-PT wafers as sensors, pure SH0 wave was successfully excited in an aluminum plate from 130 to 180 kHz. Then, it was shown that the face-shear d24 PZT wafer could receive the SH0 wave only and filter the Lamb waves over a wide frequency range (120-230 kHz). The directionality of the excited SH0 wave was also investigated using face-shear d24 PZT wafers as both actuators and sensors. Results show that pure SH0 wave can be excited symmetrically along two orthogonal directions (0° and 90°) and the amplitude of the excited SH0 wave can keep over 90% of the maximum amplitude when the deviate angle is within 30°. This work could greatly promote the applications of SH0 wave in NDT and SHM.
Instability of subharmonic resonances in magnetogravity shear waves.
Salhi, A; Nasraoui, S
2013-12-01
We study analytically the instability of the subharmonic resonances in magnetogravity waves excited by a (vertical) time-periodic shear for an inviscid and nondiffusive unbounded conducting fluid. Due to the fact that the magnetic potential induction is a Lagrangian invariant for magnetohydrodynamic Euler-Boussinesq equations, we show that plane-wave disturbances are governed by a four-dimensional Floquet system in which appears, among others, the parameter ɛ representing the ratio of the periodic shear amplitude to the vertical Brunt-Väisälä frequency N(3). For sufficiently small ɛ and when the magnetic field is horizontal, we perform an asymptotic analysis of the Floquet system following the method of Lebovitz and Zweibel [Astrophys. J. 609, 301 (2004)]. We determine the width and the maximal growth rate of the instability bands associated with subharmonic resonances. We show that the instability of subharmonic resonance occurring in gravity shear waves has a maximal growth rate of the form Δ(m)=(3√[3]/16)ɛ. This instability persists in the presence of magnetic fields, but its growth rate decreases as the magnetic strength increases. We also find a second instability involving a mixing of hydrodynamic and magnetic modes that occurs for all magnetic field strengths. We also elucidate the similarity between the effect of a vertical magnetic field and the effect of a vertical Coriolis force on the gravity shear waves considering axisymmetric disturbances. For both cases, plane waves are governed by a Hill equation, and, when ɛ is sufficiently small, the subharmonic instability band is determined by a Mathieu equation. We find that, when the Coriolis parameter (or the magnetic strength) exceeds N(3)/2, the instability of the subharmonic resonance vanishes.
Energetics of internal solitary waves in a background sheared current
Directory of Open Access Journals (Sweden)
K. G. Lamb
2010-10-01
Full Text Available The energetics of internal waves in the presence of a background sheared current is explored via numerical simulations for four different situations based on oceanographic conditions: the nonlinear interaction of two internal solitary waves; an internal solitary wave shoaling through a turning point; internal solitary wave reflection from a sloping boundary and a deep-water internal seiche trapped in a deep basin. In the simulations with variable water depth using the Boussinesq approximation the combination of a background sheared current, bathymetry and a rigid lid results in a change in the total energy of the system due to the work done by a pressure change that is established across the domain. A final simulation of the deep-water internal seiche in which the Boussinesq approximation is not invoked and a diffuse air-water interface is added to the system results in the energy remaining constant because the generation of surface waves prevents the establishment of a net pressure increase across the domain. The difference in the perturbation energy in the Boussinesq and non-Boussinesq simulations is accounted for by the surface waves.
Prediction of the Shear Wave Velocity from Compressional Wave Velocity for Gachsaran Formation
Directory of Open Access Journals (Sweden)
Parvizi Saeed
2015-10-01
Full Text Available Shear and compressional wave velocities, coupled with other petrophysical data, are very important for hydrocarbon reservoir characterization. In situ shear wave velocity (Vs is measured by some sonic logging tools. Shear velocity coupled with compressional velocity is vitally important in determining geomechanical parameters, identifying the lithology, mud weight design, hydraulic fracturing, geophysical studies such as VSP, etc. In this paper, a correlation between compressional and shear wave velocity is obtained for Gachsaran formation in Maroon oil field. Real data were used to examine the accuracy of the prediction equation. Moreover, the genetic algorithm was used to obtain the optimal value for constants of the suggested equation. Furthermore, artificial neural network was used to inspect the reliability of this method. These investigations verify the notion that the suggested equation could be considered as an efficient, fast, and cost-effective method for predicting Vs from Vp.
Phase Aberration and Attenuation Effects on Acoustic Radiation Force-Based Shear Wave Generation.
Carrascal, Carolina Amador; Aristizabal, Sara; Greenleaf, James F; Urban, Matthew W
2016-02-01
Elasticity is measured by shear wave elasticity imaging (SWEI) methods using acoustic radiation force to create the shear waves. Phase aberration and tissue attenuation can hamper the generation of shear waves for in vivo applications. In this study, the effects of phase aberration and attenuation in ultrasound focusing for creating shear waves were explored. This includes the effects of phase shifts and amplitude attenuation on shear wave characteristics such as shear wave amplitude, shear wave speed, shear wave center frequency, and bandwidth. Two samples of swine belly tissue were used to create phase aberration and attenuation experimentally. To explore the phase aberration and attenuation effects individually, tissue experiments were complemented with ultrasound beam simulations using fast object-oriented C++ ultrasound simulator (FOCUS) and shear wave simulations using finite-element-model (FEM) analysis. The ultrasound frequency used to generate shear waves was varied from 3.0 to 4.5 MHz. Results: The measured acoustic pressure and resulting shear wave amplitude decreased approximately 40%-90% with the introduction of the tissue samples. Acoustic intensity and shear wave displacement were correlated for both tissue samples, and the resulting Pearson's correlation coefficients were 0.99 and 0.97. Analysis of shear wave generation with tissue samples (phase aberration and attenuation case), measured phase screen, (only phase aberration case), and FOCUS/FEM model (only attenuation case) showed that tissue attenuation affected the shear wave generation more than tissue aberration. Decreasing the ultrasound frequency helped maintain a focused beam for creation of shear waves in the presence of both phase aberration and attenuation.
Nonlinear evolution of oblique waves on compressible shear layers
Goldstein, M. E.; Leib, S. J.
1989-01-01
The effects of critical-layer nonlinearity on spatially growing oblique instability waves on compressible shear layers between two parallel streams are considered. The analysis shows that mean temperature nonuniformities cause nonlinearity to occur at much smaller amplitudes than it does when the flow is isothermal. The nonlinear instability wave growth rate effects are described by an integrodifferential equation which bears some resemblance to the Landau equation, in that it involves a cubic-type nonlinearity. The numerical solutions to this equation are worked out and discussed in some detail. Inviscid solutions always end in a singularity at a finite downstream distance, but viscosity can eliminate this singularity for certain parameter ranges.
Shear flow induced wave couplings in the solar wind
Energy Technology Data Exchange (ETDEWEB)
Poedts, S. [KULeuven, Heverlee (Belgium). Centre for Plasma Astrophysics; Rogava, A.D. [Tbilisi State Univ. (Georgia). Dept. of Physics]|[International Centre for Theoretical Physics, Trieste (Italy); Mahajan, S.M. [Univ. of Texas, Austin, TX (United States). Institute for Fusion Studies]|[International Centre for Theoretical Physics, Trieste (Italy)
1998-01-01
A sheared background flow in a plasma induces coupling between different MHD wave modes, resulting in their mutual transformations with corresponding energy redistributing between the modes. In this way, the energy can be transfered from one wave mode to the other, but energy can also be added to or extracted from the background flow. In the present paper it is investigated whether the wave coupling and energy transfer mechanisms can operate under solar wind conditions. It is shown that this is indeed the case. Hence, the long-period waves observed in the solar wind at r > 0.3 AU might be generated by much faster periodic oscillations in the photosphere of the Sun. Other possible consequences for observable beat phenomena in the wind and the acceleration of the solar wind particles are also discussed.
Histoscanning and shear wave ultrasound elastography for prostate cancer diagnosis
Directory of Open Access Journals (Sweden)
A. V. Amosov
2016-01-01
Full Text Available Introduction. The shear wave ultrasound elastography is a recently developed ultrasound-based method in the clinical practice, which allows the qualitative visual and quantitative measurements of tissue stiffness. In the 2010 this technology of the shear wave was called Shear Wave Elastograhpy. Due to the front of the shear waves the qualitative and quantitative assessment of the tissue stiffness is possible.Objective is to examine the efficacy of the shear wave ultrasound elastography in the evaluation of the prevalence of the oncological disease in patients with the prostate cancer and to compare the obtained results with the routine method X-ray diagnostics.Materials and methods. From the april 2015 in the I.M. Sechenov First Moscow State Medical University Urology Clinic there were conducted 314 shear wave ultrasound elastography examinations of the prostate. The ultrasound system Aixplorer® by SuperSonic Imagine was used. This system provides information provided by B-mode and shear wave ultrasound elastography mode. The transrectal echograms were made in 6 dimensions, so called Q-boxes (3 demensions in the every lobe on the segments from the base to the apex, according to the biopsy zone. The unit of measurement was the mean value in the kilopaskals (kPa. All the patients were randomized into 3 groups. There were 146 men with the possible prostate cancer in the first group (prospective study, 120 men with the certain diagnosis of the prostate cancer in the second group (retrospective study and 48 healthy men in the third group (control study. In all the patients of the first and the second groups the routine complete examination, including the prostate specific antigen (PSA level examination, digital rectal examination (DRE, doppler transrectal ultrasonography (TRUS, histoscanning and ultrasound shear wave elastography (SWE, was conducted. In the 229 patients of the first and the second groups the prostatectomy with the
Zhu, Jiang; Qu, Yueqiao; Ma, Teng; Li, Rui; Du, Yongzhao; Huang, Shenghai; Shung, K Kirk; Zhou, Qifa; Chen, Zhongping
2015-05-01
We report on a novel acoustic radiation force orthogonal excitation optical coherence elastography (ARFOE-OCE) technique for imaging shear wave and quantifying shear modulus under orthogonal acoustic radiation force (ARF) excitation using the optical coherence tomography (OCT) Doppler variance method. The ARF perpendicular to the OCT beam is produced by a remote ultrasonic transducer. A shear wave induced by ARF excitation propagates parallel to the OCT beam. The OCT Doppler variance method, which is sensitive to the transverse vibration, is used to measure the ARF-induced vibration. For analysis of the shear modulus, the Doppler variance method is utilized to visualize shear wave propagation instead of Doppler OCT method, and the propagation velocity of the shear wave is measured at different depths of one location with the M scan. In order to quantify shear modulus beyond the OCT imaging depth, we move ARF to a deeper layer at a known step and measure the time delay of the shear wave propagating to the same OCT imaging depth. We also quantitatively map the shear modulus of a cross-section in a tissue-equivalent phantom after employing the B scan.
Imaging feedback of histotripsy treatments using ultrasound shear wave elastography.
Wang, Tzu-Yin; Hall, Timothy L; Xu, Zhen; Fowlkes, J Brian; Cain, Charles A
2012-06-01
Histotripsy is a cavitation-based ultrasound therapy that mechanically fractionates soft solid tissues into fluid-like homogenates. This paper investigates the feasibility of imaging the tissue elasticity change during the histotripsy process as a tool to provide feedback for the treatments. The treatments were performed on agar tissue phantoms and ex vivo kidneys using 3-cycle ultrasound pulses delivered by a 750-kHz therapeutic array at peak negative/positive pressure of 17/108 MPa and a repetition rate of 50 Hz. Lesions with different degrees of damage were created with increasing numbers of therapy pulses from 0 to 2000 pulses per treatment location. The elasticity of the lesions was measured with ultrasound shear wave elastography, in which a quasi-planar shear wave was induced by acoustic radiation force generated by the therapeutic array, and tracked with ultrasound imaging at 3000 frames per second. Based on the shear wave velocity calculated from the sequentially captured frames, the Young's modulus was reconstructed. Results showed that the lesions were more easily identified on the shear wave velocity images than on B-mode images. As the number of therapy pulses increased from 0 to 2000 pulses/location, the Young's modulus decreased exponentially from 22.1 ± 2.7 to 2.1 ± 1.1 kPa in the tissue phantoms (R2 = 0.99, N = 9 each), and from 33.0 ± 7.1 to 4.0 ± 2.5 kPa in the ex vivo kidneys (R2 = 0.99, N = 8 each). Correspondingly, the tissues transformed from completely intact to completely fractionated as examined via histology. A good correlation existed between the lesions' Young's modulus and the degree of tissue fractionation as examined with the percentage of remaining structurally intact cell nuclei (R2 = 0.91, N = 8 each). These results indicate that lesions produced by histotripsy can be detected with high sensitivity using shear wave elastography. Because the decrease in the tissue elasticity corresponded well with the morphological and
Helfenstein-Didier, C.; Andrade, R. J.; Brum, J.; Hug, F.; Tanter, M.; Nordez, A.; Gennisson, J.-L.
2016-03-01
The shear wave velocity dispersion was analyzed in the Achilles tendon (AT) during passive dorsiflexion using a phase velocity method in order to obtain the tendon shear modulus (C 55). Based on this analysis, the aims of the present study were (i) to assess the reproducibility of the shear modulus for different ankle angles, (ii) to assess the effect of the probe locations, and (iii) to compare results with elasticity values obtained with the supersonic shear imaging (SSI) technique. The AT shear modulus (C 55) consistently increased with the ankle dorsiflexion (N = 10, p tendon mechanical properties across populations. Future studies should determine the clinical relevance of the shear wave dispersion analysis, for instance in the case of tendinopathy or tendon tear.
Shear wave induced resonance elastography of spherical masses with polarized torsional waves
Hadj Henni, Anis; Schmitt, Cédric; Trop, Isabelle; Cloutier, Guy
2012-03-01
Shear wave induced resonance (SWIR) is a technique for dynamic ultrasound elastography of confined mechanical inclusions. It was developed for breast tumor imaging and tissue characterization. This method relies on the polarization of torsional shear waves modeled with the Helmholtz equation in spherical coordinates. To validate modeling, an invitro set-up was used to measure and image the first three eigenfrequencies and eigenmodes of a soft sphere. A preliminary invivo SWIR measurement on a breast fibroadenoma is also reported. Results revealed the potential of SWIR elastography to detect and mechanically characterize breast lesions for early cancer detection.
Hammering Yucca Flat, Part Two: Shear-Wave Velocity
Finlay, T. S.; Abbott, R. E.; Knox, H. A.; Tang, D. G.; James, S. R.; Haney, M. M.; Hampshire, J. B., II
2015-12-01
In preparation for the next phase of the Source Physics Experiment (SPE), we conducted an active-source seismic survey of Yucca Flat, Nevada, on the Nevada National Security Site. Results from this survey will be used to inform the geologic models associated with the SPE project. For this study, we used a novel 13,000 kilogram weight-drop seismic source to interrogate an 18-km North-South transect of Yucca Flat. Source points were spaced every 200 meters and were recorded by 350 to 380 3-component 2-Hz geophones with variable spacings of 10, 20, and 100 meters. We utilized the Refraction-Microtremor (ReMi) technique to create multiple 1D dispersion curves, which were then inverted for shear-wave velocity profiles using the Dix inversion method (Tsai and Haney, 2015). Each of these 1D velocity models was subsequently stitched together to create a 2D profile over the survey area. The dispersion results indicate a general decrease in surface-wave phase velocity to the south. This result is supported by slower shear-wave velocity sediments and increasing basin depth towards the survey's southern extent. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Estimation of near-surface shear-wave velocity by inversion of Rayleigh waves
Xia, J.; Miller, R.D.; Park, C.B.
1999-01-01
The shear-wave (S-wave) velocity of near-surface materials (soil, rocks, pavement) and its effect on seismic-wave propagation are of fundamental interest in many groundwater, engineering, and environmental studies. Rayleigh-wave phase velocity of a layered-earth model is a function of frequency and four groups of earth properties: P-wave velocity, S-wave velocity, density, and thickness of layers. Analysis of the Jacobian matrix provides a measure of dispersion-curve sensitivity to earth properties. S-wave velocities are the dominant influence on a dispersion curve in a high-frequency range (>5 Hz) followed by layer thickness. An iterative solution technique to the weighted equation proved very effective in the high-frequency range when using the Levenberg-Marquardt and singular-value decomposition techniques. Convergence of the weighted solution is guaranteed through selection of the damping factor using the Levenberg-Marquardt method. Synthetic examples demonstrated calculation efficiency and stability of inverse procedures. We verify our method using borehole S-wave velocity measurements.Iterative solutions to the weighted equation by the Levenberg-Marquardt and singular-value decomposition techniques are derived to estimate near-surface shear-wave velocity. Synthetic and real examples demonstrate the calculation efficiency and stability of the inverse procedure. The inverse results of the real example are verified by borehole S-wave velocity measurements.
Nonlinear physics of shear Alfvén waves
Energy Technology Data Exchange (ETDEWEB)
Zonca, Fulvio [Associazione EURATOM-ENEA sulla Fusione, C.P. 65-00044 Frascati, Italy and Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou 31007 (China); Chen, Liu [Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou 31007, P.R.C. and Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States)
2014-02-12
Shear Alfvén waves (SAW) play fundamental roles in thermonuclear plasmas of fusion interest, since they are readily excited by energetic particles in the MeV range as well as by the thermal plasma components. Thus, understanding fluctuation induced transport in burning plasmas requires understanding nonlinear SAW physics. There exist two possible routes to nonlinear SAW physics: (i) wave-wave interactions and the resultant spectral energy transfer; (ii) nonlinear wave-particle interactions of SAW instabilities with energetic particles. Within the first route, it is advantageous to understand and describe nonlinear processes in term of proximity of the system to the Alfvénic state, where wave-wave interactions are minimized due to the cancellation of Reynolds and Maxwell stresses. Here, various wave-wave nonlinear dynamics are elucidated in terms of how they break the Alfvénic state. In particular, we discuss the qualitative and quantitative modification of the SAW parametric decay process due to finite ion compressibility and finite ion Larmor radius. We also show that toroidal geometry plays a crucial role in the nonlinear excitation of zonal structures by Alfvén eigenmodes. Within the second route, the coherent nonlinear dynamics of structures in the energetic particle phase space, by which secular resonant particle transport can occur on meso- and macro-scales, must be addressed and understood. These 'nonlinear equilibria' or 'phase-space zonal structures' dynamically evolve on characteristic (fluctuation induced) turbulent transport time scales, which are generally of the same order of the nonlinear time scale of the underlying fluctuations. In this work, we introduce the general structure of nonlinear Schrödinger equations with complex integro-differential nonlinear terms, which govern these physical processes. To elucidate all these aspects, theoretical analyses are presented together with numerical simulation results.
Explicit wave action conservation for water waves on vertically sheared flows
Quinn, Brenda; Toledo, Yaron; Shrira, Victor
2016-04-01
Water waves almost always propagate on currents with a vertical structure such as currents directed towards the beach accompanied by an under-current directed back toward the deep sea or wind-induced currents which change magnitude with depth due to viscosity effects. On larger scales they also change their direction due to the Coriolis force as described by the Ekman spiral. This implies that the existing wave models, which assume vertically-averaged currents, is an approximation which is far from realistic. In recent years, ocean circulation models have significantly improved with the capability to model vertically-sheared current profiles in contrast with the earlier vertically-averaged current profiles. Further advancements have coupled wave action models to circulation models to relate the mutual effects between the two types of motion. Restricting wave models to vertically-averaged non-turbulent current profiles is obviously problematic in these cases and the primary goal of this work is to derive and examine a general wave action equation which accounts for these shortcoming. The formulation of the wave action conservation equation is made explicit by following the work of Voronovich (1976) and using known asymptotic solutions of the boundary value problem which exploit the smallness of the current magnitude compared to the wave phase velocity and/or its vertical shear and curvature. The adopted approximations are shown to be sufficient for most of the conceivable applications. This provides correction terms to the group velocity and wave action definition accounting for the shear effects, which are fitting for application to operational wave models. In the limit of vanishing current shear, the new formulation reduces to the commonly used Bretherton & Garrett (1968) no-shear wave action equation where the invariant is calculated with the current magnitude taken at the free surface. It is shown that in realistic oceanic conditions, the neglect of the vertical
Signal processing method for shear wave velocity measurement
Institute of Scientific and Technical Information of China (English)
Hou Xingmin; Qu Shuying; Shi Xiangdong
2007-01-01
Soil shear wave velocity (SWV) is an important parameter in geotechnical engineering. To measure the soil SWV, three methods are generally used in China, including the single-hole method, cross-hole method and the surface-wave technique. An optimized approach based on a correlation function for single-hole SWV measurement is presented in this paper. In this approach, inherent inconsistencies of the artificial methods such as negative velocities, and too-large and too-small velocities, are eliminated from the single-hole method, and the efficiency of data processing is improved. In addition, verification using the cross-hole method of upper measuring points shows that the proposed optimized approach yields high precision in signal processing.
Surface waves on arbitrary vertically-sheared currents
Smeltzer, Benjamin K
2016-01-01
We study dispersion properties of linear surface gravity waves propagating in an arbitrary direction atop a current profile of arbitrary depth-varying magnitude using a piecewise linear approximation, and develop a robust numerical framework for practical calculation. The method has been much used in the past in 2D, and we herein extend and apply it to 3D problems. Being valid for all wavelengths without loss of accuracy, the scheme is particularly well suited to solve problems involving Fourier transformations in the horizontal plane. We examine the group and phase velocities over different wavelength regimes and current profiles, highlighting characteristics due to the depth-variable vorticity. We show an example application to ship waves on an arbitrary current profile, and demonstrate qualitative differences in the wake patterns between a concave down profile when compared to a constant shear profile with equal depth-averaged vorticity. New insight is given concerning the nature of extra spurious solution...
A NEW MEASURE FOR DIRECT MEASUREMENT OF THE BED SHEAR STRESS OF WAVE BOUNDARY LAYER IN WAVE FLUME
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
In this article, a shear plate was mounted on the bottom in a wave flume and direct measurements of the smooth and rough bed shear stress under regular and irregular waves were conducted with the horizontal force exerted on the shear plates by the bottom shear stress in the wave boundary layer. Under immobile bed condition, grains of sand were glued uniformly and tightly onto the shear plate, being prevented from motion with the fluid flow and generation of sand ripples. The distribution of the bottom mean shear stress varying with time was measured by examining the interaction between the shear plate and shear transducers. The relation between the force measured by the shear transducers and its voltage is a linear one. Simultaneous measurements of the bottom velocity were carried out by an Acoustic Doppler Velocimeter (ADV), while the whole process was completely controlled by computers, bottom shear stress and velocity were synchronously measured. Based on the experimental results, it can be concluded that (1) the friction coefficient groews considerably with the increase of the Reynolds number, (2) the shear stress is a function varying with time and linearly proportional to the velocity. Compared with theoretical results and previous experimental data, it is shown that the experimental method is feasible and effective, A further study on the bed shear stress under regular or irregular waves can be carried out. And applicability to the laboratory studies on the initiation of sediments and the measurement of the shear stress after sediment imigration.
Utility of Shear Wave Elastography for Diagnosing Chronic Autoimmune Thyroiditis
Directory of Open Access Journals (Sweden)
Takahiro Fukuhara
2015-01-01
Full Text Available The aims of this study were to evaluate the utility of shear wave elastography (SWE using acoustic radiation force impulse (ARFI for diagnosing chronic autoimmune thyroiditis (CAT and to verify the effect of fibrotic thyroid tissue on shear wave velocity (SWV. The subjects were 229 patients with 253 normal thyroid lobes (controls and 150 CAT lobes. The SWV for CAT (2.47 ± 0.57 m/s was significantly higher than that for controls (1.59 ± 0.41 m/s (P<0.001. The area under the receiver operating characteristics (ROC curve for CAT was 0.899, and the SWV cut-off value was 1.96 m/s. The sensitivity, specificity, and diagnostic accuracy were 87.4%, 78.7%, and 85.1%, respectively. Levels of anti-thyroperoxidase antibodies and thyroid isthmus thickness were correlated with tissue stiffness in CAT. However, there was no correlation between levels of anti-thyroglobulin antibodies and tissue stiffness. Quantitative SWE is useful for diagnosing CAT, and it is possible that SWE can be used to evaluate the degree of fibrosis in patients with CAT.
Shear Wave Splitting Observations Beneath Uturuncu Volcano, Bolivia
Sims, N. E.; Christensen, D. H.; Moore-Driskell, M. M.
2015-12-01
Anisotropy in the upper mantle is often associated with mantle flow direction through the lattice preferred orientation of anisotropic minerals such as olivine in the upper mantle material. The flow of the mantle around subduction zones can be particularly complex, and thus difficult to explain. Because of its relationship to anisotropy, analysis of shear wave splitting measurements can help to answer questions regarding the upper mantle flow that surrounds subducting slabs. Here we present SK(K)S shear wave splitting measurements from a temporary broadband network (PLUTONS) of 33 stations deployed from April 2009 to October 2012 on the Altiplano plateau around Uturuncu volcano in Bolivia. The stations are spaced 10-20 km apart, providing a high spatial resolution of the region of the mantle directly below Uturuncu volcano. Despite the lack of numerous splitting results to analyze, preliminary measurements indicate a relatively consistent pattern of fast-polarization directions in a NW-SE orientation of about N80ºW. We think that it is likely that these observations come from anisotropy in the mantle wedge above the subducting Nazca plate indicating a direction of flow in the mantle wedge that is sub-parallel to the subduction direction of the Nazca plate. Although W-E flow beneath the subducting Nazca plate cannot be completely ruled out, these results appear to be consistent with the simple model of two-dimensional corner flow in the mantle wedge and slab-entrained mantle flow beneath the slab.
Institute of Scientific and Technical Information of China (English)
Liu Xiqiang; Zhou Huilan; Li Hong; Gai Dianguang
2000-01-01
Based on the propagation characteristics of shear wave in the anisotropic layers, thecorrelation among several splitting shear-wave identification methods hasbeen studied. Thispaper puts forward the method estimating splitting shear-wave phases and its reliability byusing of the assumption that variance of noise and useful signal data obey normaldistribution. To check the validity of new method, the identification results and errorestimation corresponding to 95% confidence level by analyzing simulation signals have beengiven.
Near surface shear wave velocity in Bucharest, Romania
Directory of Open Access Journals (Sweden)
M. von Steht
2008-12-01
Full Text Available Bucharest, the capital of Romania with nearly 2 1/2 million inhabitants, is endangered by the strong earthquakes in the Vrancea seismic zone. To obtain information on the near surface shear-wave velocity Vs structure and to improve the available microzonations we conducted seismic refraction measurements in two parks of the city. There the shallow Vs structure is determined along five profiles, and the compressional-wave velocity (Vp structure is obtained along one profile. Although the amount of data collected is limited, they offer a reasonable idea about the seismic velocity distribution in these two locations. This knowledge is useful for a city like Bucharest where seismic velocity information so far is sparse and poorly documented. Using sledge-hammer blows on a steel plate and a 24-channel recording unit, we observe clear shear-wave arrivals in a very noisy environment up to a distance of 300 m from the source. The Vp model along profile 1 can be correlated with the known near surface sedimentary layers. Vp increases from 320 m/s near the surface to 1280 m/s above 55–65 m depth. The Vs models along all five profiles are characterized by low Vs (<350 m/s in the upper 60 m depth and a maximum Vs of about 1000 m/s below this depth. In the upper 30 m the average Vs^{30} varies from 210 m/s to 290 m/s. The Vp-Vs relations lead to a high Poisson's ratio of 0.45–0.49 in the upper ~60 m depth, which is an indication for water-saturated clayey sediments. Such ground conditions may severely influence the ground motion during strong Vrancea earthquakes.
Improved shear wave motion detection using coded excitation for transient elastography
He, Xiao-Nian; Diao, Xian-Fen; Lin, Hao-Ming; Zhang, Xin-Yu; Shen, Yuan-Yuan; Chen, Si-Ping; Qin, Zheng-Di; Chen, Xin
2017-01-01
Transient elastography (TE) is well adapted for use in studying liver elasticity. However, because the shear wave motion signal is extracted from the ultrasound signal, the weak ultrasound signal can significantly deteriorate the shear wave motion tracking process and make it challenging to detect the shear wave motion in a severe noise environment, such as within deep tissues and within obese patients. This paper, therefore, investigated the feasibility of implementing coded excitation in TE for shear wave detection, with the hypothesis that coded ultrasound signals can provide robustness to weak ultrasound signals compared with traditional short pulse. The Barker 7, Barker 13, and short pulse were used for detecting the shear wave in the TE application. Two phantom experiments and one in vitro liver experiment were done to explore the performances of the coded excitation in TE measurement. The results show that both coded pulses outperform the short pulse by providing superior shear wave signal-to-noise ratios (SNR), robust shear wave speed measurement, and higher penetration intensity. In conclusion, this study proved the feasibility of applying coded excitation in shear wave detection for TE application. The proposed method has the potential to facilitate robust shear elasticity measurements of tissue. PMID:28295027
Improved shear wave motion detection using coded excitation for transient elastography.
He, Xiao-Nian; Diao, Xian-Fen; Lin, Hao-Ming; Zhang, Xin-Yu; Shen, Yuan-Yuan; Chen, Si-Ping; Qin, Zheng-Di; Chen, Xin
2017-03-15
Transient elastography (TE) is well adapted for use in studying liver elasticity. However, because the shear wave motion signal is extracted from the ultrasound signal, the weak ultrasound signal can significantly deteriorate the shear wave motion tracking process and make it challenging to detect the shear wave motion in a severe noise environment, such as within deep tissues and within obese patients. This paper, therefore, investigated the feasibility of implementing coded excitation in TE for shear wave detection, with the hypothesis that coded ultrasound signals can provide robustness to weak ultrasound signals compared with traditional short pulse. The Barker 7, Barker 13, and short pulse were used for detecting the shear wave in the TE application. Two phantom experiments and one in vitro liver experiment were done to explore the performances of the coded excitation in TE measurement. The results show that both coded pulses outperform the short pulse by providing superior shear wave signal-to-noise ratios (SNR), robust shear wave speed measurement, and higher penetration intensity. In conclusion, this study proved the feasibility of applying coded excitation in shear wave detection for TE application. The proposed method has the potential to facilitate robust shear elasticity measurements of tissue.
Ship waves on uniform shear current at finite depth: wave resistance and critical velocity
Li, Yan
2016-01-01
We present a comprehensive theory for linear gravity-driven ship waves in the presence of a shear current with uniform vorticity, including the effects of finite water depth. The wave resistance in the presence of shear current is calculated for the first time, containing in general a non-zero lateral component. While formally apparently a straightforward extension of existing deep water theory, the introduction of finite water depth is physically non-trivial, since the surface waves are now affected by a subtle interplay of the effects of the current and the sea bed. This becomes particularly pronounced when considering the phenomenon of critical velocity, the velocity at which transversely propagating waves become unable to keep up with the moving source. The phenomenon is well known for shallow water, and was recently shown to exist also in deep water in the presence of a shear current [Ellingsen, J.~Fluid Mech.\\ {\\bf 742} R2 (2014)]. We derive the exact criterion for criticality as a function of an intrin...
Shear-driven dynamo waves at high magnetic Reynolds number.
Tobias, S M; Cattaneo, F
2013-05-23
Astrophysical magnetic fields often display remarkable organization, despite being generated by dynamo action driven by turbulent flows at high conductivity. An example is the eleven-year solar cycle, which shows spatial coherence over the entire solar surface. The difficulty in understanding the emergence of this large-scale organization is that whereas at low conductivity (measured by the magnetic Reynolds number, Rm) dynamo fields are well organized, at high Rm their structure is dominated by rapidly varying small-scale fluctuations. This arises because the smallest scales have the highest rate of strain, and can amplify magnetic field most efficiently. Therefore most of the effort to find flows whose large-scale dynamo properties persist at high Rm has been frustrated. Here we report high-resolution simulations of a dynamo that can generate organized fields at high Rm; indeed, the generation mechanism, which involves the interaction between helical flows and shear, only becomes effective at large Rm. The shear does not enhance generation at large scales, as is commonly thought; instead it reduces generation at small scales. The solution consists of propagating dynamo waves, whose existence was postulated more than 60 years ago and which have since been used to model the solar cycle.
[INVITED] Laser generation and detection of ultrafast shear acoustic waves in solids and liquids
Pezeril, Thomas
2016-09-01
The aim of this article is to provide an overview of the up-to-date findings related to ultrafast shear acoustic waves. Recent progress obtained for the laser generation and detection of picosecond shear acoustic waves in solids and liquids is reviewed. Examples in which the transverse isotropic symmetry of the sample structure is broken in order to permit shear acoustic wave generation through sudden laser heating are described in detail. Alternative photo-induced mechanisms for ultrafast shear acoustic generation in metals, semiconductors, insulators, magnetostrictive, piezoelectric and electrostrictive materials are reviewed as well. With reference to key experiments, an all-optical technique employed to probe longitudinal and shear structural dynamics in the GHz frequency range in ultra-thin liquid films is described. This technique, based on specific ultrafast shear acoustic transducers, has opened new perspectives that will be discussed for ultrafast shear acoustic probing of viscoelastic liquids at the nanometer scale.
Analysis shear wave velocity structure obtained from surface wave methods in Bornova, Izmir
Pamuk, Eren; Özdaǧ, Özkan Cevdet; Akgün, Mustafa
2016-04-01
Properties of the soil from the bedrock is necessary to describe accurately and reliably for the reduction of earthquake damage. Because seismic waves change their amplitude and frequency content owing to acoustic impedance difference between soil and bedrock. Firstly, shear wave velocity and depth information of layers on bedrock is needed to detect this changing. Shear wave velocity can be obtained using inversion of Rayleigh wave dispersion curves obtained from surface wave methods (MASW- the Multichannel Analysis of Surface Waves, ReMi-Refraction Microtremor, SPAC-Spatial Autocorrelation). While research depth is limeted in active source study, a passive source methods are utilized for deep depth which is not reached using active source methods. ReMi method is used to determine layer thickness and velocity up to 100 m using seismic refraction measurement systems.The research carried out up to desired depth depending on radius using SPAC which is utilized easily in conditions that district using of seismic studies in the city. Vs profiles which are required to calculate deformations in under static and dynamic loads can be obtained with high resolution using combining rayleigh wave dispersion curve obtained from active and passive source methods. In the this study, Surface waves data were collected using the measurements of MASW, ReMi and SPAC at the İzmir Bornova region. Dispersion curves obtained from surface wave methods were combined in wide frequency band and Vs-depth profiles were obtained using inversion. Reliability of the resulting soil profiles were provided by comparison with theoretical transfer function obtained from soil paremeters and observed soil transfer function from Nakamura technique and by examination of fitting between these functions. Vs values are changed between 200-830 m/s and engineering bedrock (Vs>760 m/s) depth is approximately 150 m.
Amador Carrascal, Carolina; Chen, Shigao; Manduca, Armando; Greenleaf, James F; Urban, Matthew
2017-01-11
Quantitative ultrasound elastography is increasingly being used in the assessment of chronic liver disease. Many studies have reported ranges of liver shear wave velocities values for healthy individuals and patients with different stages of liver fibrosis. Nonetheless, ongoing efforts exist to stabilize quantitative ultrasound elastography measurements by assessing factors that influence tissue shear wave velocity values, such as food intake, body mass index (BMI), ultrasound scanners, scanning protocols, ultrasound image quality, etc. Time-to-peak (TTP) methods have been routinely used to measure the shear wave velocity. However, there is still a need for methods that can provide robust shear wave velocity estimation in the presence of noisy motion data. The conventional TTP algorithm is limited to searching for the maximum motion in time profiles at different spatial locations. In this study, two modified shear wave speed estimation algorithms are proposed. The first method searches for the maximum motion in both space and time (spatiotemporal peak, STP); the second method applies an amplitude filter (spatiotemporal thresholding, STTH) to select points with motion amplitude higher than a threshold for shear wave group velocity estimation. The two proposed methods (STP and STTH) showed higher precision in shear wave velocity estimates compared to TTP in phantom. Moreover, in a cohort of 14 healthy subjects STP and STTH methods improved both the shear wave velocity measurement precision and the.
Imaging mechanical shear waves induced by piezoelectric ceramics in magnetic resonance elastography
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
Magnetic Resonance Elastography (MRE) is a noninvasive technique to measure elasticity of tissues in vivo. In this paper, a mechanical shear wave MR imaging system experiment is set for MRE. A novel actuator is proposed to generate mechanical shear waves propagating inside a gel phantom. The actuator is made of piezoelectric ceramics, and fixed on a plexiglass bracket. Both of the gel phantom and the actuator are put into a head coil inside the MR scanner's bore. The actuator works synchronously with an MR imaging sequence running on the MR scanner. The sequence is modified from a FLASH sequence into a motion-sensitizing phase- contrast sequence for shear wave MR imaging. Shear wave images are presented, and these effects on the shear wave MR imaging system, including the stiffness of phantoms, the frequency of the actuator, the parameters of the motion-sensitizing gradient, and the oscillation of the patient bed, are discussed.
Modelling study of challenges in sinkhole detection with shear wave reflection seismics
Burschil, Thomas; Krawczyk, CharLotte M.
2016-04-01
The detection of cavities with reflection seismics is a difficult task even if high impedance contrasts are assumed. Especially the shear wave reflection method with a higher resolution potential trough lower velocities and short wavelength has come into focus of investigation. But shear wave propagation fails if material exists that partially has no shear strength. The shear wave does not propagate into or through those voids. Here, we evaluate the influence of a possible fracture zone above a cavity. We simulate shear wave propagation with finite difference modelling for two reference models, with and without cavity, and various sets of input models with a fracture zone above the cavity. Reflections and multiples of the reference models image the subsidence structure and the cavity. For the fracture input models, we implemented a fracture network, derived from numerical crack propagation modelling (Schneider-Löbens et al., 2015). The cracks possess the minimum possible aperture of one grid point (i.e. 0.1 m) and no shear stiffness. The seismic modelling exhibits that the shear wave does not pass through the fracture zone and shadows the subjacent cavity. Sequences of randomly discontinuous cracks, cf. displacement discontinuity model with zero crack stiffness, approximate partially seismic connected rock on both sides of the crack. The amount of these seismic pathways determines whether a reflection of the cavity can be detected at the surface or not. Cracks with higher aperture, e.g. two or three grid points, need a higher amount of intact rock/defective cracks, since more connected grid points are necessary to create seismic pathways. Furthermore, it turns out that the crack filling is important for shear wave transmission. While a mineralized fracture zone, implemented with high velocity, facilitate shear wave propagation, water or air-filled cracks avoid shear wave transmission. Crack orientation affects the shear wave propagation through the geometry. A
A wave interaction approach to studying non-modal homogeneous and stratified shear instabilities
Guha, Anirban
2012-01-01
Resonant interaction between two (or more) progressive interfacial waves produce exponentially growing instabilities in idealized, homogeneous and density stratified, inviscid shear layers (Holmboe 1962). Resonance occurs when the two waves attain a "phase-locked" configuration. In this paper we have generalized the mechanistic picture of shear instabilities described in Holmboe (1962). Unlike Holmboe, we do not initially assume the wave type (e.g. vorticity wave or gravity wave), nor do we impose the normal-mode waveform (which only accounts for exponential growth). Starting from the first principles, we demonstrate that two oppositely propagating interfacial waves, having arbitrary initial amplitudes (which are small enough to satisfy linearity) and phases, eventually phase-lock, provided they satisfy a certain condition. We show it to be the necessary and sufficient condition for exponentially growing instabilities in idealized shear layers. We investigate three types of shear instabilities - Kelvin Helmho...
Xia, J.; Miller, R.D.; Park, C.B.; Hunter, J.A.; Harris, J.B.; Ivanov, J.
2002-01-01
Recent field tests illustrate the accuracy and consistency of calculating near-surface shear (S)-wave velocities using multichannel analysis of surface waves (MASW). S-wave velocity profiles (S-wave velocity vs. depth) derived from MASW compared favorably to direct borehole measurements at sites in Kansas, British Columbia, and Wyoming. Effects of changing the total number of recording channels, sampling interval, source offset, and receiver spacing on the inverted S-wave velocity were studied at a test site in Lawrence, Kansas. On the average, the difference between MASW calculated Vs and borehole measured Vs in eight wells along the Fraser River in Vancouver, Canada was less than 15%. One of the eight wells was a blind test well with the calculated overall difference between MASW and borehole measurements less than 9%. No systematic differences were observed in derived Vs values from any of the eight test sites. Surface wave analysis performed on surface data from Wyoming provided S-wave velocities in near-surface materials. Velocity profiles from MASW were confirmed by measurements based on suspension log analysis. ?? 2002 Elsevier Science Ltd. All rights reserved.
Measurement of sound speed vs. depth in South Pole ice: pressure waves and shear waves
Energy Technology Data Exchange (ETDEWEB)
IceCube Collaboration; Klein, Spencer
2009-06-04
We have measured the speed of both pressure waves and shear waves as a function of depth between 80 and 500 m depth in South Pole ice with better than 1% precision. The measurements were made using the South Pole Acoustic Test Setup (SPATS), an array of transmitters and sensors deployed in the ice at the South Pole in order to measure the acoustic properties relevant to acoustic detection of astrophysical neutrinos. The transmitters and sensors use piezoceramics operating at {approx}5-25 kHz. Between 200 m and 500 m depth, the measured profile is consistent with zero variation of the sound speed with depth, resulting in zero refraction, for both pressure and shear waves. We also performed a complementary study featuring an explosive signal propagating vertically from 50 to 2250 m depth, from which we determined a value for the pressure wave speed consistent with that determined for shallower depths, higher frequencies, and horizontal propagation with the SPATS sensors. The sound speed profile presented here can be used to achieve good acoustic source position and emission time reconstruction in general, and neutrino direction and energy reconstruction in particular. The reconstructed quantities could also help separate neutrino signals from background.
Institute of Scientific and Technical Information of China (English)
LU Ming-Zhu; LIU Xue-Jin; SHI Yu; KANG Yan-Ni; GUAN Yu-Bo; WAN Ming-Xi
2012-01-01
We concentrate on the nondissipative mechanism induced shear wave in inhomogenous tissue.The shear wave equation of radiation force in inhomogeneous media is solved numerically with a finite-difference time-domain method.A rarely studied nondissipative mechanism of shear displacement due to a smooth medium inhomogeneity is evaluated.It is noted that unlike the dissipative effect,the nondissipative action on a localized inhomogeneity with its hardness parameter changing smoothly along the beam axis,compresses or stretches the focus area.The shear waves in nondissipative inhomogeneous media remain the property of sharp turn with 100％ peak positive displacement and 64％ peak negative displacement.This action is useful in discerning the water-like lesion.%We concentrate on the nondissipative mechanism induced shear wave in inhomogenous tissue. The shear wave equation of radiation force in inhomogeneous media is solved numerically with a finite-difference time-domain method. A rarely studied nondissipative mechanism of shear displacement due to a smooth medium inhomogeneity is evaluated. It is noted that unlike the dissipative effect, the nondissipative action on a localized inhomogeneity with its hardness parameter changing smoothly along the beam axis, compresses or stretches the focus area. The shear waves in nondissipative inhomogeneous media remain the property of sharp turn with 100% peak positive displacement and 64% peak negative displacement. This action is useful in discerning the water-like lesion.
Surface and downhole shear wave seismic methods for thick soil site investigations
Hunter, J.A.; Benjumea, B.; Harris, J.B.; Miller, R.D.; Pullan, S.E.; Burns, R.A.; Good, R.L.
2002-01-01
Shear wave velocity-depth information is required for predicting the ground motion response to earthquakes in areas where significant soil cover exists over firm bedrock. Rather than estimating this critical parameter, it can be reliably measured using a suite of surface (non-invasive) and downhole (invasive) seismic methods. Shear wave velocities from surface measurements can be obtained using SH refraction techniques. Array lengths as large as 1000 m and depth of penetration to 250 m have been achieved in some areas. High resolution shear wave reflection techniques utilizing the common midpoint method can delineate the overburden-bedrock surface as well as reflecting boundaries within the overburden. Reflection data can also be used to obtain direct estimates of fundamental site periods from shear wave reflections without the requirement of measuring average shear wave velocity and total thickness of unconsolidated overburden above the bedrock surface. Accurate measurements of vertical shear wave velocities can be obtained using a seismic cone penetrometer in soft sediments, or with a well-locked geophone array in a borehole. Examples from thick soil sites in Canada demonstrate the type of shear wave velocity information that can be obtained with these geophysical techniques, and show how these data can be used to provide a first look at predicted ground motion response for thick soil sites. ?? 2002 Published by Elsevier Science Ltd.
Third harmonic generation of shear horizontal guided waves propagation in plate-like structures
Energy Technology Data Exchange (ETDEWEB)
Li, Wei Bin [School of Aerospace Engineering, Xiamen University, Xiamen (China); Xu, Chun Guang [School of Mechanical Engineering, Beijing Institute of Technology, Beijing (China); Cho, Youn Ho [School of Mechanical Engineering, Pusan National University, Busan (Korea, Republic of)
2016-04-15
The use of nonlinear ultrasonics wave has been accepted as a promising tool for monitoring material states related to microstructural changes, as it has improved sensitivity compared to conventional non-destructive testing approaches. In this paper, third harmonic generation of shear horizontal guided waves propagating in an isotropic plate is investigated using the perturbation method and modal analysis approach. An experimental procedure is proposed to detect the third harmonics of shear horizontal guided waves by electromagnetic transducers. The strongly nonlinear response of shear horizontal guided waves is measured. The accumulative growth of relative acoustic nonlinear response with an increase of propagation distance is detected in this investigation. The experimental results agree with the theoretical prediction, and thus providing another indication of the feasibility of using higher harmonic generation of electromagnetic shear horizontal guided waves for material characterization.
Systematic Analysis Method of Shear-Wave Splitting:SAM Software System
Institute of Scientific and Technical Information of China (English)
Gao Yuan; Liu Xiqiang; Liang Wei; Hao Ping
2004-01-01
In order to make a more effective use of the data from regional digital seismograph networks and to promote the study on shear wave splitting and its application to earthquake stressforecasting, SAM software system, i.e., the software on systematic analysis method of shear wave splitting has been developed. This paper introduces the design aims, system structure,function and characteristics about the SAM software system and shows some graphical interfaces of data input and result output. Lastly, it discusses preliminarily the study of shear wave splitting and its application to earthquake forecasting.
Grasland-Mongrain, Pol; Tang, An; Catheline, Stefan; Cloutier, Guy
2016-01-01
This study presents the first observation of shear wave induced remotely within soft tissues. It was performed through the combination of a transcranial magnetic stimulation device and a permanent magnet. A physical model based on Maxwell and Navier equations was developed. Experiments were performed on a cryogel phantom and a chicken breast sample. Using an ultrafast ultrasound scanner, shear waves of respective amplitude of 5 and 0.5 micrometers were observed. Experimental and numerical results were in good agreement. This study constitutes the framework of an alternative shear wave elastography method.
Directory of Open Access Journals (Sweden)
Z. Hashemiyan
2016-01-01
Full Text Available Properties of soft biological tissues are increasingly used in medical diagnosis to detect various abnormalities, for example, in liver fibrosis or breast tumors. It is well known that mechanical stiffness of human organs can be obtained from organ responses to shear stress waves through Magnetic Resonance Elastography. The Local Interaction Simulation Approach is proposed for effective modelling of shear wave propagation in soft tissues. The results are validated using experimental data from Magnetic Resonance Elastography. These results show the potential of the method for shear wave propagation modelling in soft tissues. The major advantage of the proposed approach is a significant reduction of computational effort.
Nonlinear Shear Wave in a Non Newtonian Visco-elastic Medium
Janaki, D Banerjee M S; Chaudhuri, M
2013-01-01
An analysis of nonlinear transverse shear wave has been carried out on non-Newtonian viscoelastic liquid using generalized hydrodynamic(GH) model. The nonlinear viscoelastic behavior is introduced through velocity shear dependence of viscosity coefficient by well known Carreau -Bird model. The dynamical feature of this shear wave leads to the celebrated Fermi-Pasta-Ulam (FPU) problem. Numerical solution has been obtained which shows that initial periodic solutions reoccur after passing through several patterns of periodic waves. A possible explanation for this periodic solution is given by constructing modified Korteweg de Vries (mKdV) equation. This model has application from laboratory to astrophysical plasmas as well as biological systems.
Nonlinear shear wave in a non Newtonian visco-elastic medium
Energy Technology Data Exchange (ETDEWEB)
Banerjee, D.; Janaki, M. S.; Chakrabarti, N. [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Calcutta 700 064 (India); Chaudhuri, M. [Max-Planck-Institut fuer extraterrestrische Physik, 85741 Garching (Germany)
2012-06-15
An analysis of nonlinear transverse shear wave has been carried out on non-Newtonian viscoelastic liquid using generalized hydrodynamic model. The nonlinear viscoelastic behavior is introduced through velocity shear dependence of viscosity coefficient by well known Carreau-Bird model. The dynamical feature of this shear wave leads to the celebrated Fermi-Pasta-Ulam problem. Numerical solution has been obtained which shows that initial periodic solutions reoccur after passing through several patterns of periodic waves. A possible explanation for this periodic solution is given by constructing modified Korteweg de Vries equation. This model has application from laboratory to astrophysical plasmas as well as in biological systems.
Variations of shear wave splitting in the 2008 Wenchuan earthquake region
Institute of Scientific and Technical Information of China (English)
2008-01-01
Through the analysis of S-wave particle motion of local events in the shear wave window, the polariza-tion directions of the faster shear wave and the delay times between the faster and the slower shear waves were derived from seismic recordings at the stations near the fault zones. The shear wave split-ting results of seven stations in the area of Longmenshan fault zone reveal spatial variation of the po-larization directions of the fast shear wave. The directions at stations in the southeastern side of the Longmenshan fault zone (in the Sichuan Basin area) are in the NE direction, whereas the direction at station PWU (in the Plateau), which is in the northwestern side of the faults, is in the EW direction. Systematic changes of the time delays between two split shear waves were also observed. At station L5501 in the southern end of the aftershock zone, the delay times of the slower shear wave decrease systematically after the main shock. After the main shock, the delay times at station PWU were longer than those before the earthquake. Seismic shear wave splitting is caused mostly by stress-aligned microcracks in the rock below the stations. The results demonstrate changes of local stress field dur-ing the main-shock and the aftershocks. The stress in the southern part of Wenchuan seismogenic zone was released by the main-shock and the aftershocks. The crustal stresses were transferred to the northeastern part of the zone, resulting in stress increase at station PWU after the main-shock.
Variations of shear wave splitting in the 2008 Wen chuan earthquake region
Institute of Scientific and Technical Information of China (English)
DING ZhiFeng; WU Yan; WANG Hui; ZHOU XiaoFeng; LI GuiYin
2008-01-01
Through the analysis of S-wave particle motion of local events in the shear wave window, the polarization directions of the faster shear wave and the delay times between the faster and the slower shear waves were derived from seismic recordings at the stations near the fault zones. The shear wave splitting results of seven stations in the area of Longmenshan fault zone reveal spatial variation of the polarization directions of the fast shear wave. The directions at stations in the southeastern side of the Longmenshan fault zone (in the Sichuan Basin area) are in the NE direction, whereas the direction at station PWU (in the Plateau), which is in the northwestern side of the faults, is in the EW direction.Systematic changes of the time delays between two split shear waves were also observed. At station L5501 in the southern end of the aftershock zone, the delay times of the slower shear wave decrease systematically after the main shock. After the main shock, the delay times at station PWU were longer than those before the earthquake. Seismic shear wave splitting is caused mostly by stress-aligned microcracks in the rock below the stations. The results demonstrate changes of local stress field during the main-shock and the aftershocks. The stress in the southern part of Wenchuan seismogenic zone was released by the main-shock and the aftershocks. The crustal stresses were transferred to the northeastern part of the zone, resulting in stress increase at station PWU after the main-shock.
Miao, Hongchen; Wang, Qiangzhong; Li, Faxin
2016-01-01
The non-dispersive fundamental shear horizontal (SH0) wave in plate-like structures is of practical importance in non-destructive testing (NDT) and structural health monitoring (SHM). Theoretically, an omnidirectional SH0 transducer phased array system can be used to inspect defects in a large plate in the similar manner to the phased array transducers used in medical B-scan ultrasonics. However, very few omnidirectional SH transducers have been proposed so far. In this work, an omnidirectional SH wave piezoelectric transducer (OSH-PT) was proposed which consists of a ring array of twelve face-shear (d24) trapezoidal PZT elements. Each PZT element can produce face-shear deformation under applied voltage, resulting in circumferential shear deformation in the OSH-PT and omnidirectional SH waves in the hosting plate. Both finite element simulations and experiments were conducted to examine the performance of the proposed OSH-PT. Experimental testing shows that the OSH-PT exhibits good omnidirectional properties,...
Monitoring polymer properties using shear horizontal surface acoustic waves.
Gallimore, Dana Y; Millard, Paul J; Pereira da Cunha, Mauricio
2009-10-01
Real-time, nondestructive methods for monitoring polymer film properties are increasingly important in the development and fabrication of modern polymer-containing products. Online testing of industrial polymer films during preparation and conditioning is required to minimize material and energy consumption, improve the product quality, increase the production rate, and reduce the number of product rejects. It is well-known that shear horizontal surface acoustic wave (SH-SAW) propagation is sensitive to mass changes as well as to the mechanical properties of attached materials. In this work, the SH-SAW was used to monitor polymer property changes primarily dictated by variations in the viscoelasticity. The viscoelastic properties of a negative photoresist film were monitored throughout the ultraviolet (UV) light-induced polymer cross-linking process using SH-SAW delay line devices. Changes in the polymer film mass and viscoelasticity caused by UV exposure produced variations in the phase velocity and attenuation of the SH-SAW propagating in the structure. Based on measured polymer-coated delay line scattering transmission responses (S(21)) and the measured polymer layer thickness and density, the viscoelastic constants c(44) and eta(44) were extracted. The polymer thickness was found to decrease 0.6% during UV curing, while variations in the polymer density were determined to be insignificant. Changes of 6% in c(44) and 22% in eta(44) during the cross-linking process were observed, showing the sensitivity of the SH-SAW phase velocity and attenuation to changes in the polymer film viscoelasticity. These results indicate the potential for SH-SAW devices as online monitoring sensors for polymer film processing.
Tabaru, Marie; Azuma, Takashi; Hashiba, Kunio
2010-07-01
Acoustic radiation force (ARF) imaging has been developed as a novel elastography technology to diagnose hepatic disease and breast cancer. The accuracy of shear wave speed estimation, which is one of the applications of ARF elastography, is studied. The Young's moduli of pig liver and foie gras samples estimated from the shear wave speed were compared with those measured the static Young's modulus measurement. The difference in the two methods was 8%. Distance attenuation characteristics of the shear wave were also studied using finite element method (FEM) analysis. We found that the differences in the axial and lateral beam widths in pressure and ARF are 16 and 9% at F-number=0.9. We studied the relationship between two branch points in distance attenuation characteristics and the shape of ARF. We found that the maximum measurable length to estimate shear wave speed for one ARF excitation was 8 mm.
Shear Horizontal Wave Propagation Speed in Mylar Sheet and Coated Paper
Leppänen, M.; Karppinen, T.; Hæggström, E.; Stor-Pellinen, J.
2006-03-01
Soft plate-like membranes find application e.g. as pill or paper coatings, bio-filter membranes, and gas seals in food products. For these applications the integrity and the mechanical properties of the membrane are important. Mechanical properties of these products can be determined by stretching or bending tests, but such methods can damage these fragile products. We propose a rapid nondestructive acoustic method to estimate mechanical film characteristics with shear horizontal (in-plane shear) waves. A 23 kHz, 1-cycle square signal was excited into a thin foil with a piezoceramic pickup and received with an inductive pickup. The SNR (power) was 20 dB in 1 kHz -50 kHz bandwidth. This actuation-detection scheme can be used to excite in-plane longitudinal, shear and even elliptic waves in a thin foil. The method was validated by measuring in-plane shear wave and longitudinal wave time-of-flight TOF at different actuator-receiver separations and calculating the corresponding longitudinal and shear modulus. The samples were Mylar® sheet and coated paper. The anisotropy of MOE for Mylar sheet was close to the manufacturer specifications. For coated paper a maximum shear modulus anisotropy of 5% and a shear modulus dependence on temperature of 0.7 MPa/°C were found. Laser doppler vibrometry showed that the excited waves were confined in-plane.
SHEAR FLOQUET WAVES IN MAGNETO-ELECTRO-ELASTIC SOLID WITH PERIODIC INTERFACES OF IMPERFECT CONTACTS
Directory of Open Access Journals (Sweden)
Gasparyan D.K.
2015-03-01
Full Text Available This paper aims at investigating the shear waves propagation in magneto-electro-elastic piezo active homogeneous solid of the one-dimensional periodic structure of imperfect contact interfaces. In the framework of the Floquet theory the dispersion equations are obtained defining shear wave frequency pass and gap band structure. For three kinds of imperfect contact conditions the analysis of dispersion relations is presented.
Seismic anisotropy of the crust in Yunnan,China: Polarizations of fast shear-waves
Institute of Scientific and Technical Information of China (English)
SHI Yu-tao; GAO Yuan; WU Jing; LUO Yan; SU You-jin
2006-01-01
Using seismic data recorded by Yunnan Telemetry Seismic Network from January 1, 2000 to December 31, 2003,the dominant polarization directions of fast shear-waves are obtained at l0 digital seismic stations by SAM technique, a systematic analysis method on shear-wave splitting, in this study. The results show that dominant directions of polarizations of fast shear-waves at most stations are mainly at nearly N-S or NNW direction in Yunnan.The dominant polarization directions of fast shear-waves at stations located on the active faults are consistent with the strike of active faults, directions of regional principal compressive strains measured from GPS data, and basically consistent with regional principal compressive stress. Only a few of stations show complicated polarization pattern of fast shear-waves, or are not consistent with the strike of active faults and the directions of principal GPS compressive strains, which are always located at junction of several faults. The result reflects complicated fault distribution and stress field. The dominant polarization direction of fast shear-wave indicates the direction of the in-situ maximum principal compressive stress is controlled by multiple tectonic aspects such as the regional stress field and faults.
The Influence of the Shear on the Gravitational Waves in the Early Anisotropic Universe
Song, Yoogeun
2016-01-01
We study the singularity of the congruences for both timelike and null geodesic curves using the expansion of the early anisotropic Bianchi type I Universe. In this paper, we concentrate on the influence of the shear of the timelike and null geodesic congruences in the early Universe. Under some natural conditions, we derive the Raychaudhuri type equation for the expansion and the shear-related equations. Recently, scientists working on the LIGO (Laser Interferometer Gravitational-Wave Observatory) have shown many possibilities to observing the anisotropy of the primordial gravitational wave background radiation. We deduce the evolution equation for the shear that may be responsible for those observational results.
Shear driven waves in the induced magnetosphere of Mars
Energy Technology Data Exchange (ETDEWEB)
Gunell, H; Koepke, M [Department of Physics, West Virginia University, Morgantown, WV 26506-6315 (United States); Amerstorfer, U V; Biernat, H K [Space Research Institute, Austrian Academy of Sciences, Schmiedlstr. 6, A-8042 Graz (Austria); Nilsson, H; Holmstroem, M; Lundin, R; Barabash, S [Swedish Institute of Space Physics, P.O. Box 812, SE-981 28 Kiruna (Sweden); Grima, C [Laboratoire de Planetologie de Grenoble, BP-53, F-38041 Grenoble Cedex 9 (France); Fraenz, M [Max-Planck-Institut fuer Sonnensystemforschung, Max-Planck-Strasse 2, 37191 Katlenburg-Lindau (Germany); Winningham, J D; Frahm, R A [Southwest Research Institute, San Antonio, TX 7228-0510 (United States); Sauvaud, J-A; Fedorov, A [Centre d' Etude Spatiale des Rayonnements, BP-4346, F-31028 Toulouse (France); Erkaev, N V [Institute of Computational Modelling, Russian Academy of Sciences, 660036 Krasnoyarsk-36 (Russian Federation)], E-mail: herbert.gunell@physics.org
2008-07-15
We present measurements of oscillations in the electron density, ion density and ion velocity in the induced magnetosphere of Mars. The fundamental frequency of the oscillations is a few millihertz, but higher harmonics are present in the spectrum. The oscillations are observed in a region where there is a velocity shear in the plasma flow. The fundamental frequency is in agreement with computational results from an ideal-MHD model. An interpretation based on velocity-shear instabilities is described.
Determination of Shear Properties in the Upper Seafloor Using Seismo-acoustic Interface Waves
Energy Technology Data Exchange (ETDEWEB)
Frivik, Svein Arne
1998-12-31
This thesis develops methods for recording and analysis of seismo-acoustic interface waves for determination of shear wave velocity as a function of depth and includes this in standard refraction seismic surveying. It investigates different techniques for estimation of dispersion characteristics of the interface waves and demonstrates that multi sensor spectral estimation techniques improve the dispersion estimates. The dispersion estimate of the fundamental interface wave mode is used as input to an object function for a model based linearized inversion. The inversion scheme provides an estimate of the shear wave velocity as a function of depth. Three field surveys were performed. Data were acquired with a standard bottom deployed refraction seismic hydrophone array containing 24 or 48 receivers, with a receiver spacing of 2.5 m. Explosive charges were used as sources. The recording time was increased from 0.5 to 8 s, compared to standard refraction seismic surveys. Shear wave velocity and shear modulus estimates were obtained from all the sites. At one of the sites, geotechnically obtained shear wave parameters were available, and a comparison between the two techniques were performed. the result of the comparison is promising and shows the potential of the technique. Although the result of applying the processing scheme to all three data sets is promising, it appears that survey parameters, like source-array spacing, receiver spacing and type of source might have been optimized for better performance. Based on this limitation, a new processing scheme and a new array configuration is proposed for surveys which integrates the recording and processing of both compressional waves and shear waves. 89 refs., 65 refs., 19 tabs.
Modified ion-acoustic solitary waves in plasmas with field-aligned shear flows
Energy Technology Data Exchange (ETDEWEB)
Saleem, H. [Department of Space Science, Institute of Space Technology, 1-Islamabad Highway, Islamabad (Pakistan); Theoretical Research Institute, Pakistan Academy of Sciences, 3-Constitution Avenue G-5/3, Islamabad (Pakistan); Ali, S. [Theoretical Research Institute, Pakistan Academy of Sciences, 3-Constitution Avenue G-5/3, Islamabad (Pakistan); National Centre for Physics (NCP) at Quaid-i-Azam University Campus, Shahdra Valley Road, Islamabad 44000 (Pakistan); Haque, Q. [Theoretical Research Institute, Pakistan Academy of Sciences, 3-Constitution Avenue G-5/3, Islamabad (Pakistan); National Centre for Physics (NCP) at Quaid-i-Azam University Campus, Shahdra Valley Road, Islamabad 44000 (Pakistan); Theoretical Physics Division, PINSTECH, P.O. Nilore, Islamabad (Pakistan)
2015-08-15
The nonlinear dynamics of ion-acoustic waves is investigated in a plasma having field-aligned shear flow. A Korteweg-deVries-type nonlinear equation for a modified ion-acoustic wave is obtained which admits a single pulse soliton solution. The theoretical result has been applied to solar wind plasma at 1 AU for illustration.
Optical coherence tomography detection of shear wave propagation in MCF7 cell modules
Razani, Marjan; Mariampillai, Adrian; Berndl, Elizabeth S. L.; Kiehl, Tim-Rasmus; Yang, Victor X. D.; Kolios, Michael C.
2014-02-01
In this work, we explored the potential of measuring shear wave propagation using Optical Coherence Elastography (OCE) in MCF7 cell modules (comprised of MCF7 cells and collagen) and based on a swept-source optical coherence tomography (OCT) system. Shear waves were generated using a piezoelectric transducer transmitting sine-wave bursts of 400 μs, synchronized with an OCT swept source wavelength sweep imaging system. Acoustic radiation force was applied to the MCF7 cell constructs. Differential OCT phase maps, measured with and without the acoustic radiation force, demonstrate microscopic displacement generated by shear wave propagation in these modules. The OCT phase maps are acquired with a swept-source OCT (SS-OCT) system. We also calculated the tissue mechanical properties based on the propagating shear waves in the MCF7 + collagen phantoms using the Acoustic Radiation Force (ARF) of an ultrasound transducer, and measured the shear wave speed with the OCT phase maps. This method lays the foundation for future studies of mechanical property measurements of breast cancer structures, with applications in the study of breast cancer pathologies.
Analytical Solution for Wave-Induced Response of Seabed with Variable Shear Modulus
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
A plane strain analysis based on the generalized Biot's equation is utilized to investigate the wave-induced response of a poro-elastic seabed with variable shear modulus. By employing integral transform and Frobenius methods, the transient and steady solutions for the wave-induced pore water pressure, effective stresses and displacements are analytically derived in detail. Verification is available through the reduction to the simple case of homogeneous seabed. The numerical results indicate that the inclusion of variable shear modulus significantly affects the wave-induced seabed response.
Pandey, Vikash
2015-01-01
An analogy is drawn between the diffusion-wave equations derived from the fractional Kelvin-Voigt model and those obtained from Buckingham's grain-shearing (GS) model [J. Acoust. Soc. Am. 108, 2796-2815 (2000)] of wave propagation in saturated, unconsolidated granular materials. The material impulse response function from the GS model is found to be similar to the power-law memory kernel which is inherent in the framework of fractional calculus. The compressional wave equation and shear wave equation derived from the GS model turn out to be the Kelvin-Voigt fractional-derivative wave equation and the fractional diffusion-wave equation respectively. Also, a physical interpretation of the characteristic fractional-order present in the Kelvin-Voigt fractional derivative wave equation and time-fractional diffusion-wave equation is inferred from the GS model. The shear wave equation from the GS model predicts both diffusion and wave propagation in the fractional framework. The overall goal is intended to show that...
Prediction of shear wave velocity using empirical correlations and artificial intelligence methods
Maleki, Shahoo; Moradzadeh, Ali; Riabi, Reza Ghavami; Gholami, Raoof; Sadeghzadeh, Farhad
2014-06-01
Good understanding of mechanical properties of rock formations is essential during the development and production phases of a hydrocarbon reservoir. Conventionally, these properties are estimated from the petrophysical logs with compression and shear sonic data being the main input to the correlations. This is while in many cases the shear sonic data are not acquired during well logging, which may be for cost saving purposes. In this case, shear wave velocity is estimated using available empirical correlations or artificial intelligent methods proposed during the last few decades. In this paper, petrophysical logs corresponding to a well drilled in southern part of Iran were used to estimate the shear wave velocity using empirical correlations as well as two robust artificial intelligence methods knows as Support Vector Regression (SVR) and Back-Propagation Neural Network (BPNN). Although the results obtained by SVR seem to be reliable, the estimated values are not very precise and considering the importance of shear sonic data as the input into different models, this study suggests acquiring shear sonic data during well logging. It is important to note that the benefits of having reliable shear sonic data for estimation of rock formation mechanical properties will compensate the possible additional costs for acquiring a shear log.
Ren, Baiyang; Cho, Hwanjeong; Lissenden, Cliff J
2017-03-01
Guided waves in plate-like structures have been widely investigated for structural health monitoring. Lamb waves and shear horizontal (SH) waves, two commonly used types of waves in plates, provide different benefits for the detection of various types of defects and material degradation. However, there are few sensors that can detect both Lamb and SH waves and also resolve their modal content, namely the wavenumber-frequency spectrum. A sensor that can detect both waves is desirable to take full advantage of both types of waves in order to improve sensitivity to different discontinuity geometries. We demonstrate that polyvinylidene difluoride (PVDF) film provides the basis for a multi-element array sensor that detects both Lamb and SH waves and also measures their modal content, i.e., the wavenumber-frequency spectrum.
Nature and dynamics of overreflection of Alfven waves in MHD shear flows
Gogichaishvili, D; Chanishvili, R; Lominadze, J
2014-01-01
Our goal is to gain new insights into the physics of wave overreflection phenomenon in MHD nonuniform/shear flows changing the existing trend/approach of the phenomenon study. The performed analysis allows to separate from each other different physical processes, grasp their interplay and, by this way, construct the basic physics of the overreflection in incompressible MHD flows with linear shear of mean velocity, ${\\bf U}_0=(Sy,0,0)$, that contain two different types of Alfv${\\rm \\acute{e}}$n waves. These waves are reduced to pseudo- and shear shear-Alfv${\\rm \\acute{e}}$n waves when wavenumber along $Z$-axis equals zero (i.e., when $k_z=0$). Therefore, for simplicity, we labelled these waves as: P-Alfv${\\rm \\acute{e}}$n and S-Alfv${\\rm \\acute{e}}$n waves (P-AWs and S-AWs). We show that: (1) the linear coupling of counter-propagating waves determines the overreflection, (2) counter-propagating P-AWs are coupled with each other, while counter-propagating S-AWs are not coupled with each other, but are asymmetri...
Multi-Channel Optical Coherence Elastography Using Relative and Absolute Shear-Wave Time of Flight
Elyas, Eli; Grimwood, Alex; Erler, Janine T.; Robinson, Simon P.; Cox, Thomas R.; Woods, Daniel; Clowes, Peter; De Luca, Ramona; Marinozzi, Franco; Fromageau, Jérémie; Bamber, Jeffrey C.
2017-01-01
Elastography, the imaging of elastic properties of soft tissues, is well developed for macroscopic clinical imaging of soft tissues and can provide useful information about various pathological processes which is complementary to that provided by the original modality. Scaling down of this technique should ply the field of cellular biology with valuable information with regard to elastic properties of cells and their environment. This paper evaluates the potential to develop such a tool by modifying a commercial optical coherence tomography (OCT) device to measure the speed of shear waves propagating in a three-dimensional (3D) medium. A needle, embedded in the gel, was excited to vibrate along its long axis and the displacement as a function of time and distance from the needle associated with the resulting shear waves was detected using four M-mode images acquired simultaneously using a commercial four-channel swept-source OCT system. Shear-wave time of arrival (TOA) was detected by tracking the axial OCT-speckle motion using cross-correlation methods. Shear-wave speed was then calculated from inter-channel differences of TOA for a single burst (the relative TOA method) and compared with the shear-wave speed determined from positional differences of TOA for a single channel over multiple bursts (the absolute TOA method). For homogeneous gels the relative method provided shear-wave speed with acceptable precision and accuracy when judged against the expected linear dependence of shear modulus on gelatine concentration (R2 = 0.95) and ultimate resolution capabilities limited by 184μm inter-channel distance. This overall approach shows promise for its eventual provision as a research tool in cancer cell biology. Further work is required to optimize parameters such as vibration frequency, burst length and amplitude, and to assess the lateral and axial resolutions of this type of device as well as to create 3D elastograms. PMID:28107368
Multi-Channel Optical Coherence Elastography Using Relative and Absolute Shear-Wave Time of Flight.
Elyas, Eli; Grimwood, Alex; Erler, Janine T; Robinson, Simon P; Cox, Thomas R; Woods, Daniel; Clowes, Peter; De Luca, Ramona; Marinozzi, Franco; Fromageau, Jérémie; Bamber, Jeffrey C
2017-01-01
Elastography, the imaging of elastic properties of soft tissues, is well developed for macroscopic clinical imaging of soft tissues and can provide useful information about various pathological processes which is complementary to that provided by the original modality. Scaling down of this technique should ply the field of cellular biology with valuable information with regard to elastic properties of cells and their environment. This paper evaluates the potential to develop such a tool by modifying a commercial optical coherence tomography (OCT) device to measure the speed of shear waves propagating in a three-dimensional (3D) medium. A needle, embedded in the gel, was excited to vibrate along its long axis and the displacement as a function of time and distance from the needle associated with the resulting shear waves was detected using four M-mode images acquired simultaneously using a commercial four-channel swept-source OCT system. Shear-wave time of arrival (TOA) was detected by tracking the axial OCT-speckle motion using cross-correlation methods. Shear-wave speed was then calculated from inter-channel differences of TOA for a single burst (the relative TOA method) and compared with the shear-wave speed determined from positional differences of TOA for a single channel over multiple bursts (the absolute TOA method). For homogeneous gels the relative method provided shear-wave speed with acceptable precision and accuracy when judged against the expected linear dependence of shear modulus on gelatine concentration (R2 = 0.95) and ultimate resolution capabilities limited by 184μm inter-channel distance. This overall approach shows promise for its eventual provision as a research tool in cancer cell biology. Further work is required to optimize parameters such as vibration frequency, burst length and amplitude, and to assess the lateral and axial resolutions of this type of device as well as to create 3D elastograms.
Xu, Yanlong
2015-09-01
Shear horizontal (SH) wave propagation in finite graded piezoelectric layered media is investigated by transfer matrix method. Different from the previous studies on SH wave propagation in completely periodic layered media, calculations on band structure and transmission in this paper show that the graded layered media possess very large band gaps. Harmonic wave simulation by finite element method (FEM) confirms that the reason of bandwidth enlargement is that waves within the band gap ranges are spatially enhanced and stopped by the corresponding graded units. The study suggests that the graded structure possesses the property of manipulating elastic waves spatially, which shows potential applications in strengthening energy trapping and harvesting. © 2015.
Shear-wave splitting before and after the 1999 Xiuyan earthquake in Liaoning, China
Institute of Scientific and Technical Information of China (English)
TAI Ling-xue; GAO Yuan; CAO Feng-juan; SHI Yu-tao; WU Jing; JIAO Ming-ruo
2008-01-01
Using seismic waveform data recorded at station YK (Yingkou) of Liaoning Telemetry Digital Seismic Network, this paper studied the characteristics of shear-wave splitting before and after the Xiuyan Ms5.9 (M15.3) earthquake in November 29, 1999 with SAM method. The results show that the predominant polarizations of fast shear-waves at YK is in direction of ENE-WSW, consistent with the direction of regional principal compressive stress and also consistent with the direction of the regional tectonic stress field in North China; time-delays increasing before Xiuyan earthquake may shows accumulation of stress before earthquake. The predominant polarizations of fast shear-waves at YK are also related to the spatial distribution of small earthquakes and correlate with the fault strike. The histogram of monthly average polarizations of fast shear-waves shows that polarizations of fast shear-waves also seems to change from two months before the earthquake, but it still needs more data for verification.
Nonlinear electron acoustic waves in presence of shear magnetic field
Energy Technology Data Exchange (ETDEWEB)
Dutta, Manjistha; Khan, Manoranjan [Department of Instrumentation Science, Jadavpur University, Kolkata 700 032 (India); Ghosh, Samiran [Department of Applied Mathematics, University of Calcutta 92, Acharya Prafulla Chandra Road, Kolkata 700 009 (India); Chakrabarti, Nikhil [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700 064 (India)
2013-12-15
Nonlinear electron acoustic waves are studied in a quasineutral plasma in the presence of a variable magnetic field. The fluid model is used to describe the dynamics of two temperature electron species in a stationary positively charged ion background. Linear analysis of the governing equations manifests dispersion relation of electron magneto sonic wave. Whereas, nonlinear wave dynamics is being investigated by introducing Lagrangian variable method in long wavelength limit. It is shown from finite amplitude analysis that the nonlinear wave characteristics are well depicted by KdV equation. The wave dispersion arising in quasineutral plasma is induced by transverse magnetic field component. The results are discussed in the context of plasma of Earth's magnetosphere.
Water-waves on linear shear currents. A comparison of experimental and numerical results.
Simon, Bruno; Seez, William; Touboul, Julien; Rey, Vincent; Abid, Malek; Kharif, Christian
2016-04-01
Propagation of water waves can be described for uniformly sheared current conditions. Indeed, some mathematical simplifications remain applicable in the study of waves whether there is no current or a linearly sheared current. However, the widespread use of mathematical wave theories including shear has rarely been backed by experimental studies of such flows. New experimental and numerical methods were both recently developed to study wave current interactions for constant vorticity. On one hand, the numerical code can simulate, in two dimensions, arbitrary non-linear waves. On the other hand, the experimental methods can be used to generate waves with various shear conditions. Taking advantage of the simplicity of the experimental protocol and versatility of the numerical code, comparisons between experimental and numerical data are discussed and compared with linear theory for validation of the methods. ACKNOWLEDGEMENTS The DGA (Direction Générale de l'Armement, France) is acknowledged for its financial support through the ANR grant N° ANR-13-ASTR-0007.
Long ring waves in a stratified fluid over a shear flow
Khusnutdinova, K R
2014-01-01
Oceanic waves registered by satellite observations often have curvilinear fronts and propagate over various currents. In this paper, we study long linear and weakly-nonlinear ring waves in a stratified fluid in the presence of a depth-dependent horizontal shear flow. It is shown that despite the clashing geometries of the waves and the shear flow, there exists a linear modal decomposition (different from the known decomposition in Cartesian geometry), which can be used to describe distortion of the wavefronts of surface and internal waves, and systematically derive a 2+1 - dimensional cylindrical Korteweg - de Vries - type equation for the amplitudes of the waves. The general theory is applied to the case of the waves in a two-layer fluid with a piecewise - constant shear flow, with an emphasis on the effect of the shear flow on the geometry of the wavefronts. The distortion of the wavefronts is described by the singular solution (envelope of the general solution) of the nonlinear first-order differential equ...
Papazoglou, S.; Hamhaber, U.; Braun, J.; Sack, I.
2007-02-01
A method based on magnetic resonance elastography is presented that allows measuring the weldedness of interfaces between soft tissue layers. The technique exploits the dependence of shear wave scattering at elastic interfaces on the frequency of vibration. Experiments were performed on gel phantoms including differently welded interfaces. Plane wave excitation parallel to the planar interface with corresponding motion sensitization enabled the observation of only shear-horizontal (SH) wave scattering. Spatio-temporal filtering was applied to calculate scattering coefficients from the amplitudes of the incident, transmitted and reflected SH-waves in the vicinity of the interface. The results illustrate that acoustic wave scattering in soft tissues is largely dependent on the connectivity of interfaces, which is potentially interesting for imaging tissue mechanics in medicine and biology.
Imaging of shear waves induced by Lorentz force in soft tissues.
Grasland-Mongrain, P; Souchon, R; Cartellier, F; Zorgani, A; Chapelon, J Y; Lafon, C; Catheline, S
2014-07-18
This study presents the first observation of elastic shear waves generated in soft solids using a dynamic electromagnetic field. The first and second experiments of this study showed that Lorentz force can induce a displacement in a soft phantom and that this displacement was detectable by an ultrasound scanner using speckle-tracking algorithms. For a 100 mT magnetic field and a 10 ms, 100 mA peak-to-peak electrical burst, the displacement reached a magnitude of 1 μm. In the third experiment, we showed that Lorentz force can induce shear waves in a phantom. A physical model using electromagnetic and elasticity equations was proposed. Computer simulations were in good agreement with experimental results. The shear waves induced by Lorentz force were used in the last experiment to estimate the elasticity of a swine liver sample.
Generation of shear waves by laser in soft media in the ablative and thermoelastic regimes
Grasland-Mongrain, Pol; Lu, Yuankang; Lesage, Frédéric; Catheline, Stefan; Cloutier, Guy
2016-11-01
This article describes the generation of elastic shear waves in a soft medium using a laser beam. Our experiments show two different regimes depending on laser energy. Physical modeling of the underlying phenomena reveals a thermoelastic regime caused by a local dilatation resulting from temperature increase and an ablative regime caused by a partial vaporization of the medium by the laser. The computed theoretical displacements are close to the experimental measurements. A numerical study based on the physical modeling gives propagation patterns comparable to those generated experimentally. These results provide a physical basis for the feasibility of a shear wave elastography technique (a technique that measures a soft solid stiffness from shear wave propagation) by using a laser beam.
Surface-mounted bender elements for measuring horizontal shear wave velocity of soils
Institute of Scientific and Technical Information of China (English)
Yan-guo ZHOU; Yun-min CHEN; Yoshiharu ASAKA; Tohru ABE
2008-01-01
The bender element testing features its in-plane directivity,which allows using bender elements to measure the shear wave velocities in a wider range of in-plane configurations besides the standard tip-to-tip alignment.This paper proposed a novel bender element testing technique for measuring the horizontal shear wave velocity of soils,where the bender elements are surface-mounted and the axes of the source and receiver elements are parallel to each other.The preliminary tests performed on model ground of silica sand showed that,by properly determining the travel distance and time of the shear waves,the surface-mounted bender elements can perform as accurately as the conventional "tip-to-tip" configuration.Potentially,the present system provides a promising nondestructive tool for characterizing geomaterials and site conditions both in laboratory and in the fields.
Imaging of Shear Waves Induced by Lorentz Force in Soft Tissues
Grasland-Mongrain, Pol; Cartellier, Florian; Zorgani, Ali; Chapelon, Jean-Yves; Lafon, Cyril; Catheline, Stefan
2014-01-01
This study presents the first observation of elastic shear waves generated in soft solids using a dynamic electromagnetic field. The first and second experiments of this 5 study showed that Lorentz force can induce a displacement in a soft phantom and that this displacement was detectable by an ultrasound scanner using speckle-tracking algorithms. For a 100 mT magnetic field and a 10 ms, 100 mA peak-to-peak electrical burst, the displacement reached a magnitude of 1 um. In the third experiment, we showed that Lorentz force can induce shear waves in a phantom. A physical model 10 using electromagnetic and elasticity equations was proposed. Computer simulations were in good agreement with experimental results. The shear waves induced by Lorentz force were used in the last experiment to estimate the elasticity of a swine liver sample.
Quantification of muscle co-contraction using supersonic shear wave imaging.
Raiteri, Brent J; Hug, François; Cresswell, Andrew G; Lichtwark, Glen A
2016-02-01
Muscle stiffness estimated using shear wave elastography can provide an index of individual muscle force during isometric contraction and may therefore be a promising method for quantifying co-contraction. We estimated the shear modulus of the lateral gastrocnemius (LG) muscle using supersonic shear wave imaging and measured its myoelectrical activity using surface electromyography (sEMG) during graded isometric contractions of plantar flexion and dorsiflexion (n=7). During dorsiflexion, the average shear modulus was 26 ± 6 kPa at peak sEMG amplitude, which was significantly less (P=0.02) than that measured at the same sEMG level during plantar flexion (42 ± 10 kPa). The passive tension during contraction was estimated using the passive LG muscle shear modulus during a passive ankle rotation measured at an equivalent ankle angle to that measured during contraction. The passive shear modulus increased significantly (Pmuscle shear modulus due to active contraction was significantly greater (Pmuscle, despite measured sEMG activity of 19% of maximal voluntary plantar flexion contraction. This strongly suggests that the sEMG activity recorded from the LG muscle during isometric dorsiflexion was primarily due to cross-talk. However, it is clear that passive muscle tension changes can contribute to joint torque during isometric dorsiflexion.
Shear wave velocity is a useful marker for managing nonalcoholic steatohepatitis
Institute of Scientific and Technical Information of China (English)
Akihiko; Osaki; Tomoyuki; Kubota; Takeshi; Suda; Masato; Igarashi; Keisuke; Nagasaki; Atsunori; Tsuchiya; Masahiko; Yano; Yasushi; Tamura; Masaaki; Takamura; Hirokazu; Kawai; Satoshi; Yamagiwa; Toru; Kikuchi; Minoru; Nomoto; Yutaka; Aoyagi
2010-01-01
AIM:To investigate whether a noninvasive measurement of tissue strain has a potential usefulness for management of nonalcoholic steatohepatitis(NASH).METHODS:In total 26 patients,23 NASHs and 3 normal controls were enrolled in this study.NASH was staged based on Brunt criterion.At a region of interest(ROI),a shear wave was evoked by implementing an acoustic radiation force impulse(ARFI),and the propagation velocity was quantif ied.RESULTS:Shear wave velocity(SWV) could be reproducibly quantified at all ROIs...
Mass sensitivity of layered shear-horizontal surface acoustic wave devices for sensing applications
Kalantar-Zadeh, Kourosh; Trinchi, Adrian; Wlodarski, Wojtek; Holland, Anthony; Galatsis, Kosmas
2001-11-01
Layered Surface Acoustic Wave (SAW) devices that allow the propagation of Love mode acoustic waves will be studied in this paper. In these devices, the substrate allows the propagation of Surface Skimming Bulks Waves (SSBWs). By depositing layers, that the speed of Shear Horizontal (SH) acoustic wave propagation is less than that of the substrate, the propagation mode transforms to Love mode. Love mode devices which will be studied in this paper, have SiO2 and ZnO acoustic guiding layers. As Love mode of propagation has no movement of particles component normal to the active sensor surface, they can be employed for the sensing applications in the liquid media.
Turbulent mixing driven by mean-flow shear and internal gravity waves in oceans and atmospheres
Baumert, Helmut Z
2012-01-01
This study starts with balances deduced by Baumert and Peters (2004, 2005) from results of stratified-shear experiments made in channels and wind tunnels by Itsweire (1984) and Rohr and Van Atta (1987), and of free-decay experiments in a resting stratified tank by Dickey and Mellor (1980). Using a modification of Canuto's (2002) ideas on turbulence and waves, these balances are merged with an (internal) gravity-wave energy balance presented for the open ocean by Gregg (1989), without mean-flow shear. The latter was augmented by a linear (viscous) friction term. Gregg's wave-energy source is interpreted on its long-wave spectral end as internal tides, topography, large-scale wind, and atmospheric low-pressure actions. In addition, internal eigen waves, generated by mean-flow shear, and the aging of the wave field from a virginal (linear) into a saturated state are taken into account. Wave packets and turbulence are treated as particles (vortices, packets) by ensemble kinetics so that the loss terms in all thre...
Monitoring dyke injection and strain field evolution using shear-wave splitting.
Kendall, J.-M.; Verdon, J. P.; Keir, D.; Baird, A.
2012-04-01
Magma storage and dyke injection in the shallow crust is a fundamental process in rifting and volcanic environments. The dyking will tend to align with directions of maximum compressive stress, and the associated aligned fracturing and melt migration provides a very effective means of generating seismic anisotropy. Observations of shear-wave splitting provide one of the most unambiguous indicators of such anisotropy. As such, shear-wave splitting can be used to monitor the evolving strain field in volcanic and rifting environments. Here we apply lessons learned from monitoring fracture propagation during the hydraulic stimulation of tight-gas reservoirs. In a number of experiments we observe spatial and temporal variations in shear-wave splitting magnitude and orientation. We invert shear-wave observations for fracture properties, including the tangential and normal compliance, the ratio of which is a good indicator of fluid flow and permeability. Frequency dependent affects can be also used to indicate the length scales of the causative cracks or fractures. We apply these insights to microseismic data recently acquired across the volcanically active Afar triple junction in Ethiopia. The pattern of S-wave splitting in Afar is best explained by anisotropy from deformation-related structures, with the dramatic change in splitting parameters into the rift axis from the increased density of dyke-induced faulting combined with a contribution from oriented melt pockets near volcanic centres. The results help in our understanding of the role of melt in strain accommodation in rifting and volcanic environments.
Second-harmonic generation in shear wave beams with different polarizations
Energy Technology Data Exchange (ETDEWEB)
Spratt, Kyle S., E-mail: sprattkyle@gmail.com; Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.; Hamilton, Mark F. [Applied Research Laboratories, The University of Texas at Austin, P. O. Box 8029, Austin, Texas 78713–8029, US (United States)
2015-10-28
A coupled pair of nonlinear parabolic equations was derived by Zabolotskaya [1] that model the transverse components of the particle motion in a collimated shear wave beam propagating in an isotropic elastic solid. Like the KZK equation, the parabolic equation for shear wave beams accounts consistently for the leading order effects of diffraction, viscosity and nonlinearity. The nonlinearity includes a cubic nonlinear term that is equivalent to that present in plane shear waves, as well as a quadratic nonlinear term that is unique to diffracting beams. The work by Wochner et al. [2] considered shear wave beams with translational polarizations (linear, circular and elliptical), wherein second-order nonlinear effects vanish and the leading order nonlinear effect is third-harmonic generation by the cubic nonlinearity. The purpose of the current work is to investigate the quadratic nonlinear term present in the parabolic equation for shear wave beams by considering second-harmonic generation in Gaussian beams as a second-order nonlinear effect using standard perturbation theory. In order for second-order nonlinear effects to be present, a broader class of source polarizations must be considered that includes not only the familiar translational polarizations, but also polarizations accounting for stretching, shearing and rotation of the source plane. It is found that the polarization of the second harmonic generated by the quadratic nonlinearity is not necessarily the same as the polarization of the source-frequency beam, and we are able to derive a general analytic solution for second-harmonic generation from a Gaussian source condition that gives explicitly the relationship between the polarization of the source-frequency beam and the polarization of the second harmonic.
Excitation of instability waves in a two-dimensional shear layer by sound
Tam, C. K. W.
1978-01-01
The excitation of instability waves in a plane compressible shear layer by sound waves is studied. The problem is formulated mathematically as an inhomogeneous boundary-value problem. A general solution for abitrary incident sound wave is found by first constructing the Green's function of the problem. Numerical values of the coupling constants between incident sound waves and excited instability waves for a range of flow Mach number are calculated. The effect of the angle of incidence in the case of a beam of acoustic waves is analyzed. It is found that for moderate subsonic Mach numbers a narrow beam aiming at an angle between 50 to 80 deg to the flow direction is most effective in exciting instability waves.
Directory of Open Access Journals (Sweden)
Ravinder Kumar
2014-01-01
Full Text Available The present investigation is concerned with the study of propagation of shear waves in an anisotropic fluid saturated porous layer over a semi-infinite homogeneous elastic half-space lying under an elastic homogeneous layer with irregularity present at the interface with rigid boundary. The rectangular irregularity has been taken in the half-space. The dispersion equation for shear waves is derived by using the perturbation technique followed by Fourier transformation. Numerically, the effect of irregularity present is analysed. It is seen that the phase velocity is significantly influenced by the wave number and the depth of the irregularity. The variations of dimensionless phase velocity against dimensionless wave number are shown graphically for the different size of rectangular irregularities with the help of MATLAB.
The instability of counter-propagating kernel gravity waves in a constant shear flow
Umurhan, O M; Harnik, N; Lott, F
2007-01-01
The mechanism describing the recently developed notion of kernel gravity waves (KGWs) is reviewed and such structures are employed to interpret the unstable dynamics of an example stratified plane parallel shear flow. This flow has constant vertical shear, is infinite in the vertical extent, and characterized by two density jumps of equal magnitude each decreasing successively with height, in which the jumps are located symmetrically away from the midplane of the system. We find that for a suitably defined bulk-Richardson number there exists a band of horizontal wavenumbers which exhibits normal-mode instability. The instability mechanism closely parallels the mechanism responsible for the instability seen in the problem of counter-propagating Rossby waves. In this problem the instability arises out of the interaction of counter-propagating gravity waves. We argue that the instability meets the Hayashi-Young criterion for wave instability. We also argue that the instability is the simplest one that can arise ...
Viscous Shear Layers Formed by Non-Bifurcating Shock Waves in Shock-Tubes
Grogan, Kevin; Ihme, Matthias
2015-11-01
Shock-tubes are test apparatuses that are used extensively for chemical kinetic measurements. Under ideal conditions, shock-tubes provide a quiescent region behind a reflected shock wave where combustion may take place without complications arising from gas-dynamic effects. However, due to the reflected shock wave encountering a boundary layer, significant inhomogeneity may be introduced into the test region. The bifurcation of the reflected shock-wave is well-known to occur under certain conditions; however, a viscous shear layer may form behind a non-bifurcating reflected shock wave as well and may affect chemical kinetics and ignition of certain fuels. The focus of this talk is on the development of the viscous shear layer and the coupling to the ignition in the regime corresponding to the negative temperature conditions.
Measurement and modelling of bed shear induced by solitary waves
Digital Repository Service at National Institute of Oceanography (India)
JayaKumar, S.
.V. and Watts, J.W., 1953. Laboratory investigation of the vertical rise of solitary waves on impermeable slopes, Beach Erosion Board, Office of the Chief of Engineers, U.S. Army Corps of Engineers. Harvey, N. and Caton, B., 2003. Coastal management... random waves plus current. Continental Shelf Research, 23(7): 717-750. Houston, J.R., 1978. Interaction of tsunamis with the hawaiian islands. Journal of Physical Oceanography, 9: 93-102. Houston, J.R. and Garcia, A.W., 1974a. Type 16 flood insurance...
Institute of Scientific and Technical Information of China (English)
ZHOU Yan-guo; CHEN Yun-min; KE Han
2005-01-01
Recent studies using field case history data yielded new criteria for evaluating liquefaction potential in saturated granular deposits based on in situ, stress-corrected shear wave velocity. However, the conditions of relatively insufficient case histories and limited site conditions in this approach call for additional data to more reliably define liquefaction resistance as a function of shear wave velocity. In this study, a series of undrained cyclic triaxial tests were conducted on saturated sand with shear wave velocity Vs measured by bender element. By normalizing the data with respect to minimum void ratio, the test results, incorporated with previously published laboratory data, statistically revealed good correlation of cyclic shear strength with small-strain shear modulus for sandy soils, which is almost irrespective of soil types and confining pressures. The consequently determined cyclic resistance ratio, CRR, was found to be approximately proportional to Vs4. Liquefaction resistance boundary curves were established by applying this relationship and compared to liquefaction criteria derived from seismic field measurements. Although in the range of Vs1＞200 m/s the presented curves are moderately conservative, they are remarkably consistent with the published field performance criteria on the whole.
Hunt, Julian C. R.; Moustaoui, Mohamed; Mahalov, Alex
2015-09-01
High resolution three-dimensional simulations are presented of the interactions between turbulent shear flows moving with mean relative velocity ΔU below a stably stratified region with buoyancy frequency (N+). An artificial forcing in the simulation, with a similar effect as a small negative eddy viscosity, leads to a steady state flow which models thin interfaces. Characteristic eddies of the turbulence have length scale L. If the bulk Richardson number Rib=(LN+/ΔU)2 lies between lower and upper critical values denoted as Ri∗(temperature. Comparisons are made with shear turbulent interfaces with no stratification. When Rib>R~i, vertical propagating waves are generated, with shear stresses carrying significant momentum flux and progressively less as Rib increases. Simulations for a jet and a turbulent mixing layer show similar results. A perturbation analysis, using inhomogeneous Rapid Distortion Theory, models the transition zone between shear eddies below the interface and the fluctuations in the stratified region, consistent with the simulations. It demonstrates how the wave-momentum-flux has a maximum when Rib˜2 and then decreases as Rib increases. This coupling mechanism between eddies and waves, which is neglected in eddy viscosity models for shear layers, can drive flows in the stratosphere and the deeper ocean, with significant consequences for short- and long-term flow phenomena. The "detached layer" is a mechanism that contributes to the formation of stratus clouds and polluted layers above the atmospheric boundary layer.
Energy Technology Data Exchange (ETDEWEB)
Ianculescu, Victor; Ciolovan, Laura Maria [Radiology Department, Gustave Roussy, Villejuif (France); Dunant, Ariane [Department of Statistics, Gustave Roussy, Villejuif (France); Vielh, Philippe [Department of Biopathology, Gustave Roussy, Villejuif (France); Mazouni, Chafika [Department of Surgery, Gustave Roussy, Villejuif (France); Delaloge, Suzette [Department of Oncology, Gustave Roussy, Villejuif (France); Dromain, Clarisse [Radiology Department, Gustave Roussy, Villejuif (France); Blidaru, Alexandru [Department of Surgery, Bucharest Institute of Oncology, Bucharest (Romania); Balleyguier, Corinne, E-mail: corinne.balleyguier@gustaveroussy.fr [Radiology Department, Gustave Roussy, Villejuif (France); UMR 8081, IR4M, Paris-Sud University, 91405 Orsay (France)
2014-05-15
Purpose: To determine the diagnostic performance of Acoustic Radiation Force Impulse (ARFI) Virtual Touch IQ shear wave elastography in the discrimination of benign and malignant breast lesions. Materials and methods: Conventional B-mode and elasticity imaging were used to evaluate 110 breast lesions. Elastographic assessment of breast tissue abnormalities was done using a shear wave based technique, Virtual Touch IQ (VTIQ), implemented on a Siemens Acuson S3000 ultrasound machine. Tissue mechanical properties were interpreted as two-dimensional qualitative and quantitative colour maps displaying relative shear wave velocity. Wave speed measurements in m/s were possible at operator defined regions of interest. The pathologic diagnosis was established on samples obtained by ultrasound guided core biopsy or fine needle aspiration. Results: BIRADS based B-mode evaluation of the 48 benign and 62 malignant lesions achieved 92% sensitivity and 62.5% specificity. Subsequently performed VTIQ elastography relying on visual interpretation of the colour overlay displaying relative shear wave velocities managed similar standalone diagnostic performance with 92% sensitivity and 64.6% specificity. Lesion and surrounding tissue shear wave speed values were calculated and a significant difference was found between the benign and malignant populations (Mann–Whitney U test, p < 0.0001). By selecting a lesion cut-off value of 3.31 m/s we achieved 80.4% sensitivity and 73% specificity. Applying this threshold only to BIRADS 4a masses, we reached overall levels of 92% sensitivity and 72.9% specificity. Conclusion: VTIQ qualitative and quantitative elastography has the potential to further characterise B-mode detected breast lesions, increasing specificity and reducing the number of unnecessary biopsies.
Finite-amplitude steady waves in plane viscous shear flows
Milinazzo, F. A.; Saffman, P. G.
1985-01-01
Computations of two-dimensional solutions of the Navier-Stokes equations are carried out for finite-amplitude waves on steady unidirectional flow. Several cases are considered. The numerical method employs pseudospectral techniques in the streamwise direction and finite differences on a stretched grid in the transverse direction, with matching to asymptotic solutions when unbounded. Earlier results for Poiseuille flow in a channel are re-obtained, except that attention is drawn to the dependence of the minimum Reynolds number on the physical constraint of constant flux or constant pressure gradient. Attempts to calculate waves in Couette flow by continuation in the velocity of a channel wall fail. The asymptotic suction boundary layer is shown to possess finite-amplitude waves at Reynolds numbers orders of magnitude less than the critical Reynolds number for linear instability. Waves in the Blasius boundary layer and unsteady Rayleigh profile are calculated by employing the artifice of adding a body force to cancel the spatial or temporal growth. The results are verified by comparison with perturbation analysis in the vicinity of the linear-instability critical Reynolds numbers.
An improved method of evaluating liquefaction potential with the velocity of shear-waves
Institute of Scientific and Technical Information of China (English)
KE Han; CHEN Yun-min
2000-01-01
According to the results of cyclic triaxial tests, a linear correlation is presented between liquefaction resistance and elastic shear modulus, which shows the relation of Gmax (kPa) with (s d/2)1/2(kPa)1/2. When applied to soils from different sites, the correlation can be normalized in reference to its minimum void ratio (emin). Accordingly, an improved method is established to evaluate the liquefaction potential with shear-wave velocity. The critical shear-wave velocity of liquefaction is in linear relation with 1/4 power of depth and the maximum acceleration during earthquakes, which can be used to explain the phenomenon that the possibility of liquefaction decreases with the increment of the depth. Compared with previous methods this method turns out simple and effective, which is also verified by the results of cyclic triaxial tests,.
Institute of Scientific and Technical Information of China (English)
CUI Zhi-Wen; WANG Ke-Xie; SUN Jian-Cuo; ZHU Zheng-Ya; YAO Gui-Jin; HU Heng-Shan
2007-01-01
Seismoelectric field excited by purely torsional loading applied directJy to the borehole wall is considered.A brief formulation and some computed waveforms show the advantage of using shear-horizontal (SH) transverseelectric(TE) seismoelectric waves logging to measure shear velocity in a fluid-saturated porous lormation.By assuming that the acoustic field is not influenced by its induced electromagnetic field due to seismoelectric effect,the coupling governing equations for electromagnetic field are reduced to Maxwell equations with a propagation current source.It is shown that this simplification is valid and the borehole seismoelectric conversion effcient is mainly dependent on the electrokinetic coupling coeffcient.The receivers to detect the conversion electromagnetic field and to obtain shear veloeity can be set in the borehole fluid in the SH-TE seismoelectric wave log.
Palasantzas, G.
2008-01-01
In this work we study the quality factor associated with dissipation due to scattering of shear horizontal surface acoustic waves by random self-affine roughness. It is shown that the quality factor is strongly influenced by both the surface roughness exponent H and the roughness amplitude w to late
Shear-wave polarization alignment on the eastern flank of Mt. Etna volcano (Sicily, Italy
Directory of Open Access Journals (Sweden)
G. Vilardo
1996-06-01
Full Text Available Recently, with the improvement of three-component seismic networks, studies revealing anisotropic characteristics in different regions have assumed great interest. In a complex volcanic area like Mt. Etna (Sicily, Italy, the existence of both iso-oriented fault systems and intrusive bodies consisting of olivine and clinopyroxene suggest the presence of anisotropic structures. In order to investigate this we analyzed the physical phenomenon of shear-wave splitting since under certain constraints, shear waves are less sensitive to local heterogeneity. The aims of this paper are: 1 to evaluate if in a structural complex situation like that at Mt. Etna the signal crossing an anisotropic volume could be enhanced in spite of effects due to undirectional properties along the source-receiver path; 2 to investigate the correlations, if any, between polarization direction of the leading shear wave and the patterns of compressive stress acting on the investigated area. Therefore we measured time-delays between the S-onsets on the horizontal components of 3D seismograms to reveal the possible seismic anisotropy in the Etnean region; moreover, we analyzed the polarization vector of shear-waves seismic data recorded during a survey carried out in the spring-summer 1988. We found clear evidence of splitting that we attributed to the presence of an anisotropic volume not homogeneously distributed on the eastern slope of Mt. Etna volcano.
Variational characteristics of shear-wave splitting on the 2001 Shidian earthquakes in Yunnan, China
Institute of Scientific and Technical Information of China (English)
高原; 梁维; 丁香; 薛艳; 蔡明军; 刘希强; 苏有锦; 彭立国
2004-01-01
In 2001 three earthquakes occurred in Shidian in Yunnan Province, which were the MS=5.2 on April 10, the MS=5.9 on April 12 and the MS=5.3 on June 8. Based on the data from the station Baoshan of Yunnan Telemetry Digital Seismograph Network, the variational characteristics of shear-wave splitting on these series of strong earthquakes has been studied by using the systematic analysis method (SAM) of shear-wave splitting. The result shows the time delays of shear-wave splitting basically increase with earthquake activity intensifying. However the time delays abruptly decrease immediately before strong aftershocks. It accords with the stress relaxation before earthquakes, which was found recently in study on shear-wave splitting. The result suggests it is significant for reducing the harm degree of earthquakes to develop the stress-forecasting on earthquake in strong active tectonic zones and economic developed regions or big cities under the danger of strong earthquakes.
Measurements of upper mantle shear wave anisotropy from a permanent network in southern Mexico
van Benthem, S.A.C.; Valenzuela, R.W.; Ponce, G.J.
2013-01-01
Upper mantle shear wave anisotropy under stations in southern Mexico was measured using records of SKS phases. Fast polarization directions where the Cocos plate subducts subhorizontally are oriented in the direction of the relative motion between the Cocos and North American plates, and are trench-
Garcia-Munoz, M.; Hicks, N.; van Voornveld, R.; Classen, I.G.J.; Bilato, R.; Bobkov, V.; Bruedgam, M.; Fahrbach, H. U.; Igochine, V.; Jaemsae, S.; Maraschek, M.; Sassenberg, K.
2010-01-01
We present here the first phase-space characterization of convective and diffusive energetic particle losses induced by shear Alfven waves in a magnetically confined fusion plasma. While single toroidal Alfven eigenmodes (TAE) and Alfven cascades (AC) eject resonant fast ions in a convective process
Lev, E.; Long, M.; Hilst, R.D. van der
2006-01-01
Knowledge about seismic anisotropy can provide important insight into the deformation of the crust and upper mantle beneath tectonically active regions. Here we focus on the southeastern part of the Tibetan plateau, in Sichuan and Yunnan provinces, SW China. We measured shear wave splitting of core-
Measurement of viscosity and shear wave velocity of a liquid or slurry for on-line process control.
Greenwood, Margaret Stautberg; Bamberger, Judith Ann
2002-08-01
An on-line sensor to measure the density of a liquid or slurry, based on longitudinal wave reflection at the solid-fluid interface, has been developed by the staff at Pacific Northwest National Laboratory. The objective of this research is to employ shear wave reflection at the solid-fluid interface to provide an on-line measurement of viscosity as well. Both measurements are of great interest for process control in many industries. Shear wave reflection measurements were conducted for a variety of liquids. By analyzing multiple reflections within the solid (only 0.63 cm thick-similar to pipe wall thickness) we increased the sensitivity of the measurement. At the sixth echo, sensitivity was increased sufficiently and this echo was used for fluid interrogation. Shear wave propagation of ultrasound in liquids is dependent upon the viscosity and the shear modulus. The data are analyzed using the theory for light liquids (such as water and sugar water solutions) and also using the theory for highly viscous liquids (such as silicone oils). The results show that, for light liquids, the shear wave reflection measurements interrogate the viscosity. However, for highly viscous liquids, it is the shear wave modulus that dominates the shear wave reflection. Since the density is known, the shear wave velocity in the liquid can be determined from the shear wave modulus. The results show that shear wave velocities in silicone oils are very small and range from 315 to 2389 cm/s. Shear wave reflection measurements are perhaps the only way that shear wave velocity in liquids can be determined, because the shear waves in liquids are highly attenuated. These results show that, depending on the fluid characteristics, either the viscosity or the shear wave velocity can be used for process control. There are several novel features of this sensor: (1) The sensor can be mounted as part of the wall of a pipeline or tank or submerged in a tank. (2) The sensor is very compact and can be
Hemispherical Parker waves driven by thermal shear in planetary dynamos
Dietrich, Wieland; Wicht, Johannes
2014-01-01
Planetary and stellar magnetic fields are thought to be sustained by helical motions ($\\alpha$-effect) and, if present, differential rotation ($\\Omega$-effect). In the Sun, the strong differential rotation in the tachocline is responsible for an efficient $\\Omega$-effect creating a strong axisymmetric azimuthal magnetic field. This is a prerequisite for Parker dynamo waves that may be responsible for the solar cycle. In the liquid iron cores of terrestrial planets, the Coriolis force organizes convection into columns with a strong helical flow component. These likely dominate magnetic field generation while the $\\Omega$-effect is of secondary importance. Here we use numerical simulations to show that the planetary dynamo scenario may change when the heat flux through the outer boundary is higher in one hemisphere than in the other. A hemispherical dynamo is promoted that is dominated by fierce thermal wind responsible for a strong $\\Omega$-effect. As a consequence Parker dynamo waves are excited equivalent to...
Wang, Shang; Lopez, Andrew L.; Morikawa, Yuka; Tao, Ge; Li, Jiasong; Larina, Irina V.; Martin, James F.; Larin, Kirill V.
2015-03-01
Optical coherence elastography (OCE) is an emerging low-coherence imaging technique that provides noninvasive assessment of tissue biomechanics with high spatial resolution. Among various OCE methods, the capability of quantitative measurement of tissue elasticity is of great importance for tissue characterization and pathology detection across different samples. Here we report a quantitative OCE technique, termed quantitative shear wave imaging optical coherence tomography (Q-SWI-OCT), which enables noncontact measurement of tissue Young's modulus based on the ultra-fast imaging of the shear wave propagation inside the sample. A focused air-puff device is used to interrogate the tissue with a low-pressure short-duration air stream that stimulates a localized displacement with the scale at micron level. The propagation of this tissue deformation in the form of shear wave is captured by a phase-sensitive OCT system running with the scan of the M-mode imaging over the path of the wave propagation. The temporal characteristics of the shear wave is quantified based on the cross-correlation of the tissue deformation profiles at all the measurement locations, and linear regression is utilized to fit the data plotted in the domain of time delay versus wave propagation distance. The wave group velocity is thus calculated, which results in the quantitative measurement of the Young's modulus. As the feasibility demonstration, experiments are performed on tissuemimicking phantoms with different agar concentrations and the quantified elasticity values with Q-SWI-OCT agree well with the uniaxial compression tests. For functional characterization of myocardium with this OCE technique, we perform our pilot experiments on ex vivo mouse cardiac muscle tissues with two studies, including 1) elasticity difference of cardiac muscle under relaxation and contract conditions and 2) mechanical heterogeneity of the heart introduced by the muscle fiber orientation. Our results suggest the
SHEAR WAVE SCATTERING FROM A PARTIALLY DEBONDED PIEZOELECTRIC CYLINDRICAL INCLUSION
Institute of Scientific and Technical Information of China (English)
FengWenjie; WangLiqun; JiangZhiqing; ZhaoYongmao
2004-01-01
The scattering of SH wave by a cylindrical piezoelectric inclusion partially debonded from its surrounding piezoelectric material is investigated using the wave function expansion method and singular integral equation technique. The debonding regions are modeled as multiple arc-shaped interface cracks with non-contacting faces. By expressing the scattered fields as wave function expansions with unknown coefficients, the mixed boundary value problem is firstly reduced to a set of simultaneous dual series equations. Then dislocation density functions are introduced as unknowns to transform these dual series equations into Cauchy singular integral equations of the first type, which can be numerically solved easily. The solution is valid for arbitrary number and size of the debonds. Finally, numerical results of the dynamic stress intensity factors are presented for the cases of one debond and two debonds. The effects of incidence direction, crack configuration and various material parameters on the dynamic stress intensity factors are respectively discussed. The solution of this problem is expected to find applications in the investigation of dynamic fracture properties of piezoelectric materials with cracks.
Zeng, C.; Xia, J.; Miller, R.D.; Tsoflias, G.P.
2011-01-01
Conventional surface wave inversion for shallow shear (S)-wave velocity relies on the generation of dispersion curves of Rayleigh waves. This constrains the method to only laterally homogeneous (or very smooth laterally heterogeneous) earth models. Waveform inversion directly fits waveforms on seismograms, hence, does not have such a limitation. Waveforms of Rayleigh waves are highly related to S-wave velocities. By inverting the waveforms of Rayleigh waves on a near-surface seismogram, shallow S-wave velocities can be estimated for earth models with strong lateral heterogeneity. We employ genetic algorithm (GA) to perform waveform inversion of Rayleigh waves for S-wave velocities. The forward problem is solved by finite-difference modeling in the time domain. The model space is updated by generating offspring models using GA. Final solutions can be found through an iterative waveform-fitting scheme. Inversions based on synthetic records show that the S-wave velocities can be recovered successfully with errors no more than 10% for several typical near-surface earth models. For layered earth models, the proposed method can generate one-dimensional S-wave velocity profiles without the knowledge of initial models. For earth models containing lateral heterogeneity in which case conventional dispersion-curve-based inversion methods are challenging, it is feasible to produce high-resolution S-wave velocity sections by GA waveform inversion with appropriate priori information. The synthetic tests indicate that the GA waveform inversion of Rayleigh waves has the great potential for shallow S-wave velocity imaging with the existence of strong lateral heterogeneity. ?? 2011 Elsevier B.V.
Pandey, Vikash; Holm, Sverre
2016-12-01
The characteristic time-dependent viscosity of the intergranular pore-fluid in Buckingham's grain-shearing (GS) model [Buckingham, J. Acoust. Soc. Am. 108, 2796-2815 (2000)] is identified as the property of rheopecty. The property corresponds to a rare type of a non-Newtonian fluid in rheology which has largely remained unexplored. The material impulse response function from the GS model is found to be similar to the power-law memory kernel which is inherent in the framework of fractional calculus. The compressional wave equation and the shear wave equation derived from the GS model are shown to take the form of the Kelvin-Voigt fractional-derivative wave equation and the fractional diffusion-wave equation, respectively. Therefore, an analogy is drawn between the dispersion relations obtained from the fractional framework and those from the GS model to establish the equivalence of the respective wave equations. Further, a physical interpretation of the characteristic fractional order present in the wave equations is inferred from the GS model. The overall goal is to show that fractional calculus is not just a mathematical framework which can be used to curve-fit the complex behavior of materials. Rather, it can also be derived from real physical processes as illustrated in this work by the example of GS.
A Kramers-Kronig-based quality factor for shear wave propagation in soft tissue.
Urban, M W; Greenleaf, J F
2009-10-01
Shear wave propagation techniques have been introduced for measuring the viscoelastic material properties of tissue, but assessing the accuracy of these measurements is difficult for in vivo measurements in tissue. We propose using the Kramers-Kronig relationships to assess the consistency and quality of the measurements of shear wave attenuation and phase velocity. In ex vivo skeletal muscle we measured the wave attenuation at different frequencies, and then applied finite bandwidth Kramers-Kronig equations to predict the phase velocities. We compared these predictions with the measured phase velocities and assessed the mean square error (MSE) as a quality factor. An algorithm was derived for computing a quality factor using the Kramers-Kronig relationships.
Flow under standing waves Part 1. Shear stress distribution, energy flux and steady streaming
DEFF Research Database (Denmark)
Gislason, Kjartan; Fredsøe, Jørgen; Deigaard, Rolf
2009-01-01
The conditions for energy flux, momentum flux and the resulting streaming velocity are analysed for standing waves formed in front of a fully reflecting wall. The exchange of energy between the outer wave motion and the near bed oscillatory boundary layer is considered, determining the horizontal...... energy flux inside and outside the boundary layer. The momentum balance, the mean shear stress and the resulting time averaged streaming velocities are determined. For a laminar bed boundary layer the analysis of the wave drift gives results similar to the original work of Longuet-Higgins from 1953....... The work is extended to turbulent bed boundary layers by application of a numerical model. The similarities and differences between laminar and turbulent flow conditions are discussed, and quantitative results for the magnitude of the mean shear stress and drift velocity are presented. Full two...
Kim, Hoe Woong; Lee, Joo Kyung; Kim, Yoon Young
2013-02-01
Several investigations report effective uses of magnetostrictive patch transducers to generate and measure longitudinal and torsional guided waves in a pipe. They can be used to form a phased array for the circumferential inspection of pipes. Although there are circumferential phased arrays employing piezoelectric transducers or EMAT's, no magnetostrictive patch transducer based array system has been attempted. In this investigation, we aim to develop a circumferential phased magnetostrictive patch transducer (PMPT) array that can focus shear-horizontal waves at any target point on a cylindrical surface of a pipe. For the development, a specific configuration of a PMPT array employing six magnetostrictive patch transducers is proposed. A wave simulation model is also developed to determine time delays and amplitudes of signals generated by the transducers of the array. This model should be able to predict accurately the angular profiles of shear-horizontal waves generated by the transducers. For wave focusing, the time reversal idea will be utilized. The wave focusing ability of the developed PMPT array is tested with multiple-crack detection experiments. Imaging of localized surface inspection regions is also attempted by using wave signals measured by the developed PMPT array system.
Stability of steady rotational water-waves of finite amplitude on arbitrary shear currents
Seez, William; Abid, Malek; Kharif, Christian
2016-04-01
A versatile solver for the two-dimensional Euler equations with an unknown free-surface has been developed. This code offers the possibility to calculate two-dimensional, steady rotational water-waves of finite amplitude on an arbitrary shear current. Written in PYTHON the code incorporates both pseudo-spectral and finite-difference methods in the discretisation of the equations and thus allows the user to capture waves with large steepnesses. As such it has been possible to establish that, in a counter-flowing situation, the existence of wave solutions is not guaranteed and depends on a pair of parameters representing mass flux and vorticity. This result was predicted, for linear solutions, by Constantin. Furthermore, experimental comparisons, both with and without vorticity, have proven the precision of this code. Finally, waves propagating on top of highly realistic shear currents (exponential profiles under the surface) have been calculated following current profiles such as those used by Nwogu. In addition, a stability analysis routine has been developed to study the stability regimes of base waves calculated with the two-dimensional code. This linear stability analysis is based on three dimensional perturbations of the steady situation which lead to a generalised eigenvalue problem. Common instabilities of the first and second class have been detected, while a third class of wave-instability appears due to the presence of strong vorticity. {1} Adrian Constantin and Walter Strauss. {Exact steady periodic water waves with vorticity}. Communications on Pure and Applied Mathematics, 57(4):481-527, April 2004. Okey G. Nwogu. {Interaction of finite-amplitude waves with vertically sheared current fields}. Journal of Fluid Mechanics, 627:179, May 2009.
The radiation of sound by the instability waves of a compressible plane turbulent shear layer
Tam, C. K. W.; Morris, P. J.
1980-01-01
The problem of acoustic radiation generated by instability waves of a compressible plane turbulent shear layer is solved. The solution provided is valid up to the acoustic far-field region. It represents a significant improvement over the solution obtained by classical hydrodynamic-stability theory which is essentially a local solution with the acoustic radiation suppressed. The basic instability-wave solution which is valid in the shear layer and the near-field region is constructed in terms of an asymptotic expansion using the method of multiple scales. This solution accounts for the effects of the slightly divergent mean flow. It is shown that the multiple-scales asymptotic expansion is not uniformly valid far from the shear layer. Continuation of this solution into the entire upper half-plane is described. The extended solution enables the near- and far-field pressure fluctuations associated with the instability wave to be determined. Numerical results show that the directivity pattern of acoustic radiation into the stationary medium peaks at 20 degrees to the axis of the shear layer in the downstream direction for supersonic flows. This agrees qualitatively with the observed noise-directivity patterns of supersonic jets.
Correlation of densities with shear wave velocities and SPT N values
Anbazhagan, P.; Uday, Anjali; Moustafa, Sayed S. R.; Al-Arifi, Nassir S. N.
2016-06-01
Site effects primarily depend on the shear modulus of subsurface layers, and this is generally estimated from the measured shear wave velocity (V s) and assumed density. Very rarely, densities are measured for amplification estimation because drilling and sampling processes are time consuming and expensive. In this study, an attempt has been made to derive the correlation between the density (dry and wet density) and V s/SPT (standard penetration test) N values using measured data. A total of 354 measured V s and density data sets and 364 SPT N value and density data sets from 23 boreholes have been used in the study. Separate relations have been developed for all soil types as well as fine-grained and coarse-grained soil types. The correlations developed for bulk density were compared with the available data and it was found that the proposed relation matched well with the existing data. A graphical comparison and validation based on the consistency ratio and cumulative frequency curves was performed and the newly developed relations were found to demonstrate good prediction performance. An attempt has also been made to propose a relation between the bulk density and shear wave velocity applicable for a wide range of soil and rock by considering data from this study as well as that of previous studies. These correlations will be useful for predicting the density (bulk and dry) of sites having measured the shear wave velocity and SPT N values.
Lorenzo, J. M.; Goff, D.; Hayashi, K.
2015-12-01
Unconsolidated Holocene deltaic sediments comprise levee foundation soils in New Orleans, USA. Whereas geotechnical tests at point locations are indispensable for evaluating soil stability, the highly variable sedimentary facies of the Mississippi delta create difficulties to predict soil conditions between test locations. Combined electrical resistivity and seismic shear wave studies, calibrated to geotechnical data, may provide an efficient methodology to predict soil types between geotechnical sites at shallow depths (0- 10 m). The London Avenue Canal levee flank of New Orleans, which failed in the aftermath of Hurricane Katrina, 2005, presents a suitable site in which to pioneer these geophysical relationships. Preliminary cross-plots show electrically resistive, high-shear-wave velocity areas interpreted as low-permeability, resistive silt. In brackish coastal environments, low-resistivity and low-shear-wave-velocity areas may indicate both saturated, unconsolidated sands and low-rigidity clays. Via a polynomial approximation, soil sub-types of sand, silt and clay can be estimated by a cross-plot of S-wave velocity and resistivity. We confirm that existent boring log data fit reasonably well with the polynomial approximation where 2/3 of soil samples fall within their respective bounds—this approach represents a new classification system that could be used for other mid-latitude, fine-grained deltas.
Constraints on Shear Velocity in the Cratonic Upper Mantle From Rayleigh Wave Phase Velocity
Hirsch, A. C.; Dalton, C. A.
2014-12-01
In recent years, the prevailing notion of Precambrian continental lithosphere as a thick boundary layer (200-300 km), defined by a depleted composition and a steady-state conductively cooled temperature structure, has been challenged by several lines of seismological evidence. One, profiles of shear velocity with depth beneath cratons exhibit lower wave speed at shallow depths and higher wave speed at greater depths than can be explained by temperature alone. These profiles are also characterized by positive or flat velocity gradients with depth and anomalously high attenuation in the uppermost mantle, both of which are difficult to reconcile with the low temperatures and large thermal gradient expected with a thermal boundary layer. Two, body-wave receiver-function studies have detected a mid-lithospheric discontinuity that requires a large and abrupt velocity decrease with depth in cratonic regions that cannot be achieved by thermal gradients alone. Here, we used forward-modeling to identify the suite of shear-velocity profiles that are consistent with phase-velocity observations made for Rayleigh waves that primarily traversed cratons in North America, South America, Africa, and Australia. We considered two approaches; with the first, depth profiles of shear velocity were predicted from thermal models of the cratonic upper mantle that correspond to a range of assumed values of mantle potential temperature, surface heat flow, and radiogenic heat production in the crust and upper mantle. With the second approach, depth profiles of shear velocity were randomly generated. In both cases, Rayleigh wave phase velocity was calculated from the Earth models and compared to the observed values. We show that it is very difficult to match the observations with an Earth model containing a low-velocity zone in the upper mantle; instead, the best-fit models contain a flat or positive velocity gradient with depth. We explore the implications of this result for the thermal and
Brum, J.; Bernal, M.; Gennisson, J. L.; Tanter, M.
2014-02-01
Non-invasive evaluation of the Achilles tendon elastic properties may enhance diagnosis of tendon injury and the assessment of recovery treatments. Shear wave elastography has shown to be a powerful tool to estimate tissue mechanical properties. However, its applicability to quantitatively evaluate tendon stiffness is limited by the understanding of the physics on the shear wave propagation in such a complex medium. First, tendon tissue is transverse isotropic. Second, tendons are characterized by a marked stiffness in the 400 to 1300 kPa range (i.e. fast shear waves). Hence, the shear wavelengths are greater than the tendon thickness leading to guided wave propagation. Thus, to better understand shear wave propagation in tendons and consequently to properly estimate its mechanical properties, a dispersion analysis is required. In this study, shear wave velocity dispersion was measured in vivo in ten Achilles tendons parallel and perpendicular to the tendon fibre orientation. By modelling the tendon as a transverse isotropic viscoelastic plate immersed in fluid it was possible to fully describe the experimental data (deviation<1.4%). We show that parallel to fibres the shear wave velocity dispersion is not influenced by viscosity, while it is perpendicularly to fibres. Elasticity (found to be in the range from 473 to 1537 kPa) and viscosity (found to be in the range from 1.7 to 4 Pa.s) values were retrieved from the model in good agreement with reported results.
On the possibility of wave-induced chaos in a sheared, stably stratified fluid layer
Directory of Open Access Journals (Sweden)
W. B. Zimmermann
1994-01-01
Full Text Available Shear flow in a stable stratification provides a waveguide for internal gravity waves. In the inviscid approximation, internal gravity waves are known to be unstable below a threshold in Richardson number. However, in a viscous fluid, at low enough Reynolds number, this threshold recedes to Ri = 0. Nevertheless, even the slightest viscosity strongly damps internal gravity waves when the Richardson number is small (shear forces dominate buoyant forces. In this paper we address the dynamics that approximately govern wave propagation when the Richardson number is small and the fluid is viscous. When Ri ξ = λ1A + λ2Aξξ + λ3Aξξξ + λ4AAξ + b(ξ where ξ is the coordinate of the rest frame of the passing temperature wave whose horizontal profile is b(ξ. The parameters λi are constants that depend on the Reynolds number. The above dynamical system is know to have limit cycle and chaotic attrators when forcing is sinusoidal and wave attenuation negligible.
Experimental verification of nanofluid shear-wave reconversion in ultrasonic fields
Forrester, Derek Michael; Huang, Jinrui; Pinfield, Valerie J.; Luppé, Francine
2016-03-01
Here we present the verification of shear-mediated contributions to multiple scattering of ultrasound in suspensions. Acoustic spectroscopy was carried out with suspensions of silica of differing particle sizes and concentrations in water to find the attenuation at a broad range of frequencies. As the particle sizes approach the nanoscale, commonly used multiple scattering models fail to match experimental results. We develop a new model, taking into account shear mediated contributions, and find excellent agreement with the attenuation spectra obtained using two types of spectrometer. The results determine that shear-wave phenomena must be considered in ultrasound characterisation of nanofluids at even relatively low concentrations of scatterers that are smaller than one micrometre in diameter.
Chao, Pei-Yu; Li, Pai-Chi
2016-08-22
The high imaging resolution and motion sensitivity of optical-based shear wave detection has made it an attractive technique in biomechanics studies with potential for improving the capabilities of shear wave elasticity imaging. In this study we implemented laser speckle contrast imaging for two-dimensional (X-Z) tracking of transient shear wave propagation in agarose phantoms. The mechanical disturbances induced by the propagation of the shear wave caused temporal and spatial fluctuations in the local speckle pattern, which manifested as local blurring. By mechanically moving the sample in the third dimension (Y), and performing two-dimensional shear wave imaging at every scan position, the three-dimensional shear wave velocity distribution of the phantom could be reconstructed. Based on comparisons with the reference shear wave velocity measurements obtained using a commercial ultrasound shear wave imaging system, the developed system can estimate the shear wave velocity with an error of less than 6% for homogeneous phantoms with shear moduli ranging from 1.52 kPa to 7.99 kPa. The imaging sensitivity of our system makes it capable of measuring small variations in shear modulus; the estimated standard deviation of the shear modulus was found to be less than 0.07 kPa. A submillimeter spatial resolution for three-dimensional shear wave imaging has been achieved, as demonstrated by the ability to detect a 1-mm-thick stiff plate embedded inside heterogeneous agarose phantoms.
Hartzell, S.; Carver, D.; Williams, R.A.; Harmsen, S.; Zerva, A.
2003-01-01
Ground-motion records from a 52-element dense seismic array near San Jose, California, are analyzed to obtain site response, shallow shear-wave velocity, and plane-wave propagation characteristics. The array, located on the eastern side of the Santa Clara Valley south of the San Francisco Bay, is sited over the Evergreen basin, a 7-km-deep depression with Miocene and younger deposits. Site response values below 4 Hz are up to a factor of 2 greater when larger, regional records are included in the analysis, due to strong surface-wave development within the Santa Clara Valley. The pattern of site amplification is the same, however, with local or regional events. Site amplification increases away from the eastern edge of the Santa Clara Valley, reaching a maximum over the western edge of the Evergreen basin, where the pre-Cenozoic basement shallows rapidly. Amplification then decreases further to the west. This pattern may be caused by lower shallow shear-wave velocities and thicker Quaternary deposits further from the edge of the Santa Clara Valley and generation/trapping of surface waves above the shallowing basement of the western Evergreen basin. Shear-wave velocities from the inversion of site response spectra based on smaller, local earthquakes compare well with those obtained independently from our seismic reflection/refraction measurements. Velocities from the inversion of site spectra that include larger, regional records do not compare well with these measurements. A mix of local and regional events, however, is appropriate for determination of site response to be used in seismic hazard evaluation, since large damaging events would excite both body and surface waves with a wide range in ray parameters. Frequency-wavenumber, plane-wave analysis is used to determine the backazimuth and apparent velocity of coherent phases at the array. Conventional, high-resolution, and multiple signal characterization f-k power spectra and stacked slowness power spectra are
Acousto-electric well logging by eccentric source and extraction of shear wave
Institute of Scientific and Technical Information of China (English)
Cui Zhi-Wen; Wang Ke-Xie; Hu Heng-shan; Sun Jian-Guo
2007-01-01
The nonaxisymmetric acousto-electric field excited by an eccentric acoustic source in the borehole based on Pride seismoelectric theory is considered.It is shown that the acoustic field inside the borehole,converted electric and magnetic fields and coupled fields outside the borehole are composed of an infinitude of multipole fields with different orders.The numerical results show that both the electromagnetic waves and the seismoelectric field in the borehole.and the three components of both electric field and magnetic field can be detected.Measurements on the borehole axis will be of advantage to determining shear velocity information.The components of the symmetric and nonsymmetric acoustic and electromagnetic fields can be strengthened or weakened by adding or subtracting the two full waveforms logged in some azimuths.It may be a new method of directly measuring the shear wave velocity by using the borehole seismoelectric effect.
Finite-amplitude shear-Alfv\\'en waves do not propagate in weakly magnetized collisionless plasmas
Squire, J; Schekochihin, A A
2016-01-01
It is shown that low-collisionality plasmas cannot support linearly polarized shear-Alfv\\'en fluctuations above a critical amplitude $\\delta B_{\\perp}/B_{0} \\sim \\beta^{\\,-1/2}$, where $\\beta$ is the ratio of thermal to magnetic pressure. Above this cutoff, a developing fluctuation will generate a pressure anisotropy that is sufficient to destabilize itself through the parallel firehose instability. This causes the wave frequency to approach zero, interrupting the fluctuation before any oscillation. The magnetic field lines rapidly relax into a sequence of angular zig-zag structures. Such a restrictive bound on shear-Alfv\\'en-wave amplitudes has far-reaching implications for the physics of magnetized turbulence in the high-$\\beta$ conditions prevalent in many astrophysical plasmas, as well as for the solar wind at $\\sim 1 \\mathrm{AU}$ where $\\beta \\gtrsim 1$.
Directory of Open Access Journals (Sweden)
G. Aburjania
2014-08-01
Full Text Available This work is devoted to investigation of nonlinear dynamics of planetary electromagnetic (EM ultra-low-frequency wave (ULFW structures in the rotating dissipative ionosphere in the presence of inhomogeneous zonal wind (shear flow. Planetary EM ULFW appears as a result of interaction of the ionospheric medium with the spatially inhomogeneous geomagnetic field. The shear flow driven wave perturbations effectively extract energy of the shear flow increasing own amplitude and energy. These perturbations undergo self organization in the form of the nonlinear solitary vortex structures due to nonlinear twisting of the perturbation's front. Depending on the features of the velocity profiles of the shear flows the nonlinear vortex structures can be either monopole vortices, or dipole vortex, or vortex streets and vortex chains. From analytical calculation and plots we note that the formation of stationary nonlinear vortex structure requires some threshold value of translation velocity for both non-dissipation and dissipation complex ionospheric plasma. The space and time attenuation specification of the vortices is studied. The characteristic time of vortex longevity in dissipative ionosphere is estimated. The long-lived vortices transfer the trapped medium particles, energy and heat. Thus they represent structural elements of turbulence in the ionosphere.
Correlation between Shear Wave Velocity and Porosity in Porous Solids and Rocks
Directory of Open Access Journals (Sweden)
J. Kováčik
2013-01-01
Full Text Available The shear wave velocity dependence on porosity was modelled using percolation theory model for the shear modulus porosity dependence. The obtained model is not a power law dependence (no simple scaling with porosity, but a more complex equation. Control parameters of this equation are shear wave velocity of bulk solid, percolation threshold of the material and the characteristic power law exponent for shear modulus porosity dependence. This model is suitable for all porous materials, mortars and porous rocks filled with liquid or gas. In the case of pores filled with gas the model can be further simplified: The term for the ratio of the gas density to the density of solid material can be omitted in the denominator (the ratio is usually in the range of (10−4, 10−3 for all solids. This simplified equation was then tested on the experimental data set for porous ZnO filled with air. Due to lack of reasonable data the scientists are encouraged to test the validity of proposed model using their experimental data.
Interfacial slip on a transverse-shear mode acoustic wave device
Ellis, Jonathan S.; Hayward, Gordon L.
2003-12-01
This article describes a mathematical relationship between the slip parameter α and the slip length b for a slip boundary condition applied to the transverse-shear model for a quartz-crystal acoustic wave device. The theory presented here reduces empirical determination of slip to a one-parameter fit. It shows that the magnitude and phase of the slip parameter, which describes the relative motion of the surface and liquid in the transverse-shear model, can be linked to the slip length. Furthermore, the magnitude and phase of the slip parameter are shown to depend on one another. An experiment is described to compare the effects of liquid-surface affinity on the resonant properties of a transverse-shear mode wave device by applying different polar and nonpolar liquids to surfaces of different polarity. The theory is validated with slip values determined from the transverse-shear model and compared to slip length values from literature. Agreement with literature values of slip length is within one order of magnitude.
Zeng, Lei; Parvasi, Seyed Mohammad; Kong, Qingzhao; Huo, Linsheng; Lim, Ing; Li, Mo; Song, Gangbing
2015-12-01
Concrete-encased composite structure exhibits improved strength, ductility and fire resistance compared to traditional reinforced concrete, by incorporating the advantages of both steel and concrete materials. A major drawback of this type of structure is the bond slip introduced between steel and concrete, which directly reduces the load capacity of the structure. In this paper, an active sensing approach using shear waves to provide monitoring and early warning of the development of bond slip in the concrete-encased composite structure is proposed. A specimen of concrete-encased composite structure was investigated. In this active sensing approach, shear mode smart aggregates (SAs) embedded in the concrete act as actuators and generate desired shear stress waves. Distributed piezoceramic transducers installed in the cavities of steel plates act as sensors and detect the wave response from shear mode SAs. Bond slip acts as a form of stress relief and attenuates the wave propagation energy. Experimental results from the time domain analysis clearly indicate that the amplitudes of received signal by lead zirconate titanate sensors decreased when bond slip occurred. In addition, a wavelet packet-based analysis was developed to compute the received signal energy values, which can be used to determine the initiation and development of bond slip in concrete-encased composite structure. In order to establish the validity of the proposed method, a 3D finite element analysis of the concrete-steel bond model is further performed with the aid of the commercial finite element package, Abaqus, and the numerical results are compared with the results obtained in experimental study.
Institute of Scientific and Technical Information of China (English)
宋海斌; 马在田; 张关泉
1996-01-01
A layer-stripping method is presented for simultaneous inversion of compressional velocity and shear velocity in layered medium from single precritical-incident-angle data of P-P and P-SV plane wave seismogram. A finite bandwidth algorithm is provided and results obviously better than previous research work are obtained by the numerical experiments for band-limited seismogram and synthetic data including noise.
Lev, E.; Long, M.; Hilst, R.D. van der
2006-01-01
Knowledge about seismic anisotropy can provide important insight into the deformation of the crust and upper mantle beneath tectonically active regions. Here we focus on the southeastern part of the Tibetan plateau, in Sichuan and Yunnan provinces, SW China. We measured shear wave splitting of core-refracted phases (SKS and SKKS) at a temporary array of 25 IRIS-PASSCAL stations. We calculated splitting parameters using a multi-channel and a single-record cross-correlation method. Multiple lay...
Excitation and propagation of shear-horizontal-type surface and bulk acoustic waves.
Hashimoto, K Y; Yamaguchi, M
2001-09-01
This paper reviews the basic properties of shear-horizontal (SH)-type surface acoustic waves (SAWs) and bulk acoustic waves (BAWs). As one of the simplest cases, the structure supporting Bleustein-Gulyaev-Shimizu waves is considered, and their excitation and propagation are discussed from various view points. First, the formalism based on the complex integral theory is presented, where the surface is assumed to be covered with an infinitesimally thin metallic film, and it is shown how the excitation and propagation of SH-type waves are affected by the surface perturbation. Then, the analysis is extended to a periodic grating structure, and the behavior of SH-type SAWs under the grating structure is discussed. Finally, the origin of the leaky nature is explained.
A global shear velocity model of the mantle from normal modes and surface waves
durand, S.; Debayle, E.; Ricard, Y. R.; Lambotte, S.
2013-12-01
We present a new global shear wave velocity model of the mantle based on the inversion of all published normal mode splitting functions and the large surface wave dataset measured by Debayle & Ricard (2012). Normal mode splitting functions and surface wave phase velocity maps are sensitive to lateral heterogeneities of elastic parameters (Vs, Vp, xi, phi, eta) and density. We first only consider spheroidal modes and Rayleigh waves and restrict the inversion to Vs, Vp and the density. Although it is well known that Vs is the best resolved parameter, we also investigate whether our dataset allows to extract additional information on density and/or Vp. We check whether the determination of the shear wave velocity is affected by the a priori choice of the crustal model (CRUST2.0 or 3SMAC) or by neglecting/coupling poorly resolved parameters. We include the major discontinuities, at 400 and 670 km. Vertical smoothing is imposed through an a priori gaussian covariance matrix on the model and we discuss the effect of coupling/decoupling the inverted structure above and below the discontinuities. We finally discuss the large scale structure of our model and its geodynamical implications regarding the amount of mass exchange between the upper and lower mantle.
Directional Filtering Due to Mesospheric Wind Shear on the Propagation of Acoustic-gravity Waves
Institute of Scientific and Technical Information of China (English)
YU Yonghui; CHEN Wei; WANG Yachong
2013-01-01
Gravity waves with periods close to the Brunt-V(a)is(a)l(a) period of the upper troposphere are often observed at mesopause altitudes as short period,quasi-monochromatic waves.The assumption that these short period waves originate in the troposphere may be problematic because their upward propagation to the mesosphere and lower thermosphere region could be significantly impeded due to an extended region of strong evanescence above the stratopause.To reconcile this apparent paradox,an alternative explanation is proposed in this paper.The inclusion of mean winds and their vertical shears is sufficient to allow certain short period waves to remain internal above the stratopause and to propagate efficiently to higher altitudes.A time-dependent numerical model is used to demonstrate the feasibility of this and to determine the circumstances under which the mesospheric wind shears play a role in the removal and directional filtering of short period gravity waves.Finally this paper concludes that the combination of the height-dependent mean winds and the mean temperature structure probably explains the existence of short period,quasi-monochromatic structures observed in airglow images of mesopause region.
Radiation of a Plane Shear Wave from an Elastic Waveguide to a Composite Elastic Space
Directory of Open Access Journals (Sweden)
Grigoryan E.Kh.
2007-09-01
Full Text Available The radiation of a plane shear wave from an elastic strip (waveguide to an elastic space is investigated in this paper. The strip is embedded into a space and is partially bonded with it. A given plane shear wave propagates from the free part of the strip and radiates into the composite space. The problem’s solution is led to a system of two uncoupled functional Wiener-Hopf type equations which are solved via the method of factorization. Closed form expressions are obtained which determine the wavefield in all the parts of the strip and space. Asymptotic expressions are provided which represent the wavefield in the far field and in the neighborhood of the contact zones. From these formulas it follows that: a in the cases of several values of the ratio of the wave numbers of the strip and space the order of vanishing of the volume wave in the strip becomes less and equal to the one in the case of a homogeneous material, b the radiated volume wave in the strip has a velocity of propagation equal to the volume wave’s velocity in the space.
Shear horizontal surface acoustic waves in a magneto-electro-elastic system
Eskandari, Shahin; Shodja, Hossein M.
2016-04-01
Propagation of shear horizontal surface acoustic waves (SHSAWs) within a functionally graded magneto-electro-elastic (FGMEE) half-space was previously presented (Shodja HM, Eskandari S, Eskandari M. J. Eng. Math. 2015, 1-18) In contrast, the current paper considers propagation of SHSAWs in a medium consisting of an FGMEE layer perfectly bonded to a homogeneous MEE substrate. When the FGMEE layer is described by some special inhomogeneity functions - all the MEE properties have the same variation in depth which may or may not be identical to that of the density - we obtain the exact closed-form solution for the MEE fields. Additionally, certain special inhomogeneity functions with monotonically decreasing bulk shear wave velocity in depth are considered, and the associated boundary value problem is solved using power series solution. This problem in the limit as the layer thickness goes to infinity collapses to an FGMEE half-space with decreasing bulk shear wave velocity in depth. It is shown that in such a medium SHSAW does not propagate. Using power series solution we can afford to consider some FGMEE layers of practical importance, where the composition of the MEE obeys a prescribed volume fraction variation. The dispersive behavior of SHSAWs in the presence of such layers is also examined.
Aldrin, John C.; Hopkins, Deborah; Datuin, Marvin; Warchol, Mark; Warchol, Lyudmila; Forsyth, David S.; Buynak, Charlie; Lindgren, Eric A.
2017-02-01
For model benchmark studies, the accuracy of the model is typically evaluated based on the change in response relative to a selected reference signal. The use of a side drilled hole (SDH) in a plate was investigated as a reference signal for angled beam shear wave inspection for aircraft structure inspections of fastener sites. Systematic studies were performed with varying SDH depth and size, and varying the ultrasonic probe frequency, focal depth, and probe height. Increased error was observed with the simulation of angled shear wave beams in the near-field. Even more significant, asymmetry in real probes and the inherent sensitivity of signals in the near-field to subtle test conditions were found to provide a greater challenge with achieving model agreement. To achieve quality model benchmark results for this problem, it is critical to carefully align the probe with the part geometry, to verify symmetry in probe response, and ideally avoid using reference signals from the near-field response. Suggested reference signals for angled beam shear wave inspections include using the `through hole' corner specular reflection signal and the full skip' signal off of the far wall from the side drilled hole.
Richter, Tom; Wegler, Ulrich
2015-04-01
Modeling of peak ground velocity caused by induced earthquakes requires detailed knowledge about seismic attenuation properties of the subsurface. Especially shear wave attenuation is important, because shear waves usually show the largest amplitude in high frequency seismograms. We report intrinsic and scattering attenuation coefficients of shear waves near three geothermal reservoirs in Germany for frequencies between 2 Hz and 50 Hz. The geothermal plants are located in the sedimentary basins of the upper Rhine graben (Insheim and Landau) and the Molasse basin (Unterhaching). The method optimizes the fit between Green's functions for the acoustic, isotropic radiative transfer theory and observed energy densities of induced earthquakes. The inversion allows the determination of scattering and intrinsic attenuation, site corrections, and spectral source energies for the investigated frequency bands. We performed the inversion at the three sites for events with a magnitude between 0.7 and 2. We determined a transport mean free path of 70 km for Unterhaching. For Landau and Insheim the transport mean free path depends on frequency. It ranges from 2 km (at 2 Hz) to 30 km (at 40 Hz) for Landau and from 9 km to 50 km for Insheim. The quality factor for intrinsic attenuation is constant for frequencies smaller than 10 Hz at all three sites. It is around 100 for Unterhaching and 200 for Landau and Insheim with higher values above 10 Hz.
Shear wave prediction using committee fuzzy model constrained by lithofacies, Zagros basin, SW Iran
Shiroodi, Sadjad Kazem; Ghafoori, Mohammad; Ansari, Hamid Reza; Lashkaripour, Golamreza; Ghanadian, Mostafa
2017-02-01
The main purpose of this study is to introduce the geological controlling factors in improving an intelligence-based model to estimate shear wave velocity from seismic attributes. The proposed method includes three main steps in the framework of geological events in a complex sedimentary succession located in the Persian Gulf. First, the best attributes were selected from extracted seismic data. Second, these attributes were transformed into shear wave velocity using fuzzy inference systems (FIS) such as Sugeno's fuzzy inference (SFIS), adaptive neuro-fuzzy inference (ANFIS) and optimized fuzzy inference (OFIS). Finally, a committee fuzzy machine (CFM) based on bat-inspired algorithm (BA) optimization was applied to combine previous predictions into an enhanced solution. In order to show the geological effect on improving the prediction, the main classes of predominate lithofacies in the reservoir of interest including shale, sand, and carbonate were selected and then the proposed algorithm was performed with and without lithofacies constraint. The results showed a good agreement between real and predicted shear wave velocity in the lithofacies-based model compared to the model without lithofacies especially in sand and carbonate.
Holzer, T.L.; Bennett, M.J.; Noce, T.E.; Tinsley, J. C.
2005-01-01
Shear-wave velocities of shallow surficial geologic units were measured at 210 sites in a 140-km2 area in the greater Oakland, California, area near the margin of San Francisco Bay. Differences between average values of shear-wave velocity for each geologic unit computed by alternative approaches were in general smaller than the observed variability. Averages estimated by arithmetic mean, geometric mean, and slowness differed by 1 to 8%, while coefficients of variation ranged from 14 to 25%. With the exception of the younger Bay mud that underlies San Francisco Bay, velocities of the geologic units are approximately constant with depth. This suggests that shear-wave velocities measured at different depths in these surficial geologic units do not need to be normalized to account for overburden stress in order to compute average values. The depth dependence of the velocity of the younger Bay mud most likely is caused by consolidation. Velocities of each geologic unit are consistent with a normal statistical distribution. Average values increase with geologic age, as has been previously reported. Velocities below the water table are about 7% less than those above it. ?? 2005, Earthquake Engineering Research Institute.
Iwasaki, Ryosuke; Takagi, Ryo; Nagaoka, Ryo; Jimbo, Hayato; Yoshizawa, Shin; Saijo, Yoshifumi; Umemura, Shin-ichiro
2016-07-01
Shear wave elastography (SWE) is expected to be a noninvasive monitoring method of high-intensity focused ultrasound (HIFU) treatment. However, conventional SWE techniques encounter difficulty in inducing shear waves with adequate displacements in deep tissue. To observe tissue coagulation at the HIFU focal depth via SWE, in this study, we propose using a two-dimensional-array therapeutic transducer for not only HIFU exposure but also creating shear sources. The results show that the reconstructed shear wave velocity maps detected the coagulated regions as the area of increased propagation velocity even in deep tissue. This suggests that “HIFU-push” shear elastography is a promising solution for the purpose of coagulation monitoring in deep tissue, because push beams irradiated by the HIFU transducer can naturally reach as deep as the tissue to be coagulated by the same transducer.
Confal, Judith M.; Eken, Tuna; Tilmann, Frederik; Yolsal-Çevikbilen, Seda; Çubuk-Sabuncu, Yeşim; Saygin, Erdinc; Taymaz, Tuncay
2016-12-01
The subduction and roll-back of the African plate beneath the Eurasian plate along the arcuate Hellenic trench is the dominant geodynamic process in the Aegean and western Anatolia. Mantle flow and lithospheric kinematics in this region can potentially be understood better by mapping seismic anisotropy. This study uses direct shear-wave splitting measurements based on the Reference Station Technique in the southern Aegean Sea to reveal seismic anisotropy in the mantle. The technique overcomes possible contamination from source-side anisotropy on direct S-wave signals recorded at a station pair by maximizing the correlation between the seismic traces at reference and target stations after correcting the reference stations for known receiver-side anisotropy and the target stations for arbitrary splitting parameters probed via a grid search. We obtained splitting parameters at 35 stations with good-quality S-wave signals extracted from 81 teleseismic events. Employing direct S-waves enabled more stable and reliable splitting measurements than previously possible, based on sparse SKS data at temporary stations, with one to five events for local SKS studies, compared with an average of 12 events for each station in this study. The fast polarization directions mostly show NNE-SSW orientation with splitting time delays between 1.15 s and 1.62 s. Two stations in the west close to the Hellenic Trench and one in the east show N-S oriented fast polarizations. In the back-arc region three stations exhibit NE-SW orientation. The overall fast polarization variations tend to be similar to those obtained from previous SKS splitting studies in the region but indicate a more consistent pattern, most likely due to the usage of a larger number of individual observations in direct S-wave derived splitting measurements. Splitting analysis on direct shear waves typically resulted in larger split time delays compared to previous studies, possibly because S-waves travel along a longer path
On the Dynamics of Two-Dimensional Capillary-Gravity Solitary Waves with a Linear Shear Current
Directory of Open Access Journals (Sweden)
Dali Guo
2014-01-01
Full Text Available The numerical study of the dynamics of two-dimensional capillary-gravity solitary waves on a linear shear current is presented in this paper. The numerical method is based on the time-dependent conformal mapping. The stability of different kinds of solitary waves is considered. Both depression wave and large amplitude elevation wave are found to be stable, while small amplitude elevation wave is unstable to the small perturbation, and it finally evolves to be a depression wave with tails, which is similar to the irrotational capillary-gravity waves.
Rouze, Ned C; Palmeri, Mark L; Nightingale, Kathryn R
2015-08-01
Recent measurements of shear wave propagation in viscoelastic materials have been analyzed by constructing the two-dimensional Fourier transform (2D-FT) of the spatial-temporal shear wave signal and using an analysis procedure derived under the assumption the wave is described as a plane wave, or as the asymptotic form of a wave expanding radially from a cylindrically symmetric source. This study presents an exact, analytic expression for the 2D-FT description of shear wave propagation in viscoelastic materials following asymmetric Gaussian excitations and uses this expression to evaluate the bias in 2D-FT measurements obtained using the plane or cylindrical wave assumptions. A wide range of biases are observed depending on specific values of frequency, aspect ratio R of the source asymmetry, and material properties. These biases can be reduced significantly by weighting the shear wave signal in the spatial domain to correct for the geometric spreading of the shear wavefront using a factor of x(p). The optimal weighting power p is found to be near the theoretical value of 0.5 for the case of a cylindrical source with R = 1, and decreases for asymmetric sources with R > 1.
The Peano-series solution for modeling shear horizontal waves in piezoelectric plates
Directory of Open Access Journals (Sweden)
Ben Ghozlen M.H.
2012-06-01
Full Text Available The shear horizontal (SH wave devices have been widely used in electroacoustic. To improve their performance, the phase velocity dispersion and the electromechanical coupling coefficient of the Lamb wave should be calculated exactly in the design. Therefore, this work is to analyze exactly the Lamb waves polarized in the SH direction in homogeneous plate pie.zoelectric material (PZT-5H. An alternative method is proposed to solve the wave equation in such a structure without using the standard method based on the electromechanical partial waves. This method is based on an analytical solution, the matricant explicitly expressed under the Peano series expansion form. Two types of configuration have been addressed, namely the open circuited and the short circuited. Results confirm that the SH wave provides a number of attractive properties for use in sensing and signal processing applications. It has been found that the phase velocity remains nearly constant for all values of h/λ (h is the plate thickness, λ the acoustic wavelength. Secondly the SH0 wave mode can provide very high electromechanical coupling. Graphical representations of electrical and mechanical amounts function of depth are made, they are in agreement with the continuity rules. The developed Peano technique is in agreement with the classical approach, and can be suitable with cylindrical geometry.
Energy Technology Data Exchange (ETDEWEB)
Seo, Ho Geon; Song, Dong Gi; Jhang, Kyoung Young [Hanyang University, Seoul (Korea, Republic of)
2016-04-15
Measurement of elastic constants is crucial for engineering aspects of predicting the behavior of materials under load as well as structural health monitoring of material degradation. Ultrasonic velocity measurement for material properties has been broadly used as a nondestructive evaluation method for material characterization. In particular, pulse-echo method has been extensively utilized as it is not only simple but also effective when only one side of the inspected objects is accessible. However, the conventional technique in this approach measures longitudinal and shear waves individually to obtain their velocities. This produces a set of two data for each measurement. This paper proposes a simultaneous sensing system of longitudinal waves and shear waves for elastic constant measurement. The proposed system senses both these waves simultaneously as a single overlapped signal, which is then analyzed to calculate both the ultrasonic velocities for obtaining elastic constants. Therefore, this system requires just half the number of data to obtain elastic constants compared to the conventional individual measurement. The results of the proposed simultaneous measurement had smaller standard deviations than those in the individual measurement. These results validate that the proposed approach improves the efficiency and reliability of ultrasonic elastic constant measurement by reducing the complexity of the measurement system, its operating procedures, and the number of data.
Identification of Necessary Conditions for Super-shear Wave Rupture Speeds: The San Andreas Fault
Das, S.
2007-12-01
The 2001 Kunlun, Tibet earthquake taught us that the portion of a strike-slip fault most likely to propagate at super-shear speeds are the long straight portions. This is only a necessary (but not sufficient) condition. That is, once a fault accelerates to the maximum permissible speed, it can continue at this speed provided it is straight and there are no obstacles along the way, and provided the fault friction is low. For the Tibet earthquake, the 100 km region of highest rupture speed also had the highest slip rate, the highest slip and the highest stress drop (Robinson et al., JGR, 2006). Off-fault cracks due to the passage of the Mach cone exists in only that portion of the fault identified as travelling at super-shear speed and not in other places along the fault (Bhat et al., JGR, 2007). Re-examination of earlier reports of super-shear rupture speeds on the North Anatolian fault and the Denali fault show that such speeds did occur on the straight section of these faults. Of course all straight portions of faults will not reach super-shear speeds. So what can the Tibet earthquake teach us about the San Andreas fault? Both the 1906 and the 1857 have long, straight portions, the former having been identified by Song et al. (EOS, 2005) as having reached super-shear speeds to the north of San Francisco, the region of highest slip. If the repeat of the 1857 starts in the central valley, as it is believed to have done in 1857, it has the potential to propagate at super-shear speeds through the long, straight portion of the San Andread fault in the Carrizo Plain, the region believed to have had the largest displacement in 1857 based on paleoseismic studies. The resulting shock waves would strike the highly populated regions of Santa Barbara and the Los Angeles Basin (Das, Science, 2007).
Seung, Hong Min; Kim, Hoe Woong; Kim, Yoon Young
2013-09-01
As an effective tool to inspect large plates, omni-directional guided wave transducers have become more widely used to form phased-array inspection systems. While omni-directional Lamb wave transducers have been successfully utilized in the systems, omni-directional Shear-Horizontal (SH) wave transducers have not been investigated. In this paper, we propose an omni-directional SH magnetostrictive patch transducer that consists of an annular magnetostrictive patch, a toroidal coil and a permanent magnet. After presenting the unique configuration of the proposed transducer and its working principle, the omni-directivity of the developed transducer is verified through simulations and experiments conducted in an aluminum plate. The frequency characteristics of the proposed transducer depending on the patch size are also investigated as the underlying reference data for future construction of an SH phased-array system.
Shallow shear-wave reflection seismics in the tsunami struck Krueng Aceh River Basin, Sumatra
Directory of Open Access Journals (Sweden)
U. Polom
2008-01-01
Full Text Available As part of the project "Management of Georisk" (MANGEONAD of the Federal Institute for Geosciences and Natural Resources (BGR, Hanover, high resolution shallow shear-wave reflection seismics was applied in the Indonesian province Nanggroe Aceh Darussalam, North Sumatra in cooperation with the Government of Indonesia, local counterparts, and the Leibniz Institute for Applied Geosciences, Hanover. The investigations were expected to support classification of earthquake site effects for the reconstruction of buildings and infrastructure as well as for groundwater exploration. The study focussed on the city of Banda Aceh and the surroundings of Aceh Besar. The shear-wave seismic surveys were done parallel to standard geoengineering investigations like cone penetrometer tests to support subsequent site specific statistical calibration. They were also partly supplemented by shallow p-wave seismics for the identification of (a elastic subsurface parameters and (b zones with abundance of groundwater. Evaluation of seismic site effects based on shallow reflection seismics has in fact been found to be a highly useful method in Aceh province. In particular, use of a vibratory seismic source was essential for successful application of shear-wave seismics in the city of Banda Aceh and in areas with compacted ground like on farm tracks in the surroundings, presenting mostly agricultural land use areas. We thus were able to explore the mechanical stiffness of the subsurface down to 100 m depth, occasionally even deeper, with remarkably high resolution. The results were transferred into geotechnical site classification in terms of the International Building Code (IBC, 2003. The seismic images give also insights into the history of the basin sedimentation processes of the Krueng Aceh River delta, which is relevant for the exploration of new areas for construction of safe foundations of buildings and for identification of fresh water aquifers in the tsunami
Pratt, Martin J.; Wysession, Michael E.; Aleqabi, Ghassan; Wiens, Douglas A.; Nyblade, Andrew A.; Shore, Patrick; Rambolamanana, Gérard; Andriampenomanana, Fenitra; Rakotondraibe, Tsiriandrimanana; Tucker, Robert D.; Barruol, Guilhem; Rindraharisaona, Elisa
2017-01-01
The crust and upper mantle of the Madagascar continental fragment remained largely unexplored until a series of recent broadband seismic experiments. An island-wide deployment of broadband seismic instruments has allowed the first study of phase velocity variations, derived from surface waves, across the entire island. Late Cenozoic alkaline intraplate volcanism has occurred in three separate regions of Madagascar (north, central and southwest), with the north and central volcanism active until structure. Shallow (upper 10 km) low-shear-velocity regions correlate well with sedimentary basins along the west coast. Upper mantle low-shear-velocity zones that extend to at least 150 km deep underlie the north and central regions of recent alkali magmatism. These anomalies appear distinct at depths <100 km, suggesting that any connection between the zones lies at depths greater than the resolution of surface-wave tomography. An additional low-shear velocity anomaly is also identified at depths 50-150 km beneath the southwest region of intraplate volcanism. We interpret these three low-velocity regions as upwelling asthenosphere beneath the island, producing high-elevation topography and relatively low-volume magmatism.
Energy Technology Data Exchange (ETDEWEB)
Ito, H. [Geological Survey of Japan, Tsukuba (Japan); Yamamoto, H.; Brie, A.
1996-10-01
Fracture and permeability in the fault zone of the active fault drilling at the Nojima fault were evaluated from acoustic waveforms. There were several permeable intervals in the fault zone. There was strong Stoneley wave attenuation, very large S-Se below the fault and in the interval above the fault. In the fault zone, there were also several short intervals where S-Se was very large; 667 m-674 m and 706 m-710 m. In these intervals, the Stoneley attenuation was large, but there was no Stoneley reflection from within the interval. Reflections were observed at the upper and lower boundaries, going away from the bed up above, and down below. In this well, the shear wave was very strongly attenuated at and below the fault zone. The fast shear azimuth changed at the fault. The slowness anisotropy was fairly strong above the fault from 602 m to 612 m, but smaller below the fault. The changes in fast shear azimuth were much more pronounced near the fault, which suggested a strong influence of the fault. 6 refs., 5 figs.
Characterizing Wave- and Current-Induced Bottom Shear Stress: U.S. Middle Atlantic Bight
Dalyander, S.; Butman, B.
2011-12-01
The combined action of waves and currents at the seabed creates bottom shear stress, impacting local geology, habitat, and anthropogenic use. In this study, a methodology is developed to characterize the magnitude of benthic disturbance based on spatially and seasonally-resolved statistics (mean, standard deviation, 95th percentile) of wave-current bottom shear stress. The frequency of stress forcing is used to distinguish regions dominated by storms (return interval longer than 33 hours) from those dominated by the tides (periods shorter than 33 hours). In addition, the relative magnitude of the contribution to stress from waves, tides, and storm-driven currents is investigated by comparing wave stress, tidal current stress, and stress from the residual current (currents with tides removed), as well as through cross-correlation of wave and current stress. The methodology is applied to numerical model time-series data for the Middle Atlantic Bight (MAB) off the U.S. East Coast for April 2010 to April 2011; currents are provided from the Integrated Ocean Observing System (IOOS) operational hydrodynamic forecast Experimental System for Predicting Shelf and Slope Optics (ESPreSSO) and waves are provided from a Simulating WAves Nearshore (SWAN) hindcast developed for this project. Spatial resolution of the model is about 5 km and time-series wave and current data are at 1 and 2-hours respectively. Regions of the MAB delineated by stress characteristics include a tidally-dominated shallow region with relative high stress southeast of Massachusetts over Nantucket Shoals; a coastal band extending offshore to about 30 m water depth dominated by waves; a region dominated by waves and wind-driven currents offshore of the Outer Banks of North Carolina; and a low stress region southeast of Long Island, approximately coincident with an area of fine-grained sediments called the "Mud Patch". Comparison of the stress distribution with surface sediment texture data shows that
Mixa, T.; Fritts, D. C.; Laughman, B.; Wang, L.; Kantha, L. H.
2015-12-01
Multiple observations provide compelling evidence that gravity wave dissipation events often occur in multi-scale environments having highly-structured wind and stability profiles extending from the stable boundary layer into the mesosphere and lower thermosphere. Such events tend to be highly localized and thus yield local energy and momentum deposition and efficient secondary gravity wave generation expected to have strong influences at higher altitudes [e.g., Fritts et al., 2013; Baumgarten and Fritts, 2014]. Lidars, radars, and airglow imagers typically cannot achieve the spatial resolution needed to fully quantify these small-scale instability dynamics. Hence, we employ high-resolution modeling to explore these dynamics in representative environments. Specifically, we describe numerical studies of gravity wave packets impinging on a sheet of high stratification and shear and the resulting instabilities and impacts on the gravity wave amplitude and momentum flux for various flow and gravity wave parameters. References: Baumgarten, Gerd, and David C. Fritts (2014). Quantifying Kelvin-Helmholtz instability dynamics observed in noctilucent clouds: 1. Methods and observations. Journal of Geophysical Research: Atmospheres, 119.15, 9324-9337. Fritts, D. C., Wang, L., & Werne, J. A. (2013). Gravity wave-fine structure interactions. Part I: Influences of fine structure form and orientation on flow evolution and instability. Journal of the Atmospheric Sciences, 70(12), 3710-3734.
Stochastic ion heating by an electrostatic wave in a sheared magnetic field
Energy Technology Data Exchange (ETDEWEB)
Gell, Y.; Nakach, R.
1980-08-01
Effects of the shear of the magnetic field on the stochastic acceleration of ions due to an electrostatic wave with a frequency in the lower-hybrid range are considered. An appropriate Hamiltonian formalism is used to analyze the equations of motion numerically and theoretically. The surface of section method is used to visualize the solutions and to compare these with the theoretical predictions. From this analysis it appears that there exists an upper adiabatic barrier for the stochastic region which seems to be responsible for the formation of a hot tail in the ion velocity distribution. In addition to lowering the threshold for the onset of stochasticity, the effect of shear is to shift the tail structure to lower values of the velocities. Consequently, these results might help to improve the efficiency of heating by external radiation in the lower-hybrid frequency range.
Seismic heterogeneity in the mantle—strong shear wave signature of slabs from joint tomography
Kennett, B. L. N.; Gorbatov, A.
2004-08-01
The primary source of information on heterogeneity within the Earth comes from seismic tomography. A powerful tool for examining the character of heterogeneity comes from the comparison of images of bulk-sound and shear wavespeed extracted in a single inversion, since this isolates the dependencies on the elastic moduli. However, particularly in such multi-parameter inversions there are many hidden facets which can have a strong influence on the results, such as the weightings between parameters and in the misfit functions. Joint inversion with restricted data sets giving comparable cover for P and S waves provides useful checks on more inclusive studies, and can provide relatively high resolution in some areas. The relative behaviour of bulk-sound and shear wavespeed can provide a useful guide to the definition of heterogeneity regimes. For subduction zones a large part of the tomographic signal comes from S wavespeed variations. In the upper mantle and transition there can be significant bulk-sound speed contributions for younger slabs, and in stagnant slabs associated with slab roll-back. For subducted oceanic lithosphere older than about 90 Ma shear wavespeed variations nearly always are dominant and so the P wave images are controlled by shear modulus variations. The narrow segments of fast wavespeeds in the depth range 900-1500 km in the lower mantle are dominated by S variations, with very little bulk-sound contribution. Deep in the mantle there are many fast features without obvious association with subduction in the last 100 Ma, which suggests long-lived preservation of components of the geodynamic cycle.
A shear wave ground surface vibration technique for the detection of buried pipes
Muggleton, J. M.; Papandreou, B.
2014-07-01
A major UK initiative, entitled 'Mapping the Underworld' aims to develop and prove the efficacy of a multi-sensor device for accurate remote buried utility service detection, location and, where possible, identification. One of the technologies to be incorporated in the device is low-frequency vibro-acoustics; the application of this technology for detecting buried infrastructure, in particular pipes, is currently being investigated. Here, a shear wave ground vibration technique for detecting buried pipes is described. For this technique, shear waves are generated at the ground surface, and the resulting ground surface vibrations measured. Time-extended signals are employed to generate the illuminating wave. Generalized cross-correlation functions between the measured ground velocities and a reference measurement adjacent to the excitation are calculated and summed using a stacking method to generate a cross-sectional image of the ground. To mitigate the effects of other potential sources of vibration in the vicinity, the excitation signal can be used as an additional reference when calculating the cross-correlation functions. Measurements have been made at two live test sites to detect a range of buried pipes. Successful detection of the pipes was achieved, with the use of the additional reference signal proving beneficial in the noisier of the two environments.
A global horizontal shear velocity model of the upper mantle from multimode Love wave measurements
Ho, Tak; Priestley, Keith; Debayle, Eric
2016-10-01
Surface wave studies in the 1960s provided the first indication that the upper mantle was radially anisotropic. Resolving the anisotropic structure is important because it may yield information on deformation and flow patterns in the upper mantle. The existing radially anisotropic models are in poor agreement. Rayleigh waves have been studied extensively and recent models show general agreement. Less work has focused on Love waves and the models that do exist are less well-constrained than are Rayleigh wave models, suggesting it is the Love wave models that are responsible for the poor agreement in the radially anisotropic structure of the upper mantle. We have adapted the waveform inversion procedure of Debayle & Ricard to extract propagation information for the fundamental mode and up to the fifth overtone from Love waveforms in the 50-250 s period range. We have tomographically inverted these results for a mantle horizontal shear wave-speed model (βh(z)) to transition zone depths. We include azimuthal anisotropy (2θ and 4θ terms) in the tomography, but in this paper we discuss only the isotropic βh(z) structure. The data set is significantly larger, almost 500 000 Love waveforms, than previously published Love wave data sets and provides ˜17 000 000 constraints on the upper-mantle βh(z) structure. Sensitivity and resolution tests show that the horizontal resolution of the model is on the order of 800-1000 km to transition zone depths. The high wave-speed roots beneath the oldest parts of the continents appear to extend deeper for βh(z) than for βv(z) as in previous βh(z) models, but the resolution tests indicate that at least parts of these features could be artefacts. The low wave speeds beneath the mid-ocean ridges fade by ˜150 km depth except for the upper mantle beneath the East Pacific Rise which remains slow to ˜250 km depth. The resolution tests suggest that the low wave speeds at deeper depths beneath the East Pacific Rise are not solely due
Reproducibility of real-time shear wave elastography in the evaluation of liver elasticity
Energy Technology Data Exchange (ETDEWEB)
Ferraioli, Giovanna, E-mail: giovanna.ferraioli@unipv.it [Ultrasound Unit, Infectious Diseases Department, IRCCS San Matteo Hospital Foundation, University of Pavia, Via Taramelli 5, 27100 Pavia (Italy); Tinelli, Carmine, E-mail: ctinelli@smatteo.pv.it [Clinical Epidemiology and Biometric Unit, IRCCS San Matteo Hospital Foundation, Viale Golgi 19, 27100 Pavia (Italy); Zicchetti, Mabel, E-mail: mabel.zicchetti@unipv.it [Ultrasound Unit, Infectious Diseases Department, IRCCS San Matteo Hospital Foundation, University of Pavia, Via Taramelli 5, 27100 Pavia (Italy); Above, Elisabetta, E-mail: betta.above@gmail.com [Ultrasound Unit, Infectious Diseases Department, IRCCS San Matteo Hospital Foundation, University of Pavia, Via Taramelli 5, 27100 Pavia (Italy); Poma, Gianluigi, E-mail: gigi.poma@libero.it [Ultrasound Unit, Infectious Diseases Department, IRCCS San Matteo Hospital Foundation, University of Pavia, Via Taramelli 5, 27100 Pavia (Italy); Di Gregorio, Marta, E-mail: martadigregorio@virgilio.it [Ultrasound Unit, Infectious Diseases Department, IRCCS San Matteo Hospital Foundation, University of Pavia, Via Taramelli 5, 27100 Pavia (Italy); Filice, Carlo, E-mail: carfil@unipv.it [Ultrasound Unit, Infectious Diseases Department, IRCCS San Matteo Hospital Foundation, University of Pavia, Via Taramelli 5, 27100 Pavia (Italy)
2012-11-15
Objective: To evaluate the reproducibility of real-time shear wave elastography in assessing liver elasticity in healthy volunteers. Methods: Forty-two volunteers were studied in day 1. Shear wave elastography studies were performed by using the ultrasound system Aixplorer Trade-Mark-Sign (SuperSonic Imagine S.A., Aix-en-Provence, France) with a convex broadband probe. Measurements were carried by two operators, an expert (operator 1) and a novice (operator 2). Examinations were performed on the right lobe of the liver. Each operator performed 10 consecutive measurements in each volunteer. In a subset of volunteers (n = 18) measurements were performed twice on two different days (day 1 and day 2). Intraobserver and interobserver agreement were assessed by intraclass correlation coefficient. Results: Intraobserver agreement between measurements performed in the same subject in the same day (day 1 or day 2) showed intraclass correlation coefficient values of 0.95 (95% confidence interval, 0.93-0.98) and 0.93 (95% confidence interval, 0.90-0.96) for operator 1 and operator 2, respectively. Intraobserver agreement between measurements performed in the same subject in different days showed intraclass correlation coefficient values of 0.84 (95% confidence interval, 0.69-0.98) and 0.65 (95% confidence interval, 0.39-0.91) for operator 1 and operator 2, respectively. Interobserver agreement was 0.88 (95% confidence interval, 0.82-0.94). Conclusions: The results of this study show that shear wave elastography is a reliable and reproducible noninvasive method for the assessment of liver elasticity. Expert operator had higher reproducibility of measurements over time than novice operator.
Jiang, Yi; Li, Guoyang; Qian, Lin-Xue; Liang, Si; Destrade, Michel; Cao, Yanping
2015-10-01
We use supersonic shear wave imaging (SSI) technique to measure not only the linear but also the nonlinear elastic properties of brain matter. Here, we tested six porcine brains ex vivo and measured the velocities of the plane shear waves induced by acoustic radiation force at different states of pre-deformation when the ultrasonic probe is pushed into the soft tissue. We relied on an inverse method based on the theory governing the propagation of small-amplitude acoustic waves in deformed solids to interpret the experimental data. We found that, depending on the subjects, the resulting initial shear modulus [Formula: see text] varies from 1.8 to 3.2 kPa, the stiffening parameter [Formula: see text] of the hyperelastic Demiray-Fung model from 0.13 to 0.73, and the third- [Formula: see text] and fourth-order [Formula: see text] constants of weakly nonlinear elasticity from [Formula: see text]1.3 to [Formula: see text]20.6 kPa and from 3.1 to 8.7 kPa, respectively. Paired [Formula: see text] test performed on the experimental results of the left and right lobes of the brain shows no significant difference. These values are in line with those reported in the literature on brain tissue, indicating that the SSI method, combined to the inverse analysis, is an efficient and powerful tool for the mechanical characterization of brain tissue, which is of great importance for computer simulation of traumatic brain injury and virtual neurosurgery.
Lithospheric deformation in the Canadian Appalachians: evidence from shear wave splitting
Gilligan, Amy; Bastow, Ian D.; Watson, Emma; Darbyshire, Fiona A.; Levin, Vadim; Menke, William; Lane, Victoria; Hawthorn, David; Boyce, Alistair; Liddell, Mitchell V.; Petrescu, Laura
2016-08-01
Plate-scale deformation is expected to impart seismic anisotropic fabrics on the lithosphere. Determination of the fast shear wave orientation (φ) and the delay time between the fast and slow split shear waves (δt) via SKS splitting can help place spatial and temporal constraints on lithospheric deformation. The Canadian Appalachians experienced multiple episodes of deformation during the Phanerozoic: accretionary collisions during the Palaeozoic prior to the collision between Laurentia and Gondwana, and rifting related to the Mesozoic opening of the North Atlantic. However, the extent to which extensional events have overprinted older orogenic trends is uncertain. We address this issue through measurements of seismic anisotropy beneath the Canadian Appalachians, computing shear wave splitting parameters (φ, δt) for new and existing seismic stations in Nova Scotia and New Brunswick. Average δt values of 1.2 s, relatively short length scale (≥100 km) splitting parameter variations, and a lack of correlation with absolute plate motion direction and mantle flow models, demonstrate that fossil lithospheric anisotropic fabrics dominate our results. Most fast directions parallel Appalachian orogenic trends observed at the surface, while δt values point towards coherent deformation of the crust and mantle lithosphere. Mesozoic rifting had minimal impact on our study area, except locally within the Bay of Fundy and in southern Nova Scotia, where fast directions are subparallel to the opening direction of Mesozoic rifting; associated δt values of >1 s require an anisotropic layer that spans both the crust and mantle, meaning the formation of the Bay of Fundy was not merely a thin-skinned tectonic event.
Potential use of point shear wave elastography for the pancreas: A single center prospective study
Energy Technology Data Exchange (ETDEWEB)
Kawada, Natsuko, E-mail: kawada-na@mc.pref.osaka.jp [Department of Pathology, Osaka Medical Center for Cancer and Cardiovascular Diseases, 1-3-3 Nakamichi, Higashinari, Osaka 537-8511 (Japan); Department of Gastroenterology, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa 920-0293 (Japan); Tanaka, Sachiko, E-mail: sachi686@cocoa.plala.or.jp [Osaka Center for Cancer and Cardiovascular Disease Prevention, 1-6-107, Morinomiya, Johtoh, Osaka 536-8588 (Japan); Uehara, Hiroyuki, E-mail: uehara-hi@mc.pref.osaka.jp [Department of Gastroenterology, Osaka Medical Center for Cancer and Cardiovascular Diseases, 1-3-3 Nakamichi, Higashinari, Osaka 537-8511 (Japan); Ohkawa, Kazuyoshi, E-mail: okawa-ka@mc.pref.osaka.jp [Department of Gastroenterology, Osaka Medical Center for Cancer and Cardiovascular Diseases, 1-3-3 Nakamichi, Higashinari, Osaka 537-8511 (Japan); Yamai, Takuo, E-mail: yamai-ta@mc.pref.osaka.jp [Department of Gastroenterology, Osaka Medical Center for Cancer and Cardiovascular Diseases, 1-3-3 Nakamichi, Higashinari, Osaka 537-8511 (Japan); Takada, Ryoji, E-mail: takada-ry@mc.pref.osaka.jp [Department of Gastroenterology, Osaka Medical Center for Cancer and Cardiovascular Diseases, 1-3-3 Nakamichi, Higashinari, Osaka 537-8511 (Japan); Shiroeda, Hisakazu, E-mail: shiroeda@kanazawa-med.ac.jp [Department of Gastroenterology, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa 920-0293 (Japan); Arisawa, Tomiyasu, E-mail: tarisawa@kanazawa-med.ac.jp [Department of Gastroenterology, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa 920-0293 (Japan); Tomita, Yasuhiko, E-mail: tomota-ya@mc.pref.osaka.jp [Department of Pathology, Osaka Medical Center for Cancer and Cardiovascular Diseases, 1-3-3 Nakamichi, Higashinari, Osaka 537-8511 (Japan)
2014-04-15
Aim: Clinical use of point shear wave elastography for the liver has been established, however, few studies demonstrated its usefulness for the pancreas. A prospective study was conducted to clarify its feasibility for the pancreas and its usefulness for the identification of high risk group for pancreatic cancer. Patients and methods: Consecutive eighty-five patients underwent point shear wave elastography for the pancreas. The success rate of shear wave velocity (SWV) measurement, that is the number of successful measurements over total 10 measurements, was recorded. The SWV of the pancreas measured at non-tumorous area was compared between patients with and without pancreatic cancer. Factors associated with high SWV were determined by logistic regression model. Results: Sixty patients were included, of these 18 had pancreatic cancer. The success rate of 100% was achieved at the head, the body and the tail of the pancreas in 80%, 83%, and 68% of the patients, respectively. The success rate of ≥80% was achieved in 100%, 100%, and 96% of the patients, respectively. Although mean SWV of the pancreas harboring pancreatic cancer tended to be higher compared with that of the pancreas without cancer (1.51 ± 0.45 m/s vs 1.43 ± 0.28 m/s), they did not reach statistical significance. Multivariate analysis showed that increased amount of alcohol intake was associated with high SWV. Conclusion: The SWV of the pancreas was measured with excellent success rate. However, tendency of higher SWV obtained from the pancreas harboring pancreatic cancer needed to be further investigated.
Shear Wave Reflection Seismics Image Internal Structure of Quick-Clay Landslides in Sweden
Polom, U.; Krawczyk, C. M.; Malehmir, A.
2014-12-01
Covering many different sizes of scale, landslides are widespread and pose a severe hazard in many areas as soon as humans or infrastructure are affected. In order to provide geophysical tools and techniques to better characterize sites prone to sliding, a geophysical assessment working towards a geotechnical understanding of landslides is necessary. As part of a joint project studying clay-related landslides in Nordic countries by a suite of geophysical methods, we therefore tested the use of shear wave reflection seismics to survey shallow structures that are known to be related to quick-clay landslide processes in southern Sweden. On two crossing profiles, a land streamer consisting of 120 SH-geophones with 1 m spacing was deployed, and an ELVIS micro-vibrator was shaking every 4 m to generate the shear wave signal. SH-wave data of high quality were thereby acquired to resolve the gaps between P-wave data and electrical and surface wave based methods of lower resolution. After quality control, correlation, subtractive stack, and geometry setup, single shot gathers already demonstrate the high data quality gained in the region, especially on a gravel road. The migrated depth sections image the structural inventory down to ca. 50 m depth with vertical resolution of less than 1 m. Horizontally layered sediments are visible in the upper 40 m of soft (marine) sediments, followed by top basement with a rough topography varying between ca. 20-40 m depth. The imaged, bowl-shaped basement morphology centres near the profile crossing, and basement is exposed at three sides of the profiles. Three distinct sediment sequences are separated by high-amplitude unconformities. The quick-clay layer may be located above the marked reflection set that lies on top of the more transparent sequence that levels out the basement. Located between 15-20 m depth, this correlates with the height of the last scarp that occurred in the area. In addition, shear wave velocities are determined
DEFF Research Database (Denmark)
Jansen, Christian; Bogs, Christopher; Verlinden, Wim
2017-01-01
BACKGROUND & AIMS: Clinically significant portal hypertension (CSPH) is associated with severe complications and decompensation of cirrhosis. Liver stiffness measured either by transient elastography (TE) or Shear-wave elastography (SWE) and spleen stiffness by TE might be helpful in the diagnosis...... correlate with portal pressure and can both be used as a non-invasive method to investigate CSPH. Even though external validation is still missing, these algorithms to rule-out and rule-in CSPH using sequential SWE of liver and spleen might change the clinical practice....
Aristizabal, Sara; Amador, Carolina; Qiang, Bo; Kinnick, Randall R; Nenadic, Ivan Z; Greenleaf, James F; Urban, Matthew W
2014-12-21
Ultrasound radiation force-based methods can quantitatively evaluate tissue viscoelastic material properties. One of the limitations of the current methods is neglecting the inherent anisotropy nature of certain tissues. To explore the phenomenon of anisotropy in a laboratory setting, we created two phantom designs incorporating fibrous and fishing line material with preferential orientations. Four phantoms were made in a cube-shaped mold; both designs were arranged in multiple layers and embedded in porcine gelatin using two different concentrations (8%, 14%). An excised sample of pork tenderloin was also studied. Measurements were made in the phantoms and the pork muscle at different angles by rotating the phantom with respect to the transducer, where 0° and 180° were defined along the fibers, and 90° and 270° across the fibers. Shear waves were generated and measured by a Verasonics ultrasound system equipped with a linear array transducer. For the fibrous phantom, the mean and standard deviations of the shear wave speeds along (0°) and across the fibers (90°) with 8% gelatin were 3.60 ± 0.03 and 3.18 ± 0.12 m s(-1) and with 14% gelatin were 4.10 ± 0.11 and 3.90 ± 0.02 m s(-1). For the fishing line material phantom, the mean and standard deviations of the shear wave speeds along (0°) and across the fibers (90°) with 8% gelatin were 2.86 ± 0.20 and 2.44 ± 0.24 m s(-1) and with 14% gelatin were 3.40 ± 0.09 and 2.84 ± 0.14 m s(-1). For the pork muscle, the mean and standard deviations of the shear wave speeds along the fibers (0°) at two different locations were 3.83 ± 0.16 and 3.86 ± 0.12 m s(-1) and across the fibers (90°) were 2.73 ± 0.18 and 2.70 ± 0.16 m s(-1), respectively. The fibrous and fishing line gelatin-based phantoms exhibited anisotropy that resembles that observed in the pork muscle.
Inertial effects on thin-film wave structures with imposed surface shear on an inclined plane
Sivapuratharasu, M.; Hibberd, S.; Hubbard, M. E.; Power, H.
2016-06-01
This study provides an extended approach to the mathematical simulation of thin-film flow on a flat inclined plane relevant to flows subject to high surface shear. Motivated by modelling thin-film structures within an industrial context, wave structures are investigated for flows with moderate inertial effects and small film depth aspect ratio ε. Approximations are made assuming a Reynolds number, Re ∼ O(ε-1) and depth-averaging used to simplify the governing Navier-Stokes equations. A parallel Stokes flow is expected in the absence of any wave disturbance and a generalisation for the flow is based on a local quadratic profile. This approach provides a more general system which includes inertial effects and is solved numerically. Flow structures are compared with studies for Stokes flow in the limit of negligible inertial effects. Both two-tier and three-tier wave disturbances are used to study film profile evolution. A parametric study is provided for wave disturbances with increasing film Reynolds number. An evaluation of standing wave and transient film profiles is undertaken and identifies new profiles not previously predicted when inertial effects are neglected.
Sanders, C.; Ho-Liu, P.; Rinn, D.; Hiroo, Kanamori
1988-01-01
We use seismograms of local earthquakes to image relative shear wave attenuation structure in the shallow crust beneath the region containing the Coso volcanic-geothermal area of E California. Seismograms of 16 small earthquakes show SV amplitudes which are greatly diminished at some azimuths and takeoff angles, indicating strong lateral variations in S wave attenuation in the area. 3-D images of the relative S wave attenuation structure are obtained from forward modeling and a back projection inversion of the amplitude data. The results indicate regions within a 20 by 30 by 10 km volume of the shallow crust (one shallower than 5 km) that severely attenuate SV waves passing through them. These anomalies lie beneath the Indian Wells Valley, 30 km S of the Coso volcanic field, and are coincident with the epicentral locations of recent earthquake swarms. No anomalous attenuation is seen beneath the Coso volcanic field above about 5 km depth. Geologic relations and the coincidence of anomalously slow P wave velocities suggest that the attenuation anomalies may be related to magmatism along the E Sierra front.-from Authors
High Temperature Shear Horizontal Electromagnetic Acoustic Transducer for Guided Wave Inspection.
Kogia, Maria; Gan, Tat-Hean; Balachandran, Wamadeva; Livadas, Makis; Kappatos, Vassilios; Szabo, Istvan; Mohimi, Abbas; Round, Andrew
2016-04-22
Guided Wave Testing (GWT) using novel Electromagnetic Acoustic Transducers (EMATs) is proposed for the inspection of large structures operating at high temperatures. To date, high temperature EMATs have been developed only for thickness measurements and they are not suitable for GWT. A pair of water-cooled EMATs capable of exciting and receiving Shear Horizontal (SH₀) waves for GWT with optimal high temperature properties (up to 500 °C) has been developed. Thermal and Computational Fluid Dynamic (CFD) simulations of the EMAT design have been performed and experimentally validated. The optimal thermal EMAT design, material selection and operating conditions were calculated. The EMAT was successfully tested regarding its thermal and GWT performance from ambient temperature to 500 °C.
High Temperature Shear Horizontal Electromagnetic Acoustic Transducer for Guided Wave Inspection
Directory of Open Access Journals (Sweden)
Maria Kogia
2016-04-01
Full Text Available Guided Wave Testing (GWT using novel Electromagnetic Acoustic Transducers (EMATs is proposed for the inspection of large structures operating at high temperatures. To date, high temperature EMATs have been developed only for thickness measurements and they are not suitable for GWT. A pair of water-cooled EMATs capable of exciting and receiving Shear Horizontal (SH0 waves for GWT with optimal high temperature properties (up to 500 °C has been developed. Thermal and Computational Fluid Dynamic (CFD simulations of the EMAT design have been performed and experimentally validated. The optimal thermal EMAT design, material selection and operating conditions were calculated. The EMAT was successfully tested regarding its thermal and GWT performance from ambient temperature to 500 °C.
Effect of Shear on Ultrasonic Flow Measurement Using Nonaxisymmetric Wave Modes
Directory of Open Access Journals (Sweden)
Yong Chen
2014-01-01
Full Text Available Nonaxisymmetric wave propagation in an inviscid fluid with a pipeline shear flow is investigated. Mathematical equation is deduced from the conservations of mass and momentum, leading to a second-order differential equation in terms of the acoustic pressure. Meanwhile a general boundary condition is formulated to cover different types of wall configurations. A semianalytical method based on the Fourier-Bessel theory is provided to transform the differential equation to algebraic equations. Numerical analysis of phase velocity and wave attenuation in water is addressed in the laminar and turbulent flow. Meanwhile comparison among different kinds of boundary condition is given. In the end, the measurement performance of an ultrasonic flow meter is demonstrated.
Comparison of Shear-wave Profiles for a Compacted Fill in a Geotechnical Test Pit
Sylvain, M. B.; Pando, M. A.; Whelan, M.; Bents, D.; Park, C.; Ogunro, V.
2014-12-01
This paper investigates the use of common methods for geological seismic site characterization including: i) multichannel analysis of surface waves (MASW),ii) crosshole seismic surveys, and iii) seismic cone penetrometer tests. The in-situ tests were performed in a geotechnical test pit located at the University of North Carolina at Charlotte High Bay Laboratory. The test pit has dimensions of 12 feet wide by 12 feet long by 10 feet deep. The pit was filled with a silty sand (SW-SM) soil, which was compacted in lifts using a vibratory plate compactor. The shear wave velocity values from the 3 techniques are compared in terms of magnitude versus depth as well as spatially. The comparison was carried out before and after inducing soil disturbance at controlled locations to evaluate which methods were better suited to captured the induced soil disturbance.
Claudepierre, S G; Wiltberger, M; 10.1029/2007JA012890
2010-01-01
We present results from global, three-dimensional magnetohydrodynamic (MHD) simulations of the solar wind/magnetosphere interaction. These MHD simulations are used to study ultra low frequency (ULF) pulsations in the Earth's magnetosphere driven by shear instabilities at the flanks of the magnetopause. We drive the simulations with idealized, constant solar wind input parameters, ensuring that any discrete ULF pulsations generated in the simulation magnetosphere are not due to fluctuations in the solar wind. The simulations presented in this study are driven by purely southward interplanetary magnetic field (IMF) conditions, changing only the solar wind driving velocity while holding all of the other solar wind input parameters constant. We find surface waves near the dawn and dusk flank magnetopause and show that these waves are generated by the Kelvin-Helmholtz (KH) instability. We also find that two KH modes are generated near the magnetopause boundary. One mode, the magnetopause KH mode, propagates tailwa...
Waveform Modeling of the Crust and Upper Mantle Using S, Sp, SsPmP, and Shear-Coupled PL Waves
2008-05-10
and excitation of shear-coupled Pl waves with distance and corresponding phase velocity ( Vph )-period (T) curve: αN and βN are the P and S wave...Pulliam and Sen, 2005) (b) Propagation characteristics and excitation of shear-coupled Pl waves with distance and corresponding phase velocity ( Vph
The lithospheric shear-wave velocity structure of Saudi Arabia: Young volcanism in an old shield
Tang, Zheng; Julià, Jordi; Mai, P. Martin
2016-04-01
We are utilizing receiver function and surface wave dispersion data to investigate the lithospheric shear-wave velocity structure of Saudi Arabia. The Arabian plate consists of the western Arabian shield and the eastern Arabian platform. The Arabian shield is a complicated mélange of several Proterozoic terrains, separated by ophiolite-bearing suture zones and dotted by outcropping Cenozoic volcanic rocks (so-called harrats). The Arabian platform is covered by thick Paleozoic, Mesozoic and Cenozoic sedimentary rocks. To understand the geo-dynamics and present-day geology in western Saudi Arabia, the origin and activity of the harrats needs to be investigated: are they controlled primarily by a local mantle plume underneath western Saudi Arabia or by lateral mantle flow from the Afar and (perhaps) Jordan hotspots? In our study, we first estimate Vp/Vs ratios by applying the H-κ stacking technique and construct local shear-wave velocity-depth profiles by jointly inverting teleseismic P-receiver functions and Rayleigh wave group velocities at 56 broadband stations deployed by the Saudi Geological Survey (SGS). Our results reveal significant lateral variations in crustal thickness, S-velocity, and bulk Vp/Vs ratio. The Arabian shield has, on average a ~34 km thick crust with Vs ~3.72 km/s and Vp/Vs ~1.73. Thinner crust (~25 - 32 km thick) with strong lateral variations is present along the Red Sea coast. In contrast, the Arabian platform reveals a ~41 km thick crust with Vs ~3.52 km/s and Vp/Vs ~1.77. We find anomalously high Vp/Vs ratios at Harrat Lunayyir, interpreted as solidified magma intrusions. Slow shear-velocities in the upper-mantle lid throughout the southernmost and northernmost Arabian shield suggest lateral heating from hot mantle upwellings centered beneath Afar and (perhaps) Jordan. Our findings on crustal S-velocity structures, Vp/Vs ratios, and upper-mantle lid velocities support the hypothesis of lateral mantle flow from the Afar and (perhaps
Ma, John Z. G.
2016-01-01
We study the atmospheric structure in response to the propagation of gravity waves under nonisothermal (nonzero vertical temperature gradient), wind-shear (nonzero vertical zonal/meridional wind speed gradients), and dissipative (nonzero molecular viscosity and thermal conduction) conditions. As an alternative to the “complex wave-frequency” model proposed by Vadas and Fritts, we employ the traditional “complex vertical wave-number” approach to solving an eighth-order complex polynomial dispe...
Han, Kai-Feng; Zeng, Xin-Wu
2011-06-01
Based on the dual source cumulative rotation technique in the time-domain proposed by Zeng and MacBeth (1993), a new algebraic processing technique for extracting shear-wave splitting parameters from multi-component VSP data in frequency-dependent medium has been developed. By using this dual source cumulative rotation technique in the frequency-domain (DCTF), anisotropic parameters, including polarization direction of the shear-waves and timedelay between the fast and slow shear-waves, can be estimated for each frequency component in the frequency domain. It avoids the possible error which comes from using a narrow-band filter in the current commonly used method. By using synthetic seismograms, the feasibility and validity of the technique was tested and a comparison with the currently used method was also given. The results demonstrate that the shear-wave splitting parameters frequency dependence can be extracted directly from four-component seismic data using the DCTF. In the presence of larger scale fractures, substantial frequency dependence would be found in the seismic frequency range, which implies that dispersion would occur at seismic frequencies. Our study shows that shear-wave anisotropy decreases as frequency increases.
Are transient and shear wave elastography useful tools in Gaucher disease?
Webb, Muriel; Zimran, Ari; Dinur, Tama; Shibolet, Oren; Levit, Stella; Steinberg, David M; Salomon, Ophira
2016-12-23
Up to now, there are no reliable biochemical markers or imaging that could reveal early tissue damage in Gaucher disease. Therefore, we addressed whether elastography technique can serve as a tool for evaluating patients with Gaucher disease. The study included 42 patients with Gaucher disease type I and 33 patients with liver cirrhosis as well as 22 healthy volunteers. Ultrasound and Doppler examination was performed on each participant prior to apply transient and 2D shear wave elastography. In Gaucher disease the median stiffness of the spleen as assessed by transient elastography (TE) and shear wave elastography (SWE) was 35KPa and 22KPa respectively in contrast to the median stiffness of healthy controls (16.95 and 17.5KPa, p=0.0028 and p=0.0002, respectively) and of patients with cirrhosis (45KPa and 34.5KPa, p=0.015 and pGaucher disease from healthy controls and among those with splenomegaly from cirrhotic patients.
Kayen, R.; Moss, R.E.S.; Thompson, E.M.; Seed, R.B.; Cetin, K.O.; Der Kiureghian, A.; Tanaka, Y.; Tokimatsu, K.
2013-01-01
Shear-wave velocity (Vs) offers a means to determine the seismic resistance of soil to liquefaction by a fundamental soil property. This paper presents the results of an 11-year international project to gather new Vs site data and develop probabilistic correlations for seismic soil liquefaction occurrence. Toward that objective, shear-wave velocity test sites were identified, and measurements made for 301 new liquefaction field case histories in China, Japan, Taiwan, Greece, and the United States over a decade. The majority of these new case histories reoccupy those previously investigated by penetration testing. These new data are combined with previously published case histories to build a global catalog of 422 case histories of Vs liquefaction performance. Bayesian regression and structural reliability methods facilitate a probabilistic treatment of the Vs catalog for performance-based engineering applications. Where possible, uncertainties of the variables comprising both the seismic demand and the soil capacity were estimated and included in the analysis, resulting in greatly reduced overall model uncertainty relative to previous studies. The presented data set and probabilistic analysis also help resolve the ancillary issues of adjustment for soil fines content and magnitude scaling factors.
Use of shear waves for diagnosis and ablation monitoring of prostate cancer: a feasibility study
Gomez, A.; Rus, G.; Saffari, N.
2016-01-01
Prostate cancer remains as a major healthcare issue. Limitations in current diagnosis and treatment monitoring techniques imply that there is still a need for improvements. The efficacy of prostate cancer diagnosis is still low, generating under and over diagnoses. High intensity focused ultrasound ablation is an emerging treatment modality, which enables the noninvasive ablation of pathogenic tissue. Clinical trials are being carried out to evaluate its longterm efficacy as a focal treatment for prostate cancer. Successful treatment of prostate cancer using non-invasive modalities is critically dependent on accurate diagnostic means and is greatly benefited by a real-time monitoring system. While magnetic resonance imaging remains the gold standard for prostate imaging, its wider implementation for prostate cancer diagnosis remains prohibitively expensive. Conventional ultrasound is currently limited to guiding biopsy. Elastography techniques are emerging as a promising real-time imaging method, as cancer nodules are usually stiffer than adjacent healthy prostatic tissue. In this paper, a new transurethral approach is proposed, using shear waves for diagnosis and ablation monitoring of prostate cancer. A finite-difference time domain model is developed for studying the feasibility of the method, and an inverse problem technique based on genetic algorithms is proposed for reconstructing the location, size and stiffness parameters of the tumour. Preliminary results indicate that the use of shear waves for diagnosis and monitoring ablation of prostate cancer is feasible.
Rouze, Ned C; Wang, Michael H; Palmeri, Mark L; Nightingale, Kathy R
2013-11-15
Elastic properties of materials can be measured by observing shear wave propagation following localized, impulsive excitations and relating the propagation velocity to a model of the material. However, characterization of anisotropic materials is difficult because of the number of elasticity constants in the material model and the complex dependence of propagation velocity relative to the excitation axis, material symmetries, and propagation directions. In this study, we develop a model of wave propagation following impulsive excitation in an incompressible, transversely isotropic (TI) material such as muscle. Wave motion is described in terms of three propagation modes identified by their polarization relative to the material symmetry axis and propagation direction. Phase velocities for these propagation modes are expressed in terms of five elasticity constants needed to describe a general TI material, and also in terms of three constants after the application of two constraints that hold in the limit of an incompressible material. Group propagation velocities are derived from the phase velocities to describe the propagation of wave packets away from the excitation region following localized excitation. The theoretical model is compared to the results of finite element (FE) simulations performed using a nearly incompressible material model with the five elasticity constants chosen to preserve the essential properties of the material in the incompressible limit. Propagation velocities calculated from the FE displacement data show complex structure that agrees quantitatively with the theoretical model and demonstrates the possibility of measuring all three elasticity constants needed to characterize an incompressible, TI material.
Geometrical effects on drift wave stability in low shear stellarator plasmas
Energy Technology Data Exchange (ETDEWEB)
Nasim, M H; Rafiq, T; Persson, M [Department of Electromagnetics and Euratom/VR Association, Chalmers University of Technology, S-41296 Goeteborg (Sweden)
2004-01-01
Modern stellarators are designed with neoclassical transport in mind, potentially leading to anomalous transport originating from drift wave turbulence as the primary cause of energy and particle losses. It is therefore of interest to consider the influence of details of geometry on drift wave stability. In this paper the eigenvalue drift wave equation is therefore solved numerically in fully three-dimensional stellarator geometries using the ballooning mode formalism. The correlation between the details of the configurations such as local magnetic shear (LMS), normal curvature, geodesic curvature and magnetic field strength and the drift wave spectrum is discussed for two different stellarator configurations. A detailed discussion of the localization of the most unstable modes is presented and analysed. It is found that the most unstable modes are localized where the stabilizing effect of integrated LMS is minimum or where the coupling between the integrated LMS and geodesic curvature is strong. Since the more the modes are localized the stronger they will be influenced by the local geometrical effects, the most unstable modes are also highly localized.
Interaction between mountain waves and shear flow in an inertial layer
Xie, Jin-Han; Vanneste, Jacques
2017-04-01
Mountain-generated inertia-gravity waves (IGWs) affect the dynamics of both the atmosphere and the ocean through the mean force they exert as they interact with the flow. A key to this interaction is the presence of critical-level singularities or, when planetary rotation is taken into account, inertial-level singularities, where the Doppler-shifted wave frequency matches the local Coriolis frequency. We examine the role of the latter singularities by studying the steady wavepacket generated by a multiscale mountain in a rotating linear shear flow at low Rossby number. Using a combination of WKB and saddle-point approximations, we provide an explicit description of the form of the wavepacket, of the mean forcing it induces, and of the mean-flow response. We identify two distinguished regimes of wave propagation: Regime I applies far enough from a dominant inertial level for the standard ray-tracing approximation to be valid; Regime II applies to a thin region where the wavepacket structure is controlled by the inertial-level singularities. The wave--mean-flow interaction is governed by the change in Eliassen--Palm (or pseudomomentum) flux. This change is localised in a thin inertial layer where the wavepacket takes a limiting form of that found in Regime II. We solve a quasi-geostrophic potential-vorticity equation forced by the divergence of the Eliassen--Palm flux to compute the wave-induced mean flow. Our results, obtained in an inviscid limit, show that the wavepacket reaches a large-but-finite distance downstream of the mountain (specifically, a distance of order $k_*^{1/2} \\Delta^{3/2}$, where $k_*^{-1}$ and $\\Delta$ measure the wave and envelope scales of the mountain) and extends horizontally over a similar scale.
Shear-wave velocity profiling according to three alternative approaches: A comparative case study
Dal Moro, G.; Keller, L.; Al-Arifi, N. S.; Moustafa, S. S. R.
2016-11-01
The paper intends to compare three different methodologies which can be used to analyze surface-wave propagation, thus eventually obtaining the vertical shear-wave velocity (VS) profile. The three presented methods (currently still quite unconventional) are characterized by different field procedures and data processing. The first methodology is a sort of evolution of the classical Multi-channel Analysis of Surface Waves (MASW) here accomplished by jointly considering Rayleigh and Love waves (analyzed according to the Full Velocity Spectrum approach) and the Horizontal-to-Vertical Spectral Ratio (HVSR). The second method is based on the joint analysis of the HVSR curve together with the Rayleigh-wave dispersion determined via Miniature Array Analysis of Microtremors (MAAM), a passive methodology that relies on a small number (4 to 6) of vertical geophones deployed along a small circle (for the common near-surface application the radius usually ranges from 0.6 to 5 m). Finally, the third considered approach is based on the active data acquired by a single 3-component geophone and relies on the joint inversion of the group-velocity spectra of the radial and vertical components of the Rayleigh waves, together with the Radial-to-Vertical Spectral Ratio (RVSR). The results of the analyses performed while considering these approaches (completely different both in terms of field procedures and data analysis) appear extremely consistent thus mutually validating their performances. Pros and cons of each approach are summarized both in terms of computational aspects as well as with respect to practical considerations regarding the specific character of the pertinent field procedures.
Shear wave anisotropy beneath the Andes from the BANJO, SEDA, and PISCO experiments
Polet, J.; Silver, P. G.; Beck, S.; Wallace, T.; Zandt, G.; Ruppert, S.; Kind, R.; Rudloff, A.
2000-03-01
We present the results of a detailed shear wave splitting analysis of data collected by three temporary broadband deployments located in central western South America: the Broadband Andean Joint experiment (BANJO), a 1000-km-long east-west line at 20°S, and the Projecto de Investigacion Sismologica de la Cordillera Occidental (PISCO) and Seismic Exploration of the Deep Altiplano (SEDA), deployed several hunderd kilometers north and south of this line. We determined the splitting parameters ϕ (fast polarization direction) and δt (splitting delay time) for waves that sample the above- and below-slab regions: teleseismic *KS and S, ScS waves from local deep-focus events, as well as S waves from intermediate-focus events that sample only the above-slab region. All but one of the *KS stacks for the BANJO stations show E-W fast directions with δt varying between 0.4 and 1.5 s. However, for *KS recorded at most of the SEDA and PISCO stations, and for local deep-focus S events north and south of BANJO, there is a rotation of ϕ to a more nearly trench parallel direction. The splitting parameters for above-slab paths, determined from events around 200 km deep to western stations, yield small delay times (≤0.3 s) and N-S fast polarization directions. Assuming the anisotropy is limited to the top 400 km of the mantle (olivine stability field), these data suggest the following spatial distribution of anisotropy. For the above-slab component, as one goes from east (where *KS reflects the above-slab component) to west, ϕ changes from E-W to N-S, and delay times are substantially reduced. This change may mark the transition from the Brazilian craton to actively deforming (E-W shortening) Andean mantle. We see no evidence for the strain field expected for either corner flow or shear in the mantle wedge associated with relative plate motion. The small delay times for above-slab paths in the west require the existence of significant, spatially varying below-slab anisotropy to
Li, Yan
2015-01-01
We obtain a general solution for the water waves resulting from a general, time-dependent surface pressure distribution, in the presence of a shear current of uniform vorticity beneath the surface, in three dimensions. Linearized governing equations and boundary conditions including the effects of gravity, a distributed external pressure disturbance, and constant finite depth, are solved analytically, and particular attention is paid to classic initial value problems: an initial pressure impulse and a steady pressure distribution which appears suddenly. In the present paper, good agreement with previous results is demonstrated. We subsequently show both analytically and numerically how transient waves from a suddenly appearing steady pressure distribution vanis for large times, and steady ship waves remain. The transient contribution to wave resistance was derived. The results show that a shear current has significant impact on the transient wave motions, resulting in asymmetry between upstream and downstream...
Waves from an oscillating point source with a free surface in the presence of a shear current
Ellingsen, Simen Å
2016-01-01
We investigate analytically the linearized water wave radiation problem for an oscillating submerged point source in an inviscid shear flow with a free surface. A constant depth is taken into account and the shear flow increases linearly with depth. The surface velocity relative to the source is taken to be zero, so that Doppler effects are absent. We solve the linearized Euler equations to calculate the resulting wave field as well as its far-field asymptotics. For values of the Froude number $F^2=\\omega^2 D/g$ ($\\omega$: oscillation frequency, $D$ submergence depth) below a resonant value $F^2_\\text{res}$ the wave field splits cleanly into separate contributions from regular dispersive propagating waves and non-dispersive "critical waves" resulting from a critical layer-like street of flow structures directly downstream of the source. In the sub-resonant regime the regular waves behave like sheared ring waves while the critical layer wave forms a street of a constant width of order $D\\sqrt{S/\\omega}$ ($S$ i...
Akagi, Ryota; Kusama, Saki
2015-08-01
The goals of this study were to compare neck and shoulder stiffness values determined by shear wave ultrasound elastography with those obtained with a muscle hardness meter and to verify the correspondence between objective and subjective stiffness in the neck and shoulder. Twenty-four young men and women participated in the study. Their neck and shoulder stiffness was determined at six sites. Before the start of the measurements, patients rated their present subjective symptoms of neck and shoulder stiffness on a 6-point verbal scale. At all measurement sites, the correlation coefficients between the values of muscle hardness indices determined by the muscle hardness meter and shear wave ultrasound elastography were not significant. Furthermore, individuals' subjective neck and shoulder stiffness did not correspond to their objective symptoms. These results suggest that the use of shear wave ultrasound elastography is essential to more precisely assess neck and shoulder stiffness.
Josse, F; Bender, F; Cernose, R W
2001-12-15
The design and performance of guided shear horizontal surface acoustic wave (guided SH-SAW) devices on LiTaO3 substrates are investigated for high-sensitivity chemical and biochemical sensors in liquids. Despite their structural similarity to Rayleigh SAW, SH-SAWs often propagate slightly deeper within the substrate, hence preventing the implementation of high-sensitivity detectors. The device sensitivity to mass and viscoelastic loading is increased using a thin guiding layer on the device surface. Because of their relatively low shear wave velocity, various polymers including poly(methyl methacrylate) (PMMA) and cyanoethyl cellulose (cured or cross-linked) are investigated as the guiding layers to trap the acoustic energy near the sensing surface. The devices have been tested in biosensing and chemical sensing experiments. Suitable design principles for these applications are discussed with regard to wave guidance, electrical passivation of the interdigital transducers from the liquid environments, acoustic loss, and sensor signal distortion. In biosensing experiments, using near-optimal PMMA thickness of approximately 2 microm, mass sensitivity greater than 1500 Hz/(ng/mm2) is demonstrated, resulting in a minimum detection limit less than 20 pg/mm2. For chemical sensor experiments, it is found that optimal waveguide thickness must be modified to account for the chemically sensitive layer which also acts to guide the SH-SAW. A detection limit of 780 (3 x peak-to-peak noise) or 180 ppb (3 x rms noise) is estimated from the present measurements for some organic compounds in water.
Shear wave velocity structure in North America from large-scale waveform inversions of surface waves
Alsina, D.; Woodward, R.L.; Snieder, R.K.
1996-01-01
A two-step nonlinear and linear inversion is carried out to map the lateral heterogeneity beneath North America using surface wave data. The lateral resolution for most areas of the model is of the order of several hundred kilometers. The most obvious feature in the tomographic images is the rapid transition between low velocities in the technically active region west of the Rocky Mountains and high velocities in the stable central and eastern shield of North America. The model also reveals smaller-scale heterogeneous velocity structures. A high-velocity anomaly is imaged beneath the state of Washington that could be explained as the subducting Juan de Fuca plate beneath the Cascades. A large low-velocity structure extends along the coast from the Mendocino to the Rivera triple junction and to the continental interior across the southwestern United States and northwestern Mexico. Its shape changes notably with depth. This anomaly largely coincides with the part of the margin where no lithosphere is consumed since the subduction has been replaced by a transform fault. Evidence for a discontinuous subduction of the Cocos plate along the Middle American Trench is found. In central Mexico a transition is visible from low velocities across the Trans-Mexican Volcanic Belt (TMVB) to high velocities beneath the Yucatan Peninsula. Two elongated low-velocity anomalies beneath the Yellowstone Plateau and the eastern Snake River Plain volcanic system and beneath central Mexico and the TMVB seem to be associated with magmatism and partial melting. Another low-velocity feature is seen at depths of approximately 200 km beneath Florida and the Atlantic Coastal Plain. The inversion technique used is based on a linear surface wave scattering theory, which gives tomographic images of the relative phase velocity perturbations in four period bands ranging from 40 to 150 s. In order to find a smooth reference model a nonlinear inversion based on ray theory is first performed. After
Liou, M. S.; Adamson, T. C., Jr.
1980-01-01
Asymptotic methods are used to calculate the shear stress at the wall for the interaction between a normal shock wave and a turbulent boundary layer on a flat plate. A mixing length model is used for the eddy viscosity. The shock wave is taken to be strong enough that the sonic line is deep in the boundary layer and the upstream influence is thus very small. It is shown that unlike the result found for laminar flow an asymptotic criterion for separation is not found; however, conditions for incipient separation are computed numerically using the derived solution for the shear stress at the wall. Results are compared with available experimental measurements.
Physical modelling of the effect of fractures on compressional and shear wave velocities
Gurevich, Boris; Lebedev, Maxim; Glubokovskikh, Stanislav; Dyskin, Arcady; Pasternak, Elena; Vialle, Stephanie
2016-04-01
Ultrasonic measurements were performed on a sample of polyester resin permeated by multiple fractures. The samples were prepared by mixing high doses of catalyst, about 7-10 % with the liquid resin base. The mix was then heated in an oven at 60° C for a period of 1 hour. This operation produced many shrinkage cracks varying in size from 8 mm to 20 mm (Sahouryeh et al., 2002). The produced samples were parallelepiped 50 mm x 50 mm in cross-section with height of 100 mm. Micro-CT scanning of the sample reveals many open fractures with apertures 0.2 - 0.4 mm. Elastic properties of the fractured samples were derived from ultrasonic measurements using piezo-electric transducers. These measurements give compressional (Vp) and shear (Vs) wave velocities of 2450 and 1190 m/s, respectively, giving Vp/Vs = 2.04. At the same time the velocities in the intact resin are Vp=2460 and Vs=1504 m/s, respectively, with Vp/Vs = 1.63. Thus we see that the fractures have a negligible effect on the Vp (within the measurement error) but a dramatic effect on Vs (about 20%). This contradicts the common understanding that the effects of dry fractures on Vp and Vs are similar in magnitude. Indeed, assuming very roughly that the distribution of fractures is isotropic, we can estimate the cumulative normal fracture compliance from the difference between shear moduli of the intact and fractured resin to be 0.30 GPa-1 and fracture density of 0.41. This value can be used to estimate the effective bulk modulus of the fractured material. The corresponding p-wave velocity, Vp = 1860 m/s, is significantly lower that the observed value. The results suggest that an equivalent medium approximation is not applicable in this case, probably due to the fact that the long-wave approximation is inadequate. Indeed the fractures are larger than the wavelength that corresponds to the peak frequencies of the power spectrum of the signal. This suggests a strong influence of diffraction. Furthermore, the
Science Letters: New solutions of shear waves in piezoelectric cubic crystals
Institute of Scientific and Technical Information of China (English)
ZAKHARENKO A.A.
2007-01-01
Acoustic wave propagation in piezoelectric crystals of classes 43m and 23 is studied. The crystals Tl3VS4 and Tl3TaSe4 (-43m) of the Chalcogenide family and the crystal Bi12TiO20 (23) possess strong piezoelectric effect. Because the surface Bleustein-Gulyaev waves cannot exist in piezoelectric cubic crystals, it was concluded that new solutions for shear-horizontal surface acoustic waves (SH-SAWs) are found in the monocrystals using different electrical boundary conditions such as electrically "short" and "open" free-surfaces for the unique [ 101] direction of wave propagation. For the crystal Tl3TaSe4 with coefficient of electromechanical coupling (CEMC) Ke2=e2/(C×g)～1/3, the phase velocity Vph for the new SH-SAWs can be calculated with the following formula: Vph=(Va+Vt)/2, where Vt is the speed of bulk SH-wave, Vt=Vt4(1+Ke2)1/2, Va=aKVt4, aK=2[Ke(1+Ke2)1/2-Ke2]1/2,and Vt4=(C44/ρ)1/2. It was found that the CEMC K2 evaluation for Tl3TaSe4 gave the value of K2=2(Vf-Vm)/Vf～O.047 (～4.7%),where Vf～848 m/s and Vm～828 m/s are the new-SAW velocities for the free and metallized surfaces, respectively. This high value of K2(Tl3TaSe4) is significantly greater than K2(Tl3VS4)～3% and about five times that of K2(Bi12TiO20).
Middle and upper crust shear-wave velocity structure of the Chinese mainland
Institute of Scientific and Technical Information of China (English)
FENG Mei; AN Mei-jian
2007-01-01
In order to give a more reliable shallow crust model for the Chinese mainland, the present study collected many short-period surface wave data which are better sensitive to shallow earth structures. Different from traditional two-step surface wave tomography, we developed a new linearized surface wave dispersion inversion method to directly get a 3D S-wave velocity model in the second step instead of inverting for 1D S-velocity profile cell by cell. We convert all the regionalized dispersions into linear constraints for a 3D S-velocity model. Checkerboard tests show that this method can give reasonable results. The distribution of the middle- and upper-crust shear-wave velocity of the Chinese mainland in our model is strongly heterogeneous and related to different geotectonic terrains. Low-velocity anomalies delineated very well most of the major sedimentary basins of China. And the variation of velocities at different depths gives an indication of basement depth of the basins. The western Tethyan tectonic domain (on the west of the 95°E longitude) is characterized by low velocity, while the eastern Tethyan domain does not show obvious low velocity. Since petroleum resources often distribute in sedimentary basins where low-velocity anomaly appears, the low velocity anomalies in the western Tethyan domain may indicate a better petroleum prospect than in its eastern counterpart. Besides, low velocity anomaly in the western Tethyan domain and around the Xing'an orogenic belt may be partly caused by high crustal temperature. The weak low-velocity belt along ～105°E longitude corresponds to the N-S strong seismic belt of central China.
Directory of Open Access Journals (Sweden)
Sungho Choi
2016-12-01
Full Text Available Harsh environments and confined spaces require that nondestructive inspections be conducted with robotic systems. Ultrasonic guided waves are well suited for robotic systems because they can provide efficient volumetric coverage when inspecting for various types of damage, including cracks and corrosion. Shear horizontal guided waves are especially well suited for robotic inspection because they are sensitive to cracks oriented perpendicular or parallel to the wave propagation direction and can be generated with electromagnetic acoustic transducers (EMATs and magnetostrictive transducers (MSTs. Both types of transducers are investigated for crack detection in a stainless steel plate. The MSTs require the robot to apply a compressive normal force that creates frictional force coupling. However, the coupling is observed to be very dependent upon surface roughness and surface debris. The EMATs are coupled through the Lorentz force and are thus noncontact, although they depend on the lift off between transducer and substrate. After comparing advantages and disadvantages of each transducer for robotic inspection the EMATs are selected for application to canisters that store used nuclear fuel.
Shear wave splitting in the Isparta Angle, southwestern Turkey: Anisotropic complexity in the mantle
Indian Academy of Sciences (India)
Aslihan Şapaş; Aysun Boztepe-G\\ddot{u}ney
2009-02-01
This study presents shear wave splitting analysis results observed at ISP (Isparta)broadband station in the Isparta Angle,southwestern Turkey.We selected 21 good quality seismic events out of nearly 357 earthquakes and calculated splitting parameters (polarization direction of fast wave, and delay time between fast and slow waves, ) from mainly SKS and a few SKKS phases of the selected 21 seismic events. Then, we compared calculated splitting parameters at ISP station (56° ≤ ≤ 205° ; 0.37s ≤ t ≤ 4s) with those previously calculated at ANTO (Ankara) and ISK (˙Istanbul)stations (27° ≤ ≤ 59°; 0.6s ≤ t ≤ 2.4s and 26° ≤ ≤ 54° ;0.6s ≤ t ≤ 1.5s) which are located at 230 and 379 km away from ISP station in central and northwestern Turkey, respectively.The backazimuthal variations of the splitting parameters at ISP station indicate a different and complex mantle polarization anisotropy for the Isparta Angle in southwestern Turkey compared to those obtained for Ankara and Īstanbul stations.
Interaction between mountain waves and shear flow in an inertial layer
Xie, Jin-Han
2016-01-01
Mountain-generated inertia-gravity waves (IGWs) affect the dynamics of both the atmosphere and the ocean through the mean force they exert as they interact with the flow. A key to this interaction is the presence of critical-level singularities or, when planetary rotation is taken into account, inertial-level singularities, where the Doppler-shifted wave frequency matches the local Coriolis frequency. We examine the role of the latter singularities by studying the steady wavepacket generated by a multiscale mountain in a rotating linear shear flow at low Rossby number. Using a combination of WKB and saddle-point approximations, we provide an explicit description of the form of the wavepacket, of the mean forcing it induces, and of the mean-flow response. We identify two distinguished regimes of wave propagation: Regime I applies far enough from a dominant inertial level for the standard ray-tracing approximation to be valid; Regime II applies to a thin region where the wavepacket structure is controlled by th...
Zhao, X; Qian, Z H; Zhang, S; Liu, J X
2015-12-01
An analytical approach is taken to investigate shear horizontal wave (SH wave) propagation in layered cylinder with initial stress, where a piezomagnetic (PM) material thin layer is bonded to a piezoelectric (PE) cylinder. Two different material combinations are taken into account, and the phase velocities of the SH waves are numerically calculated for the magnetically open and short cases, respectively. It is found that the initial stress, the thickness ratio and the material performance have a great influence on the phase velocity. The results obtained in this paper can offer fundamental significance to the application of PE/PM composite media or structure for the acoustic wave and microwave technologies.
Detection of cells captured with antigens on shear horizontal surface-acoustic-wave sensors.
Hao, Hsu-Chao; Chang, Hwan-You; Wang, Tsung-Pao; Yao, Da-Jeng
2013-02-01
Techniques to separate cells are widely applied in immunology. The technique to separate a specific antigen on a microfluidic platform involves the use of a shear horizontal surface-acoustic-wave (SH-SAW) sensor. With specific antibodies conjugated onto the surface of the SH-SAW sensors, this technique can serve to identify specific cells in bodily fluids. Jurkat cells, used as a target in this work, provide a model of cells in small abundance (1:1000) for isolation and purification with the ultimate goal of targeting even more dilute cells. T cells were separated from a mixed-cell medium on a chip (Jurkat cells/K562 cells, 1/1000). A novel microchamber was developed to capture cells during the purification, which required a large biosample. Cell detection was demonstrated through the performance of genetic identification on the chip.
Splitting parameter yield (SPY): A program for semiautomatic analysis of shear-wave splitting
Zaccarelli, Lucia; Bianco, Francesca; Zaccarelli, Riccardo
2012-03-01
SPY is a Matlab algorithm that analyzes seismic waveforms in a semiautomatic way, providing estimates of the two observables of the anisotropy: the shear-wave splitting parameters. We chose to exploit those computational processes that require less intervention by the user, gaining objectivity and reliability as a result. The algorithm joins the covariance matrix and the cross-correlation techniques, and all the computation steps are interspersed by several automatic checks intended to verify the reliability of the yields. The resulting semiautomation generates two new advantages in the field of anisotropy studies: handling a huge amount of data at the same time, and comparing different yields. From this perspective, SPY has been developed in the Matlab environment, which is widespread, versatile, and user-friendly. Our intention is to provide the scientific community with a new monitoring tool for tracking the temporal variations of the crustal stress field.
Shear wave dispersion behaviors of soft, vascularized tissues from the microchannel flow model.
Parker, K J; Ormachea, J; McAleavey, S A; Wood, R W; Carroll-Nellenback, J J; Miller, R K
2016-07-07
The frequency dependent behavior of tissue stiffness and the dispersion of shear waves in tissue can be measured in a number of ways, using integrated imaging systems. The microchannel flow model, which considers the effects of fluid flow in the branching vasculature and microchannels of soft tissues, makes specific predictions about the nature of dispersion. In this paper we introduce a more general form of the 4 parameter equation for stress relaxation based on the microchannel flow model, and then derive the general frequency domain equation for the complex modulus. Dispersion measurements in liver (ex vivo) and whole perfused placenta (post-delivery) correspond to the predictions from theory, guided by independent stress relaxation measurements and consideration of the vascular tree structure.
Mantle Flow Implications across Easter and Southern Africa from Shear Wave Splitting Measurements
Ramirez, C.; Nyblade, A.; Bagley, B. C.; Mulibo, G. D.; Tugume, F.; Wysession, M. E.; Wiens, D.; van der Meijde, M.
2015-12-01
In this study, we present new shear wave splitting results from broadband seismic stations in Botswana and Namibia, and combine them with previous results from stations in Kenya, Uganda, Tanzania, Malawi, Zambia, South Africa, Mozambique, Zimbabwe, and Angola to further examine the pattern of seismic anisotropy across southern Africa. The new results come from stations in northern Namibia and Botswana, which help to fill in large gaps in data coverage. Our preliminary results show that fast polarization directions overall trend in a NE orientation. The most noticeable measurements that deviate from this pattern are located around the Archean Tanzania Craton in eastern Africa. The general NE pattern of fast polarization directions is attributed to mantle flow linked to the African superplume. Smaller scale variations from this general direction can be explained by shape anisotropy in the lithosphere in magmatic regions in the East African rift system and to fossil anisotropy in the Precambrian lithosphere.
Ion waves driven by shear flow in a relativistic degenerate astrophysical plasma
Indian Academy of Sciences (India)
KHAN SHABBIR A; BAKHTIAR-UD-DIN; ILYAS MUHAMMAD; WAZIR ZAFAR
2016-05-01
We investigate the existence and propagation of low-frequency (in comparison to ion cyclotron frequency) electrostatic ion waves in highly dense inhomogeneous astrophysical magnetoplasma comprising relativistic degenerate electrons and non-degenerate ions. The dispersion equation is obtained by Fourier analysis under mean-field quantum hydrodynamics approximationfor various limits of the ratio of rest mass energy to Fermi energy of electrons, relevant to ultrarelativistic, weakly-relativistic and non-relativistic regimes. It is found that the system admits an oscillatory instability under certain condition in the presence of velocity shear parallel to ambient magnetic field. The dispersive role of plasma density and magnetic field is also discussed parametrically in the scenario of dense and degenerate astrophysical plasmas.
Ternifi, R; Gennisson, J-L; Tanter, M; Beillas, P
2013-12-01
The objective of this study was to evaluate the effects of different conservation techniques on the mechanical properties of the ex vivo porcine kidney in order to select an appropriate conservation protocol to use prior to mechanical testing. Five groups of eight kidneys each were subjected to different methods of conservation: storage at 4°C, -18°C, -34°C and -71°C, for 7 days, or storage at 20°C for 2 days only (as the tissues degraded quickly). Their shear modulus as a function of depth in the organ was evaluated before (fresh) and after conservation using shear wave elastography. Results obtained on fresh kidneys were collected within 6h of death. Freezing lead to a significant decrease (p0.05) in the properties of the renal cortex when stored at 4°C or 20°C. The average moduli in the central region of the kidney (medulla) were much higher than in the cortex and exhibited also exhibited larger specimen to specimen variations. The effects of the conservation method on the central region were not significant. Overall, the results suggest that kidney tissues should not be frozen prior to biomechanical characterization and that inhomogeneity may be important to consider for in biomechanical models.
Shear wave elastography for detection of prostate cancer: A preliminary study
Energy Technology Data Exchange (ETDEWEB)
Woo, Sung Min; Kim, Sang Youn; Cho, Jeong Yeon; KIm, Seung Hyup [Dept. of Radiology, Seoul National University Hospital, Seoul (Korea, Republic of)
2014-06-15
To assess the diagnostic value of shear wave elastography (SWE) for prostate cancer detection. In this retrospective study, 87 patients with the suspicion of prostate cancer (prostate-specific antigen > 4 ng/mL and abnormal digital rectal examination) underwent a protocol-based systematic 12-core biopsy followed by targeted biopsy at hypoechoic areas on grey-scale ultrasound. Prior to biopsy, SWE was performed by placing two circular 5 mm-sized regions of interest (ROIs) along the estimated biopsy tract in each sector and one ROI for hypoechoic lesions. SWE parameters, S (mean stiffness) and R (mean stiffness ratio), were calculated and compared regarding different histopathologic tissues and their accuracy for diagnosing prostate cancer was analyzed. SWE parameters were correlated with Gleason score and were compared between indolent (< 8) and aggressive (≥ 8) tissues in prostate cancer patients. Prostate cancer was detected in 7.5% of 1058 cores in 29.9% of 87 patients. Seven (43.8%) of 16 hypoechoic lesions were confirmed as prostate cancer. SWE parameters were significantly different among the histopathologic entities (p < 0.001). Prostate cancer was stiffer than benign tissues (p ≤ 0.003). Sensitivity, specificity and receiver operating characteristic curve area for diagnosing cancer were 43%, 80.8%, and 0.599, respectively, for a cutoff of S > 43.9 kPa and 60.8%, 66.4%, and 0.653, respectively, for R > 3. Both, S and R showed a significant correlation with Gleason score (r ≥ 0.296, p ≤ 0.008) and were significantly different between indolent and aggressive prostate cancer (p ≤ 0.006). Shear wave elastographic parameters are significantly different between prostate cancer and benign prostate tissue and correlate with Gleason score.
Testicular Shear Wave Elastography in Normal and Infertile Men: A Prospective Study on 601 Patients.
Rocher, Laurence; Criton, Aline; Gennisson, Jean-Luc; Izard, Vincent; Ferlicot, Sophie; Tanter, Mickael; Benoit, Gerard; Bellin, Marie France; Correas, Jean-Michel
2017-04-01
Our aim in the study described here was to prospectively establish the feasibility of using and reproducibility of testicular shear-wave elastography in the assessment of testicular stiffness in 62 normal patients and 539 infertile men with obstructive azoospermia (OA), non-Klinefelter syndrome non-obstructive azoospermia (non-KS NOA), Klinefelter syndrome NOA (KS NOA), oligoasthenoteratozoospermia (OAT) or a left varicocele. The feasibility rate was 96.9%, with an intra-class correlation coefficient of 0.85 (95% confidence interval: 0.83-0.88). Median stiffness (interquartile range) values were 2.4 kPa (2.0, 2.9), 2.1 kPa (1.8, 2.5), 2.4 kPa (2.0, 2.7), 2.0 kPa (1.7, 2.4), 2.6 kPa (2, 3.2) and 2.2 kPa (1.8, 2.6) for men with a normal testis (n = 108), OAT (n = 689), OA (n = 119), non-KS NOA (n = 183), KS NOA (n = 70) and varicocele (n = 132), respectively. Testicular shear wave elastography is a feasible and reproducible technique. A significant positive association was found between stiffness and testis volume (p = 0.001). Testicular stiffness was higher in OA than in non-KS NOA populations (p = 1.e-10) and in KS NOA than in NOA populations (p = 2.0e-8), but the substantial number of overlapping values limited the clinical impact.
Darbyshire, F. A.; Bastow, I. D.; Forte, A. M.; Hobbs, T. E.; Calvel, A.; Gonzalez-Monteza, A.; Schow, B.
2015-12-01
Measurements of seismic anisotropy in continental regions are frequently interpreted with respect to past tectonic processes, preserved in the lithosphere as "fossil" fabrics. Models of the present-day sublithospheric flow (often using absolute plate motion as a proxy) are also used to explain the observations. Discriminating between these different sources of seismic anisotropy is particularly challenging beneath shields, whose thick (≥200 km) lithospheric roots may record a protracted history of deformation and strongly influence underlying mantle flow. Eastern Canada, where the geological record spans ˜3 Ga of Earth history, is an ideal region to address this issue. We use shear wave splitting measurements of core phases such as SKS to define upper mantle anisotropy using the orientation of the fast-polarization direction ϕ and delay time δt between fast and slow shear wave arrivals. Comparison with structural trends in surface geology and aeromagnetic data helps to determine the contribution of fossil lithospheric fabrics to the anisotropy. We also assess the influence of sublithospheric mantle flow via flow directions derived from global geodynamic models. Fast-polarization orientations are generally ENE-WSW to ESE-WNW across the region, but significant lateral variability in splitting parameters on a ≤100 km scale implies a lithospheric contribution to the results. Correlations with structural geologic and magnetic trends are not ubiquitous, however, nor are correlations with geodynamically predicted mantle flow directions. We therefore consider that the splitting parameters likely record a combination of the present-day mantle flow and older lithospheric fabrics. Consideration of both sources of anisotropy is critical in shield regions when interpreting splitting observations.
Explicit use of the Biot coefficient in predicting shear-wave velocity of water-saturated sediments
Lee, M.W.
2006-01-01
Predicting the shear-wave (S-wave) velocity is important in seismic modelling, amplitude analysis with offset, and other exploration and engineering applications. Under the low-frequency approximation, the classical Biot-Gassmann theory relates the Biot coefficient to the bulk modulus of water-saturated sediments. If the Biot coefficient under in situ conditions can be estimated, the shear modulus or the S-wave velocity can be calculated. The Biot coefficient derived from the compressional-wave (P-wave) velocity of water-saturated sediments often differs from and is less than that estimated from the S-wave velocity, owing to the interactions between the pore fluid and the grain contacts. By correcting the Biot coefficients derived from P-wave velocities of water-saturated sediments measured at various differential pressures, an accurate method of predicting S-wave velocities is proposed. Numerical results indicate that the predicted S-wave velocities for consolidated and unconsolidated sediments agreewell with measured velocities. ?? 2006 European Association of Geoscientists & Engineers.
Angle-beam shear wave scattering from buried crack-like defects in bonded specimens
Maki, Carson T.; Michaels, Jennifer E.; Weng, Yu; Michaels, Thomas E.
2017-02-01
Ultrasonic wavefield imaging, which refers to the measurement of wave motion on a 2-D rectilinear grid resulting from a fixed source, has been previously applied to angle-beam shear wave propagation in simple plates with through-holes and far-surface notches. In this prior work, scattered waves were analyzed using baseline subtraction of wavefields acquired before and after a notch was introduced. In practice, however, defects of interest often occur between bonded layers and it is generally not possible to record data from the same specimen in both the undamaged and damaged states, even in the laboratory. Direct baseline subtraction of wavefields thus becomes impractical as a tool for analyzing scattering. This present work considers measurement and analysis of angle-beam waves in bonded specimens with and without buried defects originating from fastener holes. Data from fastener holes with and without simulated damage in the form of notches are compared, and it is shown that wavefield baseline subtraction, even after correcting for misalignment between scans, is ineffective for isolating scattering from the notch. A combination of frequency-wavenumber filtering and spatial windowing is proposed and implemented as an alternative approach to quantify scattering from damage. Despite unavoidable deviations from specimen-to-specimen caused by factors such as variations in bonding, transducer mounting, and fastener hole machining, it is shown that scattering from buried notches can be clearly visualized in recorded wavefield data of bonded plates containing a buried defect as opposed to "baseline" wavefield data taken from a nominally similar specimen with no defect present. Backscattering is further quantified in the form of scattering patterns at different scattering frames to quantify the effect of the notch on the total backscattered wavefield.
Three-dimensional shear wave velocity structure in the Atlantic upper mantle
James, Esther Kezia Candace
Oceanic lithosphere constitutes the upper boundary layer of the Earth's convecting mantle. Its structure and evolution provide a vital window on the dynamics of the mantle and important clues to how the motions of Earth's surface plates are coupled to convection in the mantle below. The three-dimensional shear-velocity structure of the upper mantle beneath the Atlantic Ocean is investigated to gain insight into processes that drive formation of oceanic lithosphere. Travel times are measured for approximately 10,000 fundamental-mode Rayleigh waves, in the period range 30-130 seconds, traversing the Atlantic basin. Paths with >30% of their length through continental upper mantle are excluded to maximize sensitivity to the oceanic upper mantle. The lateral distribution of Rayleigh wave phase velocity in the Atlantic upper mantle is explored with two approaches. One, phase velocity is allowed to vary only as a function of seafloor age. Two, a general two-dimensional parameterization is utilized in order to capture perturbations to age-dependent structure. Phase velocity shows a strong dependence on seafloor age, and removing age-dependent velocity from the 2-D maps highlights areas of anomalously low velocity, almost all of which are proximal to locations of hotspot volcanism. Depth-dependent variations in vertically-polarized shear velocity (Vsv) are determined with two sets of 3-D models: a layered model that requires constant VSV in each depth layer, and a splined model that allows VSV to vary continuously with depth. At shallow depths (˜75 km) the seismic structure shows the expected dependence on seafloor age. At greater depths (˜200 km) high-velocity lithosphere is found only beneath the oldest seafloor; velocity variations beneath younger seafloor may result from temperature or compositional variations within the asthenosphere. The age-dependent phase velocities are used to constrain temperature in the mantle and show that, in contrast to previous results for
Zúñiga, F. R.; Castro, R. R.; Domínguez, T.
1995-03-01
Digital seismograms continuously recorded from 1988 to 1992 by two stations of the RESNOM seismic network in northern Baja California, Mexico, were used to search for probable shear-wave anisotropic characteristics in the region of the Cerro Prieto fault. Shear-wave splitting was identified in many of the three-component records analyzed. We measured the polarization direction of the leading S wave inside the S-wave window as well as the delay times between fast and slow phases on those records displaying shear-wave splitting. For station CPX, which is nearest the Imperial Valley region to the north, the preferred polarization direction found in this study (azimuth 180°±10°) coincides with the direction of the regional maximum compressive stress determined for the region. This polarization direction can be interpreted in terms of the “Extensive Dilatancy Anisotropy” model as the effect of vertical parallel aligned cracks. The preferred polarization direction measured at LMX, however, gives an azimuth of 45°±5°. Thus, it appears that faults and fractures aligned oblique to the main tectonic trend have a greater influence on the anisotropic characteristics of the crust south of Cerro Prieto volcano than that of the regional stress field. Time delays between slow and fast S waves observed at CPX appear constant from 1988 to 1992 while delays measured at LMX for the same interval indicate a small increase with time which cannot be attributed to azimuthal variations of paths.
Institute of Scientific and Technical Information of China (English)
Minghui Zhao; Xuelin Qiu; Shaohong Xia; Ping Wang; Kanyuan Xia; Huilong Xu
2008-01-01
Structure models associated with P- and S-wave velocities contain considerable amount of information on lithology and geophysical properties, which can be used to better understand the complexity of the deep crustal structure. However, records of converted shear waves are less due to the speciality of seismic survey at sea and the rigorous generated conditions. The study on shear waves has always been a weakness for studying the deep crustal structures of South China Sea (SCS). In this paper, eleven three-component OBSs were deployed along the Profile OBS-2001 in northeastern SCS. After the data processing of polarization and band-pass filter, converted Swave phases were identified in the radical component records of nine OBSs. Taking the OBS7 as an example, identification and analysis of converted shear waves were presented and discussed in detail. A few phase groups, such as PwSc, PgSs, PnSc, PmS, and PwSn, were found coming from the deep crust or Moho interface by simple theoretical model calculation and ray-tracing simulation. The results not only provide the underlying basis for studies of S-wave velocity structure and Poisson's ratio structure, but also reveal the relationship between crustal petrology and seismology, which will be of importance for making full use of S-wave information in the future.
Hilst, R.D. van der; Chevrot, Sébastien
2003-01-01
We derive the explicit expressions for the phase velocities and polarizations of quasi-shear waves propagating in a transversely isotropic medium. The normal to the plane defined by the phase normal and the symmetry axis gives the exact polarization of S₁, while the polarization of S₂ also depends o
The lithospheric shear-wave velocity structure of Saudi Arabia: Young volcanism in an old shield
Tang, Zheng
2016-05-11
We investigate the lithospheric shear-wave velocity structure of Saudi Arabia by conducting H-κ stacking analysis and jointly inverting teleseismic P-receiver functions and fundamental-mode Rayleigh wave group velocities at 56 broadband stations deployed by the Saudi Geological Survey (SGS). The study region, the Arabian plate, is traditionally divided into the western Arabian shield and the eastern Arabian platform: The Arabian shield itself is a complicated mélange of crustal material, composed of several Proterozoic terrains separated by ophiolite-bearing suture zones and dotted by outcropping Cenozoic volcanic rocks (locally known as harrats). The Arabian platform is primarily covered by 8 to 10 km of Paleozoic, Mesozoic and Cenozoic sedimentary rocks. Our results reveal high Vp/Vs ratios in the region of Harrat Lunayyir, which are interpreted as solidified magma intrusions from old magmatic episodes in the shield. Our results also indicate slow velocities and large upper mantle lid temperatures below the southern and northern tips of the Arabian shield, when compared with the values obtained for the central shield. We argue that our inferred patterns of lid velocity and temperature are due to heating by thermal conduction from the Afar plume (and, possibly, the Jordan plume), and that volcanism in western Arabia may result from small-scale adiabatic ascent of magma diapirs.
The lithospheric shear-wave velocity structure of Saudi Arabia: Young volcanism in an old shield
Tang, Zheng; Julià, Jordi; Zahran, Hani; Mai, P. Martin
2016-06-01
We investigate the lithospheric shear-wave velocity structure of Saudi Arabia by conducting H-κ stacking analysis and jointly inverting teleseismic P-receiver functions and fundamental-mode Rayleigh wave group velocities at 56 broadband stations deployed by the Saudi Geological Survey (SGS). The study region, the Arabian plate, is traditionally divided into the western Arabian shield and the eastern Arabian platform: The Arabian shield itself is a complicated mélange of crustal material, composed of several Proterozoic terrains separated by ophiolite-bearing suture zones and dotted by outcropping Cenozoic volcanic rocks (locally known as harrats). The Arabian platform is primarily covered by 8 to 10 km of Paleozoic, Mesozoic and Cenozoic sedimentary rocks. Our results reveal high Vp/Vs ratios in the region of Harrat Lunayyir, which are interpreted as solidified magma intrusions from old magmatic episodes in the shield. Our results also indicate slow velocities and large upper mantle lid temperatures below the southern and northern tips of the Arabian shield, when compared with the values obtained for the central shield. We argue that our inferred patterns of lid velocity and temperature are due to heating by thermal conduction from the Afar plume (and, possibly, the Jordan plume), and that volcanism in western Arabia may result from small-scale adiabatic ascent of magma diapirs.
Xu, Yanlong
2015-08-01
The coupled mode theory with coupling of diffraction modes and waveguide modes is usually used on the calculations of transmission and reflection coefficients for electromagnetic waves traveling through periodic sub-wavelength structures. In this paper, I extend this method to derive analytical solutions of high-order dispersion relations for shear horizontal (SH) wave propagation in elastic plates with periodic stubs. In the long wavelength regime, the explicit expression is obtained by this theory and derived specially by employing an effective medium. This indicates that the periodical stubs are equivalent to an effective homogenous layer in the long wavelength. Notably, in the short wavelength regime, high-order diffraction modes in the plate and high-order waveguide modes in the stubs are considered with modes coupling to compute the band structures. Numerical results of the coupled mode theory fit pretty well with the results of the finite element method (FEM). In addition, the band structures\\' evolution with the height of the stubs and the thickness of the plate shows clearly that the method can predict well the Bragg band gaps, locally resonant band gaps and high-order symmetric and anti-symmetric thickness-twist modes for the periodically structured plates. © 2015 Elsevier B.V.
Improving the shear wave velocity structure beneath Bucharest (Romania) using ambient vibrations
Manea, Elena Florinela; Michel, Clotaire; Poggi, Valerio; Fäh, Donat; Radulian, Mircea; Balan, Florin Stefan
2016-11-01
Large earthquakes from the intermediate-depth Vrancea seismic zone are known to produce in Bucharest ground motion characterized by predominant long periods. This phenomenon has been interpreted as the combined effect of both seismic source properties and site response of the large sedimentary basin. The thickness of the unconsolidated Quaternary deposits beneath the city is more than 200 m, the total depth of sediments is more than 1000 m. Complex basin geometry and the low seismic wave velocities of the sediments are primarily responsible for the large amplification and long duration experienced during earthquakes. For a better understanding of the geological structure under Bucharest, a number of investigations using non-invasive methods have been carried out. With the goal to analyse and extract the polarization and dispersion characteristics of the surface waves, ambient vibrations and low-magnitude earthquakes have been investigated using single station and array techniques. Love and Rayleigh dispersion curves (including higher modes), Rayleigh waves ellipticity and SH-wave fundamental frequency of resonance (f0SH) have been inverted simultaneously to estimate the shear wave velocity structure under Bucharest down to a depth of about 8 km. Information from existing borehole logs was used as prior to reduce the non-uniqueness of the inversion and to constrain the shallow part of the velocity model (<300 m). In this study, we use data from a 35-km diameter array (the URS experiment) installed by the National Institute for Earth Physics and by the Karlsruhe Institute of Technology during 10 months in the period 2003-2004. The array consisted of 32 three-component seismological stations, deployed in the urban area of Bucharest and adjacent zones. The large size of the array and the broad-band nature of the available sensors gave us the possibility to characterize the surface wave dispersion at very low frequencies (0.05-1 Hz) using frequency-wavenumber techniques
Directory of Open Access Journals (Sweden)
Guiling Li
Full Text Available OBJECTIVES: To perform a meta-analysis assessing the ability of shear wave elastography (SWE to identify malignant breast masses. METHODS: PubMed, the Cochrane Library, and the ISI Web of Knowledge were searched for studies evaluating the accuracy of SWE for identifying malignant breast masses. The diagnostic accuracy of SWE was evaluated according to sensitivity, specificity, and hierarchical summary receiver operating characteristic (HSROC curves. An analysis was also performed according to the SWE mode used: supersonic shear imaging (SSI and the acoustic radiation force impulse (ARFI technique. The clinical utility of SWE for identifying malignant breast masses was evaluated using analysis of Fagan plot. RESULTS: A total of 9 studies, including 1888 women and 2000 breast masses, were analyzed. Summary sensitivities and specificities were 0.91 (95% confidence interval [CI], 0.88-0.94 and 0.82 (95% CI, 0.75-0.87 by SSI and 0.89 (95% CI, 0.81-0.94 and 0.91 (95% CI, 0.84-0.95 by ARFI, respectively. The HSROCs for SSI and ARFI were 0.92 (95% CI, 0.90-0.94 and 0.96 (95% CI, 0.93-0.97, respectively. SSI and ARFI were both very informative, with probabilities of 83% and 91%, respectively, for correctly differentiating between benign and malignant breast masses following a "positive" measurement (over the threshold value and probabilities of disease as low as 10% and 11%, respectively, following a "negative" measurement (below the threshold value when the pre-test probability was 50%. CONCLUSIONS: SWE could be used as a good identification tool for the classification of breast masses.
A threshold value in Shear Wave elastography to rule out malignant thyroid nodules: A reality?
Energy Technology Data Exchange (ETDEWEB)
Veyrieres, J.-B., E-mail: jbveyrieres@hotmail.fr [Département d’imagerie médicale, Hôpital d’Instruction des Armées St Anne, Bd Saint Anne, BP 20545 Toulon cedex (France); Albarel, F., E-mail: frederique.albarel@ap-hm.fr [Département médical d’endocrinologie et des pathologies métaboliques, Hôpital Universitaire la Timone, Assistance publique des Hôpitaux de Marseille, 264 rue Saint Pierre, 13385 Marseille cedex 5 (France); Lombard, J. Vaillant, E-mail: Josiane.vaillant@ap-hm.fr [Département d’imagerie médicale, Hôpital Universitaire la Timone, Assistance publique des Hôpitaux de Marseille, 264 rue Saint Pierre, 13385 Marseille cedex 5 (France); Berbis, J., E-mail: Julie.berbis@ap-hm.fr [Département de santé publique, Université de Médecine, 27, Bd Jean Moulin, 13385 Marseille cedex 5 (France); Sebag, F., E-mail: frederic.sebag@ap-hm.fr [Département de chirurgie des pathologies endocriniennes et métaboliques, Hôpital Universitaire la Timone, Assistance publique des Hôpitaux de Marseille, 264 rue Saint Pierre, 13385 Marseille cedex 5 (France); and others
2012-12-15
Objectives: To evaluate hability of a threshold value in ShearWave™ elastography to rule out malignant thyroid nodules while studying its pertinence in association with morphological signs. Equipment and methods: 148 patients (110 women and 38 men; 52.5 y.o. 15.8) referred for surgery of thyroid nodules underwent standard ultrasound as well as elastography. Characteristics of the morphological signs and maximum elastographic index were calculated in relation to histology. Association of morphological signs alone and then of elastography was also evaluated. One hundred and fifty one nodules were studied on a double-blind basis. Results: 297 nodules were studied. Thirty-five cancers were detected (11.6%). Elastographic index was higher in malignant nodules (115 kPa 60.4) than in benign nodules (41 kPa 25.8) (p < 0.001, Student's t-test). Cut off value of 66 kPa was the best to discriminate malignant nodules with a sensitivity of 80% (CI 95%, 62.5; 90.9) and a specificity of 90.5% (CI 95%, 86.1; 93.6) (p = 0.0001). Association of elastography and morphological ultrasound signs presented a sensitivity of 97% (CI 95%, 83.3; 99.8) and a negative predictive value of 99.5% (CI 95%, 95.6; 99.9). Interobserver reproducibility proved to be excellent with an interclass correlation of 0.97 (CI 95%, 0.96; 0.98) (p < 0.001). Conclusion: The 66 kPa threshold in Shear Wave elastography is the best ultrasound sign to rule out malignant thyroid nodules. The method is simple, quantitative, reproducible and usable in the study of nodules larger than 3 cm. Progress must still be made in the study of calcified nodules and follicular tumors.
Utility of Real-Time Shear Wave Elastography in the Assessment of Testicular Torsion.
Directory of Open Access Journals (Sweden)
Zhenxing Sun
Full Text Available Real-time shear-wave elastography (SWE is a newly developed method which can obtain the stiffness of tissues and organs based on tracking of shear wave propagation through a structure. Several studies have demonstrated its potential in the differentiation between diseased and normal tissue in clinical practices, however the applicability to testicular disease has not been well elucidated. We investigated the feasibility and reproducibility of SWE in the detection of testicular torsion. This prospective study comprised 15 patients with complete testicular torsion. Results obtained from SWE along with conventional gray-scale and color Doppler sonography and post-operative pathology were compared. The results revealed that (i the size of injured testis was increased and the twisted testis parenchyma was heterogeneous. The blood flow signals in injured testis were barely visible or absent; (ii The Young's modulus, including Emean, Emax, Emin and SD values in the border area of torsional testis were higher than those of normal testis (Emean, 78.07±9.01 kPa vs 22.0±5.10 kPa; Emax, 94.07±6.53 kPa vs 27.87±5.78 kPa; Emin, 60.73±7.84 kPa vs 18.90±4.39 kPa; SD, 7.67±0.60 kPa vs 2.30±0.36 kPa, [P<0.05]; The Emax and SD values in the central area of the torsional testis were higher than the corresponding area of the normal testis (Emax, 8.23±0.30 kPa vs 3.97±0.95 kPa; SD, 1.5±0.26 kPa vs 0.67±0.35 kPa,[P<0.05] and Emin values was lower than those of normal testicles (0.93±0.51 kPa vs 1.6±0.36 kPa; [P<0.05]; (iii The Young's modulus measurement between two physicians showed good agreement. The pathological findings were accordance with SWE measurement. SWE is a non-invasive, convenient and high reproducible method and may serve as an important alternative tool in the diagnosis and monitoring the progression of the acute scrotums, in additional to conventional Doppler sonography.
Institute of Scientific and Technical Information of China (English)
Huajian Yao
2015-01-01
Seismic anisotropy provides important constraints on deformation patterns of Earth's material.Rayleigh wave dispersion data with azimuthal anisotropy can be used to invert for depth-dependent shear wavespeed azimuthal anisotropy,therefore reflecting depth-varying deformation patterns in the crust and upper mantle.In this study,we propose a two-step method that uses the Neighborhood Algorithm (NA) for the point-wise inversion of depth-dependent shear wavespeeds and azimuthal anisotropy from Rayleigh wave azimuthally anisotropic dispersion data.The first step employs the NA to estimate depthdependent Vsv (or the elastic parameter L) as well as their uncertainties from the isotropic part Rayleigh wave dispersion data.In the second step,we first adopt a difference scheme to compute approximate Rayleigh-wave phase velocity sensitivity kernels to azimuthally anisotropic parameters with respect to the velocity model obtained in the first step.Then we perform the NA to estimate the azi.muthally anisotropic parameters Gc/L and Gs/L at depths separately from the corresponding cosine and sine terms of the azimuthally anisotropic dispersion data.Finally,we compute the depth-dependent magnitude and fast polarization azimuth of shear wavespeed azimuthal anisotropy.The use of the global search NA and Bayesian analysis allows for more reliable estimates of depth-dependent shear wavespeeds and azimuthal anisotropy as well as their uncertainties.We illustrate the inversion method using the azimuthally anisotropic dispersion data in SE Tibet,where we find apparent changes of fast axes of shear wavespeed azimuthal anisotropy between the crust and uppermost mantle.
Institute of Scientific and Technical Information of China (English)
Ruan Aiguo; Li Qinghe; Rong Dailu; Zhao Heyun
2001-01-01
The temporal evolution of shear-wave splitting and geoelectrical anisotropy of earth media during the preparation and occurrence of the Yongdeng Ms5.8 earthquake is studied based on the digital seismic data and continuous magnetotelluric (MT) records. The results show that the direction of polarization of the fast S-wave gradually rotated from north by east to north by west before the Yongdeng earthquake and returned to north by east after the earthquake.Moreover, the time delay between the fast S wave and slow S wave increased to the largest until the earthquake occurred. On the other hand, the directions of geoelectrical principal axes also changed before earthquake, and exhibited identical characteristics in the frequency domain. The direction of the axis (ρxy), which was originally perpendicular to the fault near station, varied from N17°E to N15°W before earthquake, and returned to north by east after the earthquake. Correspondingly, the change of ρxy was most obvious in the period range of 160 s to 226 s, but the variation of ρyx was less obvious. The focal mechanism solution of the earthquake showed that the direction of P-axis was N15°W. Conclusions are: (1) The fast Swave polarization, one of the geoelectrical principal axes and the P-axis were in agreement in orientation during earthquake preparation, which is the result of the alignment of EDA cracks;(2) The fact that the geoelectrical axes identically varied with frequency demonstrated that EDA is really widespread in the crust; (3) The variation of MT apparent resistivity also showed the existence of anisotropy and has its own features: The static anisotropy of resistivity is controlled by the tectonic conditions of the station, while the dynamic anisotropy is caused and affected by the seismic stress field; The resistivity along the axis parallel to the P-axis showed the most obvious variation, while the difference in variation with frequency shows that the variation of resistivity depends not
Directory of Open Access Journals (Sweden)
John Z. G. Ma
2016-03-01
Full Text Available We study the atmospheric structure in response to the propagation of gravity waves under nonisothermal (nonzero vertical temperature gradient, wind-shear (nonzero vertical zonal/meridional wind speed gradients, and dissipative (nonzero molecular viscosity and thermal conduction conditions. As an alternative to the “complex wave-frequency” model proposed by Vadas and Fritts, we employ the traditional “complex vertical wave-number” approach to solving an eighth-order complex polynomial dispersion equation. The empirical neutral atmospheric models of NRLMSISE-00 and HWM93 are employed to provide mean-field properties. In response to the propagation of gravity waves, the atmosphere is driven into three sandwich-like layers: the adiabatic layer (0–130 km, the dissipation layer (130–230 km and the pseudo-adiabatic layer (above 230 km. In the lower layer, (extended-Hines’ mode or ordinary dissipative wave modes exist, whereas viscous dissipation and thermal conduction fail to exert perceptible influences; in the middle layer, Hines’ mode ceases to exist, and both ordinary and extraordinary dissipative wave modes flourish; in the top layer, only extraordinary wave modes survive, and dissipations affect the real part of the vertical wavenumber ( m r substantially; however, they contribute little to the imaginary part, which is the vertical growth rate ( m i . We also analyze the transition of Hines’ classical mode to ordinary dissipative wave modes, describe both the upward and downward modes of gravity waves and illustrate nonisothermal and wind-shear effects on the propagation of gravity waves of different modes.
Directory of Open Access Journals (Sweden)
Hadi Fattahi
2016-12-01
Full Text Available Shear wave velocity (Vs data are key information for petrophysical, geophysical and geomechanical studies. Although compressional wave velocity (Vp measurements exist in almost all wells, shear wave velocity is not recorded for most of elderly wells due to lack of technologic tools. Furthermore, measurement of shear wave velocity is to some extent costly. This study proposes a novel methodology to remove aforementioned problems by use of hybrid adaptive neuro fuzzy inference system (ANFIS with ant colony optimization algorithm (ACO based on fuzzy c–means clustering (FCM and subtractive clustering (SCM. The ACO is combined with two ANFIS models for determining the optimal value of its user–defined parameters. The optimization implementation by the ACO significantly improves the generalization ability of the ANFIS models. These models are used in this study to formulate conventional well log data into Vs in a quick, cheap, and accurate manner. A total of 3030 data points was used for model construction and 833 data points were employed for assessment of ANFIS models. Finally, a comparison among ANFIS models, and six well–known empirical correlations demonstrated ANFIS models outperformed other methods. This strategy was successfully applied in the Marun reservoir, Iran.
Shear horizontal surface acoustic wave microsensor for Class A viral and bacterial detection.
Energy Technology Data Exchange (ETDEWEB)
Branch, Darren W.; Huber, Dale L.; Brozik, Susan Marie; Edwards, Thayne L.
2008-10-01
The rapid autonomous detection of pathogenic microorganisms and bioagents by field deployable platforms is critical to human health and safety. To achieve a high level of sensitivity for fluidic detection applications, we have developed a 330 MHz Love wave acoustic biosensor on 36{sup o} YX Lithium Tantalate (LTO). Each die has four delay-line detection channels, permitting simultaneous measurement of multiple analytes or for parallel detection of single analyte containing samples. Crucial to our biosensor was the development of a transducer that excites the shear horizontal (SH) mode, through optimization of the transducer, minimizing propagation losses and reducing undesirable modes. Detection was achieved by comparing the reference phase of an input signal to the phase shift from the biosensor using an integrated electronic multi-readout system connected to a laptop computer or PDA. The Love wave acoustic arrays were centered at 330 MHz, shifting to 325-328 MHz after application of the silicon dioxide waveguides. The insertion loss was -6 dB with an out-of-band rejection of 35 dB. The amplitude and phase ripple were 2.5 dB p-p and 2-3{sup o} p-p, respectively. Time-domain gating confirmed propagation of the SH mode while showing suppression of the triple transit. Antigen capture and mass detection experiments demonstrate a sensitivity of 7.19 {+-} 0.74{sup o} mm{sup 2}/ng with a detection limit of 6.7 {+-} 0.40 pg/mm{sup 2} for each channel.
Deep learning based classification of breast tumors with shear-wave elastography.
Zhang, Qi; Xiao, Yang; Dai, Wei; Suo, Jingfeng; Wang, Congzhi; Shi, Jun; Zheng, Hairong
2016-12-01
This study aims to build a deep learning (DL) architecture for automated extraction of learned-from-data image features from the shear-wave elastography (SWE), and to evaluate the DL architecture in differentiation between benign and malignant breast tumors. We construct a two-layer DL architecture for SWE feature extraction, comprised of the point-wise gated Boltzmann machine (PGBM) and the restricted Boltzmann machine (RBM). The PGBM contains task-relevant and task-irrelevant hidden units, and the task-relevant units are connected to the RBM. Experimental evaluation was performed with five-fold cross validation on a set of 227 SWE images, 135 of benign tumors and 92 of malignant tumors, from 121 patients. The features learned with our DL architecture were compared with the statistical features quantifying image intensity and texture. Results showed that the DL features achieved better classification performance with an accuracy of 93.4%, a sensitivity of 88.6%, a specificity of 97.1%, and an area under the receiver operating characteristic curve of 0.947. The DL-based method integrates feature learning with feature selection on SWE. It may be potentially used in clinical computer-aided diagnosis of breast cancer.
Does motion affect liver stiffness estimates in shear wave elastography? Phantom and clinical study.
Pellot-Barakat, Claire; Chami, Linda; Correas, Jean Michel; Lefort, Muriel; Lucidarme, Olivier
2016-09-01
This study was undertaken to evaluate the impact of free-breathing (FB) vs. Apnea on Shear-wave elastography (SWE) measurements. Quantitative liver-stiffness measurements were obtained during FB and Apnea for 97 patients with various body-morphologies and liver textures. Quality indexes of FB and Apnea elasticity maps (percentage of non-filling (PNF), temporal (TV) and spatial (SV) variabilities) were computed. SWE measurements were also obtained from an homogeneous phantom at rest and during a mechanically-induced motion. Liver-stiffness values estimated from FB and Apnea acquisitions were correlated, particularly for homogeneous livers (r=0.76, PFB values were consistently 20-25% lower than Apnea ones (PFB also systematically resulted in degradation of TV (PFB measurements are highly correlated, although FB data quality is degraded compared to Apnea and estimated stiffness in FB is systematically lower than in Apnea. These discrepancies between rest and motion states were observed for patients but not for phantom data, suggesting that patient breath-holding impacts liver stiffness.
Crustal anisotropy along the Sunda-Banda arc transition zone from shear wave splitting measurements
Syuhada, Syuhada; Hananto, Nugroho D.; Abdullah, Chalid I.; Puspito, Nanang T.; Anggono, Titi; Yudistira, Tedi; Ramdhan, Mohamad
2017-01-01
We analyse shear wave splitting derived from the local earthquakes recorded at 13 seismic stations to investigate crustal anisotropy over varied geological regimes of the Sunda-Banda arc transition zone. We determine high-quality splitting measurements for 262 event-station pairs. The orientations of fast polarisation for the stations located in the oceanic regime are generally parallel or sub-parallel to the directions of the principal compressional strain-rate axes with a lack of dependency of delay time δt on increasing depth. The results suggest that anisotropy in this domain is primarily due to the influence of stress induced anisotropy on the upper crust. On the other hand, the average fast polarisations show more scattered for the stations located around Sumba Island and in the collision regime, implying a mix of anisotropy causes. Thus, anisotropy in this region is not only controlled by preferentially aligned cracks due to tectonic stress, but also by preferential mineral alignment and macro-scale faults associated with the regional tectonic deformation. We also perform further analysis to search possible temporal variations of splitting parameters associated with the stress changes excited by large earthquakes. The association between variation in splitting parameters and earthquake activity observed in this study might provide useful information about accumulation of stress before large events, and thus might be considered as an earthquake-forecasting tool in the future.
Brocher, T.M.
2008-01-01
This article presents new empirical compressional and shear-wave velocity (Vp and Vs) versus depth relationships for the most common rock types in northern California. Vp versus depth relations were developed from borehole, laboratory, seismic refraction and tomography, and density measurements, and were converted to Vs versus depth relations using new empirical relations between Vp and Vs. The relations proposed here account for increasing overburden pressure but not for variations in other factors that can influence velocity over short distance scales, such as lithology, consolidation, induration, porosity, and stratigraphic age. Standard deviations of the misfits predicted by these relations thus provide a measure of the importance of the variability in Vp and Vs caused by these other factors. Because gabbros, greenstones, basalts, and other mafic rocks have a different Vp and Vs relationship than sedimentary and granitic rocks, the differences in Vs between these rock types at depths below 6 or 7 km are generally small. The new relations were used to derive the 2005 U.S. Geological Survey seismic velocity model for northern California employed in the broadband strong motion simulations of the 1989 Loma Prieta and 1906 San Francisco earthquakes; initial tests of the model indicate that the Vp model generally compares favorably to regional seismic tomography models but that the Vp and Vs values proposed for the Franciscan Complex may be about 5% too high.
Assessment of HIFU lesions by shear-wave elastography: Initial in-vivo results
Anquez, Jeremie; Corréas, Jean-Michel; Criton, Aline; Lacoste, François; Yon, Sylvain
2012-11-01
The aim of this work was to evaluate Shear Wave Elastography (SWE) as a tool to visualize HIFU lesions in an acute in-vivo setting. Extracorporeal HIFU sonications of liver were performed on 14 rabbits in 19 consecutive, adjacent pulses, with in situ energies between 75 J and 228 J. A set of images of the sonicated area was acquired prior and post HIFU ablation: 2 orthogonal SWE images (transverse and sagittal) and contrast enhanced CT scan. SWE images were acquired with theAixplorer® device (SuperSonic Imagine, Aix, France). Prior to the treatment, the liver elasticity appeared homogeneous, with a elasticity comprised between 5 and 11 kPa. The lesion extents were manually segmented on post-treatment SWE images and their areas A(SWE)T (transverse) and A(SWE)S (sagittal) were computed. On 3D CT the lesions were segmented as a hypo intense (devascularized) region on 3D CT images, and considered as "ground truth". The transverse and sagittal planes passing by their centers of mass were extracted. The lesion areas were computed for each plane, respectively A(CT)T and A(CT)S. The ratios A(CT)T/A(SWE)T and A(CT)S/A(SWE)S were computed for all the 14 cases. SWE appear to underestimate the lesion extent in the sagittal orientation with respect to CT images, while a good matching is obtained in the transverse orientation.
Akbarzadeh Khorshidi, Majid; Shariati, Mahmoud
2016-04-01
This paper presents a new investigation for propagation of stress wave in a nanobeam based on modified couple stress theory. Using Euler-Bernoulli beam theory, Timoshenko beam theory, and Reddy beam theory, the effect of shear deformation is investigated. This nonclassical model contains a material length scale parameter to capture the size effect and the Poisson effect is incorporated in the current model. Governing equations of motion are obtained by Hamilton's principle and solved explicitly. This solution leads to obtain two phase velocities for shear deformable beams in different directions. Effects of shear deformation, material length scale parameter, and Poisson's ratio on the behavior of these phase velocities are investigated and discussed. The results also show a dual behavior for phase velocities against Poisson's ratio.
Institute of Scientific and Technical Information of China (English)
YAO Gui-Jin; SONG Ruo-Long; WANG Ke-Xie
2008-01-01
We obtaln an asymptotic solution to the vertical branch-cut integral of shear waves excited by an impulsive pressure point source in a fluid-filled borehole,by taking the effect of the infinite singularity of the Hankel functions related to shear waves in the integrand at the shear branch point into account and using the method of steepest-descent to expand the vertical branch-cut integral of shear waves.It is theoretically proven that the saddle point of the integrand is locared at ks-i/z,where ks and z are the shear branch point and the offset.The continuous and smooth amplitude spectra and the resonant peaks of shear waves are numerically calculated from the asymptotic solution.These asymptotic results are generally in agreement with the numerical integral results.It is also found by the comparison and analysis of two results that the resonant factor and the effect of the normal and leaking mode poles around the shear branch point lead to the two-peak characteristics of the amplitude spectra of shear waves in the resonant peak zones from the numerical integral calculations.
Destrade, M.
2010-12-08
We study the propagation of two-dimensional finite-amplitude shear waves in a nonlinear pre-strained incompressible solid, and derive several asymptotic amplitude equations in a simple, consistent and rigorous manner. The scalar Zabolotskaya (Z) equation is shown to be the asymptotic limit of the equations of motion for all elastic generalized neo-Hookean solids (with strain energy depending only on the first principal invariant of Cauchy-Green strain). However, we show that the Z equation cannot be a scalar equation for the propagation of two-dimensional shear waves in general elastic materials (with strain energy depending on the first and second principal invariants of strain). Then, we introduce dispersive and dissipative terms to deduce the scalar Kadomtsev-Petviashvili (KP), Zabolotskaya-Khokhlov (ZK) and Khokhlov- Zabolotskaya-Kuznetsov (KZK) equations of incompressible solid mechanics. © 2010 The Royal Society.
Deng, Yufeng; Palmeri, Mark L; Rouze, Ned C; Rosenzweig, Stephen J; Abdelmalek, Manal F; Nightingale, Kathryn R
2015-07-01
Shear wave elasticity imaging (SWEI) has found success in liver fibrosis staging. This work evaluates hepatic SWEI measurement success as a function of push pulse energy using two mechanical index (MI) values (1.6 and 2.2) over a range of pulse durations. Shear wave speed (SWS) was measured in the livers of 26 study subjects with known or potential chronic liver diseases. Each measurement consisted of eight SWEI sequences, each with different push energy configurations. The rate of successful SWS estimation was linearly proportional to the push energy. SWEI measurements with higher push energy were successful in patients for whom standard push energy levels failed. The findings also suggest that liver capsule depth could be used prospectively to identify patients who would benefit from elevated output. We conclude that there is clinical benefit to using elevated acoustic output for hepatic SWS measurement in patients with deeper livers.
Yang, Ming; Elkibbi, Maya; Rial, José A.
2005-03-01
Shear wave splitting polarization (p) and delay time (Δt) observations are used to invert for fracture orientation and intensity of fracturing, simultaneously. By addressing the different levels of uncertainty involved in measurements of these two parameters, as well as their dissimilar relationships to fracture configuration, we have developed an inversion algorithm which reduces the primary double-response inversion to two connected single-response ones. We show that its inherent non-linearity complicates this problem, which therefore requires a more sophisticated attack than conventional inversion schemes. It will be shown that the construction of residue function contours in the model plane and the generation of surrogate data by simulation process are essential to this approach. We illustrate the capabilities of this technique by inverting shear wave splitting data from The Geysers geothermal reservoir in California. In principle the method should be useful for characterizing fractured reservoirs, whether geothermal or hydrocarbon.
DEFF Research Database (Denmark)
Kammann, Janina; Hübscher, Christian; Nielsen, Lars
. In the Upper Cretaceous growth faulting documents continued rifting. This finding contrasts the Late Cretaceous to Paleogene inversion tectonics in neighboring structures, as the Tornquist Zone. The high-resolution shear-wave seismic method was used to image structures in Quaternary layers in the Carlsberg....... In the shear-wave profile, we imaged the 30 m of the upward continuation of the Carlsberg Fault zone. In our area of investigation, the fault zone appears to comprise normal block faults and one reverse block fault showing the complexity of the fault zone. The observed faults appear to affect both the Danian......The Carlsberg Fault zone is located in the N-S striking Höllviken Graben and traverses the city of Copenhagen. The fault zone is a NNW-SSE striking structure in direct vicinity to the transition zone of the Danish Basin and the Baltic Shield. Recent small earthquakes indicate activity in the area...
Montagnon, Emmanuel; Hadj-Henni, Anis; Schmitt, Cédric; Cloutier, Guy
2013-04-07
This paper presents a semi-analytical model of shear wave scattering by a viscoelastic elliptical structure embedded in a viscoelastic medium, and its application in the context of dynamic elastography imaging. The commonly used assumption of mechanical homogeneity in the inversion process is removed introducing a priori geometrical information to model physical interactions of plane shear waves with the confined mechanical heterogeneity. Theoretical results are first validated using the finite element method for various mechanical configurations and incidence angles. Secondly, an inverse problem is formulated to assess viscoelastic parameters of both the elliptic inclusion and its surrounding medium, and applied in vitro to characterize mechanical properties of agar-gelatin phantoms. The robustness of the proposed inversion method is then assessed under various noise conditions, biased geometrical parameters and compared to direct inversion, phase gradient and time-of-flight methods. The proposed elastometry method appears reliable in the context of estimating confined lesion viscoelastic parameters.
Institute of Scientific and Technical Information of China (English)
魏修成; 陈天胜; 季玉新
2008-01-01
Based on the empirical Gardner equation describing the relationship between density and compressional wave velocity, the converted wave reflection coefficient extrema attributes for AVO analysis are proposed and the relations between the extrema position and amplitude, average velocity ratio across the interface, and shear wave reflection coefficient are derived. The extrema position is a monotonically decreasing function of average velocity ratio, and the extrema amplitude is a function of average velocity ratio and shear wave reflection coefficient. For theoretical models, the average velocity ratio and shear wave reflection coefficient are inverted from the extrema position and amplitude obtained from fitting a power function to converted wave AVO curves. Shear wave reflection coefficient sections have clearer physical meaning than conventional converted wave stacked sections and establish the theoretical foundation for geological structural interpretation and event correlation. 'The method of inverting average velocity ratio and shear wave reflection coefficient from the extrema position and amplitude obtained from fitting a power function is applied to real CCP gathers. The inverted average velocity ratios are consistent with those computed from compressional and shear wave well logs.
Cohen, Tal; Barr, Richard G
2017-01-09
There are multiple factors that affect the shear wave speed in the assessment of liver stiffness. In this case report, we present a case of hemochromatosis that has elevated liver stiffness suggestive of significant fibrosis or cirrhosis; however on liver biopsy, no fibrosis was identified. This article will discuss the possibility that liver iron deposition may affect SWE measurements of the liver, leading to inaccurate assessment of liver fibrosis. In these cases, a liver biopsy may be required for accurate liver assessment.
Franco, Ediguer E.; Adamowski, Julio C.; Buiochi, Flávio
2012-05-01
This work implements the ultrasonic shear-wave reflectance method for viscosity measurements. A modeconversion device was used for the dynamic viscosity measurement of mineral oil, SAE 40 automotive oil and glycerin samples at room temperature and 1 MHz. A novel signals processing technique that calculates the reflection coefficient magnitude in a frequency band, instead of a single frequency, was employed, showing an important improvement on the measurement accuracy.
Pandit, Deepak Kr.; Kundu, Santimoy; Gupta, Shishir
2017-02-01
This theoretical work reports the dispersion and absorption characteristics of horizontally polarized shear wave (SH-wave) in a corrugated medium with void pores sandwiched between two dissimilar half-spaces. The dispersion and absorption equations have been derived in a closed form using the method of separation of variables. It has been established that there are two different kinds of wavefronts propagating in the proposed media. One of the wavefronts depends on the modulus of rigidity of elastic matrix of the medium and satisfies the dispersion equation of SH-waves. The second wavefront depends on the changes in volume fraction of the pores. Numerical computation of the obtained relations has been performed and the results are depicted graphically. The influence of corrugation, sandiness on the phase velocity and the damped velocity of SH-wave has been studied extensively.
Chatelin, Simon; Bernal, Miguel; Deffieux, Thomas; Papadacci, Clément; Flaud, Patrice; Nahas, Amir; Boccara, Claude; Gennisson, Jean-Luc; Tanter, Mickael; Pernot, Mathieu
2014-11-01
Shear wave elastography imaging techniques provide quantitative measurement of soft tissues elastic properties. Tendons, muscles and cerebral tissues are composed of fibers, which induce a strong anisotropic effect on the mechanical behavior. Currently, these tissues cannot be accurately represented by existing elastography phantoms. Recently, a novel approach for orthotropic hydrogel mimicking soft tissues has been developed (Millon et al 2006 J. Biomed. Mater. Res. B 305-11). The mechanical anisotropy is induced in a polyvinyl alcohol (PVA) cryogel by stretching the physical crosslinks of the polymeric chains while undergoing freeze/thaw cycles. In the present study we propose an original multimodality imaging characterization of this new transverse isotropic (TI) PVA hydrogel. Multiple properties were investigated using a large variety of techniques at different scales compared with an isotropic PVA hydrogel undergoing similar imaging and rheology protocols. The anisotropic mechanical (dynamic and static) properties were studied using supersonic shear wave imaging technique, full-field optical coherence tomography (FFOCT) strain imaging and classical linear rheometry using dynamic mechanical analysis. The anisotropic optical and ultrasonic spatial coherence properties were measured by FFOCT volumetric imaging and backscatter tensor imaging, respectively. Correlation of mechanical and optical properties demonstrates the complementarity of these techniques for the study of anisotropy on a multi-scale range as well as the potential of this TI phantom as fibrous tissue-mimicking phantom for shear wave elastographic applications.
Institute of Scientific and Technical Information of China (English)
GAO Yuan; WU Jing
2008-01-01
The rocks in the crust are pervaded by stress-aligned fluid-saturated microcracks, and the complex fault tectonics and stress control the configuration of the microcracks, however shear-wave splitting could indicate this kind of characteristics. In this paper, Capital Area Seismograph Network (CASN), the widest scope and highest density of regional seismograph network presently in China, is adopted to deduce the principal compressive stress field distribution pattern from polarizations of fast shear-waves, based on shear-wave splitting analysis. The principal compressive stress in capital area of China is at NE85.7°±41.0° in this study. Compared with the results of principal compressive stress field in North China obtained from other methods, the results in this study are reliable in the principal com-pressive stress field distribution in capital area. The results show that it is an effective way, although it is the first time to directly obtain crustal stress field from seismic anisotropy. It is effectively applied to the zones with dense seismograph stations.
Directory of Open Access Journals (Sweden)
L. Vecsey
2014-01-01
Full Text Available We analyse splitting of teleseismic shear-wave recorded during the PASSEQ passive experiment (2006–2008 focussed on the upper mantle structure across the Trans-European Suture Zone (TESZ. 1009 pairs of the delay times of the slow split-shear waves and orientations of the polarized fast-shear waves exhibit lateral variations across the array, as well as backazimuth dependences of measurements at individual stations. While a distinct regionalization of the splitting parameters exists in the Phanerozoic part of Europe, a correlation with the large-scale tectonics around the TESZ and in the East European Craton (EEC is less evident. No general and abrupt change in the splitting parameters (anisotropic structure can be related to the Teisseyre–Tornquist Zone (TTZ, marking the edge of the Precambrian province on the surface. Instead, regional variations of anisotropic structure were found along the TESZ/TTZ. We suggest a south-westward continuation of the Precambrian mantle lithosphere beneath the TESZ and the adjacent Phanerozoic part of Europe, probably as far as towards the Bohemian Massif.
Study on shear wave splitting in the aftershock region of the Yao'an earthquake in 2000
Institute of Scientific and Technical Information of China (English)
WANG Xin-ling; LIU Jie; ZHANG Guo-min; MA Hong-sheng; WANG Hui
2006-01-01
After Ms=6.5 Yao'an earthquake on January 15, 2000, a large amount of aftershock waveforms were recorded by the Near Source Digital Seismic Network (NSSN) installed by Earthquake Administration of Yunnan Province in the aftershock region. It provides profuse data to systematically analyze the features of Yao'an earthquake. The crustal anisotropy is realized by shear wave splitting propagating in the upper crust. Based on the accurate aftershock relocations, the shear wave splitting parameters are determined with the cross-correlation method, and the results of different stations and regions are discussed in this paper. These conclusions are obtained as follows:firstly, the average fast directions of aftershock region are controlled by the regional stress field and parallel to the maximum horizontal compressive stress direction; secondly, the average fast directions of disparate stations and regions are different and vary with the structural settings and regional stress fields; finally, delay time value is affected by all sorts of factors, which is affinitive with the shear wave propagating medium, especially.
Institute of Scientific and Technical Information of China (English)
Barbara Luke; Helena Murvosh; Wanda Taylor; Jeff Wagoner
2009-01-01
A three-dimensional model of near-surface shear-wave velocity in the deep alluvial basin underlying the metropolitan area of Las Vegas, Nevada (USA), is being developed for earthquake site response projections. The velocity dataset, which includes 230 measurements, is interpolated across the model using depth-dependent correlations of velocity with sediment type. The sediment-type database contains more than 1 400 well and borehole logs. Sediment sequences reported in logs are assigned to one of four units. A characteristic shear-wave velocity profile b developed for each unit by analyzing closely spaced pairs of velocity profiles and well or borehole logs. The resulting velocity model exhibits reasonable values and patterns, although it does not explicitly honor the measured shear-wave velocity profiles. Site response investigations that applied a preliminary version of the velocity model support a two-zone ground-shaking hazard model for the valley. Areas in which clay predominates in the upper 30 m are predicted to have stronger ground motions than the rest of the basin.
Urban, Matthew W; Qiang, Bo; Song, Pengfei; Nenadic, Ivan Z; Chen, Shigao; Greenleaf, James F
2016-01-07
The myocardium is known to be an anisotropic medium where the muscle fiber orientation changes through the thickness of the wall. Shear wave elastography methods use propagating waves which are measured by ultrasound or magnetic resonance imaging (MRI) techniques to characterize the mechanical properties of various tissues. Ultrasound- or MR-based methods have been used and the excitation frequency ranges for these various methods cover a large range from 24-500 Hz. Some of the ultrasound-based methods have been shown to be able to estimate the fiber direction. We constructed a model with layers of elastic, transversely isotropic materials that were oriented at different angles to simulate the heart wall in systole and diastole. We investigated the effect of frequency on the wave propagation and the estimation of fiber direction and wave speeds in the different layers of the assembled models. We found that waves propagating at low frequencies such as 30 or 50 Hz showed low sensitivity to the fiber direction but also had substantial bias in estimating the wave speeds in the layers. Using waves with higher frequency content (>200 Hz) allowed for more accurate fiber direction and wave speed estimation. These results have particular relevance for MR- and ultrasound-based elastography applications in the heart.
Charland, Jenna; Touboul, Julien; Rey, Vincent
2013-04-01
Wave propagation against current : a study of the effects of vertical shears of the mean current on the geometrical focusing of water waves J. Charland * **, J. Touboul **, V. Rey ** jenna.charland@univ-tln.fr * Direction Générale de l'Armement, CNRS Délégation Normandie ** Université de Toulon, 83957 La Garde, France Mediterranean Institute of Oceanography (MIO) Aix Marseille Université, 13288 Marseille, France CNRS/INSU, IRD, MIO, UM 110 In the nearshore area, both wave propagation and currents are influenced by the bathymetry. For a better understanding of wave - current interactions in the presence of a 3D bathymetry, a large scale experiment was carried out in the Ocean Basin FIRST, Toulon, France. The 3D bathymetry consisted of two symmetric underwater mounds on both sides in the mean wave direction. The water depth at the top the mounds was hm=1,5m, the slopes of the mounds were of about 1:3, the water depth was h=3 m elsewhere. For opposite current conditions (U of order 0.30m/s), a huge focusing of the wave up to twice its incident amplitude was observed in the central part of the basin for T=1.4s. Since deep water conditions are verified, the wave amplification is ascribed to the current field. The mean velocity fields at a water depth hC=0.25m was measured by the use of an electromagnetic current meter. The results have been published in Rey et al [4]. The elliptic form of the "mild slope" equation including a uniform current on the water column (Chen et al [1]) was then used for the calculations. The calculated wave amplification of factor 1.2 is significantly smaller than observed experimentally (factor 2). So, the purpose of this study is to understand the physical processes which explain this gap. As demonstrated by Kharif & Pelinovsky [2], geometrical focusing of waves is able to modify significantly the local wave amplitude. We consider this process here. Since vertical velocity profiles measured at some locations have shown significant
Directory of Open Access Journals (Sweden)
Hassan K
2016-11-01
Full Text Available Kamal Hassan,1,2 Norman Loberant,3 Nur Abbas,4 Hassan Fadi,5 Hassan Shadia,5 Khaled Khazim2 1Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, 2Department of Nephrology and Hypertension, Peritoneal Dialysis Unit – Galilee Medical Center, 3Department of Radiology, Galilee Medical Center, Nahariya, 4The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 5Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel Objective: The assessment of the grade of renal fibrosis in diabetic kidney disease (DKD requires renal biopsy, which may be associated with certain risks. To assess the severity of chronic pathologic changes in DKD, we performed a quantitative analysis of renal parenchymal stiffness in advanced DKD, using shear wave elastography (SWE imaging. Patients and methods: Twenty-nine diabetic patients with chronic kidney disease (CKD grades 3–4 due to DKD, and 23 healthy subjects were enrolled. Combined conventional ultrasound and SWE imaging were performed on all participants. The length, width, and cortical thickness and stiffness were recorded for each kidney. Results: Cortical thickness was lower in patients with DKD than in healthy subjects (13.8±2.2 vs 14.8±1.6 mm; P=0.002 and in DKD patients with CKD grade 4 than in those with grade 3 (13.0±3.5 vs 14.7±2.1 mm; P<0.001. Cortical stiffness was greater in patients with DKD than in healthy subjects (23.72±14.33 vs 9.02±2.42 kPa; P<0.001, in DKD patients with CKD grade 4 than in those with grade 3 (30.4±16.2 vs 14.6±8.1 kPa; P<0.001, and in DKD patients with CKD grade 3b, than in those with CKD grade 3a (15.7±6.7 vs 11.0±4.2 kPa; P=0.03. Daily proteinuria was higher in DKD patients with CKD grade 4 than in those with grade 3 (5.52±0.96 vs 1.13±0.72; P=0.001, and in DKD patients with CKD grade 3b, than in those with CKD grade 3a (1.59±0.59 vs 0.77±0.48; P<0.001. Cortical stiffness was inversely correlated with the
Energy Technology Data Exchange (ETDEWEB)
Liu, Bao-Xian, E-mail: xian_1121@163.com [Department of Medical Ultrasonics, the First Affiliated Hospital of Sun Yat-sen University, Institute of Diagnostic and Interventional Ultrasound, Sun Yat-Sen University, 58 Zhong Shan Road 2, Guangzhou 510080 (China); Xie, Xiao-Yan, E-mail: xxy1992@21cn.com [Department of Medical Ultrasonics, the First Affiliated Hospital of Sun Yat-sen University, Institute of Diagnostic and Interventional Ultrasound, Sun Yat-Sen University, 58 Zhong Shan Road 2, Guangzhou 510080 (China); Liang, Jin-Yu, E-mail: fishgrace1124@gmail.com [Department of Medical Ultrasonics, the First Affiliated Hospital of Sun Yat-sen University, Institute of Diagnostic and Interventional Ultrasound, Sun Yat-Sen University, 58 Zhong Shan Road 2, Guangzhou 510080 (China); Zheng, Yan-Ling, E-mail: zhyanl@mail.sysu.edu.cn [Department of Medical Ultrasonics, the First Affiliated Hospital of Sun Yat-sen University, Institute of Diagnostic and Interventional Ultrasound, Sun Yat-Sen University, 58 Zhong Shan Road 2, Guangzhou 510080 (China); Huang, Guang-Liang, E-mail: venice0016@163.com [Department of Medical Ultrasonics, the First Affiliated Hospital of Sun Yat-sen University, Institute of Diagnostic and Interventional Ultrasound, Sun Yat-Sen University, 58 Zhong Shan Road 2, Guangzhou 510080 (China); Zhou, Lu-Yao, E-mail: 5454kill@163.com [Department of Medical Ultrasonics, the First Affiliated Hospital of Sun Yat-sen University, Institute of Diagnostic and Interventional Ultrasound, Sun Yat-Sen University, 58 Zhong Shan Road 2, Guangzhou 510080 (China); Wang, Zhu, E-mail: 160395191@qq.com [Department of Medical Ultrasonics, the First Affiliated Hospital of Sun Yat-sen University, Institute of Diagnostic and Interventional Ultrasound, Sun Yat-Sen University, 58 Zhong Shan Road 2, Guangzhou 510080 (China); and others
2014-07-15
Objective: To comparatively evaluate shear wave elastography (SWE) and real-time elastography (RTE) in distinguishing malignant from benign thyroid nodules. Methods: 49 patients with 64 focal thyroid nodules were enrolled and underwent SWE and RTE before surgery. SWE elasticity indices (mean, minimum and maximum value of 2-mm region of interest) of nodules were measured. For RTE, elastograms were assessed by Rago criteria and nodules with scores of 4 or 5 were classified as suspicious for malignancy. Surgery histopathologic results were adopted as diagnostic standard. Results: Of the 64 nodules, 19 were papillary thyroid carcinomas and 45 were benign. SWE indices were significantly higher in malignant than benign nodules (P < 0.05). Areas under the ROC curves (AUC) of SWE parameters were 0.840, 0.831 and 0.788, which were not significantly different from that of RTE showed as 0.880 (P = 0.148–0.482). When the most accurate cut-off, 38.3 kPa for mean value was applied to predict malignancy, the diagnostic specificity, sensitivity, accuracy, positive predictive value and negative predictive value of SWE and RTE were 68.4% versus 79.0%, 86.7% versus 84.4%, 81.3% versus 78.1%, 68.4% versus 64.7% and 86.7% versus 83.3%, respectively (P = 0.683–1.000). Conclusion: SWE as a promising tool can be performed in differentiating thyroid nodules with comparable results to RTE.
Near Surface Shear Wave Velocity Model of the Sacramento-San Joaquin Delta
Shuler, S.; Craig, M. S.; Hayashi, K.; Galvin, J. L.; Deqiang, C.; Jones, M. G.
2015-12-01
Multichannel analysis of surface wave measurements (MASW) and microtremor array measurements (MAM) were performed at twelve sites across the Sacramento-San Joaquin Delta to obtain high resolution shear wave velocity (VS) models. Deeper surveys were performed at four of the sites using the two station spatial autocorrelation (SPAC) method. For the MASW and MAM surveys, a 48-channel seismic system with 4.5 Hz geophones was used with a 10-lb sledgehammer and a metal plate as a source. Surveys were conducted at various locations on the crest of levees, the toe of the levees, and off of the levees. For MASW surveys, we used a record length of 2.048 s, a sample interval of 1 ms, and 1 m geophone spacing. For MAM, ambient noise was recorded for 65.536 s with a sampling interval of 4 ms and 1 m geophone spacing. VS was determined to depths of ~ 20 m using the MASW method and ~ 40 m using the MAM method. Maximum separation between stations in the two-station SPAC surveys was typically 1600 m to 1800 m, providing coherent signal with wavelengths in excess of 5 km and depth penetration of as much as 2000 m. Measured values of VS30 in the study area ranged from 97 m/s to 257 m/s, corresponding to NEHRP site classifications D and E. Comparison of our measured velocity profiles with available geotechnical logs, including soil type, SPT, and CPT, reveals the existence of a small number of characteristic horizons within the upper 40m in the Delta: levee fill material, peat, transitional silty sand, and eolian sand at depth. Sites with a peat layer at the surface exhibited extremely low values of VS. Based on soil borings, the thickness of peat layers were approximately 0 m to 8 m. The VS for the peat layers ranged from 42 m/s to 150 m/s while the eolian sand layer exhibited VS ranging from of 220 m/s to 370 m/s. Soft near surface soils present in the region pose an increased earthquake hazard risk due to the potential for high ground accelerations.
Shear wave velocity, seismic attenuation, and thermal structure of the continental upper mantle
Artemieva, I.M.; Billien, M.; Leveque, J.-J.; Mooney, W.D.
2004-01-01
Seismic velocity and attenuation anomalies in the mantle are commonly interpreted in terms of temperature variations on the basis of laboratory studies of elastic and anelastic properties of rocks. In order to evaluate the relative contributions of thermal and non-thermal effects on anomalies of attenuation of seismic shear waves, QS-1, and seismic velocity, VS, we compare global maps of the thermal structure of the continental upper mantle with global QS-1 and Vs maps as determined from Rayleigh waves at periods between 40 and 150 S. We limit the comparison to three continental mantle depths (50, 100 and 150 km), where model resolution is relatively high. The available data set does not indicate that, at a global scale, seismic anomalies in the upper mantle are controlled solely by temperature variations. Continental maps have correlation coefficients of temperatures: most cratonic regions show high VS and QS and low T, while most active regions have seismic and thermal anomalies of the opposite sign. The strongest inverse correlation is found at a depth of 100 km, where the attenuation model is best resolved. Significantly, at this depth, the contours of near-zero QS anomalies approximately correspond to the 1000 ??C isotherm, in agreement with laboratory measurements that show a pronounced increase in seismic attenuation in upper mantle rocks at 1000-1100 ??C. East-west profiles of VS, QS and T where continental data coverage is best (50??N latitude for North America and 60??N latitude for Eurasia) further demonstrate that temperature plays a dominant, but non-unique, role in determining the value of lithospheric VS and QS. At 100 km depth, where the resolution of seismic models is the highest, we compare observed seismic VS and QS with theoretical VST and QST values, respectively, that are calculated solely from temperature anomalies and constrained by experimental data on temperature dependencies of velocity and attenuation. This comparison shows that
Chen, Yong; Huang, Yiyong; Chen, Xiaoqian
2013-11-01
This paper deals with the problem of wave propagation in a compressible viscous fluid confined by a rigid-walled circular pipeline in the presence of a shear mean flow. On the assumption of isentropic and axisymmetric wave propagation, the convected acoustic equations are mathematically deduced from the conservations of continuity and momentum, leading to a set of coupled second-order differential equations with respect of the acoustic pressure and velocity components in radial and axial directions. A solution based on the Fourier-Bessel theory, which is complete and orthogonal in Lebesgue space, is introduced to transform the differential equations to an infinite set of homogeneous algebraic equations, thus the wave number can be calculated due to the existence condition of a non-trivial solution. After the discussion of the method's convergence, the cut-off frequency of the wave mode is theoretically analyzed. Furthermore, wave attenuation of the first four wave modes due to fluid viscosity is numerically studied in the presence of the laminar and turbulent flow profiles. Meanwhile, the measurement performance of an ultrasonic flow meter based on the difference of downstream and upstream wave propagations is parametrically addressed.
Rahman, Md. Zillur; Siddiqua, Sumi; Kamal, A. S. M. Maksud
2016-11-01
The average shear wave velocity of the near-surface materials down to a depth of 30 m (Vs30) is essential for seismic site characterization to estimate the local amplification factor of the seismic waves during an earthquake. Chittagong City is one of the highest risk cities of Bangladesh for its seismic vulnerability. In the present study, the Vs30 is estimated for Chittagong City using the multichannel analysis of surface waves (MASW), small scale microtremor measurement (SSMM), downhole seismic (DS), and correlation between the shear wave velocity (Vs) and standard penetration test blow count (SPT-N). The Vs30 of the near-surface materials of the city varies from 123 m/s to 420 m/s. A Vs30 map is prepared from the Vs30 of each 30 m grid using the relationship between the Holocene soil thickness and the Vs30. Based on the Vs30, the near-surface materials of Chittagong City are classified as site classes C, D, and E according to the National Earthquake Hazards Reduction Program (NEHRP), USA and as site classes B, C, and D according to the Eurocode 8. The Vs30 map can be used for seismic microzonation, future planning, and development of the city to improve the earthquake resiliency of the city.
Diffraction of localized shear wave at the edge of semi-infinite crack in compound elastic space
Directory of Open Access Journals (Sweden)
Grigoryan E.Kh.
2014-12-01
Full Text Available The diffraction of localized shear plane Love`s wave, falling from infinity in a piecewise-homogeneous elastic space weakened by a semi-infinite crack parallel to the line of heterogeneity is considered. With the help of Fourier transform, mixed boundary value problem of diffraction of elastic waves is reduced to the problem of Riemann type theory of analytic functions on the real axis with the right part of the generalized Dirac function . Obtaining in generalized functions solution of functional equations allowed us to obtain the distribution of wave field in each subregion of elastic space, as well as asymptotic formulas defining the characteristics of the diffraction field in remote areas.
Torpey, M. E.; Russo, R. M.; Chevrot, S.
2015-12-01
We calculated the shear wave splitting intensity (SI) of the Maule, Chile rupture zone (32°S-39°S) to constrain the seismic anisotropy of the region. Our data are from 80 of the temporary seismometers deployed as part of the IMAD (International Maule Aftershock Deployment) geophysical networks to capture the aftershocks of the Mw 8.8 megathrust event in 2010. We implemented the multichannel analysis method of Chevrot (2000) to measure the SI of 64 teleseismic SKS phases in addition to the fast orientations ϕ and splitting delays δt measured with the method of Silver & Chan (1991). To measure the SI of local aftershocks, we modified the method to allow for use of the upgoing S phase from local events in and above the Nazca slab after correcting for the initial event polarization. We compared our results with other measurement methods (Silver and Chan 1991, Wolfe and Silver 1998) that solve for splitting parameters to examine the robustness of the shear wave splitting intensity method, particularly for local datasets. The results we obtained using the splitting intensity method for the teleseismic data show an overall fast direction that is parallel to the absolute plate motion of the Nazca plate that is subducting beneath the South American plate. These results are consistent with the results we calculated using the Wolfe and Silver method. SI deriving from S waves that originate in the Nazca slab or deeper SA lithosphere are likely to reveal patterns of crustal fabric, and hence differ from the SI of the teleseismic shear waves.
Energy Technology Data Exchange (ETDEWEB)
Kgaswane, E M; Nyblade, A A; Julia, J; Dirks, P H H M; Durrheim, R J; Pasyanos, M E
2008-11-11
Crustal structure in southern Africa has been investigated by jointly inverting receiver functions and Rayleigh wave group velocities for 89 broadband seismic stations spanning much of the Precambrian shield of southern Africa. 1-D shear wave velocity profiles obtained from the inversion yield Moho depths that are similar to those reported in previous studies and show considerable variability in the shear wave velocity structure of the lower part of the crust between some terrains. For many of the Archaean and Proterozoic terrains in the shield, S velocities reach 4.0 km/s or higher over a substantial part of the lower crust. However, for most of the Kimberley terrain and adjacent parts of the Kheis Province and Witwatersrand terrain, as well as for the western part of the Tokwe terrain, mean shear wave velocities of {le} 3.9 km/s characterize the lower part of the crust along with slightly ({approx}5 km) thinner crust. These findings indicate that the lower crust across much of the shield has a predominantly mafic composition, except for the southwest portion of the Kaapvaal Craton and western portion of the Zimbabwe Craton, where the lower crust is intermediate-to-felsic in composition. The parts of the Kaapvaal Craton underlain by intermediate-to-felsic lower crust coincide with regions where Ventersdorp rocks have been preserved, and thus we suggest that the intermediate-to-felsic composition of the lower crust and the shallower Moho may have resulted from crustal melting during the Ventersdorp tectonomagmatic event at c. 2.7 Ga and concomitant crustal thinning caused by rifting.
Propagation of sound waves through a linear shear layer - A closed form solution
Scott, J. N.
1978-01-01
Closed form solutions are presented for sound propagation from a line source in or near a shear layer. The analysis is exact for all frequencies and is developed assuming a linear velocity profile in the shear layer. This assumption allows the solution to be expressed in terms of parabolic cylinder functions. The solution is presented for a line monopole source first embedded in the uniform flow and then in the shear layer. Solutions are also discussed for certain types of dipole and quadrupole sources. Asymptotic expansions of the exact solutions for small and large values of Strouhal number give expressions which correspond to solutions previously obtained for these limiting cases.
Propagation of sound waves through a linear shear layer: A closed form solution
Scott, J. N.
1978-01-01
Closed form solutions are presented for sound propagation from a line source in or near a shear layer. The analysis was exact for all frequencies and was developed assuming a linear velocity profile in the shear layer. This assumption allowed the solution to be expressed in terms of parabolic cyclinder functions. The solution is presented for a line monopole source first embedded in the uniform flow and then in the shear layer. Solutions are also discussed for certain types of dipole and quadrupole sources. Asymptotic expansions of the exact solutions for small and large values of Strouhal number gave expressions which correspond to solutions previously obtained for these limiting cases.
Shear wave elastography of thyroid nodules for the prediction of malignancy in a large scale study
Energy Technology Data Exchange (ETDEWEB)
Park, Ah Young; Son, Eun Ju [Department of Radiology, Yonsei University College of Medicine, Gangnam Severance Hospital, Seoul (Korea, Republic of); Han, Kyunghwa [Biostatistics Collaboration Unit, Gangnam Medical Research Center, Yonsei University College of Medicine, Gangnam Severance Hospital, Seoul (Korea, Republic of); Youk, Ji Hyun [Department of Radiology, Yonsei University College of Medicine, Gangnam Severance Hospital, Seoul (Korea, Republic of); Kim, Jeong-Ah, E-mail: chrismd@hanmail.net [Department of Radiology, Yonsei University College of Medicine, Gangnam Severance Hospital, Seoul (Korea, Republic of); Park, Cheong Soo [Department of Surgery, Yonsei University College of Medicine, Gangnam Severance Hospital, Seoul (Korea, Republic of)
2015-03-15
Highlights: •Elasticity indices of malignant thyroid nodules were higher than those of benign. •High elasticity indices were the independent predictors of thyroid malignancy. •SWE evaluation could be useful as adjunctive tool for thyroid cancer diagnosis. -- Abstract: Objectives: The purpose of this study is to validate the usefulness of shear wave elastography (SWE) in predicting thyroid malignancy with a large-scale quantitative SWE data. Methods: This restrospective study included 476 thyroid nodules in 453 patients who underwent gray-scale US and SWE before US-guided fine-needle aspiration biopsy (US-FNA) or surgical excision were included. Gray-scale findings and SWE elasticity indices (EIs) were retrospectively reviewed and compared between benign and malignant thyroid nodules. The optimal cut-off values of EIs for predicting malignancy were determined. The diagnostic performances of gray-scale US and SWE for predicting malignancy were analyzed. The diagnostic performance was compared between the gray-scale US findings only and the combined use of gray-scale US findings with SWEs. Results: All EIs of malignant thyroid nodules were significantly higher than those of benign nodules (p ≤ .001). The optimal cut-off value of each EI for predicting malignancy was 85.2 kPa of E{sub mean}, 94.0 kPa of E{sub max}, 54.0 kPa of E{sub min}. E{sub mean} (OR 3.071, p = .005) and E{sub max} (OR 3.015, p = .003) were the independent predictors of thyroid malignancy. Combined use of gray-scale US findings and each EI showed elevated sensitivity (95.0–95.5% vs 92.9%, p ≤ .005) and AUC (0.820–0.834 vs 0.769, p ≤ .005) for predicting malignancy, compared with the use of only gray-scale US findings. Conclusions: Quantitative parameters of SWE were the independent predictors of thyroid malignancy and SWE evaluation combined with gray-scale US was adjunctive to the diagnostic performance of gray-scale US for predicting thyroid malignancy.
Value of Shear Wave Elastography in the Diagnosis of Gouty and Non-gouty Arthritis.
Tang, Yuanjiao; Yan, Feng; Yang, Yujia; Xiang, Xi; Wang, Liyun; Zhang, Lingyan; Qiu, Li
2017-02-07
Our aim was to analyze the diagnostic performance of shear wave elastography (SWE) in the diagnosis of gouty arthritis (GA) and non-gouty arthritis (non-GA). Thirty-nine patients in the GA group and 55 patients in the non-GA group were included in the study. Based on the echo intensity of the joint lesions, the GA group was subdivided into hypo-echoic GA, slightly hyper-echoic GA and hyper-echoic GA subgroups. Quantitative SWE features were evaluated and receiver operating characteristic analysis was performed. On the basis of the study, the elastic modulus (Emax), mean elastic modulus (Emean), minimum elastic modulus (Emin) and elastic modulus standard deviation (ESD) were significantly higher in the GA group than in the non-GA group and were highest in the hyper-echoic GA subgroup (p < 0.01 for all). Emin, Emean and Emax were significantly higher in the hyper-echoic GA subgroup than in the hypo-echoic GA subgroup and non-GA group (p < 0.001 for all), and ESD was significantly higher in the hyper-echoic GA subgroup than in the non-GA group (p = 0.001). Emin, Emean, Emax and ESD were higher in the hypo-echoic GA subgroup than in the non-GA group, and the differences were significant (p < 0.001 for all). Based on the hypo-echoic GA subgroup and non-GA group, areas under the receiver operating characteristic curves for the prediction of GA were 0.749 for Emin, 0.877 for Emean, 0.896 for Emax and 0.886 for ESD, with optimal cutoff values of 29.40 kPa for Emin, 45.35 kPa for Emean, 67.54 kPa for Emax and 7.85 kPa for ESD. Our results indicate that SWE can differentially diagnose GA and non-GA, especially when the ultrasound manifestations are not typical.
Ballmer, Maxim; Lekic, Vedran; Schumacher, Lina; Ito, Garrett; Thomas, Christine
2016-04-01
Seismic tomography reveals two antipodal LLSVPs in the Earth's mantle, each extending from the core-mantle boundary (CMB) up to ~1000 km depth. The LLSVPs are thought to host primordial mantle materials that bear witness of early-Earth processes, and/or subducted basalt that has accumulated in the mantle over billions of years. A compositional distinction between the LLSVPs and the ambient mantle is supported by anti-correlation of bulk-sound and shear-wave velocity (Vs) anomalies as well as abrupt lateral gradients in Vs along LLSVP margins. Both of these observations, however, are mainly restricted to the LLSVP bottom domains (2300~2900 km depth), or hereinafter referred to as "deep distinct domains" (DDD). Seismic sensitivity calculations suggest that DDDs are more likely to be composed of primordial mantle material than of basaltic material. On the other hand, the seismic signature of LLSVP shallow domains (1000~2300 km depth) is consistent with a basaltic composition, though a purely thermal origin cannot be ruled out. Here, we explore the dynamical, seismological, and geochemical implications of the hypothesis that the LLSVPs are compositionally layered with a primordial bottom domain (or DDD) and a basaltic shallow domain. We test this hypothesis using 2D thermochemical mantle-convection models. Depending on the density difference between primordial and basaltic materials, the materials either mix or remain separate as they join to form thermochemical piles in the deep mantle. Separation of both materials within these piles provides an explanation for LLSVP seismic properties, including substantial internal vertical gradients in Vs observed at 400-700 km height above the CMB, as well as out-of-plane reflections on LLSVP sides over a range of depths. Predicted geometry of thermochemical piles is compared to LLSVP and DDD shapes as constrained by seismic cluster analysis. Geodynamic models predict short-lived "secondary" plumelets to rise from LLSVP roofs and
Upper-Mantle Shear Velocities beneath Southern California Determined from Long-Period Surface Waves
Polet, J.; Kanamori, H.
1997-01-01
We used long-period surface waves from teleseismic earthquakes recorded by the TERRAscope network to determine phase velocity dispersion of Rayleigh waves up to periods of about 170 sec and of Love waves up to about 150 sec. This enabled us to investigate the upper-mantle velocity structure beneath southern California to a depth of about 250 km. Ten and five earthquakes were used for Rayleigh and Love waves, respectively. The observed surface-wave dispersion shows a clear Love/Rayleigh-wave d...
Nyamwandha, Cecilia A.; Powell, Christine A.
2016-11-01
Shear wave splitting associated with the Mississippi Embayment (ME) is determined using teleseismic SKS phases recorded by the Northern Embayment Lithosphere Experiment (NELE), the USArray Transportable Array (TA), and the New Madrid seismic network for the period 2005-2016. Our data set consists of 5900 individual splitting measurements from 257 earthquakes recorded at 151 stations within and outside the ME. Stations outside of the ME exhibit significant shear wave splitting, with average delay times between 0.4 s and 1.8 s. To the northeast and east of the ME, nearly all observed fast orientations are approximately oriented northeast-southwest, in agreement with absolute plate motion (APM) predicted by HS3-Nuvel-1A. The homogeneity of the fast orientations in this region suggests that the splitting is due to active flow in the asthenosphere. A counterclockwise rotation in the splitting orientation is observed moving northeast to northwest across the study area. Inside the ME, some stations show large and systematic deviations of the measured fast orientations from the APM. The delay times within the entire ME range from 0.9 s to 2.1 s. Splitting complexity is attributed to relic lithospheric fabrics formed during past tectonic events including passage of a hot spot in mid-Cretaceous time. The anisotropy may also be linked to the presence of a southwest dipping region of low P and S wave velocities below the ME or to deeper flow in the asthenosphere.
Rudenko, O. V.; Tsyuryupa, S. N.; Sarvazyan, A. P.
2016-09-01
We develop a theory of the elasticity moduli and dissipative properties of a composite material: a phantom simulating muscle tissue anisotropy. The model used in the experiments was made of a waterlike polymer with embedded elastic filaments imitating muscle fiber. In contrast to the earlier developed phenomenological theory of the anisotropic properties of muscle tissue, here we obtain the relationship of the moduli with characteristic sizes and moduli making up the composite. We introduce the effective elasticity moduli and viscosity tensor components, which depend on stretching of the fibers. We measure the propagation velocity of shear waves and the shear viscosity of the model for regulated tension. Waves were excited by pulsed radiation pressure generated by modulated focused ultrasound. We show that with increased stretching of fibers imitating muscle contraction, an increase in both elasticity and viscosity takes place, and this effect depends on the wave propagation direction. The results of theoretical and experimental studies support our hypothesis on the protective function of stretched skeletal muscle, which protects bones and joints from trauma.
Institute of Scientific and Technical Information of China (English)
Qian Xiaodong; Li Baiji; Qin Jiazheng
2003-01-01
The shear wave splitting study is based on data of the 3-component digital seismograms. This was recorded at 3 sets of stations, which were set up after the Yao'an M_s6.5 earthquake, near its epicenter. The results indicate the following: ①Shear wave splitting has been observed through analyzing 236 aftershock recordings within the shear wave window. ②The time delay was mostly in the range of 3.5～10.5ms/km and the average was 7.0ms/km.③The polarization direction of the fast split S-wave was mostly in the range of N140°E～N164°E and the average was N152.4°E. ④The preferred polarization direction for the fast shear wave was different from the direction of the seismogenic structure of the mainshock (Maweijing fault) and the direction of the rupture of the aftershocks, but similar to the principal compressional amis of the regional stress field. ⑤Shear wave splitting for sequence of the aftershocks of the Yao'an earthuake was the result of anisotropy of EDA cracks controlled by stress field.
DEFF Research Database (Denmark)
Staugaard, Benjamin; Christensen, Peer Brehm; Mössner, Belinda;
2016-01-01
BACKGROUND AND AIMS: Transient elastography (TE) is hampered in some patients by failures and unreliable results. We hypothesized that real time two-dimensional shear wave elastography (2D-SWE), the FibroScan XL probe, and repeated TE exams, could be used to obtain reliable liver stiffness...... skin-capsule distance (OR = 0.77, 95% CI 0.67-0.98). CONCLUSIONS: Transient elastography can be accomplished in nearly all patients by use of the FibroScan XL probe and repeated examinations. In difficult-to-scan patients, the feasibility of TE is superior to 2D-SWE....
Institute of Scientific and Technical Information of China (English)
SUN Yu-guo; WU Lin-zhi
2005-01-01
The dynamic behavior of two collinear cracks in magneto-electro-elastic composites under harmonic anti-plane shear waves is studied using the Schmidt method for the permeable crack surface conditions. By using the Fourier transform, the problem can be solved with a set of triple integral equations in which the unknown variable is the jump of the displacements across the crack surfaces. In solving the triple integral equations, the jump of the displacements across the crack surface is expanded in a series of Jacobi polynomials. It can be obtained that the stress field is independent of the electric field and the magnetic flux.
Institute of Scientific and Technical Information of China (English)
王凯; 冯晅; 刘财
2012-01-01
横波分裂是各向异性介质的重要特征,当横波或转换波穿过各向异性介质到达地面时,地面三分量检波器的x分量和y分量接收到的地震记录中都会同时存在快横波和慢横波.将快横波和慢横波进行分离,进而计算介质的各向异性参数是多分量数据处理中重要的一步.将数学中的Pearson相关系数引入到多分量地震勘探中,提出了Pearson相关系数法进行旋转角度识别,进而分离快、慢横波波场.相比于传统的互相关法,Pearson相关系数法从精度、抗噪性能和计算效率上都有提高.%Shear-wave splitting is an important characteristic of anisotropic media. Generally, when S or P-SV waves reach to the ground through anisotropic media, the seismic record received by x component and y component of three-component detector contains fast wave and slow wave simultaneously- Separating fast wave and slow wave and then calculating the anisotropic parameters of media are an important step in multi-component data processing. The authors introduce the Pearson correlation coefficients into multi-component seismic exploration and propose the Pearson correlation coefficients to detect the rotation angle and then separate the fast wave and slow wave. Compared with the traditional cross-correlation method, the Pearson correlation coefficient method is better in accuracy, noise immunity and computational efficiency.
Analytic studies of dispersive properties of shear Alfvén and acoustic wave spectra in tokamaks
Energy Technology Data Exchange (ETDEWEB)
Chavdarovski, Ilija [Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou 310027 (China); Zonca, Fulvio [Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou 310027 (China); Associazione Euratom-ENEA sulla Fusione, C.R. Frascati, C.P. 65-00044 Frascati (Italy)
2014-05-15
The properties of the low frequency shear Alfvén and acoustic wave spectra in toroidal geometry are examined analytically and numerically considering wave particle interactions with magnetically trapped and circulating particles, using the theoretical model described in [I. Chavdarovski and F. Zonca, Plasma Phys. Controlled Fusion 51, 115001 (2009)] and following the framework of the generalized fishbone-like dispersion relation. Effects of trapped particles as well as diamagnetic effects on the frequencies and damping rates of the beta-induced Alfvén eigenmodes, kinetic ballooning modes and beta-induced Alfvén-acoustic eigenmodes are discussed and shown to be crucial to give a proper assessment of mode structure and stability conditions. Present results also demonstrate the mutual coupling of these various branches and suggest that frequency as well as mode polarization are crucial for their identification on the basis of experimental evidence.
Institute of Scientific and Technical Information of China (English)
LI Lin; ZHOU Zhen-gong; WANG Biao
2006-01-01
The scattering problem of anti-plane shear waves in a functionally graded material strip with an off-center crack is investigated by use of Schmidt method. The crack is vertically to the edge of the strip. By using the Fourier transform, the problem can be solved with the help of a pair of dual integral equations that the unknown variable is the jump of the displacement across the crack surfaces. To solve the dual integral equations, the jump of the displacement across the crack surfaces was expanded in a series of Jacobi polynomials. Numerical examples were provided to show the effects of the parameter describing the functionally graded materials, the position of the crack and the frequency of the incident waves upon the stress intensity factors of the crack.
Shear-wave splitting and mantle anisotropy in the southern South American subduction zone
MacDougall, J. G.; Fischer, K. M.; Anderson, M. L.
2010-12-01
The goal of this study is to constrain mantle flow above and below the subducting Nazca plate at latitudes of 30°-41° S. In this segment of the South American subduction zone, slab dip varies dramatically, including a region of flat slab subduction in the north and greater dip angles (~30°) in the south, where the segment ends at a slab gap associated with Chile Ridge. We measured shear-wave splitting in over 200 S arrivals from local earthquakes at permanent stations PLCA (USGS/GTSN) and PEL (Geoscope) and 14 stations of the 2000-2002 CHARGE (Chile Argentina Geophysical Experiment) PASSCAL array. We also made splitting measurements in 17 SKS and SKKS phases recorded by PLCA and permanent station TRQA (IRIS/GSN). Splitting parameters for a sub-set of local S, SKS and SKKS phases were determined using a range of filters from 0.05-0.2 to 0.05-2, and were generally stable as a function of frequency; frequency-dependence was observed in a small number of cases, and will be investigated further. The results reported below correspond to a 0.05-2 Hz bandpass filter. Local S splitting times range from 0.1-0.9 seconds, and for back-arc stations, splitting times correlate with path length in the mantle wedge. These results indicate that wedge anisotropy is a dominant factor in the observed splitting, although shallower anisotropy also appears to be present. Splitting fast polarizations at back-arc stations show a coherent variation with latitude. Fast polarizations vary from NE at 40°-41°S, to N (roughly slab-strike parallel) at 35°-36°S, to NE-ESE at 30°-33°S, curving as the slab flattens where the Juan Fernandez Ridge is subducting beneath the South American lithosphere. For SKS and SKKS phases at PLCA (in the western back-arc at 41°S), fast directions are predominantly ENE-ESE and splitting times range from 1.0-2.3 s. At TRQA (much farther to the east and at 38°S), teleseismic fast polarizations are E-SE and splitting times vary from 0.8-2.4 s. At PLCA, because
Yang, Yu-Ping; Xu, Xiao-Hong; Guo, Le-Hang; He, Ya-Ping; Wang, Dan; Liu, Bo-Ji; Zhao, Chong-Ke; Chen, Bao-Ding; Xu, Hui-Xiong
2017-01-01
To evaluate the diagnostic performance of a new two-dimensional shear wave speed (SWS) imaging (i.e. Toshiba shear wave elastography, T-SWE) in differential diagnosis of breast lesions. 225 pathologically confirmed breast lesions in 218 patients were subject to conventional ultrasound and T-SWE examinations. The mean, standard deviation and ratio of SWS values (m/s) and elastic modulus (KPa) on T-SWE were computed. Besides, the 2D elastic images were classified into four color patterns. The area under the receiver operating characteristic (AUROC) curve analysis was performed to evaluate the diagnostic performance of T-SWE in differentiation of breast lesions. Compared with other quantitative T-SWE parameters, mean value expressed in KPa had the highest AUROC value (AUROC = 0.943), with corresponding cut-off value of 36.1 KPa, sensitivity of 85.1%, specificity of 96.6%, accuracy of 94.2%, PPV of 87.0%, and NPV of 96.1%. The AUROC of qualitative color patterns in this study obtained the best performance (AUROC = 0.957), while the differences were not significant except for that of Eratio expressed in m/s (AUROC = 0.863) (P = 0.03). In summary, qualitative color patterns of T-SWE obtained the best performance in all parameters, while mean stiffness (36.05 KPa) provided the best diagnostic performance in the quantitative parameters. PMID:28102328
Simone, Salimbeni; Liang, Zhao; Marco, Malusà G.; Silvia, Pondrelli; Lucia, Margheriti; Anne, Paul; Xiaobing, Xu; Stefano, Solarino; Stéphane, Guillot; Stéphane, Schwartz; Thierry, Dumont; Coralie, Aubert; Qingchen, Wang; Rixiang, Zhu; Tianyu, Zheng
2016-04-01
Northern Apennines, Alps and surrounding regions are often studied separately. The structure of their upper mantle has been studied repeatedly in the past and some studies reported on the seismic anisotropic properties in the litho-asthenosphere. However, a joint interpretation of the Alps-Apennines transition zone is still lacking, mainly at depth. The China-Italy-France Alps seismic survey (CIFALPS, 2012) provided an improved image of the crust and upper mantle beneath the southwestern Alps and the transition to the Apennines. Here we show the SKS shear wave splitting results obtained from the analysis of teleseismic data recorded by 55 temporary seismic stations along the CIFALPS profile and by some other permanent stations. The strain-induced lattice preferred orientation of olivine minerals within the upper mantle, expressed by the analysis, confirms the NW trending fast polarization directions parallel to the strike of the orogen, in good agreement with the results of previous studies all along the Alpine chain. On the contrary, in the Po Plain, new shear wave splitting measurements show a scattered distribution; the coexistence of both NNE-SSW and E-W directions provides new insights on upper mantle deformation in the complex transition zone between the Alpine and Apenninic subductions. The comparison of this new dataset with recent tomographic studies and geological improvement should compose a more complete picture of the mantle structure and deformation of this puzzling region.
Li, Rui; Elson, Daniel S; Dunsby, Chris; Eckersley, Robert; Tang, Meng-Xing
2011-04-11
Ultrasound-modulated optical tomography (UOT) combines optical contrast with ultrasound spatial resolution and has great potential for soft tissue functional imaging. One current problem with this technique is the weak optical modulation signal, primarily due to strong optical scattering in diffuse media and minimal acoustically induced modulation. The acoustic radiation force (ARF) can create large particle displacements in tissue and has been shown to be able to improve optical modulation signals. However, shear wave propagation induced by the ARF can be a significant source of nonlocal optical modulation which may reduce UOT spatial resolution and contrast. In this paper, the time evolution of shear waves was examined on tissue mimicking-phantoms exposed to 5 MHz ultrasound and 532 nm optical radiation and measured with a CCD camera. It has been demonstrated that by generating an ARF with an acoustic burst and adjusting both the timing and the exposure time of the CCD measurement, optical contrast and spatial resolution can be improved by ~110% and ~40% respectively when using the ARF rather than 5 MHz ultrasound alone. Furthermore, it has been demonstrated that this technique simultaneously detects both optical and mechanical contrast in the medium and the optical and mechanical contrast can be distinguished by adjusting the CCD exposure time.
Hartzell, S.; Carver, D.; Williams, R.A.
2001-01-01
Aftershock records of the 1989 Loma Prieta earthquake are used to calculate site response in the frequency band of 0.5-10 Hz at 24 locations in Los Gatos, California, on the edge of the Santa Clara Valley. Two different methods are used: spectral ratios relative to a reference site on rock and a source/site spectral inversion method. These two methods complement each other and give consistent results. Site amplification factors are compared with surficial geology, thickness of alluvium, shallow shear-wave velocity measurements, and ground deformation and structural damage resulting from the Loma Prieta earthquake. Higher values of site amplification are seen on Quaternary alluvium compared with older Miocene and Cretaceous units of Monterey and Franciscan Formation. However, other more detailed correlations with surficial geology are not evident. A complex pattern of alluvial sediment thickness, caused by crosscutting thrust faults, is interpreted as contributing to the variability in site response and the presence of spectral resonance peaks between 2 and 7 Hz at some sites. Within the range of our field measurements, there is a correlation between lower average shear-wave velocity of the top 30 m and 50% higher values of site amplification. An area of residential homes thrown from their foundations correlates with high site response. This damage may also have been aggravated by local ground deformation. Severe damage to commercial buildings in the business district, however, is attributed to poor masonry construction.
Eulenfeld, Tom; Wegler, Ulrich
2016-05-01
We developed an improved method for the separation of intrinsic and scattering attenuation of seismic shear waves by envelope inversion called Qopen. The method optimizes the fit between Green's functions for the acoustic, isotropic radiative transfer theory and observed energy densities of earthquakes. The inversion allows the determination of scattering and intrinsic attenuation, site corrections and spectral source energies for the investigated frequency bands. Source displacement spectrum and the seismic moment of the analysed events can be estimated from the obtained spectral source energies. We report intrinsic and scattering attenuation coefficients of shear waves near three geothermal reservoirs in Germany for frequencies between 1 and 70 Hz. The geothermal reservoirs are located in Insheim, Landau (both Upper Rhine Graben) and Unterhaching (Molasse basin). We compare these three sedimentary sites to two sites located in crystalline rock with respect to scattering and intrinsic attenuation. The inverse quality factor for intrinsic attenuation is constant in sediments for frequencies smaller than 10 Hz and decreasing for higher frequencies. For crystalline rock, it is on a lower level and strictly monotonic decreasing with frequency. Intrinsic attenuation dominates scattering except for the Upper Rhine Graben, where scattering is dominant for frequencies below 10 Hz. Observed source displacement spectra show a high-frequency fall-off greater than or equal to 3.
Comparison of bed shear under non-breaking and breaking solitary waves
Digital Repository Service at National Institute of Oceanography (India)
JayaKumar, S.; Baldock, T.E.
function following linear wave theory as shown in eqn 3. For waves following shallow water wave theory, the velocity can be obtained using eqn 4. )sinh( )()( kh HU ω ωω = [3] )()( ωω HdgU = [4] The total force (τ T ) (eqn. 5) measured... linear wave theory the pressure force can be calculated as shown in eqn. 8. prbT τττ += [5] platepr thickness x p ∂ ∂ =τ [6] platepr thickness x g ∂ ∂ = η ρτ [7] )cosh( )( )( kh H ghP ω ρω = [8] where, H(ω) and P...
Pollitz, F.F.; Snoke, J. Arthur
2010-01-01
We utilize two-and-three-quarter years of vertical-component recordings made by the Transportable Array (TA) component of Earthscope to constrain three-dimensional (3-D) seismic shear wave velocity structure in the upper 200 km of the western United States. Single-taper spectral estimation is used to compile measurements of complex spectral amplitudes from 44 317 seismograms generated by 123 teleseismic events. In the ﬁrst step employed to determine the Rayleigh-wave phase-velocity structure, we implement a new tomographic method, which is simpler and more robust than scattering-based methods (e.g. multi-plane surface wave tomography). The TA is effectively implemented as a large number of local arrays by deﬁning a horizontal Gaussian smoothing distance that weights observations near a given target point. The complex spectral-amplitude measurements are interpreted with the spherical Helmholtz equation using local observations about a succession of target points, resulting in Rayleigh-wave phase-velocity maps at periods over the range of 18–125 s. The derived maps depend on the form of local ﬁts to the Helmholtz equation, which generally involve the nonplane-wave solutions of Friederich et al. In a second step, the phase-velocity maps are used to derive 3-D shear velocity structure. The 3-D velocity images conﬁrm details witnessed in prior body-wave and surface-wave studies and reveal new structures, including a deep (>100 km deep) high-velocity lineament, of width ∼200 km, stretching from the southern Great Valley to northern Utah that may be a relic of plate subduction or, alternatively, either a remnant of the Mojave Precambrian Province or a mantle downwelling. Mantle seismic velocity is highly correlated with heat ﬂow, Holocene volcanism, elastic plate thickness and seismicity. This suggests that shallow mantle structure provides the heat source for associated magmatism, as well as thinning of the thermal lithosphere, leading to relatively high
Interaction of suprathermal solar wind electron fluxes with sheared whistler waves: fan instability
Directory of Open Access Journals (Sweden)
C. Krafft
Full Text Available Several in situ measurements performed in the solar wind evidenced that solar type III radio bursts were some-times associated with locally excited Langmuir waves, high-energy electron fluxes and low-frequency electrostatic and electromagnetic waves; moreover, in some cases, the simultaneous identification of energetic electron fluxes, Langmuir and whistler waves was performed. This paper shows how whistlers can be excited in the disturbed solar wind through the so-called "fan instability" by interacting with energetic electrons at the anomalous Doppler resonance. This instability process, which is driven by the anisotropy in the energetic electron velocity distribution along the ambient magnetic field, does not require any positive slope in the suprathermal electron tail and thus can account for physical situations where plateaued reduced electron velocity distributions were observed in solar wind plasmas in association with Langmuir and whistler waves. Owing to linear calculations of growth rates, we show that for disturbed solar wind conditions (that is, when suprathermal particle fluxes propagate along the ambient magnetic field, the fan instability can excite VLF waves (whistlers and lower hybrid waves with characteristics close to those observed in space experiments.
Key words. Space plasma physics (waves and instabilities – Radio Science (waves in plasma – Solar physics, astrophysics and astronomy (radio emissions
Lontsi, A. M.; Ohrnberger, M.; Krüger, F.
2016-07-01
We present an integrated approach for deriving the 1D shear wave velocity (Vs) information at few tens to hundreds of meters down to the first strong impedance contrast in typical sedimentary environments. We use multiple small aperture seismic arrays in 1D and 2D configuration to record active and passive seismic surface wave data at two selected geotechnical sites in Germany (Horstwalde & Löbnitz). Standard methods for data processing include the Multichannel Analysis of Surface Waves (MASW) method that exploits the high frequency content in the active data and the sliding window frequency-wavenumber (f-k) as well as the spatial autocorrelation (SPAC) methods that exploit the low frequency content in passive seismic data. Applied individually, each of the passive methods might be influenced by any source directivity in the noise wavefield. The advantages of active shot data (known source location) and passive microtremor (low frequency content) recording may be combined using a correlation based approach applied to the passive data in the so called Interferometric Multichannel Analysis of Surface Waves (IMASW). In this study, we apply those methods to jointly determine and interpret the dispersion characteristics of surface waves recorded at Horstwalde and Löbnitz. The reliability of the dispersion curves is controlled by applying strict limits on the interpretable range of wavelengths in the analysis and further avoiding potentially biased phase velocity estimates from the passive f-k method by comparing to those derived from the SPatial AutoCorrelation method (SPAC). From our investigation at these two sites, the joint analysis as proposed allows mode extraction in a wide frequency range (~ 0.6-35 Hz at Horstwalde and ~ 1.5-25 Hz at Löbnitz) and consequently improves the Vs profile inversion. To obtain the shear wave velocity profiles, we make use of a global inversion approach based on the neighborhood algorithm to invert the interpreted branches of the
Institute of Scientific and Technical Information of China (English)
Zhang Xuemin; Diao Guiling; Shu Peiyi
2004-01-01
Using pure S wave fitting method, we studied the shear wave velocity structures under the Ordos block and its eastern and southern marginal areas. The results show that the velocity structure beneath Yulin station in the interior of Ordos block is relatively stable, where no apparent change between high and low velocity layers exists and the shear wave velocity increases steadily with the depth. There is a 12km thick layer at the depth of 25km under this station, with an S wave velocity ( Vs = 3.90km/s) lower than that at the same depth in its eastern and southern areas (Vs ≥ 4.00km/s). The crust under the eastern margin of Ordos block is thicker than that of the Yulin station, and the velocity structures alternate between the high and Iow velocity layers, with more low velocity layers. It has the same characteristic as having a 10km-thick low velocity layer ( Vs = 3.80km/s) in the lower crust but buried at a depth of about 35km. Moreover, we studied the Vi/Vs ratio under each station in combination with the result of P wave velocity inversion. The results show that, the average velocity ratio of the Yulin station at the interior of Ordos block is only 1.68, with a very low ratio (about 1.60)in the upper crust and a stable ratio of about 1.73 in the mid and lower crust, which indicates the media under this station is homogenous and stable, being in a state of rigidity. But at the stations in the eastern and southern margins of the Ordos block, several layers of high velocity ratio (about 1.80) have been found, in which the average velocity ratio under Kelan and Lishi stations at the eastern margin is systemically higher than that of the general elastical body waves (1.732). This reflects that the crust under the marginal areas is more active relatively,and other materials may exist in these layers. Finally, we discussed the relationship among earthquakes, velocity structures beneath stations and faults.
First Laboratory Observation of a Shear Alfvén Wave Parametric Instability
Dorfman, S.; Carter, T.; Vincena, S.; Pribyl, P.; Rossi, G.; Lin, Y.; Sydora, R.
2016-10-01
Alfvén waves, a fundamental mode of magnetized plasmas, are ubiquitous in lab and space. The non-linear behavior of these modes is thought to play a key role in important problems such as the heating of the solar corona, solar wind turbulence, and Alfvén eigenmodes in tokamaks. In particular, theoretical predictions show that these Alfvén waves may be unstable to various parametric instabilities. Recent results from the Large Plasma Device at UCLA have recorded the first observation of a sheer Alfvén wave parametric instability in the laboratory [Dorfman and Carter, PRL 2016]. When a single finite ω /Ωi , finite k⊥ Alfvén wave is launched above a threshold amplitude, three daughter waves are observed: two sideband Alfvén waves co-propagating with the pump and a low frequency nonresonant mode. Frequency and parallel wave number matching relations are satisfied. Although these features are consistent with the k⊥ = 0 modulational instability theory, the theoretical growth rate is too small to explain observations. Efforts are underway to determine the nature of the perpendicular (to the background magnetic field) nonlinear drive, conduct comparative simulation studies, and identify parametric instabilities in spacecraft data. Supported by DOE, NSF, and NASA Eddy Postdoctoral Fellowship.
Liu, Ying; Zhang, Haijiang; Zhang, Xin; Pei, Shunping; An, Meijian; Dong, Shuwen
2015-10-01
We have conducted a systematic shear wave splitting analysis using 1000 selected aftershocks with M > 2 from the 2013 Ms 7.0 Lushan earthquake along the Longmenshan fault system in southwest China. Polarization directions of fast shear waves show a bimodal distribution with one dominant direction approximately parallel to the fault strike and the other close to the regional maximum horizontal compressive stress direction. This indicates that in this area mechanisms causing crustal seismic anisotropy are both stress induced and fault zone structure controlled. Delay times between fast and slow shear waves do not show a clear trend of increase for deeper events, suggesting the anisotropic zone is mostly above the aftershocks, which are generally located below 8 km. We further applied a shear wave splitting tomography method to measured delay times to characterize the spatial distribution of seismic anisotropy. The three-dimensional anisotropic percentage model shows strong anisotropy above 8 km but low anisotropy below it. The mainshock slip zone and its aftershocks are associated with very low or negligible anisotropy and high velocity, indicating that the zones with high anisotropy and low velocity above 8 km are mechanically weak and it is difficult for stress to accumulate there. The main and back reverse fault zones are associated with high anisotropic anomalies above ˜8 km, likely caused by shear fabric or microfractures aligned parallel to the fault zone.
Theory of director precession and nonlinear waves in nematic liquid crystals under elliptical shear.
Krekhov, A P; Kramer, L
2005-09-01
We study theoretically the slow director precession and nonlinear waves observed in homeotropically oriented nematic liquid crystals subjected to circular or elliptical Couette and Poiseuille flow and an electric field. From a linear analysis of the nematodynamic equations it is found that in the presence of the flow the electric bend Fréedericksz transition is transformed into a Hopf-type bifurcation. In the framework of an approximate weakly nonlinear analysis we have calculated the coefficients of the modified complex Ginzburg-Landau equation, which slightly above onset describes nonlinear waves with strong nonlinear dispersion. We also derive the equation describing the precession and waves well above the Fréedericksz transition and for small flow amplitudes. Then the nonlinear waves are of diffusive nature. The results are compared with full numerical simulations and with experimental data.
James Clerk Maxwell Prize for Plasma Physics Talk: On Nonlinear Physics of Shear Alfv'en Waves
Chen, Liu
2012-10-01
Shear Alfv'en Waves (SAW) are electromagnetic oscillations prevalent in laboratory and nature magnetized plasmas. Due to its anisotropic propagation property, it is well known that the linear wave propagation and dispersiveness of SAW are fundamentally affected by plasma nonuniformities and magnetic field geometries; for example, the existence of continuous spectrum, spectral gaps, and discrete eigenmodes in toroidal plasmas. This talk will discuss the crucial roles that nonuniformity and geometry could also play in the physics of nonlinear SAW interactions. More specifically, the focus will be on the Alfv'enic state and its breaking up by finite compressibility, non-ideal kinetic effects, and geometry. In the case of compressibility, finite ion-Larmor-radius effects are shown to qualitatively and quantitatively modify the three-wave parametric decays via the ion-sound perturbations. In the case of geometry, the spontaneous excitation of zonal structures by toroidal Alfv'en eigenmodes is investigated; demonstrating that, for realistic tokamak geometries, zonal current dominates over zonal flow. [4pt] Present address: Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou, China.
Hashemi, Roohollah
2017-03-01
In this paper, a robust methodology with several desirable features is developed for the determination of the magneto-electro-elastic fields of a shear (SH) wave scattered by a two-phase multiferroic fiber embedded in an infinite transversely isotropic piezoelectric or piezomagnetic medium. While the traditional wave-function expansion approach commonly used in the literature ceases to hold when the geometry of the obstacle is not symmetric, the present theory is capable of treating eccentric coating-fiber ensemble. To put its wide range of applicability in perspective, my analytical methodology is applied to several descriptive examples with various degrees of complexity. The calculated results reveals the profound influence of material properties of constituent phases, the thickness and eccentricity of coating layer, as well as the frequency of propagating SH-wave on the pertinent scattered fields induced by the multiferroic fiber. It is expected that the formulation and numerical results of this paper serve as a useful reference for the design and manufacture of multiferroic materials with a durable and yet reliable performance under dynamics loadings.
Upper mantle shear wave velocity structure of the east Anatolian-Caucasus region
Skobeltsyn, Gleb Anatolyevich
The Eastern Anatolian-Caucasus region is a relatively young part of the Alpine- Himalayan orogenic belt and has been formed as the result of the ongoing continental collision of Arabia and Eurasia. In spite of a number of geological studies that have been conducted in this area, there is still no consensus within the geoscience community about the regional tectonic settings and a model for the late Cenozoic tectonic evolution of the Anatolian Plateau. Knowledge of the upper mantle velocity structure in this region can provide the geological community with important constraints that are crucial for developing an understanding of the regional geology and the processes associated with early stages of mountain building. In the present dissertation, I describe two studies of the regional upper mantle S wave velocity structure. In order to derive the absolute velocity structure of the upper mantle, I have applied surface wave tomography to model Rayleigh wave phase velocities as a function of period. Then I inverted the Rayleigh phase velocities to obtain S wave velocities as a function of depth. The resulted high-resolution 3-D S wave velocity model of the regional upper mantle is characterized by a better depth resolution than any preexisting tomographic models. I also conducted an S wave splitting analysis using traditional methods and developed a two-layer grid search algorithm in order to infer the upper mantle anisotropic structure. The results of the S wave splitting analysis for the stations located in Azerbaijan are the first in the region. (Abstract shortened by ProQuest.).
Huang, Zhouchuan; Wang, Liangshu; Xu, Mingjie; Ding, Zhifeng; Wu, Yan; Wang, Pan; Mi, Ning; Yu, Dayong; Li, Hua
2015-12-01
We measured shear-wave splitting of teleseismic XKS phases (i.e., SKS, SKKS and PKS) recorded by more than 300 temporary ChinArray stations in Yunnan of SE Tibet. The first-order pattern of XKS splitting measurements shows that the fast polarization directions (φ) change (at ∼26-27°N) from dominant N-S in the north to E-W in the south. While splitting observations around the eastern Himalayan syntax well reflect anisotropy in the lithosphere under left-lateral shear deformation, the dominant E-W φ to the south of ∼26°N is consistent with the maximum extension in the crust and suggest vertically coherent pure-shear deformation throughout the lithosphere in Yunnan. However, the thin lithosphere (<80 km) could account for only part (<0.7 s) of the observed splitting delay times (δt, 0.9-1.5 s). Anisotropy in the asthenosphere is necessary to explain the NW-SE and nearly E-W φ in these regions. The NE-SW φ can be explained by the counter flow caused by the subduction and subsequent retreat of the Burma slab. The E-W φ is consistent with anisotropy due to the absolute plate motion in SE Tibet and the eastward asthenospheric flow from Tibet to eastern China accompanying the tectonic evolution of the plateau. Our results provide new information on different deformation fields in different layers under SE Tibet, which improves our understanding on the complex geodynamics related to the tectonic uplift and southeastward expansion of Tibetan material under the plateau.
Moreau, Baptiste; Vergari, Claudio; Gad, Hisham; Sandoz, Baptiste; Skalli, Wafa; Laporte, Sébastien
2016-08-01
There is a lack of numeric data for the mechanical characterization of spine muscles, especially in vivo data. The multifidus muscle is a major muscle for the stabilization of the spine and may be involved in the pathogenesis of chronic low back pain (LBP). Supersonic shear wave elastography (SWE) has not yet been used on back muscles. The purpose of this prospective study is to assess the feasibility of ultrasound SWE to measure the elastic modulus of lumbar multifidus muscle in a passive stretching posture and at rest with a repeatable and reproducible method. A total of 10 asymptotic subjects (aged 25.5 ± 2.2 years) participated, 4 females and 6 males. Three operators performed 6 measurements for each of the 2 postures on the right multifidus muscle at vertebral levels L2-L3 and L4-L5. Repeatability and reproducibility have been assessed according to ISO 5725 standard. Intra-class correlation coefficients (ICC) for intra- and inter-observer reliability were rated as both excellent [ICC=0.99 and ICC=0.95, respectively]. Reproducibility was 11% at L2-L3 level and 19% at L4-L5. In the passive stretching posture, shear modulus was significantly higher than at rest (µ < 0.05). This preliminary work enabled to validate the feasibility of measuring the shear modulus of the multifidus muscle with SWE. This kind of measurement could be easily introduces into clinical routine like for the medical follow-up of chronic LBP or scoliosis treatments.
DEFF Research Database (Denmark)
Rubeck, K. Z.; Bonnema, S. J.; Jespersen, M.;
2015-01-01
Shear Wave Elastography (SWE) assesses tissue elasticity quantitatively (Elasticity Index, EI). A higher EI in malignant thyroid nodules has been reported, suggesting SWE as a potential tool for diagnosing thyroid malignancy. However, thyroid SWE needs to be further evaluated before clinical...... application is legitimate. Our aim was therefore to systematically assess the reproducibility of SWE, when applied to patients undergoing surgery for thyroid nodular disease. SWE examinations were performed pre-operatively in 52 patients [male/female: 13/39; mean age: 53 years (range 21-81); malignant....../benign 13/39] referred to a tertiary thyroid center. Guided by at color-coded map, repeat registrations of EI in predefined regions of interest (ROIs) were performed for the index nodule by two independent investigators on the same day, and by one investigator on a different day. We assessed thyroid SWE...
Kang, Bo-Kyeong; Lee, Seung Soo; Cheong, Hyunhee; Hong, Seung Mo; Jang, Kiseok; Lee, Moon-Gyu
2015-12-01
The purpose of this study was to evaluate shear wave elastography (SWE) as a method for determining the severity of non-alcoholic fatty liver disease (NAFLD) and the stage of hepatic fibrosis, as well as the major determinants of liver elasticity among the various histologic and biomolecular changes associated with NAFLD. Rat NAFLD models with various degrees of NAFLD severity were created and imaged using SWE. The explanted livers were subjected to histopathologic evaluation and RNA expression analysis. Among the histologic and biomolecular findings, the fibrosis stage and the collagen RNA level were significant independent factors associated with liver elasticity (p steatohepatitis (NASH) and in determining fibrosis stage, and the corresponding areas under the receiver operating characteristic curves were 0.963 and 0.927-0.997, respectively. In conclusion, SWE is a potential non-invasive method for the detection of NASH and staging of hepatic fibrosis in patients with NAFLD.
DEFF Research Database (Denmark)
Thiele, Maja; Detlefsen, Sönke; Møller, Linda Maria Sevelsted;
2016-01-01
BACKGROUND & AIMS: Alcohol abuse causes half of all deaths from cirrhosis in the West, but few tools are available for noninvasive diagnosis of alcoholic liver disease. We evaluated 2 elastography techniques for diagnosis of alcoholic fibrosis and cirrhosis; liver biopsy with Ishak score...... and collagen-proportionate area were used as reference. METHODS: We performed a prospective study of 199 consecutive patients with ongoing or prior alcohol abuse, but without known liver disease. One group of patients had a high pretest probability of cirrhosis because they were identified at hospital liver...... clinics (in Southern Denmark). The second, lower-risk group, was recruited from municipal alcohol rehabilitation centers and the Danish national public health portal. All subjects underwent same-day transient elastography (FibroScan), 2-dimensional shear wave elastography (Supersonic Aixplorer), and liver...
Sample Disturbance in Resonant Column Test Measurement of Small-Strain Shear-Wave Velocity
Chiara, Nicola; Stokoe, K. H.
The accurate assessment of dynamic soil properties is a crucial step in the solution process of geotechnical earthquake engineering problems. The resonant column test is one of the ordinary procedures for dynamic characterization of soil. In this paper, the impact of sample disturbance on the resonant column test measurement of small-strain S-wave velocity is examined. Sample disturbance is shown to be a function of the ratio of the laboratory to field S-wave velocities: Vs, lab/Vs,field. The influence of four parameters - soil stiffness, soil plasticity index, in-situ sample depth and in-situ effective mean confining pressure - on sample disturbance is investigated both qualitatively and quantitatively. The relative importance of each parameter in predicting the small-strain field S-wave velocity from the resonant column test values is illustrated and predictive equations are presented.
Polom, U.; Arsyad, I.; Wiyono, S.; Krawczyk, C. M.
2007-12-01
Touched in the SW by the Great Sumatra Fault, the densely populated delta of the Krueng Aceh River consists mainly of young alluvial sediments of clay, sand and gravel with partially high organic content. The depth of this sediment body and its internal structure are widely unknown. Whereas traditional timber constructed buildings are mostly unaffected by strong earthquakes, the change to concrete building techniques added a significant new and locally unknown seismic risk in this region. The classification of earthquake site effects in the city of Banda Aceh and the surrounding region of Aceh Besar was the aim of a high-resolution shear-wave reflection seismic survey in the Indonesian province Nanggroe Aceh Darussalam. In cooperation with the Government of Indonesia and local counterparts, this was part of the Project "Management of Georisk" of the Federal Institute for Geosciences and Natural Resources. Using shear-wave reflection seismics in combination with a land streamer has proven to be an enormously useful method in the sedimentary regions of the Aceh province with an easy and fast recording operation. In addition, the specialized seismic system accounts for compacted soil surfaces which allows a wide range of applications within cities, industrial sites, paved roads and also on small dirt roads. Using a vibrator seismic source, this technique was applied successfully also in areas of high building density in the city of Banda Aceh or in the surrounding mostly agricultural environment. Combined with standard geoengineering investigations like cone penetrometer tests, it was possible to evaluate the soil stiffness in populated urban areas down to 100 m depth in terms of the IBC2003. This is important for the exploration of new areas for save building foundation and groundwater aquifer detection in the tsunami-flooded region.
Generation of intermediately-long sea waves by weakly sheared winds
Chernyavski, V M; Golbraikh, E; Mond, M
2010-01-01
The present work concerns the numeric modeling of the sea-wave instability under the effect of the logarithmic wind at hurricane conditions (ignoring non-linear effects, such as wave breaking, foam production, etc. Powell et al. (2003)^1, Shtemler et al. (2003)^2. The central point of the study is the calculation of the growth rate, which is proportional to the fractional input energy from the wind to the wave exponentially varied with time. The present modeling demonstrates that the Miles-type model applying Charnock's formula Charnock (1955)^3 for roughness to the hurricane -wind parameters underestimates the growth rate of the wind waves 5-40 times as compared with the model employing the roughness and friction velocity adopted from experimental data for hurricane winds.^1 This occurs due to Charnock's formula fails at large wind speeds. The stability characteristics obtained on the base of the hurricane-wind experimental parameters are self-consistent with the other results of the observations. A maximum ...
Generation of intermediately-long sea waves by weakly sheared winds
Chernyavski, V M; Golbraikh, E; Mond, M
2010-01-01
The present work concerns the numeric modeling of the sea-wave instability under the effect of the logarithmic-wind profile at hurricane conditions. Non-linear effects, such as wave breaking, foam production, etc. Powell et al. (2003), Shtemler et al. (2010) are ignored. The central point of the study is the calculation of the wave growth rate, which is proportional to the fractional input energy from the wind to the wave exponentially varied with time. The present modeling demonstrates that the Miles-type model applying Charnock's formula for roughness to the hurricane-wind parameters underestimates the growth rate from 5 to 40 times as compared with the model employing the roughness and friction velocity adopted from experimental data for hurricane winds.1 This occurs due to Charnock's formula fails at large wind speeds. The stability characteristics found on the base of the hurricane-wind experimental parameters are consistent with the other results of the observations. Obtained in the present study a maxi...
2014-06-30
attenuation, and source spectra of S waves along the Guerrero, Mexico subduction zone, Bull. Seism. Soc. Am., 80, pp. 1481- 1503. Denny, M. D., P...II), Southern California: Part I, Description of the survey, United States Geological Survey Open-File Report, 01-408. Gassmann, F. (1951), Uber
Pressure-induced forces and shear stresses on rubble mound breakwater armour layers in regular waves
DEFF Research Database (Denmark)
Jensen, Bjarne; Christensen, Erik Damgaard; Sumer, B. Mutlu
2014-01-01
measurements in the core material: (1) core material with an idealized armour layer made out of spherical objects that also allowed for detailed velocity measurements between and above the armour, and (2) core material with real rock armour stones. The same core material was applied through the entire......This paper presents the results from an experimental investigation of the pressure-induced forces in the core material below the main armour layer and shear stresses on the armour layer for a porous breakwater structure. Two parallel experiments were performed which both involved pore pressure...... pressure gradients were found which exerted a lift force up to ≈60% of the submerged weight of the core material. These maximum outward directed pressure gradients were linked to the maximum run-down event and were in general situated at, or slightly below, the maximum run-down level. Detailed velocity...
Chatelin, Simon; Charpentier, Isabelle; Corbin, Nadège; Meylheuc, Laurence; Vappou, Jonathan
2016-07-01
Quantitative and accurate measurement of in vivo mechanical properties using dynamic elastography has been the scope of many research efforts over the past two decades. Most of the shear-wave-based inverse approaches for magnetic resonance elastography (MRE) make the assumption of isotropic viscoelasticity. In this paper, we propose a quantitative gradient method for inversion of the shear wave equation in anisotropic media derived from a full waveform description using analytical viscoelastic Green formalism and automatic differentiation. The abilities and performances of the proposed identification method are first evaluated on numerical phantoms calculated in a transversely isotropic medium, and subsequently on experimental MRE data measured on an isotropic hydrogel phantom, on an anisotropic cryogel phantom and on an ex vivo fibrous muscle. The experiments are carried out by coupling circular shear wave profiles generated by acoustic radiation force and MRE acquisition of the wave front. Shear modulus values obtained by our MRE method are compared to those obtained by rheometry in the isotropic hydrogel phantom, and are found to be in good agreement despite non-overlapping frequency ranges. Both the cryogel and the ex vivo muscle are found to be anisotropic. Stiffness values in the longitudinal direction are found to be 1.8 times and 1.9 times higher than those in the transverse direction for the cryogel and the muscle, respectively. The proposed method shows great perspectives and substantial benefits for the in vivo quantitative investigation of complex mechanical properties in fibrous soft tissues.
DEFF Research Database (Denmark)
Ewertsen, Caroline; Carlsen, Jonathan Frederik; Christiansen, Iben Riishede
2016-01-01
and methods: Ten healthy volunteers (five males and five females) had their biceps brachii, gastrocnemius, and quadriceps muscle examined with strain- and shear wave elastography at three different depths and in regions located above bone and beside bone. Strain ratios were averaged from cine-loops of 10 s...
Chatelin, Simon; Charpentier, Isabelle; Corbin, Nadège; Meylheuc, Laurence; Vappou, Jonathan
2016-07-01
Quantitative and accurate measurement of in vivo mechanical properties using dynamic elastography has been the scope of many research efforts over the past two decades. Most of the shear-wave-based inverse approaches for magnetic resonance elastography (MRE) make the assumption of isotropic viscoelasticity. In this paper, we propose a quantitative gradient method for inversion of the shear wave equation in anisotropic media derived from a full waveform description using analytical viscoelastic Green formalism and automatic differentiation. The abilities and performances of the proposed identification method are first evaluated on numerical phantoms calculated in a transversely isotropic medium, and subsequently on experimental MRE data measured on an isotropic hydrogel phantom, on an anisotropic cryogel phantom and on an ex vivo fibrous muscle. The experiments are carried out by coupling circular shear wave profiles generated by acoustic radiation force and MRE acquisition of the wave front. Shear modulus values obtained by our MRE method are compared to those obtained by rheometry in the isotropic hydrogel phantom, and are found to be in good agreement despite non-overlapping frequency ranges. Both the cryogel and the ex vivo muscle are found to be anisotropic. Stiffness values in the longitudinal direction are found to be 1.8 times and 1.9 times higher than those in the transverse direction for the cryogel and the muscle, respectively. The proposed method shows great perspectives and substantial benefits for the in vivo quantitative investigation of complex mechanical properties in fibrous soft tissues.
Tunnel effect of fractal fault and transient S-wave velocity rupture (TSVR) of in-plane shear fault
Institute of Scientific and Technical Information of China (English)
无
1999-01-01
Transient S-wave velocity rupture (TSVR) means the velocity of fault rupture propagation is between S-wave velocity βand P-wave velocity α. Its existing in the rupture of in-plane (i.e. strike-slip) fault has been proved, but in 2-dimensional classical model, there are two difficulties in transient S-wave velocity rupture, i.e., initialization difficulty and divergence difficulty in interpreting the realization of TSVR. The initialization difficulty means, when v↑vR (Rayleigh wave velocity), the dynamic stress strength factor K2(t)→+0, and changes from positive into negative in the interval (vR,β). How v transit the forbidden of (vR,β)? The divergence difficulty means K2(t)→+ when v↓. Here we introduce the concept of fractal and tunnel effect that exist everywhere in fault. The structure of all the faults is fractal with multiple cracks. The velocity of fault rupture is differentiate of the length of the fault respect to time, so the rupture velocity is also fractal. The tunnel effect means the dynamic rupture crosses over the interval of the cracks, and the coalescence of the intervals is slower than the propagation of disturbance. Suppose the area of earthquake nucleation is critical or sub-critical propagation everywhere, the arriving of disturbance triggers or accelerates the propagation of cracks tip at once, and the observation system cannot distinguish the front of disturbance and the tip of fracture. Then the speed of disturbance may be identified as fracture velocity, and the phenomenon of TSVR appears, which is an apparent velocity. The real reason of apparent velocity is that the mathematics model of shear rupture is simplified of complex process originally. The dual character of rupture velocity means that the apparent velocity of fault and the real velocity of micro-crack extending, which are different in physics, but are unified in rupture criterion. Introducing the above-mentioned concept to the calculation of K2 (t), the difficulty of
Farrugia, Daniela; Paolucci, Enrico; D'Amico, Sebastiano; Galea, Pauline
2016-08-01
The islands composing the Maltese archipelago (Central Mediterranean) are characterized by a four-layer sequence of limestones and clays. A common feature found in the western half of the archipelago is Upper Coralline Limestone (UCL) plateaus and hillcaps covering a soft Blue Clay (BC) layer which can be up to 75 m thick. The BC layer introduces a velocity inversion in the stratigraphy, implying that the VS30 (traveltime average sear wave velocity (VS) in the upper 30 m) parameter is not always suitable for seismic microzonation purposes. Such a layer may produce amplification effects, however might not be included in the VS30 calculations. In this investigation, VS profiles at seven sites characterized by such a lithological sequence are obtained by a joint inversion of the single-station Horizontal-to-Vertical Spectral Ratios (H/V or HVSR) and effective dispersion curves from array measurements analysed using the Extended Spatial Auto-Correlation technique. The lithological sequence gives rise to a ubiquitous H/V peak between 1 and 2 Hz. All the effective dispersion curves obtained exhibit a `normal' dispersive trend at low frequencies, followed by an inverse dispersive trend at higher frequencies. This shape is tentatively explained in terms of the presence of higher mode Rayleigh waves, which are commonly present in such scenarios. Comparisons made with the results obtained at the only site in Malta where the BC is missing below the UCL suggest that the characteristics observed at the other seven sites are due to the presence of the soft layer. The final profiles reveal a variation in the VS of the clay layer with respect to the depth of burial and some regional variations in the UCL layer. This study presents a step towards a holistic seismic risk assessment that includes the implications on the site effects induced by the buried clay layer. Such assessments have not yet been done for Malta.
Odum, Jack K.; Williams, Robert A.; Stephenson, William J.; Worley, David M.; von Hillebrandt-Andrade, Christa; Asencio, Eugenio; Irizarry, Harold; Cameron, Antonio
2007-01-01
In 2004 and 2005 the Puerto Rico Seismic Network (PRSN), Puerto Rico Strong Motion Program (PRSMP) and the Geology Department at the University of Puerto Rico-Mayaguez (UPRM) collaborated with the U.S. Geological Survey to study near-surface shear-wave (Vs) and compressional-wave (Vp) velocities in and around major urban areas of Puerto Rico. Using noninvasive seismic refraction-reflection profiling techniques, we acquired velocities at 27 locations. Surveyed sites were predominantly selected on the premise that they were generally representative of near-surface materials associated with the primary geologic units located within the urbanized areas of Puerto Rico. Geologic units surveyed included Cretaceous intrusive and volcaniclastic bedrock, Tertiary sedimentary and volcanic units, and Quaternary unconsolidated eolian, fluvial, beach, and lagoon deposits. From the data we developed Vs and Vp depth versus velocity columns, calculated average Vs to 30-m depth (VS30), and derived NEHRP (National Earthquake Hazards Reduction Program) site classifications for all sites except one where results did not reach 30-m depth. The distribution of estimated NEHRP classes is as follows: three class 'E' (VS30 below 180 m/s), nine class 'D' (VS30 between 180 and 360 m/s), ten class 'C' (VS30 between 360 and 760 m/s), and four class 'B' (VS30 greater than 760 m/s). Results are being used to calibrate site response at seismograph stations and in the development of regional and local shakemap models for Puerto Rico.
Dependence of shear wave seismoelectrics on soil textures: a numerical study in the vadose zone
Zyserman, F. I.; Monachesi, L. B.; Jouniaux, L.
2017-02-01
In this work, we study seismoelectric conversions generated in the vadose zone, when this region is traversed by a pure SH wave. We assume that the soil is a 1-D partially saturated lossy porous medium and we use the van Genuchten's constitutive model to describe the water saturation profile. Correspondingly, we extend Pride's formulation to deal with partially saturated media. In order to evaluate the influence of different soil textures we perform a numerical analysis considering, among other relevant properties, the electrokinetic coupling, coseismic responses and interface responses (IRs). We propose new analytical transfer functions for the electric and magnetic field as a function of the water saturation, modifying those of Bordes et al. and Garambois & Dietrich, respectively. Further, we introduce two substantially different saturation-dependent functions into the electrokinetic (EK) coupling linking the poroelastic and the electromagnetic wave equations. The numerical results show that the electric field IRs markedly depend on the soil texture and the chosen EK coupling model, and are several orders of magnitude stronger than the electric field coseismic ones. We also found that the IRs of the water table for the silty and clayey soils are stronger than those for the sandy soils, assuming a non-monotonous saturation dependence of the EK coupling, which takes into account the charged air-water interface. These IRs have been interpreted as the result of the jump in the viscous electric current density at the water table. The amplitude of the IR is obtained using a plane SH wave, neglecting both the spherical spreading and the restriction of its origin to the first Fresnel zone, effects that could lower the predicted values. However, we made an estimation of the expected electric field IR amplitudes detectable in the field by means of the analytical transfer functions, accounting for spherical spreading of the SH seismic waves. This prediction yields a value
Sheared stably stratified turbulence and large-scale waves in a lid driven cavity
Cohen, N; Elperin, T; Kleeorin, N; Rogachevskii, I
2014-01-01
We investigated experimentally stably stratified turbulent flows in a lid driven cavity with a non-zero vertical mean temperature gradient in order to identify the parameters governing the mean and turbulent flows and to understand their effects on the momentum and heat transfer. We found that the mean velocity patterns (e.g., the form and the sizes of the large-scale circulations) depend strongly on the degree of the temperature stratification. In the case of strong stable stratification, the strong turbulence region is located in the vicinity of the main large-scale circulation. We detected the large-scale nonlinear oscillations in the case of strong stable stratification which can be interpreted as nonlinear internal gravity waves. The ratio of the main energy-containing frequencies of these waves in velocity and temperature fields in the nonlinear stage is about 2. The amplitude of the waves increases in the region of weak turbulence (near the bottom wall of the cavity), whereby the vertical mean temperat...
SHEAR WAVE SEISMIC STUDY COMPARING 9C3D SV AND SH IMAGES WITH 3C3D C-WAVE IMAGES
Energy Technology Data Exchange (ETDEWEB)
John Beecherl; Bob A. Hardage
2004-07-01
The objective of this study was to compare the relative merits of shear-wave (S-wave) seismic data acquired with nine-component (9-C) technology and with three-component (3-C) technology. The original proposal was written as if the investigation would be restricted to a single 9-C seismic survey in southwest Kansas (the Ashland survey), on the basis of the assumption that both 9-C and 3-C S-wave images could be created from that one data set. The Ashland survey was designed as a 9-C seismic program. We found that although the acquisition geometry was adequate for 9-C data analysis, the source-receiver geometry did not allow 3-C data to be extracted on an equitable and competitive basis with 9-C data. To do a fair assessment of the relative value of 9-C and 3-C seismic S-wave data, we expanded the study beyond the Ashland survey and included multicomponent seismic data from surveys done in a variety of basins. These additional data were made available through the Bureau of Economic Geology, our research subcontractor. Bureau scientists have added theoretical analyses to this report that provide valuable insights into several key distinctions between 9-C and 3-C seismic data. These theoretical considerations about distinctions between 3-C and 9-C S-wave data are presented first, followed by a discussion of differences between processing 9-C common-midpoint data and 3-C common-conversion-point data. Examples of 9-C and 3-C data are illustrated and discussed in the last part of the report. The key findings of this study are that each S-wave mode (SH-SH, SV-SV, or PSV) involves a different subsurface illumination pattern and a different reflectivity behavior and that each mode senses a different Earth fabric along its propagation path because of the unique orientation of its particle-displacement vector. As a result of the distinct orientation of each mode's particle-displacement vector, one mode may react to a critical geologic condition in a more optimal way than
Manickam, Kavitha; Machireddy, Ramasubba Reddy; Raghavan, Bagyam
2016-04-01
It has been observed that many pathological process increase the elastic modulus of soft tissue compared to normal. In order to image tissue stiffness using ultrasound, a mechanical compression is applied to tissues of interest and local tissue deformation is measured. Based on the mechanical excitation, ultrasound stiffness imaging methods are classified as compression or strain imaging which is based on external compression and Acoustic Radiation Force Impulse (ARFI) imaging which is based on force generated by focused ultrasound. When ultrasound is focused on tissue, shear wave is generated in lateral direction and shear wave velocity is proportional to stiffness of tissues. The work presented in this paper investigates strain elastography and ARFI imaging in clinical cancer diagnostics using real time patient data. Ultrasound B-mode imaging, strain imaging, ARFI displacement and ARFI shear wave velocity imaging were conducted on 50 patients (31 Benign and 23 malignant categories) using Siemens S2000 machine. True modulus contrast values were calculated from the measured shear wave velocities. For ultrasound B-mode, ARFI displacement imaging and strain imaging, observed image contrast and Contrast to Noise Ratio were calculated for benign and malignant cancers. Observed contrast values were compared based on the true modulus contrast values calculated from shear wave velocity imaging. In addition to that, student unpaired t-test was conducted for all the four techniques and box plots are presented. Results show that, strain imaging is better for malignant cancers whereas ARFI imaging is superior than strain imaging and B-mode for benign lesions representations.
Rosenblad, B. L.; Bay, J. A.
2008-05-01
The shear wave velocity (Vs) profile of near-surface soils is a critical parameter for understanding recorded ground motions and predicting local site effects in an earthquake. In structural design, the Vs profile in the top 30 m is used to modify design response spectra to account for local soil effects. In addition, knowledge of the near- surface Vs profile at strong motion stations can be used to account for changes in frequency content and amplification caused by the local site conditions. Following the August 15th, 2007 earthquake in Peru, a field testing program was performed to measure Vs profiles in the top 20 to 30 m at twenty-two locations in the affected region. The measurements were performed primarily at the sites of damaged school buildings but were also performed at several strong motion station sites as well as a few locations where evidence of soil liquefaction was observed. Nineteen of the sites were located in the severely affected cities of Chincha, Ica, Pisco and Tambo de Mora, with the remaining three sites located in, Lima, Palpa and Paracus. The Vs profiles were determined from surface wave velocity measurements performed with an impact source. The objective of this paper is to present and discuss the range of Vs profile conditions encountered in the regions affected by the Pisco-Peru earthquake. In the city of Ica, the profiles generally exhibited gradually increasing velocities with depth, with velocities which rarely exceeded 400 m/s in the top 30 m. In contrast, the profiles measured in Pisco, often exhibited strong, shallow velocity contrasts with Vs increasing from less than 200 m/s at the surface to over 600 m/s at some sites. The profiles measured in Chincha generally fell in between the ranges measured in Ica and Pisco. Lastly, soil liquefaction was evident throughout Tambo de Mora on the coast of Peru. Measurements indicated very low shear wave velocities of 75 to 125 m/s in the top 4 m, which is consistent with the observed
Kim, E.; Toomey, D. R.; Hooft, E. E. E.; Wilcock, W. S. D.; Weekly, R. T.; Lee, S. M.; Kim, Y.
2014-12-01
We present tomographic images of the compressional (Vp) and shear (Vs) wave velocity structure of the upper crust beneath the Endeavour segment of the Juan de Fuca Ridge. This ridge segment is bounded by the Endeavour and Cobb overlapping spreading centers (OSCs) to the north and south, respectively. Near the segment center an axial magma chamber (AMC) reflector underlies 5 hydrothermal vent fields. Our analysis uses data from the Endeavour tomography (ETOMO) experiment. A prior study of the Vp structure indicates that the shallow crust of the Endeavour segment is strongly heterogeneous [Weekly et al., 2014]. Beneath the OSCs Vp is anomalously low, indicating tectonic fracturing. Near the segment center, upper crustal Vp is relatively high beneath the hydrothermal vent fields, likely due to infilling of porosity by mineral precipitation. Lower velocities are observed immediately above the AMC, reflecting increased fracturing or higher temperatures. Anisotropic tomography reveals large amplitude ridge-parallel seismic anisotropy on-axis (>10%), but decreases in the off-axis direction over 5-10 km. Here we use crustal S-wave phases (Sg) — generated by P-to-S conversions near the seafloor — to better constrain crustal properties. Over half the OBSs in the ETOMO experiment recorded horizontal data on two channels that are of sufficiently high quality that we can orient the geophones using the polarizations of water waves from shots within 12 km. For these OBSs, crustal Sg phases are commonly visible out to ranges of ~20-25 km. We invert the Sg data separately for Vs structure, and also jointly invert Pg and Sg data to constrain the Vp/Vs ratio. Preliminary inversions indicate that Vs and Vp/Vs varies both laterally and vertically. These results imply strong lateral variations in both the physical (e.g., crack density and aspect ratio) and chemical (e.g., hydration) properties of oceanic crust.
Detection of bioagents using a shear horizontal surface acoustic wave biosensor
Energy Technology Data Exchange (ETDEWEB)
Larson, Richard S; Hjelle, Brian; Hall, Pam R; Brown, David C; Bisoffi, Marco; Brozik, Susan M; Branch, Darren W; Edwards, Thayne L; Wheeler, David
2014-04-29
A biosensor combining the sensitivity of surface acoustic waves (SAW) generated at a frequency of 325 MHz with the specificity provided by antibodies and other ligands for the detection of viral agents. In a preferred embodiment, a lithium tantalate based SAW transducer with silicon dioxide waveguide sensor platform featuring three test and one reference delay lines was used to adsorb antibodies directed against Coxsackie virus B4 or the negative-stranded category A bioagent Sin Nombre virus (SNV). Rapid detection of increasing concentrations of viral particles was linear over a range of order of magnitude for both viruses, and the sensor's selectivity for its target was not compromised by the presence of confounding Herpes Simplex virus type 1 The biosensor was able to delect SNV at doses lower than the load of virus typically found in a human patient suffering from hantavirus cardiopulmonary syndrome (HCPS).
E × B shear pattern formation by radial propagation of heat flux waves
Energy Technology Data Exchange (ETDEWEB)
Kosuga, Y., E-mail: kosuga@riam.kyushu-u.ac.jp [WCI Center for Fusion Theory, NFRI, Daejeon (Korea, Republic of); IAS and RIAM, Kyushu University, Fukuoka (Japan); Diamond, P. H. [WCI Center for Fusion Theory, NFRI, Daejeon (Korea, Republic of); CASS and CMTFO, University of California, San Diego, California 92093 (United States); Dif-Pradalier, G. [CEA, IRFM, Paul-lez-Durance Cedex (France); Gürcan, Ö. D. [Laboratoire de Physique des Plasmas, Ecole Polytechnique, Palaiseau (France)
2014-05-15
A novel theory to describe the formation of E×B flow patterns by radially propagating heat flux waves is presented. A model for heat avalanche dynamics is extended to include a finite delay time between the instantaneous heat flux and the mean flux, based on an analogy between heat avalanche dynamics and traffic flow dynamics. The response time introduced here is an analogue of the drivers' response time in traffic dynamics. The microscopic foundation for the time delay is the time for mixing of the phase space density. The inclusion of the finite response time changes the model equation for avalanche dynamics from Burgers equation to a nonlinear telegraph equation. Based on the telegraph equation, the formation of heat flux jams is predicted. The growth rate and typical interval of jams are calculated. The connection of the jam interval to the typical step size of the E×B staircase is discussed.
Detection of bioagents using a shear horizontal surface acoustic wave biosensor
Larson, Richard S; Hjelle, Brian; Hall, Pam R; Brown, David C; Bisoffi, Marco; Brozik, Susan M; Branch, Darren W; Edwards, Thayne L; Wheeler, David
2014-04-29
A biosensor combining the sensitivity of surface acoustic waves (SAW) generated at a frequency of 325 MHz with the specificity provided by antibodies and other ligands for the detection of viral agents. In a preferred embodiment, a lithium tantalate based SAW transducer with silicon dioxide waveguide sensor platform featuring three test and one reference delay lines was used to adsorb antibodies directed against Coxsackie virus B4 or the negative-stranded category A bioagent Sin Nombre virus (SNV). Rapid detection of increasing concentrations of viral particles was linear over a range of order of magnitude for both viruses, and the sensor's selectivity for its target was not compromised by the presence of confounding Herpes Simplex virus type 1 The biosensor was able to delect SNV at doses lower than the load of virus typically found in a human patient suffering from hantavirus cardiopulmonary syndrome (HCPS).
Polom, Ulrich; Mueller, Christof; Krawczyk, CharLotte M.
2016-04-01
The Mw 7.1 Darfield Earthquake in September 2010 ruptured the surface along the Greendale Fault that was not known prior to the earthquake. The subsequent Mw 6.3 Christchurch earthquake in February 2011 demonstrated that concealed active faults have a significant risk potential for urban infrastructure and human life in New Zealand if they are located beneath or close to such areas. Mapping exposures and analysis of active faults incorporated into the National Seismic Hazard Model (NSHM) suggests that several thousands of these active structures are yet to be identified and have the potential to generate moderate to large magnitude earthquakes (i.e. magnitudes >5). Geological mapping suggests that active faults pass beneath, or within many urban areas in New Zealand, including Auckland, Blenheim, Christchurch, Hastings/Napier, Nelson, Rotorua, Taupo, Wellington, and Whakatane. Since no established methodology for routinely locating and assessing the earthquake hazard posed by concealed active faults is available, the principal objective of the presented study was to evaluate the usefulness of high-resolution shear wave seismic reflection profiling using a land streamer to locate buried faults in urban areas of New Zealand. During the survey carried out in the city of Whakatane in February 2015, the method was first tested over a well known surface outcrop of the Edgecumbe Fault 30 km south-west of Whakatane city. This allowed further to investigate the principle shear wave propagation characteristics in the unknown sediments, consisting mainly of effusive rock material of the Taupo volcanic zone mixed with marine transgression units. Subsequently the survey was continued within Whakatane city using night operation time slots to reduce the urban noise. In total, 11 profiles of 5.7 km length in high data quality were acquired, which clearly show concealed rupture structures of obviously different age in the shallow sediments down to 100 m depth. Subject to depth
Energy Technology Data Exchange (ETDEWEB)
Ganau, Sergi, E-mail: sganau@tauli.cat [Women' s Imaging Department, UDIAT-Centre Diagnòstic, Institut Universitari Parc Taulí – UAB, Parc Taulí, 1, 08205 Sabadell, Barcelona (Spain); Andreu, Francisco Javier, E-mail: xandreu@tauli.cat [Pathology Department, UDIAT-Centre Diagnòstic, Institut Universitari Parc Taulí – UAB, Parc Taulí, 1, 08205 Sabadell, Barcelona (Spain); Escribano, Fernanda, E-mail: fescribano@tauli.cat [Women' s Imaging Department, UDIAT-Centre Diagnòstic, Institut Universitari Parc Taulí – UAB, Parc Taulí, 1, 08205 Sabadell, Barcelona (Spain); Martín, Amaya, E-mail: amartino@tauli.cat [Women' s Imaging Department, UDIAT-Centre Diagnòstic, Institut Universitari Parc Taulí – UAB, Parc Taulí, 1, 08205 Sabadell, Barcelona (Spain); Tortajada, Lidia, E-mail: ltortajada@tauli.cat [Women' s Imaging Department, UDIAT-Centre Diagnòstic, Institut Universitari Parc Taulí – UAB, Parc Taulí, 1, 08205 Sabadell, Barcelona (Spain); Villajos, Maite, E-mail: mvillajos@tauli.cat [Women' s Imaging Department, UDIAT-Centre Diagnòstic, Institut Universitari Parc Taulí – UAB, Parc Taulí, 1, 08205 Sabadell, Barcelona (Spain); and others
2015-04-15
Highlights: •Shear wave elastography provides a quantitative assessment of the hardness of breast lesions. •The hardness of breast lesions correlates with lesion size: larger lesions are harder than smaller ones. •Histologic type and grade do not correlate clearly with elastography parameters. •HER2, luminal B HER2+, and triple-negative tumors have lower maximum hardness and mean hardness than other tumor types. •Half the tumors classified as BI-RADS 3 were luminal A and half were HER2. -- Abstract: Purpose: To evaluate the correlations of maximum stiffness (Emax) and mean stiffness (Emean) of invasive carcinomas on shear-wave elastography (SWE) with St. Gallen consensus tumor phenotypes. Methods: We used an ultrasound system with SWE capabilities to prospectively study 190 women with 216 histologically confirmed invasive breast cancers. We obtained one elastogram for each lesion. We correlated Emax and Emean with tumor size, histologic type and grade, estrogen and progesterone receptors, HER2 expression, the Ki67 proliferation index, and the five St. Gallen molecular subtypes: luminal A, luminal B without HER2 overexpression (luminal B HER2−), luminal B with HER2 overexpression (luminal B HER2+), HER2, and triple negative. Results: Lesions larger than 20 mm had significantly higher Emax (148.04 kPa) and Emean (118.32 kPa) (P = 0.005) than smaller lesions. We found no statistically significant correlations between elasticity parameters and histologic type and grade or molecular subtypes, although tumors with HER2 overexpression regardless whether they expressed hormone receptors (luminal B HER2+ and HER2 phenotypes) and triple-negative tumors had lower Emax and Emean than the others. We assessed the B-mode ultrasound findings of the lesions with some of the Emax or Emean values less than or equal to 80 kPa; only four of these had ultrasound findings suggestive of a benign lesion (two with luminal A phenotype and two with HER2 phenotype). Conclusions: We
Piscaglia, F; Salvatore, V; Mulazzani, L; Cantisani, V; Schiavone, C
2016-02-01
In the last 12 - 18 months nearly all ultrasound manufacturers have arrived to implement ultrasound shear wave elastography modality in their equipment for the assessment of chronic liver disease; the few remaining players are expected to follow in 2016.When all manufacturers rush to a new technology at the same time, it is evident that the clinical demand for this information is of utmost value. Around 1990, there was similar demand for color Doppler ultrasound; high demand for contrast-enhanced ultrasonography was evident at the beginning of this century, and around 2010 demand increased for strain elastography. However, some issues regarding the new shear wave ultrasound technologies must be noted to avoid misuse of the resulting information for clinical decisions. As new articles are expected to appear in 2016 reporting the findings of the new technologies from various companies, we felt that the beginning of this year was the right time to present an appraisal of these issues. We likewise expect that in the meantime EFSUMB will release a new update of the existing guidelines 1 2.The first ultrasound elastography method became available 13 years ago in the form of transient elastography with Fibroscan(®) 3. It was the first technique providing non-invasive quantitive information about the stiffness of the liver and hence regarding the amount of fibrosis in chronic liver disease 3. The innovation was enormous, since a non-invasive modality was finally available to provide findings otherwise achievable only by liver biopsy. In fact, prior to ultrasound elastography, a combination of conventional and Doppler ultrasound parameters were utilized to inform the physician about the presence of cirrhosis and portal hypertension 4. However, skilled operators were required, reproducibility and diagnostic accuracy were suboptimal, and it was not possible to differentiate the pre-cirrhotic stages of fibrosis. All these limitations were substantially improved by
Directory of Open Access Journals (Sweden)
Teresa Cañas
2015-01-01
Full Text Available Background. Liver disease associated with cystic fibrosis (CFLD is the second cause of mortality in these patients. The diagnosis is difficult because none of the available tests are specific enough. Noninvasive elastographic techniques have been proven to be useful to diagnose hepatic fibrosis. Acoustic radiation force impulse (ARFI imaging is an elastography imaging system. The purpose of the work was to study the utility of liver and spleen ARFI Imaging in the detection of CFLD. Method. 72 patients with cystic fibrosis (CF were studied and received ARFI imaging in the liver and in the spleen. SWV values were compared with the values of 60 healthy controls. Results. Comparing the SWV values of CFLD with the control healthy group, values in the right lobe were higher in patients with CFLD. We found a SWV RHL cut-off value to detect CFLD of 1.27 m/s with a sensitivity of 56.5% and a specificity of 90.5%. CF patients were found to have higher SWC spleen values than the control group. Conclusions. ARFI shear wave elastography in the right hepatic lobe is a noninvasive technique useful to detect CFLD in our sample of patients. Splenic SWV values are higher in CF patients, without any clinical consequence.
Energy Technology Data Exchange (ETDEWEB)
Yoon, Jeong Hee [Department of Radiology, Seoul National University College of Medicine, Seoul 110-744 (Korea, Republic of); Lee, Jeong Min [Department of Radiology, Seoul National University College of Medicine, Seoul 110-744 (Korea, Republic of); Institute of Radiation Medicine, Seoul National University College of Medicine, Seoul 110-744 (Korea, Republic of); Woo, Hyun Sik; Yu, Mi Hye; Joo, Ijin; Lee, Eun Sun; Sohn, Ji Young [Department of Radiology, Seoul National University College of Medicine, Seoul 110-744 (Korea, Republic of); Lee, Kyung Boon [Department of Pathology, Seoul National University Hospital, Seoul 110-744 (Korea, Republic of); Han, Joon Koo; Choi, Byung Ihn [Department of Radiology, Seoul National University College of Medicine, Seoul 110-744 (Korea, Republic of); Institute of Radiation Medicine, Seoul National University College of Medicine, Seoul 110-744 (Korea, Republic of)
2013-07-01
To cross-validate liver stiffness (LS) measured on shear wave elastography (SWE) and on magnetic resonance elastography (MRE) in the same individuals. We included 94 liver transplantation (LT) recipients and 114 liver donors who underwent either MRE or SWE before surgery or biopsy. We determined the technical success rates and the incidence of unreliable LS measurements (LSM) of SWE and MRE. Among the 69 patients who underwent both MRE and SWE, the median and coefficient of variation (CV) of the LSM from each examination were compared and correlated. Areas under the receiver operating characteristic curve in both examinations were calculated in order to exclude the presence of hepatic fibrosis (HF). The technical success rates of MRE and SWE were 96.4% and 92.2%, respectively (p = 0.17), and all of the technical failures occurred in LT recipients. SWE showed 13.1% unreliable LSM, whereas MRE showed no such case (p < 0.05). There was moderate correlation in the LSM in both examinations (r = 0.67). SWE showed a significantly larger median LSM and CV than MRE. Both examinations showed similar diagnostic performance for excluding HF (Az; 0.989, 1.000, respectively). MRE and SWE show moderate correlation in their LSMs, although SWE shows higher incidence of unreliable LSMs in cirrhotic liver.
Institute of Scientific and Technical Information of China (English)
Jun Liang; Shiping Wu; Shanyi Du
2007-01-01
In this paper, the dynamic interaction of two parallel cracks in functionally graded materials (FGMs) is investigated by means of the non-local theory. To make the analysis tractable, the shear modulus and the material den-sity are assumed to vary exponentially with the coordinate vertical to the crack. To reduce mathematical difficulties, a one-dimensional non-local kemel is used instead of a two-dimensional one for the dynamic problem to obtain stress fields near the crack tips. By use of the Fourier transform,the problem can be solved with the help of two pairs of dual integral equations, in which the unknown variables are the jumps of displacements across the crack surfaces. To solve the dual integral equations, the jumps of displace-ments across the crack surfaces are expanded in a series of Jacobi polynomials. Unlike the classical elasticity solu-tions, it is found that no stress singularity is present at the crack tips. The non-local elastic solutions yield a finite hoop stress at the crack tips. The present result provides theoret-ical references helpful for evaluating relevant strength and preventing material failure of FGMs with initial cracks. The magnitude of the finite stress field depends on relevant param-eters, such as the crack length, the distance between two parallel cracks, the parameter describing the FGMs, the fre-quency of the incident waves and the lattice parameter of materials.
Graw, Jordan H.; Adams, Aubreya N.; Hansen, Samantha E.; Wiens, Douglas A.; Hackworth, Lauren; Park, Yongcheol
2016-09-01
The Transantarctic Mountains (TAMs) are the largest non-compressional mountain range on Earth, and while a variety of uplift mechanisms have been proposed, the origin of the TAMs is still a matter of great debate. Most previous seismic investigations of the TAMs have focused on a central portion of the mountain range, near Ross Island, providing little along-strike constraint on the upper mantle structure, which is needed to better assess competing uplift models. Using data recorded by the recently deployed Transantarctic Mountains Northern Network, as well as data from the Transantarctic Mountains Seismic Experiment and from five stations operated by the Korea Polar Research Institute, we investigate the upper mantle structure beneath a previously unexplored portion of the mountain range. Rayleigh wave phase velocities are calculated using a two-plane wave approximation and are inverted for shear wave velocity structure. Our model shows a low velocity zone (LVZ; ∼4.24 km s-1) at ∼160 km depth offshore and adjacent to Mt. Melbourne. This LVZ extends inland and vertically upwards, with more lateral coverage above ∼100 km depth beneath the northern TAMs and Victoria Land. A prominent LVZ (∼4.16-4.24 km s-1) also exists at ∼150 km depth beneath Ross Island, which agrees with previous results in the TAMs near the McMurdo Dry Valleys, and relatively slow velocities (∼4.24-4.32 km s-1) along the Terror Rift connect the low velocity anomalies. We propose that the LVZs reflect rift-related decompression melting and provide thermally buoyant support for the TAMs uplift, consistent with proposed flexural models. We also suggest that heating, and hence uplift, along the mountain front is not uniform and that the shallower LVZ beneath northern Victoria Land provides greater thermal support, leading to higher bedrock topography in the northern TAMs. Young (0-15 Ma) volcanic rocks associated with the Hallett and the Erebus Volcanic Provinces are situated directly
Shear wave velocity structure of the crust and upper mantle underneath the Tianshan orogenic belt
Institute of Scientific and Technical Information of China (English)
2007-01-01
From April, 2003 to September, 2004, a passive broadband seismic array consisting of 60 stations was deployed over the Tianshan orogenic belt by State Key Laboratory of Earthquake Dynamics, Institute of Geology, China Earthquake Administration. Among them, 51 stations make up an about 500-km-long profile across the Tianshan Mountains from Kuytun to Kuqa. The receiver function profile and S-wave velocity structure of the crust and upper mantle down to 100 km deep are obtained by using the re-ceiver function method (Liu et al. 1996, 2000). The main results can be summarized as follows: (1) A clear mountain root does not exist beneath the Tianshan Mountains, and the crust-mantle boundaries underneath the stations mostly have transitional structures. This implies that the material differentia-tion between the crust and mantle is not yet accomplished and the orogenic process is still going on. (2) The crust beneath the Tianshan Mountains has laterally blocked structures in direction perpendicular to the mountain strike, and the crust-mantle boundary has a clear dislocation structure. Both of them correspond to each other. (3) The offsets of the Moho discontinuity are highly correlated to the tectonic borders on the surface and that corresponding to the frontal southern Tianshan fault reaches to 14 km. This manifests that large vertical divergent movement took place between different blocks. This sup-ports the discontinuous model of the Tianshan orogeny, and the Tarim block subduction is restricted only to the southern side of the South Tianshan. (4) Inside the upper and middle crust of the Tianshan Mountains exist several low-velocity bodies correlated with high seismicity located on the moun-tain-basin jointures on both sides of the mountain and between different blocks, and the low-velocity bodies on the mountain-basin jointures are inclined obviously to the mountain. This implies that the low-velocity bodies may be correlated closely to the thrust and subduction of
Wang, Yu; Wang, Min; Jiang, Jingfeng
2017-02-01
Shear wave elastography is increasingly being used to non-invasively stage liver fibrosis by measuring shear wave speed (SWS). This study quantitatively investigates intrinsic variations among SWS measurements obtained from heterogeneous media such as fibrotic livers. More specifically, it aims to demonstrate that intrinsic variations in SWS measurements, in general, follow a non-Gaussian distribution and are related to the heterogeneous nature of the medium being measured. Using the principle of maximum entropy (ME), our primary objective is to derive a probability density function (PDF) of the SWS distribution in conjunction with a lossless stochastic tissue model. Our secondary objective is to evaluate the performance of the proposed PDF using Monte Carlo (MC)-simulated shear wave (SW) data against three other commonly used PDFs. Based on statistical evaluation criteria, initial results showed that the derived PDF fits better to MC-simulated SWS data than the other three PDFs. It was also found that SW fronts stabilized after a short (compared with the SW wavelength) travel distance in lossless media. Furthermore, in lossless media, the distance required to stabilize the SW propagation was not correlated to the SW wavelength at the low frequencies investigated (i.e. 50, 100 and 150 Hz). Examination of the MC simulation data suggests that elastic (shear) wave scattering became more pronounced when the volume fraction of hard inclusions increased from 10 to 30%. In conclusion, using the principle of ME, we theoretically demonstrated for the first time that SWS measurements in this model follow a non-Gaussian distribution. Preliminary data indicated that the proposed PDF can quantitatively represent intrinsic variations in SWS measurements simulated using a two-phase random medium model. The advantages of the proposed PDF are its physically meaningful parameters and solid theoretical basis.
Nicolas, Alexandre; Puosi, Francesco; Mizuno, Hideyuki; Barrat, Jean-Louis
2015-05-01
Shear transformations (i.e., localized rearrangements of particles resulting in the shear deformation of a small region of the sample) are the building blocks of mesoscale models for the flow of disordered solids. In order to compute the time-dependent response of the solid material to such a shear transformation, with a proper account of elastic heterogeneity and shear wave propagation, we propose and implement a very simple Finite-Element (FE)-based method. Molecular Dynamics (MD) simulations of a binary Lennard-Jones glass are used as a benchmark for comparison, and information about the microscopic viscosity and the local elastic constants is directly extracted from the MD system and used as input in FE. We find very good agreement between FE and MD regarding the temporal evolution of the disorder-averaged displacement field induced by a shear transformation, which turns out to coincide with the response of a uniform elastic medium. However, fluctuations are relatively large, and their magnitude is satisfactorily captured by the FE simulations of an elastically heterogeneous system. Besides, accounting for elastic anisotropy on the mesoscale is not crucial in this respect. The proposed method thus paves the way for models of the rheology of amorphous solids which are both computationally efficient and realistic, in that structural disorder and inertial effects are accounted for.
Directory of Open Access Journals (Sweden)
Adelinet M.
2016-05-01
Full Text Available The recent tomography results obtained within the scope of the Enhanced Geothermal System (EGS European Soultz project led us to revisit the meso-fracturing properties of Soultz test site. In this paper, we develop a novel approach coupling effective medium modeling and shear-wave splitting to characterize the evolution of crack properties throughout the hydraulic stimulation process. The stimulation experiment performed in 2000 consisted of 3 successive injection steps spanning over 6 days. An accurate 4-D tomographic image was first carried out based upon the travel-times measured for the induced seismicity [Calò M., Dorbath C., Cornet F.H., Cuenot N. (2011 Large-scale aseismic motion identified through 4-D P-wave tomography, Geophys. J. Int. 186, 1295-1314]. The current study shows how to take advantage of the resulting compressional wave (Calò et al., 2011 and shear-wave velocity models. These are given as input data to an anisotropic effective medium model and converted into crack properties. In short, the effective medium model aims to estimate the impact of cracks on velocities. It refers to a crack-free matrix and 2 families of penny-shaped cracks with orientations in agreement with the main observed geological features: North-South strike and dip of 65°East and 65°West [Genter A., Traineau H. (1996 Analysis of macroscopic fractures in granite in the HDR geothermal well EPS-1, Soultz-sous-Forêts, France, J. Vol. Geoth. Res. 72, 121-141], respectively. The resulting output data are the spatial distributions of crack features (lengths and apertures within the 3-D geological formation. We point out that a flow rate increase results in a crack shortening in the area imaged by both compressional and shear waves, especially in the upper part of the reservoir. Conversely, the crack length, estimated during continuous injection rate phases, is higher than during the increasing injection rate phases. A possible explanation for this is that
Wang, Yuhou; Gekelman, Walter; Pribyl, Patrick; van Compernolle, Bart; Papadopoulos, Konstantinos
2015-11-01
ELF / ULF waves are important in terrestrial radio communications but difficult to launch using ground-based structures due to their enormous wavelengths. In spite of this generation of such waves by field-aligned ionospheric heating modulation was first demonstrated using the HAARP facility. In the future heaters near the equator will be constructed and laboratory experiments on cross-field wave propagation could be key to the program's success. Here we report a detailed laboratory study conducted on the Large Plasma Device (LaPD) at UCLA. In this experiment, ten rapid pulses of high power microwaves (250 kW X-band) near the plasma frequency were launched transverse to the background field, and were modulated at a variable fraction (0.1-1.0) of fci. Along with bulk electron heating and density modification, the microwave pulses generated a population of fast electrons. The field-aligned current carried by the fast electrons acted as an antenna that radiated shear Alfvén waves. It was demonstrated that a controllable arbitrary frequency (f
Energy Technology Data Exchange (ETDEWEB)
Liu, Jian Xue; Ji, Yong Hao; Zhao Junzhi; Zhang, Yao Ren; Dun, Guo Liang; Ning, Bo [Dept. of Ultrasonography, Baoji Central Hospital, Baoji (China); Ai, Hong [Dept. of Ultrasonography, The First Affiliated Hospital of Medical College, Xi' an Jiaotong University, Xi' an (China)
2016-06-15
To compare several noninvasive indices of fibrosis in chronic viral hepatitis B, including liver shear-wave velocity (SWV), hyaluronic acid (HA), collagen type IV (CIV), procollagen type III (PCIII), and laminin (LN). Acoustic radiation force impulse (ARFI) was performed in 157 patients with chronic viral hepatitis B and in 30 healthy volunteers to measure hepatic SWV (m/s) in a prospective study. Serum markers were acquired on the morning of the same day of the ARFI evaluation. Receiver operating characteristic (ROC) analysis was performed to evaluate and compare the accuracies of SWV and serum markers using METAVIR scoring from liver biopsy as a reference standard. The most accurate test for diagnosing fibrosis F ≥ 1 was SWV with the area under the ROC curve (AUC) of 0.913, followed by LN (0.744), HA (0.701), CIV (0.690), and PCIII (0.524). The best test for diagnosing F ≥ 2 was SWV (AUC of 0.851), followed by CIV (0.671), HA (0.668), LN (0.562), and PCIII (0.550). The best test for diagnosing F ≥ 3 was SWV (0.854), followed by CIV (0.693), HA (0.675), PCIII (0.591), and LN (0.548). The best test for diagnosing F = 4 was SWV (0.965), followed by CIV (0.804), PCIII (0.752), HA (0.744), and LN (0.662). SWV combined with HA and CIV did not improve diagnostic accuracy (AUC = 0.931 for F ≥ 1, 0.863 for F ≥ 2, 0.855 for F ≥ 3, 0.960 for F = 4). The performance of SWV in diagnosing liver fibrosis is superior to that of serum markers. However, the combination of SWV, HA, and CIV does not increase the accuracy of diagnosing liver fibrosis and cirrhosis.
Directory of Open Access Journals (Sweden)
Ewelina Szczepanek-Parulska
Full Text Available INTRODUCTION: Thyroid nodular disease (TND is a very common disorder. However, since the rate of malignancy is reported to be 3-10%, only a minority of patients require aggressive surgical treatment. As a result, there is a need for diagnostic tools which would allow for a reliable differentiation between benign and malignant nodules. Although a number of conventional ultrasonographic (US features are proved to be markers of malignancy, Shear Wave Elastography (SWE is considered to be an improvement of conventional US. The aim of this study was to compare conventional US markers and SWE diagnostic values in the differentiation of benign and malignant thyroid nodules. MATERIALS AND METHODS: All patients referred for thyroidectomy, irrespective of the indications, underwent a US thyroid examination prospectively. Patients with TND were included into the study. Results of the US and SWE examinations were compared with post-surgical histopathology. RESULTS: One hundred and twenty two patients with 393 thyroid nodules were included into the study. Twenty two patients were diagnosed with cancer. SWE turned out to be a predictor of malignancy superior to any other conventional US markers (OR=54.5 using qualitative scales and 40.8 using quantitative data on maximal stiffness with a threshold of 50 kPa. CONCLUSIONS: Although most conventional US markers of malignancy prove to be significant, none of them are characterized by both high sensitivity and specificity. SWE seems to be an important step forward, allowing for a more reliable distinction of benign and malignant thyroid nodules. Our study, assessing SWE properties on the highest number of thyroid lesions at the time of publication, confirms the high diagnostic value of this technique. It also indicates that a quantitative evaluation of thyroid lesions is not superior to simpler qualitative methods.
Webb, Muriel; Shibolet, Oren; Halpern, Zamir; Nagar, Meital; Amariglio, Ninette; Levit, Stella; Steinberg, David M; Santo, Erwin; Salomon, Ophira
2015-09-01
Liver stiffness and spleen stiffness in patients with myelofibrosis have traditionally been assessed through manual palpation and thus influenced by interobserver variability. In this article, for the first time, liver stiffness and spleen stiffness of patients with myelofibrosis were evaluated through FibroScan and shear wave elastography (SWE). Nine patients with myelofibrosis comprised the study group. They were compared with 11 patients with liver cirrhosis and 8 healthy volunteers. Before the FibroScan study, all patients underwent ultrasound study to delineate the left intercostal space for validated measurements. In patients with myelofibrosis, the mean stiffness of the spleen was 41.3 and 32.9 kilopascals (kPa) through FibroScan and SWE, respectively. The mean stiffness of the liver was 7.8 kPa through FibroScan and 10.4 kPa through SWE. The stiffness of the spleen in patients with cirrhosis was even higher, reaching a mean of 58.5 kPa through FibroScan and 40.5 kPa through SWE. The means were considerably lower among the healthy controls (13.5 and 18.1 kPa, respectively). The correlation between spleen stiffness among the patients with cirrhosis is negative and opposite in direction (r = -0.35) in comparison with the patients with myelofibrosis (r = 0.78). Among the patients with liver cirrhosis and myelofibrosis, spleen size was weakly related to spleen stiffness as assessed through SWE (r = 0.49) but had almost no relation to the FibroScan measure (r = 0.13). The FibroScan and SWE of the spleen have little ability to distinguish between the patients with myelofibrosis and cirrhosis, but they do differentiate both patient groups from the healthy controls. The stiffness of spleen and liver as measured through FibroScan and SWE was not correlated to the longevity of myelofibrosis.
Directory of Open Access Journals (Sweden)
Taku Hatta
Full Text Available The deltoid muscle plays a critical role in the biomechanics of shoulders undergoing reverse shoulder arthroplasty (RSA. However, both pre- and postoperative assessment of the deltoid muscle quality still remains challenging. The purposes of this study were to establish a novel methodology of shear wave elastography (SWE to quantify the mechanical properties of the deltoid muscle, and to investigate the reliability of this technique using cadaveric shoulders for the purpose of RSA. Eight fresh-frozen cadaveric shoulders were obtained. The deltoid muscles were divided into 5 segments (A1, A2, M, P1 and P2 according to the muscle fiber orientation and SWE values were measured for each segment. Intra- and inter-observer reliability was evaluated using intraclass correlation coefficient (ICC. To measure the response of muscle tension during RSA, the humeral shaft was osteotomized and subsequently elongated by an external fixator (intact to 15 mm elongation. SWE of the deltoid muscle was measured under each stretch condition. Intra- and inter-observer reliability of SWE measurements for all regions showed 0.761-0.963 and 0.718-0.947 for ICC(2,1. Especially, SWE measurements for segments A2 and M presented satisfactory repeatability. Elongated deltoid muscles by the external fixator showed a progressive increase in passive stiffness for all muscular segments. Especially, SWE outcomes of segments A2 and M reliably showed an exponential growth upon stretching (R2 = 0.558 and 0.593. Segmental measurements using SWE could be reliably and feasibly used to quantitatively assess the mechanical properties of the deltoid muscle, especially in the anterior and middle portions. This novel technique based on the anatomical features may provide helpful information of the deltoid muscle properties during treatment of RSA.
Energy Technology Data Exchange (ETDEWEB)
Lee, Bo Eun; Chung, Jin, E-mail: aqua0724@ewha.ac.kr; Cha, Eun-Suk; Lee, Jee Eun; Kim, Jeoung Hyun
2015-07-15
Highlights: • Complex cystic lesions have a broad spectrum of malignancy rate. • SWE is useful to evaluate cystic breast lesions. • Cutoff value of Emax was 108.5 kPa, for predicting malignancy. • Using this cutoff value, sensitivity of 86.7% and specificity of 97.3%. • SWE could reduce unnecessary biopsies in complex cystic and solid breast lesions. - Abstract: Objective: To evaluate the additional role of shear-wave elastography (SWE) in differential diagnosis of complex cystic and solid breast lesions. Materials and methods: From January 2013 to November 2013, 140 complex cystic and solid breast lesions from 139 consecutive patients were performed ultrasound and SWE prior to biopsy. BI-RADS ultrasound final assessment and SWE parameters were recorded for each lesion. Histopathologic diagnosis was used as the reference standard. Results: Among the 140 lesions, 30 lesions (21.4%) were malignant. The mean maximum elasticity (Emax) of malignant lesions (184.3 kPa) was significantly higher than that of benign lesions (45.5 kPa) (P < 0.001). Homogeneity of elasticity and color pattern were significantly different from malignancy and benign lesions (P < 0.05). Emax with cutoff value at 108.5 kPa showed Az value of 0.968 (95% CI, 0.932–0.985) with sensitivity of 86.7% and specificity of 97.3%. Using this cutoff value, false-positive rate was 2.7% and false-negative rate was 13.3%. By applying an Emax value of 108.5 kPa or less as a criterion for downgrading BI-RADS category 4a lesions to category 3 lesions, 103/123 (83.7%) lesions could be downgraded to category 3 lesions. Conclusion: Additional use of SWE could reduce unnecessary benign biopsies in complex cystic and solid breast lesions.
Pollard, Thomas B
Recent advances in microbiology, computational capabilities, and microelectromechanical-system fabrication techniques permit modeling, design, and fabrication of low-cost, miniature, sensitive and selective liquid-phase sensors and lab-on-a-chip systems. Such devices are expected to replace expensive, time-consuming, and bulky laboratory-based testing equipment. Potential applications for devices include: fluid characterization for material science and industry; chemical analysis in medicine and pharmacology; study of biological processes; food analysis; chemical kinetics analysis; and environmental monitoring. When combined with liquid-phase packaging, sensors based on surface-acoustic-wave (SAW) technology are considered strong candidates. For this reason such devices are focused on in this work; emphasis placed on device modeling and packaging for liquid-phase operation. Regarding modeling, topics considered include mode excitation efficiency of transducers; mode sensitivity based on guiding structure materials/geometries; and use of new piezoelectric materials. On packaging, topics considered include package interfacing with SAW devices, and minimization of packaging effects on device performance. In this work novel numerical models are theoretically developed and implemented to study propagation and transduction characteristics of sensor designs using wave/constitutive equations, Green's functions, and boundary/finite element methods. Using developed simulation tools that consider finite-thickness of all device electrodes, transduction efficiency for SAW transducers with neighboring uniform or periodic guiding electrodes is reported for the first time. Results indicate finite electrode thickness strongly affects efficiency. Using dense electrodes, efficiency is shown to approach 92% and 100% for uniform and periodic electrode guiding, respectively; yielding improved sensor detection limits. A numerical sensitivity analysis is presented targeting viscosity
Jang, Jun-keun; Kondo, Kengo; Namita, Takeshi; Yamakawa, Makoto; Shiina, Tsuyoshi
2016-07-01
Shear-wave elastography (SWE) enables the noninvasive and quantitative evaluation of the mechanical properties of human soft tissue. Generally, shear-wave velocity (C S) can be estimated using the time-of-flight (TOF) method. Young’s modulus is then calculated directly from the estimated C S. However, because shear waves in thin-layered media propagate as guided waves, C S cannot be accurately estimated using the conventional TOF method. Leaky Lamb dispersion analysis (LLDA) has recently been proposed to overcome this problem. In this study, we performed both experimental and finite-element (FE) analyses to evaluate the advantages of LLDA over TOF. In FE analysis, we investigated why the conventional TOF is ineffective for thin-layered media. In phantom experiments, C S results estimated using the two methods were compared for 1.5 and 2% agar plates and tube phantoms. Furthermore, it was shown that Lamb waves can be applied to tubular structures by extracting lateral waves traveling in the long axis direction of the tube using a two-dimensional window. Also, the effects of the inner radius and stiffness (or shear wavelength) of the tube on the estimation performance of LLDA were experimentally discussed. In phantom experiments, the results indicated good agreement between LLDA (plate phantoms of 2 mm thickness: 5.0 m/s for 1.5% agar and 7.2 m/s for 2% agar; tube phantoms with 2 mm thickness and 2 mm inner radius: 5.1 m/s for 1.5% agar and 7.0 m/s for 2% agar; tube phantoms with 2 mm thickness and 4 mm inner radius: 5.3 m/s for 1.5% agar and 7.3 m/s for 2% agar) and SWE measurements (bulk phantoms: 5.3 m/s ± 0.27 for 1.5% agar and 7.3 m/s ± 0.54 for 2% agar).
Polom, Ulrich; Alrshdan, Hussam; Al-Halbouni, Djamil; Sawarieh, Ali; Dahm, Torsten; Krawczyk, CharLotte M.
2016-04-01
In October 2014 a high-resolution shallow shear wave reflection seismic survey was carried out at the Dead Sea sinkhole site Ghor Al Haditha, Jordan. It extended a survey undertaken in 2013, also in order to gather time-lapse profiles. In the framework of the DEad SEa Research Venue (DESERVE), a virtual institute of the Helmholtz Association and international partners, this investigation is part of a cross-disciplinary and cooperative international project of the Helmholtz Centers KIT, GFZ, and UFZ. At the investigation site, characterized by alluvial fan deposits, ongoing subsidence and sinkhole processes in the subsurface create massive reshaping of farming areas, including the destruction of housings, industrial sites, and infrastructure. The sinkhole hazard at the Dead Sea is significant, since similar processes are observed at several coastal segments of the Dead Sea. The new survey (in total 2.1 profile km) was targeted to improve the knowledge about the subsurface structures and to confine the results of the initial survey (1.8 km profile km), with respect to the presence or non-presence of a massive salt layer proposed at nearly 40 m depth. This salt layer is the central part of a widely established process hypothesis to generate shallow cavities by salt subrosion, which subsequently collapse to sinkholes at the surface. Results of the initial survey carried out in 2013 highlighted a new process hypothesis of subsurface mass transport by Dead Sea mud mobilization enclosed in the alluvial fan, so that an extended survey was undertaken in 2014. This, indeed, confirmed that there are no reflection seismic signal responses that would be expected to occur in the presence of a massive salt layer. Since evaluation of both hypothesis by new drilling could not be carried out due to safety reasons and permissions, it remained unclear which hypothesis is valid for the investigation site. However, we combined the 2013 and 2014 reflection seismic profiles and the
Wang, Dan; He, Ya-Ping; Zhang, Yi-Feng; Liu, Bo-Ji; Zhao, Chong-Ke; Fu, Hui-Jun; Wei, Qing; Xu, Hui-Xiong
2017-01-06
To evaluate the diagnostic performance of a new technique of shear wave speed (SWS) imaging for the diagnosis of thyroid nodule with elasticity modulus and SWS measurement. 322 thyroid nodules in 322 patients (216 benign nodules, 106 malignant nodules) were included in this study. All the nodules received conventional ultrasound (US) and SWS imaging (Aplio500, Toshiba Medical Systems, Japan) before fine-needle aspiration (FNA) and/or surgery. The values of E-max and E-mean with elastic modulus (61.27 ± 36.31 kPa and 31.89 ± 19.11 kPa) or SWS (4.45 ± 1.49 m/s and 3.26 ± 2.71 m/s) in malignant nodules were significantly higher than those in benign lesions (29.18 ± 18.62 kPa and 15.85 ± 6.96 kPa, or 2.98 ± 0.85 m/s and 2.19 ± 0.42 m/s, all P 0.05). In multivariate logistic regression analysis, E-max (m/s) with SWS was identified to be the strongest independent predictor for malignant nodules (odds ratio [OR] = 16.760), followed by poorly-defined margin (OR = 7.792), taller-than-wide shape (OR = 3.160), micro-calcification (OR = 2.422), and E-max (kPa) with elastic modulus (OR = 0.914). The AUC was 0.813 for E-max with SWS (m/s) and 0.796 for E-max with elastic modulus (kPa). With cut-off SWS value of 3.52 m/s in E-max, sensitivity of 69.8%, specificity of 81.5%, and accuracy of 77.6% were achieved. SWS imaging is a valuable tool in predicting thyroid malignancy. E-max with SWS measurement is the strongest independent predictor for thyroid malignancy.
Directory of Open Access Journals (Sweden)
D. A. Shcherbakova
2014-09-01
Full Text Available Supersonic shear wave imaging (SSI is a noninvasive, ultrasound-based technique to quantify the mechanical properties of bulk tissues by measuring the propagation speed of shear waves (SW induced in the tissue with an ultrasound transducer. The technique has been successfully validated in liver and breast (tumor diagnostics and is potentially useful for the assessment of the stiffness of arteries. However, SW propagation in arteries is subjected to different wave phenomena potentially affecting the measurement accuracy. Therefore, we assessed SSI in a less complex ex vivo setup, that is, a thick-walled and rectangular slab of an excised equine aorta. Dynamic uniaxial mechanical testing was performed during the SSI measurements, to dispose of a reference material assessment. An ultrasound probe was fixed in an angle position controller with respect to the tissue to investigate the effect of arterial anisotropy on SSI results. Results indicated that SSI was able to pick up stretch-induced stiffening of the aorta. SW velocities were significantly higher along the specimen's circumferential direction than in the axial direction, consistent with the circumferential orientation of collagen fibers. Hence, we established a first step in studying SW propagation in anisotropic tissues to gain more insight into the feasibility of SSI-based measurements in arteries.
Wang, C. R.; Hingst, W. R.; Porro, A. R.
1991-01-01
The properties of 2-D shock wave/turbulent boundary layer interaction flows were calculated by using a compressible turbulent Navier-Stokes numerical computational code. Interaction flows caused by oblique shock wave impingement on the turbulent boundary layer flow were considered. The oblique shock waves were induced with shock generators at angles of attack less than 10 degs in supersonic flows. The surface temperatures were kept at near-adiabatic (ratio of wall static temperature to free stream total temperature) and cold wall (ratio of wall static temperature to free stream total temperature) conditions. The computational results were studied for the surface heat transfer, velocity temperature correlation, and turbulent shear stress in the interaction flow fields. Comparisons of the computational results with existing measurements indicated that (1) the surface heat transfer rates and surface pressures could be correlated with Holden's relationship, (2) the mean flow streamwise velocity components and static temperatures could be correlated with Crocco's relationship if flow separation did not occur, and (3) the Baldwin-Lomax turbulence model should be modified for turbulent shear stress computations in the interaction flows.
Kammann, Janina; Hübscher, Christian; Boldreel, Lars Ole; Nielsen, Lars
2016-07-01
The Carlsberg Fault zone (CFZ) is a NNW-SSE striking structure close to the transition zone between the Danish Basin and the Baltic Shield. We examine the fault evolution by combining very-high-resolution onshore shear-wave seismic data, one conventional onshore seismic profile and marine reflection seismic profiles. The faulting geometry indicates a strong influence of Triassic subsidence and rifting in the Central European Basin System. Growth strata within the CFZ surrounding Höllviken Graben reveal syntectonic sedimentation in the Lower Triassic, indicating the opening to be a result of Triassic rifting. In the Upper Cretaceous growth faulting documents continued rifting. These findings contrast the Late Cretaceous to Paleogene inversion tectonics in neighboring structures, such as the Tornquist Zone. The high-resolution shear-wave seismic method was used to image faulting in Quaternary and Danian layers in the CFZ. The portable compact vibrator source ElViS III S8 was used to acquire a 1150 m long seismic section on the island Amager, south of Copenhagen. The shallow subsurface in the investigation area is dominated by Quaternary glacial till deposits in the upper 5-11 m and Danian limestone below. In the shear-wave profile, we imaged the uppermost 30 m of the western part of CFZ. The complex fault zone comprises normal block faults and one reverse block fault. The observed faults cut through the Danian as well as the Quaternary overburden. Hence, there are strong indicators for ongoing faulting, like mapped faulting in Quaternary sediments and ongoing subsidence of the eastern block of the CFZ as interpreted by other authors. The lack of earthquakes localized in the fault zone implies that either the frequency of occurring earthquakes is too small to be recorded in the observation time-span, or that the movement of the shallow sub-surface layers may be due to other sources than purely tectonic processes.
Energy Technology Data Exchange (ETDEWEB)
Krepkin, Konstantin; Adler, Ronald S.; Gyftopoulos, Soterios [NYU Langone Medical Center/Hospital for Joint Diseases, Department of Radiology, New York, NY (United States); Bruno, Mary; Raya, Jose G. [NYU Langone Medical Center, Center for Biomedical Imaging, Department of Radiology, New York, NY (United States)
2017-02-15
To determine whether there is an association between T2/T2* mapping and supraspinatus tendon mechanical properties as assessed by shear-wave ultrasound elastography (SWE). This HIPAA-compliant prospective pilot study received approval from our hospital's institutional review board. Eight patients (3 males/5 females; age range 44-72 years) and nine shoulders underwent conventional shoulder MRI, T2/T2* mapping on a 3-T scanner, and SWE. Two musculoskeletal radiologists reviewed the MRI examinations in consensus for evidence of supraspinatus tendon pathology, with tear size measured for full-thickness tears. T2/T2* values and ultrasound shear-wave velocities (SWV) were calculated in three corresponding equidistant regions of interest (ROIs) within the insertional 1-2 cm of the supraspinatus tendon (medial, middle, lateral). Pearson correlation coefficients between T2/T2* values and SWV, as well as among T2, T2*, SWV and tear size, were calculated. There was a significant negative correlation between T2* and SWV in the lateral ROI (r = -0.86, p = 0.013) and overall mean ROI (r = -0.90, p = 0.006). There was significant positive correlation between T2 and measures of tear size in the lateral and mean ROIs (r range 0.71-0.77, p range 0.016-0.034). There was significant negative correlation between SWV and tear size in the middle and mean ROIs (r range -0.79-0.68, p range 0.011-0.046). Our pilot study demonstrated a potential relationship between T2* values and shear wave velocity values in the supraspinatus tendon, a finding that could lead to an improved, more quantitative evaluation of the rotator cuff tendons. (orig.)
Miao, Hongchen; Huan, Qiang; Wang, Qiangzhong; Li, Faxin
2017-02-01
Excitation of single fundamental torsional wave T(0, 1) mode is of practical importance in inspecting or monitoring the structural integrity of pipelines, as T(0, 1) wave is the only non-dispersive mode in pipe-like structures. This work presents a piezoelectric ring array to excite and receive single T(0, 1) mode which is made up of a series of equally-spaced face-shear d24 PZT elements around the pipe. Firstly, we proposed that single T(0, 1) mode can be excited by the piezoelectric ring, when the number of d24 PZT elements is slightly greater than n, where F(n, 2) is the highest circumferential order flexural torsional mode within the frequency bandwidth of the drive signal. Then this proposed principle was confirmed by finite element simulations. Later, experimental testing was conducted on a 100 mm outer diameter, 3 mm thick aluminum pipe. Results show that the ring of 24 face-shear d24 PZT elements can suppress all the non-axisymmetric flexural modes at the excitation frequency of 150 kHz so that single T(0, 1) mode is generated. Moreover, such a piezoelectric ring transducer can also filter flexural modes and receive the T(0, 1) mode only at 150 kHz. Note that here the highest circumferential order flexural torsional mode within the frequency bandwidth is F(20, 2), so the experimental results are in good agreement with the proposed principle. The presented ring of face-shear d24 PZT elements is very suitable for severing as the T(0, 1) wave transducer in structural health monitoring system, as it is cost-effective and no external load is required for operation.
Crane, J. M.; Lorenzo, J. M.; Harris, J. B.
2013-04-01
We present a new, impulsive, horizontal shear source capable of performing long shot profiles in a time-efficient and repeatable manner. The new shear source is ground-coupled by eight 1/2″ (1.27 cm) × 2″ (5.08 cm) steel spikes. Blank shotshells (12-gauge) used as energy sources can be either mechanically or electrically detonated. Electrical fuses have a start time repeatability of safety pin. We conducted field tests at the 17th Street Canal levee breach site in New Orleans, Louisiana (30.017° N 90.121° W) and at an instrumented test borehole at Millsaps College in Jackson, Mississippi (32.325° N 93.182° W) to compare our new source and a traditional hammer impact source. The new shear source produces a broader-band of frequencies (30-100 Hz cf. 30-60 Hz). Signal generated by the new shear source has signal-to-noise ratios equivalent to ~ 3 stacked hammer blows to the hammer impact source. Ideal source signals must be broadband in frequency, have a high SNR, be consistent, and have precise start times; all traits of the new shear source.
Institute of Scientific and Technical Information of China (English)
杜建科; 沈亚鹏; 高波
2004-01-01
A theoretical treatment of the scattering of anti-plane shear (SH) waves is provided by a single crack in an unbounded transversely isotropic electro-magneto-elastic medium. Based on the differential equations of equilibrium, electric displacement and magnetic induction intensity differential equations, the governing equations for SH waves were obtained. By means of a linear transform, the governing equations were reduced to one Helmholtz and two Laplace equations. The Cauchy singular integral equations were gained by making use of Fourier transform and adopting electro-magneto impermeable boundary conditions. The closed form expression for the resulting stress intensity factor at the crack was achieved by solving the appropriate singular integral equations using Chebyshev polynomial. Typical examples are provided to show the loading frequency upon the local stress fields around the crack tips. The study reveals the importance of the electromagneto-mechanical coupling terms upon the resulting dynamic stress intensity factor.
Murthy, V. S.; Rose, W. C.
1977-01-01
Detailed measurements of wall shear stress (skin friction) were made with specially developed buried wire gages in the interaction regions of a Mach 2.9 turbulent boundary layer with externally generated shocks. Separation and reattachment points inferred by these measurements support the findings of earlier experiments which used a surface oil flow technique and pitot profile measurements. The measurements further indicate that the boundary layer tends to attain significantly higher skin-friction values downstream of the interaction region as compared to upstream. Comparisons between measured wall shear stress and published results of some theoretical calculation schemes show that the general, but not detailed, behavior is predicted well by such schemes.
Di Fiore, V.; Cavuoto, G.; Tarallo, D.; Punzo, M.; Evangelista, L.
2016-05-01
A joint analysis of down-hole (DH) and multichannel analysis of surface waves (MASW) measurements offers a complete evaluation of shear wave velocity profiles, especially for sites where a strong lateral variability is expected, such as archeological sites. In this complex stratigraphic setting, the high "subsoil anisotropy" (i.e., sharp lithological changes due to the presence of anthropogenic backfill deposits and/or buried man-made structures) implies a different role for DH and MASW tests. This paper discusses some results of a broad experimental program conducted on the Palatine Hill, one of the most ancient areas of the city of Rome (Italy). The experiments were part of a project on seismic microzoning and consisted of 20 MASW and 11 DH tests. The main objective of this study was to examine the difficulties related to the interpretation of the DH and MASW tests and the reliability limits inherent in the application of the noninvasive method in complex stratigraphic settings. As is well known, DH tests provide good determinations of shear wave velocities (Vs) for different lithologies and man-made materials, whereas MASW tests provide average values for the subsoil volume investigated. The data obtained from each method with blind tests were compared and were correlated to site-specific subsurface conditions, including lateral variability. Differences between punctual (DH) and global (MASW) Vs measurements are discussed, quantifying the errors by synthetic comparison and by site response analyses. This study demonstrates that, for archeological sites, VS profiles obtained from the DH and MASW methods differ by more than 15 %. However, the local site effect showed comparable results in terms of natural frequencies, whereas the resolution of the inverted shear wave velocity was influenced by the fundamental mode of propagation.
Stephenson, William J.; Odum, Jackson K.; McNamara, Daniel E.; Williams, Robert A.; Angster, Stephen J
2014-01-01
We characterize shear-wave velocity versus depth (Vs profile) at 16 portable seismograph sites through the epicentral region of the 2011 Mw 5.8 Mineral (Virginia, USA) earthquake to investigate ground-motion site effects in the area. We used a multimethod acquisition and analysis approach, where active-source horizontal shear (SH) wave reflection and refraction as well as active-source multichannel analysis of surface waves (MASW) and passive-source refraction microtremor (ReMi) Rayleigh wave dispersion were interpreted separately. The time-averaged shear-wave velocity to a depth of 30 m (Vs30), interpreted bedrock depth, and site resonant frequency were estimated from the best-fit Vs profile of each method at each location for analysis. Using the median Vs30 value (270–715 m/s) as representative of a given site, we estimate that all 16 sites are National Earthquake Hazards Reduction Program (NEHRP) site class C or D. Based on a comparison of simplified mapped surface geology to median Vs30 at our sites, we do not see clear evidence for using surface geologic units as a proxy for Vs30 in the epicentral region, although this may primarily be because the units are similar in age (Paleozoic) and may have similar bulk seismic properties. We compare resonant frequencies calculated from ambient noise horizontal:vertical spectral ratios (HVSR) at available sites to predicted site frequencies (generally between 1.9 and 7.6 Hz) derived from the median bedrock depth and average Vs to bedrock. Robust linear regression of HVSR to both site frequency and Vs30 demonstrate moderate correlation to each, and thus both appear to be generally representative of site response in this region. Based on Kendall tau rank correlation testing, we find that Vs30 and the site frequency calculated from average Vs to median interpreted bedrock depth can both be considered reliable predictors of weak-motion site effects in the epicentral region.
基于微观尺度的砂土剪切波速度%Shear wave velocity in sand based on microscopic size
Institute of Scientific and Technical Information of China (English)
黄博; 夏唐代; 周新民; 刘志军
2016-01-01
运用宏观等效与微观接触理论相结合的方法研究砂土剪切波速度。在宏观上将砂土看作均匀连续各向同性介质，在微观尺度上假设砂土为等效球体半径相等、材料性质相同、随机堆积的固体颗粒的集合体，结合颗粒接触理论，引入颗粒形状修正系数，推导出砂土的等效剪切模量和宏观剪切波速度公式。通过定量计算进行参数分析。研究结果表明：孔隙比、砂土颗粒弹性模量、埋深和颗粒形状修正系数对砂土剪切波速的影响显著；有效内摩擦角、砂土颗粒泊松比、砂土密度和与配位数有关的常数对剪切波速影响较小。将理论计算结果与实测值进行对比，吻合较好，验证了本方法的可行性与正确性。%Based on the macroscopic equivalent model and microscopic contact theories, the shear wave velocity was studied. Considered as a kind of homogeneous, continuous and isotropic media macroscopically, the sand was assumed microscopically as an aggregate of randomly packed uniform equivalent spheres with the same material properties. Then, the formulas of the equivalent shear modulus and shear wave velocity in sand were derived by using particle contact theory and by introducing the correcting coefficient of the granule shape. The main influencing factors were analyzed through quantitative calculations. The results indicate that the shear wave velocity is mainly influenced by void ratio, elastic modulus of sand granule, burial depth and the correcting coefficient of the granule shape, while it is hardly influenced by inner friction angle, Poisson’s ratio of sand granule, density of the sand and the constant connected with the coordination number. Through comparison, the calculation results using the present formulas agree well with measured data so as to verify the validity of the proposed method.
Liou, M. S.; Adamson, T. C., Jr.
1979-01-01
An analysis is presented of the flow in the two inner layers, the Reynolds stress sublayer and the wall layer. Included is the calculation of the shear stress at the wall in the interaction region. The limit processes considered are those used for an inviscid flow.
Directory of Open Access Journals (Sweden)
Ali Ateş
2014-01-01
Full Text Available Evaluation of the liquefaction potential of a liquefaction-prone area is important for geotechnical earthquake engineering, both for assessment for site selection and for planning and new constructions. The liquefaction potential index for the city of Duzce in northwestern Turkey using the empirical relationships between the Standard Penetration Test (SPT and the Shear Wave Velocity Test (VS was investigated in this study. After, VS values based on SPT blow counts (N were obtained from the alluvial soils in the city of Duzce. The liquefaction potential indexes of the soils were determined using the empirical relationships between the Standard Penetration Test (SPT and the Shear Wave Velocity Test (VS calculating for a probable earthquake of MW=7.2. In the result of the study, the liquefaction potential index (LPI values were interpreted and compared evaluating the SPT N blow count values obtained from the study area. Based on the empirical relationships assumed for the soils, it was observed that there was not a perfect agreement between the results of the two methods. The liquefaction potential index values using the SPT N blow counts were found to be lower than those of the VS method.
Directory of Open Access Journals (Sweden)
S. Ergintav
2012-04-01
Full Text Available The 2006 Mb = 5.3 Manyas-Kus Golu (Manyas earthquake has been retrospectively "stress-forecasted" using variations in time-delays of seismic shear wave splitting to evaluate the time and magnitude at which stress-modified microcracking reaches fracture criticality within the stressed volume where strain is released. We processed micro earthquakes recorded by 29 TURDEP (Multi-Disciplinary Earthquake Research in High Risk Regions of Turkey and 33 KOERI (Kandilli Observatory and Earthquake Research Institute stations in the Marmara region by using the aspect-ratio cross-correlation and systematic analysis of crustal anisotropy methods. The aim of the analysis is to determine changes in delay-times, hence changes in stress, before and after the 2006 Manyas earthquake. We observed that clear decreases in delay times before the impending event, especially at the station GEMT are consistent with the anisotropic poro-elasticity (APE model of fluid-rock deformation, but we could not observe similar changes at other stations surrounding the main event. The logarithms of the duration of the stress-accumulation are proportional (self-similar to the magnitude of the impending event. Although time and magnitude of th 2005 Manyas earthquake could have been stress-forecasted, as has been recognized elsewhere, shear-wave splitting does not appear to provide direct information about the location of impending earthquakes.
Kadota, Michio; Tanaka, Shuji
2016-07-01
There are two kinds of plate waves propagating in a thin plate, Lamb and shear horizontal (SH) waves. The former has a velocity higher than 15,000 m/s when the plate is very thin. On the contrary, 0th SH (SH0) mode plate wave in an ultrathin LiNbO3 plate has an electro-mechanical coupling factor larger than 50%. Authors fabricated an ultra-wideband T-type ladder filter with a relative bandwidth (BW) of 41% using the SH0 mode plate wave. Although the BW of the filter fully covers the digital TV band in Japan, it does not have sufficient margin at the lower and higher end of BW. Besides, periodic small ripples due to transverse mode in pass-band of the filter were observed. In this study π-type ladder filters were fabricated by changing the pitch ratio of interdigital transducer (IDT) of parallel and series arm resonators (PR(IDT)) to control the BW, and by apodizing IDTs to improve the periodic small ripples due to transverse mode. Ultra-wideband filters without periodic small transverse mode with ultrawide bandwidth from 41 to 49% were fabricated. The BWs fully cover ultrawide digital television bands in Japan and U.S.A. These filters with an ultrawide BW and a steep characteristic show the possibility to be applied to a reported cognitive radio system and other communication systems requiring an ultrawide BW.
Yuan, Bing; de Swart, Huib E.; Panadès, Carles
2016-09-01
Tidal sand ridges and long bed waves are large-scale bedforms that are observed on continental shelves. They differ in their wavelength and in their orientation with respect to the principal direction of tidal currents. Previous studies indicate that tidal sand ridges appear in areas where tidal currents are above 0.5 m s-1, while long bed waves occur in regions where the maximum tidal current velocity is slightly above the critical velocity for sand erosion and the current is elliptical. An idealized nonlinear numerical model was developed to improve the understanding of the initial formation of these bedforms. The model governs the feedbacks between tidally forced depth-averaged currents and the sandy bed on the outer shelf. The effects of different formulations of bed shear stress and sand transport, tidal ellipticity and different tidal constituents on the characteristics of these bedforms (growth rate, wavelength, orientation of the preferred bedforms) during their initial formation were examined systematically. The results show that the formulations for bed shear stress and slope-induced sand transport are not critical for the initial formation of these bedforms. For tidal sand ridges, under rectilinear tidal currents, increasing the critical bed shear stress for sand erosion decreases the growth rate and the wavelength of the preferred bedforms significantly, while the orientation angle slightly decreases. The dependence of the growth rate, wavelength and the orientation of the preferred bedforms on the tidal ellipticity is non-monotonic. A decrease in tidal frequency results in preferred bedforms with larger wavelength and smaller orientation angle, while their growth rate hardly changes. In the case of joint diurnal and semidiurnal tides, or spring-neap tides, the characteristics of the bedforms are determined by the dominant tidal constituent. For long bed waves, the number of anticyclonically/cyclonically oriented bedforms with respect to the principal
Wadas, Sonja H.; Polom, Ulrich; Krawczyk, Charlotte M.
2016-10-01
Subrosion is the subsurface leaching of soluble rocks that results in the formation of depression and collapse structures. This global phenomenon is a geohazard in urban areas. To study near-surface subrosion structures, four shear-wave seismic reflection profiles, with a total length of ca. 332 m, were carried out around the famous leaning church tower of Bad Frankenhausen in northern Thuringia, Germany, which shows an inclination of 4.93° from the vertical. Most of the geological underground of Thuringia is characterized by soluble Permian deposits, and the Kyffhäuser Southern Margin Fault is assumed to be a main pathway for water to leach the evaporite. The seismic profiles were acquired with the horizontal micro-vibrator ELVIS, developed at Leibniz Institute for Applied Geophysics (LIAG), and a 72 m long landstreamer equipped with 72 horizontal geophones. The high-resolution seismic sections show subrosion-induced structures to a depth of ca. 100 m and reveal five features associated with the leaching of Permian deposits: (1) lateral and vertical varying reflection patterns caused by strongly heterogeneous strata, (2) discontinuous reflectors, small offsets, and faults, which show the underground is heavily fractured, (3) formation of depression structures in the near-surface, (4) diffractions in the unmigrated seismic sections that indicate increased scattering of the seismic waves, and (5) varying seismic velocities and low-velocity zones that are presumably caused by fractures and upward-migrating cavities. A previously undiscovered southward-dipping listric normal fault was also found, to the north of the church. It probably serves as a pathway for water to leach the Permian formations below the church and causes the tilting of the church tower. This case study shows the potential of horizontal shear-wave seismic reflection to image near-surface subrosion structures in an urban environment with a horizontal resolution of less than 1 m in the uppermost 10
Directory of Open Access Journals (Sweden)
P. D. Williams
2004-01-01
Full Text Available We report on a numerical study of the impact of short, fast inertia-gravity waves on the large-scale, slowly-evolving flow with which they co-exist. A nonlinear quasi-geostrophic numerical model of a stratified shear flow is used to simulate, at reasonably high resolution, the evolution of a large-scale mode which grows due to baroclinic instability and equilibrates at finite amplitude. Ageostrophic inertia-gravity modes are filtered out of the model by construction, but their effects on the balanced flow are incorporated using a simple stochastic parameterization of the potential vorticity anomalies which they induce. The model simulates a rotating, two-layer annulus laboratory experiment, in which we recently observed systematic inertia-gravity wave generation by an evolving, large-scale flow. We find that the impact of the small-amplitude stochastic contribution to the potential vorticity tendency, on the model balanced flow, is generally small, as expected. In certain circumstances, however, the parameterized fast waves can exert a dominant influence. In a flow which is baroclinically-unstable to a range of zonal wavenumbers, and in which there is a close match between the growth rates of the multiple modes, the stochastic waves can strongly affect wavenumber selection. This is illustrated by a flow in which the parameterized fast modes dramatically re-partition the probability-density function for equilibrated large-scale zonal wavenumber. In a second case study, the stochastic perturbations are shown to force spontaneous wavenumber transitions in the large-scale flow, which do not occur in their absence. These phenomena are due to a stochastic resonance effect. They add to the evidence that deterministic parameterizations in general circulation models, of subgrid-scale processes such as gravity wave drag, cannot always adequately capture the full details of the nonlinear interaction.
Kajantie, K; Vepsalainen, M; Vuorinen, Aleksi
2011-01-01
We use AdS/QCD duality to compute the finite temperature Green's function G(omega,k;T) of the shear operator T_12 for all omega,k in hot Yang-Mills theory. The goal is to assess how the existence of scales like the transition temperature and glueball masses affects the correlator computed in the scalefree conformal N=4 supersymmetric Yang-Mills theory. We observe sizeable effects for T close to T_c which rapidly disappear with increasing T. Quantitative agreement of these predictions with future lattice Monte Carlo data would suggest that QCD matter in this temperature range is strongly interacting.
Directory of Open Access Journals (Sweden)
J. OLIVER
1977-06-01
Full Text Available SUMMARY. - Seismic activity associated with the collision of the continental
part of the Australian plate with the oceanic Melanesian arcs along Papua New
Guinea and the Banda arc provides an unusual opportunity to study the relative
excitation of the seismic shear waves Sn and Lg. These waves are produced by
earthquakes located along the arcs in the upper 200 km of the earth and are
recorded by the Australian WWSSN Stations at Charters Towers (CTA and Alice
Springs (ASP. The paths to these stations are predominantly continental. The data
clearly show that for events located at crustal depths, Lg is the predominant phase
on the records and Sn is either absent or very weak. For events deeper than about
50-70 km, Sn becomes the predominant phase on the records. These observations
arc in qualitative agreement with the explanations of Sn and Lg as higher
modes of surface waves, for the particle displacement amplitudes are maximum
within the crust for Lg and maximum within the lid of the lithospheric mantle
for Sn. The data suggest that either the crustal wave guide for Lg is more
efficient than that for Sn, or that Lg is more easily excited than Sn. No clear
Lg is observed from shallow earthquakes when the length of the segment of the
path crossing oceanic structure is greater than about 200 km. Also, widespread
Quaternary volcanism within the « stable » area of central Papua New Guinea
to the south of the mobile belt does not seem to affect the efficient transmission
of high-frequency (1 Hz shear energy.
The paths from events located along the New Hebrides, Solomon, and New
Britain arcs to Australia traverse oceanic structure, and no Lg is observed from
these paths. The inefficient propagation of Sn along these paths from both
shallow and intermediate-depth events can be explained as follows: 1 For
the New Hebrides case, the
Liu, Hai-Tao; Sang, Jian-Bing; Zhou, Zhen-Gong
2016-10-01
This paper investigates a functionally graded piezoelectric material (FGPM) containing two parallel cracks under harmonic anti-plane shear stress wave based on the non-local theory. The electric permeable boundary condition is considered. To overcome the mathematical difficulty, a one-dimensional non-local kernel is used instead of a two-dimensional one for the dynamic fracture problem to obtain the stress and the electric displacement fields near the crack tips. The problem is formulated through Fourier transform into two pairs of dual-integral equations, in which the unknown variables are jumps of displacements across the crack surfaces. Different from the classical solutions, that the present solution exhibits no stress and electric displacement singularities at the crack tips.
Energy Technology Data Exchange (ETDEWEB)
NONE
1996-05-01
The upper aquifers in the A&M area of the Savannah River Site are known to be contaminated by chlorinated solvents. Remediation plans depend critically on continuity of a confining zone known as the Crouch Branch Confining Unit (C8CU), which occurs at depths between about 250 feet and 300 feet. Under DOE Contract No: DE-AC21-92MC29, administered by Morgantown Energy Technology Center (METC) surface and borehole geophysical methods were tested and further developed between 1993 and 1995 to map the lithology (clay content) and stratigraphy of the CBCU. It was found that time domain electromagnetics (TDEM) soundings were effective in mapping lithology and changes in lithology, and shear (S-) wave reflection surveys were effective in mapping stratigraphy. An integrated interpretation of the two methods yielded a rather complete image of lithology and stratigraphy of the CBCU.
Chang, Lijun; Ding, Zhifeng; Wang, Chunyong; Flesch, Lucy M.
2017-03-01
We present 817 new SKS/SKKS shear-wave splitting observations to infer the mantle deformation field in the NE margin of the Tibetan plateau. The obvious pattern of dense splitting measurements shows that the fast wave polarization directions (φ) are oriented along a dominant NW-SE in the northeastern Tibetan plateau, Alxa block, and the western margin of the Ordos block and rotate to near E-W in the Qinling orogen, Weihe graben and Ordos block. Based on a continuous surface deformation field inferred from GPS observations and faults slip data, we model the predicted fast axis orientations (φc) at each location of averaged splitting observation. Exclusion of 32 averaged observations with larger misfits within the interior of the Ordos block, comparing splitting observations (φ) with predictions (φc) produces an average misfit of 11° indicating vertical coherent of lithospheric deformation in the NE margin of the Tibetan plateau. However, in the Qinling orogen, the thin lithosphere (account for the observed delay times (δt, 1.2 s), and the measured fast directions are parallel to the absolute plate motion (APM) direction, we infer that both the eastward asthenospheric flow and lithospheric left-lateral shear deformation contribute to the observed anisotropy. Within the interior of the Ordos block, where has thick lithospheric root (> 300 km) and weak anisotropy (δt, 0.6 s), the average misfit increases to 63°, and vertical coherence is no longer present, which suggests the rigid and stable Ordos block with little deformation still remains the lithospheric root of North China Craton.
On the spatial linear growth of gravity-capillary water waves sheared by a laminar air flow
Tsai, Y.S.; Grass, A.J.; Simons, R.R.
2005-01-01
The initial growth of mechanically generated small amplitude water waves below a laminar air stream was examined numerically and experimentally in order to explore the primary growth mechanism, that is, the interfacial instability of coupled laminar air and water flows. Measurements of the laminar v
2007-11-02
functions for different portions of the seismograms. VPh G4 -Figure 2. Propagation characteristics - ........------- of shear-coupled PL phases (from...and S-waves at the Moho. 7"- period, Vph : phase velocity. Figure 3. Depending on Earth structure and an earthquake’s radiation pattern, the phases Sp
Self-similar wave produced by local perturbation of the Kelvin-Helmholtz shear-layer instability.
Hoepffner, Jérôme; Blumenthal, Ralf; Zaleski, Stéphane
2011-03-11
We show that the Kelvin-Helmholtz instability excited by a localized perturbation yields a self-similar wave. The instability of the mixing layer was first conceived by Helmholtz as the inevitable growth of any localized irregularity into a spiral, but the search and uncovering of the resulting self-similar evolution was hindered by the technical success of Kelvin's wavelike perturbation theory. The identification of a self-similar solution is useful since its specific structure is witness of a subtle nonlinear equilibrium among the forces involved. By simulating numerically the Navier-Stokes equations, we analyze the properties of the wave: growth rate, propagation speed and the dependency of its shape upon the density ratio of the two phases of the mixing layer.
Institute of Scientific and Technical Information of China (English)
2007-01-01
In this paper, the dynamic stress field near crack tips in the functionally graded materials subjected to the harmonic anti-plane shear stress waves was investi- gated by means of the non-local theory. The traditional concepts of the non-local theory were extended to solve the fracture problem of functionally graded materials. To make the analysis tractable, it was assumed that the material properties vary exponentially with coordinate parallel to the crack. By use of the Fourier transform, the problem can be solved with the help of a pair of dual integral equations, in which the unknown variable was the displacement on the crack surfaces. To solve the dual integral equations, the displacement on the crack surfaces was expanded in a series of Jacobi polynomials. Unlike the classical elasticity solutions, it is found that no stress singularities are present at crack tips. The non-local elastic solutions yield a finite hoop stress at crack tips, thus allowing us to use the maximum stress as a fracture criterion. The magnitude of the finite dynamic stress field depends on the crack length, the parameter describing the functionally graded materials, the circular frequency of the incident waves and the lattice parameter of materials.
Institute of Scientific and Technical Information of China (English)
ZHANG PeiWei; ZHOU ZhenGong; WU LinZhi
2007-01-01
In this paper, the dynamic stress field near crack tips in the functionally graded materials subjected to the harmonic anti-plane shear stress waves was investigated by means of the non-local theory. The traditional concepts of the non-local theory were extended to solve the fracture problem of functionally graded materials.To make the analysis tractable, it was assumed that the material properties vary exponentially with coordinate parallel to the crack. By use of the Fourier transform,the problem can be solved with the help of a pair of dual integral equations, in which the unknown variable was the displacement on the crack surfaces. To solve the dual integral equations, the displacement on the crack surfaces was expanded in a series of Jacobi polynomials. Unlike the classical elasticity solutions, it is found that no stress singularities are present at crack tips. The non-local elastic solutions yield a finite hoop stress at crack tips, thus allowing us to use the maximum stress as a fracture criterion. The magnitude of the finite dynamic stress field depends on the crack length, the parameter describing the functionally graded materials, the circular frequency of the incident waves and the lattice parameter of materials.
Galetti, Erica; Curtis, Andrew; Baptie, Brian; Jenkins, David; Nicolson, Heather
2016-08-01
We present the first Love-wave group velocity and shear velocity maps of the British Isles obtained from ambient noise interferometry and fully non-linear inversion. We computed interferometric inter-station Green's functions by cross-correlating the transverse component of ambient noise records retrieved by 61 seismic stations across the UK and Ireland. Group velocity measurements along each possible inter-station path were obtained using frequency-time analysis and converted into a series of inter-station traveltime datasets between 4 and 15 seconds period. Traveltime uncertainties estimated from the standard deviation of dispersion curves constructed by stacking randomly-selected subsets of daily cross-correlations, were observed to be too low to allow reasonable data fits to be obtained during tomography. Data uncertainties were therefore estimated again during the inversion as distance-dependent functionals. We produced Love-wave group velocity maps within 8 different period bands using a fully non-linear tomography method which combines the transdimensional reversible-jump Markov chain Monte Carlo (rj-McMC) algorithm with an eikonal raytracer. By modelling exact raypaths at each step of the Markov chain we ensured that the non-linear character of the inverse problem was fully and correctly accounted for. Between 4 and 10 seconds period, the group velocity maps show remarkable agreement with the known geology of the British Isles and correctly identify a number of low-velocity sedimentary basins and high-velocity features. Longer period maps, in which most sedimentary basins are not visible, are instead mainly representative of basement rocks. In a second stage of our study we used the results of tomography to produce a series of Love-wave group velocity dispersion curves across a grid of geographical points focussed around the East Irish Sea sedimentary basin. We then independently inverted each curve using a similar rj-McMC algorithm to obtain a series of
Galetti, Erica; Curtis, Andrew; Baptie, Brian; Jenkins, David; Nicolson, Heather
2017-01-01
We present the first Love-wave group-velocity and shear-velocity maps of the British Isles obtained from ambient noise interferometry and fully nonlinear inversion. We computed interferometric inter-station Green's functions by cross-correlating the transverse component of ambient noise records retrieved by 61 seismic stations across the UK and Ireland. Group-velocity measurements along each possible inter-station path were obtained using frequency-time analysis and converted into a series of inter-station traveltime data sets between 4 and 15 s period. Traveltime uncertainties estimated from the standard deviation of dispersion curves constructed by stacking randomly selected subsets of daily cross-correlations were observed to be too low to allow reasonable data fits to be obtained during tomography. Data uncertainties were therefore estimated again during the inversion as distance-dependent functionals. We produced Love-wave group-velocity maps within eight different period bands using a fully nonlinear tomography method which combines the transdimensional reversible-jump Markov chain Monte Carlo (rj-McMC) algorithm with an eikonal ray tracer. By modelling exact ray paths at each step of the Markov chain we ensured that the nonlinear character of the inverse problem was fully and correctly accounted for. Between 4 and 10 s period, the group-velocity maps show remarkable agreement with the known geology of the British Isles and correctly identify a number of low-velocity sedimentary basins and high-velocity features. Longer period maps, in which most sedimentary basins are not visible, are instead mainly representative of basement rocks. In a second stage of our study we used the results of tomography to produce a series of Love-wave group-velocity dispersion curves across a grid of geographical points focussed around the East Irish Sea sedimentary basin. We then independently inverted each curve using a similar rj-McMC algorithm to obtain a series of 1-D shear
Kayen, Robert; Scasserra, Giuseppe; Stewart, Jonathan P.; Lanzo, Giuseppe
2008-01-01
A long sequence of earthquakes, eight with magnitudes between 5 and 6, struck the Umbria and Marche regions of central Italy between September 26, 1997 and July 1998. The earthquake swarm caused severe structural damage, particularly to masonry buildings, and resulted in the loss of twelve lives and about 150 injuries. The source of the events was a single seismogenic structure that consists of several faults with a prevailing northwest-southeast strike and crosses the Umbria-Marche border. The focal mechanism of the largest shocks indicates that the events were the product of shallow extensional normal faulting along a NE-SW extension perpendicular to the trend of the Apennines. The network of analog seismometer stations in the Umbria and Marche regions recorded motions of the main September and October 1997 events and a dense array of mobile digital stations, installed since September 29, recorded most of the swarm. The permanent national network Rete Accelerometrica Nazionale (RAN) is administered and maintained by Dipartimento delle Protezione Civile (DPC: Civil Protection Department); the temporary array was managed by Servizio Sismico Nazionale (SSN) in cooperation with small agencies and Universities. ENEA, the operator of many seismometer stations in Umbria, is the public Italian National Agency for New Technologies, Energy and the Environment. Many of the temporary and permanent stations in the Italian seismic network have little or no characterization of seismic velocities. In this study, we investigated 17 Italian sites using an active-source approach that employs low frequency harmonic waves to measure the dispersive nature of surface waves in the ground. We used the Spectral Analysis of Surface Wave (SASW) approach, coupled with an array of harmonic-wave electro-mechanical sources that are driven in-phase to excite the ground. An inversion algorithm using a non-linear least-squares best-fit method is used to compute shear wave velocities for up to 100
Alvan, Lucie; Decressin, Thibaut
2013-01-01
Internal gravity waves (hereafter IGWs) are known as one of the candidates for explaining the angular velocity profile in the Sun and in solar-type main-sequence and evolved stars, due to their role in the transport of angular momentum. Our bringing concerns critical layers, a process poorly explored in stellar physics, defined as the location where the local relative frequency of a given wave to the rotational frequency of the fluid tends to zero (i.e that corresponds to co-rotation resonances). IGW propagate through stably-stratified radiative regions, where they extract or deposit angular momentum through two processes: radiative and viscous dampings and critical layers. Our goal is to obtain a complete picture of the effects of this latters. First, we expose a mathematical resolution of the equation of propagation for IGWs in adiabatic and non-adiabatic cases near critical layers. Then, the use of a dynamical stellar evolution code, which treats the secular transport of angular momentum, allows us to appl...
Energy Technology Data Exchange (ETDEWEB)
Peter E. Malin; Eylon Shalev; Min Lou; Silas M. Simiyu; Anastasia Stroujkova; Windy McCausland
2004-02-24
In this project we developed a method for using seismic S-wave data to map the patterns and densities of sub-surface fractures in the NW Geysers Geothermal Field/ (1) This project adds to both the general methods needed to characterize the geothermal production fractures that supply steam for power generation and to the specific knowledge of these in the Geysers area. (2)By locating zones of high fracture density it will be possible to reduce the cost of geothermal power development with the targeting of high production geothermal wells. (3) The results of the project having been transferred to both US based and international geothermal research and exploration agencies and concerns by several published papers and meeting presentations, and through the distribution of the data handling and other software codes we developed.
Institute of Scientific and Technical Information of China (English)
Liang Jun
2007-01-01
In this paper, the dynamic behavior of a permeable crack in functionally graded piezoelectric/piezomagnetic materials is investigated. To make the analysis tractable, it is assumed that the material properties vary exponentially with the coordinate parallel to the crack. By using the Fourier transform, the problem can be solved with the help of a pair of dual integral equations in which the unknown is the jump of displacements across the crack surfaces. These equations are solved to obtain the relations between the electric filed, the magnetic flux field and the dynamic stress field near the crack tips using the Schmidt method. Numerical examples are provided to show the effect pf the functionally graded parameter and the circular frequency of the incident waves upon the stress, the electric displacement and the magnetic flux intensity factors of the crack.
Accardo, N. J.; Gaherty, J. B.; Shillington, D. J.; Nyblade, A.; Ebinger, C. J.; Mbogoni, G. J.; Chindandali, P. R. N.; Mulibo, G. D.; Ferdinand-Wambura, R.; Kamihanda, G.
2015-12-01
The Malawi Rift (MR) is an immature rift located at the southern tip of the Western branch of the East African Rift System (EARS). Pronounced border faults and tectonic segmentation are seen within the upper crust. Surface volcanism in the region is limited to the Rungwe volcanic province located north of Lake Malawi (Nyasa). However, the distribution of extension and magma at depth in the crust and mantle lithosphere is unknown. As the Western Rift of the EARS is largely magma-poor except for discrete volcanic provinces, the MR presents the ideal location to elucidate the role of magmatism in early-stage rifting and the manifestation of segmentation at depth. This study investigates the shear velocity of the crust and mantle lithosphere beneath the MR to constrain the thermal structure, the amount of total crustal and lithospheric thinning, and the presence and distribution of magmatism beneath the rift. Utilizing 55 stations from the SEGMeNT (Study of Extension and maGmatism in Malawi aNd Tanzania) passive-source seismic experiment operating in Malawi and Tanzania, we employed a multi-channel cross-correlation algorithm to obtain inter-station phase and amplitude information from Rayleigh wave observations between 20 and 80 s period. We retrieve estimates of phase velocity between 9-20 s period from ambient noise cross-correlograms in the frequency domain via Aki's formula. We invert phase velocity measurements to obtain estimates of shear velocity (Vs) between 50-200 km depth. Preliminary results reveal a striking low-velocity zone (LVZ) beneath the Rungwe volcanic province with Vs ~4.2-4.3 km/s in the uppermost mantle. Low velocities extend along the entire strike of Lake Malawi and to the west where a faster velocity lid (~4.5 km/s) is imaged. These preliminary results will be extended by incorporating broadband data from seven "lake"-bottom seismometers (LBS) to be retrieved from Lake Malawi in October of this year. The crust and mantle modeling will be
Application of shear wave anisotropy in fractures and in-situ stress analysis%横波各向异性在裂缝和应力分析中的应用
Institute of Scientific and Technical Information of China (English)
魏周拓; 范宜仁; 陈雪莲
2012-01-01
针对裂缝性和低孔低渗地层的横波各向异性特征,反演得到横波各向异性参数,研究了裂缝的发育程度、方位和有效性,并对低孔低渗地层的应力场分布状态和方位进行了综合评价;通过对反演得到的快、慢弯曲波形进行频散分析以及计算单极横波各向异性大小,确定了引起横波各向异性的原因,并结合常规测井资料、岩心及FMI成像资料对分析结果进行了验证和对比,最后对研究区8口典型井的横波各向异性进行了综合处理和评价,得到了该区的横波各向异性特征以及和总的应力场走向.结果表明,利用横波的各向异性参数可以有效的评价裂缝的发育程度、走向及有效性,并能准确的确定地应力分布状态和最大水平应力方位.%In the light of shear wave anisotropy of fractures and low porosity and low permeability formation characteristics. And then according to those inversion parameters we study development degree of fractures, orientation and effectiveness, and evaluate comprehensively the in-situ stress field distribution and orientation of low porosity and low permeability strata; And the paper analyze the reason of shear wave anisotropy caused by extracting dispersion curve of the fast and slow flexural waveform and calculating shear wave anisotropy monopole waveform, afterwards the analysis results are verified and compared with the well-logging data, cores and FMI image data of study area. At last, we process and evaluate comprehensively shear wave anisotropy of 8 typical wells in the target area, thus obtain shear wave anisotropy characteristics and total stress field orientation. The results show that shear wave anisotropy parameters can be used to effectively evaluate development degree of fractures, orientation and effectiveness of fractures, and can accurately pinpoint an in-situ stress state and the maximum level stress orientation.
Institute of Scientific and Technical Information of China (English)
周杨锐; 董明明; 吴海京; 王园君
2011-01-01
剪切波速是工程场地地震安全性评价最重要的参数之一.本文应用大量渤海浅层沉积物的剪切波速实测数据,利用最小二乘法通过三种模型探讨了不同土质类型的剪切波速与深度的关系,给出了不同土质类型的剪切波速与深度拟合最佳的统计公式.并与的推荐公式在某一海域工程场地的测试结果进行对比分析,结果表明:本文所建立的统计公式对剪切波速的预测效果明显好于规范所推荐的统计公式.因此本文所推荐的渤海不同土质类型的剪切波速与深度间的统计公式,可供无波速测试的渤海海洋工程场地借鉴使用.%The shear wave velocity of soils is one of the most important parameters in the field of geotechnical earthquake engineering. Based on the tested data of shear wave velocity of shallow sediments from lots of boreholes in Bohai Gulf, the best regression equations of shear wave velocity and depth for different types of soils are established by using three statistical models. The predicted shear wave velocity of soils with recommended equations are compared with the results of formula in the Chinese design code for earthquake resistance of special structures (GB50191-93) in a certain borehole. It is indicated that the fitting accuracy of recommended equations is better than that of formula in design code. Therefore, the recommended regression equations of shear wave velocity and depth of shallow sediments in Bohai Gulf can be used for marine sites of Bohai Gulf, whose shear wave velocities are not tested.
Institute of Scientific and Technical Information of China (English)
周杨锐; 董明明; 吴海京; 王园君
2012-01-01
剪切波速是工程场地地震安全性评价最重要的参数之一.应用测试的大量海洋浅层土质的剪切波速数据,利用最小二乘法通过三种模型探讨了不同土质类型的剪切波速与深度的关系,给出了不同土质类型的剪切波速与深度拟合最佳的统计公式.并与《构筑物抗震设计规范》的推荐公式在某一海域工程场地的测试结果进行对比分析,结果表明:本文所建立的统计公式对剪切波速的预测效果明显好于规范所推荐的统计公式.所推荐的海洋不同土质类型的剪切波速与深度间的统计公式,可供无波速测试的海洋工程场地使用.%The shear wave velocity of soils is one of the most important parameters in the field of geotechnical earthquake engineering. Based on the tested data of shear wave velocity of shallow soils from lots of offshore boreholes, the best regression equations of shear wave velocity and depth of soils including cohesive soils and granular soils are established by using three statistical models. The predicted shear wave velocity of soils with recommended equations is compared with the results of formula in the Chinese design code for earthquake resistance of special structures (GB50191-93) in a certain borehole. It is indicated that the fitting accuracy of recommended equations is better than that of formula in design code. Therefore, the recommended regression equations of shear wave velocity and depth of offshore shallow soils can be used for offshore site investigations, whose shear wave velocities are not tested.
Bender, Florian; Mohler, Rachel E; Ricco, Antonio J; Josse, Fabien
2014-11-18
The present work investigates a compact sensor system that provides rapid, real-time, in situ measurements of the identities and concentrations of aromatic hydrocarbons at parts-per-billion concentrations in water through the combined use of kinetic and thermodynamic response parameters. The system uses shear-horizontal surface acoustic wave (SH-SAW) sensors operating directly in the liquid phase. The 103 MHz SAW sensors are coated with thin sorbent polymer films to provide the appropriate limits of detection as well as partial selectivity for the analytes of interest, the BTEX compounds (benzene, toluene, ethylbenzene, and xylenes), which are common indicators of fuel and oil accidental releases in groundwater. Particular emphasis is placed on benzene, a known carcinogen and the most challenging BTEX analyte with regard to both regulated levels and its solubility properties. To demonstrate the identification and quantification of individual compounds in multicomponent aqueous samples, responses to binary mixtures of benzene with toluene as well as ethylbenzene were characterized at concentrations below 1 ppm (1 mg/L). The use of both thermodynamic and kinetic (i.e., steady-state and transient) responses from a single polymer-coated SH-SAW sensor enabled identification and quantification of the two BTEX compounds in binary mixtures in aqueous solution. The signal-to-noise ratio was improved, resulting in lower limits of detection and improved identification at low concentrations, by designing and implementing a type of multielectrode transducer pattern, not previously reported for chemical sensor applications. The design significantly reduces signal distortion and root-mean-square (RMS) phase noise by minimizing acoustic wave reflections from electrode edges, thus enabling limits of detection for BTEX analytes of 9-83 ppb (calculated from RMS noise); concentrations of benzene in water as low as ~100 ppb were measured directly. Reliable quantification of BTEX
Fraternale, Federico
2013-01-01
The present thesis deals with the non-modal linear analysis of 3D perturbations in wall flows. In the first part,a solution to the Orr-Sommerfeld and Squire IVP, in the form of orthogonal functions expansion, is researched. The Galerkin method is successfully implemented to numerically compute approximate solutions for bounded flows. The Chandrasekhar functions revealed to ensure a fifth order of accuracy. The focus of the subsequent analysis is on the transient behavior of the perturbation frequency and phase velocity. The results confirm recent observations about a jump in the temporal evolution of the frequency of the wall-normal velocity signal, considered as the end of an Early Transient. After this jump, the wave frequency for Plane Couette flow experiences a periodic modulation about the asymptotic value, which is motivated and investigated in detail. A new result is the presence of a second frequency jump for the wall-normal vorticity. This fact, together with the possibility for different values of t...
Energy Technology Data Exchange (ETDEWEB)
Hansen, S; Schwartz, S
2006-02-08
A comprehensive study of mantle anisotropy along the Red Sea and across Saudi Arabia was performed by analyzing shear-wave splitting recorded by stations from three different seismic networks: the largest, most widely distributed array of stations examined across Saudi Arabia to date. Stations near the Gulf of Aqaba display fast orientations that are aligned parallel to the Dead Sea Transform Fault, most likely related to the strike-slip motion between Africa and Arabia. However, most of our observations across Saudi Arabia are statistically the same, showing a consistent pattern of north-south oriented fast directions with delay times averaging about 1.4 s. Fossilized anisotropy related to the Proterozoic assembly of the Arabian Shield may contribute to the pattern but is not sufficient to fully explain the observations. We feel that the uniform anisotropic signature across Saudi Arabia is best explained by a combination of plate and density driven flow in the asthenosphere. By combining the northeast oriented flow associated with absolute plate motion with the northwest oriented flow associated with the channelized Afar plume along the Red Sea, we obtain a north-south oriented resultant that matches our splitting observations and supports models of active rifting processes. This explains why the north-south orientation of the fast polarization direction is so pervasive across the vast Arabian Plate.
Gatos, Ilias; Tsantis, Stavros; Skouroliakou, Aikaterini; Theotokas, Ioannis; Zoumpoulis, Pavlos S.; Kagadis, George C.
2015-09-01
The aim of the present study is to determine an optimal elasticity cut-off value for discriminating Healthy from Pathological fibrotic patients by means of Fuzzy C-Means automatic segmentation and maximum participation cluster mean value employment in Shear Wave Elastography (SWE) images. The clinical dataset comprised 32 subjects (16 Healthy and 16 histological or Fibroscan verified Chronic Liver Disease). An experienced Radiologist performed SWE measurement placing a region of interest (ROI) on each subject's right liver lobe providing a SWE image for each patient. Subsequently Fuzzy C-Means clustering was performed on every SWE image utilizing 5 clusters. Mean Stiffness value and pixels number of each cluster were calculated. The mean stiffness value feature of the cluster with maximum pixels number was then fed as input for ROC analysis. The selected Mean Stiffness value feature an Area Under the Curve (AUC) of 0.8633 with Optimum Cut-off value of 7.5 kPa with sensitivity and specificity values of 0.8438 and 0.875 and balanced accuracy of 0.8594. Examiner's classification measurements exhibited sensitivity, specificity and balanced accuracy value of 0.8125 with 7.1 kPa cutoff value. A new promising automatic algorithm was implemented with more objective criteria of defining optimum elasticity cut-off values for discriminating fibrosis stages for SWE. More subjects are needed in order to define if this algorithm is an objective tool to outperform manual ROI selection.
Study on Shear Wave Splitting of Aftershocks of M4.8Anqing Earthquake%安庆4.8级地震的余震S波分裂研究
Institute of Scientific and Technical Information of China (English)
李发; 李罡风; 张佑龙; 张学应; 朱生水; 裴红云; 赵希磊
2012-01-01
利用安徽数字地震台网安庆台记录的地震波形资料,运行Matlap S波分裂程序,对2011年1月19日安徽安庆4.8级地震的余震序列开展S波分裂研究.结果表明,快S波偏振方向有两个优势取向,分别为N73°E和N94°E,初步判断为区域应力场导致的EDA裂隙系各向异性结果.其中快S波N73°E偏振方向与区域应力场的主压应力方向N74°E基本相同,而快S波N94°E偏振方向稍有偏差,可能是由于4.8级主震产生的应力扰动引起的.慢S波延迟时间在0.82～10.92范围内变化,平均为2.84,主震后,延迟时间明显下降,可能反映了震后应力的释放过程,而几次较大余震前则处于上升高值状态,可能反映了较大余震前的应力积累过程.%Using Anqing M4.8 earthquake sequence data recorded by Anqing station of Anhui Digital Seismic Network, by matlap shear wave splitting order, making shear wave splitting study on aftershocks sequence of M4.8 Anqing Earthquake on January 19 2011. The results show that there are two preferred polarization directions from the fast shear wave.N73° E and N94° E respectively, which were resulted from the anisotropy of the stress -induced cracks (EDA).The polarization direction for the fast shear wave N73°E was in accord with principal compression stress axis N74°E of the source stress field. But the polarization direction for the fast shear wave N94° E was different, which may be due to the stress disturbance imposed by the M4.8 mainshock on regional background stress field. The time delay of shear wave splitting from 0.82ms/km to 10.92ms/km and the average of the whole process was 2.84ms/km.After mainshock, the time delay of shear wave splitting dropped apparently, which may reflect the release of the principal compression stress. The time delay of shear wave splitting rose with higher values of state before some larger aftershock, which may reflect the accumulation of the principal compression stress before shocks.
Hanson-Hedgecock, S.; Wagner, L.; Fouch, M. J.; James, D. E.
2011-12-01
We present the results of inversions for 3D shear velocity structure of the crust and uppermost mantle beneath the High Lava Plains, Oregon using data from ~300 broadband stations of the High Lava Plains seismic experiment and the EarthScope/USArray Transportable Array (TA). The High Lava Plains (HLP) is a WNW progressive silicic volcanism, initiated ~14.5 Ma near the Owyhee Plateau and is currently active at the Newberry caldera. The Yellowstone Snake River Plain (YSRP) volcanic track is temporally contemporaneous with the HLP, but trends to the northeast, parallel to North American plate motion. The cause of volcanism along the HLP is debated and has been variously attributed to Basin and Range extension, back-arc extension, rollback of the subducting Juan de Fuca plate, and an intra-continental hotspot/plume source. Additionally the relationship between the HLP, YSRP, and Columbia River Basalts (CRB), the three major post-17Ma intracontinental volcanic provinces of the Pacific Northwest, is not well understood. The 3D shear velocity structure of the crust and uppermost mantle to ~65km depth is determined from fundamental mode Rayleigh wave ambient noise phase velocity maps at periods up to 40s. The use of ambient noise tomography with the dense station spacing of the combined High Lava Plains seismic experiment and the EarthScope/USArray Transportable Array (TA) datasets allows the shallow structure of the High Lava Plains to be imaged in finer detail than previous ANT studies that focused on the entire western United States. In the crust, low velocities in central Oregon are observed in association with the Brothers Fault Zone, Jordan and Diamond Craters and Steens Mountain regions in addition to the strong low velocity zone associated with the Cascades to the west. To the east of the HLP, low velocities are observed to about 10km depth in the western SRP. In the eastern SRP we observe a shallow veneer of low velocities underlain by a ~10km thick high velocity
Stephenson, W.J.; Louie, J.N.; Pullammanappallil, S.; Williams, R.A.; Odum, J.K.
2005-01-01
Multichannel analysis of surface waves (MASW) and refraction microtremor (ReMi) are two of the most recently developed surface acquisition techniques for determining shallow shear-wave velocity. We conducted a blind comparison of MASW and ReMi results with four boreholes logged to at least 260 m for shear velocity in Santa Clara Valley, California, to determine how closely these surface methods match the downhole measurements. Average shear-wave velocity estimates to depths of 30, 50, and 100 m demonstrate that the surface methods as implemented in this study can generally match borehole results to within 15% to these depths. At two of the boreholes, the average to 100 m depth was within 3%. Spectral amplifications predicted from the respective borehole velocity profiles similarly compare to within 15 % or better from 1 to 10 Hz with both the MASW and ReMi surface-method velocity profiles. Overall, neither surface method was consistently better at matching the borehole velocity profiles or amplifications. Our results suggest MASW and ReMi surface acquisition methods can both be appropriate choices for estimating shearwave velocity and can be complementary to each other in urban settings for hazards assessment.
U.S. Geological Survey, Department of the Interior — The U.S. Geological Survey has been characterizing the regional variation in shear stress on the sea floor and sediment mobility through statistical descriptors....
U.S. Geological Survey, Department of the Interior — The U.S. Geological Survey has been characterizing the regional variation in shear stress on the sea floor and sediment mobility through statistical descriptors....
U.S. Geological Survey, Department of the Interior — The U.S. Geological Survey has been characterizing the regional variation in shear stress on the sea floor and sediment mobility through statistical descriptors. The...
U.S. Geological Survey, Department of the Interior — The U.S. Geological Survey has been characterizing the regional variation in shear stress on the sea floor and sediment mobility through statistical descriptors. The...
Dikici, Atilla Suleyman; Ustabasioglu, Fethi Emre; Delil, Sakir; Nalbantoglu, Mecbure; Korkmaz, Bektas; Bakan, Selim; Kula, Osman; Uzun, Nurten; Mihmanli, Ismail; Kantarci, Fatih
2017-02-01
Purpose To evaluate the value of shear-wave elastography (SWE) in the detection of diabetic peripheral neuropathy (DPN) of the tibial nerve. Materials and Methods This study was approved by the institutional review board, and written informed consent was obtained from all study participants. The study included 20 diabetic patients with DPN (10 men, 10 women), 20 diabetic patients without DPN (eight men, 12 women), and 20 healthy control subjects (nine men, 11 women). The tibial nerve was examined at 4 cm proximal to the medial malleolus with gray-scale ultrasonography and SWE. The nerve cross-sectional area (in square centimeters) and the mean nerve stiffness (in kilopascals) within the range of the image were recorded. Inter- and intrareader variability, differences among groups, and correlation of clinical and electrophysiologic evaluation were assessed with intraclass correlation coefficients, the Mann Whitney U test, and the Wilcoxon signed rank test. Results Between diabetic patients with and diabetic patients without DPN, mean age (60 years [range, 38-79 years] vs 61 years [range, 46-75 years], respectively), mean duration of diabetes (10 years [range, 1-25 years] vs 10 years [range, 2-26 years]), and mean body mass index (31.4 kg/m(2) [range, 24.7-48.1 kg/m(2)] vs 29.8 kg/m(2) [range, 22.9-44.0 kg/m(2)]) were not significantly different. Diabetic patients without DPN had significantly higher stiffness values on the right side compared with control subjects (P < .001). Patients with DPN had much higher stiffness values on both sides compared with both diabetic patients without DPN (P < .001) and healthy control subjects (P < .001). A cutoff value of 51.0 kPa at 4 cm proximal to the medial malleolus revealed a sensitivity of 90% (95% confidence interval [CI]: 75.4%, 96.7%) and a specificity of 85.0% (95% CI: 74.9%, 91.7%). Conclusion Tibial nerve stiffness measurements appear to be highly specific in the diagnosis of established DPN. The increased stiffness in
Tabrizian, R.; Daruwalla, A.; Ayazi, F.
2016-03-01
A multi-port electrostatically driven silicon acoustic cavity is implemented that efficiently traps the energy of a temperature-stable eigen-mode with Lamé cross-sectional polarization. Dispersive behavior of propagating and evanescent guided waves in a ⟨100⟩-aligned single crystal silicon waveguide is used to engineer the acoustic energy distribution of a specific shear eigen-mode that is well known for its low temperature sensitivity when implemented in doped single crystal silicon. Such an acoustic energy trapping in the central region of the acoustic cavity geometry and far from substrate obviates the need for narrow tethers that are conventionally used for non-destructive and high quality factor (Q) energy suspension in MEMS resonators; therefore, the acoustically engineered waveguide can simultaneously serve as in-situ self-oven by passing large uniformly distributed DC currents through its body and without any concern about perturbing the mode shape or deforming narrow supports. Such a stable thermo-structural performance besides large turnover temperatures than can be realized in Lamé eigen-modes make this device suitable for implementation of ultra-stable oven-controlled oscillators. 78 MHz prototypes implemented in arsenic-doped single crystal silicon substrates with different resistivity are transduced by in- and out-of-plane narrow-gap capacitive ports, showing high Q of ˜43k. The low resistivity device shows an overall temperature-induced frequency drift of 200 ppm over the range of -20 °C to 80 °C, which is ˜15× smaller compared to overall frequency drift measured for the similar yet high resistivity device in the same temperature range. Furthermore, a frequency tuning of ˜2100 ppm is achieved in high resistivity device by passing 45 mA DC current through its body. Continuous operation of the device under such a self-ovenizing current over 10 days did not induce frequency instability or degradation in Q.
Institute of Scientific and Technical Information of China (English)
徐文峰; 赵建平
2016-01-01
The shear waves in measured specimen excitated by EMAT(electromagnetic acoustic transduc-er)can be applied to detect thickness and internal defect of specimen.Finite element analysis was applied to simulate the mechanism of electromagnetic ultrasonic excitation of shear wave.Through the es-tablishment of three-dimensional model of EMAT and electromagnetism coupling calculation,the distribu-tion of the surface magnetic field,eddy current and Lorenz force were obtained,the results show the mech-anism of EMAT wave excitation,which provides reference for the design of the electromagnetic ultrasonic transducer.With the coupling of electromagnetics and structural dynamics calculation,the propagation of shear waves in the specimen thickness direction was obtained,results show that the shear wave propagates in the specimen along the thickness direction,and the energy is attenuated trend.In addition,the structure dynamics analysis of the defective plate provides that the wave fluctuations occur obvious change and decay when they encounter the defect.It proves the wave excitation of EMAT can effectively detect the de-fects inside the specimen.According to the results of simulation and experiments,the method of quantitati-ving defect by shear wave detection was put forward.%电磁超声换能器（EMAT）在试件中激发的横波（剪切波）能够应用于试件厚度和内部缺陷检测，为了研究电磁超声激发横波的机理，采用有限元分析的方法，对其进行仿真分析。通过建立EMAT三维模型，进行电磁学耦合计算，获得被测试件表面磁场、涡流、洛伦兹力的分布规律，显示了EMAT激发横波的机理过程，为电磁超声换能器的设计提供参考；通过电磁学与动力学的耦合计算，获得横波在试件厚度方向的传播规律，结果表明，横波在试件中沿厚度方向传播，并且能量呈衰减趋势；对含缺陷钢板进行结构动力学分析，发现当波传播遇到缺
Energy Technology Data Exchange (ETDEWEB)
Butler, B.D.; Hanley, H.J.M.; Straty, G.C. [National Institute of Standards and Technology, Boulder, CO (United States); Muzny, C.D. [Univ. of Colorado, Boulder, CO (United States)
1995-12-31
An experimental small angle neutron scattering (SANS) study of dense silica gels, prepared from suspensions of 24 nm colloidal silica particles at several volume fractions {theta} is discussed. Provided that {theta}{approx_lt}0.18, the scattered intensity at small wave vectors q increases as the gelation proceeds, and the structure factor S(q, t {yields} {infinity}) of the gel exhibits apparent power law behavior. Power law behavior is also observed, even for samples with {theta}>0.18, when the gel is formed under an applied shear. Shear also enhances the diffraction maximum corresponding to the inter-particle contact distance of the gel. Difficulties encountered when trying to interpret SANS data from these dense systems are outlined. Results of computer simulations intended to mimic gel formation, including computations of S(q, t), are discussed. Comments on a method to extract a fractal dimension characterizing the gel are included.
Adamson, T. C., Jr.; Liou, M. S.; Messiter, A. F.
1980-01-01
An asymptotic description is derived for the interaction between a shock wave and a turbulent boundary layer in transonic flow, for a particular limiting case. The dimensionless difference between the external flow velocity and critical sound speed is taken to be much smaller than one, but large in comparison with the dimensionless friction velocity. The basic results are derived for a flat plate, and corrections for longitudinal wall curvature and for flow in a circular pipe are also shown. Solutions are given for the wall pressure distribution and the shape of the shock wave. Solutions for the wall shear stress are obtained, and a criterion for incipient separation is derived. Simplified solutions for both the wall pressure and skin friction distributions in the interaction region are given. These results are presented in a form suitable for use in computer programs.
Assessment of plantar fasciitis using shear wave elastography%剪切波弹性成像评价足底筋膜炎
Institute of Scientific and Technical Information of China (English)
张立宁; 万文博; 张立海; 肖红雨; 罗渝昆; 费翔; 郑志新; 唐佩福
2014-01-01
目的：利用剪切波弹性成像技术比较不同年龄段正常人及足底筋膜炎患者的足底筋膜的厚度和硬度。方法对23名足底筋膜炎患者和30例健康志愿者进行剪切波弹性超声检查，测量足底筋膜跟骨止点及距离跟骨止点1 cm处的厚度和弹性模量值。结果老年组足底筋膜明显比年轻组厚（P=0.005），弹性模量值明显比年轻组小（P=0.000）。足底筋膜炎组足底筋膜厚度明显比老年组厚（P=0.001），弹性模量值明显比老年组小（P=0.000）。足底筋膜炎组的足底筋膜跟骨止点处弹性模量值比距离跟骨止点处1 cm的筋膜弹性值低（P=0.000），而健康志愿者年轻组和老年组的两个位置的弹性模量差异无统计学意义（P=0.172， P=0.126）。结论剪切波弹性成像能定量评估足底筋膜的硬度，足底筋膜的硬度随年龄增加而变小，足底筋膜炎的筋膜硬度较正常筋膜变小。%Objective To assess the stiffness and thickness of the plantar fascia using shear wave elastography (SWE) in healthy volunteers of different ages and in patients with plantar fasciitis. Methods The bilateral feet of 30 healthy volunteers and 23 patients with plantar fasciitis were examined with SWE. The plantar fascia thickness and elasticity modulus value were measured at the insertion of the calcaneus and at 1 cm from the insertion. Results The elderly volunteers had a significantly greater plantar fascia thickness measured using conventional ultrasound (P=0.005) and a significantly lower elasticity modulus value than the young volunteers (P=0.000). The patients with fasciitis had a significantly greater plantar fascia thickness (P=0.001) and a lower elasticity modulus value than the elderly volunteers (P=0.000). The elasticity modulus value was significantly lower at the calcaneus insertion than at 1 cm from the insertion in patients with fasciitis (P=0.000) but showed no significantly difference between the
Baccheschi, P.; Pastori, M.; Margheriti, L.; Piccinini, D.
2016-03-01
The Abruzzi region is located in the Central Apennines Neogene fold-and-thrust belt and has one of the highest seismogenic potential in Italy, with high and diffuse crustal seismicity related to NE-SW oriented extension. In this study, we investigate the detailed spatial variation in shear wave splitting providing high-resolution anisotropic structure beneath the L'Aquila region. To accomplish this, we performed a systematic analysis of crustal anisotropic parameters: fast polarization direction (ϕ) and delay time (δt). We benefit from the dense coverage of seismic stations operating in the area and from a catalogue of several accurate earthquake locations of the 2009 L'Aquila seismic sequence, related to the Mw 6.1 2009 L'Aquila main shock, to describe in detail the geometry of the anisotropic volume around the active faults that ruptured. The spatial variations both in ϕ and δt suggest a complex anisotropic structure beneath the region caused by a combination of both structural- and stress-induced mechanisms. The average ϕ is NNW-SSE oriented (N141°), showing clear similarity both with the local fault strike and the SHmax. In the central part of the study area fast axes are oriented NW-SE, while moving towards the northeastern and northwestern sectors the fast directions clearly diverge from the general trend of NW-SE and rotate accordingly to the local fault strikes. The above-mentioned fault-parallel ϕ distribution suggests that the observed anisotropy is mostly controlled by the local fault-related structure. Toward the southeast fast directions become orthogonal both to strike of the local mapped faults and to the SHmax. Here, ϕ are predominantly oriented NE-SW; we interpret this orientation as due to the presence of a highly fractured and overpressurized rock volume which should be responsible of the 90° flips in ϕ and the increase in δt. Another possible mechanism for NE-SW orientation of ϕ in the southeastern sector could be ascribed to the
Lateral shear interferometry with holo shear lens
Joenathan, C.; Mohanty, R. K.; Sirohi, R. S.
1984-12-01
A simple method for obtaining lateral shear using holo shear lenses (HSL) has been discussed. This simple device which produces lateral shears in the orthogonal directions has been used for lens testing. The holo shear lens is placed at or near the focus of the lens to be tested. It has also been shown that HSL can be used in speckle shear interferometry as it performs both the functions of shearing and imaging.
Institute of Scientific and Technical Information of China (English)
刘国华
2015-01-01
利用单孔检层法对南水北调配套工程元氏—赵县输水管道的岩土基础进行剪切波速度测试，判别基础地震液化情况，通过对现场实测的数据分析第四系砂壤土、粉细砂、中砂的剪切波速值等物理参数，可较准确地判别工程场地的类别和地震液化。%For shear wave velocity test using of single-hole detection layer method to rock and soil foundation of Yuanshi—Zhaoxian County water pipeline of the South-to-North water diversion project can distinguish the foundation of seismic liquefaction, shear wave velocity and other physical parameters of Quaternary sandy loam, fine sand, medium sand and other physical parameters will be based on the value of the field measured data. Categories of engineering site and earthquake liquefaction can be recognized accurately through this method.
DEFF Research Database (Denmark)
Ibsen, Lars Bo
2008-01-01
Estimates for the amount of potential wave energy in the world range from 1-10 TW. The World Energy Council estimates that a potential 2TW of energy is available from the world’s oceans, which is the equivalent of twice the world’s electricity production. Whilst the recoverable resource is many t...
Institute of Scientific and Technical Information of China (English)
欧阳向柳; 郑立春; 刘晓玲; 张晓明; 张文军; 王艳滨
2014-01-01
ABSTRACT:Objective To compare the diagnostic value of shear wave elastography and single-photon emission computed tomography (SPECT)99m TcO4 - imaging in thyroid cancer. Methods All 148 thyroid nodules as research subjects were checked by shear wave elastography and radionuclide SPECT imaging,based by the pathology as the gold standard,two methods for calculating the diagnosis of thyroid cancer sensitivity,specificity,accuracy,positive predictive value and negative predictive value were compared.Results All of the 148 thyroid nodules,there were 39 malignant nodules (26.35%),109 benign nodules (73.65%).About the sensitivity, specificity,accuracy,positive predictive value and negative predictive value,shear wave elastography in the diagnosis of thyroid cancer in a variety of indicators were higher than SPECT 99m TcO4 - imaging.Conclusion Shear wave elastography in the diagnosis of thyroid cancer is higher than radionuclide SPECT 99m TcO4 - imaging,and shear wave elastography should be preferred for first clinical use.The combination of the two methods will increase the value in the diagnosis of thyroid carcinoma.%目的：比较超声剪切波弹性成像与单光子发射型计算机断层摄影（single-photon emission computed tomography，SPECT）高锝酸盐（99m TcO4－）显像2种检查方法对甲状腺癌的诊断价值。方法148个甲状腺结节均行超声剪切波弹性成像及核素 SPECT 99m TcO4－显像，以病理为金标准，计算2种方法诊断甲状腺癌的灵敏度、特异度、准确度、阳性预测值及阴性预测值。结果病理诊断148个甲状腺结节中，恶性结节39个（26．35％），良性结节109个（73．65％）。超声剪切波弹性成像诊断甲状腺癌的灵敏度、特异度、准确度、阳性预测值及阴性预测值均高于 SPECT 99m TcO4－显像。结论超声剪切波弹性成像对甲状腺癌的诊断价值高于核素 SPECT 99m TcO4－显像，在临床应用中应以超声为首选，
Crustal anisotropy in north Taiwan from shear-wave splitting%用剪切波分裂研究台湾北部地壳各向异性
Institute of Scientific and Technical Information of China (English)
太龄雪; 高原; 马国鳯; 李恩慈; 石玉涛; 林欣儀
2011-01-01
Using the seismic data recorded by 13 seismic stations in north Taiwan from July 1991 to December 2002, this study analyzes the feature of shear-wave splitting in north Taiwan by SAM method of shear-wave splitting. The results show that predominant polarization directions of fast shear-waves at Yilan basin strikes to nearly E-W, while polarization directions at mountain ranges (Western Foothill, Hsiieshan Range and Central Range) are in NNE or NE direction. Polarizations are scattered if the stations are on seashore or on island, and often have two predominant polarizations, which may be caused by irregular topography or complicated local tectonics. From the spatial distribution of time delays, we also find that taking station TWE as a boundary, time delays at station TWE and north of the station are longer than those at south of the station. It possibly suggests that anisotropy at station TWE and north of the station are stronger than anisotropy at south of the station.%研究主要使用台湾北部13个地震台站记录到的1991年7月～2002年12月的波形数据,采用剪切波分裂SAM分析方法,对台湾北部地区的剪切波分裂特征进行了研究.发现位于宜兰盆地内的台站的快剪切波优势偏振方向为近E-W方向,而位于山脉(西部麓山带、雪山山脉和中央山脉)的台站的快剪切波优势偏振方向为NNE向或NE方向.位于海边或小岛上的台站得到的快剪切波优势偏振方向比较离散,常伴有2个快剪切波优势偏振方向,可能是受到不规则的地形或复杂的局部构造而引起的.从时间延迟的空间分布来看,以TWE台为界,该台站及以北地区的慢剪切波时间延迟大于该台站以南的慢剪切波时间延迟,这可能意味着TWE台及以北地区的地壳地震各向异性强于南部.
Spica, Zack; Perton, Mathieu; Calò, Marco; Legrand, Denis; Córdoba-Montiel, Francisco; Iglesias, Arturo
2016-09-01
This work presents an innovative strategy to enhance the resolution of surface wave tomography obtained from ambient noise cross-correlation (C1) by bridging asynchronous seismic networks through the correlation of coda of correlations (C3). Rayleigh wave group dispersion curves show consistent results between synchronous and asynchronous stations. Rayleigh wave group traveltimes are inverted to construct velocity-period maps with unprecedented resolution for a region covering Mexico and the southern United States. The resulting period maps are then used to regionalize dispersion curves in order to obtain local 1-D shear velocity models (VS) of the crust and uppermost mantle in every cell of a grid of 0.4°. The 1-D structures are obtained by iteratively adding layers until reaching a given misfit, and a global tomography model is considered as an input for depths below 150 km. Finally, a high-resolution 3-D VS model is obtained from these inversions. The major structures observed in the 3-D model are in agreement with the tectonic-geodynamic features and with previous regional and local studies. It also offers new insights to understand the present and past tectonic evolution of the region.
Dynamic shear deformation in high purity Fe
Energy Technology Data Exchange (ETDEWEB)
Cerreta, Ellen K [Los Alamos National Laboratory; Bingert, John F [Los Alamos National Laboratory; Trujillo, Carl P [Los Alamos National Laboratory; Lopez, Mike F [Los Alamos National Laboratory; Gray, George T [Los Alamos National Laboratory
2009-01-01
The forced shear test specimen, first developed by Meyer et al. [Meyer L. et al., Critical Adiabatic Shear Strength of Low Alloyed Steel Under Compressive Loading, Metallurgical Applications of Shock Wave and High Strain Rate Phenomena (Marcel Decker, 1986), 657; Hartmann K. et al., Metallurgical Effects on Impact Loaded Materials, Shock Waves and High Strain rate Phenomena in Metals (Plenum, 1981), 325-337.], has been utilized in a number of studies. While the geometry of this specimen does not allow for the microstructure to exactly define the location of shear band formation and the overall mechanical response of a specimen is highly sensitive to the geometry utilized, the forced shear specimen is useful for characterizing the influence of parameters such as strain rate, temperature, strain, and load on the microstructural evolution within a shear band. Additionally, many studies have utilized this geometry to advance the understanding of shear band development. In this study, by varying the geometry, specifically the ratio of the inner hole to the outer hat diameter, the dynamic shear localization response of high purity Fe was examined. Post mortem characterization was performed to quantify the width of the localizations and examine the microstructural and textural evolution of shear deformation in a bcc metal. Increased instability in mechanical response is strongly linked with development of enhanced intergranular misorientations, high angle boundaries, and classical shear textures characterized through orientation distribution functions.
Institute of Scientific and Technical Information of China (English)
刘丽; 宫猛; 胡斌; 曾祥方; 罗艳
2012-01-01
We present the surface wave dispersion results of the application of the ambient noise method to broad-band data recorded at 83 stations from digital seismic networks of the Hebei and surrounding areas. Firstly we used the multiple-filter analysis method to extract surface wave group velocity dispersion curves from inter-station paths at periods from 5 to 50 s. Then using linear inversion method to obtain shear wave velocity distribution. The results of group and shear wave velocity distribution maps generally demonstrate good correlations with surface geological and tectonic features. The results of the group velocity tomography show that at short periods (8 — 20 s) , basin areas are clearly resolved with low group velocity due to its thick sedimentary layer, and the uplift areas show relative higher group velocity distribution. With the increase of period O20 s) the group velocity distribution changed, and velocity gap between the basin and uplift areas had reduced after the 30 s period, due to the thickness of the Earth's crust, and beneath the middle-lower the shear wave velocity increase with depth. Our results alsoshow that in this study the dominated noise sources come from the north-west.%本文根据2010年1～12月河北及邻区的83个宽频地震仪12个月连续噪声记录,分析了河北及邻区瑞利面波的群速度频散曲线并反演了主要分区内的典型路径剪切波速度结构.首先采用多重滤波方法提取了台站对5～50 s的面波群速度频散曲线,然后用Herrmann线性反演方法反演了剪切波速度结构.结果表明,群速度频散曲线及剪切波速度分布特征与地表地质和构造特征表现出较好的相关性,清晰地揭示了地壳内部的横向速度变化.在短周期(8～20s),拥有较厚的沉积层的平原地区表现为明显的低速特征,而隆起地区则表现为较高的群速度分布特征:随着周期的增加(＞20 s)速度的特征有所改变,30 s之后由于受地壳
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
We assembled approximately 328 seismic records. The data set wasfrom 4 digitally recording long-period and broadband stations of CDSN. We carried out the inversion based on the partitioned waveform inversion (PWI). It partitions the large-scale optimization problem into a number of independent small-scale problems. We adopted surface waveform inversion with an equal block (2°′2°) discretization in order to acquire the images of shear velocity structure at different depths (from surface to 430 km) in the crust and upper-mantle. The resolution of all these anomalies has been established with 2check-board2 resolution tests. These results show significant difference in velocity, lithosphere and asthenosphere structure between South China Sea and its adjacent regions.
Directory of Open Access Journals (Sweden)
Crampin S.
2006-12-01
Full Text Available Arguably, shear-wave splitting displaying azimuthal anisotropy has not lived up to its initial promise of opening a new window for understanding cracks and stress in the crust. This paper reviews two recent related developments which appear to renew these initial hopes and provide new opportunities for monitoring, modelling, and even predicting, the (pre-fracturing deformation of fluid-saturated microcracked rock. A recently developed model of anisotropic poro-elasticity (APE for the stress-induced evolution of fluid-saturated microcracked rock matches a wide range of otherwise inexplicable or dissociated phenomena and appears to be a good first-order approximation to the evolution of fluid-saturated microcracked rock. Since the parameters that control small-scale (pre-fracturing deformation also control shear-wave splitting, it appears that the evolution of fluid-saturated microcracked rock can be directly monitored by shear-wave splitting, and the response to future changes predicted by APE. The success of APE-modelling and observations of shear-wave splitting imply that almost all rock is close to a state of fracture criticality associated with the percolation threshold, when shear-strength is lost and through-going fractures can propagate. This confirms other evidence for the self-organized criticality of in situ rock. The significance of this identification is that the small-scale physics that controls the whole phenomena can now be identified as the stress-induced manipulation of fluids around intergranular microcracks. This has the possibly unique advantage amongst critical systems that details of the pre-fracturing deformation and the approach to the criticality threshold (in this case the proximity to fracturing can be monitored at each locality by appropriate observations of shear-wave splitting. This paper reviews the these developments and discusses their implications and applications, particularly the implications of self
Double-Diffusive Convection in Rotational Shear
2015-03-01
frequencies that conformed to the GM spectral model for internal waves with an initial random phase distribution, modeling an environment...shear wave field. This model used frequencies that conformed to the GM spectral model for internal waves with an initial random phase distribution...frequencies that conformed to the GM frequency spectral model. During this stage of research, double diffusion rates don’t stabilize into a single a steady
White, M. C. A.; Ross, Z.; Vernon, F.; Ben-Zion, Y.
2015-12-01
UC San Diego's ANZA network began archiving event-triggered data in 1982. As a result of improved recording technology, continuous waveform data archives are available starting in 1998. This continuous dataset, from 1998-present, represents a wealth of potential insight into spatio-temporal seismicity patterns, earthquake physics and mechanics of the San Jacinto Fault Zone. However, the volume of data renders manual analysis costly. In order to investigate the characteristics of the data in space and time, an automatic earthquake location catalog is needed. To this end, we apply standard earthquake signal processing techniques to the continuous data to detect first-arriving P-waves in combination with a recently developed S-wave detection algorithm. The resulting dataset of arrival time observations are processed using a grid association algorithm to produce initial absolute locations which are refined using a location inversion method that accounts for 3-D velocity heterogeneities. Precise relative locations are then derived from the refined absolute locations using the HypoDD double-difference algorithm. Moment magnitudes for the events are estimated from multi-taper spectral analysis. A >650% increase in the S:P pick ratio is achieved using the updated S-wave detection algorithm, when compared to the currently available catalog for the ANZA network. The increased number of S-wave observations leads to improved earthquake location accuracy and reliability (ie. less false event detections). Various aspects of spatio-temporal seismicity patterns and size distributions are investigated. Updated results will be presented at the meeting.
Vorticity production through rotation, shear and baroclinicity
Del Sordo, Fabio; Brandenburg, Axel
2010-01-01
In the absence of rotation and shear, and under the assumption of constant temperature or specific entropy, purely potential forcing by localized expansion waves is known to produce irrotational flows that have no vorticity. Here we study the production of vorticity under idealized conditions when there is rotation, shear, or baroclinicity, to address the problem of vorticity generation in the interstellar medium in a systematic fashion. We use three-dimensional periodic box numerical simulat...
Morales, L. E. A. P.; Aguirre, J.; Vazquez Rosas, R.; Suarez, G.; Contreras Ruiz-Esparza, M. G.; Farraz, I.
2014-12-01
Methods that use seismic noise or microtremors have become very useful tools worldwide due to its low costs, the relative simplicity in collecting data, the fact that these are non-invasive methods hence there is no need to alter or even perforate the study site, and also these methods require a relatively simple analysis procedure. Nevertheless the geological structures estimated by this methods are assumed to be parallel, isotropic and homogeneous layers. Consequently precision of the estimated structure is lower than that from conventional seismic methods. In the light of these facts this study aimed towards searching a new way to interpret the results obtained from seismic noise methods. In this study, seven triangular SPAC (Aki, 1957) arrays were performed in the city of Coatzacoalcos, Veracruz, varying in sizes from 10 to 100 meters. From the autocorrelation between the stations of each array, a Rayleigh wave phase velocity dispersion curve was calculated. Such dispersion curve was used to obtain a S wave parallel layers velocity (VS) structure for the study site. Subsequently the horizontal to vertical ratio of the spectrum of microtremors H/V (Nogoshi and Igarashi, 1971; Nakamura, 1989, 2000) was calculated for each vertex of the SPAC triangular arrays, and from the H/V spectrum the fundamental frequency was estimated for each vertex. By using the H/V spectral ratio curves interpreted as a proxy to the Rayleigh wave ellipticity curve, a series of VS structures were inverted for each vertex of the SPAC array. Lastly each VS structure was employed to calculate a 3D velocity model, in which the exploration depth was approximately 100 meters, and had a velocity range in between 206 (m/s) to 920 (m/s). The 3D model revealed a thinning of the low velocity layers. This proved to be in good agreement with the variation of the fundamental frequencies observed at each vertex. With the previous kind of analysis a preliminary model can be obtained as a first
Institute of Scientific and Technical Information of China (English)
王健楠; 王学梅; 方毅; 姜镔; 赵磊
2013-01-01
Objective:To explore the feasibility of detecting parotid gland and submaxillary gland's stiffness by shear wave elastography (SWE) and establish a reference range of Young's modulus in healthy adult.Methods:There were 820 healthy volunteers underwent SWE in parotid gland and submaxillary gland.The difference of Young's modulus in bilateral parotid and submaxillary gland,the values in different sex and age groups were also compared.Results:The differences of Young's modulus between two sides of parotid gland and submaxillary gland has no statistically significant(P＞0.05); the differences of Young's modulus of parotid gland between different sex groups has statistical significance (P＞0.05) but no statistical significance in submaxillary gland (P＞0.05); The differences of Young's modulus in parotid gland and submaxillary gland between different age groups has no statistical significance (P＞0.05).Conclusion:SWE can be successfully applied to assess parotid gland and submaxillary gland's stiffness and can provide valuable information for diagnosis.%目的:探讨实时剪切波弹性成像(Shear wave elastography,SWE)检测腮腺及颌下腺硬度的可行性,建立正常成人杨氏模量的参考值范围.方法:对820名健康成人进行腮腺及颌下腺实时剪切波弹性成像检查,比较左右两侧及不同性别、年龄组之间杨氏模量值的差异.结果:左右两侧腮腺及颌下腺杨氏模量值差异均无统计学意义(P＞0.05).不同性别间腮腺杨氏模量值差异有统计学意义(P＜0.05)；不同性别间颌下腺杨氏模量值差异无统计学意义(P＞0.05).不同年龄组的腮腺及颌下腺杨氏模量值差异均无统计学意义(P＞0.05).结论:实时剪切波弹性成像可用于评估腮腺及颌下腺的硬度,为疾病的鉴别诊断提供有价值的信息.
Institute of Scientific and Technical Information of China (English)
A·查托帕答雅; S·古普塔; S·A·萨胡; A·K·辛格; 黄雅意
2011-01-01
The propagation of horizontally polarised shear waves in an internal magnetoelastic monoclinic stratum with irregularity in lower interface was studied. The stratum was sandwiched between two magnetoelastic monoclinic semi-infinite media. Dispersion equation was obtained in closed form. In absence of magnetic field and irregularity of the medium, the dispersion equation agrees with the equation of classical case in three layered media. The effect of magnetic field and size of irregularity on the phase velocity has been depicted by means of graphs.%在内夹磁弹性单斜地层中,下界面不规则变化时,研究水平偏振剪切波的传播,该地层夹在两个半无限磁弹性单斜介质之间,得到了闭式的色散方程.不计磁场及介质界面的不规则性,该色散方程与三层介质中经典方程相一致.图示了磁场和界面不规则深度对相速度的影响.
Shear System Debugging and Shear Test
Institute of Scientific and Technical Information of China (English)
YANG; Dong-xue; JIAO; Hai-yang
2015-01-01
Shear system is the essential equipment of head-end processing in the spent fuel reprocessing process,with the aim of cutting spent fuels into appropriate lengths for dissolve,separatingspent fuel core from jacket.Shear system of CRARL is mainly set in 01Bhot cell,element rods will be cut into short lengths of 10-30mm
Effects of shear elasticity on sea bed scattering: numerical examples.
Ivakin, A N; Jackson, D R
1998-01-01
It is known that marine sediments can support both compressional and shear waves. However, published work on scattering from irregular elastic media has not examined the influence of shear on sea bed scattering in detail. A perturbation model previously developed by the authors for joint roughness-volume scattering is used to study the effects of elasticity for three sea bed types: sedimentary rock, sand with high shear speed, and sand with "normal" shear wave speed. Both bistatic and monostatic cases are considered. For sedimentary rock it is found that shear elasticity tends to increase the importance of volume scattering and decrease the importance of roughness scattering relative to the fluid case. Shear effects are shown to be small for sands.
Energy Technology Data Exchange (ETDEWEB)
Dodelson, Scott; /Fermilab /Chicago U., Astron. Astrophys. Ctr. /Northwestern U.; Shapiro, Charles; /Chicago U. /KICP, Chicago; White, Martin J.; /UC, Berkeley, Astron.
2005-08-01
Measurements of ellipticities of background galaxies are sensitive to the reduced shear, the cosmic shear divided by (1-{kappa}) where {kappa} is the projected density field. They compute the difference between shear and reduced shear both analytically and with simulations. The difference becomes more important an smaller scales, and will impact cosmological parameter estimation from upcoming experiments. A simple recipe is presented to carry out the required correction.
DEFF Research Database (Denmark)
Burcharth, H. F.; Frigaard, Peter
1989-01-01
Wave loads may be defined as time varying forces on a body resulting from the wave induced flow fields which surrounds the body in whole or in part. Such unsteady fluid forces are the net result of pressure and shear forces integrated over the instantaneous wetted area.......Wave loads may be defined as time varying forces on a body resulting from the wave induced flow fields which surrounds the body in whole or in part. Such unsteady fluid forces are the net result of pressure and shear forces integrated over the instantaneous wetted area....
On Howard's Conjecture in Heterogeneous Shear Flow Problem
Indian Academy of Sciences (India)
R G Shandil; Jagjit Singh
2003-11-01
Howard's conjecture, which states that in the linear instability problem of inviscid heterogeneous parallel shear flow growth rate of an arbitrary unstable wave must approach zero as the wave length decreases to zero, is established in a mathematically rigorous fashion for plane parallel heterogeneous shear flows with negligible buoyancy force $g \\ll 1$ (Miles J W, J. Fluid Mech. 10 (1961) 496–508), where is the basic heterogeneity distribution function).
Asten, Michael W.; Boore, David M.
2005-01-01
Shear-wave velocities within several hundred meters of Earth's surface are important in specifying earthquake ground motions for engineering design. Not only are the shearwave velocities used in classifying sites for use of modern building codes, but they are also used in site-specific studies of particularly significant structures. Many are the methods for estimating sub-surface shear-wave velocities, but few are the blind comparisons of a number of the methods at a single site. The word 'blind' is important here and means that the measurements and interpretations are done completely independent of one another. Stephen Hartzell of the USGS office on Golden, Colorado realized that such an experiment would be very useful for assessing the strengths and weaknesses of the various methods, and he and Jack Boatwright of the USGS office in Menlo Park, California, in cooperation with Carl Wentworth of the Menlo Park USGS office found a convenient site in the city of San Jose, California. The site had good access and space for conducting experiments, and a borehole drilled to several hundred meters by the Santa Clara Valley Water District was made available for downhole logging. Jack Boatwright asked David Boore to coordinate the experiment. In turn, David Boore persuaded several teams to make measurements, helped with the local logistics, collected the results, and organized and conducted an International Workshop in May, 2004. At this meeting the participants in the experiment gathered in Menlo Park to describe their measurements and interpretations, and to see the results of the comparisons of the various methods for the first time. This Open-File Report describes the results of that workshop. One of the participants, Michael Asten, offered to help the coordinator prepare this report. Because of his lead role in pulling the report together, Dr. Asten is the lead author of the paper to follow and is also the lead Compiler for the Open-File Report. It is important to
Institute of Scientific and Technical Information of China (English)
张翠; 张艳华; 程文; 邵华; 刘莹
2016-01-01
Objective:To evaluate real -time shear wave elastography(SWE)for distinguishing malignant thyroid nodules.Methods:Analyzing retrospectively the 185 cases of solitary thyroid nodules to evaluate SWE technology.Re-sults:Compared with pathological results,61 nodules were benign,124 nodules malignant.Malignant nodules were of-ten hypoechogenicity,micro -calicification,taller than wide,ill -defined.Malignant nodules of the maximum elastic value(Emax )was (58.5 ±26.5)kPa,the mean elastic value was(41.8 ±32.6)kPa.Benign nodules of the maximum elastic value(Emax )was(38.5 ±15.7)kPa,the mean elastic value was(29.5 ±17.7)kPa,no difference between them.When the maximum elastic value(Emax )was 55.4kPa,the mean elastic value(Emean )was 45.6kPa,the elastic ratio value(ER)was 1.5,there was higher identification sensitivity and specificity between benign and malignant nodules.Conclusion:Based on the two -dimensional sonographic features,integrated SWE technique,there is certain valueable significant in diagnosising benign and malignant thyroid nodules.%目的：探讨实时剪切波弹性成像技术（shear wave elastography，SWE）在鉴别诊断甲状腺良恶性结节的应用价值。方法：对185例单发甲状腺肿物患者资料进行回顾性分析，评估 SWE 技术。结果：所有结节经病理证实，61个结节为良性，124个为恶性。恶性结节超声表现常呈低或极低回声，伴多发细点状微钙化，纵横比大于1，边界模糊，形态不规则。恶性结节的最大弹性模量值（Emax ）为（58．5±26．5）kPa，平均杨氏模量为（41．8±32．6）kPa。良性结节的最大弹性模量值（Emax ）为（38．5±15．7）kPa，平均杨氏模量为（29．5±17．7）kPa，两者之间的差异有统计学意义。最大弹性模量值（Emax ）为55．4kPa、平均弹性模量值（Emean ）为45．6kPa、可疑结节与周围正常腺体弹性模量值之比（ER）为1．5，对良恶性结节的鉴别具有较
Institute of Scientific and Technical Information of China (English)
王倩; 艾红; 张茜茜; 淡敏; 李宁; 潘文倩; 任晓萍
2014-01-01
目的 探讨剪切波弹性成像(shear-wave elasticity,SWE)技术对慢性肾病定量分期的诊断价值.方法 对60例慢性肾病患者(肾病组)与同期20例健康体检者(对照组)应用SWE技术检测肾实质弹性,并检测肾功能指标,比较SWE测值与肾功能指标对慢性肾病分期的诊断价值.结果 将20例健康对照组归为R0期,60例肾病组根据肾功能分为R1～R4期.肾病组各组间(除R1与R2期之间外)及与对照组杨氏模量值比较,差异均有统计学意义(P＜0.01);根据ROC曲线可知,当曲线下最大面积为0.886时,杨氏模量截点值为5.53 kPa,其诊断慢性肾病的灵敏性、特异性分别为81.70％、80.40％.杨氏模量值和尿素氮、胱抑素C均与慢性肾病分期存在正相关性.杨氏模量值和尿素氮、胱抑素C诊断≥R3期的ROC曲线下面积分别为0.965、0.950、0.965,=R4期的ROC曲线下面积分别为0.978、0.912、0.961.结论 SWE技术通过量化肾组织的弹性,为慢性肾病分期提供了一种新的定量评估指标.%Objective To investigate the diagnostic value of the shear-wave elasticity (SWE) imaging technology on the quantitative diagnosis of chronic nephrosis stage.Methods Sixty patients with nephrosis (nephrosis group) were evaluated with SWE and the renal function test.The Young's modulus value and the renal function were measured,and the results were compared with those of twenty healthy subjects (control group).Results Twenty cases of healthy control group were definited as R0.Sixty patients of nephrosis group were divided into four groups according to renal function:R1-R4.The Young's modulus of the nephrosis group was significantly higher than the control group (P ＜0.01).There were also statistically significant differences among each stage of the nephrosis group (except R1 and R2 of nephrosis group)(P ＜ 0.01).According the ROC curve,the cut-off value of the Young's modulus was 5.53 kPa when maximum area under the curve equal to 0
Shear viscosity of nuclear matter
Magner, A G; Grygoriev, U V; Plujko, V A
2016-01-01
Shear viscosity $\\eta$ is calculated for the nuclear matter described as a system of interacting nucleons with the van der Waals (VDW) equation of state. The Boltzmann-Vlasov kinetic equation is solved in terms of the plane waves of the collective overdamped motion. In the frequent collision regime, the shear viscosity depends on the particle number density $n$ through the mean-field parameter $a$ which describes attractive forces in the VDW equation. In the temperature region $T=15\\div 40$~MeV, a ratio of the shear viscosity to the entropy density $s$ is smaller than 1 at the nucleon number density $n =(0.5\\div 1.5)\\,n^{}_0$, where $n^{}_0=0.16\\,$fm$^{-3}$ is the particle density of equilibrium nuclear matter at zero temperature. A minimum of the $\\eta/s$ ratio takes place somewhere in a vicinity of the critical point of the VDW system. Large values of $\\eta/s\\gg 1$ are however found in both the low density, $n\\ll n^{}_0$, and high density, $n>2n^{}_0$, regions. This makes the ideal hydrodynamic approach ina...
Pressure-shear experiments on granular materials.
Energy Technology Data Exchange (ETDEWEB)
Reinhart, William Dodd (Sandia National Laboratories, Albuquerque, NM); Thornhill, Tom Finley, III (, Sandia National Laboratories, Albuquerque, NM); Vogler, Tracy John; Alexander, C. Scott (Sandia National Laboratories, Albuquerque, NM)
2011-10-01
Pressure-shear experiments were performed on granular tungsten carbide and sand using a newly-refurbished slotted barrel gun. The sample is a thin layer of the granular material sandwiched between driver and anvil plates that remain elastic. Because of the obliquity, impact generates both a longitudinal wave, which compresses the sample, and a shear wave that probes the strength of the sample. Laser velocity interferometry is employed to measure the velocity history of the free surface of the anvil. Since the driver and anvil remain elastic, analysis of the results is, in principal, straightforward. Experiments were performed at pressures up to nearly 2 GPa using titanium plates and at higher pressure using zirconium plates. Those done with the titanium plates produced values of shear stress of 0.1-0.2 GPa, with the value increasing with pressure. On the other hand, those experiments conducted with zirconia anvils display results that may be related to slipping at an interface and shear stresses mostly at 0.1 GPa or less. Recovered samples display much greater particle fracture than is observed in planar loading, suggesting that shearing is a very effective mechanism for comminution of the grains.
Shearing stability of lubricants
Shiba, Y.; Gijyutsu, G.
1984-01-01
Shearing stabilities of lubricating oils containing a high mol. wt. polymer as a viscosity index improver were studied by use of ultrasound. The oils were degraded by cavitation and the degradation generally followed first order kinetics with the rate of degradation increasing with the intensity of the ultrasonic irradiation and the cumulative energy applied. The shear stability was mainly affected by the mol. wt. of the polymer additive and could be determined in a short time by mechanical shearing with ultrasound.
Shearing stability of lubricants
Energy Technology Data Exchange (ETDEWEB)
Shiba, Y.; Gijyutsu, G.
1984-03-01
Shearing stabilities of lubricating oils containing a high mol. wt. polymer as a viscosity index improver were studied by use of ultrasound. The oils were degraded by cavitation and the degradation generally followed first order kinetics with the rate of degradation increasing with the intensity of the ultrasonic irradiation and the cumulative energy applied. The shear stability was mainly affected by the mol. wt. of the polymer additive and could be determined in a short time by mechanical shearing with ultrasound.
Making Waves: Seismic Waves Activities and Demonstrations
Braile, S. J.; Braile, L. W.
2011-12-01
The nature and propagation of seismic waves are fundamental concepts necessary for understanding the exploration of Earth's interior structure and properties, plate tectonics, earthquakes, and seismic hazards. Investigating seismic waves is also an engaging approach to learning basic principles of the physics of waves and wave propagation. Several effective educational activities and demonstrations are available for teaching about seismic waves, including the stretching of a spring to demonstrate elasticity; slinky wave propagation activities for compressional, shear, Rayleigh and Love waves; the human wave activity to demonstrate P- and S- waves in solids and liquids; waves in water in a simple wave tank; seismic wave computer animations; simple shake table demonstrations of model building responses to seismic waves to illustrate earthquake damage to structures; processing and analysis of seismograms using free and easy to use software; and seismic wave simulation software for viewing wave propagation in a spherical Earth. The use of multiple methods for teaching about seismic waves is useful because it provides reinforcement of the fundamental concepts, is adaptable to variable classroom situations and diverse learning styles, and allows one or more methods to be used for authentic assessment. The methods described here have been used effectively with a broad range of audiences, including K-12 students and teachers, undergraduate students in introductory geosciences courses, and geosciences majors.
In-plane shear piezoelectric wafer active sensor phased arrays for structural health monitoring
Wang, Wentao; Zhou, Wensong; Wang, Peng; Wang, Chonghe; Li, Hui
2016-04-01
This paper proposes a new way for guided wave structural health monitoring using in-plane shear (d36 type) piezoelectric wafer active sensors phased arrays. Conventional piezoelectric wafer active sensors phased arrays based on inducing into specific Lamb wave modes (d31 type) has already widely used for health monitoring of the thin-wall structures. Rather than Lamb wave modes, the in-plane shear piezoelectric wafer active sensors phased arrays induces in-plane shear horizontal (SH) guided waves. The SH guided waves are distinct with the Lamb waves with simple waveform and less additional converted wave modes and the zero symmetric mode (SH0) is non-dispersive. In this paper, the advantage of the shear horizontal wave and the in-plane shear piezoelectric wafers capability to generate SH waves is first reviewed. Then finite element analysis of a 4-in-plane shear wafer active sensors phased array embedded on a rectangular aluminium plate is performed. In addition, numerical simulations with respect to creaks with different sizes as well as locations are implemented by the in-plane shear wafer active sensors phased array. For comparison purposes, the same numerical simulations using the conventional piezoelectric wafer active sensors phased arrays are also employed at the same time. Results indicate that the in-plane shear (d36 type) piezoelectric wafer active sensors phased arrays has the potential to identify damage location and assess damage severity in structural health monitoring.
Surface wave inversion for a p-wave velocity profile: Estimation of the squared slowness gradient
Ponomarenko, A.V.; Kashtan, B.M.; Troyan, V.N.; Mulder, W.A.
2013-01-01
Surface waves can be used to obtain a near-surface shear wave profile. The inverse problem is usually solved for the locally 1-D problem of a set of homogeneous horizontal elastic layers. The output is a set of shear velocity values for each layer in the profile. P-wave velocity profile can be estim
Direct bed stress measurements under solitary tsunami-type waves and breaking tsunami wave fronts
Digital Repository Service at National Institute of Oceanography (India)
JayaKumar, S.; Baldock, T.E.
, the force measured by the shear plate includes the bed shear stress and the pressure gradient force from the wave. Linear wave theory is often used to estimate (Rankin and Hires, 2000) and eliminate the pressure gradient from the total force so... for selected solitary waves generated in laboratory that are comparable with the theory Parameters Cyclone (shallow) Cyclone (deep) Tsunami-1 (shallow) Tsunami-2 (shallow) Tsunami-1 (deep) Tsunami-2 (deep) Wave height (m) 20 20 1 1 1 1 Wave...
U.S. Geological Survey, Department of the Interior — The U.S. Geological Survey has been characterizing the regional variation in shear stress on the sea floor and sediment mobility through statistical descriptors....
U.S. Geological Survey, Department of the Interior — The U.S. Geological Survey has been characterizing the regional variation in shear stress on the sea floor and sediment mobility through statistical descriptors. The...
U.S. Geological Survey, Department of the Interior — The U.S. Geological Survey has been characterizing the regional variation in shear stress on the sea floor and sediment mobility through statistical descriptors. The...
U.S. Geological Survey, Department of the Interior — The U.S. Geological Survey has been characterizing the regional variation in shear stress on the sea floor and sediment mobility through statistical descriptors.