WorldWideScience

Sample records for acoustic waves

  1. Acoustics waves and oscillations

    CERN Document Server

    Sen, S.N.

    2013-01-01

    Parameters of acoustics presented in a logical and lucid style Physical principles discussed with mathematical formulations Importance of ultrasonic waves highlighted Dispersion of ultrasonic waves in viscous liquids explained This book presents the theory of waves and oscillations and various applications of acoustics in a logical and simple form. The physical principles have been explained with necessary mathematical formulation and supported by experimental layout wherever possible. Incorporating the classical view point all aspects of acoustic waves and oscillations have been discussed together with detailed elaboration of modern technological applications of sound. A separate chapter on ultrasonics emphasizes the importance of this branch of science in fundamental and applied research. In this edition a new chapter ''Hypersonic Velocity in Viscous Liquids as revealed from Brillouin Spectra'' has been added. The book is expected to present to its readers a comprehensive presentation of the subject matter...

  2. Oscillating nonlinear acoustic shock waves

    DEFF Research Database (Denmark)

    Gaididei, Yuri; Rasmussen, Anders Rønne; Christiansen, Peter Leth

    2016-01-01

    We investigate oscillating shock waves in a tube using a higher order weakly nonlinear acoustic model. The model includes thermoviscous effects and is non isentropic. The oscillating shock waves are generated at one end of the tube by a sinusoidal driver. Numerical simulations show that at resona......We investigate oscillating shock waves in a tube using a higher order weakly nonlinear acoustic model. The model includes thermoviscous effects and is non isentropic. The oscillating shock waves are generated at one end of the tube by a sinusoidal driver. Numerical simulations show...

  3. Canonical Acoustics and Its Application to Surface Acoustic Wave on Acoustic Metamaterials

    Science.gov (United States)

    Shen, Jian Qi

    2016-08-01

    In a conventional formalism of acoustics, acoustic pressure p and velocity field u are used for characterizing acoustic waves propagating inside elastic/acoustic materials. We shall treat some fundamental problems relevant to acoustic wave propagation alternatively by using canonical acoustics (a more concise and compact formalism of acoustic dynamics), in which an acoustic scalar potential and an acoustic vector potential (Φ ,V), instead of the conventional acoustic field quantities such as acoustic pressure and velocity field (p,u) for characterizing acoustic waves, have been defined as the fundamental variables. The canonical formalism of the acoustic energy-momentum tensor is derived in terms of the acoustic potentials. Both the acoustic Hamiltonian density and the acoustic Lagrangian density have been defined, and based on this formulation, the acoustic wave quantization in a fluid is also developed. Such a formalism of acoustic potentials is employed to the problem of negative-mass-density assisted surface acoustic wave that is a highly localized surface bound state (an eigenstate of the acoustic wave equations). Since such a surface acoustic wave can be strongly confined to an interface between an acoustic metamaterial (e.g., fluid-solid composite structures with a negative dynamical mass density) and an ordinary material (with a positive mass density), it will give rise to an effect of acoustic field enhancement on the acoustic interface, and would have potential applications in acoustic device design for acoustic wave control.

  4. Ion Acoustic Travelling Waves

    CERN Document Server

    Webb, G M; Ao, X; Zank, G P

    2013-01-01

    Models for travelling waves in multi-fluid plasmas give essential insight into fully nonlinear wave structures in plasmas, not readily available from either numerical simulations or from weakly nonlinear wave theories. We illustrate these ideas using one of the simplest models of an electron-proton multi-fluid plasma for the case where there is no magnetic field or a constant normal magnetic field present. We show that the travelling waves can be reduced to a single first order differential equation governing the dynamics. We also show that the equations admit a multi-symplectic Hamiltonian formulation in which both the space and time variables can act as the evolution variable. An integral equation useful for calculating adiabatic, electrostatic solitary wave signatures for multi-fluid plasmas with arbitrary mass ratios is presented. The integral equation arises naturally from a fluid dynamics approach for a two fluid plasma, with a given mass ratio of the two species (e.g. the plasma could be an electron pr...

  5. Surface Acoustic Wave Devices

    DEFF Research Database (Denmark)

    Dühring, Maria Bayard

    application is modulation of optical waves in waveguides. This presentation elaborates on how a SAW is generated by interdigital transducers using a 2D model of a piezoelectric, inhomogeneous material implemented in the high-level programming language Comsol Multiphysics. The SAW is send through a model...

  6. Propagation behavior of acoustic wave in wood

    Institute of Scientific and Technical Information of China (English)

    Huadong Xu; Guoqi Xu; Lihai Wang; Lei Yu

    2014-01-01

    We used acoustic tests on a quarter-sawn poplar timbers to study the effects of wood anisotropy and cavity defects on acoustic wave velocity and travel path, and we investigated acoustic wave propagation behavior in wood. The timber specimens were first tested in unmodified condition and then tested after introduction of cavity defects of varying sizes to quantify the transmitting time of acoustic waves in laboratory conditions. Two-dimensional acoustic wave contour maps on the radial section of specimens were then simulated and analyzed based on the experimental data. We tested the relationship between wood grain and acoustic wave velocity as waves passed in various directions through wood. Wood anisotropy has significant effects on both velocity and travel path of acoustic waves, and the velocity of waves passing longitudinally through timbers exceeded the radial velocity. Moreover, cavity defects altered acoustic wave time contours on radial sections of timbers. Acous-tic wave transits from an excitation point to the region behind a cavity in defective wood more slowly than in intact wood.

  7. Ion Acoustic Waves in the Presence of Electron Plasma Waves

    DEFF Research Database (Denmark)

    Michelsen, Poul; Pécseli, Hans; Juul Rasmussen, Jens

    1977-01-01

    Long-wavelength ion acoustic waves in the presence of propagating short-wavelength electron plasma waves are examined. The influence of the high frequency oscillations is to decrease the phase velocity and the damping distance of the ion wave.......Long-wavelength ion acoustic waves in the presence of propagating short-wavelength electron plasma waves are examined. The influence of the high frequency oscillations is to decrease the phase velocity and the damping distance of the ion wave....

  8. Manipulate acoustic waves by impedance matched acoustic metasurfaces

    Science.gov (United States)

    Wu, Ying; Mei, Jun; Aljahdali, Rasha

    We design a type of acoustic metasurface, which is composed of carefully designed slits in a rigid thin plate. The effective refractive indices of different slits are different but the impedances are kept the same as that of the host medium. Numerical simulations show that such a metasurface can redirect or reflect a normally incident wave at different frequencies, even though it is impedance matched to the host medium. We show that the underlying mechanisms can be understood by using the generalized Snell's law, and a unified analytic model based on mode-coupling theory. We demonstrate some simple realization of such acoustic metasurface with real materials. The principle is also extended to the design of planar acoustic lens which can focus acoustic waves. Manipulate acoustic waves by impedance matched acoustic metasurfaces.

  9. Surface Acoustic Wave Frequency Comb

    CERN Document Server

    Savchenkov, A A; Ilchenko, V S; Seidel, D; Maleki, L

    2011-01-01

    We report on realization of an efficient triply-resonant coupling between two long lived optical modes and a high frequency surface acoustic wave (SAW) mode of the same monolithic crystalline whispering gallery mode resonator. The coupling results in an opto-mechanical oscillation and generation of a monochromatic SAW. A strong nonlinear interaction of this mechanical mode with other equidistant SAW modes leads to mechanical hyper-parametric oscillation and generation of a SAW pulse train and associated frequency comb in the resonator. We visualized the comb observing the modulation of the modulated light escaping the resonator.

  10. On Collisionless Damping of Ion Acoustic Waves

    DEFF Research Database (Denmark)

    Jensen, Vagn Orla; Petersen, P.I.

    1973-01-01

    Exact theoretical treatments show that the damping of ion acoustic waves in collisionless plasmas does not vanish when the derivative of the undisturbed distribution function at the phase velocity equals zero.......Exact theoretical treatments show that the damping of ion acoustic waves in collisionless plasmas does not vanish when the derivative of the undisturbed distribution function at the phase velocity equals zero....

  11. Unidirectional propagation of designer surface acoustic waves

    CERN Document Server

    Lu, Jiuyang; Ke, Manzhu; Liu, Zhengyou

    2014-01-01

    We propose an efficient design route to generate unidirectional propagation of the designer surface acoustic waves. The whole system consists of a periodically corrugated rigid plate combining with a pair of asymmetric narrow slits. The directionality of the structure-induced surface waves stems from the destructive interference between the evanescent waves emitted from the double slits. The theoretical prediction is validated well by simulations and experiments. Promising applications can be anticipated, such as in designing compact acoustic circuits.

  12. Dynamics of coupled light waves and electron-acoustic waves.

    Science.gov (United States)

    Shukla, P K; Stenflo, L; Hellberg, M

    2002-08-01

    The nonlinear interaction between coherent light waves and electron-acoustic waves in a two-electron plasma is considered. The interaction is governed by a pair of equations comprising a Schrödinger-like equation for the light wave envelope and a driven (by the light pressure) electron-acoustic wave equation. The newly derived nonlinear equations are used to study the formation and dynamics of envelope light wave solitons and light wave collapse. The implications of our investigation to space and laser-produced plasmas are pointed out.

  13. Microfabricated bulk wave acoustic bandgap device

    Science.gov (United States)

    Olsson, Roy H.; El-Kady, Ihab F.; McCormick, Frederick; Fleming, James G.; Fleming, Carol

    2010-06-08

    A microfabricated bulk wave acoustic bandgap device comprises a periodic two-dimensional array of scatterers embedded within the matrix material membrane, wherein the scatterer material has a density and/or elastic constant that is different than the matrix material and wherein the periodicity of the array causes destructive interference of the acoustic wave within an acoustic bandgap. The membrane can be suspended above a substrate by an air or vacuum gap to provide acoustic isolation from the substrate. The device can be fabricated using microelectromechanical systems (MEMS) technologies. Such microfabricated bulk wave phononic bandgap devices are useful for acoustic isolation in the ultrasonic, VHF, or UHF regime (i.e., frequencies of order 1 MHz to 10 GHz and higher, and lattice constants of order 100 .mu.m or less).

  14. Generation of Nanometer Wavelength Acoustic Waves

    Directory of Open Access Journals (Sweden)

    O.Yu. Komina

    2016-11-01

    Full Text Available The possibility of acoustic wave generation of nanometer range in plates is shown. The experimental results that show the possible reconfiguring of the generator frequency in YFeO3 with a constant magnetic field are given.

  15. Focusing of Acoustic Waves through Acoustic Materials with Subwavelength Structures

    KAUST Repository

    Xiao, Bingmu

    2013-05-01

    In this thesis, wave propagation through acoustic materials with subwavelength slits structures is studied. Guided by the findings, acoustic wave focusing is achieved with a specific material design. By using a parameter retrieving method, an effective medium theory for a slab with periodic subwavelength cut-through slits is successfully derived. The theory is based on eigenfunction solutions to the acoustic wave equation. Numerical simulations are implemented by the finite-difference time-domain (FDTD) method for the two-dimensional acoustic wave equation. The theory provides the effective impedance and refractive index functions for the equivalent medium, which can reproduce the transmission and reflection spectral responses of the original structure. I analytically and numerically investigate both the validity and limitations of the theory, and the influences of material and geometry on the effective spectral responses are studied. Results show that large contrasts in impedance and density are conditions that validate the effective medium theory, and this approximation displays a better accuracy for a thick slab with narrow slits in it. Based on the effective medium theory developed, a design of a at slab with a snake shaped" subwavelength structure is proposed as a means of achieving acoustic focusing. The property of focusing is demonstrated by FDTD simulations. Good agreement is observed between the proposed structure and the equivalent lens pre- dicted by the theory, which leads to robust broadband focusing by a thin at slab.

  16. Imaging of Acoustic Waves in Sand

    Energy Technology Data Exchange (ETDEWEB)

    Deason, Vance Albert; Telschow, Kenneth Louis; Watson, Scott Marshall

    2003-08-01

    There is considerable interest in detecting objects such as landmines shallowly buried in loose earth or sand. Various techniques involving microwave, acoustic, thermal and magnetic sensors have been used to detect such objects. Acoustic and microwave sensors have shown promise, especially if used together. In most cases, the sensor package is scanned over an area to eventually build up an image or map of anomalies. We are proposing an alternate, acoustic method that directly provides an image of acoustic waves in sand or soil, and their interaction with buried objects. The INEEL Laser Ultrasonic Camera utilizes dynamic holography within photorefractive recording materials. This permits one to image and demodulate acoustic waves on surfaces in real time, without scanning. A video image is produced where intensity is directly and linearly proportional to surface motion. Both specular and diffusely reflecting surfaces can be accomodated and surface motion as small as 0.1 nm can be quantitatively detected. This system was used to directly image acoustic surface waves in sand as well as in solid objects. Waves as frequencies of 16 kHz were generated using modified acoustic speakers. These waves were directed through sand toward partially buried objects. The sand container was not on a vibration isolation table, but sat on the lab floor. Interaction of wavefronts with buried objects showed reflection, diffraction and interference effects that could provide clues to location and characteristics of buried objects. Although results are preliminary, success in this effort suggests that this method could be applied to detection of buried landmines or other near-surface items such as pipes and tanks.

  17. Active micromixer using surface acoustic wave streaming

    Science.gov (United States)

    Branch; Darren W. , Meyer; Grant D. , Craighead; Harold G.

    2011-05-17

    An active micromixer uses a surface acoustic wave, preferably a Rayleigh wave, propagating on a piezoelectric substrate to induce acoustic streaming in a fluid in a microfluidic channel. The surface acoustic wave can be generated by applying an RF excitation signal to at least one interdigital transducer on the piezoelectric substrate. The active micromixer can rapidly mix quiescent fluids or laminar streams in low Reynolds number flows. The active micromixer has no moving parts (other than the SAW transducer) and is, therefore, more reliable, less damaging to sensitive fluids, and less susceptible to fouling and channel clogging than other types of active and passive micromixers. The active micromixer is adaptable to a wide range of geometries, can be easily fabricated, and can be integrated in a microfluidic system, reducing dead volume. Finally, the active micromixer has on-demand on/off mixing capability and can be operated at low power.

  18. Broadband acoustic cloak for ultrasound waves.

    Science.gov (United States)

    Zhang, Shu; Xia, Chunguang; Fang, Nicholas

    2011-01-14

    Invisibility devices based on coordinate transformation have opened up a new field of considerable interest. We present here the first practical realization of a low-loss and broadband acoustic cloak for underwater ultrasound. This metamaterial cloak is constructed with a network of acoustic circuit elements, namely, serial inductors and shunt capacitors. Our experiment clearly shows that the acoustic cloak can effectively bend the ultrasound waves around the hidden object, with reduced scattering and shadow. Because of the nonresonant nature of the building elements, this low-loss (∼6  dB/m) cylindrical cloak exhibits invisibility over a broad frequency range from 52 to 64 kHz. Furthermore, our experimental study indicates that this design approach should be scalable to different acoustic frequencies and offers the possibility for a variety of devices based on coordinate transformation.

  19. Gas sensing with surface acoustic wave devices

    Science.gov (United States)

    Martin, S. J.; Schweizer, K. S.; Ricco, A. J.; Zipperian, T. E.

    1985-03-01

    The use of a ZnO-on-Si surface acoustic wave (SAW) resonator as a gas sensor is discussed. In particular, the sensitivity of the device to organic vapors is examined. The planar nature of the SAW device, in which the acoustic energy is confined to within roughly one acoustic wavelength of the surface, makes the device extremely sensitive to surface perturbations. This characteristic has been exploited in the construction of SAW gas sensors in which the surface wave propagation characteristics are altered by species adsorbed from the ambient gas. The porous nature of the sputtered ZnO film, in conjunction with the microbalance capability of the SAW device, gives the sensor the ability to distinguish molecules on the basis of both size and mass.

  20. Some Applications of Surface Acoustic Wave Sensors

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The paper describes the evaluation of thin amorphous magnetic film by using of surface acoustic waves on piezo electric substrate. The obtained experimental data show strong dependence of material parameters on the annealing temperature. The mixed ferromagnetic/SAW devices for electronic applications will be also discussed.

  1. Abstract wave equations with acoustic boundary conditions

    CERN Document Server

    Mugnolo, Delio

    2010-01-01

    We define an abstract setting to treat wave equations equipped with time-dependent acoustic boundary conditions on bounded domains of ${\\bf R}^n$. We prove a well-posedness result and develop a spectral theory which also allows to prove a conjecture proposed in (Gal-Goldstein-Goldstein, J. Evol. Equations 3 (2004), 623-636). Concrete problems are also discussed.

  2. Acoustic wave-equation-based earthquake location

    Science.gov (United States)

    Tong, Ping; Yang, Dinghui; Liu, Qinya; Yang, Xu; Harris, Jerry

    2016-04-01

    We present a novel earthquake location method using acoustic wave-equation-based traveltime inversion. The linear relationship between the location perturbation (δt0, δxs) and the resulting traveltime residual δt of a particular seismic phase, represented by the traveltime sensitivity kernel K(t0, xs) with respect to the earthquake location (t0, xs), is theoretically derived based on the adjoint method. Traveltime sensitivity kernel K(t0, xs) is formulated as a convolution between the forward and adjoint wavefields, which are calculated by numerically solving two acoustic wave equations. The advantage of this newly derived traveltime kernel is that it not only takes into account the earthquake-receiver geometry but also accurately honours the complexity of the velocity model. The earthquake location is obtained by solving a regularized least-squares problem. In 3-D realistic applications, it is computationally expensive to conduct full wave simulations. Therefore, we propose a 2.5-D approach which assumes the forward and adjoint wave simulations within a 2-D vertical plane passing through the earthquake and receiver. Various synthetic examples show the accuracy of this acoustic wave-equation-based earthquake location method. The accuracy and efficiency of the 2.5-D approach for 3-D earthquake location are further verified by its application to the 2004 Big Bear earthquake in Southern California.

  3. Extraordinary transmission of gigahertz surface acoustic waves.

    Science.gov (United States)

    Mezil, Sylvain; Chonan, Kazuki; Otsuka, Paul H; Tomoda, Motonobu; Matsuda, Osamu; Lee, Sam H; Wright, Oliver B

    2016-09-19

    Extraordinary transmission of waves, i.e. a transmission superior to the amount predicted by geometrical considerations of the aperture alone, has to date only been studied in the bulk. Here we present a new class of extraordinary transmission for waves confined in two dimensions to a flat surface. By means of acoustic numerical simulations in the gigahertz range, corresponding to acoustic wavelengths λ ~ 3-50 μm, we track the transmission of plane surface acoustic wave fronts between two silicon blocks joined by a deeply subwavelength bridge of variable length with or without an attached cavity. Several resonant modes of the structure, both one- and two-dimensional in nature, lead to extraordinary acoustic transmission, in this case with transmission efficiencies, i.e. intensity enhancements, up to ~23 and ~8 in the two respective cases. We show how the cavity shape and bridge size influence the extraordinary transmission efficiency. Applications include new metamaterials and subwavelength imaging.

  4. Extraordinary transmission of gigahertz surface acoustic waves

    Science.gov (United States)

    Mezil, Sylvain; Chonan, Kazuki; Otsuka, Paul H.; Tomoda, Motonobu; Matsuda, Osamu; Lee, Sam H.; Wright, Oliver B.

    2016-01-01

    Extraordinary transmission of waves, i.e. a transmission superior to the amount predicted by geometrical considerations of the aperture alone, has to date only been studied in the bulk. Here we present a new class of extraordinary transmission for waves confined in two dimensions to a flat surface. By means of acoustic numerical simulations in the gigahertz range, corresponding to acoustic wavelengths λ ~ 3–50 μm, we track the transmission of plane surface acoustic wave fronts between two silicon blocks joined by a deeply subwavelength bridge of variable length with or without an attached cavity. Several resonant modes of the structure, both one- and two-dimensional in nature, lead to extraordinary acoustic transmission, in this case with transmission efficiencies, i.e. intensity enhancements, up to ~23 and ~8 in the two respective cases. We show how the cavity shape and bridge size influence the extraordinary transmission efficiency. Applications include new metamaterials and subwavelength imaging. PMID:27640998

  5. Extraordinary transmission of gigahertz surface acoustic waves

    Science.gov (United States)

    Mezil, Sylvain; Chonan, Kazuki; Otsuka, Paul H.; Tomoda, Motonobu; Matsuda, Osamu; Lee, Sam H.; Wright, Oliver B.

    2016-09-01

    Extraordinary transmission of waves, i.e. a transmission superior to the amount predicted by geometrical considerations of the aperture alone, has to date only been studied in the bulk. Here we present a new class of extraordinary transmission for waves confined in two dimensions to a flat surface. By means of acoustic numerical simulations in the gigahertz range, corresponding to acoustic wavelengths λ ~ 3–50 μm, we track the transmission of plane surface acoustic wave fronts between two silicon blocks joined by a deeply subwavelength bridge of variable length with or without an attached cavity. Several resonant modes of the structure, both one- and two-dimensional in nature, lead to extraordinary acoustic transmission, in this case with transmission efficiencies, i.e. intensity enhancements, up to ~23 and ~8 in the two respective cases. We show how the cavity shape and bridge size influence the extraordinary transmission efficiency. Applications include new metamaterials and subwavelength imaging.

  6. Absorption of surface acoustic waves by graphene

    Directory of Open Access Journals (Sweden)

    S. H. Zhang

    2011-06-01

    Full Text Available We present a theoretical study on interactions of electrons in graphene with surface acoustic waves (SAWs. We find that owing to momentum and energy conservation laws, the electronic transition accompanied by the SAW absorption cannot be achieved via inter-band transition channels in graphene. For graphene, strong absorption of SAWs can be observed in a wide frequency range up to terahertz at room temperature. The intensity of SAW absorption by graphene depends strongly on temperature and can be adjusted by changing the carrier density. This study is relevant to the exploration of the acoustic properties of graphene and to the application of graphene as frequency-tunable SAW devices.

  7. Acoustic spin pumping in magnetoelectric bulk acoustic wave resonator

    Directory of Open Access Journals (Sweden)

    N. I. Polzikova

    2016-05-01

    Full Text Available We present the generation and detection of spin currents by using magnetoelastic resonance excitation in a magnetoelectric composite high overtone bulk acoustic wave (BAW resonator (HBAR formed by a Al-ZnO-Al-GGG-YIG-Pt structure. Transversal BAW drives magnetization oscillations in YIG film at a given resonant magnetic field, and the resonant magneto-elastic coupling establishes the spin-current generation at the Pt/YIG interface. Due to the inverse spin Hall effect (ISHE this BAW-driven spin current is converted to a dc voltage in the Pt layer. The dependence of the measured voltage both on magnetic field and frequency has a resonant character. The voltage is determined by the acoustic power in HBAR and changes its sign upon magnetic field reversal. We compare the experimentally observed amplitudes of the ISHE electrical field achieved by our method and other approaches to spin current generation that use surface acoustic waves and microwave resonators for ferromagnetic resonance excitation, with the theoretically expected values.

  8. Acoustic Remote Sensing of Rogue Waves

    Science.gov (United States)

    Parsons, Wade; Kadri, Usama

    2016-04-01

    We propose an early warning system for approaching rogue waves using the remote sensing of acoustic-gravity waves (AGWs) - progressive sound waves that propagate at the speed of sound in the ocean. It is believed that AGWs are generated during the formation of rogue waves, carrying information on the rogue waves at near the speed of sound, i.e. much faster than the rogue wave. The capability of identifying those special sound waves would enable detecting rogue waves most efficiently. A lot of promising work has been reported on AGWs in the last few years, part of which in the context of remote sensing as an early detection of tsunami. However, to our knowledge none of the work addresses the problem of rogue waves directly. Although there remains some uncertainty as to the proper definition of a rogue wave, there is little doubt that they exist and no one can dispute the potential destructive power of rogue waves. An early warning system for such extreme waves would become a demanding safety technology. A closed form expression was developed for the pressure induced by an impulsive source at the free surface (the Green's function) from which the solution for more general sources can be developed. In particular, we used the model of the Draupner Wave of January 1st, 1995 as a source and calculated the induced AGW signature. In particular we studied the AGW signature associated with a special feature of this wave, and characteristic of rogue waves, of the absence of any local set-down beneath the main crest and the presence of a large local set-up.

  9. Modulation of a quantum positron acoustic wave

    Science.gov (United States)

    Amin, M. R.

    2015-09-01

    Amplitude modulation of a positron acoustic wave is considered in a four-component electron-positron plasma in the quantum magnetohydrodynamic regime. The important ingredients of this study are the inclusion of the particle exchange-correlation potential, quantum diffraction effects via the Bohm potential, and dissipative effect due to viscosity in the momentum balance equation of the charged carriers. A modified nonlinear Schrödinger equation is derived for the evolution of the slowly varying amplitude of the quantum positron acoustic wave by employing the standard reductive perturbation technique. Detailed analysis of the linear and nonlinear dispersions of the quantum positron acoustic wave is presented. For a typical parameter range, relevant to some dense astrophysical objects, it is found that the quantum positron acoustic wave is modulationally unstable above a certain critical wavenumber. Effects of the exchange-correlation potential and the Bohm potential in the wave dynamics are also studied. It is found that the quantum effect due to the particle exchange-correlation potential is significant in comparison to the effect due to the Bohm potential for smaller values of the carrier wavenumber. However, for comparatively larger values of the carrier wavenumber, the Bohm potential effect overtakes the effect of the exchange-correlation potential. It is found that the critical wavenumber for the modulation instability depends on the ratio of the equilibrium hot electron number density and the cold positron number density and on the ratio of the equilibrium hot positron number density and the cold positron number density. A numerical result on the growth rate of the modulation instability is also presented.

  10. NEAR-FIELD ACOUSTIC HOLOGRAPHY FOR SEMI-FREE ACOUSTIC FIELD BASED ON WAVE SUPERPOSITION APPROACH

    Institute of Scientific and Technical Information of China (English)

    LI Weibing; CHEN Jian; YU Fei; CHEN Xinzhao

    2006-01-01

    In the semi-free acoustic field, the actual acoustic pressure at any point is composed of two parts: The direct acoustic pressure and the reflected acoustic pressure. The general acoustic holographic theories and algorithms request that there is only the direct acoustic pressure contained in the pressure at any point on the hologram surface, consequently, they cannot be used to reconstruct acoustic source and predict acoustic field directly. To take the reflected pressure into consideration, near-field acoustic holography for semi-free acoustic field based on wave superposition approach is proposed to realize the holographic reconstruction and prediction of the semi-free acoustic field, and the wave superposition approach is adopted as a holographic transform algorithm. The proposed theory and algorithm are realized and verified with a numerical example,and the drawbacks of the general theories and algorithms in the holographic reconstruction and prediction of the semi-free acoustic field are also demonstrated by this numerical example.

  11. Nonlinear ion acoustic waves scattered by vortexes

    Science.gov (United States)

    Ohno, Yuji; Yoshida, Zensho

    2016-09-01

    The Kadomtsev-Petviashvili (KP) hierarchy is the archetype of infinite-dimensional integrable systems, which describes nonlinear ion acoustic waves in two-dimensional space. This remarkably ordered system resides on a singular submanifold (leaf) embedded in a larger phase space of more general ion acoustic waves (low-frequency electrostatic perturbations). The KP hierarchy is characterized not only by small amplitudes but also by irrotational (zero-vorticity) velocity fields. In fact, the KP equation is derived by eliminating vorticity at every order of the reductive perturbation. Here, we modify the scaling of the velocity field so as to introduce a vortex term. The newly derived system of equations consists of a generalized three-dimensional KP equation and a two-dimensional vortex equation. The former describes 'scattering' of vortex-free waves by ambient vortexes that are determined by the latter. We say that the vortexes are 'ambient' because they do not receive reciprocal reactions from the waves (i.e., the vortex equation is independent of the wave fields). This model describes a minimal departure from the integrable KP system. By the Painlevé test, we delineate how the vorticity term violates integrability, bringing about an essential three-dimensionality to the solutions. By numerical simulation, we show how the solitons are scattered by vortexes and become chaotic.

  12. Non-Linear Excitation of Ion Acoustic Waves

    DEFF Research Database (Denmark)

    Michelsen, Poul; Hirsfield, J. L.

    1974-01-01

    The excitation of ion acoustic waves by nonlinear coupling of two transverse magnetic waves generated in a microwave cavity was investigated. Measurements of the wave amplitude showed good agreement with calculations based on the Vlasov equation.......The excitation of ion acoustic waves by nonlinear coupling of two transverse magnetic waves generated in a microwave cavity was investigated. Measurements of the wave amplitude showed good agreement with calculations based on the Vlasov equation....

  13. Nonlinear ion acoustic waves scattered by vortexes

    CERN Document Server

    Ohno, Yuji

    2015-01-01

    The Kadomtsev--Petviashvili (KP) hierarchy is the archetype of infinite-dimensional integrable systems, which describes nonlinear ion acoustic waves in two-dimensional space. This remarkably ordered system resides on a singular submanifold (leaf) embedded in a larger phase space of more general ion acoustic waves (low-frequency electrostatic perturbations). The KP hierarchy is characterized not only by small amplitudes but also by irrotational (zero-vorticity) velocity fields. In fact, the KP equation is derived by eliminating vorticity at every order of the reductive perturbation. Here we modify the scaling of the velocity field so as to introduce a vortex term. The newly derived system of equations consists of a generalized three-dimensional KP equation and a two-dimensional vortex equation. The former describes `scattering' of vortex-free waves by ambient vortexes that are determined by the latter. We say that the vortexes are `ambient' because they do not receive reciprocal reactions from the waves (i.e.,...

  14. Twisted electron-acoustic waves in plasmas

    Science.gov (United States)

    Aman-ur-Rehman, Ali, S.; Khan, S. A.; Shahzad, K.

    2016-08-01

    In the paraxial limit, a twisted electron-acoustic (EA) wave is studied in a collisionless unmagnetized plasma, whose constituents are the dynamical cold electrons and Boltzmannian hot electrons in the background of static positive ions. The analytical and numerical solutions of the plasma kinetic equation suggest that EA waves with finite amount of orbital angular momentum exhibit a twist in its behavior. The twisted wave particle resonance is also taken into consideration that has been appeared through the effective wave number qeff accounting for Laguerre-Gaussian mode profiles attributed to helical phase structures. Consequently, the dispersion relation and the damping rate of the EA waves are significantly modified with the twisted parameter η, and for η → ∞, the results coincide with the straight propagating plane EA waves. Numerically, new features of twisted EA waves are identified by considering various regimes of wavelength and the results might be useful for transport and trapping of plasma particles in a two-electron component plasma.

  15. Measuring Acoustic Wave Transit Time in Furnace Based on Active Acoustic Source Signal

    Institute of Scientific and Technical Information of China (English)

    Zhen Luo; Feng Tian; Xiao-Ping Sun

    2007-01-01

    Accurate measurement of transit time for acoustic wave between two sensors installed on two sides of a furnace is a key to implementing the temperature field measurement technique based on acoustical method. A new method for measuring transit time of acoustic wave based on active acoustic source signal is proposed in this paper, which includes the followings: the time when the acoustic source signal arrives at the two sensors is measured first; then, the difference of two arriving time arguments is computed, thereby we get the transit time of the acoustic wave between two sensors installed on the two sides of the furnace. Avoiding the restriction on acoustic source signal and background noise, the new method can get the transit time of acoustic wave with higher precision and stronger ability of resisting noise interference.

  16. Identification of rocket-induced acoustic waves in the ionosphere

    Science.gov (United States)

    Mabie, Justin; Bullett, Terence; Moore, Prentiss; Vieira, Gerald

    2016-10-01

    Acoustic waves can create plasma disturbances in the ionosphere, but the number of observations is limited. Large-amplitude acoustic waves generated by energetic sources like large earthquakes and tsunamis are more readily observed than acoustic waves generated by weaker sources. New observations of plasma displacements caused by rocket-generated acoustic waves were made using the Vertically Incident Pulsed Ionospheric Radar (VIPIR), an advanced high-frequency radar. Rocket-induced acoustic waves which are characterized by low amplitudes relative to those induced by more energetic sources can be detected in the ionosphere using the phase data from fixed frequency radar observations of a plasma layer. This work is important for increasing the number and quality of observations of acoustic waves in the ionosphere and could help improve the understanding of energy transport from the lower atmosphere to the thermosphere.

  17. Broadband Acoustic Cloak for Ultrasound Waves

    CERN Document Server

    Zhang, Shu; Fang, Nicholas

    2010-01-01

    Invisibility devices based on coordinate transformation have opened up a new field of considerable interest. Such a device is proposed to render the hidden object undetectable under the flow of light or sound, by guiding and controlling the wave path through an engineered space surrounding the object. We present here the first practical realization of a low-loss and broadband acoustic cloak for underwater ultrasound. This metamaterial cloak is constructed with a network of acoustic circuit elements, namely serial inductors and shunt capacitors. Our experiment clearly shows that the acoustic cloak can effectively bend the ultrasound waves around the hidden object, with reduced scattering and shadow. Due to the non-resonant nature of the building elements, this low loss (~6dB/m) cylindrical cloak exhibits excellent invisibility over a broad frequency range from 52 to 64 kHz in the measurements. The low visibility of the cloaked object for underwater ultrasound shed a light on the fundamental understanding of ma...

  18. Influence of viscoelasticity and interfacial slip on acoustic wave sensors

    OpenAIRE

    McHale, G; Lucklum, R.; Newton, MI; Cowen, JA

    2000-01-01

    Acoustic wave devices with shear horizontal displacements, such as quartz crystal microbalances (QCM) and shear horizontally polarised surface acoustic wave (SH-SAW) devices provide sensitive probes of changes at solid-solid and solid- liquid interfaces. Increasingly the surfaces of acoustic wave devices are being chemically or physically modified to alter surface adhesion or coated with one or more layers to amplify their response to any change of mass or material properties. In this work, w...

  19. Simulating acoustic waves in spotted stars

    CERN Document Server

    Papini, Emanuele; Gizon, Laurent; Hanasoge, Shravan M

    2015-01-01

    Acoustic modes of oscillation are affected by stellar activity, however it is unclear how starspots contribute to these changes. Here we investigate the non-magnetic effects of starspots on global modes with angular degree $\\ell \\leq 2$ in highly active stars, and characterize the spot seismic signature on synthetic light curves. We perform 3D time-domain simulations of linear acoustic waves to study their interaction with a model starspot. We model the spot as a 3D change in the sound speed stratification with respect to a convectively stable stellar background, built from solar Model S. We perform a parametric study by considering different depths and perturbation amplitudes. Exact numerical simulations allow investigation of the wavefield-spot interaction beyond first order perturbation theory. The interaction of the axisymmetric modes with the starspot is strongly nonlinear. As mode frequency increases, the frequency shifts for radial modes exceed the value predicted by linear theory, while the shifts for...

  20. Thermally induced acoustic waves in porous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Gavrilchenko, Iryna V.; Shulimov, Yuriy G.; Skryshevsky, Valeriy A. [Radiophysics Department, Kyiv National Taras Shevchenko University, Kyiv (Ukraine); Benilov, Arthur I. [Radiophysics Department, Kyiv National Taras Shevchenko University, Kyiv (Ukraine); Laboratoire d' Electronique, Optoelectronique et Microsystemes, Ecole Centrale de Lyon, Ecully (France)

    2009-07-15

    Thermally induced acoustic waves in structures with porous silicon have been studied. Two different schemas of acoustic phenomena recording are compared: in the first one a signal from microphone was measured as function of output frequency, in second one the resistance of porous silicon was measured using Wheatstone bridge. For both methods, the resonance peak is situated in same frequencies depending on difference in thermal properties between porous silicon and c-Si as well as geometry of studied structures. 1.0 kHz shifting of resonance peak in saturated alcohol vapors comparing to ambient air is observed. It can be applied as new transducer for chemical sensors based on porous silicon. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. Acoustic clouds: standing sound waves around a black hole analogue

    CERN Document Server

    Benone, Carolina L; Herdeiro, Carlos; Radu, Eugen

    2014-01-01

    Under certain conditions sound waves in fluids experience an acoustic horizon with analogue properties to those of a black hole event horizon. In particular, a draining bathtub-like model can give rise to a rotating acoustic horizon and hence a rotating black hole (acoustic) analogue. We show that sound waves, when enclosed in a cylindrical cavity, can form stationary waves around such rotating acoustic black holes. These acoustic perturbations display similar properties to the scalar clouds that have been studied around Kerr and Kerr-Newman black holes; thus they are dubbed acoustic clouds. We make the comparison between scalar clouds around Kerr black holes and acoustic clouds around the draining bathtub explicit by studying also the properties of scalar clouds around Kerr black holes enclosed in a cavity. Acoustic clouds suggest the possibility of testing, experimentally, the existence and properties of black hole clouds, using analog models.

  2. Simulation and Optimization of Surface Acoustic Wave Devises

    DEFF Research Database (Denmark)

    Dühring, Maria Bayard

    2007-01-01

    In this paper a method to model the interaction of the mechanical field from a surface acoustic wave and the optical field in the waveguides of a Mach-Zehnder interferometer is presented. The surface acoustic waves are generated by interdigital transducers using a plane strain model of a piezoele......In this paper a method to model the interaction of the mechanical field from a surface acoustic wave and the optical field in the waveguides of a Mach-Zehnder interferometer is presented. The surface acoustic waves are generated by interdigital transducers using a plane strain model...

  3. Wave-Flow Interactions and Acoustic Streaming

    CERN Document Server

    Chafin, Clifford E

    2016-01-01

    The interaction of waves and flows is a challenging topic where a complete resolution has been frustrated by the essential nonlinear features in the hydrodynamic case. Even in the case of EM waves in flowing media, the results are subtle. For a simple shear flow of constant n fluid, incident radiation is shown to be reflected and refracted in an analogous manner to Snell's law. However, the beam intensities differ and the system has an asymmetry in that an internal reflection gap opens at steep incident angles nearly oriented with the shear. For EM waves these effects are generally negligible in real systems but they introduce the topic at a reduced level of complexity of the more interesting acoustic case. Acoustic streaming is suggested, both from theory and experimental data, to be associated with vorticity generation at the driver itself. Bounds on the vorticity in bulk and nonlinear effects demonstrate that the bulk sources, even with attenuation, cannot drive such a strong flow. A review of the velocity...

  4. Piezoelectric Film Waveguides for Surface Acoustic Waves

    Directory of Open Access Journals (Sweden)

    M.F. Zhovnir

    2016-11-01

    Full Text Available The paper presents results of mathematical modeling of piezoelectric film waveguide structures for surface acoustic waves (SAW. Piezoelectric ZnO film is supposed to be placed on a fused quartz substrate. The analytical ratios and numerical results allow to determine the design parameters of the waveguide structures to provide a single-mode SAW propagation mode. The results of amplitude and phase experimental studies of the SAW in the waveguide structures that were carried out on the laser optical sensing set up confirm the theoretical calculations.

  5. Surface acoustic wave propagation in graphene film

    Energy Technology Data Exchange (ETDEWEB)

    Roshchupkin, Dmitry, E-mail: rochtch@iptm.ru; Plotitcyna, Olga; Matveev, Viktor; Kononenko, Oleg; Emelin, Evgenii; Irzhak, Dmitry [Institute of Microelectronics Technology and High-Purity Materials Russian Academy of Sciences, Chernogolovka 142432 (Russian Federation); Ortega, Luc [Laboratoire de Physique des Solides, Univ. Paris-Sud, CNRS, UMR 8502, 91405 Orsay Cedex (France); Zizak, Ivo; Erko, Alexei [Institute for Nanometre Optics and Technology, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein Strasse 15, 12489 Berlin (Germany); Tynyshtykbayev, Kurbangali; Insepov, Zinetula [Nazarbayev University Research and Innovation System, 53 Kabanbay Batyr St., Astana 010000 (Kazakhstan)

    2015-09-14

    Surface acoustic wave (SAW) propagation in a graphene film on the surface of piezoelectric crystals was studied at the BESSY II synchrotron radiation source. Talbot effect enabled the visualization of the SAW propagation on the crystal surface with the graphene film in a real time mode, and high-resolution x-ray diffraction permitted the determination of the SAW amplitude in the graphene/piezoelectric crystal system. The influence of the SAW on the electrical properties of the graphene film was examined. It was shown that the changing of the SAW amplitude enables controlling the magnitude and direction of current in graphene film on the surface of piezoelectric crystals.

  6. Surface Acoustic Wave Atomizer and Electrostatic Deposition

    Science.gov (United States)

    Yamagata, Yutaka

    A new methodology for fabricating thin film or micro patters of organic/bio material using surface acoustic wave (SAW) atomizer and electrostatic deposition is proposed and characteristics of atomization techniques are discussed in terms of drop size and atomization speed. Various types of SAW atomizer are compared with electrospray and conventional ultrasonic atomizers. It has been proved that SAW atomizers generate drops as small as electrospray and have very fast atomization speed. This technique is applied to fabrication of micro patterns of proteins. According to the result of immunoassay, the specific activity of immunoglobulin was preserved after deposition process.

  7. Electron Acoustic Waves in Pure Ion Plasmas

    Science.gov (United States)

    Anderegg, F.; Affolter, M.; Driscoll, C. F.; O'Neil, T. M.; Valentini, F.

    2012-10-01

    Electron Acoustic Waves (EAWs) are the low-frequency branch of near-linear Langmuir (plasma) waves: the frequency is such that the complex dielectric function (Dr, Di) has Dr= 0; and ``flattening'' of f(v) near the wave phase velocity vph gives Di=0 and eliminates Landau damping. Here, we observe standing axisymmetric EAWs in a pure ion column.footnotetextF. Anderegg, et al., Phys. Rev. Lett. 102, 095001 (2009). At low excitation amplitudes, the EAWs have vph˜1.4 v, in close agreement with near-linear theory. At moderate excitation strengths, EAW waves are observed over a range of frequencies, with 1.3 v vphvph.footnotetextF. Valentini et al., arXiv:1206.3500v1. Large amplitude EAWs have strong phase-locked harmonic content, and experiments will be compared to same-geometry simulations, and to simulations of KEENfootnotetextB. Afeyan et al., Proc. Inertial Fusion Sci. and Applications 2003, A.N.S. Monterey (2004), p. 213. waves in HEDLP geometries.

  8. Random coupling of acoustic-gravity waves in the atmosphere

    Science.gov (United States)

    Millet, Christophe; Lott, Francois; Haynes, Christophe

    2016-11-01

    In numerical modeling of long-range acoustic propagation in the atmosphere, the effect of gravity waves on low-frequency acoustic waves is often ignored. As the sound speed far exceeds the gravity wave phase speed, these two types of waves present different spatial scales and their linear coupling is weak. It is possible, however, to obtain relatively strong couplings via sound speed profile changes with altitude. In the present study, this scenario is analyzed for realistic gravity wave fields and the incident acoustic wave is modeled as a narrow-banded acoustic pulse. The gravity waves are represented as a random field using a stochastic multiwave parameterization of non-orographic gravity waves. The parameterization provides independent monochromatic gravity waves, and the gravity wave field is obtained as the linear superposition of the waves produced. When the random terms are retained, a more generalized wave equation is obtained that both qualitatively and quantitatively agrees with the observations of several highly dispersed stratospheric wavetrains. Here, we show that the cumulative effect of gravity wave breakings makes the sensitivity of ground-based acoustic signals large, in that small changes in the parameterization can create or destroy an acoustic wavetrain.

  9. Analytical Interaction of the Acoustic Wave and Turbulent Flame

    Institute of Scientific and Technical Information of China (English)

    TENG Hong-Hui; JIANG Zong-Lin

    2007-01-01

    A modified resonance model of a weakly turbulent flame in a high-frequency acoustic wave is derived analytically.Under the mechanism of Darrieus-Landau instability, the amplitude of flame wrinkles, which is as functions of turbulence. The high perturbation wave number makes the resonance easier to be triggered but weakened with respect to the extra acoustic wave. In a closed burning chamber with the acoustic wave induced by the flame itself, the high perturbation wave number is to restrain the resonance for a realistic flame.

  10. On extending the concept of double negativity to acoustic waves

    Institute of Scientific and Technical Information of China (English)

    CHAN C.T.; LI Jensen; FUNG K.H.

    2006-01-01

    The realization of double negative electromagnetic wave media, sometimes called left-handed materials (LHMs) or metamaterials, have drawn considerable attention in the past few years. We will examine the possibility of extending the concept to acoustic waves. We will see that acoustic metamaterials require both the effective density and bulk modulus to be simultaneously negative in the sense of an effective medium. If we can find a double negative (negative density and bulk modulus) acoustic medium, it will be an acoustic analogue of Veselago's medium in electromagnetism, and share many novel consequences such as negative refractive index and backward wave characteristics. We will give one example of such a medium.

  11. Wave envelopes method for description of nonlinear acoustic wave propagation.

    Science.gov (United States)

    Wójcik, J; Nowicki, A; Lewin, P A; Bloomfield, P E; Kujawska, T; Filipczyński, L

    2006-07-01

    A novel, free from paraxial approximation and computationally efficient numerical algorithm capable of predicting 4D acoustic fields in lossy and nonlinear media from arbitrary shaped sources (relevant to probes used in medical ultrasonic imaging and therapeutic systems) is described. The new WE (wave envelopes) approach to nonlinear propagation modeling is based on the solution of the second order nonlinear differential wave equation reported in [J. Wójcik, J. Acoust. Soc. Am. 104 (1998) 2654-2663; V.P. Kuznetsov, Akust. Zh. 16 (1970) 548-553]. An incremental stepping scheme allows for forward wave propagation. The operator-splitting method accounts independently for the effects of full diffraction, absorption and nonlinear interactions of harmonics. The WE method represents the propagating pulsed acoustic wave as a superposition of wavelet-like sinusoidal pulses with carrier frequencies being the harmonics of the boundary tone burst disturbance. The model is valid for lossy media, arbitrarily shaped plane and focused sources, accounts for the effects of diffraction and can be applied to continuous as well as to pulsed waves. Depending on the source geometry, level of nonlinearity and frequency bandwidth, in comparison with the conventional approach the Time-Averaged Wave Envelopes (TAWE) method shortens computational time of the full 4D nonlinear field calculation by at least an order of magnitude; thus, predictions of nonlinear beam propagation from complex sources (such as phased arrays) can be available within 30-60 min using only a standard PC. The approximate ratio between the computational time costs obtained by using the TAWE method and the conventional approach in calculations of the nonlinear interactions is proportional to 1/N2, and in memory consumption to 1/N where N is the average bandwidth of the individual wavelets. Numerical computations comparing the spatial field distributions obtained by using both the TAWE method and the conventional approach

  12. Synthesis of anisotropic swirling surface acoustic waves by inverse filter, towards integrated generators of acoustical vortices

    CERN Document Server

    Riaud, Antoine; Charron, Eric; Bussonnière, Adrien; Matar, Olivier Bou

    2015-01-01

    From radio-electronics signal analysis to biological samples actuation, surface acoustic waves (SAW) are involved in a multitude of modern devices. Despite this versatility, SAW transducers developed up to date only authorize the synthesis of the most simple standing or progressive waves such as plane and focused waves. In particular, acoustical integrated sources able to generate acoustical vortices (the analogue of optical vortices) are missing. In this work, we propose a flexible tool based on inverse filter technique and arrays of SAW transducers enabling the synthesis of prescribed complex wave patterns at the surface of anisotropic media. The potential of this setup is illustrated by the synthesis of a 2D analog of 3D acoustical vortices, namely "swirling surface acoustic waves". Similarly to their 3D counterpart, they appear as concentric structures of bright rings with a phase singularity in their center resulting in a central dark spot. Swirling SAW can be useful in fragile sensors whose neighborhood...

  13. An effective absorbing boundary algorithm for acoustical wave propagator

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In this paper, Berenger's perfectly matched layer (PML) absorbing boundary condition for electromagnetic waves is introduced as the truncation area of the computational domain to absorb one-dimensional acoustic wave for the scheme of acoustical wave propagator (AWP). To guarantee the efficiency of the AWP algorithm, a regulated propagator matrix is derived in the PML medium.Numerical simulations of a Gaussian wave packet propagating in one-dimensional duct are carried out to illustraze the efficiency of the combination of PML and AWP. Compared with the traditional smoothing truncation windows technique of AWP, this scheme shows high computational accuracy in absorbing acoustic wave when the acoustical wave arrives at the computational edges. Optimal coefficients of the PML configurations are also discussed.

  14. Ion-acoustic cnoidal waves in a quantum plasma

    CERN Document Server

    Mahmood, Shahzad

    2016-01-01

    Nonlinear ion-acoustic cnoidal wave structures are studied in an unmagnetized quantum plasma. Using the reductive perturbation method, a Korteweg-de Vries equation is derived for appropriate boundary conditions and nonlinear periodic wave solutions are obtained. The corresponding analytical solution and numerical plots of the ion-acoustic cnoidal waves and solitons in the phase plane are presented using the Sagdeev pseudo-potential approach. The variations in the nonlinear potential of the ion-acoustic cnoidal waves are studied at different values of quantum parameter $H_{e}$ which is the ratio of electron plasmon energy to electron Fermi energy defined for degenerate electrons. It is found that both compressive and rarefactive ion-acoustic cnoidal wave structures are formed depending on the value of the quantum parameter. The dependence of the wavelength and frequency on nonlinear wave amplitude is also presented.

  15. Wave-wave interactions and deep ocean acoustics

    CERN Document Server

    Guralnik, Zachary; Bourdelais, John; Zabalgogeazcoa, Xavier

    2013-01-01

    Deep ocean acoustics, in the absence of shipping and wildlife, is driven by surface processes. Best understood is the signal generated by non-linear surface wave interactions, the Longuet-Higgins mechanism, which dominates from 0.1 to 10 Hz, and may be significant for another octave. For this source, the spectral matrix of pressure and vector velocity is derived for points near the bottom of a deep ocean resting on an elastic half-space. In the absence of a bottom, the ratios of matrix elements are universal constants. Bottom effects vitiate the usual "standing wave approximation," but a weaker form of the approximation is shown to hold, and this is used for numerical calculations. In the weak standing wave approximation, the ratios of matrix elements are independent of the surface wave spectrum, but depend on frequency and the propagation environment. Data from the Hawaii-2 Observatory are in excellent accord with the theory for frequencies between 0.1 and 1 Hz, less so at higher frequencies. Insensitivity o...

  16. Surface-acoustic-wave (SAW) flow sensor

    Science.gov (United States)

    Joshi, Shrinivas G.

    1991-03-01

    The use of a surface-acoustic-wave (SAW) device to measure the rate of gas flow is described. A SAW oscillator heated to a suitable temperature above ambient is placed in the path of a flowing gas. Convective cooling caused by the gas flow results in a change in the oscillator frequency. A 73-MHz oscillator fabricated on 128 deg rotated Y-cut lithium niobate substrate and heated to 55 C above ambient shows a frequency variation greater than 142 kHz for flow-rate variation from 0 to 1000 cu cm/min. The output of the sensor can be calibrated to provide a measurement of volume flow rate, pressure differential across channel ports, or mass flow rate. High sensitivity, wide dynamic range, and direct digital output are among the attractive features of this sensor. Theoretical expressions for the sensitivity and response time of the sensor are derived. It is shown that by using ultrasonic Lamb waves propagating in thin membranes, a flow sensor with faster response than a SAW sensor can be realized.

  17. Theoretical and Experimental Study on the Acoustic Wave Energy After the Nonlinear Interaction of Acoustic Waves in Aqueous Media

    Institute of Scientific and Technical Information of China (English)

    兰朝凤; 李凤臣; 陈欢; 卢迪; 杨德森; 张梦

    2015-01-01

    Based on the Burgers equation and Manley-Rowe equation, the derivation about nonlinear interaction of the acoustic waves has been done in this paper. After nonlinear interaction among the low-frequency weak waves and the pump wave, the analytical solutions of acoustic waves’ amplitude in the field are deduced. The relationship between normalized energy of high-frequency and the change of acoustic energy before and after the nonlinear interaction of the acoustic waves is analyzed. The experimental results about the changes of the acoustic energy are presented. The study shows that new frequencies are generated and the energies of the low-frequency are modulated in a long term by the pump waves, which leads the energies of the low-frequency acoustic waves to change in the pulse trend in the process of the nonlinear interaction of the acoustic waves. The increase and decrease of the energies of the low-frequency are observed under certain typical conditions, which lays a foundation for practical engineering applications.

  18. Effect of acoustic field parameters on arc acoustic binding during ultrasonic wave-assisted arc welding.

    Science.gov (United States)

    Xie, Weifeng; Fan, Chenglei; Yang, Chunli; Lin, Sanbao

    2016-03-01

    As a newly developed arc welding method, power ultrasound has been successfully introduced into arc and weld pool during ultrasonic wave-assisted arc welding process. The advanced process for molten metals can be realized by utilizing additional ultrasonic field. Under the action of the acoustic wave, the plasma arc as weld heat source is regulated and its characteristics make an obvious change. Compared with the conventional arc, the ultrasonic wave-assisted arc plasma is bound significantly and becomes brighter. To reveal the dependence of the acoustic binding force on acoustic field parameters, a two-dimensional acoustic field model for ultrasonic wave-assisted arc welding device is established. The influences of the radiator height, the central pore radius, the radiator radius, and curvature radius or depth of concave radiator surface are discussed using the boundary element method. Then the authors analyze the resonant mode by this relationship curve between acoustic radiation power and radiator height. Furthermore, the best acoustic binding ability is obtained by optimizing the geometric parameters of acoustic radiator. In addition, three concave radiator surfaces including spherical cap surface, paraboloid of revolution, and rotating single curved surface are investigated systematically. Finally, both the calculation and experiment suggest that, to obtain the best acoustic binding ability, the ultrasonic wave-assisted arc welding setup should be operated under the first resonant mode using a radiator with a spherical cap surface, a small central pore, a large section radius and an appropriate curvature radius.

  19. Nonlinear propagation and control of acoustic waves in phononic superlattices

    CERN Document Server

    Jiménez, Noé; Picó, Rubén; García-Raffi, Lluís M; Sánchez-Morcillo, Víctor J

    2015-01-01

    The propagation of intense acoustic waves in a one-dimensional phononic crystal is studied. The medium consists in a structured fluid, formed by a periodic array of fluid layers with alternating linear acoustic properties and quadratic nonlinearity coefficient. The spacing between layers is of the order of the wavelength, therefore Bragg effects such as band-gaps appear. We show that the interplay between strong dispersion and nonlinearity leads to new scenarios of wave propagation. The classical waveform distortion process typical of intense acoustic waves in homogeneous media can be strongly altered when nonlinearly generated harmonics lie inside or close to band gaps. This allows the possibility of engineer a medium in order to get a particular waveform. Examples of this include the design of media with effective (e.g. cubic) nonlinearities, or extremely linear media (where distortion can be cancelled). The presented ideas open a way towards the control of acoustic wave propagation in nonlinear regime.

  20. Droplet actuation by surface acoustic waves: an interplay between acoustic streaming and radiation pressure

    Science.gov (United States)

    Brunet, Philippe; Baudoin, Michael; Matar, Olivier Bou; Zoueshtiagh, Farzam

    2010-11-01

    Surface acoustic waves (SAW) are known to be a versatile technique for the actuation of sessile drops. Droplet displacement, internal mixing or drop splitting, are amongst the elementary operations that SAW can achieve, which are useful on lab-on-chip microfluidics benches. On the purpose to understand the underlying physical mechanisms involved during these operations, we study experimentally the droplet dynamics varying different physical parameters. Here in particular, the influence of liquid viscosity and acoustic frequency is investigated: it is indeed predicted that both quantities should play a role in the acoustic-hydrodynamic coupling involved in the dynamics. The key point is to compare the relative magnitude of the attenuation length, i.e. the scale within which the acoustic wave decays in the fluid, and the size of the drop. This relative magnitude governs the relative importance of acoustic streaming and acoustic radiation pressure, which are both involved in the droplet dynamics.

  1. Acoustic Bloch Wave Propagation in a Periodic Waveguide

    Science.gov (United States)

    1991-07-24

    Distribution of Spherical Cavities," J. Acoust. Soc. Am. 81, 595-598. Arfken , G. (1985). Mathematical Methods for Physicists (Academic Press, Inc., New... mathematical -ystem of governing equations and boundary conditions describing lossy, linear acoustic waves in a periodic wave- guide is, under the...Translational Invariance The aim of this section is to present the mathematical system to be solved and show that it exhibits invariance under a certain

  2. Estimation of Sea Surface Wave Spectra Using Acoustic Tomography.

    Science.gov (United States)

    1987-09-01

    Holister Dis speciael Dean of Graduate Studiesj ESTIMATION OF SEA SURFACE WAVE SPECTRA USING ACOUSTIC TOMOGRAPHY by James Henry Miller B.S. Electrical...James Henry Miller 1987 The author hereby prants to MIT permission to reproduce and distribute copies of this thesis in whole or in part. Signature of...ESTIMATION OF SEA SURFACE WAVE SPECTRA USING ACOUSTIC TOMOGRAPHY by James Henry Miller Submitted in partial fulfillment of the requirements for the

  3. Modulation of cavity-polaritons by surface acoustic waves

    DEFF Research Database (Denmark)

    de Lima, M. M.; Poel, Mike van der; Hey, R.;

    2006-01-01

    We modulate cavity-polaritons using surface acoustic waves. The corresponding formation of a mini-Brillouin zone and band folding of the polariton dispersion is demonstrated for the first time. Results are in good agreement with model calculations.......We modulate cavity-polaritons using surface acoustic waves. The corresponding formation of a mini-Brillouin zone and band folding of the polariton dispersion is demonstrated for the first time. Results are in good agreement with model calculations....

  4. Estimating propagation velocity through a surface acoustic wave sensor

    Science.gov (United States)

    Xu, Wenyuan; Huizinga, John S.

    2010-03-16

    Techniques are described for estimating the propagation velocity through a surface acoustic wave sensor. In particular, techniques which measure and exploit a proper segment of phase frequency response of the surface acoustic wave sensor are described for use as a basis of bacterial detection by the sensor. As described, use of velocity estimation based on a proper segment of phase frequency response has advantages over conventional techniques that use phase shift as the basis for detection.

  5. Experimental study on subharmonic and ultraharmonic acoustic waves in water-saturated sandy sediment.

    Science.gov (United States)

    Kim, Byoung-Nam; Lee, Kang Il; Yoon, Suk Wang

    2007-04-01

    Experimental observations of the subharmonic and ultraharmonic acoustic waves in water-saturated sandy sediment are reported in this paper. Acoustic pressures of both nonlinear acoustic waves strongly depend on the driving acoustic pressure at a transducer. The first ultraharmonic wave reaches a saturation value as the driving acoustic pressure increases. The acoustic pressure levels of both nonlinear acoustic waves exhibit some fluctuations in comparison with that of the primary acoustic wave as the receiving distance of hydrophone increases in sediment. The subharmonic and the ultraharmonic phenomena in this study show close resemblance to those produced in bubbly water.

  6. Surface acoustic wave (SAW) vibration sensors.

    Science.gov (United States)

    Filipiak, Jerzy; Solarz, Lech; Steczko, Grzegorz

    2011-01-01

    In the paper a feasibility study on the use of surface acoustic wave (SAW) vibration sensors for electronic warning systems is presented. The system is assembled from concatenated SAW vibration sensors based on a SAW delay line manufactured on a surface of a piezoelectric plate. Vibrations of the plate are transformed into electric signals that allow identification of the sensor and localization of a threat. The theoretical study of sensor vibrations leads us to the simple isotropic model with one degree of freedom. This model allowed an explicit description of the sensor plate movement and identification of the vibrating sensor. Analysis of frequency response of the ST-cut quartz sensor plate and a damping speed of its impulse response has been conducted. The analysis above was the basis to determine the ranges of parameters for vibrating plates to be useful in electronic warning systems. Generally, operation of electronic warning systems with SAW vibration sensors is based on the analysis of signal phase changes at the working frequency of delay line after being transmitted via two circuits of concatenated four-terminal networks. Frequencies of phase changes are equal to resonance frequencies of vibrating plates of sensors. The amplitude of these phase changes is proportional to the amplitude of vibrations of a sensor plate. Both pieces of information may be sent and recorded jointly by a simple electrical unit.

  7. Surface Acoustic Wave (SAW Vibration Sensors

    Directory of Open Access Journals (Sweden)

    Jerzy Filipiak

    2011-12-01

    Full Text Available In the paper a feasibility study on the use of surface acoustic wave (SAW vibration sensors for electronic warning systems is presented. The system is assembled from concatenated SAW vibration sensors based on a SAW delay line manufactured on a surface of a piezoelectric plate. Vibrations of the plate are transformed into electric signals that allow identification of the sensor and localization of a threat. The theoretical study of sensor vibrations leads us to the simple isotropic model with one degree of freedom. This model allowed an explicit description of the sensor plate movement and identification of the vibrating sensor. Analysis of frequency response of the ST-cut quartz sensor plate and a damping speed of its impulse response has been conducted. The analysis above was the basis to determine the ranges of parameters for vibrating plates to be useful in electronic warning systems. Generally, operation of electronic warning systems with SAW vibration sensors is based on the analysis of signal phase changes at the working frequency of delay line after being transmitted via two circuits of concatenated four-terminal networks. Frequencies of phase changes are equal to resonance frequencies of vibrating plates of sensors. The amplitude of these phase changes is proportional to the amplitude of vibrations of a sensor plate. Both pieces of information may be sent and recorded jointly by a simple electrical unit.

  8. Surface acoustic wave devices for sensor applications

    Science.gov (United States)

    Bo, Liu; Xiao, Chen; Hualin, Cai; Mohammad, Mohammad Ali; Xiangguang, Tian; Luqi, Tao; Yi, Yang; Tianling, Ren

    2016-02-01

    Surface acoustic wave (SAW) devices have been widely used in different fields and will continue to be of great importance in the foreseeable future. These devices are compact, cost efficient, easy to fabricate, and have a high performance, among other advantages. SAW devices can work as filters, signal processing units, sensors and actuators. They can even work without batteries and operate under harsh environments. In this review, the operating principles of SAW sensors, including temperature sensors, pressure sensors, humidity sensors and biosensors, will be discussed. Several examples and related issues will be presented. Technological trends and future developments will also be discussed. Project supported by the National Natural Science Foundation of China (Nos. 60936002, 61025021, 61434001, 61574083), the State Key Development Program for Basic Research of China (No. 2015CB352100), the National Key Project of Science and Technology (No. 2011ZX02403-002) and the Special Fund for Agroscientific Research in the Public Interest of China (No. 201303107). M.A.M is additionally supported by the Postdoctoral Fellowship (PDF) program of the Natural Sciences and Engineering Research Council (NSERC) of Canada and the China Postdoctoral Science Foundation (CPSF).

  9. Mechanism of an acoustic wave impact on steel during solidification

    Directory of Open Access Journals (Sweden)

    K. Nowacki

    2013-04-01

    Full Text Available Acoustic steel processing in an ingot mould may be the final stage in the process of quality improvement of a steel ingot. The impact of radiation and cavitation pressure as well as the phenomena related to the acoustic wave being emitted and delivered to liquid steel affect various aspects including the internal structure fragmentation, rigidity or density of steel. The article provides an analysis of the mechanism of impact of physical phenomena caused by an acoustic wave affecting the quality of a steel ingot.

  10. Nonlinear acoustic waves in micro-inhomogeneous solids

    CERN Document Server

    Nazarov, Veniamin

    2014-01-01

    Nonlinear Acoustic Waves in Micro-inhomogeneous Solids covers the broad and dynamic branch of nonlinear acoustics, presenting a wide variety of different phenomena from both experimental and theoretical perspectives. The introductory chapters, written in the style of graduate-level textbook, present a review of the main achievements of classic nonlinear acoustics of homogeneous media. This enables readers to gain insight into nonlinear wave processes in homogeneous and micro-inhomogeneous solids and compare it within the framework of the book. The subsequent eight chapters covering: Physical m

  11. Development of Surface Acoustic Wave Electronic Nose

    Directory of Open Access Journals (Sweden)

    S.K. Jha

    2010-07-01

    Full Text Available The paper proposes an effective method to design and develop surface acoustic wave (SAW sensor array-based electronic nose systems for specific target applications. The paper suggests that before undertaking full hardware development empirically through hit and trial for sensor selection, it is prudent to develop accurate sensor array simulator for generating synthetic data and optimising sensor array design and pattern recognition system. The latter aspects are most time-consuming and cost-intensive parts in the development of an electronic nose system. This is because most of the electronic sensor platforms, circuit components, and electromechanical parts are available commercially-off-the-shelve (COTS, whereas knowledge about specific polymers and data analysis software are often guarded due to commercial or strategic interests. In this study, an 11-element SAW sensor array is modelled to detect and identify trinitrotoluene (TNT and dinitrotoluene (DNT explosive vapours in the presence of toluene, benzene, di-methyl methyl phosphonate (DMMP and humidity as interferents. Additive noise sources and outliers were included in the model for data generation. The pattern recognition system consists of: (i a preprocessor based on logarithmic data scaling, dimensional autoscaling, and singular value decomposition-based denoising, (ii principal component analysis (PCA-based feature extractor, and (iii an artificial neural network (ANN classifier. The efficacy of this approach is illustrated by presenting detailed PCA analysis and classification results under varied conditions of noise and outlier, and by analysing comparative performance of four classifiers (neural network, k-nearest neighbour, naïve Bayes, and support vector machine.Defence Science Journal, 2010, 60(4, pp.364-376, DOI:http://dx.doi.org/10.14429/dsj.60.493

  12. Acoustic Gravity Wave Chemistry Model for the RAYTRACE Code.

    Science.gov (United States)

    2014-09-26

    AU)-AI56 850 ACOlUSTIC GRAVITY WAVE CHEMISTRY MODEL FOR THE IAYTRACE I/~ CODE(U) MISSION RESEARCH CORP SANTA BARBIARA CA T E OLD Of MAN 84 MC-N-SlS...DNA-TN-S4-127 ONAOOI-BO-C-0022 UNLSSIFIlED F/O 20/14 NL 1-0 2-8 1111 po 312.2 1--I 11111* i •. AD-A 156 850 DNA-TR-84-127 ACOUSTIC GRAVITY WAVE...Hicih Frequency Radio Propaoation Acoustic Gravity Waves 20. ABSTRACT (Continue en reveree mide if tteceeemr and Identify by block number) This

  13. Thermo-acoustic engineering of silicon microresonators via evanescent waves

    Energy Technology Data Exchange (ETDEWEB)

    Tabrizian, R., E-mail: rtabrizi@umich.edu [Electrical Engineering and Computer Science Department, University of Michigan, Ann Arbor, Michigan 48109 (United States); Ayazi, F. [School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30308 (United States)

    2015-06-29

    A temperature-compensated silicon micromechanical resonator with a quadratic temperature characteristic is realized by acoustic engineering. Energy-trapped resonance modes are synthesized by acoustic coupling of propagating and evanescent extensional waves in waveguides with rectangular cross section. Highly different temperature sensitivity of propagating and evanescent waves is used to engineer the linear temperature coefficient of frequency. The resulted quadratic temperature characteristic has a well-defined turn-over temperature that can be tailored by relative energy distribution between propagating and evanescent acoustic fields. A 76 MHz prototype is implemented in single crystal silicon. Two high quality factor and closely spaced resonance modes, created from efficient energy trapping of extensional waves, are excited through thin aluminum nitride film. Having different evanescent wave constituents and energy distribution across the device, these modes show different turn over points of 67 °C and 87 °C for their quadratic temperature characteristic.

  14. Propagation of Acoustic Waves in Troposphere and Stratosphere

    CERN Document Server

    Kashyap, J M

    2016-01-01

    Acoustic waves are those waves which travel with the speed of sound through a medium. H. Lamb has derived a cutoff frequency for stratified and isothermal medium for the propagation of acoustic waves. In order to find the cutoff frequency many methods were introduced after Lamb's work. In this paper, we have chosen the method to determine cutoff frequencies for acoustic waves propagating in non-isothermal media. This turning point frequency method can be applied to various atmospheres like solar atmosphere, stellar atmosphere, earth's atmosphere etc. Here, we have analytically derived the cutoff frequency and have graphically analyzed and compared with the Lamb's cut-off frequencyfor earth's troposphere, lower and upper stratosphere.

  15. Quantum ion-acoustic solitary waves in weak relativistic plasma

    Indian Academy of Sciences (India)

    Biswajit Sahu

    2011-06-01

    Small amplitude quantum ion-acoustic solitary waves are studied in an unmagnetized twospecies relativistic quantum plasma system, comprised of electrons and ions. The one-dimensional quantum hydrodynamic model (QHD) is used to obtain a deformed Korteweg–de Vries (dKdV) equation by reductive perturbation method. A linear dispersion relation is also obtained taking into account the relativistic effect. The properties of quantum ion-acoustic solitary waves, obtained from the deformed KdV equation, are studied taking into account the quantum mechanical effects in the weak relativistic limit. It is found that relativistic effects significantly modify the properties of quantum ion-acoustic waves. Also the effect of the quantum parameter on the nature of solitary wave solutions is studied in some detail.

  16. Broadband enhanced transmission of acoustic waves through serrated metal gratings

    Science.gov (United States)

    Qi, Dong-Xiang; Fan, Ren-Hao; Deng, Yu-Qiang; Peng, Ru-Wen; Wang, Mu; Jiangnan University Collaboration

    In this talk, we present our studies on broadband properties of acoustic waves through metal gratings. We have demonstrated that serrated metal gratings, which introduce gradient coatings, can give rise to broadband transmission enhancement of acoustic waves. Here, we have experimentally and theoretically studied the acoustic transmission properties of metal gratings with or without serrated boundaries. The average transmission is obviously enhanced for serrated metal gratings within a wide frequency range, while the Fabry-Perot resonance is significantly suppressed. An effective medium hypothesis with varying acoustic impedance is proposed to analyze the mechanism, which was verified through comparison with finite-element simulation. The serrated boundary supplies gradient mass distribution and gradient normal acoustic impedance, which could efficiently reduce the boundary reflection. Further, by increasing the region of the serrated boundary, we present a broadband high-transmission grating for wide range of incident angle. Our results may have potential applications to broadband acoustic imaging, acoustic sensing and new acoustic devices. References: [1] Dong-Xiang Qi, Yu-Qiang Deng, Di-Hu Xu, Ren-Hao Fan, Ru-Wen Peng, Ze-Guo Chen, Ming-Hui Lu, X. R. Huang and Mu Wang, Appl. Phys. Lett. 106, 011906 (2015); [2] Dong-Xiang Qi, Ren-Hao Fan, Ru-Wen Peng, Xian-Rong Huang, Ming-Hui Lu, Xu Ni, Qing Hu, and Mu Wang, Applied Physics Letters 101, 061912 (2012).

  17. Generalized collar waves in acoustic logging while drilling

    Science.gov (United States)

    Wang, Xiu-Ming; He, Xiao; Zhang, Xiu-Mei

    2016-12-01

    Tool waves, also named collar waves, propagating along the drill collars in acoustic logging while drilling (ALWD), strongly interfere with the needed P- and S-waves of a penetrated formation, which is a key issue in picking up formation P- and S-wave velocities. Previous studies on physical insulation for the collar waves designed on the collar between the source and the receiver sections did not bring to a satisfactory solution. In this paper, we investigate the propagation features of collar waves in different models. It is confirmed that there exists an indirect collar wave in the synthetic full waves due to the coupling between the drill collar and the borehole, even there is a perfect isolator between the source and the receiver. The direct collar waves propagating all along the tool and the indirect ones produced by echoes from the borehole wall are summarized as the generalized collar waves. Further analyses show that the indirect collar waves could be relatively strong in the full wave data. This is why the collar waves cannot be eliminated with satisfactory effect in many cases by designing the physical isolators carved on the tool. Project supported by the National Natural Science Foundation of China (Grant Nos. 11134011 and 11374322) and the Foresight Research Project, Institute of Acoustics, Chinese Academy of Sciences.

  18. Magneto-acoustic imaging by continuous-wave excitation.

    Science.gov (United States)

    Shunqi, Zhang; Zhou, Xiaoqing; Tao, Yin; Zhipeng, Liu

    2016-07-01

    The electrical characteristics of tissue yield valuable information for early diagnosis of pathological changes. Magneto-acoustic imaging is a functional approach for imaging of electrical conductivity. This study proposes a continuous-wave magneto-acoustic imaging method. A kHz-range continuous signal with an amplitude range of several volts is used to excite the magneto-acoustic signal and improve the signal-to-noise ratio. The magneto-acoustic signal amplitude and phase are measured to locate the acoustic source via lock-in technology. An optimisation algorithm incorporating nonlinear equations is used to reconstruct the magneto-acoustic source distribution based on the measured amplitude and phase at various frequencies. Validation simulations and experiments were performed in pork samples. The experimental and simulation results agreed well. While the excitation current was reduced to 10 mA, the acoustic signal magnitude increased up to 10(-7) Pa. Experimental reconstruction of the pork tissue showed that the image resolution reached mm levels when the excitation signal was in the kHz range. The signal-to-noise ratio of the detected magneto-acoustic signal was improved by more than 25 dB at 5 kHz when compared to classical 1 MHz pulse excitation. The results reported here will aid further research into magneto-acoustic generation mechanisms and internal tissue conductivity imaging.

  19. Love wave acoustic sensor for testing in liquids

    Science.gov (United States)

    Pan, Haifeng; Zhu, Huizhong; Feng, Guanping

    2001-09-01

    Love wave is one type of the surface acoustic waves (SAWs). It is guided acoustic mode propagating in ta thin layer deposited on a substrate. Because of its advantages of high mass sensitivity, low noise level and being fit for operating in liquids, Love wave acoustic sensors have become one of the hot spots in the research of biosensor nowadays. In this paper the Love wave devices with the substrate of ST-cut quartz and the guiding layers of PMMA and fused quartz were fabricated successfully. By measuring the transfer function S21 and the insertion loss of the devices, the characteristics of the Rayleigh wave device and the Love wave devices with different guiding layers in gas phase and liquid phase were compared. It was validated that the Love wave sensor is suitable for testing in liquids but the Rayleigh wave sensor is not. What's more, SiO2 is the more proper material for the guiding layer of the Love wave device.

  20. Finite difference solutions to shocked acoustic waves

    Science.gov (United States)

    Walkington, N. J.; Eversman, W.

    1983-01-01

    The MacCormack, Lambda and split flux finite differencing schemes are used to solve a one dimensional acoustics problem. Two duct configurations were considered, a uniform duct and a converging-diverging nozzle. Asymptotic solutions for these two ducts are compared with the numerical solutions. When the acoustic amplitude and frequency are sufficiently high the acoustic signal shocks. This condition leads to a deterioration of the numerical solutions since viscous terms may be required if the shock is to be resolved. A continuous uniform duct solution is considered to demonstrate how the viscous terms modify the solution. These results are then compared with a shocked solution with and without viscous terms. Generally it is found that the most accurate solutions are those obtained using the minimum possible viscosity coefficients. All of the schemes considered give results accurate enough for acoustic power calculations with no one scheme performing significantly better than the others.

  1. Topology optimization applied to room acoustic problems and surface acoustic wave devices

    DEFF Research Database (Denmark)

    Dühring, Maria Bayard; Sigmund, Ole; Jensen, Jakob Søndergaard

    of the project is concerned with simulation and optimization of surface acoustic wave (SAW) devices [4]. SAWs are for instance used in filters and resonators in mobile phones and to modulate light waves [5], and it is here essential to obtain waves with a high intensity, to direct the waves or to optimize...... the shape of the frequency response. To begin with, a 2D model of a Mach-Zehnder interferometer impacted by a SAW is considered and a parameter study of the geometry to get the biggest modulation of the light waves in the interferometer arms is performed. Then a 2D filter is modeled and optimized......, Machines and Materials, Status and Perspectives, Series: Solid Mechanics and Its Applications , Vol. 137, M.P. Bendsoe, N. Olhoff and O. Sigmund (Eds.), Springer (2006). ISBN: 1-4020-4729-0. [4] K.-Y. Hashimoto, ``Surface acoustic wave devices in telecommunications modeling and simulation'', Springer...

  2. Low power sessile droplet actuation via modulated surface acoustic waves

    CERN Document Server

    Baudoin, Michael; Matar, Olivier Bou; Herth, Etienne

    2012-01-01

    Low power actuation of sessile droplets is of primary interest for portable or hybrid lab-on-a-chip and harmless manipulation of biofluids. In this paper, we show that the acoustic power required to move or deform droplets via surface acoustic waves can be substantially reduced through the forcing of the drops inertio-capillary modes of vibrations. Indeed, harmonic, superharmonic and subharmonic (parametric) excitation of these modes are observed when the high frequency acoustic signal (19.5 MHz) is modulated around Rayleigh-Lamb inertio-capillary frequencies. This resonant behavior results in larger oscillations and quicker motion of the drops than in the non-modulated case.

  3. Individually Identifiable Surface Acoustic Wave Sensors, Tags and Systems

    Science.gov (United States)

    Hines, Jacqueline H. (Inventor); Solie, Leland P. (Inventor); Tucker, Dana Y. G. (Inventor); Hines, Andrew T. (Inventor)

    2017-01-01

    A surface-launched acoustic wave sensor tag system for remotely sensing and/or providing identification information using sets of surface acoustic wave (SAW) sensor tag devices is characterized by acoustic wave device embodiments that include coding and other diversity techniques to produce groups of sensors that interact minimally, reducing or alleviating code collision problems typical of prior art coded SAW sensors and tags, and specific device embodiments of said coded SAW sensor tags and systems. These sensor/tag devices operate in a system which consists of one or more uniquely identifiable sensor/tag devices and a wireless interrogator. The sensor device incorporates an antenna for receiving incident RF energy and re-radiating the tag identification information and the sensor measured parameter(s). Since there is no power source in or connected to the sensor, it is a passive sensor. The device is wirelessly interrogated by the interrogator.

  4. Broadband metamaterial for nonresonant matching of acoustic waves.

    Science.gov (United States)

    D'Aguanno, G; Le, K Q; Trimm, R; Alù, A; Mattiucci, N; Mathias, A D; Aközbek, N; Bloemer, M J

    2012-01-01

    Unity transmittance at an interface between bulk media is quite common for polarized electromagnetic waves incident at the Brewster angle, but it is rarely observed for sound waves at any angle of incidence. In the following, we theoretically and experimentally demonstrate an acoustic metamaterial possessing a Brewster-like angle that is completely transparent to sound waves over an ultra-broadband frequency range with >100% bandwidth. The metamaterial, consisting of a hard metal with subwavelength apertures, provides a surface impedance matching mechanism that can be arbitrarily tailored to specific media. The nonresonant nature of the impedance matching effectively decouples the front and back surfaces of the metamaterial allowing one to independently tailor the acoustic impedance at each interface. On the contrary, traditional methods for acoustic impedance matching, for example in medical imaging, rely on resonant tunneling through a thin antireflection layer, which is inherently narrowband and angle specific.

  5. Drift and ion acoustic wave driven vortices with superthermal electrons

    Energy Technology Data Exchange (ETDEWEB)

    Ali Shan, S. [Theoretical Plasma Physics Division, PINSTECH, P.O. Nilore, Islamabad (Pakistan); National Centre For Physics (NCP), Shahdra Valley Road, QAU Campus, 44000 Islamabad (Pakistan); Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad (Pakistan); Haque, Q. [Theoretical Plasma Physics Division, PINSTECH, P.O. Nilore, Islamabad (Pakistan); National Centre For Physics (NCP), Shahdra Valley Road, QAU Campus, 44000 Islamabad (Pakistan)

    2012-08-15

    Linear and nonlinear analysis of coupled drift and acoustic mode is presented in an inhomogeneous electron-ion plasma with {kappa}-distributed electrons. A linear dispersion relation is found which shows that the phase speed of both the drift wave and the ion acoustic wave decreases in the presence of superthermal electrons. Several limiting cases are also discussed. In the nonlinear regime, stationary solutions in the form of dipolar and monopolar vortices are obtained. It is shown that the condition for the boundedness of the solution implies that the speed of drift wave driven vortices reduces with increase in superthermality effect. Ignoring density inhomogeniety, it is investigated that the lower and upper limits on the speed of the ion acoustic driven vortices spread with the inclusion of high energy electrons. The importance of results with reference to space plasmas is also pointed out.

  6. Drops subjected to surface acoustic waves: flow dynamics

    Science.gov (United States)

    Brunet, Philippe; Baudoin, Michael; Bou Matar, Olivier; Dynamique Des Systèmes Hors Equilibre Team; Aiman-Films Team

    2012-11-01

    Ultrasonic acoustic waves of frequency beyond the MHz are known to induce streaming flow in fluids that can be suitable to perform elementary operations in microfluidics systems. One of the currently appealing geometry is that of a sessile drop subjected to surface acoustic waves (SAW). Such Rayleigh waves produce non-trival actuation in the drop leading to internal flow, drop displacement, free-surface oscillations and atomization. We recently carried out experiments and numerical simulations that allowed to better understand the underlying physical mechanisms that couple acoustic propagation and fluid actuation. We varied the frequency and amplitude of actuation, as well as the properties of the fluid, and we measured the effects of these parameters on the dynamics of the flow. We compared these results to finite-elements numerical simulations.

  7. High-frequency shear-horizontal surface acoustic wave sensor

    Science.gov (United States)

    Branch, Darren W

    2013-05-07

    A Love wave sensor uses a single-phase unidirectional interdigital transducer (IDT) on a piezoelectric substrate for leaky surface acoustic wave generation. The IDT design minimizes propagation losses, bulk wave interferences, provides a highly linear phase response, and eliminates the need for impedance matching. As an example, a high frequency (.about.300-400 MHz) surface acoustic wave (SAW) transducer enables efficient excitation of shear-horizontal waves on 36.degree. Y-cut lithium tantalate (LTO) giving a highly linear phase response (2.8.degree. P-P). The sensor has the ability to detect at the pg/mm.sup.2 level and can perform multi-analyte detection in real-time. The sensor can be used for rapid autonomous detection of pathogenic microorganisms and bioagents by field deployable platforms.

  8. An Unconditionally Stable Method for Solving the Acoustic Wave Equation

    Directory of Open Access Journals (Sweden)

    Zhi-Kai Fu

    2015-01-01

    Full Text Available An unconditionally stable method for solving the time-domain acoustic wave equation using Associated Hermit orthogonal functions is proposed. The second-order time derivatives in acoustic wave equation are expanded by these orthogonal basis functions. By applying Galerkin temporal testing procedure, the time variable can be eliminated from the calculations. The restriction of Courant-Friedrichs-Levy (CFL condition in selecting time step for analyzing thin layer can be avoided. Numerical results show the accuracy and the efficiency of the proposed method.

  9. Precessional magnetization switching by a surface acoustic wave

    Science.gov (United States)

    Thevenard, L.; Camara, I. S.; Majrab, S.; Bernard, M.; Rovillain, P.; Lemaître, A.; Gourdon, C.; Duquesne, J.-Y.

    2016-04-01

    Precessional switching allows subnanosecond and deterministic reversal of magnetic data bits. It relies on triggering a large-angle, highly nonlinear precession of magnetic moments around a bias field. Here we demonstrate that a surface acoustic wave (SAW) propagating on a magnetostrictive semiconducting material produces an efficient torque that induces precessional switching. This is evidenced by Kerr microscopy and acoustic behavior analysis in a (Ga,Mn)(As,P) thin film. Using SAWs should therefore allow remote and wave control of individual magnetic bits at potentially GHz frequencies.

  10. Properties of Materials Using Acoustic Waves.

    Science.gov (United States)

    1984-10-01

    CLASSiFICATIOO OF THIS PAGIR elM. DMe Eatae" to nonlinear acoustics which should permit us to cast problems with geometric and other complexities into a...on the kinetics of chemical reactions . 5. New theoretical approaches in nonlinear acoustics (R.M. McGowan and Professor B.-T. Chu) We are working to...of water and methanol was compared with the theoretical predictions given by Marston’s theory and the simplified model (Hsu 1983). This set of data

  11. Efficient counter-propagating wave acoustic micro-particle manipulation

    Science.gov (United States)

    Grinenko, A.; Ong, C. K.; Courtney, C. R. P.; Wilcox, P. D.; Drinkwater, B. W.

    2012-12-01

    A simple acoustic system consisting of a pair of parallel singe layered piezoelectric transducers submerged in a fluid used to form standing waves by a superposition of two counter-propagating waves is reported. The nodal positions of the standing wave are controlled by applying a variable phase difference to the transducers. This system was used to manipulate polystyrene micro-beads trapped at the nodal positions of the standing wave. The demonstrated good manipulation capability of the system is based on a lowering of the reflection coefficient in a narrow frequency band near the through-thickness resonance of the transducer plates.

  12. Scattering of Acoustic Waves from Ocean Boundaries

    Science.gov (United States)

    2015-09-30

    from the interface roughness and volume heterogeneities and propagation within the sediment. The model will aid in the detection and classification ...of buried mines and improve SONAR performance in shallow water. OBJECTIVES 1) Determination of the correct physical model of acoustic propagation... algorithms for AUV sonars based on the measurements and models previously developed by this program. Additionally, the models developed in this research

  13. Reflection and Transmission of Acoustic Waves at Semiconductor - Liquid Interface

    Directory of Open Access Journals (Sweden)

    J. N. Sharma

    2011-09-01

    Full Text Available The study of reflection and transmission characteristics of acoustic waves at the interface of a semiconductor halfspace underlying an inviscid liquid has been carried out. The reflection and transmission coefficients of reflected and transmitted waves have been obtained for quasi-longitudinal (qP wave incident at the interface from fluid to semiconductor. The numerical computations of reflection and transmission coefficients have been carried out with the help of Gauss elimination method by using MATLAB programming for silicon (Si, germanium (Ge and silicon nitride (Si3N4 semiconductors. In order to interpret and compare, the computer simulated results are plotted graphically. The study may be useful in semiconductors, seismology and surface acoustic wave (SAW devices in addition to engines of the space shuttles.

  14. Surface spin-electron acoustic waves in magnetically ordered metals

    CERN Document Server

    Andreev, Pavel A

    2015-01-01

    Degenerate plasmas with motionless ions show existence of three surface waves: the Langmuir wave, the electromagnetic wave, and the zeroth sound. Applying the separated spin evolution quantum hydrodynamics to half-space plasma we demonstrate the existence of the surface spin-electron acoustic wave (SSEAW). We study dispersion of the SSEAW. We show that there is hybridization between the surface Langmuir wave and the SSEAW at rather small spin polarization. In the hybridization area the dispersion branches are located close to each other. In this area there is a strong interaction between these waves leading to the energy exchange. Consequently, generating the Langmuir waves with the frequencies close to hybridization area we can generate the SSEAWs. Thus, we report a method of creation of the SEAWs.

  15. Elastic Wave Propagation Mechanisms in Underwater Acoustic Environments

    Science.gov (United States)

    2015-09-30

    excited flexural mode that propagates in the ice layer at certain acoustic frequencies in ice-covered environments.[3] • Previously implemented EPE self...and ks,3, corresponding to the water layer sound speed, bottom compressional and shear wave speed, and ice layer compressional and shear wave speed... excitation of the Scholte interface mode. Dashed curve shows spectra for a source at 1 m depth and receiver at 25 m, showing the excitation of the

  16. Adiabatic trapping in coupled kinetic Alfven-acoustic waves

    Energy Technology Data Exchange (ETDEWEB)

    Shah, H. A.; Ali, Z. [Department of Physics, G.C. University, 54000 Lahore (Pakistan); Masood, W. [COMSATS, Institute of Information Technology, Park Road, Chak Shahzad, Islamabad 44000 (Pakistan); National Centre for Physics (NCP), Shahdara Valley Road, 44000 Islamabad (Pakistan); Theoretical Plasma Physics Division, P. O. Nilore, Islamabad (Pakistan)

    2013-03-15

    In the present work, we have discussed the effects of adiabatic trapping of electrons on obliquely propagating Alfven waves in a low {beta} plasma. Using the two potential theory and employing the Sagdeev potential approach, we have investigated the existence of arbitrary amplitude coupled kinetic Alfven-acoustic solitary waves in both the sub and super Alfvenic cases. The results obtained have been analyzed and presented graphically and can be applied to regions of space where the low {beta} assumption holds true.

  17. Numerical modelling of nonlinear full-wave acoustic propagation

    Energy Technology Data Exchange (ETDEWEB)

    Velasco-Segura, Roberto, E-mail: roberto.velasco@ccadet.unam.mx; Rendón, Pablo L., E-mail: pablo.rendon@ccadet.unam.mx [Grupo de Acústica y Vibraciones, Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apartado Postal 70-186, C.P. 04510, México D.F., México (Mexico)

    2015-10-28

    The various model equations of nonlinear acoustics are arrived at by making assumptions which permit the observation of the interaction with propagation of either single or joint effects. We present here a form of the conservation equations of fluid dynamics which are deduced using slightly less restrictive hypothesis than those necessary to obtain the well known Westervelt equation. This formulation accounts for full wave diffraction, nonlinearity, and thermoviscous dissipative effects. A two-dimensional, finite-volume method using Roe’s linearisation has been implemented to obtain numerically the solution of the proposed equations. This code, which has been written for parallel execution on a GPU, can be used to describe moderate nonlinear phenomena, at low Mach numbers, in domains as large as 100 wave lengths. Applications range from models of diagnostic and therapeutic HIFU, to parametric acoustic arrays and nonlinear propagation in acoustic waveguides. Examples related to these applications are shown and discussed.

  18. Acoustic waves in shock tunnels and expansion tubes

    Science.gov (United States)

    Paull, A.; Stalker, R. J.

    1992-01-01

    It is shown that disturbances in shock and expansion tubes can be modelled as lateral acoustic waves. The ratio of sound speed across the driver-test gas interface is shown to govern the quantity of noise in the test gas. Frequency 'focusing' which is fundamental to centered unsteady expansions is discussed and displayed in centerline pitot pressure measurements.

  19. Monolithic ZnO SAW (Surface Acoustic Waves) structures

    Science.gov (United States)

    Gunshor, R. L.; Pierret, R. F.

    1983-07-01

    ZnO-on-silicon surface acoustic wave devices have been fabricated and tested. Electronic erasure of a stored correlator reference was demonstrated, the effect of laser annealing on propagation loss was examined, preliminary ageing studies were performed, and a conceptually new mode conversion resonator configuration was reported.

  20. Ion Acoustic Waves in the Presence of Langmuir Oscillations

    DEFF Research Database (Denmark)

    Pécseli, Hans

    1976-01-01

    The dielectric function for long-wavelength, low-frequency ion acoustic waves in the presence of short-wavelength, high-frequency electron oscillations is presented, where the ions are described by the collision-free Vlasov equation. The effect of the electron oscillations can be appropriately de...... described by the introduction of an effective electron temperature....

  1. Acoustic wave propagation in high-pressure system.

    Science.gov (United States)

    Foldyna, Josef; Sitek, Libor; Habán, Vladimír

    2006-12-22

    Recently, substantial attention is paid to the development of methods of generation of pulsations in high-pressure systems to produce pulsating high-speed water jets. The reason is that the introduction of pulsations into the water jets enables to increase their cutting efficiency due to the fact that the impact pressure (so-called water-hammer pressure) generated by an impact of slug of water on the target material is considerably higher than the stagnation pressure generated by corresponding continuous jet. Special method of pulsating jet generation was developed and tested extensively under the laboratory conditions at the Institute of Geonics in Ostrava. The method is based on the action of acoustic transducer on the pressure liquid and transmission of generated acoustic waves via pressure system to the nozzle. The purpose of the paper is to present results obtained during the research oriented at the determination of acoustic wave propagation in high-pressure system. The final objective of the research is to solve the problem of transmission of acoustic waves through high-pressure water to generate pulsating jet effectively even at larger distances from the acoustic source. In order to be able to simulate numerically acoustic wave propagation in the system, it is necessary among others to determine dependence of the sound speed and second kinematical viscosity on operating pressure. Method of determination of the second kinematical viscosity and speed of sound in liquid using modal analysis of response of the tube filled with liquid to the impact was developed. The response was measured by pressure sensors placed at both ends of the tube. Results obtained and presented in the paper indicate good agreement between experimental data and values of speed of sound calculated from so-called "UNESCO equation". They also show that the value of the second kinematical viscosity of water depends on the pressure.

  2. Plasma-maser instability of the ion acoustics wave in the presence of lower hybrid wave turbulence in inhomogeneous plasma

    Indian Academy of Sciences (India)

    M Singh; P N Deka

    2006-03-01

    A theoretical study is made on the generation mechanism of ion acoustics wave in the presence of lower hybrid wave turbulence field in inhomogeneous plasma on the basis of plasma-maser interaction. The lower hybrid wave turbulence field is taken as the low-frequency turbulence field. The growth rate of test high frequency ion acoustics wave is obtained with the involvement of spatial density gradient parameter. A comparative study of the role of density gradient for the generation of ion acoustics wave on the basis of plasma-maser effect is presented. It is found that the density gradient influences the growth rate of ion acoustics wave.

  3. Temperature Compensation of Surface Acoustic Waves on Berlinite

    Science.gov (United States)

    Searle, David Michael Marshall

    The surface acoustic wave properties of Berlinite (a-AlPO4) have been investigated theoretically and experimentally, for a variety of crystallographic orientations, to evaluate its possible use as a substrate material for temperature compensated surface acoustic wave devices. A computer program has been developed to calculate the surface wave properties of a material from its elastic, piezoelectric, dielectric and lattice constants and their temperature derivatives. The program calculates the temperature coefficient of delay, the velocity of the surface wave, the direction of power flow and a measure of the electro-mechanical coupling. These calculations have been performed for a large number of orientations using a modified form of the data given by Chang and Barsch for Berlinite and predict several new temperature compensated directions. Experimental measurements have been made of the frequency-temperature response of a surface acoustic wave oscillator on an 80° X axis boule cut which show it to be temperature compensated in qualitative agreement with the theoretical predictions. This orientation shows a cubic frequency-temperature dependence instead of the expected parabolic response. Measurements of the electro-mechanical coupling coefficient k gave a value lower than predicted. Similar measurements on a Y cut plate gave a value which is approximately twice that of ST cut quartz, but again lower than predicted. The surface wave velocity on both these cuts was measured to be slightly higher than predicted by the computer program. Experimental measurements of the lattice parameters a and c are also presented for a range of temperatures from 25°C to just above the alpha-beta transition at 584°C. These results are compared with the values obtained by Chang and Barsch. The results of this work indicate that Berlinite should become a useful substrate material for the construction of temperature compensated surface acoustic wave devices.

  4. Controlling acoustic wave with cylindrically-symmetric gradient-index system

    Institute of Scientific and Technical Information of China (English)

    张哲; 李睿奇; 梁彬; 邹欣晔; 程建春

    2015-01-01

    We present a detailed theoretical description of wave propagation in an acoustic gradient-index system with cylindrical symmetry and demonstrate its potential numerically to control acoustic waves in different ways. The trajectory of acoustic wave within the system is derived by employing the theory of geometric acoustics, and the validity of the theoretical descriptions is verified numerically by using the finite element method simulation. The results show that by tailoring the distribution function of refractive index, the proposed system can yield tunable manipulation on acoustic waves, such as acoustic bending, trapping, and absorbing.

  5. Impact of Acoustic Standing Waves on Structural Responses: Reverberant Acoustic Testing (RAT) vs. Direct Field Acoustic Testing (DFAT)

    Science.gov (United States)

    Kolaini, Ali R.; Doty, Benjamin; Chang, Zensheu

    2012-01-01

    Loudspeakers have been used for acoustic qualification of spacecraft, reflectors, solar panels, and other acoustically responsive structures for more than a decade. Limited measurements from some of the recent speaker tests used to qualify flight hardware have indicated significant spatial variation of the acoustic field within the test volume. Also structural responses have been reported to differ when similar tests were performed using reverberant chambers. To address the impact of non-uniform acoustic field on structural responses, a series of acoustic tests were performed using a flat panel and a 3-ft cylinder exposed to the field controlled by speakers and repeated in a reverberant chamber. The speaker testing was performed using multi-input-single-output (MISO) and multi-input-multi-output (MIMO) control schemes with and without the test articles. In this paper the spatial variation of the acoustic field due to acoustic standing waves and their impacts on the structural responses in RAT and DFAT (both using MISO and MIMO controls for DFAT) are discussed in some detail.

  6. Opportunities for shear energy scaling in bulk acoustic wave resonators.

    Science.gov (United States)

    Jose, Sumy; Hueting, Raymond J E

    2014-10-01

    An important energy loss contribution in bulk acoustic wave resonators is formed by so-called shear waves, which are transversal waves that propagate vertically through the devices with a horizontal motion. In this work, we report for the first time scaling of the shear-confined spots, i.e., spots containing a high concentration of shear wave displacement, controlled by the frame region width at the edge of the resonator. We also demonstrate a novel methodology to arrive at an optimum frame region width for spurious mode suppression and shear wave confinement. This methodology makes use of dispersion curves obtained from finite-element method (FEM) eigenfrequency simulations for arriving at an optimum frame region width. The frame region optimization is demonstrated for solidly mounted resonators employing several shear wave optimized reflector stacks. Finally, the FEM simulation results are compared with measurements for resonators with Ta2O5/ SiO2 stacks showing suppression of the spurious modes.

  7. Surface acoustic wave mode conversion resonator

    Science.gov (United States)

    Martin, S. J.; Gunshor, R. L.; Melloch, M. R.; Datta, S.; Pierret, R. F.

    1983-08-01

    The fact that a ZnO-on-Si structure supports two distinct surface waves, referred to as the Rayleigh and the Sezawa modes, if the ZnO layer is sufficiently thick is recalled. A description is given of a unique surface wave resonator that operates by efficiently converting between the two modes at the resonant frequency. Since input and output coupling is effected through different modes, the mode conversion resonator promises enhanced out-of-band signal rejection. A Rayleigh wave traversing the resonant cavity in one direction is reflected as a Sezawa wave. It is pointed out that the off-resonance rejection of the mode conversion resonator could be enhanced by designing the transducers to minimize the level of cross coupling between transducers and propagating modes.

  8. Synchronization of self-excited dust acoustic waves

    Science.gov (United States)

    Suranga Ruhunusiri, W. D.; Goree, John

    2012-10-01

    Synchronization is a nonlinear phenomenon where a self-excited oscillation, like a wave in a plasma, interacts with an external driving, resulting in an adjustment of the oscillation frequency. Dust acoustic wave synchronization has been experimentally studied previously in laboratory and in microgravity conditions, e.g. [Pilch PoP 2009] and [Menzel PRL 2010]. We perform a laboratory experiment to study synchronization of self-excited dust acoustic waves. An rf glow discharge argon plasma is formed by applying a low power radio frequency voltage to a lower electrode. A 3D dust cloud is formed by levitating 4.83 micron microspheres inside a glass box placed on the lower electrode. Dust acoustic waves are self-excited with a natural frequency of 22 Hz due to an ion streaming instability. A cross section of the dust cloud is illuminated by a vertical laser sheet and imaged from the side with a digital camera. To synchronize the waves, we sinusoidally modulate the overall ion density. Differently from previous experiments, we use a driving electrode that is separate from the electrode that sustains the plasma, and we characterize synchronization by varying both driving amplitude and frequency.

  9. Langasite Surface Acoustic Wave Sensors: Fabrication and Testing

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Peng; Greve, David W.; Oppenheim, Irving J.; Chin, Tao-Lun; Malone, Vanessa

    2012-02-01

    We report on the development of harsh-environment surface acoustic wave sensors for wired and wireless operation. Surface acoustic wave devices with an interdigitated transducer emitter and multiple reflectors were fabricated on langasite substrates. Both wired and wireless temperature sensing was demonstrated using radar-mode (pulse) detection. Temperature resolution of better than ±0.5°C was achieved between 200°C and 600°C. Oxygen sensing was achieved by depositing a layer of ZnO on the propagation path. Although the ZnO layer caused additional attenuation of the surface wave, oxygen sensing was accomplished at temperatures up to 700°C. The results indicate that langasite SAW devices are a potential solution for harsh-environment gas and temperature sensing.

  10. Analytical description of nonlinear acoustic waves in the solar chromosphere

    Science.gov (United States)

    Litvinenko, Yuri E.; Chae, Jongchul

    2017-02-01

    Aims: Vertical propagation of acoustic waves of finite amplitude in an isothermal, gravitationally stratified atmosphere is considered. Methods: Methods of nonlinear acoustics are used to derive a dispersive solution, which is valid in a long-wavelength limit, and a non-dispersive solution, which is valid in a short-wavelength limit. The influence of the gravitational field on wave-front breaking and shock formation is described. The generation of a second harmonic at twice the driving wave frequency, previously detected in numerical simulations, is demonstrated analytically. Results: Application of the results to three-minute chromospheric oscillations, driven by velocity perturbations at the base of the solar atmosphere, is discussed. Numerical estimates suggest that the second harmonic signal should be detectable in an upper chromosphere by an instrument such as the Fast Imaging Solar Spectrograph installed at the 1.6-m New Solar Telescope of the Big Bear Observatory.

  11. Multiple-frequency surface acoustic wave devices as sensors

    Science.gov (United States)

    Ricco, Antonio J.; Martin, Stephen J.

    We have designed, fabricated, and tested a multiple-frequency acoustic wave (MUFAW) device on ST-cut quartz with nominal surface acoustic wave (SAW) center frequencies of 16, 40, 100, and 250 MHz. The four frequencies are obtained by patterning four sets of input and output interdigital transducers of differing periodicities on a single substrate. Such a device allows the frequency dependence of AW sensor perturbations to be examined, aiding in the elucidation of the operative interaction mechanism(s). Initial measurements of the SAW response to the vacuum deposition of a thin nickel film show the expected frequency dependence of mass sensitivity in addition to the expected frequency independence of the magnitude of the acoustoelectric effect. By measuring changes in both wave velocity and attenuation at multiple frequencies, extrinsic perturbations such as temperature and pressure changes are readily differentiated from one another and from changes in surface mass.

  12. Image reconstruction with acoustic radiation force induced shear waves

    Science.gov (United States)

    McAleavey, Stephen A.; Nightingale, Kathryn R.; Stutz, Deborah L.; Hsu, Stephen J.; Trahey, Gregg E.

    2003-05-01

    Acoustic radiation force may be used to induce localized displacements within tissue. This phenomenon is used in Acoustic Radiation Force Impulse Imaging (ARFI), where short bursts of ultrasound deliver an impulsive force to a small region. The application of this transient force launches shear waves which propagate normally to the ultrasound beam axis. Measurements of the displacements induced by the propagating shear wave allow reconstruction of the local shear modulus, by wave tracking and inversion techniques. Here we present in vitro, ex vivo and in vivo measurements and images of shear modulus. Data were obtained with a single transducer, a conventional ultrasound scanner and specialized pulse sequences. Young's modulus values of 4 kPa, 13 kPa and 14 kPa were observed for fat, breast fibroadenoma, and skin. Shear modulus anisotropy in beef muscle was observed.

  13. Optimization of Surface Acoustic Wave-Based Rate Sensors

    Directory of Open Access Journals (Sweden)

    Fangqian Xu

    2015-10-01

    Full Text Available The optimization of an surface acoustic wave (SAW-based rate sensor incorporating metallic dot arrays was performed by using the approach of partial-wave analysis in layered media. The optimal sensor chip designs, including the material choice of piezoelectric crystals and metallic dots, dot thickness, and sensor operation frequency were determined theoretically. The theoretical predictions were confirmed experimentally by using the developed SAW sensor composed of differential delay line-oscillators and a metallic dot array deposited along the acoustic wave propagation path of the SAW delay lines. A significant improvement in sensor sensitivity was achieved in the case of 128° YX LiNbO3, and a thicker Au dot array, and low operation frequency were used to structure the sensor.

  14. Chromospheric heating by acoustic waves compared to radiative cooling

    CERN Document Server

    Sobotka, M; Švanda, M; Jurčák, J; del Moro, D; Berrilli, F

    2016-01-01

    Acoustic and magnetoacoustic waves are among the possible candidate mechanisms that heat the upper layers of solar atmosphere. A weak chromospheric plage near a large solar pore NOAA 11005 was observed on October 15, 2008 in the lines Fe I 617.3 nm and Ca II 853.2 nm with the Interferometric Bidimemsional Spectrometer (IBIS) attached to the Dunn Solar Telescope. Analyzing the Ca II observations with spatial and temporal resolutions of 0.4" and 52 s, the energy deposited by acoustic waves is compared with that released by radiative losses. The deposited acoustic flux is estimated from power spectra of Doppler oscillations measured in the Ca II line core. The radiative losses are calculated using a grid of seven 1D hydrostatic semi-empirical model atmospheres. The comparison shows that the spatial correlation of maps of radiative losses and acoustic flux is 72 %. In quiet chromosphere, the contribution of acoustic energy flux to radiative losses is small, only of about 15 %. In active areas with photospheric ma...

  15. Seismic wave imaging in visco-acoustic media

    Institute of Scientific and Technical Information of China (English)

    WANG Huazhong; ZHANG Libin; MA Zaitian

    2004-01-01

    Realistic representation of the earth may be achieved by combining the mechanical properties of elastic solids and viscousliquids. That is to say, the amplitude will be attenuated withdifferent frequency and the phase will be changed in the seismicdata acquisition. In the seismic data processing, this effect mustbe compensated. In this paper, we put forward a visco-acoustic wavepropagator which is of better calculating stability and tolerablecalculating cost (little more than an acoustic wave propagator).The quite good compensation effect is demonstrated by thenumerical test results with synthetic seismic data and real data.

  16. Making structured metals transparent for ultrabroadband electromagnetic waves and acoustic waves

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Ren-Hao [National Laboratory of Solid State Microstructures and School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China); Peng, Ru-Wen, E-mail: rwpeng@nju.edu.cn [National Laboratory of Solid State Microstructures and School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China); Huang, Xian-Rong [Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 (United States); Wang, Mu [National Laboratory of Solid State Microstructures and School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China)

    2015-07-15

    In this review, we present our recent work on making structured metals transparent for broadband electromagnetic waves and acoustic waves via excitation of surface waves. First, we theoretically show that one-dimensional metallic gratings can become transparent and completely antireflective for extremely broadband electromagnetic waves by relying on surface plasmons or spoof surface plasmons. Second, we experimentally demonstrate that metallic gratings with narrow slits are highly transparent for broadband terahertz waves at oblique incidence and high transmission efficiency is insensitive to the metal thickness. Further, we significantly develop oblique metal gratings transparent for broadband electromagnetic waves (including optical waves and terahertz ones) under normal incidence. In the third, we find the principles of broadband transparency for structured metals can be extended from one-dimensional metallic gratings to two-dimensional cases. Moreover, similar phenomena are found in sonic artificially metallic structures, which present the transparency for broadband acoustic waves. These investigations provide guidelines to develop many novel materials and devices, such as transparent conducting panels, antireflective solar cells, and other broadband metamaterials and stealth technologies. - Highlights: • Making structured metals transparent for ultrabroadband electromagnetic waves. • Non-resonant excitation of surface plasmons or spoof surface plasmons. • Sonic artificially metallic structures transparent for broadband acoustic waves.

  17. Nonlinear electron acoustic waves in presence of shear magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Manjistha; Khan, Manoranjan [Department of Instrumentation Science, Jadavpur University, Kolkata 700 032 (India); Ghosh, Samiran [Department of Applied Mathematics, University of Calcutta 92, Acharya Prafulla Chandra Road, Kolkata 700 009 (India); Chakrabarti, Nikhil [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700 064 (India)

    2013-12-15

    Nonlinear electron acoustic waves are studied in a quasineutral plasma in the presence of a variable magnetic field. The fluid model is used to describe the dynamics of two temperature electron species in a stationary positively charged ion background. Linear analysis of the governing equations manifests dispersion relation of electron magneto sonic wave. Whereas, nonlinear wave dynamics is being investigated by introducing Lagrangian variable method in long wavelength limit. It is shown from finite amplitude analysis that the nonlinear wave characteristics are well depicted by KdV equation. The wave dispersion arising in quasineutral plasma is induced by transverse magnetic field component. The results are discussed in the context of plasma of Earth's magnetosphere.

  18. Acoustic solitons: A robust tool to investigate the generation and detection of ultrafast acoustic waves

    Science.gov (United States)

    Péronne, Emmanuel; Chuecos, Nicolas; Thevenard, Laura; Perrin, Bernard

    2017-02-01

    Solitons are self-preserving traveling waves of great interest in nonlinear physics but hard to observe experimentally. In this report an experimental setup is designed to observe and characterize acoustic solitons in a GaAs(001) substrate. It is based on careful temperature control of the sample and an interferometric detection scheme. Ultrashort acoustic solitons, such as the one predicted by the Korteweg-de Vries equation, are observed and fully characterized. Their particlelike nature is clearly evidenced and their unique properties are thoroughly checked. The spatial averaging of the soliton wave front is shown to account for the differences between the theoretical and experimental soliton profile. It appears that ultrafast acoustic experiments provide a precise measurement of the soliton velocity. It allows for absolute calibration of the setup as well as the response function analysis of the detection layer. Moreover, the temporal distribution of the solitons is also analyzed with the help of the inverse scattering method. It shows how the initial acoustic pulse profile which gives birth to solitons after nonlinear propagation can be retrieved. Such investigations provide a new tool to probe transient properties of highly excited matter through the study of the emitted acoustic pulse after laser excitation.

  19. A frequency selective acoustic transducer for directional Lamb wave sensing.

    Science.gov (United States)

    Senesi, Matteo; Ruzzene, Massimo

    2011-10-01

    A frequency selective acoustic transducer (FSAT) is proposed for directional sensing of guided waves. The considered FSAT design is characterized by a spiral configuration in wavenumber domain, which leads to a spatial arrangement of the sensing material producing output signals whose dominant frequency component is uniquely associated with the direction of incoming waves. The resulting spiral FSAT can be employed both for directional sensing and generation of guided waves, without relying on phasing and control of a large number of channels. The analytical expression of the shape of the spiral FSAT is obtained through the theoretical formulation for continuously distributed active material as part of a shaped piezoelectric device. Testing is performed by forming a discrete array through the points of the measurement grid of a scanning laser Doppler vibrometer. The discrete array approximates the continuous spiral FSAT geometry, and provides the flexibility to test several configurations. The experimental results demonstrate the strong frequency dependent directionality of the spiral FSAT and suggest its application for frequency selective acoustic sensors, to be employed for the localization of broadband acoustic events, or for the directional generation of Lamb waves for active interrogation of structural health.

  20. SILICON COMPATIBLE ACOUSTIC WAVE RESONATORS: DESIGN, FABRICATION AND PERFORMANCE

    Directory of Open Access Journals (Sweden)

    Aliza Aini Md Ralib

    2014-12-01

    Full Text Available ABSTRACT: Continuous advancement in wireless technology and silicon microfabrication has fueled exciting growth in wireless products. The bulky size of discrete vibrating mechanical devices such as quartz crystals and surface acoustic wave resonators impedes the ultimate miniaturization of single-chip transceivers. Fabrication of acoustic wave resonators on silicon allows complete integration of a resonator with its accompanying circuitry.  Integration leads to enhanced performance, better functionality with reduced cost at large volume production. This paper compiles the state-of-the-art technology of silicon compatible acoustic resonators, which can be integrated with interface circuitry. Typical acoustic wave resonators are surface acoustic wave (SAW and bulk acoustic wave (BAW resonators.  Performance of the resonator is measured in terms of quality factor, resonance frequency and insertion loss. Selection of appropriate piezoelectric material is significant to ensure sufficient electromechanical coupling coefficient is produced to reduce the insertion loss. The insulating passive SiO2 layer acts as a low loss material and aims to increase the quality factor and temperature stability of the design. The integration technique also is influenced by the fabrication process and packaging.  Packageless structure using AlN as the additional isolation layer is proposed to protect the SAW device from the environment for high reliability. Advancement in miniaturization technology of silicon compatible acoustic wave resonators to realize a single chip transceiver system is still needed. ABSTRAK: Kemajuan yang berterusan dalam teknologi tanpa wayar dan silikon telah menguatkan pertumbuhan yang menarik dalam produk tanpa wayar. Saiz yang besar bagi peralatan mekanikal bergetar seperti kristal kuarza menghalang pengecilan untuk merealisasikan peranti cip. Silikon serasi  gelombang akustik resonator mempunyai potensi yang besar untuk menggantikan unsur

  1. Tuneable film bulk acoustic wave resonators

    CERN Document Server

    Gevorgian, Spartak Sh; Vorobiev, Andrei K

    2013-01-01

    To handle many standards and ever increasing bandwidth requirements, large number of filters and switches are used in transceivers of modern wireless communications systems. It makes the cost, performance, form factor, and power consumption of these systems, including cellular phones, critical issues. At present, the fixed frequency filter banks based on Film Bulk Acoustic Resonators (FBAR) are regarded as one of the most promising technologies to address performance -form factor-cost issues. Even though the FBARs improve the overall performances the complexity of these systems remains high.  Attempts are being made to exclude some of the filters by bringing the digital signal processing (including channel selection) as close to the antennas as possible. However handling the increased interference levels is unrealistic for low-cost battery operated radios. Replacing fixed frequency filter banks by one tuneable filter is the most desired and widely considered scenario. As an example, development of the softwa...

  2. Superresolution through the topological shaping of sound with an acoustic vortex wave antenna

    CERN Document Server

    Guild, Matthew D; Martin, Theodore P; Rohde, Charles A; Orris, Gregory J

    2016-01-01

    In this paper, we demonstrate far-field acoustic superresolution using shaped acoustic vortices. Compared with previously proposed near-field methods of acoustic superresolution, in this work we describe how far-field superresolution can be obtained using an acoustic vortex wave antenna. This is accomplished by leveraging the recent advances in optical vortices in conjunction with the topological diversity of a leaky wave antenna design. In particular, the use of an acoustic vortex wave antenna eliminates the need for a complicated phased array consisting of multiple active elements, and enables a superresolving aperture to be achieved with a single simple acoustic source and total aperture size less than a wavelength in diameter. A theoretical formulation is presented for the design of an acoustic vortex wave antenna with arbitrary planar arrangement, and explicit expressions are developed for the radiated acoustic pressure field. This geometric versatility enables variously-shaped acoustic vortex patterns t...

  3. Standing wave acoustic levitation on an annular plate

    Science.gov (United States)

    Kandemir, Mehmet Hakan; Çalışkan, Mehmet

    2016-11-01

    In standing wave acoustic levitation technique, a standing wave is formed between a source and a reflector. Particles can be attracted towards pressure nodes in standing waves owing to a spring action through which particles can be suspended in air. This operation can be performed on continuous structures as well as in several numbers of axes. In this study an annular acoustic levitation arrangement is introduced. Design features of the arrangement are discussed in detail. Bending modes of the annular plate, known as the most efficient sound generation mechanism in such structures, are focused on. Several types of bending modes of the plate are simulated and evaluated by computer simulations. Waveguides are designed to amplify waves coming from sources of excitation, that are, transducers. With the right positioning of the reflector plate, standing waves are formed in the space between the annular vibrating plate and the reflector plate. Radiation forces are also predicted. It is demonstrated that small particles can be suspended in air at pressure nodes of the standing wave corresponding to a particular bending mode.

  4. Laser-generated acoustic wave studies on tattoo pigment

    Science.gov (United States)

    Paterson, Lorna M.; Dickinson, Mark R.; King, Terence A.

    1996-01-01

    A Q-switched alexandrite laser (180 ns at 755 nm) was used to irradiate samples of agar embedded with red, black and green tattoo dyes. The acoustic waves generated in the samples were detected using a PVDF membrane hydrophone and compared to theoretical expectations. The laser pulses were found to generate acoustic waves in the black and green samples but not in the red pigment. Pressures of up to 1.4 MPa were produced with irradiances of up to 96 MWcm-2 which is comparable to the irradiances used to clear pigment embedded in skin. The pressure gradient generated across pigment particles was approximately 1.09 X 1010 Pam-1 giving a pressure difference of 1.09 +/- 0.17 MPa over a particle with mean diameter 100 micrometers . This is not sufficient to permanently damage skin which has a tensile strength of 7.4 MPa.

  5. Dust acoustic waves in strongly coupled dissipative plasmas

    Science.gov (United States)

    Xie, B. S.; Yu, M. Y.

    2000-12-01

    The theory of dust acoustic waves is revisited in the frame of the generalized viscoelastic hydrodynamic theory for highly correlated dusts. Physical processes relevant to many experiments on dusts in plasmas, such as ionization and recombination, dust-charge variation, elastic electron and ion collisions with neutral and charged dust particles, as well as relaxation due to strong dust coupling, are taken into account. These processes can be on similar time scales and are thus important for the conservation of particles and momenta in a self-consistent description of the system. It is shown that the dispersion properties of the dust acoustic waves are determined by a sensitive balance of the effects of strong dust coupling and collisional relaxation. The predictions of the present theory applicable to typical parameters in laboratory strongly coupled dusty plasmas are given and compared with the experiment results. Some possible implications and discrepanies between theory and experiment are also discussed.

  6. Scanning Michelson interferometer for imaging surface acoustic wave fields.

    Science.gov (United States)

    Knuuttila, J V; Tikka, P T; Salomaa, M M

    2000-05-01

    A scanning homodyne Michelson interferometer is constructed for two-dimensional imaging of high-frequency surface acoustic wave (SAW) fields in SAW devices. The interferometer possesses a sensitivity of ~10(-5)nm/ radicalHz , and it is capable of directly measuring SAW's with frequencies ranging from 0.5 MHz up to 1 GHz. The fast scheme used for locating the optimum operation point of the interferometer facilitates high measuring speeds, up to 50,000 points/h. The measured field image has a lateral resolution of better than 1 mu;m . The fully optical noninvasive scanning system can be applied to SAW device development and research, providing information on acoustic wave distribution that cannot be obtained by merely electrical measurements.

  7. High-Temperature Piezoelectric Crystals for Acoustic Wave Sensor Applications.

    Science.gov (United States)

    Zu, Hongfei; Wu, Huiyan; Wang, Qing-Ming

    2016-03-01

    In this review paper, nine different types of high-temperature piezoelectric crystals and their sensor applications are overviewed. The important materials' properties of these piezoelectric crystals including dielectric constant, elastic coefficients, piezoelectric coefficients, electromechanical coupling coefficients, and mechanical quality factor are discussed in detail. The determination methods of these physical properties are also presented. Moreover, the growth methods, structures, and properties of these piezoelectric crystals are summarized and compared. Of particular interest are langasite and oxyborate crystals, which exhibit no phase transitions prior to their melting points ∼ 1500 °C and possess high electrical resistivity, piezoelectric coefficients, and mechanical quality factor at ultrahigh temperature ( ∼ 1000 °C). Finally, some research results on surface acoustic wave (SAW) and bulk acoustic wave (BAW) sensors developed using this high-temperature piezoelectric crystals are discussed.

  8. Electron acoustic solitary waves with kappa-distributed electrons

    Energy Technology Data Exchange (ETDEWEB)

    Devanandhan, S; Singh, S V; Lakhina, G S, E-mail: satyavir@iigs.iigm.res.in [Indian Institute of Geomagnetism, New Panvel (West), Navi Mumbai (India)

    2011-08-01

    Electron acoustic solitary waves are studied in a three-component, unmagnetized plasma composed of hot electrons, fluid cold electrons and ions having finite temperatures. Hot electrons are assumed to have kappa distribution. The Sagdeev pseudo-potential technique is used to study the arbitrary amplitude electron-acoustic solitary waves. It is found that inclusion of cold electron temperature shrinks the existence regime of the solitons, and soliton electric field amplitude decreases with an increase in cold electron temperature. A decrease in spectral index, {kappa}, i.e. an increase in the superthermal component of hot electrons, leads to a decrease in soliton electric field amplitude as well as the soliton velocity range. The soliton solutions do not exist beyond T{sub c}/T{sub h}>0.13 for {kappa}=3.0 and Mach number M=0.9 for the dayside auroral region parameters.

  9. On-line surveillance of lubricants in bearings by means of surface acoustic waves.

    Science.gov (United States)

    Lindner, Gerhard; Schmitt, Martin; Schubert, Josephine; Krempel, Sandro; Faustmann, Hendrik

    2010-01-01

    The acoustic wave propagation in bearings filled with lubricants and driven by pulsed excitation of surface acoustic waves has been investigated with respect to the presence and the distribution of different lubricants. Experimental setups, which are based on the mode conversion between surface acoustic waves and compression waves at the interface between a solid substrate of the bearing and a lubricant are described. The results of preliminary measurements at linear friction bearings, rotation ball bearings and axial cylinder roller bearings are presented.

  10. Surface acoustic wave probe implant for predicting epileptic seizures

    Science.gov (United States)

    Gopalsami, Nachappa [Naperville, IL; Kulikov, Stanislav [Sarov, RU; Osorio, Ivan [Leawood, KS; Raptis, Apostolos C [Downers Grove, IL

    2012-04-24

    A system and method for predicting and avoiding a seizure in a patient. The system and method includes use of an implanted surface acoustic wave probe and coupled RF antenna to monitor temperature of the patient's brain, critical changes in the temperature characteristic of a precursor to the seizure. The system can activate an implanted cooling unit which can avoid or minimize a seizure in the patient.

  11. Volumetric measurements of a spatially growing dust acoustic wave

    Science.gov (United States)

    Williams, Jeremiah D.

    2012-11-01

    In this study, tomographic particle image velocimetry (tomo-PIV) techniques are used to make volumetric measurements of the dust acoustic wave (DAW) in a weakly coupled dusty plasma system in an argon, dc glow discharge plasma. These tomo-PIV measurements provide the first instantaneous volumetric measurement of a naturally occurring propagating DAW. These measurements reveal over the measured volume that the measured wave mode propagates in all three spatial dimensional and exhibits the same spatial growth rate and wavelength in each spatial direction.

  12. Volumetric measurements of a spatially growing dust acoustic wave

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Jeremiah D. [Physics Department, Wittenberg University, Springfield, Ohio 45504 (United States)

    2012-11-15

    In this study, tomographic particle image velocimetry (tomo-PIV) techniques are used to make volumetric measurements of the dust acoustic wave (DAW) in a weakly coupled dusty plasma system in an argon, dc glow discharge plasma. These tomo-PIV measurements provide the first instantaneous volumetric measurement of a naturally occurring propagating DAW. These measurements reveal over the measured volume that the measured wave mode propagates in all three spatial dimensional and exhibits the same spatial growth rate and wavelength in each spatial direction.

  13. VARIATION METHOD FOR ACOUSTIC WAVE IMAGING OF TWO DIMENSIONAL TARGETS

    Institute of Scientific and Technical Information of China (English)

    冯文杰; 邹振祝

    2003-01-01

    A new way of acoustic wave imaging was investigated. By using the Green function theory a system of integral equations, which linked wave number perturbation function with wave field, was firstly deduced. By taking variation on these integral equations an inversion equation, which reflected the relation between the little variation of wave number perturbation function and that of scattering field, was further obtained. Finally, the perturbation functions of some identical targets were reconstructed, and some properties of the novel method including converging speed, inversion accuracy and the abilities to resist random noise and identify complex targets were discussed. Results of numerical simulation show that the method based on the variation principle has great theoretical and applicable value to quantitative nondestructive evaluation.

  14. Surface acoustic waves enhance neutrophil killing of bacteria.

    Science.gov (United States)

    Loike, John D; Plitt, Anna; Kothari, Komal; Zumeris, Jona; Budhu, Sadna; Kavalus, Kaitlyn; Ray, Yonatan; Jacob, Harold

    2013-01-01

    Biofilms are structured communities of bacteria that play a major role in the pathogenicity of bacteria and are the leading cause of antibiotic resistant bacterial infections on indwelling catheters and medical prosthetic devices. Failure to resolve these biofilm infections may necessitate the surgical removal of the prosthetic device which can be debilitating and costly. Recent studies have shown that application of surface acoustic waves to catheter surfaces can reduce the incidence of infections by a mechanism that has not yet been clarified. We report here the effects of surface acoustic waves (SAW) on the capacity of human neutrophils to eradicate S. epidermidis bacteria in a planktonic state and within biofilms. Utilizing a novel fibrin gel system that mimics a tissue-like environment, we show that SAW, at an intensity of 0.3 mW/cm(2), significantly enhances human neutrophil killing of S. epidermidis in a planktonic state and within biofilms by enhancing human neutrophil chemotaxis in response to chemoattractants. In addition, we show that the integrin CD18 plays a significant role in the killing enhancement observed in applying SAW. We propose from out data that this integrin may serve as mechanoreceptor for surface acoustic waves enhancing neutrophil chemotaxis and killing of bacteria.

  15. Surface acoustic waves enhance neutrophil killing of bacteria.

    Directory of Open Access Journals (Sweden)

    John D Loike

    Full Text Available Biofilms are structured communities of bacteria that play a major role in the pathogenicity of bacteria and are the leading cause of antibiotic resistant bacterial infections on indwelling catheters and medical prosthetic devices. Failure to resolve these biofilm infections may necessitate the surgical removal of the prosthetic device which can be debilitating and costly. Recent studies have shown that application of surface acoustic waves to catheter surfaces can reduce the incidence of infections by a mechanism that has not yet been clarified. We report here the effects of surface acoustic waves (SAW on the capacity of human neutrophils to eradicate S. epidermidis bacteria in a planktonic state and within biofilms. Utilizing a novel fibrin gel system that mimics a tissue-like environment, we show that SAW, at an intensity of 0.3 mW/cm(2, significantly enhances human neutrophil killing of S. epidermidis in a planktonic state and within biofilms by enhancing human neutrophil chemotaxis in response to chemoattractants. In addition, we show that the integrin CD18 plays a significant role in the killing enhancement observed in applying SAW. We propose from out data that this integrin may serve as mechanoreceptor for surface acoustic waves enhancing neutrophil chemotaxis and killing of bacteria.

  16. Dual mode acoustic wave sensor for precise pressure reading

    Science.gov (United States)

    Mu, Xiaojing; Kropelnicki, Piotr; Wang, Yong; Randles, Andrew Benson; Chuan Chai, Kevin Tshun; Cai, Hong; Gu, Yuan Dong

    2014-09-01

    In this letter, a Microelectromechanical system acoustic wave sensor, which has a dual mode (lateral field exited Lamb wave mode and surface acoustic wave (SAW) mode) behavior, is presented for precious pressure change read out. Comb-like interdigital structured electrodes on top of piezoelectric material aluminium nitride (AlN) are used to generate the wave modes. The sensor membrane consists of single crystalline silicon formed by backside-etching of the bulk material of a silicon on insulator wafer having variable device thickness layer (5 μm-50 μm). With this principle, a pressure sensor has been fabricated and mounted on a pressure test package with pressure applied to the backside of the membrane within a range of 0 psi to 300 psi. The temperature coefficient of frequency was experimentally measured in the temperature range of -50 °C to 300 °C. This idea demonstrates a piezoelectric based sensor having two modes SAW/Lamb wave for direct physical parameter—pressure readout and temperature cancellation which can operate in harsh environment such as oil and gas exploration, automobile and aeronautic applications using the dual mode behavior of the sensor and differential readout at the same time.

  17. Acoustic and Cavitation Fields of Shock Wave Therapy Devices

    Science.gov (United States)

    Chitnis, Parag V.; Cleveland, Robin O.

    2006-05-01

    Extracorporeal shock wave therapy (ESWT) is considered a viable treatment modality for orthopedic ailments. Despite increasing clinical use, the mechanisms by which ESWT devices generate a therapeutic effect are not yet understood. The mechanistic differences in various devices and their efficacies might be dependent on their acoustic and cavitation outputs. We report acoustic and cavitation measurements of a number of different shock wave therapy devices. Two devices were electrohydraulic: one had a large reflector (HMT Ossatron) and the other was a hand-held source (HMT Evotron); the other device was a pneumatically driven device (EMS Swiss DolorClast Vet). Acoustic measurements were made using a fiber-optic probe hydrophone and a PVDF hydrophone. A dual passive cavitation detection system was used to monitor cavitation activity. Qualitative differences between these devices were also highlighted using a high-speed camera. We found that the Ossatron generated focused shock waves with a peak positive pressure around 40 MPa. The Evotron produced peak positive pressure around 20 MPa, however, its acoustic output appeared to be independent of the power setting of the device. The peak positive pressure from the DolorClast was about 5 MPa without a clear shock front. The DolorClast did not generate a focused acoustic field. Shadowgraph images show that the wave propagating from the DolorClast is planar and not focused in the vicinity of the hand-piece. All three devices produced measurable cavitation with a characteristic time (cavitation inception to bubble collapse) that varied between 95 and 209 μs for the Ossatron, between 59 and 283 μs for the Evotron, and between 195 and 431 μs for the DolorClast. The high-speed camera images show that the cavitation activity for the DolorClast is primarily restricted to the contact surface of the hand-piece. These data indicate that the devices studied here vary in acoustic and cavitation output, which may imply that the

  18. All-Optical Detection of Acoustic Pressure Waves with applications in Photo-Acoustic Spectroscopy

    CERN Document Server

    Westergaard, Philip G

    2016-01-01

    An all-optical detection method for the detection of acoustic pressure waves is demonstrated. The detection system is based on a stripped (bare) single-mode fiber. The fiber vibrates as a standard cantilever and the optical output from the fiber is imaged to a displacement-sensitive optical detector. The absence of a conventional microphone makes the demonstrated system less susceptible to the effects that a hazardous environment might have on the sensor. The sensor is also useful for measurements in high temperature (above $200^{\\circ}$C) environments where conventional microphones will not operate. The proof-of-concept of the all-optical detection method is demonstrated by detecting sound waves generated by the photo-acoustic effect of NO$_2$ excited by a 455 nm LED, where a detection sensitivity of approximately 50 ppm was achieved.

  19. Acoustic tests of Lorentz symmetry using Bulk Acoustic Wave quartz oscillators

    CERN Document Server

    Goryachev, M; Haslinger, Ph; Mizrachi, E; Anderegg, L; Müller, H; Hohensee, M; Tobar, M E

    2016-01-01

    A new method of probing Lorentz invariance in the neutron sector is described. The method is baed on stable quartz bulk acoustic wave oscillators compared on a rotating table. Due to Lorentz-invariance violation, the resonance frequencies of acoustic wave resonators depend on the direction in space via a corresponding dependence of masses of the constituent elements of solids. This dependence is measured via observation of oscillator phase noise built around such devices. The first such experiment now shows sensitivity to violation down to the limit $\\tilde{c}^n_Q=(-1.8\\pm2.2)\\times 10^{-14}$ GeV. Methods to improve the sensitivity are described together with some other applications of the technology in tests of fundamental physics.

  20. Guided wave opto-acoustic device

    Energy Technology Data Exchange (ETDEWEB)

    Jarecki, Jr., Robert L.; Rakich, Peter Thomas; Camacho, Ryan; Shin, Heedeuk; Cox, Jonathan Albert; Qiu, Wenjun; Wang, Zheng

    2016-02-23

    The various technologies presented herein relate to various hybrid phononic-photonic waveguide structures that can exhibit nonlinear behavior associated with traveling-wave forward stimulated Brillouin scattering (forward-SBS). The various structures can simultaneously guide photons and phonons in a suspended membrane. By utilizing a suspended membrane, a substrate pathway can be eliminated for loss of phonons that suppresses SBS in conventional silicon-on-insulator (SOI) waveguides. Consequently, forward-SBS nonlinear susceptibilities are achievable at about 3000 times greater than achievable with a conventional waveguide system. Owing to the strong phonon-photon coupling achievable with the various embodiments, potential application for the various embodiments presented herein cover a range of radiofrequency (RF) and photonic signal processing applications. Further, the various embodiments presented herein are applicable to applications operating over a wide bandwidth, e.g. 100 MHz to 50 GHz or more.

  1. Ultrafast strain gauge: Observation of THz radiation coherently generated by acoustic waves

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, M; Reed, E; Kim, K; Glownia, J; Howard, W M; Piner, E; Roberts, J

    2008-08-14

    The study of nanoscale, terahertz frequency (THz) acoustic waves has great potential for elucidating material and chemical interactions as well as nanostructure characterization. Here we report the first observation of terahertz radiation coherently generated by an acoustic wave. Such emission is directly related to the time-dependence of the stress as the acoustic wave crosses an interface between materials of differing piezoelectric response. This phenomenon enables a new class of strain wave metrology that is fundamentally distinct from optical approaches, providing passive remote sensing of the dynamics of acoustic waves with ultrafast time resolution. The new mechanism presented here enables nanostructure measurements not possible using existing optical or x-ray approaches.

  2. Flow velocity measurement with the nonlinear acoustic wave scattering

    Science.gov (United States)

    Didenkulov, Igor; Pronchatov-Rubtsov, Nikolay

    2015-10-01

    A problem of noninvasive measurement of liquid flow velocity arises in many practical applications. To this end the most often approach is the use of the linear Doppler technique. The Doppler frequency shift of signal scattered from the inhomogeneities distributed in a liquid relatively to the emitted frequency is proportional to the sound frequency and velocities of inhomogeneities. In the case of very slow flow one needs to use very high frequency sound. This approach fails in media with strong sound attenuation because acoustic wave attenuation increases with frequency and there is limit in increasing sound intensity, i.e. the cavitation threshold. Another approach which is considered in this paper is based on the method using the difference frequency Doppler Effect for flows with bubbles. This method is based on simultaneous action of two high-frequency primary acoustic waves with closed frequencies on bubbles and registration of the scattered by bubbles acoustic field at the difference frequency. The use of this method is interesting since the scattered difference frequency wave has much lower attenuation in a liquid. The theoretical consideration of the method is given in the paper. The experimental examples confirming the theoretical equations, as well as the ability of the method to be applied in medical diagnostics and in technical applications on measurement of flow velocities in liquids with strong sound attenuation is described. It is shown that the Doppler spectrum form depends on bubble concentration velocity distribution in the primary acoustic beams crossing zone that allows one to measure the flow velocity distribution.

  3. Flow velocity measurement with the nonlinear acoustic wave scattering

    Energy Technology Data Exchange (ETDEWEB)

    Didenkulov, Igor, E-mail: din@appl.sci-nnov.ru [Institute of Applied Physics, 46 Ulyanov str., Nizhny Novgorod, 603950 (Russian Federation); Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., Nizhny Novgorod, 603950 (Russian Federation); Pronchatov-Rubtsov, Nikolay, E-mail: nikvas@rf.unn.ru [Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., Nizhny Novgorod, 603950 (Russian Federation)

    2015-10-28

    A problem of noninvasive measurement of liquid flow velocity arises in many practical applications. To this end the most often approach is the use of the linear Doppler technique. The Doppler frequency shift of signal scattered from the inhomogeneities distributed in a liquid relatively to the emitted frequency is proportional to the sound frequency and velocities of inhomogeneities. In the case of very slow flow one needs to use very high frequency sound. This approach fails in media with strong sound attenuation because acoustic wave attenuation increases with frequency and there is limit in increasing sound intensity, i.e. the cavitation threshold. Another approach which is considered in this paper is based on the method using the difference frequency Doppler Effect for flows with bubbles. This method is based on simultaneous action of two high-frequency primary acoustic waves with closed frequencies on bubbles and registration of the scattered by bubbles acoustic field at the difference frequency. The use of this method is interesting since the scattered difference frequency wave has much lower attenuation in a liquid. The theoretical consideration of the method is given in the paper. The experimental examples confirming the theoretical equations, as well as the ability of the method to be applied in medical diagnostics and in technical applications on measurement of flow velocities in liquids with strong sound attenuation is described. It is shown that the Doppler spectrum form depends on bubble concentration velocity distribution in the primary acoustic beams crossing zone that allows one to measure the flow velocity distribution.

  4. Determination of hydrocarbon levels in water via laser-induced acoustics wave

    Science.gov (United States)

    Bidin, Noriah; Hossenian, Raheleh; Duralim, Maisarah; Krishnan, Ganesan; Marsin, Faridah Mohd; Nughro, Waskito; Zainal, Jasman

    2016-04-01

    Hydrocarbon contamination in water is a major environmental concern in terms of foreseen collapse of the natural ecosystem. Hydrocarbon level in water was determined by generating acoustic wave via an innovative laser-induced breakdown in conjunction with high-speed photographic coupling with piezoelectric transducer to trace acoustic wave propagation. A Q-switched Nd:YAG (40 mJ) was focused in cuvette-filled hydrocarbon solution at various concentrations (0-2000 ppm) to induce optical breakdown, shock wave generation and later acoustic wave propagation. A nitro-dye (ND) laser (10 mJ) was used as a flash to illuminate and frozen the acoustic wave propagation. Lasers were synchronised using a digital delay generator. The image of acoustic waves was grabbed and recorded via charged couple device (CCD) video camera at the speed of 30 frames/second with the aid of Matrox software version 9. The optical delay (0.8-10.0 μs) between the acoustic wave formation and its frozen time is recorded through photodetectors. A piezo-electric transducer (PZT) was used to trace the acoustic wave (sound signal), which cascades to a digital oscilloscope. The acoustic speed is calculated from the ratio of acoustic wave radius (1-8 mm) and optical time delay. Acoustic wave speed is found to linearly increase with hydrocarbon concentrations. The acoustic signal generation at higher hydrocarbon levels in water is attributed to supplementary mass transfer and impact on the probe. Integrated high-speed photography with transducer detection system authenticated that the signals indeed emerged from the laser-induced acoustic wave instead of photothermal processes. It is established that the acoustic wave speed in water is used as a fingerprint to detect the hydrocarbon levels.

  5. Investigation into Mass Loading Sensitivity of Sezawa Wave Mode-Based Surface Acoustic Wave Sensors

    OpenAIRE

    N. Ramakrishnan; Parthiban, R.; Sawal Hamid Md Ali; Md. Shabiul Islam; Ajay Achath Mohanan

    2013-01-01

    In this work mass loading sensitivity of a Sezawa wave mode based surface acoustic wave (SAW) device is investigated through finite element method (FEM) simulation and the prospects of these devices to function as highly sensitive SAW sensors is reported. A ZnO/Si layered SAW resonator is considered for the simulation study. Initially the occurrence of Sezawa wave mode and displacement amplitude of the Rayleigh and Sezawa wave mode is studied for lower ZnO film thickness. Further, a thin film...

  6. Sensitivity of surface acoustic wave devices

    Science.gov (United States)

    Filipiak, Jerzy; Zubko, Konrad

    2001-08-01

    The SAW devices are widely used as filters, delay lines, resonators and gas sensors. It is possible to use it as mechanical force. The paper describes sensitivity of acceleration sensor based on SAW using the Rayleigh wave propagation. Since characteristic of acceleration SAW sensors are largely determined by piezoelectric materials, it is very important to select substrate with required characteristics. Researches and numerical modeling based on simply sensor model include piezoelectric beam with unilateral free end. An aggregated mass is connected to the one. The dimension and aggregated mass are various. In this case a buckling stress and sensitivity are changed. Sensitivity in main and perpendicular axis are compare for three sensor based on SiO2, LiNbO3, Li2B4O7. Influences of phase velocity, electro-mechanical coupling constant and density on sensitivity are investigated. Some mechanical parameters of the substrates in dynamic work mode are researched using sensor model and Rayleigh model of vibrations without vibration damping. The model is useful because it simply determines dependencies between sensor parameters and substrate parameters. Differences between measured and evaluated quantities are less than 5 percent. Researches based on sensor modes, which fulfilled mechanical specifications similarly to aircraft navigation.

  7. Synchronization of the dust acoustic wave under microgravity

    Science.gov (United States)

    Ruhunusiri, W. D. Suranga; Goree, J.

    2013-10-01

    Synchronization is a nonlinear phenomenon where a self-excited oscillation, like a wave in a plasma, interacts with an external driving, resulting in an adjustment of the oscillation frequency. To prepare for experiments under microgravity conditions using the PK-4 facility on the International Space Station, we perform a laboratory experiment to observe synchronization of the self-excited dust acoustic wave. An rf glow discharge argon plasma is formed by applying a low power radio frequency voltage to a lower electrode. A 3D dust cloud is formed by levitating 4.83 micron microspheres inside a glass box placed on the lower electrode. The dust acoustic wave is self-excited with a natural frequency of 22 Hz due to an ion streaming instability. A cross section of the dust cloud is illuminated by a vertical laser sheet and imaged from the side with a digital camera. To synchronize the wave, we sinusoidally modulate the overall ion density. Differently from previous experiments, we use a driving electrode that is separate from the electrode that sustains the plasma, and we characterize synchronization by varying both driving amplitude and frequency. Supported by NASA's Physical Science Research Program.

  8. Nonlinear acoustic waves in a collisional self-gravitating dusty plasma

    Institute of Scientific and Technical Information of China (English)

    Guo Zhi-Rong; Yang Zeng-Qiang; Yin Bao-Xiang; Sun Mao-Zhu

    2010-01-01

    Using the reductive perturbation method,we investigate the small amplitude nonlinear acoustic wave in a collisional self-gravitating dusty plasma.The result shows that the small amplitude dust acoustic wave can be expressed by a modified Korteweg-de Vries equation,and the nonlinear wave is instable because of the collisions between the neutral gas molecules and the charged particles.

  9. Underwater acoustic wave generation by filamentation of terawatt ultrashort laser pulses

    CERN Document Server

    Jukna, Vytautas; Milián, Carles; Brelet, Yohann; Carbonnel, Jérôme; André, Yves-Bernard; Guillermin, Régine; Sessarego, Jean-Pierre; Fattaccioli, Dominique; Mysyrowicz, André; Couairon, Arnaud; Houard, Aurélien

    2016-01-01

    Acoustic signals generated by filamentation of ultrashort TW laser pulses in water are characterized experimentally. Measurements reveal a strong influence of input pulse duration on the shape and intensity of the acoustic wave. Numerical simulations of the laser pulse nonlinear propagation and the subsequent water hydrodynamics and acoustic wave generation show that the strong acoustic emission is related to the mechanism of superfilamention in water. The elongated shape of the plasma volume where energy is deposited drives the far-field profile of the acoustic signal, which takes the form of a radially directed pressure wave with a single oscillation and a very broad spectrum.

  10. THE INFLUENCE OF WAVE PATTERNS AND FREQUENCY ON THERMO-ACOUSTIC COOLING EFFECT

    Directory of Open Access Journals (Sweden)

    CHEN BAIMAN

    2011-06-01

    Full Text Available With the increasing environmental challenges, the search for an environmentally benign cooling technology that has simple and robust architecture continues. Thermo-acoustic refrigeration seems to be a promising candidate to fulfil these requirements. In this study, a simple thermo-acoustic refrigeration system was fabricated and tested. The thermo-acoustic refrigerator consists of acoustic driver (loudspeaker, resonator, stack, vacuum system and testing system. The effect of wave patterns and frequency on thermo-acoustic cooling effect was studied. It was found that a square wave pattern would yield superior cooling effects compared to other wave patterns tested.

  11. Surface Modification on Acoustic Wave Biosensors for Enhanced Specificity

    Directory of Open Access Journals (Sweden)

    Nathan D. Gallant

    2012-09-01

    Full Text Available Changes in mass loading on the surface of acoustic biosensors result in output frequency shifts which provide precise measurements of analytes. Therefore, to detect a particular biomarker, the sensor delay path must be judiciously designed to maximize sensitivity and specificity. B-cell lymphoma 2 protein (Bcl-2 found in urine is under investigation as a biomarker for non-invasive early detection of ovarian cancer. In this study, surface chemistry and biofunctionalization approaches were evaluated for their effectiveness in presenting antibodies for Bcl-2 capture while minimizing non-specific protein adsorption. The optimal combination of sequentially adsorbing protein A/G, anti-Bcl-2 IgG and Pluronic F127 onto a hydrophobic surface provided the greatest signal-to-noise ratio and enabled the reliable detection of Bcl-2 concentrations below that previously identified for early stage ovarian cancer as characterized by a modified ELISA method. Finally, the optimal surface modification was applied to a prototype acoustic device and the frequency shift for a range of Bcl-2 concentration was quantified to demonstrate the effectiveness in surface acoustic wave (SAW-based detection applications. The surface functionalization approaches demonstrated here to specifically and sensitively detect Bcl-2 in a working ultrasonic MEMS biosensor prototype can easily be modified to detect additional biomarkers and enhance other acoustic biosensors.

  12. Theoretical study of the anisotropic diffraction of light waves by acoustic waves in lithium niobate crystals.

    Science.gov (United States)

    Rouvaen, J M; Waxin, G; Gazalet, M G; Bridoux, E

    1990-03-20

    The anisotropic diffraction of light by high frequency longitudinal ultrasonic waves in the tangential phase matching configuration may present some definite advantages over the same interaction using transverse acoustic waves. A systematic search for favorable crystal cuts in lithium niobate was worked out. The main results of this study are reported here; they enable the choice of the best configuration for a given operating center frequency.

  13. Enhanced Sensitive Love Wave Surface Acoustic Wave Sensor Designed for Immunoassay Formats

    OpenAIRE

    Mihaela Puiu; Ana-Maria Gurban; Lucian Rotariu; Simona Brajnicov; Cristian Viespe; Camelia Bala

    2015-01-01

    We report a Love wave surface acoustic wave (LW-SAW) immunosensor designed for the detection of high molecular weight targets in liquid samples, amenable also for low molecular targets in surface competition assays. We implemented a label-free interaction protocol similar to other surface plasmon resonance bioassays having the advantage of requiring reduced time analysis. The fabricated LW-SAW sensor supports the detection of the target in the nanomolar range, and can be ultimately incorporat...

  14. A fractional calculus model of anomalous dispersion of acoustic waves.

    Science.gov (United States)

    Wharmby, Andrew W

    2016-09-01

    An empirical formula based on viscoelastic analysis techniques that employs concepts from the fractional calculus that was used to model the dielectric behavior of materials exposed to oscillating electromagnetic fields in the radiofrequency, terahertz, and infrared bands. This work adapts and applies the formula to model viscoelastic behavior of materials that show an apparent increase of phase velocity of vibration with an increase in frequency, otherwise known as anomalous dispersion. A fractional order wave equation is derived through the application of the classic elastic-viscoelastic correspondence principle whose analytical solution is used to describe absorption and dispersion of acoustic waves in the viscoelastic material displaying anomalous dispersion in a specific frequency range. A brief discussion and comparison of an alternative fractional order wave equation recently formulated is also included.

  15. Langasite Surface Acoustic Wave Gas Sensors: Modeling and Verification

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Peng; Greve, David W; Oppenheim, Irving J

    2013-01-01

    We report finite element simulations of the effect of conductive sensing layers on the surface wave velocity of langasite substrates. The simulations include both the mechanical and electrical influences of the conducting sensing layer. We show that three-dimensional simulations are necessary because of the out-of-plane displacements of the commonly used (0, 138.5, 26.7) Euler angle. Measurements of the transducer input admittance in reflective delay-line devices yield a value for the electromechanical coupling coefficient that is in good agreement with the three-dimensional simulations on bare langasite substrate. The input admittance measurements also show evidence of excitation of an additional wave mode and excess loss due to the finger resistance. The results of these simulations and measurements will be useful in the design of surface acoustic wave gas sensors.

  16. Langasite surface acoustic wave gas sensors: modeling and verification

    Energy Technology Data Exchange (ETDEWEB)

    Peng Zheng,; Greve, D. W.; Oppenheim, I. J.

    2013-03-01

    We report finite element simulations of the effect of conductive sensing layers on the surface wave velocity of langasite substrates. The simulations include both the mechanical and electrical influences of the conducting sensing layer. We show that three-dimensional simulations are necessary because of the out-of-plane displacements of the commonly used (0, 138.5, 26.7) Euler angle. Measurements of the transducer input admittance in reflective delay-line devices yield a value for the electromechanical coupling coefficient that is in good agreement with the three-dimensional simulations on bare langasite substrate. The input admittance measurements also show evidence of excitation of an additional wave mode and excess loss due to the finger resistance. The results of these simulations and measurements will be useful in the design of surface acoustic wave gas sensors.

  17. Nonextensive dust acoustic waves in a charge varying dusty plasma

    Science.gov (United States)

    Bacha, Mustapha; Tribeche, Mouloud

    2012-01-01

    Our recent analysis on nonlinear nonextensive dust-acoustic waves (DA) [Amour and Tribeche in Phys. Plasmas 17:063702, 2010] is extended to include self-consistent nonadiabatic grain charge fluctuation. The appropriate nonextensive electron charging current is rederived based on the orbit-limited motion theory. Our results reveal that the amplitude, strength and nature of the nonlinear DA waves (solitons and shocks) are extremely sensitive to the degree of ion nonextensivity. Stronger is the electron correlation, more important is the charge variation induced nonlinear wave damping. The anomalous dissipation effects may prevail over that dispersion as the electrons evolve far away from their Maxwellian equilibrium. Our investigation may be of wide relevance to astronomers and space scientists working on interstellar dusty plasmas where nonthermal distributions are turning out to be a very common and characteristic feature.

  18. Modulational instability of ion-acoustic waves in a warm plasma

    Institute of Scientific and Technical Information of China (English)

    薛具奎; 段文山; 郎和

    2002-01-01

    Using the standard reductive perturbation technique, a nonlinear Schrodinger equation is derived to study themodulational instability of finite-amplitude ion-acoustic waves in a non-magnetized warm plasma. It is found thatthe inclusion of ion temperature in the equation modifies the nature of the ion-acoustic wave stability and the solitonstructures. The effects of ion plasma temperature on the modulational stability and ion-acoustic wave properties areinvestigated in detail.

  19. Stimulation of whistler activity by an artificial ground-based low frequency acoustic wave source

    Science.gov (United States)

    Soroka, Silvestr; Kim, Vitaly; Khegay, Valery; Kalita, Bogdan

    This paper presents some results of an active experiment aimed to impact the ionosphere with low frequency acoustic waves artificially generated in the near-ground atmosphere. The main goal of the experiment was checking if the artificially generated acoustic waves could affect whistler occurrence at middle latitudes. As a source of acoustic waves we used twin powerful sonic speakers. One of which produced acoustic waves at a frequency of 600 Hz while the other one at a frequency of 624 Hz with intensity of 160 dB at a distance of 1 m away from end of the horn. The duration of sonic pulse was one minute. As a result of acoustic wave interference above the acoustic wave source there appears some kind of a virtual sonic antenna that radiates lower frequency acoustic waves at a frequency being equal to the difference of the two initially generated frequencies (624 Hz - 600 Hz = 24 Hz). The resulting acoustic wave is capable to penetrate to higher altitudes than the initially generated waves do because of its lower frequency. A whistler detector was located at about 100 m far away from the acoustic wave source. We performed the 50 experiments at Lviv (49.50° N, 24.00° E) with acoustic influence on the atmosphere-ionosphere system. The obtained results indicate that the emitted low frequency acoustic waves were clearly followed by enhanced whistler occurrence. We suggest that the observations could be interpreted how increase of transparency of ionosphere and upward refraction of VLF spherics resulted from modulation of local atmospheric parameters by the acoustic waves. These two effects produce to the increase of amount of the whistlers.

  20. Focusing of Surface Acoustic Wave on a Piezoelectric Crystal

    Institute of Scientific and Technical Information of China (English)

    QIAO Dong-Hai; WANG Cheng-Hao; WANG Zuo-Qing

    2006-01-01

    @@ We investigate the focusing phenomena of a surface acoustic wave (SAW) field generated by a circular-arc interdigital transducer (IDT) on a piezoelectric crystal. A rigorous vector field theory of surface excitation on the crystal we developed previously is used to evaluate the convergent SAW field instead of the prevalent scalar angular spectrum used in optics. The theoretical results show that the anisotropy of a medium has great impact on the focusing properties of the acoustic beams, such as focal length and symmetrical distributions near the focus. A dark field method is used in experiment to observe the focusing of the SAW field optically. Although the convergent phenomena of SAW field on the anisotropic media or piezoelectric crystals are very complicated,the experimental data are in agreement with those from the rigorous theory.

  1. Molding acoustic, electromagnetic and water waves with a single cloak.

    Science.gov (United States)

    Xu, Jun; Jiang, Xu; Fang, Nicholas; Georget, Elodie; Abdeddaim, Redha; Geffrin, Jean-Michel; Farhat, Mohamed; Sabouroux, Pierre; Enoch, Stefan; Guenneau, Sébastien

    2015-06-09

    We describe two experiments demonstrating that a cylindrical cloak formerly introduced for linear surface liquid waves works equally well for sound and electromagnetic waves. This structured cloak behaves like an acoustic cloak with an effective anisotropic density and an electromagnetic cloak with an effective anisotropic permittivity, respectively. Measured forward scattering for pressure and magnetic fields are in good agreement and provide first evidence of broadband cloaking. Microwave experiments and 3D electromagnetic wave simulations further confirm reduced forward and backscattering when a rectangular metallic obstacle is surrounded by the structured cloak for cloaking frequencies between 2.6 and 7.0 GHz. This suggests, as supported by 2D finite element simulations, sound waves are cloaked between 3 and 8 KHz and linear surface liquid waves between 5 and 16 Hz. Moreover, microwave experiments show the field is reduced by 10 to 30 dB inside the invisibility region, which suggests the multi-wave cloak could be used as a protection against water, sonic or microwaves.

  2. Molding acoustic, electromagnetic and water waves with a single cloak

    KAUST Repository

    Xu, Jun

    2015-06-09

    We describe two experiments demonstrating that a cylindrical cloak formerly introduced for linear surface liquid waves works equally well for sound and electromagnetic waves. This structured cloak behaves like an acoustic cloak with an effective anisotropic density and an electromagnetic cloak with an effective anisotropic permittivity, respectively. Measured forward scattering for pressure and magnetic fields are in good agreement and provide first evidence of broadband cloaking. Microwave experiments and 3D electromagnetic wave simulations further confirm reduced forward and backscattering when a rectangular metallic obstacle is surrounded by the structured cloak for cloaking frequencies between 2.6 and 7.0 GHz. This suggests, as supported by 2D finite element simulations, sound waves are cloaked between 3 and 8 KHz and linear surface liquid waves between 5 and 16 Hz. Moreover, microwave experiments show the field is reduced by 10 to 30 dB inside the invisibility region, which suggests the multi-wave cloak could be used as a protection against water, sonic or microwaves. © 2015, Nature Publishing Group. All rights reserved.

  3. Passive Wireless Hydrogen Sensors Using Orthogonal Frequency Coded Acoustic Wave Devices Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal describes the development of passive surface acoustic wave (SAW) based hydrogen sensors for NASA application to distributed wireless hydrogen leak...

  4. Mass sensitivity of layered shear-horizontal surface acoustic wave devices for sensing applications

    Science.gov (United States)

    Kalantar-Zadeh, Kourosh; Trinchi, Adrian; Wlodarski, Wojtek; Holland, Anthony; Galatsis, Kosmas

    2001-11-01

    Layered Surface Acoustic Wave (SAW) devices that allow the propagation of Love mode acoustic waves will be studied in this paper. In these devices, the substrate allows the propagation of Surface Skimming Bulks Waves (SSBWs). By depositing layers, that the speed of Shear Horizontal (SH) acoustic wave propagation is less than that of the substrate, the propagation mode transforms to Love mode. Love mode devices which will be studied in this paper, have SiO2 and ZnO acoustic guiding layers. As Love mode of propagation has no movement of particles component normal to the active sensor surface, they can be employed for the sensing applications in the liquid media.

  5. Passive Wireless Hydrogen Sensors Using Orthogonal Frequency Coded Acoustic Wave Devices Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal describes the continued development of passive orthogonal frequency coded (OFC) surface acoustic wave (SAW) based hydrogen sensors for NASA application...

  6. Numerical and experimental study of Lamb wave propagation in a two-dimensional acoustic black hole

    Science.gov (United States)

    Yan, Shiling; Lomonosov, Alexey M.; Shen, Zhonghua

    2016-06-01

    The propagation of laser-generated Lamb waves in a two-dimensional acoustic black-hole structure was studied numerically and experimentally. The geometrical acoustic theory has been applied to calculate the beam trajectories in the region of the acoustic black hole. The finite element method was also used to study the time evolution of propagating waves. An optical system based on the laser-Doppler vibration method was assembled. The effect of the focusing wave and the reduction in wave speed of the acoustic black hole has been validated.

  7. Quantum corrections to nonlinear ion acoustic wave with Landau damping

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, Abhik; Janaki, M. S. [Saha Institute of Nuclear Physics, Calcutta (India); Bose, Anirban [Serampore College, West Bengal (India)

    2014-07-15

    Quantum corrections to nonlinear ion acoustic wave with Landau damping have been computed using Wigner equation approach. The dynamical equation governing the time development of nonlinear ion acoustic wave with semiclassical quantum corrections is shown to have the form of higher KdV equation which has higher order nonlinear terms coming from quantum corrections, with the usual classical and quantum corrected Landau damping integral terms. The conservation of total number of ions is shown from the evolution equation. The decay rate of KdV solitary wave amplitude due to the presence of Landau damping terms has been calculated assuming the Landau damping parameter α{sub 1}=√(m{sub e}/m{sub i}) to be of the same order of the quantum parameter Q=ℏ{sup 2}/(24m{sup 2}c{sub s}{sup 2}L{sup 2}). The amplitude is shown to decay very slowly with time as determined by the quantum factor Q.

  8. Reconstruction and prediction of coherent acoustic field with the combined wave superposition approach

    Institute of Scientific and Technical Information of China (English)

    LI Weibing; CHEN Jian; YU Fei; CHEN Xinzhao

    2006-01-01

    The routine wave superposition approach cannot be used in reconstruction and prediction of a coherent acoustic field, because it is impossible to separate the pressures generated by individual sources. According to the superposition theory of the coherent acoustic field , a novel method based on the combined wave superposition approach is developed to reconstruct and predict the coherent acoustic field by building the combined pressure matching matrixes between the hologram surfaces and the sources. The method can reconstruct the acoustic information on surfaces of the individual sources, and it is possible to predict the acoustic field radiated from every source and the total coherent acoustic field can also be calculated spontaneously. The experimental and numerical simulation results show that this method can effectively solve the holographic reconstruction and prediction of the coherent acoustic field and it can also be used as a coherent acoustic field separation technique. The study on this novel method extends the application scope of the acoustic holography technique.

  9. Dust-acoustic waves modulational instability and rogue waves in a polarized dusty plasma

    Energy Technology Data Exchange (ETDEWEB)

    Bouzit, Omar; Tribeche, Mouloud [Faculty of Physics, Theoretical Physics Laboratory, Plasma Physics Group, University of Bab-Ezzouar, USTHB, B.P. 32, El Alia, Algiers 16111 (Algeria)

    2015-10-15

    The polarization force-induced changes in the dust-acoustic waves (DAWs) modulational instability (MI) are examined. Using the reductive perturbation method, the nonlinear Schrödinger equation that governs the MI of the DAWs is obtained. It is found that the effect of the polarization term R is to narrow the wave number domain for the onset of instability. The amplitude of the wave envelope decreases as R increases, meaning that the polarization force effects render weaker the associated DA rogue waves. The latter may therefore completely damp in the vicinity of R ∼ 1, i.e., as the polarization force becomes close to the electrostatic one (the net force acting on the dust particles becomes vanishingly small). The DA rogue wave profile is very sensitive to any change in the restoring force acting on the dust particles. It turns out that the polarization effects may completely smear out the DA rogue waves.

  10. Semiconductor Characterization with Acoustic and Thermal waves on Picosecond Timescales

    Science.gov (United States)

    Wright, Oliver B.

    1997-03-01

    Ultrafast optical techniques for semiconductor characterization can probe the dynamics of photoexcited carriers, leading to applications in, for example, in-line monitoring of semiconductor processing and optimization of materials for sub-picosecond electronic switches or for nanoscale electronic devices.(Semiconductors Probed by Ultrafast Laser Spectroscopy, edited by R. R. Alfano (Academic, New York, 1984).) Picosecond or femtosecond optical pulses excite electrons to higher electronic bands, producing a nonequilibrium electron-hole distribution. Various physical effects result from the relaxation of this distribution. Luminescence or photoelectron emission are examples. In the present study the focus is on acoustic and thermal effects. The change in electron and hole occupation probabilities induces an electronic stress distributed throughout the carrier penetration depth. A temperature change of the lattice and an associated thermal stress are also produced. The combined stress distribution launches a strain pulse that propagates into the sample as a longitudinally polarized acoustic wave in the present experiments. Its reflection from sub-surface boundaries, interfaces or defects can be detected at the surface by another, weaker optical probe pulse. During this time the temperature distribution in the semiconductor also changes due to thermal wave propagation,(Photoacoustic and Thermal Wave Phenomena in Semiconductors, edited by Andreas Mandelis (North Holland, New York, 1987).) and this simultaneously influences the optical probe pulse. Both reflectance modulation and beam deflection methods for probing were used to investigate crystalline and amorphous silicon samples.(O. B. Wright, U. Zammit, M. Marinelli, and V. Gusev, Appl. Phys. Lett. 69, 553 (1996).) (O. B. Wright and V. E. Gusev, Appl. Phys. Lett. 66, 1190 (1995).) (O. B. Wright and K. Kawashima, Phonon Scattering in Condensed Matter VII, edited by R. O. Pohl and M. Meissner, Springer Verlag, Berlin

  11. An analysis of beam parameters on proton-acoustic waves through an analytic approach.

    Science.gov (United States)

    Aytac Kipergil, Esra; Erkol, Hakan; Kaya, Serhat; Gulsen, Gultekin; Unlu, Mehmet

    2017-03-02

    It has been reported that acoustic waves are generated when a high energy pulsed proton beam is deposited in a small volume within tissue. One possible application of the proton induced acoustics is to get a real-time feedback for intratreatment adjustments by monitoring such acoustic waves. High spatial resolution in ultrasound imaging may reduce proton range uncertainty. Thus, it is crucial to understand the dependence of the acoustic waves on the proton beam characteristics. In this manuscript, firstly, an analytic solution to the proton induced acoustic wave is presented to reveal the dependence of signal on beam parameters, and then combined with an analytic approximation of the Bragg curve. The influence of the beam energy, pulse duration, and beam diameter variation on the acoustic waveform are investigated. Further analysis is performed regarding the Fourier decomposition of proton-acoustic signals. Our results show that smaller spill time of proton beam upsurges the amplitude of acoustic wave for constant number of protons, and hence beneficial for dose monitoring. The increase in the energy of each individual proton in the beam leads to spatial broadening of the Bragg curve, which also yields acoustic waves of greater amplitude. The pulse duration and the beam width of the proton beam do not affect the central frequency of the acoustic wave, but they change the amplitude of the spectral components.

  12. Multi-resonance tunneling of acoustic waves in two-dimensional locally-resonant phononic crystals

    Science.gov (United States)

    Yang, Aichao; He, Wei; Zhang, Jitao; Zhu, Liang; Yu, Lingang; Ma, Jian; Zou, Yang; Li, Min; Wu, Yu

    2017-03-01

    Multi-resonance tunneling of acoustic waves through a two-dimensional phononic crystal (PC) is demonstrated by substituting dual Helmholtz resonators (DHRs) for acoustically-rigid scatterers in the PC. Due to the coupling of the incident waves with the acoustic multi-resonance modes of the DHRs, acoustic waves can tunnel through the PC at specific frequencies which lie inside the band gaps of the PC. This wave tunneling transmission can be further broadened by using the multilayer Helmholtz resonators. Thus, a PC consisting of an array of dual/multilayer Helmholtz resonators can serve as an acoustic band-pass filter, used to pick out acoustic waves with certain frequencies from noise.

  13. GPS-Acoustic Seafloor Geodesy using a Wave Glider

    Science.gov (United States)

    Chadwell, C. D.

    2013-12-01

    The conventional approach to implement the GPS-Acoustic technique uses a ship or buoy for the interface between GPS and Acoustics. The high cost and limited availability of ships restricts occupations to infrequent campaign-style measurements. A new approach to address this problem uses a remote controlled, wave-powered sea surface vehicle, the Wave Glider. The Wave Glider uses sea-surface wave action for forward propulsion with both upward and downward motions producing forward thrust. It uses solar energy for power with solar panels charging the onboard 660 W-h battery for near continuous operation. It uses Iridium for communication providing command and control from shore plus status and user data via the satellite link. Given both the sea-surface wave action and solar energy are renewable, the vehicle can operate for extended periods (months) remotely. The vehicle can be launched from a small boat and can travel at ~ 1 kt to locations offshore. We have adapted a Wave Glider for seafloor geodesy by adding a dual frequency GPS receiver embedded in an Inertial Navigation Unit, a second GPS antenna/receiver to align the INU, and a high precision acoustic ranging system. We will report results of initial testing of the system conducted at SIO. In 2014, the new approach will be used for seafloor geodetic measurements of plate motion in the Cascadia Subduction Zone. The project is for a three-year effort to measure plate motion at three sites along an East-West profile at latitude 44.6 N, offshore Newport Oregon. One site will be located on the incoming plate to measure the present day convergence between the Juan de Fuca and North American plates and two additional sites will be located on the continental slope of NA to measure the elastic deformation due to stick-slip behavior on the mega-thrust fault. These new seafloor data will constrain existing models of slip behavior that presently are poorly constrained by land geodetic data 100 km from the deformation front.

  14. Circuit Design of Surface Acoustic Wave Based Micro Force Sensor

    Directory of Open Access Journals (Sweden)

    Yuanyuan Li

    2014-01-01

    Full Text Available Pressure sensors are commonly used in industrial production and mechanical system. However, resistance strain, piezoresistive sensor, and ceramic capacitive pressure sensors possess limitations, especially in micro force measurement. A surface acoustic wave (SAW based micro force sensor is designed in this paper, which is based on the theories of wavelet transform, SAW detection, and pierce oscillator circuits. Using lithium niobate as the basal material, a mathematical model is established to analyze the frequency, and a peripheral circuit is designed to measure the micro force. The SAW based micro force sensor is tested to show the reasonable design of detection circuit and the stability of frequency and amplitude.

  15. Stern Gerlach spin filter using surface acoustic waves

    Science.gov (United States)

    Santos, Paulo V.; Nitta, Junsaku; Ploog, Klaus H.

    2004-12-01

    We propose the ambipolar carrier transport by surface acoustic waves (SAWs) in a semiconductor quantum well (QW) for the realization of the Stern-Gerlach (SG) experiment in the solid phase. The well-defined and very low carrier velocity in the moving SAW field leads to a large deflection angle and thus to efficient spin separation, even for the weak field gradients and short (μm-long) interaction lengths that can be produced by micromagnets. The feasibility of a SG spin filter is discussed for different QW materials.

  16. Surface acoustic wave devices including Langmuir-Blodgett films (Review)

    Science.gov (United States)

    Plesskii, V. P.

    1991-06-01

    Recent theoretical and experimental research related to the use of Langmuir-Blodgett (LB) films in surface acoustic wave (SAW) devices is reviewed. The sensitivity of the different cuts of quartz and lithium niobate to inertial loading is investigated, and it is shown that some cuts in lithium niobate are twice as sensitive to mass loading than the commonly used YZ-cut. The large variety of organic compounds suitable for the production of LB films makes it possible to create SAW sensors reacting selectively to certain substances. The existing SAW sensors based on LB films are characterized by high sensitivity and fast response.

  17. Surface acoustic wave vapor sensors based on resonator devices

    Science.gov (United States)

    Grate, Jay W.; Klusty, Mark

    1991-05-01

    Surface acoustic wave (SAW) devices fabricated in the resonator configuration have been used as organic vapor sensors and compared with delay line devices more commonly used. The experimentally determined mass sensitivities of 200, 300, and 400 MHz resonators and 158 MHz delay lines coated with Langmuir-Blodgett films of poly(vinyl tetradecanal) are in excellent agreement with theoretical predictions. The response of LB- and spray-coated sensors to various organic vapors were determined, and scaling laws for mass sensitivities, vapor sensitivities, and detection limits are discussed. The 200 MHz resonators provide the lowest noise levels and detection limits of all the devices examined.

  18. Location Dependence of Mass Sensitivity for Acoustic Wave Devices

    Directory of Open Access Journals (Sweden)

    Kewei Zhang

    2015-09-01

    Full Text Available It is introduced that the mass sensitivity (Sm of an acoustic wave (AW device with a concentrated mass can be simply determined using its mode shape function: the Sm is proportional to the square of its mode shape. By using the Sm of an AW device with a uniform mass, which is known for almost all AW devices, the Sm of an AW device with a concentrated mass at different locations can be determined. The method is confirmed by numerical simulation for one type of AW device and the results from two other types of AW devices.

  19. Solar wind implication on dust ion acoustic rogue waves

    Science.gov (United States)

    Abdelghany, A. M.; Abd El-Razek, H. N.; Moslem, W. M.; El-Labany, S. K.

    2016-06-01

    The relevance of the solar wind with the magnetosphere of Jupiter that contains positively charged dust grains is investigated. The perturbation/excitation caused by streaming ions and electron beams from the solar wind could form different nonlinear structures such as rogue waves, depending on the dominant role of the plasma parameters. Using the reductive perturbation method, the basic set of fluid equations is reduced to modified Korteweg-de Vries (KdV) and further modified (KdV) equation. Assuming that the frequency of the carrier wave is much smaller than the ion plasma frequency, these equations are transformed into nonlinear Schrödinger equations with appropriate coefficients. Rational solution of the nonlinear Schrödinger equation shows that rogue wave envelopes are supported by the present plasma model. It is found that the existence region of rogue waves depends on the dust-acoustic speed and the streaming temperatures for both the ions and electrons. The dependence of the maximum rogue wave envelope amplitude on the system parameters has been investigated.

  20. Selective generation of ultrasonic Lamb waves by electromagnetic acoustic transducers

    Science.gov (United States)

    Li, Ming-Liang; Deng, Ming-Xi; Gao, Guang-Jian

    2016-12-01

    In this paper, we describe a modal expansion approach for the analysis of the selective generation of ultrasonic Lamb waves by electromagnetic acoustic transducers (EMATs). With the modal expansion approach for waveguide excitation, an analytical expression of the Lamb wave’s mode expansion coefficient is deduced, which is related to the driving frequency and the geometrical parameters of the EMAT’s meander coil, and lays a theoretical foundation for exactly analyzing the selective generation of Lamb waves with EMATs. The influences of the driving frequency on the mode expansion coefficient of ultrasonic Lamb waves are analyzed when the EMAT’s geometrical parameters are given. The numerical simulations and experimental examinations show that the ultrasonic Lamb wave modes can be effectively regulated (strengthened or restrained) by choosing an appropriate driving frequency of EMAT, with the geometrical parameters given. This result provides a theoretical and experimental basis for selectively generating a single and pure Lamb wave mode with EMATs. Project supported by the National Natural Science Foundation of China (Grant Nos. 11474361 and 11274388).

  1. Acoustic measurements above a plate carrying Lamb waves

    CERN Document Server

    Talberg, Andreas Sørbrøden

    2016-01-01

    This article presents a set of acoustic measurements conducted on the Statoil funded Behind Casing Logging Set-Up, designed by SINTEF Petroleum Research to resemble an oil well casing. A set of simple simulations using COMSOL Multiphysics were also conducted and the results compared with the measurements. The experiments consists of measuring the pressure wave radiated of a set of Lamb waves propagating in a 3 mm thick steel plate, using the so called pitch-catch method. The Lamb waves were excited by a broadband piezoelectric immersion transducer with center frequency of 1 MHz. Through measurements and analysis the group velocity of the fastest mode in the plate was found to be 3138.5 m/s. Measuring the wave radiated into the water in a grid consisting of 8x33 measuring points, the spreading of the plate wave normal to the direction of propagation was investigated. Comparing the point where the amplitude had decreased 50 % relative to the amplitude measured at the axis pointing straight forward from the tran...

  2. Surface Acoustic Wave Vibration Sensors for Measuring Aircraft Flutter

    Science.gov (United States)

    Wilson, William C.; Moore, Jason P.; Juarez, Peter D.

    2016-01-01

    Under NASA's Advanced Air Vehicles Program the Advanced Air Transport Technology (AATT) Project is investigating flutter effects on aeroelastic wings. To support that work a new method for measuring vibrations due to flutter has been developed. The method employs low power Surface Acoustic Wave (SAW) sensors. To demonstrate the ability of the SAW sensor to detect flutter vibrations the sensors were attached to a Carbon fiber-reinforced polymer (CFRP) composite panel which was vibrated at six frequencies from 1Hz to 50Hz. The SAW data was compared to accelerometer data and was found to resemble sine waves and match each other closely. The SAW module design and results from the tests are presented here.

  3. Weakly dissipative dust-ion acoustic wave modulation

    Science.gov (United States)

    Alinejad, H.; Mahdavi, M.; Shahmansouri, M.

    2016-02-01

    The modulational instability of dust-ion acoustic (DIA) waves in an unmagnetized dusty plasma is investigated in the presence of weak dissipations arising due to the low rates (compared to the ion oscillation frequency) of ionization recombination and ion loss. Based on the multiple space and time scales perturbation, a new modified nonlinear Schrödinger equation governing the evolution of modulated DIA waves is derived with a linear damping term. It is shown that the combined action of all dissipative mechanisms due to collisions between particles reveals the permitted maximum time for the occurrence of the modulational instability. The influence on the modulational instability regions of relevant physical parameters such as ion temperature, dust concentration, ionization, recombination and ion loss is numerically examined. It is also found that the recombination frequency controls the instability growth rate, whereas recombination and ion loss make the instability regions wider.

  4. Anomalous refraction of guided waves via embedded acoustic metasurfaces

    Science.gov (United States)

    Zhu, Hongfei; Semperlotti, Fabio

    2016-04-01

    We illustrate the design of acoustic metasurfaces based on geometric tapers and embedded in thin-plate structures. The metasurface is an engineered discontinuity that enables anomalous refraction of guided wave modes according to the Generalized Snell's Law. Locally-resonant geometric torus-like tapers are designed in order to achieve metasurfaces having discrete phase-shift profiles that enable a high level of control of refraction of the wavefronts. Results of numerical simulations show that anomalous refraction can be achieved on transmitted anti-symmetric modes (A0) either when using a symmetric (S0) or anti-symmetric (A0) incident wave, where the former case clearly involves mode conversion mechanisms.

  5. Standing surface acoustic wave (SSAW)-based microfluidic cytometer.

    Science.gov (United States)

    Chen, Yuchao; Nawaz, Ahmad Ahsan; Zhao, Yanhui; Huang, Po-Hsun; McCoy, J Phillip; Levine, Stewart J; Wang, Lin; Huang, Tony Jun

    2014-03-07

    The development of microfluidic chip-based cytometers has become an important area due to their advantages of compact size and low cost. Herein, we demonstrate a sheathless microfluidic cytometer which integrates a standing surface acoustic wave (SSAW)-based microdevice capable of 3D particle/cell focusing with a laser-induced fluorescence (LIF) detection system. Using SSAW, our microfluidic cytometer was able to continuously focus microparticles/cells at the pressure node inside a microchannel. Flow cytometry was successfully demonstrated using this system with a coefficient of variation (CV) of less than 10% at a throughput of ~1000 events s(-1) when calibration beads were used. We also demonstrated that fluorescently labeled human promyelocytic leukemia cells (HL-60) could be effectively focused and detected with our SSAW-based system. This SSAW-based microfluidic cytometer did not require any sheath flows or complex structures, and it allowed for simple operation over a wide range of sample flow rates. Moreover, with the gentle, bio-compatible nature of low-power surface acoustic waves, this technique is expected to be able to preserve the integrity of cells and other bioparticles.

  6. Sensitivity comparisons of layered Rayleigh wave and Love wave acoustic devices

    Science.gov (United States)

    Pedrick, Michael K.; Tittmann, Bernhard R.

    2007-04-01

    Due to their high sensitivity, layered Surface Acoustic Wave (SAW) devices are ideal for various film characterization and sensor applications. Two prominent wave types realized in these devices are Rayleigh waves consisting of coupled Shear Vertical and Longitudinal displacements and Love waves consisting of Shear Horizontal displacements. Theoretical calculations of sensitivity of SAW devices to pertubations in wave propagation are limited to idealized scenarios. Derivations of sensitivity to mass change in an overlayer are often based on the effect of rigid body motion of the overlayer on the propagation of one of the aforementioned wave types. These devices often utilize polymer overlayers for enhanced sensitivity. The low moduli of such overlayers are not sufficiently stiff to accommodate the rigid body motion assumption. This work presents device modeling based on the Finite Element Method. A coupled-field model allows for a complete description of device operation including displacement profiles, frequency, wave velocity, and insertion loss through the inclusion of transmitting and receiving IDTs. Geometric rotations and coordinate transformations allow for the modeling of different crystal orientations in piezoelectric substrates. The generation of Rayleigh and Love Wave propagation was realized with this model by examining propagation in ST Quartz both normal to and in the direction of the X axis known to support Love Waves and Rayleigh Waves, respectively. Sensitivities of layered SAW devices to pertubations in mass, layer thickness, and mechanical property changes of a Polymethyl methacrylate (PMMA) and SU-8 overlayers were characterized and compared. Experimental validation of these models is presented.

  7. PROGRESS OF ACOUSTIC WAVE TECHNIQUE AND ITS APPLICATION IN UNDERGROUND PRESSURE MEASUREMENT

    Institute of Scientific and Technical Information of China (English)

    周楚良; 李新元; 张晓龙

    1994-01-01

    This paper carries out the experiment study on the correlation between full stress-strain process of rock samples and the acoustic parameter change of rock by using the measurement system of KS acoustic wave data processing device. On the spot, the stability of surrounding rock is studied by means of experiments on the relationship between the change process (from elastic to plastic failure zone) in surrounding rock of roadway and the change law of acoustic parameters of rock. These acoustic parameters include wave amplitude, spectral amplitude, spectrum area, spectral density, wave velocity and attenuation coefficient etc.

  8. Acoustic measurements of a liquefied cohesive sediment bed under waves

    Science.gov (United States)

    Mosquera, R.; Groposo, V.; Pedocchi, F.

    2014-04-01

    In this article the response of a cohesive sediment deposit under the action of water waves is studied with the help of laboratory experiments and an analytical model. Under the same regular wave condition three different bed responses were observed depending on the degree of consolidation of the deposit: no bed motion, bed motion of the upper layer after the action of the first waves, and massive bed motion after several waves. The kinematic of the upper 3 cm of the deposit were measured with an ultrasound acoustic profiler, while the pore-water pressure inside the bed was simultaneously measured using several pore pressure sensors. A poro-elastic model was developed to interpret the experimental observations. The model showed that the amplitude of the shear stress increased down into the bed. Then it is possible that the lower layers of the deposit experience plastic deformations, while the upper layers present just elastic deformations. Since plastic deformations in the lower layers are necessary for pore pressure build-up, the analytical model was used to interpret the experimental results and to state that liquefaction of a self consolidated cohesive sediment bed would only occur if the bed yield stress falls within the range defined by the amplitude of the shear stress inside the bed.

  9. Calculation of surface acoustic waves in a multilayered piezoelectric structure

    Institute of Scientific and Technical Information of China (English)

    Zhang Zuwei; Wen Zhiyu; Hu Jing

    2013-01-01

    The propagation properties of the surface acoustic waves (SAWs) in a ZnO-SiO2-Si multilayered piezoelectric structure are calculated by using the recursive asymptotic method.The phase velocities and the electromechanical coupling coefficients for the Rayleigh wave and the Love wave in the different ZnO-SiO2-Si structures are calculated and analyzed.The Love mode wave is found to be predominantly generated since the c-axis of the ZnO film is generally perpendicular to the substrate.In order to prove the calculated results,a Love mode SAW device based on the ZnO-SiO2-Si multilayered structure is fabricated by micromachining,and its frequency responses are detected.The experimental results are found to be mainly consistent with the calculated ones,except for the slightly larger velocities induced by the residual stresses produced in the fabrication process of the films.The deviation of the experimental results from the calculated ones is reduced by thermal annealing.

  10. Damping-Growth Transition for Ion-Acoustic Waves in a Density Gradient

    DEFF Research Database (Denmark)

    D'Angelo, N.; Michelsen, Poul; Pécseli, Hans

    1975-01-01

    A damping-growth transition for ion-acoustic waves propagating in a nonuniform plasma (e-folding length for the density ln) is observed at a wavelength λ∼2πln. This result supports calculations performed in connection with the problem of heating of the solar corona by ion-acoustic waves generated...

  11. Modified ion-acoustic solitary waves in plasmas with field-aligned shear flows

    Energy Technology Data Exchange (ETDEWEB)

    Saleem, H. [Department of Space Science, Institute of Space Technology, 1-Islamabad Highway, Islamabad (Pakistan); Theoretical Research Institute, Pakistan Academy of Sciences, 3-Constitution Avenue G-5/3, Islamabad (Pakistan); Ali, S. [Theoretical Research Institute, Pakistan Academy of Sciences, 3-Constitution Avenue G-5/3, Islamabad (Pakistan); National Centre for Physics (NCP) at Quaid-i-Azam University Campus, Shahdra Valley Road, Islamabad 44000 (Pakistan); Haque, Q. [Theoretical Research Institute, Pakistan Academy of Sciences, 3-Constitution Avenue G-5/3, Islamabad (Pakistan); National Centre for Physics (NCP) at Quaid-i-Azam University Campus, Shahdra Valley Road, Islamabad 44000 (Pakistan); Theoretical Physics Division, PINSTECH, P.O. Nilore, Islamabad (Pakistan)

    2015-08-15

    The nonlinear dynamics of ion-acoustic waves is investigated in a plasma having field-aligned shear flow. A Korteweg-deVries-type nonlinear equation for a modified ion-acoustic wave is obtained which admits a single pulse soliton solution. The theoretical result has been applied to solar wind plasma at 1 AU for illustration.

  12. Single-electron transport driven by surface acoustic waves: Moving quantum dots versus short barriers

    DEFF Research Database (Denmark)

    Utko, Pawel; Hansen, Jørn Bindslev; Lindelof, Poul Erik;

    2007-01-01

    We have investigated the response of the acoustoelectric-current driven by a surface-acoustic wave through a quantum point contact in the closed-channel regime. Under proper conditions, the current develops plateaus at integer multiples of ef when the frequency f of the surface-acoustic wave or t...

  13. Fictitious domain method for acoustic waves through a granular suspension of movable rigid spheres

    OpenAIRE

    Imbert, David; McNamara, Sean; Le Gonidec, Yves

    2015-01-01

    International audience; We develop a model to couple acoustic waves and the motion of rigid movable grains in a submerged suspension. To do so, we use the fictitious domain method based on distributed Lagrange multipliers to enforce the natural jump condition of the wave equation and a rigidity constraint. One can then model the granular medium with “Molecular Dynamics” or related methods. Both dynamic and acoustic numerical results are compared with analytic solutions of acoustics and an est...

  14. Double aperture focusing transducer for controlling microparticle motions in trapezoidal microchannels with surface acoustic waves

    Science.gov (United States)

    Tan, Ming K.; Tjeung, Ricky; Ervin, Hannah; Yeo, Leslie Y.; Friend, James

    2009-09-01

    We present a method for controlling the motion of microparticles suspended in an aqueous solution, which fills in a microchannel fabricated into a piezoelectric substrate, using propagating surface acoustic waves. The cross-sectional shape of this microchannel is trapezoidal, preventing the formation of acoustic standing waves across the channel width and therefore allowing the steering of microparticles. The induced acoustic streaming transports these particles to eliminate the use of external pumps for fluid actuation.

  15. Dynamic acoustics for the STAR-100. [computer algorithms for time dependent sound waves in jet

    Science.gov (United States)

    Bayliss, A.; Turkel, E.

    1979-01-01

    An algorithm is described to compute time dependent acoustic waves in a jet. The method differs from previous methods in that no harmonic time dependence is assumed, thus permitting the study of nonharmonic acoustical behavior. Large grids are required to resolve the acoustic waves. Since the problem is nonstiff, explicit high order schemes can be used. These have been adapted to the STAR-100 with great efficiencies and permitted the efficient solution of problems which would not be feasible on a scalar machine.

  16. Dust-acoustic waves and stability in the permeating dust plasma: II. Power-law distributions

    CERN Document Server

    Gong, Jingyu; Du, Jiulin

    2012-01-01

    The dust-acoustic waves and their stability driven by a flowing dust plasma when it cross through a static (target) dust plasma (the so-called permeating dust plasma) are investigated when the components of the dust plasma obey the power-law q-distributions in nonextensive statistics. The frequency, the growth rate and the stability condition of the dust-acoustic waves are derived under this physical situation, which express the effects of the nonextensivity as well as the flowing dust plasma velocity on the dust-acoustic waves in this dust plasma. The numerical results illustrate some new characteristics of the dust-acoustic waves, which are different from those in the permeating dust plasma when the plasma components are the Maxwellian distribution. In addition, we show that the flowing dust plasma velocity has a significant effect on the dust-acoustic waves in the permeating dust plasma with the power-law q-distribution.

  17. Spin-electron acoustic waves: The Landau damping and ion contribution in the spectrum

    CERN Document Server

    Andreev, Pavel A

    2014-01-01

    Separated spin-up and spin-down quantum kinetics is derived for more detailed research of the spin-electron acoustic waves. Kinetic theory allows to obtain spectrum of the spin-electron acoustic waves including effects of occupation of quantum states more accurately than quantum hydrodynamics. We apply quantum kinetic to calculate the Landau damping of the spin-electron acoustic waves. We have considered contribution of ions dynamics in the spin-electron acoustic wave spectrum. We obtain contribution of ions in the Landau damping in temperature regime of classic ions. Kinetic analysis for ion-acoustic, zero sound, and Langmuir waves at separated spin-up and spin-down electron dynamics is presented as well.

  18. Frequency domain analysis of lamb wave scattering and application to film bulk acoustic wave resonators.

    Science.gov (United States)

    Thalmayr, Florian; Hashimoto, Ken-Ya; Omori, Tatsuya; Yamaguchi, Masatsune

    2010-07-01

    This paper demonstrates a novel frequency domain analysis (FDA) to evaluate the scattering behavior of a waveguide mode at arbitrary scattering geometries by a time harmonic simulation based on the finite element method (FEM). To this end, we add an injection-damping mechanism (IDM) to avoid interference at the acoustic input port. The IDM can be easily constructed by a numerical operation. Our approach offers improved time consumption and calculation power necessary over the established method in the time domain. After checking the validity of the proposed method, we discuss the importance of considering wave scattering phenomena in film bulk acoustic wave resonator (FBAR) devices by applying the proposed method to two simplified models of an FBAR device.

  19. ANALYTICAL SOLUTION FOR WAVES IN PLANETS WITH ATMOSPHERIC SUPERROTATION. I. ACOUSTIC AND INERTIA-GRAVITY WAVES

    Energy Technology Data Exchange (ETDEWEB)

    Peralta, J.; López-Valverde, M. A. [Instituto de Astrofísica de Andalucía (CSIC), Glorieta de la Astronomía, 18008 Granada (Spain); Imamura, T. [Institute of Space and Astronautical Science-Japan Aerospace Exploration Agency 3-1-1, Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Read, P. L. [Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford (United Kingdom); Luz, D. [Centro de Astronomia e Astrofísica da Universidade de Lisboa (CAAUL), Observatório Astronómico de Lisboa, Tapada da Ajuda, 1349-018 Lisboa (Portugal); Piccialli, A., E-mail: peralta@iaa.es [LATMOS, UVSQ, 11 bd dAlembert, 78280 Guyancourt (France)

    2014-07-01

    This paper is the first of a two-part study devoted to developing tools for a systematic classification of the wide variety of atmospheric waves expected on slowly rotating planets with atmospheric superrotation. Starting with the primitive equations for a cyclostrophic regime, we have deduced the analytical solution for the possible waves, simultaneously including the effect of the metric terms for the centrifugal force and the meridional shear of the background wind. In those cases when the conditions for the method of the multiple scales in height are met, these wave solutions are also valid when vertical shear of the background wind is present. A total of six types of waves have been found and their properties were characterized in terms of the corresponding dispersion relations and wave structures. In this first part, only waves that are direct solutions of the generic dispersion relation are studied—acoustic and inertia-gravity waves. Concerning inertia-gravity waves, we found that in the cases of short horizontal wavelengths, null background wind, or propagation in the equatorial region, only pure gravity waves are possible, while for the limit of large horizontal wavelengths and/or null static stability, the waves are inertial. The correspondence between classical atmospheric approximations and wave filtering has been examined too, and we carried out a classification of the mesoscale waves found in the clouds of Venus at different vertical levels of its atmosphere. Finally, the classification of waves in exoplanets is discussed and we provide a list of possible candidates with cyclostrophic regimes.

  20. A pseudodifferential equation with damping for one-way wave propagation in inhomogeneous acoustic media

    NARCIS (Netherlands)

    Stolk, C.C.

    2004-01-01

    A one-way wave equation is an evolution equation in one of the space directions that describes (approximately) a wave field. The exact wave field is approximated in a high frequency, microlocal sense. Here we derive the pseudodifferential one-way wave equation for an inhomogeneous acoustic medium us

  1. An acoustic wave equation for pure P wave in 2D TTI media

    KAUST Repository

    Zhan, Ge

    2011-01-01

    In this paper, a pure P wave equation for an acoustic 2D TTI media is derived. Compared with conventional TTI coupled equations, the resulting equation is unconditionally stable due to the complete isolation of the SV wave mode. To avoid numerical dispersion and produce high quality images, the rapid expansion method REM is employed for numerical implementation. Synthetic results validate the proposed equation and show that it is a stable algorithm for modeling and reverse time migration RTM in a TTI media for any anisotropic parameter values. © 2011 Society of Exploration Geophysicists.

  2. Enhanced Sensitive Love Wave Surface Acoustic Wave Sensor Designed for Immunoassay Formats

    Directory of Open Access Journals (Sweden)

    Mihaela Puiu

    2015-05-01

    Full Text Available We report a Love wave surface acoustic wave (LW-SAW immunosensor designed for the detection of high molecular weight targets in liquid samples, amenable also for low molecular targets in surface competition assays. We implemented a label-free interaction protocol similar to other surface plasmon resonance bioassays having the advantage of requiring reduced time analysis. The fabricated LW-SAW sensor supports the detection of the target in the nanomolar range, and can be ultimately incorporated in portable devices, suitable for point-of-care testing (POCT applications.

  3. Enhanced sensitive love wave surface acoustic wave sensor designed for immunoassay formats.

    Science.gov (United States)

    Puiu, Mihaela; Gurban, Ana-Maria; Rotariu, Lucian; Brajnicov, Simona; Viespe, Cristian; Bala, Camelia

    2015-05-05

    We report a Love wave surface acoustic wave (LW-SAW) immunosensor designed for the detection of high molecular weight targets in liquid samples, amenable also for low molecular targets in surface competition assays. We implemented a label-free interaction protocol similar to other surface plasmon resonance bioassays having the advantage of requiring reduced time analysis. The fabricated LW-SAW sensor supports the detection of the target in the nanomolar range, and can be ultimately incorporated in portable devices, suitable for point-of-care testing (POCT) applications.

  4. Temporal characteristics of surface-acoustic-wave-driven luminescence from a lateral p-n junction

    Science.gov (United States)

    Gell, J. R.; Ward, M. B.; Shields, A. J.; Atkinson, P.; Bremner, S. P.; Anderson, D.; Kataoka, M.; Barnes, C. H. W.; Jones, G. A. C.; Ritchie, D. A.

    2007-07-01

    Short radio frequency pulses were used to study the surface-acoustic-wave-driven light emission from a molecular beam epitaxy regrown GaAs /AlGaAs lateral p-n junction. The luminescence provides a fast probe of the signals arriving at the junction allowing the authors to temporally separate the effect of the surface-acoustic-wave from pickup of the free space electromagnetic wave. Oscillations in the light intensity are resolved at the resonant frequency of the transducer, suggesting that the surface-acoustic-wave is transporting electrons across the junction in packets.

  5. Dust-acoustic solitary waves in a dusty plasma with two-temperature nonthermal ions

    Indian Academy of Sciences (India)

    Zhi-Jian Zhou; Hong-Yan Wang; Kai-Biao Zhang

    2012-01-01

    By using reductive perturbation method, the nonlinear propagation of dust-acoustic waves in a dusty plasma (containing a negatively charged dust fluid, Boltzmann distributed electrons and two-temperature nonthermal ions) is investigated. The effects of two-temperature nonthermal ions on the basic properties of small but finite amplitude nonlinear dust-acoustic waves are examined. It is found that two-temperature nonthermal ions affect the basic properties of the dust-acoustic solitary waves. It is also observed that only compressive solitary waves exist in this system.

  6. Acoustic Wave Treatment For Cellulite—A New Approach

    Science.gov (United States)

    Russe-Wilflingseder, Katharina; Russe, Elisabeth

    2010-05-01

    Background and Objectives: Cellulite is a biological caused modification of the female connective tissue. In extracorporeal shockwave therapy (ESWT) pulses are penetrating into the tissue without causing a thermal effect or micro lesions, but leading to a stimulation of tissue metabolism and blood circulation, inducing a natural repair process with cell activation and stem cells proliferation. Recently ESWT treatment showed evidence of remodelling collagen within the dermis and of stimulating microcirculation in fatty tissue. Study Design and Methods: The study was designed to assess acoustic wave treatment for cellulite by comparison treated vs. untreated side (upper-leg and buttock). Each individual served as its own control. 11 females with a BMI less then 30 and an age over 18 years were included. 6 treatments were given weekly with radial acoustic waves. Documentation was done before and 1, 4, 12 weeks after last treatment by standardized photo documentation, relaxed and with muscle contraction, measurement of body weight and circumference of the thigh, pinch test, and evaluation of hormonal status and lifestyle. The efficacy of AWT/EPAT was evaluated before and 1, 4, 12 weeks after last treatment. Patients rated the improvement of cellulite, overall satisfaction and acceptance. The therapist assessed improvement of cellulite, side effects and photo documentation treated vs. untreated side, before vs. after treatment. The blinded investigator evaluated the results using photo documentation right vs. left leg, before vs. after treatment in a frontal, lateral and dorsal view, relaxed and with muscle contraction. Results: The improvement of cellulite at the treated side was rated by patients with 27,3% at week 4 and 12, by the therapist with 34,1% at week 4 and 31,2% at week 12 after the last treatment The blinded investigator could verify an improvement of cellulite in an increasing number of patients with increasing time interval after treatment. No side

  7. A Schamel equation for ion acoustic waves in superthermal plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Williams, G., E-mail: gwilliams06@qub.ac.uk; Kourakis, I. [Centre for Plasma Physics, Department of Physics and Astronomy, Queen' s University Belfast, BT7 1NN, Northern Ireland (United Kingdom); Verheest, F. [Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281, B-9000 Gent (Belgium); School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4000 (South Africa); Hellberg, M. A. [School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4000 (South Africa); Anowar, M. G. M. [Department of Physics, Begum Rokeya University, Rangpur, Rangpur-5400 (Bangladesh)

    2014-09-15

    An investigation of the propagation of ion acoustic waves in nonthermal plasmas in the presence of trapped electrons has been undertaken. This has been motivated by space and laboratory plasma observations of plasmas containing energetic particles, resulting in long-tailed distributions, in combination with trapped particles, whereby some of the plasma particles are confined to a finite region of phase space. An unmagnetized collisionless electron-ion plasma is considered, featuring a non-Maxwellian-trapped electron distribution, which is modelled by a kappa distribution function combined with a Schamel distribution. The effect of particle trapping has been considered, resulting in an expression for the electron density. Reductive perturbation theory has been used to construct a KdV-like Schamel equation, and examine its behaviour. The relevant configurational parameters in our study include the superthermality index κ and the characteristic trapping parameter β. A pulse-shaped family of solutions is proposed, also depending on the weak soliton speed increment u{sub 0}. The main modification due to an increase in particle trapping is an increase in the amplitude of solitary waves, yet leaving their spatial width practically unaffected. With enhanced superthermality, there is a decrease in both amplitude and width of solitary waves, for any given values of the trapping parameter and of the incremental soliton speed. Only positive polarity excitations were observed in our parametric investigation.

  8. Scattering of acoustic waves by macroscopically inhomogeneous poroelastic tubes.

    Science.gov (United States)

    Groby, J-P; Dazel, O; Depollier, C; Ogam, E; Kelders, L

    2012-07-01

    Wave propagation in macroscopically inhomogeneous porous materials has received much attention in recent years. For planar configurations, the wave equation, derived from the alternative formulation of Biot's theory of 1962, was reduced and solved recently: first in the case of rigid frame inhomogeneous porous materials and then in the case of inhomogeneous poroelastic materials in the framework of Biot's theory. This paper focuses on the solution of the full wave equation in cylindrical coordinates for poroelastic tubes in which the acoustic and elastic properties of the poroelastic tube vary in the radial direction. The reflection coefficient is obtained numerically using the state vector (or the so-called Stroh) formalism and Peano series. This coefficient can then be used to straightforwardly calculate the scattered field. To validate the method of resolution, results obtained by the present method are compared to those calculated by the classical transfer matrix method in the case of a two-layer poroelastic tube. As an example, a long bone excited in the sagittal plane is considered. Finally, a discussion is given of ultrasonic time domain scattered field for various inhomogeneity profiles, which could lead to the prospect of long bone characterization.

  9. Seismic wave detection system based on fully distributed acoustic sensing

    Science.gov (United States)

    Jiang, Yue; Xu, Tuanwei; Feng, Shengwen; Huang, Jianfen; Yang, Yang; Guo, Gaoran; Li, Fang

    2016-11-01

    This paper presents a seismic wave detection system based on fully distributed acoustic sensing. Combined with Φ- OTDR and PGC demodulation technology, the system can detect and acquire seismic wave in real time. The system has a frequency response of 3.05 dB from 5 Hz to 1 kHz, whose sampling interval of each channel of 1 meter on total sensing distance up to 10 km. By comparing with the geophone in laboratory, the data show that in the time domain and frequency domain, two waveforms coincide consistently, and the correlation coefficient could be larger than 0.98. Through the analysis of the data of the array experiment and the oil well experiment, DAS system shows a consistent time domain and frequency domain response and a clearer trail of seismic wave signal as well as a higher signal-noise rate which indicate that the system we proposed is expected to become the next generation of seismic exploration equipment.

  10. Statistical Analysis of Acoustic Wave Parameters Near Solar Active Regions

    Science.gov (United States)

    Rabello-Soares, M. Cristina; Bogart, Richard S.; Scherrer, Philip H.

    2016-08-01

    In order to quantify the influence of magnetic fields on acoustic mode parameters and flows in and around active regions, we analyze the differences in the parameters in magnetically quiet regions nearby an active region (which we call “nearby regions”), compared with those of quiet regions at the same disk locations for which there are no neighboring active regions. We also compare the mode parameters in active regions with those in comparably located quiet regions. Our analysis is based on ring-diagram analysis of all active regions observed by the Helioseismic and Magnetic Imager (HMI) during almost five years. We find that the frequency at which the mode amplitude changes from attenuation to amplification in the quiet nearby regions is around 4.2 mHz, in contrast to the active regions, for which it is about 5.1 mHz. This amplitude enhacement (the “acoustic halo effect”) is as large as that observed in the active regions, and has a very weak dependence on the wave propagation direction. The mode energy difference in nearby regions also changes from a deficit to an excess at around 4.2 mHz, but averages to zero over all modes. The frequency difference in nearby regions increases with increasing frequency until a point at which the frequency shifts turn over sharply, as in active regions. However, this turnover occurs around 4.9 mHz, which is significantly below the acoustic cutoff frequency. Inverting the horizontal flow parameters in the direction of the neigboring active regions, we find flows that are consistent with a model of the thermal energy flow being blocked directly below the active region.

  11. [INVITED] Laser generation and detection of ultrafast shear acoustic waves in solids and liquids

    Science.gov (United States)

    Pezeril, Thomas

    2016-09-01

    The aim of this article is to provide an overview of the up-to-date findings related to ultrafast shear acoustic waves. Recent progress obtained for the laser generation and detection of picosecond shear acoustic waves in solids and liquids is reviewed. Examples in which the transverse isotropic symmetry of the sample structure is broken in order to permit shear acoustic wave generation through sudden laser heating are described in detail. Alternative photo-induced mechanisms for ultrafast shear acoustic generation in metals, semiconductors, insulators, magnetostrictive, piezoelectric and electrostrictive materials are reviewed as well. With reference to key experiments, an all-optical technique employed to probe longitudinal and shear structural dynamics in the GHz frequency range in ultra-thin liquid films is described. This technique, based on specific ultrafast shear acoustic transducers, has opened new perspectives that will be discussed for ultrafast shear acoustic probing of viscoelastic liquids at the nanometer scale.

  12. Statistical analysis of acoustic wave parameters near active regions

    CERN Document Server

    Soares, M Cristina Rabello; Scherrer, Philip H

    2016-01-01

    In order to quantify the influence of magnetic fields on acoustic mode parameters and flows in and around active regions, we analyse the differences in the parameters in magnetically quiet regions nearby an active region (which we call `nearby regions'), compared with those of quiet regions at the same disc locations for which there are no neighboring active regions. We also compare the mode parameters in active regions with those in comparably located quiet regions. Our analysis is based on ring diagram analysis of all active regions observed by HMI during almost five years. We find that the frequency at which the mode amplitude changes from attenuation to amplification in the quiet nearby regions is around 4.2 mHz, in contrast to the active regions, for which it is about 5.1 mHz. This amplitude enhancement (the `acoustic halo effect') is as large as that observed in the active regions, and has a very weak dependence on the wave propagation direction. The mode energy difference in nearby regions also changes...

  13. Investigation of surface acoustic waves in laser shock peened metals

    Institute of Scientific and Technical Information of China (English)

    Ling Yuan; Gang Yan; Zhonghua Shen; Hangwei Xu; Xiaowu Ni; Jian Lu

    2008-01-01

    Laser shock peening is a well-known method for extending the fatigue life of metal components by introducing near-surface compressive residual stress. The surface acoustic waves (SAWs) are dispersive when the near-surface properties of materials are changed. So the near-surface properties (such as the thickness of hardened layers, elastic properties, residual stresses, etc.) can be analyzed by the phase velocity dispersion. To study the propagation of SAWs in metal samples after peening, a more reasonable experimental method of broadband excitation and reception is introduced. The ultrasonic signals are excited by laser and received by polyvinylindene fluoride (PVDF) transducer. The SAW signals in aluminum alloy materials with different impact times by laser shock peening are detected. Signal spectrum and phase velocity dispersion curves of SAWs are analyzed. Moreover, reasons for dispersion are discussed.

  14. Heterogeneous Nucleation Induced by Capillary Wave During Acoustic Levitation

    Institute of Scientific and Technical Information of China (English)

    吕勇军; 解文军; 魏炳波

    2003-01-01

    The rapid solidification of acoustically levitated drops of Pb-61.9 wt. %Sn eutectic alloy is accomplished. A surface morphology of spreading ripples is observed on a sample undercooled by 15 K. The ripples originate from the centre of sample surface, which is also the heterogeneous nucleation site for eutectic growth. The Faraday instability excited by forced surface vibration has brought about these ripples. They are retained in the solidified sample if the sound pressure level exceeds the threshold pressure required for the appearance of capillary waves.Theoretical calculations indicate that both the pressure and displacement maxima exist in the central part of a levitated drop. The pressure near the sample centre can promote heterogeneous nucleation, which is in agreement qualitatively with the experimental results.

  15. Surface acoustic wave sensing of VOCs in harsh chemical environments

    Energy Technology Data Exchange (ETDEWEB)

    Pfeifer, K.B.; Martin, S.J.; Ricco, A.J.

    1993-06-01

    The measurement of VOC concentrations in harsh chemical and physical environments is a formidable task. A surface acoustic wave (SAW) sensor has been designed for this purpose and its construction and testing are described in this paper. Included is a detailed description of the design elements specific to operation in 300{degree}C steam and HCl environments including temperature control, gas handling, and signal processing component descriptions. In addition, laboratory temperature stability was studied and a minimum detection limit was defined for operation in industrial environments. Finally, a description of field tests performed on steam reforming equipment at Synthetica Technologies Inc. of Richmond, CA is given including a report on destruction efficiency of CCl{sub 4} in the Synthetica moving bed evaporator. Design improvements based on the field tests are proposed.

  16. Cyclodextrin-based surface acoustic wave chemical microsensors

    Energy Technology Data Exchange (ETDEWEB)

    Li, D.Q.; Shi, J.X.; Springer, K.; Swanson, B.I.

    1996-07-01

    Cyclodextrin thin films were fabricated using either self-assembled monolayer (SAM) or solgel techniques. The resulting host receptor thin films on the substrates of surface acoustic wave (SAW) resonators were studied as method of tracking organic toxins in vapor phase. The mass loading of surface-attached host monolayers on SAW resonators gave frequency shifts corresponding to typical monolayer surface coverages for SAM methods and ``multilayer`` coverages for sol-gel techniques. Subsequent exposure of the coated SAW resonators to organic vapors at various concentrations, typically 5,000 parts per millions (ppm) down to 100 parts per billions (ppb) by mole, gave responses indicating middle-ppb-sensitivity ({approximately}50 ppb) for those sensor-host-receptors and organic-toxin pairs with optimum mutual matching of polarity, size, and structural properties.

  17. Meshless RBF based pseudospectral solution of acoustic wave equation

    CERN Document Server

    Mishra, Pankaj K

    2015-01-01

    Chebyshev pseudospectral (PS) methods are reported to provide highly accurate solution using polynomial approximation. Use of polynomial basis functions in PS algorithms limits the formulation to univariate systems constraining it to tensor product grids for multi-dimensions. Recent studies have shown that replacing the polynomial by radial basis functions in pseudospectral method (RBF-PS) has the advantage of using irregular grids for multivariate systems. A RBF-PS algorithm has been presented here for the numerical solution of inhomogeneous Helmholtz's equation using Gaussian RBF for derivative approximation. Efficacy of RBF approximated derivatives has been checked through error analysis comparison with PS method. Comparative study of PS, RBF-PS and finite difference approach for the solution of a linear boundary value problem has been performed. Finally, a typical frequency domain acoustic wave propagation problem has been solved using Dirichlet boundary condition and a point source. The algorithm present...

  18. Multilayer-graphene-based amplifier of surface acoustic waves

    Energy Technology Data Exchange (ETDEWEB)

    Yurchenko, Stanislav O., E-mail: st.yurchenko@mail.ru; Komarov, Kirill A. [Bauman Moscow State Technical University, 2-nd Baumanskaya str. 5, Moscow 105005 (Russian Federation); Pustovoit, Vladislav I. [Scientific and Technological Center of Unique Instrumentation, Russian Academy of Sciences, Moscow (Russian Federation)

    2015-05-15

    The amplification of surface acoustic waves (SAWs) by a multilayer graphene (MLG)-based amplifier is studied. The conductivity of massless carriers (electrons or holes) in graphene in an external drift electric field is calculated using Boltzmann’s equation. At some carrier drift velocities, the real part of the variable conductivity becomes negative and MLG can be employed in SAW amplifiers. Amplification of Blustein’s and Rayleigh’s SAWs in CdS, a piezoelectric hexagonal crystal of the symmetry group C{sub 6v}, is considered. The corresponding equations for SAW propagation in the device are derived and can be applied to other substrate crystals of the same symmetry. The results of the paper indicate that MLG can be considered as a perspective material for SAW amplification and related applications.

  19. A Green's function method for surface acoustic waves in functionally graded materials.

    Science.gov (United States)

    Matsuda, Osamu; Glorieux, Christ

    2007-06-01

    Acoustic wave propagation in anisotropic media with one-dimensional inhomogeneity is discussed. Using a Green's function approach, the wave equation with inhomogeneous variation of elastic property and mass density is transformed into an integral equation, which is then solved numerically. The method is applied to find the dispersion relation of surface acoustic waves for a medium with continuously or discontinuously varying elastic property and mass density profiles.

  20. Time domain characteristics of wave motion in dispersive and anisotropic continuum acoustic metamaterials.

    Science.gov (United States)

    Wang, Zhaojun; Zhou, Xiaoming

    2016-12-01

    The authors study the wave propagation in continuum acoustic metamaterials whose all or not all of the principal elements of the mass tensor or the scalar compressibility can be negative due to wave dispersion. Their time-domain wave characteristics are particularly investigated by the finite-difference time-domain (FDTD) method, in which algorithms for the Drude and Lorentz dispersion pertinent to acoustic metamaterials are provided necessarily. Wave propagation nature of anisotropic acoustic metamaterials with all admissible material parameters are analyzed in a general manner. It is found that anomalous negative refraction phenomena can appear in several dispersion regimes, and their unique time-domain signatures have been discovered by the FDTD modeling. It is further proposed that two different metamaterial layers with specially assigned dispersions could comprise a conjugate pair that permits wave propagation only at specific points in the wave vector space. The time-domain pulse simulation verifies that acoustic directive radiation capable of modulating radiation angle with the wave frequency can be realized with this conjugate pair. The study provides the detailed analysis of wave propagation in anisotropic and dispersive acoustic mediums, which makes a further step toward dispersion engineering and transient wave control through acoustic metamaterials.

  1. Universal instability of dust ion-sound waves and dust-acoustic waves

    Energy Technology Data Exchange (ETDEWEB)

    Tsytovich, V.N. [General Physics Institute, Russian Academy of Science Moscow, Moscow (Russian Federation); Watanabe, K. [National Inst. for Fusion Science, Toki, Gifu (Japan)

    2002-01-01

    It is shown that the dust ion-sound waves (DISW) and the dust-acoustic waves (DAW) are universally unstable for wave numbers less than some critical wave number. The basic dusty plasma state is assumed to be quasi-neutral with balance of the plasma particle absorption on the dust particles and the ionization with the rate proportional to the electron density. An analytical expression for the critical wave numbers, for the frequencies and for the growth rates of DISW and DAW are found using the hydrodynamic description of dusty plasma components with self-consistent treatment of the dust charge variations and by taking into account the change of the ion and electron distributions in the dust charging process. Most of the previous treatment do not take into account the latter process and do not treat the basic state self-consistently. The critical lengths corresponding to these critical wave numbers can be easily achieved in the existing experiments. It is shown that at the wave numbers larger than the critical ones DISW and DAW have a large damping which was not treated previously and which can be also measured. The instabilities found in the present work on their non linear stage can lead to formation of different types of dust self-organized structures. (author)

  2. Acoustic wave emission for enhanced oil recovery (WAVE.O.R.)

    Energy Technology Data Exchange (ETDEWEB)

    Reichmann, S.; Amro, M. [TU Bergakademie, Freiberg (Germany); Giese, R.; Jaksch, K.; Krauss, F.; Krueger, K.; Jurczyk, A. [Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ, Potsdam (Germany)

    2016-09-15

    In the project WAVE.O.R the potential of acoustic waves to enhance oil recovery was reviewed. The project focused on laboratory experiments of the oil displacement in sandstone cores under acoustic stimulation. Additionally, the Seismic Prediction While Drilling (SPWD) borehole device prototype was set up for a feasibility field test. The laboratory experiments showed that, depending on the stimulation frequency, acoustic stimulation allows for an enhanced oil recovery. For single frequency stimulation a mean increase of 3 % pore volumes was observed at distinguished frequencies. A cyclic stimulation, where two of these frequencies were combined, an increase of 5% pore volume was observed. The SPWD borehole device was tested and adjusted during feasibility tests in the GFZ underground laboratory in the research and education mine ''Reiche Zeche'' of the TU Bergakademie Freiberg and in the GFZ KTB-Deep Laboratory in Windischeschenbach. The first successful test of the device under realistic conditions was performed at the test site ''Piana di Toppo'' of the OGS Trieste, Italy.

  3. Kinetic study of ion acoustic twisted waves with kappa distributed electrons

    Science.gov (United States)

    Arshad, Kashif; Aman-ur-Rehman, Mahmood, Shahzad

    2016-05-01

    The kinetic theory of Landau damping of ion acoustic twisted modes is developed in the presence of orbital angular momentum of the helical (twisted) electric field in plasmas with kappa distributed electrons and Maxwellian ions. The perturbed distribution function and helical electric field are considered to be decomposed by Laguerre-Gaussian mode function defined in cylindrical geometry. The Vlasov-Poisson equation is obtained and solved analytically to obtain the weak damping rates of the ion acoustic twisted waves in a non-thermal plasma. The strong damping effects of ion acoustic twisted waves at low values of temperature ratio of electrons and ions are also obtained by using exact numerical method and illustrated graphically, where the weak damping wave theory fails to explain the phenomenon properly. The obtained results of Landau damping rates of the twisted ion acoustic wave are discussed at different values of azimuthal wave number and non-thermal parameter kappa for electrons.

  4. Excitation of nonlinear ion acoustic waves in CH plasmas

    CERN Document Server

    Feng, Q S; Liu, Z J; Xiao, C Z; Wang, Q; He, X T

    2016-01-01

    Excitation of nonlinear ion acoustic wave (IAW) by an external electric field is demonstrated by Vlasov simulation. The frequency calculated by the dispersion relation with no damping is verified much closer to the resonance frequency of the small-amplitude nonlinear IAW than that calculated by the linear dispersion relation. When the wave number $ k\\lambda_{De} $ increases, the linear Landau damping of the fast mode (its phase velocity is greater than any ion's thermal velocity) increases obviously in the region of $ T_i/T_e < 0.2 $ in which the fast mode is weakly damped mode. As a result, the deviation between the frequency calculated by the linear dispersion relation and that by the dispersion relation with no damping becomes larger with $k\\lambda_{De}$ increasing. When $k\\lambda_{De}$ is not large, such as $k\\lambda_{De}=0.1, 0.3, 0.5$, the nonlinear IAW can be excited by the driver with the linear frequency of the modes. However, when $k\\lambda_{De}$ is large, such as $k\\lambda_{De}=0.7$, the linear ...

  5. The dust acoustic waves in three dimensional scalable complex plasma

    CERN Document Server

    Zhukhovitskii, D I

    2015-01-01

    Dust acoustic waves in the bulk of a dust cloud in complex plasma of low pressure gas discharge under microgravity conditions are considered. The dust component of complex plasma is assumed a scalable system that conforms to the ionization equation of state (IEOS) developed in our previous study. We find singular points of this IEOS that determine the behavior of the sound velocity in different regions of the cloud. The fluid approach is utilized to deduce the wave equation that includes the neutral drag term. It is shown that the sound velocity is fully defined by the particle compressibility, which is calculated on the basis of the scalable IEOS. The sound velocities and damping rates calculated for different 3D complex plasmas both in ac and dc discharges demonstrate a good correlation with experimental data that are within the limits of validity of the theory. The theory provides interpretation for the observed independence of the sound velocity on the coordinate and for a weak dependence on the particle ...

  6. Mechanically robust microfluidics and bulk wave acoustics to sort microparticles

    Science.gov (United States)

    Dauson, Erin R.; Gregory, Kelvin B.; Greve, David W.; Healy, Gregory P.; Oppenheim, Irving J.

    2016-04-01

    Sorting microparticles (or cells, or bacteria) is significant for scientific, medical and industrial purposes. Research groups have used lithium niobate SAW devices to produce standing waves, and then to align microparticles at the node lines in polydimethylsiloxane (PDMS, silicone) microfluidic channels. The "tilted angle" (skewed) configuration is a recent breakthrough producing particle trajectories that cross multiple node lines, making it practical to sort particles. However, lithium niobate wafers and PDMS microfluidic channels are not mechanically robust. We demonstrate "tilted angle" microparticle sorting in novel devices that are robust, rapidly prototyped, and manufacturable. We form our microfluidic system in a rigid polymethyl methacrylate (PMMA, acrylic) prism, sandwiched by lead-zirconium-titanate (PZT) wafers, operating in through-thickness mode with inertial backing, that produce standing bulk waves. The overall configuration is compact and mechanically robust, and actuating PZT wafers in through-thickness mode is highly efficient. Moving to this novel configuration introduced new acoustics questions involving internal reflections, but we show experimental images confirming the intended nodal geometry. Microparticles in "tilted angle" devices display undulating trajectories, where deviation from the straight path increases with particle diameter and with excitation voltage to create the mechanism by which particles are sorted. We show a simplified analytical model by which a "phase space" is constructed to characterize effective particle sorting, and we compare our experimental data to the predictions from that simplified model; precise correlation is not expected and is not observed, but the important physical trends from the model are paralleled in the measured particle trajectories.

  7. Surface-acoustic-wave-driven luminescence from a lateral p-n junction

    Science.gov (United States)

    Gell, J. R.; Atkinson, P.; Bremner, S. P.; Sfigakis, F.; Kataoka, M.; Anderson, D.; Jones, G. A. C.; Barnes, C. H. W.; Ritchie, D. A.; Ward, M. B.; Norman, C. E.; Shields, A. J.

    2006-12-01

    The authors report surface-acoustic-wave-driven luminescence from a lateral p-n junction formed by molecular beam epitaxy regrowth of a modulation doped GaAs /AlGaAs quantum well on a patterned GaAs substrate. Surface-acoustic-wave-driven transport is demonstrated by peaks in the electrical current and light emission from the GaAs quantum well at the resonant frequency of the transducer. This type of junction offers high carrier mobility and scalability. The demonstration of surface-acoustic-wave luminescence is a significant step towards single-photon applications in quantum computation and quantum cryptography.

  8. Effect of adiabatic variation of dust charges on dust acoustic solitary waves in magnetized dusty plasmas

    Institute of Scientific and Technical Information of China (English)

    Duan Wen-Shan

    2004-01-01

    The effect of dust charging and the influence of its adiabatic variation on dust acoustic waves is investigated. By employing the reductive perturbation technique we derived a Zakharov-Kuznetsov (ZK) equation for small amplitude dust acoustic waves. We have analytically verified that there are only rarefactive solitary waves for this system. The instability region for one-dimensional solitary wave under transverse perturbations has also been obtained. The obliquely propagating solitary waves to the z-direction for the ZK equation are given in this paper as well.

  9. Quasi-periodic behavior of ion acoustic solitary waves in electron-ion quantum plasma

    Energy Technology Data Exchange (ETDEWEB)

    Sahu, Biswajit [Department of Mathematics, West Bengal State University Barasat, Kolkata-700126 (India); Poria, Swarup [Department of Applied Mathematics, University of Calcutta Kolkata-700009 (India); Narayan Ghosh, Uday [Department of Mathematics, Siksha Bhavana, Visva Bharati University Santiniketan (India); Roychoudhury, Rajkumar [Physics and Applied Mathematics Unit, Indian Statistical Institute Kolkata-700108 (India)

    2012-05-15

    The ion acoustic solitary waves are investigated in an unmagnetized electron-ion quantum plasmas. The one dimensional quantum hydrodynamic model is used to study small as well as arbitrary amplitude ion acoustic waves in quantum plasmas. It is shown that ion temperature plays a critical role in the dynamics of quantum electron ion plasma, especially for arbitrary amplitude nonlinear waves. In the small amplitude region Korteweg-de Vries equation describes the solitonic nature of the waves. However, for arbitrary amplitude waves, in the fully nonlinear regime, the system exhibits possible existence of quasi-periodic behavior for small values of ion temperature.

  10. Investigation into Mass Loading Sensitivity of Sezawa Wave Mode-Based Surface Acoustic Wave Sensors

    Directory of Open Access Journals (Sweden)

    N. Ramakrishnan

    2013-02-01

    Full Text Available In this work mass loading sensitivity of a Sezawa wave mode based surface acoustic wave (SAW device is investigated through finite element method (FEM simulation and the prospects of these devices to function as highly sensitive SAW sensors is reported. A ZnO/Si layered SAW resonator is considered for the simulation study. Initially the occurrence of Sezawa wave mode and displacement amplitude of the Rayleigh and Sezawa wave mode is studied for lower ZnO film thickness. Further, a thin film made of an arbitrary material is coated over the ZnO surface and the resonance frequency shift caused by mass loading of the film is estimated. It was observed that Sezawa wave mode shows significant sensitivity to change in mass loading and has higher sensitivity (eight times higher than Rayleigh wave mode for the same device configuration. Further, the mass loading sensitivity was observed to be greater for a low ZnO film thickness to wavelength ratio. Accordingly, highly sensitive SAW sensors can be developed by coating a sensing medium over a layered SAW device and operating at Sezawa mode resonance frequency. The sensitivity can be increased by tuning the ZnO film thickness to wavelength ratio.

  11. Investigation into mass loading sensitivity of sezawa wave mode-based surface acoustic wave sensors.

    Science.gov (United States)

    Mohanan, Ajay Achath; Islam, Md Shabiul; Ali, Sawal Hamid; Parthiban, R; Ramakrishnan, N

    2013-02-06

    In this work mass loading sensitivity of a Sezawa wave mode based surface acoustic wave (SAW) device is investigated through finite element method (FEM) simulation and the prospects of these devices to function as highly sensitive SAW sensors is reported. A ZnO/Si layered SAW resonator is considered for the simulation study. Initially the occurrence of Sezawa wave mode and displacement amplitude of the Rayleigh and Sezawa wave mode is studied for lower ZnO film thickness. Further, a thin film made of an arbitrary material is coated over the ZnO surface and the resonance frequency shift caused by mass loading of the film is estimated. It was observed that Sezawa wave mode shows significant sensitivity to change in mass loading and has higher sensitivity (eight times higher) than Rayleigh wave mode for the same device configuration. Further, the mass loading sensitivity was observed to be greater for a low ZnO film thickness to wavelength ratio. Accordingly, highly sensitive SAW sensors can be developed by coating a sensing medium over a layered SAW device and operating at Sezawa mode resonance frequency. The sensitivity can be increased by tuning the ZnO film thickness to wavelength ratio.

  12. Acoustoelectric effects in reflection of leaky-wave-radiated bulk acoustic waves from piezoelectric crystal-conductive liquid interface.

    Science.gov (United States)

    Rimeika, Romualdas; Čiplys, Daumantas; Jonkus, Vytautas; Shur, Michael

    2016-01-01

    The leaky surface acoustic wave (SAW) propagating along X-axis of Y-cut lithium tantalate crystal strongly radiates energy in the form of an obliquely propagating narrow bulk acoustic wave (BAW) beam. The reflection of this beam from the crystal-liquid interface has been investigated. The test liquids were solutions of potassium nitrate in distilled water and of lithium chloride in isopropyl alcohol with the conductivity varied by changing the solution concentration. The strong dependences of the reflected wave amplitude and phase on the liquid conductivity were observed and explained by the acoustoelectric interaction in the wave reflection region. The novel configuration of an acoustic sensor for liquid media featuring important advantages of separate measuring and sensing surfaces and rigid structure has been proposed. The application of leaky-SAW radiated bulk waves for identification of different brands of mineral water has been demonstrated.

  13. On the local plane wave methods for in situ measurement of acoustic absorption

    NARCIS (Netherlands)

    Wijnant, Y.H.

    2015-01-01

    In this paper we address a series of so-called local plane wave methods (LPW) to measure acoustic absorption. As opposed to other methods, these methods do not rely on assumptions of the global sound field, like e.g. a plane wave or diffuse field, but are based on a local plane wave assumption. Ther

  14. Multi reflection of Lamb wave emission in an acoustic waveguide sensor.

    Science.gov (United States)

    Schmitt, Martin; Olfert, Sergei; Rautenberg, Jens; Lindner, Gerhard; Henning, Bernd; Reindl, Leonhard Michael

    2013-02-27

    Recently, an acoustic waveguide sensor based on multiple mode conversion of surface acoustic waves at the solid-liquid interfaces has been introduced for the concentration measurement of binary and ternary mixtures, liquid level sensing, investigation of spatial inhomogenities or bubble detection. In this contribution the sound wave propagation within this acoustic waveguide sensor is visualized by Schlieren imaging for continuous and burst operation the first time. In the acoustic waveguide the antisymmetrical zero order Lamb wave mode is excited by a single phase transducer of 1 MHz on thin glass plates of 1 mm thickness. By contact to the investigated liquid Lamb waves propagating on the first plate emit pressure waves into the adjacent liquid, which excites Lamb waves on the second plate, what again causes pressure waves traveling inside the liquid back to the first plate and so on. The Schlieren images prove this multi reflection within the acoustic waveguide, which confirms former considerations and calculations based on the receiver signal. With this knowledge the sensor concepts with the acoustic waveguide sensor can be interpreted in a better manner.

  15. Multi Reflection of Lamb Wave Emission in an Acoustic Waveguide Sensor

    Directory of Open Access Journals (Sweden)

    Leonhard Michael Reindl

    2013-02-01

    Full Text Available Recently, an acoustic waveguide sensor based on multiple mode conversion of surface acoustic waves at the solid—liquid interfaces has been introduced for the concentration measurement of binary and ternary mixtures, liquid level sensing, investigation of spatial inhomogenities or bubble detection. In this contribution the sound wave propagation within this acoustic waveguide sensor is visualized by Schlieren imaging for continuous and burst operation the first time. In the acoustic waveguide the antisymmetrical zero order Lamb wave mode is excited by a single phase transducer of 1 MHz on thin glass plates of 1 mm thickness. By contact to the investigated liquid Lamb waves propagating on the first plate emit pressure waves into the adjacent liquid, which excites Lamb waves on the second plate, what again causes pressure waves traveling inside the liquid back to the first plate and so on. The Schlieren images prove this multi reflection within the acoustic waveguide, which confirms former considerations and calculations based on the receiver signal. With this knowledge the sensor concepts with the acoustic waveguide sensor can be interpreted in a better manner.

  16. Numerical study of acoustophoretic motion of particles in a PDMS microchannel driven by surface acoustic waves.

    Science.gov (United States)

    Nama, Nitesh; Barnkob, Rune; Mao, Zhangming; Kähler, Christian J; Costanzo, Francesco; Huang, Tony Jun

    2015-06-21

    We present a numerical study of the acoustophoretic motion of particles suspended in a liquid-filled PDMS microchannel on a lithium niobate substrate acoustically driven by surface acoustic waves. We employ a perturbation approach where the flow variables are divided into first- and second-order fields. We use impedance boundary conditions to model the PDMS microchannel walls and we model the acoustic actuation by a displacement function from the literature based on a numerical study of piezoelectric actuation. Consistent with the type of actuation, the obtained first-order field is a horizontal standing wave that travels vertically from the actuated wall towards the upper PDMS wall. This is in contrast to what is observed in bulk acoustic wave devices. The first-order fields drive the acoustic streaming, as well as the time-averaged acoustic radiation force acting on suspended particles. We analyze the motion of suspended particles driven by the acoustic streaming drag and the radiation force. We examine a range of particle diameters to demonstrate the transition from streaming-drag-dominated acoustophoresis to radiation-force-dominated acoustophoresis. Finally, as an application of our numerical model, we demonstrate the capability to tune the position of the vertical pressure node along the channel width by tuning the phase difference between two incoming surface acoustic waves.

  17. Measurements of shock-induced guided and surface acoustic waves along boreholes in poroelastic materials

    NARCIS (Netherlands)

    Chao, G.; Smeulders, D.M.J.; Van Dongen, M.E.H.

    2006-01-01

    Acoustic experiments on the propagation of guided waves along water-filled boreholes in water-saturated porous materials are reported. The experiments were conducted using a shock tube technique. An acoustic funnel structure was placed inside the tube just above the sample in order to enhance the ex

  18. PASSIVE WIRELESS MULTI-SENSOR TEMPERATURE AND PRESSURE SENSING SYSTEM USING ACOUSTIC WAVE DEVICES Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal describes the development of passive surface acoustic wave (SAW) sensors and multi-sensor systems for NASA application to remote wireless sensing of...

  19. The limiting absorption principle for the acoustic wave operators in two unbounded media

    OpenAIRE

    Kadowaki, Mitsuteru

    1993-01-01

    In the present paper we study the limiting absorption principle for the acoustic wave operators in two unbounded media. We assume that the propagation speed is discontinuous at the interface and the equilibrium density is 1. ...

  20. Passive Wireless Cryogenic Liquid Level Sensors Using Orthogonal Frequency Coded Acoustic Wave Devices Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal describes the development of passive wireless surface acoustic wave (SAW) based liquid level sensors for NASA application to cryogenic liquid level...

  1. Passive Wireless Cryogenic Liquid Level Sensors Using Orthogonal Frequency Coded Acoustic Wave Devices Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal describes the continued development of passive wireless surface acoustic wave (SAW) based liquid level sensors for NASA application to cryogenic liquid...

  2. Passive Wireless Multi-Sensor Temperature and Pressure Sensing System Using Acoustic Wave Devices Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal describes the continued development of passive, orthogonal frequency coded (OFC) surface acoustic wave (SAW) sensors and multi-sensor systems, an...

  3. Characterization of wave physics in acoustic metamaterials using a fiber optic point detector

    Science.gov (United States)

    Ganye, Randy; Chen, Yongyao; Liu, Haijun; Bae, Hyungdae; Wen, Zhongshan; Yu, Miao

    2016-06-01

    Due to limitations of conventional acoustic probes, full spatial field mapping (both internal and external wave amplitude and phase measurements) in acoustic metamaterials with deep subwavelength structures has not yet been demonstrated. Therefore, many fundamental wave propagation phenomena in acoustic metamaterials remain experimentally unexplored. In this work, we realized a miniature fiber optic acoustic point detector that is capable of omnidirectional detection of complex spatial acoustic fields in various metamaterial structures over a broadband spectrum. By using this probe, we experimentally characterized the wave-structure interactions in an anisotropic metamaterial waveguide. We further demonstrated that the spatial mapping of both internal and external acoustic fields of metamaterial structures can help obtain important wave propagation properties associated with material dispersion and field confinement, and develop an in-depth understanding of the waveguiding physics in metamaterials. The insights and inspirations gained from our experimental studies are valuable not only for the advancement of fundamental metamaterial wave physics but also for the development of functional metamaterial devices such as acoustic lenses, waveguides, and sensors.

  4. Dust-Acoustic Waves in Strongly Coupled Dusty Plasmas Containing Variable-Charge Impurities

    Institute of Scientific and Technical Information of China (English)

    XIE Bai-Song; HE Kai-Fen; M. Y. Yu

    2000-01-01

    A relatively self-consistent theory of dust-acoustic waves in the strongly coupled dusty plasmas containing variable charge impurities is given. Relevant physical processes such as dust elastic relaxation and dust charge relaxation are taken into account. It is shown that the negative dispersion of dust-acoustic waves due to the strong correlation of dusts is enhanced in the presence of dust-neutral collisions.

  5. Propagation of flexural waves in inhomogeneous plates exhibiting hysteretic nonlinearity: Nonlinear acoustic black holes.

    Science.gov (United States)

    Gusev, Vitalyi E; Ni, Chenyin; Lomonosov, Alexey; Shen, Zhonghua

    2015-08-01

    Theory accounting for the influence of hysteretic nonlinearity of micro-inhomogeneous material on flexural wave in the plates of continuously varying thickness is developed. For the wedges with thickness increasing as a power law of distance from its edge strong modifications of the wave dynamics with propagation distance are predicted. It is found that nonlinear absorption progressively disappearing with diminishing wave amplitude leads to complete attenuation of acoustic waves in most of the wedges exhibiting black hole phenomenon. It is also demonstrated that black holes exist beyond the geometrical acoustic approximation. Applications include nondestructive evaluation of micro-inhomogeneous materials and vibrations damping.

  6. Einstein-de Broglie relations for wave packet: the acoustic world

    CERN Document Server

    Simaciu, Ion; Dumitrescu, Gheorghe; Georgeta, Nan

    2015-01-01

    In this paper we study the relations of Einstein-de Broglie type for the wave packets. We assume that the wave packet is a possible model of particle . When studying the behaviour of the wave packet for standing waves, in relation to an accelerated observer (i.e. Rindler observer), there can be demonstrated that the equivalent mass of the packet is the inertial mass. In our scenario, the waves and of the wave packets are depicted by the strain induced/produced in the medium. The properties of the waves, of the wave packet and, generally, of the perturbations in a material medium suggest the existence of an acoustic world. The acoustic world has mechanical and thermodynamical properties. The perturbations that are generated and propagated in the medium are correlated by means of acoustic waves with maximum speed. The observers of this world of disturbances (namely the acoustic world) have senses that are based on the perception of mechanical waves (disturbance of any kind) and apparatus for detecting and acqui...

  7. Surface acoustic wave nebulization facilitating lipid mass spectrometric analysis.

    Science.gov (United States)

    Yoon, Sung Hwan; Huang, Yue; Edgar, J Scott; Ting, Ying S; Heron, Scott R; Kao, Yuchieh; Li, Yanyan; Masselon, Christophe D; Ernst, Robert K; Goodlett, David R

    2012-08-07

    Surface acoustic wave nebulization (SAWN) is a novel method to transfer nonvolatile analytes directly from the aqueous phase to the gas phase for mass spectrometric analysis. The lower ion energetics of SAWN and its planar nature make it appealing for analytically challenging lipid samples. This challenge is a result of their amphipathic nature, labile nature, and tendency to form aggregates, which readily precipitate clogging capillaries used for electrospray ionization (ESI). Here, we report the use of SAWN to characterize the complex glycolipid, lipid A, which serves as the membrane anchor component of lipopolysaccharide (LPS) and has a pronounced tendency to clog nano-ESI capillaries. We also show that unlike ESI SAWN is capable of ionizing labile phospholipids without fragmentation. Lastly, we compare the ease of use of SAWN to the more conventional infusion-based ESI methods and demonstrate the ability to generate higher order tandem mass spectral data of lipid A for automated structure assignment using our previously reported hierarchical tandem mass spectrometry (HiTMS) algorithm. The ease of generating SAWN-MS(n) data combined with HiTMS interpretation offers the potential for high throughput lipid A structure analysis.

  8. Surface Acoustic Wave (SAW) Resonators for Monitoring Conditioning Film Formation.

    Science.gov (United States)

    Hohmann, Siegfried; Kögel, Svea; Brunner, Yvonne; Schmieg, Barbara; Ewald, Christina; Kirschhöfer, Frank; Brenner-Weiß, Gerald; Länge, Kerstin

    2015-05-21

    We propose surface acoustic wave (SAW) resonators as a complementary tool for conditioning film monitoring. Conditioning films are formed by adsorption of inorganic and organic substances on a substrate the moment this substrate comes into contact with a liquid phase. In the case of implant insertion, for instance, initial protein adsorption is required to start wound healing, but it will also trigger immune reactions leading to inflammatory responses. The control of the initial protein adsorption would allow to promote the healing process and to suppress adverse immune reactions. Methods to investigate these adsorption processes are available, but it remains difficult to translate measurement results into actual protein binding events. Biosensor transducers allow user-friendly investigation of protein adsorption on different surfaces. The combination of several transduction principles leads to complementary results, allowing a more comprehensive characterization of the adsorbing layer. We introduce SAW resonators as a novel complementary tool for time-resolved conditioning film monitoring. SAW resonators were coated with polymers. The adsorption of the plasma proteins human serum albumin (HSA) and fibrinogen onto the polymer-coated surfaces were monitored. Frequency results were compared with quartz crystal microbalance (QCM) sensor measurements, which confirmed the suitability of the SAW resonators for this application.

  9. Simulation of surface acoustic wave motor with spherical slider.

    Science.gov (United States)

    Morita, T; Kurosawa, M K; Higuchi, T

    1999-01-01

    The operation of a surface acoustic wave (SAW) motor using spherical-shaped sliders was demonstrated by Kurosawa et al. (1994). It was necessary to modify the previous simulation models for usual ultrasonic motors because of this slider shape and the high frequency vibration. A conventional ultrasonic motor has a flat contact surface slider and a hundredth driving frequency; so, the tangential motion caused by the elasticity of the slider and stator with regard to the spherical slider of the SAW motor requires further investigation. In this paper, a dynamic simulation model for the SAW motor is proposed. From the simulation result, the mechanism of the SAW motor was clarified (i.e., levitation and contact conditions were repeated during the operation). The transient response of the motor speed was simulated. The relationships between frictional factor and time constant and vibration velocity of the stator and the slider speed were understood. The detailed research regarding the elastic deformation caused by preload would be helpful to construct an exact simulation model for the next work.

  10. Following butter flavour deterioration with an acoustic wave sensor.

    Science.gov (United States)

    Gaspar, Cláudia R B S; Gomes, M Teresa S R

    2012-09-15

    Off-flavours develop naturally in butter and the process is accelerated by heat. An acoustic wave sensor was used to detect the aroma compounds evolved from heated butter and the results have shown that registered marked changes were coincident to odour changes detected by sensory analysis. The flavour compounds have also been analysed by GC/MS for identification. The response of the sensor was fully characterized in terms of the sensitivity to each of the identified compounds, and sensitivities of the system SPME/sensor were compared with the sensitivities of the system SPME/GC/MS. It was found that the sensor analytical system was more sensitive to methylketones than to fatty acids. The SPME/GC/MS system also showed the highest sensitivity to 2-heptanone, followed by 2-nonanone, but third place was occupied by undecanone and butanoic acid, to which the sensor showed moderate sensitivity. 2-heptanone was found to be an appropriate model compound to follow odour changes till the 500 h, and the lower sensitivity of the sensor to butanoic acid showed to be a positive characteristic, as saturation was prevented, and other more subtle changes in the flavour could be perceived.

  11. Dust Acoustic Solitary Waves in Saturn F-ring's Region

    Institute of Scientific and Technical Information of China (English)

    E.K. El-Shewy; M.I. Abo el Maaty; H.G. Abdelwahed; M.A.Elmessary

    2011-01-01

    Effect of hot and cold dust charge on the propagation of dust-acoustic waves (DAWs) in unmagnetized plasma having electrons, singly charged ions, hot and cold dust grains has been investigated.The reductive perturbation method is employed to reduce the basic set of fluid equations to the Kortewege-de Vries (KdV) equation.At the critical hot dusty plasma density NhO, the KdV equation is not appropriate for describing the system.Hence, a set of stretched coordinates is considered to derive the modified KdV equation.It is found that the presence of hot and cold dust charge grains not only significantly modifies the basic properties of solitary structure, but also changes the polarity of the solitary profiles.In the vicinity of the critical hot dusty plasma density NhO, neither KdV nor mKdV equation is appropriate for describing the DAWs.Therefore, a further modified KdV (fmKdV) equation is derived, which admits both soliton and double layer solutions.

  12. Surface Acoustic Wave (SAW Resonators for Monitoring Conditioning Film Formation

    Directory of Open Access Journals (Sweden)

    Siegfried Hohmann

    2015-05-01

    Full Text Available We propose surface acoustic wave (SAW resonators as a complementary tool for conditioning film monitoring. Conditioning films are formed by adsorption of inorganic and organic substances on a substrate the moment this substrate comes into contact with a liquid phase. In the case of implant insertion, for instance, initial protein adsorption is required to start wound healing, but it will also trigger immune reactions leading to inflammatory responses. The control of the initial protein adsorption would allow to promote the healing process and to suppress adverse immune reactions. Methods to investigate these adsorption processes are available, but it remains difficult to translate measurement results into actual protein binding events. Biosensor transducers allow user-friendly investigation of protein adsorption on different surfaces. The combination of several transduction principles leads to complementary results, allowing a more comprehensive characterization of the adsorbing layer. We introduce SAW resonators as a novel complementary tool for time-resolved conditioning film monitoring. SAW resonators were coated with polymers. The adsorption of the plasma proteins human serum albumin (HSA and fibrinogen onto the polymer-coated surfaces were monitored. Frequency results were compared with quartz crystal microbalance (QCM sensor measurements, which confirmed the suitability of the SAW resonators for this application.

  13. Controlling cell-cell interactions using surface acoustic waves.

    Science.gov (United States)

    Guo, Feng; Li, Peng; French, Jarrod B; Mao, Zhangming; Zhao, Hong; Li, Sixing; Nama, Nitesh; Fick, James R; Benkovic, Stephen J; Huang, Tony Jun

    2015-01-06

    The interactions between pairs of cells and within multicellular assemblies are critical to many biological processes such as intercellular communication, tissue and organ formation, immunological reactions, and cancer metastasis. The ability to precisely control the position of cells relative to one another and within larger cellular assemblies will enable the investigation and characterization of phenomena not currently accessible by conventional in vitro methods. We present a versatile surface acoustic wave technique that is capable of controlling the intercellular distance and spatial arrangement of cells with micrometer level resolution. This technique is, to our knowledge, among the first of its kind to marry high precision and high throughput into a single extremely versatile and wholly biocompatible technology. We demonstrated the capabilities of the system to precisely control intercellular distance, assemble cells with defined geometries, maintain cellular assemblies in suspension, and translate these suspended assemblies to adherent states, all in a contactless, biocompatible manner. As an example of the power of this system, this technology was used to quantitatively investigate the gap junctional intercellular communication in several homotypic and heterotypic populations by visualizing the transfer of fluorescent dye between cells.

  14. Propagation and localization of acoustic waves in Fibonacci phononic circuits

    Energy Technology Data Exchange (ETDEWEB)

    Aynaou, H [Laboratoire de Dynamique et d' Optique des Materiaux, Departement de Physique, Faculte des Sciences, Universite Mohamed Premier, 60000 Oujda (Morocco); Boudouti, E H El [Laboratoire de Dynamique et d' Optique des Materiaux, Departement de Physique, Faculte des Sciences, Universite Mohamed Premier, 60000 Oujda (Morocco); Djafari-Rouhani, B [Laboratoire de Dynamique et Structure des Materiaux Moleculaires, UMR CNRS 8024, UFR de Physique, Universite de Lille 1, F-59655 Villeneuve d' Ascq (France); Akjouj, A [Laboratoire de Dynamique et Structure des Materiaux Moleculaires, UMR CNRS 8024, UFR de Physique, Universite de Lille 1, F-59655 Villeneuve d' Ascq (France); Velasco, V R [Instituto de Ciencia de Materiales de Madrid, CSIC, Sor Juana Ines de la Cruz 3, 28049 Madrid (Spain)

    2005-07-13

    A theoretical investigation is made of acoustic wave propagation in one-dimensional phononic bandgap structures made of slender tube loops pasted together with slender tubes of finite length according to a Fibonacci sequence. The band structure and transmission spectrum is studied for two particular cases. (i) Symmetric loop structures, which are shown to be equivalent to diameter-modulated slender tubes. In this case, it is found that besides the existence of extended and forbidden modes, some narrow frequency bands appear in the transmission spectra inside the gaps as defect modes. The spatial localization of the modes lying in the middle of the bands and at their edges is examined by means of the local density of states. The dependence of the bandgap structure on the slender tube diameters is presented. An analysis of the transmission phase time enables us to derive the group velocity as well as the density of states in these structures. In particular, the stop bands (localized modes) may give rise to unusual (strong normal) dispersion in the gaps, yielding fast (slow) group velocities above (below) the speed of sound. (ii) Asymmetric tube loop structures, where the loops play the role of resonators that may introduce transmission zeros and hence new gaps unnoticed in the case of simple diameter-modulated slender tubes. The Fibonacci scaling property has been checked for both cases (i) and (ii), and it holds for a periodicity of three or six depending on the nature of the substrates surrounding the structure.

  15. Propagation and localization of acoustic waves in Fibonacci phononic circuits

    Science.gov (United States)

    Aynaou, H.; El Boudouti, E. H.; Djafari-Rouhani, B.; Akjouj, A.; Velasco, V. R.

    2005-07-01

    A theoretical investigation is made of acoustic wave propagation in one-dimensional phononic bandgap structures made of slender tube loops pasted together with slender tubes of finite length according to a Fibonacci sequence. The band structure and transmission spectrum is studied for two particular cases. (i) Symmetric loop structures, which are shown to be equivalent to diameter-modulated slender tubes. In this case, it is found that besides the existence of extended and forbidden modes, some narrow frequency bands appear in the transmission spectra inside the gaps as defect modes. The spatial localization of the modes lying in the middle of the bands and at their edges is examined by means of the local density of states. The dependence of the bandgap structure on the slender tube diameters is presented. An analysis of the transmission phase time enables us to derive the group velocity as well as the density of states in these structures. In particular, the stop bands (localized modes) may give rise to unusual (strong normal) dispersion in the gaps, yielding fast (slow) group velocities above (below) the speed of sound. (ii) Asymmetric tube loop structures, where the loops play the role of resonators that may introduce transmission zeros and hence new gaps unnoticed in the case of simple diameter-modulated slender tubes. The Fibonacci scaling property has been checked for both cases (i) and (ii), and it holds for a periodicity of three or six depending on the nature of the substrates surrounding the structure.

  16. On the wave equation with semilinear porous acoustic boundary conditions

    KAUST Repository

    Graber, Philip Jameson

    2012-05-01

    The goal of this work is to study a model of the wave equation with semilinear porous acoustic boundary conditions with nonlinear boundary/interior sources and a nonlinear boundary/interior damping. First, applying the nonlinear semigroup theory, we show the existence and uniqueness of local in time solutions. The main difficulty in proving the local existence result is that the Neumann boundary conditions experience loss of regularity due to boundary sources. Using an approximation method involving truncated sources and adapting the ideas in Lasiecka and Tataru (1993) [28], we show that the existence of solutions can still be obtained. Second, we prove that under some restrictions on the source terms, then the local solution can be extended to be global in time. In addition, it has been shown that the decay rates of the solution are given implicitly as solutions to a first order ODE and depends on the behavior of the damping terms. In several situations, the obtained ODE can be easily solved and the decay rates can be given explicitly. Third, we show that under some restrictions on the initial data and if the interior source dominates the interior damping term and if the boundary source dominates the boundary damping, then the solution ceases to exists and blows up in finite time. Moreover, in either the absence of the interior source or the boundary source, then we prove that the solution is unbounded and grows as an exponential function. © 2012 Elsevier Inc.

  17. Peculiar transmission property of acoustic waves in a one-dimensional layered phononic crystal

    Science.gov (United States)

    Zhao, Degang; Wang, Wengang; Liu, Zhengyou; Shi, Jing; Wen, Weijia

    2007-03-01

    In this article, we report both theoretical calculation and experimental observation of acoustic waves abnormally through a one-dimensional layered transmitted phononic crystal at frequencies within the band gap into a material of large acoustic impedance mismatch, with an efficiency as high as unity. The transmission peaks can be interpreted as a result of the interference of acoustic waves reflected from all periodically aligned interfaces. The condition for the appearance of peaks is analyzed in detail and the optimized layer number is given for different configurations.

  18. Assessing the accuracy of auralizations computed using a hybrid geometrical-acoustics and wave-acoustics method

    Science.gov (United States)

    Summers, Jason E.; Takahashi, Kengo; Shimizu, Yasushi; Yamakawa, Takashi

    2001-05-01

    When based on geometrical acoustics, computational models used for auralization of auditorium sound fields are physically inaccurate at low frequencies. To increase accuracy while keeping computation tractable, hybrid methods using computational wave acoustics at low frequencies have been proposed and implemented in small enclosures such as simplified models of car cabins [Granier et al., J. Audio Eng. Soc. 44, 835-849 (1996)]. The present work extends such an approach to an actual 2400-m3 auditorium using the boundary-element method for frequencies below 100 Hz. The effect of including wave-acoustics at low frequencies is assessed by comparing the predictions of the hybrid model with those of the geometrical-acoustics model and comparing both with measurements. Conventional room-acoustical metrics are used together with new methods based on two-dimensional distance measures applied to time-frequency representations of impulse responses. Despite in situ measurements of boundary impedance, uncertainties in input parameters limit the accuracy of the computed results at low frequencies. However, aural perception ultimately defines the required accuracy of computational models. An algorithmic method for making such evaluations is proposed based on correlating listening-test results with distance measures between time-frequency representations derived from auditory models of the ear-brain system. Preliminary results are presented.

  19. Metamaterial buffer for broadband non-resonant impedance matching of obliquely incident acoustic waves.

    Science.gov (United States)

    Fleury, Romain; Alù, Andrea

    2014-12-01

    Broadband impedance matching and zero reflection of acoustic waves at a planar interface between two natural materials is a rare phenomenon, unlike its optical counterpart, frequently observed for polarized light incident at the Brewster angle. In this article, it is shown that, by inserting a metamaterial layer between two acoustic materials with different impedance, it is possible to artificially realize an extremely broadband Brewster-like acoustic intromission angle window, in which energy is totally transmitted from one natural medium to the other. The metamaterial buffer, composed of acoustically hard materials with subwavelength tapered apertures, provides an interesting way to match the impedances of two media in a broadband fashion, different from traditional methods like quarter-wave matching or Fabry-Pérot resonances, inherently narrowband due to their resonant nature. This phenomenon may be interesting for a variety of applications including energy harvesting, acoustic imaging, ultrasonic transducer technology, and noise control.

  20. Nonlinear ion-acoustic cnoidal waves in a dense relativistic degenerate magnetoplasma

    Science.gov (United States)

    El-Shamy, E. F.

    2015-03-01

    The complex pattern and propagation characteristics of nonlinear periodic ion-acoustic waves, namely, ion-acoustic cnoidal waves, in a dense relativistic degenerate magnetoplasma consisting of relativistic degenerate electrons and nondegenerate cold ions are investigated. By means of the reductive perturbation method and appropriate boundary conditions for nonlinear periodic waves, a nonlinear modified Korteweg-de Vries (KdV) equation is derived and its cnoidal wave is analyzed. The various solutions of nonlinear ion-acoustic cnoidal and solitary waves are presented numerically with the Sagdeev potential approach. The analytical solution and numerical simulation of nonlinear ion-acoustic cnoidal waves of the nonlinear modified KdV equation are studied. Clearly, it is found that the features (amplitude and width) of nonlinear ion-acoustic cnoidal waves are proportional to plasma number density, ion cyclotron frequency, and direction cosines. The numerical results are applied to high density astrophysical situations, such as in superdense white dwarfs. This research will be helpful in understanding the properties of compact astrophysical objects containing cold ions with relativistic degenerate electrons.

  1. Characteristics and realization of the second generation surface acoustic wave's wavelet device

    Institute of Scientific and Technical Information of China (English)

    Wen Changbao; Zhu Changchun; Lu Wenke; Liu Qinghong; Liu Junhua

    2006-01-01

    To overcome the bulk acoustic wave (BAW), the triple transit signals and the discontinuous frequency band in the first generation surface acoustic wave's (FGSAW's) wavelet device, the full transfer multistrip coupler (MSC) is applied to implement wavelet device, and a novel structure of the second generation surface acoustic wave's (SGSAW's) wavelet device is proposed. In the SGSAW's wavelet device, the BAW is separated and eliminated in different acoustic propagating tracks, and the triple transit signal is suppressed. For arbitrary wavelet scale device, the center frequency is three times the radius of frequency band, which ensures that the frequency band of the SGSAW's wavelet device is continuous, and avoids losing signals caused by the discontinuation of frequency band. Experimental result confirms that the BAW suppression, ripples in band, receiving loss and insertion loss of the SGSAW's wavelet device are remarkably improved compared with those of the FGSAW's wavelet device.

  2. Single-valued definition of the multivalued function for borehole acoustic waves in transversely isotropic formations

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    It is useful to extract all components, including compressional, shear, and guided waves, from the full waveforms when we investigate the acoustic log data. The component waves can be simulated by calculating the contributions from poles and branch points of the borehole acoustic function according to Cauchy’s theorem. For such an algorithm to be implemented, the multivalued function for the borehole wave field in the frequency-axial-wavenumber domain has to be rendered single-valued first. Assuming that the borehole axis is parallel to the symmetry axis of transverse isotropy, this paper derives the branch points of the borehole acoustic function. We discover that the number and the locations of those branch points are determined by the relation among the formation parameters c33, c44, ε, and δ. Thus the single-valued definitions in the acoustic-wave computation are sorted into two different cases. After building the Riemann surface related to each radial wavenumber, we give the single-valued definition of the borehole acoustic function inside and on the integration contour based on the radiation condition. In a formation with δ > ε + c44/2c33, if we choose the integration contour and the single-valued definition of the acoustic function in the way used in isotropic cases, the simulation results of component waves will be wrong.

  3. Acoustic-wave generation in the process of CO2-TEA-laser-radiation interaction with metal targets in air

    Science.gov (United States)

    Apostol, Ileana; Teodorescu, G.; Serbanescu-Oasa, Anca; Dragulinescu, Dumitru; Chis, Ioan; Stoian, Razvan

    1995-03-01

    Laser radiation interaction with materials is a complex process in which creation of acoustic waves or stress waves is a part of it. As a function of the laser radiation energy and intensity incident on steel target surface ultrasound signals were registered and studied. Thermoelastic, ablation and breakdown mechanisms of generation of acoustic waves were analyzed.

  4. Comparison study on spherical wave superposition method and spherical wave source boundary point method for realizing nearfield acoustic holography

    Institute of Scientific and Technical Information of China (English)

    BI Chuanxing; CHEN Xinzhao; ZHOU Rong; CHEN Jian

    2005-01-01

    In the light of the concept of spherical wave source, the theoretical model of nearfield acoustic holography (NAH) based on the spherical wave superposition method (SWSM), including reconstruction of expansion coefficients, prediction of acoustic field, error sensitivity analysis, regularization method and a searching method with dual measurement surfaces for determining the optimal number of expansion terms, is established. Subsequently, the spherical wave source boundary point method (SWSBPM) and its application in the NAH are introduced briefly. Considering the similarity of the SWSM and the SWSBPM for realizing the NAH, they are compared. The similarities and differences of the two methods are illuminated by a rigorous mathematical justification and two experiments on a single source and two coherent sources in the semi-free acoustic field. And, the superiority of the NAH based on the SWSBPM is demonstrated.

  5. Monitoring polymer properties using shear horizontal surface acoustic waves.

    Science.gov (United States)

    Gallimore, Dana Y; Millard, Paul J; Pereira da Cunha, Mauricio

    2009-10-01

    Real-time, nondestructive methods for monitoring polymer film properties are increasingly important in the development and fabrication of modern polymer-containing products. Online testing of industrial polymer films during preparation and conditioning is required to minimize material and energy consumption, improve the product quality, increase the production rate, and reduce the number of product rejects. It is well-known that shear horizontal surface acoustic wave (SH-SAW) propagation is sensitive to mass changes as well as to the mechanical properties of attached materials. In this work, the SH-SAW was used to monitor polymer property changes primarily dictated by variations in the viscoelasticity. The viscoelastic properties of a negative photoresist film were monitored throughout the ultraviolet (UV) light-induced polymer cross-linking process using SH-SAW delay line devices. Changes in the polymer film mass and viscoelasticity caused by UV exposure produced variations in the phase velocity and attenuation of the SH-SAW propagating in the structure. Based on measured polymer-coated delay line scattering transmission responses (S(21)) and the measured polymer layer thickness and density, the viscoelastic constants c(44) and eta(44) were extracted. The polymer thickness was found to decrease 0.6% during UV curing, while variations in the polymer density were determined to be insignificant. Changes of 6% in c(44) and 22% in eta(44) during the cross-linking process were observed, showing the sensitivity of the SH-SAW phase velocity and attenuation to changes in the polymer film viscoelasticity. These results indicate the potential for SH-SAW devices as online monitoring sensors for polymer film processing.

  6. Functionally graded piezoelectric materials for modal transducers for exciting bulk and surface acoustic waves.

    Science.gov (United States)

    Yang, Jiashi; Jin, Zhihe; Li, Jiangyu

    2008-07-01

    We show that functionally graded piezoelectric materials can be used to make modal actuators through theoretical analyses of the excitation of extensional motion in an elastic rod and Rayleigh surface waves over an elastic half-plane. The results suggest alternatives with certain advantages for the excitation of bulk and surface acoustic waves.

  7. Eulerian Simulation of Acoustic Waves Over Long Range in Realistic Environments

    Science.gov (United States)

    Chitta, Subhashini; Steinhoff, John

    2015-11-01

    In this paper, we describe a new method for computation of long-range acoustics. The approach is a hybrid of near and far-field methods, and is unique in its Eulerian treatment of the far-field propagation. The near-field generated by any existing method to project an acoustic solution onto a spherical surface that surrounds a source. The acoustic field on this source surface is then extended to an arbitrarily large distance in an inhomogeneous far-field. This would normally require an Eulerian solution of the wave equation. However, conventional Eulerian methods have prohibitive grid requirements. This problem is overcome by using a new method, ``Wave Confinement'' (WC) that propagates wave-identifying phase fronts as nonlinear solitary waves that live on grid indefinitely. This involves modification of wave equation by the addition of a nonlinear term without changing the basic conservation properties of the equation. These solitary waves can then be used to ``carry'' the essential integrals of the acoustic wave. For example, arrival time, centroid position and other properties that are invariant as the wave passes a grid point. Because of this property the grid can be made as coarse as necessary, consistent with overall accuracy to resolve atmospheric/ground variations. This work is being funded by the U.S. Army under a Small Business Innovation Research (SBIR) program (contract number: # W911W6-12-C-0036). The authors would like to thank Dr. Frank Caradonna and Dr. Ben W. Sim for this support.

  8. Effect of nonthermal ion distribution and dust temperature on nonlinear dust-acoustic solitary waves

    Indian Academy of Sciences (India)

    K Annou; R Annou

    2012-01-01

    Dust-acoustic solitary waves in unmagnetized dusty plasma whose constituents are inertial charged dust grains, Boltzmannian electrons and nonthermal ions have been investigated by taking into account finite dust temperature. The pseudopotential has been used to study solitary solution. The existence of solitary waves having negative potential is reported.

  9. Analytical Study of Nonlinear Dust Acoustic Waves in Two-Dimensional Dust Plasma with Dust Charge Variation

    Institute of Scientific and Technical Information of China (English)

    LIN Chang; ZHANG Xiu-Lian

    2005-01-01

    The nonlinear dust acoustic waves in two-dimensional dust plasma with dust charge variation is analytically investigated by using the formally variable separation approach. New analytical solutions for the governing equation of this system have been obtained for dust acoustic waves in a dust plasma for the first time. We derive exact analytical expressions for the general case of the nonlinear dust acoustic waves in two-dimensional dust plasma with dust charge variation.

  10. Experimental study of propagation of instability waves in a submerged jet under transverse acoustic excitation

    Science.gov (United States)

    Mironov, A. K.; Krasheninnikov, S. Yu.; Maslov, V. P.; Zakharov, D. E.

    2016-07-01

    An experimental study was conducted on the specific features of instability wave propagation in the mixing layer of a turbulent jet when the jet is excited by an external acoustic wave. We used the technique of conditional phase averaging of data obtained by particle image velocimetry using the reference signal of a microphone placed near the jet. The influence of the excitation frequency on the characteristics of large-scale structures in the mixing layer was investigated. It is shown that the propagation patterns of the instability waves agree well with previously obtained data on the localization of acoustic sources in turbulent jets.

  11. Nonreciprocal propagation of surface acoustic wave in Ni/LiNbO 3

    Science.gov (United States)

    Sasaki, R.; Nii, Y.; Iguchi, Y.; Onose, Y.

    2017-01-01

    We investigated surface acoustic wave propagation in a Ni/LiNbO3 hybrid device. We found that the absorption and phase velocity are dependent on the sign of the wave vector, which indicates that the surface acoustic wave propagation has nonreciprocal characteristics induced by simultaneous breaking of time-reversal and spatial inversion symmetries. The nonreciprocity was reversed by 180∘ rotation of the magnetic field. The origin of the nonreciprocity is ascribed to interference of shear-type and longitudinal-type magnetoelastic couplings.

  12. Amplification of surface acoustic waves by transverse electric current in piezoelectric semiconductors

    DEFF Research Database (Denmark)

    Gulyaev, Yuri V.

    1974-01-01

    It is shown that the principal characteristic feature of the surface acoustic waves in piezoelectrics—the presence of an alternating electric field transverse to the surface, which can be of the same order of magnitude as the longitudinal field—may not only give rise to the known transverse...... acoustoelectric effect but also lead to amplification of surface acoustic waves by electron drift perpendicular to the surface. For Love waves in a piezoelectric semiconductor film on a highly conducting substrate, the amplification coefficient is found and the conditions necessary for amplification...

  13. Excitation of Light-Induced Acoustic Waves in Doped Lithium Niobate Crystals

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The phenomena of acoustic emission in doped lithium niobate crystals were observed in the process of light-induced quasi-breakdown. It is found that the ultrasonic waves introduce into the crystal have been modulated by the low frequency acoustic waves. Its frequency increases with the rise of the intensity of incident light and its jump period of breakdown is the same as that of the photovoltaic current Ic, the change of light-induced refractive index Δn and the diffracted light intensity L. This effect was explained with the interaction of the three waves and resonant state theory. The experimental results and the theoretical analysis are in conformity.

  14. Flexible Surface Acoustic Wave Device with AlN Film on Polymer Substrate

    Directory of Open Access Journals (Sweden)

    Jian Zhou

    2012-01-01

    Full Text Available Surface acoustic wave device with c-axis-oriented aluminum nitride (AlN piezoelectric thin films on polymer substrates can be potentially used for development of flexible sensors, flexible microfluidic applications, microsystems, and lab-on-chip systems. In this work, the AlN films have been successfully deposited on polymer substrates using the DC reactive magnetron-sputtering method at room temperature, and the XRD, SEM, and AFM methods reveal that low deposition pressure is beneficial to the highly c-axis-oriented AlN film on polymer substrates. Studies toward the development of AlN thin film-based flexible surface acoustic wave devices on the polymer substrates are initiated and the experimental and simulated results demonstrate the devices showing the acoustic wave velocity of 9000–10000 m/s, which indicate the AlN lamb wave.

  15. Propagation of acoustic wave in viscoelastic medium permeated with air bubbles

    Institute of Scientific and Technical Information of China (English)

    Liang Bin; Zhu Zhe-Min; Cheng Jian-Chun

    2006-01-01

    Based on the modification of the radial pulsation equation of an individual bubble, an effective medium method (EMM) is presented for studying propagation of linear and nonlinear longitudinal acoustic waves in viscoelastic medium permeated with air bubbles. A classical theory developed previously by Gaunaurd (Gaunaurd GC and (U)berall H, J. Acoust. Soc. Am., 1978; 63: 1699-1711) is employed to verify the EMM under linear approximation by comparing the dynamic (i.e. frequency-dependent) effective parameters, and an excellent agreement is obtained. The propagation of longitudinal waves is hereby studied in detail. The results illustrate that the nonlinear pulsation of bubbles serves as the source of second harmonic wave and the sound energy has the tendency to be transferred to second harmonic wave. Therefore the sound attenuation and acoustic nonlinearity of the viscoelastic matrix are remarkably enhanced due to the system's resonance induced by the existence of bubbles.

  16. Guiding and confinement of interface acoustic waves in solid-fluid pillar-based phononic crystals

    Science.gov (United States)

    Razip Wee, M. F. Mohd; Addouche, Mahmoud; Siow, Kim S.; Zain, A. R. Md; Elayouch, Aliyasin; Chollet, Franck; Khelif, Abdelkrim

    2016-12-01

    Pillar-based phononic crystals exhibit some unique wave phenomena due to the interaction between surface acoustic modes of the substrate and local resonances supported by pillars. In this paper, we extend the investigations by taking into account the presence of a liquid medium. We particularly demonstrate that local resonances dramatically decrease the phase velocity of Scholte-Stoneley wave, which leads to a slow wave at the solid/fluid interface. Moreover, we show that increasing the height of pillars introduces a new set of branches of interface modes and drastically affects the acoustic energy localization. Indeed, while some modes display a highly confined pressure between pillars, others exponentially decay in the fluid or only propagate in the solid without disturbing the fluid pressure. These theoretical results, performed by finite element method, highlight a new acoustic wave confinement suitable in various applications such as acoustophoresis, lab on chip and microfluidics.

  17. A Four-Quadrant PVDF Transducer for Surface Acoustic Wave Detection

    Directory of Open Access Journals (Sweden)

    Zhi Chen

    2012-08-01

    Full Text Available In this paper, a polyvinylidene fluoride (PVDF piezoelectric transducer was developed to detect laser-induced surface acoustic waves in a SiO2-thin film–Si-substrate structure. In order to solve the problems related to, firstly, the position of the probe, and secondly, the fact that signals at different points cannot be detected simultaneously during the detection process, a four-quadrant surface acoustic wave PVDF transducer was designed and constructed for the purpose of detecting surface acoustic waves excited by a pulse laser line source. The experimental results of the four-quadrant piezoelectric detection in comparison with the commercial nanoindentation technology were consistent, the relative error is 0.56%, and the system eliminates the piezoelectric surface wave detection direction deviation errors, improves the accuracy of the testing system by 1.30%, achieving the acquisition at the same time at different testing positions of the sample.

  18. Ion acoustic solitary waves in plasmas with nonextensive electrons, Boltzmann positrons and relativistic thermal ions

    Science.gov (United States)

    Hafez, M. G.; Talukder, M. R.

    2015-09-01

    This work investigates the theoretical and numerical studies on nonlinear propagation of ion acoustic solitary waves (IASWs) in an unmagnetized plasma consisting of nonextensive electrons, Boltzmann positrons and relativistic thermal ions. The Korteweg-de Vries (KdV) equation is derived by using the well known reductive perturbation method. This equation admits the soliton like solitary wave solution. The effects of phase velocity, amplitude of soliton, width of soliton and electrostatic nonlinear propagation of weakly relativistic ion-acoustic solitary waves have been discussed with graphical representation found in the variation of the plasma parameters. The obtained results can be helpful in understanding the features of small but finite amplitude localized relativistic ion-acoustic waves for an unmagnetized three component plasma system in astrophysical compact objects.

  19. Planar dust-acoustic waves in electron-positron-ion-dust plasmas with dust size distribution

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hong-Yan; Zhang, Kai-Biao [Sichuan University of Science and Engineering, Zigong (China)

    2014-06-15

    Nonlinear dust-acoustic solitary waves which are described with a Kortweg-de vries (KdV) equation by using the reductive perturbation method, are investigated in a planar unmagnetized dusty plasma consisting of electrons, positrons, ions and negatively-charged dust particles of different sizes and masses. The effects of the power-law distribution of dust and other plasma parameters on the dust-acoustic solitary waves are studied. Numerical results show that the dust size distribution has a significant influence on the propagation properties of dust-acoustic solitons. The amplitudes of solitary waves in the case of a power-law distribution is observed to be smaller, but the soliton velocity and width are observed to be larger, than those of mono-sized dust grains with an average dust size. Our results indicate that only compressed solitary waves exist in dusty plasma with different dust species. The relevance of the present investigation to interstellar clouds is discussed.

  20. Long thickness-extensional waves in thin film bulk acoustic wave filters affected by interdigital electrodes.

    Science.gov (United States)

    Liu, Jing; Du, Jianke; Wang, Ji; Yang, Jiashi

    2017-03-01

    We studied free vibrations of thin-film bulk acoustic wave filters with interdigital electrodes theoretically using the scalar differential equations by Tiersten and Stevens. The filters are made from AlN or ZnO films on Si substrates with ground and driving electrodes. They operate with thickness-extensional modes. The basic vibration characteristics including resonant frequencies and mode shapes were obtained. Their dependence on various geometric parameters was examined. It was found that for properly design filters there exist trapped modes whose vibrations are strong in regions with a driving electrode and decay away from the electrode edges. These trapped modes are essentially long plate thickness-extensional modes modulated by the electrode fingers. The number of trapped modes is sensitive to the geometric parameters.

  1. Wave Number Method for Three-Dimensional Steady-State Acoustic Problems

    Institute of Scientific and Technical Information of China (English)

    HUANG Fei; HE Zeng; WEI Jun-hong; PENG Wei-cai

    2007-01-01

    Based on the indirect Trefftz approach, a wave number method (WNM) is proposed to deal with three-dimensional steady-state acoustic problems. In the WNM, the dynamic pressure response variable is approximated by a set of wave functions, which exactly satisfy the Helmholtz equation. The set of wave functions comprise the exact solutions of the homogeneous part of the governing equations and some particular solution functions. The unknown coefficients of the wave functions can be obtained by enforcing the pressure approximation to satisfy the boundary conditions. Compared with the boundary element method (BEM), the WNM have a smaller system matrix, and is applicable to the radiation problems since the wave functions are independent of the domain size. A 3D acoustic cavity is exemplified to show the properties of the method. The results show that the wave number method is more efficient than the BEM, and it is fairly accurate.

  2. Ionospheric acoustic and gravity wave activity above low-latitude thunderstorms

    Energy Technology Data Exchange (ETDEWEB)

    Lay, Erin Hoffmann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-01-30

    In this report, we study the correlation between thunderstorm activity and ionospheric gravity and acoustic waves in the low-latitude ionosphere. We use ionospheric total electron content (TEC) measurements from the Low Latitude Ionospheric Sensor Network (LISN) and lightning measurements from the World- Wide Lightning Location Network (WWLLN). We find that ionospheric acoustic waves show a strong diurnal pattern in summer, peaking in the pre-midnight time period. However, the peak magnitude does not correspond to thunderstorm area, and the peak time is significantly after the peak in thunderstorm activity. Wintertime acoustic wave activity has no discernable pattern in these data. The coverage area of ionospheric gravity waves in the summer was found to increase with increasing thunderstorm activity. Wintertime gravity wave activity has an observable diurnal pattern unrelated to thunderstorm activity. These findings show that while thunderstorms are not the only, or dominant source of ionospheric perturbations at low-latitudes, they do have an observable effect on gravity wave activity and could be influential in acoustic wave activity.

  3. Effects of ion-atom collisions on the propagation and damping of ion-acoustic waves

    DEFF Research Database (Denmark)

    Andersen, H.K.; D'Angelo, N.; Jensen, Vagn Orla;

    1968-01-01

    Experiments are described on ion-acoustic wave propagation and damping in alkali plasmas of various degrees of ionization. An increase of the ratio Te/Ti from 1 to approximately 3-4, caused by ion-atom collisions, results in a decrease of the (Landau) damping of the waves. At high gas pressure and....../or low wave frequency a "fluid" picture adequately describes the experimental results....

  4. Phase Aberration and Attenuation Effects on Acoustic Radiation Force-Based Shear Wave Generation.

    Science.gov (United States)

    Carrascal, Carolina Amador; Aristizabal, Sara; Greenleaf, James F; Urban, Matthew W

    2016-02-01

    Elasticity is measured by shear wave elasticity imaging (SWEI) methods using acoustic radiation force to create the shear waves. Phase aberration and tissue attenuation can hamper the generation of shear waves for in vivo applications. In this study, the effects of phase aberration and attenuation in ultrasound focusing for creating shear waves were explored. This includes the effects of phase shifts and amplitude attenuation on shear wave characteristics such as shear wave amplitude, shear wave speed, shear wave center frequency, and bandwidth. Two samples of swine belly tissue were used to create phase aberration and attenuation experimentally. To explore the phase aberration and attenuation effects individually, tissue experiments were complemented with ultrasound beam simulations using fast object-oriented C++ ultrasound simulator (FOCUS) and shear wave simulations using finite-element-model (FEM) analysis. The ultrasound frequency used to generate shear waves was varied from 3.0 to 4.5 MHz. Results: The measured acoustic pressure and resulting shear wave amplitude decreased approximately 40%-90% with the introduction of the tissue samples. Acoustic intensity and shear wave displacement were correlated for both tissue samples, and the resulting Pearson's correlation coefficients were 0.99 and 0.97. Analysis of shear wave generation with tissue samples (phase aberration and attenuation case), measured phase screen, (only phase aberration case), and FOCUS/FEM model (only attenuation case) showed that tissue attenuation affected the shear wave generation more than tissue aberration. Decreasing the ultrasound frequency helped maintain a focused beam for creation of shear waves in the presence of both phase aberration and attenuation.

  5. Validation of an analytical compressed elastic tube model for acoustic wave propagation

    Science.gov (United States)

    Van Hirtum, A.; Blandin, R.; Pelorson, X.

    2015-12-01

    Acoustic wave propagation through a compressed elastic tube is a recurrent problem in engineering. Compression of the tube is achieved by pinching it between two parallel bars so that the pinching effort as well as the longitudinal position of pinching can be controlled. A stadium-based geometrical tube model is combined with a plane wave acoustic model in order to estimate acoustic wave propagation through the elastic tube as a function of pinching effort, pinching position, and outlet termination (flanged or unflanged). The model outcome is validated against experimental data obtained in a frequency range from 3.5 kHz up to 10 kHz by displacing an acoustic probe along the tube's centerline. Due to plane wave model assumptions and the decrease of the lowest higher order mode cut-on frequency with increasing pinching effort, the difference between modeled and measured data is analysed in three frequency bands, up to 5 kHz, 8 kHz, and 9.5 kHz, respectively. It is seen that the mean and standard error within each frequency band do not significantly vary with pinching effort, pinching position, or outlet termination. Therefore, it is concluded that the analytical tube model is suitable to approximate the elastic tube geometry when modeling acoustic wave propagation through the pinched elastic tube with either flanged or unflanged termination.

  6. Study on 3D simulation of wave fields in acoustic reflection image logging

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The borehole acoustic reflection imaging logging is a newly developed acoustic logging method that has attracted many interests. These converted and reflected waves for imaging are usually mixed up with borehole guided waves and therefore difficult to be clearly identified. To improve the downhole tool design and develop more sophisticate data processing and interpretation algorithms,studies on precisely numerical modeling of the wave fields in the acoustic reflection imaging logging are neces-sary and critical. This paper developed a parallelized scheme of 3D finite difference (3DFD) with non-uniform staggered grid and PML absorbing boundary to simulate the acoustic wave fields in isotropic and anisotropic formations. Applications of this scheme to the typical cases of isotropic and anisot-ropic formations and comparison with the results from published analytical solutions have demon-strated the validation and efficiency of the scheme. Higher accuracy and lower computation cost (3.5 times faster than the conventional schemes) have been achieved with this scheme for modeling such a complex wave fields of 60 dB dynamic range with higher frequency (10 kHz). This simulating program provides a quantitative analytical means for studying acoustic reflection imaging tool and development of the data processing and interpretation methods.

  7. Damping of an ion acoustic surface wave due to surface currents

    CERN Document Server

    Lee, H J

    1999-01-01

    The well-known linear dispersion relation for an ion acoustic surface wave has been obtained by including the linear surface current density J sub z parallel to the interface and by neglecting the linear surface current density J sub x perpendicular to the interface. The neglect of J sub x is questionable although it leads to the popular boundary condition that the tangential electric field is continuous. In this work, linear dispersion relation for an ion acoustic surface wave is worked out by including both components of the linear current density J . When that is done, the ion acoustic wave turns out to be heavily damped. If the electron mass is taken to be zero (electrons are Bolzmann-distributed), the perpendicular component of the surface current density vanishes, and we have the well-known ion acoustic surface wave eigenmode. We conclude that an ion acoustic surface wave propagates as an eigenmode only when its phase velocity is much smaller than the electron thermal velocity.

  8. Sub-optical wavelength acoustic wave modulation of integrated photonic resonators at microwave frequencies

    CERN Document Server

    Tadesse, Semere Ayalew

    2014-01-01

    Light-sound interactions have long been exploited in various acousto-optic devices based on bulk crystalline materials. Conventionally these devices operate in megahertz frequency range where the acoustic wavelength is much longer than the optical wavelength and a long interaction length is required to attain significant coupling. With nanoscale transducers, acoustic waves with sub-optical wavelengths can now be excited to induce strong acousto-optic coupling in nanophotonic devices. Here we demonstrate microwave frequency surface acoustic wave transducers co-integrated with nanophotonic resonators on piezoelectric aluminum nitride substrates. Acousto-optic modulation of the resonance modes at above 10 GHz with the acoustic wavelength significantly below the optical wavelength is achieved. The phase and modal matching conditions in this scheme are investigated for efficient modulation. The new acousto-optic platform can lead to novel optical devices based on nonlinear Brillouin processes and provides a direct...

  9. The nonlinear propagation of acoustic waves in a viscoelastic medium containing cylindrical micropores

    Institute of Scientific and Technical Information of China (English)

    Feng Yu-Lin; Liu Xiao-Zhou; Liu Jie-Hui; Ma Li

    2009-01-01

    Based on an equivalent medium approach,this paper presents a model describing the nonlinear propagation of acoustic waves in a viscoelastic medium containing cylindrical micropores. The influences of pores' nonlinear oscillations on sound attenuation,sound dispersion and an equivalent acoustic nonlinearity parameter are discussed. The calculated results show that the attenuation increases with an increasing volume fraction of mieropores. The peak of sound velocity and attenuation occurs at the resonant frequency of the micropores while the peak of the equivalent acoustic nonlinearity parameter occurs at the half of the resonant frequency of the micropores. Furthermore,multiple scattering has been taken into account,which leads to a modification to the effective wave number in the equivalent medium approach. We find that these linear and nonlinear acoustic parameters need to be corrected when the volume fraction of micropores is larger than 0.1%.

  10. Low-dispersion finite difference methods for acoustic waves in a pipe

    Science.gov (United States)

    Davis, Sanford

    1991-01-01

    A new algorithm for computing one-dimensional acoustic waves in a pipe is demonstrated by solving the acoustic equations as an initial-boundary-value problem. Conventional dissipation-free second-order finite difference methods suffer severe phase distortion for grids with less that about ten mesh points per wavelength. Using the signal generation by a piston in a duct as an example, transient acoustic computations are presented using a new compact three-point algorithm which allows about 60 percent fewer mesh points per wavelength. Both pulse and harmonic excitation are considered. Coupling of the acoustic signal with the pipe resonant modes is shown to generate a complex transient wave with rich harmonic content.

  11. Microcrack Identification in Cement-Based Materials Using Nonlinear Acoustic Waves

    Science.gov (United States)

    Chen, X. J.; Kim, J.-Y.; Qu, J.; Kurtis, K. E.; Wu, S. C.; Jacobs, L. J.

    2007-03-01

    This paper presents results from tests that use nonlinear acoustic waves to distinguish microcracks in cement-based materials. Portland cement mortar samples prepared with alkali-reactive aggregate were exposed to an aggressive environment to induce cracking were compared to control samples, of the same composition, but which were not exposed to aggressive conditions. Two nonlinear ultrasonic methods were used to characterize the samples, with the aim of identifying the time and extent of microcracking; these techniques were a nonlinear acoustical modulation (NAM) method and a harmonic amplitude relation (HAR) method. These nonlinear acoustic results show that both methods can distinguish damaged samples from undamaged ones, demonstrating the potential of nonlinear acoustic waves to provide a quantitative evaluation of the deterioration of cement-based materials.

  12. Wavemaker theories for acoustic-gravity waves over a finite depth

    Science.gov (United States)

    Tian, Miao; Kadri, Usama

    2016-04-01

    Acoustic-gravity waves (hereafter AGWs) in ocean have received much interest recently, mainly with respect to early detection of tsunamis as they travel at near the speed of sound in water which makes them ideal candidates for early detection of tsunamis. While the generation mechanisms of AGWs have been studied from the perspective of vertical oscillations of seafloor (Yamamoto, 1982; Stiassnie, 2010) and triad wave-wave interaction (Longuet-Higgins 1950; Kadri and Stiassnie 2013; Kadri and Akylas 2016), in the current study we are interested in their generation by wave-structure interaction with possible application to the energy sector. Here, we develop two wavemaker theories to analyze different wave modes generated by impermeable (the classic Havelock's theory) and porous (porous wavemaker theory) plates in weakly compressible fluids. Slight modification has been made to the porous theory so that, unlike the previous theory (Chwang, 1983), the new solution depends on the geometry of the plate. The expressions for three different types of plates (piston, flap, delta-function) are introduced. Analytical solutions are also derived for the potential amplitude of the gravity, evanescent, and acoustic-gravity waves, as well as the surface elevation, velocity distribution, and pressure for AGWs. Both theories reduce to previous results for incompressible flow when the compressibility is negligible. We also show numerical examples for AGW generated in a wave flume as well as in deep ocean. Our current study sets the theoretical background towards remote sensing by AGWs, for optimized deep ocean wave-power harnessing, among others. References Chwang, A.T. 1983 A porous-wavemaker theory. Journal of Fluid Mechanics, 132, 395- 406. Kadri, U., Stiassnie, M. 2013 Generation of an acoustic-gravity wave by two gravity waves, and their subsequent mutual interaction. J. Fluid Mech. 735, R6. Kadri U., Akylas T.R. 2016 On resonant triad interactions of acoustic-gravity waves. J

  13. Generation of acoustic rogue waves in dusty plasmas through three-dimensional particle focusing by distorted waveforms

    Science.gov (United States)

    Tsai, Ya-Yi; Tsai, Jun-Yi; I, Lin

    2016-06-01

    Rogue waves--rare uncertainly emerging localized events with large amplitudes--have been experimentally observed in many nonlinear wave phenomena, such as water waves, optical waves, second sound in superfluid He II (ref. ) and ion acoustic waves in plasmas. Past studies have mainly focused on one-dimensional (1D) wave behaviour through modulation instabilities, and to a lesser extent on higher-dimensional behaviour. The question whether rogue waves also exist in nonlinear 3D acoustic-type plasma waves, the kinetic origin of their formation and their correlation with surrounding 3D waveforms are unexplored fundamental issues. Here we report the direct experimental observation of dust acoustic rogue waves in dusty plasmas and construct a picture of 3D particle focusing by the surrounding tilted and ruptured wave crests, associated with the higher probability of low-amplitude holes for rogue-wave generation.

  14. Integrated microfluidics system using surface acoustic wave and electrowetting on dielectrics technology

    OpenAIRE

    Li, Y.; Fu, Y. Q.; Brodie, S. D.; Alghane, M.; Walton, A. J.

    2012-01-01

    This paper presents integrated microfluidic lab-on-a-chip technology combining surface acoustic wave (SAW) and electro-wetting on dielectric (EWOD). This combination has been designed to provide enhanced microfluidic functionality and the integrated devices have been fabricated using a single mask lithographic process. The integrated technology uses EWOD to guide and precisely position microdroplets which can then be actuated by SAW devices for particle concentration, acoustic streaming, mixi...

  15. Noise Reduction Evaluation of Multi-Layered Viscoelastic Infinite Cylinder under Acoustical Wave Excitation

    OpenAIRE

    Mofakhami, M.R.; H. Hosseini Toudeshky; Sh. Hosseini Hashemi

    2008-01-01

    In this paper sound transmission through the multilayered viscoelastic air filled cylinders subjected to the incident acoustic wave is studied using the technique of separation of variables on the basis of linear three dimensional theory of elasticity. The effect of interior acoustic medium on the mode maps (frequency vs geometry) and noise reduction is investigated. The effects of internal absorption and external moving medium on noise reduction are also evaluated. The dynamic viscoelastic p...

  16. Propagation of dust-acoustic waves in weakly ionized plasmas with dust-charge fluctuation

    Indian Academy of Sciences (India)

    K K Mondal

    2004-11-01

    For an unmagnetized partially ionized dusty plasma containing electrons, singly charged positive ions, micron-sized massive negatively charged dust grains and a fraction of neutral atoms, dispersion relations for both the dust-ion-acoustic and the dust-acoustic waves have been derived, incorporating dust charge fluctuation. The dispersion relations, under various conditions, have been exhaustively analysed. The explicit expressions for the growth rates have also been derived.

  17. Solution of an inverse scattering problem for the acoustic wave equation in three-dimensional media

    Science.gov (United States)

    Baev, A. V.

    2016-12-01

    A three-dimensional inverse scattering problem for the acoustic wave equation is studied. The task is to determine the density and acoustic impedance of a medium. A necessary and sufficient condition for the unique solvability of this problem is established in the form of an energy conservation law. The interpretation of the solution to the inverse problem and the construction of medium images are discussed.

  18. Filamentation instability of current-driven dust ion-acoustic waves in a collisional dusty plasma

    Energy Technology Data Exchange (ETDEWEB)

    Niknam, A. R. [Laser and Plasma Research Institute, Shahid Beheshti University, G.C., Tehran 19839-63113 (Iran, Islamic Republic of); Haghtalab, T.; Khorashadizadeh, S. M. [Physics Department, Birjand University, Birjand 97179-63384 (Iran, Islamic Republic of)

    2011-11-15

    A theoretical investigation has been made of the dust ion-acoustic filamentation instability in an unmagnetized current-driven dusty plasma by using the Lorentz transformation formulas. The effect of collision between the charged particles with neutrals and their thermal motion on this instability is considered. Developing the filamentation instability of the current-driven dust ion-acoustic wave allows us to determine the period and the establishment time of the filamentation structure and threshold for instability development.

  19. Development of Surface Acoustic Wave-Based Microgyroscope Utilizing Progressive Wave

    Science.gov (United States)

    Oh, Haekwan; Yang, Sangsik; Lee, Keekeun

    2010-06-01

    An 80 MHz surface acoustic wave (SAW)-based gyroscope utilizing a progressive wave was developed on a 128° YX LiNbO3 piezoelectric substrate. The sensor developed consists of two SAW oscillators in which one is used as the sensing element and has metallic dots in the cavity between input and output interdigital transducers (IDTs). The other is used as the reference element. Coupling of modes (COM) modeling was conducted to determine the optimal device parameters prior to fabrication. On the basis of the simulation results, the device was fabricated and then measured on a rate table. When the device was subjected to an angular rotation, oscillation frequency differences between the two oscillators were observed because of the Coriolis force acting on the metallic dots. Depending on the angular velocity, the difference in oscillation frequency was modulated. The obtained sensitivity was approximately 52.35 Hz deg-1 s-1 at an angular rate range of 0-1000 deg/s. Device performances at different mass weights, mass positions, and temperatures were characterized. Good thermal stability was also observed during the evaluation process.

  20. Temporal isolation of surface-acoustic-wave-driven luminescence from a lateral p n junction using pulsed techniques

    Science.gov (United States)

    Gell, J. R.; Ward, M. B.; Atkinson, P.; Bremner, S. P.; Anderson, D.; Norman, C. E.; Kataoka, M.; Barnes, C. H. W.; Jones, G. A. C.; Shields, A. J.; Ritchie, D. A.

    2008-04-01

    The authors report surface-acoustic-wave-driven luminescence from a lateral p-n junction formed by molecular-beam epitaxy regrowth of a modulation doped GaAs/AlGaAs quantum well on a patterned GaAs substrate. Pulsed techniques are used to isolate the surface-acoustic-wave-driven emission from any emission due to pick-up of the free-space electromagnetic wave. The luminescence provides a fast probe of the signals arriving at the p-n junction allowing the response of the junction to the surface-acoustic-wave to be studied in the time domain. Oscillations in the surface-acoustic-wave-driven component of the light intensity are resolved at the resonant frequency of the transducer, suggesting that the surface-acoustic-wave is transporting electrons across the junction in packets.

  1. Anomalous width variation of rarefactive ion acoustic solitary waves in the context of auroral plasmas

    Directory of Open Access Journals (Sweden)

    S. S. Ghosh

    2004-01-01

    Full Text Available The presence of dynamic, large amplitude solitary waves in the auroral regions of space is well known. Since their velocities are of the order of the ion acoustic speed, they may well be considered as being generated from the nonlinear evolution of ion acoustic waves. However, they do not show the expected width-amplitude correlation for K-dV solitons. Recent POLAR observations have actually revealed that the low altitude rarefactive ion acoustic solitary waves are associated with an increase in the width with increasing amplitude. This indicates that a weakly nonlinear theory is not appropriate to describe the solitary structures in the auroral regions. In the present work, a fully nonlinear analysis based on Sagdeev pseudopotential technique has been adopted for both parallel and oblique propagation of rarefactive solitary waves in a two electron temperature multi-ion plasma. The large amplitude solutions have consistently shown an increase in the width with increasing amplitude. The width-amplitude variation profile of obliquely propagating rarefactive solitary waves in a magnetized plasma have been compared with the recent POLAR observations. The width-amplitude variation pattern is found to fit well with the analytical results. It indicates that a fully nonlinear theory of ion acoustic solitary waves may well explain the observed anomalous width variations of large amplitude structures in the auroral region.

  2. Novel Acoustic Wave Microsystems for Biophysical Studies of Cells

    Science.gov (United States)

    Senveli, Sukru Ufuk

    Single cell analysis is an important topic for understanding of diseases. In this understanding, biomechanics approach serves as an important tool as it relates and connects the mechanical properties of biological cells with diseases such as cancer. In this context, analysis methods based on ultrasonics are promising owing to their non-invasive nature and ease of use. However, there is a lack of miniature systems that provide accurate ultrasonic measurements on single cancer cells for diagnostic purposes. The platform presented in this study exploits high frequency acoustic interaction and uses direct coupling of Rayleigh type SAWs with various samples placed inside microcavities to analyze their structural properties. The samples used are aqueous glycerin solutions and polystyrene microbeads for demonstrating proper system operation, and lead up to biological cells. The microcavity is instrumental in trapping a predetermined volume of sample inside and facilitating the interaction of the surface waves with the sample in question via a resonance condition. Ultimately, the resultant SAW reaching the output transducer incurs a phase delay due to its interaction with the sample in the microcavity. The system operates in a different manner compared to similar systems as a result of multiple wave reflections in the small volume and coupling back to the piezoelectric substrate. The proposed microsystem was first analyzed using finite element methods. Liquid and solid media were modeled by considering frequency dependent characteristics. Similarly, mechanical behavior of cells with respect to different conditions is considered, and biological cells are modeled accordingly. Prototype devices were fabricated on quartz and lithium niobate in a cleanroom environment. Process steps were optimized separately for devices with microcavities. Precise fabrication, alignment, and bonding of PDMS microchannels were carried out. Soft microprobes were fabricated out of SU-8, a

  3. High amplitude nonlinear acoustic wave driven flow fields in cylindrical and conical resonators.

    Science.gov (United States)

    Antao, Dion Savio; Farouk, Bakhtier

    2013-08-01

    A high fidelity computational fluid dynamic model is used to simulate the flow, pressure, and density fields generated in a cylindrical and a conical resonator by a vibrating end wall/piston producing high-amplitude standing waves. The waves in the conical resonator are found to be shock-less and can generate peak acoustic overpressures that exceed the initial undisturbed pressure by two to three times. A cylindrical (consonant) acoustic resonator has limitations to the output response observed at one end when the opposite end is acoustically excited. In the conical geometry (dissonant acoustic resonator) the linear acoustic input is converted to high energy un-shocked nonlinear acoustic output. The model is validated using past numerical results of standing waves in cylindrical resonators. The nonlinear nature of the harmonic response in the conical resonator system is further investigated for two different working fluids (carbon dioxide and argon) operating at various values of piston amplitude. The high amplitude nonlinear oscillations observed in the conical resonator can potentially enhance the performance of pulse tube thermoacoustic refrigerators and these conical resonators can be used as efficient mixers.

  4. Eigenvalue solution to the electron-collisional effect on ion-acoustic and entropy waves

    Institute of Scientific and Technical Information of China (English)

    ZHENG; Jian

    2001-01-01

    [1]Braginskii,S.I.,Transport processes in a plasma,in Reviews of Plasma Physics,Vol.1,New York:Consultants Bureau,1965,205-311.[2]Ono,M.,Kulsrud,R.M.,Frequency and damping of ion acoustic waves,Phys.Fluids,1975,18(10):1287-1293.[3]Randall,C.J.,Effect of ion collisionality on ion-acoustic waves,Phys.Fluids,1982,25(12):2231-2233.[4]Tracy,M.D.,Williams,E.A.,Estabrook,K.G.et al.,Eigenvalue solution for the ion-collisional effects on ion-acoustic and entropy waves,Phys.Fluids,1993,B5(5):1430.[5]Bell,A.R.,Electron energy transport in ion waves and its relevance to laser produced plasmas,Phys.Fluids,1983,26(1):279-284.[6]Epperlein,E.M.,Short,R.W.,Simon,A.,Damping of ion-acoustic waves in the presence of electron-ion collisions,Phys.Rev.Lett.,1992,69(12):1765-1768.[7]Epperlein,E.M.,Effect of electron collisions on ion-acoustic waves and heat flow,Phys.Plasmas,1994,1(1):109-115.[8]Bychenkov,V.Y.,Myatt,J.,Rozmus,W.et al.,Quasihydrodynamic description of ion acoustic waves in a collisional plasmas,Phys.Plasmas,1994,1(8):2419-2429.[9]Bychenkov,V.Y.,Myatt,J.,Rozmus,W.et al.,Ion acoustic waves in plasmas with collisional electrons,Phys.Rev.E,1994,50(6):5134-5137.[10]Bychenkov,V.Y.,Rozmus,W.,Tikhonchuk,V.T.et al.,Nonlocal electron transport in a plasma,Phys.Rev.Lett.,1995,75(24):4405-4408.[11]Zhang,Y.Q.et al.,Density fluctuation spectra of a collision-dominated plasma measured by light scattering,Phys.Rev.Lett.,1989,62(16):1848-1851.[12]Hinton,F.L.,Collisional transport in plasma,in Handbook of Plasma Physics,Vol.1,Amsterdam:North-Holland,1983,147-199.[13]Zheng Jian,Yu Changxuan,A numerical approach to the frequencies and damping rates of ion-acoustic waves in ion-collisional plasmas,Chin.Phys.Lett.,1999,16(12):905-907.[14]Hammett,G.W.,Perkins,F.,Fluid moment models for Landau damping with application to the ion-temperature-gradient instability,Phys.Rev.Lett.,1990,64(25):3019-3022.

  5. Generation of acoustic terahertz waves in hybrid InGaN/GaN quantum wells

    Science.gov (United States)

    Mahat, Meg; Llopis, Antonia; Choi, Tae Youl; Periera, Sergio; Watson, Ian; Neogi, Arup

    2015-03-01

    We have carried out differential transmission measurements on InGaN/ GaN quantum wells with Au nanoparticles inserted inside V-pits with high filling fraction. We have observed acoustic wave packets generated with multiple THz frequencies as 0.12 THz from GaN buffer layer, 0.22 THz from Au-InGaN multiple quantum wells region, 0.07 THz from sapphire substrate, and 0.17 THz mixed signals from the sample. These THz wave packets are observed as a result of generation of coherent acoustic phonons propagating in hybrid Au-InGaN quantum wells. The study of these acoustic THz wave generation is crucial for the imaging of nanostructures.

  6. Lateral acoustic wave resonator comprising a suspended membrane of low damping resonator material

    Science.gov (United States)

    Olsson, Roy H.; El-Kady; , Ihab F.; Ziaei-Moayyed, Maryam; Branch; , Darren W.; Su; Mehmet F.,; Reinke; Charles M.,

    2013-09-03

    A very high-Q, low insertion loss resonator can be achieved by storing many overtone cycles of a lateral acoustic wave (i.e., Lamb wave) in a lithographically defined suspended membrane comprising a low damping resonator material, such as silicon carbide. The high-Q resonator can sets up a Fabry-Perot cavity in a low-damping resonator material using high-reflectivity acoustic end mirrors, which can comprise phononic crystals. The lateral overtone acoustic wave resonator can be electrically transduced by piezoelectric couplers. The resonator Q can be increased without increasing the impedance or insertion loss by storing many cycles or wavelengths in the high-Q resonator material, with much lower damping than the piezoelectric transducer material.

  7. Probing thermomechanics at the nanoscale: impulsively excited pseudosurface acoustic waves in hypersonic phononic crystals.

    Science.gov (United States)

    Nardi, Damiano; Travagliati, Marco; Siemens, Mark E; Li, Qing; Murnane, Margaret M; Kapteyn, Henry C; Ferrini, Gabriele; Parmigiani, Fulvio; Banfi, Francesco

    2011-10-12

    High-frequency surface acoustic waves can be generated by ultrafast laser excitation of nanoscale patterned surfaces. Here we study this phenomenon in the hypersonic frequency limit. By modeling the thermomechanics from first-principles, we calculate the system's initial heat-driven impulsive response and follow its time evolution. A scheme is introduced to quantitatively access frequencies and lifetimes of the composite system's excited eigenmodes. A spectral decomposition of the calculated response on the eigemodes of the system reveals asymmetric resonances that result from the coupling between surface and bulk acoustic modes. This finding allows evaluation of impulsively excited pseudosurface acoustic wave frequencies and lifetimes and expands our understanding of the scattering of surface waves in mesoscale metamaterials. The model is successfully benchmarked against time-resolved optical diffraction measurements performed on one-dimensional and two-dimensional surface phononic crystals, probed using light at extreme ultraviolet and near-infrared wavelengths.

  8. Ion acoustic kinetic Alfvén rogue waves in two temperature electrons superthermal plasmas

    Science.gov (United States)

    Kaur, Nimardeep; Saini, N. S.

    2016-10-01

    The propagation properties of ion acoustic kinetic Alfvén (IAKA) solitary and rogue waves have been investigated in two temperature electrons magnetized superthermal plasma in the presence of dust impurity. A nonlinear analysis is carried out to derive the Korteweg-de Vries (KdV) equation using the reductive perturbation method (RPM) describing the evolution of solitary waves. The effect of various plasma parameters on the characteristics of the IAKA solitary waves is studied. The dynamics of ion acoustic kinetic Alfvén rogue waves (IAKARWs) are also studied by transforming the KdV equation into nonlinear Schrödinger (NLS) equation. The characteristics of rogue wave profile under the influence of various plasma parameters (κc, μc, σ , θ) are examined numerically by using the data of Saturn's magnetosphere (Schippers et al. 2008; Sakai et al. 2013).

  9. Monitoring near-shore shingle transport under waves using a passive acoustic technique.

    Science.gov (United States)

    Mason, T; Priestley, D; Reeve, D E

    2007-08-01

    Passive acoustic techniques have been used to measure shingle (gravel) sediment transport in very shallow water, near the wave breaking zone on a beach. The experiments were conducted at 1:1 scale in the Large Wave Flume, Grosse Wellen Kanal (GWK) at Hannover, Germany. The frequency spectrum induced by shingle mobilized under breaking waves can be distinguished from other ambient noise, and is found to be independent of water depth and wave conditions. The inverse relationship between centroid frequency and representative grain size is shown to remain valid in shallow water wave conditions. Individual phases of onshore and offshore transport can be identified. Analysis of the acoustic frequency spectrum provides insight into the mechanics of phase-resolved shingle transport.

  10. Ultralow frequency acoustic resonances and its potential for mitigating tsunami wave formation

    CERN Document Server

    Estrada, Hector

    2012-01-01

    Bubbles display astonishing acoustical properties since they are able to absorb and scatter large amounts of energy coming from waves whose wavelengths are two orders of magnitude larger than the bubble size. Thus, as the interaction distance between bubbles is much larger than the bubble size, clouds of bubbles exhibit collective oscillations which can scatter acoustic waves three orders magnitude larger than the bubble size. Here we propose bubble based systems which resonate at frequencies that match the time scale relevant for seismogenic tsunami wave generation and may mitigate the devastating effects of tsunami waves. Based on a linear approximation, our na\\"ive proposal may open new research paths towards the mitigation of tsunami waves generation.

  11. Local helioseismic and spectroscopic analyses of interactions between acoustic waves and a sunspot

    CERN Document Server

    Rajaguru, S P; Sankarasubramanian, K; Couvidat, S; 10.1088/2041-8205/721/2/L86

    2010-01-01

    Using a high cadence imaging spectropolarimetric observation of a sunspot and its surroundings in magnetically sensitive (FeI 6173 A) and insensitive (FeI 7090 A) upper photospheric absorption lines, we map the instantaneous wave phases and helioseismic travel times as a function of observation height and inclination of magnetic field to the vertical. We confirm the magnetic inclination angle dependent transmission of incident acoustic waves into upward propagating waves, and derive (1) proof that helioseismic travel times receive direction dependent contributions from such waves and hence cause errors in conventional flow inferences, (2) evidences for acoustic wave sources beneath the umbral photosphere, and (3) significant differences in travel times measured from the chosen magnetically sensitive and insensitive spectral lines.

  12. Measurement of low-frequency ultrasonic wave in water using an acoustic fiber sensor.

    Science.gov (United States)

    Sakoda, Tatsuya; Sonoda, Yoshito

    2006-04-01

    An acoustic fiber sensor for measurement of ultrasonic waves, which used the approximate Raman-Nath diffraction effect where light diffraction waves were generated in an optical fiber by strain due to the ultrasonic waves, was proposed and examined. In order to characterize the acoustic fiber sensor as a basic study, measurements of low-frequency ultrasonic waves in water were examined using a step index fiber operating as a detection sensor. The results showed that characteristics of detected signals agreed with the theoretical prediction based on Fraunhofer diffraction. This indicates that our proposed fiber sensor can be used for the detection of low-frequency ultrasonic waves as well as the transmission of light diffraction signals.

  13. Local probing of propagating acoustic waves in a gigahertz echo chamber

    Science.gov (United States)

    Gustafsson, Martin V.; Santos, Paulo V.; Johansson, Göran; Delsing, Per

    2012-04-01

    In the same way that micro-mechanical resonators resemble guitar strings and drums, surface acoustic waves resemble the sound these instruments produce, but moving over a solid surface rather than through air. In contrast with oscillations in suspended resonators, such propagating mechanical waves have not before been studied near the quantum mechanical limits. Here, we demonstrate local probing of surface acoustic waves with a displacement sensitivity of 30amRMSHz-1/2 and detection sensitivity on the single-phonon level after averaging, at a frequency of 932MHz. Our probe is a piezoelectrically coupled single-electron transistor, which is sufficiently fast, non-destructive and localized to enable us to track pulses echoing back and forth in a long acoustic cavity, self-interfering and ringing the cavity up and down. We project that strong coupling to quantum circuits will enable new experiments, and hybrids using the unique features of surface acoustic waves. Prospects include quantum investigations of phonon-phonon interactions, and acoustic coupling to superconducting qubits for which we present favourable estimates.

  14. Vibration of a single microcapsule with a hard plastic shell in an acoustic standing wave field.

    Science.gov (United States)

    Koyama, Daisuke; Kotera, Hironori; Kitazawa, Natsuko; Yoshida, Kenji; Nakamura, Kentaro; Watanabe, Yoshiaki

    2011-04-01

    Observation techniques for measuring the small vibration of a single microcapsule of tens of nanometers in an acoustic standing wave field are discussed. First, simultaneous optical observation of a microbubble vibration by two methods is investigated, using a high-speed video camera, which permits two-dimensional observation of the bubble vibration, and a laser Doppler vibrometer (LDV), which can observe small bubble vibration amplitudes at high frequency. Bubbles of tens of micrometers size were trapped at the antinode of an acoustic standing wave generated in an observational cell. Bubble vibration at 27 kHz could be observed and the experimental results for the two methods showed good agreement. The radial vibration of microcapsules with a hard plastic shell was observed using the LDV and the measurement of the capsule vibration with radial oscillation amplitude of tens of nanometers was successful. The acoustic radiation force acting on microcapsules in the acoustic standing wave was measured from the trapped position of the standing wave and the radial oscillation amplitude of the capsules was estimated from the theoretical equation of the acoustic radiation force, giving results in good agreement with the LDV measurements. The radial oscillation amplitude of a capsule was found to be proportional to the amplitude of the driving sound pressure. A larger expansion ratio was observed for capsules closer to the resonance condition under the same driving sound pressure and frequency.

  15. Nonlinear ionospheric responses to large-amplitude infrasonic-acoustic waves generated by undersea earthquakes

    Science.gov (United States)

    Zettergren, M. D.; Snively, J. B.; Komjathy, A.; Verkhoglyadova, O. P.

    2017-02-01

    Numerical models of ionospheric coupling with the neutral atmosphere are used to investigate perturbations of plasma density, vertically integrated total electron content (TEC), neutral velocity, and neutral temperature associated with large-amplitude acoustic waves generated by the initial ocean surface displacements from strong undersea earthquakes. A simplified source model for the 2011 Tohoku earthquake is constructed from estimates of initial ocean surface responses to approximate the vertical motions over realistic spatial and temporal scales. Resulting TEC perturbations from modeling case studies appear consistent with observational data, reproducing pronounced TEC depletions which are shown to be a consequence of the impacts of nonlinear, dissipating acoustic waves. Thermospheric acoustic compressional velocities are ˜±250-300 m/s, superposed with downward flows of similar amplitudes, and temperature perturbations are ˜300 K, while the dominant wave periodicity in the thermosphere is ˜3-4 min. Results capture acoustic wave processes including reflection, onset of resonance, and nonlinear steepening and dissipation—ultimately leading to the formation of ionospheric TEC depletions "holes"—that are consistent with reported observations. Three additional simulations illustrate the dependence of atmospheric acoustic wave and subsequent ionospheric responses on the surface displacement amplitude, which is varied from the Tohoku case study by factors of 1/100, 1/10, and 2. Collectively, results suggest that TEC depletions may only accompany very-large amplitude thermospheric acoustic waves necessary to induce a nonlinear response, here with saturated compressional velocities ˜200-250 m/s generated by sea surface displacements exceeding ˜1 m occurring over a 3 min time period.

  16. Effects of external magnetic field on oblique propagation of ion acoustic cnoidal wave in nonextensive plasma

    Science.gov (United States)

    Farhad Kiyaei, Forough; Dorranian, Davoud

    2017-01-01

    Effects of the obliqueness and the strength of external magnetic field on the ion acoustic (IA) cnoidal wave in a nonextensive plasma are investigated. The reductive perturbation method is employed to derive the corresponding KdV equation for the IA wave. Sagdeev potential is extracted, and the condition of generation of IA waves in the form of cnoidal waves or solitons is discussed in detail. In this work, the domain of allowable values of nonextensivity parameter q for generation of the IA cnoidal wave in the plasma medium is considered. The results show that only the compressive IA wave may generate and propagate in the plasma medium. Increasing the strength of external magnetic field will increase the frequency of the wave and decrease its amplitude, while increasing the angle of propagation will decrease the frequency of the wave and increase its amplitude.

  17. Nonlinear dust-ion-acoustic waves in a multi-ion plasma with trapped electrons

    Indian Academy of Sciences (India)

    S S Duha; B Shikha; A A Mamun

    2011-08-01

    A dusty multi-ion plasma system consisting of non-isothermal (trapped) electrons, Maxwellian (isothermal) light positive ions, warm heavy negative ions and extremely massive charge fluctuating stationary dust have been considered. The dust-ion-acoustic solitary and shock waves associated with negative ion dynamics, Maxwellian (isothermal) positive ions, trapped electrons and charge fluctuating stationary dust have been investigated by employing the reductive perturbation method. The basic features of such dust-ion-acoustic solitary and shock waves have been identified. The implications of our findings in space and laboratory dusty multi-ion plasmas are discussed.

  18. High frequency surface acoustic wave resonator-based sensor for particulate matter detection

    OpenAIRE

    Thomas, Sanju; Cole, Marina; Villa-López, Farah Helue; Gardner, J. W.

    2016-01-01

    This paper describes the characterization of high frequency Surface Acoustic Wave Resonator-based (SAWR) sensors, for the detection of micron and sub-micron sized particles. The sensor comprises two 262 MHz ST-cut quartz based Rayleigh wave SAWRs where one is used for particle detection and the other as a reference. Electro-acoustic detection of different sized particles shows a strong relationship between mass sensitivity (Δf/Δm) and particle diameter (Dp). This enables frequency-dependent S...

  19. Energy Properties of Ion Acoustic Waves in Stable and Unstable Plasmas

    DEFF Research Database (Denmark)

    Jensen, Vagn Orla; Lynov, Jens-Peter

    1979-01-01

    acoustic waves that are growing or damped in space the time average of the sum of the potential and the kinetic energy density is independent of position. Energy absorption spectra in particle velocity space are calculated; they are relatively broad and complicated functions. This shows that plasma ions......Energy exchange between potential energy and ion kinetic energy in an ion acoustic wave is considered. In order to investigate the linear Landau damping or growth, the energy is calculated by use of first‐order quantities only so that nonlinear effects are not involved. It is found that for ion...

  20. Modeling and experimental analysis of acoustic cavitation bubbles for Burst Wave Lithotripsy

    Science.gov (United States)

    Maeda, Kazuki; Colonius, Tim; Kreider, Wayne; Maxwell, Adam; Cunitz, Bryan; Bailey, Michael

    2016-01-01

    A combined modeling and experimental study of acoustic cavitation bubbles that are initiated by focused ultrasound waves is reported. Focused ultrasound waves of frequency 335 kHz and peak negative pressure 8 MPa are generated in a water tank by a piezoelectric transducer to initiate cavitation. The resulting pressure field is obtained by direct numerical simulation (DNS) and used to simulate single bubble oscillation. The characteristics of cavitation bubbles observed by high-speed photography qualitatively agree withs the simulation result. Finally, bubble clouds are captured using acoustic B-mode imaging that works in synchronization with high-speed photography. PMID:27087826

  1. Experimental study on the relation between the water content of surface soil and the acoustic wave

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In order to investigate the relation between the water content changing of surface soil and micro-quake recorded before earthquakes, we carried out a simulation experiment in laboratory. Its purpose is to explore whether the acoustic wave generated by micro-fracturing before earthquake are able to change water content of surface soil, so as to understand the relation between thermal anomaly in the remote sensing image got from the seismogenic area and the coming earthquake. The result of the experiment shows that when the acoustic wave enters into the surface soil the water content here increases on the background of decreasing due to natural evaporation. In the meantime, temperature here decreases.

  2. Fast calculate the parameters of surface acoustic wave coupling-of-modes model

    Institute of Scientific and Technical Information of China (English)

    LIU Jiansheng; HE Shitang

    2007-01-01

    Accurate solutions of acoustic waves in piezoelectric substrate and metal film as layered structure were obtained. Phase velocity, electromechanical coupling coefficient and static capacitance were calculated based upon the solutions. Chen and Haus' theory was used to analyze surface acoustic waves in shorten gratings with single finger every period and a reflection coefficient expression of one strip was presented. Parameters of aluminum on X112°Y LiTaO3 and gold on ST-quartz were calculated. The results agreed well with those from Ken-ya Hashimoto's theory. The reflection coefficient of gold on ST-quartz was measured to verify the theoretical result.

  3. Manipulating the Magnetization of a Nanomagnet with Surface Acoustic Waves: Spin-Rotation Mechanism

    Science.gov (United States)

    Chudnovsky, Eugene M.; Jaafar, Reem

    2016-03-01

    We show that the magnetic moment of a nanoparticle embedded in the surface of a solid can be switched by surface acoustic waves in the GHz frequency range via a universal mechanism that does not depend on the structure of the particle and the structure of the substrate. It is based upon the generation of the effective ac magnetic field in the coordinate frame of the nanoparticle by the shear deformation of the surface due to surface acoustic waves. The magnetization reversal occurs via a consecutive absorption of surface phonons of the controlled variable frequency. We derive analytical equations governing this process and solve them numerically for the practical range of parameters.

  4. Different quantization mechanisms in single-electron pumps driven by surface acoustic waves

    DEFF Research Database (Denmark)

    Utko, P.; Gloos, K.; Hansen, Jørn Bindslev

    2006-01-01

    We have studied the acoustoelectric current in single-electron pumps driven by surface acoustic waves. We have found that in certain parameter ranges two different sets of quantized steps dominate the acoustoelectric current versus gate-voltage characteristics. In some cases, both types of quanti......We have studied the acoustoelectric current in single-electron pumps driven by surface acoustic waves. We have found that in certain parameter ranges two different sets of quantized steps dominate the acoustoelectric current versus gate-voltage characteristics. In some cases, both types...

  5. Integrated microfluidics system using surface acoustic wave and electrowetting on dielectrics technology.

    Science.gov (United States)

    Li, Y; Fu, Y Q; Brodie, S D; Alghane, M; Walton, A J

    2012-03-01

    This paper presents integrated microfluidic lab-on-a-chip technology combining surface acoustic wave (SAW) and electro-wetting on dielectric (EWOD). This combination has been designed to provide enhanced microfluidic functionality and the integrated devices have been fabricated using a single mask lithographic process. The integrated technology uses EWOD to guide and precisely position microdroplets which can then be actuated by SAW devices for particle concentration, acoustic streaming, mixing and ejection, as well as for sensing using a shear-horizontal wave SAW device. A SAW induced force has also been employed to enhance the EWOD droplet splitting function.

  6. Surface Acoustic Wave Monitor for Deposition and Analysis of Ultra-Thin Films

    Science.gov (United States)

    Hines, Jacqueline H. (Inventor)

    2015-01-01

    A surface acoustic wave (SAW) based thin film deposition monitor device and system for monitoring the deposition of ultra-thin films and nanomaterials and the analysis thereof is characterized by acoustic wave device embodiments that include differential delay line device designs, and which can optionally have integral reference devices fabricated on the same substrate as the sensing device, or on a separate device in thermal contact with the film monitoring/analysis device, in order to provide inherently temperature compensated measurements. These deposition monitor and analysis devices can include inherent temperature compensation, higher sensitivity to surface interactions than quartz crystal microbalance (QCM) devices, and the ability to operate at extreme temperatures.

  7. Non-linear wave propagation in acoustically lined circular ducts

    Science.gov (United States)

    Nayfeh, A. H.; Tsai, M.-S.

    1974-01-01

    An analysis is presented of the nonlinear effects of the gas motion as well as of the acoustic lining material on the transmission and attenuation of sound in a circular duct with a uniform cross-section and no mean flow. The acoustic material is characterized by an empirical, nonlinear impedance in which the instantaneous resistance is a nonlinear function of both the frequency and the acoustic velocity. The results show that there exist frequency bandwidths around the resonant frequencies in which the nonlinearity decreases the attenuation rate, and outside which the nonlinearity increases the attenuation rate, in qualitative agreement with experimental observations. Moreover, the effect of the gas nonlinearity increases with increasing sound frequency, whereas the effect of the material nonlinearity decreases with increasing sound frequency.

  8. Spherical Kadomtsev–Petviashviliequation for dust acoustic waves with dust size distribution and two-charges-ions

    Indian Academy of Sciences (India)

    K Annou; S Bahamida; R Annou

    2011-03-01

    The nonlinear dust acoustic waves in dusty plasmas with negative as well as positive ions and the combined effects of bounded spherical geometry and the transverse perturbation and the size distribution of dust grains are studied. Using the perturbation method, a spherical Kadomtsev–Petviashvili (SKP) equation that describes the dust acoustic waves is deduced.

  9. Nonlinear Scattering of Acoustic Waves by Vibrating Obstacles.

    Science.gov (United States)

    1983-06-01

    usual to simplify Eq. (14) under the assumption of adiabatic compressibility. According to Morse & Ingard [41], adiabatic compressibility is achieved...standard 58 acoustic text, such as Morse and Ingard [44]. They are w r cc r P Po[Jo(-R-) + 2 mcosOJa( T) , (107) 0 2ll 0 a D( 1 ) w r i Pscatt Am ) pt...Comments on the Interaction of Sound With Sound," presentation at 98th Mtg. of Acoust. Soc. Am., Nov 1979. 29. P.M. Morse & K.U. Ingard , Theoretical

  10. Surface Generated Acoustic Wave Biosensors for the Detection of Pathogens: A Review

    Directory of Open Access Journals (Sweden)

    Antonio Arnau-Vives

    2009-07-01

    Full Text Available This review presents a deep insight into the Surface Generated Acoustic Wave (SGAW technology for biosensing applications, based on more than 40 years of technological and scientific developments. In the last 20 years, SGAWs have been attracting the attention of the biochemical scientific community, due to the fact that some of these devices - Shear Horizontal Surface Acoustic Wave (SH-SAW, Surface Transverse Wave (STW, Love Wave (LW, Flexural Plate Wave (FPW, Shear Horizontal Acoustic Plate Mode (SH-APM and Layered Guided Acoustic Plate Mode (LG-APM - have demonstrated a high sensitivity in the detection of biorelevant molecules in liquid media. In addition, complementary efforts to improve the sensing films have been done during these years. All these developments have been made with the aim of achieving, in a future, a highly sensitive, low cost, small size, multi-channel, portable, reliable and commercially established SGAW biosensor. A setup with these features could significantly contribute to future developments in the health, food and environmental industries. The second purpose of this work is to describe the state-of-the-art of SGAW biosensors for the detection of pathogens, being this topic an issue of extremely importance for the human health. Finally, the review discuses the commercial availability, trends and future challenges of the SGAW biosensors for such applications.

  11. Modeling of acoustic and gravity waves propagation through the atmosphere with spectral element method

    Science.gov (United States)

    Brissaud, Q.; Garcia, R.; Martin, R.; Komatitsch, D.

    2014-12-01

    Low-frequency events such as tsunamis generate acoustic and gravity waves which quickly propagate in the atmosphere. Since the atmospheric density decreases exponentially as the altitude increases and from the conservation of the kinetic energy, those waves see their amplitude raise (to the order of 105 at 200km of altitude), allowing their detection in the upper atmosphere. Various tools have been developed through years to model this propagation, such as normal modes modeling or to a greater extent time-reversal techniques, but none offer a low-frequency multi-dimensional atmospheric wave modelling.A modeling tool is worthy interest since there are many different phenomena, from quakes to atmospheric explosions, able to propagate acoustic and gravity waves. In order to provide a fine modeling of the precise observations of these waves by GOCE satellite data, we developed a new numerical modeling tool.Starting from the SPECFEM program that already propagate waves in solid, porous or fluid media using a spectral element method, this work offers a tool with the ability to model acoustic and gravity waves propagation in a stratified attenuating atmosphere with a bottom forcing or an atmospheric source.Atmospheric attenuation is required in a proper modeling framework since it has a crucial impact on acoustic wave propagation. Indeed, it plays the role of a frequency filter that damps high-frequency signals. The bottom forcing feature has been implemented due to its ability to easily model the coupling with the Earth's or ocean's surface (that vibrates when a surface wave go through it) but also huge atmospheric events.

  12. Dynamic motions of ion acoustic waves in plasmas with superthermal electrons

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Asit, E-mail: asit_saha123@rediffmail.com [Department of Mathematics, Sikkim Manipal Institute of Technology (India); Chatterjee, Prasanta [Department of Mathematics, Siksha Bhavana, Visva Bharati University (India); Wong, C.S. [Plasma Technology Research Centre, Department of Physics, University of Malaya, Kuala Lampur (Malaysia)

    2015-12-15

    The dynamic motions of ion acoustic waves an unmagnetized plasma with superthermal (q-non extensive) electrons are investigated employing the bifurcation theory of planar dynamical systems through direct approach. Using traveling wave transformation and initial conditions, basic equations are transformed to a planar dynamical system. Using numerical computations, all possible phase portraits of the dynamical system are presented. Corresponding to homoclinic and periodic orbits of the phase portraits, two new analytical forms of solitary and periodic wave solutions are derived depending on the non extensive parameter q and speed v of the traveling wave. Considering an external periodic perturbation, the quasiperiodic and chaotic motions of ion acoustic waves are presented. Depending upon different ranges of non extensive parameter q, the effect of q is shown on quasiperiodic and chaotic motions of ion acoustic waves with fixed value of v. It is seen that the unperturbed dynamical system has the solitary and periodic wave solutions, but the perturbed dynamical system has the quasiperiodic and chaotic motions with same values of parameters q and v. (author)

  13. On the fully nonlinear acoustic waves in a plasma with positrons beam impact and superthermal electrons

    Energy Technology Data Exchange (ETDEWEB)

    Ali Shan, S. [Theoretical Plasma Physics Division, PINSTECH, Nilore, 44000 Islamabad (Pakistan); National Centre For Physics (NCP), Shahdra Valley Road, 44000 Islamabad (Pakistan); Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad (Pakistan); El-Tantawy, S. A.; Moslem, W. M. [Department of Physics, Faculty of Science, Port Said University, Port Said 42521 (Egypt)

    2013-08-15

    Arbitrary amplitude ion-acoustic waves in an unmagnetized plasma consisting of cold positive ions, superthermal electrons, and positrons beam are reported. The basic set of fluid equations is reduced to an energy-balance like equation. The latter is numerically analyzed to examine the existence regions for solitary and shock waves. It is found that only solitary waves can propagate, however, the model cannot support shocks. The effects of superthermality and beam parameters (via, positrons concentration and streaming velocity) on the existence region, as well as solitary wave profile have been discussed.

  14. The influence of wafer elasticity on acoustic waves during LIGA development.

    Energy Technology Data Exchange (ETDEWEB)

    Ting, Aili

    2003-12-01

    During acoustically stimulated LIGA development, a wafer receives sound waves from both sides at a wide variety of incidence angles that vary in time depending on the orientation of the wafer relative to the multiple transducers that are typically actuated in a periodic sequence. It is important to understand the influence of these variables on the transmission of energy through the wafer as well as the induced motion of the wafer itself because these processes impact the induced acoustic streaming of the fluid within features, the mechanism presently thought responsible for enhanced development of LIGA features. In the present work, the impact of wafer elasticity on LIGA development is investigated. Transmission waves, wafer bending waves, and the related concepts such as critical bending frequency, mechanical impedance, coincidence, and resonance, are discussed. Supercritical-frequency incident waves induce supersonic bending waves in the wafer. Incident wave energy is channeled into three components, transmitted, reflected and energy deposited to the wafer, depending on the wafer material, thickness and wave incidence angle. Results show at normal incidence for a 1-mm PMMA wafer, about 47% of the wave energy is deposited in the wafer. The wafer gains almost half of the incident energy, a result that agrees well with the Bankert et a1 measurements. In LIGA development, transmitted waves may sometimes produce strong acoustic motion of the developer on the wafer backside, especially for the so-called coincidence case in which almost all incident wave energy transfers to the backside. Wafer bending waves cause wafer oscillation at high frequency, promoting the development process, but features shaking may weaken their attachments to the substrate. Resonance is not likely for the entire wafer, but may occur in short and wide wafer feature columns, which are least likely to break away from the substrate, perhaps resulting in good agitation of the fluid in adjacent

  15. Asymmetric transmission of acoustic waves in a layer thickness distribution gradient structure using metamaterials

    Science.gov (United States)

    Chen, Jung-San; Chang, I.-Ling; Huang, Wan-Ting; Chen, Lien-Wen; Huang, Guan-Hua

    2016-09-01

    This research presents an innovative asymmetric transmission design using alternate layers of water and metamaterial with complex mass density. The directional transmission behavior of acoustic waves is observed numerically inside the composite structure with gradient layer thickness distribution and the rectifying performance of the present design is evaluated. The layer thickness distributions with arithmetic and geometric gradients are considered and the effect of gradient thickness on asymmetric wave propagation is systematically investigated using finite element simulation. The numerical results indicate that the maximum pressure density and transmission through the proposed structure are significantly influenced by the wave propagation direction over a wide range of audible frequencies. Tailoring the thickness of the layered structure enables the manipulation of asymmetric wave propagation within the desired frequency range. In conclusion, the proposed design offers a new possibility for developing directional-dependent acoustic devices.

  16. Charge Fluctuation of Dust Grain and Its Impact on Dusty-Acoustic Wave Damping

    CERN Document Server

    Atamaniuk, B

    2007-01-01

    We consider the influence of dust charge fluctuations on damping of the dust-ion-acoustic waves. It is assumed that all grains have equal masses but charges are not constant in time - they may fluctuate in time. The dust charges are not really independent of the variations in the plasma potentials. All modes will influence the charging mechanism, and feedback will lead to several new interesting and unexpected phenomena. The charging of the grains depends on local plasma characteristics. If the waves disturb these characteristic, then charging of the grains is affected and the grain charge is modified, with a resulting feedback on the wave mode. In the case considered here, when the temperature of electrons is much greater than the temperature of the ions and the temperature of electrons is not great enough for further ionization of the ions, we show that attenuation of the acoustic wave depends only on one phenomenological coefficient

  17. Excitation and propagation of shear-horizontal-type surface and bulk acoustic waves.

    Science.gov (United States)

    Hashimoto, K Y; Yamaguchi, M

    2001-09-01

    This paper reviews the basic properties of shear-horizontal (SH)-type surface acoustic waves (SAWs) and bulk acoustic waves (BAWs). As one of the simplest cases, the structure supporting Bleustein-Gulyaev-Shimizu waves is considered, and their excitation and propagation are discussed from various view points. First, the formalism based on the complex integral theory is presented, where the surface is assumed to be covered with an infinitesimally thin metallic film, and it is shown how the excitation and propagation of SH-type waves are affected by the surface perturbation. Then, the analysis is extended to a periodic grating structure, and the behavior of SH-type SAWs under the grating structure is discussed. Finally, the origin of the leaky nature is explained.

  18. Mode control of guided wave in magnetic hollow cylinder using electromagnetic acoustic transducer array

    Energy Technology Data Exchange (ETDEWEB)

    Furusawa, Akiniri; Kojima, Fumio; Morikawa, Atsushi [Dept. of Systems Science, Graduate School of System Informatics, Kobe University, Kobe (Japan)

    2015-03-15

    The aim of this work is to demonstrate a method for exciting and receiving torsional and longitudinal mode guided waves with an electromagnetic acoustic transducer (EMAT) ring array. First of all, a three-dimensional guided wave simulator is developed in order to numerically analyze the propagation of the guided wave. The finite difference time domain method is used for the simulator. Second, two guided wave testing systems using an EMAT ring array are provided: one is for torsional mode (T-mode) guided wave and the other is for longitudinal mode (L-mode). The EMATs used in the both systems are the same in design. A method to generate and receive the T- and L-mode guided waves with the same EMAT is proposed. Finally, experimental and numerical results are compared and discussed. The results of experiments and simulation agree well, showing the potential of the EMAT ring array as a mode controllable guided wave transmitter and receiver.

  19. Nonlinear acoustic waves in the viscous thermosphere and ionosphere above earthquake

    Science.gov (United States)

    Chum, J.; Cabrera, M. A.; Mošna, Z.; Fagre, M.; Baše, J.; Fišer, J.

    2016-12-01

    The nonlinear behavior of acoustic waves and their dissipation in the upper atmosphere is studied on the example of infrasound waves generated by vertical motion of the ground surface during the Mw 8.3 earthquake that occurred about 46 km from Illapel, Chile on 16 September 2015. To conserve energy, the amplitude of infrasound waves initially increased as the waves propagated upward to the rarefied air. When the velocities of air particles became comparable with the local sound speed, the nonlinear effects started to play an important role. Consequently, the shape of waveform changed significantly with increasing height, and the original wave packet transformed to the "N-shaped" pulse resembling a shock wave. A unique observation by the continuous Doppler sounder at the altitude of about 195 km is in good agreement with full wave numerical simulation that uses as boundary condition the measured vertical motion of the ground surface.

  20. Rapid Salmonella detection using an acoustic wave device combined with the RCA isothermal DNA amplification method

    Directory of Open Access Journals (Sweden)

    Antonis Kordas

    2016-12-01

    Full Text Available Salmonella enterica serovar Typhimurium is a major foodborne pathogen that causes Salmonellosis, posing a serious threat for public health and economy; thus, the development of fast and sensitive methods is of paramount importance for food quality control and safety management. In the current work, we are presenting a new approach where an isothermal amplification method is combined with an acoustic wave device for the development of a label free assay for bacteria detection. Specifically, our method utilizes a Love wave biosensor based on a Surface Acoustic Wave (SAW device combined with the isothermal Rolling Circle Amplification (RCA method; various protocols were tested regarding the DNA amplification and detection, including off-chip amplification at two different temperatures (30 °C and room temperature followed by acoustic detection and on-chip amplification and detection at room temperature, with the current detection limit being as little as 100 Bacteria Cell Equivalents (BCE/sample. Our acoustic results showed that the acoustic ratio, i.e., the amplitude over phase change observed during DNA binding, provided the only sensitive means for product detection while the measurement of amplitude or phase alone could not discriminate positive from negative samples. The method's fast analysis time together with other inherent advantages i.e., portability, potential for multi-analysis, lower sample volumes and reduced power consumption, hold great promise for employing the developed assay in a Lab on Chip (LoC platform for the integrated analysis of Salmonella in food samples.

  1. An investigation of the influence of acoustic waves on the liquid flow through a porous material.

    Science.gov (United States)

    Poesio, Pietro; Ooms, Gijs; Barake, Sander; van der Bas, Fred

    2002-05-01

    An experimental and theoretical investigation has been made of the influence of high-frequency acoustic waves on the flow of a liquid through a porous material. The experiments have been performed on Berea sandstone cores. Two acoustic horns were used with frequencies of 20 and 40 kHz, and with maximum power output of 2 and 0.7 kW, respectively. Also, a temperature measurement of the flowing liquid inside the core was made. A high external pressure was applied in order to avoid cavitation. The acoustic waves were found to produce a significant effect on the pressure gradient at constant liquid flow rate through the core samples. During the application of acoustic waves the pressure gradient inside the core decreases. This effect turned out to be due to the decrease of the liquid viscosity caused by an increase in liquid temperature as a result of the acoustic energy dissipation inside the porous material. Also, a theoretical model has been developed to calculate the dissipation effect on the viscosity and on the pressure gradient. The model predictions are in reasonable agreement with the experimental data.

  2. Small amplitude electron acoustic solitary waves in a magnetized superthermal plasma

    Science.gov (United States)

    Devanandhan, S.; Singh, S. V.; Lakhina, G. S.; Bharuthram, R.

    2015-05-01

    The propagation of electron acoustic solitary waves in a magnetized plasma consisting of fluid cold electrons, electron beam and superthermal hot electrons (obeying kappa velocity distribution function) and ion is investigated in a small amplitude limit using reductive perturbation theory. The Korteweg-de-Vries-Zakharov-Kuznetsov (KdV-ZK) equation governing the dynamics of electron acoustic solitary waves is derived. The solution of the KdV-ZK equation predicts the existence of negative potential solitary structures. The new results are: (1) increase of either the beam speed or temperature of beam electrons tends to reduce both the amplitude and width of the electron acoustic solitons, (2) the inclusion of beam speed and temperature pushes the allowed Mach number regime upwards and (3) the soliton width maximizes at certain angle of propagation (αm) and then decreases for α >αm . In addition, increasing the superthermality of the hot electrons also results in reduction of soliton amplitude and width. For auroral plasma parameters observed by Viking, the obliquely propagating electron-acoustic solitary waves have electric field amplitudes in the range (7.8-45) mV/m and pulse widths (0.29-0.44) ms. The Fourier transform of these electron acoustic solitons would result in a broadband frequency spectra with peaks near 2.3-3.5 kHz, thus providing a possible explanation of the broadband electrostatic noise observed during the Burst a.

  3. A nonlinear acoustic metamaterial: Realization of a backwards-traveling second-harmonic sound wave.

    Science.gov (United States)

    Quan, Li; Qian, Feng; Liu, Xiaozhou; Gong, Xiufen

    2016-06-01

    An ordinary waveguide with periodic vibration plates and side holes can realize an acoustic metamaterial that simultaneously possesses a negative bulk modulus and a negative mass density. The study is further extended to a nonlinear case and it is predicted that a backwards-traveling second-harmonic sound wave can be obtained through the nonlinear propagation of a sound wave in such a metamaterial.

  4. Numerical modeling of acoustic and gravity waves propagation in the atmosphere using a spectral element method

    Science.gov (United States)

    Martin, Roland; Brissaud, Quentin; Garcia, Raphael; Komatitsch, Dimitri

    2015-04-01

    During low-frequency events such as tsunamis, acoustic and gravity waves are generated and quickly propagate in the atmosphere. Due to the exponential decrease of the atmospheric density with the altitude, the conservation of the kinetic energy imposes that the amplitude of those waves increases (to the order of 105 at 200km of altitude), which allows their detection in the upper atmosphere. This propagation bas been modelled for years with different tools, such as normal modes modeling or to a greater extent time-reversal techniques, but a low-frequency multi-dimensional atmospheric wave modelling is still crucially needed. A modeling tool is worth of interest since there are many different sources, as earthquakes or atmospheric explosions, able to propagate acoustic and gravity waves. In order to provide a fine modeling of the precise observations of these waves by GOCE satellite data, we developed a new numerical modeling tool. By adding some developments to the SPECFEM package that already models wave propagation in solid, porous or fluid media using a spectral element method, we show here that acoustic and gravity waves propagation can now be modelled in a stratified attenuating atmosphere with a bottom forcing or an atmospheric source. The bottom forcing feature has been implemented to easily model the coupling with the Earth's or ocean's vibrating surfaces but also huge atmospheric events. Atmospheric attenuation is also introduced since it has a crucial impact on acoustic wave propagation. Indeed, it plays the role of a frequency filter that damps high-frequency signals.

  5. Effect of the acoustic boundary layer on the wave propagation in ducts

    Science.gov (United States)

    Nayfeh, A. H.

    1973-01-01

    An analysis is presented for the wave propagation in two-dimensional and circular lined ducts taking into account the effects of viscosity in both the mean and the acoustic problems. The method of composite expansions is used to express each acoustic flow quantity as the sum of an inviscid part and a boundary layer part insignificant outside a thin layer next to the wall. The problem is reduced to solving a second-order ordinary differential equation for the pressure perturbation as in the inviscid acoustic case but with a modified specific wall admittance. An analytic expression is presented for the variation of the modified admittance with the wall and flow parameters, such as the acoustic boundary layer thickness, the mean velocity and temperature gradients at the wall, the frequency of oscillation, and the wavelength.

  6. Conditions for the Observation of Two Ion-Acoustic Waves via Thomson Scattering

    Institute of Scientific and Technical Information of China (English)

    郑坚; 胡广月; 王哲斌; 俞昌旋; 刘万东

    2003-01-01

    Observation of two ion-acoustic waves via Thomson scattering can provide precise measurements of plasma parameters. The conditions for the observation of two ion-acoustic modes in a two-ion plasmaare discussed.The ratio of electron temperature Te to ion temperature Ti is the critical parameter for the presence of two ion-acoustic modes, which should be in the range of 4/ZL(<~)Te/Ti(<~)2AH/ZHAL, where ZL,H are the charge states of light and heavy ions, and AL,H are the atomic numbers of light and heavy ions, respectively. As the temperature ratio varies in this range, the concentration of heavy ions must increase with the ratio Te/Ti so that the two ion-acoustic modes can have the same fluctuation levels.

  7. Detecting nonlinear acoustic waves in liquids with nonlinear dipole optical antennae

    CERN Document Server

    Maksymov, Ivan S

    2015-01-01

    Ultrasound is an important imaging modality for biological systems. High-frequency ultrasound can also (e.g., via acoustical nonlinearities) be used to provide deeply penetrating and high-resolution imaging of vascular structure via catheterisation. The latter is an important diagnostic in vascular health. Typically, ultrasound requires sources and transducers that are greater than, or of order the same size as the wavelength of the acoustic wave. Here we design and theoretically demonstrate that single silver nanorods, acting as optical nonlinear dipole antennae, can be used to detect ultrasound via Brillouin light scattering from linear and nonlinear acoustic waves propagating in bulk water. The nanorods are tuned to operate on high-order plasmon modes in contrast to the usual approach of using fundamental plasmon resonances. The high-order operation also gives rise to enhanced optical third-harmonic generation, which provides an important method for exciting the higher-order Fabry-Perot modes of the dipole...

  8. Anomalous Refraction of Acoustic Guided Waves in Solids with Geometrically Tapered Metasurfaces

    Science.gov (United States)

    Zhu, Hongfei; Semperlotti, Fabio

    2016-07-01

    The concept of a metasurface opens new exciting directions to engineer the refraction properties in both optical and acoustic media. Metasurfaces are typically designed by assembling arrays of subwavelength anisotropic scatterers able to mold incoming wave fronts in rather unconventional ways. The concept of a metasurface was pioneered in photonics and later extended to acoustics while its application to the propagation of elastic waves in solids is still relatively unexplored. We investigate the design of acoustic metasurfaces to control elastic guided waves in thin-walled structural elements. These engineered discontinuities enable the anomalous refraction of guided wave modes according to the generalized Snell's law. The metasurfaces are made out of locally resonant toruslike tapers enabling an accurate phase shift of the incoming wave, which ultimately affects the refraction properties. We show that anomalous refraction can be achieved on transmitted antisymmetric modes (A0) either when using a symmetric (S0) or antisymmetric (A0) incident wave, the former clearly involving mode conversion. The same metasurface design also allows achieving structure embedded planar focal lenses and phase masks for nonparaxial propagation.

  9. Acoustic model of micro-pressure wave emission from a high-speed train tunnel

    Science.gov (United States)

    Miyachi, T.

    2017-03-01

    The micro-pressure wave (MPW) radiated from a tunnel portal can, if audible, cause serious problems around tunnel portals in high-speed railways. This has created a need to develop an acoustic model that considers the topography around a radiation portal in order to predict MPWs more accurately and allow for higher speed railways in the future. An acoustic model of MPWs based on linear acoustic theory is developed in this study. First, the directivity of sound sources and the acoustical effect of topography are investigated using a train launcher facility around a portal on infinitely flat ground and with an infinite vertical baffle plate. The validity of linear acoustic theory is then discussed through a comparison of numerical results obtained using the finite difference method (FDM) and experimental results. Finally, an acoustic model is derived that considers sound sources up to the second order and Green's function to represent the directivity and effect of topography, respectively. The results predicted by this acoustic model are shown to be in good agreement with both numerical and experimental results.

  10. Finite element analysis of surface acoustic waves in high aspect ratio electrodes

    DEFF Research Database (Denmark)

    Dühring, Maria Bayard; Laude, Vincent; Khelif, Abdelkrim

    2008-01-01

    down the SAWvelocity because of mechanical energy storage. A finite model is furthermore employed to study the acousto-optical interaction and shows that it is possible to get a bigger change in effective refractive index with these surface acoustic waves compared to using conventional interdigital...

  11. Quality factor due to roughness scattering of shear horizontal surface acoustic waves in nanoresonators

    NARCIS (Netherlands)

    Palasantzas, G.

    2008-01-01

    In this work we study the quality factor associated with dissipation due to scattering of shear horizontal surface acoustic waves by random self-affine roughness. It is shown that the quality factor is strongly influenced by both the surface roughness exponent H and the roughness amplitude w to late

  12. The adiabatic approximation solutions of cylindrical and spherical dust ion-acoustic solitary waves

    Institute of Scientific and Technical Information of China (English)

    吕克璞; 豆福全; 孙建安; 段文山; 石玉仁

    2005-01-01

    By using the equivalent particle theory, the adiabatic approximation solutions of the Korteweg-de Vries type equation (including KdV equation, cylindrical KdV equation and spherical KdV equation) in dust ion-acoustic solitary waves were obtained. The method can be extended to other nonlinear evolution equations.

  13. Magnesium oxide doping reduces acoustic wave attenuation in lithium metatantalate and lithium metaniobate crystals

    Science.gov (United States)

    Croft, W.; Damon, R.; Kedzie, R.; Kestigian, M.; Smith, A.; Worley, J.

    1970-01-01

    Single crystals of lithium metatantalate and lithium metaniobate, grown from melts having different stoichiometries and different amounts of magnesium oxide, show that doping lowers temperature-independent portion of attenuation of acoustic waves. Doped crystals possess optical properties well suited for electro-optical and photoelastic applications.

  14. Nonlinear Acoustics in a Dispersive Continuum: Random Waves, Radiation Pressure, and Quantum Noise.

    Science.gov (United States)

    1983-03-01

    Karpman , Nonlinear Waves in Dispersive Media, Pergamon Press, New York, 1975, p. 76. 26. R. Beyers, Nonlinear Acoustics, U.S. Government Printing...20301 U. S. Army Research nffice 2 copies Box 12211 Research Triangle Park tlorth Carolina 27709 Defense Technical Information Center 12 copies Cameron

  15. Diminishing of the mutual influencing in the transformers of mechanical values on surface acoustic waves

    Directory of Open Access Journals (Sweden)

    V. V. Piddubnyi

    2010-01-01

    Full Text Available Normal 0 false false false RU X-NONE X-NONE MicrosoftInternetExplorer4 Examined the problems usage differential amplifier as an active part of the secondary transformer mechanical values in the electrical signal to the surface acoustic wave. Description and results of his researches is resulted.

  16. Laser Plasmas : Effect of rippled laser beam on excitation of ion acoustic wave

    Indian Academy of Sciences (India)

    Nareshpal Singh Saini; Tarsem Singh Gill

    2000-11-01

    Growth of a radially symmetrical ripple, superimposed on a Gaussian laser beam in collisional unmagnetised plasma is investigated. From numerical computation, it is observed that self-focusing of main beam as well as ripple determine the growth dynamics of ripple with the distance of propagation. The effect of growing ripple on excitation of ion acoustic wave (IAW) has also been studied

  17. Transmission of wave energy in curved ducts. [acoustic propagation within rigid walls

    Science.gov (United States)

    Rostafinski, W.

    1974-01-01

    Investigation of the ability of circular bends to transmit acoustic energy flux. A formulation of wave-energy flow is developed for motion in curved ducts. A parametric study over a range of frequencies shows the ability of circular bends to transmit energy in the case of perfectly rigid walls.

  18. Studies on a surface acoustic wave (SAW) dosimeter sensor for organophosphorous nerve agents

    NARCIS (Netherlands)

    Nieuwenhuizen, M.S.; Harteveld, J.L.N.

    1997-01-01

    As a follow-up of previous work on a Surface Acoustic Wave (SAW) sensor for nerve agents, irreversible response effects have been studied in more detail. Surface analytical studies indicated that degradation products are responsible for the effects observed. In addition it was tried to explore these

  19. Enhanced and reduced transmission of acoustic waves with bubble meta-screens

    CERN Document Server

    Bretagne, Alice; Leroy, V

    2011-01-01

    We present a class of sonic meta-screens for manipulating air-borne acoustic waves at ultrasonic or audible frequencies. Our screens consist of periodic arrangements of air bubbles in water or possibly embedded in a soft elastic matrix. They can be used for soundproofing, but also for exalting transmission at an air/water interface or even to achieve enhanced absorption.

  20. The turn angle gauge of generating type with an element on surface acoustic waves

    Directory of Open Access Journals (Sweden)

    Lepikh Ya. I.

    2009-06-01

    Full Text Available The results of intellectualized angle of rotation sensor with an element on the surface acoustic waves (SAW development are presented. The generating type sensor block diagram, in which the element on SAW plays a role of the appropriate line of a delay is described. The sensor basic characteristics are given and the area of its application are shown.

  1. A filtered convolution method for the computation of acoustic wave fields in very large spatiotemporal domains

    NARCIS (Netherlands)

    Verweij, M.D.; Huijssen, J.

    2009-01-01

    The full-wave computation of transient acoustic fields with sizes in the order of 100x100x100 wavelengths by 100 periods requires a numerical method that is extremely efficient in terms of storage and computation. Iterative integral equation methods offer a good performance on these points, provided

  2. Air bubbles in water: a strongly multiple scattering medium for acoustic waves.

    Science.gov (United States)

    Kafesaki, M; Penciu, R S; Economou, E N

    2000-06-26

    Using a newly developed multiple scattering scheme, we calculate band structure and transmission properties for acoustic waves propagating in bubbly water. We prove that the multiple scattering effects are responsible for the creation of wide gaps in the transmission even in the presence of strong positional and size disorder.

  3. Horizontal Acoustic Barriers for Protection from Seismic Waves

    Directory of Open Access Journals (Sweden)

    Sergey V. Kuznetsov

    2011-01-01

    Full Text Available The basic idea of a seismic barrier is to protect an area occupied by a building or a group of buildings from seismic waves. Depending on nature of seismic waves that are most probable in a specific region, different kinds of seismic barriers can be suggested. Herein, we consider a kind of a seismic barrier that represents a relatively thin surface layer that prevents surface seismic waves from propagating. The ideas for these barriers are based on one Chadwick's result concerning nonpropagation condition for Rayleigh waves in a clamped half-space, and Love's theorem that describes condition of nonexistence for Love waves. The numerical simulations reveal that to be effective the length of the horizontal barriers should be comparable to the typical wavelength.

  4. Numerical simulations of acoustically generated gravitational waves at a first order phase transition

    Science.gov (United States)

    Hindmarsh, Mark; Huber, Stephan J.; Rummukainen, Kari; Weir, David J.

    2015-12-01

    We present details of numerical simulations of the gravitational radiation produced by a first order thermal phase transition in the early Universe. We confirm that the dominant source of gravitational waves is sound waves generated by the expanding bubbles of the low-temperature phase. We demonstrate that the sound waves have a power spectrum with a power-law form between the scales set by the average bubble separation (which sets the length scale of the fluid flow Lf) and the bubble wall width. The sound waves generate gravitational waves whose power spectrum also has a power-law form, at a rate proportional to Lf and the square of the fluid kinetic energy density. We identify a dimensionless parameter Ω˜GW characterizing the efficiency of this "acoustic" gravitational wave production whose value is 8 π Ω˜GW≃0.8 ±0.1 across all our simulations. We compare the acoustic gravitational waves with the standard prediction from the envelope approximation. Not only is the power spectrum steeper (apart from an initial transient) but the gravitational wave energy density is generically larger by the ratio of the Hubble time to the phase transition duration, which can be 2 orders of magnitude or more in a typical first order electroweak phase transition.

  5. Experimental research on acoustic wave velocity of frozen soils during the uniaxial loading process

    Institute of Scientific and Technical Information of China (English)

    DongQing Li; Xing Huang; Feng Ming; Yu Zhang; Hui Bing

    2015-01-01

    Ultrasonic P-wave tests of frozen silt and frozen sand were conducted during uniaxial loading by using an RSM®-SY5(T) nonmetal ultrasonic test meter to study the velocity characteristics of P-waves. The experimental results indicate that the P-wave velocity is affected by soil materials, temperature, and external loads, so the P-wave velocity is different in frozen silt and frozen sand, but all decrease with an increase of temperature and increase at first and then decrease with strain during the loading process. There is an exponential relationship between uniaxial compressive strength and P-wave ve-locity, and the correlation between them is very good. The characteristic parameters of acoustic waves can, to some extent, reflect the development of internal cracks in frozen soils during loading.

  6. Sagittal acoustic waves in phononic crystals: the k - dependent polarization

    Science.gov (United States)

    Manzanares-Martinez, Betsabe; Ramos-Mendieta, Felipe

    2007-03-01

    We have studied the longitudinal and shear contributions to the sagittal vibrations in phononic crystals of one and two dimensional periodicity. As is well known, pressure and shear waves couple to form the saggital oscillations. The question that guides our work is which of the two vibrations predominates in these waves. We demonstrate numerically that the contributions depend on the wave vector, in addition to the structural and material parameters. For calculations we have used a criterion of strain energy balance; the average of the pressure and shear contributions within the unitary cell is obtained. We present the polarization map of sagittal waves in an Epoxy/Sn superlattice and the band polarization for two arrays of cylindrical holes in epoxy. As we shall see the mixed modes can be either predominantly transverse or predominantly longitudinal.

  7. Effect of viscosity on dust–ion acoustic shock wave in dusty plasma with negative ions

    Energy Technology Data Exchange (ETDEWEB)

    Adhikary, Nirab C., E-mail: nirab_iasst@yahoo.co.in [Physical Sciences Division, Institute of Advanced Study in Science and Technology, Vigyan Path, Paschim Boragaon, Garchuk, Guwahati 781035, Assam (India)

    2012-03-26

    The properties of dust–ion acoustic (DIA) shock wave in a dusty plasma containing positive and negative ions is investigated. The reductive perturbation method has been used to derive the Korteweg–de Vries–Burgers equation for dust acoustic shock waves in a homogeneous, unmagnetized and collisionless plasma whose constituents are Boltzmann distributed electrons, singly charged positive ions, singly charged negative ions and cold static dust particles. The KdV–Burgers equation is derived and its stationary analytical solution is numerically analyzed where the effect of viscosity on the DIA shock wave propagation is taken into account. It is found that the viscosity in the dusty plasma plays as a key role in dissipation for the propagation of DIA shock. -- Highlights: ► Dust–ion acoustic shock wave propagation is studied in multi-component dusty plasma. ► KdV–Burgers equation is derived and its stationary solution is numerically analyzed. ► Viscosity in dusty plasma plays as a key role in dissipation of DIA shock wave.

  8. Amplification of acoustic waves in laminated piezoelectric semiconductor plates

    Energy Technology Data Exchange (ETDEWEB)

    Yang, J.S.; Yang, X.M.; Turner, J.A. [University of Nebraska, Department of Engineering Mechanics, Lincoln, NE (United States)

    2004-12-01

    Two-dimensional equations for coupled extensional, flexural and thickness-shear motions of laminated plates of piezoelectric semiconductors are obtained systematically from the three-dimensional equations by retaining lower order terms in power series expansions in the plate thickness coordinate. The equations are used to analyze extensional waves in a composite plate of piezoelectric ceramics and semiconductors. Dispersion and dissipation due to semiconduction as well as wave amplification by a dc electric field are discussed. (orig.)

  9. Small amplitude nonlinear electron acoustic solitary waves in weakly magnetized plasma

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Manjistha; Khan, Manoranjan [Department of Instrumentation Science, Jadavpur University, Kolkata-700 032 (India); Ghosh, Samiran [Department of Applied Mathematics, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata-700 009 (India); Roychoudhury, Rajkumar [Indian Statistical Institute, Kolkata-700 108 (India); Chakrabarti, Nikhil [Saha Institute of Nuclear Physics, 1/AF Bidhannagar Kolkata-700 064 (India)

    2013-01-15

    Nonlinear propagation of electron acoustic waves in homogeneous, dispersive plasma medium with two temperature electron species is studied in presence of externally applied magnetic field. The linear dispersion relation is found to be modified by the externally applied magnetic field. Lagrangian transformation technique is applied to carry out nonlinear analysis. For small amplitude limit, a modified KdV equation is obtained, the modification arising due to presence of magnetic field. For weakly magnetized plasma, the modified KdV equation possesses stable solitary solutions with speed and amplitude increasing temporally. The solutions are valid upto some finite time period beyond which the nonlinear wave tends to wave breaking.

  10. An undergraduate experiment demonstrating the physics of metamaterials with acoustic waves and soda cans

    Science.gov (United States)

    Wilkinson, James T.; Whitehouse, Christopher B.; Oulton, Rupert F.; Gennaro, Sylvain D.

    2016-01-01

    We describe a novel undergraduate research project that highlights the physics of metamaterials with acoustic waves and soda cans. We confirm the Helmholtz resonance nature of a single can by measuring its amplitude and phase response to a sound wave. Arranging multiple cans in arrays smaller than the wavelength, we then design an antenna that redirects sound into a preferred direction. The antenna can be thought of as a new resonator, composed of artificially engineered meta-atoms, similar to a metamaterial. These experiments are illustrative, tactile, and open ended so as to enable students to explore the physics of matter/wave interaction.

  11. Energy storage and dispersion of surface acoustic waves trapped in a periodic array of mechanical resonators

    DEFF Research Database (Denmark)

    Dühring, Maria Bayard; Laude, Vincent; Khelif, Abdelkrim

    2009-01-01

    It has been shown previously that surface acoustic waves can be efficiently trapped and slowed by steep ridges on a piezoelectric substrate, giving rise to two families of shear-horizontal and vertically polarized surface waves. The mechanisms of energy storage and dispersion are explored by using...... as resonators storing mechanical energy. These resonators are evanescently coupled by the surface. The dispersion diagram is presented and shows very low group velocities as the wave vector approaches the limit of the first Brillouin zone. ©2009 American Institute of Physics...

  12. Collisionless damping of dust-acoustic waves in a charge varying dusty plasma with nonextensive ions

    Energy Technology Data Exchange (ETDEWEB)

    Amour, Rabia; Tribeche, Mouloud [Faculty of Physics, Theoretical Physics Laboratory (TPL), Plasma Physics Group (PPG), University of Bab-Ezzouar, USTHB, B.P. 32, El Alia, Algiers 16111 (Algeria)

    2014-12-15

    The charge variation induced nonlinear dust-acoustic wave damping in a charge varying dusty plasma with nonextensive ions is considered. It is shown that the collisionless damping due to dust charge fluctuation causes the nonlinear dust acoustic wave propagation to be described by a damped Korteweg-de Vries (dK-dV) equation the coefficients of which depend sensitively on the nonextensive parameter q. The damping term, solely due to the dust charge variation, is affected by the ion nonextensivity. For the sake of completeness, the possible effects of nonextensivity and collisionless damping on weakly nonlinear wave packets described by the dK-dV equation are succinctly outlined by deriving a nonlinear Schrödinger-like equation with a complex nonlinear coefficient.

  13. Acoustical impedance defined by wave-function solutions of the reduced Webster equation.

    Science.gov (United States)

    Forbes, Barbara J

    2005-07-01

    The electrical impedance was first defined by Heaviside in 1884, and the analogy of the acoustical impedance was made by Webster in 1919. However, it can be shown that Webster did not draw a full analogy with the electromagnetic potential, the potential energy per unit charge. This paper shows that the analogous "acoustical potential" the potential energy per unit displacement of fluid, corresponds to the wave function Psi of the reduced Webster equation, which is of Klein-Gordon form. The wave function is found to obey all of Dirichlet, Von Neumann, and mixed (Robins) boundary conditions, and the latter give rise to resonance phenomena that are not elucidated by Webster's analysis. It is shown that the exact Heaviside analogy yields a complete analytic account of the one-dimensional input impedance, that accounts for both plane- and dispersive-wave propagation both at the origin and throughout the duct.

  14. Acoustic waves in the atmosphere and ground generated by volcanic activity

    Energy Technology Data Exchange (ETDEWEB)

    Ichihara, Mie; Lyons, John; Oikawa, Jun; Takeo, Minoru [Earthquake Research Institute, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan); Instituto Geofisico, Escuela Politecnica Nacional, Ladron de Guevara E11-253, Aptdo 2759, Quito (Ecuador); Earthquake Research Institute, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan)

    2012-09-04

    This paper reports an interesting sequence of harmonic tremor observed in the 2011 eruption of Shinmoe-dake volcano, southern Japan. The main eruptive activity started with ashcloud forming explosive eruptions, followed by lava effusion. Harmonic tremor was transmitted into the ground and observed as seismic waves at the last stage of the effusive eruption. The tremor observed at this stage had unclear and fluctuating harmonic modes. In the atmosphere, on the other hand, many impulsive acoustic waves indicating small surface explosions were observed. When the effusion stopped and the erupted lava began explosive degassing, harmonic tremor started to be transmitted also to the atmosphere and observed as acoustic waves. Then the harmonic modes became clearer and more stable. This sequence of harmonic tremor is interpreted as a process in which volcanic degassing generates an open connection between the volcanic conduit and the atmosphere. In order to test this hypothesis, a laboratory experiment was performed and the essential features were successfully reproduced.

  15. Measurements of Finite Dust Temperature Effects in the Dispersion Relation of the Dust Acoustic Wave

    Science.gov (United States)

    Snipes, Erica; Williams, Jeremiah

    2009-04-01

    A dusty plasma is a four-component system composed of ions, electrons, neutral particles and charged microparticles. The presence of these charged microparticles gives rise to new plasma wave modes, including the dust acoustic wave. Recent measurements [1, 2] of the dispersion relationship for the dust acoustic wave in a glow discharge have shown that finite temperature effects are observed at higher values of neutral pressure. Other work [3] has shown that these effects are not observed at lower values of neutral pressure. We present the results of ongoing work examining finite temperature effects in the dispersion relation as a function of neutral pressure. [4pt] [1] E. Thomas, Jr., R. Fisher, and R. L. Merlino, Phys. Plasmas 14, 123701 (2007). [0pt] [2] J. D. Williams, E. Thomas Jr., and L. Marcus, Phys. Plasmas 15, 043704 (2008). [0pt] [3] T. Trottenberg, D. Block, and A. Piel, Phys. Plasmas 13, 042105 (2006).

  16. Resonant transmission and mode modulation of acoustic waves in H-shaped metallic gratings

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Yu-Qiang; Fan, Ren-Hao; Zhang, Kun; Peng, Ru-Wen, E-mail: rwpeng@nju.edu.cn, E-mail: dongxiang87@gmail.com [National Laboratory of solid State Microstructures and School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China); Qi, Dong-Xiang, E-mail: rwpeng@nju.edu.cn, E-mail: dongxiang87@gmail.com [National Laboratory of solid State Microstructures and School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China); School of Science, Jiangnan University, Wuxi 214122 (China)

    2015-04-15

    In this work, we demonstrate that resonant full transmission of acoustic waves exists in subwavelength H-shaped metallic gratings, and transmission peaks can be efficiently tuned by adjusting the grating geometry. We investigate this phenomenon through both numerical simulations and theoretical calculations based on rigorous-coupled wave analysis. The transmission peaks are originated from Fabry-Perot resonances together with the couplings between the diffractive wave on the surface and the multiple guided modes in the slits. Moreover, the transmission modes can be efficiently tuned by adjusting the cavity geometry, without changing the grating thickness. The mechanism is analyzed based on an equivalent circuit model and verified by both the theoretical calculations and the numerical simulations. This research has potential application in acoustic-device miniaturization over a wide range of wavelengths.

  17. Electron acoustic waves in a magnetized plasma with kappa distributed ions

    Energy Technology Data Exchange (ETDEWEB)

    Devanandhan, S.; Lakhina, G. S. [Indian Institute of Geomagnetism, Navi Mumbai (India); Singh, S. V. [Indian Institute of Geomagnetism, Navi Mumbai (India); School of Physics, University of Kwazulu-Natal, Durban (South Africa); Bharuthram, R. [University of the Western Cape, Bellville (South Africa)

    2012-08-15

    Electron acoustic solitary waves in a two component magnetized plasma consisting of fluid cold electrons and hot superthermal ions are considered. The linear dispersion relation for electron acoustic waves is derived. In the nonlinear regime, the energy integral is obtained by a Sagdeev pseudopotential analysis, which predicts negative solitary potential structures. The effects of superthermality, obliquity, temperature, and Mach number on solitary structures are studied in detail. The results show that the superthermal index {kappa} and electron to ion temperature ratio {sigma} alters the regime where solitary waves can exist. It is found that an increase in magnetic field value results in an enhancement of soliton electric field amplitude and a reduction in soliton width and pulse duration.

  18. Prediction and near-field observation of skull-guided acoustic waves

    CERN Document Server

    Estrada, Héctor; Razansky, Daniel

    2016-01-01

    Ultrasound waves propagating in water or soft biological tissue are strongly reflected when encountering the skull, which limits the use of ultrasound-based techniques in transcranial imaging and therapeutic applications. Current knowledge on the acoustic properties of the cranial bone is restricted to far-field observations, leaving its near-field properties unexplored. We report on the existence of skull-guided acoustic waves, which was herein confirmed by near-field measurements of optoacoustically-induced responses in ex-vivo murine skulls immersed in water. Dispersion of the guided waves was found to reasonably agree with the prediction of a multilayered flat plate model. It is generally anticipated that our findings may facilitate and broaden the application of ultrasound-mediated techniques in brain diagnostics and therapy.

  19. Virtual membrane for filtration of particles using surface acoustic waves (SAW).

    Science.gov (United States)

    Fakhfouri, Armaghan; Devendran, Citsabehsan; Collins, David J; Ai, Ye; Neild, Adrian

    2016-09-21

    Surface acoustic wave (SAW) based particle manipulation is contactless, versatile, non-invasive and biocompatible making it useful for biological studies and diagnostic technologies. In this work, we present a sensitive particle sorting system, termed the virtual membrane, in which a periodic acoustic field with a wavelength on the order of particle dimensions permits size-selective filtration. Polystyrene particles that are larger than approximately 0.3 times the acoustic half-wavelength experience a force repelling them from the acoustic field. If the particle size is such that, at a given acoustic power and flow velocity, this repulsive force is dominant over the drag force, these particles will be prohibited from progressing further downstream (i.e. filtered), while smaller particles will be able to pass through the force field along the pressure nodes (akin to a filter's pores). Using this mechanism, we demonstrate high size selectivity using a standing SAW generated by opposing sets of focused interdigital transducers (FIDTs). The use of FIDTs permits the generation of a highly localized standing wave field, here used for filtration in μl min(-1) order flow rates at 10s of mW of applied power. Specifically, we demonstrate the filtration of 8 μm particles from 5 μm particles and 10.36 μm particles from 7.0 μm and 5.0 μm particles, using high frequency SAW at 258 MHz, 192.5 MHz, and 129.5 MHz, respectively.

  20. Miniature acoustic wave lysis system and uses thereof

    Energy Technology Data Exchange (ETDEWEB)

    Branch, Darren W.; Vreeland, Erika Cooley; Smith, Gennifer Tanabe

    2016-12-06

    The present invention relates to an acoustic lysis system including a disposable cartridge that can be reversibly coupled to a platform having a small, high-frequency piezoelectric transducer array. In particular, the system releases viable DNA, RNA, and proteins from human or bacterial cells, without chemicals or additional processing, to enable high-speed sample preparation for clinical point-of-care medical diagnostics and use with nano/microfluidic cartridges. Also described herein are methods of making and using the system of the invention.

  1. Nonlinear electron acoustic cyclotron waves in presence of uniform magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Manjistha; Khan, Manoranjan [Department of Instrumentation Science, Jadavpur University, Kolkata 700 032 (India); Ghosh, Samiran [Department of Applied Mathematics, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata 700 009 (India); Roychoudhury, Rajkumar [Indian Statistical Institute, Kolkata 700 108 (India); Chakrabarti, Nikhil [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700 064 (India)

    2013-04-15

    Nonlinear electron acoustic cyclotron waves (EACW) are studied in a quasineutral plasma in presence of uniform magnetic field. The fluid model is used to describe the dynamics of two temperature electron species in a stationary charge neutral inhomogeneous background. In long wavelength limit, it is shown that the linear electron acoustic wave is modified by the uniform magnetic field similar to that of electrostatic ion cyclotron wave. Nonlinear equations for these waves are solved by using Lagrangian variables. Results show that the spatial solitary wave-like structures are formed due to nonlinearities and dispersions. These structures transiently grow to larger amplitude unless dispersive effect is actively operative and able to arrest this growth. We have found that the wave dispersion originated from the equilibrium inhomogeneity through collective effect and is responsible for spatiotemporal structures. Weak dispersion is not able to stop the wave collapse and singular structures of EACW are formed. Relevance of the results in the context of laboratory and space plasmas is discussed.

  2. Numerical simulations of acoustically generated gravitational waves at a first order phase transition

    CERN Document Server

    Hindmarsh, Mark; Rummukainen, Kari; Weir, David J

    2015-01-01

    We present details of numerical simulations of the gravitational radiation produced by a first order {thermal} phase transition in the early universe. We confirm that the dominant source of gravitational waves is sound waves generated by the expanding bubbles of the low-temperature phase. We demonstrate that the sound waves have a power spectrum with power-law form between the scales set by the average bubble separation (which sets the length scale of the fluid flow $L_\\text{f}$) and the bubble wall width. The sound waves generate gravitational waves whose power spectrum also has a power-law form, at a rate proportional to $L_\\text{f}$ and the square of the fluid kinetic energy density. We identify a dimensionless parameter $\\tilde\\Omega_\\text{GW}$ characterising the efficiency of this "acoustic" gravitational wave production whose value is $8\\pi\\tilde\\Omega_\\text{GW} \\simeq 0.8 \\pm 0.1$ across all our simulations. We compare the acoustic gravitational waves with the standard prediction from the envelope appr...

  3. Rayleigh surface acoustic wave as an efficient heating system for biological reactions: investigation of microdroplet temperature uniformity.

    Science.gov (United States)

    Roux-Marchand, Thibaut; Beyssen, Denis; Sarry, Frederic; Elmazria, Omar

    2015-04-01

    When a microdroplet is put on the Rayleigh surface acoustic wave path, longitudinal waves are radiated into the liquid and induce several phenomena such as the wellknown surface acoustic wave streaming. At the same time, the temperature of the microdroplet increases as it has been shown. In this paper, we study the temperature uniformity of a microdroplet heated by Rayleigh surface acoustic wave for discrete microfluidic applications such as biological reactions. To precisely ascertain the temperature uniformity and not interfere with the biological reaction, we used an infrared camera. We then tested the temperature uniformity as a function of three parameters: the microdroplet volume, the Rayleigh surface acoustic wave frequency, and the continuous applied radio frequency power. Based on these results, we propose a new device structure to develop a future lab on a chip based on reaction temperatures.

  4. Free Field Reciprocity Calibration in a Convergent Spherical Acoustic Wave of a Focusing Transducer

    Institute of Scientific and Technical Information of China (English)

    寿文德; 严加勇; 王鸿樟; 钱德初

    2002-01-01

    Based on the reciprocity theorem of the acoustic field, we derive the formula of the reciprocity coefficient of a convergent spherical acoustic wave and we calculate a series of diffraction corrective factor curves of the reciprocity coefficient of transducers. Using these formulae and corrective factors, we calibrate the free field transmitting current response and the free field voltage sensitivity of a focusing transducer using the self-reciprocity method.The experimental results of the reciprocity calibration of the focusing transducer in the frequency range of 2 MHz to 5.4 MHz are presented.

  5. Time-resolved coherent X-ray diffraction imaging of surface acoustic waves.

    Science.gov (United States)

    Nicolas, Jan-David; Reusch, Tobias; Osterhoff, Markus; Sprung, Michael; Schülein, Florian J R; Krenner, Hubert J; Wixforth, Achim; Salditt, Tim

    2014-10-01

    Time-resolved coherent X-ray diffraction experiments of standing surface acoustic waves, illuminated under grazing incidence by a nanofocused synchrotron beam, are reported. The data have been recorded in stroboscopic mode at controlled and varied phase between the acoustic frequency generator and the synchrotron bunch train. At each time delay (phase angle), the coherent far-field diffraction pattern in the small-angle regime is inverted by an iterative algorithm to yield the local instantaneous surface height profile along the optical axis. The results show that periodic nanoscale dynamics can be imaged at high temporal resolution in the range of 50 ps (pulse length).

  6. Dependence of oscillational instabilities on the amplitude of the acoustic wave in single-axis levitators

    DEFF Research Database (Denmark)

    Orozco-Santillán, Arturo; Ruiz-Boullosa, Ricardo; Cutanda Henríquez, Vicente

    2007-01-01

    the use of containers, which may be undesirable for certain applications. Moreover, small samples can be manipulated by means of acoustic waves. In this paper, we report a study on the oscillational instabilities that can appear on a levitated solid sphere in single-axis acoustic devices. A theory...... pressure amplitude in the cavity because of the presence of the sample. The theory predicts that the phase difference depends on the speed of the oscillating object. In this paper, we give for the first time experimental evidence that shows the existence of the phase difference, and that it is negatively...

  7. Electromagnetic acoustic source (EMAS) for generating shock waves and cavitation in mercury

    Science.gov (United States)

    Wang, Qi

    In the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory a vessel of liquid mercury is subjected to a proton beam. The resulting nuclear interaction produces neutrons that can be used for materials research, among other things, but also launches acoustic waves with pressures in excess of 10 MPa. The acoustic waves have high enough tensile stress to generate cavitation in the mercury which results in erosion to the steel walls of the vessel. In order to study the cavitation erosion and develop mitigation schemes it would be convenient to have a way of generating similar pressures and cavitation in mercury, without the radiation concerns associated with a proton beam. Here an electromagnetic acoustic source (EMAS) has been developed which consisted of a coil placed close to a metal plate which is in turn is in contact with a fluid. The source is driven by discharging a capacitor through the coil and results in a repulsive force on the plate launching acoustic waves in the fluid. A theoretical model is presented to predict the acoustic field from the EMAS and compares favorably with measurements made in water. The pressure from the EMAS was reported as a function of capacitance, charging voltage, number of coils, mylar thickness, and properties of the plates. The properties that resulted in the highest pressure were employed for experiments in mercury and a maximum pressure recorded was 7.1 MPa. Cavitation was assessed in water and mercury by high speed camera and by detecting acoustic emissions. Bubble clouds with lifetimes on the order of 100 µs were observed in water and on the order of 600 µs in mercury. Based on acoustic emissions the bubble radius in mercury was estimated to be 0.98 mm. Experiments to produce damage to a stainless steel plate in mercury resulted in a minimal effect after 2000 shock waves at a rate of 0.33 Hz - likely because the pressure amplitude was not high enough. In order to replicate the conditions in the SNS it is

  8. Guided acoustic and optical waves in silicon-on-insulator for Brillouin scattering and optomechanics

    Science.gov (United States)

    Sarabalis, Christopher J.; Hill, Jeff T.; Safavi-Naeini, Amir H.

    2016-10-01

    We numerically study silicon waveguides on silica showing that it is possible to simultaneously guide optical and acoustic waves in the technologically important silicon on insulator (SOI) material system. Thin waveguides, or fins, exhibit geometrically softened mechanical modes at gigahertz frequencies with phase velocities below the Rayleigh velocity in glass, eliminating acoustic radiation losses. We propose slot waveguides on glass with telecom optical frequencies and strong radiation pressure forces resulting in Brillouin gains on the order of 500 and 50 000 W-1m-1 for backward and forward Brillouin scattering, respectively.

  9. Suppress the Finger Reflection Error of Littlewood-pelay Wavelet Transformation Device of Surface Acoustic Wave

    Directory of Open Access Journals (Sweden)

    Li Yuanyuan

    2013-01-01

    Full Text Available In this study, a Wavelet Transformation (WT device of Surface Acoustic Wave (SAW technology is developed on the basis of acoustics, electronics, wavelet theory, applied mathematics and semiconductor planar technology. The Finger Reflection (FR error is the primary reason for this kind of device. To solve the problem, a mathematic model of Littlewood-pelay wavelet was established first, which is matched with the model of SAW. Using the methods of split finger and fake finger to design IDT of Littlewood-pelay WT device of SAW with L-edit software, the FR error can be reduced and the equivalent construction of IDT is simulated.

  10. Acoustic radiation force on a rigid elliptical cylinder in plane (quasi)standing waves

    Energy Technology Data Exchange (ETDEWEB)

    Mitri, F. G., E-mail: F.G.Mitri@ieee.org [Chevron, Area 52 Technology–ETC, Santa Fe, New Mexico 87508 (United States)

    2015-12-07

    The acoustic radiation force on a 2D elliptical (non-circular) cylinder centered on the axis of wave propagation of plane quasi-standing and standing waves is derived, based on the partial-wave series expansion (PWSE) method in cylindrical coordinates. A non-dimensional acoustic radiation force function, which is the radiation force per unit length, per characteristic energy density and per unit cross-sectional surface of the ellipse, is defined in terms of the scattering coefficients that are determined by applying the Neumann boundary condition for an immovable surface. A system of linear equations involving a single numerical integration procedure is solved by matrix inversion. Numerical simulations showing the transition from the quasi-standing to the (equi-amplitude) standing wave behaviour are performed with particular emphasis on the aspect ratio a/b, where a and b are the ellipse semi-axes, as well as the dimensionless size parameter kb (where k is the wavenumber), without the restriction to a particular range of frequencies. It is found that at high kb values > 1, the radiation force per length with broadside incidence is larger, whereas the opposite situation occurs in the long-wavelength limit (i.e., kb < 1). The results are particularly relevant in acoustic levitation of elliptical cylinders, the acoustic stabilization of liquid columns in a host medium, acousto-fluidics devices, and other particle dynamics applications to name a few. Moreover, the formalism presented here may be effectively applied to compute the acoustic radiation force on other 2D surfaces of arbitrary shape such as super-ellipses, Chebyshev cylindrical particles, or other non-circular geometries.

  11. Resonance Effects of Bilayered Piezoelectric Films Used for Bulk Acoustic Wave Sensors

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hui; ZHANG Shu-Yi; FAN Li

    2011-01-01

    The resonance vibrations of acoustic sensors with two layers of (1120) textured hexagonal piezoelectric films are studied.When the acoustic and electric fields satisfy a special match condition,i.e.the phase variation of thickness shear mode (TSM) at each film equals π,both piezoelectric layers with opposite polarization directions reduce the first TSM and generate the second TSM with higher frequency and a higher quality factor.The excited second TSM can increase the product of the operating frequency and the quality factor,which is useful for improving the mass sensitivity and resolution of acoustic sensors.Additionally,both of the piezoelectric films have larger thickness and decrease the risk of mechanical damage in device production processes.Thin film bulk acoustic sensors have attracted great attention due to their small sizes,low power consumption and high sensitivity,etc.[1] The thickness shear mode (TSM) is more suitable for liquid sensing applications since much less acoustic energy is transferred into the liquid medium than that of longitudinal acoustic waves,due to the fact that ideal liquids cannot support propagations of shear waves.By using a TSM with a high resonance frequency,sensorsbased on thin film bulk acoustic resonator structures can be fabricated by the fixing of a sensitive coating on the surface of the device.[2] The binding events at the sensitive coating can cause a shift of the resonance frequency.[3]%The resonance vibrations of acoustic sensors with two layers of (1120) textured hexagonal piezoelectric films are studied. When the acoustic and electric fields satisfy a special match condition, I.e. The phase variation of thickness shear mode (TSM) at each film equals it, both piezoelectric layers with opposite polarization directions reduce the first TSM and generate the second TSM with higher frequency and a higher quality factor. The excited second TSM can increase the product of the operating frequency and the quality factor, which

  12. ST Quartz Acoustic Wave Sensors with Sectional Guiding Layers

    Directory of Open Access Journals (Sweden)

    Glen McHale

    2008-07-01

    Full Text Available We report the effect of removing a section of guiding layer from the propagation paths of ST-quartz Love wave sensors; this offers the ease of fabrication of a polymer guiding layer whilst retaining the native surface of the quartz which may then be used for the attachment of a sensitizing layer. Data is presented for the rigid and viscous loading, which indicates a small reduction in mass sensitivity compared to a Love wave device. Biosensing capabilities of these discontinuous ‘sectional’ guiding layer devices are demonstrated using protein adsorption from solution.

  13. Radiative transfer of acoustic waves in continuous complex media: Beyond the Helmholtz equation

    CERN Document Server

    Baydoun, Ibrahim; Pierrat, Romain; Derode, Arnaud

    2016-01-01

    Heterogeneity can be accounted for by a random potential in the wave equation. For acoustic waves in a fluid with fluctuations of both density and compressibility (as well as for electromagnetic waves in a medium with fluctuation of both permittivity and permeability) the random potential entails a scalar and an operator contribution. For simplicity, the latter is usually overlooked in multiple scattering theory: whatever the type of waves, this simplification amounts to considering the Helmholtz equation with a sound speed $c$ depending on position $\\mathbf{r}$. In this work, a radiative transfer equation is derived from the wave equation, in order to study energy transport through a multiple scattering medium. In particular, the influence of the operator term on various transport parameters is studied, based on the diagrammatic approach of multiple scattering. Analytical results are obtained for fundamental quantities of transport theory such as the transport mean-free path $\\ell^*$, scattering phase functi...

  14. FBG-based ultrasonic wave detection and acoustic emission linear location system

    Science.gov (United States)

    Jiang, Ming-shun; Sui, Qing-mei; Jia, Lei; Peng, Peng; Cao, Yuqiang

    2012-05-01

    The ultrasonic (US) wave detection and an acoustic emission (AE) linear location system are proposed, which employ fiber Bragg gratings (FBGs) as US wave sensors. In the theoretical analysis, the FBG sensor response to longitudinal US wave is investigated. The result indicates that the FBG wavelength can be modulated as static case when the grating length is much shorter than US wavelength. The experimental results of standard sinusoidal and spindle wave test agree well with the generated signal. Further research using two FBGs for realizing linear location is also achieved. The maximum linear location error is obtained as less than 5 mm. FBG-based US wave sensor and AE linear location provide useful tools for specific requirements.

  15. FBG-based ultrasonic wave detection and acoustic emission linear location system

    Institute of Scientific and Technical Information of China (English)

    JIANG Ming-shun; SUI Qing-mei; JIA Lei; PENG Peng; CAO Yu-qiang

    2012-01-01

    The ultrasonic (US) wave detection and an acoustic emission (AE) linear location system are proposed,which employ fiber Bragg gratings (FBGs) as US wave sensors.In the theoretical analysis,the FBG sensor response to longitudinal US wave is investigated.The result indicates that the FBG wavelength can be modulated as static case when the grating length is much shorter than US wavelength.The experimental results of standard sinusoidal and spindle wave test agree well with the generated signal.Further research using two FBGs for realizing linear location is also achieved.The maximumlinear location error is obtained as less than 5 mm.FBG-based US wave sensor and AE linear location provide useful tools for specific requirements.

  16. Wavemaker theories for acoustic-gravity waves over a finite depth

    CERN Document Server

    Tian, Miao

    2016-01-01

    Acoustic-gravity waves (hereafter AGWs) in ocean have received much interest recently, mainly with respect to early detection of tsunamis as they travel at near the speed of sound in water which makes them ideal candidates for early detection of tsunamis. While the generation mechanisms of AGWs have been studied from the perspective of vertical oscillations of seafloor and triad wave-wave interaction, in the current study we are interested in their generation by wave-structure interaction with possible implication to the energy sector. Here, we develop two wavemaker theories to analyze different wave modes generated by impermeable (the classic Havelock's theory) and porous (porous wavemaker theory) plates in weakly compressible fluids. Slight modification has been made to the porous theory so that, unlike the previous theory, the new solution depends on the geometry of the plate. The expressions for three different types of plates (piston, flap, delta-function) are introduced. Analytical solutions are also de...

  17. Theory of reflection reflection and transmission of electromagnetic, particle and acoustic waves

    CERN Document Server

    Lekner, John

    2016-01-01

    This book deals with the reflection of electromagnetic and particle waves by interfaces. The interfaces can be sharp or diffuse. The topics of the book contain absorption, inverse problems, anisotropy, pulses and finite beams, rough surfaces, matrix methods, numerical methods,  reflection of particle waves and neutron reflection. Exact general results are presented, followed by long wave reflection, variational theory, reflection amplitude equations of the Riccati type, and reflection of short waves. The Second Edition of the Theory of Reflection is an updated and much enlarged revision of the 1987 monograph. There are new chapters on periodically stratified media, ellipsometry, chiral media, neutron reflection and reflection of acoustic waves. The chapter on anisotropy is much extended, with a complete treatment of the reflection and transmission properties of arbitrarily oriented uniaxial crystals. The book gives a systematic and unified treatment reflection and transmission of electromagnetic and particle...

  18. The excitation of inertial-acoustic waves through turbulent fluctuations in accretion discs I: WKBJ theory

    CERN Document Server

    Heinemann, T

    2008-01-01

    We study and elucidate the mechanism of inertial-acoustic wave excitation in a turbulent, differentially rotating flow. We formulate a set of wave equations with sources that are only non-zero in the presence of turbulent fluctuations. We solve these using a WKBJ method. It is found that, for a particular azimuthal wave length, the wave excitation occurs through a sequence of regularly spaced swings during which the wave changes from leading to trailing form. This is a generic process that is expected to occur in shearing discs with turbulence. Pairs of trailing waves of equal amplitude propagating in opposite directions are produced and give rise to an outward angular momentum flux that we give expressions for as functions of the disc parameters and azimuthal wave length. By solving the wave amplitude equations numerically we justify the WKBJ approach for a Keplerian rotation law for all parameter regimes of interest. In order to quantify the wave excitation approach completely the important wave source term...

  19. Acoustic Pressure Waves in Vibrating 3-D Laminated Beam-Plate Enclosures

    Directory of Open Access Journals (Sweden)

    Charles A. Osheku

    2009-01-01

    Full Text Available The effect of structural vibration on the propagation of acoustic pressure waves through a cantilevered 3-D laminated beam-plate enclosure is investigated analytically. For this problem, a set of well-posed partial differential equations governing the vibroacoustic wave interaction phenomenon are formulated and matched for the various vibrating boundary surfaces. By employing integral transforms, a closed form analytical expression is computed suitable for vibroacoustic modeling, design analysis, and general aerospace defensive applications. The closed-form expression takes the form of a kernel of polynomials for acoustic pressure waves showing the influence of linear interface pressure variation across the axes of vibrating boundary surfaces. Simulated results demonstrate how the mode shapes and the associated natural frequencies can be easily computed. It is shown in this paper that acoustic pressure waves propagation are dynamically stable through laminated enclosures with progressive decrement in interfacial pressure distribution under the influence of high excitation frequencies irrespective of whether the induced flow is subsonic, sonic , supersonic, or hypersonic. Hence, in practice, dynamic stability of hypersonic aircrafts or jet airplanes can be further enhanced by replacing their noise transmission systems with laminated enclosures.

  20. Finite Difference Numerical Modeling of Gravito-Acoustic Wave Propagation in a Windy and Attenuating Atmosphere

    Science.gov (United States)

    Brissaud, Q.; Garcia, R.; Martin, R.; Komatitsch, D.

    2015-12-01

    The acoustic and gravity waves propagating in the planetary atmospheres have been studied intensively as markers of specific phenomena (tectonic events, explosions) or as contributors to the atmosphere dynamics. To get a better understanding of the physic behind these dynamic processes, both acoustic and gravity waves propagation should be modeled in an attenuating and windy 3D atmosphere from the ground to the upper thermosphere. Thus, In order to provide an efficient numerical tool at the regional or the global scale a high order finite difference time domain (FDTD) approach is proposed that relies on the linearized compressible Navier-Stokes equations (Landau 1959) with non constant physical parameters (density, viscosities and speed of sound) and background velocities (wind). One significant benefit from this code is its versatility. Indeed, it handles both acoustic and gravity waves in the same simulation that enables one to observe correlations between the two. Simulations will also be performed on 2D/3D realistic cases such as tsunamis in a full MSISE-00 atmosphere and gravity-wave generation through atmospheric explosions. Computations are validated by comparison to well-known analytical solutions based on dispersion relations in specific benchmark cases (atmospheric explosion and bottom displacement forcing).

  1. Prediction and near-field observation of skull-guided acoustic waves.

    Science.gov (United States)

    Estrada, Hector; Rebling, Johannes; Razansky, Daniel

    2017-03-01

    Ultrasound waves propagating in water or soft biological tissue are strongly reflected when encountering the skull, which limits the use of ultrasound-based techniques in transcranial imaging and therapeutic applications. Current knowledge on the acoustic properties of the cranial bone is restricted to far-field observations, leaving its near-field unexplored. We report on the existence of skull-guided acoustic waves, which was herein confirmed by near-field measurements of optoacoustically-induced responses in ex-vivo murine skulls immersed in water. Dispersion of the guided waves was found to reasonably agree with the prediction of a multilayered flat plate model. We observed a skull-guided wave propagation over a lateral distance of at least 3 mm, with a half-decay length in the direction perpendicular to the skull ranging from 35 to 300 μm at 6 and 0.5 MHz, respectively. Propagation losses are mostly attributed to the heterogenous acoustic properties of the skull.. It is generally anticipated that our findings may facilitate and broaden the application of ultrasound-mediated techniques in brain diagnostics and therapy.

  2. Dust-ion acoustic cnoidal waves and associated nonlinear ion flux in a nonthermal dusty plasma

    Science.gov (United States)

    Ur-Rehman, Hafeez; Mahmood, S.

    2016-09-01

    The dust-ion acoustic nonlinear periodic (cnoidal) waves and solitons are investigated in a dusty plasma containing dynamic cold ions, superthermal kappa distributed electrons and static charged dust particles. The massive dust particles can have positive or negative charge depending on the plasma environment. Using reductive perturbation method (RPM) with appropriate periodic boundary conditions, the evolution equations for the first and second order nonlinear potentials are derived. The first order potential is determined through Korteweg-de Vries (KdV) equation which gives dust-ion acoustic cnoidal waves and solitons structures. The solution of second order nonlinear potential is obtained through an inhomogeneous differential equation derived from collecting higher order terms of dynamic equations, which is linear for second order electrostatic potential. The nonlinear ion flux associated with the cnoidal waves is also found out numerically. The numerical plots of the dust-ion acoustic cnoidal wave and soliton structures for both positively and negatively charged dust particles cases and nonthermal electrons are also presented for illustration. It is found that only compressive nonlinear electrostatic structures are formed in case of positively dust charged particles while both compressive and rarefactive nonlinear structures are obtained in case of negatively charged particles depending on the negatively charged dust density in a nonthermal dusty plasma. The numerical results are obtained using data of the ionospheric region containing dusty plasma exist in the literature.

  3. Tuning Acoustic Wave Properties by Mechanical Resonators on a Surface

    DEFF Research Database (Denmark)

    Dühring, Maria Bayard; Laude, Vincent; Khelif, Abdelkrim

    Vibrations generated by high aspects ratio electrodes are studied by the finite element method. It is found that the modes are combined of a surface wave and vibration in the electrodes. For increasing aspect ratio most of the mechanical energy is confined to the electrodes which act as mechanical...

  4. Modelling Acoustic Wave Propagation in Axisymmetric Varying-Radius Waveguides

    DEFF Research Database (Denmark)

    Bæk, David; Willatzen, Morten

    2008-01-01

    A computationally fast and accurate model (a set of coupled ordinary differential equations) for fluid sound-wave propagation in infinite axisymmetric waveguides of varying radius is proposed. The model accounts for fluid heat conduction and fluid irrotational viscosity. The model problem is solved...

  5. Simulation study of acoustic wave propagation in ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Mohite-Patil, T.B; Saran, A.K; Sawant, S.R.; Chile, R.H; Mohite-Patil, T.T.

    Many reports are available on the sound attenuation and speed in the deep ocean, as a function of different ingredients of sea. The absorption and speed of sound waves are related to the change in sound speed, depth, salinity, temperature, PH...

  6. Harmonic and subharmonic acoustic wave generation in finite structures.

    Science.gov (United States)

    Alippi, A; Bettucci, A; Germano, M; Passeri, D

    2006-12-22

    The generation of harmonic and subharmonic vibrations is considered in a finite monodimensional structure, as it is produced by the nonlinear acoustic characteristics of the medium. The equation of motion is considered, where a general function of the displacement and its derivatives acts as the forcing term for (sub)harmonic generation and a series of 'selection rules' is found, depending on the sample constrains. The localization of the nonlinear term is also considered that mimics the presence of defects or cracks in the structure, together with the spatial distribution of subharmonic modes. Experimental evidence is given relative to the power law dependence of the harmonic modes vs. the fundamental mode displacement amplitude, and subharmonic mode distribution with hysteretic effects is also reported in a cylindrical sample of piezoelectric material.

  7. Nonstationary random acoustic and electromagnetic fields as wave diffusion processes

    CERN Document Server

    Arnaut, L R

    2007-01-01

    We investigate the effects of relatively rapid variations of the boundaries of an overmoded cavity on the stochastic properties of its interior acoustic or electromagnetic field. For quasi-static variations, this field can be represented as an ideal incoherent and statistically homogeneous isotropic random scalar or vector field, respectively. A physical model is constructed showing that the field dynamics can be characterized as a generalized diffusion process. The Langevin--It\\^{o} and Fokker--Planck equations are derived and their associated statistics and distributions for the complex analytic field, its magnitude and energy density are computed. The energy diffusion parameter is found to be proportional to the square of the ratio of the standard deviation of the source field to the characteristic time constant of the dynamic process, but is independent of the initial energy density, to first order. The energy drift vanishes in the asymptotic limit. The time-energy probability distribution is in general n...

  8. Enhancing gas-phase reaction in a plasma using high intensity and high power ultrasonic acoustic waves

    DEFF Research Database (Denmark)

    2010-01-01

    substantially 100 W. In this way, a high sound intensity and power are obtained that efficiently enhances a gas-phase reaction in the plasma, which enhances the plasma process, e.g. enabling more efficient ozone or hydrogen generation using plasma in relation to reaction speed and/or obtained concentration......This invention relates to enhancing a gas-phase reaction in a plasma comprising: creating plasma (104) by at least one plasma source (106), and wherein that the method further comprises: generating ultrasonic high intensity and high power acoustic waves (102) having a predetermined amount...... of acoustic energy by at least one ultrasonic high intensity and high power gas-jet acoustic wave generator (101), where said ultrasonic high intensity and high power acoustic waves are directed to propagate towards said plasma (104) so that at least a part of said predetermined amount of acoustic energy...

  9. Acoustic nonlinearity of narrowband laser-generated surface waves in the bending fatigue of Al6061 alloy

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Taehyung; Choi, Sungho; Lee, Taehun; Jhang, Kyungyoung; Kim, Chungseok [Hanyang University, Seoul (Korea, Republic of)

    2010-11-15

    The present study describes the acoustic nonlinearity phenomenon of a narrowband laser generated surface wave for the characterization of an aluminum alloy subjected to bending fatigue. The surface wave is very attractive for field applications because it does not require both sides of the test materials to access the transducers and has strong acoustic nonlinear effects on the surface. The intrinsic higher-order harmonic components generated by a line-arrayed laser beam have been analyzed theoretically, and a relative acoustic nonlinear parameter has been successfully measured on the surface of a fatigue-damaged aluminum 6061 alloy. The results show that the acoustic nonlinear parameter increased after fatigue damage with respect to dislocation evolution. Consequently, this study suggests that the new acoustic nonlinearity technique of a laser-generated surface wave can be potentially used to characterize surface damage resulting from bending fatigue prior to the formation of fatigue cracks.

  10. A mixing surface acoustic wave device for liquid sensing applications: Design, simulation, and analysis

    Science.gov (United States)

    Bui, ThuHang; Morana, Bruno; Scholtes, Tom; Chu Duc, Trinh; Sarro, Pasqualina M.

    2016-08-01

    This work presents the mixing wave generation of a novel surface acoustic wave (M-SAW) device for sensing in liquids. Two structures are investigated: One including two input and output interdigital transducer (IDT) layers and the other including two input and one output IDT layers. In both cases, a thin (1 μm) piezoelectric AlN layer is in between the two patterned IDT layers. These structures generate longitudinal and transverse acoustic waves with opposite phase which are separated by the film thickness. A 3-dimensional M-SAW device coupled to the finite element method is designed to study the mixing acoustic wave generation propagating through a delay line. The investigated configuration parameters include the number of finger pairs, the piezoelectric cut profile, the thickness of the piezoelectric substrate, and the operating frequency. The proposed structures are evaluated and compared with the conventional SAW structure with the single IDT layer patterned on the piezoelectric surface. The wave displacement along the propagation path is used to evaluate the amplitude field of the mixing longitudinal waves. The wave displacement along the AlN depth is used to investigate the effect of the bottom IDT layer on the transverse component generated by the top IDT layer. The corresponding frequency response, both in simulations and experiments, is an additive function, consisting of sinc(X) and uniform harmonics. The M-SAW devices are tested to assess their potential for liquid sensing, by dropping liquid medium in volumes between 0.05 and 0.13 μl on the propagation path. The interaction with the liquid medium provides information about the liquid, based on the phase attenuation change. The larger the droplet volume is, the longer the duration of the phase shift to reach stability is. The resolution that the output change of the sensor can measure is 0.03 μl.

  11. Capacitive Sensors for the Long-wave Acoustic Radiation by Directed Waves

    Directory of Open Access Journals (Sweden)

    L.V. Zaitseva

    2016-06-01

    Full Text Available Consider from the common position present-day state, prospects and the possibility of non-destructive testing capacitive method using. Developed mathematical model of the process of acoustic wave’s excitation (longitudinal and surface with a capacitor allow carrying out the output signal calculation for the subsequent choice of methods and devices for receiving the acoustic oscillations data. A device layout has been developed for realization of capacitive method. The possibility of excitation and reception of acoustic vibrations by capacitive transducers it has been established.

  12. Effects of acoustic waves on stick-slip in granular media and implications for earthquakes

    Science.gov (United States)

    Johnson, P.A.; Savage, H.; Knuth, M.; Gomberg, J.; Marone, C.

    2008-01-01

    It remains unknown how the small strains induced by seismic waves can trigger earthquakes at large distances, in some cases thousands of kilometres from the triggering earthquake, with failure often occurring long after the waves have passed. Earthquake nucleation is usually observed to take place at depths of 10-20 km, and so static overburden should be large enough to inhibit triggering by seismic-wave stress perturbations. To understand the physics of dynamic triggering better, as well as the influence of dynamic stressing on earthquake recurrence, we have conducted laboratory studies of stick-slip in granular media with and without applied acoustic vibration. Glass beads were used to simulate granular fault zone material, sheared under constant normal stress, and subject to transient or continuous perturbation by acoustic waves. Here we show that small-magnitude failure events, corresponding to triggered aftershocks, occur when applied sound-wave amplitudes exceed several microstrain. These events are frequently delayed or occur as part of a cascade of small events. Vibrations also cause large slip events to be disrupted in time relative to those without wave perturbation. The effects are observed for many large-event cycles after vibrations cease, indicating a strain memory in the granular material. Dynamic stressing of tectonic faults may play a similar role in determining the complexity of earthquake recurrence. ??2007 Nature Publishing Group.

  13. Acoustic shock wave propagation in a heterogeneous medium: a numerical simulation beyond the parabolic approximation.

    Science.gov (United States)

    Dagrau, Franck; Rénier, Mathieu; Marchiano, Régis; Coulouvrat, François

    2011-07-01

    Numerical simulation of nonlinear acoustics and shock waves in a weakly heterogeneous and lossless medium is considered. The wave equation is formulated so as to separate homogeneous diffraction, heterogeneous effects, and nonlinearities. A numerical method called heterogeneous one-way approximation for resolution of diffraction (HOWARD) is developed, that solves the homogeneous part of the equation in the spectral domain (both in time and space) through a one-way approximation neglecting backscattering. A second-order parabolic approximation is performed but only on the small, heterogeneous part. So the resulting equation is more precise than the usual standard or wide-angle parabolic approximation. It has the same dispersion equation as the exact wave equation for all forward propagating waves, including evanescent waves. Finally, nonlinear terms are treated through an analytical, shock-fitting method. Several validation tests are performed through comparisons with analytical solutions in the linear case and outputs of the standard or wide-angle parabolic approximation in the nonlinear case. Numerical convergence tests and physical analysis are finally performed in the fully heterogeneous and nonlinear case of shock wave focusing through an acoustical lens.

  14. Mechanical back-action of a spin-wave resonance in a magnetoelastic thin film on a surface acoustic wave

    Science.gov (United States)

    Gowtham, P. G.; Labanowski, D.; Salahuddin, S.

    2016-07-01

    Surface acoustic waves (SAWs) traveling on the surface of a piezoelectric crystal can, through the magnetoelastic interaction, excite traveling spin-wave resonance in a magnetic film deposited on the substrate. This spin-wave resonance in the magnetic film creates a time-ynamic surface stress of magnetoelastic origin that acts back on the surface of the piezoelectric and modifies the SAW propagation. Unlike previous analyses that treat the excitation as a magnon-phonon polariton, here the magnetoelastic film is treated as a perturbation modifying boundary conditions on the SAW. We use acoustical perturbation theory to find closed-form expressions for the back-action surface stress and strain fields and the resultant SAW velocity shifts and attenuation. We demonstrate that the shear stres fields associated with this spin-wave back-action also generate effective surface currents on the piezoelectric both in phase and out of phase with the driving SAW potential. Characterization of these surface currents and their applications in determination of the magnetoelastic coupling are discussed. The perturbative calculation is carried out explicitly to first order (a regime corresponding to many experimental situations of current interest) and we provide a sketch of the implications of the theory at higher order.

  15. The Frequency and Damping of Ion Acoustic Waves in Collisional and Collisionless Two-species Plasma

    Energy Technology Data Exchange (ETDEWEB)

    R.L. Berger; E.J. Valeo

    2004-08-18

    The dispersion properties of ion acoustic waves (IAW) are sensitive to the strength of ion-ion collisions in multi-species plasma in which the different species usually have differing charge-to-mass ratios. The modification of the frequency and damping of the fast and slow acoustic modes in a plasma composed of light (low Z) and heavy (high Z) ions is considered. In the fluid limit where the light ion scattering mean free path, {lambda}{sub th} is smaller than the acoustic wavelength, {lambda} = 2{pi}/k, the interspecies friction and heat flow carried by the light ions scattering from the heavy ions causes the damping. In the collisionless limit, k{lambda}{sub th} >> 1, Landau damping by the light ions provides the dissipation. In the intermediate regime when k{lambda}{sub th} {approx} 1, the damping is at least as large as the sum of the collisional and Landau damping.

  16. The frequency and damping of ion acoustic waves in collisional and collisionless two-species plasma

    Energy Technology Data Exchange (ETDEWEB)

    Berger, R L; Valeo, E J

    2004-07-15

    The dispersion properties of ion acoustic waves (IAW) are sensitive to the strength of ion-ion collisions in multi-species plasma in which the different species usually have differing charge-to-mass ratios. The modification of the frequency and damping of the fast and slow acoustic modes in a plasma composed of light (low Z) and heavy (high Z) ions is considered. In the fluid limit where the light ion scattering mean free path, {lambda}{sub th} is smaller than the acoustic wavelength, {lambda} = 2{pi}/k, the interspecies friction and heat flow carried by the light ions scattering from the heavy ions causes the damping. In the collisionless limit, k{lambda}{sub lh} >> 1, Landau damping by the light ions provides the dissipation. In the intermediate regime when k{lambda}{sub lh} {approx} 1, the damping is at least as large as the sum of the collisional and Landau damping.

  17. Non-Bragg Resonance of Standing Acoustic Wave in a Cylindrical Waveguide with Sinusoidally Perturbed Walls

    Institute of Scientific and Technical Information of China (English)

    TAO Zhi-Yong; XIAO Yu-Meng; WANG Xin-Long

    2005-01-01

    @@ A novel type of acoustic resonance different from the well-known Bragg resonance is predicted theoretically in an acoustic cylindrical waveguide with sinusoidally perturbed hard walls. The resonance is caused by the interaction between the standing acoustic waves, i.e. transverse modes in the waveguide. It results in the frequency spectrum splitting and the appearance of forbidden bands. For small-perturbed wall corrugation, it is found that the shifts of resonant frequencies and the width of the forbidden gap can be as small as the wall amplitude. The appearance of the non-Bragg resonance depends highly on the wall period. When the period is greater than 2.319 times the average cylinder radius, all the non-Bragg resonances cut off. The smaller the wall period, the greater the transverse mode involvement.

  18. Depolarized guided acoustic wave Brillouin scattering in hollow-core photonic crystal fibers

    CERN Document Server

    Zhong, Wenjia Elser née; Elser, Dominique; Heim, Bettina; Marquardt, Christoph; Leuchs, Gerd

    2015-01-01

    By performing quantum-noise-limited optical heterodyne detection, we observe polarization noise in light after propagation through a hollow-core photonic crystal fiber (PCF). We compare the noise spectrum to the one of a standard fiber and find an increase of noise even though the light is mainly transmitted in air in a hollow-core PCF. Combined with our simulation of the acoustic vibrational modes in the hollow-core PCF, we are offering an explanation for the polarization noise with a variation of guided acoustic wave Brillouin scattering (GAWBS). Here, instead of modulating the strain in the fiber core as in a solid core fiber, the acoustic vibrations in hollow-core PCF influence the effective refractive index by modulating the geometry of the photonic crystal structure. This induces polarization noise in the light guided by the photonic crystal structure.

  19. Experimental verification of the Kramers-Kronig relationship for acoustic waves.

    Science.gov (United States)

    Lee, C C; Lahham, M; Martin, B G

    1990-01-01

    A spectral technique for effectively and accurately measuring acoustic attenuation over a wide frequency range is reported. The spectral technique for phase measurement developed by W. Sachse and Y.H. Pao (1978) was used to determine the acoustic dispersion. For acoustic waves, a very simple and useful Kramers-Kronig relationship was previously derived by M. O'Donnell, E.T. Jaynes, and J.G. Miller (1981). The attenuation was calculated, using this relationship, from the measured dispersion and then compared with the attenuation that was measured independently. Dispersion was deduced from the measured attenuation and compared with the measured dispersion. The results of two highly attenuative specimens are presented. The agreement between the calculated attenuation and measured attenuation is excellent. The deduced dispersion also agrees well with the measured one. This agreement verifies the simple Kramers-Kronig relationship used. It further shows the accuracy of the spectral techniques for attenuation and dispersion measurements over a wide frequency range.

  20. Ion acoustic waves at comet 67P/Churyumov-Gerasimenko. Observations and computations

    Science.gov (United States)

    Gunell, H.; Nilsson, H.; Hamrin, M.; Eriksson, A.; Odelstad, E.; Maggiolo, R.; Henri, P.; Vallieres, X.; Altwegg, K.; Tzou, C.-Y.; Rubin, M.; Glassmeier, K.-H.; Stenberg Wieser, G.; Simon Wedlund, C.; De Keyser, J.; Dhooghe, F.; Cessateur, G.; Gibbons, A.

    2017-03-01

    Context. On 20 January 2015 the Rosetta spacecraft was at a heliocentric distance of 2.5 AU, accompanying comet 67P/Churyumov-Gerasimenko on its journey toward the Sun. The Ion Composition Analyser (RPC-ICA), other instruments of the Rosetta Plasma Consortium, and the ROSINA instrument made observations relevant to the generation of plasma waves in the cometary environment. Aims: Observations of plasma waves by the Rosetta Plasma Consortium Langmuir probe (RPC-LAP) can be explained by dispersion relations calculated based on measurements of ions by the Rosetta Plasma Consortium Ion Composition Analyser (RPC-ICA), and this gives insight into the relationship between plasma phenomena and the neutral coma, which is observed by the Comet Pressure Sensor of the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis instrument (ROSINA-COPS). Methods: We use the simple pole expansion technique to compute dispersion relations for waves on ion timescales based on the observed ion distribution functions. These dispersion relations are then compared to the waves that are observed. Data from the instruments RPC-LAP, RPC-ICA and the mutual impedance probe (RPC-MIP) are compared to find the best estimate of the plasma density. Results: We find that ion acoustic waves are present in the plasma at comet 67P/Churyumov-Gerasimenko, where the major ion species is H2O+. The bulk of the ion distribution is cold, kBTi = 0.01 eV when the ion acoustic waves are observed. At times when the neutral density is high, ions are heated through acceleration by the solar wind electric field and scattered in collisions with the neutrals. This process heats the ions to about 1 eV, which leads to significant damping of the ion acoustic waves. Conclusions: In conclusion, we show that ion acoustic waves appear in the H2O+ plasmas at comet 67P/Churyumov-Gerasimenko and how the interaction between the neutral and ion populations affects the wave properties. Computer code for the dispersion analysis is

  1. Acoustic Wave Approach for Multi-Touch Tactile Sensing

    CERN Document Server

    Liu, Yuan; Hafez, Moustapha; Mechbal, Nazih; Vergé, Michel

    2009-01-01

    In this communication, we present a high resolution tactile plate that can localize one or two contact fingers. The localization principle is based on Lamb wave absorption. Fingers' contact will generate absorption signals while Lamb waves are propagating in a thin finite copper plate. These signals can be related to the contact positions and can be calibrated before the use of tactile plate. Fingers' contact positions are calculated by finding the closest calibration signal to the measured signal. Positions are carried out in less than 10 ms with a spatial resolution of 2 mm for one finger localization. Multi-points localization by this technology is developed and a two-point case is initialized and tested. Several optimization methods are also presented in this paper, as the double validation check which could improve the accuracy of single-point localization from 94.63% to 99.5%.

  2. An Acoustic Wave Equation for Tilted Transversely Isotropic Media

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Linbin; Rector III, James W.; Hoversten, G. Michael

    2005-03-15

    A finite-difference method for computing the first arrival traveltimes by solving the Eikonal equation in the celerity domain has been developed. This algorithm incorporates the head and diffraction wave. We also adapt a fast sweeping method, which is extremely simple to implement in any number of dimensions, to obtain accurate first arrival times in complex velocity models. The method, which is stable and computationally efficient, can handle instabilities due to caustics and provide head waves traveltimes. Numerical examples demonstrate that the celerity-domain Eikonal solver provides accurate first arrival traveltimes. This new method is three times accurate more than the 2nd-order fast marching method in a linear velocity model with the same spacing.

  3. Effects of the internal waves on the time correlation of the acoustic fields in the East China Sea

    Institute of Scientific and Technical Information of China (English)

    HUANG Xiaodi; LI Zhenglin; ZHANG Renhe

    2004-01-01

    Internal waves are one of the primary causes of sea water mass variations in shallow water. The time stability of an acoustic channel may be degraded by the activities of internal waves. Based on the oceanographic data of Asian Seas International Acoustics Experiment (ASIAEX), the characteristics of the internal waves in the East China Sea (ECS) are analyzed and the effects of linear and solitary internal waves on broadband acoustic field correlation are numerically investigated. The numerical results of the length of the correlation time affected by the internal waves are compared with the experimental data. It was found that the existence of both linear internal waves and soliton packets may be one of the explanations of the experimental correlation drop.

  4. Double modulation of X radiation diffracted in a quartz single crystal by high and low frequency acoustic waves

    CERN Document Server

    Kocharyan, L A; Bornazyan, H S

    1986-01-01

    The time dependence of X radiation diffracted in a quartz single crystal is experimentally investigated when surface acoustic waves modulated by low frequency oscillations of different frequencies and forms are excited in the crystal.

  5. Study of the Impact of Non-linear Piezoelectric Constants on the Acoustic Wave Propagation on Lithium Niobate

    Directory of Open Access Journals (Sweden)

    C. Soumali

    2016-06-01

    Full Text Available Impact of nonlinear piezoelectric constants on surface acoustic wave propagation on a piezoelectric substrate is investigated in this work. Propagation of acoustic wave propagation under uniform stress is analyzed; the wave equation is obtained by incorporating the applied uniform stress in the equation of motion and taking account of the set of linear and nonlinear piezoelectric constants. A new method of separation between the different modes of propagation is proposed regarding the attenuation coefficients and not to the displacement vectors. Detail calculations and simulations have made for Lithium Niobate (LiNbO3; transformations between modes of propagation, under uniform stress, have been found. These results leads to conclusion that nonlinear terms affect the acoustic wave propagation and also we can make controllable acoustic devices.

  6. Separation of Escherichia coli bacteria from peripheral blood mononuclear cells using standing surface acoustic waves.

    Science.gov (United States)

    Ai, Ye; Sanders, Claire K; Marrone, Babetta L

    2013-10-01

    A microfluidic device was developed to separate heterogeneous particle or cell mixtures in a continuous flow using acoustophoresis. In this device, two identical surface acoustic waves (SAWs) generated by interdigital transducers (IDTs) propagated toward a microchannel, which accordingly built up a standing surface acoustic wave (SSAW) field across the channel. A numerical model, coupling a piezoelectric effect in the solid substrate and acoustic pressure in the fluid, was developed to provide a better understanding of SSAW-based particle manipulation. It was found that the pressure nodes across the channel were individual planes perpendicular to the solid substrate. In the separation experiments, two side sheath flows hydrodynamically focused the injected particle or cell mixtures into a very narrow stream along the centerline. Particles flowing through the SSAW field experienced an acoustic radiation force that highly depends on the particle properties. As a result, dissimilar particles or cells were laterally attracted toward the pressure nodes at different magnitudes, and were eventually switched to different outlets. Two types of fluorescent microspheres with different sizes were successfully separated using the developed device. In addition, Escherichia coli bacteria premixed in peripheral blood mononuclear cells (PBMCs) were also efficiently isolated using the SSAW-base separation technique. Flow cytometric analysis on the collected samples found that the purity of separated E. coli bacteria was 95.65%.

  7. Characterization of compressed earth blocks using low frequency guided acoustic waves.

    Science.gov (United States)

    Ben Mansour, Mohamed; Ogam, Erick; Fellah, Z E A; Soukaina Cherif, Amel; Jelidi, Ahmed; Ben Jabrallah, Sadok

    2016-05-01

    The objective of this work was to analyze the influence of compaction pressure on the intrinsic acoustic parameters (porosity, tortuosity, air-flow resistivity, viscous, and thermal characteristic lengths) of compressed earth blocks through their identification by solving an inverse acoustic wave transmission problem. A low frequency acoustic pipe (60-6000 Hz of length 22 m, internal diameter 3.4 cm) was used for the experimental characterization of the samples. The parameters were identified by the minimization of the difference between the transmissions coefficients data obtained in the pipe with that from an analytical interaction model in which the compressed earth blocks were considered as having rigid frames. The viscous and thermal effects in the pores were accounted for by employing the Johnson-Champoux-Allard-Lafarge model. The results obtained by inversion for high-density compressed earth blocks showed some discordance between the model and experiment especially for the high frequency limit of the acoustic characteristics studied. This was as a consequence of applying high compaction pressure rendering them very highly resistive therefore degrading the signal-to-noise ratios of the transmitted waves. The results showed that the airflow resistivity was very sensitive to the degree of the applied compaction pressure used to form the blocks.

  8. Temperature dependence of acoustic harmonics generated by nonlinear ultrasound wave propagation in water at various frequencies.

    Science.gov (United States)

    Maraghechi, Borna; Hasani, Mojtaba H; Kolios, Michael C; Tavakkoli, Jahan

    2016-05-01

    Ultrasound-based thermometry requires a temperature-sensitive acoustic parameter that can be used to estimate the temperature by tracking changes in that parameter during heating. The objective of this study is to investigate the temperature dependence of acoustic harmonics generated by nonlinear ultrasound wave propagation in water at various pulse transmit frequencies from 1 to 20 MHz. Simulations were conducted using an expanded form of the Khokhlov-Zabolotskaya-Kuznetsov nonlinear acoustic wave propagation model in which temperature dependence of the medium parameters was included. Measurements were performed using single-element transducers at two different transmit frequencies of 3.3 and 13 MHz which are within the range of frequencies simulated. The acoustic pressure signals were measured by a calibrated needle hydrophone along the axes of the transducers. The water temperature was uniformly increased from 26 °C to 46 °C in increments of 5 °C. The results show that the temperature dependence of the harmonic generation is different at various frequencies which is due to the interplay between the mechanisms of absorption, nonlinearity, and focusing gain. At the transmit frequencies of 1 and 3.3 MHz, the harmonic amplitudes decrease with increasing the temperature, while the opposite temperature dependence is observed at 13 and 20 MHz.

  9. Spectral element method for elastic and acoustic waves in frequency domain

    Science.gov (United States)

    Shi, Linlin; Zhou, Yuanguo; Wang, Jia-Min; Zhuang, Mingwei; Liu, Na; Liu, Qing Huo

    2016-12-01

    Numerical techniques in time domain are widespread in seismic and acoustic modeling. In some applications, however, frequency-domain techniques can be advantageous over the time-domain approach when narrow band results are desired, especially if multiple sources can be handled more conveniently in the frequency domain. Moreover, the medium attenuation effects can be more accurately and conveniently modeled in the frequency domain. In this paper, we present a spectral-element method (SEM) in frequency domain to simulate elastic and acoustic waves in anisotropic, heterogeneous, and lossy media. The SEM is based upon the finite-element framework and has exponential convergence because of the use of GLL basis functions. The anisotropic perfectly matched layer is employed to truncate the boundary for unbounded problems. Compared with the conventional finite-element method, the number of unknowns in the SEM is significantly reduced, and higher order accuracy is obtained due to its spectral accuracy. To account for the acoustic-solid interaction, the domain decomposition method (DDM) based upon the discontinuous Galerkin spectral-element method is proposed. Numerical experiments show the proposed method can be an efficient alternative for accurate calculation of elastic and acoustic waves in frequency domain.

  10. Traveling wave tube measurements for low-frequency properties of underwater acoustic materials

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A traveling wave tube measurement technique for measuring acoustic properties of underwater acoustic materials was developed. Water temperature and pressure environments of the ocean can be simulated in a water-filled tube, and the acoustic parameters of samples of underwater acoustic materials are measured in the range of low-frequency. A tested sample is located at central position of the tube. A pair of projectors is separately located at both ends of the tube. Using an active anechoic technique, the sound wave transmitting the tested sample is hardly reflected by the surface of secondary transducer. So the traveling sound field is built up in the tube. By separately calculating the transfer functions of every pair of double hydrophones in the sound fields from the both sides of the sample, its reflection coefficients and transmission coefficients are obtained. In the measurement system, the inside diameter of the tube is Φ208 mm, the working frequency range is from 100 to 4000 Hz, the maximum pressure is 5 MPa. The reflection coefficients and transmission coefficients of a water layer and a stainless steel layer samples are measured actually and calculated theoretically. The results show that the measured values are in good agreement with the values calculated, and the measurement uncertainty is not greater than 1.5 dB.

  11. Electron-acoustic solitary waves in a beam plasma with electron trapping and nonextensivity effects

    Science.gov (United States)

    Ali Shan, S.; Aman-ur-Rehman, Mushtaq, A.

    2016-09-01

    A theoretical investigation is carried out for understanding the properties of electron-acoustic solitary waves (EASWs) in a beam plasma whose constituents are a cold beam electron fluid, hot nonextensive electrons obeying a vortex-like distribution with nonextensive factor q, and stationary ions. An energy integral (Schamel KdV) equation is derived by employing pseudo-potential (reductive perturbation) approach. The presence of nonextensive q-distributed hot trapped electrons and cold electron beam has been shown to influence the soliton structure quite significantly. The nonlinear dispersion relation is derived to analyze the dependency of the electron acoustic solitary wave quantities. From the analysis of our results, it is shown that the present plasma model supports the compressive EASWs. As the real plasma situations are observed with plasma species having a relative flow, so our present analysis should be useful for understanding the electrostatic solitary structures observed in the dayside auroral zone and other regions of the magnetosphere.

  12. Alignment of carbon nanotubes on pre-structured silicon by surface acoustic waves

    Energy Technology Data Exchange (ETDEWEB)

    Seemann, Klaus M; Ebbecke, Jens; Wixforth, Achim [Institut fuer Physik der Universitaet Augsburg, Universitaetsstrasse 1, D-86159 Augsburg (Germany)

    2006-09-14

    Carbon nanotubes have been deposited and aligned onto the pre-structured metal contacts of a silicon chip. Crucial for the deposition and alignment process are micro-fluidic flow fields combined with electric dipole fields generated by surface acoustic waves within a gap filled with an aqueous carbon nanotube suspension. This gap is formed when the pre-structured silicon chip is flipped onto the piezoelectric lithium niobate substrate, allowing for the generation of surface acoustic waves. The contacting probability of carbon nanotubes on the prestructured metal contacts has been found to be 37%. In combination with back-gates, these structures define three-terminal devices and the first current-voltage characteristics.

  13. Spatial confinement of acoustic and optical waves in stubbed slab structure as optomechanical resonator

    Energy Technology Data Exchange (ETDEWEB)

    Li, Changsheng, E-mail: lcs135@163.com; Huang, Dan; Guo, Jierong

    2015-02-20

    We theoretically demonstrate that acoustic waves and optical waves can be spatially confined in the same micro-cavity by specially designed stubbed slab structure. The proposed structure presents both phononic and photonic band gaps from finite element calculation. The creation of cavity mode inside the band gap region provides strong localization of phonon and photon in the defect region. The practical parameters to inject cavity and work experimentally at telecommunication range are discussed. This structure can be precisely fabricated, hold promises to enhance acousto-optical interactions and design new applications as optomechanical resonator. - Highlights: • A resonator simultaneously supports acoustic and optical modes. • Strong spatial confinement and slow group velocity. • Potential to work as active optomechanical resonator.

  14. Comparison characteristics of surface acoustic waves propagating on LGT and quartz substrates

    Institute of Scientific and Technical Information of China (English)

    ZHANG Guowei; SHI Wenkang; JI Xiaojun; HAN Tao

    2004-01-01

    For comprehending the propagation characteristics of surface acoustic waves (SAW) on novel piezoelectric crystal Langatate (LGT), the numerical analysis of the most important propagation characteristics of surface acoustic waves (SAW) on LGT are presented and compared with that of quartz. The results are that the phase velocity on LGT is generally about 1000 m/s slower than that on quartz; there are zero temperature cuts and pure mode directions on LGT; the electromechanical coupling coefficient (K2) of LGT is larger than that of quartz. The results show that LGT has lower propagation velocity, higher electromechanical coupling coefficient, good temperature stability and other good characteristic. The results also show that there are somewhat deviations with different material constants, especially, the temperature coefficient of frequency.

  15. Excitation of Ion Acoustic Waves in Confined Plasmas with Untrapped Electrons

    Science.gov (United States)

    Schamis, Hanna; Dow, Ansel; Carlsson, Johan; Kaganovich, Igor; Khrabrov, Alexander

    2015-11-01

    Various plasma propulsion devices exhibit strong electron emission from the walls either as a result of secondary processes or due to thermionic emission. To understand the electron kinetics in plasmas with strong emission, we have performed simulations using a reduced model with the LSP particle-in-cell code. This model aims to show the instability generated by the electron emission, in the form of ion acoustic waves near the sheath. It also aims to show the instability produced by untrapped electrons that propagate across the plasma, similarly to a beam, and can drive ion acoustic waves in the plasma bulk. This work was made possible by funding from the Department of Energy for the Summer Undergraduate Laboratory Internship (SULI) program. This work is supported by the US DOE Contract No.DE-AC02-09CH11466.

  16. Laser photoacoustic technique for ultrasonic surface acoustic wave velocity evaluation on porcelain

    Science.gov (United States)

    Qian, K.; Tu, S. J.; Gao, L.; Xu, J.; Li, S. D.; Yu, W. C.; Liao, H. H.

    2016-10-01

    A laser photoacoustic technique has been developed to evaluate the surface acoustic wave (SAW) velocity of porcelain. A Q-switched Nd:YAG laser at 1064 nm was focused by a cylindrical lens to initiate broadband SAW impulses, which were detected by an optical fiber interferometer with high spatial resolution. Multiple near-field surface acoustic waves were observed on the sample surface at various locations along the axis perpendicular to the laser line source as the detector moved away from the source in the same increments. The frequency spectrum and dispersion curves were obtained by operating on the recorded waveforms with cross-correlation and FFT. The SAW phase velocities of the porcelain of the same source are similar while they are different from those of different sources. The marked differences of Rayleigh phase velocities in our experiment suggest that this technique has the potential for porcelain identification.

  17. Nonlinear propagation of weakly relativistic ion-acoustic waves in electron–positron–ion plasma

    Indian Academy of Sciences (India)

    M G HAFEZ; M R TALUKDER; M HOSSAIN ALI

    2016-11-01

    This work presents theoretical and numerical discussion on the dynamics of ion-acoustic solitary wave for weakly relativistic regime in unmagnetized plasma comprising non-extensive electrons, Boltzmann positrons and relativistic ions. In order to analyse the nonlinear propagation phenomena, the Korteweg–de Vries(KdV) equation is derived using the well-known reductive perturbation method. The integration of the derived equation is carried out using the ansatz method and the generalized Riccati equation mapping method. The influenceof plasma parameters on the amplitude and width of the soliton and the electrostatic nonlinear propagation of weakly relativistic ion-acoustic solitary waves are described. The obtained results of the nonlinear low-frequencywaves in such plasmas may be helpful to understand various phenomena in astrophysical compact object and space physics.

  18. Enhancement of effective electromechanical coupling factor by mass loading in layered surface acoustic wave device structures

    Science.gov (United States)

    Tang, Gongbin; Han, Tao; Teshigahara, Akihiko; Iwaki, Takao; Hashimoto, Ken-ya

    2016-07-01

    This paper describes a drastic enhancement of the effective coupling factor K\\text{e}2 by mass loading in layered surface acoustic wave (SAW) device structures such as the ScAlN film/Si substrate structure. This phenomenon occurs when the piezoelectric layer exhibits a high acoustic wave velocity. The mass loading decreases the SAW velocity and causes SAW energy confinement close to the top surface where an interdigital transducer is placed. It is shown that this phenomenon is obvious even when an amorphous SiO2 film is deposited on the top surface for temperature compensation. This K\\text{e}2 enhancement was also found in various combinations of electrode, piezoelectric layer, and/or substrate materials. The existence of this phenomenon was verified experimentally using the ScAlN film/Si substrate structure.

  19. Imaging of transient surface acoustic waves by full-field photorefractive interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Jichuan [Key Laboratory of Modern Acoustics, Nanjing University, Nanjing 210093 (China); School of Electronic and Optical Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei, Nanjing 210094 (China); Soft Matter and Biophysics, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, 3001 Heverlee (Belgium); Xu, Xiaodong, E-mail: xdxu@nju.edu.cn, E-mail: christ.glorieux@fys.kuleuven.be [Key Laboratory of Modern Acoustics, Nanjing University, Nanjing 210093 (China); Soft Matter and Biophysics, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, 3001 Heverlee (Belgium); Glorieux, Christ, E-mail: xdxu@nju.edu.cn, E-mail: christ.glorieux@fys.kuleuven.be [Soft Matter and Biophysics, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, 3001 Heverlee (Belgium); Matsuda, Osamu [Division of Applied Physics, Graduate School of Engineering, Hokkaido University, Sapporo 060-8628 (Japan); Cheng, Liping [Key Laboratory of Modern Acoustics, Nanjing University, Nanjing 210093 (China)

    2015-05-15

    A stroboscopic full-field imaging technique based on photorefractive interferometry for the visualization of rapidly changing surface displacement fields by using of a standard charge-coupled device (CCD) camera is presented. The photorefractive buildup of the space charge field during and after probe laser pulses is simulated numerically. The resulting anisotropic diffraction upon the refractive index grating and the interference between the polarization-rotated diffracted reference beam and the transmitted signal beam are modeled theoretically. The method is experimentally demonstrated by full-field imaging of the propagation of photoacoustically generated surface acoustic waves with a temporal resolution of nanoseconds. The surface acoustic wave propagation in a 23 mm × 17 mm area on an aluminum plate was visualized with 520 × 696 pixels of the CCD sensor, yielding a spatial resolution of 33 μm. The short pulse duration (8 ns) of the probe laser yields the capability of imaging SAWs with frequencies up to 60 MHz.

  20. Longitudinal acoustic waves in layered media: Comparative study of Raman scattering and reflection delay time

    Energy Technology Data Exchange (ETDEWEB)

    El Boudouti, E H; Zelmat, R; Bailich, R [LDOM, Departement de Physique, Faculte des Sciences, Universite Mohamed I, 60000 Oujda (Morocco); Hassouani, Y El [Universite de Bordeaux, Laboratoire de Mecanique Physique, Talence F-33405 (France); Djafari-Rouhani, B, E-mail: elboudouti@yahoo.f [Institut d' Electronique, de Microelectronique et de Nanotechnologie, UMR CNRS 8520, UFR de Physique, Universite de Lille 1, 59655 Villeneuve d' Ascq (France)

    2010-03-01

    Using a Green's function method, we present a theoretical analysis of the propagation of acoustic waves in multilayer structures. The structure studied consists of a finite superlattice (SL) made of a periodic repetition of N unit cells deposited on a substrate. Such a structure exhibits extended modes constituting the allowed bands separated by forbidden bands where localized modes associated to free surfaces, defect layers, ... may exist. These modes can be observed either by Raman scattering when an incident light is launched from vacuum towards the multilayer, or by the reflection delay time when an incident acoustic wave is launched from the substrate. Specific applications of our results are given for some available experiments in the literature (e.g., Si/Ge{sub x}Si{sub 1-x}, GaSb-AlSb) and a good agreement has been obtained between our theoretical results and the experimental data.

  1. Surface acoustic wave regulated single photon emission from a coupled quantum dot-nanocavity system

    CERN Document Server

    Weiß, Matthias; Reichert, Thorsten; Finley, Jonathan J; Wixforth, Achim; Kaniber, Michael; Krenner, Hubert J

    2016-01-01

    A coupled quantum dot--nanocavity system in the weak coupling regime of cavity quantumelectrodynamics is dynamically tuned in and out of resonance by the coherent elastic field of a $f_{\\rm SAW}\\simeq800\\,\\mathrm{MHz}$ surface acoustic wave. When the system is brought to resonance by the sound wave, light-matter interaction is strongly increased by the Purcell effect. This leads to a precisely timed single photon emission as confirmed by the second order photon correlation function $g^{(2)}$. All relevant frequencies of our experiment are faithfully identified in the Fourier transform of $g^{(2)}$, demonstrating high fidelity regulation of the stream of single photons emitted by the system. The implemented scheme can be directly extended to strongly coupled systems and acoustically drives non-adiabatic entangling quantum gates based on Landau-Zener transitions.

  2. Investigation of 3D surface acoustic waves in granular media with 3-color digital holography

    Science.gov (United States)

    Leclercq, Mathieu; Picart, Pascal; Penelet, Guillaume; Tournat, Vincent

    2017-01-01

    This paper reports the implementation of digital color holography to investigate elastic waves propagating along a layer of a granular medium. The holographic set-up provides simultaneous recording and measurement of the 3D dynamic displacement at the surface. Full-field measurements of the acoustic amplitude and phase at different excitation frequencies are obtained. It is shown that the experimental data can be used to obtain the dispersion curve of the modes propagating in this granular medium layer. The experimental dispersion curve and that obtained from a finite element modeling of the problem are found to be in good agreement. In addition, full-field images of the interaction of an acoustic wave guided in the granular layer with a buried object are also shown.

  3. Design and Fabrication of Acoustic Wave Actuated Microgenerator for Portable Electronic Devices

    CERN Document Server

    Lai, Tenghsien; Tsou, Chingfu

    2008-01-01

    The past few years have seen an increasing focus on energy harvesting issue, including power supply for portable electric devices. Utilize scavenging ambient energy from the environment could eliminate the need for batteries and increase portable device lifetimes indefinitely. In addition, through MEMS technology fabricated micro-generator could easy integrate with these small or portable devices. Several different ambient sources, including solar, vibration and temperature effect, have already exploited [1-3]. Each energy source should be used in suitable environment, therefore to produce maximum efficiency. In this paper, we present an acoustic wave actuated micro-generator for power system by using the energy of acoustic waves, such as the sound from human voices or speakerphone, to actuate a MEMS-type electromagnetic transducer. This provides a longer device lifetime and greater power system convenience. Moreover, it is convenient to integrate MEMS-based microgenerators with small or porta le devices

  4. Coherent coupling between radio frequency, optical, and acoustic waves in piezo-optomechanical circuits.

    Science.gov (United States)

    Balram, Krishna C; Davanço, Marcelo I; Song, Jin Dong; Srinivasan, Kartik

    2016-05-01

    Optomechanical cavities have been studied for applications ranging from sensing to quantum information science. Here, we develop a platform for nanoscale cavity optomechanical circuits in which optomechanical cavities supporting co-localized 1550 nm photons and 2.4 GHz phonons are combined with photonic and phononic waveguides. Working in GaAs facilitates manipulation of the localized mechanical mode either with a radio frequency (RF) field through the piezo-electric effect, which produces acoustic waves that are routed and coupled to the optomechanical cavity by phononic crystal waveguides, or optically through the strong photoelastic effect. Along with mechanical state preparation and sensitive readout, we use this to demonstrate an acoustic wave interference effect, similar to atomic coherent population trapping, in which RF-driven coherent mechanical motion is cancelled by optically-driven motion. Manipulating cavity optomechanical systems with equal facility through both photonic and phononic channels enables new architectures for signal transduction between the optical, electrical, and mechanical domains.

  5. Laser-generated thermoelastic acoustic sources and acoustic waves in anisotropic plate

    Institute of Scientific and Technical Information of China (English)

    XU BaiQiang; WANG Feng; FENG Jun; WANG JiJun; SUN HongXiang; LUO Ying

    2009-01-01

    The effect of anisotropy on the ultrasound wave generation and propagation in the unidirectional fi-ber-reinforced composite plate has been investigated. A quantitative numerical model for the la-ser-generated ultrasound in the thermoelastic regime was presented by using a finite element method.All factors, such as spatial and time distributions of the incident laser beam, optical penetration, ther-mal diffusivity, and source-receiver distance can be taken into account. Numerical results show that the effect on ultrasound waveform of the size of the laser volume source produces strong bipolar Iongitu-dinal waves and improves the amplitude and directivity of the longitudinal waves. A fiber-reinforced composite material exhibits isotropic or homogenous behavior for ultrasonic wave propagation per-pendicular to the fiber direction. For ultrasonic propagation along the fiber direction, ultrasonic dis-persion resulting from the inhomogeneous nature of the material affects the laser ultrasonic waveforms. As the dimensions of the laser pulse are increased in space and time, the displacement waveform be-comes broader and its magnitude decreases.

  6. Laser-generated thermoelastic acoustic sources and acoustic waves in anisotropic plate

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The effect of anisotropy on the ultrasound wave generation and propagation in the unidirectional fi- ber-reinforced composite plate has been investigated. A quantitative numerical model for the la- ser-generated ultrasound in the thermoelastic regime was presented by using a finite element method. All factors, such as spatial and time distributions of the incident laser beam, optical penetration, ther- mal diffusivity, and source-receiver distance can be taken into account. Numerical results show that the effect on ultrasound waveform of the size of the laser volume source produces strong bipolar longitu- dinal waves and improves the amplitude and directivity of the longitudinal waves. A fiber-reinforced composite material exhibits isotropic or homogenous behavior for ultrasonic wave propagation per- pendicular to the fiber direction. For ultrasonic propagation along the fiber direction, ultrasonic dis- persion resulting from the inhomogeneous nature of the material affects the laser ultrasonic waveforms. As the dimensions of the laser pulse are increased in space and time, the displacement waveform be- comes broader and its magnitude decreases.

  7. Acoustic wave propagation in austenitic stainless steel AISI 304L: Application examples

    Energy Technology Data Exchange (ETDEWEB)

    Dahmene, F., E-mail: fethidahmen@yahoo.fr [Laboratoire Roberval Unite Mixte 6066 CNRS, UTC, BP20592, 60205 Compiegne (France)] [Ecole des Mines de Douai, Departement Technologies des Polymeres et Composites and Ingenierie Mecanique, 941 rue Charles Bourseul, BP. 10838, 59508 Douai Cedex (France); Laksimi, A. [Laboratoire Roberval Unite Mixte 6066 CNRS, UTC, BP20592, 60205 Compiegne (France); Hariri, S. [Ecole des Mines de Douai, Departement Technologies des Polymeres et Composites and Ingenierie Mecanique, 941 rue Charles Bourseul, BP. 10838, 59508 Douai Cedex (France); Herve, C.; Jaubert, L.; Cherfaoui, M. [Pole EPI, Equipements sous Pression et Ingenierie d' Instrumentation, CETIM, 52, Avenue Felix-Lauat, BP80067, 60304 Senlis (France); Mouftiez, A. [Ecole des Mines de Douai, Departement Technologies des Polymeres et Composites and Ingenierie Mecanique, 941 rue Charles Bourseul, BP. 10838, 59508 Douai Cedex (France)

    2012-04-15

    Prior to the detection and monitoring by acoustic emission of defects in steel, this paper deals with the use of waveguide that avoids direct contact between the sensor and monitoring structure when working at high temperature. The study of the waveguide effect on elastic wave transmission shows that waveguide deforms the waveform but it does not affect its frequency. Waveguide length does not affect signal magnitude. An experimental example of compact tensile specimen monitoring by acoustic emission is given. The monitoring of the damage at low and high temperature '450 Degree-Sign C' by acoustic emission enables us to identify crack propagation stages and their acoustic signature. - Highlights: Black-Right-Pointing-Pointer This paper deals with the use of waveguide that avoids direct contact between the sensor and monitoring structure when working at high temperature. Black-Right-Pointing-Pointer The objective is the development of nondestructive testing by acoustic emission (AE) of pressure equipment (PE) operating at high temperature. Black-Right-Pointing-Pointer The use of AE in this work has underlined high temperature mechanical behavior in terms of damage and crack propagation.

  8. Temperature Frequency Characteristics of Hexamethyldisiloxane (HMDSO) Polymer Coated Rayleigh Surface Acoustic Wave (SAW) Resonators for Gas-Phase Sensor Applications

    OpenAIRE

    Ekaterina I. Radeva; Esmeryan, Karekin D.; Avramov, Ivan D.

    2012-01-01

    Temperature induced frequency shifts may compromise the sensor response of polymer coated acoustic wave gas-phase sensors operating in environments of variable temperature. To correct the sensor data with the temperature response of the sensor the latter must be known. This study presents and discusses temperature frequency characteristics (TFCs) of solid hexamethyldisiloxane (HMDSO) polymer coated sensor resonators using the Rayleigh surface acoustic wave (RSAW) mode on ST-cut quartz. Using ...

  9. Finite-difference numerical modelling of gravito-acoustic wave propagation in a windy and attenuating atmosphere

    OpenAIRE

    2016-01-01

    in press; International audience; Acoustic and gravity waves propagating in planetary atmospheres have been studied intensively as markers of specific phenomena such as tectonic events or explosions or as contributors to atmosphere dynamics. To get a better understanding of the physics behind these dynamic processes, both acoustic and gravity waves propagation should be modelled in a 3D attenuating and windy atmosphere extending from the ground to the upper thermosphere. Thus, in order to pro...

  10. Eigenvalue solution to the electron-collisional effect on ion-acoustic and entropy waves

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The linearized electron Fokker-Planck and cold-ion fluid equations are solved as an eigenvalue problem in the quasineutral limit for ionization state,Z=1,8,and 64 for ion-acoustic and entropy waves.The perturbed electron distribution function is written as a moment expansion of eigenvectors,and is used to compute collisionality-dependence macroscopic quantities in the plasma such as the generalized specific heat ratio,and the electron thermal conductivity.

  11. Mass Sensitivity Optimization of a Surface Acoustic Wave Sensor Incorporating a Resonator Configuration

    OpenAIRE

    Wenchang Hao; Jiuling Liu; Minghua Liu; Yong Liang; Shitang He

    2016-01-01

    The effect of the sensitive area of the two-port resonator configuration on the mass sensitivity of a Rayleigh surface acoustic wave (R-SAW) sensor was investigated theoretically, and verified in experiments. A theoretical model utilizing a 3-dimensional finite element method (FEM) approach was established to extract the coupling-of-modes (COM) parameters in the absence and presence of mass loading covering the electrode structures. The COM model was used to simulate the frequency response of...

  12. Interaction of a Surface Acoustic Wave with a Two-dimensional Electron Gas

    Institute of Scientific and Technical Information of China (English)

    YANG Shi-Jie; ZHAO Hu; YU Yue

    2005-01-01

    When a surface acoustic wave (SAW) propagates on the surface of a GaAs semiconductor, coupling between electrons in the two-dimensional electron gas beneath the interface and the elastic host crystal through piezoelectric interaction will attenuate the SAW. The coupling coefficient is calculated for the SAW propagating along an arbitrary direction. It is found that the coupling strength is strongly dependent on the propagating direction. When the SAW propagates along the [011] direction, the coupling becomes quite weak.

  13. Reduction of Guided Acoustic Wave Brillouin Scattering in Photonic Crystal Fibers

    CERN Document Server

    Elser, D; Gloeckl, O; Korn, A; Leuchs, G; Lorenz, S; Marquardt, C; Marquardt, Ch.

    2005-01-01

    Guided Acoustic Wave Brillouin Scattering (GAWBS) generates phase and polarization noise of light propagating in glass fibers. This excess noise affects the performance of various experiments operating at the quantum noise limit. We experimentally demonstrate the reduction of GAWBS noise in a photonic crystal fiber in a broad frequency range using cavity sound dynamics. We compare the noise spectrum to the one of a standard fiber and observe a roughly 10-fold noise reduction in the frequency range up to 200 MHz.

  14. LiNbO3/p+n diode surface acoustic wave memory correlator

    Institute of Scientific and Technical Information of China (English)

    张朝; 水永安; 印建华

    1997-01-01

    A detailed theoretical analysis of strip-coupled LiNbO3/p+ n diode surface acoustic wave (SAW) memory correlator in the parametric mode is presented. The influence of some important factors on correlation output is analyzed and calculated, including the amplitudes of reference, read and write signal, duration of write signal and doping density of the diode array. The conclusions can be employed for the design of improved strip-coupled SAW memorycorrelators.

  15. Experimental Study of Dust Acoustic Waves in the Strongly Correlated Regime

    CERN Document Server

    Bandyopadhyay, P; Sen, A

    2016-01-01

    Low frequency dust acoustic waves (DAW) were excited in a laboratory argon dusty plasma by modulating the discharge voltage with a low frequency AC signal. Metallic graphite particles were used as dust grains and a digital FFT technique was used to obtain dispersion characteristics. The experimental dispersion relation shows the reduction of phase velocity and a regime where $\\partial \\omega/\\partial k < 0$. A comparison is made with existing theoretical model.

  16. On-chip temperature-compensated Love mode surface acoustic wave device for gravimetric sensing

    OpenAIRE

    Liu, Q.; A. J. Flewitt

    2014-01-01

    This is the accepted manuscript. The following article appeared in Applied Physics Letters and may be found at http://scitation.aip.org/content/aip/journal/apl/105/21/10.1063/1.4902989. Copyright 2014 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. Love mode surface acoustic wave (SAW) sensors have been recognized as one of the most sensitive devices for gravime...

  17. Surface acoustic wave based analytical system for the detection of liquid detergents

    OpenAIRE

    2012-01-01

    A novel analytical sensing system has been designed for the characterization and discrimination of different detergents in water. This micro-sensor system could play a key role in the development of more efficient and environmentally-friendly washing machines by enabling the measurement of residual detergents. The sensing system comprises a dual shear-horizontal surface acoustic wave (SH-SAW) resonator sensor housed within a poly-dimethylsiloxane (PDMS) microfluidic chamber. Free and electric...

  18. Development of a GaAs Monolithic Surface Acoustic Wave Integrated Circuit

    Energy Technology Data Exchange (ETDEWEB)

    Baca, A.G.; Casalnuovo, S.C.; Drummond, T.J.; Frye, G.C.; Heller, E.J.; Hietala, V.M.; Klem, J.F.

    1999-03-08

    An oscillator technology using surface acoustic wave delay lines integrated with GaAs MESFET electronics has been developed for GaAs-based integrated microsensor applications. The oscillator consists of a two-port SAW delay line in a feedback loop with a four-stage GaAs MESFET amplifier. Oscillators with frequencies of 470, 350, and 200 MHz have been designed and fabricated. These oscillators are also promising for other RF applications.

  19. On the Source of Propagating Slow Magneto-acoustic Waves in Sunspots

    OpenAIRE

    S. Krishna Prasad; Jess, D. B.; Khomenko, Elena

    2015-01-01

    Recent high-resolution observations of sunspot oscillations using simultaneously operated ground- and space-based telescopes reveal the intrinsic connection between different layers of the solar atmosphere. However, it is not clear whether these oscillations are externally driven or generated in-situ. We address this question by using observations of propagating slow magneto-acoustic waves along a coronal fan loop system. In addition to the generally observed decreases in oscillation amplitud...

  20. Comment on Weakly dissipative dust-ion acoustic wave modulation (J. Plasma Phys. 82, 905820104, 2016)

    Science.gov (United States)

    Kourakis, I.; Elkamash, I. S.

    2016-10-01

    In a recent article (J. Plasma Phys., vol. 82, 2009, 905820104), weakly dissipative dust-ion acoustic wave modulation in dusty plasmas was considered. It is shown in this Comment that the analysis therein involved severe fallacies, and is in fact based on an erroneous plasma fluid model, which fails to satisfy an equilibrium condition, among other shortcomings. The subsequent analysis therefore is dubious and of limited scientific value.

  1. Dust-acoustic solitary waves in dusty plasma with variable dust charge

    CERN Document Server

    Forozani, Gh

    2011-01-01

    In this article we are going to consider dust acoustic wave in dusty plasma whose constituents are inertial negative charged dust particles, Boltzmann distributed electrons and non-thermal distributed ions with variable dust charge. Using reductive perturbation method, we have obtained Korteweg-de Veries (kdv) and modified kdv(mkdv) equations. A Sagdeev potential for the system and stability conditions for solitonic solution are also derived.

  2. Study of Ocean Bottom Interactions with Acoustic Waves by a New Elastic Wave Propagation Algorithm and an Energy Flow Analysis Technique

    Science.gov (United States)

    2016-06-07

    imaging to study the wave / sea -bottom interaction, energy partitioning, scattering mechanism and other problems that are crucial for many ocean bottom...Study Of Ocean Bottom Interactions With Acoustic Waves By A New Elastic Wave Propagation Algorithm And An Energy Flow Analysis Technique Ru-Shan Wu...elastic wave propagation and interaction with the ocean water and ocean bottom environment. The method will be applied to numerical simulations and

  3. Highly asymmetric interaction forces induced by acoustic waves in coupled plate structures

    CERN Document Server

    Fan, Xiying; Zhang, Shenwei; Ke, Manzhu; Liu, Zhengyou

    2015-01-01

    Mutual forces can be induced between coupled structures when illuminated by external acoustic waves. In this Letter, we propose a concept of asymmetric interaction between two coupled plate-like structures, which is generated by oppositely incident plane waves. Besides the striking contrast in magnitude, the mutual force induced by one of the incidences can be tuned extremely strong due to the resonant excitation of the flexural plate modes. The highly asymmetric interaction with enhanced strength in single side should be potentially useful, such as in designing ultrasound instruments and sensors.

  4. Three-Dimensional Dust-Acoustic Waves in a Collisional Dusty Plasma with Opposite Polarity Particles

    Institute of Scientific and Technical Information of China (English)

    LIN Mai-Mai; DUAN Wen-Shan

    2005-01-01

    The dispersion relation is derived for three-dimensional dust-acoustic waves in a current-driven dusty plasmas with both positively and negatively charged dust particles. The dependencies of the frequency and the growth rate on the wave number K, the intensity of magnetic field B, and the inclination angle θ have been numerically shown in this paper. The growth rate is negative for the laboratory dusty plasma, but it is positive for the cosmic dusty plasma.It is found that when the inclination angle θ = π/2, there is no instability. The effect of the electrostatic field E0 has also been studied in this paper.

  5. Surface acoustic wave regulated single photon emission from a coupled quantum dot-nanocavity system

    Science.gov (United States)

    Weiß, M.; Kapfinger, S.; Reichert, T.; Finley, J. J.; Wixforth, A.; Kaniber, M.; Krenner, H. J.

    2016-07-01

    A coupled quantum dot-nanocavity system in the weak coupling regime of cavity-quantumelectrodynamics is dynamically tuned in and out of resonance by the coherent elastic field of a fSAW ≃ 800 MHz surface acoustic wave. When the system is brought to resonance by the sound wave, light-matter interaction is strongly increased by the Purcell effect. This leads to a precisely timed single photon emission as confirmed by the second order photon correlation function, g(2). All relevant frequencies of our experiment are faithfully identified in the Fourier transform of g(2), demonstrating high fidelity regulation of the stream of single photons emitted by the system.

  6. Asymmetric acoustic propagation of wave packets via the self-demodulation effect

    CERN Document Server

    Devaux, Thibaut; Richoux, Olivier; Pagneux, Vincent

    2015-01-01

    This article presents the experimental characterization of nonreciprocal elastic wave transmission in a single-mode elastic waveguide. This asymmetric system is obtained by coupling a selection layer with a conversion layer: the selection component is provided by a phononic crystal, while the conversion is achieved by a nonlinear self-demodulation effect in a 3D unconsolidated granular medium. A quantitative experimental study of this acoustic rectifier indicates a high rectifying ratio, up to $10^6$, with wide band (10 kHz) and an audible effect. Moreover, this system allows for wave-packet rectification and extends the future applications of asymmetric systems.

  7. Resonance reflection of acoustic waves in piezoelectric bi-crystalline structures.

    Science.gov (United States)

    Darinskii, Alexander N; Weihnacht, Manfred

    2005-05-01

    The paper studies the bulk wave reflection from internal interfaces in piezoelectric media. The interfaces of two types have been considered. Infinitesimally thin metallic layer inserted into homogeneous piezoelectric crystal of arbitrary symmetry. Rigidly bonded crystals whose piezoelectric coefficients differ by sign but the other material constants are identical. Analytic expressions for the coefficients of mode conversion have been derived. An analysis has been carried out of specific singularities arising when the angle of incidence is such that the resonance excitation of leaky interface acoustic waves occurs. The conditions for the resonance total reflection have been established. The computations performed for lithium niobate (LiNbO3) illustrate general conclusions.

  8. Effect of particle-particle interactions on the acoustic radiation force in an ultrasonic standing wave

    Energy Technology Data Exchange (ETDEWEB)

    Lipkens, Bart, E-mail: blipkens@wne.edu [Mechanical Engineering, Western New England University, Springfield, Massachusetts, 01119 (United States); Ilinskii, Yurii A., E-mail: ilinskii@gmail.com; Zabolotskaya, Evgenia A., E-mail: zheniazabolotskaya@gmail.com [Applied Research Laboratories, The University of Texas at Austin, Austin, Texas 78713–8029 (United States)

    2015-10-28

    Ultrasonic standing waves are widely used for separation applications. In MEMS applications, a half wavelength standing wave field is generated perpendicular to a laminar flow. The acoustic radiation force exerted on the particle drives the particle to the center of the MEMS channel, where concentrated particles are harvested. In macro-scale applications, the ultrasonic standing wave spans multiple wavelengths. Examples of such applications are oil/water emulsion splitting [1], and blood/lipid separation [2]. In macro-scale applications, particles are typically trapped in the standing wave, resulting in clumping or coalescence of particles/droplets. Subsequent gravitational settling results in separation of the secondary phase. An often used expression for the radiation force on a particle is that derived by Gorkov [3]. The assumptions are that the particle size is small relative to the wavelength, and therefore, only monopole and dipole scattering contributions are used to calculate the radiation force. This framework seems satisfactory for MEMS scale applications where each particle is treated separately by the standing wave, and concentrations are typically low. In macro-scale applications, particle concentration is high, and particle clumping or droplet coalescence results in particle sizes not necessarily small relative to the wavelength. Ilinskii et al. developed a framework for calculation of the acoustic radiation force valid for any size particle [4]. However, this model does not take into account particle to particle effects, which can become important as particle concentration increases. It is known that an acoustic radiation force on a particle or a droplet is determined by the local field. An acoustic radiation force expression is developed that includes the effect of particle to particle interaction. The case of two neighboring particles is considered. The approach is based on sound scattering by the particles. The acoustic field at the location of

  9. Ion-Acoustic Wave Scattering description using Case-Van Kampen modes

    Science.gov (United States)

    Berumen, Jorge; Chu, Feng; Hood, Ryan; Mattingly, Sean; Skiff, Fred

    2016-10-01

    We present an experimental characterization of the ion acoustic wave scattering using Case-Van Kampen modes. The experiment is performed in a cylindrical, magnetized, singly-ionized Argon inductively-coupled gas discharge plasma that is weakly collisional with typical conditions: n 109cm-3 Te 7 eV and B 1 kG. A 5 ring antenna with diameter similar to the plasma diameter is used for launching the waves. A survey of the ion velocity distribution function's zeroth and first order as well as density fluctuations at different frequencies is done using Laser-Induced Fluorescence (LIF) as the main diagnostics method. Analysis of the scattering of the waves and its dependence on wave frequency is done utilizing Case-Van Kampen modes and the use of Morrison's G-transform. This research is supported by the Department of Energy under Grant No. DOE DE-FG02-99ER54543.

  10. Two-dimensional cylindrical ion-acoustic solitary and rogue waves in ultrarelativistic plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Ata-ur-Rahman [Institute of Physics and Electronics, University of Peshawar, Peshawar 25000 (Pakistan); National Centre for Physics at QAU Campus, Shahdrah Valley Road, Islamabad 44000 (Pakistan); Ali, S. [National Centre for Physics at QAU Campus, Shahdrah Valley Road, Islamabad 44000 (Pakistan); Moslem, W. M. [Department of Physics, Faculty of Science, Port Said University, Port Said 42521 (Egypt); Mushtaq, A. [National Centre for Physics at QAU Campus, Shahdrah Valley Road, Islamabad 44000 (Pakistan); Department of Physics, Abdul Wali Khan University, Mardan 23200 (Pakistan)

    2013-07-15

    The propagation of ion-acoustic (IA) solitary and rogue waves is investigated in a two-dimensional ultrarelativistic degenerate warm dense plasma. By using the reductive perturbation technique, the cylindrical Kadomtsev–Petviashvili (KP) equation is derived, which can be further transformed into a Korteweg–de Vries (KdV) equation. The latter admits a solitary wave solution. However, when the frequency of the carrier wave is much smaller than the ion plasma frequency, the KdV equation can be transferred to a nonlinear Schrödinger equation to study the nonlinear evolution of modulationally unstable modified IA wavepackets. The propagation characteristics of the IA solitary and rogue waves are strongly influenced by the variation of different plasma parameters in an ultrarelativistic degenerate dense plasma. The present results might be helpful to understand the nonlinear electrostatic excitations in astrophysical degenerate dense plasmas.

  11. Measurement of Elastic Properties of Tissue by Shear Wave Propagation Generated by Acoustic Radiation Force

    Science.gov (United States)

    Tabaru, Marie; Azuma, Takashi; Hashiba, Kunio

    2010-07-01

    Acoustic radiation force (ARF) imaging has been developed as a novel elastography technology to diagnose hepatic disease and breast cancer. The accuracy of shear wave speed estimation, which is one of the applications of ARF elastography, is studied. The Young's moduli of pig liver and foie gras samples estimated from the shear wave speed were compared with those measured the static Young's modulus measurement. The difference in the two methods was 8%. Distance attenuation characteristics of the shear wave were also studied using finite element method (FEM) analysis. We found that the differences in the axial and lateral beam widths in pressure and ARF are 16 and 9% at F-number=0.9. We studied the relationship between two branch points in distance attenuation characteristics and the shape of ARF. We found that the maximum measurable length to estimate shear wave speed for one ARF excitation was 8 mm.

  12. Waves and Structures in Nonlinear Nondispersive Media General Theory and Applications to Nonlinear Acoustics

    CERN Document Server

    Gurbatov, S N; Saichev, A I

    2012-01-01

    "Waves and Structures in Nonlinear Nondispersive Media: General Theory and Applications to Nonlinear Acoustics” is devoted completely to nonlinear structures. The general theory is given here in parallel with mathematical models. Many concrete examples illustrate the general analysis of Part I. Part II is devoted to applications to nonlinear acoustics, including specific nonlinear models and exact solutions, physical mechanisms of nonlinearity, sawtooth-shaped wave propagation, self-action phenomena, nonlinear resonances and engineering application (medicine, nondestructive testing, geophysics, etc.). This book is designed for graduate and postgraduate students studying the theory of nonlinear waves of various physical nature. It may also be useful as a handbook for engineers and researchers who encounter the necessity of taking nonlinear wave effects into account of their work. Dr. Gurbatov S.N. is the head of Department, and Vice Rector for Research of Nizhny Novgorod State University. Dr. Rudenko O.V. is...

  13. Acoustic omni meta-atom for decoupled access to all octants of a wave parameter space

    Science.gov (United States)

    Koo, Sukmo; Cho, Choonlae; Jeong, Jun-ho; Park, Namkyoo

    2016-01-01

    The common behaviour of a wave is determined by wave parameters of its medium, which are generally associated with the characteristic oscillations of its corresponding elementary particles. In the context of metamaterials, the decoupled excitation of these fundamental oscillations would provide an ideal platform for top–down and reconfigurable access to the entire constitutive parameter space; however, this has remained as a conceivable problem that must be accomplished, after being pointed out by Pendry. Here by focusing on acoustic metamaterials, we achieve the decoupling of density ρ, modulus B−1 and bianisotropy ξ, by separating the paths of particle momentum to conform to the characteristic oscillations of each macroscopic wave parameter. Independent access to all octants of wave parameter space (ρ, B−1, ξ)=(+/−,+/−,+/−) is thus realized using a single platform that we call an omni meta-atom; as a building block that achieves top–down access to the target properties of metamaterials. PMID:27687689

  14. Cylindrical and spherical dust-acoustic wave modulations in dusty plasmas with non-extensive distributions

    Indian Academy of Sciences (India)

    M Eghbali; B Farokhi

    2015-04-01

    The nonlinear wave modulation of planar and non-planar (cylindrical and spherical) dust-acoustic waves (DAW) propagating in dusty plasmas, in the presence of non-extensive distributions for ions and electrons is investigated. By employing multiple scales technique, a cylindrically and spherically modified nonlinear Schrödinger equation (NLSE) is derived. The presence of hot non-extensive -distributed ions and electron is shown to influence the modulational instability (MI) of the waves. It is shown that the properties of the MI of DAW in cylindrical and spherical geometries differ from those in a planar one-dimensional geometry. Furthermore, it is observed that the non-extensive distributed ions have more effect on the MI of the DAW than electrons. Also, it is found that there is a MI period for cylindrical and spherical wave modulations, which does not exist in the one-dimensional case.

  15. Characterization of Ion-Acoustic Wave Reflection Off A Plasma Chamber Wall

    Science.gov (United States)

    Berumen, Jorge; Chu, Feng; Hood, Ryan; Mattingly, Sean; Rogers, Anthony; Skiff, Fred

    2015-11-01

    We present an experimental characterization of the ion acoustic wave reflection coefficient off a plasma chamber wall. The experiment is performed in a cylindrical, magnetized, singly-ionized Argon inductively-coupled gas discharge plasma that is weakly collisional with typical conditions: n ~ 1010cm-3 Te ~ 3 eV and B ~ 1 kG. The main diagnostics are laser-induced fluorescence and Langmuir probe measurements. A survey of the ion velocity distribution function's zeroth and first order as well as density fluctuations at different wave excitation frequencies is obtained. Analysis of the reflection coefficient's dependence on the phase velocity and frequency of the wave is done through the characterization of waves utilizing Case-Van Kampen modes and the use of Morrison's G-transform. This research is supported by the Department of Energy under grant No. DOE DE-FG02-99ER54543.

  16. Finite element approach analysis for characteristics of electromagnetic acoustic Lamb wave

    Science.gov (United States)

    Chen, Xiaoming; Li, Songsong

    2016-04-01

    The electromagnetic acoustic Lamb wave, with the advantages of quickly detecting the defect and sensitivity to the defects, is widely used in non-destructive testing of thin sheet. In this paper, the directivity of sound field, Phase velocity, group velocity and particle displacement amplitude of Lamb wave are study based on finite element analysis method. The results show that, for 1mm aluminum, when the excitation frequency 0.64MHz, the displacement amplitude of A0 mode is minimum, and the displacement amplitude S0 mode is largest. Appropriate to increase the displacement amplitude of a mode, while reducing displacement amplitude of another mode, to achieve the excitation of a single mode Lamb wave. It is helpful to the Optimization of transducer parameters, the choice of Lamb wave modes and providing optimal excitation frequency.

  17. New Exact Solutions of Ion-Acoustic Wave Equations by (G′/G-Expansion Method

    Directory of Open Access Journals (Sweden)

    Wafaa M. Taha

    2013-01-01

    Full Text Available The (G′/G-expansion method is used to study ion-acoustic waves equations in plasma physic for the first time. Many new exact traveling wave solutions of the Schamel equation, Schamel-KdV (S-KdV, and the two-dimensional modified KP (Kadomtsev-Petviashvili equation with square root nonlinearity are constructed. The traveling wave solutions obtained via this method are expressed by hyperbolic functions, the trigonometric functions, and the rational functions. In addition to solitary waves solutions, a variety of special solutions like kink shaped, antikink shaped, and bell type solitary solutions are obtained when the choice of parameters is taken at special values. Two- and three-dimensional plots are drawn to illustrate the nature of solutions. Moreover, the solution obtained via this method is in good agreement with previously obtained solutions of other researchers.

  18. Electron acoustic solitary waves in a magnetized plasma with nonthermal electrons and an electron beam

    Science.gov (United States)

    Singh, S. V.; Devanandhan, S.; Lakhina, G. S.; Bharuthram, R.

    2016-08-01

    A theoretical investigation is carried out to study the obliquely propagating electron acoustic solitary waves having nonthermal hot electrons, cold and beam electrons, and ions in a magnetized plasma. We have employed reductive perturbation theory to derive the Korteweg-de-Vries-Zakharov-Kuznetsov (KdV-ZK) equation describing the nonlinear evolution of these waves. The two-dimensional plane wave solution of KdV-ZK equation is analyzed to study the effects of nonthermal and beam electrons on the characteristics of the solitons. Theoretical results predict negative potential solitary structures. We emphasize that the inclusion of finite temperature effects reduces the soliton amplitudes and the width of the solitons increases by an increase in the obliquity of the wave propagation. The numerical analysis is presented for the parameters corresponding to the observations of "burst a" event by Viking satellite on the auroral field lines.

  19. High-sensitivity open-loop electronics for gravimetric acoustic-wave-based sensors.

    Science.gov (United States)

    Rabus, David; Friedt, Jean-Michel; Ballandras, Sylvain; Martin, Gilles; Carry, Emile; Blondeau-Patissier, Virginie

    2013-06-01

    Detecting chemical species in gas phase has recently received an increasing interest mainly for security control, trying to implement new systems allowing for extended dynamics and reactivity. In this work, an open-loop interrogation strategy is proposed to use radio-frequency acoustic transducers as micro-balances for that purpose. The resulting system is dedicated to the monitoring of chemical compounds in gaseous or liquid-phase state. A 16 Hz standard deviation is demonstrated at 125 MHz, with a working frequency band in the 60 to 133 MHz range, answering the requirements for using Rayleigh- and Love-wave-based delay lines operating with 40-μm acoustic wavelength transducers. Moreover, this electronic setup was used to interrogate a high-overtone bulk acoustic wave resonator (HBAR) microbalance, a new sensor class allowing for multi-mode interrogation for gravimetric measurement improvement. The noise source still limiting the system performance is due to the analog-to-digital converter of the microcontroller, thus leaving open degrees-of-freedom for improving the obtained results by optimizing the voltage reference and board layout. The operation of the system is illustrated using a calibrated galvanic deposition at the surface of Love-wave delay lines to assess theoretical predictions of their gravimetric sensitivity and to compare them with HBAR-based sensor sensitivity.

  20. Vapor sensing by means of a ZnO-on-Si surface acoustic wave resonator

    Science.gov (United States)

    Martin, S. J.; Schweizer, K. S.; Schwartz, S. S.; Gunshor, R. L.

    Surface Acoustic Wave (SAW) devices can function as sensitive detectors of vapors. The high surface acoustic energy density of the device makes it extremely sensitive to the presence of molecules adsorbed from the gas phase. Mass loading by the adsorbate is the primary mechanism for the surface wave velocity perturbation. If the device is used as the frequency control element of an oscillator, perturbations in wave velocity on the order of 10 parts per billion may be resolved by means of a frequency counter. Zno-on-Si SAW resonators have been examined as vapor sensors. The piezoelectric ZnO layer permits transduction between electrical and acoustic energies, as well as endowing the surface with particular adsorptive properties. These devices exhibit C-values up to 12,000 at a resonant frequency of 109 MHZ. The resonant frequency of the device shifts upon exposure to a vapor-air mixture, with a transient response which is distinct for each of the organic vapors tested. Due to the permeability of the polycrystalline ZnO layer, the instantaneous reversibility of the resonant frequency shift is found to depend on the type of adsorbed molecule.

  1. Detection of Volatile Organics Using a Surface Acoustic Wave Array System

    Energy Technology Data Exchange (ETDEWEB)

    ANDERSON, LAWRENCE F.; BARTHOLOMEW, JOHN W.; CERNOSEK, RICHARD W.; COLBURN, CHRISTOPHER W.; CROOKS, R.M.; MARTINEZ, R.F.; OSBOURN, GORDON C.; RICCO, A.J.; STATON, ALAN W.; YELTON, WILLIAM G.

    1999-10-14

    A chemical sensing system based on arrays of surface acoustic wave (SAW) delay lines has been developed for identification and quantification of volatile organic compounds (VOCs). The individual SAW chemical sensors consist of interdigital transducers patterned on the surface of an ST-cut quartz substrate to launch and detect the acoustic waves and a thin film coating in the SAW propagation path to perturb the acoustic wave velocity and attenuation during analyte sorption. A diverse set of material coatings gives the sensor arrays a degree of chemical sensitivity and selectivity. Materials examined for sensor application include the alkanethiol-based self-assembled monolayer, plasma-processed films, custom-synthesized conventional polymers, dendrimeric polymers, molecular recognition materials, electroplated metal thin films, and porous metal oxides. All of these materials target a specific chemical fi.mctionality and the enhancement of accessible film surface area. Since no one coating provides absolute analyte specificity, the array responses are further analyzed using a visual-empirical region-of-influence (VERI) pattern recognition algorithm. The chemical sensing system consists of a seven-element SAW array with accompanying drive and control electronics, sensor signal acquisition electronics, environmental vapor sampling hardware, and a notebook computer. Based on data gathered for individual sensor responses, greater than 93%-accurate identification can be achieved for any single analyte from a group of 17 VOCs and water.

  2. Observations of Dissipation of Slow Magneto-acoustic Waves in Polar Coronal Hole

    CERN Document Server

    Gupta, G R

    2014-01-01

    We focus on polar coronal hole region to find any evidence of dissipation of propagating slow magneto-acoustic waves. We obtained time-distance and frequency-distance maps along plume structure in polar coronal hole. We also obtained Fourier power maps of polar coronal hole in different frequency ranges in 171 \\AA\\ and 193 \\AA\\ passbands. We performed intensity distribution statistics in time domain at several locations in polar coronal hole. We find presence of propagating slow magneto-acoustic waves having temperature dependent propagation speeds. The wavelet analysis and Fourier power maps of polar coronal hole show that low-frequency waves are travelling longer distances (longer detection length) as compared to high-frequency waves. We found two distinct dissipation length scales of wave amplitude decay at two different height ranges (between 0-10 Mm and 10-70 Mm) along the observed plume structure. Dissipation length obtained at higher height range show some frequency dependence. Individual Fourier power...

  3. Ion-acoustic cnoidal waves in plasmas with warm ions and kappa distributed electrons and positrons

    Energy Technology Data Exchange (ETDEWEB)

    Kaladze, T. [Department of Physics, Government College University (GCU), Lahore 54000 (Pakistan); I.Vekua Institute of Applied Mathematics, Tbilisi State University, 0186 Georgia (United States); Mahmood, S., E-mail: shahzadm100@gmail.com [Theoretical Physics Division (TPD), PINSTECH P.O. Nilore Islamabad 44000 (Pakistan); National Center for Physics (NCP), Quaid-i-Azam University Campus, Shahdra Valley Road, Islamabad 44000 (Pakistan)

    2014-03-15

    Electrostatic ion-acoustic periodic (cnoidal) waves and solitons in unmagnetized electron-positron-ion (EPI) plasmas with warm ions and kappa distributed electrons and positrons are investigated. Using the reductive perturbation method, the Korteweg-de Vries (KdV) equation is derived with appropriate boundary conditions for periodic waves. The corresponding analytical and various numerical solutions are presented with Sagdeev potential approach. Differences between the results caused by the kappa and Maxwell distributions are emphasized. It is revealed that only hump (compressive) structures of the cnoidal waves and solitons are formed. It is shown that amplitudes of the cnoidal waves and solitons are reduced in an EPI plasma case in comparison with the ordinary electron-ion plasmas. The effects caused by the temperature variations of the warm ions are also discussed. It is obtained that the amplitude of the cnoidal waves and solitons decreases for a kappa distributed (nonthermal) electrons and positrons plasma case in comparison with the Maxwellian distributed (thermal) electrons and positrons EPI plasmas. The existence of kappa distributed particles leads to decreasing of ion-acoustic frequency up to thermal ions frequency.

  4. Visualization of stress wave propagation via air-coupled acoustic emission sensors

    Science.gov (United States)

    Rivey, Joshua C.; Lee, Gil-Yong; Yang, Jinkyu; Kim, Youngkey; Kim, Sungchan

    2017-02-01

    We experimentally demonstrate the feasibility of visualizing stress waves propagating in plates using air-coupled acoustic emission sensors. Specifically, we employ a device that embeds arrays of microphones around an optical lens in a helical pattern. By implementing a beamforming technique, this remote sensing system allows us to record wave propagation events in situ via a single-shot and full-field measurement. This is a significant improvement over the conventional wave propagation tracking approaches based on laser doppler vibrometry or digital image correlation techniques. In this paper, we focus on demonstrating the feasibility and efficacy of this air-coupled acoustic emission technique by using large metallic plates exposed to external impacts. The visualization results of stress wave propagation will be shown under various impact scenarios. The proposed technique can be used to characterize and localize damage by detecting the attenuation, reflection, and scattering of stress waves that occurs at damage locations. This can ultimately lead to the development of new structural health monitoring and nondestructive evaluation methods for identifying hidden cracks or delaminations in metallic or composite plate structures, simultaneously negating the need for mounted contact sensors.

  5. Ion-acoustic cnoidal waves in plasmas with warm ions and kappa distributed electrons and positrons

    Science.gov (United States)

    Kaladze, T.; Mahmood, S.

    2014-03-01

    Electrostatic ion-acoustic periodic (cnoidal) waves and solitons in unmagnetized electron-positron-ion (EPI) plasmas with warm ions and kappa distributed electrons and positrons are investigated. Using the reductive perturbation method, the Korteweg-de Vries (KdV) equation is derived with appropriate boundary conditions for periodic waves. The corresponding analytical and various numerical solutions are presented with Sagdeev potential approach. Differences between the results caused by the kappa and Maxwell distributions are emphasized. It is revealed that only hump (compressive) structures of the cnoidal waves and solitons are formed. It is shown that amplitudes of the cnoidal waves and solitons are reduced in an EPI plasma case in comparison with the ordinary electron-ion plasmas. The effects caused by the temperature variations of the warm ions are also discussed. It is obtained that the amplitude of the cnoidal waves and solitons decreases for a kappa distributed (nonthermal) electrons and positrons plasma case in comparison with the Maxwellian distributed (thermal) electrons and positrons EPI plasmas. The existence of kappa distributed particles leads to decreasing of ion-acoustic frequency up to thermal ions frequency.

  6. Efficient wideband guided-wave acoustooptic Bragg diffraction using phased surface acoustic wave array in LiNbO(3) waveguides.

    Science.gov (United States)

    Nguyen, L T; Tsai, C S

    1977-05-01

    Efficient wideband guided-wave acoustooptic Bragg diffraction has been demonstrated using a phased surface acoustic wave array in Y-cut LiNbO(3) waveguides. The results of measurement made on the devices which employ the first-order acoustic beam steering from six-element phased-SAWs of relatively small total acoustic aperture, at the center frequency of 325 MHz, have shown that accurate tracking of the Bragg condition is achievable for a frequency band of more than 250 MHz. In one of the deflectors that employ a larger total acoustic aperture, only 68 mW of electric drive power or 3.5 mW of acoustic power was required to diffract 50% of the light over a bandwidth of 112 MHz. This bandwidth is a nearly sixfold increase over that of the deflector that employs a single SAW of identical aperture. The quality of both deflected and undeflected light beams was very good.

  7. Development of an electromagnetic acoustic transducer (EMAT) for the noncontact excitation of guided ultrasonic waves

    Science.gov (United States)

    Fromme, P.

    2015-03-01

    Fatigue damage can develop in aerospace structures at locations of stress concentration, such as fasteners. For the safe operation of the aircraft fatigue cracks need to be detected before reaching a critical length. Guided ultrasonic waves offer an efficient method for the detection and characterization of such defects in large aerospace structures. Noncontact excitation of guided waves was achieved using electromagnetic acoustic transducers (EMAT). The transducer development for the specific excitation of the A0 Lamb wave mode is explained. The radial and angular dependency of the excited guided wave pulses at different frequencies were measured using a noncontact laser interferometer. Based on the induced eddy currents in the plate a theoretical model was developed and reasonably good agreement with the measured transducer performance was achieved. The developed transducers were employed for defect detection in aluminum components using fully noncontact guided wave measurements. Excitation of the A0 Lamb wave mode was achieved using the developed EMAT transducer and the guided wave propagation and scattering was measured using a noncontact laser interferometer. These results provide the basis for the defect characterization in aerospace structures using noncontact guided wave sensors.

  8. Model of horizontal stress in the Aigion10 well (Corinth) calculated from acoustic body waves

    CERN Document Server

    Rousseau, A

    2006-01-01

    In this paper we try to deduce the in situ stresses from the monopole acoustic waves of the well AIG10 between 689 and 1004 meters in depth (Corinth Golf). This borehole crosses competent sedimentary formations (mainly limestone), and the active Aigion fault between 769 and 780 meters in depth. This study is the application of two methods previously described by the author who shows the relationships between in situ horizontal stresses, and (i) the presence or absence of double body waves, (ii) the amplitude ratios between S and P waves (Rousseau, 2005a,b). The full waveforms of this well exhibit two distinct domains separated by the Aigion fault. Within the upper area the three typical waves (P, S and Stoneley) may appear, but the S waves are not numerous, and there is no double body wave, whereas within the lower area there are sometimes double P waves, but no S waves. From those observations, we conclude that the stress domain is isotropic above the Aigion fault, and anisotropic below, which is consistent ...

  9. Scattering Matrix for the Interaction between Solar Acoustic Waves and Sunspots. I. Measurements

    Science.gov (United States)

    Yang, Ming-Hsu; Chou, Dean-Yi; Zhao, Hui

    2017-01-01

    Assessing the interaction between solar acoustic waves and sunspots is a scattering problem. The scattering matrix elements are the most commonly used measured quantities to describe scattering problems. We use the wavefunctions of scattered waves of NOAAs 11084 and 11092 measured in the previous study to compute the scattering matrix elements, with plane waves as the basis. The measured scattered wavefunction is from the incident wave of radial order n to the wave of another radial order n‧, for n=0{--}5. For a time-independent sunspot, there is no mode mixing between different frequencies. An incident mode is scattered into various modes with different wavenumbers but the same frequency. Working in the frequency domain, we have the individual incident plane-wave mode, which is scattered into various plane-wave modes with the same frequency. This allows us to compute the scattering matrix element between two plane-wave modes for each frequency. Each scattering matrix element is a complex number, representing the transition from the incident mode to another mode. The amplitudes of diagonal elements are larger than those of the off-diagonal elements. The amplitude and phase of the off-diagonal elements are detectable only for n-1≤slant n\\prime ≤slant n+1 and -3{{Δ }}k≤slant δ {k}x≤slant 3{{Δ }}k, where δ {k}x is the change in the transverse component of the wavenumber and Δk = 0.035 rad Mm‑1.

  10. Effect of orbital angular momentum on electron acoustic waves in double-Kappa plasma

    Science.gov (United States)

    Rehman, Aman-ur; Shan, S. Ali; Hamza, M. Yousaf; Lee, J. K.

    2017-02-01

    Kinetic theory of electron acoustic waves (EAWs) in the presence of wave angular momentum has been derived to study the effect of wave angular momentum on the propagation of EAWs in a non-Maxwellian plasma. Both types of electrons (hot and cool) are modeled as Kappa-distributed velocity distribution functions. The theory is also applied to Saturn's magnetosphere where these kinds of distribution functions are commonly found. It is seen that the presence of wave angular momentum in the model has a significant effect on the existence of the regions where EAWs are weakly damped. The effect of wave angular momentum on EAWs is studied by defining a parameter η = k/(lqθ), which is the ratio of the planar wave number to the azimuthal wave number. The wave is purely planar if η→∞. The weakly damped region of EAWs depends strongly on this parameter in addition to other parameters such as hot electron spectral index κh, cool electron spectral index κc, the fraction of hot electrons, and hot to cool electrons temperature ratio. The results also show the effect of η on the propagation of EAWs in various regions of Saturn's magnetosphere.

  11. Real time device for biosensing: design of a bacteriophage model using love acoustic waves.

    Science.gov (United States)

    Tamarin, O; Comeau, S; Déjous, C; Moynet, D; Rebière, D; Bezian, J; Pistré, J

    2003-05-01

    Love wave sensors (ST-cut quartz substrate with interdigital transducers, SiO(2) guiding layer and sensitive coating) have been receiving a great deal of attention for a few years. Indeed, the wave coupled in a guiding layer confers a high gravimetric sensitivity and the shear horizontal (SH) polarization allows to work in liquid media. In this paper, an analytical method is proposed to calculate the Love wave phase velocity and the gravimetric sensitivity for a complete multilayer structure. This allows us to optimize the Love wave devices design in order to improve their gravimetric sensitivity in liquid media. As a model for virus or bacteria detection in liquids (drinking or bathing water, food em leader ) we design a model using M13 bacteriophage. The first step is the anti-M13 (AM13) monoclonal antibody grafting, on the device surface (SiO(2)). The second step is an immunoreaction in between the M13 bacteriophage and the AM13 antibody. The Love wave device allows to detect in real time the graft of the AM13 sensitive coating, as well as the immobilization of the M13 bacteriophages. With a pH change, the M13 bacteriophages can be removed from the sensor surface, in order to be numerated as plaque forming unit (pfu). Results on the sensitivity of Love waves are compared with similar immunological works with bulk acoustic wave devices, and demonstrate the high potentialities of Love waves sensors.

  12. Effect of dust charge variation on dust—acoustic solitary waves in a magnetized two—ion—temperature dusty plasma

    Institute of Scientific and Technical Information of China (English)

    XueJu-Kui; LangHe

    2003-01-01

    The effect of dust charge variation on the dust-acoustic solitary structures is investigated in a warm magnetized two-ion-temperature dusty plasma consisting of a negatively and variably charged extremely massive dust fluid and ions of two different temperatures. It is shown that the dust charge variation as well as the presence of a second component of ions would modify the properties of the dust-acoustic solitary structures and may exite both dust-acoustic solitary holes (soliton waves with a density dip) and positive solitons (soliton waves with a density hump).

  13. Effect of dust charge variation on dust-acoustic solitary waves in a magnetized two-ion-temperature dusty plasma

    Institute of Scientific and Technical Information of China (English)

    薛具奎; 郎和

    2003-01-01

    The effect of dust charge variation on the dust-acoustic solitary structures is investigated in a warm magnetized two-ion-temperature dusty plasma consisting of a negatively and variably charged extremely massive dust fluid and ions of two different temperatures. It is shown that the dust charge variation as well as the presence of a second component of ions would modify the properties of the dust-acoustic solitary structures and may excite both dust-acoustic solitary holes (soliton waves with a density dip) and positive solitons (soliton waves with a density hump).

  14. Acoustic wave propagation in Ni3 ( = Mo, Nb, Ta) compounds

    Indian Academy of Sciences (India)

    Pramod Kumar Yadawa

    2011-04-01

    The ultrasonic properties of the hexagonal closed packed structured Ni3Mo, Ni3Nb and Ni3Ta compounds were studied at room temperature for their characterization. For the investigations of ultrasonic properties, the second-order elastic constants using Lennard–Jones potential were computed. The velocities 1 and 2 have minima and maxima respectively at 45° with the unique axis of the crystal, while 3 increases with respect to angle with the unique axis of the crystal. The inconsistent behaviour of angle-dependent velocities is associated with the action of second-order elastic constants. Debye average sound velocities of these compounds increase with the angle and has maximum at 55° with the unique axis at room temperature. Hence, when a sound wave travels at 55° with the unique axis of these materials, the average sound velocity is found to be maximum. The results achieved are discussed and compared with the available experimental and theoretical results.

  15. Three dimensional full-wave nonlinear acoustic simulations: Applications to ultrasound imaging

    Energy Technology Data Exchange (ETDEWEB)

    Pinton, Gianmarco [Joint Department of Biomedical Engineering, University of North Carolina - North Carolina State University, 348 Taylor Hall, Chapel Hill, NC 27599, USA gfp@unc.edu (United States)

    2015-10-28

    Characterization of acoustic waves that propagate nonlinearly in an inhomogeneous medium has significant applications to diagnostic and therapeutic ultrasound. The generation of an ultrasound image of human tissue is based on the complex physics of acoustic wave propagation: diffraction, reflection, scattering, frequency dependent attenuation, and nonlinearity. The nonlinearity of wave propagation is used to the advantage of diagnostic scanners that use the harmonic components of the ultrasonic signal to improve the resolution and penetration of clinical scanners. One approach to simulating ultrasound images is to make approximations that can reduce the physics to systems that have a low computational cost. Here a maximalist approach is taken and the full three dimensional wave physics is simulated with finite differences. This paper demonstrates how finite difference simulations for the nonlinear acoustic wave equation can be used to generate physically realistic two and three dimensional ultrasound images anywhere in the body. A specific intercostal liver imaging scenario for two cases: with the ribs in place, and with the ribs removed. This configuration provides an imaging scenario that cannot be performed in vivo but that can test the influence of the ribs on image quality. Several imaging properties are studied, in particular the beamplots, the spatial coherence at the transducer surface, the distributed phase aberration, and the lesion detectability for imaging at the fundamental and harmonic frequencies. The results indicate, counterintuitively, that at the fundamental frequency the beamplot improves due to the apodization effect of the ribs but at the same time there is more degradation from reverberation clutter. At the harmonic frequency there is significantly less improvement in the beamplot and also significantly less degradation from reverberation. It is shown that even though simulating the full propagation physics is computationally challenging it

  16. Fluid simulation of dispersive and nondispersive ion acoustic waves in the presence of superthermal electrons

    Science.gov (United States)

    Lotekar, Ajay; Kakad, Amar; Kakad, Bharati

    2016-10-01

    One-dimensional fluid simulation is performed for the unmagnetized plasma consisting of cold fluid ions and superthermal electrons. Such a plasma system supports the generation of ion acoustic (IA) waves. A standard Gaussian type perturbation is used in both electron and ion equilibrium densities to excite the IA waves. The evolutionary profiles of the IA waves are obtained by varying the superthermal index and the amplitude of the initial perturbation. This simulation demonstrates that the amplitude of the initial perturbation and the superthermal index play an important role in determining the time evolution and the characteristics of the generated IA waves. The initial density perturbation in the system creates charge separation that drives the finite electrostatic potential in the system. This electrostatic potential later evolves into the dispersive and nondispersive IA waves in the simulation system. The density perturbation with the amplitude smaller than 10% of the equilibrium plasma density evolves into the dispersive IA waves, whereas larger density perturbations evolve into both dispersive and nondispersive IA waves for lower and higher superthermal index. The dispersive IA waves are the IA oscillations that propagate with constant ion plasma frequency, whereas the nondispersive IA waves are the IA solitary pulses (termed as IA solitons in the stability region) that propagate with the constant wave speed. The characteristics of the stable nondispersive IA solitons are found to be consistent with the nonlinear fluid theory. To the best of our knowledge, this is the first fluid simulation study that has considered the superthermal distributions for the plasma species to model the electrostatic solitary waves.

  17. Plate acoustic waves for low frequency delay line delaying signals up to 0.5 ms

    Science.gov (United States)

    Zaitsev, B. D.; Kuznetsova, I. E.; Zemnyukov, N. E.; Proidakov, V. I.; Teplykh, A. A.

    2010-01-01

    At present time there exists the problem of development of main memory elements based on the delay of electromagnetic signal with frequency of ˜100 kHz on hundreds microseconds. This paper is devoted to theoretical and experimental investigation of the possibility of development of corresponding acoustic delay lines. It was supposed to use the antisymmetric acoustic waves of zero order propagating in thin (compared to wavelength) metal plates. In this connection, we theoretically studied the parameters of A0 waves propagating in plates of various metals such as brass, bronze, copper, steel, and aluminum. For analysis of wave propagation in aforementioned plates, we used the standard motion equation and constitutive material equation for investigated medium as well as corresponding mechanical boundary conditions. As a result, the phase and group velocities versus parameter hf (h= plate thickness, f= wave frequency) were calculated for A0 wave propagating in mentioned above plates. It has been found that for steel plate the delay time about 0.5 ms can be achieved at the lengths of waveguide L=0.373, 0.737, and 0.971 m for h=0.175, 0.5, and 1.0 mm, respectively at f=120 kHz. The theoretical results were verified by experiment, which showed the possibility of development of corresponding delay lines with delay time ˜500 mks and acceptable insertion loss. In experiments, the excitation and reception of A0 waves were performed by the standard piezoelectric transducers of longitudinal waves and prismatic steel concentrators. The details of theoretical analysis and experiment are described.

  18. Comparative study of binding constants from Love wave surface acoustic wave and surface plasmon resonance biosensors using kinetic analysis.

    Science.gov (United States)

    Lee, Sangdae; Kim, Yong-Il; Kim, Ki-Bok

    2013-11-01

    Biosensors are used in a variety of fields for early diagnosis of diseases, measurement of toxic contaminants, quick detection of pathogens, and separation of specific proteins or DNA. In this study, we fabricated and evaluated the capability of a high sensitivity Love wave surface acoustic wave (SAW) biosensor. The experimental setup was composed of the fabricated 155-MHz Love wave SAW biosensor, a signal measurement system, a liquid flow system, and a temperature-control system. Subsequently, we measured the lower limit of detection (LOD) of the 155-MHz Love wave SAW biosensor, and calculated the association and dissociation constants between protein G and anti-mouse IgG using kinetic analysis. We compared these results with those obtained using a commercial surface plasmon resonance (SPR) biosensor. We found that the LOD of the SAW biosensor for anti-mouse IgG and mouse IgG was 0.5 and 1 microg/ml, respectively, and the resultant equilibrium association and dissociation constants were similar to the corresponding values obtaining using the commercial SPR biosensor. Thus, we conclude that the fabricated 155-MHz Love wave SAW biosensor exhibited the high sensitivity of the commercial SPR biosensor and was able to analyze the binding properties of the ligand and receptor by kinetic analysis similarly to the commercial SPR biosensor.

  19. Cylindrical vector beam generation in fiber with mode selectivity and wavelength tunability over broadband by acoustic flexural wave.

    Science.gov (United States)

    Zhang, Wending; Huang, Ligang; Wei, Keyan; Li, Peng; Jiang, Biqiang; Mao, Dong; Gao, Feng; Mei, Ting; Zhang, Guoquan; Zhao, Jianlin

    2016-05-16

    Theoretical analysis and experimental demonstration are presented for the generation of cylindrical vector beams (CVBs) via mode conversion in fiber from HE11 mode to TM01 and TE01 modes, which have radial and azimuthal polarizations, respectively. Intermodal coupling is caused by an acoustic flexural wave applied on the fiber, whereas polarization control is necessary for the mode conversion, i.e. HE11x→TM01 and HE11y→TE01 for acoustic vibration along the x-axis. The frequency of the RF driving signal for actuating the acoustic wave is determined by the phase matching condition that the period of acoustic wave equals the beatlength of two coupled modes. With phase matching condition tunability, this approach can be used to generate different types of CVBs at the same wavelength over a broadband. Experimental demonstration was done in the visible and communication bands.

  20. A finite element model of a MEMS-based surface acoustic wave hydrogen sensor.

    Science.gov (United States)

    El Gowini, Mohamed M; Moussa, Walied A

    2010-01-01

    Hydrogen plays a significant role in various industrial applications, but careful handling and continuous monitoring are crucial since it is explosive when mixed with air. Surface Acoustic Wave (SAW) sensors provide desirable characteristics for hydrogen detection due to their small size, low fabrication cost, ease of integration and high sensitivity. In this paper a finite element model of a Surface Acoustic Wave sensor is developed using ANSYS12© and tested for hydrogen detection. The sensor consists of a YZ-lithium niobate substrate with interdigital electrodes (IDT) patterned on the surface. A thin palladium (Pd) film is added on the surface of the sensor due to its high affinity for hydrogen. With increased hydrogen absorption the palladium hydride structure undergoes a phase change due to the formation of the β-phase, which deteriorates the crystal structure. Therefore with increasing hydrogen concentration the stiffness and the density are significantly reduced. The values of the modulus of elasticity and the density at different hydrogen concentrations in palladium are utilized in the finite element model to determine the corresponding SAW sensor response. Results indicate that with increasing the hydrogen concentration the wave velocity decreases and the attenuation of the wave is reduced.